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Air pollution has been identified as one of the leading causes of morbidity and mortality 

worldwide. The current trend is predicted to continue until 2040 by the International Energy 

Agency (IEA) forecasts. It is estimated that ambient fine particles (PM2.5) caused 103.1 million 

disability-adjusted life-years (DALYs) in 2015. As indoor pollutant concentrations, including 

PM2.5, can be even higher than those outdoors, the indoor environments of homes and workplaces 

may significantly impact population exposure. This doctoral thesis presents a study of indoor air 

quality in higher education institution (HEI) buildings. In the UK, most universities are located 

in high-density urban built areas, and air pollution from urban traffic and other sources is the most 

significant contributor to poor indoor air quality (IAQ). Since people spend long hours indoors 

working in HEI buildings, there is a concern about chronic exposure to indoor air pollutants such 

as PM2.5. 

 

The main challenge addressed in this research is the high level of heterogeneous characteristics 

observed in HEI buildings that require many input parameters in developing building stock IAQ 

models to inform planning and design for better air quality. Robust HEI building stock IAQ 

models are required for estimating university population exposure to indoor PM2.5 from outdoor 

sources throughout the year. This thesis shows how such estimations can be achieved reliably by 

a reduced set of input parameters at an HEI building stock level. The IAQ modelling focuses on 

the annual heating season (November-April) when higher outdoor PM2.5 levels often appear 

during winter in the UK. Based on the outputs of infiltrated PM2.5 concentrations, the HEI stock 

IAQ model is applied to evaluate the impact of increasing the building envelope airtightness (Q50) 

measure on population exposure.  
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Five buildings from the University of Sheffield (UoS) were selected and modelled in CONTAM 

and EnergyPlus using available data sources, such as the Estates and Facilities Management 

(EFM) and local building regulations and guidelines. The buildings are modelled with multiple 

Q50 values ranging between 3 – 13 m3/h/m2 to generate indoor PM2.5 concentrations due to 

infiltration at a zone/room level (N =2,729 zones) during the heating season. An analytical 

framework employing sensitivity analysis is used to examine correlations, regressions, and 

sample comparisons to identify the input parameters influential on the concentrations of infiltrated 

PM2.5 during the heating season. The advantage of utilising correlation coefficient tests lies in 

their ability to assess the significance of input variables through the associated p-values. The result 

of the sensitivity analysis shows the top five input parameters influencing infiltrated PM2.5 

concentrations: (1) variability in building envelope airtightness Q50, (2) zone infiltration air 

change rates (ACHINF), (3) indoor-outdoor temperature difference (∆T), (4) wind speed (v), and 

(5) the area of exposed façade to zone volume ratio (Aef:Vz). 

 

To allow for rapid assessments of the Q50 factor on the concentrations of infiltrated PM2.5 of 

existing or proposed UoS buildings, metamodels for the heating season were further developed. 

Informed by the latest literature, the five input parameters were examined systematically in three 

machine learning (ML) regression algorithms: Generalised Additive Models (GAM), Random 

Forest (RF), and Extreme Gradient Decision Trees (XGB). In terms of the best model 

performance among the three, the XGB metamodel achieves an R2 value higher than 0.91 for the 

heating season concentrations of infiltrated PM2.5 on the training (N =1,910), testing (N =819), 

and evaluation (N=40) datasets with a model prediction accuracy greater than 90%. 

 

As a test case, population exposures to indoor PM2.5 in a selected UoS building were estimated by 

a microenvironment modelling approach to evaluate- the effects of changing the airtightness of 

the building envelope. To directly compare the indoor concentrations with the World Health 

Organisation's annual exposure limit of 10 µg/m3, the concentrations of indoor PM2.5 predicted 

by the metamodel due to infiltration are combined with the simulated non-heating season 

concentrations (May-October). The findings reveal that population exposure to indoor PM2.5 

originating from outdoor sources experiences an 11% and 32% reduction when the Q50 values for 

the buildings are set at 7 and 3 (m3/h/m2), respectively.  
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The thesis contributes to the existing knowledge by: (i) developing a novel modelling framework 

for assessing indoor air quality (IAQ) of HEI buildings at an institutional level by combining 

physics-based modelling and ML-based metamodelling; (ii) identifying the most influential input 

parameters impacting the population's exposure to infiltrated PM2.5 in a given HEI context, and 

(iii) demonstrating how an HEI stock IAQ model can be utilised to inform and evaluate the effects 

of planning and design interventions (e.g., Q50 modifications) on IAQ. 
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1.1 The ‘Ambient’ Air  

Several factors affect the composition and concentration of pollutants in the ambient air, such as 

topography, wind conditions, sources of pollution in the area, the time of day, and the season. 

According to Chapman (2007), the ambient air is deemed contaminated if a substance is found 

where it should not be or if its concentration exceeds the background level. On the other hand, 

outdoor air pollution refers to the presence of one or more “contaminants” in the atmosphere at 

levels and durations exceeding natural limits and can lead to a negative impact on the environment 

and health (Chapman, 2007). Particulate Matter (PM), Ozone (O3), Carbon Monoxides (CO), 

Sulphur Dioxides (SO2), and Nitrogen Dioxides (NO2) are among these pollutants that are used 

for declaring states of ambient air quality emergency in the UK when their limits are exceeded. 

In recent years, most studies have focused on the impact of air pollution with PM, especially those 

with a diameter smaller than 2.5 microns (m), because of their ability to penetrate lung tissue 

and trigger local and systemic effects (Nemmar et al., 2013). In light of its varied and severe 

effects on human health of all ages and genders, air pollution (outdoor and indoor) has been 

described as one of the “great killers of our age” and as a “major threat to health” (Venkatesan, 

2016).  

 

The effect of PM on population health is well documented and is now considered one of the most 

significant causes of mortality and morbidity globally. One example is the association of lung 

cancer and respiratory and cardiovascular diseases with exposure to fine particles (PM2.5). Several 

scientific studies have shown that excessive exposure to high PM2.5 concentrations reduces the 

expected lifespan of humans by one to five years (Apte et al., 2018; Cserbik et al., 2020). In 2013, 

the World Health Organisation (WHO) identified PMs as the leading cause of human cancer 

(WHO, 2013). Additionally, the health effects of this exposure on the global population were 
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estimated at 103.1 million Disability-Adjusted Life Years (DALYs) 1 in 2015 (Burnett et al., 

2018; Cesaroni et al., 2013; Cohen et al., 2017). In 2012, the WHO estimated that more than 92% 

of the world’s population lives in areas with high pollution levels. Moreover, the WHO revealed 

that outdoor air pollution caused approximately three million deaths worldwide, with 6.5 million 

deaths (11.6% of all global deaths) resulting from combined indoor and outdoor air pollution 

(WHO, 2012). 

 

Although there has been a considerable improvement in outdoor air quality in the UK over the 

past decade, some areas still exhibit high levels of air pollution. In 2018, 115 of the 317 (36%) 

local authorities had unsafe levels of PM2.5 above the WHO’s annual recommended concentration 

level (DEFRA, 2020). The report adds that 214 local authorities had excessive roadside levels, 

and 55% of the monitored locations exceeded WHO guidelines. A study by Public Health England 

found that PM2.5 air pollution was responsible for 5% of deaths among those over 30 years of age 

(Public Health England, 2018). That is 1 in every 20 deaths. The figures are based on data 

collected between 2010 and 2017. Local areas in some parts of the country are even higher than 

this, with parts of London reaching as high as 7%. The Committee on the Medical Effects of Air 

Pollutants estimates that outdoor air pollution contributes to approximately 28,000-36,000 

premature deaths annually in the UK (COMEAP, 2009). 

 

1.2 Challenges of Indoor Air Quality in a Higher Education Setting 

Worldwide, the energy consumed on Higher Education Institution (HEI) premises has been 

continually rising due to increased student and staff populations and the expansion of energy-use 

facilities. Thus, an increase in energy consumption is accompanied by an increase in energy 

wastage and colossal energy cost burdens on HEI premises management. Furthermore, HEIs are 

significant institutions that can provide leadership in delivering energy transition to net zero via 

their decarbonisation strategies and as “living laboratories” to advance clean technologies. Hence, 

it has been recognised by many HEIs that the need to understand and monitor energy consumption 

patterns on campuses to ensure improved environmental performance and sustainability 

(Oyedepo et al., 2021).  

 

1 Disability-Adjusted Life Year (DALY) is the most commonly used measure for quantifying mortality and morbidity to a given 

disease or risk factor.  It combines the years of life lost due to disability with the years of life lost due to death (A. Chen et al., 2015) 
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Daily running of HEI premises involves many building users and facilities, making potential 

environmental degradation caused by intensive energy use a significant concern. Hence, energy 

consumption in HEIs should be effectively managed to reduce waste and environmental impacts. 

Therefore, HEIs in the UK must implement energy management strategies and programs to align 

campus operations with sustainability goals. One example is the University of Sheffield (UoS) 

Energy Strategy developed to achieve net-zero carbon emissions by 2030 (Arup, 2012). HEI 

energy strategies often include information on the current energy use patterns and provide 

information on where building interventions, such as fabric upgrades and increasing the 

airtightness of building envelopes, are planned and scheduled. 

 

Here is a challenge to address: changes made to an HEI building’s envelope to reduce energy 

demand may negatively impact indoor air quality (IAQ) (Figure 1.1). The emphasis on 

airtightness is of particular interest and concern since people, on average, spend 85-90% of their 

time indoors (ECA, 2003; Klepeis, Nelson, Ott, Robinson, Tsang, Switzer, & Behar, 2001; 

Schweizer et al., 2007). In addition, the building envelope with enhanced airtightness may raise 

building users’ exposure to indoor air pollution (Smith et al., 2016; Vardoulakis, 2009). 

Therefore, HEI energy strategies must simultaneously evaluate and assess the energy demand and 

IAQ.  

 

 

Figure 1.1: The relationship between energy demand, IAQ and ventilation rates in buildings (Molina, 

2019) 
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1.3 Indoor Air Quality in HEI Buildings  

Seen as a specific type of institutional building stock, HEI buildings offer complex indoor 

environments where staff and students work, learn and interact. The total number of HE students 

in the UK stood at 2.9 million in 2020/21, an increase of 9% from 2019/20 (Bolton, 2022), with 

225,000 academic/professional staff. With such a large population, the risk of exposure to indoor 

air pollution in HEIs should be assessed regularly to inform mitigation strategies and actions. 

However, there has been relatively little research on indoor air quality (IAQ) in HEI buildings, 

with most studies focused on factors affecting HEI indoor environmental quality and perception-

based measures (Lee et al., 2012; Norbäck et al., 2013; Norbäck & Nordström, 2008; Sarbu & 

Pacurar, 2015). Moreover, limited studies examined PM exposure in HEI premises and its 

associated health impacts (Gaidajis & Angelakoglou, 2009; Norbäck et al., 2013). However, these 

studies were limited in scale and only looked into IAQ in specific room types (e.g., computer 

rooms). The study by (Elliot et al., 2000) found that even individuals working within the same 

building will be exposed to varying levels of PM based on the patterns of their daily activities. 

 

Several factors could affect the IAQ in HEI buildings, including the design of the building, its 

use, location, and the local environmental conditions, making exposure assessment to indoor 

pollution a complex task. In particular, this is due to (a) the high heterogeneity often observed in 

HEI building design and construction, (b) the characteristics, composition, and behaviour of 

building users, and (c) the uncertainties in the environmental parameters that influence building 

and occupant behaviours. Additionally, these three systems – ambient environment, building, and 

occupant- constantly interact, and their characteristics and parameters must be examined to 

account for the interactions. Therefore, more research is needed to better understand the 

distributions of PM2.5 within and between HEI buildings and its impact on population exposure 

to inform HEI estate planning and design.  

 

1.4 Research Aim and Objectives 

This research aims to develop a new modelling capability for estimating population exposure to 

infiltrated PM2.5 at an HEI building stock level throughout the year. The modelling will focus on 

the heating season (November-April) to determine the concentration of infiltrated PM2.5 in indoor 

environments in HEI building stocks and to evaluate the impact of increasing envelope 
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airtightness on population exposure. In the UK, outdoor PM2.5 concentrations are typically higher 

during winter due to increased heating systems and transportation use. Additionally, during 

winter, a phenomenon known as temperature inversion may occur, in which the lower atmosphere 

is cooler than the upper atmosphere (Gramsch et al., 2014). This leads to the trapping of 

pollutants, including PM2.5, close to the ground by a layer of warm air, resulting in elevated 

concentrations. 

 

Furthermore, the HEI academic year runs from October to June, with higher occupancy levels in 

the heating season than in the non-heating season. Previous research suggests that while natural 

ventilation contributes to increased air exchange rates during the non-heating season (Park et al., 

2014), the influence of lower outdoor PM2.5 concentrations on IAQ is less pronounced during this 

season. Therefore, in this study, the efforts to enhance the IAQ using PM2.5 as an indicator will 

prioritise measures that reduce the infiltration of PM2.5, particularly in the heating season. The 

modelling will focus on the heating season (November-April) to determine the concentration of 

infiltrated PM2.5 in indoor environments in HEI building stocks and to evaluate the impact of 

increasing envelope airtightness Q50 on population exposure. 

 

The research is expected to lay the foundation of novel applications supporting HEI planning and 

design for better IAQ. In particular, with the heterogeneity and complexity often observed in HEI 

buildings, variations of indoor PM2.5 concentration levels are anticipated from building to building 

and within each building. To address this challenge, the research tackled the following questions:  

 

1. What key parameters influence the indoor air quality of HEI buildings?  

2. Given an existing HEI building stock in its urban context, how can we estimate population 

exposure to indoor PM2.5 outdoor sources at an institutional stock level? 

3. How can the building and data science of HEI building stock IAQ modelling inform 

planning and design for better indoor air quality? 

 

The research questions led to the following six objectives:  

 

Objective (Obj-1): To identify existing data sources that can be used to describe components of 

the HEI institution stock. Then decompose multiple buildings sampled from an HEI stock into a 

structured cohort of individual spaces or rooms. 
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Objective (Obj-2): To develop detailed multi-zone IAQ models of the selected buildings to 

estimate the concentrations of infiltrated PM2.5. (Note: In the absence of indoor air pollution field 

measurements, the primary information source will be the coupled simulation platform between 

CONTAM-EnergyPlus.).  

As affected by the COVID-19 pandemic restriction, it was not possible to validate the IAQ models 

developed in this research by following the ASTM guide for validation. The field measurement 

phase of the research was initially planned to occur between January 2020 and January 2021; 

however, due to the UK Government’s restrictions (i.e., nationwide lockdowns), field 

measurement data collection was not possible during this period. It was also challenging to gather 

occupancy-related data through surveys since access to every university building was severely 

restricted.  

 

Objective (Obj-3): To explore the relationship between indoor PM2.5 concentrations and multiple 

building and environmental variables by applying a sensitivity analysis framework. Here, the 

outcome of the framework is a reduced set of parameters ranked by their effect on the simulated 

PM2.5 concentrations.  

 

Objective (Obj-4): To develop a data-driven metamodel from a reduced set of input parameters 

to capture the spatial variation of infiltrated PM2.5 concentrations.  

 

Objective (Obj-5): To improve the interpretability of the developed metamodel by applying an 

interpretation framework (SHAP). Here, the contribution of each explanatory variable to the 

infiltrated PM2.5 concentrations will be calculated.  

 

Objective (Obj-6): To estimate the individual and population exposures to indoor PM2.5 

according to time-activity groups comparable to IAQ standards or IAQ-related health metrics. 

 

1.5 Contribution to Knowledge 

Firstly, a hybrid bottom-up approach is developed to model multiple buildings selected from an 

HEI building stock as a structured cohort of individual spaces or rooms. The model resolution set 

at a room level allows for sensitivity analyses of possible relations between measured or simulated 

infiltrated PM2.5 concentrations and the built and environmental characteristics. Second,  it 

identifies the most influential input parameters impacting the population's exposure to infiltrated 

PM2.5 in a given HEI context. Third, it demonstrates how an HEI stock IAQ model can be utilised 
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to inform and evaluate the effects of planning and design interventions (e.g., Q50 modifications) 

on IAQ. Fourth, the research addresses the need for more detailed studies on developing non-

domestic building stock IAQ models. Based on the University of Sheffield estates stock, the thesis 

presents a UoS Stock IAQ model. Finally, this thesis identifies several areas of data paucity 

hindering HEI AQ planning and design that requires attention and investment. 

 

1.6 Thesis Outline 

 

This thesis comprises nine chapters reporting the research tasks and results of fulfilling the project 

objectives.  

Chapter 1 Introduction presents the motivation behind this research, the research questions, the 

aim and objectives, and the contribution to existing knowledge.  

 

Chapter 2, Literature Review, presents a comprehensive review of existing literature on IAQ. 

The review was dedicated to determining the assumptions, methods and techniques used to 

develop building stock IAQ models. This review concludes by examining the use of data-driven 

methods in modelling indoor air quality in different buildings.  

 

Chapter 3, Research Methodology and Data Sources, describes the methodological framework 

proposed to estimate the infiltrated PM2.5 concentrations across selected buildings from an 

existing HEI stock. Then, existing data sources describing the HEI institution stock components 

are identified.  

 

Chapter 4, Building Physics-Based Modelling, presents the development of detailed multi-zone 

models of the sampled UoS buildings in CONTAM and EnergyPlus to estimate infiltrated PM2.5 

concentrations. In addition, the coupled simulation results are presented in this chapter.  

 

Chapter 5, Predictive Models: Metamodelling Roadmap, presents a framework for developing 

predictive data-driven models based on the outputs of the coupling simulation. The chapter 

presents a sensitivity analysis framework to identify the most influential inputs to infiltrated PM2.5 

concentrations. Then, the roadmap for the development of predictive models is presented.  

 

Chapter 6, Sensitivity Analysis and Model Prediction, presents the results of the sensitivity 

analysis framework for annual levels of infiltrated PM2.5 concentrations. Then, an in-depth 

analysis of all variables in the dataset is conducted to identify the essential variables associated 
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with the infiltrated PM2.5 concentrations. Finally, the outcome of the SA was used as input to each 

ML algorithm.  

 

Chapter 7, Microenvironmental Modelling of Population Exposure, presents a 

microenvironment modelling approach to estimate the average Personal Exposure (Ei) to the 

infiltrated PM2.5 and the average Population-Weighted Exposure (PWE) to the infiltrated PM2.5 

for different microenvironments across similar time-activity groups.  

 

Chapter 8, Discussion, Limitation, and Future Considerations, discusses the research findings 

and how these results can be used to inform campus master planning. Then the limitations and 

areas of improvement in this research are discussed in detail in this chapter.  

 

Chapter 9 Conclusion provides a summary of the key findings of the research and an account of 

how the six research objectives have been fulfilled, including recommendations for future work. 

 

1.7 Publications Associated with this PhD Thesis  

Abdalla, T., & Peng, C. (2021). Evaluation of housing stock indoor air quality models: A review 

of data requirements and model performance. Journal of Building Engineering, 43(May), 102846. 

https://doi.org/10.1016/j.jobe.2021.102846  

https://doi.org/10.1016/j.jobe.2021.102846
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2.1 Introduction 

The IAQ of a building is one of the most significant concerns regarding occupant health and 

comfort. Unfortunately, improvements relating to IAQ are not prioritised due to a lack of 

information and knowledge regarding indoor air pollution, particularly in complex non-domestic 

buildings. This chapter aims to critically review the existing literature on indoor air quality in 

buildings and methods for assessing indoor air quality at a building stock level. This review will 

reveal gaps in the IAQ modelling of individual buildings and building stocks. This chapter is 

organised into seven sections. In Section 2.2, outdoor air pollution is discussed as an 

environmental and health hazard and an active research area. Section 2.3 discusses indoor air’s 

relevant characteristics and several factors that may affect air quality. Section 2.4 presents the 

methods for modelling indoor air in buildings, focusing on multi-zone modelling methods. 

Section 2.5 presents the methods for modelling IAQ at a building stock level. Section 2.6 presents 

existing methods for modelling a non-domestic building stock. Section 2.7 reviews the current 

data-driven methods in modelling the IAQ of buildings. Finally, Section 2.8 concludes this 

chapter by presenting the research gaps in building stock IAQ models.  

https://doi.org/10.1016/j.jobe.2021.102846
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2.2 Outdoor Air Pollution  

Polluted ambient air contains a complex mixture of compounds with varying concentrations and 

toxicity levels and has been identified as a leading cause of mortality and morbidity. Nearly 99% 

of the volume of the air we breathe consists of nitrogen and oxygen. The remaining 1% 

corresponds to other gases and particles. Some are common constituents (argon, carbon dioxide, 

or neon) and harmless in average concentrations, while others (called contaminants) may damage 

the environment and human health even in relatively low concentrations.  In the UK, outdoor air 

pollution contributes to about 40,000 premature deaths yearly (Holgate, 2017). Globally, the 

number of premature deaths from outdoor air pollution is estimated to increase from 3 million in 

2010 to 6 to 9 million in 2060, with the highest increase in non-OECD2 economies (OECD, 2016). 

 

Several pollutants are used to assess outdoor air quality (also referred to as criteria pollutants): 

particulate matter, also known as particles, ground-level ozone (O3), carbon monoxide (CO), 

sulphur dioxide (SO2) and nitrogen dioxide (NO2).  Particles, a pollutant rather than a single 

compound, are typically reported according to their mass concentration. For example, using the 

mass fraction of particles with aerodynamic diameters smaller than 2.5 or 10 µm, as PM2.5 or 

PM10, respectively. The effect of particles on population health is well documented and is now 

considered one of the significant causes of mortality and morbidity globally. One example is the 

association of lung cancer and respiratory and cardiovascular diseases with exposure to PM2.5. 

Scientific reports indicate that excessive exposure to high PM2.5 concentrations reduces the 

expected human lifespan by 1–5.5 years (Apte et al., 2018; Cserbik et al., 2020). In 2013, the 

WHO identified PMs as the leading cause of human cancer (WHO, 2013). Additionally, the health 

effects of this exposure on the global population were estimated at 103.1 million DALYs 3 in 

2015 (Burnett et al., 2018; Cesaroni et al., 2013; Cohen et al., 2017).  

 

A nationwide outdoor air pollution monitoring network is now well established in the UK, 

providing long-term evidence for setting national outdoor air quality regulations. Much effort has 

been expended in analysing the impacts of exposure to outdoor contaminants on the population, 

and some integrated indices have been developed. In most cases, they convert the time-series air 

 

2 The Organization for Economic Cooperation and Development (OECD):  A unique forum for the cooperation of governments from 

37 democratic countries with market-based economies, the Organization for Economic Co-operation and Development (OECD), 
develops guidelines for policies to promote sustainable economic growth. 
3 Disability-Adjusted Life Year (DALY) is the most commonly used measure for quantifying mortality and morbidity to a given 

disease or risk factor.  It combines the years of life lost due to disability with the years of life lost due to death).  
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pollution concentrations into a single standard index and their associated health outcomes. One 

example is the Daily Air Quality Index (DAQI) developed by the UK Department for 

Environment, Food & Rural Affairs (DEFRA). The DAQI of a specific urban site or a region is 

based on the highest concentration of five pollutants; PM2.5, PM10, O3, NO2 and SO2, which is 

converted into a standard and dimensionless value between 0 and 10 (Connolly et al., 2013).   

 

Although the DAQI index can indicate when ambient air quality has reached short-term unhealthy 

levels, it depends on information and the location of stationary monitoring stations, which may 

not reflect personal exposure conditions (Bravo-Linares et al., 2016).  Moreover, reporting a 

single value by converting the outcomes of only five pollutants into a standard index of short-

term health effects does not provide an in-depth analysis of the effects of pollution, nor does it 

provide information on chronic health consequences. Furthermore, PMs can comprise hundreds 

of components; typical components of ambient PM include Sulphates, Nitrates, Ammoniums, 

Sodium, Chlorides, Organic Carbons (black carbons and VOCs) , Minerals, and Water. Finally, 

it is essential to note that ambient particle fractions differ depending on the source, the location, 

and the meteorological conditions.  

 

In the UK, domestic combustion is a significant source of PM emissions, accounting for 27% and 

44% of PM10 and PM2.5, respectively. PM concentrations are exceptionally high in winter and 

autumn, where most emissions come from burning wood in closed stoves and open fires. 

Domestic combustion of coal was the primary source of PM emissions in the 1970s and 1980s; 

coal now accounts for only a small portion of the emissions from domestic combustion (Birchby 

et al., 2019). As of 2018, using wood in residential combustion was the primary source of PM2.5 

emissions (38%) (Chakraborty et al., 2020). The PM2.5 emissions generated by residential wood 

burning doubled between 2003 and 2018 (from 20 to 41 thousand tonnes) and increased by 6.8% 

between 2017 and 2018. Despite this, PM concentrations are not negligible in spring and summer 

due to other factors such as higher temperatures, road traffic, industrial combustion, and 

agricultural practices (Harrison & Yin, 2004).     
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Figure 2.1: Annual emissions of PM10 and PM2.5 in the UK: 1970-2020 (Brookes et al., 2021) 

 

Currently, road transport accounts for 11.5% of PM10 and PM2.5 emissions. Exhaust emissions 

have decreased significantly since 1996 due to stricter pollution control standards (83% for PM10 

and PM2.5 combined) (DEFRA, 2012). However, the increase in traffic activity has partially offset 

the increase in non-exhaust emissions (such as brake, tyre, and road wear). Another primary PM 

source is industrial combustion and processes, contributing 43% to PM10 and 29 % to PM2.5 in 

2018 (Birchby et al., 2019). PM emissions from industrial sources have declined over the long 

term as the demand for chemicals and steel have declined and emission controls have been 

improved. However, recent industrial combustion increases (especially biomass increases) have 

partially offset this. With levels of PM and population exposure close to roadsides being much 

higher than those in background locations, regulations are being implemented to reduce the 

transport of ambient pollutants to indoor environments. However, a significant proportion of the 

building stock in the UK was constructed before these regulations or is not eligible for subsidised 

weatherisation programs.  
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2.3 Indoor Air Quality 

IAQ refers to the air quality inside buildings or other enclosed spaces as it relates to the health 

and comfort of the occupants. The concentration and type of air pollutants in the indoor 

environment determine indoor air quality. The American Society of Heating, Refrigerating and 

Air-Conditioning Engineers (ASHRAE) has developed two standards for determining IAQ: 

ASHRAE Standard 62.1 and ASHRAE Standard 62.2 (ASHRAE, 2019). Both standards provide 

guidelines for designing, constructing, and operating heating, ventilation, and air conditioning 

(HVAC) systems to ensure adequate ventilation and IAQ in buildings. ASHRAE Standards 62.1 

and 62.2 define IAQ in a binary way, where the air quality is either “acceptable” or 

“unacceptable”. This standard establishes the minimum ventilation rates and other design 

requirements for residential, commercial and institutional buildings. In addition, the standard 

considers the amount of outdoor air required to dilute and remove pollutants in indoor air to ensure 

occupant health and comfort. The standard also considers the building occupancy and use to 

determine the minimum outdoor air requirements (occupancy densities and outdoor air supply [l/s 

per person]). 

 

Exposure to air pollutants can occur through inhalation, ingestion, or skin contact. The dose of 

pollutants an individual is exposed to is determined by the concentration of pollutants in the air 

and the duration of exposure. Health responses to exposure to air pollutants can vary depending 

on the type and concentration of the pollutant, as well as the susceptibility of the individual. 

Health responses can range from mild irritation to severe respiratory illnesses, cardiovascular 

disease, and cancer (Van Tran et al., 2020). Although people spend 80-90% of their lives in 

increasingly air-tight buildings, indoor air pollution has received less attention than outdoor air 

pollution. However, according to the WHO, more than 5 million premature deaths occur yearly 

due to illnesses caused by poor IAQ (Pai et al., 2022), resulting in multimillion-dollar losses due 

to reduced employee productivity and increased health system expenses. Several outdoor and 

indoor factors affect the concentration of indoor air pollutants, including PM, biological 

pollutants, and over 400 different chemical, organic and inorganic compounds. According to the 

most recent studies on human exposure to indoor pollution, it was found that indoor environments 

may be twice as polluted as outdoor environments (González-Martín et al., 2021). 

 

IAQ is a complex issue with potentially acute and chronic health effects. Various metrics measure 

IAQ, including smell, rating systems, exposure limit values, thresholds, and harm. In the UK, the 
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National Institute for Health and Care Excellence (NICE) guides IAQ management and 

emphasizes the importance of addressing IAQ in reducing disease burden. Odour or smell is a 

subjective measure of IAQ, as it depends on individual perceptions and preferences. While it is 

not a direct measure of pollutant concentration, it can indicate potential problems with IAQ, such 

as poor ventilation or chemical or biological contaminants (Dales et al., 1997). 

 

Regulatory agencies establish exposure limit values and thresholds to set safe levels of exposure 

to various pollutants. These limits are based on scientific studies investigating the relationship 

between exposure to pollutants and adverse health effects. Exposure limit values and thresholds 

can vary depending on the pollutant, the duration and frequency of exposure, and the individual’s 

susceptibility. Exposure to pollutants above the recommended exposure limit values and 

thresholds can lead to acute health effects, such as irritation of the eyes, nose, and throat irritation, 

or chronic health effects, such as respiratory diseases or cancer. 

 

The World Health Organization (WHO) has established exposure limits to indoor air pollutants 

based on scientific evidence of their adverse health effects. These limits protect public health by 

minimizing exposure to harmful pollutants and promoting good indoor air quality. The WHO 

exposure limits are expressed as concentrations of specific pollutants over a defined period. For 

example, the WHO recommends a maximum exposure of 15 µg/m3 to PM2.5 over 24 hours and a 

maximum exposure of 5 µg/m3 over a year (World Health Organization (WHO), 2021a). Other 

pollutants with WHO exposure limits include NO2, CO, ozone O3, and sulfur dioxide SO2. These 

limits are essential because indoor air pollution is a significant public health issue. According to 

the WHO, exposure to indoor air pollution is responsible for an estimated 4.3 million deaths 

worldwide each year, most of which occur in low- and middle-income countries. In addition, 

indoor air pollution is associated with various acute and chronic health effects, including 

respiratory infections, asthma, lung cancer, and cardiovascular disease. 

 

Indoor air pollution levels in the UK are regulated by the Air Quality Standards Regulations 2010, 

the Air Quality Standards (Wales) Regulations 2010, the Air Quality Standards (Northern Ireland) 

2010 and the Air Quality Standards (Scotland) Regulations 2010. These Regulations seek to 

control exposure to air pollution to protect human health by requiring concentrations within 

specified limits. The current primary standards and limits are summarised in Table 2.1.  

http://www.opsi.gov.uk/si/si2010/uksi_20101001_en_1
https://www.legislation.gov.uk/wsi/2010/1433/contents/made
https://www.legislation.gov.uk/nisr/2010/188/contents/made
https://www.legislation.gov.uk/nisr/2010/188/contents/made
https://www.legislation.gov.uk/ssi/2010/204/contents/made
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Table 2.1: UK Standard and the WHO recommendations for outdoor concentrations of the DAQI common 

pollutants.  

Pollutant  UK Limit  International Recommendation 

(World Health Organization 

(WHO), 2021b) 

 

Particles (PM2.5) -  25 g/m3 (24-h mean)   

 25 g/m3 (annual mean) 10 g/m3 (annual mean)  

Particles (PM10) 50 g/m3 (24-h mean) not to be 

exceeded more than 35 times a year  

40 g/m3 (annual mean) 

50 g/m3 (24-h mean)  

20 g/m3 (annual mean) 

 

NO2 200 g/m3 (1-h mean) not to be 

exceeded more than 18 times a year 

40 g/m3 (annual mean) 

200 g/m3 (1-h mean)  

40 g/m3 (annual mean) 

 

SO2 350 g/m3 (1-h mean) not to be 

exceeded more than 24 times a year 

125 g/m3 (24-h mean) not to be 

exceeded more than 3 times a year 

20 g/m3 (24-h mean)   

O3 100 g/m3 (8-h mean) not to be 

exceeded more than ten times a year 

100 g/m3 (8-h mean)  

60 g/m3 (Peak Season*) 

 

*Average of daily maximum 8-hour mean O3 concentration in the six consecutive months with the highest six-month 

running-average O3 concentration. 

 

 

Buildings may significantly alter exposure to air pollutants originating both indoors and outdoors 

(J. Taylor et al., 2014a). Indoor air pollution can result from outdoor pollution due to the 

infiltration of pollutants caused by human activities, including vehicular traffic (COMEAP, 

2018), as well as by natural sources, including radioactive decay in the ground (Turk et al., 1990). 

Pollution that passively enters a building is influenced by the airtightness of the building, the 

number of external walls and their exposure to the wind, and how frequently the occupants open 

their windows (J. Taylor et al., 2014a). There is also the possibility of active infiltration via 

mechanical ventilation, with the infiltration rate dependent upon the building’s ventilation rate 

and filtration systems. Additionally, indoor activities that can cause air pollution include cooking, 

using solid fuels for heating, and smoking (Chakraborty et al., 2020). The ventilation rate of a 

building, internal deposition, and air purification systems acting as air pollutant sinks can improve 

IAQ. Building characteristics such as airtightness, purpose-installed ventilation systems, internal 

and external building geometry, and occupant behaviours (e.g., opening windows for ventilation) 

can impact the infiltration level, and they may vary significantly between different building types.  
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2.4 Assessing Indoor Air Quality  

At the most basic level, there are two approaches to measuring or quantifying air pollution inside 

a building: direct or indirect. Direct or in-situ approaches involve deploying stationary or mobile 

sensors and data processing facilities. If resourced adequately, direct methods can accurately 

report personal exposures and indoor contaminant concentrations given known instrument and 

measurement limitations. In addition, although time-consuming and potentially costly, direct 

methods can obtain specific IAQ measurements of extant species and magnitudes (extremes) and 

the sources of pollutants and emission rates (Abdalla & Peng, 2021). Indirect approaches, on the 

other hand, utilise computational modelling and statistical methods to estimate/predict indoor 

contaminant concentrations and personal exposures. 

 

The direct approaches seldom capture the complex dynamic interactions of air particles and 

transient behaviours within a building or a group of buildings. This is due to the limitations 

imposed by either the instrumental factors (e.g. device selection, calibration and reliability) or the 

sampling methods (e.g. measurement location, sampling frequency and time-averaging period) 

(Coleman & Meggers, 2018; B Jones et al., 2018). Moreover, there can be uncertainties associated 

with an individual or a network of IAQ sensors, resulting in measurements that may be potentially 

misleading (O’Leary, de Kluizenaar, et al., 2019). Sharing similar purposes of quantifying indoor 

air environments, indirect approaches attempt to model such complexity computationally, which 

can be guided by iterative data-based calibration and hypotheses testing. The accuracy and 

robustness of computational IAQ models can be evaluated and improved through field 

measurements. However, depending on the methods employed, computational modelling may 

oversimplify the spatial-temporal dynamics in which the physical-chemical processes of air 

particles or gases (e.g., PM2.5, PM10, O3, NOx, CO, SO2) take place. Nevertheless, one of the 

desirable benefits of the indirect approaches is the applicability of computational IAQ models to 

evaluate the likely effects of interventions proposed for improving IAQ at scale.  

 

2.4.1 Mass Balance Models  

Due to the complexity of obtaining field measurements of indoor air pollution in buildings or 

groups of buildings, mass balance equations are commonly used to determine the relationship 

between indoor particle concentrations and specific variables. Derived from understanding the 

underlying physical factors and processes that govern the transfers and transformations of 
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pollutants in indoor environments, mass balance models provide a relatively simple means of 

estimating changes in average concentrations of indoor pollutants spatially (e.g., in a room or 

group of rooms) and temporally. They are often applied assuming well-mixed air volumes can 

characterise a room or a building. In its basic form, a mass balance model that describes the indoor 

concentration of air pollutants under specified emissions or removal processes can be expressed 

by an ordinary differential equation:   

 

 
𝑑𝐶𝑖

𝑑𝑡
=  (𝐶𝑆𝑜𝑢𝑟𝑐𝑒𝑠 − 𝐶𝑆𝑖𝑛𝑘𝑠 )/ 𝑉 (2.1) 

Where 𝐶𝑖 Is the concentration at time t, CSources is the sum of concentration gain from all sources 

(µg/m3), and CSinks is the sum of concentration loss from all sinks (µg/m3).  

Because the air in a controlled indoor environment is intrinsically complex, no single mass 

balance model is well suited for addressing all pollutants or issues under investigation, even 

though all mass balance models are based on the same fundamental principle of mass 

conservation. Therefore, following (Nazaroff, 2004a), with the only assumption that the indoor 

particles attributes are uniform (well-mixed) throughout the interior space, Eq. (2.1) can be 

expanded to represent a range of factors that determine the indoor concentrations of the particle 

attribute in a single well-mixed zone: 

 

𝑑(𝐶𝑖𝑉)

𝑑𝑡
= 𝐸 + 𝐶𝑜[𝑄𝑠(1 − 𝜂𝑠) + 𝑄𝑁 + 𝑄𝐿𝑃] − 𝐶𝑖 [𝑄𝐹𝜂𝐹 + 𝛽𝑉 + (𝑄𝑠 + 𝑄𝑁 + 𝑄𝐿)]    (2.2) 

 

Where 𝑉 is room volume (m3), 𝐶𝑜 Is the concentration of particles in outdoor air (µg/m3), 𝑄𝑠 is 

the mechanical supply flow rate (m3/h), 𝑄𝑁 is the natural ventilation flow rate (m3/h),  𝑄𝐿 is 

leakage (infiltration) flow rate (m3/h), 𝜂𝑠 Is a  filter with single-pass removal efficiency (—), 𝑃 is 

the penetration fraction of particles (—), 𝑄𝐹 Is indoor air particle control flow rate (m3/h), 𝜂𝐹  is 

a filter with single-pass removal efficiency (—), 𝐸 is an emission source operating at (µg/h), and 

𝛽 is the loss of particles from indoor air by deposition represented by a first-order loss-rate 

coefficient (h-1). (Nazaroff, 2004a) illustrated the mass balance approach, which systematically 

depicts the processes represented in Eq. (2.2).  
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Figure 2.2: Schematic representation of the physical processes affecting indoor particle concentration 

levels (Nazaroff, 2004a)  

It is worth noting that Eq. (2.2) may be extended to include different processes when the indoor 

environment under study is represented as multiple well-mixed zones. This includes terms that 

account for the supply and loss of particle attributes by inter-zone and infiltration airflows (Miller 

& Nazaroff, 2001). 

 

In addition to the differences in air pollutants properties, there are myriad variations in how 

different indoor environments are operated, which renders it difficult nor practical for a single 

mass balance model to cover all circumstances (Nazaroff, 2004a). Previous studies have tried to 

illustrate the processes involved in different formulas of the mass balance models 

(Dimitroulopoulou et al., 2006; Jamieson, 2008; Schneider et al., 2004). However, these studies 

have primarily been small in scale and applied only for short periods over several locations 

(Jamieson, 2008). The factors and terms in these models are subject to variability and uncertainty 

in the relationships between the physical environmental phenomena, building characteristics, and 

dynamic composition of pollutants (see Figure 2.3 for a summary). To achieve reliable predictions 

of IAQ at multiple spatial and temporal resolutions, simulation tools need to be built with indoor 

particle dynamics mathematical models that capture the complex physical and environmental 

phenomena as accurately as possible. 
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Figure 2.3: Summary of the main factors and processes affecting indoor concentrations of pollutants (red 

lines indicate the boundary of the building envelope) (IEHIAS) 

 

2.4.2 Computational Modelling of Indoor Air Quality in Buildings 

Complex analyses must identify relevant pollutants from each source under actual conditions. 

Indirect methods simplify any model by relying on assumptions and must consider input 

parameters and uncertainty about model accuracy.  Numerous approaches have been used to 

address these issues, including methods that complement each other so that measured data better 

informs model inputs and results can be validated and calibrated. Consequently, the accuracy of 

the model will be determined by the availability and quality of input data. The manner in which 

indoor airspace is partitioned to provide a required level of spatial detail can be categorised into 

three methods based on how the airspace is partitioned. From simple models with (i) a single and 

well-mixed zone, continuing with (ii) multi-zone models, to (iii) more complex models, using a 

non–uniform distribution of the pollutants with Computational Fluid Dynamics (CFD) simulation 

tools. 

 

As summarised in Figure 2.4, single-zone and multi-zone models adopt different principles, 

strategies and solvers that generate different outputs. It is difficult to determine which model is 

the best because of the different modelling and simulation requirements, such as building 

complexity, the parameters investigated, the expected results, and the degree of accuracy required 

(Yu et al., 2019). A wide range of input parameters is required to perform IAQ simulations, 

including climate data, building fabric and geometry, building systems, and occupancy schedules 

(A. K. Persily & Ivy, 2001). As buildings have become more complex, a conceptual understanding 
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of the fundamental principles of ventilation and building systems, including HVAC, must be 

coupled with computational modelling to accurately predict contaminant behaviour and its impact 

on human health. 

 

 

Figure 2.4: Approaches to modelling IAQ in a building. Left: Single zone models; Middle: Multi-zone 

models; Right: CFD Models. Each node represents a well-mixed volume. (Based on (J. Axley, 2007)). 

 

Assuming homogeneous physical properties of air (i.e. uniform temperature, air pressure, and 

contaminant concentrations), well-mixed single-zone models typically take a macroscopic view 

of air within one volume represented by a node. Meanwhile, multi-zone models define multiple 

nodes (or zones), each representing a room or a group of rooms connected by several airflow 

paths. In both models, the airflows between each zone and the outdoor air are calculated iteratively 

using mass balance equations until the pressure relationships are solved at each time step. Hence, 

in the face of multiple challenges, such as the stochastic nature of weather, occupant behaviours, 

building components, and uncertainties in simulation input parameters, the model choice could 

have significant implications for estimating indoor contaminant concentrations.  

