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Abstract

Quasicrystals are materials that display long-range order despite lack-
ing translational periodicity. Despite it has been 41 years since its dis-
covery, the stability of quasicrystals remains a perplexing enigma for
scientists. Initially discovered in metals, these structures also appear
in soft matter systems like block copolymers.
Polymer chains that contain two or more different types of monomer
blocks joined together are block copolymers. They can microphase
separate to form different patterns and structures in their morphol-
ogy, including quasicrystals. Different morphological structures are
formed depending on the block lengths and the interaction strengths.
This soft matter system, akin to a designer material, can be adjusted
to autonomously self-assemble into various intriguing morphologies,
including quasicrystals.
This thesis proposes two methods for designing block copolymers
with the potential to self-assemble into quasicrystals. The stabil-
ity of morphologies in block copolymers can be determined using
well-established phase separation theories: weak segregation theory
(WST), self-consistent field theory (SCFT), and strong segregation
theory (SST). In this study, we present design criteria for two cate-
gories of block copolymers: two-component alternating linear chains
and ABC star terpolymers within the context of weak segregation
limit. These criteria guide the self-assembly of structures with length-
scale ratios conducive to quasicrystals. The second half of the thesis
presents a novel framework in strong segregation limit where mor-
phologies in ABC star terpolymers are compared with tiling patterns
to study their stability. This framework can incorporate periodic
tilings and periodic approximants of aperiodic tilings and develop the
phase space for ABC star terpolymers.
The overarching aim is to make experimentally valid predictions on
polymer architectures that could lead to stable 2- and 3-dimensional
quasicrystals or other structures. Using the two methodologies, we
find experimentally feasible composition ranges in the block copoly-
mers we are considering in this thesis that can potentially form qua-
sicrystal or other interesting, complex morphologies.



The candidate confirms that the work submitted is her own, except
where work which has formed part of jointly authored publications
has been included. The contribution of the candidate and the other
authors to this work has been explicitly indicated below. The candi-
date confirms that appropriate credit has been given within the thesis
where reference has been made to the work of others.

The work in Chapter 2 produced a jointly authored publication:

• Joseph, M., Read, D.J. and Rucklidge, A.M., Design of linear
block copolymers and ABC star terpolymers that produce two
length scales at phase separation. Macromolecules 2023, 56, 19,
7847–7859.

The candidate performed all the calculations and preparation of fig-
ures for the paper. MJ also wrote the initial draft of the article. AMR,
DJR and MJ were involved in revising the manuscript for publication.

This copy has been supplied on the understanding that it is copyright
material and that no quotation from the thesis may be published
without proper acknowledgement.



Abbreviations and Nomenclatures

kBT Thermal energy
N Total number of monomer units in a chain
χ Flory interaction parameter
b Kuhn Length
QC Quasicrystal
WST Weak Segregation Theory
SST Strong Segregation Theory
SCFT Self Consistent Field Theory
SSP Strongly Segregated Polygons

Morphology
Natural numbers separated by dots and semicolons inside square braces
indicate different patterns formed during block copolymer phase sep-
aration in terms of different coloured domains.

• [a.b.c] Morphology with only one type of arrangement between
three different coloured domains. This indicates a pattern formed
where one coloured domain shares sides with a domains, another
shares sides with b domains and the third shares sides with c
domains.

• [a.b.c; d.e.f ; . . . ] Morphology with more than one type of ar-
rangements between three different coloured domains. In this
morphology, domains of one colour have two or more different
configurations. Arrangements of these domains are separated
by semicolons. Domain of one colour shares sides with a do-
mains or d domains or so on. The second coloured domain shares
sides with b domains or e domains or so on. Similarly, the third
coloured domain shares sides with c domains or f domains or
so on. A combination of all different configurations of domains
constitutes the morphology.



Tiling
This thesis considers tilings made of regular polygons (triangles, squares,
etc with whose side lengths are equal). They are classified using their
vertices.

• (n1, n2, n3, . . . ) The tiling consists of vertices around which
there are n1-gon, n2-gon, n3-gon and so on.[53]

Here n1, n2, n3 · · · ∈ N.
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Chapter 1

Introduction

Quasicrystals are materials that exhibit long-range order despite not having trans-
lational periodicity. Until 1982, crystals were believed to be materials that are
characterised by repeating a unit cell and so have spatial periodicity. This prin-
ciple of crystal classification was called into question with the discovery of qua-
sicrystals, which do not have a repeated unit cell and yet have long-range order.
In crystallography, 10-, 5- and 12-fold rotational symmetry are considered forbid-
den as these are inconsistent with a periodic arrangement of atoms and so cannot
have a single unit cell. The first quasicrystal was discovered by Dan Shechtman
in 1982 in a metallic alloy of Aluminium and Manganese (fig. 1.1.(a)) [140]. The
diffraction pattern of this solidifying alloy showed sharp peaks with 10-fold ro-
tational symmetry indicating that the material had both a forbidden symmetry
and long-range order as in fig. 1.1.(b). This phenomenal discovery paved way
for changing the definition of a crystal to: "by crystal we mean any solid hav-
ing an essentially discrete diffraction diagram, and by aperiodic crystal we mean
any crystal in which three-dimensional lattice periodicity can be considered to be
absent" [73]. Shechtman’s discovery was awarded the Nobel Prize in Chemistry
in 2011. Although these materials were first found in complex solidifying metal
alloys, quasicrystalline structures have also been observed in natural systems:
the diffraction pattern of a micron-sized grain of Al71Ni24Fe5 from a Khatyrka
meteorite fragment showed 10-fold rotational symmetry [21].

The quasicrystal discovered in metal alloys by Shetchman were meta-stable.
When the sample was heated above a certain temperature (350 − 400◦C), the
quasiperiodic arrangement of atoms did not survive and it transformed to a
different phase. A stable metallic quasicrystal with icosahedral symmetry was
discovered by Tsai et al. in the alloy Al65Cu20Fe15 [161]. There are multiple
speculations about what makes metallic quasicrystals stable [29, 148], but the
stability of quasicrystals remains an open question in the scientific community.
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Metallic quasicrystals have found some applications in cooking appliances and
photonics [78, 95, 149].

(a) (b) (c)

Figure 1.1: [From Left] (a) Diffraction pattern obtained for an icosahedral
quasicrystal in an Aluminium and Manganese alloy, taken from [140]. (b) First
view of a crystal with icosahedral symmetry, credit: Shechtman [3]. (c) A Penrose
tiling with five-fold symmetry consisting two type of rhombuses [1].

While this rebellious discovery was happening in material science, this was no
news for mathematicians, who had explored non-repeating structures in depth in
aperiodic tilings. The problems in tilings are old as civilisation. Tiling or filling
a surface with regular or non regular shapes becomes more complicated when
the aim is to achieve non-repeating patterns. Similar to forbidden symmetries in
crystallography, it was considered impossible to tile a plane with pentagons or
shapes with five-fold symmetry. The curiosity over aperiodic tilings goes back to
the time of Kepler when he tried to pack a plane with simple geometrical shapes.
In this process, in 1619 he discovered 11 Archimedean tilings and some finite
aperiodic arrangements that are mentioned in his book Harmonice Mundi [139].
Amongst Kepler’s aperiodic tilings, there is a five-fold tiling created from var-
ious shapes. This tiling inspired Roger Penrose in 1974 to solve the question
of aperiodic tilings with 5-fold symmetry [122], resulting in the famous Penrose
tilings, which are composed of two1 geometrical shapes or prototiles2 given in
fig. 1.1.(c). Mackay had predicted the possibility of a material that would ex-
hibit the aperiodicity of Penrose tilings [94]. Immediately after the discovery

1The lowest number of protiles needed to make an aperiodic tiling is reduced to one with
the monotile discovery [146].

2Protiles are the constituent shapes that are used in making a tiling pattern, eg two different
rhombuses seen in the Penrose tile.
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of quasicrystals, Steinhardt made connections between Penrose tilings and qua-
sicrystals [88]. Henceforth aperiodic tilings with a definite diffraction pattern and
long-range order became synonymous with quasicrystals.

As quasicrystals with different rotational symmetries like 8-fold, 10-fold, 12-
fold, 18-fold, and so on were discovered, aperiodic tilings with corresponding
rotational symmetries became more intriguing [47, 161, 166, 172]. More con-
nections were made between aperiodic tilings of different prototiles and different
rotational symmetries found in materials. In metallic alloys, quasicrystals are
found with order at smaller near-atomic lengthscales. Icosahedral quasicrystal
and 5-fold symmetric structures are observed more in metallic alloys. In metallic
quasicrystals, aperiodicity is observed in three directions so 3D projections of the
tilings are considered [88]. In later years quasicrystals have been observed in sys-
tems with mesoscopic lengthscales like soft matter or nanoplates where they ex-
hibit other rotational symmetries. While icosahedral quasicrystals are associated
with the Penrose tilings, 8-fold quasicrystals are compared to Ammann-Beenkar
tiling[45, 53] and 12-fold quasicrystals are mostly associated with square-triangle
aperiodic tilings[14, 119]. In mesoscopic systems, observed quasicrystals are often
aperiodic in two dimensions and periodic in the third dimension, so these patterns
are related to 2D tilings [58]. In soft matter systems the most commonly found
quasicrystals have 12-fold dodecagonal symmetry [172]. Dodecagonal aperiodic
tilings can be made from squares and equilateral triangles [57, 71], but it is un-
known why soft matter systems prefer these particular geometrical shapes while
forming quasicrystals.

Quasiperiodic patterns can also be found in fluid systems, in the Faraday
wave experiment [41]. Quasiperiodic patterns with 12-fold symmetry have been
reported when exciting a layer of fluid with two frequencies that are in certain
ratios. Stability of quasipatterns in these experiments is attributed to the non
linear interaction between waves [130].

Even with all these observations an explanation on the causality of stable
quasicrystals is missing in the research [148].

1.1 Quasicrystals in soft matter
Soft matter systems can be broadly identified as all squishy matter that has
weaker interactions in them compared to solids typically such that the inter-
action scale is commensurate with thermal energies. These weaker interactions
lead to different structural and physical properties. The first observation of qua-
sicrystalline order in soft matter occurred when Zeng et.al discovered structures
with dodecagonal symmetry in dentrimic liquid crystals [172]. They observed
12 definite peaks in the X-ray diffraction patterns and hence initiated the quest
for quasicrystals in all kind of soft materials. In their system, the dentrimic
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molecules form micelle-like structures which then align at different lattice points
resulting in structures with 12-fold symmetry. Quasicrystals have subsequently
been reported in soft matter systems with squishy spherical components such as
colloids, micelles and diblock copolymers [46, 47, 51, 74].

In most soft matter systems quasicrystalline patterns are mostly found as
metastable states where they appear during phase transitions. They can be also
designed to form in systems where an external potential drives the transition:
colloidal particles can be aligned to form a decagonal Penrose tiling using an en-
ergy potential produced using five polarised laser beams [103]. Such potentials
can be tuned to produce periodic tilings including Archimedean tilings. Simi-
lar experiments are done on nanoparticle surfactants in colloidal solution, where
an imposed potential drives the phase transition to form quasicrystals [158]. At
mesoscopic lengthscales, networks formed from hard matter particles can also as-
semble into dodecagonal quasicrystals [163]. Other soft matter systems where 12-
fold quasicrystalline structures were observed include mesophoric silica [152, 167]
and mesoscopic surfactants [169]. The experiment with mesoscopic surfactants
suggested that the intrinsic molecular architecture of surfactants contributes to
the formation of quasicrystals and its approximants [169]. Thus the architectural
design of a molecule involved is an important factor that needs to be taken into
account in phase transition.

The quasicrystalline examples discussed so far are carefully synthesised with
utmost control over the driving potentials, and usually only some certain spe-
cific compositions or architecture result in quasicrystals. However, Jayaraman
et al. recently reported the presence of dodecagonal quasicrystals upon adding
water into ionic surfactant and n-decane [74]. This development suggests that
quasicrystals need not have to be always complex to synthesise with specifically
tuned potential and/or composition. Instead what is required is appropriate de-
sign criteria for a given soft matter system that will induce the phase transition.

In all above discussed soft matter systems, quasicrystalline phase exhibits 12-
fold rotational symmetry. Other rotational symmetries are also observed in soft
matter systems. There are colloidal quasicrystals which demonstrates 18 fold
rotational symmetry in its diffraction pattern [47] and nanoparticle quasicrystals
with 8-fold rotational symmetry [45, 124]. The 18-fold rotational symmetry is
associated with an aperiodic tiling with 4 different types of quadrilaterals (one
square and 4 different rhombuses) and 8-fold rotational symmetry is associated
with the Ammann-Beenker tiling, which has 2 types of quadrilaterals (a square
and a rhombus). Dodecagonal rotational symmetry is usually associated with
square triangle aperiodic tiling with 12 definite peaks in their diffraction pat-
tern, [58, 71]. Complex arrangements of particles in soft matter system has an
affinity to arrange themselves in squares and triangles [71]. Recently, dodecago-
nal quasicrystals that are assembled into aperiodic tilings with squares, triangles
and trapezoidal tiles were reported [70, 170]. The soft potential and complex
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interactions available in soft matter systems make the study of their structure an
interesting geometrical problem.

As demonstrated so far using many examples, even though quasicrystals are
no longer seen as a rarity, the parameters and conditions necessary to induce
their presence are very specific. This is where the computational advances in
simulations and numerical methods come to the rescue. Instead of fine-tuning
the conditions in an experiment, soft matter systems can be modelled to find
the required conditions to undergo a phase transition to a quasicrystalline phase.
One approach is to consider hard and soft spheres with different soft potentials
to replicate the formation of quasicrystals and thus study the effects of entropy
and energy in the formation of quasicrystals. Quasicrystals of different rota-
tional symmetries are observed in core-corona particles with a hard core and soft
corona [120, 135, 147]. In these simulations the particles are simulated using the
Monte Carlo method with a soft square potential that has step size matching the
two lengthscale ratio from the Faraday wave experiments [38]. Another method
of particle-based simulations is conducted using platonic solids and they are al-
lowed to arrange themselves into some packing controlled by the overall entropy
of the system [42, 55, 68]. Complex structures that are often observed in these
simulations include the Frank-Kasper and Σ-phases in three and two-dimensional
space respectively [64, 133, 169]. These phases are considered to be quasicrystal
approximants.

Quasicrystal phases are observed in continuous systems like block copolymer
melts where repulsive monomer interactions drive them to form patterns sim-
ilar to tilings. Immediately following the discovery of soft matter quasicrystal
in liquid crystals, polymeric quasicrystals were discovered in three-component
star terpolymers. A dodecagonal quasicrystal that appears to be described by
a square-triangle aperiodic tiling is observed in this block copolymer melt [57]
which is shown in fig. 1.2. The diffraction pattern shows twelve distinct peaks,
each in two concentric circles. This is visual evidence of the connection between
the square-triangle tilings and 12-fold rotational symmetry.

Polymeric quasicrystals are observed in experiments and simulations in a va-
riety of block copolymer including simple structures like diblocks as well as more
complex architectures like tetra-blocks [51, 93, 107, 153, 174]. Some block copoly-
mer systems consider a blend of different types of block copolymers. In a diblock
melt, the initial segregation of the melt drives them to form micelles. These mi-
celles can then arrange into different lattice positions, as in the cases of soft/hard
spheres. In these simple block copolymer systems, the soft potential and poly-
dispersity of these soft-hard core-corona structures can result in quasicrsytal like
morphologies [137]. In block copolymers with complex architecture like tetra-
blocks, the intrinsic molecular architecture and resulting competing interactions
can lead to complex morphologies [26].
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Figure 1.2: Dodecagonal quasicrystal observed in a blend of three component
star terpolymer of polystyrene, polypropene and poly-iso-pyredene and the ho-
mopolymer polystyrene. This is a TEM image of the phase separated polymer
blend with an attempt to overlay it with squares and triangles .The diffraction
pattern obtained is given in the inserted image, which shows two concentric rings
of 12 distinct peaks. Image sourced from [57].

Discovering quasicrystals in all sorts of soft matter systems makes quasicrys-
tals not a rare phenomenon, as was perceived before 1982. But even with this
abundance in occurrence, it is still unknown what makes the particles arrange
themselves or the melt to segregate to form such a complex structure. Soft mat-
ter quasicrystals provide a window to learn more about the instability using the
ideas from pattern formation and self-assembly of particles in driven by entropy
and it is easier to understand. Soft matter quasicrystals offer the potential of
developing materials with unusual photonic bandgap behavior [142, 164].

1.2 Stability of soft matter quasicrystals
Faraday wave interactions demonstrate how two frequencies can result in stable
patterns that have quasicrystal-like rotational symmetries [10,12,8]. At the most
basic level, the theoretical work attributes the stability of quasicrystals to the
nonlinear three-wave interaction of waves of density fluctuations on two length
scales. Lifshitz and Petrich identified that these wave interactions can be adapted
in free energy functional to drive particles to form 12-fold quasipatterns [92].
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Figure 1.3: Schematic representation of two waves interacting with each other
where when the radii of the circles are in ratio (2 +

√
3)1/2.

When two wave vectors are in a ratio Qr = 2 cos π
12

= (2 +
√
3)1/2 ≈ 1.93, two

wavevectors of the same magnitude can add up to result in the second wavevector.
In fig. 1.3, red vectors indicates the twelve wavevectors spaced 30◦ apart in the
small circle of unit radius. Given that the radius of the larger circle is (2+

√
3)1/2,

two adjacent red wavevectors give one blue vector as their sum and two blue
vectors that are 150◦ apart add upto a short red wavevector. With this length
ratio, three wave interactions can help stabilise the density distributions arranged
in quasipatterns with 12-fold symmetry [16]. Similar three wave interactions
contribute to the stability of periodic and quasiperiodic patterns, with a ratio of
the radii within the range 1.5− 2.5 [25, 129]. Icosahedral symmetry, observed in
elemental quasicrystals is associated with the golden ratio [76, 131, 151].

Two concentric circles with 12 equidistant Fourier peaks as in fig. 1.3 are
observed in both early soft matter experimental quasicrystals [57, 172]. This
encourages to design of free energy functional that can result in quasicrystals.
Many studies have been done by adapting this idea into soft matter systems
using phase field crystals [4, 76, 77, 134, 151, 160] and classical density functional
theory of interacting particles [8, 9, 16, 125, 135, 165]. Stable quasicrystals are
reported from these theoretical work as a result of tuning the free energy to have
correct wavenumber ratios. Presence of two lengthscales on its own is not enough
to stabilise quasicrystals but there is evident connection between emergence of
two lengthscales and stability of quasicrystals [125].

Another way to look at the stability is by looking at the real space arrange-
ment of particles. As pointed out earlier, most of the two dimensional quasicrys-
tals in soft matter systems exhibit dodecagonal rotational symmtery. Amongst
tilings, dodecagonal symmetry is associated with arrangements of squares and
triangles. In most of the experimental quasicrystals, the dodecagonal arraange-
ment orginates from a seemingly random arrangement of squares and triangles.
The stability of an arrangement is understood in two ways: one through the tiling
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energy and the other via tiling entropy [39]. An ideal aperiodic tiling, that can
be made from the inflation rules owe to lowering the energy of the particles in
it [119] . But entropy- wire stability is attained from random tiling arrange-
ments that are resultant of thermodynamic arrangement of particles [71, 118].
The stability study of soft matter quasicrystals based on these kinds of tilings is
conducted using linear block copolymers [40].

It is challenging to list the factors that make a quasicrystal stable though
prominent features like three wave interactions and structural arrangements are
clearly important. Either one of these or both are present in most of the soft
matter quasicrystals observed to date.

1.3 Block copolymer phase separation
Amongst soft matter systems, block copolymers offer structural versatility that
is relatively easy to modify. Given block copolymers are used widely in many
applications, it is interesting to know that complex structures like quasicrystals
are present in block copolymers. Block copolymers are polymer chains that con-
tain two or more monomer types that are connected as blocks (as in fig. 1.4.(a)).
Block copolymers can be classified based on structure and variety of monomers,
from the can be simplest diblocks to complex multi-branched, multi-component
terpolymers. Block copolymers that are branched are commonly called terpoly-
mers. As block copolymers contain more than one type of monomers, they have
the tendency to phase separate like oil and water. The repulsive interaction be-
tween monomers of different type induces this phase separation. But unlike oil
and water a complete phase separation is not possible in block copolymers as the
different type of monomers are chemically attached. Instead the polymer chains
can rearrange themselves such that blocks of the same type segregate together to
form different structures [19, 87]. This is called microphase separation in block
copolymer melts. Microphase separation results in simple structures like lamel-
lae [87] to complex structures quasicryatals [57]. The controlling parameters for
the structure formed are monomer compositions, the polymer architecture and
the chemical interaction strength, all of which are easily varied compared to other
systems.

Diblocks (AB), with two types of monomers A and B can form morpholo-
gies like lamallae, hexagons, cylinders, gyroids and many others by changing the
proportion of A [19]. The interaction between A and B is quantified by the
Flory interaction parameter χ. Diblocks also microphase separate into spheres
which, depending on the solvent will have micellar behaviour. We have seen that
quasicrystals can be made from such diblock micelles [33, 137].
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(a) (b)

Figure 1.4: Different morphologies that are possible in ABC star terpolymer by
varying composition of one component. In here A, B and C are indicated by red,
blue and green. The composition of C blocks is varied with x. The morphology
is indicated as in [27] from where this image was adapted.

A bit more complex block copolymer is ABC star terpolymer which has three
types of monomers and branched molecular structure. Here, complexities con-
tributed by polymer architecture and interactions lead to more complex struc-
tures, which we will discuss in detail in coming sections and chapters. Lots
of morphologies are possible by changing only one parameter in this system as
demonstrated in fig. 1.4 [27].

Block copolymers are a morphologically versatile system in soft matter. Bates
rightfully coined the term "designer soft matter" [19] owing to the simplicity in
modelling and complex morphologies that block copolymers can provide. The
potential diversity of resultant mesoscale structures in block copolymer systems
is explained in detail in the review by Huang et al. [65]. Along with regular pe-
riodic structures (as in fig. 1.4), they offer highly complex and interesting struc-
tures, from bicontinuous structures [30, 96, 106, 117] to the Frank-Kasper and
Σ−phases [33, 86, 155] and the A15 phase [93]. All these complex morphologies
have more than one prominent lengthscales. Also, Frank-Kasper in three dimen-
sions and theΣ−phase in 2D are considered to be indicators for the presence
of metastable quasicrystals. Leibler considered the possibility of 5-fold symme-
try in block copolymers but then dismissed the idea since it was considered an
impossible structure at that time [87].

Microphase separation in block copolymers can be studied using well estab-
lished phase separation theories in polymer physics: Weak Segregation The-
ory (WST), Self Consistent Field Theory (SCFT) and Strong Segregation The-
ory (SST). These theories are applied to block copolymer melt depending on the
segregation state that is being considered. The segregation state is quantified
by monomer interaction strength. Brief overviews of each of these mathematical
theories are provided here.

9



1. Introduction

Weak Segregation Theory

Microphase separation of block copolymers(diblocks) in a homogeneous melt with
weak interaction strength was studied in detail by Leibler [87]. The state at which
the segregation of monomers occur is called the order-disorder transition (ODT)
point. Near to the ODT, the free energy functional of the melt is determined by
Landau-Ginzburg Theory as a function of the density distribution ψ(q) in Fourier
space. The wavevector q corresponds to the prominent lengthscale associated
with the structure [56, 87]. The free energy functional F{ψ(q)} expanded to its
third order term is given:

F{ψ(q)} =
1

2!

∫
q

S−1(q)ψ(q)ψ(−q)+

1

3!

∫
q

∫
q′
µ(q, q′,−q − q′)ψ(q)ψ(q′))ψ(−q − q′) + . . . .

(1.1)

The second order term involves the structure factor S(q) of the microphase
separated structure. The third and higher order terms determine the stability of
the structure formed. The three wave interactions are apparent in the third order
term, since the three wavevectors q, q′ and −q − q′, sum to zero.

The structure factor of the melt can be determined using the linear theory of
Random Phase Approximation (RPA) in which the free energy functional is trun-
cated at second order. The melt is taken as a Gaussian distribution of monomer
densities which fluctuates and phase separates. The maximum of the structure
factor gives the ODT point in phase separation and corresponding wavevector
q = q∗ is associated with the spatial periodicity length 2π/q∗ of the morphology
that emerges at the ODT. Thus using RPA we can predict the lengthscale that
emerges from the melt without calculating the free energy functional. The cubic
term µ in F{ψ(q)}, which is the vector function for thermodynamic potential
is zero for an compositionally symmetric block copolymer system or is chosen
to be positive. At the critical wavevector q∗ the second order term in the free
energy has a minimum and ensure the structure with corresponding periodicity
is stable [48, 56].

This theoretical framework was developed by Leibler for diblocks, who re-
ported a phase space of morphologies varying the monomer composition of one
block [87]. The framework can be extended to multicomponent block copoly-
mers [79] and complex polymer architectures [110]. More complex morphologies
were determined in block copolymers with two components using the RPA in
weak segregation limit [83]. Nap et al. proposed that having two intrinsic length-
scales in the polymer architecture can lead to the emergence of two prominent
lengthscales in the structure factor [110]. They reported linear polymer chains
with alternating A and B blocks having two lengthscales in the lengthscales for

10



1. Introduction

a few selected compositions. These compositions and architectures further gave
morphologies that have two lengthscales like double periodic lamellar-in-lamellar
using mean field calculations like SCFT [82, 109].

Weak segregation analysis of multi-component systems is more cumbersome
owing to the dependence on multiple parameters. For a three component system,
there will be three monomer compositions and three monomer interactions that
will affect these density fluctuations. The structure factor is represented by ma-
trices which makes the free energy analysis more complex. It can be necessary
to apply constraints on the parameters. The RPA analysis of three component
ABC block copolymers was conducted for terpolymers [23] and triblocks [43]
to detect the prominent wavevectors at the ODT. Erukhimovich conducted the
stability analysis of morphologies in ABC triblock melt in the weak segregation
limit (WSL) calculating the cubic- and quartic-ordered terms in the free energy
expansion [43]. So far two lengthscales in the structure factor have not been
reported for three-component systems using the RPA. But the complexity and
multiple interactions available in ABC block copolymers make these a potential
system where two lengthscale phase separation might occur at the ODT.

Strong Segregation Theory

In the strong segregation limit (SSL) when the repulsive interaction strength be-
tween the different monomer types is large, and small fluctuations in monomer
composition become negligible. The weak segregation framework which is based
on small perturbations in the monomer distribution is not sufficient at this stage.
Phase separated structures comprise domains of different monomer types sep-
arated by thin interfaces forming the morphologies. In this segregation limit,
polymer chains are highly stretched such that the elastic free energy of polymer
chains and interfacial surface tension due to repulsive monomer interactions both
contribute to the total free energy. Semenov determined the stretching energy
from a classical elastic analogy and the interfacial energy from an electrostatic
analogy [138]. In the SST, the stretching of chains contributes to the total free
energy as the stretching free energy Fstr per chain as the square of the distance
stretched, so

Fstr

kBT
∽ K

R2
d

Nb2
(1.2)

where Rd is the lengthscale of the domain formed. Here, each polymer chain
comprises N links of step length b, so that the mean square end-to-end length
of the chain is Nb2, as detailed in section 2.0.1. Here K is a coefficient that is
dependent on the parameters of the block copolymer and the morphology being
considered.

11



1. Introduction

The interfacial free energy is the product of the surface tension γ = χ1/2b−2kBT
and the surface area per chain.

Fint ∽ γ
Nb3

Rd

. (1.3)

The interfacial energy Fint per chain is dependent on the Flory interaction pa-
rameter:

Fint

kBT
∽ Nb

χ1/2

Rd

. (1.4)

The total free energy per chain of the phase separated structure is the sum of
these two contributions.

Ft

kBT
∽ K

R2
d

Nb2
+Nb

χ1/2

Rd

. (1.5)

As seen from the above expressions the stretching free energy increases with
domain size and interfacial free energy decreases with domain size. Structural
stability is attained when these two free energies balance and this can be found
by minimising the total free energy with respect to Rd,

2K
R2

d

Nb2
−Nb

χ1/2

R2
d

= 0. (1.6)

giving a typical domain size Rd ∽ bχ1/6N2/3 and minimum free energy Fmin =
(Nχ)1/3. We can see that the domain size is much larger than the typical un-
stretched chain size

√
Nb, hence the chains are indeed strongly stretched away

from the interface. In this theory the polymer chains are assumed to be tightly
packed so that they completely occupy a given geometrical area. Thus with the
right geometrical approach, the free energy of each given morphology can be de-
termined. Hence the stability is assessed by determining which structure gives
the lowest free energy at the minimum. Thus the free energy per chain is turned
into a geometrical problem which is solved using different approaches depending
on the area one is choosing. The phase space developed by Semenov for diblock
in strong segregation limit (SSL)[138] fits well with Liebler’s phase space in weak
segregation limit (WSL)[87].

Olmsted and Milner modified the free energy calculation so that it can in-
clude more complex structures including bicontinuous morphologies [117]. In
their work, they used a wedge as the structural unit to determine the stretching
and interfacial energy of a small region in a given structure. Each morphology
can be considered as a sum over these wedge sub-units.
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The SSL analysis has its limitations when it comes to the accuracy of free
energy analysis of morphologies. Bates et al. [18] recognised SST as a theory
which can simplify the free energy calculation of morphologies to a geometrical
problem that balances two energies. In later years Gemma et al. [50] utilises this
geometrical calculation in SSL to verify the morphological analysis done using
the Monte Carlo method for ABC star terpolymers.

Although this theory offers a simplified framework, the lack of accuracy in free
energy analysis and the need to evaluate each specific geometry on a case-by-case
basis led physicists to develop more general theory, self-consistent field theory
(SCFT), to study polymer phase separation.

Self Consistent Field Theory

So far we discussed two extreme limits of phase separation that can be studied
using the above mentioned theories. In their respective regime both these theories
are valid but as it was demonstrated by Ohta et al. [115], RPA is not valid
in SSL. Likewise owing to the small monomer density fluctuations which are
equivalent to small perturbations in the melt, the strong segregation approach
does not work in WSL. Given this Matsen and Bates developed Self Consistent
Field Theory (SCFT) based on a mean field approach to unify these two regimes
so as to analyse phase separated morphologies [97]. In the simplest possible
terms, SCFT solves for the set of chain configurations for a polymer chain of
a given structure in a potential energy field that acts on each of the monomer
species in that chain. To make the theory self-consistent, the potential energy
field is derived self-consistently from the polymer densities derived from the set
of chain configurations. In practice, this requires an iterative loop until chain
configurations and fields match one another. The SCFT framework has been
the main work-horse for theoretical phase separation owing to its accuracy and
validity in all segregation limits.

This theory has been extensively used by researchers in the last 2 decades
to find and verify different morphologies in block copolymers. A broadly ac-
cessible platform to conduct the SCFT calculations is provided in the work by
Arora et al.[11]. Nap et al. used their initial prediction from RPA to design
the block copolymer structure which was then applied to SCFT to analyse the
morphologies[44, 109, 132]. Quasicrystals and its approximants are also reported
using SCFT technique [33, 75, 141].
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1.3.1 Parallels between polymer phase separation and qua-
sicrystal formation

Considering the theories for polymer phase separation described above, and the
ideas proposed for describing quasicrystal formation in soft matter, it is possi-
ble to note some common features. There is an evident mapping between the
description of pattern formation in terms of the emergence of lengthscales in a
density distribution and polymer melt in weak monomer fluctuations. From vari-
ous theoretical examples listed in the previous section it is understood that stable
quasicrystals are possible if the free energy is designed with two emergent length-
scales in an appropriate ratio. Given that the weak segregation theory predicts
the dominant lengthscale(s) for phase separation, we can potentially design block
copolymers to give quasicrystal-like lengthscale ratios. In that way, we have a
well-oiled framework to study the stability of the emerging morphology and also
its stabilising factors.

In strong segregation limit the monomer domains fill in space to form patterns
that are equivalent to tilings. The theoretical framework of SST offers the study
of phase separation in a geometrical way, filling the available space with domains
of one monomer type or another, which (for two-dimensional patterns) is a tiling.
Since much is already known about aperiodic, quasicrystalline tilings, this frame-
work can be utilised to compare different aperiodic tilings to phase separated
patterns in block copolymers to determine a potentially stable structure.

Thus the two main frameworks for the study of quasicrystals have direct
parallels in theories for polymer microphase separation. When rapid advances
in polymer phase separation happened in the 1980s and ’90s, there were limited
resources and methods known to study complex structures. But now, at the time
of writing this thesis, standing on the shoulders of giants we have at our disposal
several different techniques to understand the phase separation at any scale and
for any complicated block copolymer structure one can think of.

1.4 ABC star terpolymer and its morphologies
We briefly discussed the complexity and potential of multi-component block
copolymers in the previous section. It is clear that even the simplest diblock
offers a highly complex morphological behaviour. So it is interesting to see what
happens if we add one more component to the chain. Three-component block
copolymers are the simplest of the multi-component block copolymers and their
morphological versatility makes them interesting for quasicrystal seekers.

A three-component block copolymer can be composed in two different ways.
One is by adding a new block of type C to one end of the diblock making a
linear ABC triblock chain illustrated in fig. 1.5.(b). Mogi et al.. synthesised
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(a) (b)

Figure 1.5: A schematic representation of (a) ABC star terpolymer and (b)
ABC triblock where three different monomer types are indicated by different
colours. Red: A, blue: B and yellow: C.

such a molecule for the first time in 1992 and initiated the morphological study
of three-component polymer melt [105]. The phase separation of this molecule is
dependent on the sequence of grafting these blocks. Block can have any of these
three sequences ABC, BCA and ACB. The phase separation of this molecule
has been studied theoretically using SCFT [23]: after using the RPA, the initial
composition of the block copolymer knitting like patterns was found.

The second way to include a third block to a diblock is to graft a new block
of type C at the same junction where the A and B blocks meet. This results
in an ABC star terpolymer, a branched block copolymer, illustrated in fig. 1.5.
(a). Synthesising such a polymer chain is not easy, and it was a game-changer
when Fujimoto et al. [49] successfully synthesised the first ABC star terpolymer
in 1992. This terpolymer was synthesised of polystyrene (PS), polydimethylsilox-
ane (PDMS), and polytertbutyl methacrylate (PTBMA). Many researchers sub-
sequently reported more accessible and efficient processes for synthesising ABC
terpolymers from various monomers [66, 67, 69, 85, 121, 145]. The successful
synthesis of these block copolymers has motivated and enabled the exploration of
different morphological structures that can be found. Hadjichristidis et al. stud-
ied star terpolymers synthesised from polystyrene (PS), 1,4-polyisoprene (1,4-PI),
and 1,4-polybutadiene(PB) and reported the melt phase separating into two dif-
ferent microdomains that are arranged in cylinders [54, 69]. The interaction
strength between dienes in this melt is weak, which resulted in the formation of
only two domains during phase separation. Later, star terpolymer melts that can
phase separate into morphologies containing three different microdomains were
reported in the synthesis process of Sioula et al. [59, 143, 145]. In these melts,
the junction point of three microdomains of A, B and C type was the resultant
of the core, and this is the junction where A, B and C meets. It was noted
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from these experimental studies of terpolymer phase separation that these cores
tend to align in straight lines while forming the microdomains [116, 143], so these
microdomains can be viewed as two-dimensional tiles.

These experimental advances piqued the interest of physicists and chemists
to investigate all possible morphologies of ABC star terpolymers. These have six
variables that control its properties: three monomer compositions of A, B and C
blocks and three pairs of interactions between the monomers A and B, B and C
and A and C. These six variables and three microdomains that can be arranged
in different ways offer a plethora of possible morphologies. Here is a brief survey
of the morphologies reported for this polymer system, both experimentally and
theoretically.

Sioula et al. identified phase separation in hexagonal morphology in their star
terpolymer of polystyrene, polyisoprene and polymethyl methacrylate [144]. In
a polymer melt of ABC star synthesised from polystyrene, polybutadiene and
poly(2-vinylpyridine), four different morphologies were observed by varying the
compositions [66]. These four morphologies were reported as different hexago-
nal and tetragonal packing of cylindrical monomer domains. Today we know
that these morphologies are identified as [6.6.6], [8.8.4] and [12.6.4], (this nam-
ing convention will be explained in detail in Chapter 5), morphologies, where
the numbers indicate neighbouring domains [157]. The fourth morphology they
reported is the lamellar phase, which was also found theoretically in the strong
segregation limit [22]. Thus the single core morphologies: [6.6.6], [8.8.4] and
[12.6.4] and lamellar based morphologies were observed in ABC star terpolymer
synthesised from different monomer stoichiometry and chemistry.

The theoretical study of ABC star terpolymer morphologies was pioneered
by Dotera et al. using a Monte Carlo (MC)- based method to search morpholo-
gies [37]. In their extensive work on ABC terpolymers using the diagonal bond
method, they identified many 2D tiling-like morphologies. In their work, ABC
star molecules are modelled as beads connected on a chain [37]. They conducted
simulations of terpolymers varying the composition of one branch while keeping
the other two the same, 1 : 1 : x. They report two classes of morphologies,
those with one type of core and those with multiple cores. They observe fol-
lowing morphologies: lamella+sphere (L+S), [8.8.4], [6.6.6], [8.6.4; 8.6.4; 8.6.6],
[10.6.4; 10.6.4; 10.6.6], [12.6.4], perforated layer (PL), lamella+cylinder (L+C),
columnar piled disk (CPD), and lamella-in-sphere (L-in-S) phases [50] similar as
in fig. 1.4. In this system, strong interactions are considered between the branches
so the phase separation is in SSL. They also compare their simulation results to
the free energy calculated using strong segregation theory. The morphologies
[6.6.6], [8.8.4] were predicted using SCFT calculations too [23].

Morphological studies became more interesting when Matsushita et al. re-
alised that one of the cylindrical morphology observed by Sioula et al. was an
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Archimedean tiling (3.4.6.4) which contains more than one type of domain combi-
nation [143, 156]. It was challenging to locate the exact polymer compositions to
produce the other complex morphologies from the 1D phase space predicted theo-
retically by Gemma et al. so theoretical and experimental studies were combined
to look for more Archimedean tiling-like morphologies. As a result of combin-
ing Monte Carlo simulations with experimental synthesis of block copolymers
of polyisoprene, polystyrene, and poly(2-vinylpyridine), different Archimedean
tilings, including (3.4.6.4) and (3.3.4.3.4) (the so-called Σ−phase) were discov-
ered amongst the morphologies [58, 99, 101, 102, 156]. Closer to the composition
of Σ−phase, quasicrystalline structures were predicted theoretically using the
Monte Carlo method [36] and were later discovered experimentally [58]. In or-
der to vary the composition, the homopolymer polystyrene was blended into the
melt [57, 58]. Their partial phase space for the ABC star block copolymers,
suggests that quasicrystals can be found closer to the region with Σ−phase [36].

Other combinations of monomer varieties also resulted in a single type of
domain core and multiple types of domain core morphologies. The ABC star
terpolymer melt with other monomer types, (polyisoprene, polystyrene and poly-
ferrocenylethylmethylsilane) also produced similar morphological features to the
terpolymers synthesised by Matsushita lab [5, 84, 114]. Recently ABC terpoly-
mers were synthesised with polyisoprene, polystyrene and poly(methyl methacry-
late) arms, which gave lamellar morphology at weak segregation and cylindrical
square patterns in strong segregation limit [10]. From a physical modelling per-
spective, the change in monomer type is understood as the change in interaction
strengths between the monomers.

Following these advances in the morphological studies of ABC star terpoly-
mers, other theoretical frameworks were developed to study phase separation.
Another Monte Carlo-based simulation, using dissipative particle dynamics, was
employed for morphological studies which also reported the Σ−phase [27, 63, 81].
This framework enables the study of 3D morphologies like bicontinuous structures
and different lamellar combinations. Another well established theoretical frame-
work is SCFT, introduced previously. Using SCFT, all known morphologies both
2D and 3D are obtained for ABC star terpolymer [75, 89, 91, 168, 173]. Using
SCFT elaborative phase spaces are reported for 2D morphologies in ABC star
terpolymers with equal interactions Nχ between the monomers [91]. Morpholo-
gies of ABC star with unequal interaction strength between monomers are also
studied using SCFT and corresponding phase space is created [75].
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Morphologies Gemma
and Dotera
(DBM,
MC)
[36, 50]

Tang
and Qiu
(SCFT)
[159]

Huang
and Fang
(DPD)
[63]

Qui
and Shi
(SCFT)
[91]

Kirkensgaard
et al.
(DPD) [81]

[6.6.6]
[8.8.4]
[12.6.4]
[8.6.4;8.6.4;
8.6.6]
[10.6.4;10.6.4;
10.6.6]
[10.8.4;10.6.4]
(3.3.4.3.4)
[8.6.4;8.8.4;
12.6.4;12.8.4]
[8.6.4;10.6.4]
[14.6.4;14.4.4]
Lamellae +
Sphere (L+S)
Lamellae +
Cylinder
(L+C)

Table 1.1: A summary of morphologies in ABC star terpolymer that have
been reported using different computational methods. Green cells indicate the
morphology reported by the corresponding authors.

As it has been pointed out, apart from three prominent single core morpholo-
gies: [6.6.6], [8.8.4] and [12.6.4], there are many multi-core morphologies that are
observed in ABC star terpolymer phase separation. Depending on the branch
composition and interaction strength, there can be many other possibilities for
morphological structures. It is nearly impractical to determine the stable struc-
ture for given compositions and interaction strengths with limited options of mor-
phologies. In order to determine the stable structure we need a catalogue of all
possible topologies and geometries of three domains such that they will always
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have a core shared between them. Close to this catalogue is the list of mor-
phologies that Kirkensgaard et al. presented using the Spoke method [81]. They
reported some new morphologies by considering monomer domains as foams [81]
which were studied using Evolver [2] and using the Dissipative Particle Dynamics
(DPD) method [27].

A survey of prominent morphologies observed so far in ABC terpolymer and
the method used is listed in table 1.1.

There are many versions of phase spaces for ABC star morphologies. The
molecule is difficult to synthesise, and simulations can also be computationally
demanding if the branch lengths/monomer compositions are allowed to vary. So
as a result, mainly linear phase spaces are created by constraining the composi-
tions of two types of monomers to be equal and varying the composition of the
third monomer [27, 50, 173]. There are relatively few ternary phase space calcu-
lations varying all three branches, but some examples have been reported using
the SCFT formulation [75, 91].

Quasicrystals observed using different methodologies listed above ought to be
metastable [36]. The calculations that reported stable quasicrystals were either
driven by an external stimulus or had a finely tuned free energy potential. Ex-
perimentally quasicrystals appear with many defects in the structure, but still
with diffraction patterns with 12 equidistant peaks [57]. This brings us back to
the question of what makes quasicrystals stable. Dotera suggests a study of the
stability of these morphological systems using a Mermin and Troian type mean
field theory [34]. Even then, there are discrepancies in the stability analysis be-
tween different theoretical frameworks when it comes to multi-core morphologies.
The stability of quasicrystalline structures formed in block copolymers can be
assessed using different options: phase separation studies or field theories. Hence
it is promising to combine the morphological features of block copolymers and
question of stability starting with ABC star terpolymer.

While ABC star terpolymers makes interesting morphologies they can be
utilized for different applications too. It is theoretically predicted that polymeric
quasicrystals can be utilised for photonic applications [162]. The topological
features of ABC star terpolymers are also utilised in solid-state batteries [150].

1.5 Thesis Outline
Overall the theme of this thesis is to combine the stability analysis of quasicrystals
with block copolymer phase separation. As explained in the previous sections, the
stability of quasicrystals is a puzzle that is yet to be explained. Block copolymer
phase separation is a suitable system to apply both the two lengthscale theory and
tiling theory to investigate the stability of resulting patterns. We aim to design
block copolymer architectures that will self assemble into stable quasicrystalline
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structures on phase separation. This thesis covers two methodologies for the
study of phase separation. In the first, we study density fluctuations in block
copolymer melts to check if two lengthscales emerge in them such that their ratio
is favourable to form quasicrystalline structures. This is done at the point of onset
of phase separation in the WSL using RPA. In the second method, morphologies
formed in ABC star terpolymer melt are compared to 2D tilings at a strong
segregation limit using a novel method we developed based on flexible polygons.
The structure of the thesis is elaborated below.

In chapter 2 we look at block copolymer melts at the early stages of segrega-
tion. The polymer melt is taken as a homogeneous mixture where fluctuations
between the monomers drive them into polymer phase separation. We consider
two classes of block copolymers here: linear block copolymer chains with two
components and three component ABC star terpolymers. The linear chains are
composed of three types of blocks; a long block of type A, smaller chains of
type A and smaller chains of type B. We propose two different ways to design
these linear chains such that they will induce phase separation with two different
lengthscales. In one method we use monodisperse alternating blocks of type A
and B along with one long A type block in one end. In the other, we mimic
polydispersity through a selective polymerising model with a random collection
of these three blocks. We apply the RPA to both these families of block copoly-
mers and to ABC star terpolymers, to determine the scattering factor and hence
the prominent wavelengths that emerge at phase separation. For all the models,
we identify the compositions for which two lengthscales emerge.

In Chapters 3-6 we focus on ABC star terpolymer and its morphologies in
the strong segregation limit.

In Chapters 3 and 4 we introduce the concept of strong segregation theory
in the context of ABC star terpolymers. Here combine the concept of tilings
and 2D patterns with SST to study different morphologies. We introduce a
flexible hexagonal motif, which we call a strongly segregated polygon (SSP), which
contains three domains and their common junction point at the core. Boundary
conditions and matching protocols are applied to SSPs to assemble them into the
different morphologies available for ABC star terpolymers. We assign periodic
boundary condition on the structure as a whole. The SSP contains the geometric
structure of the phase separated pattern and SST allows us to calculate the
free energy for a particular configuration. This free energy of the morphology
depends on the monomer compositions and the interaction parameters of the
terpolymer. In Chapter 3 we devise the theoretical framework for the study of
phase separation using SSP. In chapter 4 we discuss the computational tools that
were developed to apply the SST framework on different morphologies. From a
literature survey of ABC star morphologies, it is clear there are inconsistencies
in results reported, depending on the morphologies and methodologies used. The
multi-core morphologies need to be screened in strong segregation limit to create
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a complete phase space. Using our tools, the SSPs can form any morphology
without any modification, and single-core structures and multi-core structures
can be treated using the same method, irrespective of their periodicity.

In Chapter 5, 2D morphologies that are experimentally observed in ABC star
terpolymer phase separation are analysed using our SSP framework. We analyse
the following morphologies in this chapter to create a phase space for ABC star
terpolymers: [6.6.6], [8.8.4], [12.6.4], [8.6.4; 8.6.4; 8.6.6] and [10.6.4; 10.6.4; 10.6.6].
For each morphology, an initial configuration is designed, which then will undergo
structural variation, varying the shape of each SSP constrained by the geometry
to find the optimal structure with the lowest free energy. All six variables: three
monomer compositions and three interaction strengths can be varied without
any constraints. Hence the stable structure is determined by comparing different
morphologies at a given monomer composition and a phase space is created from
the available morphologies. This chapter also covers the morphological analysis
and phase space for ABC terpolymer melts with unequal interaction strengths
between branches.

In Chapter 6, we demonstrate the versatility of our SSP framework by analysing
complex morphologies involving squares and triangles that can potentially have
approximate 12-fold rotational symmetry. Here we devise a systematic way to
arrange dodecagons composed of squares and triangles so that they form periodic
approximants to 12-fold quasicrystals. We investigate the morphological stability
of the Σ−phase and six other types of square-triangle tiling arrangements. The
aim is to detect their presence in the ABC terpolymer phase space. We compute
the Fourier space of these structures to identify the lengthscales present in them.

We conclude in Chapter 7 with significant observations on phase separation
from our two investigations. We report potential block copolymer architectures
that can phase separate into structures with two lengthscales with quasicrystal-
friendly ratios. We also report ternary phase spaces for ABC star terpolymer
with our novel framework that agrees with existing literature. The Σ−phase is
the closest to quasicrystals we find in our phase spaces. From the overall analysis,
it is interesting to find that in the ternary phase spaces of ABC star terpolymers,
the region where two lengthscales are reported in chapter 2 and the region where
we find Σ−phase in chapter 6 are entirely different.
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Chapter 2

Weak Segregation Approach for
Phase Separation

Phase separation in block copolymers is controlled by their branch lengths and
monomer interactions. From extensive literature on polymer phase separation
demonstrated in Chapter 1, it is obvious that phase separation is studied using
different theories depending on the strength of monomer interactions [87, 98, 138].
Incompatibility between different monomer types is characterised by the Flory
interaction parameter χ which quantifies these monomer interactions. In a weak
segregation regime, for low χ values, monomer interactions are strong enough to
amplify density fluctuations leading to phase separation.

Phase separation theory based on density fluctuations can be utilised to pre-
dict the lengthscales that will arise due to phase separation. In the quest to
find the appropriate window for stable quasicrystals in block copolymers, weak
segregation theory can provide a head start by predicting stabilising free energy
and length scales for a given architecture. Phase separation in a polymer system
is indicated by the divergence of its structure factor at the corresponding wave
number. Leiber [87] demonstrated how to determine the structure factor us-
ing Random Phase Approximation (RPA) for diblocks. This chapter covers the
technique of (RPA) for two-component and three-component block copolymer
systems, focusing on two families of block copolymer architecture. In this chap-
ter we are interested in developing a simplified model to predict block copolymer
architectures that can phase separate in two lengthscales. Some of these resulting
architecture have the potential to form quasicrystalline morphologies.
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2. Weak Segregation Approach for Phase Separation

2.0.1 Brief review of polymer statistics
A polymer chain can be characterised by its end-to-end vector R, the vector sum
of bond lengths in a chain. A monomer unit is a section of the polymer chain
with a certain number of chemical monomers less than the whole polymer chain.
In a polymer chain, the angle between neighbouring bonds is fixed. For example,
in polyethylene, this angle is 68◦ [128]. Each bond has freedom of rotation which
increases by each bond along the chain. After a certain number of steps, the
section of the polymer chain is highly flexible and is essentially a random walk.
The number of steps required for a composite step to be random is different for
different monomer types. If Nbonds bonds of effective bond lengths b make the
chain flexible and random then the monomer unit consists of Nbonds+1 monomers
in it. A polymer chain is a long string of monomer units as shown in fig. 2.1 and
its length is characterised using the end-to-end vector R.

For a polymer chain indicated by α, the length of the chain is given by its
end-to-end vector R. Random orientations of monomer units in polymer chain
result in an average of end-to-end vector over all polymer conformations (⟨..⟩) to
be zero:

⟨R⟩ = 0. (2.1)

Figure 2.1: Schematic representation of a polymer chain consisting N monomer
units. Each small chain between the dots represents a monomer unit and they
are completely flexible to one another. The position vector of each monomer unit
is given by rl and xl,l′ = rl′ − rl is the separation vector between monomer unit
l and l′.
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We therefore use the root-mean-square of the end-to-end vector to characterise
the polymer chain length. For a long polymer chain of N monomer units of
effective bond length b root mean square of end-to-end vector [128] is

⟨R2⟩ = Nb2. (2.2)

This expression suggests a relation between the length and number of monomer
units in a polymer chain that is later used for scaling the wave number q. In the
Gaussian coil model, rl (l = 0, . . . , N), is the position vector for each monomer
unit: in fig. 2.1, the section of monomers connecting two adjacent dots is a
monomer unit. To find the end-to-end vector for a chain we take two monomer
units at l and l′ in the chain with position vectors rl and rl′ . Then the separation
vector xl,l′ = rl′ − rl. From eq. (2.1) and eq. (2.2) we know that

⟨xl,l′⟩ = 0

⟨x2
l,l′⟩ =| l′ − l | b2.

(2.3)

Since xl,l′=(xl,l′ , yl,l′ , zl,l′), and x, y and z obey the same statistics they each have
zero mean and

⟨x2l,l′⟩ = ⟨y2l,l′⟩ = ⟨z2l,l′⟩ =
| l′ − l | b2

3
. (2.4)

The separation vector is the sum of independent random variables. Hence the
probability distribution for the separation vector can be obtained from the Central
Limit Theorem which will be a Gaussian distribution [32]. Thus the distribution
of monomer units in a polymer melt, Φ is given by

Φ(xl,l′) =

(
3

2π | l′ − l | b2

) 3
2

exp

( −3x2
l,l′

2 | l′ − l | b2

)
. (2.5)

2.1 Random Phase Approximation
The Random Phase Approximation (RPA) can be used to obtain scattering prop-
erties and subsequently free energy of morphologies for polymer systems. It can
be used to determine the limits of stability for a homogeneous system (the spin-
odal) or to construct free energy which can be minimised to obtain the most
stable state. The method was introduced by Pines et al. [113], where they dealt
with coherent and incoherent electron density fluctuations. Later it was used by
De Gennes [31] to extract the relation between polymer density fluctuations and
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scattering. Leibler [87] used this method to explain the phase transition in block
copolymer melts using diblocks. In the case of polymers, the polymer density
changes in response to a potential on the monomers. This potential could ei-
ther be an externally applied potential or a self-consistent potential due to the
interaction between monomers themselves. The RPA treats the response of a
polymer system to either of these potentials. Hence, RPA is used to calculate
the structure factor for concentrated polymer solutions like polymer blends and
melts which have interaction between the monomers. In RPA the polymer sys-
tem is treated without any interaction at first and then interactions are added
in a self-consistent manner. The second order term in the free energy expan-
sion in Liebler’s work gives the critical wave number q∗ at the phase transition
which determines the dominant lengthscale. Once the transition wave number is
obtained, the detailed structure and amplitude of phase separation are obtained
from the higher order terms in the free energy. In this work, we are interested
in finding if there are more than one critical wave number with quasicrystal-like
wave number ratios at the phase transition. Hence we will only be dealing with
the second order term in the weak segregation free energy term.

In addition, one can determine the structure factor of a polymer blend from
its density fluctuations. In the weak segregation limit, density fluctuations due
to the inter-monomer interactions drive the polymer blend toward phase sepa-
ration but even before phase separation, density fluctuations are increased. The
phase separation in polymer blends can be detected by scattering suitable radia-
tions through the polymer blend, for eg: Small Angle X-ray scattering (SAXS)
or Small Angle Neutron Scattering (SANS). The structure factor of the mate-
rial gives structural information such as lengthscale, molecular arrangement, etc.
We will discuss the calculation of structure factors for different block copolymer
systems in the coming sections.

2.1.1 RPA for a single component polymer system
Polymer systems consisting of only one kind of monomer are called homogeneous.
Monomer density at position r from lth monomer unit in the polymer chain α is
defined by delta function δ(r−rα

l ). Overall monomer density at r from all chains
is defined as the sum of delta functions over l = 0, . . . , N and α = 1, . . . , nc, where
nc is the total number of chains. Monomer density ρ(r) at position r is defined
as

ρ(r) =
∑
α,l

δ(r − rα
l ). (2.6)

Applying the Fourier transform, the transform of polymer density will be

ρq =

∫
exp(iq · r)ρ(r)d3r (2.7)
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which gives
ρq =

∑
α,l

exp(iq · rα
l ). (2.8)

The structure factor S(q) for wavevector q is given by the second moment of the
density fluctuation[32].

S(q) = ⟨ρqρ−q⟩ (2.9)

Here the average is taken over all monomer units. From eq. (2.8) we get ρqρ−q as

ρqρ−q =
∑
α,l
α′,l′

exp(iq · (rα
l − rα′

l′ )) (2.10)

For dilute polymer solutions where the mutual interaction between the monomer
units is negligible, there is no correlation between the chains α and α′. Hence,

⟨exp(iq · (rα
l − rα′

l′ ))⟩ = 0 if, α ̸= α′. (2.11)

because when we average over all chain positions the phases q · rα
l and q · rα′

l′ are
completely random. Hence the structure factor depends only on contributions
from monomers in the same chain which gives

S(q) = ⟨ρqρ−q⟩ =
∑
α
l,l′

⟨exp(iq · (rα
l − rα

l′ ))⟩ =
N∑
α
l,l′

⟨exp(iq · xα
l,l′)⟩. (2.12)

For an ideal random walk polymer by properties of Gaussian function [32]

⟨exp(iq · xα
l,l′)⟩ = exp(−1

2
q2⟨xαl,l′

2⟩). (2.13)

We have ⟨xαl,l′2⟩ from eq. (2.4). Substituting it to the above expression we get
the structure factor of a monomer unit expressed in terms of the step length and
wave number,

S(q) =
N∑
α,
l,l′

exp

(
−q

2 | l′ − l | b2

6

)
. (2.14)

In order to consider the structure factor in a continuous approximation the sum-
mation is converted into integration. If the function f(l, l′) is to be made contin-
uous where 0 ≤ l ≤ N and 0 ≤ l′ ≤ N , then we introduce x = l

N
and y = l′

N
.
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This allows to write the summation of f(l, l′) as

N∑
α
l,l′

f(l, l′) = nc

∫ N

0

∫ N

0

f(l, l′)dldl′

= ncN
2

∫ 1

0

∫ 1

0

f(l, l′)dxdy.

(2.15)

Here α is summed over the total number of chains nc. Using this the structure
factor is rewritten as

S(q) = ncN
2

∫ 1

0

∫ 1

0

exp

(
−q

2b2N | x− y |
6

)
dxdy (2.16)

Figure 2.2: The Debye function FD(Q
2) with as a function of Q.

The dimensionless wave number Q is defined as Q2 = Nb2

6
q2. Wave number

q is scaled with the number of monomer units in a chain N and effective bond
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length b over a factor of 6.

S(q) = ncN
2

∫ 1

0

∫ 1

0

exp
(
−Q2 | x− y |

)
dxdy

= ncN
2 2

Q4

(
exp (−Q2) +Q2 − 1

)
.

(2.17)

In the structure factor, the quantity ncN
2 can be written as ncN

2 = ΩρN , where
Ω is the system volume and ρ = ncN/Ω is the monomer unit density. This
prefactor ΩρN is very common in calculations of the structure factors. The
Debye function FD(Q

2) is defined as [31],

FD(Q
2) =

2

Q4

(
exp (−Q2) +Q2 − 1

)
. (2.18)

The behaviour of Debye function with respect to the normalised wavenumber Q
is given in fig. 2.2. For small values of Q < 1 the function approaches 1 and at
large Q (Q ≫ 1) the function approaches zero

(
FD ≈ 2

Q2

)
. The structure factor

S(q) is written in terms of Debye function FD(Q
2) as

S(q) = ncN
2FD(Q

2) (2.19)

Here we are determining the structure factors for dilute, non-interacting chains.
For more concentrated systems we need to include interactions. We have already
mentioned that the separation vector xl,l′ for random monomer units can be
assumed to follow a Gaussian distribution as given in eq. (2.5). This is true for
the case of monomer density ρ too since it is defined by the positions of monomer
units.

We saw that the density distribution of monomer unitρq can be expressed
using the correlation between density corresponding to two monomer units. In
the absence of interaction, these monomer units are free to move anywhere with
in the chain. It is not possible to distinguish between monomer units from the
same chain or a different chain. So monomer density fluctuations can be written
as,

⟨ρq⟩0 = 0,

⟨ρqρk⟩0 = ⟨ρqρ−q⟩0δqk.
(2.20)

when q ̸= 0 and δqk is the Kronecker delta. Here q and k indicate wave number
corresponding to two monomer units. Given there are no monomer interactions,
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monomer unit distribution in the melt the can be taken as a Gaussian distribution.
From the constraints in eq. (2.20) the Gaussian distribution of monomer density
in the second order approximation with no monomer interactions will be

ψ0 ({ρq}) ∝ exp

(
−1

2

∑
q

ρqρ−q

⟨ρqρ−q⟩0

)
. (2.21)

This distribution is a sum over all possible configurations of the monomer density
and hence this relates to the entropy of the system.

Now let us consider if there are interactions between these correlating monomer
units. The internal potential energy of the system in terms of kBT is also de-
pendent on the position of monomer units. For a homogeneous system if the
potential energy between two monomer units that are separated by r = rα

l − rα′

l′

is v(r) = kBTV (r) (where kB is Boltzmann’s constant and T is the temperature).
Then the total internal energy is given by

U{ρq}
kBT

=
1

2

∑
α,l
α′,l′

V (rα
l − rα′

l′ )

=
1

2Ω

∑
q

Vqρqρ−q.

(2.22)

Detailed derivation for eq. (2.22) is given in appendix A.1.
Here, Vq is the Fourier transform for the internal energy V (r). We have both

free energies of the system due to monomer interactions and entropy of the system
due to the rearranging of monomer units in Fourier space.

The potential energy associated with monomer interactions is short-ranged
with V (r) ≊ 0 for |r| > a, where a is in the order of monomer size. So, for
|q| ≪ 1

a
Fourier transform Vq is constant and independent of q.

Vq =

∫
d3rV (r) exp(iq · r) ≈

∫
V (r)d3r = V0. (2.23)

Thus total internal energy in terms of kBT is

U{ρq} =
1

2Ω
V0
∑
q

ρqρ−q. (2.24)

Now we have the entropy of the melt from its conformations and internal energy
in terms of kBT associated with it the partition function can be defined. When
we define the partition function for a polymer system, a microstate (j) represents
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2. Weak Segregation Approach for Phase Separation

a specific conformation formed by the chains. The partition function of this
homopolymer system is given as a sum over microstates (j):

Z =
∑

states j

exp (−U({ρjq})). (2.25)

Here ρjq is the Fourier transformed density in microstate j and {ρjq} represents
it for all values of wavevectors q. The infinite(very large) number of chains
available in the melt allows us to calculate partition function considering this
as a continuous system. The free energy calculation as a function is of ρq is
proceeded by introducing delta functions for each density field ρq :∫

D{ρq}
∏
q

δ(ρq − ρjq) = 1. (2.26)

So the partition function Z can be written as,

Z =
∑

states j

∫
D{ρq}

∏
q

δ(ρq − ρq) exp (−U({ρq})). (2.27)

Rearranging the summation and product we get

Z =

∫
D{ρq}

∑
states j

∏
q

δ(ρq − ρjq) exp (−U({ρq})). (2.28)

Here
∫
Dρq is the integral over ρq for all allowed q. The quantity

∑
j

∏
q δ(ρq−ρjq)

can be considered to be a sum which counts all the microstates j for which ρjq = ρq
for all q. This sum is equal to the total number of microstates Ws multiplied by
the probability that ρjq = ρq, which is ψ0 ({ρq}) given in eq. (2.21). Hence,

∑
j

∏
q

δ(ρq − ρjq) = Wsψ0 ({ρq}) . (2.29)

So we can write:

Z = Ws

∫
D{ρq}ψ0 ({ρq}) exp (−U({ρjq})). (2.30)

where U is in terms of kBT . Thus we have expressions for internal energy and
monomer distribution ψ0. Substituting for ψ0 eq. (2.21) and U eq. (2.22) in the
above expression we get partition function for the system in terms of monomer
density ρq in Fourier space.
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2. Weak Segregation Approach for Phase Separation

Z = Ws

∫
D{ρq} exp

(
− 1

2Ω

∑
q

V0ρqρ−q

)
exp

(
−1

2

∑
q

ρqρ−q

⟨ρqρ−q⟩0

)

= Ws

∫
D{ρq} exp

(
−1

2

(∑
q

ρqρ−q

(
V0
Ω

+
1

⟨ρqρ−q⟩0

)))
.

(2.31)

Here ρqρ−qV0

Ω
gives the energy term and ρqρ−q

⟨ρqρ−q⟩0 gives the entropy of the system
up to second order approximation. Now we have the expression for the partition
function, the free energy functional F{ρq} is given by

Z =

∫
D{ρq} exp (−F{ρq}). (2.32)

From eq. (2.31), we get the second order terms of free energy in terms of ρq.
The partition function gives all possible distributions of monomer densities in the
presence of interactions which is equivalent to the polymer distribution function
with interaction ψv({ρq}) which we obtained in eq. (2.21).

ψv ({ρq}) ∝ exp

(
−1

2

∑
q

ρqρ−q

(
Vq
Ω

+
1

⟨ρqρ−q⟩0

))
. (2.33)

Comparing with eq. (2.21) the second moment of monomer density with inter-
action is ⟨ρqρ−q⟩. As we mentioned earlier average over the conformations for
monomer fluctuations. the structure factor S(q) is

S(q) = ⟨ρqρ−q⟩ (2.34)

Now from eq. (2.31) in the presence of interaction, the second moment of monomer
density is

⟨ρqρ−q⟩ =
1(

1
⟨ρqρ−q⟩0 +

V0

Ω

) . (2.35)

In terms of structure factors, we have

S(q) =

(
1

S0(q)
+
Vq
Ω

)−1

. (2.36)

where S0(q) = ⟨ρqρ−q⟩0, the structure factor in the absence of interactions. The
potential energy V0 depends upon the type of monomers. As the polymer system
is homogeneous V0 contains the monomer interactions of the same type. Now if
there are more types of monomers S(q) will change as V0 will contain the mutual
interaction between like monomers and unlike monomers.
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2. Weak Segregation Approach for Phase Separation

2.1.2 RPA for incompressible polymer system with two
components

When the polymer system consists of more than one type of monomers the struc-
ture factor depends on the density fluctuation of both monomer densities. We
will now consider two different monomer densities, ρAq for type A monomers and
ρBq for type B monomers. The structure factor for the polymer system is calcu-
lated using the RPA method as explained in the last section. From eq. (2.8) the
monomer densities of A and B are given by

ρAq =
∑

{α,l}∈A

exp(iq · rα
l )

ρBq =
∑

{α,l}∈B

exp(iq · rα
l ).

(2.37)

In the absence of interactions, the monomer densities satisfy the following con-
ditions, similar to the single component system as given in eq. (2.20). Monomer
units have no correlation with themselves and since it is a homogeneous melt
monomer units from different chains are indistinguishable in them. This results
in three types of density fluctuations between A− A, B −B and A−B.

⟨ρAq ⟩0 = 0,

⟨ρBq ⟩0 = 0,

⟨ρAq ρAk ⟩0 = ⟨ρAq ρA−q⟩0δqk,

⟨ρBq ρBk ⟩0 = ⟨ρBq ρB−q⟩0δqk,

⟨ρAq ρBk ⟩0 = ⟨ρAq ρB−q⟩0δqk.

(2.38)

Comparing with one component case, we can write the non-interacting structure
factors from these density correlations as:

SAA
0 = ⟨ρAq ρA−q⟩0,

SBB
0 = ⟨ρBq ρB−q⟩0,

SAB
0 = ⟨ρAq ρB−q⟩0 = SBA

0 .

(2.39)
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The non-interacting structure factor S0(q) is a two by two matrix here:

S0(q) =

SAA
0 SAB

0

SAB
0 SBB

0

 . (2.40)

This allows us to interpret the distribution function as a Gaussian for a two
component system. Following the expression for monomer distribution from
eq. (2.20), the expression for two component systems will be:

ψ0({ρAq , ρBq }) ≈ exp

−1

2

∑
q

[
ρAq ρBq

]
S−1
0 (q)

ρA−q

ρB−q


 (2.41)

Here also we take the Fourier transformed potential due to monomer interactions
V0 as a constant. Since there are two different monomer interactions we need to
define different potentials for A−A, B−B and A−B interactions namely, VAA,
VBB and VAB. The total internal energy U({ρAq , ρBq }) in terms of kBT is then
given:

U({ρAq , ρBq }) =
1

2Ω

∑
q

[
ρAq ρBq

]VAA VAB

VAB VBB


ρA−q

ρB−q

 . (2.42)

As the interaction energy and the distribution function are defined, the partition
function is calculated to find the second order term in free energy expression.
Following the procedure as in one component system, we get

Z = Ws

∫
DρAqDρ

B
q ψ0({ρAq , ρBq }) exp

(
−U({ρAq , ρBq })

)
. (2.43)

whereWs indicates the total number of microstates. Here the partition function is
dependent on both ρAq and ρBq . For polymer melts we consider the incompressible
state where the total monomer density is constant throughout the volume.

ρA(r) + ρB(r) = const. (2.44)

=⇒ ρAq = −ρBq = ρq. (2.45)

After applying the constraints and substituting eq. (2.41) and eq. (2.42) to eq. (2.43)
we get the partition function in terms of single monomer density ρq, which is de-
pendent on wavevector q.
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Z =Ws

∫
Dρq exp

(
−1

2

∑
q

(
ρqρ−q

(
VAA + VBB − 2VAB

Ω
+

SAA
0 SBB

0 − (SAB
0 )2

SAA
0 + SBB

0 + 2SAB
0

))) (2.46)

For a polymer melt system if the average of the total potential is given by V
and small perturbation to that potential because of the monomer interactions
are ϵAA,ϵBB and ϵAB we get

VAA = V + ϵAA

VBB = V + ϵBB

VAB = V + ϵAB

(2.47)

Even if interaction potentials VAA, VBB and VAB are very large VAA + VBB −
2VAB will be finite . Here the Flory interaction parameter χ is introduced, which
gives the relative degree of interaction between monomers.

−2χ

ρ
= ϵAA + ϵBB − 2ϵAB = VAA + VBB − 2VAB (2.48)

The non-interacting structure factor S0(q) for two component system is then

S0(q) =
SAA
0 SBB

0 − (SAB
0 )2

SAA
0 + SBB

0 + 2SAB
0

. (2.49)

When calculating structure factors such as SAA
0 , the result is always found to

be proportional to a factor of ΩρN , where Ωρ is the monomer density of the melt
and N is the number of monomer units in a polymer chain. It is convenient to
write SAA

0 = ΩρNsAA
0 , so that S0(q) = ΩρNs0(q), where

s0(q) =
sAA
0 sBB

0 − (sAB
0 )2

sAA
0 + sBB

0 + 2sAB
0

. (2.50)

Thus free energy functional up to the second order in density fluctuations (in
units of kBT ) is

F{ρq} =
1

2

∑
q

(
ρqρ−q

(
−2χ

Ωρ
+

1

ΩρNs0(q)

))
. (2.51)
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So total structure factor is then:

S(q) =

(
1

ΩρNs0(q)
− 2χ

Ωρ

)−1

=

(
1

S0(q)
− 2χ

Ωρ

)−1

. (2.52)

So from the RPA of a two-component system, we get an expression similar to
eq. (2.36), where instead of Vq we have 2χ

ρ
, which gives quantifies the interac-

tion between different types of monomers in the melt. In two-component cases,
there are multiple monomer density fluctuations which will give rise to a critical
wavevector at which phase separation emerges. When χ is increased and reaches
the critical value (χc) in eq. (2.52), the structure factor S(q) diverges at the crit-
ical wavevector q = q∗. This is the spinodal point at which the phase separation
is initiated. As χ increases past the spinodal point phase separation occurs [128].
The spinodal point is determined from

Nχc =
1

2max(s0(q))
(2.53)

Non-interacting structure factor for a diblock

Figure 2.3: A schematic representation of a diblock copolymer. Block of A type
occupies fA, and block of B type occupies fB of the total length.

The calculation of non-interacting structure factor and critical wave number
q is demonstrated considering a diblock. A diblock comprises polymer chains of
two types namely, A and B joined at the centre. Let NA and NB be the number of
monomer units in each block, occupying fA and fB length fractions, respectively.
Here the total number of monomer units in a chain is N = NA+NB. Then length
fractions are expressed as:

fA =
NA

N
; fB =

NB

N
. (2.54)

In order to calculate the non-interacting structure factor S0(q) we need to
calculate sAA

0 , sBB
0 and sAB

0 for this particular polymer architecture. Using the
same steps used in finding the structure factor for a homogeneous system one
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can calculate the structure factor for each block separately. For A block, non-
interacting structure factor SAA

0 as a function of normalised wave number Q2 =
q2Nb2

6
is

SAA
0 = ⟨ρA−qρ

A
q ⟩ = ncN

2

∫ fA

0

∫ fA

0

exp
(
−Q2 | x− y |

)
dxdy

= ncN
2f 2

AFD(fAQ
2).

(2.55)

This expression is similar to the structure factor for the homogeneous system
S(q) eq. (2.19) but here we are only considering the monomer density fluctuations
of A type. It is indicated by length fraction fA in SAA

0 . In the same manner, the
non-interacting structure factor for the B block is calculated. The only difference
in the expression is fB replacing fA. So,

SBB
0 = ncN

2f 2
BFD(fBQ

2). (2.56)

Due to the presence of two different types of monomers in the same chain, there
will be interactions between A and B monomer units. This introduces structure
factor in the absence of any external interaction SAB

0 , which is given by

SAB
0 = ⟨ρA−qρ

B
q ⟩ = ncN

2

∫ fA

0

∫ 1

fA

exp
(
−Q2 | x− y |

)
dxdy. (2.57)

Substituting x = fA −X and y = fA + Y and using fA + fB = 1 we get

SAB
0 = ncN

2

∫ fA

0

dX

∫ fB

0

dY exp
(
−Q2(X + Y )

)
=
ncN

2

Q4
(exp(−fAQ2)− 1)(exp(−fBQ2)− 1)

= ncN
2fAfBh(fAQ

2)h(fBQ
2).

(2.58)

In this expression, a new function is defined,

h(x) =
1

x
(1− exp(−x)) (2.59)

which will be seen and discussed in detail in later sections where we determine
the structure factor for more complex architectures.

Expressions for SAA
0 , SBB

0 and SAB
0 are substituted into the expression for

non-interacting structure factor for two-component system S0(Q) in eq. (2.49).
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Figure 2.4: In the left the non interacting structure factor S0(Q) for AB block
copolymer is varied with normalised wave vector Q for fA = 0.5. The S0(Q) for a
diblock has maxima at Q = 2 as we are considering the radius of gyration twice
the size of one block. The variation of total structure factor S(Q) with Nχ where
fA = fB = 0.5. As the Nχ is increased the total structure factor diverges at
Q = 2 indicating phase separation.

This will give the overall non-interacting structure factor as a function of nor-
malised wave number Q. The non-interacting structure factor is for diblock where
fA = 0.5 and fB = 0.5 is given in fig. 2.4.(a). The non-interacting structure factor
S0(Q) has a maximum at Q ≈ Q∗. This indicates that the melt segregates into
some morphology where the prominent wave number is Q∗. The total structure
factor given in eq. (2.52) will diverge at this wavevector. Hence the Flory inter-
action parameter Nχ of the melt during the phase formation is obtained using
eq. (2.53). Total structure factor (S(Q)) eq. (2.52) diverges at wave number Q∗
and Nχ as shown in fig. 2.4 indicating phase separation. The most common
morphology for diblock with comparable A and B length fractions is lamel-
lar. They also give other complex morphologies like quasicrystals under specific
conditions[12, 33].

2.1.3 RPA for 3 component system
This section covers the same idea of phase separation but now for a three-
component system. The procedure to determine the non-interacting structure
factor is similar to a two-component system. The only difference is that the
structure factor matrix is now 3 × 3 given there are three kinds of monomer
densities.

For a polymer system with three components, monomer unit densities in
Fourier space are ρAq , ρBq and ρCq for A, B and C type monomers respectively.
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Following the same procedure as the two-component case, first the monomer unit
distribution ψ0

(
{ρAq , ρBq , ρCq }

)
is defined in the absence of interactions. If S0(q)

is defined as the matrix of non-interacting structure factors, the monomer unit
distribution function is given as

ψ0

(
{ρAq , ρBq , ρCq }

)
= exp

−1

2

∑
q

[
ρAq ρBq ρCq

]
S−1
0 (q)


ρA−q

ρB−q

ρC−q,



 (2.60)

where

S0(q) =


SAA
0 SAB

0 SAC
0

SAB
0 SBB

0 SBC
0

SAC
0 SBC

0 SCC
0

 . (2.61)

Similar to the case of the two-component system it is convenient to take out the
factor of ΩρN so that

S0(q) = ΩρN


sAA
0 sAB

0 sAC
0

sAB
0 sBB

0 sBC
0

sAC
0 sBC

0 sCC
0

 . (2.62)

As we are using the inverse of the non-interacting structure factor in the expres-
sion we determine the inverse of this 3× 3 matrix and each entry is identified as
Γij.The inverse of matrix S0(q) is given as

S−1
0 (q) =

1

ΩρN


ΓAA ΓAB ΓAC

ΓAB ΓBB ΓBC

ΓAC ΓBC ΓCC

 . (2.63)
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The internal energy functional U
(
{ρAq , ρBq , ρCq }

)
is of the form

U
(
{ρAq , ρBq , ρCq }

)
kBT

=
1

2Ω

∑
q

[
ρAq ρBq ρCq

]

VAA VAB VAC

VAB VBB VBC

VAC VBC VCC




ρA−q

ρB−q

ρC−q

 (2.64)

The monomer interactions are quantified using Flory interaction parameter χ for
the monomer pairs A−B, B − C and C − C.

−2χAB

ρ
= VAA + VBB − 2VAB,

−2χBC

ρ
= VBB + VCC − 2VBC ,

−2χAC

ρ
= VAA + VCC − 2VAC .

(2.65)

The partition function Z is now expressed in terms of all three monomer
densities.

Z = Wc

∫
DρAqDρ

B
qDρ

C
q ψ0({ρAq , ρBq , ρCq }) exp

(
−
U({ρAq , ρBq , ρCq })

kBT

)
. (2.66)

Introducing incompressibility to the system reduces the dependency of parti-
tion function (Z) to two monomer densities, ρAq and ρBq , with

ρCq = −(ρAq + ρBq ). (2.67)

Elimination and rearrangement of non-interacting scattering factor matrix S0(q)
and interaction potential matrix to a 2× 2 matrix (Wq) is discussed in detail in
appendix A.2. The partition function is then function of ρAq , ρBq , NχAB, NχBC ,
NχAC , ΓAA, ΓBB, ΓCC , ΓAB, ΓBC and ΓAC .

Z = Wc

∫
DρAqDρ

B
q exp

−1

2

∑
q

[
ρAq ρBq

]
Wq

ρA−q

ρB−q


 (2.68)

40



2. Weak Segregation Approach for Phase Separation

where

Wq = ΩρNW̃q =

NΩρ

 −2χAC χAB − χBC − χAC

χAB − χBC − χAC −2χBC

+

 ΓAA + ΓCC − 2ΓAC ΓAB − ΓBC − ΓAC + ΓCC

ΓAB − ΓBC − ΓAC + ΓCC ΓBB + ΓCC − 2ΓBC




(2.69)
Using RPA, the second order term W̃q will indicate the phase transition. As
W̃q is a symmetric matrix, its geometric nature and stability are determined by
its eigenvalues λ1(q) and λ2(q). For a two-component system, it was easier to
extract the non-interacting structure factor, but here it is a bit complicated to
extract the total structure factor. Analogous to the two-component system, the
point of instability is determined where monomer density fluctuations diverge and
phase separation occurs. We need to find the point of transition from a stable to
an unstable state where either one of the eigenvalues becomes less than zero. So
the wavevector q for which the lowest eigenvalue first changes from positive to
negative given by the minima in the eigenvalue plot. This will give the wavevector
at which phase transition occurs.