 

Computational fluid dynamics (CFD) modelling takes a microscopic view of airflow in a zone or 

a group of zones within a building (Yu et al., 2019). CFD models are particularly relevant where 

uniform mixing within a zone or zones cannot be assumed reasonably to represent the airflow 
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conditions under investigation (Shimada et al., 1996). CFD-based models can compute fine-

grained indoor contaminants concentrations and personal exposures, and they have been widely 

used to simulate contaminants infiltration from outdoor generated sources and contaminants 

transport between zones within a building (Panagopoulos et al., 2011; Yang et al., 2014). 

 

As mentioned, the ideal method for IAQ assessment of existing buildings is through large-scale 

data collection campaigns. However, computational IAQ modelling has become preferable due 

to cost and time constraints, especially when evaluating intervention proposals. State-of-the-art 

IAQ models include multi-zone or airflow networks and CFD models. These models can calculate 

indoor air properties such as indoor air temperatures, airflow rates, and indoor contaminant 

concentrations. In predicting a building’s IAQ, airflow network and CFD models perform 

differently in complexity, reliability and accuracy. CFD-based models are computationally 

expensive as they often resolve airflow dynamics at high spatial and temporal resolutions. Hensen 

and Lamberts pointed out that there appeared to be a widespread misconception that using CFD 

will reduce uncertainties and increase the accuracy of IAQ predictions (Hensen & Lamberts, 

2011). Deviating from the ideal case to higher or lower complexity can induce risks of simulation 

errors. Therefore, the selection of appropriate computation methods should be guided by the 

purpose of the simulation (e.g., airflow network methods for bulk airflow analysis or CFD to 

study trends (sensitivity of flow patterns to small changes).  

 

Robinson (2008) stated that all simulation models simplify reality and are based on abstract 

representations of real-world phenomena. In this regard, it is necessary to make explicit 

assumptions about the computational methods employed in modelling the IAQ of building stock. 

Next, the assumptions made in IAQ simulation tools: computational unit, abstraction of building 

components and systems, and input variables and parameters will be discussed. 

 

Both single-zone and multi-zone models are based on the assumption of perfectly homogeneous 

or well-mixed conditions (i.e., each zone has an average air pollutant concentration value). In 

single-zone models, a building is simplified to be represented by a single zone or node without 

considering its interior partitions (Megri & Haghighat, 2007). Consequently, the physical details 

of heat and mass transfer between rooms within a building caused by temperature and pressure 

variations are ignored (Yu et al., 2019). Figure 2.5 illustrates the assumptions, showing the air 

temperature in a single-zone model represented by an average value of Tin (°C) (Megri & 
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Haghighat, 2007). A steady state model (see Eq. 2.3 & 2.4.) stipulates that the mass flow rate 𝑚̇𝑖𝑛 

(kg/s) should be equal to the outlet mass flow rate 𝑚̇𝑜𝑢𝑡 (kg/s) when infiltration is neglected, and 

the energy is conserved between 𝑞̇𝑖𝑛 (rate of heat energy supplied into room/building (Watts)), 

𝑞̇𝑜𝑢𝑡 (rate of heat energy removed from room/building (Watts)) , and 𝑞̇𝑙𝑜𝑠𝑠/𝑔𝑎𝑖𝑛  (rate of heat 

energy transferred through room/building structures (Watts)).  

 

 
𝑑𝑀𝑠𝑝𝑎𝑐𝑒

𝑑𝑡
=  𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 = 0 (2.3) 

 

 

 

𝑑𝑄𝑠𝑝𝑎𝑐𝑒

𝑑𝑡
=  𝑞̇𝑖𝑛 +  𝑞̇𝑜𝑢𝑡 + 𝑞̇𝑙𝑜𝑠𝑠/𝑔𝑎𝑖𝑛 = 0 (2.4) 

Additionally, a single node represents the outdoor climate, and the physical parameters of this 

node are assigned from weather conditions. Notwithstanding, single-zone well-mixed models are 

relatively easy to implement and fast to compute. They are suitable for estimating bulk airflow 

properties when the domain of interest can be treated as a single zone or node. 

 

 

Figure 2.5: A summary of IAQ simulation assumptions of single-zone steady-state and multi-zone 

models. (Red lines delineate the inner volume of a zone based on (Yu et al., 2019)). 

 

Multi-zone models use rooms as the minimum computational unit. They calculate the airflow and 

contaminant transport inside a building within minutes or seconds. However, shorter computing 

times can be achieved by assuming homogeneity in each zone; that is, the distributions of air 

pressure, air temperature, and contaminant concentration in each room are assumed uniform and 
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leave out the air momentum effect from an inflow opening (J. Axley, 2007). This is not always 

the case because a vertical temperature gradient exists in rooms filled with stratified flows driven 

by displacement ventilation or water heating systems (Wang & Chen, 2007). In addition, the well-

mixing assumptions could be problematic for simulations of poorly mixed air and contaminants. 

In an earlier review of airflow and infiltration models, (F. Haghighat, 1989)  stated that a multi-

zone airflow model should be able to fully account for the driving forces that cause air to flow 

from outdoor to indoor and between indoor zones, including the stack effect, the wind pressure 

effect on building envelope, and the effect of HVAC systems on airflow.  

 

In general, multi-zone airflow models are based on constructing a matrix of equations 

representing all airflow paths connecting zones (nodes) within a building. A mathematical 

equation describing each airflow path (i.e. door, window, crack, etc.) is used to numerically solve 

the resulting matrix, typically by the Newton-Raphson method (Conte & de Boor, 1972). All 

equations are solved iteratively to ensure reaching the convergence state when the sum of all mass 

flow rates through all flow paths approaches zero, as illustrated in Eq. 2.5.    

 ∑ 𝐹𝑗𝑖 =  0 (2.5) 

where Fji is the mass airflow rate from zone j to zone i (kg/s).  

In a multi-zone model, the mass airflow rate at each airflow path is some function of the flow 

pressure drop along the flow path, 𝑃𝑗-𝑃𝑖 (W.S. Dols, 2007), and is expressed as:  

 𝐹𝑗𝑖 = 𝑓(𝑃𝑗-𝑃𝑖) (2.6) 

The mass of air, 𝑚𝑖 (kg), in zone i is given by the ideal gas law: 

 𝑚𝑖 = 𝜌𝑉𝑖 = 
𝑃𝑖𝑉𝑖 

𝑅𝑇𝑖 
 (2.7) 

Where 𝜌 is the air density, 𝑉𝑖 Is the zone volume (m3), 𝑃𝑖 is the zone pressure (Pa), 𝑇𝑖 The zone 

temperature (K), and R is the gas constant for air = 287.055 (J/kg.K).  

 

Although multi-zone models of individual buildings can provide spatial average estimates of 

pollutant concentrations with a reasonable simplification of indoor physical phenomena, it is 

possible to describe the building’s attributes (e.g., contaminant sources, airflow paths, occupancy 

schedules, and building service systems) with a high level of resolution. However, to achieve 

prediction accuracy in building stock IAQ modelling at a reasonable computation cost, 
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consideration of input parameter variability and uncertainty is required to select appropriate 

computational modelling methods and tools without risking oversimplification. 

2.4.3 Simulation Tools Used in Indoor Air Quality Models 

Over the past three decades, several IAQ simulation tools have been developed, such as 

CONTAM and COMIS (Feustel, 1999; W.S. Dols, 2007). These tools have been used primarily 

in modelling the IAQ of individual buildings. More recently, CONTAM and EnergyPlus were 

used to model IAQ of archetypes in building stock studies (see Section 2.4.4). CONTAM is a 

multi-zone airflow and contaminant transport simulation tool developed and maintained by NIST 

(W.S. Dols & Polidoro, 2015), which has been validated in many studies in various building types 

and locations (Emmerich & Hirnikel, 2001a; Fariborz Haghighat, 1996). CONTAM has been 

built with an updated version of the AirNet model (G.N. Walton, 1989) and provides a graphical 

user interface for intuitive inputs of building zones and construction, airflow paths and other 

building elements (McDowell et al., 2003).  

 

More specifically, CONTAM allows users to model airflow rates, including infiltration, 

exfiltration, zone-to-zone airflows driven by mechanical ventilation systems, wind pressures on 

the building envelope and buoyancy effects. CONTAM’s contaminant dispersal model is an 

implementation of Axley methods (J. . Axley, 1988; J. W. Axley, 1987) and has been widely used 

in many studies to predict contaminant concentrations in buildings under multiple designs and 

retrofitting scenarios (García-Tobar, 2019; L. J. Underhill et al., 2018). However, as a standalone 

package, CONTAM does not modify zonal air density in response to environmental changes due 

to building interactions and occupant behaviours. Therefore, CONTAM does not have the 

capability of performing dynamic thermal simulations on its own.  

 

On the other hand, as one of the widely used whole building energy simulation engines, 

EnergyPlus (Office of Energy Efficient and Renewable Energy, n.d.) can simulate airflows in 

buildings using the multi-zone Airflow Network Tool, an airflow model based on the early 

versions of COMIS and AirNet. The Airflow Network Tool can simulate infiltration and 

exfiltration rates driven by indoor/outdoor pressure differences, ventilation mechanisms, building 

envelope permeability, and zone-to-zone airflows. From the perspective of IAQ modelling, 

CONTAM and EnergyPlus have advantages in respect of each other. For example, CONTAM 

simulates complex airflow networks in a building and enables users to model absolute airflow 
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paths and multiple contaminant species. On the other hand, EnergyPlus performs dynamic thermal 

simulations and accounts for pressure differences between multiple zones in a building. However, 

Interzone airflows and infiltrations in EnergyPlus are user-specified and not pressure-dependent 

as in CONTAM. Moreover, EnergyPlus does not require Interzone airflows to balance with 

system airflow rates (W. Stuart Dols et al., 2016).  

 

Using EnergyPlus to model contaminant transport, Taylor et al. have developed the Generic 

Contaminant Model (GCM) tool, allowing users to model the behaviour of one specific pollutant 

within a building. GCM enables the modelling of dynamic thermal behaviour and single pollutant 

transport within one simulation package (Jonathon Taylor et al., 2014). Polluto, another in-house 

tool developed at the University College London (UCL), also offers multiple contaminants 

transport modelling with EnergyPlus. Table 2.2 presents a comparison between CONTAM and 

the UCL in-house IAQ tools. 

Table 2.2: Comparison of IAQ simulation tools used in housing stock IAQ modelling. 

 Simulation Tools  

 CONTAM  EnergyPlus GCM   EnergyPlus Polluto   

Main Usage   Airflow rates, contaminant 

transport through airflow, and 

building occupant exposure.  

Energy analysis, thermal 

load simulation, airflow, and 

contaminant transport.  

Energy analysis, thermal 

load simulation, airflow, and 

contaminant transport. 

User Interface Simple  Complex  Complex  

Thermal Behaviour  Static [Dynamic if coupled 

with a thermal engine] 

Dynamic  Dynamic  

Contaminant Behaviour  Yes (A rich set of sources and 

sinks, including deposition 

and re-suspension)   

No  No  

Changes in Occupant 

Behaviour Consideration  

Yes  Yes  Yes  

Modelling of Pollutants Multiple Pollutants   Single Pollutant Multiple Pollutants   

Air Leakage Points   Multiple Airflow Leakage 

Points  

A one-to-one 

correspondence between heat 

transfer and air leakage 

A one-to-one 

correspondence between heat 

transfer and air leakage 

Mechanical Systems 

Modelling  

Complex & Multiple Systems  One System   One System  

Warm-up Days  No  Yes, to ensure any thermal 

capacitance values are 

representative of the zone.  

Yes, to ensure any thermal 

capacitance values are 

representative of the zone. 

The capability of building 

control operations 

Yes  Yes, indoor concentrations 

as flags for ventilation 

system operation  

No  

Non-trace contaminants  Yes, already included in air 

density calculations.  

Yes, if coupled with the Heat 

and Moisture Transport 

(HAMT) model. 

Yes, if coupled with the Heat 

and Moisture Transport 

(HAMT) model. 
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Lately, attempts have been made to couple multi-zone airflow models with dynamic multi-zone 

thermal models to perform dynamic IAQ-Energy co-simulation. The coupling of building energy 

and airflow modelling has been discussed previously (Grot, 1985; G.N. Walton, 1989). They 

presented the quasi-dynamic and dynamic coupling methods used in the coupling between 

EnergyPlus and CONTAM. (W. Stuart Dols et al., 2016) addressed the mathematical description 

of the energy balance equations of EnergyPlus and the mass balance of airflows in CONTAM. 

New and existing components and tools have been developed and modified to facilitate 

synchronising building geometric representations and dynamic data exchange between 

CONTAM and EnergyPlus. Figure 2.6 illustrates the relationship between the components 

utilised during a CONTAM/EnergyPlus co-simulation.  

 

 

Figure 2.6: Schematic relationship between CONTAM/EnergyPlus co-simulation components (W. Stuart 

Dols et al., 2016) 

CONTAM’s graphical user interface, ContamW, allows creating project files (*.prj) representing 

scaled geometries of building floor plans. Contam3Dexporter tool creates an EnergyPlus input 

data file (IDF file) and files containing data exchange parameters (VEF and XML files). The IDF 

file can be edited and exported again using the SketchUp software plugin OpenStudio. 

Contam3Dexporter tool exports a Windows dynamic link library (ContamFMU.dll) based on the 

FMI Co-Simulation specification version 1.0 (Blochwitz et al., 2011). ContamFMU.dll manages 

data exchange and the execution of ContamX during the co-simulation. At present, EnergyPlus 

transfers zone temperatures, ventilation systems airflows, outdoor airflow fractions, output 

variables, and outdoor environment data to ContamX. On the other hand, ContamX transfers zone 

Infiltration rates, Inter-zone airflows and Control values. Previous studies have validated and 
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verified this process (W. Stuart Dols et al., 2021; Emmerich et al., 2019). More recently, the 

application of the coupled simulation approach has been part of several studies to estimate indoor 

PM2.5 exposure profiles (Milando et al., 2022a) and to perform a whole building analysis (IAQ, 

Energy, and Ventilation) (W. Stuart Dols et al., 2021).  

 

2.5 Modelling of a Building Stock  

Policymakers in many countries have actively engaged in establishing regulations and guidelines 

for improving and maintaining urban air quality (DEFRA (Department for Environment Food and 

Rural Affairs) & DfT (Department for Transport) the UK, 2017; DEFRA (Department for 

Environment Food and Rural Affairs) the UK, 2018; Department for Environment Food and Rural 

Affairs, 2007). However, accurate information and the definition of target indicators are required 

to understand and evaluate building performance on a large scale. In addition, over time, the 

number, composition, and characteristics of a building stock constantly evolve, which requires 

models that allow a stock to be outlined and evaluated according to specific indicators and the 

benefits, drawbacks and trade-offs of potential interventions being assessed before 

implementation.  

 

Building stock IAQ modelling is an attempt at quantifying and predicting the IAQ of building 

types statistically representative of a building stock on a city, regional or national scale (Abdalla 

& Peng, 2021). A building stock located in a geographical domain is the total account of the 

building subject to planned or organic changes over time. Changes in the composition and 

characteristics of building stock can be attributed to factors such as climate and environmental 

changes, socioeconomic and demographic changes, or retrofitting measures applied to improve 

energy efficiency (G. Sousa et al., 2017b). 

 

A recent review of the UK’s housing stock energy models (G. Sousa et al., 2017b) showed that 

the models could be generally categorised as ‘top-down’ and ‘bottom-up’ and developed to work 

in an aggregated or disaggregated manner. Top-down models primarily predict the 

macroeconomic performance of a building stock based on the statistical relationships between 

historical aggregated data and socioeconomic determinants such as the gross domestic product, 

population, climate conditions and fuel prices (Swan & Ugursal, 2009). Since the top-down 

models rely on historical data, they are less capable of testing the performance and impact of new 

technologies and policies. Bottom-up models use empirical data from a hierarchical level less 
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than the sector/stock as a whole. The bottom-up approaches account for the performance of 

individual end-uses, individual buildings, or groups of buildings and extrapolate the sector/stock 

performance with weightings of each modelled dwelling or group of dwellings based on their 

representations of the sector/stock (Swan & Ugursal, 2009).  

 

The bottom-up methods can be statistical, engineering (physical) based, or combining both. For 

example, most of the UK’s housing stock energy models are bottom-up models developed from 

simplified steady-state representations of physical phenomena (G. Sousa et al., 2017b). High-

resolution housing stock data was used to characterise the stock constitution in terms of building 

geometry and construction, environmental systems (ventilation, sources and flow paths), and 

occupancy (patterns of presence and behaviour) to overcome simplification and achieve 

satisfactory prediction accuracy and consistency. Furthermore, advanced statistical methods such 

as probabilistic sampling, Gaussian processes and sensitivity analysis are increasingly applied to 

quantify uncertainties encountered in stock modelling.  

 

According to (Swan & Ugursal, 2009) and (G. Sousa et al., 2017b), bottom-up building stock 

modelling follows an inductive path of consolidating microscopic measures such as building 

properties, internal conditions, usage schedules, and building services systems. Bottom-up models 

thus require extensive empirical data from surveys, field measurements, and assumptions (in the 

absence of data) to describe each component required of an engineering (physical) approach 

(ASHRAE, 2019). Based on building physics, several researchers have applied bottom-up 

modelling techniques to develop representative buildings (archetypes) and used them to calibrate 

and predict building stock energy performance (e.g.(Ghiassi & Mahdavi, 2017; A. Persily et al., 

2006; Sokol et al., 2017), Data entries sharing similar or equal categories were grouped or 

clustered to classify the dwelling types. After the classification, each archetype was characterised 

with attributes representing a proportion of the housing stock. So the larger the number of 

archetypes developed, the more representative of the stock they become and the more widespread 

the conclusions derived from the modelling results (Molina, 2019). 

 

A recent review by (Abdalla & Peng, 2021) showed that current building stock IAQ models are 

aimed at the housing stock and are categorised as ‘bottom-up’ stock models developed to work 

in a disaggregated manner. Their review showed that housing stock IAQ modelling typically 

involves (a) classification and characterisation of the dwelling types (archetypes) representative 

of the housing stock under modelling and (b) utilisation of modelling tools to evaluate the IAQ 

performance of the archetypes (Shrubsole et al., 2012). The outputs for all archetypes are then 
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extrapolated to a whole stock of dwellings using weighting factors. However, deterministic 

bottom-up models produce only one output for one building with given inputs. Hence, the 

deterministic bottom-up engineering methods can be less applicable to many buildings with 

different sizes, types, ages, functions, and operating conditions. 

 

As housing stocks are complex dynamic entities that undergo constant evolution, the scope of 

targeted performance indicators and potential interventions (e.g. likely parameters of dwelling 

retrofitting) should be considered before stock model implementation (Molina, Kent, et al., 2020). 

Finally, regular update and calibration processes should be carried out to minimise errors between 

the predicted and observed values. Table 2.3 summarises the existing housing stock IAQ 

modelling approaches, sampling methods, and parameter types.  

 

Table 2.3: Existing bottom-up housing stock IAQ models: a stock sampling approach, stock formulation, 

and parameter selection. 

Sampling 

Approach   

Housing Stock Model 

Formulation 

Approach   

Parameter 

Selection  

Parameter Types  Variability 

Deterministic  Archetype Approach A Classification  Deterministic     

  Characterisation  Deterministic Parameters from 

Literature or Building Data 

No  

Hybrid  Archetype Approach B Classification  Deterministic     

  Clustering  Key Descriptive Factors 

Aggregated into Clusters or 

Cells Utilising Factorial Design 

Reflects Variability 

Between Groups  

Probabilistic  *Metamodel (Utilising 

Machine Learning)  

Latin Hypercube / 

Monte-Carlo  

Variable Probability Distribution 

Functions to represent 

Uncertainty / Variability 

Reflects Variability in 

the Descriptive 

Parameters within 

Groups 

* Simplified algebraic or statistical model as a surrogate of the more detailed engineering model, which allows for lower 

computational requirements (Sokol et al., 2017) 

 

Since the early 2010s, several housing stock IAQ models have been developed to assess the IAQ 

of housing stock on a city or national scale (Abdalla & Peng, 2021). Based on various datasets 

and computational IAQ simulation tools as described in the previous section, these models were 

built to perform mainly simulations of mass transfer processes in sampled representative 

dwellings. Table 2.4 summarises the housing stock IAQ models developed between 2012 and 

2020.  
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Table 2.4: The housing stock IAQ models developed and published during 2012-2020. 

Nation Model  Date Stock 

Scale  

IAQ 

Performance 

Measure   

Simulation 

Engine 

Modelling Approach  Source  

US REIAQM 2018 National  Indoor PM2.5 

Concentration and 

HVAC Runtimes 

EnergyPlus  Physical Deterministic 

Approach  

(Fazli & Stephens, 

2018) 

UK    LNDN-A 2012 City  Indoor PM2.5 

Concentration and 

Personal Exposure 

CONTAM  Physical Deterministic 

Approach 

(Shrubsole et al., 

2012) 

 LNDN-B 2014 City  Indoor PM2.5 

Concentration and 

Mapped I/O 

EnergyPlus  Physical Deterministic 

Approach  

(J. Taylor et al., 

2014b) 

 ENG-A 2014 National  Indoor PM2.5 

Concentration  

CONTAM  Meta-modelling 

Probabilistic Approach 

(Das et al., 2014) 

 ENG-B 2016 National  PM2.5 I/O Ratio, 

RH, EUI, & 

Overheating 

Metric 

EnergyPlus Meta-modelling 

Deterministic Approach 

(Symonds et al., 

2016) 

 GBM 2016 Regional  Mapping PM2.5 I/O 

and Overheating  

EnergyPlus Physical Deterministic 

Approach 

(Jonathon Taylor 

et al., 2019) 

 ENGW 2019 Regional PM2.5 and NO2 I/O 

and Indoor 

Concentrations 

EnergyPlus Meta-modelling 

Deterministic Approach 

(Jonathon Taylor 

et al., 2019) 

Chile CHAARM  2020 National  PM2.5 Indoor 

Concentration, 

Ventilation and 

Infiltration Rates 

CONTAM  Probabilistic Approach  (Molina, Jones, et 

al., 2020) 

 

The common approach in most studies is using representative buildings, i.e., archetypes, in 

modelling the IAQ of housing stock. For example, the Residential Energy-IAQ Model (REIAQM) 

(Fazli & Stephens, 2018) was developed to model and predict the annual energy use for space 

conditioning and indoor concentrations of various pollutants across the residential building sector 

in the US. REIAQM utilised the geometries and housing characteristics of 209 housing archetypes 

developed previously by (A. Persily et al., 2006), representing 80% of the US residential stock. 

The Domestic Stock PM2.5 Model for London (LNDN-A) was based on a deterministic physical 

approach to model and predict the indoor exposure to PM2.5 in London’s domestic building stock 

(Shrubsole et al., 2012). London Housing Stock PM2.5 Model (LNDN-B) aimed to determine the 

indoor PM2.5 concentrations from outdoor sources for different housing typologies across London 

(J. Taylor et al., 2014b). The study was based on a deterministic physical approach, utilising the 

Airflow Network Model and the EnergyPlus GCM Model to simulate the infiltration of PM2.5 

through the envelope of 15 dwelling archetypes developed previously by (Oikonomou et al., 

2012). The Chilean Housing Archetype AiR quality Model (CHAARM) was developed to predict 

uncertainties in indoor pollutant concentrations, ventilation, infiltration rates and associated 
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energy demand in the heating season, including the sensitivity of the model outputs to the inputs 

(Molina, Jones, et al., 2020). The model was based on the previously identified archetypes 

representing the national Chilean housing stock (Molina, Kent, et al., 2020).  

 

Other methods used to model the IAQ of a housing stock include using metamodels to represent 

a combination of various inputs in a mathematical form. For instance, two types of artificial neural 

networks (cascade-forward and feed-forward) were used to predict the winter indoor 

concentrations of PM2.5 from external and internal sources in the English housing stock using a 

simplified single zone model ENG-A (Das et al., 2014). Furthermore, The ENG-B was developed 

to predict the indoor overheating and air pollution risk in England’s domestic stock (Symonds et 

al., 2016). This model used two metamodeling methods (neural networks and radial basis 

function) to reproduce non-linear non-monotonic relations between model inputs and simulation 

outputs. Finally, the English and Welsh Housing Stock IAQ Metamodel (ENGW)  (Jonathon 

Taylor et al., 2019) was developed as an updated version of the ENG-B model.  

 

To improve the quality of predictions in housing stock IAQ modelling, the issue of uncertainty 

needs to be addressed. Some uncertainties are related to the mathematical models used to 

represent the physical phenomena, some to the heterogeneity of the housing stock under 

investigation, and some to unknown or random variations of the input’s values (epistemic or 

aleatoric). The methods used to quantify these uncertainties include clustering techniques, which 

reflect the variability between groups, and Monte-Carlo sampling methods, which account for 

variability in group descriptive parameters (Parag Wate et al., 2019). Recent methods include 

Gaussian process emulators for uncertainty quantification and sensitivity analyses for complex 

stochastic building performance modelling (Lim & Zhai, 2017; P. Wate et al., 2020). 

 

2.6 Modelling Non-Domestic Building Stocks  

Non-residential building stocks are characterised by heterogeneous and complex stock 

morphologies, which make it difficult to model their energy demand and indoor air quality. 

Therefore, more progress has been made in developing databases for domestic stocks. Modelling 

non-domestic stocks depends on data availability for each building within the stock. (Pout, 2000) 

Introduced a methodology to estimate the UK’s Non-domestic stock current energy consumption 

utilising the Non-domestic Energy and Emissions Model (N-DEEM) developed by (Steadman et 
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al., 2000). Built-up floor areas, classified by non-domestic building occupiers’ activity types, are 

used and grossed up to cover the whole UK. Energy end-users are estimated for each classified 

activity and grouped by the fuel type used. Energy consumption for each activity is sourced from 

the Sheffield Hallam University energy surveys (Mortimer et al., 2000). However, this survey did 

not provide sufficient data for all activity types and, therefore, plagued all attempts to model 

energy consumption on a large scale.  

 

The Carbon Reduction in Buildings (CaRB) project developed a preliminary energy use model 

for the non-domestic stock in England and Wales (Bruhns et al., 2006). It used a bottom-up 

approach to building energy utilising data on individual premises sourced from the UK’s 

Valuation Office Agency (VOA) and using floor areas for individual premises rather than building 

areas. The Non-Domestic Carbon Scenario Model (NDCSM) estimates the non-domestic stock’s 

energy consumption and carbon emissions (Hinnells & Shea, 2008). These scenarios are based 

on interventions and climate change projections. Data for developing this model is once again 

sourced from the SHU surveys and the VOA. S. Taylor et al., 2014 Introduced a new definition 

of space in a built environment called the Self-contained Unit (SCU). This unit represents the 3D 

geometrical and spatial relationship between premises and buildings and the activities on different 

floors within a building. It facilitates two national data sets in the UK, Ordnance Survey (OS) and 

the VOA, to automatically assemble the geometrical and geographical structure of the nNon-

domestic stock. After that, electricity and gas consumption data are attached to the premises 

within each SCU; see Figure 2.7. The SCUs are then aggregated to model the energy consumption 

of the non-domestic stock. This concept was used later to develop a new three-dimensional model 

of the British Building Stock, called ‘3DStock’ (Evans et al., 2017). 

 

 

Figure 2.7: Self-contained Units (SCUs) (Evans et al., 2017) 
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As of this writing, there have been no studies on the IAQ of the non-domestic building stock. This 

could be due to the complexity and heterogeneity often observed in building design and the 

morphological characteristics of non-domestic buildings. Additionally, the complex behaviour of 

airflow and thermal dynamics in non-domestic buildings could not be captured easily without 

advanced computational methods, which can be time-consuming and expensive. As such, 

modelling the non-domestic stock from an IAQ point of view cannot be achieved using the 

methods already used for modelling the IAQ in a housing stock using archetypes or the non-

domestic energy stock models using the SCUs; thus, it requires alternative methods.  

 

2.7 Machine Learning and Statistical IAQ Prediction Models 

Machine Learning (ML) can estimate indoor air quality as an alternative method. For example, 

ML can be used to relate the measured concentrations of pollutants to questionnaires to estimate 

indoor air concentrations in indoor environments. Furthermore, ML makes it possible to predict 

a pollutant concentration based on other indoor and/or outdoor parameters in a building. ML is 

very useful, even though existing computational models (CONTAM) may appear more reliable, 

especially when a specific mechanism or its dynamic variation is not well established and when 

large data sets are available (Wei et al., 2019). The majority of ML algorithms are based on 

supervised or unsupervised learning. Supervised learning uses labelled examples as training data 

and predicts all unknown points (Mohri et al., 2012). In unsupervised learning, unlabelled training 

data is used to reduce, summarise, and synthesise information. While unsupervised learning 

cannot provide predictions for unknown data, it provides valuable insight into the structure of the 

data, which facilitates the selection of an appropriate supervised model, see Figure 2.8. As this 

thesis aims to develop a model to predict the indoor concentrations of PM2.5, this review will focus 

on supervised ML models used in the domain of IAQ modelling.  

 

An example of a supervised learning model is regression models (such as multiple linear 

regression MLR, generalised linear regression GLM, regularised regression, partial least squares 

PLS, and principle component regression PCR), decision tree models (such as gradient boosting 

trees and random forests), classifiers (such as Bayes classifications, KNN classifications, and 

support vector machines SVM), and some artificial neural networks ANNs (such as feed-forward 

back-propagation networks and cascade correlations) (Wei et al., 2019). Generally, these models 

can be divided into continuous variables (such as pollutant concentrations) and categorical 
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variables (such as air quality indices). Various models can be used for continuous variables, 

including MLR, regularised regression, PLS, and PCR (Mohri et al., 2012). Several models for 

categorical variables exist, including Bayes classifiers, SVM, and k-NNs. In addition, several 

models can address both variable types, such as GLM, Generalised Additive Models GAM, 

decision trees, gradient boosting trees, random forests and ANNS. Depending on the variable 

type, these models may be divided into linear and non-linear models. 

 

 

Figure 2.8: Supervised and Unsupervised Machine Learning Algorithms  

 

Linear regression models can be used as suitable predictions when the response and prediction 

variables are linearly related or when the two variables are transformed into linear relationships. 

Normalisation, log transformation, and rank transformation can be employed when the scale of 

multiple variables differs significantly (Mohri et al., 2012). Due to its simplicity and clear display 

of the best predictors of the variable of interest, MLR is considered to be the classical regression 
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model. Nonetheless, it cannot handle missing data and requires more observations than variables. 

It is possible to minimise these negative aspects of MLR by using PLS or PCR, which groups 

individual explanatory variables into components to reduce their regression effects. In the 

prediction context, linear models are easy to develop and apply and are often considered the first 

measure. In cases where the response and predictive variables are unlikely linearly related, other 

non-linear models may be more suitable, regardless of the data structure. Non-linear modelling is 

discussed in detail in Chapter 5, Section 5.3. 

 

The dataset is usually divided into three sections to develop an ML model to predict IAQ: training, 

validation, and hold-out. A typical training set uses about 70-80% of the data, and the model is 

trained using various algorithms to learn from the patterns and relationships present in the data. 

The training aims to develop a model that can generalise to new, unseen data and make accurate 

predictions. The remaining 20-30% is used for model validation and testing (Elbayoumi et al., 

2015). The model is tested against the validation data, and the results are used to adjust the 

model’s parameters, such as hyperparameters or learning rate, and to optimise its performance. 

In addition, the validation data helps to prevent overfitting, which occurs when a model becomes 

too complex and performs well on the training data but poorly on new data. In most cases, the 

leave-one-out cross-validation algorithm (LOOCV) is used to validate the data. (Isiugo et al., 

2019).  

 

Model testing may also be conducted using new datasets derived from different cases than those 

in the original study (Fernando et al., 2020). Finally, hold-out data is a separate, independent 

dataset used to evaluate the final performance of the trained model. It is not used during training 

or validation but only after the model has been fully trained. Hold-out data is critical to 

understanding how well the model can generalise to new, unseen data. The performance of the 

model on the hold-out data is the ultimate metric of success, as it indicates how well the model 

can perform in real-world scenarios.This is discussed in detail in Chapter 5, Section 5.4. 

 

There have been several applications of ML and statistical modelling in outdoor environments to 

predict the concentrations of ambient pollutants (Ausati & Amanollahi, 2016; Niu et al., 2016; S. 

Sousa et al., 2007) and in indoor environments to predict thermal comfort (Patil et al., 2008; 

Soleimani-mohseni, 2007) and energy efficiency (Edwards et al., 2012; Seyedzadeh et al., 2020; 

Tsanas & Xifara, 2012). Among the models used in these studies are regression models, partial 
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least squares (PLS), decision trees (classification and regression trees), Bayesian hierarchical 

models, generalised boosting models, support vector machines, random forests, generalised linear 

models (GLM), and artificial neural networks (ANN) (Bellinger et al., 2017; Zhao & Magoulès, 

2012).  

 

The application of ML to predict the concentrations of indoor air pollutants, for example, PM, 

NO2, VOCs, and CO2, is much less advanced than applications to determine the concentrations 

of outdoor air pollutants. However, ML can be used to predict indoor air quality in an existing 

building when using secondary sources of data (questionnaires and/or measurements) (Elbayoumi 

et al., 2015) or when the primary source of data is simulation results (Das et al., 2014). Among 

the models used in the domain of IAQ modelling are the ANNs, Regression models, and Decision 

trees. Several regression models, including MLR and stepwise regression models, have been used 

to investigate indoor PM and NO2 levels in schools and dwellings (Elbayoumi et al., 2015; Jafta 

et al., 2017; Kropat et al., 2015; Yuchi et al., 2019). Other regression models have been developed 

to predict indoor radon concentration at large scales in Switzerland and Italy, such as kernel 

regression and Bayesian spatial quantile regression (Kropat et al., 2015; Sarra et al., 2016).   

 

In a given environment, the regression model’s performance is primarily determined by the 

selection of inputs. For instance, an MLR model with outdoor PM2.5 concentration and indoor 

relative humidity as inputs predicted PM2.5 in a school for three consecutive days during school 

hours with an R2 value of 0.58 (Elbayoumi et al., 2015). However, when ventilation rate, wind 

speed, and indoor temperature were included as inputs, the R2 value reached 0.69. This is because 

the ventilation rate can strongly modify PM’s indoor/outdoor transport. A regression study of 

indoor PM2.5 concentrations compared MLR, LASSO, and stepwise regression (Yuchi et al., 

2019). During the training period, the LASSO and stepwise regressions performed better, as 

indicated by R2 and root mean square errors (RMSE), than MLR, resulting from better variable 

selection procedures. It was observed, however, that the regression models performed similarly 

during the validation period. As part of the prediction of indoor PM concentrations, two studies 

developed both MLR and ANN models (Kim et al., 2009). As a result of the non-linear 

relationship between inputs and outputs for MLR during the training period, the RMSE values for 

MLR are generally more significant than those for ANN during the training period. Nevertheless, 

both MLR and ANN have substantially higher RMSEs during the validation and testing phases 

and are similar. 



Chapter 2 Literature Review      37 

 

A series of studies were conducted in dwellings, a university building, and a hospital to predict 

PM2.5 concentrations, CO2, radon, and viruses. PM2.5 predictions were based on outdoor PM 

concentrations (Yuchi et al., 2019), and virus predictions were based on fine dust particles (Choi 

et al., 2017). The R2 values ranged from 0.74 to 0.94 for training and 0.33 to 0.49 for 

validation. For the studied cases, the decline in R2 values for validation indicates that the trained 

model may require improvement to provide more accurate predictions. In addition, the 

performance metrics RMSE and index of the agreement also exhibit similar gaps between the 

training and validation sets.  

 

When comparing two random forest regression (RFR) models of PM2.5 concentrations in 

dwellings with MLR (Yuchi et al., 2019), the RMSE values for the RFR models were smaller 

than those for the MLR for both prediction methods. Moreover, an Extreme Gradient Descent 

Boosting model (XGBoost) was used to predict CO2 concentrations in a university building 

(Martínez-Comesaña et al., 2022). In the study, the results demonstrated that the built XGBoost 

model is capable of estimating the 1-min CO2 concentrations of a building efficiently. The average 

CV(RMSE) yielded was below 10% for CO2 levels. 

 

There have been multiple studies on using ANNs for the prediction of IAQ in buildings, including 

dwellings, schools, and offices, to address several IAQ variables using various techniques 

(Challoner et al., 2015; Elbayoumi et al., 2015; Liu et al., 2017; Skön et al., 2012). In ANN 

applications indoors, PM concentration was the most studied parameter. The models have shown 

good performances (R2 ranging from 0.62 to 0.79, a normalised absolute error between 0.01 and 

0.19, and an index of agreement between 0.89 and 0.95). Figure 2.9 shows a list of inputs used in 

the development of models. Most prediction models used regional environmental variables, such 

as outdoor PM concentrations, temperatures, and wind speeds, as inputs. The outdoor variables 

can reasonably explain indoor air PM originating from the outdoors. 
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Figure 2.9:List of input variables used in previous models to predict indoor PM concentrations (Wei et 

al., 2019) 

 

An investigation of PM2.5 and PM10 concentrations in twelve naturally ventilated schools in 

Palestine found an R2 value between 0.65 and 0.79 (Elbayoumi et al., 2015).  A limited number 

of models are available for other indoor environments, such as dwellings, where indoor sources 

are negligible. To address the issue of indoor sources, (Das et al., 2014) proposed a few indoor 

variables, such as the rate at which internal PM2.5 is produced. However, the importance of this 

kind of input cannot be overstated since it is not easy to provide and is critical to the prediction 

model. Hence, further studies are required to determine the inputs and performance of the models 

when strong indoor sources are present.  
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2.7.1 Model Transparency  

The transparency of models becomes a concern when computational and ML methods are used 

to make predictions. Previous research has suggested classifying model transparency into White-

Box Models (Physics-Based Models), Black-Box Models (Data-Driven Models), and Grey-Box 

Models (Hybrid Models) (X. Li & Wen, 2014). Although data-driven (Black-Box) IAQ modelling 

for individual buildings has gained increased attention in the last decade (Wei et al., 2019), current 

building stock IAQ models rely on building physics models in their simplest form for data 

collection and validation. In comparison, historical IAQ data measured at the stock level are 

scarce. Based on this, the past and current building stock IAQ models identified in this thesis are 

White-Box or Grey Box models.  

 

Accessibility or transparency is a pre-condition to achieving model reproducibility, representing 

the minimum attainable standard compared to replicability (Morrison, 2018). It has been 

suggested previously that black-box data-driven models are potentially not reproducible. As a 

result, they are constrained by limited applicability specific to the range of datasets used in 

developing the models (J. Li et al., 2020). For example, a model that was trained to predict the 

IAQ by learning from limited datasets (e.g., data collected from a small group of buildings) may 

not perform well outside of the training data (e.g. different physical properties, occupant 

behaviour, climate context, future interventions, chaotic events, etc.) (Tardioli et al., 2015). Thus, 

for non-expert users, the purpose of prediction should be made clear, and guidance on whether 

the models apply in a new context should be provided. 

 

White-Box models offer higher transparency by releasing and maintaining the core calculation 

algorithms as open-source programs (e.g., CONTAM and EnergyPlus). The high transparency 

offered makes white-box models highly reproducible and versatile. However, there are foreseen 

issues surrounding the deployment of such models (O’Leary, Jones, et al., 2019): (1) these models 

can be oversimplified when the spatial resolution is increased, i.e., a specific level of abstraction 

or spatial resolution, therefore, outputs could be erroneous; (2) expert knowledge is required when 

model assumptions are made or when prediction outputs need interpretation, and (3) assumptions 

pertaining to the input variables of these models are prone to all kinds of uncertainties. 
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Open-source IAQ simulation engines allow user interaction or integration of scripting tools such 

as the EnergyPlus Generator 2 Tool (EPG2) developed in Python (Rossum & Drake, 2022a). For 

example, EPG2 was used in the ENG-B model (Symonds et al., 2016) for batch-processing 

building input files configured with user-defined variables. In addition, the REIAQM project 

(Fazli & Stephens, 2018) used multiple Python scripts to solve mass balance equations and 

automate most simulation processes. This can allow flexibility, input variability, automation, and 

increased computation versatility (X. Li & Wen, 2014). However, White-Box housing stock IAQ 

models tend to be static and deterministic, often assuming linear relationships exist between 

multiple variables in an ideal system without uncertainty (Oladokun & Odesola, 2015). 

 

Alternatively, developing Grey-Box (hybrid) models integrating physics-based models and 

multiple statistical analyses can account for uncertainty assessment and quantification. This has 

been achieved by deploying sampling methods such as Latin Hypercube for Monte Carlo 

integration. Although the near-random samples generated could be pretty significant, applying a 

statistical significance test can reduce the number of samples required to represent the entire 

building stock with reduced model resolution (e.g. CHAARM (Molina, Jones, et al., 2020)). 

Furthermore, hybrid models can account for linear and non-linear systems by constructing 

metamodels (e.g. Artificial Neural Networks) and using them in predictions. This is particularly 

interesting as non-linear and irregular behaviours best characterise air pollutant concentrations 

outdoors and indoors due to behavioural, social, and chaotic events (Chelani & Devotta, 2006). 

However, in contrast to White-Box models, some hybrid models (for instance, the ENG-A (Das 

et al., 2014) and ENG-B models (Symonds et al., 2016)) suffer from reduced transparency and 

accessibility, particularly in the metamodel construction phase, whereby multiple hidden layers 

and neurons generate outputs that are extremely difficult to replicate. 

 

In contrast to black-box models, grey-box models can be scalable and versatile. For instance, the 

ENG-A and ENG-B models are based on multiple metamodels constructed individually for each 

housing stock’s physical properties, locations, epochs and occupancy profiles. This makes the 

models scalable to include additional information without reconstructing the entire model from 

scratch and versatile in comparing the results of different what-if scenarios (e.g. seasonal 

variation, future technological interventions, chaotic events, etc.). On the other hand, despite the 

aforementioned advantages, grey-box models may incur higher computation costs. Both white- 

and grey-box models can be computationally expensive when many archetypes or metamodels 

are involved. However, some of these models managed computing efficiency by (1) using only 
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single-zone models to represent the entire building stock, such as REIAQM (Fazli & Stephens, 

2018) (but with reduced prediction accuracy for both airflow and contaminant concentrations); 

(2) running the simulations on a high-performance parallel computing platform as in ENG-A (Das 

et al., 2014) and ENG-B models (Symonds et al., 2016); and (3) reducing the number of 

archetypes to a statistically acceptable level while acknowledging the loss in model resolution as 

in the CHAARM (Molina, Jones, et al., 2020). 

 

2.8 Conclusions 

In this chapter, an investigation has been undertaken through a comprehensive review of existing 

literature on the field of IAQ. The review was based on a systematic selection of relevant journal 

articles using the keywords “IAQ” AND “prediction” AND “stock modelling” AND (“building 

stock” OR “housing” OR “domestic” OR “deterministic” OR “probabilistic” OR 

“metamodelling” OR “sensitivity analysis” OR “building simulation” OR “multi-zone model” 

OR “machine learning” OR “statistical models”). The review was dedicated to determining the 

methods and techniques used to develop building stock IAQ models. At first, an introduction to 

outdoor air pollution and its risk to population health was presented with a particular focus on 

PM2.5. Then, the review examined indoor air pollution, its causes, and methods to assess IAQ in 

buildings. It is clear from the review that using computational methods (e.g., simulation models) 

to simulate the concentrations of indoor air pollutants in building stock is considered a preferable 

alternative to the direct methods.  

 

This was followed by a review of the existing literature on the methods and techniques for 

modelling a building stock. Based on the review, it is evident that current building stock IAQ 

models adhere to the same methods used to model building stock’s energy demand. It should also 

be noted that existing non-domestic building stock models were limited to energy use in 

commercial buildings. This review concludes by examining the use of data-driven methods in 

modelling indoor air quality in different buildings. This review identified MLR, RFR, XGboost, 

and ANNs as the most commonly used algorithms in predicting indoor pollutant 

concentrations.  With the current development of ML algorithms and the increasing amount of 

data collected in buildings, it is clear that ML can provide researchers with methods for modelling 

indoor air quality that is computationally inexpensive. However, there are concerns regarding 



42       Chapter 2 Literature Review        

 

model transparency and reproducibility, as some ML algorithms may be considered black 

boxes.  Below is the summary of the key findings from this literature review:  

 

Gap (1): The current attempts to model indoor air quality in a building stock are confined to 

residential buildings, with no studies conducted for non-domestic buildings. Considering how 

much time people spend in offices, schools, and other working environments, it is evident that 

this issue needs to be addressed since people are likely to be exposed to indoor air pollutants of 

different magnitudes in these environments. Nevertheless, further research is required to 

determine the data sources and methods required to perform IAQ models for non-domestic 

building stocks.  

 

Gap (2): Existing housing stock IAQ models can be oversimplified when the spatial resolution is 

increased, i.e., a specific level of abstraction or spatial resolution (single-zone models) or when 

reducing the number of archetypes used to represent a building stock, therefore, outputs could be 

erroneous.  

 

Gap (3): The complex and dynamic nature of modelling the IAQ does not consider the dynamic 

variations of indoor air temperatures. Current building stock IAQ models use airflow models only 

and do not solve the heat balance equations.  

 

Gap (4): The IAQ models developed using machine learning algorithms for residential buildings 

are limited to Artificial Neural Networks (ANNs). Although they have been demonstrated to be 

accurate predictors of indoor pollutant concentrations, they are still black-box models regarding 

model transparency and interpretability.
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3.1 Introduction 

Improving the environmental performance of HEI building stocks is becoming increasingly 

important in achieving higher energy efficiency and better indoor environment quality, including 

IAQ, and identifying the prime targets for reducing carbon emissions and the health risks 

associated with poor IAQ. Due to their volumes and energy use intensities, HEI buildings in the 

UK bear a significant portion of a city’s overall carbon emissions and are subject to social, 

economic, demographic and technological changes. In addition, there are constant demands for 

retrofitting and constructing new buildings to accommodate such changes. Decision-making 

needs reliable models to inform strategies to maximise HEI building stock performance while 

minimising negative environmental and health impacts. Having actionable policies/guidance to 

reduce or remove pollutant emissions at their sources effectively is preferable, but there may be 

limits to what HEIs can achieve independently. This chapter presents a case for pursuing new 

research to investigate sensitivity-based data-driven modelling to predict infiltrated PM2.5 

concentrations starting from a zonal level. Seeing an HEI as the key stakeholder, the proposed 

new modelling framework and capability aims to enable fine-grained estimation of population 

exposures to PM2.5 as the basis for evidence-based decision-making. 

 

As reviewed systematically in Chapter 2, different methods can be used to study the IAQ in a 

single building and the building stock. They can be classified into two groups: direct and indirect. 

Direct methods include field measurements using mobile or stationary equipment. Alternatively, 

indirect methods comprise computational modelling, simulation, and statistical techniques. 

Simulation models can offer several advantages over field measurements in certain situations, 

such as cost-effectiveness, flexibility when assessing different scenarios and interventions, and 

time efficiency. However, it is crucial to acknowledge that simulation models rely on 

simplifications and presuppositions, and their precision is contingent on both the quality of the 
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input data and the intricacy of the model itself. Consequently, field measurements are 

indispensable in validating, calibrating, and refining simulation models. 

 

Moreover, when sufficient high-quality input data is available, both modelling and sensitivity 

analysis methods can calibrate/validate model predictions and inform uncertainties. The model 

outputs can be used as data/evidence to inform interested parties about the status quo or probable 

intervention scenarios. Adopting a bottom-up approach, a modeller can evaluate various factors 

contributing to IAQ by conducting a sensitivity analysis of the outputs of each input factor. This 

method has proven beneficial, particularly in countries with limited data. However, to the author’s 

knowledge, HEI stock IAQ models are currently non-existent. 

 

3.2 A Methodological Framework 

This research investigates how population exposure to infiltrated PM2.5 at an HEI building stock 

level can be estimated to support planning and design for better IAQ. With the heterogeneity and 

complexity often observed in HEI buildings, variations of indoor PM2.5 concentrations from 

building to building are anticipated. Therefore, combining building physics and statistical 

modelling techniques, a hybrid bottom-up approach is proposed to decompose multiple buildings 

selected from an HEI stock into a structured cohort of individual spaces or rooms. The model 

resolution at a room level allows for sensitivity analyses of modelled indoor PM2.5 concentrations 

to the built and environmental characteristics. As obtaining field measurements of PM2.5 at a large 

scale can be time-consuming and prohibitively expensive, this research utilises an IAQ and heat 

transfer coupled simulation platform4 (CONTAM-EnergyPlus co-sim) developed at NIST, USA.  

 

A wide range of inputs must be considered to accurately simulate mass transfer in buildings. 

However, it is essential to note that some information may not be available, so assumptions must 

be made. Additionally, when data cannot be tracked, the collation and processing of data can be 

time-consuming, resulting in systematic errors. Therefore, any tool used to model a stock must 

be informed by the most reliable sources of information. As shown in Figure 3.1, the proposed 

overall methodological framework begins with five buildings at the University of Sheffield (UoS) 

selected for this research, mainly due to their distinctive morphological characteristics. Unlike 

domestic building stocks, where input data to model the IAQ can be informed by national housing 

 

4 https://www.nist.gov/services-resources/software/contam  

https://www.nist.gov/services-resources/software/contam
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surveys (e.g., the English Housing Survey), sufficient information and high-quality data on HEI 

building stocks are often not readily available. However, data from existing surveys and previous 

research on domestic building stocks may still be referred to inform building and environmental 

data for some of the UoS buildings as case studies. This is discussed in detail in Section 3.3.  

 

 

Figure 3.1: A workflow diagram showing the processes involved in carrying out deterministic bottom-up 

HEI building stock IAQ modelling 

 

Two open-source building-physics simulation packages (CONTAM and EnergyPlus) were used 

to develop detailed multizone IAQ models of the selected UoS buildings to estimate indoor PM2.5 

concentrations (see previously in Section 2.4.3). Here, unlike the housing stock IAQ models, the 

rooms/spaces in each UoS building were modelled as individual zones rather than one zone per 

building/floor. This ensures that detailed airflow networks reflecting the complexity of the UoS 

buildings were included to account for the spatial variations of indoor PM2.5 concentrations. As 

such, by adding the airflow paths, building elements, and indoor sinks of PM2.5, the multizone 

modelling results in two types of model files: CONTAM (.prj) and EnergyPlus (.idf). In the model 

development, some key model parameters were varied across the five buildings while others were 

held constant, which is discussed in more detail in Chapter 4. 

 

The resultant concentrations of infiltrated PM2.5 were checked zone by zone and were used to 

perform sensitivity analyses (Das et al., 2014). This is to assess the sensitivities of the input 

variables to the output of indoor PM2.5 concentrations. The sensitivity analysis framework is 

described in detail in Chapter 5, and the results are presented in Chapter 6. Predictive metamodels 

were developed through machine learning (ML) using the reduced set of input variables. The 

metamodel development process involved an investigation of three regression-based ML 
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algorithms chosen for the study. The algorithm with the highest prediction accuracy was selected 

to estimate the population exposure to infiltrated PM2.5. The framework of the ML model 

development is presented in Chapter 5, and the results of metamodel development are presented 

in Chapter 6. Existing studies suggest that estimating the population exposure to indoor air 

pollutants can be achieved through a microenvironmental modelling approach using indoor 

concentrations of PM2.5 and the number of occupants as weights. Microenvironmental modelling 

of population exposure to PM2.5 is discussed in detail in Chapter 7. Figure 3.2 presents a more 

detailed research methodological framework consisting of six key stages:  

 

Stage (1): Decomposition of an HEI Building Stock  

At this stage, it is necessary to identify the sources of building stock data for HEIs that can 

be used to model IAQ. Previous research on IAQ and a literature review are used 

throughout this stage to guide the data collection process. The objective is to decompose 

the selected buildings into a cohort of individual rooms. As a result of the proposed model 

resolution, it is expected that it will be possible to estimate infiltrated PM2.5 concentrations 

in indoor environments considering spatial variability. 

 

Stage (2): Building Physics-Based Modelling  

Generation of coupled multizone models (CONTAM and EnergyPlus) using the data 

identified in stage (1). Here, the simulations will run for the whole year using a time step 

of 15-min intervals. The outputs of this stage include hourly and seasonal values of indoor 

PM2.5 concentrations, indoor temperature, and infiltration (ACHINF) for each room within 

the selected buildings. This stage is discussed in detail in Chapter 4.  

 

Stage (3): Sensitivity Analyses  

The sensitivity analysis framework will determine the relationships between the inputs and 

the outputs. The scatter plot of inputs versus the output illustrates the relationships between 

the individual inputs and the output for visual inspection. Here, the output from this stage 

will help identify the more critical and related inputs for developing the metamodels. This 

stage is discussed in detail in Chapters 5 and 6.  

 

Stage (4): Metamodel Development, Tuning and Evaluation 

This stage involves following a metamodeling framework to rapidly estimate the spatial 

variations of infiltrated PM2.5 concentrations in an HEI building stock from a set of key 

explanatory variables identified in stage (3). Here, the selection of candidate ML 
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algorithms, metamodels development, tuning, and evaluation will be carried out to ensure 

that the metamodels fit the selected variables.  

 

Stage (5): Metamodel Interpretation through SHAP (SHapley Additive exPlanations) 

An essential contribution of this research will be the application of SHAP values to increase 

the transparency and interpretability of the developed metamodels and statistically quantify 

the contribution of each input variable to the predicted indoor PM2.5 concentration. The 

significance of this stage will be highlighted by answering research questions (1) and (3) 

of this thesis.  

 

Stage (6): Microenvironmental Modelling for Exposure Assessment  

Based on the metamodel’s estimations for various zones, this stage proposes a 

microenvironment modelling approach to estimate the average Personal Exposure (Ei) to 

infiltrated PM2.5 and the average Population-Weighted Exposure (PWE) to infiltrated PM2.5 

for different microenvironments. 
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Figure 3.2: A detailed research methodological framework for developing a HEI stock IAQ model to 

predict the heating season infiltrated PM2.5 concentrations and annual population exposures 
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3.3 The Data Sources 

Compared to residential building stocks, collating a representative database of buildings for an 

HEI building stock can be challenging and technically complex in different manners. This is due 

to the high heterogeneity in HEI buildings regarding their sizes, functions, designs, constructions, 

and building uses. As such, this study was designed with selected buildings rather than 

representative buildings in mind. How to develop statistically representative archetypes of an HEI 

building stock is beyond the scope of this research. Here, the idea was to work with an initial 

selection of buildings while collecting as much data as possible. In what follows, this section 

introduces the data sources held by the University of Sheffield Estates and Facilities Management 

(EFM) department and relevant governmental and non–governmental organisations. These 

sources include general building information and layouts, HVAC systems in use and operational 

details, heating policies, lighting and appliances, building envelope construction details, U-

values, occupancy schedules, and weather and air pollutants monitoring stations.  

 

The data from five UoS buildings were collected for experimental IAQ model development: The 

Arts Tower (AT), Regent Court Building (RC), Academic Development Centre (ADC), Barber 

House (BH), and the Interdisciplinary Centre of Social Sciences (ICoSS). These buildings were 

selected to reflect the UoS building stock of different ages (the 1920s-2000s). Additionally, the 

buildings differ in size, geometry, construction methods and materials; thus, different building-

related input parameters to model the IAQ were required. Moreover, HEI buildings tend to be 

composed of purpose-built spatial volumes (e.g., classrooms, student-led learning spaces, 

laboratories, staff offices etc.) connected by circulation routes, often resulting in large built areas 

exposed to external thermal and air flows. 

 

 

Figure 3.3: The five buildings selected from the University of Sheffield (UoS) building stock 
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3.3.1 Building Design and Characteristics  

The UoS EFM department maintains records of all university sites, buildings and facilities. It is 

the primary source of information regarding building design and operation. The EFM maintains 

various sorts of building information and data, such as computer-aided design (CAD) drawings, 

facility management databases, occupancies etc. There is also a wide range of data recording the 

room areas and usage types. Moreover, as part of the UoS Energy Strategy to reduce overall 

carbon footprint, the EFM team keeps energy use-related data, including HVAC systems, 

thermostat setpoints, heating policy, indoor lighting design, and appliances. During this research, 

the Space Management team was beneficial in providing copies of the site and building plans on 

request. Table 3.1 summarises the main characteristics of the selected buildings.  

Table 3.1: Summary of the features of the five selected UoS buildings 

 Barber House  ADC The Arts Tower  Regent Court  ICoSS  

Construction 

Period  

1920s 1940s 1960s  1990s 2000s  

Function  Offices, Seminar 

Rooms, and 

Meeting Rooms 

Offices, Seminar 

Rooms, Meeting 

Rooms, and Open-
office Style Study 

Space 

Offices, Seminar 

Rooms, Meeting 

Rooms and 

Studios 

Large Computer 

Rooms, Open-

office Style Study 
Space, Lecture 

Theatres, Cellular 

Staff-Offices, and 

Meeting Rooms 

Labs and 

Seminar Rooms 

Distinctive 

Feature  

Linear Circulation 

System 

Compact Floor 

Layout with 

Compound 

Circulation 

High-rise Central 

Core with Radial 

Circulation  

Courtyard with 

Linear Circulation  

Atrium Building  

Refurbished Yes  Yes Yes  No No 

Height 

Classification  

Low Rise  Low Rise  High Rise  Low Rise  Mid Rise  

Total Number 

of Floors 

Above Ground 

2 2 20 3 5 

Building Built-

Up Area (m2)  

874.48 1,351.25 16,402.36 9,057.09 1,947.80  

Ventilation 

Method  

Natural Ventilation 

W/ Exhaust System  

Natural Ventilation 

W/ Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Natural 

Ventilation W/ 

Exhaust System 

Heating 

Method 

Gas Fired Wet 

Heating System 

Central Heating via 

Wall Mounted 

Radiators  

Central Heating 

via Wall Mounted 

Radiators  

Central Heating 

via Wall Mounted 

Radiators  

Central Heating 

via Wall 

Mounted 

Radiators  

External Walls  Solid Wall  Solid Wall Double Glazed 
Curtain Wall 

System 

Cavity Wall  Cavity Wall and 
Pre-painted 

Copper Sheets  

External Walls 

U-Values 

(W/m2.K) 

1.80 1.80 2.20 0.60 0.45 
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Categorising energy use activities according to standard space-type functions seems practical in 

HEI. Therefore, a total of 15 space types were identified according to the UoS Energy Strategy 

(Arup, 2012), which form the basis of the building elements of the Energy Strategy (Table 3.2).  

Table 3.2: The space types identified in the UoS Energy Strategy 2012 (Arup, 2012)  

Room/Space Type  

1. Lecture Theatres 2. High Energy Usage Laboratory  

3. General Offices  4. Low Energy Usage Laboratory  

5. Classrooms/Seminars Rooms  6. Clean Room Laboratory  

7. ICT Suite  8. Circulation/Lobby Spaces 

9. Retail and Leisure  10. Back of House 

11. Kitchen  12. Accommodation  

13. Cold Rooms 14. Toilets and Changing Areas 

15. Library  

 

In this study, these room/space types form the basis for developing an IAQ-specific space-type 

categorisation to account for the time spent in each space type in the PM2.5 exposure estimation 

(see Chapter 7). However, some short time spent in some spaces can be considered negligible 

compared to the total time spent in a higher education building. As such, a revised space-type 

categorisation of 14 types is proposed in this thesis: 1. Academic Offices, 2. Administration 

Offices, 3. Post-Graduate Research Offices, 4. Lecture Theatres, 5. Laboratories, 6. Library, 7. 

Seminar Rooms, 8. Educational Facilities (teaching spaces were combined here), 9. Kitchens, 10. 

Shared Facilities (Toilets and Changing Areas were combined here), 11. Cold Rooms, 12. ICT 

Suite, 13. Services (including Back of House), and 14. Circulation (corridor, staircase, lobby).  

 

3.3.2 Airtightness  

According to the American Society for Testing and Materials (ASTM) (ASTM, 1999), a 

building’s envelope permeability is conventionally determined using a fan pressurisation test. 

This test systematically and artificially increases the difference between the external and internal 

air pressures (Pa) to measure the airflow rate through adventitious openings within the envelope 

V̇ (m3/h). These parameters are related by a power law (W. Stuart Dols & Polidoro, 2020): 

 

V̇ =  C {ΔP}𝑛  (3.1) 

where C (m3/h Pa−1) is a flow coefficient, 𝑛 is a flow exponent, V̇  is commonly reported at 50 Pa, 

interpolated from measurements, when it is known as an air leakage rate, V̇50 (m3/h). Comparing 
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the air leakage rates of different buildings is achieved by normalising the V̇50 by a common 

parameter, such as the external envelope area when it becomes an Air Permeability, Q50 (m3/h/m2), 

or the building’s total volume to give N50 (h−1). However, comparing buildings with substantially 

different forms and volumes is best achieved using Q50.  

 

According to (Etheridge, 2011), the usual operational pressure differences are about 4 Pa, roughly 

one-tenth of 50 Pa. Etheridge also suggests that an appropriate value for Q4 can be inferred from 

the acceptable value of Q50 if 𝑛 is known, as noted by (Benjamin Jones et al., 2015). Measuring 

the air leakage rate is achieved through the standard method, which involves determining C and 

𝑛 values by measuring V̇ at intervals between 10 ≤ ∆P ≤ 100 Pa, as specified by ASTM and BSI 

(ASTM, 1999; BSI, 2001). This helps to minimise the effect of noise from naturally occurring 

wind and buoyancy on the measurements of V̇. However, systematic uncertainty is associated 

with the measurement because the shape of the leakage characteristic is unknown when 0 < ∆P < 

10 Pa, and the equation used may not be valid during this range, as noted by (Cooper et al., 2007).  

 

A previous publication by Hurel and Leprince (2021), which included an in-depth review of 

relevant literature, explored the impact of wind on the uncertainty associated with airtightness 

testing. They found that the model error due to wind on estimated airflow rate was relatively 

insignificant at high-pressure points (up to 12% for wind speeds of up to 10 m/s at 50 Pa). 

However, it could be significant at low-pressure points (up to 60% at 10 Pa). Therefore, when 

estimating airtightness at 4 Pa, wind could introduce substantial errors, sometimes exceeding 35% 

(Bailly, Leprince, Guyot, Carrié, & Mankibi, 2012). In addition, the stack effect can also 

contribute to non-uniform pressure differences along the envelope of tall buildings, leading to 

inaccuracies in airtightness testing results (Carrié & Leprince, 2016). 

 

Alternatively, Eq (3.2) describes a quadratic equation that can be used in preference to the power 

law model because it is believed to depict the flow behaviour of adventitious openings accurately 

(Cooper et al., 2007).  

∆𝑃 = 𝑎𝑄2 +  𝑏𝑄 (3.2) 

The first term 𝑎𝑄2 accounts for the momentum change observed in openings with variable 

geometry. The second term (𝑏𝑄) corresponds to surface friction and is observed in long gaps with 

a fixed geometry (Zheng et al., 2020; Zheng & Wood, 2020). However, the issue with determining 

the coefficients 𝑎 and 𝑏 in the quadratic equation used to model infiltration is that they are not 

uniquely identifiable based solely on the measured infiltration data (Zheng & Wood, 2020). This 
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is because the quadratic equation has two coefficients, but infiltration data only provides 

information about the overall shape of the curve, not about the specific values of the coefficients. 

Therefore, additional information, such as measurements at different pressure differences or 

consideration of the building’s envelope characteristics, is needed to determine the values of 𝑎 

and 𝑏 accurately. Without such information, the resulting values of 𝑎 and 𝑏 could be inaccurate, 

leading to unreliable infiltration predictions. To simplify the modeling of infiltration in this thesis, 

Eq (3.1) will be used, while acknowledging the potential uncertainties associated with this 

approach. 

 

Airtightness values are often used to estimate the rate at which unconditioned ambient air 

infiltrates a building through adventitious openings. However, as Q50 values might not be 

available for non-domestic building stocks in the UK, data from the CIBSE TM23 (CIBSE, 2022) 

standard alongside the construction year for buildings were used to estimate the Q50, see Table 

3.3.  

Table 3.3: CIBSE TM23 UK Standard for Allowable Airtightness in Buildings  (CIBSE, 2022) 

Building Type Building Airtightness Q50 (m3/h/m2 @ 50Pa)  

 Best Practice Normal Practice  

Offices (Naturally Ventilated) 3.0 7.0 

Offices (Mixed Mode Ventilation) 2.5 5.0 

Offices (Air Conditioned)  2.0 5.0 

Schools  3.0 9.0 

 

According to the study conducted on the Arts Tower (AT), the Q50 before retrofitting was 

approximately 23 m3/h/m2 (Everett, 2013), which was reduced to approximately 10 m3/h/m2 after 

the retrofitting specified by the HLM Architects in 2009 (Mara, 2010). Based on the data from 

the EFM, the Barber House (BH) and the Academic Development Centre (ADC) buildings, dating 

back to the 1920s and 1940s, were assumed to share similar construction materials with several 

other dwellings built during that period. As such, the Q50 for the buildings were assumed to be 13 

m3/h/m2. According to CIBSE TM23 (CIBSE, 2022), all buildings over 1,000m2 should have a 

maximum air tightness of 10 m3/h/m2 after 2002. The Regent Court (RC) building dates back to 

1995; however, it was assumed to have a Q50 of the maximum allowable Q50 of 10 m3/h/m2. 

Furthermore, the ICoSS building was assumed to have the best Q50 value of 7 m3/h/m2, 

representing an environmentally conscious green building design at the time of construction 

(Arup, 2012).  
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These values may underestimate or overestimate the air tightness, but they are likely to represent 

the typical Q50 values for non-domestic buildings in the UK according to the CIBSE TM23 

standard for several types of buildings. However, as the aim of this thesis is to assess the impact 

of increasing the building’s airtightness on infiltrated PM2.5 concentrations and population 

exposure, all buildings are modelled with 3 ≤ Q50 ≤ 13 m3/h/m2 so that any changes to indoor 

PM2.5 concentrations as a result of improved airtightness can be quantified.  

Table 3.4: Baseline airtightness Q50 values for the five selected buildings  

Building   Airtightness Q50 Construction Year  Reference  

Barber House 13 m3/h/m2 1920s -  

Academic Development Centre  13 m3/h/m2 1940s -  

Arts Tower 10 m3/h/m2 1960s HLM Architects  

Regent Court  10 m3/h/m2 1990s CIBSE TM23 

ICoSS  7   m3/h/m2 2000s CIBSE TM23 

 

3.3.3 Ventilation Assumptions  

There are no reported measurements in the literature of window opening behaviour in the UK’s 

HEI building stock. Without this knowledge, the models will consider a multiplier for every 

window where 1 is fully open (during the non-heating season), and 0 is fully closed (during the 

heating season). Furthermore, it should be noted that certain areas, such as lecture halls, are 

equipped with Air Handling Units (AHUs) designed to supply fresh air to indoor environments, 

given their classification as high occupancy spaces. However, it is important to acknowledge that 

these AHUs were intentionally excluded from the CONTAM models employed in this project. 

The primary objective of the research was to investigate the effects of enhancing the airtightness 

of buildings on the infiltration-induced presence of indoor PM2.5 originating from the outdoor 

environment. The ramifications of this particular assumption are examined and elaborated upon 

in Chapter 8 of this thesis. 

3.3.4 Weston Park Weather Station   

In order to model the actual performance of a building or group of buildings, two types of weather 

data can be used: Actual Metrological Year (AMY) and Typical Metrological Year (TMY) data. 

TMY data files are created by looking at 15-30 years of hourly data at the site in question and 

selecting, in series, the most typical January, February, … and so on of all available years based 

on the weighted average of eleven weather variables. As such, TMY files are likely to miss the 

extremes and not likely to be local. Thus, they do not reflect the weather conditions at a site. On 
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the other hand, AMY data files provide actual hourly datasets over a time period in which a study 

is conducted. Therefore, AMY data is essential if more extreme weather conditions are considered 

to cross-check design performances under stress. However, AMY files must be as close to the 

buildings under investigation as possible.  

 

Weston Park Weather Station (Latitude 53.38, Longitude -1.49) is a weather station in Weston 

Park, Sheffield. It was founded in September 1882 and is managed by the Weston Park Museum. 

It provides continuous hourly data for air temperature, air pressure, rainfall, wind speed and 

direction, humidity, sunshine, and solar radiation. Access to this weather data can be arranged by 

contacting the staff at the Weston Park Museum. It is essential to point out that the criteria for 

selecting the weather data were by looking at (1) the year with some extreme conditions, (2) the 

year where there were no missing values in the requested dataset, and (3) the year where no 

interruptions caused by large-scale events (e.g., the COVID-19 pandemic). 

 

 

Figure 3.4: Weston Park Weather Station, Sheffield (photographed by the author, 2022) 

 

For this study, the weather data from 2018-2021 was requested from the Weston Park weather 

station. The year 2019 was the only year meeting the above selection criteria. Figure 3.5 shows 

that in 2019, Sheffield recorded its highest-ever temperatures, with 18.2 °C in February and 35.6 

°C in July. In April, the highest recorded temperature was 26.4 °C; however, in 2019, the 

temperature was 23.7 °C, which is still above the typical April maximum temperature of 20 °C. 

In January, the average minimum temperature is usually 2 °C; however, in 2019, it was recorded 

at -4.70 °C, close to the minimum temperature ever recorded in January 1993 (-6.5 °C). In 

November 2019, the minimum temperature recorded was -2.45 °C, below the typical minimum 

temperature of -1.5 °C.  
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Figure 3.5: Monthly Maximum, Average, and Minimum Temperatures for Sheffield (Weston Park 

Weather Station, 2019) 

 

3.3.5 DEFRA Air Quality Monitoring Station  

The UK’s Department for Environment, Food and Rural Affairs (DEFRA) is a ministerial 

environmental monitoring and protection department. DEFRA provides outdoor air quality 

information online via its UK Air Information Resource website. It is considered the primary 

source of information regarding air pollution in the UK nationally and locally via its air pollution 

monitoring stations. In addition, DEFRA uses a network of automatic monitoring stations across 

the UK for PMs. The reference method used by DEFRA to measure PM is based on the European 

Union’s (EU) Air Quality Directive. This method is known as the reference equivalent method to 

measure PMs with a diameter of 10 micrometres or less (PM10) and a diameter of 2.5 micrometres 

or less (PM2.5). It involves two main methods, the gravimetric method and the optical method.  

 

The gravimetric method involves collecting PM on a filter and then measuring the mass of the 

filter before and after sampling. The difference in mass is used to determine the amount of PM 

collected. The advantage of this method is that it accurately measures PM’s mass concentration. 

However, it does not provide information about the size or chemical composition of the particles. 

In the optical method, a device such as a photometer or a nephelometer detects the amount of light 

scattered or absorbed by the particles in the air. This technique offers an advantage in that it can 

provide insights into both the size distribution and chemical makeup of the particles, in addition 
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to measuring their mass concentration. Nevertheless, this method is comparatively less precise 

when measuring mass concentration than the gravimetric method.  

PM2.5 data can be downloaded from its archive through the website: http://ukair.defra.gov.uk/data. 

The Devonshire Green AQ Monitoring Station in Sheffield (UKA00575) was selected as the inner 

urban monitoring site from which hourly PM2.5 was downloaded. It was selected as it is considered 

the closest AQ monitoring station to the Weston Park Weather Station (Latitude 53.37, Longitude 

-1.48) and has a distance of less than 1 km (905 meters). This ensures that the weather and ambient 

PM2.5 data used in the study are of close (approximate) geo-locations and urban context, see 

Figure 3.6.  

 

 

Figure 3.6: DEFRA’s Devonshire Green AQ Monitoring Station (UKA00575) location in approximation 

to the Weston Park Weather Station (grid cell of 100m x 100m) 

 

The selection of hourly PM2.5 data followed a similar approach to selecting the weather data for 

2018-2021. It was noticed that there was much-missing data in 2018 due to maintenance of the 

AQ monitoring station. Years 2020 and 2021 were not considered in this study due to the 

disruption caused by the COVID-19 pandemic, in which the outdoor levels of PM2.5 do not 

represent the typical PM2.5 levels due to traffic and other anthropogenic activities. Moreover, most 

people were working from home due to the governmental restrictions on travel and building 

access. Hence, the 12 months of 2019 were selected for this study.  

 

http://ukair.defra.gov.uk/data
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Figure 3.7 shows that during the winter months, the levels of PM2.5 peaked in February and April 

with an average monthly level of 20.49 and 23.11 µg/m3, respectively. On the other hand, the 

monthly outdoor PM2.5 between May and October ranged from 10.61 to 6.41 µg/m3. When 

comparing the seasonal outdoor PM2.5, it can be seen in Figure 3.8 that in the heating season 

(November to April), the average seasonal outdoor PM2.5 level is 17.04 µg/m3, which is higher 

than the WHO annual average permissible PM2.5 levels of 10 µg/m3. Meanwhile, in the non-

heating season (May to October), the average seasonal PM2.5 was 6.78 µg/m3. This suggests the 

importance of investigating population exposure to indoor PM2.5 from outdoor sources exhibiting 

seasonal fluctuations.  

 

Figure 3.7: Monthly Average Outdoor PM2.5 Concentrations in Sheffield in 2019 (DEFRA, 2019)  

 

 

Figure 3.8: Comparison between the Heating season (Nov-Apr) and Cooling (Non-Heating) season 

(May-Oct) outdoor PM2.5 concentrations (DEFRA, 2019) 
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3.3.6 The UoS Heating Policy  

The UoS campus is part of the Veolia District Heating Network (DHN) (Arup, 2012), a unique 

district heating system whereby heat is mainly distributed in a building using traditional wet heat 

radiators. A low-carbon energy source is generally produced at a central location, converted into 

hot water, and distributed via underground pipes to a heat exchanger in buildings of all sizes and 

types.  Figure 3.9 shows that out of the selected buildings in this study, the Barber House building 

is not part of the Veolia DHN, and a local gas-fired boiler supplies heat with wet heat radiators. 

However, the operation of its heating system was assumed to follow the UoS Heating Policy.  

 

 

Figure 3.9: Buildings heated through the Veolia District Heating Network (Arup, 2012) 

 

 

The heating season for the UoS is defined by the EFM and runs between 01 November to 30 

April. In this period, the EFM aims to maintain the indoor air temperature between 19 °C and 

21 °C during core working hours (9:00 - 17:00). At 9:00 during the heating season, the EFM’s 

target is to have an indoor air temperature of 16 °C. The heating system is inoperable outside the 

heating season, outside the core working hours, and during weekends, and is kept to 12 °C. The 

heating is activated by a thermostat which responds to the outside temperature. If the temperature 

outside is 18 °C or above, the heating system will not operate. When outdoor temperatures 

plummet to extreme temperatures, an additional ‘booster’ is added between 12:00 and 14:00. 

Figures 3.10 and 3.11 show the UoS heating setpoints plotted against hourly outdoor air 

temperatures for January and April 2019. For January, the heating system operates at total 

capacity, in contrast to April, where the heating system is inoperative in the third week as the 

temperature reaches above 18 °C.  
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Figure 3.10: UoS Heating Setpoint plotted against January Outdoor Temperature 

 

Figure 3.11: UoS heating setpoints plotted against April outdoor temperatures 

 

3.3.7 PM2.5 Properties 

PM2.5 concentrations can vary significantly between different types of buildings, depending on 

various factors, including PM sources, building design and construction, ventilation, and occupant 

activities. For example, common PM2.5 sources in residential buildings include outdoor air 

pollution, cooking and smoking. PM2.5 sources may vary in other buildings, such as office or 

education buildings. These buildings may have additional PM2.5 sources from office equipment, 

such as printers and copiers. In addition, the design and construction of buildings can also impact 

PM2.5 concentrations. For example, buildings with inadequate ventilation or with air filtration 

systems that are not properly maintained may have higher PM2.5 concentrations. On the other 

hand, buildings with high-efficiency air filtration systems may have lower PM2.5 concentrations. 
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For the modelling tool to simulate the transport of PM2.5 between the rooms of a building and the 

local ambient environment, the physical and behavioural characteristics of PM2.5 are required. 

This information is summarised in Table 3.5 and includes Molecular Weight (g/mol), Mean 

Diameter (µm), Penetration Factor P, and the Deposition Rate k (h-1). The removal of particles 

from the ventilation system, their deposition on the building shell during air infiltration, and their 

deposition on indoor surfaces can significantly impact the indoor concentration of particles from 

outside (Riley et al., 2002). 

 

The penetration factor (P) accounts for the filtering effect of PM2.5 as it passes through a crack or 

an opening in the building envelope. It is a non-dimensional parameter with a value ranging 

between 0 and 1 (Ott et al., 2006). Its value depends on the size distribution of the aerosol and the 

airflow characteristics through the path (Hering et al., 2007), with P = 1 when the airflow path is 

through large openings like open windows ( in natural ventilation) and P < 1 for other paths 

(infiltration). Previous studies found that when PM2.5 passes through a crack in the building 

envelope, the value of P can vary between 0.7 and 0.9 with particle size (Ott et al., 2006). For the 

heating season in this study, PM2.5 is considered a homogeneous pollutant and follows a similar 

uniform distribution between 0.7 and 0.9, and it is modelled with a P of 0.8 (O’Leary, Jones, et 

al., 2019). Alternatively, PM2.5 is modelled during the summer with a P of 1 representing natural 

ventilation (J. Taylor et al., 2014b). 

 

PM2.5 deposition rates refer to the rate at which PM2.5 settles or deposits onto indoor surfaces. 

PM2.5 can be deposited through various mechanisms, including gravitational settling, diffusion, 

interception, and impaction. Gravitational settling occurs when particles settle onto a surface due 

to the force of gravity (Thatcher et al., 2002). Diffusion happens when particles move from an 

area of high concentration to a low concentration due to random molecular motion. Interception 

refers to the process where particles are intercepted by surfaces such as walls or ceilings, and 

impaction occurs when particles collide with a surface due to their inertia. Various factors, 

including particle size, air velocity, temperature, relative humidity, and surface characteristics, 

influence PM2.5 deposition rates. For example, higher airflow velocities and warmer temperatures 

increase PM2.5 deposition rates, while the impact of relative humidity on deposition rates is 

complex and can be influenced by many other factors such as coagulation, hygroscopic growth, 

airflow patterns, and electrostatic effects (Oezkaynak et al., 1996). 
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Assessing deposition rates is crucial in evaluating human exposure to indoor air pollution. 

Understanding the mechanisms and factors affecting PM2.5 deposition rates can aid in designing 

and implementing effective indoor air quality interventions. Additionally, measuring PM2.5 

deposition rates can aid in estimating the effectiveness of various mitigation strategies for 

reducing indoor PM2.5 concentrations. Several studies have been conducted to measure PM2.5 

deposition rates in residential buildings (Nazaroff, 2004b; Riley et al., 2002; Schneider et al., 

2004); see Figure 3.12. However, such information might not be available in other types of 

buildings due to the complexity of measurements.  

 

 

Figure 3.12: Summary of previous results on deposition rates of particles 𝒌 (h-1) (Diapouli et al., 2013) 

 

Therefore, this is considered an uncertain input, and a probability distribution of PM2.5 deposition 

rates 𝑁 (0.39, 0.16), reported in the literature for residential settings, is considered (Oezkaynak et 

al., 1996). Other behavioural characteristics of PM2.5 that can significantly impact the 

concentrations of PM2.5 in indoor environments include the emission rates and removal rate by 

filter efficiency. However, based on the data received from the EFM, there was no information 

on the PM2.5 filters installed across the UoS estates. Additionally, there were no tobacco smoking 

and cooking activities inside buildings and no use of gas heaters. As such, the indoor emission 

rate in this study was assumed to be zero.  
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Table 3.5: Physical and behavioural properties of PM2.5 used in this study.  

Pollutant  Molecular weight 

(g/mol)  

Mean Diameter  

(m)  

Deposition Rate  

(h-1) 

Penetration Factor 

P 

Particulate Matter 

PM2.5 

1.4 2.50  0.39 (±0.16) P = 0.8 

(Infiltration), P = 1 

(Natural 

Ventilation)  

 

3.3.8 Occupancy Schedules  

While assessing a building’s energy performance and indoor air quality should ideally draw 

empirical data from extensive and sufficient field studies (surveys) or occupancy sensors, such 

data collection procedures are time-consuming and costly. Moreover, measured occupancy 

diversity factors for use in building energy and IAQ simulations are generally rare and practically 

non-existent for HEI buildings. Therefore, the uncertainty associated with building users’ 

behaviours in the simulation study of indoor air quality remains relatively unexplored to date 

(Davis & Nutter, 2010). To the author’s knowledge, the UoS does not hold occupancy data across 

all buildings. If some are available (e.g., Information Commons, The Diamond), it only records 

the total number of occupants at the building level, not per room/space. Conducting a fine-grained 

occupancy survey would be ideal for developing typical occupancy profiles for common space 

types for the sampled buildings. Unfortunately, an occupancy survey did not occur due to time 

constraints and the COVID-19 pandemic. Therefore, the uncertainty regarding occupancy 

schedules is accepted and acknowledged. As this thesis focused on modelling population 

exposure to PM2.5 from outdoor sources during the heating season, user interaction with windows 

and natural ventilation was assumed negligible during the seasonal period. From an IAQ point of 

view, occupancy profiles can be highly influential when the heating systems are occupant-

controlled or where significant indoor emissions of PM2.5 exist (e.g., cooking or smoking 

activities).  