2.2 Structure factor for any arbitrary chain : Re-
view based on (AB)Lb

It is obvious from the RPA formulations discussed in the previous section 2.1
that all that we need to calculate is the non-interacting structure factor. This
section is a review of the method to calculate the structure factor for any arbitrary
block copolymer which was formulated by Read [126]. The structure factor for
any block polymer, including branched copolymers, can be determined using this
method, provided there are no loops in the polymer architecture. In Read’s
method, a polymer chain α is split into different ‘blocks’, which is indicated by γ
as shown in fig 2.5. Each block is considered flexible to adjacent blocks, that is,
which makes them free to rotate and select any random orientations with respect
to the rest of the chain. Thus the polymer chain has high flexibility. These blocks
are treated individually first to find their contribution to S0(q). The normalised
wave number Qγ is defined for each block which is dependent on its step length b
and number of monomer units (Nγ). For the sake of simplicity, we consider the
same step length (b) for blocks of all monomer types.
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Figure 2.5: An arbitrary chain α of A blocks

Q2
γ =

q2b2Nγ

6
. (2.70)

Each block is associated with a ‘self term’ Jγ, a ‘co-term’ Hγ and a ‘propagator
term’ Gγ [126].

Jγ = N2
γ jγ where, jγ =

2

Q4
γ

(exp (−Q2
γ)− 1 +Q2

γ)

Hγ = Nγhγ where, hγ =
1

Q2
γ

(1− exp (−Q2
γ))

Gγ = exp(−Q2
γ)

(2.71)

The ‘self-term’Jγ defined in eq. (2.71) is the Debye function that is seen as the
structure factor term for a homogeneous system in eq. (2.18).

When calculating structure factors for a given polymer chain, we always re-
quire a double sum over pairs of monomers in that chain. This gives rise to two
types of terms in the sum, either (i) the monomer pair lies in the same block,
or (ii) the monomer pair lies in two different blocks. Summing over monomer
pairs in the same block gives the ‘self-term’ Jγ to the structure factor. The ‘self
term’ Jγ gives the contribution of each block that represents monomer density
fluctuations within each block γ. The ’co-term’ Hγ gives the contribution from
block γ when the other monomer unit is on a different block γ′ and ’propagator
term’ Gγ gives the contribution of structure between block γ and block γ′. Sum-
ming over monomer pairs in two different blocks γ and γ′ gives a contribution
of form HγHγ′

∏
η Gη (η represents the block labelling for blocks between γ and

γ′) where the product of propagators Gη gives the contribution from the unique
connecting path between γ and γ′. Hence, the sum over monomer pairs becomes
a sum over block pairs.

To demonstrate this procedure, we are considering a long chain of diblocks con-
nected end-to-end, (AB)Lb

as shown in fig. 2.6. Given the number of A monomer
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2. Weak Segregation Approach for Phase Separation

units and B monomer units are NA and NB, respectively, the total number of
monomer units N = NA+NB. Here the length fraction of A is fA = NA

N
and that

of B is fB = NB

N
.

The normalised wave number for A and B blocks are:

Q2
A =

q2b2NA

6
= fAQ

2,

Q2
B =

q2b2NB

6
= fBQ

2 = (1− fA)Q
2.

(2.72)

Now ‘self-term’, ‘co-term ’ and ‘propagator terms’ are defined in terms of nor-
malised wave number Q. Here Lb is a large number that denotes the number of
diblock (AB) included in this polymer architecture. We first calculate SAA

0 for

Figure 2.6: Schematic representation of (AB)Lb
polymer chain

nc chains of this architecture. In (AB)Lb
there are Lb blocks of A type. This

gives the first term in eq. (2.73), which is the sum of all self terms corresponding
to A blocks. Taking one A block as a reference, looking to the right, this block
is connected to the next A block with one B block in between. This will give
the term HAHAGB in eq. (2.73). Likewise, the second A block to the right will
give HAHAGBGAGA due to the B − A − B blocks between two A blocks. This
pattern continues until we reach last A block in the right side. There are same
pattern of blocks to the left of the reference A block. Thus the entire summation
is multiplied by two in the second term of eq. (2.73). Approximating the number
of blocks to the right and left to be infinite gives SAA

0 as an infinite geometric
progression.

SAA
0 =nc(LbJA + 2Lb(HAHAGB +HAHAGBGAGB+

HAHAGBGAGBGAGB + ...)),

=nc(LbJA + 2LbH
2
AGB(1 +GAGB + (GAGB)

2+

(GAGB)
3 + ...)).

(2.73)
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Figure 2.7: The non-interacting structure, S0(Q) for infinite linear (AB)Lb
block

copolymer is given where the length fraction of A block fA = 0.5.

Explicitly summing the geometric progression an expression for SAA
0 is derived.

SAA
0 = nc

(
LbJA + 2LbH

2
AGB

(
1

1−GAGB

))
. (2.74)

The calculation for SBB
0 is exactly the same since the number of B blocks are

the same as the number of A blocks. The B blocks are also found in polymer
architecture alternating with A. The ‘self term, ‘co-term’ and ‘propagator term’
for A blocks in eq. (2.74) are replaced by ‘self term, ‘co-term’ and ‘propagator
term’ for B blocks.

SBB
0 =nc

(
LbJB + 2LbH

2
BGA

(
1

1−GAGB

))
. (2.75)

In order to calculate SAB
0 consider blocks of different monomer types (A and

B). Taking one A block as a reference looking to the right, reference A block is
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connected to the adjacent B block which will give the term, HAHB. Looking for
the next B block, there are (B − A) blocks between the reference A block and
this B block. This will add the term HAHBGAGB to the expression. Pattern
will go on infinitely (Lb is a large number) giving a geometric progression. The
same pattern of calculation is done to the left of reference A which introduces a
multiple of two in the expression. Taking the block number as infinite, the above
calculation is true from any reference A in the chain giving a multiple of Lb in
the expression.

SAB
0 =2ncLb(HAHB +HAHBGBGA +HAHBGBGAGBGA + ...)

=2ncLbHAHB

(
1

1−GAGB

) (2.76)

From these expressions for SAA
0 , SBB

0 and SAB
0 , eq. (2.74), eq. (2.75) and eq. (2.76),

the non-interacting structure factor S0(q) for this two component system is deter-
mined using eq. (2.50). The variation of the non-interacting structure factor as a
function of normalised wave number Q is shown in fig. fig. 2.7. From the previous
discussions on phase separation, a single maximum indicates the prominent wave
number that emerges in the phase separation and hence the length scale. Since
the structure factor only has one maximum it only has a single lengthscale in its
phase separated structure.

The structure factor for any block polymer, including branched copolymers,
can be calculated in this manner, provided there are no loops in the structure.

With all these tools discussed so far, we are proposing three designs of block
copolymers that can potentially give two lengthscaled phase separation. We have
two models within the two-component system: a monodisperse AL(BAS)n chain
and a polydisperse model which contains three types of blocks (AL, B and AS)
in a mixture. As for the third model, we are considering a monodisperse model
of ABC star terpolymer in the weak segregation limit. Each case is discussed in
detail in the coming sections.

2.3 Monodisperse two component model: AL(BAS)n

The first polymer we are considering is a linear chain polymer with two different
types of monomers. The design of the model is such that there will be two distinct
critical lengthscales emerging at phase separation in its non-interacting structure
factor.

The proposed polymer architecture AL(BAS)n is illustrated in fig. 2.8. It
has a long block AL of A type monomers followed by n alternating BAS diblocks.
The incompatibility and difference in block lengths will induce two different phase
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2. Weak Segregation Approach for Phase Separation

Figure 2.8: Schematic representation of the linear chain AL(BAS)n. Blocks
indicated in red are of type A and blue blocks are of type B. The dashed part
represents the continuation of BAS diblock up to n. Length fraction of the long
red block AL, short red blocks AS and blue blocks B are fA, ϕA and ϕB = 1−ϕA

respectively.

separations. Incompatibility between A type monomer units in AL and (BAS)n
gives rise to one lengthscale. Another lengthscale emerges from the incompati-
bility between A-type and B type monomers within the tailing (BAS)n. Since
there are the same A- type monomers in both AL and AS, the incompatibility
between the (BAS)n tail and the AL block will be smaller relative to incompati-
bility within the (BAS)n tail. However, phase separation at smaller lengthscales
within the (BAS)n tail requires greater elastic energy from chain deformation (as
compared to phase separation at the larger scale of the whole molecule). These
two effects compensate one another, giving the possibility of phase separation at
both lengthscales occurring at the same point.

Building on this hypothesis we look for two different length scales indicated by
two peaks in the non-interacting structure factor. The non-interacting structure
factor is calculated in the same way as in section 2.2. In the infinite linear
chain discussed earlier, all A type blocks are considered to have the same length
fraction. But in this new model, we have two types of A blocks which makes the
calculation slightly different from the previous case, requiring two intermediate
steps. The whole polymer chain is considered into two parts: part I consists
the long AL block and part II contains the the tailing (BAS)n blocks. First
composite self terms J II

AA, J II
BB and J II

AB for part II, (BAS)n tail is determined as
detailed below. These are then used by considering (BAS)n tail as a single block
in a diblock where the adjacent block is AL.

From the illustration of the polymer chain part I with AL block is of length
fraction fA. The rest of the chain, part II (BAS)n will have length fraction (1−fA).
Considering one BAS block as one unit, the length fraction of AS block is ϕA.
Then length fraction of B block in BAS diblock is 1−ϕA. The part II consists of
n such diblocks. Given total number of monomer units is N number of monomer
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Figure 2.9: Schematic structure for AL(BAS)2 where AL is tailed by BASBAS.

units in each block is determined to be:

Number of monomer units in AL = fAN, (2.77)

Number of monomer units in AS =
1

n
(1− fA)ϕAN, (2.78)

Number of monomer units in B =
1

n
(1− fA)(1− ϕA)N. (2.79)

Normalised wave numbers are now defined for the polymer melt for AL, AS and B
blocks as QAL

, QAS
and QB respectively using eq. (2.70). If we define normalised

wave numberQ2 = Nb2

6
q2, then normalised wave numbers for each block is defined.

The wave numbers corresponding to each block is expressed in terms of length
fractions of the blocks and normalised wave number Q.

Q2
AL

= fA
Nb2q2

6
= fAQ

2,

Q2
AS

=
1

n
(1− fA)ϕA

Nb2q2

6
=

(1− fA)ϕA

n
Q2,

Q2
B =

q2b2
(

(1−fA)(1−ϕA)N
n

)
6

=
(1− fA)(1− ϕA)

n
Q2.

(2.80)

Now all parameters necessary to determine the non-interacting structure factor
are defined.

2.3.1 Structure factor for AL(BAS)2

In order to demonstrate the calculation consider the case where n = 2. We have
a polymer chain of structure AL − B − AS − B − AS as shown in fig. 2.9. The
composite self-terms are determined first.

Composite self terms for part II (BAS)2

Composite ‘self terms’ to be determined are: J II
AA, J II

BB and J II
AB which gives the

contributions from AS blocks, B blocks and AS − B interactions within part II.
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The composite self term for A type monomer units in part II is J II
AA. There are

two AS blocks in the chain which give the first term in the self term J II
AA, JAS

multiplied by a factor of two. In addition to the same type of monomer inter-
actions within blocks, there is the same type of monomer interactions between
alternating AS blocks. These interactions results in the second term which is the
product of the ‘co-term’ of the first AS block, propagator terms for the block in
between (B) and co-term of the second A type block AS: HAS

GBHAS
. There is

the same interaction contribution in reverse order too which gives a factor of two
to the term. Together, the composite self term J II

AA gives

J II
AA = 2JAS

+ 2HAS
GBHAS

. (2.81)

The composite self term for B blocks J II
BB is determined in same manner. There

are two B arranged in the same fashion as AS in part II. In between two B
blocks there is an AS block, thus the composite self term for B blocks is

J II
BB = 2JB + 2HBGAS

HB. (2.82)

Next, we consider the composite self term that corresponds to A−B interaction in
(BAS)n. Again, starting from B connected to AL, the interaction between each B
and AS along the chain is represented by their product of co-terms and propagator
terms if there are any blocks separating B and AS blocks. It is demonstrated as:

J II
AB = HBHAS

+HBGAS
GBHAS

+HAS
HB +HAS

HB,

= 3HAS
HB +HBGAS

GBHAS
.

(2.83)

The same expression is obtained if you consider each AS block in turn and the
connected B blocks.

Non-interacting structure factor S0(Q) for AL(BAS)2

The non-interacting structure factor for the whole chain is obtained by including
AL in the calculation. This will introduce self interactions in part I , J I

AA and
interactions between other two blocks: AL − AS and AL −B.

J I
AA = JAL

. (2.84)

The expression for the non-interacting structure factor in ?? requires the calcu-
lation of SAA

0 , SBB
0 and SAB

0 as seen in the previous section. With the addition
of AL, A−A interactions within AL, AS blocks and between AL−AS blocks will
contribute to SAA

0 .

SAA
0 = J I

AA + J II
AA + 2HAL

GBHAS
+ 2HAL

GBGAS
GBHAS

. (2.85)
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Figure 2.10: The non-interacting structure factor S0(Q) for AL(BAS)2 where
length fraction of AL and AS are fA = 0.8725 and ϕA = 0.6085 is given. The
maximum is indicated by the vertical line at Q∗.

The contribution from B type monomers is J II
BB as it is since there are no addi-

tional B monomer units in the chain.

SBB
0 = J II

BB. (2.86)

Now AB interactions, contributing to SAB
0 are formulated in the same way as

before starting from AL and ending in B blocks. This will also have the AB
interaction contributed from (BAS)n. Which gives:

SAB
0 = J II

AB +HAL
HB +HAL

GBGAS
HB (2.87)

With SAA
0 , SBB

0 and SAB
0 now obtained, the non-interacting structure factor can

be calculated using eq. (2.49) for one chain. The structure factor can be plotted
for a range of Q as given in fig. 2.10. It is evident from the plot that the scat-
tering factor is quite broad compared to those in fig. 2.4 and fig. 2.7 for diblock
and infinite diblock respectively. There is only one intrinsic length scale in the
molecular structure of the diblock and infinite diblock. In AL(BAS)2 there are
two intrinsic lengthscales indicated in fig. 2.9. There are coupling interactions
between different types of blocks with A type monomer units. All this results in
a broader peak.
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Figure 2.11: Part II of polymer chain AL(BAS)n given in fig. 2.8.

2.3.2 Structure factor for AL(BAS)n

The calculation of non-interacting structure can be generalised for any value of n
which is the number of BAS tails in the chain. The structure factors, SAA

0 , SBB
0

and SAB
0 will be in the form of geometric progression. Similar to the case of n = 2,

the whole chain is split into two parts to determine the non-interacting structure
factor for n BAS diblocks in part II. The composite self term corresponding to
A− A interactions in (BA)n is given as:

J II
AA =nJAS

+

((
HAS

HAS
GB +HAS

HAS
GBGAS

GB + · · ·+HAS
HAS

GB(GAS
GB)

n−2
)
+

(
2HAS

HAS
GB +HAS

HAS
GBGAS

GB + · · ·+HAS
HAS

GB(GAS
GB)

n−3
)
+

. . .

+
(
HAS

HAS
GB +HAS

HAS
GBGAS

GB + · · ·+HAS
HAS

GB(GAS
GB)

n−2
))
.

(2.88)
To simplify this expression 2H2

AS
GB can be factorised out of the second term

which results in the following expression involving sums of geometric series.

J II
AA =nJAS

+ 2(HAS
)2GB

(
1 + (1 +GAS

GB) + (1 +GAS
GB + (GAS

GB)
2)+

· · ·+ (1 +GAS
GB + (GAS

GB)
2 + · · ·+ (GAS

GB)
n−2)

]
.

(2.89)
Using the expression for the sum of the geometric progressions, the above

expression is further rewritten as
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J II
AA =nJAS

+

2(HAS
)2GB

[
(1−GAS

GB)

(1−GAS
GB)

+
1− (GAS

GB)
2

(1−GAS
GB)

+ · · ·+ 1− (GAS
GB)

n−1

(1−GAS
GB)

]
=nJAS

+

2(HAS
)2GB

[
n− 1− (GAS

GB + (GAS
GB)

2 + · · ·+ (GAS
GB)

n−1)

(1−GAS
GB)

]
(2.90)

After summing the final sum of the geometric series generalised expression for
J II
AA for any n is obtained.

J II
AA = nJAS

+ 2(HAS
)2GB

[
n(1−GAS

GB)− (1− (GAS
GB)

n)

(1−GAS
GB)2

]
(2.91)

The composite self term for B − B interaction also has the same form as it
was shown for the case of n = 2.

J II
BB = nJB + 2(HB)

2GAS

[
n(1−GAS

GB)− (1− (GAS
GB)

n)

(1−GAS
GB)2

]
. (2.92)

The third composite self-term required is J II
AB. Counting through AS − B

interactions in the (BAS)n tail J II
AB will be

J II
AB =HBHAS

+HAS
HBGAS

GB + · · ·+HBHAS
(GAS

GB)
n−2 +HBHAS

(GAS
GB)

n−1

+HBHAS
+HAS

HBGAS
GB + · · ·+HBHAS

(GAS
GB)

n−2 +HAS
HB+

· · ·+HBHAS
+HBHAS

(GAS
GB)

n−2 + · · ·+HAS
HBGAS

GB +HAS
HB.

(2.93)
Taking the common factor HBHAS

out, the expression is rewritten as sums
of geometric series. These sums are simplified by a similar process as for J II

AA to
obtain the generalised condensed expression for J II

AB.
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J II
AB = HAS

HB

[
1 +GAS

GB + (GAS
GB)

2 + · · ·+ (GAS
GB)

n−2 + (GAS
GB)

n−1+

1 +GAS
GB + (GAS

GB)
2 + · · ·+ (GAS

GB)
n−2 + 1) +

1 +GAS
GB + · · ·+ (GAS

GB)
n−3 +GAS

GB + 1) +

· · ·+ (1 +GAS
GB + (GAS

GB)
n−3....+GAS

GB + 1)

(
1 + (GAS

GB)
n−2.......+GAS

GB + 1)
]
.

(2.94)
On calculating the sum of two sets of sums of geometric series J II

AB is given by

J II
AB = HAS

HB

[(
1− (GAS

GB)
n

1−GAS
GB

+
1− (GAS

GB)
n−1

1−GAS
GB

+

· · ·+ 1− (GAS
GB)

2

1−GAS
GB

+
1− (GAS

GB)

1−GAS
GB

)
+(

1− (GAS
GB)

n−1

1−GAS
GB

+
1− (GAS

GB)
n−2

1−GAS
GB

+

· · ·+ 1− (GAS
GB)

2

1−GAS
GB

+
1− (GAS

GB)

1−GAS
GB

)]
(2.95)

And so:

J II
AB = HAS

HB

(
(2n+ 1) (1−GAS

GB)− 2 + (GAS
GB)

n + (GAS
GB)

n+1

(1−GAS
GB)

2

)
.

(2.96)
Once the composite self terms for the tail (BAS)n are determined the total

structure factor for nc chains, S0(q) is obtained from SAA
0 , SBB

0 and SAB
0 . Follow-

ing the procedure from n = 2 case the contribution to the structure factor from
the overall A−A interaction is SAA

0 . This will be the sum self term of AL block,
composite self terms of J II

AA and interactions between AL and AS blocks given by
products of co-terms and propagator terms.

SAA
0 =nc

(
J I
A + J II

AA +HAL
HAS

GB +HAL
HAS

GBGAS
GB+

· · ·+HAL
HAS

GB(GAS
GB)

n−1
)
.

(2.97)
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On simplifying,

SAA
0 =nc

(
J I
A + J II

AA + 2HAL
HAS

GB

(
1 +GAS

GB + · · ·+ (GAS
GB)

n−1
))

=nc

(
J I
A + J II

AA + 2HAL
HAS

GB

(
1− (GAS

GB)
n

1−GAS
GB

)) (2.98)

Again B −B interaction is all from the tail blocks, so

SBB
0 = ncJ

II
BB (2.99)

Overall A−B interactions is quantified by SAB
0 given by

SAB
0 = nc

(
J II
AB +HAL

HB

(
1 +GAS

GB + ...+ (GAS
GB)

n−1
))

= nc

(
J II
AB +HAL

HB

(
1− (GAS

GB)
n

1−GAS
GB

)) (2.100)

With SAA
0 , SBB

0 and SAB
0 , total non-interacting structure factor S0(Q) is de-

termined using eq. (2.49).
The non-interacting structure factor for this model is dependent on three pa-

rameters: length fraction of long A block fA, length fraction of small A block ϕA

and number of BAS diblocks, n. Varying these parameters we can obtain differ-
ent polymer chain architectures which can have different non-interacting structure
factors. This polymer architecture can have one or more peaks in its structure
factor. For each value of n ∈ [1, 14], we plot resulting S0(Q) for all values of fA
and ϕA varying from 0 to 1. If there are two peaks, they will in general have
different heights, with the higher one indicating the wavenumber that will appear
first in phase separation. We define the ratio of wavenumbers Qr = Q2/Q1, with
Q1 < Q2. The height of the structure factor indicates the dominance of the cor-
responding wavenumber in phase separation. Hence we are interested in peaks of
the same height. Here Q1 and Q2 indicate the wavevector corresponding to the
emerging lengthscales. The shorter wavelength Q1 is set by the size of smaller
blocks BAS and the larger wavelength Q2 corresponds to the overall length of the
polymer which increases with n. We are screening over all possible parameters
to pick out the region which gives two prominent wavenumbers and hence two
lengthscaled phase separations. As happens in other systems with transitions be-
tween one and two length scales, the boundary between the regions in parameter
space separating one from two length scales are cusp-shaped [20, 83, 110] More
detailed discussion on obtained structure factors and suitable composition space
is in the following sections.
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2.3.3 Results
The non-interacting structure factor of the polymer structure as a function of
normalised wave number Q is plotted for all possible values of fA and ϕA, with
1 ≤ n ≤ 10. A broad peak is observed in non-interacting structure factor S0(Q)
for AL(BAS)2 in fig. 2.10. If block lengths are changed this peak gets broadened
and for some specific block lengths even two peaks are observed as seen in fig. 2.12.
For a specific value fA and ϕA, the peak gets broadened such that it looks like
two peaks of equal height are merged as seen in fig. 2.12 (c). At this point, the
structure factor has a single quartic maximum. A schematic representation of
the polymer structure that gives the quartic maximum is given in fig. 2.12.(a). It
is to be noted that B blocks indicated by blue are extremely small here. As we
further vary the block fractions, two peaks are observed for AL(BAS)2 as seen
in fig. 2.12 (d) and (e). The structure factors where peaks are at wave number
ratios Qr = 1.2 and Qr = 1.6 are given in fig. 2.12 (d) and (e) respectively.
The tentative polymer structure given in fig. 2.12 (b) gives the structure factor
with two peaks given in fig. 2.12 (e) that have wavenumber ratio Qr = 1.6. In the
polymer architecture that gives two lengthscale stricture factors A type monomers
over-weigh in composition. This results in the competing A − B interactions
that will give multiple lengthscaled phase separation. As mentioned previously
the presence of two peaks in a non-interacting structure factor indicates phase
separation in two lengthscales. The vertical lines in fig. 2.12 indicate the wave
numbers of phase separation.

Following this example, the non-interacting structure factor AL(BAS)n for
any n can be determined. Another example of a linear two-component chain we
are presenting is a long polymer chain AL(BAS)7. In this model, there are more
B- type blocks to contribute towards phase separation.

The non-interacting structure factor for AL(BAS)7 for different block fractions
are determined in the same manner as for n = 2 varying fA and ϕA. Resulting
structure factors are given in fig. 2.13. Similar to the previous case, here also a
quartic is observed in fig. 2.13 (c). The quartic maximum indicates that there is a
divergence from the single-peaked structure factor to the double-peaked structure
factor. The schematic polymer structure in fig. 2.13.(a) corresponds to the quartic
structure factor. Compared to n = 2 case the quantity of B blocks is now
comparable with the composition of AS blocks. Structure factors with two distinct
peaks are given in fig. 2.13 (d), (e) and (f), which indicates simultaneous phase
separation in two lengthscales. All the scattering functions shown here are for
approximately the same peak heights. The ratio of wave numbers at the two
peaks given in these plots is in the quasicrystal favourable range (1.5− 2.1). The
schematic diagram of the polymer chain in fig. 2.13.(b) gives the structure factor
in fig. 2.13.(f) which has wavenumber ratio Qr = 2.1.
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AL AS ASB B

(a)

(b)

(c) (d)

(e)

Figure 2.12: Non-interacting structure factor S0(Q) for different branch lengths
for AL(BAS)2 is plotted along with a representation of molecule architecture. The
non-interacting structure factors are given for (c) fA = 0.6185 and ϕA = 0.873,
(d) fA = 0.6215 and ϕA = 0.876 and (e) fA = 0.6445 and ϕA = 0.906. The
polymer architecture given in (a) corresponds to (c), that has Qr = 1 and the
one in (b) corresponds to (e) with Qr = 1.6 are given
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(a)

(b)

(c) (d)

(e) (f)

Figure 2.13: Non-interacting structure factor S0(Q) for different branch lengths
for AL(BAS)7 is plotted along with polymer structure for Qr = 1 in (a) and
Qr = 2.1 in (b). The S0(Q) for (c) fA = 0.181 and ϕA = 0.455, (d) fA = 0.183 and
ϕA = 0.460, (e) fA = 0.202 and ϕA = 0.518 and (f) fA = 0.240 and ϕA = 0.628

are plotted. In here structure (a)corresponds to S0(Q) in (c) and (b)corresponds
to S0(Q) in (f).
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Figure 2.14: Contour plots of block fraction map for n = 2, 3, 5, 7, 10 and 14

are given with Q-ratios and height ratios. The dark shaded region is where the
smaller wave number has a higher peak and the light shaded region is where the
bigger wave number has a higher peak. Coloured lines across the cusp indicate the
wavenumber ratios as indicated in the legend on top. Each line indicated wave
number ratios Qr = 1.2, 1.5, 2.0, 2.5, 3.5 starting from the cusp where Qr = 1.
The line in magenta indicates wave number ratio Qr = 1.93, which corresponds
to 12-fold rotational symmetry.
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From fig. 2.12 and fig. 2.13 it is evident that there is a window of block
fractions for which the chain get phase separated in two lengthscales for each
choice of n.

In fig. 2.12 and 2.13 the fraction of A blocks (fA and ϕA) are varied for both AL

and (BSS)n tail. For smaller values of AL fractions fA, AL block gets comparable
to AS and it leads to phase separation in one lengthscale giving one peak, as in
fig. 2.10. When fA is increased there is enough A type monomers to increase the
incompatibility from AL block to introduce another lengthscale. This is observed
in schematic figures in fig. 2.12 (a) and (b) and fig. 2.13 (a) and (b).

In order to screen out all probable parameters that can give two lengthscaled
phase separation, we need to check for all synthesis-able values of n. This will give
a composition map with feasible monomer compositions fA and ϕA. In fig. 2.12
and 2.13 it is observed that for a specific compositions it has a quartic peak, and
that for other compositions the ratio of peak heights can vary. As indicated earlier
the strcture factor gives a transition from one lengthscaled phase separation to
two lengthscaled phase separation which is often observed in cusps. For a given
n from plotting the non-interacting structure factor all valid fA and ϕA, we can
map the region which gives two lengthscales. In each structure factor that have
two peaks the ratio of larger wavenumber to smaller wavenumber is determined.
Simultaneously the height ratios (Hr) are also calculated. The composition maps
for each n are created by plotting the region with two lengthscales as shaded.
The wavenumber ratios (Qr) and height ratios Hr are overlaid on this shaded
region to indicate the exact value in which they may phase separate.

The polymer structure for n = 1, is ALBAS and it does not indicate any
two lengthscaled phase separation by varying block length fractions. So we are
interested in polymer structures starting from n = 2. The resulting contour
plots for polymer chains with n = 2, 3, 5, 7, 10 and 14 are given in fig. 2.14. As
expected, there are cusp shapes that separate from the two lengthscaled region
and one lengthscaled region. The composition space that has two lengthscales
in their structure factor is the shaded region. The white region indicates the
compositions that give one lengthscale. In this model, n = 2: ALBASBAS is
the smallest polymer chain that have a valid two lengthscaled region. The wave
number ratios Qr are indicated by the coloured lines that are plotted across the
shaded region. The wave number ratio varies from 1.2 to 3.5, with one along
the cusp being 1. Among the lines indicating wavenumber ratios, the magenta
line indicates the ratio Qr = 1.93, which is associated with 12−fold rotational
symmetry. This line is present in the composition space for n = 2, 3, 5 and
7 evidently giving valid compositions. For n = 10 and 14, the lines for lower
wavenumber ratios are closer to the cusp. It is observed that the area of cusps
increases as n. The maximum ratio between the two length scales increases as
well. This is because the short length scale is set by the size of the BAS blocks,
while the long length scale is set by the overall size of the polymer, which increases
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Figure 2.15: Illustration of monodisperse chain ALBASB.

with n. When n increases the competing NχAB interaction between AL −B and
AS − B is more prominent. This results in more compositions having monomer
fluctuations that can result in two lengthscaled phase separation.

2.3.4 ALBASB

In the family of AL(BAS)n, the chain architecture with n = 2 is the small-
est monodisperse linear chain that gives two lengthscale phase separation. This
instigates the question of which is the smallest linear chain with only two compo-
nents that can phase separate in two lengthscale. The architecture n = 1, with
three blocks, does not have two lengthscales in its phase separation. As the dif-
ference between the two structures is just two blocks, the architecture ALBASB
which we are considering as n = 1.5 is also a valid candidate for two length-
scale phase separation. The structure factor is calculated in a similar manner
for AL(BAS)n. Since the structure does not quite belong to the AL(BAS)n fam-
ily the non-interacting structure factor is determined separately using self-terms,
co-terms and propagator terms. The number of monomer units in each chain is
defined using which normalised wavenumber is also defined. As in the previous
case, the length fraction of the block AL is fA and that of block AS is ϕA. In
accordance with the previous parameterisation of length fractions, block fraction
of B, ϕB is 1− ϕA. Given the total number of monomer units is N , the number
of monomer units in AL, AS and B blocks are:

Number of monomer units in AL, NAL
= fAN

Number of monomer units in AS, NAS
= (1− fA)ϕAN

Number of monomer units in B, NB =
1

2
(1− fA)(1− ϕA)N.
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Given the monomer composition the normalised wave numbers QAL
, QAS

and
QB are determined in terms of Q as seen previously. Here,

Q2
AL

= fAQ
2,

Q2
AS

= (1− fA)ϕAQ
2,

Q2
B =

1

2
(1− fA)(1− ϕA)Q

2.

(2.101)

The self term, co-term and propagator term are determined for each block in
ALBASB. The non interacting structure factors SAA

0 , SBB
0 and SAB

0 correspond-
ing to correlations between A− A, B −B and A−B monomers are determined
in terms of normalised wave number Q.

SAA
0 = nc(JAL

+ JAS
+ 2HAL

GBHAS
),

SBB
0 = nc(2JB + 2HBGAS

HB),

SAB
0 = nc(HAL

HB +HAL
GBGAS

HB + 2HBHAS
).

(2.102)

On substituting these in eq. (2.49) the non-interacting structure factor S0(Q) is
determined for all valid monomer compositions of (fA, ϕA).

For specific values of fA and ϕA, the incompressible structure factor has two
peaks at Q1 and Q2. An example is given in fig. 2.16.(a) for fA = 0.710 and
ϕA = 0.87 where there are two peaks with the same height. While we vary
the monomer compositions we find a cusped region given in fig. 2.16.(b) with
where two lengthscaled phase separation occurs. Lines across the cusp region
indicate wavenumber ratios in the range 1.5 − 3.5. The ratio corresponding to
12- fold rotational symmetry, 1.93 is indicated by the magenta line across the
cusp. In comparison with the cusp region of AL(BAS)2, the cusp corresponding
to ALBASB has a larger area. In the latter, the presence of B monomers are
more prominent and it increases the AS − B and AL − B incompatibilities. So
there are more compositions that will give two lengthscaled phase separation.
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Figure 2.16: The non-interacting structure factor S0 against normalised wave
number is shown in (a). Two peaks are observed when monomer fractions are
fA = 0.71 and ϕA = 0.87. The region in (fA, ϕA) space where two lengths are
observed is given in (b). The region is cusp shaped and lines across the shaded
region indicate the wave number ratios starting at the cusp from 1. The magenta
line indicates a wavenumber ratio 1.93.

2.3.5 Discussion
From the above results, it is evident that the linear chain family of AL(BAS)n
can phase separate in two lengthscales when (BAS)n tail has n > 1. The result
obtained is consistent with our assumption that if we design a block copolymer
which can induce the incompatibilities desired, then there will be two lengthscaled
phase separation.

The two lengthscale scale phase separation in linear molecules that have two
intrinsic lengthscales in their polymer architecture has been reported by Nap et
al. [83, 109, 110]. They invested in polymer architecture similar to AL(BAS)n
restricting monomer compositions such that the length of smaller A blocks and B
blocks are equal. With that restriction, they obtain cusp shaped region in their
composition space [110].

Our work builds on this observation that polymer chain structures with two or
more intrinsic lengthscales can phase separate in two lengthscales. In addition, we
have no restrictions in our composition space. The smallest polymer chain in the
AL(BAS)n family that has two lengthscale phase separation is AL(BAS)2 with
5 blocks. We are also presenting ALBASB which is the smallest possible linear
chain with two components that can phase separate in two lengthscales. These
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Figure 2.17: Schematic representation of the polydisperse model. Starting with
a mixture of AL, AS and B (top), the final mixture (bottom) will contain polymer
chains of architecture ALBAL, ALBASBAL, etc.

polymer chains ALBASB and AL(BAS)2 are easier to synthesise and have phase
separation at the length scale ratio 1.93 that favours twelve-fold quasicrystals.
Double periodic lamellar structures and gyroids are reported in similar polymer
models using SCFT [109, 175]. There are many other compositions suggested in
our work but their synthesis can be a bit more complex.

As mentioned in the introduction the presence of two lengthscales in certain
ratios favours towards stable quasicrystalline structure. The cusps reported in
this work give a wide range of two lengthscale ratios (1.6 − 2.6). Soft matter
quasicrystals[57, 172] mostly show 12-fold dodecagonal symmetry with a wave
number ratio Qr = 1.932. We are reporting many suitable compositions (fA, ϕA)
along the magenta lines in our cusps in fig. 2.14 that can phase separate ac-
cordingly. In addition, 8-fold and 18-fold symmetries are found in soft matter
quasicrystals [25, 45, 47]. Wavenumber ratios corresponding to these rotational
symmetries are also available in our composition space.

2.4 Two component linear chains with random as-
sembly

Polymer chains discussed until now are all monodispersed. In a realistic block
copolymer synthesis, it is not possible to synthesise all the blocks in a chain to be
of the same length. Polydispersity is unavoidable. So we are proposing another
model for the two-component block copolymer where the block copolymer system
exhibits polydispersity by considering a mixture of chains with random lengths.
This is a theoretical equivalent to the polycondensation process where the reaction
starts with an exact amount of reactants and a mixture of linear chains is formed
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from them at the end of the reaction. Theoretical equivalence of the process
is achieved using the Markov chain process to a mixture of blocks proposed by
Read [127].

At the start, the mixture consists of a fixed amount of individual blocks: long
A type block AL, short A type block AS and short B type block B as given
in fig. 2.17. These blocks have reactive ends which drive the polycondensation
process. The reactive ends indicated by , are α reactive ends of A type blocks
and those at the end of B type blocks are β reactive ends in fig. 2.17.
During polymerisation, α reactive end connects with the β reactive end. We are
discussing the case where at the end of the polycondensation there will not be
any free-reacting ends left. At the end of polycondensation, assuming a complete
reaction and stoichiometry, the mixture will contain only chains that have AL

blocks at both ends and different lengths of BAS . . . ASB blocks in between, for
example, ALBAL, ALBASBAL, etc., as illustrated in Figure 2.17. Given there
are nblocks of blocks in the melt, there are nblocksβAL

α ends from AL, 2nblocksβAS

α blocks from AS and 2nblocksβB β blocks from B blocks.
If total number of blocks are nblocks, then block fraction of AL is βAL

. Similarly
the block fraction of AS and B blocks are βAS

and βB respectively. All these block
fractions should add up to 1.

βAL
+ βAS

+ βB = 1. (2.103)

The blocks AAL
, AS and B have NAL

, NAS
and NB monomer units in them. The

monomer units in AS and B are quantified with respect to those in AL as follows.

NAS
= νAS

NAL
,

NB = νBNAL
.

(2.104)

Upon complete polycondensation number of β ends are equal to the number of α
ends, so

2nblocksβB = nblocksβAL
+ 2nblocksβAS

. (2.105)

Eliminating βB from eq. (2.103) and eq. (2.105), we get the condition for complete
reaction:

3βAL
+ 4βAS

= 2. (2.106)

In this model, monomer compositions are defined in terms of the block fraction of
AL: βAL

and monomer fractions νAS
and νB. Given the total number of monomer

units involved in the process is N = Ωρ is then,

N = Ωρ = nblocks(βAL
NAL

+ βAS
NAS

+ βBNB). (2.107)

63



2. Weak Segregation Approach for Phase Separation

In terms βAL
and monomer fractions νAS

and νB the above expression is:

Ωρ = nblocksNAL
(βAL

+ νAS
βAS

+ νBβB). (2.108)

Rearranging,

nblocksNAL
=

Ωρ

βAL
+ νAS

βAS
+ νBβB

. (2.109)

The monomer units in different blocks are quantified in terms of NAL
, the number

of monomer units in AL block in this model. With this parameterisation, we can
do RPA in this model to calculate its structure factor.

2.4.1 RPA for linear chains with random assembly
The structure factor is determined for the normalised wave vector Q using in
this model using the above parameterisation. Unlike the monodisperse melt, in
this model, there are different architectures of polymer chains in this melt, which
makes the structure factor calculation a bit more complex. In the case of random
reaction in addition to the architectural component from self terms, co-terms and
propagator terms [126], the probability of the architecture formed is determined
using the Markov chain method. The normalised wave vector for each block γ,

Qγ =
√

Nγb2

6
q, for a given wave vector q. The normalised wave vectors for the

blocks: AL, AS and B are:

QAL
=

√
NAL

b2

6
q

QAS
=

√
NAS

b2

6
q =

√
νAS

NAL
b2

6
q =

√
νAS

QAL

QB =

√
NBb2

6
q =

√
νBNAL

b2

6
q =

√
νBQAL

.

(2.110)

Accounting for the random reaction that can occur, the probability matrix for
a chain of architecture AL − B − AS − B · · · − B − AL is defined. As none of
the same blocks follows itself or blocks of the same type, the diagonal elements
of the matrix will be 0. The probability that a B block will be followed by AL

block is PALB =
βAl

2βB
. The probability for a B block will be followed by AS block

is PASB =
βAS

βB
. The probability of a B block following AS or AL is 1. Thus the
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probability matrix P is:

P =


0 0 PALB

0 0 PASB

0 1 0

 . (2.111)

In this model, the chain structure from one block to another in the same chain is
traced by the propagators. Here the propagators for each block type are given in
a diagonal matrix.

G =


GAL

0 0

0 GAS
0

0 0 GB

 . (2.112)

For m blocks to follow in the chain, the propagator should be given by P · (G ·
P )m−1 [126]. The sum in m is in the form of a geometry progression similar
to what is observed in the calculation of definite linear chains. The contribu-
tion of propagators to the structure factor from the random mixture formed is
determined by the product of both matrices: G · P .

G · P =


0 0 PALB

0 0 PASB

0 GB 0

 . (2.113)

Now the self-terms and co-terms are defined for the blocks as JAL
, JAS

, JB, HAL
,

HAS
and HB.

The non-interacting structure factor from AL − AL interactions SALAL
is de-

termined. The correlation between AL blocks will be at different ends if you go
from left to right in the chain as the reactive end is in the opposite ends for both
chains. This leads to choosing the second element to be 1 in the column matrix.

SALAL
= nblocksβAL

JAL
+H2

AL

[
1 0 0

]
P · (1−G · P )−1


0

1

0



 . (2.114)
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The propagator matrix P · (1−G ·P )−1 will be there for all correlations between
the blocks analogous to the geometric sum term in the monodisperse model.

P · (1−G · P )−1 =


1

GBPALB

1−PASBGAS
GB

PALB

1−PASBGAS
GB

0 1
1−PAS

GB

PASB

1−PAS
GAS

GB

0 1
1−PAS

GB

GAS
PASB

1−PAS
GB

 . (2.115)

The total number of monomers could be factorised from each term of in SALAL
.

On matrix multiplication the expression for SALAL
is obtained.

SALAL
= nblocksβAL

N2
AL

jAL
+ h2AL

[
1 0 0

]
P · (1−G · P )−1


0

1

0



 ,

= nblocksβAL
N2

AL

(
jAL

+ h2AL

PALBGB

1− PAS
BGAS

GB

)
,

= NAL
Ωρ

βAL

βAL
+ νAS

βAS
+ νBβB

(
jAL

+ h2AL

PALBGB

1− PAS
BGAS

GB

)
.

(2.116)

Likewise, the structure factor contribution from all block interactions is deter-
mined. Consider the correlation of AL block with AS blocks which occur in both
directions. The structure factor corresponding to this SALAS

is

SALAS
= nblocksβAL

HAL
HAS

[
0 1 0

]
P · (1−G · P )−1


0

1

0



≡ 2nblocksβAS
HAL

HAS

[
1 0 0

]
P · (1−G · P )−1


0

1

0

 .
(2.117)
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These expressions will be simplified to SALAS
as

SALAS
= nblocksβAL

NAL
NAS

hAL
hAS

PASBGB

1− PASBGAS
GB

,

= NAL
Ωρ

νAS
βAL

βAL
+ νAS

βAS
+ νBβB

hAL
hAS

PASBGB

1− PASBGAS
GB

.

(2.118)

In the same manner, expressions for contribution to structure factor from inter-
actions between AL blocks and B blocks: SALB, AS blocks and AS blocks: SASAS

,
AS blocks and B blocks: SASB and B blocks and B blocks: SBB are determined.
The rest of the structure factors are listed below.

SALB = NAL
Ωρ

νBβAL

βAL
+ νAS

βAS
+ νBβB

hAL
hB

1

1− PASBGAS
GB

,

SASAS
= NAL

Ωρ
ν2AS

βAS

βAL
+ νAS

βAS
+ νBβB

(
jAS

+ 2h2AS

PASBGB

1− PASBGAS
GB

)
,

SASB = NAL
Ωρ

νAS
νBβAS

βAL
+ νAS

βAS
+ νBβB

2hAS
hB

1

1− PASBGAS
GB

,

SBB = NAL
Ωρ

ν2BβB
βAL

+ νAS
βAS

+ νBβB

(
jB + 2h2B

PASBGAS

1− PASBGAS
GB

)
.

(2.119)

These non-interacting structure factors collectively obtained from above consti-
tutes SAA

0 , SBB
0 and SAB

0 .

SAA
0 = SALAL

+ 2SALAS
+ SASAS

,

SBB
0 = SBB,

SAB
0 = SALB + SASB.

(2.120)
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Figure 2.18: The non-interacting structure factor for the random assembly
linear model is given. This plot is obtained when βAL

= 0.4, νAS
= 0.265 and

ν = 0.002. Two maxima are observed at wavenumber Q2 and Q1 as indicated by
vertical lines.

The non-interacting structure factor S0(Q) for this polymer model with two
components is then determined using the expression in eq. (2.49). The expression
is rewritten here:

S0 =
SAA
0 SBB

0 − (SAB
0 )2

SAA
0 + SBB

0 + 2SAB
0

(2.121)

The structure factor for a given range of Q is plotted for a chosen value of νAS
,

νB and βL. Similar to the monodisperse case, for a given βAL
specific values of

νAS
and νB the structure factor gives two maxima. These two maxima appear

simultaneously at wave numbers Q1 and Q2 where Q2 > Q1. There will be a
window of two maxima in this case too. An example of the structure factor is
given in fig. 2.18.
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Figure 2.19: Regions of single maxima (white) and two maxima (shaded) as a
function of νAS

and νB with βAL
= 0.2.0.25, 0.35 and 0.45, for the two-component

linear chain with random assembly. In the shaded regions, the darker (resp.
lighter) areas are where the maximum with the smaller (resp. larger) wavenumber
is higher. The solid contour lines across the cusp indicate wavenumber ratios
from Qr = 1.5 to Qr = 3.5 from the cusp to the broader region. The maroon line
indicates where the wavenumber ratio is 1.93.

As we mentioned earlier, the block composition is measured in terms of the
composition of AL block in the melt. Thus the block fraction of AL, βAL

is
equivalent to n from the monodisperse model. Varying the monomer composition
of AS and B, the compositions that give two peaks are categorised and plotted.
Analogous to varying n, the block fraction of AL is varied and we get different
composition maps as shown in fig. 2.19.

For fixed βAL
, the regions of (νAS

, νB) where there are two maxima in the
structure factor are cusp-shaped (see fig. 2.19 for βAL

= 0.2, 0.25, 0.35 and 0.45.
The lines across the shaded part of the cusps indicate the ratio between the
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wavenumbers where the two peaks occur. In this parameterisation, cusps are
seen at the bottom of the composition map, unlike the monodisperse model,
where parameters are in length fractions. When βAL

is 0.2 (with βAS
= 0.35 and

βB = 0.45), there are more AS and B blocks that AL block so that the polymer
will form longer chains, and the region for two length scale phase separation is
considerably larger than with βAL

= 0.45 (βAS
= 0.1625 and βB = 0.3875). In

both these cases, the length scale ratio corresponding to 12-fold symmetry is
present in the composition space. The maroon line indicates it.

2.4.2 Discussion
In this model, we offer a better synthesis-friendly block copolymer architecture
that can phase separate in two lengthscales with desired wavenumber ratios. An
example of block composition that can give two lengthscale phase separation is
20% AL, 35% AS and 45% B, where the lengths of the three chains are in a ratio
AL : AS : B = 1 : 0.39 : 0.14.

In this model, the regions indicating two lengthscale phase separation in
fig. 2.19 have a lower composition of B blocks than the AL blocks. This agrees
with the results from the monodisperse case, where the B block lengths were com-
parably smaller. In the structure factor in fig. 2.18, the second peak is broader
than the first peak. This indicates that the intensity of diffraction is sharper from
the structure, which results in a shorter length scale.

Map AL(BAS)n in (νAS
, νB) space

A direct mapping between the monodisperse fixed n and polydisperse random as-
sembly versions of the two-component linear chain models is not possible because
of the range of chain lengths possible in the second case and because of the differ-
ence in architecture. But to comparison the monodisperse model AL(BAS)n, can
be plotted in (νAS

, νB) space. If there are N monomer units in a monodisperse
polymer chain, then the number of monomer units in AL and AS will be:

NAL
= fAN,

NAS
=

(1− fA)

n
ϕAN,

NB =
(1− fA)

n
(1− ϕA)N.

(2.122)
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Figure 2.20: We plot the results for the monodisperse versions with n = 2, 5, 7

and n = 10 in terms of equivalent values of νAS
and νB

So the monomer fractions of the blocks with respect to AL, νAS
and νB are then

NAS

NAL

and NB

NAL

respectively.

νAS
=

(1− fA)ϕA

nfA
,

νB =
(1− fA)(1− ϕA)

nfA
.

(2.123)

After rearranging, the length fraction of A blocks (fA, ϕA) are expressed relative
to monomer fractions (νAS

, νB, n) . Thus the composition space with two length-
scales is determined for AL(BAS)n model in terms of (νAS

, νB, n). The region is
again cusps at the bottom of the composition space as given in fig. 2.20. As n is
equivalent to βAL

, the cusps are found for the monodisperse model at the bottom
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(a) (b)

Figure 2.21: Schematic representation ABC star terpolymer is given in (a). In-
teraction parameters between different branches are also shown. Different length-
scales generated during phase separation for a molecule with a longer A block are
shown in (b).

of the composition space. As n increases, the block fraction of AL decreases. The
cusp area increases with n.

2.5 ABC star terpolymer
Another polymer model subjected to the same analysis in this chapter is the
3-component ABC star terpolymer. The ABC star terpolymer introduced in
Chapter 1 has three blocks connected at a junction. This architecture opens up
options for a wide variety of morphologies such as hexagonal, square, triangular,
cylindrical, and different Archimedean tilings [50]. Moreover, dodecagonal QCs
were discovered in three component star polymer and homopolymer blend [57].
In this section, we use RPA to detect if ABC star terpolymers can be designed
in a similar manner as the linear chains such that there is phase separation in
two lengthscales simultaneously. For an ABC star block copolymer there are six
determining parameters, three branch lengths and three interaction parameters
between the branches A− B, B − C and A− C. It is possible to see how phase
separation could be simultaneously attained at two lengthscales by considering
a star in which A block is substantially longer than B or C blocks. There can
be two possible microphase separation in this system. One between A and BC
where incompatibility between A and B + C combined drives phase separation
at a long lengthscale (length of molecule). The elastic energy penalised for such
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phase separation is low and the phase separation is due to the coupling of χAC and
χAB. A second phase separation is between B and C, due to the incompatibility
between B and C blocks. Here the elastic energy penalty is higher, so a large χBC

is required to drive the separation. Different degrees of incompatibilities in the
structure promise a variety of morphologies. Applying a similar linear theory as
in the two component system we will look for a two length scale phase separation
region in the parameter space for a 3 component star block copolymer.

2.5.1 RPA for ABC star
Non-interacting structure factor for the ABC star terpolymer can be calculated
using Read’s method [126]. This calculation is more straightforward compared
to the previous long chains with two components. Similar to what was done for
the two component case, a normalised wave number Qγ is defined for each block.
Given that the polymer chain has N monomer units in total and the branch
fraction for A, B and C are fA, fB and fC respectively, where fA + fB + fC = 1.
The number of monomer units in each block is then

Number of monomers in A block: NA = fAN,

Number of monomers in B block: NB = fBN,

Number of monomers in C block: NC = fCN = (1− fA − fB)N.

(2.124)

Normalised wavenumbers for each block are then,

Q2
A = fAQ

2,

Q2
B = fBQ

2,

Q2
C = fCQ

2 = (1− fA − fB)Q
2.

(2.125)

where Q2 = Nb2

6
q2. As discussed in section 2.1.3 phase separation in ABC star

system is indicated by the behaviour of W (Q) in eq. (2.68). This two-by-two
matrix W (Q) contains inverse of structure factor terms (ΓAA, . . .ΓCC) and inter-
action terms χAB, χAB, χAB in it. So the problem is reduced to determining the
non-interacting structure factors SAA

0 , SBB
0 , SCC

0 , SAB
0 , SAC

0 and SBC
0 . Noting

that NA = fAN and nN2 = ΩρN we write

SAA
0 = ΩρNf 2

AjA = N2
AjA. (2.126)

Similarly, all other structure factors are also parameterised. The self-terms and
co-terms for the polymer system are defined: jA, jB, jC , hA, hB and hC for three
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branches A, B and C. The self-terms associated with each block constitute the
non-interacting structure factor of each block:

SAA
0 = ncJA = N2

AjA,

SBB
0 = ncJB = N2

BjB,

SCC
0 = ncJC = N2

BjC .

(2.127)

The correlation between different branches results in three non-interacting
structure factors with co-terms: SAB

0 , SBC
0 and SAC

0 .

SAB
0 = ncHAHB = NANBhAhB,

SBC
0 = ncHBHC = NBNChBhC ,

SAC
0 = ncHAHC = NANChAhC .

(2.128)

Here, for a given value of fA, fB, χAB, χBC and χAC , the matrix Wq is ex-
pressed as a function of normalised wavenumber Q: W (Q). With W (Q) defined,
the quadratic form in eq. (2.68) is positive definite when eigenvalues of W (Q)
are both positive. Phase separation occurs when the smallest eigenvalue λ of
W (Q) changes from positive to negative. The phase separation lengthscale is
determined from the minimum of the smallest eigenvalue where for wave num-
ber Q∗, λ(Q∗) = 0. If the phase separation was in a single lengthscale, at the
corresponding wavenumber Q = Q∗, the smallest eigenvalue will have,

λ(Q∗) = 0;
dλ

dq Q=Q∗
= 0. (2.129)

In this model, we are again looking for phase separation at two wavenumbers, one
long and another short. To achieve this there must be two wave numbers Q1 and
Q2 at which the lowest eigenvalue λ1(Q) of W (Q), changes sign simultaneously
as explained earlier. That is,

λ(Q1) = 0; λ(Q2) = 0;

dλ(Q)

dQ

∣∣∣
Q1

= 0;
dλ(Q)

dQ

∣∣∣
Q2

= 0.

(2.130)

74



2. Weak Segregation Approach for Phase Separation

For fixed architectural parameters of a polymer chain, if there exist two length-
scales at phase separation the above equations will be satisfied for Q1 and Q2. For
this model, there are too many parameters to calculate the eigenvalue for a range
of these parameters. Instead, by solving the above equation for the architectural
parameters, we get the composition and Nχs that will give two lengthscales. For
ABC star terpolymer, the variable space is quite complex with six parameters.
But given that fC = 1−fA−fB, we can reduce then into five parameters: fA, fB,
NχAB, NχBC and NχAC . We consider the case where the A branch is longer. In
this case, interactions between A and C and A and B are comparable. For such
a chain the branch lengths of B and C are comparable. Thus we let

fB
fC

= µ,

χAC

χAB

= ξ.

(2.131)

This will help to further reduce the number of parameters. Now block fractions
of branch C, fC and B, fB are given as

fC =
1− fA
1 + µ

,

fB = µ
1− fA
1 + µ

.

(2.132)

Thus variables to analyse this model are now reduced to fA, NχAB and NχBC

for a range of values of µ and ξ. Even then, determining eigenvalues for a range
of wave numbers is not straightforward. The parameters µ and ν can control
the composition and interaction strength. For a fixed value of ξ and µ, the set
of equations in section 2.5.1 are solved for Q1, Q2, fA, NχAB and NχBC . We
are looking for two minima simultaneously at Q1 and Q2, where Q2 > Q1 where
Qr =

Q2

Q1
is a quasicrystal friendly ratio. By fixing the values of Qr = [1.5, 2.2], we

are further reducing the parameters that are required to determine the polymer
architecture to four: Q1, fA, NχAB and NχBC . We are plotting eigenvalues
λ1(Q) and λ2(Q) for thus obtained given polymer parameters where λ1 < λ2. To
simplify the model further to start the composition space exploration, we take
µ = 1 and ξ = 1, and determine the smallest eigenvalue as a function of Q,
constraining Q1 = Q2. Later this value is taken as the initial condition of the
numerical procedure we followed in the exploration.

2.5.2 Results
For this model, we are first looking at a special case, a symmetric ABC star
terpolymer, which has the same lengths for all three branches and their interaction
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Figure 2.22: Eigenvalues λ1 (blue) and λ2 (orange) are plotted as function of
Q for symmetric ABC star with same branch length, fA = fB = fC = 1/3 and
interaction parameters NχAB = NχBC = NχAC = 23.61. The wave number
ratio Qr = 1 in this case

in pairs is also the same. This is when µ = 1 and ξ = 1. With these parameters,
we look for the cusp equivalent point where the Qr = 1. The equations in
section 2.5.1 are solved with these constraints. The eigenvalues hence plotted have
one minimum at Q = Q∗ as given in fig. 2.22. The minima of both eigenvalues
coincide at Q = Q∗. The smallest eigenvalue has a quatic minimum at Q =
Q∗ (λ1 ∝ (Q − Q∗)), similar to composition corresponding to Qr = 1 in two-
component models which is the tip of the cusps in fig. 2.14.

Now retaining µ = 1 and ξ = 1 and using Qr = 1 as the initial parameters
we explore the eigenvalue behaviou when Qr > 1. For each value of Qr we
solve the equations in section 2.5.1 for fA, NχAB and NχBC at some Q1 (with
Q2 = QrQ1). The eigenvalue variation with Q for Qr = 1.6 and Qr = 2.1 are
given in fig. 2.23.(a) and (b) respectively. There are two minima in the smallest
eigenvalue (blue line) at Q1 and Q2. Two minima indicate two simultaneous phase
separation for the given composition in two lengthscales.
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(a) (b)

Figure 2.23: Eigenvalue variation for Qr = 1.6 is given in (a) and Qr = 2.1

is given in (b). Both plots are for the case where µ = 1 and ξ = 1. The
lowest eigenvalue λ1 is given in blue and the other eigenvalue λ2 is in orange.
In fig.(a) the eigenvalue is plotted for ABC star with fA = 0.67, NχAB = 39.3

and NχBC = 95.1 and fig.(b) is for ABC star with fA = 0.82, NχAB = 117 and
NχBC = 339.2.

In the plots in fig. 2.23, we demonstrate that it is possible to obtain phase
separation at two lengthscales given the right value of block lengths and inter-
action parameters. The plots in fig. 2.22 and 2.23 are for the case where B and
C have same branch length, µ = 1 and A − B and A − C interactions are same
ξ = 1 for two values of Qr. We can vary Qr, µ and ξ to obtain the monomer
compositions and interactions that will give two lengthscales.

For some ξ and Qr, if we vary µ, we will obtain the compositions with a
prominent A block that will give two lengthscale phase separation. If we try to
plot thus obtained compositions in a composition space one will obtain one of the
teal lines given in fig. 2.24. The composition space for an ABC star terpolymer is
an equilateral triangle given in fig. 2.24.(a). Here all possible values of (fA, fB, fC)
are available to vary. The labels A, B and C in the triangle represent the corner
where the compositions are maximum:(1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.
The line connecting A to the centre of the triangle (1

3
, 1
3
, 1
3
), is where µ = 1 with

fB = fC .
For a symmetric ABC star terpolymer with ξ = 1, the contour lines that

will give two lengthscale phase separations are given in fig. 2.24. For Qr = 1.2
you obtain the outer most line in fig. 2.24.(a) and (b). Both plots are the same
fig. 2.24.(b) is a focused version of the corner with larger composition of A. When
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Figure 2.24: Block fractions for ABC star architecture that can give two length-
scale phase separation are given in a triangular composition plot (ternary phase
space) given in (a). The green contour lines give the block fractions for which the
eigenvalues have two minima. Wave number ratio, Qr varies from 1.2 near the
centre to 2.5 near A in steps of 0.2 in (a). The lines are symmetric with respect
to the dotted line in (b) indicating µ = 1, where Qr is varied in steps of 0.1. The
purple contour is Qr = 1.93.

we increase the value of Qr, one will obtain the lines on the inside if you vary µ.
For the sake of clarity the lines in fig. 2.24.(a) represent Qr ratios starting from
1.2 with a step size 0.2 up to 2.5. In the fig. 2.24.(b), there are more lines as the
step size is 0.1. The purple contour line indicates where Qr = 1.93. The contour
lines for the symmetric interaction ξ = 1 (NχAB = NχAC) is found to be mirror
symmetric with the line µ = 1. On varying ξ, more composition spaces can be
obtained in a similar manner. When ξ is varied the interaction strength between
A−B and A−C is no more equal. There will be an affinity between either A−B
or A− C, which can contribute towards phase separation. We varied the values
of ξ from 0.7 to 1.3 and obtained contour lines in the composition spaces given in
fig. 2.25. It is observed that when ξ < 1, that is when NχAC is smaller than NχAB

the contour lines tilt upwards. This is where the composition of C is more which
indicates that A is more compatible with more C during phase separation. The
contour lines tilt downwards towards B when ξ > 1. Here A is compatible with
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B. The tilt is proportional to the increase or decrease of ξ. In all composition
spaces, the contour lines are well spaced for the lower value of Qr and they
appear crowded as Qr is increased. It is to be noted that desirable wavenumber
ratios for stable quasicrystals are present in the observed contour regions. The
purple line in all these composition spaces indicates compositions that can give
phase separation with a wavenumber ratio of 1.93, which corresponds to 12-fold
rotational symmetry.

2.5.3 Discussion
From the results, there exist certain compositions of fA, fB and fC branch lengths
where two lengthscales phase separation is observed. The linear theory of RPA
is used to identify two lengthscale regimes for a ABC star terpolymer. To our
knowledge, this is the first presentation of phase separation with two length scales
in the ABC star terpolymer system. The phase separation study in weak segre-
gation limit [43] and RPA [23] for ABC terpolymer were attempted previously.
There is no mention of two lengthscaled phase separation in these two works.

The curves obtained for the model with equal AB and AC interactions have a
mirror symmetry with the line fA = fB. This indicates that the morphologies will
obey this mirror symmetry in the phase space for this block copolymer. When
ξ > 1, we have a down tilt in the contour lines indicating polymer chains with
a longer B block are preferred when the incompatibility between AC is large.
Likewise, when ξ < 1, the tilt is towards C, preferring longer C chains. For
the first case, the branch length order is fA > fB > fC ; for the latter, it is
fA > fC > fB. Similar analysis can be done for the other ABC star models:
terpolymer with long B, by controlling χAB And χBC and terpolymer with long
C controlled by χAC And χBC .

The obtained results support that it is possible to design ABC star ter-
polymers by tuning their lengths and interactions to produce two lengthscale
phase separation. Most phase separation studies on ABC star terpolymers,
[50, 101, 159] id done using SCFT as mentioned in chapter 1. These meth-
ods are computationally heavy and need an initial parameter screening process
depending on the morphology seeking. We are providing a substantial window
of compositions and interaction strengths for ABC star terpolymer with a lower
segregation limit. In fig. 2.24 and 2.25 the region with 1.6 < Qr < 2.1 occupy
more compositions compared to the two component models. These Qr values
are already seen in stable soft matter quasicrystals, hence we can expect to see
quasicrystalline morphologies within these compositions.

The exploration of block fraction maps is limited by the choice of ξ and µ.
For specific values the matrix W (Q) becomes singular. Also, along the corner of
the triangle, one branch will be long and others will be small compared to the
long chain. At these compositions star polymers behave similarly to diblocks.
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When the segregation strength is lower there is a fair chance that there won’t be
phase separation. More detailed analysis of the stability and morphologies of the
terpolymer melt at these compositions can be done using WST.

2.6 Conclusion
In this chapter, two lengthscale theory from pattern formation is successfully com-
bined with RPA for polymers to predict polymer chains that can self-assemble
into morphologies with more than one lengthscales. We have investigated the
length scales that emerge at the point of phase separation in two classes of block
copolymer models: two component linear chains and three component terpoly-
mers. In both cases, we find that as well as having a single length scale at
phase separation, it is possible to design the polymers so that two length scales
emerge. The transition from one to two length scales occurs at a point (a cusp)
in the parameter space when the length scale ratio is one. Beyond this cusp,
the length scale ratio can be made much larger than one. The lengthscale ra-
tios obtained here complement the rotational symmetries observed in quasicrystal
systems. We have predicted compositions that can phase separate in lengthscales
corresponding to 12-fold rotational symmetry in both block copolymer classes and
sub-classes (AL(BASS)n, random block model and ABC star terpolymer). This
rotational symmetry is often associated with square-triangle based dodecagonal
quasicrystals that are observed in soft matter systems.

We have provided the initial screening of parameters in this chapter. To con-
tinue the study of morphologies we need to consider the interaction strength (Nχ)
to decide on the methodology with which we proceed. The composition space de-
fined in this work using linear theory can be adapted using SCFT or MC to study
the morphologies. In principle we are providing a generalised technique that will
give initial parameter space for any block copolymer depending on the morpholo-
gies one is looking for. Our work provides this information and so should provide
useful starting parameter values with two-length scale phase separation, which
should be a good place to start a search for quasicrystals or their approximants,
experimentally or using more sophisticated theoretical methods.
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Figure 2.25: Composition space for different ξ values are given. For cases where
ξ < 1, (a)-(c), there is an upper tilt with respect to the µ = 1 line. When ξ > 1,
there lines are tilted downwards as given in (d)-(f).
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Chapter 3

Formulation of Strong Segregation
Theory for ABC star terpolymer

In this chapter, we present an alternative theoretical approach towards describing
phase separation in block copolymers. In the limit of strongly phase-separated do-
mains with well defined interfaces, the patterns formed resemble "tiled" patterns.
In their work on morphologies of ABC stars, Hayashida et al. [57] reports phase
separated structures arranged in aperiodic tiling of squares and triangles. The
phase separated structure in [57] exhibits 12 fold dodecagonal symmetry which is
a feature of quasicrystals. As aperiodic tilings, (specifically square triangle aperi-
odic tilings [71]) often appear in soft matter quasicrystals (as discussed in Chapter
1), this suggested a route towards the investigation of quasicrystalline patterns
in block copolymer phase separation. Among available polymer phase separation
theories, the Strong Segregation Theory (SST ) facilitates the theoretical frame-
work for this concept. The SST was developed by Semenov [138] where polymer
chains are strongly stretched across the interfaces. This stretching along with the
strong incompatibility between the monomers results in microphase separation of
monomers into domains, resulting in tiling-like morphologies in 2D. This chapter
will give a review of the strong segregation approach developed by Olmsted and
Milner [117] for diblocks depending on the geometry of the morphologies. In the
latter part of the chapter, we will discuss implementing a similar approach for
ABC star terpolymer.

Semenov developed the phase separation theory for block copolymer with high
monomer incompatibility in diblocks[138]. By incompatibility, we are referring
to interactions between different monomer types that is quantified by Nχ as re-
ferred in chapter 2. The basis of strong segregation theory is that when stretching
free energy and interfacial free energy of a system of block copolymers balances,
the resulting phase separated domain is a stable structure. The work resulted
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Figure 3.1: Schematic representation of chains stretching out from an interface.
Here h is the length of the phase separated domain and x is the distance from
the interface to a section of chain dx.

in a phase space that complemented the phase space from weak segregation ap-
proach [87]. This was later verified using a unified formulation of Self-Consistent
Field Theory (SCFT) [97].

The SST formulation was extended by Olmsted et al. [117] to incorporate
different geometrical features of the domains, which we are revisiting in detail in
the next section. The majority of the chapter will discuss how this formulation
was adapted to include different geometries for ABC star morphologies.

3.1 Stretching free energy for a brush
In order to determine the stretching energy of the polymer chains in a phase sep-
arated block copolymer, the chains are taken as brushes grafted to the interfaces.
The stretching free energy is evaluated following the methodology developed by
Ball et al. [15]. In a polymer melt in the absence of any solvent, the length of
the chains is proportional to the volume of the melt. Stretching of a subsection
of the chain of length ∆x will result in a change in the volume of the melt, ∆v.
The stretching energy consumed here is ∆fstrm :

∆fstrm =
3

2

v

b2

(
∆x

∆v

)2

kBT, (3.1)

where b and v are the Kuhn length and volume of the chain, respectively. The
subscript m indicated the monomer type. Taking the chain as continuous, the
stretching free energy fstrm of the entire chain, forming a domain of volume V in
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terms of kBT is:

fstrm =

∫ V

0

dv
3v

2b2

(
dx

dv

)2

. (3.2)

Given it is an incompressible melt where the entire volume is filled with monomer
units, the volume v(x) of the domain is related to the number of monomer units
n(x) in the melt at height x as,

n(x)v = v(x). (3.3)

Thus,

dn =
dv

vm
. (3.4)

Rewriting the stretching energy due to chain extension in terms of the number
of monomer units,

fstrm =

∫ N

0

dn
3

2b2

(
dx

dn

)2

. (3.5)

In addition to the stretching from the chain, work is required to insert a section
δv into the polymer melt at height x(n). This work is the chemical potential
µ(x(n)) required for inserting a single monomer unit at height x(n) multiplied by
the number of monomers inserted. Thus the total energy F is a combination of
the elastic energy due to the chain stretch and the work due to chain interactions.

F =

∫ N

0

dn

(
3

2b2

(
dx

dn

)2

+ µ(x(n))

)
. (3.6)

We now find the optimal path for a chain x(n), which starts at the interface
x = 0 and ends at some height x = X, that lies within the brush of height h, i.e.
0 < X < h, which is a variational problem. That is to find the optimal path of
the chain that minimises the free energy F . Applying the least action, the action
for the stretching energy J(F ) from a fluctuation δx(n) in the chain is given by,

J(F ) = F + δF,

=

∫ N

0

dn

(
3

2b2

[(
dx

dn

)2

+
∂x

∂n

∂

∂n
δx

]
+ µ(x(n)) + δx

dµ

dx

)
.

(3.7)

Taking the small change in the length δx outside, we get the minimum variation
in the length using the Euler-Lagrange (E-L) equation. The path of the chain
satisfies the E-L equation for minimum stretching free energy.

3

b2
d2x

dn2
=
dµ

dx
. (3.8)
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The above expression is analogous to a particle subjected to Newtonian motion.
The path of the chain from x to interface is equivalent to a particle-free falling
from rest with a potential: −µ(x). The chain has a free end at x(0) = X and
it reaches the interface at x(N) through N monomer units in that chain. The
boundary conditions are then

x(0) = X, (3.9)
x(N) = 0, (3.10)
dx

dn
|0 = 0. (3.11)

Now we try to solve for x(n) and µ at optimal free energy. Assuming that there
are free ends at all distances from the interface, the chemical potential µ(x) is a
quadratic function of x [154]. So

dµ

dx
= −Ax. (3.12)

where A is a constant. Using eq. (3.8), the expression is rewritten as

3

b2
d2x

dn2
= −Ax. (3.13)

A general solution that satisfies all the boundary conditions for the above ODE
is

x = X cos
π

2

n

N
. (3.14)

Substituting x to eq. (3.13) will give expression for the constant A.

A =
3π2

4N2b2
. (3.15)

The differential equation in eq. (3.12) is rewritten by substituting for A as

dµ

dx
= − 3π2

4N2b2
x. (3.16)

This is now solvable by the variable separable method to find the chemical po-
tential µ at a given height x. On the free end, the potential µ is zero. Solving
the equation eq. (3.16) we get the contribution of the chemical potential of the
chains µ(x) at height x. ∫ x

h

µdµ = − 3π2

4N2b2

∫ x

h

xdx,

µ(x) =
3π2

8N2b2
(h2 − x2).

(3.17)
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Using the expressions for x and µ(x), the free energy for a chain at a height X is
obtained from eq. (3.6). Thus the free energy F is

F =

∫ N

0

(
3

2b2

(
Xπ

2N

)2

sin2
(π
2

n

N

)
+

3π2

8N2b2

(
h2 −X2 cos2

(π
2

n

N

)))
dn.

(3.18)

On rearranging the above expression the sines and cosines can be brought to-
gether.

F =

∫ N

0

3X2π2

8N2b2

(
sin2

(π
2

n

N

)
− cos2

(π
2

n

N

))
dn+∫ N

0

3π2

8N2b2
h2dn.

(3.19)

When we solve the integral, the first term will be zero. Thus the free energy
associated with a single chain attached to an interface in the domain is

F =

∫ N

0

3π2

8N2b2
h2dn,

=
3π2

8Nb2
h2.

(3.20)

Here the energy is dependent only on the height of the chain, which also indicates
the size of the domain formed in phase separation. So, irrespective of where a
chain is inserted in the domain, the free energy associated with the change in the
chain conformations is the same.

If n polymer chains are grafted to an interface whose area is S, then free
energy associated with the displacement of chains will result in the stretching
free energy Fstr at a height h. This height h can also be the radius of the domain
formed by these chains. Free energy associated with an interface of area S is,

F =
3π2Ω2n2

8Nb2S2
. (3.21)

Here, Ω is the volume of a chain and nΩ = hS. Given that a domain contains nc

chains, the free energy will be,

F =

∫ nc

0

3π2Ω2

8Nb2S2
n2dn,

=
π2Ω2

mn
3
c

8Nb2S2
.

(3.22)
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In terms of the domain height h, h = Ωnc

S
overall free energy contribution due to

nc chains is:

F =
ncπ

2h2

8Nb2
. (3.23)

The free energy per chain f for brushes grafted to a surface is given by F
nc

which
is

fc =
π2h2

8Nb2
. (3.24)

At the strong segregation limit, this overall free energy due to stretching and
pressure is highly elastic and contributes to the stretching of the chains. Thus
for a flat interface grafted with brushes, the stretching free energy fstr = fc.

fc =
π2h2

8Nb2
= fstr. (3.25)

Here a single monomer type is considered. The free energy of different block
copolymer models can be computed using this free energy as the stretching free
energy. We will demonstrate the free energy calculation of the morphologies in
diblocks in brief. Later in the chapter, we will adapt the theory for ABC star
terpolymers.

3.2 Interfacial energy at block copolymer inter-
faces

If there is more than one type of monomer in the polymer melt, then interfaces are
formed due to their incompatibility. The incompatibility between monomers re-
sults in the interfacial tension γ between the domains [60]. The energy associated
with this surface tension is quantified using the product of the Flory interaction
parameter and the number of monomer units Nχ. For a polymer melt of total
density ρ, the interfacial tension γ is

γ =
(χ
6

) 1
2
ρbkBT. (3.26)

From the extensive literature available, the strong segregation limit is considered
when Nχ ≥ 60. So we are scaling the surface tension with Nχ = 60. The
interfacial in terms of kBT is then γ ≈ 10

1
2 . Given there are nc polymer chains

of volume Ω, the interfacial energy Fint at a domain surface of area S is

Fint = γS =
γncΩ

h
(3.27)
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where h is the radius of the domains formed. The interfacial energy per chain
fint is

fint =
γΩm

h
. (3.28)

We have the free energy consumed by chains for stretching (eq. (3.25) and
at the interfaces of monomer domains eq. (3.28). When we combine these two
we get the overall free energy expense in a polymer melt at strong segregation
limit, It is possible to determine the total free energy associated with different
block copolymer models. First, we will discuss the simpler case of two-component
block copolymers using diblocks and their morphologies. Later in this chapter,
we will develop the free energy calculation for ABC star terpolymers and their
morphologies.

3.3 Strong segregation for two-component block
copolymers

The simplest two-component block copolymer is a diblock with two blocks: AB.
This gives two types of polymer brushes at both sides of the AB interface. One
side will have brushes of monomer type A and the other will have brushes of B.
The stretching of these brushes and resulting interfacial strength constitute the
free energy of phase separated morphologies.

The most common morphology found for symmetric diblocks is lamellar [87,
138]. Here is a review for determining the total free energy of the lamellar phase
at strong segregation limit based on the work done by Olmsted and Milner [117].

3.3.1 Lamellar morphology
When the composition of A and B blocks are comparably equal diblocks form
stable lamellar structures [87, 97, 138]. In this morphology, the diblocks are
arranged such that the connecting points of A and B blocks will form a surface
resulting in A and B branches stretching in opposite directions. The arrangement
of A and B blocks results in the stretching free energy and the tension due to
this stretching at the interface results in the interfacial free energy.
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Figure 3.2: Schematic representation of lamellar morphology. The type A do-
main is given in red with height hA and the type B domain is given in blue with
height hB.

In diblock morphologies, the domain height is dependent on its monomer
compositions, ϕA for A type and ϕB for B type monomers. The height of A
brush hA = ϕAh and that of B brush is hB = ϕBh as shown in fig. 3.2.

We consider a lamellar structure as shown in fig. 3.2 with A and B type blocks
occupying the domain of height hA and hB, respectively. The compositions of A
and B monomers in the lamellar structure of domain size are ϕA = hA

h
and

ϕB = hB

h
. Considering NA monomer units in the A block and NB monomer units

in the B block of a chain, resulting stretching free energy fstr is,

fstr =
π2

8

{
h2A
NAb2A

+
h2B
NBb2B

}
,

=
π2

8

{
ϕ2
A

NAb2A
+

ϕ2
B

NBb2B

}
h2

=Mh2.

(3.29)

whereM = π2

8

{
ϕ2
A

N2
Ab2A

+
ϕ2
B

N2
Bb2B

}
. HereM has the architectural details of the chains

in the melt. The surface energy at the AB interface for a lamellar morphology is

fint =
γΩ

h
. (3.30)

where Ω is the total volume of the A and B brushes.
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Figure 3.3: Total free energy determined from strong segregation analysis for
lamellar morphology is varied with the monomer composition ϕA.

The total free energy associated with the lamellar morphology, Flam is then,

Flam = fstr + fint

=Mh2 +
γΩ

h

(3.31)

The total free energy Flam varies with the lengthscale of the morphology h. The
stretching energy increases with the domain size or brush length and interfacial
energy decreases with the domain size. So at a specific lengthscale h = h0 the
stretching and interfacial tension balances and the morphology will be in equilib-
rium. The total free energy Flam will have a minimum at h0 satisfying,

dFlam

dh
|h0 = 0,

−γΩ
h20

+ 2Mh0 = 0

(3.32)

Solving for h0 we get

h0 =

(
γΩ

2M

) 1
3

. (3.33)
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(a) (b)

Figure 3.4: Schematic representation of (a) hexagonal and (b) cylindrical mor-
phologies for diblocks. The white outline in both figures gives the different wedges
that can be considered for these morphologies.

The free energy lamellar structure is then obtained by substituting h0 in eq. (3.31).
Thus we get,

Flam = 2
1
3
3

2
(γΩ)

2
3M

1
3 =

{
27π2

32

} 1
3

(γΩ)
2
3

{
ϕ2
A

NAb2A
+

ϕ2
B

NBb2B

} 1
3

,

=

{
27π2

32

} 1
3

(γΩ)
2
3

{
ϕ2
A

NAb2A
+

(1− ϕA)
2

NBb2B

} 1
3

(3.34)

which is now in terms of the monomer compositions ϕA and ϕB = 1− ϕA.
The total free energy is plotted by varying monomer compositions of A, ϕA

as given in fig. 3.3 taking NA = NB = N and bA = bB = b. When ϕA = ϕB = 1
2
,

the free energy of lamellar morphology is the lowest as it was predicted in various
phase separation studies [17, 87, 117, 138].

3.3.2 Free energy of a wedge
In lamellar morphology, the AB interface is a flat surface. When the compositions
of A and B blocks are varied there emerge other morphological structures like
hexagonal or cylindrical phases. In these structures, the interfaces are not flat
throughout the melt. They form circles or hexagons as shown in fig. 3.4 at
their interfaces. There are many other different morphologies that are formed in
diblock melts. To determine the free energy of different morphologies of various
geometrical shapes Olmsted et al. divided these morphologies into small wedges
as indicated by the white outline in fig. 3.4. The total free energy of this wedge is
determined which then is added up to calculate the total free energy of the given
morphology.
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Figure 3.5: Wedge which adds up to form the diblock morphologies. The
interface is at the height zw.

In a wedge that is considered in a AB phase-separated structure, the narrow-
ended side will be occupied by monomers of one type (A, red) and the broader
is occupied by the other monomer type (B, blue) making an interface AB some-
where in between. The height of this interface varies with the composition. A
parameter β = zw

Rw
is defined to determine the interfacial height zw variation with

respect to the radius of the wedge (Rw).

β =
zw
Rw

(3.35)

With this scaling that can relate between the compositional change and geometry
of the morphology the total free energy of the wedge is determined. Here, the
interfacial free energy is determined first and then the stretching free energy per
chain associated with the wedge is obtained.

The cross-sectional area of the interface a(β) is defined as [117]

a(β) = β. (3.36)

With the cross sectional area defined, the volume below the cross-section is then
The interfacial free energy for a wedge at the AB interface for a given morphology
is determined. The area occupied by nw chains in the wedge is Ωa(β)

v(1)R
[117]. Given

the surface tension at the interface is γ, the interfacial energy contributed to the
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morphology due to the wedge is

fint = γ × Area of the interface occupied by the chains,

=
γΩa(β)

v(1)Rw

,

=
W

Rw

.