 

University buildings exhibit various space types with specific academic purposes and operational 

characteristics. For the buildings selected in this study, a general characterisation of the space 

types identified in Section 3.3.1 may suggest some “theoretical” occupancy profiles to be used in 

simulation studies. Thus, hourly occupancy factors were specified for the sampled buildings 

(Table 3.6). These profiles formed the basis for calculating the internal heat gains in different 

space types of HEI buildings. Combining the theoretical occupancy profiles with the designed 

maximum occupancy for each space provided by the EFM, the maximum internal heat gain from 

occupants in each space/room within the sampled buildings can be modelled in EnergyPlus.  
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Table 3.6: Theoretical Occupancy Profiles for Each Space Type Used in the Co-simulation of the Selected 

Buildings  

Space Type   Theoretical Occupancy Profile  

General Offices  Administration and Academic 

Offices  

9:00 – 17:00 (1-hour break between 12:00-

13:00)  

Educational Facilities  Lecture Theatres / Labs / 

Workshops / Studios 

2-hour occupancy interval between 10:00 – 

17:00 (including a 10-min break at each 

interval and a 1-hour break between 12:00-

13:00) 

 Seminar Rooms  1-hour occupancy interval between 10:00 – 

17:00 (including a 10-min break at each 

interval and 1-hour break between 12:00-

13:00) 

 Study / Computer Rooms  10:00 – 17:00 (1-hour break between 

12:00-13:00) 

Shared Facilities   Common Areas 10:00 – 17:00  

 Kitchen/Toilets  N/A 

Circulation    N/A 

Services   N/A 

 

 

3.4 Summary 

This chapter presents a hybrid bottom-up framework for developing HEI stock IAQ models to 

predict indoor PM2.5 concentration and exposure. Five buildings of the University of Sheffield 

(UoS) were selected and introduced, briefing the data sources, scopes and granularities relevant 

to the study. The predicted indoor PM2.5 will be used to estimate the population exposure to indoor 

PM2.5 following a microenvironmental modelling approach (Chapter 7). The key steps and 

workflow constituting the research methodology are described. This chapter examined how the 

data on the selected buildings and the ambient environments could be used to develop an HEI 

stock IAQ model to inform future building planning and design. Furthermore, areas of paucity 

are highlighted, thus informing future surveys and research. Table 3.9 presents the data collected 

from the UoS EFM and existing governmental and non-governmental organisations that can be 

used as inputs to CONTAM and EnergyPlus, the application and use of this data in CONTAM 

and EnergyPlus will be described in detail in Chapter 4. 
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Table 3.7: A summary of the input parameters of CONTAM(.prj) file and EnergyPlus (.idf) file 

Category  Parameter  Symbol [unit]  
Variation 

Type  
Data Source Attribution Level 

Building/Zone Variants  Zone Height H [m]  Variability  CAD Drawings 

(Architectural Plans, 

Sections and Elevations 

from UoS EFM)  

Development of CONTAM Project Files [.prj] for 

each Higher Education Building includes detailed 

zones geometries, adjacencies and juxtapositions.   

 
Zone Area  A [m2] 

 
Zone Volume  V [m3] 

 
Zone Orientation   [] 

      

Building Construction 

Year  

External Building 

Envelope Effective 

Leakage Area  

ELA [cm2/m2] Uncertainty  NIST1 Library  Calculation of Building Envelope Air Permeability 

Values Q50 [m3/h/m2] after performing CONTAM 

Pressurisation Test at ∆P=50 Pa  
   

 
Building Envelope 

and Building 

Components Thermal 

Transmittance Value  

U-Value [W/m2K] Variability  CAD Drawings (Wall 

Sections and Material 

Specifications from 

UoS EFM)  

Development of Building Age Representative 

Material and Construction .idf files to Perform 

Dynamic Thermal Simulation in EnergyPlus  

   

      

Window Parameters  Window Glazing 

Area  

Awt [m2] Variability  CAD Drawings 

(Architectural Plans, 

Sections and Elevations 

from UoS EFM) 

Calculate the amount of Heat Gain and Heat Loss in 

EnergyPlus  

 
Window Opening 

Area  

Awo[m2] Design  EFM Heating Policy 

Plan  

Window Opening Schedules to Account for Natural 

Ventilation in Cooling Season   
Window Leakage 

Area  

Awl [cm2/m] Uncertainty  NIST1 Library  Development of Window Leakage Elements in 

CONTAM Project Files using a Power Law Model  

Q= C(∆P)n 
     

      

Building User 

Characteristics 

Maximum Occupancy  Occm Design  UK University Space 

Planning Guide for 

Space Standards and 

University Timetables 

for Different Space 

Types.  

Space Use / Occupancy Schedules in CONTAM and 

EnergyPlus to Account for Indoor Heat Gains and 

CO2 Generation Rates and the Calculation of PM2.5 

Exposure Levels.  

 
Occupancy Density  Occd [m2/person] Design  

 
Occupancy Level  Occ Uncertainty Assumed Occupancy 

Data was Used  
THE TABLE CONTINUES THE FOLLOWING PAGE  
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Category  Parameter  Symbol [unit]  
Variation 

Type  
Data Source Attribution Level 

Pollutant Characteristics  PM2.5 Deposition Rate  k [h-1] Uncertainty  Literature  Identify Sink Elements in CONTAM Project Files to 

represent the loss of PM2.5 Indoors.  
      

      

Airflow Characteristics  Flow Exponent   n  Uncertainty  CONTAM User Guide  Indicator of the Nature of Airflow (Turbulent or 

Laminar), Typical Values for Infiltration Airflow 

between 60 and 70   
Flow Coefficient  C Uncertainty  Airflow Openings Dynamic Effects, Typical Values 

C=60 for Small Openings and slightly higher for 

Larger Openings   
Wind Pressure 

Coefficient  

Cp Uncertainty  Swami and Chandra 

Model 

Calculate Wind Pressure Coefficients for Different 

Wind Angles in CONTAM to account for Wind 

Pressure Effect on Building Façade. 
     

      

      

Ambient Weather 

Characteristics 

Outdoor Temperature  Tamb [C] Uncertainty  Local Weather Stations 

(Sheffield’s Weston 

Park Weather Station)  

Generating EnergyPlus Weather Files (.epw) and 

CONTAM Weather Files (.WTH) using Actual 

Meteorological Year (AMY) Data  
 

Wind Speed  v [m.s-1] Uncertainty  
 

Wind Direction  u [] Uncertainty  
 

Ambient PM2.5 

Concentrations  
Camb [g/m3] Uncertainty  Local Pollutant 

Monitoring Station 

(Sheffield Devonshire 

Green (UKA00575)) 

Generating CONTAM Ambient PM2.5 Concentration 

Levels Files (.CTM) using Hourly Data 

     

      

Indoor Environment 

Characteristics 

Heating Season 

Indoor Air 

Temperature  

Tin [C] Variability  University of Sheffield 

Indoor Space Heating 

Policy  

Development of EnergyPlus Indoor Space Heating 

Schedules and Setpoints to Control Indoor Air 

Temperature for the Co-Simulation  
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Chapter 4 Building Physics-Based Modelling  

 

 

 

4.1 Introduction 

In Chapter 3, the potential data sources to model the IAQ of an HEI building stock were 

demonstrated through the selected buildings from the UoS. The data received from the EFM 

guided the selection of individual rooms as the model resolution for performing IAQ modelling. 

The diversity of parameter most directly related to a building’s design were used to reduce the 

primary uncertainty. Others with other sources of uncertainties (aleatory or epistemic) must be 

determined differently.  

 

This chapter presents the IAQ modelling methods and software tools for estimating the 

concentrations of infiltrated PM2.5 in the context of an HEI building stock. Here, the specific 

aspects of CONTAM and EnergyPlus, such as restrictions or boundaries and modelling 

assumptions, are discussed. Simulations were made under these conditions to analyse some 

aspects of IAQ across the selected buildings from the UoS building stock. This chapter illustrates 

how buildings are modelled in CONTAM and EnergyPlus. Then, a detailed analysis of the 

coupled simulation results is presented. The outputs include infiltrated PM2.5 concentrations as a 

result of infiltration, infiltration ACH (ACHINF), and indoor temperature. The analysis of the 

results focuses on two temporal scales: the hourly time-series outputs and the resampled annual 

outputs. Finally, the chapter concludes by demonstrating how the CONTAM-EnergyPlus co-

simulation (CoSIM) results can be validated against field measurements. 
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4.2 Modelling the UoS Buildings  

By utilising ContamX V3.4.0.25 (the CONTAM simulation engine), a multizone indoor air quality 

and ventilation model of each selected building was developed. For example, the Academic 

Development Centre (ADC) model is presented in Figure 4.1(a). The Barber House (BH), Arts 

Tower (AT), Regent Court (RC), and ICoSS are presented in Appendix A, Figures A.2-A.5. Each 

room/space (as labelled on the EFM building floor drawings) was considered a single volume to 

which doors connect all other rooms. After the rooms and doors were drawn in ContamW6 (the 

CONTAM graphical user interface), well-mixed zones and airflow paths (represented as 

diamond-shaped dots) were mapped, as shown in Figure 4.1(b). A fundamental assumption in 

using ContamW is that the modelling must capture the (i) juxtaposition of zones to account for 

inter-zone flows, (ii) zone volumes to account for contaminant dilution, and (iii) wind pressure 

coefficients to account for the effect of wind on the building envelope. These aspects can be 

defined without exact geometrical representation via the graphical user interface (CONTAM 

SketchPad). However, as mentioned in Section 3.2, this thesis utilised a coupled modelling 

approach to account for heat transfer. Therefore, each CONTAM model was drawn using the 

pseudo-geometry option to define the scaling factor for drawing and viewing the wall, zone and 

duct dimensions on the SketchPad. 

 

ContamX calculates the rate at which air pollutants are transported through airflow paths 

according to the information entered for every path. Thus, it uses information on the actual 

building layouts (Figure 4.1a), which the CONTAM-EnergyPlus coupled simulation requires. To 

determine the wind pressures at a building’s location, CONTAM models require inputs of 

building orientation, or azimuth angle, for each external element. The orientation is assigned 

according to the actual building orientation. The CAD drawings show that the total floor areas 

were given and mapped in ContamW to replicate the building geometry. ContamW calculates the 

zone volumes and wall surface areas given the actual floor height inputs. After the layout is 

completed, the exterior walls of each Zone are used to determine the total envelope area.  

  

 

5https://www.nist.gov/el/energy-and-environment-division-73200/nist-multizone-

modeling/software/contam/download 
6 https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1887r1.pdf 
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(a)  

 

(b) 

Figure 4.1: The Ground Floor of the Academic Development Centre (ADC) – (a) Original CAD drawing 

and (b) CONTAM model   
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4.2.1 Airflow Paths 

Each Zone has a variable volume and floor area resulting in variable airflow paths. Figure 4.2 

shows another example of a CONTAM model built for the ground floor of the ADC building. 

Airflow paths (in red) and sinks (in green) are identified for each Zone, and exhaust systems (in 

blue) in kitchens and toilets. Air leakage paths are modelled using a single graphic element to 

represent potential airflows through walls and windows. Three airflow paths are used to model 

air leakage paths in each external and internal wall of a zone, which is assumed to be uniformly 

porous, by locating at its top, midpoint, and bottom following ( Jones et al., 2013). An exhaust 

fan is linked to a central AHU unit for each floor to account for potential airflows in kitchens and 

toilets. This information can be acquired by accessing the EFM’s mechanical CAD drawings for 

each building. The process of identifying all air leakage paths was similar for all buildings.  

 

Figure 4.2: CONTAM Elements for the Ground Floor Layout of the ADC Building  

 

The flow elements were adjusted to account for the corresponding surface areas of the elements 

they represent. CONTAM allows this by adding a multiplier to an element. For simplicity, 

airflows through floors and ceilings were not accounted for in any of the buildings modelled in 
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this study, and so their air leakage paths were ignored by giving them a multiplier with a value of 

zero. Wall area (multipliers) are equally distributed into the three paths. Air leakage paths were 

modelled using the power law model given in Eq. (4.1). To match the calculated airtightness level 

normalised by thermal envelope area Q50 (m3/h/m2) with the values provided in Section 3.3.2, the 

effective leakage area at 4Pa ELA4pa (cm2/m2) was used as an input in ContamW and is 

represented by the following:   

 

𝐸𝐿𝐴4𝑃𝑎 = √
𝑝

2(4𝑃𝑎)
. Q50. {

4𝑃𝑎

50𝑃𝑎
}

𝑛

  (4.1) 

 

where, 𝐸𝐿𝐴4𝑃𝑎 is the effective leakage area at 4 Pa (cm2/m2), n is the dimensionless flow 

exponent, and ρ is the air density (kg/m3). The value of the flow exponent n ranges from 0.5 for 

large and 1 for small openings. Previous studies in the US suggested that n can be sampled from 

a normal distribution N(0.651, 0.077) (Sherman & Dickerhoff, 1998) and between 0.6 – 0.7 for 

typical infiltration openings (W. Dols & Polidoro, 2020). With the absence of similar nationwide 

studies in the UK and for non-domestic buildings, n was assumed in this study to follow the same 

normal distribution and was given the value 0.65. This value was then entered into CONTAM 

with a coefficient equivalent to the corresponding section of the envelope area, as shown in Figure 

4.3. 

 

 

Figure 4.3: Using Eq (4.1) and ContamW interface to model Q50 using the values of ELA4Pa (an example 

drawn from the ADC building)  



72       Chapter 4 Building Physics-Based Modelling        

 

Windows were all modelled with the assumption that they were permanently closed during the 

heating season as per the EFM heating policy. However, to account for the air leakage of 

windows, they were modelled in ContamW using Eq. (4.1) and were assigned a leakage value 

that represents the total leakage value for an item (cm2). Information on each window was 

informed by the CAD drawings provided by the EFM. This includes the window height, width, 

and number of windows used to assign the ContamW multipliers. The discharge coefficient Cd 

was 0.6 as per the CONTAM User Guide (W. Dols & Polidoro, 2020).  

 

Airflow and the transfer of pollutants and thermal energy can occur between different zones 

within a building or between inside and outside environments through other large openings like 

open doorways. These airflows tend to be more intricate, with the possibility of airflows in 

opposite directions in various parts of the opening. Two models, the two–way flow one–opening 

model and the two–way flow two–opening model, can be used to study such airflow in CONTAM 

(W. Stuart Dols & Polidoro, 2020). The former considers the flow through a single large opening 

and defines the neutral height, NPL, where the air velocity is zero. The latter model divides an 

opening vertically and uses two power-law models to estimate the net flow rate in each direction, 

accounting for the two-way flow due to the stack effect over the height of a tall opening (George 

N Walton, 1989). The NPL is the height at which the internal pressure equals the external 

pressure, resulting in no airflow in or out of an opening at that height. Above or below the NPL, 

the airflow and direction can be determined, with vents positioned below the NPL acting as inlets 

and those above acting as outlets, or vice versa, see Figure 4.4. The concept of the NPL is helpful 

in building design and is referenced in design standards such as the CIBSE AM10 guide (CIBSE, 

2005).  

 

Figure 4.4: Neutral Plane Level (NPL) within doorways (George N Walton, 1989) 
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For simplification, open internal doors were modelled using the two–way flow one–opening 

model, with a discharge coefficient of 0.78, and its relative elevation is at the bottom of the door. 

When closed, doors were modelled as leakage elements that represent the door undercut given in 

(cm2). Finally, simulations of a blower door test at 50 Pa were run in CONTAM for each building 

to ensure that the model’s external air leakage rate (Q50) was correct, see Table (4.1).  

 

Table 4.1: Summary of the used Effective Leakage Areas ELA4Pa for external and internal walls elements 

to achieve the airtightness level Q50 using CONTAM’s blower test at 50Pa 

Leakage Level   Airtightness Level Q50 

(m3/h/m2) 

 External Wall and 

Internal Walls ELA4Pa 

(cm2/m2) 

Tight Building Envelope  3 0.925 

 5 1.550 

 7 2.155 

 9 2.775 

 10 3.075 

 11 3.375 

Leaky Building Envelope  13 3.997 

 

4.2.2 Weather and Pollutants Data  

To include the local weather conditions in the modelling, the weather data from the Weston Park 

Weather Station was converted into CONTAM’s weather data format (*.wth) (W. Dols & 

Polidoro, 2020). Data is reported hourly, giving the date and time, ground temperature, 

atmospheric pressure, wind velocity, wind direction, and absolute humidity. The same weather 

file was used in the simulations for all selected buildings. To account for the wind effects on each 

side of the buildings, the wind effects were estimated using a wind pressure profile calculated 

using wind pressure coefficient (CP) relationships found in (Swami & Chandra, 1987). Wind 

pressure profiles for each building are a function of the block aspect ratio (S) and the terrain 

constants. A variable wind speed modifier corresponding to “urban” terrain and scaled to building 

height (W. Dols & Polidoro, 2020), was applied to all exterior leakage paths. This parameter was 

used in CONTAM to account for the effects of local terrain on wind speed variation with height 

above ground level, see Table 4.2.  
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Table 4.2: Building Heights, Local Terrain Constant, Velocity Profile Exponent, and Corresponding 

Wind Speed Modifier Input Data in CONTAM  

Building Name    Building 

Height (m) 

Local 

Terrain 

Constant  

Velocity Profile 

Exponent  

Wind Speed 

Modifier 

Barber House (BH.) 6.0 

0.717 0.22 

0.410 

Academic Development Centre 

(ADC) 

7.5 
0.453 

The Regent Court (RC.) 13.4 0.581 

Arts Tower (AT) 72.0 1.165 

ICoSS   21.8 0.718 

 

CP at different angles were assumed to be between 0◦ to 360◦ and specified for each side of the 

building. As the building form can significantly differ between the selected buildings, it can 

impact the resultant wind effects. Due to the lack of other resources that may represent such 

heterogeneous forms, the uncertainty in the resultant wind pressure profiles using the Swami and 

Chandra model is acknowledged (Figure 4.4), and the implications on the model results are 

discussed in detail in Chapter 8. 

 

 
Figure 4.5: Example of a wind pressure profile for the (a) short wall and (b) long wall for all buildings to 

be used in the CONTAM simulations. 
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Finally, to include the local ambient PM2.5 levels in the models, the DEFRA Devonshire Green 

Monitoring Station data was converted into the CONTAM’s format (*.ctm) (W. Dols & Polidoro, 

2020). The ambient AQ data is reported hourly, giving the date, time and ambient PM2.5 levels. It 

was assumed that the ambient PM2.5 levels were the same for all buildings, and therefore the same 

.ctm file was used in all simulations.  

4.2.3 Deposition Rates   

Deposition rates are essential in determining the removal rates and indoor concentrations of 

pollutants, especially when ventilation is limited. Here, the deposition of PM2.5 was modelled as 

a deposition rate sink model with a constant value of k =0.39 h-1 (see Table 3.5). Nevertheless, 

this value was considered uncertain (Nazaroff et al., 1993) due to several factors such as room 

dimension, furniture area, and air velocity. Although all these parameters change by 

building/zone, this study took a simplified approach to the deposition process and input values.   

4.2.4 Indoor Temperatures  

As CONTAM is not a thermal model, the internal air temperatures must be specified as constant 

values for each Zone. However, to account for the dynamic interaction between thermal flow and 

airflow within a building, CONTAM can be coupled with EnergyPlus following the framework 

given in (W. Stuart Dols et al., 2016), which was described in detail in Section 2.4.3. In generating 

the CONTAM project file (*.prj) for each building, a constant indoor temperature of 21 °C was 

used. This temperature represents the heating season setpoint specified in the EFM heating policy. 

This allows ContamX to calculate initial infiltration rate values that can be used as dynamic 

infiltration flows rather than constant values. Then, CONTAM3DExporter7 was used to export 

EnergyPlus (IDF) files from COMTAM (PRJ) files. The IDF file contains all data exchange 

parameters representing the geometry of each building.  

 

The exported IDF files were manually edited for each building to include the thermal-related input 

parameters. This includes the thermal properties (U-Values) of the building construction, adding 

windows to account for the heat gain from solar radiation, identifying sources of internal heat 

gains and occupancy schedules, and the design of the Veolia DHN informed by the EFM, see two 

such examples in Figure 4.6.  

 

7https://www.nist.gov/el/energy-and-environment-division-73200/nist-multizone-

modeling/software/contam-3d-exporter 
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Figure 4.6: The IDF models developed for the Regent Court Building (top) and the Arts Tower (bottom); 

before editing (a) and after editing (b), using the OpenStudio tool in Sketchup 

 

For IAQ modelling, the main benefit of coupling CONTAM with EnergyPlus is that EnergyPlus 

enables timestep-level temperature differences for each Zone, responsive to weather, HVAC, air 

flows, and occupant behaviours. The U-values of the construction materials for each building 

were obtained from the EFM and followed the values specified in Table 3.1. Information on the 

sources of internal gains in HEI buildings was informed by the CIBSE Guide A (CIBSE, 2018) 

and the previous studies conducted on multiple UoS buildings (S Douglas, 2014). The information 

includes artificial lighting, equipment, and occupants. Based on these studies, the primary source 

of internal heat gains from equipment in the UoS buildings was the number of computers in use. 

The number of computers reported in these studies was 0.375 PC/m2 in computer rooms, 0.1 

PC/m2 in study rooms and shared offices, and 1 PC per cellular office. The benchmark values 

from CIBSE Guide A (CIBSE, 2018) were used to assign the sensible heat gain from equipment 

with 20 watts/m2 in cellular offices, 25 watts/m2 in shared offices, and 25 watts/m2 in computer 

rooms. Sensible heat gain from artificial lighting was given the values of 10 watts/m2 for rooms 

where occupants spent some considerable time and 7 watts/m2 for circulation and service zones 

(Altan et al., 2009).   
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The heat released by people is often tabulated in design guides in terms of sensible and latent heat 

loads. Table 4.3 summarises benchmark allowances of the sensible and latent heat loads for 

different space types, assuming an indoor temperature of 21 C and a sedentary occupancy activity 

level (CIBSE, 2018). Occupancy density for each space type (m2/person) (Ross, 2019) was used 

to calculate the total number of occupants and the total occupants’ heat gain for each Zone. As 

the occupancy schedules were assumed to be similar among most UoS space types, the theoretical 

operational schedules summarised in Table 3.6 were mapped into the IDF file of each selected 

building. 

Table 4.3: Summary of the benchmark allowances for internal heat gain from occupants, artificial lighting, 

and equipment in different space types (CIBSE, 2018).  

Building 

Type  

Use  Floor Area 

(m2/person) 

Sensible Heat Gain W/m2  Latent Heat Gain W/m2 

People Lighting Equipment People Other 

Offices  Cellular Office  9 10 8-12 25  7.5 - 

 Shared Office  4.5 20 8-12 20  15 - 

 Meeting Rooms  3 27 10-20 5  20 - 

Education Lecture Theatres  1.5 67 12 2  50 - 

 Computer Spaces 2.5 53 12 60  40 - 

 Seminar Rooms  3 27 12 5  20 - 

 

4.2.5 Heating Policy using HVAC Templates in EnergyPlus 

As discussed in Section 3.3.5, the UoS buildings are mainly heated through the Veolia DHN, and 

heat is distributed to each Zone using traditional wet heat radiators. In order to map this heating 

system to the IDF files, a group of objects in EnergyPlus was used for the specification of simple 

zone thermostats and HVAC systems. As the total energy consumption of the sampled buildings 

was not part of the scope, the sizing and the detailed design of the Veolia DHN were simplified 

to match the heating policy regardless of the amount of water and energy used. Therefore, the 

HVACTemplate object type was used. Figure 4.7 illustrates the schematic representation of the 

Veolia DHN in EnergyPlus. For water baseboard heating systems powered by local district 

heating, the following objects were specified in each IDF file:  

(1) HVACTemplate:Thermostat,  

(2) HVACTemplate:Zone:BaseboardHeat,  

(3) HVACTemplate:Plant:HotWaterLoop,  

(4) HVACTemplate:Plant:Boiler.  
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Figure 4.7: Schematic representation of the Veolia DHN mapped in EnergyPlus for each of the sampled 

buildings 

4.3 Processing the Co-Simulation Outputs 

This study used deterministic values described by discrete or continuous probability distributions 

for the input parameters. Based on these input parameters, CONTAM and EnergyPlus can be used 

to estimate each Zone’s annual average infiltrated PM2.5 concentrations. Table 3.7 in Section 3.4 

summarised the input parameters for co-simulation and their sources and attribution levels. 

Quantifying the uncertainty in the outputs by systematically varying each set of CONTAM and 

EnergyPlus inputs and running multiple simulations was not within the scope of the study. 

 

After the co-simulation files were developed for the selected buildings, simulations were run for 

a whole year. Generally, the shorter the time step, the more accurate the solution is, but at the 

expense of computational resources and runtime. Due to the sensitivity of the time step selected 

in the analysis of indoor PM2.5 and its behaviour in indoor environments compared to other 

building-related performance analyses (e.g. annual energy use) (Tabares-velasco, 2013), a time 

step of 4 per hour (i.e., 15-min interval) was set in both CONTAM and EnergyPlus files. As a 

result, the airflow calculations, pollutant behaviours, and building envelope thermal responses 

can be modelled more accurately. The simulation ran using a 15-min interval and performed 

reasonably well regarding computing time and resources. It also improved the numerical solution 

of the zone mass balance and heat balance models in CONTAM and EnergyPlus. In CONTAM, 

concentrations are reported at a moment in time and only according to the “Output” time step, 

regardless of the “Calculation” time step identified in the simulation settings. 

 

This process was repeated using the six airtightness values specified in Section 3.3.2 and 

assuming that purpose–provided openings (windows) are closed during the heating season 

https://bigladdersoftware.com/epx/docs/8-0/input-output-reference/page-011.html#zone


Chapter 4 Building Physics-Based Modelling      79 

 

(November – April) and open during the non-heating season (May – October). In addition, any 

mechanical ventilation systems were switched off (except extract fans in toilets and kitchens) 

during the simulation (see Section 3.3.3). With this in mind, the total airflow rate ACHT (h−1) was 

assumed to equal the simulated infiltration rate ACHINF (h−1). Each set of outputs calculated the 

heating season zone-weighted pollutant PM2.5 concentrations and added them to the average non-

heating season concentrations (see Section 1.4). First, each Zone’s average concentration of 

infiltrated PM2.5 over the heating season was calculated over the simulation period. Next, using 

the building operation period (7 AM-7 PM), the average concentrations in each room were 

weighted using the 12-hour occupancy time. Then, the time–series data of the infiltration rates 

ACHINF (h-1) for each Zone, the infiltrated PM2.5 concentrations (µg/m3) for each of the zones, the 

outdoor scaled wind speed (m/s), and the indoor temperature Tin (◦C) were obtained.  

 

Finally, the ACHINF and PM2.5 data were extracted from the CONTAM output files, and ∆T was 

computed using the EnergyPlus time-series indoor temperature (Tin) value and the weather data. 

Table 4.4 shows an example of the metrics recorded and compiled into a single file labelled with 

the building ID. The results of the co-simulation are presented in four subsections below. Section 

4.3.1 describes the predicted time series data from the simulations; while Section 4.3.2 presents 

the the baseline concentrations of infiltrated PM2.5 heating season and the whole year. Section 

4.3.3 presents the results of improving the Q50 on the concentrations of indoor PM2.5. Finally, 

Section 4.3.4 presents the results of I/O ratio of PM2.5 and highlights the importance of other 

factors such as building height and zone level as a modifier to exposure to indoor PM2.5.  

 

4.3.1 Time series data  

With a 15-min temporal resolution, the simulated PM2.5 concentrations and Air Change Rates 

(ACHINF) from CONTAM and the Indoor Temperature (Tin) from EnergyPlus were resampled to 

generate hourly averages for data analysis over the heating season. This was achieved using the 

Pandas Module in Python and the function resample(). The data was obtained from each 

CONTAM simulation file (.sim) and read using simread3.exe. Additionally, the IDF file 

outputs the Tin time series in a Comma Separated Values (.CSV) file. At the hourly resolution 

between 01 November and 30 April, the total number of data points for each Zone was 4,344, 

totalling 1,941,768 data points for the 445 zones simulated.
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Table 4.4: Input parameters and output metrics recorded and compiled into a single file labelled with the building and zone ID. (Total Number of Zones N=2729)  
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The time-series outputs provide necessary information on the concentrations, temporal variation, 

and dynamics of PM2.5 in indoor environments. Figure 4.8 shows the hourly indoor PM2.5 

concentration of four randomly selected zones in the Regent Court building using the baseline 

Q50 of 10 m3/h/m2. These zones show a south-facing room on the first floor (Z30), a south-east 

room on the second floor (Z122), a north-facing room on the first floor (Z96), and a north-west 

facing room on the third floor (Z87). Figure 4.9 shows the temporal and spatial variation of 

infiltrated PM2.5. This could be due to the mediating effects of environmental and building 

characteristics on the ingress of PM2.5 from outdoor sources. This highlights the necessity of 

achieving a model resolution at the room level for such complex buildings over time.  

 

 

Figure 4.8: Hourly indoor PM2.5 concentration in four different zones in the Regent Court Building, 

showing the spatial and temporal variability in concentrations within the same building. The Q50 of this 

building is 10 m3/h/m2. 

Zooming into (a), (b), (c), and (d) in Figure 4.8, it can be seen in Figures 4.9(a) to 4.8(d) that the 

concentrations of infiltrated PM2.5 can vary significantly throughout the day in different 

locations/zones within the same building. The spatial variability shown here is essential as it 

causes exposure disparities among building users in different zones/rooms within the same 

building. As such, studying the causes of the spatial variability on indoor PM2.5 becomes essential. 

This can only be achieved through constructing models of a high spatial resolution at the room 

level. 
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Figure 4.9 (a-d): Hourly indoor PM2.5 concentration in four different zones in the Regent Court Building 

as data samples showing the spatial (zone location) and temporal (black arrows )  variability in 

concentrations within the same building. 

 

Unsurprisingly, the time series data of multiple buildings reveals a temporal and spatial variability 

in indoor PM2.5 concentrations in different zones in different buildings. Figure 4.10 shows the time 

series of hourly indoor PM2.5 concentrations in four randomly selected zones in the four buildings 

(BH, AT, ADC, RC) using the baseline Q50 values in Section 3.3.2. The four Office zones 

represent a south-facing room in the BH building, a north-facing room in the ADC, a south-east-

facing room in the Arts Tower, and a south-facing room in the Regent Court. Figures 4.11 (a)-(d) 

show the trends of infiltrated PM2.5 concentrations in the selected timeframes. Interestingly, it can 

be noticed that the trends of infiltrated PM2.5 vary throughout the day towards the end of the month 

when they exhibit a similar trend between the 22nd and 24th of February (Figure 4.10(d)). These 

plots of time series outputs can be seen as evidence showing that PM2.5 in individual zones of the 

same space type (Office in this case) are sometimes similar in trend (overall peaks and troughs) 

but differ in location. The implications of such variability are discussed in detail in Chapter 8. 
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Figure 4.10: Hourly indoor PM2.5 concentration levels in four randomly selected office zones in Regent 

Court (RC), Arts Tower (AT), Academic Development Centre (ADC), and Barber House (BH); zoom-in 

plots of (a) to (d) are shown in Figure 4.10 (a-d) 

 

Figure 4.11 (a-d): Hourly indoor PM2.5 concentration levels in the Office zones of RC, AT, BH, and 

ADC over the four periods in February 2019 ((black arrows  highlighting the temporal variation) 
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4.3.2 Baseline Concentrations of Indoor PM2.5  

In order to examine the relationships between infiltrated PM2.5 concentrations and different 

environmental and zone characteristics variables, the co-simulation outputs were resampled to 

generate average concentrations of infiltrated PM2.5 over the heating season (Nov – April) and the 

year (annual). This allows for a better pairing of indoor PM2.5 and several input variables, as seen 

in Table 4.4. Although previous studies have reported that building characteristics (e.g., building 

type, age, and floor level) can influence indoor air pollution, the building envelope airtightness 

Q50 can also modify the distribution of population exposure to infiltrated PM2.5 from outdoor 

sources across an urban area. Using the baseline values of Q50 identified previously in Section 

3.3.2 (ADC = 13 m3/h/m2, BH = 13 m3/h/m2, AT = 10 m3/h/m2, and the RC = 10 m3/h/m2), the 

heating season concentrations and annual concentrations of infiltrated PM2.5 are summarised in 

Table 4.5 below.  

Table 4.5: Descriptive Statistics for the Baseline Concentrations of Infiltrated PM2.5 Over the Heating 

Season and the (Annual Average Concentrations). 

Building  Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

(µg/m3) 

Mean  

(µg/m3) 

Median 

(µg/m3) 

*Variance  **Standard 

Deviation  

BH 13 20 5.16-9.24 7.04 6.95 1.39 1.14 

   (8.11-14.06) (10.83) (10.80) (2.79) (1.61) 

ADC 13 26 3.33-8.15 6.86 6.79 1.74 1.13 

   (5.28-12.61) (9.97) (9.61) (1.59) (1.38) 

AT 10 185 3.63-9.39 6.02 5.96 1.06 1.02 

   (5.59-13.82) (9.02) (8.85) (2.04) (1.42) 

RC 10 224 4.53-8.53 6.56 6.59 0.55 0.74 

   (7.71-13.15) (10.38) (10.43) (1.01) (1.00) 

*Variance: a statistical measure that quantifies the degree of dispersion or spread in a dataset by calculating the average 

of the squared differences between each data point and the dataset's mean. **Standard Deviation: is a measure of the 

amount of variation or dispersion in a dataset, representing the square root of the variance.  

 

The results demonstrate the annual concentrations of PM2.5 in the different buildings, reflecting 

the long-term exposure to infiltrated PM2.5. Building BH exhibited an annual PM2.5 concentration 

range of 8.11-14.06 µg/m³, with a mean concentration of 10.83 µg/m³. Building ADC showed a 

slightly lower annual PM2.5 concentration range of 5.28-12.61 µg/m³, with a mean concentration 

of 9.97 µg/m³, although they share the same Q50 = 13 m3/h/m2. Building AT had an annual PM2.5 

concentration range of 5.59-13.82 µg/m³, with a mean concentration of 9.02 µg/m³. Building RC 

demonstrated an annual PM2.5 concentration range of 7.71-13.15 µg/m³, with a mean 

concentration of 10.38 µg/m³.  
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Interestingly, the observed differences in PM2.5 concentrations between the AT and RC buildings 

can be attributed to several factors, including variations in building design and the potential 

pollutant dispersion within the buildings. As a high-rise building, it is common for the AT to 

experience a gradient of PM2.5 concentrations across different zones due to differences in floor 

levels, outdoor pollutant intrusion, and variations in ventilation effectiveness at different heights. 

The range of annual PM2.5 concentrations, from 5.59 µg/m³ to 13.82 µg/m³, indicates a 

considerable variation in the exposure levels experienced by occupants within the building. In 

contrast, the RC, also sharing the same airtightness value (Q50 = 10 m3/h/m2), demonstrated a 

narrower range of annual PM2.5 concentrations, from 7.71 µg/m³ to 13.15 µg/m³. The relatively 

minor range suggests a more consistent distribution of PM2.5 concentrations across the zones 

within the building.  

 

The standard deviation values indicate the spread of PM2.5 concentrations around the mean, 

reflecting the variability within each building. Buildings BH, ADC, AT, and RC had standard 

deviations of 1.61 µg/m³, 1.38 µg/m³, 1.42 µg/m³, and 1.00 µg/m³, respectively, suggesting 

different levels of variability in PM2.5 concentrations. Additionally, the variance values provide 

further insight into the dispersion of PM2.5 concentrations within each building. The calculated 

variances for Buildings BH, ADC, AT, and RC were 2.79 µg/m³, 1.59 µg/m³, 2.04 µg/m³, and 

1.01 µg/m³, respectively, indicating the degree of PM2.5 concentration variability across different 

zones within the buildings. These results align with previous findings on the variability of PM2.5 

concentrations within a building due to building design and environmental factors (Elliot et al., 

2000).  

 

Finally, the results highlight the significant proportion of zones within each building that 

exceeded the WHO recommended long-term exposure limit of 10 µg/m³ for PM2.5 concentrations. 

The BH had 77% of its zones exceeding the limit, accounting for 15 zones. Similarly, the ADC 

Building had 61% of its zones above the recommended limit, totalling 15 zones. The AT showed 

60% of its zones exceeding the WHO limit, with 111 zones surpassing the recommended 

threshold. Finally, the RC Building had 70% of its zones above the limit, encompassing 157 

zones. Although these findings are subject to uncertainty due to the selection of Q50 values, they 

underscore the substantial IAQ concerns in the studied buildings, indicating a considerable 

number of zones with PM2.5 concentrations exceeding the recommended WHO long-term 

exposure limit.  
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4.3.3 Impact of Q50 on the Concentrations of Indoor PM2.5  

This section examined the impact of improving the airtightness of the building envelope 

represented by Q50 values on the concentrations of infiltrated PM2.5 over the heating season and 

for a year. Initial observations from the co-simulation revealed such variations when the Q50 was 

varied between 3-13 m3/h/m2, see Table 4.6. It can be noted that the average heating season 

concentrations of infiltrated PM2.5 were 3.94 ± 0.98 µg/m3
 when Q50 = 3 m3/h/m2

. When the Q50 

was selected to represent a leaky building, i.e., Q50 = 13 m3/h/m2, the average heating season 

concentrations were about 57% higher ( 6.9 ± 1.14) µg/m3. The data also revealed a clear 

relationship between the Q50 value and the infiltration air change rates ACHINF during the heating 

season. As the Q50 value increased, the ACHINF also increased, indicating a higher air exchange 

rate between indoor and outdoor environments. Table 4.7 shows that the mean ACHINF 

progressively increased from 0.38 h-1 for Q50 = 3 m3/h/m2 to 1.37 h-1 for Q50 = 13 m3/h/m2. This 

represents a substantial increase of approximately 260.5% in the ACHINF over the heating season 

due to a leaky building envelope, see Figure 4.12. 

 

Table 4.6: Descriptive Statistics for the Concentrations of Infiltrated PM2.5 by Building Q50 Over the 

Heating Season and the (Annual Average Concentrations).  

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

(µg/m3) 

Mean  

(µg/m3) 

Median 

(µg/m3) 

*Variance  **Standard 

Deviation  

3 455 0.61-7.19 3.94 3.90 0.97 0.98 

  (2.16-11.29) (6.86) (6.85) (1.85) (1.36) 

5 455 0.98-7.96 4.86 4.94 1.16 1.08 

  (2.97-12.23) (8.09) (8.18) (2.12) (1.46) 

7 455 1.34-8.43 5.54 5.65 1.36 1.17 

  (3.65-12.90) (8.99) (9.12) (2.44) (1.56) 

9 455 1.70-8.64 5.92 6.11 1.31 1.14 

  (4.27-13.24) (9.51) (9.77) (2.29) (1.51) 

11 455 2.03-8.98 6.57 6.76 1.25 1.12 

  (4.81-13.70) (10.41) (10.61) (2.02) (1.42) 

13 455 2.33-9.24 6.90 7.12 1.30 1.14 

  (5.28-14.06) (10.87) (11.11) (2.09) (1.45) 

*Variance: a statistical measure that quantifies the degree of dispersion or spread in a dataset by calculating the average 

of the squared differences between each data point and the dataset's mean. **Standard Deviation: is a measure of the 

amount of variation or dispersion in a dataset, representing the square root of the variance.  
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Table 4.7: Descriptive Statistics for the ACHINF by Building Q50 Over the Heating Season (Nov – April)  

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

(h-1) 

Mean  

(h-1) 

Median 

(h-1) 

*Variance  **Standard 

Deviation  

3 455 0.06-1.57 0.38 0.32 0.05 0.23 

5 455 0.11-2.22 0.60 0.50 0.14 0.37 

7 455 0.16-2.97 0.84 0.72 0.26 0.51 

9 455 0.20-3.63 0.97 0.81 0.32 0.57 

11 455 0.24-4.32 1.17 0.97 0.52 0.72 

13 455 0.28-5.02 1.37 1.14 0.71 0.84 

*Variance: a statistical measure that quantifies the degree of dispersion or spread in a dataset by calculating the average 

of the squared differences between each data point and the dataset's mean. **Standard Deviation: is a measure of the 

amount of variation or dispersion in a dataset, representing the square root of the variance.  

 

 

 

Figure 4.12: Box plots of the Heating Season Concentrations of Infiltrated PM2.5 Ci and the ACHINF 

stratified by the Building Envelope Airtightness (Q50) 

 

The mean concentrations of infiltrated PM2.5 varied among the different Q50 values. For a Q50 

value of 3 m3/h/m2, the mean concentration was 6.86 ± 1.36 µg/m3 µg/m3. As the Q50 value 

increased, the mean concentrations of PM2.5 also increased. The highest mean concentration of 

10.87 ± 1.45 µg/m3 µg/m3 was observed for a Q50 value of 13 m3/h/m2. These findings suggest 

that improving the airtightness of the building envelope, as represented by tighter building 

envelopes (low Q50 values), tends to result in lower average concentrations of infiltrated 

PM2.5.The standard deviation values, which indicate the dispersion of data points around the 

mean, ranged from 1.36 µg/m3 to 1.45 µg/m3 across the Q50 values of 3 to 13 m3/h/m2, 
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respectively. This indicates a moderate level of variability in the annual concentrations of PM2.5 

within each Q50 group. However, the differences in standard deviation among the Q50 groups were 

relatively small. 

 

The impact of improving the Q50 airtightness value on the percentage of zones exceeding the 

WHO long-term indoor PM2.5 limit of 10 g/m3 was evaluated in this study. Figure 4.13 below 

shows a cumulative distribution function of the annual concentrations of PM2.5 due to varying the 

airtightness value Q50. As the Q50 increased, there was a noticeable reduction in the percentage of 

zones exceeding the WHO limit. For the highest Q50 value considered, 13 m3/h/m2, the percentage 

of exceedance was 82%, with a total of 373 zones exceeding the limit. A decrease in the Q50 value 

to 11 m3/h/m2 resulted in a slightly lower but still significant percentage of exceedance of 77%, 

with 350 zones surpassing the threshold. 

 

Further improvement in airtightness to a Q50 value of 9 m3/h/m2 led to a substantial decrease in 

the percentage of exceedance to 41%, with 186 zones exceeding the WHO limit. As the 

airtightness improved with a Q50 value of 7 m3/h/m2, only 22% of zones exceeded the limit, with 

100 zones surpassing it. The trend of decreasing exceedance percentages continued as the Q50 

value decreased further. For a Q50 value of 5 m3/h/m2, the percentage of exceedance was reduced 

to 4%, with only 25 zones exceeding the limit. The lowest percentage of exceedance was observed 

for the Q50 value of 3 m3/h/m2, where only 1% of zones exceeded the WHO limit, with 5 zones 

surpassing it.  