(3.37)

where W = γΩa(β)
v(1)

. This constant contains the architectural characteristics of the
polymer chain in the melt like the Nχ, its density and the shape of the interface
formed. The stretching energy in a wedge is to be determined. The number of
chains per cross-section, σA = NA

a(β)
changes with the height. Thus the height is a

function of the number of chains per area. The stretching energy due to A type
monomers in the red part of the wedge given in fig. 3.5 is

fstretchA
=

∫ NA

0

3π2h2(σA)

8NAb2A
dn. (3.38)

The number of monomer units varies from 0 to NA as we consider the chain
from the AB interface to the broad end of the wedge. We have to consider the
stretching below the interface caused by the B blocks. The stretching energy
contribution from the B blocks is

fstretchB
=

∫ NB

0

3π2h2(σB)

8NBb2B
dn. (3.39)

The total stretching energy will be the sum of these two stretching energies. On
solving the integral we get the simplified expression for total stretching energy.
The detailed derivation is given in appendix B.1. We obtain the expression for
stretching free energy given below:

fstr =
3π2R2

w

8v(1)

[∫ β

0

y2a(β − y)

R2
AϕA

dy +

∫ 1−β

0

y2a(β + y)

R2
BϕB

dy

]
,

=
3π2R2

w

8v(1)

[
IA

R2
AϕA

+
IB

R2
BϕB

]
,

=MR2
w.

(3.40)

Here IA and IB give the geometric contribution from the domains formed by
A and B blocks. These two constants depend on the interfacial surface that
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is formed. We assign M = 3π2

8v(1)

[
IA

R2
AϕA

+ IB
R2

BϕB

]
, which shows that in the end

stretching energy is depend on the square of domain radius.
Now, as expression for stretching free energy and interfacial free energy are

obtained, the total free energy per chain for the wedge is

Fw =MR2
w +

W

Rw

. (3.41)

This is the format of total free energy expression irrespective of the morphologies
or polymer structure.

The diblocks can form different morphologies which are composed of straight
interfaces or curved interfaces. In order to determine the free energy expense
a morphology is divided into appropriate wedges. Using this the free energy of
hexagonal and cylindrical morphologies are determined as examples.

Hexagonal morphology

In a hexagonal morphology like the one given in fig. 3.6.(a) blocks of monomer
type B (blue) form cylindrical hexagons that are embedded in domains formed by
blocks of monomer type A (red) in 2D. Wedges are chosen for this morphology
such that on putting them together, you get the hexagonal morphology. The
morphology is divided into six identical triangles which are then divided into
smaller wedges. The interfacial energy is determined for the wedge in a hexagon.
Considering the simple case where AB interface is a straight line. In the case of
a hexagon this interface will be a rectangle (refer to fig. 3.5). Here, the interface
is not perpendicular to the horizontal height of the wedge Rw. Instead there is a
slight inclination which is indicated by the angle ψ. By scaling the height of the
chain with the height of the interface using the previously mentioned β, the area
of the interface Aint is determined.

Aint = a(β) cosψ (3.42)

The expression for interfacial energy is then,

fhexint
=
γΩa(β) cosψ

v(1)Rh cosψ

=
W

Rh

(3.43)

where W is γΩa(β)
v(1)

. Here W has the chemical characteristics of the polymer chain
including the monomer interactions and chain lengths.

Next is to determine the stretching energy of the chains in the hexagonal
morphology. For this, a wedge of width dl is considered in the hexagon at a
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(a)

L0

dθ

Rw

dl
l

π
6

Rh

(b) (c)

Rw

dl

(d)

Figure 3.6: Schematic representation of wedges for hexagonal and cylindrical
morphology in diblocks are given in (a) and (c). The red indicates the A type
and the blue indicates B type monomers. In (b) the 1

12

th portion of the hexagon
is given where the wedge is indicated in black outlines. The wedge for cylindrical
morphology is given in (d) where the radius of the cylinder is the height of the
wedge.

distance l from the perpendicular height Rh of the hexagon as shown in fig. 3.6.
(b). In order to apply the expression for stretching energy from the wedge, the
radius is determined in terms of the height of the hexagon Rh.

R2
w = R2

h + l2,

R2
w = R2

h(1 + x2).

(3.44)

The stretching energy of the chains in the triangle in fig. 3.6.(a) is determined by
integrating fstr for the wedge over 0 → L, which is 0 → 1√

3
. So the stretching

free energy fhexstr associated with the chains in the triangle in fig. 3.6.(a) that
is 1

12
th of a hexagon is

fhex(str) =

∫ 1√
3

0 fstrdVw∫ 1√
3

0 dVw

,

=
√
3

∫ 1√
3

0

fstrdx.

(3.45)

The cross-sectional area varies with height in a hexagon as a(β) = β. The
stretching energy per chain for the hexagonal morphology in the expanded form
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is

fhex(str) =
√
3

∫ 1√
3

0

(
3π2R2

w

8v(1)

[∫ β

0

y2a(β − y)

R2
AϕA

dy +

∫ 1−β

0

y2a(β + y)

R2
BϕB

dy

])
dx

(3.46)

The terms in the square bracket depend on the composition of the polymer chains
and the interfacial cross-sections formed. Consider these terms as ζ where,

ζ = 3

∫ β

0

y2a(β − y)

R2
AϕA

dy + 3

∫ 1−β

0

y2a(β + y)

R2
BϕB

dy. (3.47)

Now the stretching free energy in hexagonal morphology can be written as,

fhex(str) =
√
3

∫ 1√
3

0

π2

8v(1)
ζR2

h(1 + x2)dx

=
10

9

π2

8v(1)
ζR2

h

(3.48)

where Rw = Rh

√
1 + x2. The stretching energy is evaluated by solving the inte-

gral eq. (3.46). The final expression can be written as

fhex(str) =
10

9
MR2

h, (3.49)

by taking 3π2

8v(1)
ζ =M . Now the stretching energy is in the familiar form where it

is proportional to the square of the domain height Rh. The parameter M contains
the chemical and architectural features of the diblocks like monomer composition
and domain lengths.

The total free energy is determined by combining the interfacial energy in
eq. (3.43) and the stretching free energy eq. (3.49).

Fhex =
10

9
MR2

h +
W

Rh

. (3.50)

Similar to the total free energy expression of lamellar morphology in eq. (3.31),
the expression for the total free energy of the hexagon also has the same structure.
In this expression, the M contains ζ which describes the morphological structure
that is formed. The interfacial area and thus the monomer-monomer interactions
are considered through W . These two constants vary with the morphology we
care considering, monomer composition and interaction strength. Here the scaling
length is Rh, the height of the hexagon. Morphology gets stable at lengthscale
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Rh when there is an equilibrium state due to the balance between the stretching
energy which encourages entropy (conformational change) and interfacial energy
that pulls the chains back to the domains. The lengthscale for stable morphology
is obtained when the total free energy is at its minimum. That is when dFhex

dRh
|Rh0

=
0. The stable lengthscale is then

Rh0 =

(
9

20

W

M

) 1
3

. (3.51)

Now the total free energy is rewritten by substituting Rh with the stable length-
scale Rh0 . So the minimum free energy of hexagonal morphology for a given
monomer composition of ϕA and ϕB is

Fhexmin
=

(
10

9

) 1
3
(
27

4

) 1
3

M
1
3W

2
3 ,

=

(
10

9

) 1
3
(
27

4

) 1
3
(
3π2ζ

8v(1)

) 1
3
(
γΩβ

v(1)

) 2
3

.

(3.52)

Cylinder

We can analyse morphologies with curved interfaces using the wedge method. If
we consider a cylindrical morphology as given in fig. 3.6. (c), then the morphology
can be divided into infinitesimally small wedges such that the interface is mostly
straight. Here the radius of the wedge is uniform all around the cylinder as
demonstrated in fig. 3.6.(d). Following the procedures as the hexagonal case, the
interfacial energy and the stretching free energy are determined.

The interfacial energy for the cylinder will be

fcylint
=
γΩa(β)

v(1)Rw

, (3.53)

where the area of cross section a(β) = β as the cross section for the wedge in the
cylinder is also rectangular. Again taking W = γΩa(β)

v(1)
the interfacial energy for a

wedge in a cylindrical morphology is

fcylint
=
W

Rw

. (3.54)

The stretching free energy for the wedge across the circle of radius Rw is given
by

fcyl(str) =

∫ 2πRw

0
fstr(w)dVw∫ 2πRw

0
dVw

, (3.55)
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where the volume of wedge dVw = Rwdl
2

. The stretching free energy per chain is
then,

fcyl(str) =

∫ 2πRw

0
fstr(w)Rwdl∫ 2πRw

0
Rwdl

,

=
1

2πRw

3π2R2
w

8v(1)

∫ 2πRw

0

[∫ β

0

y2a(β − y)

R2
AϕA

dy +

∫ 1−β

0

y2a(β + y)

R2
BϕB

dy

]
dl.

(3.56)

As the cross sectional area for cylinder is again a(β) = β, the ζ for cylindrical
morphology is the same as in hexagon (eq. (3.47)). The final expression for
stretching free energy will be:

fcyl(str) =
1

2πRw

3π2R2
w

8v(1)
ζ

∫ 2πRw

0

dl,

=
3π2R2

w

8v(1)
ζ,

=MR2
w.

(3.57)

The stable radius Rw0 is obtained by determining the minimum of the overall free
energy Fcyl = fcyl(str)+ fcylint

with respect to Rw. Thus the minimum free energy
Fcylmin

is

Fcylmin
=

(
27

4

) 1
3
(
3π2ζ

8v(1)

) 1
3
(
γΩβ

v(1)

) 2
3

(3.58)

Thus by choosing the appropriate β and a(β), the free energy of different
morphologies can be determined at strong segregation limit. We demonstrated
the idea for diblocks here. More morphologies are analysed for diblocks using this
method in the work done by Olmsted and Milner [117]. Through this method,
the problem of phase separation is converted into a geometrical problem in 2D.
In their work with diblocks, Olmsted et al. also extend the theory to include
bicontinuous morphologies in 3D. This theory has the potential to be extended
to other block copolymer systems like ABC star terpolymer.

From here on, this thesis we will demonstrate the versatile framework to
study phase separation in ABC star terpolymers and its application to various
morphologies.

99



3. Formulation of Strong Segregation Theory for ABC star terpolymer

3.4 Strong Segregation Theory for ABC star ter-
polymer

The phase separation and the morphologies formed in ABC star terpolymer are
dependent on six variables, the three monomer compositions and three interac-
tion strengths, of the chain. In an incompressible melt of ABC star terpolymers
this reduces to five: ϕA, ϕB with ϕC = 1− ϕA − ϕB and the chemical incompat-
ibilities between each monomer types: NχAB, NχAC and NχBC . Varying these
parameters, there are a plethora of morphologies that could be formed for this
polymer system as mentioned in Chapter 1. Previous works done on ABC star
terpolymers explore the morphologies at strong segragation limit using SCFT
[62, 91, 159], Dissipative Particle Dynamics DPD [27, 80, 81] and Monte Carlo
method [50, 156].

In this work we are proposing a simpler yet powerful methodology to determine
stable morphologies based on strong segregation theory. The technique follows
the same principle as discussed above for diblock morphologies. A preliminary
analysis of this type was made by Gemma et al. [50] who developed a strong
segregation theory for the prominent 2D periodic morphologies to complement
their lattice-based molecular Monte Carlo simulations. In their work, Gemma et
al. report their results along a 1D slice through the two dimensional composition
space. In our work, we go significantly beyond the work of Gemma at al. by
developing a generalised computational framework which can encapsulate a wide
range of morphological structures and which then can be utilised to study 2D
morphologies including quasicrystals.

The ABC star terpolymer chain contains three branches of different monomer
types joined together at a point as shown in fig. 3.7.(a. When these terpolymers
rearrange themselves to form different morphologies, these junction points align
themselves in a line in a third dimension giving different domains in the two
dimensions of the page. In order to fit within any morphology, the chains must
stretch into the domains away from the unique points where the three colours
meet, as shown in fig. 3.7. (b). A line formed by such unique points is called ‘core’
in this work. In any phase-separated structures, the three branches stretch around
this core forming monomer domains around it. Thus we are dealing with polymer
branches that stretch from a curved surface of a very small radius. The chain
distribution within the core is not well defined [50]. In DPD calculations [81],
the core is taken as a sphere of the fourth type, which facilitates the architectural
and spatial restriction of an unknown entity. But this doesn’t efficiently resolve
the role of the core in terpolymer phase separation.

In this work, we are considering the core as a convex cylinder in 3D of radius
Rc ≈ b, where b is the Kuhn length. The three branches are grafted to the convex
side of this cylinder as shown in fig. 3.7. (b). Thus same type branches can
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(a) (b)

Figure 3.7: A schematic representation of ABC star terpolymer is shown in
(a). The red, blue and yellow branches indicate monomer types A, B and C

respectively. In (b), the domain formation from the stretching of branches around
the core line is demonstrated.

assemble in a way to give a tiling like arrangement as shown in fig. 3.9. So the
stretching we are concerned for this system is due to the brushes being grafted
to convex surfaces.

3.4.1 Stretching free energy of brushes on curved surface
In order to evaluate the stretching energy of the branches in terpolymers the
2D morphologies are divided into wedges as shown in fig. 3.7.(b). In this case,
wedges contain branches of the same monomer type. Each domain can be split
into a set of wedges, but interfaces are between domains are not included inside
the wedge-like diblock wedges. The stretching energy for brushes grafted on a
convex surface of radius of curvature Rc is reported by Ball et al. in their work on
brushes grafted on surfaces [15]. They give stretching energy per unit area F (σ)
in the units of kBT in terms of packing fraction a = 3vm

b
and chains per unit area

σ for monomer unit of volume vm. When the radius of the surfaces is sufficiently
small, the stretching energy is dependent on the leading term which is,

F (σ) =
aRcσ

2

4
log

σΩ

Rc

, (3.59)

where Rc is the radius of the cylindrical surface.
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Figure 3.8: Schematic representation of the wedge with only one type of polymer
chain grafted into a core cylinder.

Now we consider a wedge in which the polymer branches are grafted to a core
cylinder of radius Rc ∽ b as given in fig. 3.8. The stretching free energy per chain
fw = F (σ)

σ
is,

fw =
aRcσ

4
log

σΩ

Rc

. (3.60)

For a wedge of sectional angle θ, radius h and depth D as given in fig. 3.8, the
volume of the wedge will be θh2D. This is equivalent to the volume of monomer
melt in the wedge: ρΩD where ρ is the monomer density and Ω is the volume
of a monomer unit. The chains per unit area (σ) in the wedge the ratio of total
chains in the wedge ρD to the cross-sectional area RcθD

σ =
ρD

RcθD
=

h2

RcΩ
. (3.61)

where Ω = Nvm with N being the number of monomer units and vm, the volume
of a monomer unit. Substituting for σ and a in eq. (3.60) we get the stretching
free energy in terms kBT for a wedge of radius h,

fw =
3

4

h2

Nb2
log

h2

R2
c

. (3.62)

The expression for stretching energy here is comparable to the diblock wedges
given in eq. (3.40) as both depend on the square of the domain radius, h. Here
in the case of this wedge with a core, the expression has a logarithmic correction
dependent on the ratio h

Rc
. Now following the procedures from the diblock case,

each morphology is split up into a set of wedges to determine the overall stretching
free energy per chain in units of kBT .
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3. Formulation of Strong Segregation Theory for ABC star terpolymer

Utilising this, we will now develop the theoretical and computational frame-
work for hexagonal morphology in ABC star terploymers. The interfacial energy
is determined separately for ABC star terpolymer melts in a strong segregation
limit, which will be discussed in the following section using an example morphol-
ogy.

Figure 3.9: The phase separated state of ABC star terpolymer to form hexag-
onal morphology is shown here. The chains given in the triangle stretch out and
align themselves to form domains that are arranged in a honeycomb.

3.4.2 SST for hexagonal morphology in ABC star terpoly-
mer

The simplest morphology to consider for ABC star terpolymer is hexagon. In
a symmetric ABC star terpolymer melt where the all blocks have the same
monomer composition and equal interaction strengths, the domains formed have
a honeycomb structure which is the hexagonal morphology as shown in fig. 3.9.
As we can see the polymer branches stretch away from the core cylinder forming
hexagonal domains of the same monomer type. The red, blue and yellow do-
main contains A, B and C monomer types respectively. We will be using this
monomer-colour convention throughout this thesis. While forming these domains
they also form interfaces with hexagons of two other monomer types. This results
in three interfacial surfaces between A and B, B and C and A and C.

The repeating unit for hexagonal morphology is an equilateral triangle that
is indicated with polymer branches in fig. 3.9. In the case of diblocks, the change
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A B

C
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hBChAC
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κ1
κ2 xdx

Area I

Area II

Area III

Area VI

Area V

Area IV

lAB1 lAB2

lAC1

lAC2

lBC1

lBC2

Figure 3.10: Schematic representation of the equilateral triangle that will form
hexagons. In here all length parameters are indicated. Areas I and II is occupied
A type, areas III and IV are occupied by C type and areas V and area VI is
occupied by B type monomer. The wedge is marked by dashed lines.

in monomer composition was reflected in the height of the interface which was
controlled using the variable β (eq. (3.35)). In the case of ABC star terpolymer,
the composition changes the position of the core in this equilateral triangle and
can control the size of the domains. The position of the core is hence dependent
on the monomer compositions ϕA, ϕB and ϕC = 1− ϕA − ϕB.

The core divides the equilateral triangle into three regions each with one type
of monomer in it. In order to apply the method of wedges the three domains
are determined in terms of monomer compositions. So we need to express the
geometry of the hexagonal morphology in terms of monomer compositions ϕA,
ϕB and ϕC . A geometrical interpretation of this equilateral triangle is given in
fig. 3.10.

The three regions in the triangle assigned to different monomer types are
further divided into two right angled triangles as shown in fig. 3.10. Thus the
regions with A type are Area I and II, regions with C type are Area III and IV
and regions with B type are Area V and VI. The monomer composition is then
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3. Formulation of Strong Segregation Theory for ABC star terpolymer

defined as,

ϕA =
Area I + Area II

Total Area
,

ϕC =
Area III + Area IV

Total Area
,

ϕB =
Area V + Area VI

Total Area
.

(3.63)

Since the area of the triangles is known from the length of their sides, the com-
position fraction is defined in terms of these lengths. We write all lengths as
dimensionless parameters by scaling with the side length l of the triangle. The
lengths from the corner to interfaces lIJ and interface heights hIJ which are writ-
ten in dimensionless form as lIJ = lLIJ and hIJ = lHIJ . Thus the monomer
compositions in terms of the domain lengths are

ϕA =
2√
3
(LAB1HAB + LAC1HAC) ,

ϕB =
2√
3
(LAB2HAB + LBC1HBC) ,

ϕC =
2√
3
(LAC2HAC + LBC2HBC) .

(3.64)

Our goal is now to invert these equations so that we can obtain the geometry
of the domains (i.e. the lengths and heights of the triangles) from the composition
(ϕA, ϕB). Using simple trigonometry, we first get two relations between HIJ and
LIJ . The relation between interfacial heights and side lengths is established
considering the corner A of fig. 3.10. We know that for an equilateral triangle
∠A = 60◦. As we divide the triangle into six triangular regions, ∠A = κ1 + κ2,
as indicated in fig. 3.10. So,

tanA = tan (κ1 + κ2) =
tanκ1 + tanκ2
1− tanκ1 tanκ2

,

tan 60 =
√
3 =

HAC

LAC1
+ HAB

LAB1

1− HAC

LAC1

HAB

LAB1

,

√
3{LAC1LAB1 −HACHAB} = LAB1HAC + LAC1HAB.

(3.65)

Also for the right angled triangles that contain κ1 and κ2,

H2
AB + L2

AB1 = H2
AC + L2

AC1. (3.66)
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Solving the two equations in eq. (3.65) and eq. (3.66) for LAB1 and LAC1 the side
lengths are expressed in terms of interfacial heights only.

LAB1 =

√
3 (HAB + 2HAC)

4
,

LAC1 =

√
3 (HAC + 2HAB)

4
.

(3.67)

This is done for all the corners and every side length in fig. 3.10 is expressed in
terms of the interfacial heights. Substituting for all LIJs in section 3.4.2 monomer
compositions are now in terms of interfacial heights.

ϕA =
2

3

(
H2

AB +H2
AC + 4HABHAC

)
,

ϕB =
2

3

(
H2

AB +H2
BC + 4HABHBC

)
,

ϕC =
2

3

(
H2

BC +H2
AC + 4HBCHAC

)
.

(3.68)

Solving these equations using numerical methods we get HAB, HBC and HAC in
terms of some ϕA and ϕB and ϕC = 1 − (ϕA + ϕB). It should be noted that the
core is should always be inside the triangle and it should form domains that are
physically valid. However, not all values of ϕA and ϕB lead to physically valid
geometry. For example if HAB ≤ 0, HBC ≤ 0 and HAC ≤ 0, the domains formed
are physically invalid. If HAB = 0, then

ϕA =
2

3
H2

AC

HAC =

√
3

2

√
ϕA

(3.69)

and

HBC =

√
3

2

√
ϕB. (3.70)

Also for an equilateral triangle of side l, the perpendiculars to the sides obey

hab + hbc + hac =

√
3

2
l (3.71)

where l is the total length of the sides. That gives,

HBC +HAC =

√
3

2
. (3.72)
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A B

C

(a)

A B

C

(b)

Figure 3.11: These triangles demonstrate how changing monomer compositions
alter domains. In (a) ϕA = 0.43 and ϕB = 0.20 and in (b) ϕA = 0.12 and
ϕB = 0.20.

And so
√
ϕA +

√
ϕB = 1√

2
. This forms one boundary on the region of validity.

Considering all such boundaries, we conclude that the compositions ϕA , ϕB and
ϕC that obey √

ϕA +
√
ϕB ≥ 1√

2
,

√
ϕB +

√
ϕC ≥ 1√

2
,

√
ϕA +

√
ϕC ≥ 1√

2
,

(3.73)

will give physically valid phase separated domains. Thus for given monomer
compositions ϕA and ϕB we can tell how the equilateral triangle with domains
and hence the morphology will look like. Two examples of triangles with different
compositions are given in the fig. 3.11. We can see that the composition change
affects the domain according to the above formulation. Different domains mean
different phase separation patterns within the same morphology. Now we can
consider the interfacial energy and stretching energy in terms of the geometry of
the triangle.
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Interfacial free energy

There are three interfacial planes, each between A and B, B and C and A and C.
The interfacial energy is defined in terms of surface tension γ =

(
χ
6

) 1
2 ρbkBT [60].

For the given triangular domain interfacial energy in the units of kBT will be

Fint = γABaAB + γBCaBC + γACaAC
(3.74)

where aAB, aBC and aAC are the interfacial areas. If the depth of the domain is
D, the area of the triangle is AT =

√
3l2

4
and the volume per chain is Ω then, the

number of chains in the triangle is ATD
Ω

and area of each interfacial plane will be
hIJD. So the interfacial energy per chain in units of kBT is

fint =
(γABhABD + γBChBCD + γAChACD) Ω

ATD

=
4 (γABHAB + γBCHBC + γACHAC) Ω√

3LR

(3.75)

where we have introduced a dimensionless triangle side length L = l
R

scaled by
the chain random walk length R =

√
Nb. In eq. (3.75), we can introduce a scaled

surface tension ξIJ = γIJΩ
RkBT

. On substituting for γIJ as in [60] we get

ξIJ =

(
χIJ

6

) 1
2 ρ0bΩ

R
=

(
χAB

6

) 1
2 ( 1

v0
)b(Nv0)

N
1
2 b

,

=

√
NχIJ

6
.

(3.76)

From [50, 98] it is clear that SST is valid when Nχ >= 60 giving a lower limit
of ξIJ =

√
10. For convenience, we scale ξIJ again to maintain NχIJ in strong

segregation limit and also to control interaction between monomers. For this, ξIJ
is expressed in terms of νIJ :

ξIJ =
√
10vIJ (3.77)

Collecting all this together, the interfacial free energy per chain in the units of
kBT in this triangle is

fint =
4
√
10√
3L

(νABHAB + νBCHBC + νACHAC) (3.78)

Thus small change in vIJ will reflect the changes in monomer interaction in a
strong segregation limit. It is to be noted that the interfacial energy per chain is
still inversely proportional to L, as it was observed in diblock cases.
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Stretching free energy

The stretching energy for the equilateral triangle is determined from the sum
of the stretching energies of six right-angle triangles. Taking one of the small
triangles, for example, Area I occupied by A type blocks, the stretching energy
is determined from the sum of stretching energies of the wedges. The stretching
energy per a chain in the units of kBT in a wedge with core of radius Rc and
domain height r using eq. (3.62) is,

fw(r) =
3

4

r2

NAb2A
log

r2

R2
c

. (3.79)

Figure 3.12: A closer diagram of Area I in the triangle. We consider a small
wedge of width dw to determine the stretching energy.

Area I is occupied by A type monomers and the the chain random walk length
R of A block is R2 = Nb2. For simplicity, we assume all monomer step lengths
to be the same and equal to the Kuhn length b, bA = bB = bC = b. In terms of
monomer fraction, the stretching energy per chain in the units of kBT is

fw(r) =
3

4

r2

ϕANb2
log

r2

R2
c

. (3.80)

For a wedge of given width dx as given in fig. 3.12, the stretching free energy of
the wedge is given by the number of chains in the wedge times the stretching free
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energy per chain fc. The free energy of the wedge dfw,

dfw = fw(r)
hABDdx

2ΩA

(3.81)

where 1
2
hABDdx is the volume of the wedge and ΩA is the volume of the A block

of one chain. Given the stretching energy of the wedge for a type of monomer,
it is integrated over the length of Area I, lAB1 to determine the stretching energy
contributed by Area I. So the stretching energy of Area I will be,

FI =

∫ lAB1

0

fw(r)
hABDdx

2ΩA

(3.82)

We know that r2 = x2 + h2AB. Taking y = x
lAB

we can write dx = lABdy and the
limits also change from 0 → lAB1 to 0 → 1. Thus,

r2 = (ylAB)
2 + h2AB. (3.83)

So eq. (3.82) becomes,

FI =

∫ 1

0

fw(r)
hABDlAB1dy

2ΩA

=
DhABlAB1

2ΩA

∫ 1

0

fw

(√
(ylAB1)2 + h2AB

)
dy

(3.84)

The total number of chains is given by dividing the total volume of A chains,
ϕAATD by the volume of a single chain ΩA. Here AT is the total area of the
triangle. So contribution to the total stretching free energy per chain from Area
I, fI will be

fI =
FI

nt

=

DhAB lAB1

2ΩA

ϕAATD
ΩA

∫ 1

0

fw

(√
(ylAB1)2 + h2AB

)
dy (3.85)

But we know that area of Area I given by 1
2
hABlAB1 = AI . Thus,

fI =
AI

ϕAAT

∫ 1

0

fw

(√
(ylAB1)2 + h2AB

)
dy (3.86)

On expanding for fw(r) ,the above equation becomes,

fI =
AI

ϕAAT

∫ 1

0

3

4

(ylAB1)
2 + h2AB

ϕANb2
log

(ylAB1)
2 + h2AB

R2
c

dy (3.87)
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All lengths associated with the equilateral triangle (l, hIJ , lIJ) are scaled to the
chain random walk length R =

√
Nb using the dimensionless triangle side length

L = l
R
. So the stretching free energy per chain for area I is

fI =
AI

ϕ2
AAT

∫ 1

0

3

4

L2R2 ((yLAB1)
2 +H2

AB)

R2
log

L2R2 ((yLAB1)
2 +H2

AB)

R2
c

dy (3.88)

The ratio of the chain random walk length to the radius of the core is defined as
RD = R

Rc
. The equation in eq. (3.88) will become

fI =
3

4

AI

ϕ2
AAT

∫ 1

0

L2
(
(yLAB1)

2 +H2
AB

)
log
(
L2R2

D

(
(yLAB1)

2 +H2
AB

))
dy (3.89)

The integral in this expression is analytically solvable. In order to solve it we
write the general form of the integral in terms of (X, Y ). The integral is of the
form

I = G(X, Y ) =

∫ 1

0

(Xy2 + Y ) log(c(Xy2 + Y )) (3.90)

where X = L2L2
AB1, Y = L2H2

AB and c = R2
D. The integration is executed in two

steps, first by integration by parts and then using long division. Using integration
by parts the solution of the integral for region Area I is,

II =

[
log(c(Xy2 + Y ))

(
Xy3

3
+ Y y

)]1
0

−
∫ 1

0

2Xy

(Xy2 + Y )

(
Xy3

3
+ Y y

)
dy

(3.91)
Thus solution of the integral II is

II = G(X, Y ) = log(c(X+Y ))

(
X

3
+ Y

)
−

(
2X

9
+

4Y

3
− 4Y

3

√
Y

X
arctan

√
X

Y

)
(3.92)

The integration is verified using analytical mathematical tools like REDUCE and
MAPLE. Similar analysis is done for the rest of the regions: Area II, Area III,
Area IV, Area V and Area VI with their respective monomer fractions. The
contribution of stretching energy per unit chain from each of them results in
an integral of the same structure with its corresponding length parameters and
monomer types. Contributions of the rest of the regions to stretching free energy
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per chain are listed below.

fII =
3

4

AII

ϕ2
AAT

G(L2L2
AC1, L

2H2
AC) (3.93)

fIII =
3

4

AIII

ϕ2
CAT

G(L2L2
AC2, L

2H2
AC) (3.94)

fIV =
3

4

AIV

ϕ2
CAT

G(L2L2
BC2, L

2H2
BC) (3.95)

fV =
3

4

AV

ϕ2
BAT

G(L2L2
BC1, L

2H2
BC) (3.96)

fV I =
3

4

AV I

ϕ2
BAT

G(L2L2
AB2, L

2H2
AB) (3.97)

On solving the integrals they will also give the same analytical solution but with
different length parameters. In terms of the integral solutions II , III , IIII , IIV ,
IV and IV I the stretching energy per chain in the units of kBT in the triangle
with ABC star in it is

fstretch =
3

4

AI

ϕ2
AAT

II +
3

4

AII

ϕ2
AAT

III +
3

4

AIII

ϕ2
CAT

IIII

+
3

4

AV I

ϕ2
CAT

IV I +
3

4

AV

ϕ2
BAT

IV +
3

4

AV I

ϕ2
BAT

IV I

(3.98)

From the general structure of the stretching energy, after replacing Xs and Y s, a
factor of L2 is found in all the terms. The overall stretching energy is again in the
format ML2 which we saw for diblock structures. Here also, M has all the geo-
metrical properties that arise from the monomer composition and morphological
structure. Thus the total free energy expense per chain fc in the units of kBT to
form a hexagonal morphology by ABC star terpolymers is

fc =fint + fstretch

=
4
√
10√
3L

(νABHAB + νBCHBC + νACHAC)+

3

4AT

(
AIII + AIIIII

ϕ2
A

+
AIIIIIII + AIV IIV

ϕ2
C

+
AV IV + AV IIV I

ϕ2
B

) (3.99)

The free energy per chain for the triangular patch of a hexagon is now completely
in terms of the monomer compositions ϕA, ϕB and interactions, νAB, νBC and
νAC . The core radius is included in the constant RD = R

Rc
. We fix this constant
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RD = 10 throughout the calculations. The core radius is taken to be smaller than
the random walk chain length. With this, we can look at the different patterns
formed in hexagonal morphology.
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Figure 3.13: Free energy per chain for two different monomer compositions
as given in triangular patch. The plots on top (a) are for the compositional
symmetric case where ϕA = 1

3
, ϕB = 1

3
and ϕC = 1

3
and bottom ones (b) are

for ϕA = 0.20, ϕB = 0.45 and ϕC = 0.35. The interaction between branches are
equal, νAB = νBC = νAC = 1 here. The stretching free energy varies with the
dimensionless length of the equilateral triangle L = l

R
. The stretching of chains

and interfacial tension varies with L.
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(a) (b)

Figure 3.14: Hexagonal morphology patterns formed from tiling the triangles
together. The morphology in (a) corresponds to the monomer compositions ϕA =
1
3
, ϕB = 1

3
and ϕC = 1

3
and (b) occurs when ϕA = 0.20, ϕB = 0.45 and ϕC =

0.35. These images are made by aligning previous triangles in image processing
software. The interaction strength between branches are equal, νAB = νBC =

νAC = 1 here.

The expression for total free energy per chain again has two terms that are
dependent on the lengthscale of the triangular patch. When the length of the tri-
angle increases the polymer chains are able to stretch more and hence the stretch-
ing energy increases. When the length of the triangle L decreases the chains are
less stretched and interfacial tension increases. At an equilibrium length L = L∗,
the free energy will be lowest and we get the stable triangle pattern for hexagonal
morphology for a given set of monomer compositions, (ϕA, ϕB, ϕC). The stable
triangle patch and the free energy per chain variation with the length L for two
different sets of compositions are given in fig. 3.13. In both free energy plots there
is a minimum which indicates the side length at which the morphology is stable
for a given monomer composition. The value of minimum free energy depends
on the monomer composition. The topology of this morphology remains un-
changed with any change in monomer composition, that is the neighbours of the
domains remains same. But geometry of these domains changes with monomer
composition. An example of a complete periodic hexagon image from two tri-
angular domains given in fig. 3.13 is shown in fig. 3.14. For the symmetric case
with the same monomer compositions, all coloured domains are regular hexagons.
Whereas, when monomer compositions are unequal we will get a combination of
irregular hexagons. So to find the monomer compositions with hexagons with the
lowest free energy, we find the free energy per chain for all valid (ϕA, ϕB, ϕC).
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Figure 3.15: Minimum free energy variation with polymer composition for
hexagonal morphology using equilateral triangle tile for ABC star architecture
with (a) symmetric interactions vAB = vBC = vAC = 1 and (b) asymmetric
interactions vAB = 1.6, vBC = vAC = 1.

Now we are in a position to explore the composition space where (ϕA, ϕB, ϕC)
will give a valid structure. This space is a triangular space similar to the com-
position space in chapter 2, fig. 2.24. The compositions of A, B and C will be
1 at the corners and all other values are available inside the triangle. Here we
have indicated the compositions between 0 and 1 with a step size of 0.11. The
minimum values of free energy per chain for an ABC star terpolymer with equal
interaction strengths νAB = νBC = νAC = 1, between A − B, B − C and A − C
is plotted as contours in fig. 3.15.(a). In fig. 3.15.(b) the contours for terpolymer
with unequal interaction strengths νAB = 1.6, νBC = νAC = 1 are plotted. When
the interaction strengths between the branches are equal, the monomer composi-
tions at the centre of the ternary plot have hexagons with the lowest free energy.
As we move away from the centre of the composition triangle, the value of min-
imum free energy increases symmetrically. These results agree with previously
obtained results in [50, 159] that hexagonal morphologies have lower free energy
when all the branches have the same length for compositionally symmetric case.

From our formulation of free energy, the block copolymer system can be made
asymmetric in interaction strength by varying the values of νIJ ’s. Using the
same computational method for the symmetric case monomer composition space
for this polymer melt where νAB = 1.6 is evaluated and is given in fig. 3.15.(b).
This change in interaction favours more A−C and B −C interface compared to
the A − B interface. Thus the polymer architectures with a greater fraction of
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C type have lower values for free energy and the free energy contour is no longer
symmetric in all directions in the composition space. There is a mirror symmetry
in the contours along the line ϕA = ϕB.

Our SST formulation using triangles facilitates easier evaluation of free energy
compared to other methods like SCFT, Monte Carlo and DPD. This method also
allows a simple and powerful way to play with the monomer interactions. But if
we want to analyse a variety of morphologies then we are required to construct
different triangles or orbifolds for each morphologies and figure out a way to align
them together. An orbifold is the smallest unit within a pattern from which we
can form the entire pattern when we apply symmetry operations like mirroring,
rotation, translation and sliding. The orbifold for the hexagonal morphology is
the equilateral triangle we analysed. For simpler morphologies observed in ABC
star terpolymer like hexagons [6.6.6], squares [8, 8, 4] and triangles [12, 6, 4], the
orbifold will be simple triangles. As the morphology gets complex their orbifolds
also get complex and can contain more than one core in it. Instead of making
morphologies from one type of triangle (an equilateral triangle for a hexagon),
the orbifolds will be made of a single type of triangle or a combination of different
triangles. With the ambition of investigating for aperiodic tilings that are found
in quasicrystals, we need a more generalised formulation that can facilitate free
energy analysis for a variety of morphologies.

In addition, free energy analysis of different morphologies is often done by nor-
malising with respect to the free energy of a symmetric structure as was demon-
strated in the diblocks case. The presence of the log and arctan functions in the
free energy expression due to the core makes this normalisation complicated pro-
cess for ABC star terpolymer structures. The triangle formulation does not allow
us to visualise the geometrical effect of monomer interactions on the interfaces in
the minimised pattern. These reasons call for a more generalised and powerful
formulation to analyse the phase separation in ABC star. Hence we introduce
the method of SSP s which can overcome all these issues and also facilitate as a
powerful tool in free energy analysis for most of the 2D morphologies. A detailed
formulation of SSP s is discussed in the next section.

3.5 Strongly Segregated Polygon method
In the previous section, we discussed how many regular, periodic phase separated
structures can be treated by using a triangular structure as the orbifold. However,
if we are to treat more complicated structures, such as periodic approximants
to quasicrystals, we need a more general formulation of the strong segregation
theory. In this section we are introducing a novel structure, Strongly Segregated
Polygon (SSP ), which encapsulates the free energy per chain and geometry of the
morphology irrespective of their orbifolds. By choosing different alignments for
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Node 1 (x1, y1)

Node 6 (x6, y6)

Node 5 (x5, y5)

Node 4 (x4, y4)

Node 3 (x3, y3)

Node 2 (x2, y2)

Node 0 (x0, y0)

Figure 3.16: The structure of an SSP with seven nodes is given here. All the
nodes Node i and their position coordinates are also given. Here again, we assign
red, blue and yellow regions as domains of A, B and C monomer types.

SSP s, a variety of morphologies can be analysed using the same basic structure.
Although we perform the analysis here only for a hexagonal structure, which is
sufficient for our purposes, the formulation can be generalised to higher-order
polygons or three-dimensional structures.

The Strongly Segregated Polygon (SSP ) method uses the same idea as in the
equilateral triangle above but allows more degrees of freedom to the vertices. The
hexagonal SSP which is the basic unit in this calculation is given in fig. 3.16 with
seven nodes. The polygon is divided into three regions as indicated by different
colours in fig. 3.16 where each region is assigned to different monomer types. The
colour map is again: red for A, blue for B and yellow for C throughout the focus
of this thesis. The seven nodes in this polygon have the freedom to move around
anywhere as long as they make a valid polygon containing ABC star terpolymers.
Each node is defined by its x and y coordinates. The free energy per chain for
ABC stars within the SSP is to be determined uniquely by the position of the
nodes, and so free energy minimisation can be performed by adjusting the node
positions. These seven nodes allow flexibility to the domains via which they can
be assembled into a wide variety of structures. In this section first, we determined
the free energy per chain in an SSP using the interfacial energy and stretching
free energy. We then discuss how SSP s can be assembled together, and periodic
boundary conditions applied to form a phase-separated structure. Here we will
use the hexagonal morphology as an example, allowing us to make a comparison
with the results of the previous section.
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The SSP is divided into six triangles in a similar manner as the equilateral
triangle in the previous section. Although fig. 3.16 indicates there are seven
nodes, in practice the monomer composition of the stars uniquely determines the
position of node 0 at the core of the polygon, once the position of the other six
nodes is specified. We first determine and sum the stretching energies of the 6
triangles : ∆016, ∆065, ∆054, ∆043, ∆032 and ∆021 indicated in fig. 3.16. The
interfaces are line segments between nodes 0 and 1, nodes 0 and 3 and nodes 0
and 5. So, given we know the position of the core, the interfacial energy can be
determined.

We first consider the monomer composition, and how we can determine the
position of node 0. The monomer compositions are related to the node positions
through the areas as follows.

ϕA =
Area (∆016) + Area (∆065)

AT

=
A016 + A065

AT

,

ϕB =
Area (∆012) + Area (∆023)

AT

=
A012 + A023

AT

,

ϕC =
Area (∆034) + Area (∆045)

AT

=
A034 + A045

AT

.

(3.100)

The area of the triangles and the total area of the polygon AT are expressed in
terms of the node coordinates in vector form. The position vector of the node i
with respect to the core (node 0) is r⃗0i. Following this labelling convention, the
areas are:

A⃗016 =
1

2
(r⃗01 × r⃗06); A⃗012 =

1

2
(r⃗02 × r⃗01)

A⃗023 =
1

2
(r⃗03 × r⃗02); A⃗034 =

1

2
(r⃗04 × r⃗03)

A⃗065 =
1

2
(r⃗06 × r⃗05); A⃗045 =

1

2
(r⃗05 × r⃗04)

AT =
1

2
((x1y2 − x2y1) + (x2y3 − x3y2)+

(x3y4 − x4y3) + (x4y5 − x5y4)+

(x5y6 − x6y5) + (x6y1 − x1y6))

(3.101)

The area defined above is defined in a "clockwise sense" for all triangles, i.e.
all triangle areas in the polygon of fig. 3.16 would be positive. In any phase-
separated structure, it is also necessary to have polygons defined in the opposite
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sense (i.e. so that the order of red, yellow and blue on travelling clockwise around
the core is an odd permutation from fig. 3.16). For such a polygon, all areas would
be negative. However, any polygon in which some areas are positive and some
negative is invalid: it implies a nonphysical polygon structure which would be
impossible to fill with star polymers

The three equations in eq. (3.100) can be solved for (x0, y0) with the constraint
ϕA+ϕB+ϕC = 1, to determine the position of the core as a function of monomer
compositions and known coordinates of other six nodes. Solving the position of
the core is

x0 =
(2(1− ϕA − ϕB)AT − x3y4 − x4y5 + x4y3 + x5y4) (x1 − x5)

(y3 − y5)(x1 − x5)− (y5 − y1)(x5 − x3)
−

(2ϕAAT + x6y5 + x1y6 − x5y6 − x6y1) (x5 − x3)

(y3 − y5)(x1 − x5)− (y5 − y1)(x5 − x3)
,

y0 =
2ϕAAT + x6y5 + x1y6 − x5y6 − x6y1 − x0(y5 − y1)

(x1 − x5)
.

(3.102)

The core, which is given by node 0 should always be inside the SSP. Any node
combinations that agree with these conditions are considered physically valid.
This statement is equivalent to the statement above that all triangle areas should
have the same sign. For a given value of ϕA and ϕB (and ϕC = 1−ϕA−ϕB), and
for some positions of nodes 1-6, it is possible that the core node position given in
eq. (3.102) does not satisfy this constraint: this would mean that the nodes 1-6
are arranged in an invalid configuration. Hence it is necessary to test for validity
of the configuration.

If the position of the core is known, the interfacial lengths can be obtained
using straightforward coordinate geometry. Thus the interfacial energy is deter-
mined in the same way as for the equilateral triangle case. While the stretching
energy calculation requires a bit more geometrical manipulation via this method.

3.5.1 Interfacial energy in an SSP
Interfacial energy, fint will have the same expression as in the equilateral triangle
method. The interface lengths between the domains are obtained from nodes
between them. In the SSP , interfacial lengths are between the nodes 0 and 1:
l01, nodes 0 and 3: l03 and nodes 0 and 5: l05. These lengths in terms of node
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coordinates are :

l01 =
√

(x0 − x1)2 + (y0 − y1)2, (3.103)

l03 =
√

(x0 − x3)2 + (y0 − y3)2, (3.104)

l05 =
√

(x0 − x5)2 + (y0 − y5)2. (3.105)

Consider that this polygon will extend along the axis of the core in a third di-
mension into the page with depth D. The interfacial energy at each surface (IJ :
between chains of type I and J) will be the surface tension γIJ times the area of
the surface. So the interfacial energy in the units of kBT is,

Fint = γABAAB + γBCABC + γACAAC (3.106)

where AAB, ABC and AAC are the interfacial areas. The interfacial area per chain
fint in the units of kBT is then,

fint =
(γABl03D + γBC l03D + γAC l05D) Ω

ATD

=
(γABL03 + γBCL03 + γACL05) Ω

RAT

(3.107)

where we have introduced a dimensionless triangle side length L0i =
l0i
R

scaled by
the chain random walk length R =

√
Nb and Ω is the volume per chain. The i in

the subscript indicates the node. In eq. (3.75), we can introduce a scaled surface
tension ξIJ = γIJΩ

RkBT
. We introduced a new scaling of νIJ = ξIJ√

10
to maintain the

strong segregation limit in eq. (3.77). Thus, the final expression for interfacial
energy per chain in the units of kBT for an SSP is

fint =

√
10

AT

(νABL03 + νBCL03 + νACL05) (3.108)

The interfacial energy per chain is now in terms of the position coordinates of the
nodes. As long as we have a valid polygon interfacial energy per chain of domains
of any shape can be obtained.

3.5.2 Stretching energy in an SSP
The stretching free energy is determined for each triangle separately and then
added up to find the total stretching energy per chain in an SSP . The method is
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Node 6
t = 0

Node 1
t = 1

Node 0

th

h016

t

(a)

Node 6
t = 0

Node 1
t = 1

Node 0

h016

th

(b)

Figure 3.17: Example of two different possible geometries of ∆016 is given. The
side length is parameterised by t. The height h016 of the triangle is marked in
both cases which intersects the side length at th.

the same as in the case of a triangular patch of the hexagonal morphology. The
triangles under concern in an SSP are not right-angled, so a bit more geometrical
calculations are needed here. The node 0 is where the core of the ABC star
terpolymer is placed and this gives the logarithmic correction to the stretching
free energy. We are demonstrating the calculation of stretching free energy per
chain by taking the triangle ∆016.

The ∆016 can be any arbitrary triangle with acute or obtuse angles. It can
be broad with the height of the triangle placed inside the triangle as shown in
fig. 3.17.(a) or narrow with height placed outside the triangle as in fig. 3.17.(b).
If these triangles are divided into small wedges, then the length of the side is de-
termined by adding the wedges from nodes 1 and 6. The stretching free energy of
the wedge is determined which is then integrated over the length l06 to determine
the total free energy per chain in the triangle. For the equilateral triangle patch,
the height of the triangle and side length are obtained easily through simple co-
ordinate geometry. We usually write the radius of the wedge r in terms of the
perpendicular distance from the core to the triangle. Here the distance of the
wedge from the point of intersection of triangle height, h016 and side length l16
can be either in positive or negative direction depending on the reference node we
are choosing: (1 or 6). So the length of the triangle along nodes 1 and 6 is param-
eterised using a variable t that can take values from 0 to 1 between node 1 and
6. Thus the distance of the wedge from the intersection point is always positive
as a length should be. In vector notation the nodes are written as r⃗0 = [x0, y0]

T ,
r⃗1 = [x1, y1]

T and r⃗6 = [x6, y6]
T . The perpendicular from node 0 intersects the

line between node 1 and 6 at r⃗h which is at th distance from the reference node,
say node 1. Since (r⃗h − r⃗0) is perpendicular to (r⃗6 − r⃗1) the dot product should
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result in zero. This gives the distance of the interaction point, th from node 1.

th =
(r⃗1 − r⃗0) · (r⃗6 − r⃗1)

(r⃗6 − r⃗1)
2 . (3.109)

Now that th is obtained in terms of the available nodes, heights of the triangle
will be h016 = |r⃗h − r⃗0|, which agrees with the following equation:

r⃗h − r⃗0 = r⃗1 − r⃗0 + th (r⃗6 − r⃗1) . (3.110)

Thus the triangle height, h016 is

h016 =
√
(r⃗h − r⃗0) · (r⃗h − r⃗0). (3.111)

The side length of the triangle is also obtained from nodes as

l016 =
√

(x6 − x1)2 + (y6 − y1)2. (3.112)

Here these two lengths obtained from the given nodes as shown above are the
key information needed to calculate the stretching free energy for ∆016. With th
obtained from the given nodes, the radius of the wedge r at any t is then

r =
√

((t− th)l016)2 + h2016 (3.113)

On substituting this wedge radius for r in stretching free energy for the wedge in
eq. (3.80), we get the stretching energy of the wedge in ∆016. The stretching free
energy per chain in a triangle will have a similar expression as in eq. (3.86), where
the stretching free energy is divided by the number of chains in the triangle. To
determine the total stretching energy per chain from ∆016 the free energy of the
wedge in the units of kBT is integrated over the parameterised side length.

f016 =
A016

ϕAAT

∫ 1

0

fc

(√
((t− th)l016)2 + h2016

)
dt. (3.114)

On expanding the free energy expression as in eq. (3.80), we get

f016 =
A016

ϕAAT

∫ 1

0

3

4

((t− th)l016)
2 + h2016

ϕANb2
log

((t− th)l016)
2 + h2016

R2
c

dt. (3.115)

As mentioned earlier all lengths are scaled with the random walk chain step length
as: L016 =

l016
R

and H016 =
h016

R
. All lengths are normalised with R and the final

integral will have the form

f016 =
3

4

A016

ϕ2
AAT

∫ 1

0

(
((t− th)L016)

2 +H2
016

)
log
(
R2

D

(
((t− th)L016)

2 +H2
016

))
dt.

(3.116)
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where RD = R
Rc

which was defined in previous section. We choose RD = 10 in the
calculations. The contribution of stretching free energy from ∆016 is obtained
by solving the above integral.

The above integral is of the general form,

I0ij = G(X, Y ) =

∫ 1

0

(X(t− th)
2 + Y ) log(c(X(t− th)

2 + Y ))dt, (3.117)

where X = L2
0ij, Y = H2

0ij and c = R2
D and can be solved analytically. On

substituting t− th = u, integral I0ij becomes

I0ij =

∫ 1−th

−th

(Xu2 + Y ) log(c(Xu2 + Y ))du. (3.118)

The integral in eq. (3.118) is now in the same form as the integral in eq. (3.90),
which is the stretching energy in the triangular region in the equilateral triangle
patch for a hexagon. The analytical solution of I0ij is

I0ij = log(c(X(1− th)
2 + Y ))

(
X(1− th)

3

3
+ Y (1− th)

)
+

log(c(Xt2h + Y ))

(
Xt3h
3

+ Y th

)
− 2X

9

(
(1− th)

3 + t3h
)
− 4Y

3

+
4Y

3

√
Y

X

(
arctan

√
X

Y
(1− th) + arctan

√
X

Y
th

)
.

(3.119)

When th = 0, the length of the height will be along one of the sides 0̄1 or 0̄6,
which is then a right-angled triangle.

Ith=0 = log(c(X + Y ))

(
X

3
+ Y

)
− 2X

9
− 4Y

3
+

4Y

3

√
Y

X
arctan

√
X

Y
. (3.120)

The analytical solution is the same as that for the equilateral triangle case given
in eq. (3.92). This verifies that the analytical solution is valid and the equilateral
triangle is a special case of the more generalised SSP formulation.

Hence, for the triangle ∆016, the stretching free energy per chain in the units
of kBT due to any triangle formed between nodes 0, 1 and 6 is

f016 =
3

4

A016

ϕ2
AAT

I016. (3.121)

For total stretching energy per chain of an SSP , we determine the stretching
energy for the other 5 regions. Here is the list of stretching free energies for the
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rest of the triangles. Each of them is in terms of the respective nodes indicated
by the second and third positions in the subscript. The characteristic lengths and
monomer types are different for each triangle.

f065 =
3

4

A065

ϕ2
AAT

G(L2
065, H

2
065),

f045 =
3

4

A045

ϕ2
CAT

G(L2
045, H

2
045); f034 =

3

4

A034

ϕ2
CAT

G(L2
034, H

2
034),

f023 =
3

4

A023

ϕ2
BAT

G(L2
023, H

2
023); f012 =

3

4

A012

ϕ2
BAT

G(L2
012, H

2
012).

(3.122)

This will result in six integrals : I016, I065, I045, I034, I023 and I012. The solutions
of all these will have the same expression as in eq. (3.119). The values of Xand
Y vary with the chosen triangle as indicated above. The stretching free energy of
an SSP in the units of kBT , fstr is obtained by summing the stretching energy
contributions from all six triangles.

fstr =
A016

ϕAAT

I016 +
A065

ϕAAT

I065 +
A045

ϕCAT

I045+

A034

ϕCAT

I034 +
A023

ϕBAT

I023 +
A012

ϕBAT

I012.

(3.123)

Thus we have the stretching free energy eq. (3.123) and interfacial free en-
ergy eq. (3.108) of the polygon defined by coordinates of 6 nodes and two monomer
compositions (ϕA, ϕB), with ϕC = 1 − ϕA − ϕB. The expression for stretching
energy is complicated but it is analytically solvable given we know the nodes.
Thus, the total free energy per chain for an SSP fc in the units of kBT is,

fc = fint + fstr (3.124)

For a given monomer composition and morphology, the nodes will take the posi-
tion coordinates to lower the free energy per chain.

3.6 Shape shifting minimisation
Using the SSP method established in the previous section the total free energy
per chain for any 2D morphology in ABC star terpolymer melt can be deter-
mined. We only need to know the repeating unit of the morphology and its
node coordinates. The nodes in SSP s are free to move in order to find a stable
configuration. For a given monomer composition and morphology, the sable con-
figuration is the one which has the lowest value for free energy per chain. We can
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Figure 3.18: Shape shifting minimisation explained using SSPs. The initial
combination of six SSPs for hexagonal morphology is given in (a). Highlighted
dots represent an SSP. The remaining SSPs are placed according to ABC star
matching rules. In (b) the end result after shape shifting minimisation is given.
All the nodes align to form a perfect hexagon when ϕA = ϕB = ϕC .

minimise the configuration by varying the nodes by applying some constraints.
The constraints are chosen with respect to the morphology. As the process of
finding a stable structure involves changing the shape of the SSP , we call this
process shape shifting minimisation.

This minimisation process is explained here by taking the hexagonal morphol-
ogy as an example. The structure of the SSP and the free energy map obtained
through this process must agree with the equilateral triangle case.

The morphologies in ABC star architecture follow matching rules for tiling
from its chain structure. Any coloured domain will be surrounded by alternating
combinations of the other two coloured domains. For example, the blue domain
will be surrounded by alternating red and yellow domains as shown in fig. 3.18.
The same is true for red and yellow domains.

In the hexagonal morphology, all domains are surrounded by six alternating
domains, hence in topological nomenclature, they are identified as [6, 6, 6]. So
the constraints are chosen such that SSP s align together to form [6, 6, 6] as
given in fig. 3.18.(a). The constraints are (i) the monomer compositions and
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(ii) the periodicity of the domains. The length at which a domain is repeated
again is unique for each morphology. By deciding the length and direction of the
appearance of the next domain we can get the stable configuration for a given set
of monomer compositions.

The free energy of an SSP is dependent on 17 variables: x1, y1, x2, y2, . . . , x6, y6,
the monomer compositions ϕA, ϕB and the interaction strengths νAB, νBC and
νAC . If we fix the terpolymer parameters (monomer compositions and interac-
tion strengths), the minimum value of free energy is determined by varying the
12 position variables. As mentioned, the topology is fixed by aligning the SSP s
according to the periodicity in the morphology. Thus 6 SSP s of random shapes
are aligned together as given in fig. 3.18.(a). In a hexagonal morphology, the
centre of the red domains are at equal distances. This will be the periodic con-
straint applied to the structure fig. 3.18.(a). The configuration in (a) is varied by
repositioning the nodes in order to agree with the constraints and hence decrease
the total free energy per chain. The nodes of one SSP are indicated in bigger
black dots in fig. 3.18.(a).

The total free energy per chain becomes a function of all the nodes present
in the arrangement. The nodes of one SSP are indicated in bigger black dots in
fig. 3.18.(a) and the rest are in smaller black dots. All black dots are rearranged
through different SSP configurations during the minimisation process. A numer-
ical multi-variable minimisation method that takes smaller step sizes between the
variables is needed for shape shifting minimisation to find the valid, stable con-
figuration of SSP s. More details on the numerical minimisation are in Chapter
4.

In the case of the initial SSP configuration with hexagonal constraints in
fig. 3.18.(a), the final stable configuration obtained after minimisation is given in
fig. 3.18.(b). The value of the free energy per chain for hexagonal morphology
using SSP is the same as the minimum free energy per chain obtained for hexag-
onal morphology using equilateral triangle analysis in fig. 3.13.(a). Both these
configurations corresponds to the monomer compositions ϕA = ϕB = ϕC = 1

3
.

Now we are in a position to vary the monomer compositions to explore other
patterns in the same morphology. The monomer composition is varied over all
possible combinations of ϕA and ϕB to obtain the free energy map. The resultant
map is given in fig. 3.19. Free energy contours in this plot are identical to that
of fig. 3.15 which was obtained using the equilateral triangle patch. The free
energy map in fig. 3.19 explores more space in the composition triangle. The
symmetric composition where ϕA = ϕB = ϕC = 1

3
has the lowest free energy

per chain value. The free energy per chain values increase symmetrically in the
composition map as we move away from the centre. The free energy maps of
unequal monomer interactions can be obtained using the same method. A more
detailed morphological analysis using SSP s is in chapter 5.
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Figure 3.19: Free energy map for hexagonal morphology determined using
shape-shifting minimisation of SSP s is given. The contours are exactly the same
as fig. 3.15.

3.7 Summary
In this chapter, we developed a versatile SST framework to study different mor-
phologies in ABC star terpolymer. The SST analysis for diblocks was reviewed
and inspirations were drawn from it to develop a similar analysis for ABC star
architecture. This chapter introduced the concept of SSP s and shape shifting
minimisation. The SSP for ABC star terpolymer is a hexagonal structure with
three domains sharing a unique core where three branches intersect. The SSP
method is more generalised and versatile compared to the triangle based SST
analysis done by Gemma et al.[50].

This theoretical framework can be extended for more complex 2D morpholo-
gies with more than one type of core. We will be demonstrating the usage of this
method in chapters 5 and 6 using different complex morphologies available in
ABC star terpolymer melt. Morphologies like lamellar+ cylinder and other 3D
morphologies that appear in ABC star terpolymers [50] cannot be analysed using
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this method. The theory can be extended for 3D morphologies by considering
the core backbone to be a curve or by considering a similar idea with a packing
of modified Kelvin cell or truncated octahedron [28].

More morphological analysis and qualitative discussion will follow in Chapter
5. This method gives free energy of a morphology as a function of multiple vari-
ables which raises certain computational challenges. The computational methods
used to facilitate a rigorous analysis of morphologies are explained in Chapter 4.
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Chapter 4

Computational tools in Strongly
Segregated Polygon analysis

This chapter introduces the tools that are used in this thesis to analyse a variety
of morphologies with a wide range of complexities. Here we take the theory from
the previous chapter and construct efficient and versatile algorithms. Hexagonal
domains formed from tiling the triangles together that we can use to model a
wide number of different patterns.

4.1 Strongly Segregated Polygon (SSP) Method:
manual computation

The irregular hexagonal strongly segregated polygon, SSP introduced in the
previous chapter is the building block for all complex tiling patterns that will be
discussed in this thesis. In the previous chapter six SSP s were placed together to
form the hexagonal morphology [6.6.6], where each coloured domain is surrounded
by six other domains of alternating colours. Such tiling is attained by defining
SSP s when vertices and areas of these six SSP s are rearranged in small steps
to reflect geometrical and free energy changes in the polymer melt. One SSP
takes six nodes, three monomer compositions (ϕA, ϕB, ϕC) and scaled interactions
strengths (νAB, νBC , νAC) as input and the total free energy per chain of each
polygon is obtained as output.

We can place many SSP s together to construct the desired morphology. For
example, hexagonal and square morphologies can be formed by placing six SSP s
and eight SSP s together respectively. All coloured domains should be matched
while placing them together. All red, yellow and blue corners should be placed
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together in order to form morphologies that are feasible for an ABC star terpoly-
mer. Periodic morphologies are defined by taking a repeating patch within that
morphology and reconstructing that patch using SSP s.

Figure 4.1: An illustration of the nodes in SSP methodology for the repre-
sentation of a hexagonal morphology.. The red dot is the reference node, green
dots are the free nodes and light blue dots are the periodic nodes. The black
arrows indicate the periodicity, [vxx, vxy, vyy] of the repeating patch. One SSP is
indicated by dashes lines across the nodes 0, 14, 6, 15, 1 and 8.

In the hexagonal morphology, the repeating patch is a hexagon with one of
the coloured domains in the middle, surrounded by six domains of alternating
colours. For a symmetric morphology (ϕA = ϕB = ϕC = 1

3
), all these domain

are regular hexagons. For example, in the hexagons previously mentioned in
this thesis, the repeating patch is a hexagon with a blue hexagon at the centre
and red and yellow half-hexagons surrounding them as in fig. 3.18. For simpler
morphologies which have one core, like hexagons and squares, reconstructing the
patch using polygons can be done manually.

The SSP s are constructed for a given repeating patch using ‘free nodes’,
‘periodic nodes’ and the spatial periodicity of the morphology. Once the repeating
patch is defined by placing SSP s on it, all vertices within the patch are assigned
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into three categories: reference node, free node and periodic node. The reference
node is the one that is fixed in space. The reference node for the hexagonal
morphology is given by the red dot in the illustration in fig. 4.1. Normally, we
place the reference node at the origin (0, 0). Free nodes are those vertices which
can move anywhere in the space. Green dots in fig. 4.1 indicate the free nodes for
the hexagonal morphology. The spatial periodicity of the pattern is defined by
periodicity vectors such that the whole morphology can be recreated by shifting
the patch by multiples of those vectors. For two-dimensional patterns there will
be two such vectors, and these are shown for the hexagonal morphology by two
dotted arrows in fig. 4.1. The position of two vertices (vxx, 0) and (vxy, vyy) at
the end of these arrows gives the periodicities of the patch. The periodic nodes
are those vertices at the edge of the patch which are located at a position that
can be reached by adding integer multiples of the periodic vectors to the position
of a free node (i.e. they represent the periodic copies of that free node). Given
a free node (x1, y1), it is related to a periodic node (px1 , py1) positioned at given
periodicity by

px1 = x1 + lvxx +mvxy,

py1 = y1 +mvyy.

(4.1)

Here l and m are integers which give the direction of the periodic node with
respect to the reference node. We choose two values for l and m to indicate their
direction with respect to the free node: +1 for positive x or y directions and −1
for negative x or y directions.

In the hexagonal morphology shown in fig. 4.1 the light blue dots are periodic
nodes. These periodic nodes are connected to some of the green free nodes by
spatial periodicity. In fig. 4.1 pairs of free node and periodic node are (7, 10),
(0, 2), (0, 4), (8, 11), (1, 3), (1, 5) and (9, 12). Thus any spatial change in the
free nodes is reflected in the periodic nodes. So entire patch can be defined by its
periodicities and free nodes. The seven free nodes in the centre: 6, 13, 14, 15, 16, 17
and 18 are not related to any periodic nodes.

The six vertices labelled 0, 14, 6, 15, 1 and 8 in fig. 4.1 form one SSP , as
indicated by grey dotted lines in fig. 4.1. The order of these nodes is synchronised
with the colour and direction of domains. The indicated polygon vertices in the
order of colour will be: red centre, red/blue, blue centre, blue/yellow, yellow
centre and yellow/red and this ordering of nodes with respect to the colours needs
to be consistent across all the defined polygons. So next polygon will be defined
with nodes in the order: 2, 16, 6, 15, 1 and 9. The ordering makes coloured
domains match together and avoid overlapping between domains. In this way,
six SSP s are defined to make a repeating patch of hexagonal morphology using
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nineteen vertices. Once the morphology is defined in this way, any spatial change
in these vertices will be reflected within the SSP s as a change in configurational
energy.

The morphologies of ABC star containing a single core and multi-core pe-
riodic patches can be constructed in a similar manner. Once the patch which
exhibits translational periodicity is identified from a 2D morphological pattern,
it is manually divided into several subunits. Each subunit should contain one
core. Thus these subunits will give an initial estimate towards the coordinate
positions of SSP s when this is adapted in a graphing/drawing software. Coordi-
nates thus identified are taken as the initial condition after making sure it gives
a valid SSP configuration.

4.1.1 The ‘constraint list’ and free energy minimisation
The repeating patch of any periodic morphology (including periodic approximants
to quasicrystals) can be defined in a similar way. Once the repeating patch is
defined, with all free nodes and periodic nodes specified, the configuration of the
repeating patch will depend on its periodicities and the position of the free nodes.
These parameters can be collected together to form the "constraint list", which is
simply a list of all the free parameters in the patch. In our computational frame-
work, we construct the constraint list from the three parameters that indicate
periodicity vectors (given one vector is aligned along the x-axis) followed by the
coordinates of all free nodes. The constraint list will have a structure as follows:

Constraint list = [vxx, vxy, vyy, x1, y1, x2, y2, . . . , xn, yn]. (4.2)

This list of periodicity and vertices can specify (and control) the configuration
of a repeating patch. Depending on the morphology, this list can be of any size.
The morphology configuration that has the lowest free energy is obtained by
varying the entries of the constraint list. Thus the minimisation of a particular
morphology is carried out by varying the entries in this constraint list.

In practice, during numerical minimisation, it is helpful if the parameters
are varied in small step sizes. This will prevent from the formation of invalid
SSP s that will tamper and slow down the minimisation. Hence we define an
intermediate list called the "interm-constraint list". This intermediate list con-
tains the small changes on the corresponding entries of the constraint list. The
interim-constraint list is defined as

Interim-constraint list = [ϵxx, ϵxy, ϵyy, dx1, dy1, dx2, dy2, . . . , dxn, dyn]. (4.3)

Here ϵxx, ϵxy, ϵyy, dx1, dy1, dx2, dy2, . . . , dxn, dyn which are zero in the initially de-
fined configuration of the system. The initial constraint list is given by

constraint list = [vxx0, vxy0, vyy0, x10, y10, x20, y20, . . . , xn0, yn0], (4.4)
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then the updated constraint list entries will be

vxx = (1 + ϵxx)vxx0,

vxy = (1 + ϵxx)vxx0 + ϵxyvyy0,

vyy = (1 + ϵyy)vyy0,

(xi, yi) = ((1 + ϵxx)(xi0 + dxi) + ϵxy(yi0 + dyi), (1 + ϵyy)(yi0 + dyi)) .

(4.5)

Here i varies from 1 to n, where n is the number of free nodes. Hence, the first
three entries of the displacement list control change in the large scale periodicity of
the structure, and represent a global strain on the system. The remaining entries
represent perturbations of the free nodes about this strained configuration.

This procedure helps numerical minimisation routines to converge because the
constraint list will not be updated in random big step irrespective of the minimi-
sation routine used. This also helps in increasing the efficiency of minimisation
procedure.

To summarise we introduced a node-based tiling scheme in which 2D mor-
phologies of ABC star terpolymer are represented by a periodically repeating
patch. This scheme produces a list of parameters which one can use to explore
different spatial configurations. Repeating patches of any size can be analysed
using this technique. Following the methodology, deformations of the repeating
patch can be tracked by varying the elements of a constraint list, allowing free
energy minimisation to be performed.

4.2 Constructing large tilings from SSPs
The SSP methodology discussed above can be applied to any morphology by
identifying the nodes manually. When the tiling is large and has more than
one basic geometrical motif or cores involved the process of identifying nodes
manually is a cumbersome task. Although there are single-cored morphologies in
ABC phase separation that could be explained using simple geometrical motifs,
from table 1.1, it is evident that there are also many multi-core morphologies. In
the case of quasicrystal relating tilings, for a perfect quasicrystal, there won’t be
any repeating motifs and the periodic approximant can be arbitrarily large. So it
is convenient to have an automated procedure for generating large tiling patterns
and representing them with SSP s. Thus we are presenting another methodology
to tile in SSP s into already existing tilings in an automated way.
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In the process of discovering a free energy functional compatible with the
bronze mean tiling[35], Rucklidge et al. [7] developed the Python script to tile
geometric shapes into aperiodic tilings. In their work, the tiling is done using two
different types of triangles and one type of rectangle. In contrast, tilings involv-
ing squares and triangles ("square-triangle tilings") have been observed in ABC
star terpolymer in many investigations, both in experiments [57] and in simula-
tions [27, 50, 91]. Its prominence in soft matter quasicrystals and dodecagonal
symmetry is explained in Chapter 1. The molecular architecture of ABC star
block copolymer is inclined to form symmetric shapes like squares or triangles.
Thus the above tiling script is modified to produce square-triangle tilings.

Figure 4.2: The initial tiling of Σ−phase is given. The tiles are numbered in
the order they were placed. The solid black line indicates the periodicity of the
repeating patch.

Given a tiling pattern of squares and triangles, we now describe a method-
ology for embedding SSP s within the structure. The process is done in three
stages. The first is the tiling, where the shapes are aligned in a chosen arrange-
ment to form a periodic patch. Additional nodes are added in the second stage
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to the existing tiling creating the skeleton to embed SSP s. At this stage, all
available nodes are sorted into reference node, free nodes and periodic nodes and
the constraint list is made. Finally, SSP s are matched with these nodes in an
ordered fashion so that they are in a physically compatible format for ABC star
terpolymers.

(a).Tiling
Tiling, as the term suggests, is filling the space with shapes such that there are
no free spaces or overlapping of shapes. The procedure is demonstrated using
the a square- triangle tiling, known as the Σ−phase. The repeating patch of this
tiling contains two squares and four triangles of the same side length as given in
fig. 4.2. The tiling is done using above mentioned script.

In order to make this tiling first a triangle is placed at the origin. In fig. 4.2,
the first tile, the green triangle is labelled 0. The orientation of these tiles can be
controlled. The orientation of the first triangle is fixed and the rest of the tiles
are placed with respect to this orientation. To make a Σ−phase there should be
another triangle at one side of the triangle 0. Both sides of the second triangle
labelled 1 are shared by two squares (yellow), labelled 2 and 3. The two triangles
(4 and 5) that share a common side are placed between these squares such that
they share one of their remaining side with one square each. This patch, when
repeated in all directions, forms an infinite tiling.

When a tile is placed all the necessary information regarding the geometry
of that tile is obtained. This includes the number of vertices and edges each tile
has, edges and vertices that are shared between different tiles, and neighbour
tiles. The information is updated whenever a new tile is placed. The vertices
and edges in these tiles are independent entities. The tiling script takes in the
vertices and edges to make a tile.

Once the tiling is created the periodicity can be identified. The periodicity
for the given Σ−phase is given by the black lines in fig. 4.2. Here the repeating
patch has a square periodicity that starts from the green triangle’s free vertex to
the yellow square’s free vertex in vertical and horizontal directions.

Now there is enough information on the tiling and an initial tiling to start
placing SSP s in the structure.

(b).Inserting additional nodes and creating the constraint
list
The next challenge is to connect the basic tiling to an SSP tiling. The first
part of this requires classifying nodes into reference, free and periodic nodes.
If an Euclidean geometrical shape has d sides, then it can contain 2d SSP s to
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form a valid ABC-star terpolymer morphology. The SSP s are placed such that
the monomer domain of one type/colour will be placed at the centre of each
tile. The two other monomer types will occupy the domain space around this
domain alternately, with one colour at the vertices and the other occupying the
centre of the edges. Thus the squares will have eight SSP s in them and triangles
will have six SSP s in them. To include SSP s, the existing tiling needs more
nodes. The additional nodes must be placed carefully so a skeleton of a valid
morphology is obtained. The symmetric case of ϕA = ϕB = ϕC = 1

3
is chosen

as the initial case. In a morphology corresponding to a block copolymer with
compositionally symmetric architecture, all domain areas will be equal and nodes
can be positioned exactly halfway along all sections of these edges.

Figure 4.3: Illustration of all nodes in Σ-phase.The green dotted ones are the
free nodes and light blue are the periodic nodes. Nodes with maroon crosses are
vertices from the original tiling indicated by solid lines. Those with red crosses
are new nodes that are placed on the edges. All non-crossed green nodes are new.
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The method to add new nodes and sort them into different classifications is
now discussed based on the Σ−phase. The original tiled Σ−phase (formed from
squares and triangles) has nine vertices indicated by black crosses in fig. 4.3. To
insert SSP s in this tiling it requires 97 vertices overall. The initial nodes in the
tiling skeleton is placed such that it is guaranteed to be suitable for a ABC star
terpolymer melt where ϕA = ϕB = ϕC = 1

3
. It is easier to choose this composition

as the area covered by each colour/monomer type will be equal. Three vertices
are added on all the edges of each tile. On each edge in the Σ−phase, three
nodes are added at positions 0.25, 0.5 and 0.75 of the edge length (as a fraction
of the total length), indicated by red crosses in fig. 4.3. Additional vertices are
added inside the tiles. There need to be 7 vertices inside every triangle tile and 9
vertices inside every square tile as each triangle and square tile will have localised
[12.6.4] and [8.8.4] pattern respectively. These are shown as green dots inside
the tiles in fig. 4.3. One node is added at the centroid of all available tiles. One
set of inside nodes is placed at the midpoint between the centroid and the nodes
halfway along each edge. Another set of inside nodes is placed at the midpoint
between the centroid and each vertex of the tile. Thus all nodes that are needed
for the SSP skeleton are placed as given in fig. 4.3.

Now that all necessary nodes are placed at suitable positions the next step
is to sort them into reference, free or periodic nodes. This classification will
create the desired constraint list. The periodicity is obtained from the original
tiling stage from the solid black edges in fig. 4.2. This provides the first three
entries of the constraint list. The node at the origin is taken as the fixed node,
indicated in red in fig. 4.3. With known periodicity, the nodes that are periodic
to each other are now identified. These will be positioned on the outer edges of
the patch. From the obtained information on the original tiling, the edges that
are not shared by more than one tile are identified. These must necessarily be
the outer edges. There are five nodes connected to each outer edge, two at the
end and three on the edges. Taking each node connected to the outer edge, we
look for nodes positioned at the given periodicity in all directions. If the search
finds nodes at the given periodicity, the first node is identified as a free node
and the periodically located node/nodes that are found will be periodic nodes.
Once a node is identified as free or periodic, it is marked as classified and is not
considered again in the search. The node is identified as free if no nodes are found
at the given periodicity. So, in this way, by considering all the outer edges, all the
nodes connected to them (circled nodes in fig. 4.3 ) are sorted into either free or
periodic nodes. All the remaining (internal) nodes (non-circled ) are free nodes.
Whenever a node is identified as a free node, it is added to the constraint list. So
through this process, all parameters that control the configuration of morphology
are collected in the constraint list. The procedure is elaborated in the flowchart
fig. 4.4.
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Tile the squares and
triangles to form
a repeating patch.

Add additional vertices
on the existing tile edges
and inside the tiles to
make SSP skeleton.

Identify the periodicity from the basic
tiling and initialize the constraint list.

Pick a non-assigned
vertex in the skeleton

Check if there is a
periodic vertex present
for the selected vertex.

Assign the first
vertex as a free
node and update
the constraint
list. Assign the
periodic vertex
into periodic list
and connect it
to the free node.

Assign the vertex
as a free node
and update the
constraint list

All nodes are assigned.

The constraint
list is made.

YESNO

Figure 4.4: The process of inserting new nodes and creating the constraint list
is elaborated in this flowchart.
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Following the above procedure, the constraint list can be created for a periodic
tiling of any type or size. This flexibility is particularly useful for large tilings,
such as those that will be introduced in Chapter 6.

(c).Placing SSP s into the skeleton
The previous two stages provide us with a nodal skeleton and a constraint list.
The relation between the nodes and SSP s is yet to be established. The SSP s
have to be placed in a systematic order so that each colour (red, blue and yellow in
our diagrams, representing different monomer types) is matched at the boundaries
between neighbouring SSP s. While placing SSP into larger tiles this ordering has
to be consistent and valid throughout the tiling. This kind of matching requires
another set of procedures so that overlapping edges and incorrect matching of
SSP s are avoided.

Figure 4.5: We are demonstrating different stages of placing an SSP into a tile
with an example of a triangle tile. This process will result in the SSP node list.
The polygons enclosed by bold lines are SSP s. The arrows inside the lines, show
the direction in which nodes are selected.

In order to place an SSP into the tile we need six nodes from the tile skeleton
that can form a valid SSP . The procedure for selecting these six nodes and
placing the SSP in them is demonstrated using a triangle tile labelled 0 in fig. 4.2.
We will place two SSP s simultaneously, so there will be two SSP node lists
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denoted as SSP -1 and SSP -2. From the original triangle tile, one of its vertices
is chosen as the starting node and this will be the first node for each of the two
SSP s. The procedure for choosing the remaining nodes for SSP -1 and SSP -2
is illustrated in fig. 4.5.(b)-(d). For SSP -1 next two nodes are chosen from the
lower edge of the triangle and for SSP -2 from the left hand edge as shown in
fig. 4.5.(b) and (c). The rest of the three nodes each for SSP -1 and SSP -2 are
chosen so the polygon will be closed. For this, the nodes are chosen via the centre
of the triangle, back to the starting node while adding the nodes found en-route
to the lists as shown in fig. 4.5. (d). On repeating this procedure for the other two
vertices of the triangle we get six SSP s. The ordering of the nodes is indicated
by the arrows in fig. 4.5.(d). The ordering of nodes alternates between clockwise
and anticlockwise for adjacent SSP s. This ensures that the "colouring" of the
SSP s with monomer types is consistent for connected SSP s that share nodes.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 4.6: Initial configuration for Σ-phase with SSP s embedded in them. The
tiling skeleton is indicated by the points on the tiling. The interaction strength
between three branches is taken to be equal νAB = νBC = νAC = 1.
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A similar procedure is applied to square tiles for which there will be eight
SSP s. All the tiles in the repeating patch in fig. 4.2 undergo this procedure
to produce 40 SSP s in total. Following this method we can avoid any invalid
polygons, that may appear while manually picking the initial configuration.

The final result with SSP s embedded in the Σ−phase is given in fig. 4.6.
At the end of this methodology, the constraint list made in the procedure (b)
is connected to the SSP s. So now any change in constraint list or polymer
parameters ϕA, ϕB, ϕC , νAB, νBC and νAC will reflect in the energy calculations
in SSP . The procedure explained here can be adapted to a repeating patch of
any size and we produced code that automates all steps above.

4.2.1 Combinatorics with monomer compositions
The embedded Σ-phase created in the above methodology is topologically called
[10, 8, 4; 10, 6, 4]. The numbers in the square bracket represent the number of
domains sharing the boundary with one domain. All red domains share sides with
10 other domains where 5 of them are yellow and other 5 are blue. All yellow
domains share sides with 4 other domains, 2 red and 2 blue. There are two types
of blue domains, one that shares its sides with 8 other domains and another
that has 6 neighbouring domains. So the entire tiling is formed of topological
combinations that are given in the square bracket.

For any given tiling pattern it is possible to produce six different structures
by permutation of the monomer "colours" (i.e. red, yellow, and blue in our fig-
ures). That is the black dots (the core of ABC star) in fig. 4.6 will have three
different domains around them in any order. Of course, for a given monomer
composition and set of interaction parameters, each permutation will have a dif-
ferent free energy. If the colour and topology combined notations for the con-
figuration in fig. 4.6 is given as [10R, 8B, 4Y ; 10R, 6B, 4Y ] other combinations are:
[10R, 8Y, 4B; 10R, 6Y, 4B], [10B, 8R, 4Y ; 10B, 6R, 4Y ], [10B, 8Y, 4R; 10B, 6Y, 4R],
[10Y, 8R, 4B; 10Y, 6R, 4B] and [10Y, 8B, 4R; 10Y, 6B, 4R]. Here R, B and Y in-
dicated domain colours red, blue and yellow which map to monomer type A, B
and C respectively.

We need to consider all the combinations possible for a given set of monomer
compositions. All the combinations can be created simply by changing the order
of nodes in the SSP list made in stage (c). This change in the order should be
consistent throughout the tiling to avoid invalid combinations.

The initial configuration obtained is stored in a readable ‘.txt’ file. In this
readable input file, all the vertices in final tiling, periodic nodes, free nodes,
relation between free node and periodic nodes, number of polygons and list of
polygons are stored. An example of the input file for the Σ−phase is given in
appendix B.2.