 

These findings highlight the significant influence of improving airtightness, as represented by 

tighter building envelopes, in reducing the percentage of zones exceeding the WHO 

recommended limit for long-term indoor PM2.5 exposure. By implementing airtightness 

interventions, the infiltrated levels of PM2.5 can be effectively controlled, thereby enhancing IAQ 

and potentially minimising health risks associated with PM2.5 exposure. It is important to note that 

while improving airtightness is crucial in reducing the percentage of exceedance, other factors, 

such as outdoor air quality and local pollutant sources, should also be considered when addressing 

indoor PM2.5 concentrations. 
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Figure 4.13: A Cumulative Distribution Function CDF showing the percentage of zones with an annual 

average concentration of infiltrated PM2.5 above the WHO permissible levels of 10 g/m3 (before 2021)  

 

 

4.3.4 Indoor/Outdoor (I/O) PM2.5 Ratio 

The I/O ratio is utilised to assess the disparity between indoor PM2.5 concentrations and the 

corresponding outdoor concentrations and gauge indoor sources’ strength within buildings. 

Indoor PM2.5 concentrations are affected by the infiltration of outdoor PM2.5 into buildings and 

indoor sources (Huang et al., 2007). Numerous factors, such as building design, location, and 

various indoor activities, can lead to significant variations in the I/O ratio. Table 4.6 summarises 

the heating season and annual PM2.5 I/O ratio when stratified by building Q50. It was found from 

the co-simulation results that the annual PM2.5 I/O ratio ranged between 0.26-1.03 for all zones, 

with an average of 0.66 ± 0.06 when Q50 = 3 m3/h/m2. This indicates a high spatial variability of 

infiltrated PM2.5 concentrations within the same building and across buildings sharing the same 

Q50. This spatial disparity in infiltrated PM2.5 highlights the importance of considering the model 

resolution of “individual zones” as an essential factor in estimating the population exposure in 

HEI buildings.  
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Table 4.8: Descriptive Statistics for the Indoor/Outdoor Ratio of Infiltrated PM2.5 by Building Q50 Over 

the Heating Season and the (Annual Average I/O Ratio).  

Q50  

(m3/h/m2) 

Number of 

Zones  

Min-Max  

 

Mean  

 

Median 

 

*Variance  **Standard 

Deviation  

3 455 0.04-0.42 0.23 0.23 <0.01 0.06 

  (0.26-1.03) (0.66) (0.66) (0.01) (0.11) 

5 455 0.06-0.47 0.29 0.29 <0.01 0.06 

  (0.35-1.11) (0.76) (0.50) (0.01) (0.12) 

7 455 0.08-0.49 0.33 0.33 <0.01 0.07 

  (0.42-1.16) (0.83) (0.84) (0.02) (0.13) 

9 455 0.10-0.51 0.35 0.36 <0.01 0.07 

  (0.48-1.19) (0.88) (0.81) (0.02) (0.12) 

11 455 0.12-0.53 0.39 0.40 <0.01 0.07 

  (0.53-1.22) (0.95) (0.97) (0.01) (0.11) 

13 455 0.14-0.54 0.41 0.42 <0.01 0.07 

  (0.57-1.25) (0.99) (1.01) (0.01) (0.11) 

*Variance: a statistical measure that quantifies the degree of dispersion or spread in a dataset by calculating the average 

of the squared differences between each data point and the dataset's mean. **Standard Deviation: is a measure of the 

amount of variation or dispersion in a dataset, representing the square root of the variance.  

 

The relationship between indoor and outdoor PM2.5 concentrations was examined in different 

zones within the RC building, specifically Zone (1) and Zone (2), located on the first floor but in 

different locations. The analysis focused on the determination coefficient (R2) values, which 

provide insights into the degree of correlation between indoor and outdoor PM2.5 concentrations 

using the daily temporal scale when the Q50 was 3 and 7 m3/h/m2, see Figure 4.14. For Zone (1), 

with a Q50 value of 7 m3/h/m2, the R2 value between outdoor and indoor PM2.5 concentrations was 

0.89. This suggests that approximately 89% of the variation in indoor PM2.5 concentrations can 

be attributed to changes in outdoor PM2.5 levels, indicating a more robust correlation than the Q50 

value of 3 m3/h/m2 (R2 = 0.85). Similarly, for Zone (2), with a Q50 value of 7 m3/h/m2, the R2 value 

was 0.83, indicating a significant correlation between outdoor and indoor PM2.5 concentrations 

when compared to the Q50 of 3 m3/h/m2 (R2 = 0.72).  
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The relationship between outdoor and indoor PM2.5 concentrations was also analysed in different 

zones within the AT building. Specifically, Zone (1) on the 3rd floor and Zone (2) on the 12th floor 

were investigated to understand the influence of floor level on the infiltration of PM2.5 indoors, 

see Figure 4.15. It can be noticed that when Zone (1) had a Q50
 value of 7 m3/h/m2, and exhibited 

a strong correlation between outdoor and indoor PM2.5 concentrations, with an R2 of 0.95. 

Similarly, Zone (2), with the same Q50 value of 7 m3/h/m2, showed a moderately strong 

relationship with an R2 value of 0.79. Following the improvement in airtightness, where the Q50 

value was reduced to 3 m3/h/m2, changes in the relationship between outdoor and indoor PM2.5 

concentrations were observed. In Zone (1), the R2 value decreased slightly to 0.90. This indicates 

that although the relationship between outdoor and indoor PM2.5 concentrations remains strong, 

the improvement in airtightness led to a slight reduction in the strength of this relationship. 

Similarly, in Zone (2) on the 12th floor, the R2 value decreased further to 0.66, indicating a weaker 

relationship between outdoor and indoor PM2.5 concentrations after the airtightness improvement. 
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Figure 4.14: Scatter Plots of the Daily Outdoor PM2.5 concentrations and the Daily Infiltrated PM2.5 in 2 

Different Zones in the Regent Court Building when Q50 = 3 and 7 m3/h/m2 
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These findings suggest that while airtightness improvements can effectively reduce the infiltration 

of PM2.5 particles into indoor environments, the impact may vary depending on other factors such 

as building height. The decrease in the R2 values observed in Zone (1) and Zone (2) after 

tightening the envelope (i.e., Q50 = 3 m3/h/m2) suggests that height can also play a role in the 

infiltration of PM2.5, with higher floors potentially experiencing a more significant reduction in 

the correlation between outdoor and indoor concentrations following airtightness improvements. 

 

 

Figure 4.15: Scatter Plots of the Daily Outdoor PM2.5 concentrations and the Daily Infiltrated PM2.5 in 2 

Different Zones in the Arts Tower Building when Q50 = 3 and 7 m3/h/m2 

 

4.4 Validation of the Co-Simulation Results 

As previously mentioned, CONTAM and EnergyPlus have been extensively used in research for 

over thirty years. In order to verify their applicability for research and analysis, several analytical 

and empirical validation efforts (Emmerich & Hirnikel, 2001b) have been conducted on different 

building types and locations (L. C. Ng et al., 2012), and pollutants (L. J. Underhill et al., 2018). 

Additionally, validation enhances the model’s credibility by ensuring simulation predictions are 

more closely aligned with actual observations. Statistical evaluation of indoor air quality models 

can be found in the American Society for Testing and Materials (ASTM) D5157-19 standard 
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guide8. The topics presented in the ASTM guide are establishing evaluation objectives, selecting 

datasets for evaluation, statistical methods for analysing model performance, and considerations 

when using these methods. ASTM D5157 provides three statistical tools to assess the accuracy of 

IAQ predictions, and two additional statistical tools are provided to assess bias.  

 

In order to determine whether predictions are in agreement with observations (measurements), 

the following measures are used:  

• Predictions and measurements should have a correlation coefficient of 0.9 or greater. 

• The regression line between predictions and measurements should have a slope 

between 0.75 and 1.25 and an intercept of less than 25% of the average concentration. 

• The normalised mean square error (NMSE) is less than 0.25 and can be calculated as 

follows:  

NMSE =  ∑(𝐶𝑝𝑖 − 𝐶𝑜𝑖)2/(𝐶𝑜̅𝐶𝑝̅)

𝑁

𝑖=1

  (4.2) 

Where N is the number of observations (measurements) in the datasets, 𝐶𝑝 is the predicted 

concentration and 𝐶𝑜 is the observed concentration. 

 

As affected by the COVID-19 pandemic restriction, it was not possible to validate the IAQ models 

developed in this research by following the ASTM guide for validation. The field measurement 

phase of the research was initially planned to occur between January 2020 and January 2021; 

however, due to the UK Government’s restrictions (i.e., nationwide lockdowns), field 

measurement data collection was not possible during this period. It was also challenging to gather 

occupancy-related data through surveys since access to every university building was severely 

restricted.  

 

In the summer of 2022, another doctoral student at the School of Architecture (UoS) conducted 

environmental research in the Arts Tower. The research involved collecting indoor environmental 

data (temperature, humidity, and CO2) inside an office on the 9th floor. The measurements were 

taken on a 5-min timestep between 11:00 AM on 11/05/2022 and 11:00 AM on 17/05/2022, 

resulting in a sample size of 1,720 data points. The sensor and data logger (HOBO UX100-003) 

 

8 https://www.astm.org/d5157-19.html 
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were placed in the middle of the room and were 1 meter above floor level. A survey was also used 

to collect information from the occupants of that office. This included their behaviour, opening 

and closing windows and doors, level of clothing, and perception of the room temperature (see 

Table 4.5). Alongside the Arts Tower data obtained from the EFM, the field measurements made 

available by the doctoral study were deemed suitable for a model validation exercise (indoor air 

temperature only) in this study. 

 

It should be noted that the validation presented here was merely to demonstrate the author’s 

understanding of the validation process and its importance. Without a statistical evaluation guide 

for simulated indoor air temperatures against field measurements, the ASTM standard was used 

in this exercise.   

 

Table 4.9: Results of the validation (Indoor air temperatures, Floor 9, Arts Tower) 

Properties of the room under investigation  

Date and Time of Measurements  11/05/2022 (11:00 AM) – 17/05/2022 (11:00 AM)  

Location  Room 9.02 on the 9th Floor of the Arts Tower Building  

Orientation  North Number of Occupants at the Time of Measurement 1 

Room Area  46 m2 Heating Policy Off    

Q50  10 m3/h/m2 External Wall Double Glazed Curtain Wall U-Value 2.2 W/m2.K 

  Windows  Closed   

 Results 

 Number of 

Samples 

Average Indoor 

Temperature  

Standard 

Deviation  

Correlation 

Coefficient  

NMSE  

Co-Simulation 

Results  

1,720 22.34 C 1.029 0.76 0.48 

Field Measurements 1,720 22.47 C 0.986 

 

 

The overall correlation coefficient of 0.76 with an NMSE of 0.48 indicates some agreement 

between the simulated results and field measurements (Figure 4.17). The difference between the 

average values was only 0.07 °C, so these values were considered reasonable for indoor air 

temperature. However, they are lower than what the ASTM guide states.  
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Figure 4.16: Simulated and observed indoor air temperature [°C]. Dates 11-17/05/2022, Location: North-

facing office on the 9th Floor of the Arts Tower. 
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Chapter 5 Predictive Models: Metamodelling Roadmap 

 

 

 

5.1 Introduction 

Following the physics-based modelling and CONTAM-EnergyPlus co-simulation of the selected 

HEI buildings in Chapter 4, this Chapter presents a roadmap showing the key steps required for 

the development of machine learning (ML) based predictive metamodels. First, the chapter 

presents a study of identifying significant input variables through conducting sensitivity analysis 

in preparation for developing a metamodel. Next, a roadmap shows the key steps required for the 

development of the metamodels. The steps includes  presenting the fundamentals and assumptions 

of the selected ML algorithms, selecting training and testing datasets, cross-validation techniques, 

hyperparameter optimisation (tuning), ML performance evaluation metrics, and interpretability 

of ML models. This chapter forms the procedural basis for generating and interpreting the results 

presented in Chapter 6. 

 

5.2 Input and Output Data  

5.2.1 Sensitivity Analysis  

The sensitivity analyses are used to test the dependence of each output on the inputs. Using the 

methods reported in (Benjamin Jones et al., 2015) and (Das et al., 2014), we tested for linear, 

monotonic, and non-monotonic relationships between the inputs and the output. A linear 

relationship can be tested using: (i) Kendall’s τ rank, (ii) Pearson’s r product moment correlation 

coefficient, and (iii) linear regression. A monotonic relationship is tested with: (iv) Spearman’s 

rank correlation coefficient and (v) the rank-transformed standardised variables, and the non-

monotonic relationships can be tested using (vi) Kolmogorov-Smirnov and (vii) the Kruskal–

Wallis quantile tests. The original tests were written in a Matlab code and is freely available 
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online9 (Benjamin Jones, 2019). The code ranks the inputs by their significance, where the most 

important is ranked 1st. The code was replicated using Python, and follows the same ranking 

procedure.  

Table 5.1: Summary of the sensitivity analyses applied in this chapter: Column (i) the category of the 

sensitivity analysis, (ii) the particular method within the category, (iii) the symbol, (iv) the type of 

correlation between input and output variables the analysis can detect, (v) the relevant outputs derived from 

applying the analysis, and (vi) the specific metric used for ranking the inputs (Based on (Das et al., 2014) 

Category  Method Symbol Detection 

Ability  

Relevant Output Ranking Metric  

Correlation  Pearson’s Product 

Moment Correlation 

Coefficient  

SPear Linear Coefficient between -1 

(perfect negative linear 

correlation) and 1 (perfect 

positive linear correlation). 

The magnitude of the 

correlation coefficient.  

 Kendall’s tau-b 

Correlation 

Coefficient 

SKendall Linear Coefficient between 0 (no 

relationship) and 1 (perfect 

relationship). 

The magnitude of the 

correlation coefficient. 

 Spearman 

Correlation 

Coefficient  

SSpear Monotonic  Coefficient between -1 

(perfect negative monotonic 

correlation) and 1 (perfect 

positive monotonic 

correlation). 

The magnitude of the 

correlation coefficient. 

Regression  Linear Regression 

Coefficients  

SRegress Linear  Coefficient between -1 

(perfect negative linear 

correlation) and 1 (perfect 

positive linear correlation). 

The magnitude of the 

regression coefficient. 

 Rank-transformed 

standardised 

variables 

SRegRank Monotonic Coefficient between -1 

(perfect negative monotonic 

correlation) and 1 (perfect 

positive monotonic 

correlation). 

The magnitude of the 

regression coefficient. 

Sample 

Comparison  

Kolmogorov-

Smirnov 

SKol Non-monotonic Kolmogorov-Smirnov test 

statistic, ranging between 0 

(no difference between 

samples) and 1 (maximum 

difference between samples). 

Kolmogorov-Smirnov 

test statistic. 

 Kruskal-Wallis  SKW Non-monotonic Kruskal-Wallis test statistic, 

(value greater than 0), with 

higher values showing a 

greater difference between 

samples. 

Kruskal-Wallis test 

statistic. 

 

9Generic Global Sensitivity Analysis Code. http://dx.doi.org/10.13140/RG.2.2.21670.88644 

http://dx.doi.org/10.13140/RG.2.2.21670.88644
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All eighteen inputs and one output were retained for performing a sensitivity analysis initially, 

see Table 5.2. A fundamental assumption of the sensitivity analysis is that all the inputs tested are 

independent to avoid multicollinearity, therefore any correlated inputs should be eliminated. No 

transformation is applied to the input and output data, and all outliers were considered. The SA 

framework step checks the output and input averages over the heating season (Nov-Apr). The 

coefficients and p-values were calculated for each test, and the inputs were automatically ranked 

by the magnitudes and their significance based on the written Python code, and following 

(Benjamin Jones, 2019). 

 

Table 5.2: Inputs retained, and output computed for the initial sensitivity analysis.   

Inputs 
Outputs 

Zone Characteristics Indoor Environment  

1. Floor Area (A, m2)  9. Party Walls Gross Area (Apw, m2) 12. Indoor Temperature (Tin, ◦C)  Infiltrated PM2.5 

Concentrations 

(Ci, µg/xm3) 

2. Orientation  10. Building Airtightness @ 50Pa 

(Q50, m
3/h/m2) 

13. Infiltration ACH (ACHINF, h
-

1)   

3. Zone Height (H, m)  11. Air Permeability @ 4Pa (Q4, 

m3/h/m2) 

14. Indoor Relative Humidity 

(RH, %) 

4. Number of Ex. Facades   15. Scaled Local Wind Speed (v, 

m/s) 

5. Area of Exposed Facades 

(Aef, m
2)  

 16. Outdoor/Indoor Temperature 

Difference (ΔT, ◦C) 

6. Envelope: Volume Ratio 

(Aef:V)   

 17. Ventilation Rate Per Person 

(L/s/person) 

7. Envelope: Zone Area 

(Aef:A) 

 18. Total Ventilation Rate Per 

Zone (l/s) 

8. Total Permeable Area (Lef, 

m2)  

  

 

 

5.2.2 Multicollinearity (VIF)  

The term multicollinearity refers to a condition in which the independent variables in a study 

exhibit a strong correlation. In situations where certain predictor variables are not independent, it 

would become difficult to determine or attribute the contributions of the various predictor 

variables to the response variable. Furthermore, when multicollinearity is left unaddressed, the 

variance of coefficient estimates can be increased, resulting in a broader range of confidence 
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intervals. As such, the interpretability of the model would become an issue. Consequently, 

obtaining statistically significant results from any subsequent analyses becomes more difficult. 

 

Among the essential metrics for assessing multicollinearity is the variance inflation factor (VIF). 

A VIF directly measures the ratio between the variance of the entire model and the variance of a 

model containing only the variable in question, see Eq. (5.1). Simply put, it measures how much 

a feature contributes to the variance of the coefficients of the features included in the model. A 

VIF value of 1 indicates that the feature does not correlate with any other features. VIF values 

greater than 5 are considered high. Any feature with such VIF values (≥ 5) will likely contribute 

to multicollinearity (Table 5.3). 

 

𝑉𝐼𝐹 =
1

1 −  𝑅2
 (5.1) 

Table 5.3: Variance Inflation Factor Analysis Threshold Values 

VIF Result  

VIF ≤ 1 Not Correlated 

1 < VIF > 5 Moderately Correlated  

VIF   ≥ 5 Highly Correlated 

 

5.3 Algorithms Selection  

The Generalised Additive Models (GAMs), Random Forest Regression (RFR), and Extreme 

Gradient Boosting (XGB) are three popular machine-learning algorithms used for predictive 

modelling in various applications. Based on the review of literature in Chapter 2, Section 2.7, 

these algorithms offer several benefits, such as the ability to handle complex and nonlinear data 

relationships, interactions, missing values, and outliers. Additionally, they provide insights into 

feature importance, making them useful for feature selection and variable importance analysis. 

However, the choice of the best algorithm for a particular problem depends on the nature of the 

data, analysis goals, and available resources for model development and implementation. 

Therefore, choosing GAMs, RFR, and XGB could provide a combination of flexibility, 

robustness, and predictive accuracy for the metamodel model development. 
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5.3.1 Generalised Additive Models (GAMs)  

Generalised Additive Models (GAMs) have emerged as a leading class of models regarding 

prediction accuracy while also being simple enough for human users to understand and mentally 

simulate the underlying mechanism. GAMs are smooth semi-parametric models with a critical 

difference compared to Generalised Linear Models (GLMs) such as Linear Regression Models 

(LRMs), see Figure 5.1. In LRMs, the response variable (𝑦) is defined by the sum of the linear 

combination of continuous variables (𝑥). Each variable is given a weight,beta and added together 

to obtain a line that best fits the data, see Eq. (5.2).  

 

𝑦 = 𝛽0  +  𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖 + 𝜀𝑖    (5.2) 

  

 

Figure 5.1: Scatter plot between two hypothetical variables x and y showing a nonlinear relationship in 

which (a) a linear model is fitted, (b) a GAM is fitted with splines (Y. Xu et al., 2021)  

 

In GAMs, the assumption that 𝑦 can be calculated using the linear combination of variables is 

dropped, allowing users to learn nonlinear features by replacing the term 𝛽𝑖𝑥𝑖 with a flexible 

‘smooth function’, f(𝑋𝑖) called a ‘Spline’ (Wood, 2017), and the sum of multiple splines forms a 

GAM, see Eq.(5.3). Splines are real functions that are piecewise defined by polynomial functions 

(basis functions). The places where the polynomial pieces connect are called knots. The ‘smooth 

function’, f(𝑋𝑖) is composed of the sum of basis functions 𝑏 and their corresponding regression 

coefficients 𝛽, see Eq. (4) and Figure 5.2.  

 

𝑦 = 𝛽0  +  f(𝑋1)  + ⋯ +  f(𝑋𝑖) + 𝜀𝑖        
(5.3) 
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f(𝑥) =  ∑ 𝑏𝑖(𝑥)𝛽𝑖

𝑞

𝑖=1

  

 

 

(5.4) 

 

Figure 5.2: Incorporating the smoothing functions to GAM, (a) Basis functions with equal coefficients, 

(b) Basis functions multiplied by coefficients, each of which is a parameter in the model (Based on 

(Wood, 2017)).  

By replacing the complicated parametric relationships in GLMs and LRMs with ‘smooth 

functions’, it is possible to avoid cumbersome and unwieldy models. This flexibility and 

convenience, however, result in two new theoretical problems (Wood, 2017). The first is to select 

how a ‘smooth function’ should be represented (e.g., cubic polynomial spline) to give a curve that 

best fits the data, see Figure 5.3. The second is to determine the ‘degree of smoothness’ by 

estimating the smoothing parameter (λ). The latter is defined as the ‘wiggliness’ penalty used to 

penalise the basis coefficients for controlling the degree of smoothness and ensuring that knots 

are well spread.  

 

 

Figure 5.3: The effect of the number of basis functions on the shape of the line of best fit. 
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When λ is too high, the spline fits many of the data points poorly and does no better with the 

missing point. When λ is too low, the spline fits the noise as well as the signal, and the extra 

variability that this induces causes it to predict the missing datum rather poorly. For the 

intermediate λ, the spline fits the underlying signal quite well but smoothes through the noise. As 

a result, the missing data is reasonably well predicted. As such, by changing the value of λ, various 

models of different smoothness can be obtained. Figure 5.4 illustrates this but begs the question, 

which value of λ is ‘best’ or ‘optimal’? This can be resolved through the Generalised Cross 

Validation (GCV) method to estimate model hyperparameters (Bottegal & Pillonetto, 2018); this 

is discussed in detail in Section 5.4.2 

 

 

Figure 5.4: Penalised regression spline fits the response variable y vs the explanatory variable x using 

three values for the smoothing parameter, λ.  

 

The ‘pyGAM’ 0.8.0 package (Servén & Brummitt, 2018) for building GAMs in ‘Python 3.10.5 

(Rossum & Drake, 2022b)’ was applied here using the gam.fit() function to fit a GAM to the 

simulated monthly PM2.5 concentration levels (g/m3) for the building’s zones dataset.  

5.3.2 Random Forest Regression (RFR)  

A Random Forest Regression (RFR) is a supervised ML technique that is used to solve regression 

problems where nonlinear relationships between input features and the response variable (𝑦) exist. 

This technique uses ensemble learning to solve complex problems by combining a group of 

decision trees (Brieman, 2001). RFR models use multiple Decision Trees (DTs) and a technique 

called Bootstrap and Aggregation, commonly known as ‘Bagging’. The idea is to combine 

multiple decision trees in determining the final prediction value rather than relying on individual 

DTs (Giussani, 2021), see Figure 5.5. In regression problems, the predicted response variable (𝑦) 
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is the average prediction value across the DTs. As a result of the averaging, RFs are better than 

single DTs in prediction accuracy, and overfitting can be reduced. 

 

Additionally, compared to DT, the RFR algorithm searches for the best feature from a random 

subset of features, hence its name ‘Random Forest’. This adds extra randomness to trees growing 

in a random forest. As a result of ‘Feature Randomness’, random forest decision trees are 

uncorrelated, see Figure 5.6. The correlation between the trees is the key. This helps the trees to 

protect each other from their individual errors, providing they don’t consistently error in the same 

direction. Even though some trees may be wrong, many other trees will be correct, so as a group, 

the trees can move along in the correct direction. 

 

 

Figure 5.5: Architecture of the Random Forest Regressor Model showing the constructed decision trees 

and the classes’ average as the predicted value of all trees.  

 

 

Figure 5.6: An individual tree’s node splitting is determined by a random subset of features (Feature 

Randomness) 
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A potential downside of the RFR is extrapolation. While RFs have greater genericity than LRMs 

and can be applied to complex nonlinear problems, they can lead to nonsensical predictions if 

extrapolation domains are used. When using RFR, the predicted values are never outside the 

training set values for the response variable. Since the RFR always predicts the average of the 

values seen previously, the average of a given sample can never go beyond the highest and lowest 

values of the sample. This is due to the RFR’s inability to detect trends that would enable it to 

extrapolate values outside the training set. In such a scenario, the regressor assumes that the 

prediction will be close to the maximum value of the training set, see Figure 5.7. 

 

 

Figure 5.7: Illustration of the extrapolation problem of Random Forest (Hengl et al., 2018).  

Despite this behaviour, the RFR will be applied to the simulated monthly PM2.5 concentration 

levels (g/m3) and I/O PM2.5 ratios for the building’s zones dataset and then compared to the fitted 

GAM model. The scikit-learn Python ML library version 1.1.1 (Pedregosa et al., 2011) provides 

an implementation of RFR. Additionally, similar to all ML models, hyperparameter tuning is 

essential to control the behaviour of the fitted model. The RFRs hyperparameter tuning will be 

discussed in detail in Section 5.4.2. 

 

5.3.3 Extreme Gradient-Boosted Decision Trees (XGB)  

XGB is an ensemble tree-based model that follows the gradient boosting framework principle (T. 

Chen & Guestrin, 2016). It is used for supervised ML problems, where a dataset with multiple 

features 𝑥 is used to predict a response variable 𝑦. XGB is an iterative decision trees algorithm 

with multiple decision trees. Although similar to RF in its architecture, XGB depends on a 

boosting technique, not bagging. It means that the algorithm tries to improve the error from 

previous trees. Rather than training all of the models independently from one another, boosting 

trains models in a sequential form, with each new model being trained to correct the errors made 
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by the previous ones, see Figure 5.8. Models are added sequentially until no further improvements 

can be made. The predicted value of the XGB model is the sum of all predicted values across the 

decision trees, see Eq. (5.5).  

𝑦𝑖 =  ∑ 𝑓𝑘(𝑥𝑖)

𝑛

𝑘=1

            𝑓𝑘 ∈ 𝐹  (5.5) 

where 𝐹 means the space of regression trees, 𝑓𝑘  corresponds to a tree, so 𝑓𝑘(𝑥𝑖) is the result of 

tree 𝑘, and 𝑦𝑖 is the predicted value of the 𝑖th instance 𝑥𝑖. 

 

Figure 5.8: Architecture of the XG-Boost Model showing the constructed decision trees by imposing 

regularisation and providing parallel tree boosting. 

 

Although XGB can be computationally efficient, i.e., fast to execute, and highly effective, perhaps 

even more so than any other open-source implementation, hyperparameter tuning can be 

challenging as it usually leads to extensive grid search experiments, which is discussed in Section 

5.4.2.  Table 5.5 summarises the three ML algorithms (models) as discussed above.
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Table 5.4: Comparison of the ML models selected for this study  

Algorithm 

Name  

Family  Type of Response 

Variable y  

Linearity of 

the Model  

Strengths  Weaknesses 

*Linear 

Regression 

Model (LRM)  

 

Regression 

Models   

Continuous  Linear  1) Determines the best predictor of the variable of 

interest  

2) The simplicity of the model to be used for 

predictions  

3) Detects Outliers  

1) It does not deal with nonlinear problems 

if data is not transformed linearly.  

2) Requires more observations than 

variables 

3) Multi-collinearity  

4) Outliers can seriously bias the regression 

coefficients.  

Generalised 

Additive Models 

(GAM) 

 

Regression 

Models 

Continuous and 

Categorical   

Linear and 

Nonlinear 

1) Ability to model highly complex non-

monotonic and nonlinear relationships. 

2) Able to deal with categorical predictors  

3) High Interpretability and confidence intervals  

4)  Feature selection with p-values.  

5) Fast cross-validation via GCV.   

6) Controlled extrapolation.  

1) Computational Complexity when 

working with hyperparameters.  

2) Prone to overfitting if the sample size is 

small.  

Random Forest 

Regressor 

(RFR) 

 

Decision Trees 

 

 

 

 

Continuous and 

Categorical   

Linear and 

Nonlinear 

1) High prediction accuracy by reducing the 

variance in predictions.  

2) Reduces overfitting in comparison to single 

decision trees.  

3) Deals with missing data automatically 

4) Data normalisation is not required 

5) Works well with continuous and categorical 

data  

1) Less Interpretable compared to GAMs 

and LRM and fails to determine the 

significance of each variable. 

2) Multiple hyperparameters to tune.  

3) Requires high computation power to 

build numerous trees. 

4) Not efficient in extrapolation 

Extreme 

Gradient Boost 

(XGB) 

Decision Trees  Continuous and 

Categorical   

Linear and 

Nonlinear 

1) Uses the power of parallel processing  

2) High prediction accuracy  

3) Supports regularisation to prevent overfitting  

4) Deals with missing data automatically 

5) Allows for cross-validation  

6) Effective Tree pruning to prevent negative loss 

in the split.  

1) Less Interpretable compared to GAMs 

and LRM and fails to determine the 

significance of each variable. 

2) Challenging hyperparameter tuning.  

 

*Linear Regression was not fitted to the project’s datasets; however, it was included in this comparative table for comparison only.
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5.4 The Learning Roadmap  

5.4.1 Cross-Validation  

Cross-validation (CV) is a statistical approach to estimating ML model performance. The purpose 

of this method is to evaluate the likelihood that the results of a predictive ML model will 

generalise to a new and unseen sample of data. The dataset must be resampled into training and 

testing/validation datasets to perform a CV. A comparison can be made between the training and 

testing/validation datasets to measure the difference in results. This ensures that overfitting or 

selection bias is flagged with the training datasets. There is a range of different CV techniques 

utilised in ML; Monte Carlo CV (MCCV), Leave-One-Out CV (LOOCV), k-fold CV (L. Xu et 

al., 2018), etc.; k-fold CV is a non-exhaustive method that is widely used in applied ML and is 

therefore selected for CV in this work. 

 

In k-fold CV, the original dataset is separated into a test/hold-out set for the ML model’s final 

evaluation. This typically constitutes about 30% of the original dataset as test data, and the 

remaining 70% is divided into k folds (training subsets). During CV, each iteration uses one of 

the k folds as the validation set while the remaining folds act as the training set. The process is 

repeated until every fold has been used as a validation set. Figure 5.9 shows what this process 

looks like for a 5-fold CV.  

 

 

Figure 5.9: k-Fold Cross Validation for a k=5 
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It is better to determine how well the ML model might perform on data it has never seen before 

by training and testing it k times on different subsets of the same training data. For example, a k-

fold CV can show how well the ML model performs compared to one-time trials by scoring the 

model after every iteration and calculating the average of all scores.  

 

5.4.2 Hyperparameter Optimisation  

Hyperparameters are defined as the settings of an ML algorithm that can be adjusted to optimise 

its performance. As opposed to model parameters, which are learned during model training and 

cannot be changed arbitrarily, hyperparameters can be altered by the user before the model is 

trained. To determine the ideal settings for hyperparameters, it is best to try various combinations 

and evaluate each model’s performance. It is, however, essential to keep in mind that evaluating 

each model only on the training set can lead to overfitting, which is one of the most fundamental 

problems in ML. Table 5.5 lists the hyperparameters used in GAM, RFR, and XGB. 

 

Table 5.5: List of hyperparameters selected to tune for each ML algorithm (GAM, RFR, and XGB) 

Generalised Additive Model 

(GAM)  

Random Forest Regressor  

(RFR)  

Extreme Gradient Boost Regressor  

(XGB) 

Smoothing parameter (λ)  The No. of Decision Trees in the 

forest (n_estimators)  

The No. of Decision Trees in the 

forest (n_estimators)  

 The maximum depth of the 

individual trees (max_depth) 

The maximum depth of the 

individual trees (max_depth) 

 The minimum samples to split on at 

an internal node 

(min_samples_split) 

The Learning Rate (learning_rate) 

 Minimum number of leaf nodes 

(min_samples_leaf) 

Fraction of Columns to be randomly 

sampled per tree (colsample_bytree)  

 Number of random features 

(max_features) 

Fraction of Observations to be 

sampled per tree (subsample)  

 

When applied to ML problems, hyperparameters that perform well on one may perform poorly 

on the others. Therefore, it is recommended to select systematic methods to tune hyperparameters 

for each ML model. This can be done using a Random Search CV (RSCV) in Scikit-Learn for the 

RFR and XGB Models and the Generalised CV (GCV) in pyGAM for the GAM modelling. Both 

methods are based on defining a grid of hyperparameter ranges and randomly sampling from this 

grid during fitting, then performing a k-fold CV with each combination of values. Even though 
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the R2 value for the models can sometimes be affected (reduced), it is expected that performing 

both RSCV and GCV can improve the generalisation of results and reduce overfitting.  

5.4.3 Performance Evaluation Metrics for Regressions  

It is crucial to have accurate predictive models since they determine the quality of predictions that 

serve as scientific evidence for policy and decision-making. Many regression models rely on 

distance metrics to determine the convergence to the best result. Several metrics can be used to 

determine the overall accuracy of a predictive model. Prediction accuracy is defined as a model’s 

ability to minimise the overall error between actual values and predicted values see Eq. (5.6). In 

simple words, the error can be defined as any deviation from the actual value. 

 

𝑒𝑟𝑟𝑜𝑟 = 𝑦 (𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑦̂ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)    (5.6) 

 

Using this error, it is possible to derive many different metrics that can provide more insights into 

a model’s prediction accuracy. The most commonly known performance evaluation metrics 

include the Mean Square Error (MSE), the Root Mean Squared Error (RMSE), the Mean Absolute 

Error (MAE), and the Coefficient of Determination. (R2). The R2 value represents how much the 

model can explain variation in the dependent variable. The R2 is calculated by dividing the sum 

of squared prediction error by the total sum of squares that replace the calculated prediction with 

the mean. R2 is a value between 0 and 1, with a higher value indicating a better fit between 

prediction and actual value. R2 is a good measure of how well a model fits the dependent variables; 

however, it does not take overfitting into account.  

 

As opposed to R2, MSE is an absolute measure of the goodness of the fit. In MSE, the sum of the 

squares of prediction error is divided by the number of data points. The prediction error equals 

the difference between the actual output and the predicted output. It gives an absolute measure of 

how far the predictions are off. A single result does not give many insights, but it gives an actual 

number to compare with other model results and helps select the best regression model. The 

RMSE is the square root of MSE. Because MSE values can sometimes be too large to compare 

easily, RMSE is used more commonly than MSE. Additionally, the square root makes it easy to 

interpret since it is brought back to the same level of prediction error as its square root. 
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Finally, MAE is the average of all absolute differences between actual and predicted values, i.e., 

the average absolute values of errors where all individual errors have equal weight. MAE can 

range from 0 to ∞ and produces an error in units of the variable of interest, making it easy to 

interpret. It is essential to point out that both MAE and RMSE are negatively oriented scores, 

meaning lower values are better.  

 

5.4.4 Interpretability of ML Models 

For many applications, understanding why a model makes a particular prediction can be just as 

important as the prediction’s accuracy. Often, the most accurate models for large datasets are 

complex models which even experts have trouble interpreting why the model outputs as they are, 

such as ensemble models or deep learning.  By having an interpretable model, one can understand 

what the model is learning, what other information it possesses, how it makes decisions, and how 

it justifies those decisions in the context of the real-world problem under study.  

 

The interpretability of an ML model refers to its ability to associate a cause with an effect. 

However, many ML models face this challenge due to the lack of a consistent approach or metric 

for measuring the importance of predictor variables and quantifying their contribution (Gu et al., 

2021). For example, in a GAM model, the predictor variables selected in the final prediction 

model are generally regarded as necessary, and their coefficients of the partial determination 

indicate the percentage of explained variability. While in the RFR and XGB models, the 

importance of a predictor variable is measured by the permutation importance method. This 

method measures whether the model’s score increases or decreases when the predictor variable is 

randomly shuffled. In other words, those models assess the importance of predictor variables 

differently, and each will only reflect the model’s predictive power. As a result, there is no 

quantification of the fractional contribution of each predictor variable to the predicted outcome, 

and the model comparisons are inconsistent, resulting in an inability to interpret the results. 

SHapley Additive exPlanations (SHAP) is used as a unifying framework for interpreting and 

comparing ML models to quantify the marginal contributions of each predictor variable in a 

model (Christoph, 2020). Based on a game theoretic approach, it computes the contribution of 

each predictor variable to the prediction in terms of Shapley values from coalitional game theory, 

which can explain the prediction from any ML model (Lundberg & Lee, 2017). Shapley value 

can determine the contribution of each predictor variable to a prediction by estimating the average 
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marginal contribution across all possible coalitions. The benefits of using SHAP values can be 

summed up as follows: 

(1) Global Interpretation: In addition to showing the importance of a particular feature, SHAP 

values also indicate whether the feature is impacting predictions positively or negatively.  

(2) Local interpretability can be achieved by calculating SHAP values for every prediction 

and determining how the features contribute to the prediction. In contrast, other 

techniques only display aggregated results for the entire dataset.  

(3) It is possible to explain a wide range of models with SHAP values, including linear 

models (e.g., linear regression and GAM), tree-based models (e.g., RFR and XGB) and 

neural networks. In contrast, other techniques can only explain a limited number of 

models. 

Several versions of SHAP are available to accommodate different models’ architectures regarding 

computation time. In this study, the Shapley values were computed using scikit-learn 0.23.1 and 

the SHAP library in Python.  

 

5.4.5 ML Models Evaluation  

After developing the ML models based on a reduced set of input parameters, it is imperative to 

determine the adequacy of the prediction in comparison to the simulated results. Performance 

metrics described earlier in Section 5.4.3 will be used to assess the performance of GAM, RFR, 

and XGB models against simulated monthly indoor PM2.5 concentration levels and aggregated 

indoor PM2.5 concentration levels over the heating season. To ensure the generalisability of the 

predictive models, further evaluation will be conducted using new unseen data that was not used 

for training, validating, or testing the models. This data results from modelling the ICoSS building 

in E+ and CONTAM, which has not been used in any of the training and testing developments. 
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6.1 Introduction 

This chapter demonstrates the implementation of the ML roadmap described in Chapter 5. The 

chapter begins by presenting the results of the Sensitivity Analyses (SA) framework applied to 

the heating season concentrations of infiltrated PM2.5. Then, an in-depth analysis of all the 

variables in the dataset will be conducted to identify the essential variables associated with the 

heating season concentrations of infiltrated PM2.5. Several statistical analyses will also quantify 

the correlation between the dependent and independent variables. As a result of the strength of 

the relationship, each variable will be assigned a rank. Finally, the outcome of the SA will be used 

as input to each ML algorithm (i.e., GAM, RFR, and XGB).  

 

Successful implementations of most ML models require the specification of optimal training 

methods, the use of a sufficient amount of training and testing data, and the utilisation of a broad 

range of computational resources. For this purpose, each ML algorithm is fitted using a set of 

default hyperparameter values. Then, a 3-fold cross-validation (CV) technique is used to 

determine each algorithm’s optimal set of hyperparameters. There is a good chance that a well-

fitted model will not match the available data perfectly, and predictions are bound to contain some 

errors (prediction errors). Nevertheless, it should be able to predict the outcome (e.g., heating 

season concentrations of infiltrated PM2.5) fairly accurately. It should also consider the dataset’s 

overall shape to ensure that the interpolated predictions are reasonably accurate. Thus, a 10-fold 

CV technique was used to evaluate each model by calculating the Root Mean Square Error 

(RMSE) across each fold separately. Then, the average RMSE across the 10-folds was used as a 

benchmark value to compare the performance of the tuned models. As mentioned in Section 5.4.1, 

the GAM method provides an internal Generalised Cross Validation (GCV), while the RFR and 

the XGB require a standalone k-fold CV. Lastly, this chapter concludes by assessing the 
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performance of each model on an unseen dataset. Then, based on the model performance metrics 

mentioned in Section 5.4.3, the prediction error and model accuracy were evaluated and compared 

to the simulated datasets.   

 

6.2  Results of the Sensitivity Analyses Framework 

The results of these analyses enable the identification of the most influential input variables to 

develop a predictive metamodel so that they can be targeted for attention when designing new 

buildings or for future field measurement campaigns in the case of epistemic uncertainties in 

influential model inputs. Scatter plots in Figures 6.1 and 6.2 are utilised to visually demonstrate 

the correlation between the modelled heating season concentrations of infiltrated PM2.5 (𝐶𝑖) and 

each of the eighteen input variables (see Table 5.2). These plots are based on the analysis of the 

data for 2,729 zones. A positive non-linear relationship can be seen between the heating season 

concentration of infiltrated PM2.5 𝐶𝑖 and the infiltration ACHINF, the zone air permeability rate Q4, 

the building airtightness Q50, and the ventilation rates per person. There is a strong negative non-

linear relationship between 𝐶𝑖 and the indoor/outdoor temperature difference T which seems to 

be more scattered for zones with higher Q50. Furthermore, a moderate negative non-linear 

relationship can be seen between 𝐶𝑖 and the scaled wind speed 𝑣. There is no clear relationship 

between 𝐶𝑖 and the zone area (Az), zone volume (Vz), the number of exposed facades (Nef), relative 

humidity RH, and zone orientation . Finally, the zone effective leakage area (Lef) and the zone 

exposed area-to-zone volume (Aef:Vz) show an exponential positive relationship with 𝐶𝑖. 
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Figure 6.1: Scatter Plots of Each Input versus the Heating Season Concentrations of Infiltrated PM2.5 
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Figure 6.2: Continued Scatter Plots of Each Input versus the Heating Season Concentrations of Infiltrated 

PM2.5 

 

Tables 6.1, 6.2, and 6.3 present the results of various sensitivity analyses for the concentrations 

of infiltrated PM2.5 during the heating season. These tables display the ranking of input variables 

according to their level of importance, enabling the selection of the most relevant input variables 

in a prioritised order. The tables manifest that the Infiltration ACHINF, T, 𝑣, Q4, zone height H 

and the ventilation rate per person V are among the top six variables of significant importance to 

𝐶𝑖 in all tests, albeit with some variability in their respective rankings. Correlation tests (SPears and 

SSpear) and regression tests (SRegress and SRegress-Rank) rank Q50 as a variable with no importance. 