141



4. Computational tools in Strongly Segregated Polygon analysis

4.3 Fourier Analysis of morphologies created us-
ing SSP s

The structure of a material can be studied quantitatively using its diffraction
patterns. These diffraction patterns provide the intensity distribution of waves
as a function of the wavevectors at which the particles are found. The diffraction
pattern of solids gives sharp peaks indicating the arrangement of atoms within.
From these peaks, the lengthscale and the rotational symmetry associated with
the structure are obtained. Theoretically, the diffraction pattern is obtained from
the Fourier analysis of the particle or patterns.

In our ABC star terpolymer melt, the phase separated structures can be of dif-
ferent lengthscales and rotational symmetries. The pattern formed here is a tiling
instead of an arrangement of particles as in solids. The lengthscale is decided by
the arrangement of different domains in the defined space. These domains are
categorised by area and monomer type/colour. So we need a Fourier analysis
framework to determine the lengthscales in the patterns formed by putting SSP s
together. The SSP can be arranged in any format such that the sides with
the same colours are joined together. Thus we can theoretically build periodic,
aperiodic or random patterns. We have seen hexagonal patterns in ABC star
terpolymers in this chapter in which all the red domains of the stable structure
have the same area. There can be other morphologies with domains of the same
monomer type/colour having different areas. In order to determine the dominant
lengthscales in such patterns formed we use the Fourier analysis based on the
area density.

Since the position vector r in the simulations are dimensionless, scaled by the
length R =

√
Nb, the wavevectors are also given in dimensionless form as Q =√

Nbq where q is the dimensional wavevector. We consider the area density ρ(r)
is periodic in the 2D space with periodicities v1 = [vxx, 0]

T and v2 = [vxy, vyy]
T

which is the periodicity of the patch. So for any integers (n1, n2) ∈ Z, we can
write:

ρ(r + n1v1 + n2v2) = ρ(r). (4.6)

The periodic patches we are considering for ABC star terpolymers are not always
necessarily in square periodicity. Thus we need to define the wavevector space
(reciprocal space) customary for each periodic patch depending on their period-
icity. In order to create a Fourier pattern, we are defining a wavevector space
with a range of possible Q consistent with that periodicity. This implies that
the phase of the wave Q at equivalent locations in any periodic patch must be
identical, up to integer multiples of 2π, i.e.

Q · (r + n1v1 + n2v2) = Q · r + 2Mπ, (4.7)
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where M is an integer. This is achieved by writing Q in terms of base vectors
Q1 and Q2 as Q = m1Q1 +m2Q2 for any (m1,m2) ∈ Z. The constraints on the
base vectors that allow to form the appropriate reciprocal lattice are,

Q1 · v1 = 2π; Q1 · v2 = 0,

Q2 · v2 = 2π; Q2 · v1 = 0

(4.8)

so that

Q · (r + n1v1 + n2v2) = Q · r + 2π(n1m1 + n2m1). (4.9)

We can ensure that Q1 · v2 = Q2 · v1 = 0 by writing,

Q1 = A(v2 × k̂),

Q2 = B(k̂ × v1).

(4.10)

where k̂ is the unit vector perpendicular to the 2D plane, for some constants A
and B. On solving for A and B in eq. (4.10) using eq. (4.8), we can define the
wavevector Q only using the periodicity vectors v1 and v2 of a morphology motif.

Q = m

(
2π

(v2 × k̂) · v 1

)(v2 × k̂)

)
+ n

(
2π

(k̂ × v1) · v 2

(k̂ × v1)

)
. (4.11)

Now that Q is defined, the Fourier transform of the area density will become:

ρQ =

∫
drρ(r)ei(m1Q1+m2Q2)·r (4.12)

for a range of (m1,m2) ∈ Z, where the integral is taken over a single periodic
patch.

The above integral can be computed as a sum over the contributions from
individual SSP s. When we consider an SSP , as we have established it has
three different domains. We divided it into six smaller triangles in section 3.5 to
determine their individual stretching energy. These smaller triangles contain only
one type of monomer/colour in them. The contribution to the Fourier transform
integral of one such triangle ∆0ij of type I ∈ {A,B,C}, located between the
position vectors r0 = [x0, y0]

T , ri = [xi, yi]
T and rj = [xj, yj]

T , is given by

ρ0ij(Q) = ρI

∫ ∫
A

ei(m1Q1+m2Q2)·rdxdy. (4.13)
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where the integral is over the 2D area A of the triangle. The constant ρI is the
scattering density within phase I. For convenience, it is chosen to be 1 or 0
depending on the patterns we need to highlight in the real space. The position
vector of a point within the triangle ∆0ij, parameterised as

r = r0 + α(ri − r0) + β(rj − r0),

= r0 + α(li) + β(lj)

(4.14)

for some α and β. The integral for eq. (4.13) is further solved by writing in terms
of the parameters α and β.

ρ∆0ij
(Q) = ρI

∫ 1

0

∫ 1−α

0

eiQ·r | xiyj − xjyi | dαdβ,

= ρI | xiyj − xjyi |
∫ 1

0

∫ 1−α

0

eiQ·(x0+α(li)+β(lj))dαdβ,

= ρI | xiyj − xjyi | eia0
(
a1(e

ia2 − 1) + a2(1− eia1)

a1a2(a1 − a2)

)
.

(4.15)

Here in the final expression we have assigned a0 = Q·r0, a1 = Q·li and a2 = Q·lj.
Now we have the contribution to the Fourier transform at a given wavevector Q
in terms of the nodal coordinates of the triangle ∆0ij and ρI . When computing
with this result, we need to consider the special limiting cases listed below:

1. When Q = 0.

ρ∆0ij
(Q) = ρI

| xiyj − xjyi |
2

. (4.16)

2. When Q · (li− lj), a1 = a2, i.e., when Q is perpendicular to one edge of the
triangle:

ρ∆0ij
(Q) = ρI | xiyj − xjyi |

eia0 (eia1(1− ia1)− 1))

a21
. (4.17)

3. When Q is perpendicular to li, i.e a1 = 0:

ρ∆0ij
(Q) = ρI | xiyj − xjyi |

eia0 (ia2 + 1− eia2)

a22
. (4.18)

4. When Q is perpendicular to lj, i.e a2 = 0:

ρ∆0ij
(Q) = ρI | xiyj − xjyi |

eia0 (ia1 − 1 + eia1)

a21
. (4.19)
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As we have mentioned the value of ρI is chosen depending on the domain that
we need to highlight in our reciprocal space. For example if we need a pattern
highlighting only the A regions, then the choice of ρI values will be: ρA = 1,
ρB = 0 and ρC = 0. We can have any desired combinations of these depending
on the pattern we are looking for.

The Fourier spectrum for a given morphology is determined by summing
ρ∆0ij

(Q) over all triangles in all SSP s for a given Q. This is done for all valid
wavevectors within a reasonable range, and finally, the intensity is calculated
as |ρ(Q)|2. We will be looking at the Fourier spectrum of different patterns in
chapter 6.

4.4 Multi-variable minimisation
The initial morphology’s nodal configuration is obtained either manually or com-
putationally using the two methodologies mentioned earlier in this chapter. In
order to find the stable configuration the lowest free energy for a given compo-
sition is obtained. This free energy is a multivariable function whose variables
are given in the constraint list. Since the free energy is a multivariable func-
tion it is not straightforward to find the minima analytically. Identifying the
global minima is also not easy for such a function. Hence we use numerical
minimisation routines to identify the most suitable local minima. The python
scipy library offers a variety of inbuilt minimisation routines. We prefer a search-
based minimisation routine here. In this work minimisation is conducted using
Broyden-Fletcher-Goldfarb- Shanno (BFGS) algorithm [112]. In the fig. 4.7, we
are showing some intermediate stages during the numerical minimisation. As we
have shown, during the minimisation there can be invalid SSP combinations. We
have manually assigned comparably higher values for the free energy per chain
for invalid SSP s. When we used a gradient-based minimisation algorithm, the
occurrence of invalid SSP s from certain initial conditions tricked the algorithm
into searching for local minima with incorrect initial conditions. This is avoided
in search-based numerical minimisation algorithms such as BFGS. The BFGS
algorithm uses a quasi-Newton method that uses first derivatives.

We are demonstrating the efficiency of different minimisation methods and
their tolerances using the constraint list of Σ−phase morphology. The min-
imisation of Σ-phase of monomer compositions ϕA = 0.575, ϕB = 0.381 and
ϕC = 0.044 and equal interaction strengths, using different inbuilt scipy min-
imisation functions and tolerances are listed in table 4.1. The composition and
interaction strengths are given the 4 lines of appendix B.2. The constraint list
for the Σ−phase contains 161 parameters. Three different initial conditions are
chosen where the first few entries are different. The minimum free energy is ob-
tained for three different initial parameters: CL1, CL2 and CL3 listed below. The
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4. Computational tools in Strongly Segregated Polygon analysis

Figure 4.7: This shows some intermediate stages during the minimisation of
a periodic patch of hexagonal morphology with SSP s. The minimisation starts
with a ‘wonky’ hexagon which then goes through different configurations includ-
ing invalid SSP s and reaches the final stable configuration with the lowest free
energy per chain.

constraint list CL1 corresponds to the input file presented in appendix B.2. The
first three entries in CL1 are the periodicities as indicated in the input file. The
coordinates of the nodes that are listed as the free nodes are then listed in CL1

following the periodicities. On slightly changing the value of vxx, (the first entry)
we get CL2 and CL3 which will reflect that change in all the periodic nodes.

CL1 = [3.33876,−0.00001, 3.33876, 0.48918, 1.66938, 1.66937, . . . ]

CL2 = [3.37216,−0.00001, 3.47232, 0.78270, 1.66938, 1.66938, . . . ]

CL3 = [3.47232,−0.00001, 3.60587, 0.91478, 1.66938, 1.66938, . . . ]

(4.20)

The free energy function is minimised using the BFGS method with these different
initial parameters. As reported in table 4.1, the final minimised function value
matches up to 9 significant digits starting with these initial conditions. Thus the
value of free energy per chain is verified.
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Initial
parame-
ters

Method xtol ftol gtol Time(s) Number
of func-
tion
evalua-
tions

Minimised
function
value

CL1 BFGS N/A N/A ≈
10−5

256.926 20088 8.97422816

CL2 BFGS N/A N/A ≈
10−5

251.139 19926 8.97422816

CL3 BFGS N/A N/A ≈
10−5

287.604 23166 8.97422816

CL1 BFGS N/A N/A 10−3 107.760 7614 8.97423333
CL1 BFGS N/A N/A 10−2 48.222 4374 8.97428506
CL1 Powell ≈

10−5

≈
10−5

N/A 181.428 14855 8.97507610

CL1 Powell 10−2 10−2 N/A 39.720 3522 9.04737591
CL1 Nelder-

Mead
≈
10−5

≈
10−5

N/A 370.752 32200 Unsuccessful
minimisa-
tion

Table 4.1: Minimisation for the free energy function is obtained for given initial
parameters CL1, CL2 and CL3. Each function evaluation takes 161 parameters as
arguments. Minimisation is carried over using different methodologies, tolerance
and initial parameters to obtain the most efficient process. The grey-shaded
region indicates the method and tolerance used for minimisation in this thesis.

As indicated in the table 4.1 minimisation efficiency has been checked between
three inbuilt methods, BFGS, Powell and Nelder-Mead. All these methods have a
search-based minimisation algorithm. Using CL1 as the initial set of parameters,
the routine couldn’t find a suitable minimum value when Nelder-Mead was used.
The Powell method led to a successful minimisation. The minimised function
value agrees with other minimised result to three significant digits. However,
upon reducing the tolerance, the Powell method failed to produce the desired
minimised value. While using the BGFS method the minimum value matches
the desired value up to 5 significant digits even when the tolerance is increased.
The Powell method is a bit faster than BFGS but the minimum value to a certain
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accuracy is important to decide if the final morphology is correct. Thus the BFGS
method with ≈ 10−5 tolerance is chosen as the preferred minimisation routine for
all our morphological studies.

For tilings with a large constraint list, combinations of the above methods are
used to get a better initial condition. Then the intermediate initial condition is
used with the selected methodology.

4.5 Phase space exploration
We are now equipped with two algorithms where one will create an initial con-
figuration and another gives an efficient method to find the stable configuration.
Each configuration is defined for a given monomer composition (ϕA, ϕB, ϕC) and
interaction strength (νAB, νBC , νAC). A phase space is a map of the most stable
morphology for each composition within the desired parameter range. In order
to build a phase space, all possible combinations of ϕA, ϕB and ϕC need to be
explored. All possible monomer compositions are obtained by varying ϕA and ϕB

from 0 to 1 in an appropriate step length. The values of ϕA and ϕB should satisfy
the condition ϕC = 1− ϕA − ϕB, where ϕC < 1. We introduced the ternary com-
position space in chapter 2 and briefly in chapter 3. In this tri-axis composition
space, the composition of A, B and C monomers are varied on the three sides of
a triangle.

At any given composition, when performing the free energy minimisation it is
helpful to have a good initial guess for the configuration. This is particularly im-
portant because some configurations of the nodes will result in invalid polygons,
which makes minimisation difficult. The usual method for exploration of com-
position space would be to traverse the space in multiple linear cuts, via nested
loops. For example, if we consider there are the two compositions ϕA = (0 . . . , 1]
and ϕB = (0, . . . , 1], a nested iteration loop will take the first element from ϕA

then consider rest of the values in ϕB and then in next iteration choose next
entry in ϕA. However, a good initial guess for the structure is not available at
the start of each linear traversal of the phase space. Using linear traversing next
monomer composition may have a completely different geometrical configuration
to adjacent initial parameters. For example, at the end of the first nested itera-
tion, the composition space will be (0.01, 0.99). The morphological configuration
then will have a large B domain and a small A domain. The next composition
from the nested loop will be (0.02, 0.01), which is a completely different config-
uration from the previous structure. This will result in invalid SSP s and hence
incomplete phase space. To address this problem, we devised a method, which
we call ‘spiral’ traversing, as it can ‘grow’ from any point we choose from. Using
this method we start from a good, well-minimised structure in the phase space
and work outwards from there.
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In the spiral traversing method, the ternary space is divided into a hexagonal
array of points representing different compositions. Initially, each point is marked
with a "1" to indicate that no attempt has been made to find a minimised struc-
ture at that point. We keep track of which points have been visited and whether
a successful minimisation was performed there by changing this label. We mark
the first composition with a "2" as given in fig. 4.8.(a). Here the initial composi-
tion marked is the symmetric composition where (ϕA, ϕB, ϕC) = (1

3
, 1
3
, 1
3
). Often

the initial constraint list is created at this monomer composition. The procedure
searches for composition labelled "2" to start the minimisation process. On suc-
cessful minimisation of this composition with the given initial constraint list, the
composition is labelled with a 4. If the minimisation was unsuccessful then we
need to restart the procedure with a modified initial constraint list. The starting
need not be an architecturally symmetric composition. It can be any valid point
in the ternary plot and this procedure will work. Finally, for reasons that will
become clear below, the "4" in the initial composition is replaced by a "3".

The monomer composition of a given geometry is obtained from the geometry
file in appendix B.2. The slot corresponding to this monomer composition is
marked as "2". On successful minimisation of morphology at the composition
marked 2, we look at slots that are labelled with 4s and replace all 4s with 3’s.
In our method, 3 indicates successful and complete minimisation. In the next
search, the algorithm looks for slots marked with 1’s that have at least one slot
marked 3’s as a neighbour. In the illustration of phase space given in fig. 4.8.(d),
there are six slots (marked with pink circles). Each composition in these marked
slots is minimised by taking a minimised constraint list of slots marked 3. If the
minimisation is successful the slot is marked 4 and if it is unsuccessful the slot is
marked with a 5 as given in fig. 4.8.(e). At the end of the iteration, all 4’s are
replaced by 3’s. In the next iteration, the algorithm searches for slots marked 1’s
or 5’s that have 3’s as neighbours. These slots are marked in pink in fig. 4.8.(f).
The slots with 1’s are minimised in the same way explained before. The slots
marked 5 use the minimised constraint list from another 3 slot that is different
from the previous attempt. On successful minimisation, the slot is marked 4. If
the minimisation is unsuccessful again the minimisation is attempted again using
the constraint list from a new 3 neighbour. At the end of each iteration, all
4’s are replaced by 3’s. If the slot has unsuccessful minimisation despite trying
with all valid neighbour constraint lists it is marked as non-minimisable and that
composition won’t be tried again. An example of final space is given in fig. 4.8.(g).
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Figure 4.8: Phase space labelling and exploration is explained schematically.
The end space where all available compositions are minimised is given in (g). The
slots marked 1 and 2 are the valid compositions. On successful minimisation, the
marker is replaced by a 4. Unsuccessful minimisation is indicated by 5. Successful
complete minimisation is indicated by 3.
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Set a ternary
space with starting
point marked with
2 and all other

valid compositions
marked with 1.

Look for 2 in ternary
space and minimise
that composition

corresponding to the
position with the given

initial parameter.

Change the
marker 2 to 3.

Restart the explo-
ration with a new
valid constraint list.

Check if there are
any 1’s or 5’s with
3’s as neighbours.

Minimise configuration
at 5 using the minimised

parameters at a 3
different from previous
trial as initial condition.

Minimise the configu-
ration at 1 using the
minimised parameters
at 3 as initial condition.

Check if minimisation
of the configuration at 5
has been conducted by
all six valid neighbours.

Change the
marker 1 to 4.

Change the
marker 1 to 5.

Find all the 4’s and
change them to 3’s

Change the
marker 5 to 4.

All valid compositions
are covered. Phase space
exploration complete.

Successful
minimisation

Unsuccessful
minimisation

Found a 1.

Found a 5.

No 1’s or 5’s
with 3 as
neighbour
found.

Successful
minimisation

Unsuccessful
minimisation

Successful
minimisation

Unsuccessful
minimisation

Unchecked valid neighbours found

Minimisation attempted using all 6 neighbours

Figure 4.9: Phase space exploration is demonstrated using this flow chart.
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The current version of the script that conducts this phase space exploration is
versatile enough to include as many data points as needed. In the occurrence of
an incomplete phase space exploration, following this numerical convention, the
phase space exploration can be continued from the last iteration. The ARC4 in
Leeds will only allow 48 hours to execute a script in it. When the morphology
becomes complex and large the phase space exploration takes weeks, which is
conducted with ease using the above procedure.

The procedure is explained using the flowchart in fig. 4.9 Each morphology
is explored over the ternary space with the aim of finding the morphology that
carries the lowest free energy, which we consider to be the most stable morphology.

The tools introduced in this chapter are used to analyse different morphologies
in the following chapters. These tools can handle most of the 2D morphologies
that are observed in ABC terpolymer. They can also be used without any modi-
fication for larger morphologies that are not yet observed experimentally in ABC
terpolymers.
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Chapter 5

ABC star terpolymers
morphologies: Periodic

In this chapter, we will take the strong segregation methodology and techniques
introduced in chapter 3 and chapter 4 to analyse different periodic morphologies
possible for ABC star block copolymers. We aim to create a phase space with
2D morphologies which will locate the stable morphology from available varieties
at each specific composition. We will analyse two main classifications of ABC
star block copolymer melt: one with symmetric interactions where the monomer
interactions between all three monomer types are equal; and one with asymmetric
interactions, where the interaction between monomer types are different. The
morphologies considered in this chapter are introduced in the symmetric case
along with their geometric characteristics.

5.1 Symmetric ABC star terpolymers (νAB = νBC =

νAC = 1)
By symmetric ABC star terpolymer, we assume the melt contains terpolymer
molecules which have equal interaction strengths between all three branches. The
interaction between the monomers is measured in terms of Flory interaction pa-
rameter Nχ in units of kBT . As mentioned in Chapter 3, with reference to the
literature, the Flory interaction parameters for a symmetric strongly segregated
melt are chosen to be NχAB = NχBC = NχAC = 60. This is scaled using
parameters νAB = νBC = νAC = 1.

The most common 2D morphologies observed in ABC star block copolymers:
[6.6.6], [8.8.4], [12.6.4], [8.6.4; 8.6.4; 8.6.6] and [10.6.4; 10.6.4; 10.6.6] are analysed
in this work as detailed below, where we define each morphology in turn.
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5. ABC star terpolymers morphologies: Periodic

5.1.1 [6.6.6]-Hexagon
The hexagonal morphology was introduced in Chapter 3, where the SSP method-
ology is explained. The spatial configuration of the morphology and free energy
phase space was briefly described there. Here is a quick review of the hexagonal
morphology and its analysis using the standardised SSP methodology. Topo-
logically, the hexagonal morphology is identified as [6.6.6]. This nomenclature
indicates the number of neighbouring domains for each domain within the hexag-
onal tiling. The nomenclature also gives information on the type of core or type
of SSP necessary to describe the tiling. In order to model the hexagonal mor-
phology in ABC star melt, one type of SSP , which has a core shared by three
domains, each bordering six different domains is used. Different topological sub-
classes of the morphology formed by permutations of domains and monomers are
equivalent to each other as

[6A.6B.6C] ≡[6A.6C.6B] ≡ [6B.6A.6C]

≡ [6B.6C.6A] ≡ [6C.6A.6B] ≡ [6C.6B.6A].

(5.1)

Thus only one topological sub-class [6A.6B.6C] is constructed for the analysis of
the morphology.

The initial parameters for the periodic patch are picked manually for the
configuration (ϕA, ϕB, ϕC) = (1

3
, 1
3
, 1
3
). The initial configuration designed using

the geometric graphing software Geogebra is shown in fig. 5.1.(a). From this
initial design, 19 nodes are identified. The origin (0, 0) is taken as the fixed node,
which is indicated in red. The remaining 18 nodes are classified into periodic
and free nodes, as explained in Chapter 4. For this configuration, there are 7
periodic nodes and 11 free nodes for the chosen periodic patch. Using these nodes
6 SSP s are constructed which collectively defines the periodic patch necessary
for [6.6.6] morphology as shown in fig. 5.1.(b). The constraint list is defined
when we create the SSP periodic patch. The constraint list here consists of 25
elements, with the first three indicating the periodic repeat vectors of the patch.
This initial configuration undergoes minimisation in two stages to find the most
stable configuration for a given composition. At first, the configuration shown
in fig. 5.1.(b) undergoes an affine rescaling which gives a local minima for the
configuration as a function of the overall size of the pattern without adjusting
internal configurations, which is given in fig. 5.1.(c). It is to be noted that free
energy value in terms of kBT for the configuration in fig. 5.1.(c) is lower than
fig. 5.1.(b). This configuration is then taken as the initial configuration for a
minimisation in which all free node positions and periodic repeat vectors are
adjusted to obtain the lowest possible value for free energy per chain. This is
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achieved by varying the entries of the constraint list to obtain the minimised
configuration.

The pattern obtained after minimisation is given in fig. 5.1.(d) in which the pe-
riodic patch is tiled together to show a larger portion of the morphology here. As
expected for a symmetric configuration of ABC star terpolymers all domains are
of the same size. The procedure can be repeated for different values of monomer
compositions to observe its effect on phase separated structures. An example of
a different monomer combination is shown in fig. 5.1.(e). The monomer compo-
sition of this phase separated structure is (ϕA, ϕB, ϕC) = (0.4965, 0.2634, 0.2401).
Reflecting the composition, domain sizes are also different. As ϕA is larger, red
domains are bigger than the other two. The blue and yellow domains have almost
comparable compositions so they look similar. The free energy per chain for this
pattern fig. 5.1.(e) is higher than that of the pattern corresponding to symmetric
composition fig. 5.1.(d).

By using the ternary space exploration techniques explained in Chapter 4 free
energy per chain for all compositions is determined. The minimised configuration
at ϕA = ϕB = ϕC = 1

3
is taken as the starting point in the ternary space for this

exploration. It took 3-4 hrs to explore the entire ternary space which contains
4050 data points on ARC4, part of the High Performance Computing facilities
at the University of Leeds, UK. The resulting ternary space with contours of free
energy per chain is given in fig. 5.1.(f). The compositions with the lowest free
energy per chain are indicated by blue contours. The symmetric configuration is
given in fig. 5.1.(d) belongs to the blue contour region in fig. 5.1.(f). As we go
away from the blue contour in this composition triangle, free energy per chain
increases. The configuration with large red domains in fig. 5.1.(e) belongs to the
orange contour where the free energy per chain is larger compared to the blue
region. The increase in free energy per chain is symmetric in the ternary space.
This free energy map agrees with the free energy map obtained using a single
triangle SSP in chapter 3 (fig. 3.15) where the interfaces are always perpendicular
to the triangle edges. The free energy per chain for [6.6.6] morphology for all valid
compositions of ABC star terpolymers is determined. As pointed out in chapter
3 and in literature [27, 50, 91, 159], the hexagonal morphology has lower energy
penalty when architecture is compositionally symmetric, (ϕA, ϕB, ϕC) = (1

3
, 1
3
, 1
3
).

This is once again agreed here from results given in fig. 5.1.(d) and (f).

155



5. ABC star terpolymers morphologies: Periodic
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Figure 5.1: Analysis of hexagonal morphology with [6A.6B.6C] is given. The
initial design of the configuration is given in (a) with the position coordinates
of the nodes. The coordinates from (a) are used to create the initial con-
figuration of the SSP periodic patch given in (b). First-stage minimisation
results in a scaled version (c) of the initial configuration. Minimised tilings
for two different compositions are given in (d) (ϕA, ϕB, ϕC) = (1

3
, 1
3
, 1
3
) and (e)

(ϕA, ϕB, ϕC) = (0.4965, 0.2634, 0.2401). Variation of free energy per chain for all
possible compositions is given in the ternary contour plot in (f). The free energy
per chain contour values are indicated in the colour bar.
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5.1.2 [8.8.4]-Square
The square morphology, a common name for the morphology indicated by [8.8.4]
is another common 2D morphology obtained in ABC star phase separation. This
structure is made of one type of SSP , which has a single type of core shared
between three domains. Two of these domains have 8 neighbouring domains each
and the third has 4 neighbouring domains. The periodic patch is demonstrated
in fig. 5.2. Here red domain and blue domain are the ones with 8 neighbours and
the yellow domain has 4 neighbours.
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Figure 5.2: Design of [8.8.4] morphology is demonstrated here. A skeleton of
the periodic patch for [8.8.4] morphology designed in Geogebra is given in (a) for
monomer compositions ϕA = ϕB = ϕC = 1

3
. In (b) SSP s are embedded into the

skeleton and a valid patch is obtained which has undergone an overall rescaling.
the minimised structure for the same composition is given in (c).

The initial configuration designed in Geogebra is shown in fig. 5.2.(a). The
configuration has a ‘square’ periodicity with the vxx = 1 and ((vxy, vyy)) = (0, 1)
from one blue domain to another. Similar to [6.6.6] the symmetric composition
(ϕA, ϕB, ϕC) =

1
3
) is taken for the initial composition. By choosing the symmetric

composition is it easy to decide the initial position coordinates of nodes. When all
three monomer types are of same composition the domain areas of each monomer
type inside a single SSP are equal. The initial configuration gives 25 nodes
in which the origin (0, 0) is the fixed node (red). Among these nodes, the 15
nodes indicated in green are free nodes and the remaining 9 in blue are periodic
nodes. There are different ways of choosing periodic and free nodes. In this
work, we conventionally take nodes on two outer sides as free nodes and nodes
on the other two sides as periodic. Here the free nodes are selected from the
bottom and right edges and periodic nodes are on the top and left edges. With
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all nodes classified into free and periodic nodes, SSP s are created within them.
The periodic patch is made of 8 identical SSP s. The constraint list created here
has 33 elements.The initial configuration with SSP s is given in fig. 5.2.(b). This
configuration undergoes overall scaling to obtain the first stage of minimisation
and a better starting point for free energy minimisation using the constraint list.
The scaled pattern shown in fig. 5.2.(b). This configuration is minimised to obtain
the pattern in fig. 5.2.(c). There is only one shape of SSP -[8.8.4] in the scaled
structure and the minimised structure, i.e. all eight SSP s are related by rotations
and reflections.

≡

(a) [8.8.4]ABC

≡

(b) [8.8.4]CAB

≡

(c) [8.8.4]BCA

Figure 5.3: Six topological varieties of [8.8.4] morphology and the equivalencies
between them are demonstrated. Morphologies shown here are minimised struc-
tures with monomer composition ϕA = ϕB = ϕC = 1

3
for all six sub-classes.

For [6.6.6] morphology, one topological sub-class was enough to describe the
behaviour of all possible combinations of domains and monomer types. For [8.8.4],
the case is different. Since three domains have different neighbour numbers, all
monomer-domain arrangements are not equivalent. Six different motifs of periodic
patches are possible by interchanging domains and monomer types contained in
them. As two domains have the same neighbours there exists an equivalency in
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three pairs of motifs. For instance, morphology indicated as [8A.8B.4C] has red
and blue domains with eight neighbours and yellow domains with 4 neighbours.
It is equivalent to the morphology indicated by [8B.8A.4C]. The periodic patch
of these two will have SSP s with domain colours interchanged. On tiling it to a
larger patch the equivalency is evident as demonstrated in fig. 5.3.(a). Similarly,
pairs [8A.8C.4B] and [8C.8A.4B], and [8B.8C.4A] and [8C.8B.4A] are equivalent.
This reduces the relevant topological sub-classes in this morphology to three.

[8.8.4]ABC :[8A.8B.4C] ≡ [8B.8A.4C],

[8.8.4]BCA :[8B.8C.4A] ≡ [8C.8B.4A],

[8.8.4]CAB :[8C.8A.4B] ≡ [8A.8C.4B].

Three sub-classes of [8.8.4] morphology are listed in fig. 5.3 along with their real
space equivalencies. The free energy analysis is conducted on these three sub-
classes.

Starting with the minimised configuration for ϕA = ϕB = ϕC = 1
3

for each
sub-classes, the ternary space is explored. The free energy per chain is deter-
mined for each point in the ternary space, which is divided into 4050 points. The
exploration technique takes 4-5 hours to complete all valid configurations. The
three different sub-classes are explored separately, and three corresponding free
energy maps are obtained and presented in fig. 5.4. The free energy contours
are plotted for the same intervals as for the [6.6.6] morphology in fig. 5.1. The
contours are along the sides of the composition triangle. The 8.8.4 configuration
favours compositions where the volume fraction of the domain with 4 neighbours
is small, so the minimum free energy per chain is located halfway along the edge
of the composition triangle between the two "8-neighbour" monomer species. The
sub-classes with red (A) and blue (B) 8 neighboured domains lie along the AB
line. The compositions that give large red and blue domains have lower free
energy. An example of such morphology is given in fig. 5.4.(a). The monomer
compositions for this pattern are ϕA = 0.4397, ϕB = 0.4601 and ϕC = 0.1002,
which lies close to the red/blue border. The red contours in these free energy
maps are those compositions that exhibit the lowest free energy per chain. The
pattern corresponding to ϕA = ϕB = ϕC = 1

3
has higher free energy per chain

as they belong to the green contour in all free energy maps obtained. The free
energy maps for [8.8.4]CAB and [8.8.4]BCA also exhibit similar characteristics.
The [8.8.4]CAB morphologies are found along the side AC and [8.8.4]BCA mor-
phologies are found along the side BC. Examples of configurations with lower
free energy per chain in both these sub-classes are shown in fig. 5.4.(b) and (c).
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(a) [8.8.4]ABC (b) [8.8.4]CAB

(c) [8.8.4]BCA

Figure 5.4: The free energy maps for [8.8.4] morphology is given for three
sub-classes: ABC, CAB, BCA. An example of the morphology configuration
that belongs in the contour with lower free energy values is given for each topo-
logical sub-class. Monomer compositions of these configurations are: (a) ϕA =

0.4397, ϕB = 0.4601, ϕC = 0.1002), (b) ϕA = 0.4764, ϕB = 0.0753, ϕC = 0.4483,
and (c) ϕA = 0.1433, ϕB = 0.4962, ϕC = 0.3605). Patterns in (a), (b) and (c) are
found in blue, red and blue contours in the free energy maps respectively.

5.1.3 [12.6.4]-Triangle
The morphology in which we can trace a triangle between larger domains of
the same type is identified as [12.6.4] or triangular morphology. This is another
common morphology observed in ABC star phase separation. According to the
nomenclature convention used, this morphology consists of only one type of SSP
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with a core shared by one domain with 12 neighbours, another domain with 6
neighbours and another domain with 4 neighbours.
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Figure 5.5: The initial configurations of [12.6.4] morphology is given here. The
initial design of its periodic patch is shown in (a). Different nodes are indicated
in them: fixed nodes (red), free nodes (green) and periodic nodes (blue). On
the right (b) is the scaled initial morphology configuration with SSP s. The
minimised structure is given in (c).

The periodic patch for this morphology contains two triangles whose vertices
are at the centre of the largest domains sharing a side to form a rhombus. The
initial design of this periodic patch is given in fig. 5.5.(a). Fixed node (red), free
nodes (green) and periodic nodes (blue) are identified manually from this initial
skeleton. There are 33 nodes in total, of which 23 are free and 9 are periodic. The
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initial SSP configuration is created by embedding this skeleton with 12 SSP s for
monomer composition ϕA = ϕB = ϕC = 1

3
. The resulting constraint list will have

49 elements. The structure obtained after minimisation via affine rescaling of the
structure is shown in fig. 5.5.(b). This is used as the starting configuration for full
minimisation to obtain fig. 5.5.(c). This configuration is a valid local minimum
and is used as a starting point for complete minimisation to obtain patterns in
fig. 5.6. The minimised pattern also contains a single shape of SSP with all
SSP s being rotations or reflections of each other.

Figure 5.6: Different topological sub-classes in [12.6.4] morphology are illus-
trated here. The monomer compositions of these structures are: (12A.6B.4C):
ϕA = 0.4701, ϕB = 0.1837, ϕC = 0.3462; (12A.6C.4B): ϕA = 0.5159, ϕB =

0.3693, ϕC = 0.1148; (12B.6A.4C):ϕA = 0.3805, ϕB = 0.4197, ϕC = 0.1998;
(12B.6C.4A):ϕA = 0.2469, ϕB = 0.5145, ϕC = 0.2386; (12C.6A.4B):ϕA =

0.2233, ϕB = 0.2633, ϕC = 0.5134; (12C.6B.4A): ϕA = 0.2733, ϕB = 0.2913, ϕC =

0.4354.

Unlike [8.8.4] and [6.6.6] morphologies there are no topologically equivalent
sub-classes for [12.6.4]. As the domain neighbours are different for three do-
mains we get six distinct tilings with topological sub-classes within the [12.6.4]
morphology: 12A.6B.4C, 12A.6C.4B, 12B.6A.4C, 12B.6C.4A, 12C.6A.4B and
12C.6B.4A. For unequal monomer compositions, these topological sub-classes
are demonstrated in fig. 5.6.
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Since there are no topological equivalences, six ternary composition spaces
are explored for each of the topological sub-classes. The exploration starts from
the minimised configuration for ϕA = ϕB = ϕC = 1

3
and explores the rest of the

ternary space among 4050 points in them. The resulting six free energy spaces
are given in fig. 5.7. These free energy contours are accumulated near three
corners of the composition triangle. The topological sub-classes with A in the
12 neighboured domain have free energy contours near corner A where A is the
majority species. So, for example, from fig. 5.7. (a) where the B type monomers
occupy the 6 neighboured domain at the region with lower free energy per chain,
the compositions are ϕA > ϕB > ϕC so lies along the AB edge of the phase
space. Similar characteristics are observed for the other four sub-classes too. The
topological sub-classes with 12 sided blue and yellow domains are found near B
and C corners, respectively. The pattern with ϕA = ϕB = ϕC = 1

3
has a higher

free energy per chain in all free energy maps obtained. The morphology patterns
given in fig. 5.6 belong either in orange or blue contours in the energy map.

Figure 5.7: Free energy maps for six topological sub-classes of [12.6.4] morphol-
ogy are given. The colour map for contours is also shown.
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5.1.4 [8.6.4; 8.6.4; 8.6.6]

Until now, we looked at simple morphologies whose periodic patches can be de-
scribed by a single geometrical shape. There exist complex morphologies with
more than one core like [8.6.4; 8.6.4; 8.6.6] [27, 50, 91]. This morphology has three
types of cores: one shared by 8, 6 and 6 neighboured domains and two others
shared by 8, 6 and 4 neighboured domains as given in fig. 5.8.(b). So the nomen-
clature indicates these three cores, which indicates the three configurations in the
morphology separated by a semicolon.

As in previous cases, the initial design is created with the help of Geogebra for
ϕA = ϕB = ϕC = 1

3
as given in fig. 5.8.(a). The nodes obtained are identified as

fixed (red), free (green) and periodic (blue) nodes, similar to previous cases. There
are 45 vertices in the design, of which 31 are free, and 13 are periodic nodes. The
initial configuration of the corresponding periodic patch is created by embedding
the SSP s into these nodes. The patch contains 16 SSP s of two different types.
The constraint list for this periodic patch has 65 entries in it. The three different
cores lead to the creation of three different SSP s which are marked in fig. 5.8.(b).
One triangle has a red domain at the right angle indicated by [8.6.6] which has
blue and yellow domains that neighbours 6 other domains. Other two triangles
are the one with blue ([8.6.4]) and red ([8.6.4]) at the right angles. These blue
and red domains each have 4 domains as neighbours. The configuration created
from the design is scaled to the local minima in fig. 5.8.(b). On minimising this
configuration, we get the structure in fig. 5.8.(c). Unlike previous morphologies
upon minimisation, the SSP s did not sustain its non-minimised triangular shape
(with three straight edges around the outside of the SSP s). There are 4 different
SSP geometry present in the minimised periodic patch while the topology of
domains remains the same. In fig. 5.8.(c), from bottom left one SSP has a
red domain with the right angle, to its left is an SSP with yellow/blue edge
bending into the polygon, third with yellow/red line inverted into the polygon
and fourth is the SSP with blue domain in its right angle. Each SSP geometry
occupies a different area in the minimised structure, and so contains a different
number of polymer chains per unit depth (in the out-of-plane direction). Hence,
the minimisation procedure represents the transfer of polymer chains between
neighbouring SSPs in order to find the most optimal structure. This is a feature
common to all geometries with non-equivalent SSPs, i.e. for all the structures
that follow in chapters 5 and 6.
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Figure 5.8: Initial configurations of [8.6.4; 8.6.4; 8.6.6] is given here . The first
design of the morphology is given in (a) and the configuration with SSP s in
them is given in (b). In (b) two types of SSP s are marked. The minimised
configuration for the same monomer composition as (b) is given in (c).

Similar to [8.8.4] morphology there are three topological equivalences between
different sub-classes of [8.6.4; 8.6.4; 8.6.6]. Example morphologies with ABC star
terpolymers with equal monomer composition (ϕA = ϕB = ϕC = 1

3
) are given in

fig. 5.9 (a)-(c). Looking at a bigger patch of the morphology given in fig. 5.9.(a)
yellow C domains and blue B domains are the same and the pattern remains
exactly the same if we interchange them. So there is an equivalency between

[8A.6B.4C; 8A.6B.4C; 8A.6B.6C] ≡ [8A.6C.4B; 8A.6C.4B; 8A.6C.6B].

In the figure, this topological sub-class is identified as [8.6.4; 8.6.4; 8.6.6]ABC
where ABC indicates the order in which the domain numbers are assigned. Other
equivalent topological sub-classes in this morphology are:

[8.6.4; 8.6.4; 8.6.6]BAC :

[8B.6A.4C; 8B.6A.4C; 8B.6A.6C] ≡ [8B.6C.4A; 8B.6C.4A; 8B.6C.6A],

[8.6.4; 8.6.4; 8.6.6]CAB :

[8C.6A.4B; 8C.6A.4B; 8C.6A.6B] ≡ [8C.6B.4A; 8C.6B.4A; 8C.6B.6A].
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(a) (b) (c)

(d)

Figure 5.9: Here the morphologies for (a) [8.6.4; 8.6.4; 8.6.6]ABC, (b)
[8.6.4; 8.6.4; 8.6.6]BAC and (c) [8.6.4; 8.6.4; 8.6.6]CAB are given. These struc-
tures are for compositions (ϕA = ϕB = ϕC = 1

3
). Corresponding free energy

maps for these topological sub-classes are given in (d). Morphology configura-
tions shown here belong to the orange region which is the lowest energy contour.