However, group comparison tests (SKol, SKW2, and SKW5) and the correlation test SKendall rank Q50 

as the variable with the most importance (rank = 1). This discrepancy between tests is attributed 

to zones within the same building sharing the same Q50, thus considered a categorical variable. 

However, it is evident in Figure 6.3 that selecting a low Q50 value (e.g. Q50 = 3 m3/h/m2) reflecting 

a tight building envelope contributes to a low 𝐶𝑖, and vice versa (when Q50 > 5 m3/h/m2). As such, 

Q50 is selected as the variable with the highest impact on the concentrations of infiltrated PM2.5 

during the heating season.  
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As one delves further into the rankings, there appears to be considerably less uniformity in the 

rankings. This observation can be elucidated by scrutinising the p-values associated with the 

computed correlation coefficients (such as SPears, SSpear, SKol, and SKW). The p-values are less than 

0.05 for the six most critical variables and comparatively higher for the rest. Consequently, the 

remaining input variables do not exhibit significant influence at the widely used 5% significance 

level, and it would be illogical to compare them. Hence, the coefficients and p-values may be 

utilised to construct a reduced set of the most crucial input variables. 

 

 

Table 6.1: Test Statistics for Correlation applied to Heating Season Concentrations of Infiltrated PM2.5 (1 

is the highest rank), with the value of relevant output and sig. p-value. 

Input  SKendall p-value Rank  SPears p-value Rank  SSpear p-value Rank  

Zone Area (Az)  -0.010 0.426 17 -0.060 0.005 13 -0.016 0.419 17 

Zone Volume (Vz)  -0.028 0.041 16 -0.063 0.002 12 -0.041 0.042 14 

Zone Height (Hz) -0.201 0.000 6 -0.390 0.000 5 -0.284 0.000 5 

Zone Orientation () -0.010 0.500 18 -0.035 0.087 16 -0.014 0.490 18 

Number of Exposed Façade (Nef) 0.114 0.000 12 0.145 0.000 9 0.140 0.000 11 

Area of Exposed Façade (Aef) 0.174 0.208 9 0.009 0.645 18 0.026 0.194 16 

Effective Leakage Area (Lef) -0.042 0.002 15 -0.029 0.168 17 -0.063 0.002 12 

Area of Adjacent Walls (Aaw) -0.118 0.000 11 -0.105 0.000 11 -0.172 0.000 9 

Effective Leakage Area (Law) -0.192 0.000 8 -0.140 0.000 10 -0.282 0.000 7 

Area of Exposed Façade to 

Volume Ratio (Aef:Vz) 

0.136 0.000 10 0.239 0.000 7 0.199 0.000 8 

Area of Exposed Façade to Area 

Ratio (Aef:Az) 

0.105 0.000 13 0.190 0.000 8 0.152 0.000 10 

Zone Indoor/Outdoor 

Temperature Difference (T) 

-0.456 0.000 3 -0.569 0.000 3 -0.634 0.000 3 

Zone Outdoor Wind Speed (vz) -0.201 0.000 7 -0.355 0.000 6 -0.284 0.000 6 

Relative Humidity (RH) -0.044 0.001 14 -0.050 0.014 15 -0.061 0.003 13 

Infiltration ACHINF 0.499 0.000 2 0.644 0.000 1 0.683 0.000 1 

Building Airtightness Q50 0.588 0.000 1 -0.056 0.006 14 -0.041 0.043 15 

Zone Air Permeability Rate Q4 0.450 0.000 4 0.577 0.000 2 0.634 0.000 2 

Ventilation Rate / Person  0.397 0.000 5 0.516 0.000 4 0.563 0.000 4 
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Table 6.2: Test Statistics for Regression applied to Heating Season Concentrations of Infiltrated PM2.5 (1 

is the highest rank), with the value of relevant output and sig. p-value. 

Input  SRegress p-value Rank  SRegress-Rank p-value Rank  

Zone Area (Az)  0.004 0.005 13 0.000 0.419 17 

Zone Volume (Vz)  0.004 0.002 12 0.002 0.042 14 

Zone Height (Hz) 0.152 0.000 5 0.081 0.000 5 

Zone Orientation () 0.001 0.087 16 0.000 0.49 18 

Number of Exposed Façade (Nef) 0.021 0.000 9 0.020 0.000 11 

Area of Exposed Façade (Aef) 0.000 0.645 18 0.001 0.194 16 

Effective Leakage Area (Lef) 0.001 0.168 17 0.004 0.002 12 

Area of Adjacent Walls (Aaw) 0.011 0.000 11 0.030 0.000 9 

Effective Leakage Area (Law) 0.020 0.000 10 0.080 0.000 7 

Area of Exposed Façade to Volume Ratio (Aef:Vz) 0.057 0.000 7 0.040 0.000 8 

Area of Exposed Façade to Area Ratio (Aef:Az) 0.036 0.000 8 0.023 0.000 10 

Zone Indoor/Outdoor Temperature Difference (T) 0.324 0.000 3 0.402 0.000 3 

Zone Outdoor Wind Speed (vz) 0.126 0.000 6 0.081 0.000 6 

Relative Humidity (RH) 0.003 0.014 15 0.004 0.003 13 

Infiltration ACHINF 0.415 0.000 1 0.466 0.000 1 

Building Airtightness Q50 0.003 0.006 14 0.002 0.043 15 

Zone Air Permeability Rate Q4 0.333 0.000 2 0.402 0.000 2 

Ventilation Rate / Person  0.266 0.000 4 0.317 0.000 4 

 

Table 6.3: Test Statistics for Group Comparison applied to Heating Season Concentrations of Infiltrated 

PM2.5 (1 is the highest rank), with the value of relevant output and sig. p-value. 

Input  SKol p-value Rank  SKW2 p-value Rank  SKW5 p-value Rank  

Zone Area (Az)  0.087 0.000 16 0.634 0.426 16 11.12 0.025 17 

Zone Volume (Vz)  0.092 0.000 14 3.77 0.052 14 16.23 0.008 16 

Zone Height (Hz) 0.315 0.000 6 209.53 0.000 7 229.37 0.000 6 

Zone Orientation () 0.088 0.000 15 2.42 0.119 15 5.43 0.000 18 

Number of Exposed Façade (Nef) 0.085 0.000 17 22.93 0.000 11 76.12 0.000 12 

Area of Exposed Façade (Aef) 0.050 0.096 18 0.008 0.926 18 33.70 0.000 14 

Effective Leakage Area (Lef) 0.110 0.000 13 17.62 0.000 12 48.68 0.000 13 

Area of Adjacent Walls (Aaw) 0.138 0.000 11 37.42 0.000 10 95.51 0.000 11 

Effective Leakage Area (Law) 0.242 0.000 8 138.87 0.000 8 191.31 0.000 8 

Area of Exposed Façade to 

Volume Ratio (Aef:Vz) 

0.169 0.000 10 38.70 0.000 9 149.40 0.000 9 

Area of Exposed Façade to Area 

Ratio (Aef:Az) 

0.125 0.000 12 15.48 0.000 13 110.94 0.000 10 

Zone Indoor/Outdoor 

Temperature Difference (T) 

0.518 0.000 2 818.07 0.000 2 949.38 0.000 3 

Zone Outdoor Wind Speed (vz) 0.315 0.000 7 209.55 0.000 6 229.36 0.000 7 

Relative Humidity (RH) 0.202 0.000 9 0.519 0.471 17 18.77 0.000 15 

Infiltration ACHINF 0.495 0.000 3 742.45 0.000 3 1064.9 0.000 2 

Building Airtightness Q50 0.584 0.000 1 1005.3 0.000 1 1320 0.000 1 
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Zone Air Permeability Rate Q4 0.478 0.000 4 681.60 0.000 4 943 0.000 4 

Ventilation Rate / Person  0.375 0.000 5 491.62 0.000 5 713.85 0.000 5 

 

The assessment of multicollinearity is imperative in the development of metamodels, as the results 

of the multicollinearity test provide valuable information about the degree of intercorrelation 

among the input variables. Based on the sensitivity analyses above, Q50, Q4, and V are ranked 

among the first five most important variables and were tested for multicollinearity using the 

Variable Inflation Factor (VIF) method (see Chapter 5). Table 6.4 shows the results of the 

correlation and regression tests. Generally, a pressure differential of 4 Pa is conventionally 

considered representative of natural ventilation (including infiltration), and it is desirable to 

ascertain the leakage Q4 under such conditions. Nevertheless, evaluating the leakage at such low 

pressures is perceived to be prone to substantial errors resulting from the wind and buoyancy-

induced pressures generated during the test. In the UK, Q50 is commonly used in building 

regulations and standards to represent buildings’ airtightness (Gillott et al., 2016). Figure 6.3 

(Right) illustrates a high correlation between Q4 and Q50, and therefore Q50 is selected while 

eliminating Q4 and V from the selection.  

Table 6.4: Testing for Multicollinearity using Correlation and Regression tests between Q50, Q4, and V 

Input  SPears p-value SSpear p-value SRegress p-value SRegress-Rank p-value 

Q50 and Q4  0.566 0.000 0.598 0.000 0.320 0.000 0.358 0.000 

Q50 and V  0.698 0.000 0.735 0.000 0.487 0.000 0.540 0.000 

Q4 and V 0.380 0.000 0.412 0.000 0.144 0.000 0.170 0.000 

 

   

Figure 6.3: Box Plots of Left: Heating Season Concentrations of Infiltrated PM2.5 and Right: Zone Air 

Permeability Q4 plotted for each Building Airtighness Value Q50 
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Based on the elimination of Q4 and V, variables not included in the initial set of important 

variables were further tested. This includes looking into space geometry variables such as Aef:Vz. 

It is clear from the sensitivity analyses that Aef:Vz stands at the centre of the ranking, with its 

rank varying between 7 – 10 for different tests. This variable is considered an essential variable 

as it normalises the area of exposed façade for each zone Aef to the internal volume of the zone 

Vz and is likely to be essential for 𝐶𝑖 following (J. Taylor et al., 2014b). Table 6.5 shows the 

results of the multicollinearity test between various space geometry (Aef:Vz and Aef:Az) and 

building envelope variables (Aef, Nef, and Lef). Based on the multicollinearity test and the 

sensitivity analysis results in Tables 6.1, 6.2, and 6.3, Aef:Vz was included, while other variables 

were eliminated from the final set.  

Table 6.5: Testing for Multicollinearity using Correlation and Regression tests between space geometry 

and building envelope variables.  

Input  SPears p-value SSpear p-value SRegress p-value SRegress-Rank p-value 

Aef:Vz and Aef:Az  0.973 0.000 0.968 0.000 0.947 0.000 0.937 0.000 

Aef and Lef 0.866 0.000 0.788 0.000 0.749 0.000 0.620 0.000 

Aef and Nef 0.640 0.000 0.667 0.000 0.408 0.000 0.445 0.000 

Aef:Vz and Nef 0.411 0.000 0.290 0.000 0.169 0.000 0.085 0.000 

Aef:Az and Aef 0.105 0.000 0.184 0.000 0.011 0.000 0.033 0.000 

Aef:Vz and Aef 0.051 0.013 0.114 0.000 0.003 0.013 0.012 0.000 

Aef:Vz and Lef 0.041 0.047 0.047 0.020 0.002 0.047 0.002 0.020 

 

Following the sensitivity analysis, the final list of inputs retained for the metamodel development 

includes five variables: ACHINF, T, 𝑣, Q50, and Aef:Vz. The detailed results of the VIF analysis 

for multicollinearity are presented in Tables B.1 and B.2 - Appendix B. 

 

6.3 Development of a Metamodel as a PM2.5 Predictor 

ML techniques have shown tremendous potential in predicting the concentrations of indoor PM2.5 

with high accuracy (see Chapter 2). The primary objective of this section is to present the 

metamodel development process utilising three different ML algorithms, namely Generalized 

Additive Models (GAM), eXtreme Gradient Boosting (XGB), and Random Forest Regression 

(RFR), to predict the heating season concentrations of infiltrated PM2.5 using six input variables: 

ACHINF, ∆T, H, 𝑣, and Aef:Vz. The dataset comprises the CONTAM-EnergyPlus co-simulations 

of the four selected university buildings (N= 2729 zones), which were randomly divided into a 

training set (70%, n=1910) and a testing set (30%, n=819). The GAM metamodel employed 
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Generalized Cross-Validation (GCV) as an internal cross-validation method, while k-fold cross-

validation was employed for the XGB and RFR metamodels. The performance of each metamodel 

was evaluated based on root mean squared error (RMSE), coefficient of determination (R2), and 

mean absolute error (MAE) metrics. The metamodels were further evaluated using a hold-out 

dataset to identify the model with the best performance. The hold-out dataset was obtained from 

the CONTAM-EnergyPlus co-simulation of the ICoSS Building (n = 42 zones) – the fifth selected 

building for this research.  

 

Furthermore, the predicted concentrations of infiltrated PM2.5 generated by the developed 

metamodel will be employed to estimate the annual population exposure of the selected HE 

buildings to infiltrated PM2.5, with comparisons made against the World Health Organisation’s 

annual permissible exposure levels of 5 µg/m3. Finally, the resultant percentages of an exceedance 

will be computed to identify spaces where the HEI populace is at a greater risk of exposure. The 

ensuing chapter shall deliberate upon these findings. 

6.3.1 Training the Algorithms  

In order to obtain reliable predictions of the heating season concentrations of infiltrated PM2.5, 6 

models were fitted [(3 Modelspre-HPT + 3 Modelspost-HPT) 10 * Heating Season Dataset = 6 Models]. 

Each model was fitted using the five input variables identified by the sensitivity analyses and one 

response variable, see Section 6.2. The Pearson Correlation Coefficient (R-value) was calculated 

for the training results. Ideally, the outputs acquired from each model should match the targets, 

i.e., the desired model outputs. Hence, a slope of 45 implies perfect fitting. In the case of 

validation datasets, when a model achieves an error value close to the average error of validation 

datasets, the training ceases immediately. In detail, an algorithm’s performance on the dataset was 

verified using a multi-level CV technique before and after hyperparameter tuning (pre- and post-

HPT). Initially, each algorithm is set to its default hyperparameter values, and a 3-fold randomised 

search CV is used to determine the most optimal hyperparameters. Afterwards, the dataset was 

divided into 10-folds of validation subsets so that the RMSE of each subset could be calculated 

and averaged over the 10-folds. Following that, the averaged RMSE score across the 10-folds was 

compared to the RMSE score of the training dataset. Finally, this method was applied to each 

algorithm pre-HPT and post-HPT to track the performance of all algorithms.  

 

 

10 pre-HPT – pre hyperparameter tuning; post-HPT – post hyperparameter tuning. 
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As shown in Figure 6.4, both the RFRpost-HPT and XGBpost-HPT models have achieved very high R-

values, with R = 0.999, and thus, very high correlation with CoSIM datasets. This is followed by 

the GAMpost-HPT, with R = 0.910. The regression line fit between the predicted and CoSIM values 

for the training dataset is indicated in Figure 6.4. It can be seen that the highest regression value 

(R2) for the training dataset using XGBpost-HPT is above R2 = 0.999. This is followed by the RFRpost-

HPT and GAMpost-HPT, with R2 = 0.998 and 0.830, respectively. As a result, it is observed that the 

XGBpost-HPT model predicts the heating season concentrations of infiltrated PM2.5 very closely to 

the CoSIM values.  

 

Moreover, most of the input data points of the XGBpost-HPT fall closer to the regression fit line 

compared to the RFRpost-HPT and GAMpost-HPT, as depicted in Figures 6.4. It can be seen from the 

scatter plots that most regression points are located along the diagonal line, where some regression 

points deviate from the fitting line. Comparing the model performance metrics across GAMpost-

HPT, RFRpost-HPT, and XGBpost-HPT shows that the XGBpost-HPT gives less prediction error than 

RFRpost-HPT and GAMpost-HPT. As seen in Table 6.6, the value of the RMSE and MAE is 0.017 and 

0.010, respectively; thus, it gives the least prediction error. This is followed by the RFRpost-HPT 

and GAMpost-HPT, with RMSE = 0.025 and 0.543, and MAE = 0.020 and 0.410, respectively. These 

results demonstrate that the XGBpost-HPT has the highest prediction accuracy of 99.81% compared 

to RFRpost-HPT (99.70%) and GAMpost-HPT (92.45%) on the training datasets.  

 

Table 6.6: Model Evaluation Metrics for Fitted GAM, RFR, and XGB before and after HPT (Heating 

Season CoSIM Dataset vs Training Dataset) 

 GAM RFR XGB 

Performance Metric pre-HPT post-HPT pre-HPT post-HPT pre-HPT post-HPT 

R 0.855 0.910 0.775 0.999 0.840 0.999 

R2 0.730 0.830 0.600 0.999 0.700 0.999 

RMSE  0.680 0.543 0.830 0.025 0.725 0.017 

MAE  0.510 0.410 0.650 0.020 0.570 0.010 

Model Accuracy  90.30% 92.45% 87.70% 99.70% 85.20% 99.81% 
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Figure 6.4: Regression plots of Heating Season CoSIM datasets vs training dataset for Fitted GAM, 

RFR, and XGB; top: pre-HPT and bottom: post-HPT 

6.3.2 Testing the Models  

The models are tested for their prediction ability using the CoSIM testing dataset (30%, n=819 

zones). Both the RFRpost-HPT and XGBpost-HPT models have achieved very high R values, with R = 

0.935 and 0.960, respectively. Thus, very high correlation with CoSIM datasets. This is followed 

by the GAMpost-HPT, with R = 0.900. The regression line fit between the predicted and CoSIM 

values for the testing dataset is indicated in Figure 6.5. It can be seen that the highest regression 

value (R2) for the testing dataset using XGBpost-HPT is above R2 = 0.920. This is followed by the 

RFRpost-HPT and GAMpost-HPT, with R2 = 0.880 and 0.815, respectively. As a result, it is observed 

that the XGBpost-HPT model predicts the heating season concentrations of infiltrated PM2.5 very 

closely to the CoSIM values.  

 

Moreover, most of the input data points of the XGBpost-HPT fall closer to the regression fit line 

compared to the RFRpost-HPT and GAMpost-HPT, as depicted in Figures 6.6. It can be seen from the 

scatter plots that most regression points are located along the diagonal line, where some regression 

points deviate from the fitting line. Comparing the model performance metrics across GAMpost-

HPT, RFRpost-HPT, and XGBpost-HPT shows that the XGBpost-HPT gives less prediction error than 

RFRpost-HPT and GAMpost-HPT. As seen in Table 6.7, the value of the RMSE and MAE is 0.370 and 
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0.260, respectively, and thus, gives the least prediction error. This is followed by the RFRpost-HPT 

and GAMpost-HPT, with RMSE = 0.450 and 0.560, and MAE = 0.315 and 0.440, respectively.  

 

These results demonstrate that the XGBpost-HPT has the highest prediction accuracy of 95.00% 

compared to RFRpost-HPT (93.90%) and GAMpost-HPT (91.70%) on the testing datasets. Furthermore, 

from Figure 6.5, it is demonstrated that a generally acceptable agreement between the predicted 

data and the CoSIM data has been achieved using the testing datasets.  

 

 

Figure 6.5: Regression plots of Heating Season CoSIM Datasets vs Testing Dataset for Fitted GAMpost-

HPT, RFRpost-HPT, and XGBpost-HPT 

 

Table 6.7: Model Evaluation Metrics for Fitted GAMpost-HPT, RFRpost-HPT, and XGBpost-HPT (Heating 

Season CoSIM Dataset vs Testing Dataset) 

Performance Metric GAMpost-HPT RFRpost-HPT XGBpost-HPT 

R 0.900 0.935 0.960 

R2 0.815 0.880 0.920 

RMSE  0.560 0.450 0.370 

MAE  0.440 0.315 0.260 

Model Accuracy  91.70% 93.90% 95.00% 

 

6.4 Model Explanations using SHAP 

As previously explained in Section 5.4.4, SHAP was used as a unifying framework for quantifying 

the marginal contributions of each predictor variable in each model. Doing so makes it possible 

to determine why a model makes specific predictions, i.e. interpretable predictive metamodels.  
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Figure 6.6 compares the SHAP values of the most influential input variables on the heating season 

concentrations of ifiltrated PM2.5 in GAMpost-HPT, RFRpost-HPT, and XGBpost-HPT with each dot 

representing one test data point (zone). The input variables were sorted in each plot by the sum 

of the absolute average SHAP values over all test points. These values illustrate the distribution 

of each input variable’s impact on the prediction. The summary plot of the SHAP values for each 

variable consist of points transitioning from a blue colour representing a low value of an input 

variable (e.g. Q50 = 3 m3/h/m2) , to a red colour, representing a higher value of an input variable 

(e.g. Q50 = > 5 m3/h/m2). The x-axis represents the SHAP value impact on model output i.e, the 

concentrations of infiltrated PM2.5 with positive SHAP values representing a positive contribution 

on the prediction and negative values representing a negative contribution of the prediction.  

 

Table 6.8 below summarises Figure 6.6. It is obvious that all three models capture the impact of 

Q50 on the concentrations of infiltrated PM2.5 as it was ranked first in all three models. However, 

the percentage of contribution that Q50 has on infiltrated PM2.5 varies across all models. For 

example the GAMpost-HPT model shows that Q50 explains almost 40% of the variation in infiltrated 

PM2.5 concentrations, meanwhile it explains 32.5% and 33.6% for XGBpost-HPT and RFRpost-HPT,  

respectively. Additionally, it is notable that the ranking of the other input variables in RFRpost-HPT 

and XGBpost-HPT is similar, meanwhile it differs in GAMpost-HPT. This behaviour is expected, as 

both RFR and XGB are tree based algorithms where they use decision trees as their base learners 

and capture variable interactions. However, GAM requires the interactions to be predetermined 

in the construction of the metamodel.   

 

 

Figure 6.6:Importance and Threshold of Features for the heating season concentrations of infiltrated 

PM2.5 
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Table 6.8: The absolute average SHAP-Value and calculated variations explained by each input variable 

shows on the heating season concentrations of infiltrated PM2.5, with the variable’s rank between 

parentheses. 

Model  Aef:Vz ACHINF ∆T Q50 𝒗 

 SHAP  % SHAP  % SHAP  % SHAP  % SHAP  % 

GAMpost-HPT +0.17 (4)  11.3 +0.24 (3)  15.9 +0.11 (5) 7.3 +0.60 (1)  39.7 +0.39 (2) 25.8 

RFRpost-HPT +0.15 (5)  9.9 +0.39 (2)  25.7 +0.21 (4) 13.8 +0.51 (1)  33.6 +0.26 (3) 17.1 

XGBpost-HPT  +0.19 (5)  12.6 +0.34 (2)  22.5 +0.21 (4) 13.9 +0.49 (1)  32.5 +0.28 (3) 18.5 

 

 

Figures 6.7 and 6.8 show a heat map plot of the individual impact a variable has on the heating 

season concentrations of infiltrated PM2.5. The colors in these plots represents the SHAP value 

with red color representing positive SHAP values and blue representing negative values. The plots 

shows the variables contribution in pushing the concentrations of infiltrated PM2.5 from the base 

value (mean concentration of the dataset 𝐶𝑖 = 5.73 µg/m3) to the actual predicted value. In other 

words, variables that contribute positively to the prediction are represented by the colour red, 

while those that have a negative impact are depicted by the colour blue. The x-axis represents the 

zones in the dataset (zone ID). It is clear from the plots that both RFR and XGB show the number 

of variables marked in red is nearly equal to the number of variables marked in blue, indicating a 

nearly balanced distribution of variables that play both positive and negative impact on infiltrated 

PM2.5.  

 

 

Figure 6.7: Overall Impact of input variables on the heating season concentrations of infiltrated PM2.5 

(f(x) =mean 𝑪𝒊 of the sample = 5.73 µg/m3) 
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Figure 6.8: The ordered Overall Impact of input variables on the heating season concentrations of 

infiltrated PM2.5 (f(x) =mean 𝑪𝒊 of the sample = 5.73 µg/m3) 

 

Figure 6.9 further demonstrates how those variables impact the heating season concentrations of 

infiltrated PM2.5 in randomly selected zones for the XGBpost-HPT metamodel. For example, in 

Sample 1, at the bottom, indicated with “base value” = 5.73 µg/m3, is the mean concentration of 

the dataset, and [f(X)] = 3.83 µg/m3 is the predicted concentration by the XGBpost-HPT for that 

specific zone. The plot demonstrates the changes in the dataset's average concentration resulting 

from the inclusion or exclusion of specific variables. The colours and size of the variables indicate 

the impact (+/-SHAP value ) a variable has on the concentrations with the values of variables 

given for each choice that contributes in pushing the value to or away from the average 

concentration. When looking at more samples, it is worth noting that even though the f(x) might 

be same for different zones, the contributions of variables vary.  

 

In general it is important to highlight that SHAP plays a crucial role in facilitating local 

interpretation of prediction effects by offering a comprehensive and dependable methodology for 

discerning the contribution of individual variables within a metamodel. By addressing the "why" 

behind a metamodel's specific prediction for a given instance, i.e., a zone / building , SHAP aids 

in unravelling the underlying rationale. Moreover, SHAP values provide insights into both the 

direction and magnitude of feature effects on predictions, highlighting the influential variables 

that drive predictions towards higher or lower values. This analytical capability fosters a deeper 

understanding of the decision-making process employed by the metamodel. Consequently, SHAP 

serves as a vital tool for promoting transparency, trust, and interpretability in ML models. 
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Figure 6.9: Examples of individual effects of variables on the heating season concentrations of infiltrated PM2.5
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6.5 Metamodels Evaluation of Unseen Data  

It is essential to have a generalisable model to predict data not included in the training and testing 

phases of the model development. Thus, this additional step is not intended to improve the 

accuracy of the model’s predictions by using a hold-out dataset. Nevertheless, it can increase the 

confidence that models developed can accurately predict unseen data.  For example, suppose a 

model performs poorly on unseen data; in that case, this could indicate that the model suffers from 

high variance due to overfitting and that the models were developed more complexly than 

necessary.  

 

For this reason, this section presents the results of evaluating GAMpost-HPT, RFRpost-HPT, and 

XGBpost-HPT on the hold-out dataset, i.e., the ICoSS building CoSIM dataset. The aim is to see how 

each model performs in predicting the concentrations of infiltrated PM2.5 in ICoSS over the 

heating season. The models were evaluated based on the RMSE, MAE, and R2 values between 

the predicted results and the CoSIM results of the ICoSS building.  

 

As shown in Figure 6.10, the XGBpost-HPT model has achieved very high R values, with R = 0.950, 

and thus, almost accurate predictions. This is followed by the GAMpost-HPT and RFRpost-HPT, with 

R = 0.935 and 0.790, respectively. The regression line fit between the predicted and CoSIM values 

for the hold-out dataset is indicated in Figure 6.10. It can be seen that the highest regression value 

(R2) for the evaluation datasets using XGBpost-HPT is above R2 = 0. 905. The GAMpost-HPT and 

RFRpost-HPT follow this with R2 = 0.860 and 0.620, respectively. As a result, it is observed that the 

XGBpost-HPT model predicts the infiltrated PM2.5 concentration very closely to the CoSIM values.  

 

 

Figure 6.10: Regression Plots of Heating Season ‘ICoSS’ CoSIM Datasets vs Prediction Dataset for 

GAMpost-HPT, RFsRpost-HPT , and XGBpost-HPT  
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Moreover, most of the input data points of the XGBpost-HPT fall closer to the regression fit line 

compared to the RFRpost-HPT and GAMpost-HPT in all months, as depicted in Figure 6.10. It can be 

seen from the scatter plots that most regression points are located along the diagonal line, where 

some regression points deviate from the fitting line. Comparing the model performance metrics 

across GAMpost-HPT, RFRpost-HPT, and XGBpost-HPT shows that the XGBpost-HPT gives less prediction 

error than RFRpost-HPT and GAMpost-HPT. As seen in Table 6.9, the value of the RMSE and MAE is 

0.580 and 0.410, respectively; thus, it gives the least prediction error. This is followed by the 

GAMpost-HPT and RFRpost-HPT, with RMSE = 0.618 and 1.150, and MAE = 0.460 and 0.955, 

respectively.  

 

Table 6.9: Model Evaluation Metrics for Fitted GAMpost-HPT, RFRpost-HPT, and XGBpost-HPT on the ICoSS 

Heating Season Dataset  

Performance Metric GAMpost-HPT RFRpost-HPT XGBpost-HPT 

R 0.790 0.935 0.950 

R2 0.620 0.860 0.905 

RMSE  1.150 0.618 0.580 

MAE  0.955 0.460 0.410 

Model Accuracy  78.59% 88.85% 90.60% 

 

 

It is evident from these results that the XGBpost-HPT is the most accurate on the evaluation datasets, 

with a prediction accuracy of 92.60%, compared to the RFRpost-HPT (88.85%) and the GAMpost-HPT 

(78.59%). Furthermore, when comparing the models’ performance on the testing datasets with 

their performance on the hold-out dataset, XGBpost-HPT exhibits nearly identical performance in 

terms of R2 and prediction accuracy. In contrast, the RFRpost-HPT and GAMpost-HPT show a 5% and 

13.1% reduction in the prediction accuracy, respectively. A possible reason is that the XGBoost 

algorithm incorporates regularisation terms into its objective function to regulate the complexity 

of the model and facilitate column sampling. These measures are implemented to prevent the 

model from overfitting the training data and to optimise computation time. Additionally, 

XGBoost follows a specific tree construction approach, building all possible subtrees from the 

top down, and then performs reverse pruning from the bottom up. This sequential pruning strategy 

ensures that the model avoids getting trapped in local optimal solutions. 
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6.6 Summary 

In this chapter, a novel methodology for predicting indoor PM2.5 concentration levels within 

different rooms within an HEI building stock was developed by testing different machine learning 

algorithms. Namely, Generalised Additive Models (GAM), Random Forest Regression (RFR), 

and Extreme Gradient Descent Boosted Trees (XGB). The heating season concentrations of 

infiltrated PM2.5 concentration used to train, test, and evaluate the models were based on the 

outputs of the co-simulation framework described in Chapter 4. The data was obtained for 

November, December, January, February, March, and April, covering the entire heating season 

as specified in the University of Sheffield Heating Policy (Section 3.3.5).  

 

Prior to the development of the ML models, a sensitivity analysis framework applied to the 

CoSIM outputs revealed the sensitivity of infiltrated PM2.5 concentrations to different independent 

variables (Q50, ACHINF, ∆T, 𝑣, and Aef:Vz). These variables were used to develop a predictive 

metamodel so that they can be targeted for attention when designing new buildings. For predicting 

the infiltrated PM2.5 concentrations, each algorithm was fitted using five input variables and one 

response variable. Each model’s performance on the dataset was verified using a multi-level CV 

technique before and after hyperparameter tuning on the training and testing datasets.  

 

According to the results, XGBpost-HPT achieved an R2 value higher than 0.92 for the heating season 

concentrations of infiltrated PM2.5 on training and testing datasets, with a model prediction 

accuracy greater than 95%. The XGBpost-HPT then appears to be a powerful tool for making 

predictions by achieving high levels of accuracy. Furthermore, the results indicate that the 

developed XGBpost-HPT model is slightly more predictive than the GAMpost-HPT and RFRpost-HPT 

models.  

 

Following this, SHAP was used as a common framework for quantifying the marginal 

contributions of each input variable to heating season concentrations of infiltrated PM2.5. By 

estimating the contributions of the variables locally and globally, it was possible to 

explain/interpret the variations in PM2.5 concentrations when certain variables were combined. 

This is especially valuable when explaining complex models like XGB, where traditional feature 

importance measures may not be sufficient. 
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The models were then evaluated using a hold-out dataset to test their generalisability to unseen 

data. Evaluation results from the fifth building (ICoSS) study show that XGBpost-HPT had higher 

prediction accuracy than GAMpost-HPT and RFRpost-HPT, with an R2 above 0.90 for predicting the 

infiltrated PM2.5 concentrations. In conclusion, the study highlights the substantial importance of 

developing reliable but easy-to-use and interpretable metamodels that can effectively predict the 

levels of infiltrated PM2.5 and test the impacts of increasing the airtightness of building envelope 

on the concentrations of infiltrated PM2.5 over the heating season. Finally, the results of this 

chapter can pave the way to move ahead with estimating the population exposure to infiltrated 

PM2.5 in different microenvironments. They can inform decision-making for future master 

planning (Chapter 7)
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7.1 Introduction 

Chapter 6 described the development of the XGBpost-HPT model for best predicting the heating 

season concentrations of infiltrated PM2.5 in different UoS building stock zones. Based on the 

model’s predictions for various zones, this chapter uses a microenvironment modelling approach 

to estimate the average Personal Exposure (Ei) to infiltrated PM2.5 and the average Population-

Weighted Exposure (PWE) to infiltrated PM2.5 for different microenvironments. A 

microenvironment can be defined as a three-dimensional space in which pollutant levels are 

uniform or exhibit constant statistical properties over time (Watson et al., 1988). To conduct the 

epidemiological analyses, it is necessary to consider the determinants of time-activity patterns. 

Personal exposures vary due to variations in personal time-activity fractions (Lane et al., 2015). 

Several studies have shown that exposure varies as individuals move through various 

microenvironments, including the home, office, car, bus, and outdoors. (Gulliver & Briggs, 2004; 

Nasir & Colbeck, 2009). Due to the health risks associated with some demographic groups, it is 

justified and necessary to consider a wide range of time-activity fractions. The study by Elliot et 

al. (Elliot et al., 2000) found that even individuals working within the same building will be 

exposed to varying levels of air pollution based on the patterns of their daily activities. In this 

regard, we propose four categories of occupancy profiles that might reflect Similar Time-Activity 

groups (STGs) in HEI buildings (Klepeis, Nelson, Ott, Robinson, Tsang, Switzer, Behar, et al., 

2001). Here, the definition of STGs in HEIs in the UK is based on the data from the UK Higher 

Education Statistics Agency (HESA) (HESA, 2021). The HESA divides HEI buildings users into 

students, academic staff, and non-academic staff.  
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7.2 Similar Time-Activity Groups (STGs) 

This thesis project examined offices, studios, lecture halls, labs, workshops, and study rooms in 

specific university buildings as examples of locations that can be defined, under appropriate 

conditions, as microenvironments. Taking the University of Sheffield as an example, those spaces 

can be classified into four main types of microenvironments: offices, educational facilities, shared 

facilities, and circulation areas. As shown in Table 7.1, the time-weighting fractions for 

individuals moving through various microenvironments in a university building define the total 

amount of time spent in each microenvironment (Klepeis, Nelson, Ott, Robinson, Tsang, Switzer, 

Behar, et al., 2001). The time taken for individuals to move between rooms is approximately ten 

minutes, which is regarded as negligible in this study. It is imperative to note, however, that the 

time-weighting factors are only for demonstration and may not reflect the actual behaviour of the 

population. In this study, individuals were assumed to spend the entire working hours in a 

university building, thus removing any external environments as a cause of variability in personal 

exposure (e.g., homes or transport). Furthermore, internal sources were not taken into account in 

the exposure study. Therefore, the results reflect the exposure to indoor PM2.5 infiltrated from 

external sources.  

 

Table 7.1: Assumed Typical Time Fractions Spent in Each Microenvironment for Different HEI Building 

Users  

Microenvironment  Academic Staff  Administration Staff Undergraduate Students  Post Graduate Students  

Offices   0.4705 [197 min] 0.941 [395 min] 0.00 0.600 [360 min] 

Educational Facilities 0.4705 [197 min] 0.00 0.784 [470 min] 0.134 [80 min] 

Circulation  0.016 [10 min] 0.016 [10 min] 0.016 [10 min] 0.016 [10 min] 

Shared Facilities  0.035 [15 min] 0.035 [15 min] 0.200 [120 min] 0.250 [150 min] 

 

Personal exposure to PM2.5 was estimated from the predicted heating season concentrations of the 

XGBpost-HPT model added to the CoSIM non-heating season concentrations for building users in 

four categories: (a) an ‘academic’ with an average concentration of PM2.5 in the offices, 

educational facilities and shared facilities using time weighting factors of 0.4705, 0.4705, and 

0.035 respectively; (b) the exposure experienced by an ‘administrative staff’ who occupies the 

office and shared facilities using weighting factors of 0.941 and 0.035, respectively; (c) the 

exposure of an ‘undergraduate student’ who never enters the office microenvironment and mainly 

spends time in the educational facilities and shared facilities with weighting 0.784 and 0.20, 

respectively, and (d) the exposure of a ‘post-graduate research student’ (PGR) who occupies the 
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offices, educational facilities and shared facilities with weighting 0.60, 0.134 and 0.25, 

respectively. For each category of builder users, the population-weighted indoor exposure to 

PM2.5 across the selected buildings investigated was calculated from the predictions using the 

weightings that reflect the maximum design occupancy for each zone in the buildings and 

assuming that all zones were fully occupied.  

7.3 Personal Exposure to Indoor PM2.5 

Two methods have been widely employed to calculate personal exposures to indoor pollutants as 

individuals move through a series of microenvironments within a building. First, the “time-

weighted average” exposure can be determined by multiplying the average concentration of PM2.5 

by the percentage of time spent in each microenvironment (Kousa et al., 2001). An alternative 

method is to use a “time-activity profile” in which the exposure at each time interval is equal to 

the concentration in that microenvironment at the time interval in question and then calculate the 

cumulative exposure by dividing it by the total time (Dimitroulopoulou et al., 2001). According 

to the second approach, a more detailed time-activity profile would require information about the 

period and duration spent by the individual(s) in each microenvironment. Since the model 

developed can only predict the average PM2.5 concentrations indoors, the time-weighted personal 

exposure method for indoor pollution levels will be used here. The general form of the equation 

used to calculate the personal exposure from a specific microenvironment is defined as (Watson 

et al., 1988): 

E𝑖 =  𝐶𝑗𝑡𝑖𝑗  (7.1) 

 

where E𝑖 is the time-weighted personal exposure for person i over the specified time fraction; 𝐶𝑗 

is the average pollutant concentration in microenvironment j; 𝑡𝑖𝑗 is the aggregate time that person 

i spends in microenvironment j. Eq (7.1), can be modified to calculate the time-weighted 

integrated personal exposure EI𝑖 by combining the average PM2.5 concentrations at different 

microenvironments with the time fractions defined. The general form of the equation used to 

calculate the integrated exposure from various microenvironments is defined as (Watson et al., 

1988):  

EI𝑖 =  ∑ 𝐶𝑗𝑡𝑖𝑗

𝐽

𝑗

  (7.2) 

where J is the total number of microenvironments that person i moves through during the specified 

time period.  
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Using Eq. (7.1), the personal exposure for STGs can be estimated using the annual indoor PM2.5 

concentrations. Nonetheless, it is essential to note that if Eq (7.1) is used along with the annual 

indoor PM2.5 concentrations, a number of assumptions are made: that person i is present in 

microenvironment j during the time (tij) and the concentration Cj in that microenvironment j 

remains constant and homogeneous; that the short-term variations in indoor concentrations that 

could vary substantially due to variations in air change rates and outdoor PM2.5 concentrations are 

ignored; that only a few microenvironments are necessary to characterise personal exposure 

adequately, but in reality, it is uncertain how many microenvironments are required to make 

accurate estimations. 

 

In this study, the annual personal exposure to indoor PM2.5 was calculated using Eq. (7.1) and 

considered three scenarios based on the airtightness of the buildings: Baseline Q50, Q50 = 7 

m3/h/m2, and Q50 = 3 m3/h/m2. Table 7.2 shows the annual personal exposure to indoor PM2.5 

using the baseline Q50. The results show that the annual personal exposure of an individual 

working in the office microenvironment (EOff) can range from 5.28 – 14.06 µg/m3 with an average 

of 10 (± 1.45) µg/m3. As seen in Table 7.2, administrative staff had the highest annual personal 

exposure to PM2.5, with EAdmin = 9.53 (± 1.28) µg/m3 due to the duration spent in the office 

microenvironment across all the selected buildings. When comparing academic staff’s annual 

personal exposure (EAca) and PGRs’ annual personal exposure (EPGR), their annual personal 

exposure is 4.33 (± 1.66) µg/m3 and 6.55 (± 1.24) µg/m3, respectively. This result suggests that 

administrative staff are under a higher risk of exposure to indoor PM2.5 from outdoor sources.  

Table 7.2: Personal time-weighted exposure to annual indoor PM2.5 in different microenvironments using 

the baseline building airtightness values Q50*  

Microenvironment 

Type 

Annual PM2.5 

Concentration (Cj, 

µg/m3)   

Sub-Category Annual PM2.5 

Concentration 

(Cj, µg/m3)   

Time 

Fraction (tij)  

Cj x tji 

(µg/m3) 

Offices 

Microenvironment 
10.00 (± 1.45) Administration Offices 10.12 (± 1.28) 0.941 9.53  

 Academic Offices 9.23 (± 1.66) 0.470 4.33 

 PGRs Offices  10.92 (± 1.24) 0.600 6.55 

Educational 

Facilities 

Microenvironment

**   

9.36 (± 1.34) Workshops 9.20 (± 0.99) 0.784 (0.47) 7.21 (4.32) 

 Lecture Halls  10.00 (± 1.03) 0.784 (0.47) 7.84 (4.70) 

 Labs 9.21 (± 0.56) 0.784 (0.47) 7.22 (4.34) 

 Studios 9.35 (± 8.83) 0.784 (0.47) 7.33 (4.39) 

Shared Facilities 

Microenvironment

** 

9.38 (± 1.58) Study Rooms  9.38 (± 1.58) 0.784 (0.30)  7.35 (2.81) 

*Q50 = 13 m3/h/m2 for the BH and ADC buildings, and 10 m3/h/m2 for the AT and RC buildings (Section 3.3.2).  

**The time fraction 0.784 is used for an undergraduate student spending most of the time in the educational facilities 

microenvironment. tij = 0.47 and 0.30 in parentheses are used for Academics and PGRS, respectively.  
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On the other hand, the results show that an individual’s annual exposure to the educational 

facilities microenvironment (EEdu) can range from 6.54 – 12.45 µg/m3 with an average of 9.36 (± 

1.34) µg/m3. In detail, the educational facilities microenvironment includes studios, lecture halls, 

workshops, and labs. It is clear that based on the sub-categorisation, lecture halls had the highest 

annual personal exposure to PM2.5 with Electure =7.84 (± 1.03) µg/m3. This is followed by studios 

7.33 (± 0.83) µg/m3, and labs and workshops sharing a similar value of 7.2 (± 0.75) µg/m3. These 

values are estimated assuming an undergraduate student spends most of the time daily in this 

microenvironment. Finally, the results show that the annual personal exposure of an individual in 

the shared facilities microenvironment (EShared) during can range from 5.66 – 12.29 µg/m3 with an 

average of 9.38 (± 1.58) µg/m3.  

 

Table 7.3 demonstrates the impact of improving Q50 on the annual personal exposure to indoor 

PM2.5 in different microenvironments. It can be noticed that improving the Q50 to represent 

buildings with moderate airtightness (Q50= 7 m3/h/m2 scenario), there was a decrease in the annual 

personal exposure to PM2.5 in most microenvironments compared to the Baseline Q50 scenario. 

The results show that the annual personal exposure of an individual working in the office 

microenvironment exhibited an 8% reduction with (EOff) ranging from 3.65 – 12.90 µg/m3 with 

an average of 9.15 (± 1.55) µg/m3. Additionally, the administrative staff ME experienced a 4% 

reduction with EAdmim= 9.15 (± 1.31) µg/m3.  

Table 7.3: Personal time-weighted exposure to annual indoor PM2.5 in different microenvironments using 

a Q50 = 7 m3/h/m2 

Microenvironment 

Type 

Annual PM2.5 

Concentration (Cj, 

µg/m3)   

Sub-Category Annual PM2.5 

Concentration 

(Cj, µg/m3)   

Time 

Fraction (tij)  

Cj x tji 

(µg/m3) 

Offices 

Microenvironment 
9.17 (± 1.55) Administration Offices 9.73 (± 1.31) 0.941 9.15  

 Academic Offices 7.58 (± 1.34) 0.470 3.56 

 PGRs Offices  9.63 (± 1.01) 0.600 5.78 

Educational 

Facilities 

Microenvironment

*   

8.15 (± 1.03) Workshops 8.31 (± 1.17) 0.784 (0.47) 6.51 (3.90) 

 Lecture Halls  8.66 (± 1.08) 0.784 (0.47) 6.79 (4.07) 

 Labs 8.00 (± 1.39) 0.784 (0.47) 6.28 (3.76) 

 Studios 8.08 (± 0.94) 0.784 (0.47) 6.35 (3.80) 

Shared Facilities 

Microenvironment

* 

7.86 (± 1.71) Study Rooms  7.86 (± 1.71) 0.784 (0.30)  6.16 (2.36) 

*The time fraction 0.784 is used for an undergraduate student spending most of the time in the educational facilities 

microenvironment. tij = 0.47 and 0.30 in parentheses are used for Academics and PGRS, respectively.  
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Both academic staff’s annual personal exposure (EAca) and PGRs’ annual personal exposure 

(EPGR) exhibited an approximately 15% reduction in their annual personal exposure to 3.56 (± 

1.34) µg/m3 and 5.78 (± 1.01) µg/m3, respectively. This result suggests that administrative staff 

remain under a higher risk of exposure to indoor PM2.5 from outdoor sources. Other MEs exhibited 

a similar trend in reduction in annual personal exposure, with the annual personal exposure in 

educational facilities EEdu and shared facilities EShared both reducing by 12% and 15% respectively.  

 

Further improvements on the building envelope airtightness value Q50 = 3 m3/h/m2 highlighted a 

more significant decrease in the annual personal exposure to indoor PM2.5  compared to the 

previous scenarios. In Table 7.4, the offices microenvironment exhibited a 30% reduction in 

personal exposure with EOff  ranging between 2.16 – 11.29 µg/m3 and an average of 7.03 (± 1.34) 

µg/m3 when compared to the baseline Q50 scenario. Additionally, improving the Q50 of the 

buildings reduced the annual personal exposure in educational facilities EEdu and shared facilities 

EShared by 34% and 39% respectively. These results highlight the impact that improving the Q50 of 

buildings has on the annual personal exposure to indoor PM2.5. 

Table 7.4: Personal time-weighted exposure to annual indoor PM2.5 in different microenvironments using 

a Q50 = 3 m3/h/m2 

Microenvironment 

Type 

Annual PM2.5 

Concentration (Cj, 

µg/m3)   

Sub-Category Annual PM2.5 

Concentration 

(Cj, µg/m3)   

Time 

Fraction (tij)  

Cj x tji 

(µg/m3) 

Offices 

Microenvironment 
7.03 (± 1.34) Administration Offices 7.42 (± 1.19) 0.941 6.98  

 Academic Offices 6.11 (± 1.20) 0.470 2.87 

 PGRs Offices  7.67 (± 1.07) 0.600 4.60 

Educational 

Facilities 

Microenvironment

*   

6.21 (± 0.96) Workshops 6.63 (± 1.62) 0.784 (0.47) 5.20 (3.10) 

 Lecture Halls  6.59 (± 0.97) 0.784 (0.47) 5.15 (3.05) 

 Labs 5.91 (± 1.34) 0.784 (0.47) 4.63 (2.78) 

 Studios 6.22 (± 0.91) 0.784 (0.47) 4.88 (2.90) 

Shared Facilities 

Microenvironment

* 

5.80(± 1.50) Study Rooms  5.80(± 1.50) 0.784 (0.30)  4.55 (1.75) 

*The time fraction 0.784 is used for an undergraduate student spending most of the time in the educational facilities 

microenvironment. tij = 0.47 and 0.30 in parentheses are used for Academics and PGRS, respectively.  

 

Using the annual indoor PM2.5 concentration levels for the three Q50 scenarios (baseline Q50, 

Q50=7, and Q50= 3) , the personal time-weighted, integrated exposure (EIi) i.e., the total exposure 

from all microenvironments for the four categories of building users can be calculated using Eq. 

(7.2). This allows for the estimation of relative contribution from specific microenvironments to 

an individual’s time-weighted integrated exposure. Tables 7.5, 7.6 and 7.7 show the calculated 

EIi using the time fractions described for STGs in Section 7.2. The results show that for all three 
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scenarios, a PGR student is at higher risk from exposure to infiltrated PM2.5 with EIStu = 10.15, 

8.84, and 6.88 µg/m3, respectively. This is followed by EIAdm, EIStu, and EIAca with values of EIAdm 

= 9.53, 9.15 and 7 µg/m3, EIStu = 9.22, 7.97, and 6.03 µg/m3, and EIAca = 9.07, 7.68, and 6 µg/m3 

for baseline Q50, Q50 = 7 m3/h/m2, and Q50 = 3 m3/h/m2, respectively.  

Table 7.5: Examples of the relative contributions from specific microenvironments to an STGs annual 

time-weighted, integrated exposure to indoor PM2.5 from external sources using the baseline airtightness 

values Q50. s 

STG Category  Microenvironment  PM2.5 

Concentration 

(Cj, µg/m3)   

Time Fraction 

(tij)  

Cj * tji 

(µg/m3) 

Microenvironment 

Contribution (%)  

Administrative 

Staff 
Offices  10.12 0.941 9.53 100 %  

  EI𝐴𝑑𝑚 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 9.53 µg/m3 

Academic Staff Offices 9.23 0.470 4.34 47.8 % 

Educational Facilities  9.36 0.470 4.40 48.6 % 

Shared Facilities  9.38 0.035 0.33 3.6   % 

  EI𝐴𝑐𝑎 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 9.07 µg/m3 

PGR Student  Office  10.92 0.600 6.55 65.0 % 

Educational Facilities  9.36 0.134 1.25 12.0 % 

Shared Facilities  9.38 0.250 2.35 23.0 % 

  E𝐼𝑃𝐺𝑅 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 10.15 µg/m3 

Undergraduate  Educational Facilities  9.36 0.784 7.34 79.6 % 

Shared Facilities  9.38 0.200 1.88 20.4 % 

  E𝐼𝑆𝑡𝑢 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 9.22 µg/m3 

 

Table 7.6: Examples of the relative contributions from specific microenvironments to an STGs annual 

time-weighted, integrated exposure to indoor PM2.5 from external sources (Q50 = 7 m3/h/m2) 

STG Category  Microenvironment  PM2.5 

Concentration 

(Cj, µg/m3)   

Time Fraction 

(tij)  

Cj * tji 

(µg/m3) 

Microenvironment 

Contribution (%)  

Administrative 

Staff 
Offices  9.73 0.941 9.15 100 %  

  EI𝐴𝑑𝑚 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 9.15 µg/m3 

Academic Staff Offices 7.58 0.4705 3.56 46.3 % 

Educational Facilities  8.15 0.4705 3.84 50.1 % 

Shared Facilities  7.86 0.0350 0.28 3.6   % 

  EI𝐴𝑐𝑎 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 7.68 µg/m3 

PGR Student  Office  9.63 0.600 5.77 65.4 % 

Educational Facilities  8.15 0.134 1.10 12.36 % 

Shared Facilities  7.86 0.250 1.97 22.24 % 

  E𝐼𝑃𝐺𝑅 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 8.84 µg/m3 

Undergraduate  Educational Facilities  8.15 0.784 6.39 80.26 % 

Shared Facilities  7.86 0.200 1.58 19.74 % 

  E𝐼𝑆𝑡𝑢 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 7.97 µg/m3 
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Table 7.7: Examples of the relative contributions from specific microenvironments to an STGs annual 

time-weighted, integrated exposure to indoor PM2.5 from external sources (Q50 = 3 m3/h/m2) 

STG Category  Microenvironment  PM2.5 

Concentration 

(Cj, µg/m3)   

Time Fraction 

(tij)  

Cj * tji 

(µg/m3) 

Microenvironment 

Contribution (%)  

Administrative 

Staff 
Offices  7.42 0.941 7.00 100 %  

  EI𝐴𝑑𝑚 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 7.00 µg/m3 

Academic Staff Offices 6.11 0.4705 2.87 47.9% 

Educational Facilities  6.21 0.4705 2.93 48.7% 

Shared Facilities  5.80 0.0350 0.20 3.4% 

  EI𝐴𝑐𝑎 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 6.00 µg/m3 

PGR Student  Office  7.67 0.600 4.60 66.8% 

Educational Facilities  6.21 0.134 0.83 12.1% 

Shared Facilities  5.80 0.250 1.45 21.1% 

  E𝐼𝑃𝐺𝑅 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 6.88 µg/m3 

Undergraduate  Educational Facilities  6.21 0.784 4.87 80.8% 

Shared Facilities  5.80 0.200 1.16 19.2% 

  E𝐼𝑆𝑡𝑢 =  ∑ 𝐶𝑗 . 𝑡𝑖𝑗 = 6.03 µg/m3 

 

Figure 7.1 shows the average annual time fractions and the contributions of each 

microenvironment to EIi to indoor PM2.5 from outdoor sources for the four categories of STGs. 

The results show that the Educational Facilities MEEF, has the highest contribution to the EIStu 

with values of 79.60 %. This reflects the percentage of time (78.4%) an undergraduate student 

could spend in the MEEdu. With the assumption that an undergraduate student spends 20% of time 

in the Shared Facilities ME, the results show that the MESF contributes to about 20.40% of EIStu 

to indoor PM2.5. On the other hand, with the assumption that administration staff spend on average 

94.1% of their time in the offices ME (MEOff), the results show that the MEOff fully contributes 

(100%) to the EIAdm. When comparing EIAdm and EIAca, it is noticed that academic staff are subject 

to exposures from two main microenvironments: the MEOff and MEEdu. The time spent in both 

MEs is assumed to be equal (47.05%), and therefore the results show that the MEEdu contributes 

to 48.6% of EIAca and MEOff contributes to 47.8% of EIAca. These results indicate that academic 

staff are at higher risk of exposure to indoor PM2.5 from the time spent in educational facilities 

than their own offices. Moreover, the results show that the MEOff contributes to about 65% to the 

EIPGR. This is followed by MEShared and MEEdu, with contributions of 23% and 12%.  
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Figure 7.1: Time-Activity Fractions and Contributions of each microenvironment to annual indoor PM2.5 

from outdoor sources for different building users. 

 

7.4 Population-weighted Exposure to indoor PM2.5 

7.4.1 Population-weighted Exposure to indoor PM2.5 in Microenvironments 

Following the calculation of the personal exposure as a function of annual average indoor 

concentration of PM2.5 from outdoor sources in indoor microenvironments and the average 

fraction of time spent in those microenvironments (Eqs. (7.1) and (7.2)) , the Population-Weighted 

Exposure (PWE) metric can be calculated using Eq. (7.3) (Abdul Shakor et al., 2020; Aunan et 

al., 2018):   

 

PWE𝑖 =  
1

𝑃𝑖
∑ 𝐶𝑖𝑃𝑖

𝑖

  (7.3) 

 

where 𝑃𝑖 is the population, 𝐶𝑖 is the annual average indoor PM2.5 concentration and i refers to a 

microenvironment (offices, educational facilities and shared facilities). The Population-weighted 

annual average concentrations can provide better estimates of population exposures because they 

give proportionately greater weight to the indoor PM2.5. The heating season and annual average 
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indoor PM2.5 levels concentrations were obtained from the XGBpost-HPT model added to the CoSIM 

non-heating season concentrations. The population for each microenvironment represents the 

maximum number of occupants in each zone and summed up based on the categorisation of that 

zone to which microenvironment it belongs. This data was obtained from the Estates and Facilities 

Management (EFM) and presented in Table 7.8.  

Table 7.8: Demography and Area Characteristics of the Microenvironments and Subcategories in 

investigated Buildings  

` Sub_Category Maximum 

Occupancy  

Area 

(m2) 

Occupancy Density 

(m2/person) 

Offices Administration Offices 859 4184.4 4.5 

 Academic Offices 315 2862.5 9 

 PGR Offices  245 1490.2 6 

Educational Facilities  Lecture Halls  794 1219.6 1.5 

 Labs 478 1194.5 2.5 

 Studios 861 2156.6 2.5 

 Workshops 320 802.2 2.5 

Shared Facilities  Study & Computer Rooms 782 1,954.7 2.5 

 

It is imperative to note that different microenvironments within higher education buildings may 

have varying levels of indoor air pollution. By quantifying the population exposure, it is possible 

to identify specific areas or microenvironments that have higher concentrations of PM2.5. This 

information can help prioritise interventions and targeted mitigation strategies to reduce exposure 

and improve the air quality in those areas. Moreover, the findings from quantifying population 

exposure can inform the design and operation of HEI buildings. It highlights the importance of 

considering airtightness and ventilation strategies to minimize PM2.5 concentrations in areas 

where students, faculty, and staff spend significant amounts of time. This knowledge can guide 

building professionals in implementing effective measures to optimise IAQ and create healthier 

learning and working environments. 

 

The analysis considered three scenarios based on the airtightness of the buildings: Baseline Q50, 

Q50 = 7 m3/h/m2, and Q50 = 3 m3/h/m2. The microenvironments investigated in this study included 

PWE_Adm (Administrative areas), PWE_Aca (Academic areas), PWE_PGR (Postgraduate 

Research areas), PWE_Work (Workshops), PWE_Lect (Lecture rooms), PWE_Labs 

(Laboratories), PWE_Studio (Studios), and PWE_Study (Study areas). Table 7.9 presents the 

results of the population exposure to indoor PM2.5 from outdoor sources for the three Q50 

scenarios. For the Baseline Q50 scenario, the annual population exposure to PM2.5 varied across 
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the microenvironments. The PWE_PGR exhibited the highest exposure with a value of 10.92 

µg/m3, followed by PWE_Adm with 10.12 µg/m3, PWE_Lect with 10 µg/m3, PWE_Study with 

9.38 µg/m3, PWE_Studio with 9.35 µg/m3,  PWE_Aca with 9.23 µg/m3, PWE_Labs with 9.21 

µg/m3, and PWE_Work with 9.2 µg/m3.  

Table 7.9: Average Heating Season and Annual Indoor PM2.5 Concentration (unit µg/m3) in different ME 

for the baseline Airtightness Q50, Q50 = 7 m3/h/m2, and Q50 = 3 m3/h/m2 

Microenvironment Baseline Q50  Q50 = 7 m3/h/m2 Q50 = 3 m3/h/m2 

Main  Sub Heating 

Season  

Annual  Heating 

Season  

Annual  Heating 

Season  

Annual  

Offices Administration 

Offices 

6.44 

(±0.88) 

10.12 (± 

1.28) 

6.08 

(±0.97) 

9.73 (± 

1.31) 

4.35 

(±0.88) 

7.42 (± 

1.19) 

Academic 

Offices 

5.80 

(±1.37) 

9.23 (± 

1.66) 

4.50 

(±1.05) 

7.58 (± 

1.34) 

3.38 

(±1.37) 

6.11 (± 

1.20) 

PGR Offices  7.02 

(±0.65) 

10.92 (± 

1.24) 

6.02 

(±0.51) 

9.63 (± 

1.01) 

4.52 

(±0.75) 

7.67 (± 

1.07) 

Educational 

Facilities  

Workshops 5.92 

(±0.63) 

9.20 (± 

0.99) 

5.09 

(±0.87) 

8.31 (± 

1.17) 

3.78 

(±1.24) 

6.63 (± 

1.62) 

Lecture Halls  6.32 

(±0.66) 

10.00 (± 

1.03) 

5.31 

(±0.77) 

8.66 (± 

1.08) 

3.72 

(±0.71) 

6.59 (± 

0.97) 

Labs 5.92 

(±0.18) 

9.21 (± 

0.56) 

5.05 

(±0.74) 

8.00 (± 

1.39) 

3.67 

(±0.66) 

5.91 (± 

1.34) 

Studios 6.30 

(±1.16) 

9.35 (± 

8.83) 

4.91 

(±0.67) 

8.08 (± 

0.94) 

3.49 

(±0.68) 

6.22 (± 

0.91) 

Shared 

Facilities  

Study and 

Computer 

Rooms 

5.75 

(±1.41) 

9.38 (± 

1.58) 

4.60 

(±1.42) 

7.86 (± 

1.71) 

3.10 

(±1.09) 

5.80(± 

1.50) 

 

Figure 7.2 demonstrates the impact of improving Q50 on the population exposure to indoor PM2.5 

in different microenvironments. It can be noticed that improving the Q50 to represent buildings 

with moderate airtightness (Q50= 7 m3/h/m2 scenario), there was a decrease in the annual 

population exposure to PM2.5 in most microenvironments compared to the Baseline Q50 scenario. 

The PWE_Adm showed a 4% decrease to 9.73 µg/m3 from 10.12 µg/m3. This is attributed to most 

administrative spaces located in buildings with a baseline Q50 of 10 m3/h/m2. The , PWE_Aca 

decreased to 7.58 µg/m3 with a reduction in population exposure of 1.75 µg/m3 (19%). The 

population exposure in postgraduate research areas exhibited a 12% reduction with PWE_PGR = 

9.63 µg/m3. Further reductions were also exhibited in PWE_Studio, PWE_Study, PWE_Work, 

and PWE_Lect, with population exposures of 8.08, 7.86, 8.31, and 8.66 µg/m3, respectively.  
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Further improvements on the building envelope airtightness value Q50 = 3 m3/h/m2 highlighted a 

more significant decrease in the annual population exposure to PM2.5  compared to the previous 

scenarios. The microenvironments with the highest population exposure values in this scenario 

were PWE_PGR with 7.67 µg/m3, PWE_Adm with 7.42 µg/m3, and PWE_Lect with 6.59 µg/m3. 

The microenvironments with the lowest population exposure values were PWE_Labs with 5.91 

µg/m3, PWE_Study with 5.8 µg/m3, and PWE_Aca with 6.11 µg/m3. These results demonstrate 

that as the airtightness of the buildings improved (from Baseline Q50 to Q50 = 3 m3/h/m2), the 

annual population exposure to PM2.5 decreased across various microenvironments. This indicates 

that tighter building envelopes can contribute to reducing indoor air pollution and potentially 

improve indoor air quality. 

 

 

Figure 7.2: Population weighted exposure to indoor PM2.5 from outdoor sources in different 

microenvironments for three scenarios of building airtightness Q50 values 

Comparing the obtained population exposure values to the WHO annual exposure guidelines of 

10 µg/m3 (before 2021) and 5 µg/m3 (after 2021) for PM2.5 provides valuable insights into the 

potential health implications of IAQ within the studied microenvironments. In the Baseline Q50 

scenario, the microenvironments of PWE_Adm, PWE_PGR, and PWE_Lect exceeded the WHO 

guideline of 10 µg/m3, indicating a higher risk of adverse health effects for individuals occupying 

these spaces. However, it is important to note that the other microenvironments, including 

PWE_Aca, PWE_Work, PWE_Labs, PWE_Studio, and PWE_Study, exhibited population 

exposure levels below the 10 µg/m3 threshold. In the Q50 = 7 m3/h/m2 scenario, the population 
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exposure values for all microenvironments fell below the WHO guideline of 10 µg/m3, suggesting 

a lower overall health risk. Similarly, in the Q50 = 3 m3/h/m2 scenario, the population exposure 

values remained below the 10 µg/m3 threshold for all microenvironments, indicating a further 

reduction in potential health risks. 

 

Moreover, when comparing the obtained exposure values to the more stringent WHO guideline 

of 5 µg/m3, it is evident that all microenvironments in the Baseline Q50 and Q50 = 7 m3/h/m2 

scenarios surpassed this threshold. However, in the Q50 = 3 m3/h/m2 scenario, some 

microenvironments, such as PWE_Labs, PWE_Studio, and PWE_Study, demonstrated 

population exposure levels close to the WHO guideline of 5 µg/m3, suggesting a potentially lower 

health risk in these areas. These comparisons emphasize the importance of considering the WHO 

guidelines for PM2.5 exposure in indoor environments and highlight the need for measures to 

further mitigate indoor air pollution. Implementing interventions to enhance building envelope 

airtightness, adopting appropriate ventilation strategies, and employing effective air filtration 

systems could help ensure compliance with the WHO guidelines and promote healthier indoor 

environments within higher education buildings. 

 

It is important to consider the specific characteristics and conditions of each microenvironment 

when interpreting these findings. It is worth noting that the microenvironments classified as 

administrative and PGR spaces (PWE_Adm and PWE_PGR) rely on natural ventilation. These 

spaces exhibited relatively high population exposure values across all scenarios. These results 

indicate that if such improvements on the building envelope airtightness cannot be achieved, the 

use of mixed-mode ventilation systems could be necessary to mitigate indoor PM2.5 

concentrations in these areas. Additionally, it is important to note that the results for lecture halls 

(PWE_Lect) might overestimate the actual population exposure to PM2.5. Lecture halls typically 

have dedicated mechanical ventilation systems that aim to dilute pollutants and maintain 

acceptable IAQ. However, this specific aspect was not part of the current study and warrants 

further investigation. 

 

Nonetheless, the findings suggest that there is room for improvement in the IAQ of lecture halls 

within higher education buildings. Strategies to enhance the airtightness of these spaces or 

introduce more efficient ventilation systems, such as mixed-mode or mechanical ventilation, 

could potentially reduce population exposure to PM2.5. These interventions may help ensure 

compliance with established guidelines, such as the World Health Organization (WHO) 
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recommendations for PM2.5 exposure, which can contribute to the overall well-being and health 

of students, faculty, and staff. Further research and investigations are necessary to 

comprehensively explore the broader implications, potential interventions, and specific factors 

influencing indoor air quality and population exposure to PM2.5 in each microenvironment within 

the studied setting. 

 

7.4.2 Total Population-weighted Exposure to indoor PM2.5  

The annual population exposure to indoor PM2.5 was determined using Eq (7.3), which accounts 

for the population size of the selected buildings. In the Baseline Airtightness Q50 scenario, the 

annual population exposure to PM2.5 was determined to be 9.6 µg/m3. This indicates that, on 

average, the individuals within the selected HEI buildings were exposed to an annual PM2.5 

concentration of 9.6 µg/m3. Under the Moderate Airtightness Q50 scenario, the annual population 

exposure to PM2.5 decreased to 8.5 µg/m3. This reduction in population exposure suggests that 

implementing moderate airtightness measures, with a Q50 value of 7 m3/h/m2, led to a decrease in 

indoor PM2.5 concentrations and subsequent exposure levels for the population. Furthermore, in 

the Tighter Building Envelope Q50 scenario, the annual population exposure to PM2.5 further 

decreased to 6.5 µg/m3. This finding indicates that adopting a tighter building envelope with a 

Q50 value of 3 m3/h/m2 resulted in a significant reduction in indoor PM2.5 concentrations and 

subsequent population exposure. 

 

Comparing the obtained population exposure values to the WHO guidelines of 10 µg/m3 provides 

further context and insights into the potential health implications. In the Baseline Airtightness Q50 

scenario, the population exposure was almost equal to the WHO guideline of 10 µg/m3, indicating 

a potential health risk. However, with the implementation of moderate airtightness measures 

(Q50=7 m3/h/m2), the population exposure decreased, remaining below the 10 µg/m3 threshold 

with an approximately 11.5% reduction. In the tighter building envelope Q50 scenario, the 

population exposure further decreased, falling below the 10 µg/m3 WHO exposure limit. The 

reduction in population exposure compared to the Baseline Airtightness Q50 scenario was 

approximately 32.3%. 

 

These results highlight the importance of implementing measures to improve the airtightness of 

HEI buildings. Transitioning from baseline airtightness to moderate or tighter building envelopes 

can lead to substantial reductions in population exposure to indoor PM2.5. The findings emphasise 
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the potential health benefits associated with airtightness improvements and support the need for 

adherence to the WHO guidelines. In conclusion, the findings demonstrate the effectiveness of 

enhancing the airtightness of HEI buildings in reducing population exposure to indoor PM2.5. 

Implementing moderate or tighter building envelopes can significantly contribute to achieving 

compliance with WHO guidelines and promoting healthier indoor environments within the HEI 

building stock.
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In Chapter 3, a methodological framework was proposed to estimate the heating season infiltrated 

PM2.5 concentration in a HEI building stock from a reduced set of input parameters. The outputs 

from the modelling framework were then used to provide estimates on the annual population-

weighted exposure to indoor PM2.5 for similar time-activity groups (STGs) and the whole 

population within a HEI building stock. The modelling methods and techniques were applied to 

five buildings selected from the UoS stock showing how the indoor PM2.5 concentrations and 

exposures could be estimated. This chapter summarises and discusses the main outcomes and 

contributions of the research: [1] the data sources identified for the HEI Building Stock IAQ 

modelling (Chapter 3), [2] the IAQ-Thermal co-simulation approach and the model inputs 

(Chapter 4), [3] the sensitivity analysis framework and metamodels developed (Chapters 5 and 

6), and [4] assessment of the microenvironmental modelling approach to estimate exposures to 

PM2.5 (Chapter 7). Finally, the chapter address the research limitations and suggests 

recommendations for future work. 

 

8.1 The data sources for institutional building stock IAQ modelling 

Previous studies in building stock IAQ and energy modelling have shown that the obligatory data 

requirements are of two types: data demand and data robustness (Abdalla & Peng, 2021). Data 

demand specifies the scope, amount and type of input data required to achieve satisfactory 

prediction accuracy and consistency (G. Sousa et al., 2017b). For example, modellers have used 

different data sources to calculate or simulate the energy consumption attributable to the 

constituents of housing stock (Bennadji et al., 2022) or to estimate the population exposure to 

indoor air pollutants at a housing stock level (Das et al., 2014; Symonds et al., 2016). As these 

studies were targeted at the residential building stock, they relied on national population and 

housing censuses (e.g., English Housing Survey) that can provide essential statistical information 

on household details including the demographic and socioeconomic characteristics (e.g., income, 
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education, employment status, age, gender, etc.), and building characteristics (e.g., built-up area, 

number of rooms, number of storeys, fuel sources, heating/cooling systems, etc.). In cases where 

building data is unavailable from census surveys, records of building permits may contain 

information about building floor areas and building ages.   

 

In comparison to residential building stocks, collating a representative database of buildings for 

a HEI building stock can be challenging due to lack of existent systematic survey data. There is a 

high level of heterogeneity often observed in HEI buildings in terms of their geometry, sizes, 

functions, constructions, and building uses. As such, this research was designed with selected 

buildings rather than representative buildings (i.e., archetypes) where the statistical significance 

of archetypes can be calculated. How to develop statistically representative archetypes of a HEI 

building stock is beyond the scope of this research. Here, the strategy was to work with an initial 

selection of buildings while collecting as much data as possible.  

 

The Higher Education Statistics Agency (HESA) collects various self-reported statistics from the 

HEIs in the UK. Although HESA’s primary aim is to collect information on university finance, 

students and staff, energy consumption data has also been collected since 2001/02 as part of the 

Estates Management System dataset. However, apart from the general statistics of HEIs in the 

UK, including age, gender, occupation, and level of study, HESA does not provide detailed 

information about HEI building stocks. In this research, the University’s Estates and Facilities 

Management (EFM) was accessed to obtain data and information about building characteristic 

(e.g., geometries (areas and volumes), year of construction, ventilation method, materials and 

construction details (U-values), and heating policy (heating thermostat set point).   

 

Although the data provided by the EFM was deemed sufficient for this research, there were 

various challenges that need to be addressed. First, the EFM does not contain an up-to-date record 

on all buildings as they go under refurbishments/interventions as part of the UoS Energy Policy. 

This could affect the quality and accuracy of the developed metamodels. Second, there is lack of 

consistency in the data collected among buildings, and assumptions in model inputs were 

unavoidable (e.g., baseline building envelope airtightness Q50). This suggests that the EFM should 

develop new databases for compiling data/information of building properties consistently to 

enable accurate assessment and prediction of an HEI’s indoor air quality performance. 

 

 

https://www.sciencedirect.com/topics/engineering/energy-consumption-data
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8.2 Necessity of a Multi-zone Indoor air-thermal Coupling Approach 

 

Indoor air pollution can be estimated with building simulations if sufficient data are unavailable, 

and several techniques are available for first-order approximations. Single-zone mass balance 

models represent all indoor spaces within a building as a single volume of air, and they are the 

simplest models of building IAQ (Jung et al., 2011). These first-order techniques have been used 

to examine the infiltration of outdoor PM2.5 (Fazli et al., 2021; Logue et al., 2015; Rosofsky et al., 

2019), the efficacy of efforts to dilute airborne contaminants of indoor origin (L. Ng et al., 2021), 

and to predict impacts of large-scale planning efforts (Abdalla & Peng, 2021). Single-zone 

models, however, are less suitable for evaluating and predicting IAQ-related health impacts since 

they do not capture significant heterogeneity caused by building-specific factors that could drive 

significant variations in indoor concentrations. 

 

In contrast, multi-zone models better represent the compartmentalised nature of indoor spaces 

(Abdalla & Peng, 2021) and offer the ability to evaluate exposure and health impacts of specific 

IAQ interventions (Lindsay J. Underhill et al., 2020). As shown in Chapter 4, the multi-zone IAQ-

Thermal coupled simulation approach can now be implemented through the freely available 

CONTAM-EnergyPlus toolset. While the coupled CONTAM-EnergyPlus models of HEI 

buildings allow for simultaneous thermal, airflow and contaminant transport simulations, it also 

revealed several issues. One key issue identified here is the impact of building envelope 

airtightness Q50 value on zonal infiltration ACHINF and the concentrations indoor PM2.5.  

 

As shown in Table 4.7, the ACH values ranged from 0.28 – 5.02 h-1 during the heating season, 

corresponding to buildings with a Q50 of 13 m3/h/m2. The differences in ACH then translated into 

the differences in indoor PM2.5 concentration levels, ranging from 2.33 – 9.24 µg/m3 with the 

highest concentration corresponding to an ACH of 5.02 h-1
 (Figure 4.12). Therefore, when 

simulating IAQ in a building, the envelope leakage rate must be carefully selected, as it can have 

significant impact on the predicted airflows and infiltrated PM2.5. In light of the limited data 

available on building envelope leakage in the HEI building stock, the selection of these values 

presents a significant challenge for both the analysis of air quality and that of airflow. Although 

constant infiltration airflow rates have been used in energy simulation, it is unlikely to account 

for the effects of weather on infiltration. Thus, treatment of infiltration that is more dynamic based 

should be applied.  
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A multi-zone airflow and indoor air quality model such as CONTAM considers buildings as 

interconnected networks. The airflow rates are then calculated according to the relationship 

between flow and pressure, similar to the relationship between heat transfer and temperature 

differences in thermal models. In this way, multi-zone building airflow models can more 

accurately estimate the pressure relationships between different building zones, which are 

influenced by (a) building geometry, (b) exposure to the ambient environment, (c) Interzone 

leakages, and (d) exhaust fan airflows. On the other hand, a building energy/thermal model takes 

into account thermal loads in different building zones, system efficiency in meeting these loads, 

and types and sizes of equipment. Energy models generally define zones based on their similarity 

and differences in thermal loads, despite the importance of building geometry, exposure to the 

outside, and fan airflows in energy calculations. As a result, these thermal zones alone may not 

provide an adequate model of building airflows. 

 

Hence, there is a clear case of support for coupled multi-zone IAQ-Thermal models (as in 

CONTAM-EnergyPlus coupling) for estimating indoor PM2.5 concentration. The most 

appropriate coupling method will depend on the degree of coupling of the airflow-thermal 

problem. The more prominent indoor airflow-thermal interaction, such as in naturally ventilated 

buildings where large temperature gradients may exist and are essential drivers of airflow, the 

more sophisticated the coupling method will need to be. It was evident from this research that it 

is necessary to adopt a coupled simulation approach in the context of UK HEI building stocks.  

 

The results of the sensitivity analysis (Section 6.2) show that the indoor – outdoor temperature 

differences (∆T, ◦C) during the heating season has a strong negative non-linear relationship with 

a SPears = -0.46 and SSpear = -0.57 with the concentrations of infiltrated PM2.5 for all tested Q50 

values (3 ≤ Q50 ≤ 13 m3/h/m2). In UK university buildings, the indoor temperature is typically 

controlled by an institutional heating policy that centres on the outdoor air temperature. As such, 

to capture the dynamic interaction between indoor-outdoor temperature differences and 

outdoor/indoor PM2.5 , an IAQ-Energy coupled multi-zone simulation approach is necessary and 

achievable. 
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8.3 Implications for Non-Domestic Building Stock IAQ Modelling  

This study suggests that higher education institutions (HEIs) in the UK and abroad could deliver 

building planning and design strategically towards improving IAQ. First, a university’s facility 

management can coordinate efforts to collect building and environmental data for IAQ modelling. 

An advantage like this is challenging to realise in a building stock with many owners. Second, a 

university typically owns and manages a sizable number of diverse and complex buildings (e.g., 

a current portfolio/stock of 85 academic buildings at the University of Sheffield). Therefore, 

indoor PM2.5 concentrations and exposures in a HEI building stock can exhibit substantial 

variations not seen in housing stock IAQ studies. Third, to address fully the influences of diverse 

(heterogeneous) factors and activities on IAQ, the scope of targeted performance indicators (e.g., 

indoor PM2.5) and potential interventions (e.g., likely parameters of building retrofitting) should 

be reviewed regularly to inform HEI stock IAQ model development.  

 

8.3.1 Spatial and Temporal Variations in indoor PM2.5 Concentrations  

Based on the results of the coupled simulation of the 4 selected buildings within a HEI building 

stock of the UoS, it was evident that there was spatial variability in infiltrated PM2.5 concentrations 

across different rooms/spaces within each individual building. In Section 4.3.1, the analysis of 

the indoor PM2.5 time-series data across randomly selected zones supported the use of a high 

spatial resolution modelling approach. Previous research found that individuals working within 

the same building will be exposed to varying levels of indoor pollution based on the patterns of 

their daily activities (Elliot et al., 2000). Ferguson et.al., found disparity in exposure to indoor 

pollutants based on socio-economic groups, highlighting the importance of investigating indoor 

air contaminant concentrations across different building types and settings, rather than isolated 

examples. However, these studies omit the impact of building characteristics on the spatial 

variation of indoor PM2.5 concentrations. More recently, (Milando et al., 2022b) examined the 

influence of building characteristics, HVAC type, and model resolution on indoor exposure to 

PM2.5 in different housing typologies in Boston. The results indicated that variations in model 

resolution (room or floor-level model resolution) modified the differences in indoor-sourced 

PM2.5 exposure.  

 

In contrast, the same study found that model resolution (e.g., single zone model) may adequately 

approximate indoor PM2.5 exposures from outdoor-sourced PM2.5. However, their findings might 

be accepted when modelling the IAQ of domestic building stocks. In fact, previous research on 
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housing stock IAQ models used low resolution models i.e., single zone models (Fazli & Stephens, 

2018) , or simplified multizone models (Das et al., 2014). However, in a HEI building stock, it 

was evident from the findings that high resolution model was required for two main reasons: 1) 

the scale and geometry of HEI buildings cannot be compared to that of residential buildings. 2) 

The representation of several building physics phenomena in the residential housing stock and its 

impact on the estimated indoor air pollution levels had been considered adequate (e.g., not 

considering inter-zonal airflow). However, in HEI buildings, the complexity of an airflow 

network and the level of details required to adequately model the IAQ of HEI building stock is 

unknown.  

 

In fact, there had been limited attempts to model the IAQ of a non-domestic building stock. One 

recent study that can be acknowledged here is the UK Classrooms Archetype Stock Model 

(Schwartz et al., 2021). that was conducted to model the IAQ and overheating in UK Classrooms 

using an archetype stock modelling approach. However, in this study, the developed classroom 

archetypes were represented by thermal zones rather than detailed airflow networks. As such, this 

disregards how buildings interact with influential factors on IAQ such as ambient weather 

conditions (outdoor/indoor temperature difference, wind speed and direction), which increases 

infiltration. Additionally, the spatial variability of indoor air pollution as a result of building 

characteristics was not captured. Lastly, a detailed evaluation of the model’s sensitivity to various 

input variables was not carried out.  

 

Here the novelty of this research was highlighted by the development of a high-resolution HEI 

building stock IAQ model to account for the spatial variability in infiltrated PM2.5 concentrations 

during the heating season. It is apparent that the number and type of input parameters in the 

metamodel reflects the spatial variability in infiltrated PM2.5 concentrations as a function of a 

zone’s morphological and indoor environmental characteristics. Here, the identification of the key 

parameters becomes relevant for room/space under investigation within a HEI building stock. 

However, due to the selection of a model resolution of individual rooms/spaces in the metamodels 

development process there was variability in the morphological and indoor environmental 

parameters between the spaces. To quantify this variability and identify the key parameters 

influencing the indoor PM2.5 concentration levels, a sensitivity analysis framework was applied.  
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8.3.2 Simulated Average Indoor PM2.5 Concentrations and I/O Ratios 

The results obtained from the three different scenarios of Q50 (Baseline Q50, Q50 = 7 m3/h/m2, and 

Q50 = 3 m3/h/m3) provide valuable insights into the average PM2.5 I/O ratios during the heating 

and non-heating seasons. As discussed in Section 4.3.4, the I/O ratio represents the ratio of indoor 

PM2.5 concentrations to outdoor PM2.5 concentrations, indicating the extent to which outdoor 

pollutants infiltrate indoor environments or determines indoor sources strengths. The findings 

highlight the significance of infiltration rates (ACHINF) and outdoor PM2.5 concentrations in 

determining the IAQ. Moreover, the average indoor PM2.5 concentrations during the heating 

season compared to the non-heating season further reinforce the importance of these factors. 

 

Based on the results presented in Table 4.8, during the heating season (November - April), when 

the primary source of airflow is infiltration, the PM2.5 I/O ratio is lower for the Q50 = 3 m3/h/m2 

scenario (0.23 ±0.06) compared to the Baseline Q50 scenario (0.37 ±0.06), see Figure 8.1. This 

indicates that reducing the infiltration rate significantly decreases the penetration of outdoor PM2.5 

particles, resulting in lower indoor concentrations. The average indoor PM2.5 concentrations align 

with these findings, showing an apparent decrease from the Baseline Q50 scenario (6.30 ±1.07 

µg/m³) to the Q50 = 3 m3/h/m2 scenario (3.94 ±0.98µg/m³); see Figure 8.2. Conversely, during the 

non-heating season (May - October), when natural ventilation (P = 1.0, Section 3.3.7) is the 

primary source of airflow, the PM2.5 I/O ratios remain relatively stable across the scenarios. 

However, it is crucial to note that the average indoor PM2.5 concentrations are lower during the 

non-heating season than the heating season for all scenarios. This implies that although natural 

ventilation contributes to an increased air change rate, the impact of outdoor PM2.5 concentrations 

on IAQ is lower during this season. The average indoor PM2.5 concentrations support this 

observation, with lower values during the non-heating season across all scenarios. 
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Figure 8.1: Average seasonal PM2.5 I/O ratios under three scenarios of Q50, and seasonal variation in 

outdoor PM2.5 concentration [g/m3] 

 

Figure 8.2: Average seasonal indoor PM2.5 concentration [g/m3] under three scenarios of Q50, and 

seasonal variation in outdoor PM2.5 concentration [g/m3] 

 

Considering the PM2.5 I/O ratios and average indoor PM2.5 concentrations, it becomes apparent 

that the heating season is the critical period to focus on for mitigating indoor PM2.5 concentrations. 

The higher PM2.5 I/O ratios during the heating season indicate a more significant infiltration of 

outdoor pollutants into indoor spaces, leading to elevated indoor PM2.5 concentrations. Moreover, 

for all scenarios, the average indoor PM2.5 concentrations during the heating season are 

consistently higher than those during the non-heating season. Therefore, efforts to improve IAQ 



Chapter 8 Discussion       155 

 

should prioritise measures that reduce infiltration rates and lower outdoor PM2.5 concentrations, 

particularly during the heating season. This could include enhancing building envelope insulation, 

implementing air filtration systems, and minimising air leakage. Additionally, initiatives aimed 

at reducing outdoor PM2.5 emissions and improving outdoor air quality are crucial for limiting the 

impact of outdoor pollution on indoor environments. 

 

The results highlight the relationship between infiltration rates (ACHINF), outdoor PM2.5 

concentrations, and IAQ during the heating and non-heating seasons. The findings underscore the 

need to focus on the heating season due to the higher concentrations of outdoor PM2.5 outweighing 

those during the non-heating season. Lowering infiltration rates, reducing outdoor PM2.5 

concentrations, and promoting IAQ measures are essential to ensure healthier indoor 

environments, particularly during the heating season when occupants are more exposed to indoor 

pollutants. 

 

Comparing PM2.5 I/O to the findings of other UK and international studies provides valuable 

insights into the consistency and relevance of results. However, without relevant studies on PM2.5 

I/O ratios in HEI buildings, findings from studies on residential and office buildings are used. In 

relation to other UK studies, it has been reported that indoor sources can contribute significantly 

to indoor PM2.5 concentrations in residential settings, with some studies even finding PM2.5 I/O 

ratios close to or greater than one (Jones et al., 2000; Lai et al., 2006). Internationally, studies 

conducted in European countries have indicated PM2.5 I/O factors ranging from 0.30 to 0.70 

(Hanninen et al., 2011), while broader international studies have reported values between 0.30 

and 0.82 (Chen and Zhao, 2011). These findings align reasonably well with the simulated PM2.5 

I/O ratios, which estimated values of 0.42 to 1.16 (0.83 ± 0.13) for Scenario 1 (Q50 =7 m3/h/m2) 

and 0.26 to 1.03 (0.66 ± 0.11)  for Scenario 2 (Q50 = 3 m3/h/m2).  

 

Examining the relationship between indoor and outdoor PM2.5 concentrations in office 

environments, the statistical behaviour derived from the CoSIM results for different Q50  values 

are in agreement with existing evidence suggesting that outdoor air serves as the primary source 

of particles in office environments, while indoor sources may make a minor contribution in some 

instances (Matson, 2005; Morawska et al., 2017). The reported I/O ratios in office buildings have 

varied from 0.10 to 1.35, with a mean ±σ value of 0.62 ± 0.24 across all buildings (Zhu et al., 

2015). Notably, Zhu et al. (2015) observed PM2.5 I/O ratios of 0.44 and 0.62 for the summer and 

autumn seasons, respectively, supporting that outdoor PM2.5 sources are the major contributors to 
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indoor PM2.5 levels. Consistent with these findings, other relevant studies have reported average 

PM2.5  I/O ratios ranging from 0.4 to 0.9 in an office room in Beijing (Zhao et al., 2015), a ratio 

of 0.86 in an office in Xi'an, China (Niu et al., 2015), and an I/O ratio of 0.62 ± 0.14 in a study 

encompassing four offices in Milan, Italy (Sangiorgi et al., 2013). Consequently, the present 

results demonstrate satisfactory consistency with previous office-based investigations. 

8.3.3 Sensitivity Analysis  

The sensitivity analysis framework applied in this work followed the work in (Das et al., 2014) 

however, used deterministic inputs rather than following a probabilistic sampling of input 

variables.  However, in order to apply the sensitivity analysis framework on a HEI building stock, 

some modifications and assumption were required. First, in this research the focus on the spatial 

variation of infiltrated PM2.5 concentrations caused by a single factor, while neglecting the 

interactions between the factors. Second, the results of the co-simulations were resampled to a 

seasonal and annual temporal resolution. The reason for this was to allow for a better pairing of 

the simulated results with several zonal morphological and indoor environmental characteristics 

(see Table 4.4) As such, it was assumed that the variation of infiltrated PM2.5 concentrations across 

the heating season and non-heating season was sufficient to capture the temporal variation in this 

research.  

 

The sensitivity analysis framework was used to determine the relationships between each of the 

inputs and the outputs. Scatter plot of inputs versus the output illustrate the relationships between 

the individual inputs and the output for visual inspection. They are shown to be highly complex, 

and so the type of correlation becomes more difficult to interpret; see Figure 6.2. Nevertheless, 

the results were yet useful for identifying the inputs that are more important and more related for 

the development of the metamodels (see Tables 6.1-6.3) . p–values can be interpreted for 

significance, and so testing the relationship between the datasets. Given the relatively small 

sample size (n=2729 zones), this interpretation can be meaningless, since the chance of finding 

significance increases with the sample size (Gigerenzer, 2004). Furthermore, the statistical 

significance of p–values is arbitrary, and so in the sensitivity analysis framework, the focus is on 

the nature and the magnitude of the effects (Fenton & Neil, 2018). In consequence, for reporting 

p–values, the exact level of significance was given rather than its interpretation.  

 

Comparing the various sensitivity analysis methods for identifying key explanatory variables is 

particularly essential when input and output variables have non-linear correlations. It was evident 
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from the sensitivity analysis framework that the relationship between the infiltrated PM2.5 

concentrations and several influential parameters can be characterised as monotonic or non-linear. 

Here, direct comparison of the sensitivity analysis results to previous results in other building 

stock studies is challenging, given the context of stock under investigation (e.g., a HEI building 

stock), and the potential differences in building structures and behavioural patterns. This said, 

there was some similarities in findings across the literature. For instance, the infiltration ACHINF 

has been associated with the outdoor sourced PM2.5 levels in indoor environments (Das et al., 

2014; Wichmann et al., 2010). Additionally, indoor/outdoor temperature difference ∆T and the 

scaled wind speed 𝑣 can lead to variations in infiltrated PM2.5 (Jonathon Taylor et al., 2015). Not 

only are they influential in the settlement of particles (lower concentrations in indoor air) (Lv et 

al., 2017; Zhang et al., 2019) but as thermal comfort indices, their variation will also alter users 

behaviour (Zhang et al., 2019). Another similarity was the area of exposed surface to internal 

volume area (J. Taylor et al., 2014b). 

 

Alongside these findings, the process proved to be a useful technique, at least in regard to 

exploratory analysis, to help identify key features and potential relationships for the selection of 

candidate ML algorithms as there were disparities in the shape and magnitude of the relationships 

between the concentrations of infiltrated PM2.5 and several explanatory parameters (e.g., 

linear/non-linear and positive/negative). In fact, it became evident for a HEI building stock the 

need to combine sensitivity analysis methods with the development of metamodels to capture the 

non-linear and non-monotonic relations between the variables and to be able to reproduce them. 

 

8.4 Development of a Heating Season Metamodel for IAQ 

This research proposed a metamodeling framework to rapidly estimate the spatial variations of 

infiltrated PM2.5 concentrations in an HEI building stock from a set of key explanatory variables.. 

A metamodel can also reduce the number of inputs needed to determine the desired outputs if 

combined with sensitivity analysis. This study examined three metamodels: the GAM, the RF, 

and the XGBoost, which can reproduce nonlinear and non-monotonic relationships between 

inputs and output (indoor PM2.5 concentrations). In this study, the metamodels were developed to 

account for the spatial variability in infiltrated PM2.5 concentrations during the heating season by 

decomposing buildings selected from an HEI building stock into a structured cohort of individual 

spaces or rooms. The findings from the Co-simulation underscore the need to focus on the heating 
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season due to the higher concentrations of indoor and outdoor PM2.5 outweighing those during the 

non-heating season. 

 

Developing a metamodel to predict the concentrations of infiltrated PM2.5 during the heating 

season is important in the context of IAQ assessment and building envelope design. The findings 

from this research, where a metamodel was constructed using the XGB algorithm and a reduced 

set of parameters, provide valuable insights into the implications of increasing the airtightness of 

a building envelope Q50 on the concentrations of infiltration PM2.5. The metamodel was trained 

and tested using simulated data generated through the coupled CONTAM-EnergyPlus simulation 

approach, considering a parameter space of Q50 values ranging from 3 to 13 m3/h/m2. The results 

of the sensitivity analysis highlighted Q50, infiltration air change rates ACHINF, indoor/outdoor 

temperature difference ∆T, scaled wind speed 𝑣, and Aef:V as the most important parameters 

influencing the infiltrated PM2.5 concentrations. 

 

The prediction capability of the developed metamodel was assessed by testing the impacts of 

changing Q50 from 7 to 3 m3/h/m2 using a holdout dataset (Section 6.5). The results demonstrated 

a high level of accuracy, with an R2 value of 0.91 and a model accuracy of 90.6% in predicting 

the concentrations of infiltrated PM2.5. These findings have several important implications. 

 

First, the metamodel offers a valuable tool for predicting and understanding the behaviour of 

infiltrated PM2.5 concentrations in buildings during the heating season. By considering a reduced 

set of parameters identified through sensitivity analysis, the metamodel provides a simplified yet 

effective approach to estimate the impact of changing airtightness levels Q50 on IAQ. This 

capability is crucial for stakeholders such as university EFM, policy makers, and engineers, who 

can utilise the metamodel to assess the potential consequences of different building envelope 

airtightness values and make informed decisions regarding building design, maintenance, and 

energy efficiency measures. 

 

Second, the identified influential parameters contribute to a deeper understanding of the factors 

affecting infiltrated PM2.5 concentrations. This knowledge enhances the ability to control and 

manage IAQ effectively, particularly in a complicated and heterogeneous building stock. For 

example, policymakers can use this information to develop regulations and guidelines that address 

the most critical parameters, leading to improved IAQ standards and healthier indoor 

environments.Third, the high accuracy and predictive capability of the metamodel validate its 
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robustness and reliability in estimating infiltrated PM2.5 concentrations. This reliability allows for 

the exploration of plausible scenarios beyond the observed range of Q50 values during model 

training. Users can rely on the metamodel to evaluate the effects of extreme or hypothetical 

situations, assisting in the development of innovative building designs and the assessment of 

potential regulatory changes. 

 

Overall, the development of the metamodel and the interpretation of its findings underscore the 

importance of considering airtightness and related parameters when addressing IAQ issues. The 

metamodel provides a valuable tool for stakeholders to predict and investigate the impacts of 

changing building envelope airtightness Q50 on infiltrated PM2.5 concentrations. This knowledge 

can guide decision-making processes, promote energy-efficient building designs, and contribute 

to the creation of healthier and more sustainable indoor environments.  

 

8.5 Interpretation and Explanation of Metamodels  

A key contribution of this thesis was the application of SHAP values to increase the transparency 

of the metamodels and statistically quantify the contribution of each input variable to the predicted 

indoor PM2.5 concentration levels. Here the significance of this is highlighted by answering the 

research questions 1 and 3 listed in Section 1.4.  

 

Previous studies showed that the SHAP values yielded more reliable results than other measures 

(e.g. feature importance and Gini importance measure) (Aldrich, 2020; Gu et al., 2021). In fact, 

the application of SHAP in the domain of IAQ is limited. As such this research is considered the 

first attempt to apply the SHAP values on the domain of IAQ. Moreover, previous attempts to 

model the IAQ of building stocks have relied on the coefficients of linear regression to highlight 

the importance of features to indoor PM2.5 levels (Molina, Jones, et al., 2020). This could be 

assumed acceptable when the relationships between the inputs and outputs are linear. However, 

following the application of the sensitivity analysis framework, the priority of variables was 

represented by ranking them indicating most influential to least influential based on the 

correlation coefficients and significance p-value. It was impossible to quantify the contribution 

of each variable to the predicted infiltrated PM2.5  concentrations using these coefficients for one 

particular reason. It was clear that the relationships were non-linear, i.e., the changes in the 

infiltarted PM2.5 concetrations do not change in direct proportion to changes in any of the inputs.  
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Other studies have used ANNs, Support Vector Machine (SVM) and Radial Basis Functions 

(RBF) algorithms to model the IAQ in the residential building stock (Das et al., 2014; Symonds 

et al., 2016). Although these algorithms can capture the non-linearities in the relationships 

between the inputs and outputs. They are black box models, in which the contribution of each 

input variable to the predicted outcome cannot be quantified. Here, the importance of applying 

the SHAP values in this research was highlighted by quantifying the global and local importance 

of a feature to the infiltrated PM2.5 concentrations. Additionally, the SHAP values were used to 

quantify the variation of infiltrated PM2.5 concentrations as a result of varying an individual 

variable. In Table 6.8 the calculated percentage of variations in infiltrated PM2.5 concentrations 

highlighted the key variables that can inform future plans for enhancing the IAQ in a HEI building 

stock. However, it is important to highlight that while SHAP shows the contribution or the 

importance of each feature on the prediction of the model, it does not evaluate the quality of the 

simulated results or the prediction itself. 

 

8.6 Microenvironment Modelling for Exposure Assessment  

Total cumulative exposures are determined by the concentration of a pollutant at a particular 

location 𝑖 (also known as a microenvironment) and the amount of time spent there (𝐶𝑖 𝑡𝑖). The 

basis for the time-activity profiles for each population group in an HEI building stock was 

assumed to define a set of time-activity profiles for sub-populations based on the HESA data. It 

was thus possible to explore the impact of contrasting time-activity patterns on personal exposure 

to PM2.5 from outdoor sources. Despite the fact that time-activity patterns are much more variable 

within each group in practice, the time-activity profiles presented in this thesis are mainly 

intended to serve as a demonstration. Here, time-activity profiles were developed for four groups 

using the Similar Time Activity Groups (STGs) defined in Section 7.2. 

 

In order to determine whether population exposure to indoor PM2.5 in HEI building stock can be 

reduced, it is necessary to be able to determine the factors influencing indoor PM2.5 

concentrations, in the same manner as these factors have been assessed for housing stocks. 

However, there is a substantially smaller volume of data assessing population exposure to PM2.5 

in HEI building stocks. As such, this research uses the infiltrated PM2.5 concentrations produced 

by the XGBoost metamodel added to the CoSIM non-heating season indoor PM2.5 concentration 

to quantify the population exposure to indoor PM2.5 as a result of improving the Q50 of the 
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buildings. The analysis considered three scenarios based on the airtightness of the buildings: 

Baseline Q50, Q50 = 7 m3/h/m2, and Q50 = 3 m3/h/m2 

 

The outcomes of the research demonstrate how changes in airtightness Q50 can affect the relative 

exposures of occupants within higher education institution (HEI) buildings, specifically in terms 

of annual indoor PM2.5 concentrations. Through comparative analysis of distinct scenarios, it is 

conceivable to ascertain the extent to which the safeguarding intervention of modifying 

airtightness, as denoted by the manipulation of the Q50 value, can foster healthier indoor 

environments or potentially yield adverse impacts on occupants within university buildings. 

 

The results indicate that implementing measures to improve the airtightness of HEI buildings can 

significantly impact population exposure to indoor PM2.5. In the Baseline Airtightness Q50 

scenario, the annual population exposure to indoor PM2.5 was determined to be 9.6 µg/m3, which 

is close to the WHO guideline of 10 µg/m3. This finding suggests that occupants within the 

selected HEI buildings may be at potential health risk due to elevated PM2.5 levels. However, with 

the implementation of moderate airtightness measures (Q50=7 m3/h/m2), the annual population 

exposure to PM2.5 decreased to 8.5 µg/m3, representing an approximately 11.5% reduction in 

exposure compared to the Baseline Airtightness Q50 scenario (Section 7.4.2). This reduction in 

exposure indicates that implementing moderate airtightness measures would help occupants by 

lowering their exposure to indoor PM2.5 concentrations, moving them further away from potential 

health risks. 

 

Furthermore, in the Tighter Building Envelope Q50 scenario, the annual population exposure to 

PM2.5 decreased even further to 6.5 µg/m3. This reduction represents a significant decrease in 

exposure compared to both the Baseline Airtightness Q50 and Moderate Airtightness Q50 

scenarios, with a reduction of approximately 32.3% compared to the Baseline Airtightness Q50 

scenario. These findings highlight the effectiveness of adopting a tighter building envelope, 

indicated by a lower Q50 value of 3 m3/h/m2, in reducing population exposure to indoor PM2.5 

concentrations. In light of the stricter target set by the WHO of 5 µg/m3 for PM2.5 concentrations, 

it is noteworthy to mention that the findings of this study suggest that relying solely on tighter 

Q50 values may not be sufficient to meet this stringent guideline. While implementing a tighter 

building envelope with reduced Q50 values resulted in significant reductions in population 

exposure to indoor PM2.5, as discussed previously, achieving compliance with the WHO target of 

5 µg/m3 may require additional interventions or strategies beyond airtightness improvements 
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alone. For example, integrating advanced air purification strategies, such as portable air purifiers, 

into indoor spaces can further reduce indoor PM2.5 concentrations (Fermo et al, 2021). This 

observation underscores the complexity of addressing indoor PM2.5 concentrations and highlights 

the importance of adopting a comprehensive approach that encompasses multiple factors and 

mitigation measures to ensure the attainment of stricter air quality standards. 

 

Comparing the exposure findings in the this study (HEI Building Stock) under the baseline Q50 

scenario  to the results presented by the INDAIR probabilistic mode (Dimitroulopoulou et al., 

2006) provides valuable insights into the indoor PM2.5 concentrations and their sources in different 

environments. In the this study, the annual population exposure to indoor PM2.5 was determined 

to be 9.6 µg/m3 in the Baseline Airtightness Q50 scenario. This finding indicates a moderate level 

of exposure, influenced primarily by infiltration of outdoor PM2.5 investigated in the study. In 

contrast, the study by Dimitroulopoulou et al. (2006) focused on UK residential settings and 

reported an estimated annual indoor average PM2.5 concentration of 19.78 mg/m3. This 

concentration was significantly higher compared to both the outdoor PM2.5 levels (13.0 mg/m3) 

and the exposure levels observed in the HEI building stock. Another study by (Shrubsole et al., 

2012) reported that indoor PM2.5 levels derived from outdoor air (excluding indoor sources) were 

less than half of the corresponding outdoor levels in the London housing stock. However, the 

average household member experiences an estimated an annual average indoor PM2.5 

concentration of 28.4 mg/m3, which was over twice the concentration observed in outdoor air 

(13.0 mg/m3). In the context of a 2050 refurbishment scenario in their study (Q50 reductions to 3 

m3/h/m2 and the utilisation of properly installed and optimally functioning MVHR equipment) 

resulted in a reduction in household average annual exposure to total PM2.5 (from indoor and 

outdoor sources) from 28.4 mg/m3 to 9.6 mg/m3.  

 

The comparison between the the findings in this study and the aforementioned studies highlights 

the variation in indoor PM2.5 concentrations across different environments and building types. The 

findings of this study indicate relatively lower exposure levels in a HEI building stock compared 

to residential building stock. However, it is important to consider that the effectiveness of the 

implemented interventions, such as Q50 reductions may vary depending on the specific building 

characteristics and occupant activities. Further investigations are warranted to explore the 

effectiveness of these interventions in various building types and to assess their applicability in 

achieving the desired exposure reductions, particularly when aiming to meet stricter guidelines 

such as the WHO standards of 5 µg/m3 for PM2.5. 
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8.7 Limitations and Further Work 

There are a number of limitations in this research which points to the areas for future work. First, 

conventional methods of building engineering calculation tend to be deterministic, predetermined 

values (defaults) are often used without tackling uncertainty (Panagopoulos et al., 2011). In 

general, uncertainties in building stock modelling are of three sources: (1) the heterogeneity 

within a building stock (e.g. an extensive range of building characteristics), (2) the first-order or 

aleatoric uncertainties where different simulation outputs are probable given the same building, 

and (3) the second-order or epistemic uncertainties where input parameters can take different 

values in light of new data or knowledge (Ferguson et al., 2020).  

 

Increasingly, uncertainty quantification has been introduced to housing stock energy and IAQ 

modelling. Based on generating distributions of predictions followed by sensitivity analyses, Das, 

Shrubsole, Jones et al. developed a probabilistic framework for quantifying uncertain parameters 

in housing stock IAQ modelling (Das et al., 2014). More recently, Molina et al. applied a similar 

framework to the Chilean housing stock to quantify the uncertainties in indoor pollutant 

concentration levels, ventilation, and infiltration (Molina, Jones, et al., 2020). However, these 

frameworks were specific to the housing stock studies. In this thesis, a deterministic modelling 

framework was applied that does not consider probable fluctuations of some input parameters of 

any initial conditions and the solution was one and only (Renard et al., 2013). In contrast, 

stochastic models attempt to quantify some or all of the parameters by probabilistic distributions 

rather than single assumed definitive values.  

 

Das et al. showed that uncertain input data could be contaminants related, such as ambient 

concentrations, generation rates, and deposition rates (Das et al., 2014). Booth et al. stated that 

any building stock model should provide information about the potential risks associated with 

proposed interventions by displaying a distribution of confidence levels due to the diverse sources 

of uncertainty (Booth et al., 2012). To do so, mathematical and statistical methods are available 

for evaluating uncertainties in model inputs and outputs (Molina, Kent, et al., 2020). Table 8.1 

summarises the sources of uncertain input parameters in the building stock IAQ modelling 

literature. To improve the quality of predictions in HEI stock IAQ modelling, the issue of 

uncertainty needs to be addressed.  
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Table 8.1: Sources of uncertain input parameters in building stock IAQ modelling. 

Sources   Descriptive Parameters Key References 

Environment and Climate  Spatial-Temporal Variations of Ambient Contaminant 
Concentrations, Wind Speed and Direction, Local Outdoor 

Temperature and Terrain Properties 

(Dias & Tchepel, 2018; 
Benjamin Jones et al., 

2015; Malkawi & 

Augenbroe, 2004) 

Physical Characteristics   Building Geometry and Layout (e.g., Block Aspect Ratio), 
Space/Zone Volume, Material Properties, Orientation, 

Building/Room Height, and Number of Exposed Facades  

(G. Sousa et al., 2017a) 

(Das et al., 2014) 

Building Physics  Zone Pressure, Local Zone Temperature, Air Temperature 

Stratification, Wind Pressure Coefficients, Building Envelope 

Airtightness, Ventilation and Infiltration Rates, Flow Path 
Discharge Coefficient, Airflow Exponent n, and Flow Path 

Area 

(Booth et al., 2012; Cóstola 

et al., 2008; Herring et al., 

2016; Benjamin Jones et 
al., 2015; Molina, Jones, et 

al., 2020) 

Building Components / 

Systems  

HVAC Runtimes, HVAC Supply and Return Flow Rates, Air 

Exchange Rates (AER), Filter Efficiency and Removal Rate, 

Combustion Sources and Emission Rates 

(Benjamin Jones et al., 

2015) 

Occupants and Activity Building Population, Time-Activity-Location Factor, and 

Occupancy Schedules (HVAC Runtime, Window Opening 

Area and Time) 

(Ben & Steemers, 2018) 

Contaminant Properties  Contaminant Generation Rates (e.g., emission rate), Source 

Strength, Contaminant Sinks, Contaminant Penetration Factor, 

and Deposition Rates 

(Dimitroulopoulou et al., 

2006) 

 

Secondly, there are input parameters in IAQ modelling that can vary according to stock variability 

and/or measurement uncertainty, such as wind pressure coefficients on the building envelope, 

discharge coefficient of flow paths, temperature stratification, occupant behaviour, and building 

envelope airtightness (Cóstola et al., 2008; Herring et al., 2016; Yan et al., 2015). The wind 

pressure coefficients are of particular importance here. Based on Swami and Chandra's 

correlation, housing stock IAQ models have been developed utilising single average wind 

pressure coefficients for low-rise rectangular buildings. However, using a single average pressure 

coefficient over an HEI building's entire facade may not be appropriate. The uncertainty of wind-

induced pressures at the building envelope is often more significant in dense urban environments 

because of sheltering and turbulence caused by other structures. Due to the difficulty in obtaining 

and presenting results for multizone cases with complex ventilation elements, this thesis project 

acknowledged the limitations of this approach.  

 

It is also necessary to consider how best to represent building leakage in addition to the average 

surface pressures. Based on the data collected by (L. C. Ng et al., 2013), this was demonstrated 

by a multizone model infiltration study. According to the study, it is necessary to divide the 

exterior wall leakage on individual floors into three parts, representing the leakage of each wall's 

lower, middle, and upper thirds, to understand the stack effect better. Accordingly, the difficulties 

associated with assessing outdoor-indoor exchanges and their reliance on the representation and 

location of leakage components are evident.  
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Numerical wind field calculation (by coupling CFD with CONTAM, for instance) may derive 

building-specific wind pressure coefficients for any site and any oncoming wind angle as an 

alternative to wind tunnel data. It is also possible that they can provide pressures directly to the 

CONTAM models, eliminating the need to generate pressure coefficients in an intermediate step 

(Wang et al., 2010). When an urban wind field model is already being used to predict pressure 

distributions on building facades, this approach becomes particularly attractive in generating 

building-specific wind pressure coefficients. However, it remains to be seen how to average wind 

pressure distributions and relate them to building leakage distributions or determine the specific 

pressures associated with ventilation components on the building envelope. 

 

Thridly, the more training samples available, the better the metamodel approximates the original 

model. Unfortunately, due to time constraints and data availability, creating as many samples as 

desired was impossible. Therefore, it was crucial to determine how accurate the metamodel must 

be. Nevertheless, the model's accuracy will depend on its purpose: predictive models tend to 

require high levels of accuracy. To ensure the accuracy of the metamodels, validation data should 

not be used in the training process, and the metamodel should only be used within the range of 

training data values.  

 

In future work, it is recommended that the sample size of buildings and zones included in the 

training and testing of the metamodels be increased to reflect the accuracy of the metamodel and 

the calculation time. It is anticipated that increasing the sample size will allow other parameters 

not addressed in this thesis to be included. For example, the five selected buildings in this research 

were naturally ventilated buildings with localised exhaust fans. Based on the data received by the 

UoS EFM, this represents the majority of buildings in the UoS building stock under investigation. 

However, this study did not investigate mechanically ventilated buildings or where localised 

mechanical ventilation systems could be used (e.g. lecture halls), where the influence of outdoor 

environmental characteristics is reduced due to a pressurised building envelope. It is important to 

acknowledge that the CoSimulation models employed in this study focus primarily on airflow 

resulting from infiltration, as well as extract systems in kitchens and bathrooms. Mechanical 

ventilation, which plays a crucial role in providing filtered air to dilute particles that ingress due 

to infiltration, is not explicitly considered in these models. This omission is particularly 

noteworthy in the case of certain spaces such as lecture halls that are likely to be mechanically 

ventilated. 
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The exclusion of mechanical ventilation from the models has the potential to impact the results 

significantly. It is plausible that considering these additional airflows could lead to lower exposure 

results, as the presence of mechanical ventilation systems can effectively mitigate indoor PM2.5 

concentrations by supplying filtered air and facilitating dilution of infiltrated particles. However, 

it is important to note that the investigation of mechanical ventilation and its influence on 

exposure outcomes was beyond the scope of this study, which primarily focused on the effects of 

infiltration. 

 

Therefore, it is acknowledged that further investigation is warranted to explore the potential 

impacts of mechanical ventilation on exposure results. Future research endeavours should 

consider incorporating mechanical ventilation systems into the modelling framework to 

comprehensively assess the combined effects of infiltration and mechanical ventilation on indoor 

PM2.5 concentrations and population exposure. By expanding the scope of analysis to encompass 

these additional factors, a more comprehensive understanding of the indoor air quality dynamics 

and potential exposure reductions can be achieved. Furthermore, scientific evidence suggest that 

existing naturally ventilated buildings in the UoS building stock might require interventions 

(adding HVAC systems) due to climate change. This will have an impact on the parameters to be 

included in the development of the metamodels.  

 

Lastly, the microenvironments identified in this thesis were based on the space types described in 

the UoS energy policy. The approach used in defining the microenvironments here might not be 

suitable if they are defined as three-dimensional spaces in which pollutant levels are uniform or 

exhibit constant statistical properties over time. Because indoor PM2.5 concentrations vary 

significantly within and across buildings in HEIs, a more comprehensive statistical approach is 

required to calculate microenvironments in HEIs. One possible approach is to classify the time 

series of indoor PM2.5 in all zones and over the simulation period based on the similarities and 

patterns of time-series profiles. This allows for identifying the zones that exhibit similarities in 

the behaviour of indoor PM2.5 and identify potential, influential parameters for better classification 

of microenvironments.



Chapter 9 Conclusions       167 

 

 

 

 

Chapter 9  Conclusions  

 

 

 

This thesis conducts an exploratory investigation involving five existing buildings within the 

higher education building stock of the University of Sheffield (UoS): The Arts Tower (AT), 

Regent Court Building (RC), Academic Development Centre (ADC), Barber House (BH), and 

the Interdisciplinary Centre of Social Sciences (ICoSS). The primary goal is to develop a data-

driven model to rapidly assess and quantify the potential effects of enhancing the airtightness of 

the building envelope (Q50) on the annual average population exposure to indoor fine particulate 

matter (PM2.5) from outdoor sources. To achieve this goal, the study employs building physics-

based modelling using the integrated co-simulation framework of CONTAM and EnergyPlus as 

the primary source of information on indoor PM2.5 concentrations. Furthermore, this approach 

enables the examination and evaluation of the effects of varying Q50 within a specific range on 

the concentrations of indoor PM2.5, allowing for testing and analysis of its influence. This novel 

comprehension establishes a methodological framework that enables the assessment and 

formulation of regulations on higher education institution (HEI) building stocks. This framework 

can be integrated with prevailing energy-related policies to mitigate campus energy consumption 

and carbon dioxide (CO2) emissions effectively. Consequently, it furnishes compelling empirical 

evidence supporting integrating IAQ considerations with energy-related initiatives.  

 

In conclusion, this study has offered comprehensive insights into the complex dynamics of indoor 

PM2.5 concentrations in HEI buildings, shedding light on the impact of building envelope 

airtightness (Q50) and its implications for population exposure. By systematically investigating a 

range of factors and employing various analytical approaches, this research has contributed to a 

deeper understanding of IAQ and its relationship with building design and environmental 

variables.The study commenced by establishing the foundation for its investigations by 

identifying existing data sources pertinent to HEI buildings, with a particular emphasis on the Q50 

parameter. This initial step provided the essential data framework for the subsequent analyses, 

ensuring a robust and data-driven investigation. Through this approach, the research laid the 
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groundwork for assessing the interplay between Q50, IAQ, and the well-being of occupants within 

HEI buildings. 

 

The results of this research unveiled a diverse landscape of indoor PM2.5 concentrations across 

the examined buildings, highlighting the considerable influence of building design and 

environmental variables. The analysis not only underscored the heterogeneity of PM2.5 levels 

within each building but also revealed the troubling finding that a significant proportion of zones 

exceeded the recommended long-term exposure limit set by the World Health Organization 

(WHO). This raised pertinent concerns about IAQ in HEI buildings and its potential health 

implications, emphasising the critical importance of addressing these issues. 

 

Furthermore, a detailed examination of floor levels in one of the buildings, notably the AT, 

presented interesting findings. The analysis indicated that airtightness improvements can indeed 

effectively reduce PM2.5 infiltration. However, it also revealed that the impact of these 

improvements may vary based on factors such as building height. This underscores the need for 

a nuanced approach to IAQ management, considering the specific characteristics of individual 

buildings. In pursuit of answering the research question, the study further delved into a sensitivity 

analysis framework. By identifying the critical variables influencing infiltrated PM2.5 

concentrations, the research paved the way for the development of a predictive metamodel. This 

metamodel, particularly the XGBpost-HPT, exhibited remarkable performance, achieving a high 

level of accuracy in predicting PM2.5 concentrations. This predictive tool holds great promise for 

architects, engineers, and policymakers aiming to design buildings that prioritise IAQ. 

 

Lastly, the research ventured into the realm of microenvironmental modelling to quantify 

population exposure to indoor PM2.5. The findings demonstrated the tangible impacts of 

improving building envelope airtightness on population exposure. Notably, the study revealed 

that the adoption of a tighter building envelope (Q50=3 m3/h/m2) led to a substantial reduction in 

annual population exposure, marking a promising stride towards healthier indoor air quality. 

However, the study also wisely cautioned that achieving full compliance with stringent WHO 

guidelines for PM2.5 may necessitate additional interventions beyond airtightness improvements, 

underlining the need for a multifaceted approach to address IAQ concerns comprehensively. 

In summary, this comprehensive research endeavour has contributed significantly to the field of 

building science, IAQ management, and public health. It has elucidated the multifaceted 

relationship between building design, airtightness, and indoor PM2.5 concentrations, offering 



Chapter 9 Conclusions       169 

 

practical insights and tools for mitigating the potential health risks associated with poor IAQ. As 

we move towards a future where sustainability and well-being are paramount in architectural 

design, the findings of this study will undoubtedly play a pivotal role in shaping healthier indoor 

environments for all. 
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Appendix A. Selected Buildings Characteristics and Layouts 

 

 

Table A.1: Area Schedule of Space Types within the Sampled Buildings (N is Number of Samples)  

Space Type Barber House Academic 

Development Centre  

Arts Tower Regent Court  ICoSS 

 N Area [m2] N Area [m2] N Area [m2] N Area [m2] N Area [m2] 

Offices 22 451.32 19 291.75 127 5604.84 203 4119 6 244.25 

Educational Facilities  0 0 7 424 54 4260.28 23 1897 14 902.64 

Shared Facilities  6 45.84 11 165.25 78 2334.56 31 459.69 11 123.44 

Circulation  12 144.6 25 367.75 199 2668.88 91 2217.57 18 576.09 

Services  5 232.72 9 102.5 137 1533.8 25 363.83 6 101.38 

Total  45 874.48 71 1351.25 595 16402.36 373 9057.09 55 1947.8 

 

 

 

Figure A.1: Built-Up Area of Space Types within the Sampled Buildings 
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Figure A.2: The 9th Floor of the Arts Tower (AT) – Top: Original CAD Layout and Bottom: CONTAM 

Model  
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Figure A.3: The First Floor of the Regent Court (RC) Building – Left: Original CAD Layout and Right: CONTAM Model 
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Figure A.4: Typical Floor of the ICoSS Building – Top: Original CAD Layout and Bottom: CONTAM 

Model 
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Appendix B. Results of the Sensitivity Analysis Framework 

 

Table B.1: Correlation Matrix of all independent variables.  

 Az Vz Hz j Nef Aef Lef Aaw Law Q50 Aef:Vz Aef:Az DT RH υ ACHINF Q4 

Az 1.00                 

Vz 0.98 1.00                

Hz 0.19 0.22 1.00               

j 0.10 0.11 0.19 1.00              

Nef 0.46 0.45 0.09 0.01 1.00             

Aef 0.90 0.91 0.24 0.08 0.64 1.00            

Lef 0.80 0.80 0.13 0.06 0.57 0.87 1.00           

Aaw 0.85 0.88 0.16 0.07 0.26 0.67 0.60 1.00          

Law 0.59 0.59 -0.03 0.02 0.16 0.42 0.66 0.70 1.00         

Q50 -0.05 -0.06 -0.22 -0.05 -0.04 -0.08 0.27 -0.03 0.61 1.00        

Aef:Vz -0.25 -0.24 -0.02 0.01 0.42 0.07 0.05 -0.48 -0.38 -0.05 1.00       

Aef:Az -0.21 -0.17 0.05 0.01 0.43 0.13 0.10 -0.40 -0.34 -0.07 0.97 1.00      

DT 0.03 0.05 0.59 0.07 -0.03 0.07 -0.11 0.00 -0.31 -0.51 0.04 0.12 1.00     

RH 0.09 0.05 -0.50 -0.10 0.07 -0.01 -0.02 0.12 0.05 -0.03 -0.21 -0.28 -0.63 1.00    

υ 0.16 0.18 0.89 0.18 0.04 0.19 0.09 0.11 -0.05 -0.20 -0.03 -0.01 0.54 -0.47 1.00   

ACHINF -0.10 -0.11 -0.15 0.38 0.21 0.04 0.20 -0.24 0.10 0.48 0.44 0.39 -0.38 -0.06 -0.10 1.00  

Q4 0.05 0.04 -0.15 0.43 0.01 0.02 0.21 0.02 0.37 0.57 -0.06 -0.10 -0.45 0.03 -0.10 0.83 1.00 
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Results of the Multicollinearity Analysis  

Table B.2: Reduction of multicollinearity among independent variables using the Variance Inflation Factor 

Analysis (VIF). Each trial is associated with the variable eliminated (Target VIF <5)  

Benchmark Values   Trial 1:  Vz & Az  Trial 2:  Law &Aaw  Trial 3:  Aef:Az  & Lef 

Variable VIF 
 

Variable VIF 
 

Variable VIF 
 

Variable VIF 

Vz 80.6 
 

Aef:Vz 39.1  Aef:Vz 30.6  ACHINF 13.4 

Aef:Vz 46.4 
 

Aef:Az 29.9  Aef:Az 27.0  Q4 11.5 

Az 41.1 
 

Law 20.2  ACHINF 13.4  Hz 5.8 

Aef:Az 38.7 
 

ACHINF 17.3  Q4 11.5  υ 5.1 

Aef 31.3 
 

Q4 14.2  Aef 7.9  Aef:Vz 4.9 

Aaw 22.3 
 

Aaw 14.2  Lef 7.5  T 4.0 

Law 20.2 
 

Aef 13.9  Hz 6.4  RH 2.9 

ACHINF 17.5 
 

Lef 13.7  υ 5.9  Nef 2.4 

Q4 14.4 
 

Q50 7.4  T 4.1  Q50 2.3 

Lef 13.7 
 

Hz 6.5  Q50 3.2  Aef 2.0 

Q50 7.4 
 

υ 5.9  RH 3.1   1.6 

Hz 6.5 
 T 4.1  Nef 2.5    

υ 6.0 
 

RH 3.1   1.6    

T 4.2 
 

Nef 2.5       

RH 3.1 
  1.6       

Nef 3.0 
 

        

 1.6 
 

        

  
         

           

Trial 4:   & Nef  Trial 5:  Q4  Trial 6:  RH & Aef  Trial 7:  Hz 

Variable VIF 
 

Variable VIF 
 

Variable VIF 
 

Variable VIF 

ACHINF 13.3  Hz 5.6  Hz 5.4  T 2.0 

Q4 11.0  υ 5.0  υ 5.0  ACHINF 1.9 

Hz 5.6  T 3.9  T 2.2  Q50 1.6 

υ 5.0  RH 2.7  ACHINF 1.9  υ 1.5 

Aef:Vz 4.4  Q50 2.1  Q50 1.7  Aef:Vz 1.4 

T 4.0  ACHINF 2.0  Aef:Vz 1.4    

RH 2.8  Aef:Vz 1.5       

Q50 2.1  Aef 1.1       

Aef 1.1          
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Appendix C. Results of the Cross Validation 

 

Generalised Cross Validation of GAMs using the RMSE, EDoF, and GCV Scores 

 

Table C.1: Results of the Generalised Cross Validation of GAMs showing the RMSE, EDoF, and GCV 

Scores 

 GAMpre-HPT  GAMpost-HPT 

 RMSE EDoF GCV  RMSE EDoF GCV 

Training Dataset  0.550 33.00 0.315  0.679 11.55 0.470 

 

 

 

k-Folds Cross Validation of Random Forest Regressor (RFR ) and Extreme Gradient 

Boosting (XGB)  

 

Table C.2: RMSE Score for the 10-fold CV of RFR and XGB (pre-HPT and post-HPT)  

 Training Dataset RFR XGB 

K-Fold  pre-HPT post-HPT pre-HPT post-HPT 

1 0.92 0.39 0.85 0.31 

2 0.74 0.39 0.85 0.32 

3 0.88 0.44 0.97 0.39 

4 0.82 0.45 0.92 0.31 

5 0.86 0.45 1.03 0.40 

6 0.87 0.47 0.98 0.44 

7 0.81 0.43 0.87 0.35 

8 0.85 0.43 0.91 0.34 

9 0.86 0.50 1.09 0.40 

10 0.84 0.50 0.92 0.40 

Average 0.85 0.45 0.94 0.37 
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Appendix D. Datasets and Python Script for the GAM, RFR, and XGB 

Metamodels 

 

All codes and datasets have been uploaded to Github and are licenced under Apache 2.0. Terms 

and conditions for use, reproduction, and distribution are clarified in the README file.  

https://github.com/thaerKA1990/PhD_Repo.git  

 

 

https://github.com/thaerKA1990/PhD_Repo.git