Free energy maps for these three topological sub-classes are created using the
exploration method as in previous cases and are shown in fig. 5.9. The compo-
sition space is explored starting with the symmetric configuration as in previous
cases. The contours are plotted for different values of free energy per chain. These
contours are found between the corners and centre of the triangle. The region
with lower free energy value is large compared to others. The structures with
symmetric compositions given in fig. 5.9 belong to the lower free energy contour
in orange.
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5.1.5 [10.6.4; 10.6.4; 10.6.6]

Another structure with more than one core that has been observed in ABC star
phase separation is [10.6.4; 10.6.4; 10.6.6] [27, 50, 91]. Similar to [8.6.4; 8.6.4; 8.6.6],
this morphology also has more than one core. Here also, there are three cores:
two [10.6.4] cores shared by 10, 6 and 4 neighboured domains and one [10.6.6]
core shared by 10, 6 and 6 neighboured domains.
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Figure 5.10: Initial configurations of [10.6.4; 10.6.4; 10.6.6] morphology are given
here . The first design of the morphology (a), scaled version of the configuration
(b) and minimised configuration for ϕA = ϕB = ϕC = 1

3
are shown. In (b),

different SSP s that make the periodic patch are indicated.

In this case, the periodic patch is a rhombus. The initial design of the peri-
odic patch is made which will provide with necessary position coordinates of the
nodes. The nodes are classified into fixed, free and periodic as in previous cases.
There are 55 nodes in the periodic patch out of which 39 are free and 15 are
periodic nodes. Three different SSP s (indicated in fig. 5.10.(b)) are combined
together to form this periodic patch. One SSP ,(10.6.4) has a blue domain at its
right-angled corner, another one, (10.6.6) with no right angles in it and a third
(10.6.4) with a yellow domain at the right-angled corner. Upon embedding the
nodal skeleton with SSP the constraint list is created which in this case has 81
elements. The initial configuration for the periodic patch is scaled to find a better
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configuration for overall minimisation which is given in fig. 5.10.(b). The con-
straint list of this scaled configuration undergoes minimisation to get the pattern
given in fig. 5.10.(c). In the stable structure, SSP borders are slightly curved,
but three different types of SSP s remain the same topologically, and there is no
symmetry breaking into subsets of the three SSP types.

(a) (b)

(c)

(d)

Figure 5.11: Here are the morphologies for (a) [10.6.4; 10.6.4; 10.6.6]ABC, (b)
[10.6.4; 10.6.4; 10.6.6]BAC and (c) [10.6.4; 10.6.4; 10.6.6]CAB are given. These
structures are of the compositions (ϕA = ϕB = ϕC = 1

3
). The free energy maps

for these morphologies are given in (d). These configurations of symmetric ABC
star melt belong to the light pink contour in the free energy maps. The free
energy contour values are indicated in the colour bar.
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Similar to [8.6.4; 8.6.4; 8.6.6] morphology, topological equivalences exist in this
morphology. In fig. 5.10.(c) yellow domains and blue domains are the same. On
interchanging the contents in these two domains, the morphological sub-classes
remain equal which gives

(10A.6B.4C; 10A.6B.4C; 10A.6B.6C) ≡ (10A.6C.4B; 10A.6C.4B; 10A.6C.6B).

For the ease of labelling this topological sub-classes is identified
[10.6.4; 10.6.4; 10.6.6]ABC.

The other two topological sub-classes are,

[10.6.4; 10.6.4; 10.6.6]BAC :

(10B.6A.4C; 10B.6A.4C; 10B.6A.6C) ≡ (10B.6C.4A; 10B.6C.4A; 10B.6C.6A),

[10.6.4; 10.6.4; 10.6.6]CAB :

(10C.6A.4B; 10C.6A.4B; 10C.6A.6B) ≡ (10C.6B.4A; 10C.6B.4A; 10C.6B.6A).

Examples of these sub-classes are given in fig. 5.11.(a), (b) and (c). Free energy
analysis is done for these three sub-classes as before. The resulting free energy
maps are given in fig. 5.11.(d). In the resulting maps, the free energy contours
are located between the centre and corners of the triangle. The contours are
closer to the corner, which indicates the monomer type that fills the domain with
10 neighbours. Compositions in the blue regions have structures with the lowest
free energy per chain. The morphologies with symmetric compositions belong to
contour bands with larger free energy per chain.

There are many other morphologies reported in the phase separation simu-
lations based on DPD and SCFT [27, 91] as listed in table 1.1 which could
be analysed in the same manner. We are now going to compare these major
morphologies to create a phase space.

5.1.6 Phase space and Discussion
A phase space is constructed with above mentioned morphologies to check which
morphology is stable for each given composition. All the above free energy maps
are combined to form the phase space. The phase space is divided into 4050
points, where each point indicating the composition (ϕA, ϕB, ϕC) is varied with
an increment of 0.01. The value of free energy per chain for each morphology
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is compared for each point in this space. The morphology sub-classes with the
lowest free energy per chain are marked at that point according to identifiers
indicated for each topological sub-classes in table 5.1. The list of morphologies
and their topological species along with the colours which indicate them in the
phase space is given in table 5.1.

Morphology Topological
sub-classes

Identifier Pattern

[6.6.6] ABC

[8.8.4]

ABC

ACB

CBA

[12.6.4]

ABC

ACB

BAC

BCA

CAB

CBA

[8.6.4; 8.6.4; 8.6.6]

ABC

BCA

CBA

[10.6.4; 10.6.4; 10.6.6]

ABC

BCA

CBA

Table 5.1: Table of topological sub-classes in each morphology and identifiers
used in the phase space.

As we have seen the morphologies are formed as a result of a perfect packing of
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the monomer domains that is felicitated chain stretch and surface interactions. It
is known that perfect packing occurs in hexagonal structures, which should be the
case when all monomer domains are of similar size. When the size of one domain
reduces, morphologies that have higher neighbouring domains (like [12.6.4] ) will
be favoured. When there are similarly sized two domains, for the same reason to
achieve efficient packing, morphologies like [8.8.4] will be favoured. In between
these, there can be other packing arrangements that will be chosen by the melt
due to the composition and free energy.

The resulting phase space for ABC star with symmetric interactions is given
fig. 5.12. We obtain a phase space that is mirror symmetric to ϕA = ϕB, ϕB =
ϕC and ϕA = ϕC lines in the ternary space. This is true when we ignore the
topological sub-classes and consider each morphology is indicated by one colour.
This occurs because the interactions between the three species are symmetric.

In the resulting phase space in fig. 5.12, we observe a light green region in the
middle indicating [6.6.6] morphology. The individual free energy map shows that
[6.6.6] morphology is stable when all three branches have comparable lengths,
ϕA ≈ ϕB ≈ ϕC . The [8.8.4] morphology is found at the border of this region
to three sides of the hexagon towards the centre of the ternary triangle sides.
These are indicated by the purple shades on the three sides of the ternary space.
They are more stable when two branches are in comparable lengths and the third
is smaller than the other two. Taking any point from the purple region along
the side AC, the compositions will be ϕA ≈ ϕC > ϕB, the same for the other
two topological sub-classes. The teal/light blue regions are [12.6.4] morphologies.
They occupy the corner regions of the ternary space where all three chains are
extremely different lengths. In this region, one chain is always significantly longer
than the other two. For instance, the region with [12.6.4] morphology near the
corner A given in teal-blue has compositions in order ϕA > ϕB > ϕC . The above
are the regions where morphologies with a single type core are found. At the
intersection of regions with [6.6.6], [8.8.4] and [12.6.4] we find that the morpholo-
gies with multiple cores are more stable. Surrounding the light green region with
[6.6.6] on three sides are regions of blue shades indicating [8.6.4; 8.6.4; 8.6.6]. This
region also indicates comparable branch lengths with one of them longer than the
other two. This region shares borders with [8.8.4] and [10.6.4; 10.6.4; 10.6.6] mor-
phologies. The regions of orange shades indicates [10.6.4; 10.6.4; 10.6.6], which
has three different SSP cores. The region has a triangular shape extending into
the region of [12.6.4]. Again as these regions are also closer to the centre, the
compositions are comparable, but one is longer than the other two. In these two
multi-core cases, none of the three branches is extremely small, like in [8.8.4] and
[12.6.4]. In the obtained phase space it is interesting to observe that [8.8.4] and
[12.6.4] morphologies occupy the majority of the space.
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Figure 5.12: Phase space for ABC star morphology with [6.6.6], [8.8.4], [12.6.4],
[8.6.4; 8.6.4; 8.6.6] and [10.6.4; 10.6.4; 10.6.6]. The triangle inside which 2D phase
space is valid is indicated by dashed bold lines. A list of morphologies and
corresponding identifiers used is given in table 5.1.

In the above given phase space in fig. 5.12 in a region near the centre, the
compositions are almost the same. This results in domains of the same area trying
to pack in together. The balance between the interfacial energy and stretching
energy forces them to pack in the most efficient way: hexagonal packing as we
predicted. As the area of one domain reduces, they form other morphologies to
attain the packing equilibrium. When one branch is small and the other two are
approximately equal, say ϕA = 0.43, ϕB = 0.43 and ϕC = 0.14, domains formed
by A and B are quite large. The same amount of A and B chain length will choose
to stretch out in the opposite direction to balance the stretching energy making
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octagons side by side (refer to fig. 5.4.(a)). When all compositions are different,
the interplay between stretching and interfacial energy results in different domain
shapes. In the regions favouring [12.6.4], the composition of one branch is always
large > 0.5, which makes structures with large domains surrounded by smaller
domains more stable (refer to fig. 5.6).

Our phase space obtained agrees with the one obtained by the Monte Carlo
method by Gemma et al [50]. In this work, they vary the composition of one
branch keeping the other two the same so that the ratio of ϕA : ϕB : ϕC is
1 : 1 : x. So in our phase space, this represents the line joining the corner C
and AB. At x = 1, they report [6.6.6], and we also find the same at ϕC = 0.33.
On decreasing the value of x, for a range of values near x ≈ 0.5, they report
[8.8.4]. At ϕC = 0.16 and nearby region we have [8.8.4]. At x ≈ 1.5, they report
[8.6.4; 8.6.4; 8.6.6], which corresponds to ϕC = 0.5 where we also have the same
morphology. For x ≈ 2 they have [12.6.4] which agrees with our predictions at
for ϕC = 0.66 and between x ≈ 1.5 and x ≈ 2 they find [10.6.4; 10.6.4; 10.6.6]
similar to our phase space. Beyond x = 1.87 and below x = 0.37 they observe
various 3D morphologies. These calculations were done with Nχ ≈ 54 while in
ours we choose Nχ = 60. Hence, the composition values are almost similar.

A similar comparison can be made for the phase spaces calculated using SCFT
[91, 173]. These two work reports a similar phase space with a similar order of
morphology placement in their phase space. They report a greater range of 2D
tilings in their work. They also report lamellar structures near regions where
ϕA < 0.11 and ϕB < 0.11 and ϕC < 0.11.

When the composition of one branch is relatively small < 0.11, our minimisa-
tion routine often struggles to find a minimised structure. When one composition
value is very small SSP s more easily become invalid polygons as the node posi-
tions are varied, as compared to compositions nearer the centre. This is under-
standable as most previous work has reported 3D and 2D structures with lamellar
in this region. When one branch is really small, the polymer chain acts similar to
a diblock which results in above mentioned complex structures. These structures
are out of scope for the present version of our SSP methodology. Hence the
phase space we present is valid inside the triangle inside the lines corresponding
to ϕA = 0.11, ϕB = 0.11 and ϕC = 0.11. This triangle is indicated by bold black
dashed lines in fig. 5.12 inside which the phase space we are presenting is valid.

Even though the phase space we have is incomplete, it can be included in more
2D tiling-like morphologies that are reported in the literature. Using Python,
the runtime needed to make a symmetric phase space is below 48 hours (this
could certainly be made faster by using a pre-compiled language such as C++ or
Fortran).
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5.2 ABC star architectures and phase space for
asymmetric interactions

ABC star terpolymers with unequal interaction between the branches are con-
sidered asymmetric. While ABC stars with symmetric interaction strength be-
tween their branches produce interesting morphologies, in order to have phase
spaces that are comparable to the experiments, we need to address asymmetric
interactions. The phase separation in ABC block copolymers has been exten-
sively studied by the Matsushita group [99, 102, 104, 157] using polyisoprene(I),
polystyrene(S) and polyvinylpyridine(P) (ISP) star and homopolymer blends.
They report a wide variety of morphologies which includes the ones we are ad-
dressing in this work. While the exact values of Nχ’s of the polymer blends
are not mentioned in their work, it is definitely not equal. Nunns et al. used
polyisoprene (I), polystyrene (S), and poly(ferrocenylethylmethylsilane) (F) to
synthesize ISF star terpolymers that resulted in [8.8.4], [12.6.4] and lamellar mor-
phologies. This molecule also has unequal interactions between its branches [114].
From these two experimental works, it is clear that the interactions do play an
important role in morphologies that are been made. It has more prominence
when you are hunting for complicated morphologies. Attempts have been made
to map a complete phase space for ABC star terpolymers with asymmetric mor-
phologies [75, 173] most using the SCFT method. These works find a variety of
interesting morphologies within the phase space.

Using the SSP technique study of morphologies with asymmetric interaction
is much easier. As interactions are controlled by the parameters (νAB, νBC , νAC)
in our method, they can be varied by changing the values in the geometry script
for each morphology sub-classes. Corresponding phase spaces are made by re-
peating the calculations done for the symmetric case above with these updated
geometry scripts. Hence phase spaces and detailed information on the morpho-
logical structures are obtained for any set of asymmetric interactions we need.
Here we are reporting three different cases of different asymmetric interactions
by varying ν and its effect on the structure.

1. νAB = νBC = 1, νAC < 1, where there is less repulsion between A and C
monomers with respect to A to B and B to C monomer repulsion.

2. νAB = νBC = 1, νAC > 1, where there is higher repulsion between A and C
monomers with respect to A to B and B to C monomer repulsion.

3. νBC < νAB < νAC , where B and C repels less strongly and A and C repels
more strongly weakly with respect to the interactions between A and B.
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5.2.1 Discussion on effects of asymmetric interactions in
ABC star terpolymers.

When there are variations in the repulsive strength between the branches, the
final morphology is affected. As we have established the domains containing
different monomer types assemble in an efficient packing in space depending on
the monomer compositions and interactions. When the interaction strengths are
equal, the effects of stretching of all branches are the same and interfaces are
almost in a straight line.

Figure 5.13: Illustration of the effect of asymmetric surface tension on different
domains for νAB ≈ νBC < νAC . The arrows indicate the relative strengths at the
interface. The dashed arrow indicated the effective displacement of the core due
to asymmetric surface tension.

When there is an asymmetry in the interactions, the stretching of chains
results in interesting effects on the interfaces. We will discuss the possible effects
of asymmetric interactions considering a melt with νAB = νBC < νAC . When νAC

is larger than other interactions the A and C domains have higher surface tension.
We note that the optimal 2D shape with minimal circumference at a fixed area is
the circle: hence we expect those domains with the largest surface tension to be
perturbed towards the circular shape. In this case, the A and C domains have the
largest surface tension and the remaining interfaces (AB and BC) become more
circular. As the surface tension along AC is larger the effective displacement of
the core will be in the direction of AC as shown in fig. 5.13. This core displacement
is satisfied by increasing the length of AB and BC which will effectively curve
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out A and C domains. Thus when νAB = νBC < νAC , the morphologies which
can make either A or C or both domains more circular are favoured. This can
happen when there are more domains surrounding a domain like in [12.6.4] or
[8.8.4] from our candidate morphologies. The domain will be more circular when
the 6 neighboured domain and 4 neighboured domain are comparatively smaller
which is when ϕB is small. So morphologies [12.6.4] and [8.8.4] should cover more
regions in the phase space with this interaction asymmetry. Similar qualitative
discussion can be considered for the other two cases of asymmetric interactions.

At the same time, if νAC is large, the overall value of free energy per chain
will be lower typically when all domains have straighter interfacial lengths. With
additional penalty in the free energy per chain due to the curving of AB and
BC interfaces is balanced out when the composition of B is larger. So when
νAC is larger the value of free energy per chain is lower for melt with higher
compositions of ϕB. The interaction energy affects single-core morphologies and
multi-core morphologies in different ways.

We will now discuss the effect of asymmetric interactions for the three cases
enumerated above. We will present detailed discussions on the above mentioned
consequences on the structure and morphology in each case.

5.2.2 νAB = νBC = 1, νAC < 1

The first case is where the interactions between B and the other two branches (A
and C) are equal, while incompatibility between A and C is less. The interaction
scaling for this case is chosen to be νAB = νBC = 1 and νAC = 0.8. In terms of
our chosen reference of Flory interaction parameter Nχ = 60, we are considering
the case where NχAB = NχBC = 60 and NχAC = 38.4.

When we take νAC < 1, we consider a melt of ABC star with weaker incom-
patibility between A and C monomers. This will affect domain interfaces and
structures formed. When A − C incompatibility is weak it makes the surface
tension at that interface weaker compared to the other two interfaces. So within
strongly segregated domains in a given morphology, the surface tension at AB
and BC interfaces is large while the AC interface has lower surface tension. For
any morphological tiling with a specific monomer composition the area fraction
of each domain is fixed within the 2D representation, but the interfaces adjust to
reflect the balance of surface tensions. In this case, the B domain has the largest
surface tension (since A−B and A−C interactions are the largest) so the AB and
BC should curve outwards from the B domain. In a strongly segregated tiling
structure interfaces with large surface tension attempt to occupy less area leading
to the curving of AB and BC interfaces. The interface with weak surface tension
(AC) should remain closer to a straight line because the A and C interactions
are identical.
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(6.6.6)
fc =  9.0123

(a) νAB = νBC = 1, νAC = 0.8

fc =  9.4850

(b) νAB = νBC = νAC = 1

Figure 5.14: Here is the comparison of [6.6.6] morphology with monomer com-
positions ϕA = ϕB = ϕC = 1

3
with asymmetric and symmetric interactions. In

the left is the minimised structure with monomer interactions (a).νAB = νBC =

1, νAC = 0.8. The blue domains are slightly curved out in (a) compared to the
structure with symmetric interactions in (b).

Figure 5.14 demonstrates the qualitative effect of asymmetric interaction of
νAC < 1 on phase separated structures taking [6.6.6] morphology as an example.
The minimised structures of monomer compositions ϕA = ϕB = ϕC = 1

3
with

asymmetric fig. 5.14.(a)) and symmetric fig. 5.14.(b)) interactions are shown for
comparison. As explained above, asymmetric interactions result in the AB and
BC surface tensions being larger than the AC surface tension. This forces B
domain to apparently curve out as seen in fig. 5.14.(a). Even though this bend is
subtle, it is distinguishable when we compare it with a structure with symmetric
interaction in fig. 5.14.(b). The outward curve of the B interfaces means that
the star polymer cores move a little towards the centre of the B domain, thus
increasing the length of the AC interfaces, which is permitted because the AC
surface tension is smaller. When we compare the equations for free energy per
chain (eq. (3.124)) of [6.6.6] for the composition ϕA = ϕB = ϕC = 1

3
with sym-

metric and asymmetric interactions, the contribution to the free energy per chain
from stretching of the chains remains the same for both cases, but the interfacial
energy is different. The interfacial energy varies linearly with ν as in eq. (3.108).
So we observe a lower free energy per chain value for the asymmetric structure. If
νAC is decreased further with values reasonable in strong segregation limit, blue
domains will get even rounder to preserve the surface energy. This observation is
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valid for other interaction parameters and domains. If νAB < 1, yellow domains
with C will bulge and when νBC < 1, red domains with A will bulge.

A phase space is now constructed with the same morphologies we discussed
above with symmetric interactions. In order to construct the phase space all
calculations from the symmetric case were repeated with updating the scaled
interactions in geometry scripts for each morphology sub-classes. The resulting
phase space is given in fig. 5.15. The identifiers used in this phase space are the
same as in the symmetric phase space.

Figure 5.15: The phase space for ABC star with interactions: νAB = νBC = 1,
νAC = 0.8 is given. The colour mapping is the same as that of the symmetric
phase space. The red dot indicates the centre of the triangle where ϕA = ϕB = ϕC .
The minimised morphologies from regions where A and C are dominant, where
the free energy values are lower are illustrated.
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The most interesting observation from this phase space is the shift in the
overall phase space away from the corner B. The centre of the composition
triangle is indicated by a red dot in fig. 5.15. With respect to this dot, the
shift in phase space is obvious. The phase space is no longer fully symmetric
because the interactions are not symmetric. The relative positions of morpholo-
gies in the phase space remain the same. Around the centre of phase space,
there is [6.6.6]. Bordering the light green region with [6.6.6] are [8.8.4] (purple
shades) and [8.6.4; 8.6.4; 8.6.6] (blue shades). Within the morphologies considered
[12.6.4] occupies most of the phase space (cyan/teal shades). At the region two
topological sub-classes of [12.6.4] meets, [10.6.4; 10.6.4; 10.6.6] is found (orange
shades). Regions occupied by different topological sub-classes within the same
morphology are not identical here. The composition spaces for [8.8.4]ABC and
[8.8.4]BCA are larger than [8.8.4]CAB. This difference is prominent in mor-
phologies with multiple cores. Regions containing [8.6.4; 8.6.4; 8.6.6] BAC and
[10.6.4; 10.6.4; 10.6.6]BAC are smaller compared to the regions occupied by the
other two topological sub-classes in these morphologies.

A mirror symmetry exists in phase space with respect to the line where ϕA =
ϕC . Considering phases along this line, the [12.6.4] morphology is observed for val-
ues greater than ϕB ≈ 0.52. There is narrower region of [10.6.4; 10.6.4; 10.6.6]BAC
between ϕB ≈ 0.46 to ϕB ≈ 0.52. In between ϕB ≈ 0.41 and ϕB ≈ 0.46,
[8.6.4; 8.6.4; 8.6.6]BAC is found. The [6.6.6] morphology is observed for values
0.22 ⪅ ϕB ⪅ 0.41. For values of ϕB < 0.22 the phase space shows [8.8.4]. The
shift in phase space is clear from the analysis of this line. The [6.6.6] region is
not evenly distributed in both directions from ϕB = 0.33. Instead, it is shifted to
the region where ϕB is small.

The morphologies [12B.6A.4C] and [12B.6C.4A] are favoured in this phase
space. From the discussion from the earlier section, this morphology will have
more circular B domains which are interfacially favourable when AC interaction is
smaller than the other two interactions. In the case of morphologies with multiple
cores, the topological species with smaller B domains occupy more regions in
phase space.

In structures with small compositions of ϕB the value of free energy per chain
is lower. The energy penalty that arises due to the asymmetry is balanced here
due to the presence of more A and C compositions. When the area containing
B is small, the interfaces are also small, which reduces the surface tension at the
interface. Thus B domains are not curved as in fig. 5.14.(a). This reduced the free
energy per chain. So, phase space will favour the region with lower compositions
of B monomers. Examples of structures with A and C dominance are given
along with the phase space in fig. 5.15. In the given structures, B domains are not
curved as the stretching from A and C compensates for the curving. All structures
are from the compositions present in the phase space indicated by the arrows. In
the region dominating B, the increase in B chains results in a higher contribution
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to the free energy due to the stretching of B, thus straightening interfacial curves.
At the same time, the structures with larger B domains are more stable. This is
because as explained the interfacial energy results in curving out of the B domains
and it is feasible when the domain is surrounded by more cores/interfaces. In the
case of mult-core morphologies, there is an extra freedom of configurations that
makes the structures with smaller A−B and B − C interfaces stable.

5.2.3 νAB = νBC = 1, νAC > 1

We now look at the polymer melt of ABC star terpolymers with equal interaction
strength between B and A and C and a strong incompatibility between A and
C. Here interaction scaling in terms of ν are νAB = νBC = 1, νAC = 1.4 which
in terms of our reference Flory interaction parameters are NχAB = NχBC = 60
and NχAC = 117.6. The strength of incompatibility between A and C is almost
double the incompatibility between the other two pairs.

In experiments that were conducted to explore the phase separation mor-
phologies [100, 102, 114], exact values of Flory interaction parameters Nχ are
not given. But the order of interaction strength is χIS ≈ χSP < χIP for star
terpolymers with polyisoprene(I), polystyrene(S) and polyvinylpyridine(P) (ISP)
and χSF ≈ χIS < χIF for terpolymers with polyisoprene (I), polystyrene (S), and
poly(ferrocenylethylmethylsilane) (F) [75]. Earlier attempts to map the effect of
asymmetric interactions report the absence of [6.6.6] in their 1D phase space, vary-
ing only one composition [173]. In their work, Jiang et al. attempted to study this
case of asymmetric interaction using SCFT by choosing NχAB = NχBC = 30.0
and NχAC = 50.0 [75]. They produced a complete phase space with a lot of mor-
phologies. They compute multiple 1D phase spaces inside the triangular phase
space to build half of the phase space, which is then mirrored to create the com-
plete phase space. In SCFT calculations, it is reported[173] that for certain Nχ
values, the computation of stable phase is difficult.

When νAC > 1, the incompatibility between A and C monomers is large
compared to the other two pairs. This results in higher surface tension in the
AC interface compared to AB and BC interfaces. Thus to preserve the total
surface area, the interfaces with lower surface tension (AB and BC) curve out
into the blue domain. Due to the almost same strong incompatibility between
the monomers AC interface remains the same.
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(6.6.6)
fc = 10.3754

(a) νAB = νBC = 1, νAC = 1.4

fc =  9.4850

(b) νAB = νBC = νAC = 1.0

Figure 5.16: Here the comparison of morphological structures with asymmetric
interactions (a) νAB = νBC = 1, νAC = 1.4 and symmetric interactions (b) νAB =

νBC = νAC = 1 are given. Both structures are for the same monomer compositions
ϕA = ϕB = ϕC = 1

3
. The B domains in (a) curved in due to the effect of

asymmetric interactions.

The effect of asymmetric interactions on the interfaces is demonstrated in
detail by comparing stable structure for [6.6.6] morphology in fig. 5.16. Tiling
structures with the same ϕ values are considered for asymmetric and symmetric
interactions. As explained above, AC interfaces are straight due to the strong
surface tension and an equal amount of stretching in the opposite direction is
contributed by A and C branches. In the other two interfaces, the stretching
energy is the same, but the surface tension is weak. This leads to the curving
of AB and BC interfaces, visualised as curving in of B domains. Following the
pattern from case 1, the morphologies with smaller B domains are favoured. So
we expect a shift in the phase space towards the higher composition of B.

After updating the geometry scripts, the phase space is created for this case
by repeating all the calculations done for the symmetric interaction case. Free
energy maps are determined for each morphological sub-class separately. They
are all put together to create the phase space given in fig. 5.17.
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Figure 5.17: Phase space for ABC star terpolymers with asymmetric interac-
tions νAB = νBC = 1, νAC = 1.4 is given. Morphologies presented in this phase
space are: [6.6.6] (light green), [8.8.4] (purple shades), [12.6.4] (teal/cyan shades),
[8.6.4; 8.6.4; 8.6.6] (blue shades) and [10.6.4; 10.6.4; 10.6.6] (orange shades). The
red dot indicates the centre of the triangle where ϕA = ϕB = ϕC = 1

3
. The

morphologies from the region with lower free energy per chain values are given.

Free energy maps determined for all sub-classes of morphologies described
above are combined together to form the phase space given in fig. 5.17. The rela-
tive position of the morphologies in the phase space remains consistent with the
symmetric case, whilst there is an obvious shift in the phase space towards the cor-
ner B. This shows that morphologies [12A.6C.4B], [8A.8C.4B] and [12C.6A.4B]
are more favoured in this case of asymmetric interactions. The red dot in fig. 5.17
indicates the centre of the triangle. The area of phase space covered by each mor-
phological sub-class is not the same in this case. It is to be noted that the region
showing [8.6.4; 8.6.4; 8.6.6]BAC is slightly smaller than [8.6.4; 8.6.4; 8.6.6]ABC
and [8.6.4; 8.6.4; 8.6.6]CAB regions. Similarly, for [10.6.4; 10.6.4; 10.6.6] morphol-
ogy, BAC sub-classes occupy more composition space than ABC and CAB.
Still, there exists a mirror symmetry along the line ϕA = ϕC . Jiang et al. pro-
duced a phase space with more morphologies using SCFT for a similar type
of asymmetry in the interaction. They also observe a slight shift in the phase
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Figure 5.18: Here is the comparison between our phase space and phase space
for similar interactions reported by Jiang et al. using SCFT [75]. The line that
gives ϕA = ϕC is given in red. The red dot in our phase space is the centre of the
triangle.

spaces towards the region with B abundance. They are looking at 16 differ-
ent morphologies, including 3D and lamellar morphologies as shown in fig. 5.18.
There are prominent differences in the placement of morphologies in both phase
spaces. Taking the line ϕA = ϕC in our phase space, when ϕB ⪅ 0.26 we
have [8.8.4]. When ϕB is increased, we find [6.6.6] closer to the centre but
the region is shifted compared to the symmetric phase space. The morphol-
ogy [6.6.6] occupy the area up to ϕB ≈ 0.5. For larger values of ϕB we find
[8.6.4; 8.6.4; 8.6.6], [10.6.4; 10.6.4; 10.6.6] and [12.6.4] in this respective order. In
Jiang et al’s work [8.6.4; 8.6.4; 8.6.6], [10.6.4; 10.6.4; 10.6.6] disappears, instead
they report another combined morphology:[10.6.6; 10.6.4; 8.6.6; 8.6.4]. The inter-
action parameters and approach taken are entirely different. The interaction
parameters they chose were NχAB = NχBC = 30;NχAC = 50. These values
are weaker compared to the ones we are considering. The morphological study is
done using SCFT equations. Also, the phase space exploration was conducted by
varying x = ϕA

ϕC
and then comparing the morphologies keeping two compositions

constant for one half of the phase space [75]. In our method the exploration is
automated as long as it is in the suitable format and phase space comparison is
done in extreme segregation limit which can screen out some of the morphologies
that were previously reported using SCFT. Still, it is possible to check the pres-
ence of the above-mentioned missing morphology in our phase space using the
SSP method.

We morphologies with smaller B domains are favoured with this asymmet-
ric interaction for single core morphologies. The multi-core morphologies are
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favoured at the region where B domains are larger. This is proved to be true by
the phase space shift towards B. This shift is supported by existing work. This
shift is expected to change with respect to the values of νAC . Some examples of
the morphologies present in the resulting phase space are given in fig. 5.17.

If the asymmetry in the interaction is introduced by νAB or νBC , similar effects
are observed with corresponding domains for cases 1 and 2.

5.2.4 νBC < νAB < νAC

In this case, all the interactions are different, which should be the case for any
real ABC star molecule. Here we consider the case where the incompatibility
between A and C monomers is the strongest, and the incompatibility between
B and C monomers is the weakest. We choose νAB = 1.0, νBC = 0.6 and
νAC = 1.6 as interaction scaling, which in terms of Flory interaction parameters
are NχAB = 60, NχBC = 21.6 and NχAC = 153.6 comparing with our reference
interaction value Nχ = 60. Owing to the extreme values we are using, the effects
of asymmetry are expected to be pronounced in this case.

When one interaction is stronger or weaker than the other two in the same
way, it is easier to understand what is happening at the interface, as we saw in the
previous two cases. In this case, we have two monomers A and C with extremely
strong incompatibility and the other two B and C with weak incompatibility.
So the strength of surface tension between the interfaces will be in the order:
γAC > γAB > γBC . The effects at the interface are similar to case 2, but the
degree of curving for AB and BC will be different due to the difference in surface
tension. As AC has strong surface tension compared to AB and BC it will force
these two interfaces to curve out, giving an impression of curving in of the blue
domains.

A qualitative demonstration of the effect of asymmetric interactions on the
interface is given in fig. 5.19. Similar to the previous cases, we compare the
structure of [6.6.6] with the same compositions but different interactions. As
explained above, A(red) and C(yellow) domains get rounded because the AC
surface tension is high, so that cores are pulled inwards along the AC line. This
gives the B domains concave interfaces. In this case, the difference in the tiling
is evident from fig. 5.19.(a) and (b). The difference in the degree of curviness is
also observed for A and C domains. The A domain is closer to a circle, while
C domain is mid-way between a circle and a hexagon. This is the effect of the
difference in interfacial surface tension between AB and BC. The same effect is
observed in other morphologies. While the stretching energy remains the same for
both structures in fig. 5.19.(a) and (b) according to the eq. (3.124), the interfacial
energy is linearly related to the values of ν, which results in a difference in values
of free energy per chain.
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(6.6.6)
fc = 9.842581

(a) νAB = 1.0, νBC = 0.6 and νAC = 1.6

fc =  9.4850

(b) νAB = 1, νBC = νAC = 1.0

Figure 5.19: Comparison of tiling structure for [6.6.6] morphology with (a)
asymmetric interactions and (b) symmetric interactions. Monomer compositions
of both tilings are ϕA = ϕB = ϕC = 1

3
.

The phase space is created by repeating previous calculations on morphologi-
cal sub-classes with updated geometry scripts. All free energy maps obtained are
combined together to create the phase space given in fig. 5.20.

In the phase space obtained, we can observe a prominent shift in the mor-
phology placements. The relative positions of the morphologies still remain the
same. The [6.6.6] morphology is the light green region which has shared borders
with different sub-classes of [8.8.4] and [8.6.4; 8.6.4; 8.6.6]. The cyan/teal shaded
region are [12.6.4]. Between [12.6.4] and [8.6.4; 8.6.4; 8.6.6] there is a small re-
gion with [10.6.4; 10.6.4; 10.6.6]. The regions occupied by different sub-classes
of the same morphology are drastically different in this phase space. The sub-
classes [8.8.4]ACB occupies larger composition compared to [8.8.4]CBA, which
is smaller. The shift in phase space is emphasised by locating the red dot, placed
at the centre of the phase space, which is now inside the region indicating [8.8.4].
The phase space is shifted to the region with a larger composition of B. At the
same time it also has an upper shift in the direction to reduce the composition
of A and C. There is no mirror symmetry along easily accessible lines ϕA = ϕB

or ϕB = ϕC or ϕA=ϕC . A few examples of morphologies from the phase spaces
are demonstrated alongside in fig. 5.20. All of them have curved interfaces and
B, blue dominance.

In this case most favourable morphologies are [12A.6C.4B], [8A.8C.4B] and
[12C.6A.4B] that now occupy most of the phase space. The structures with
smaller B domains let the A and C domains be more circular as they prefer with
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Figure 5.20: Phase space for the asymmetric case where all three interactions
are different. The colour map and corresponding morphologies are the same as
in the previous cases. The red dot indicates the centre of the triangle. Examples
of the morphologies present in the phase space are given.

these asymmetric interactions. At the same time, the free energy values are lower
when B domains are larger as given in fig. 5.19. Thus there is a shift in the phase
space toward the region with larger B with an upward lift towards the direction
of C. In the morphologies present in fig. 5.20, interfaces are less curved, and they
have smaller domains of A and C.

Morphological analysis with this level of asymmetric interactions has not been
attempted using any other methods in the literature. As in the previous cases, we
have limited the number of morphologies we are looking at. But the nature of the
shift agrees with the physics behind phase separation which makes this a promis-
ing start to explore more in these phase spaces. The difference in interactions
should also promote the possibility of more lamellar related or 3D morphologies
which need to be investigated.

In all these cases, at extreme compositions ϕA, ϕB, ϕC < 0.11, we expect
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the appearance of lamellar phases and other 3D spaces. So phase space inside
ϕA = ϕB = ϕC = 0.11 is taken to be true. There are obvious chances of more
interesting tiling appearing in these phase spaces which does require an extensive
database on different structures possible with ABC star terpolymer.

5.3 Discussion
This chapter demonstrates that the SSP framework we have developed is a pow-
erful and effective tool for studying phase separation in block copolymers in the
strong segregation limit. The SSP s as presently constructed are useful to study
2D tiling-like morphologies in ABC star terpolymers melts and their characteris-
tics. The analytical framework for this method is fairly straightforward compared
to SCFT, which is the workhorse of theoretical and computational polymer phase
separation studies.

Interfacial and geometrical features for each morphology are accessible by us-
ing our methodology. Even though it is straightforward to assume that domain
size will increase with the increase in compositions, it is visually proved using
our method. The effects of polymer stretching and interfacial surface tension are
also demonstrated in our work. Detailed analysis of the effects of composition,
stretching and interfaces on phase-separated domains has not been reported in
the literature until now. Morphologies with single core ([6.6.6], [8.8.4], etc ..)
and multiple cores ([8.6.4; 8.6.4; 8.6.6],and [10.6.4; 10.6.4; 10.6.6] ) can be accom-
modated under the same SSP formulation. It is interesting to note that SSP s
in [8.6.4; 8.6.4; 8.6.6],and [10.6.4; 10.6.4; 10.6.6] change drastically upon minimisa-
tion. This feature cannot be identified if the domains are treated in a uniform
manner as done in the literature till now.

Phase spaces with all morphologies mentioned in this chapter have been
created. The phase space for symmetric interactions agrees with all existing
phase spaces in literature developed using Monte Carlo[50], SCFT[75, 91, 173],
DPD[27, 81] even with the limited number of morphologies. Most of the existing
literature explores the phase space for limited values of monomer compositions.
In this work, we span the entire phase space with an increment of 0.01 in ϕ values.
While there is a plethora of morphologies reported in computational work, mor-
phologies reported in experimental phase separation of ABC star terpolymers are
usually [6.6.6], [8.8.4] and [12.6.4][27, 99, 114]. These morphologies are present
in our phase spaces.

In this chapter, we also demonstrated the ease of producing phase space for
ABC star terpolymers with unequal interactions between their branches. We
explored three different cases of interaction strengths where their effect on the
morphology and phase space were studied. This demonstrates a promising start
to build in a complete phase space with 2D morphologies.
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Figure 5.21: Proposed SSP for lamellar morphologies.

Our framework demonstrates the flexibility to include any complex 2D mor-
phologies ABC star terpolymers is capable of producing, given there is a core
between the domains. As mentioned in Chapter 1, ABC star terpolymers can
form a variety of morphologies with different lengthscales. It is difficult to track
all the structures possible in ABC star phase separation. In their work on tilings
in ABC star terpolymer, Kirkensgaard et al. [81], demonstrate possible combi-
nations to assemble ABC domains with a core in them using the Spoke method.
Our framework provides a platform to take such morphologies to check their pres-
ence in phase space. We will demonstrate the analysis of more complex and larger
morphologies in the next chapter.

Morphologies with lamellar domains are currently not included in our phase
space. These morphologies like lamellar+cylinder (L + C) [50, 114] have been
reported in experimental phase separation studies. These are found in the region
where any one of the monomer compositions is particularly large. Polymer melt
behaviour is similar to diblock at these compositions. Thus they can form interest-
ing structures with lamellar domains and 3D morphologies. The current formula-
tion of SSP is not equipped to consider lamellar structures, which is why we have
narrowed down our valid phase space to the triangle inside ϕA = 0.11, ϕB = 0.11
and ϕC = 0.11. On modifying the edges and increasing the number of nodes
in SSP as shown in fig. 5.21 it is possible to analyse lamellar morphologies.
This modified SSP is an octagon that under minimisation can restrict the nodes
according to the periodicity to L+ C morphology.

As mentioned, the methodology is limited only to 2D morphologies that can
tile. This cut off the entire set of 3D morphologies from our phase space. The
2D morphologies find it difficult to minimise at extreme compositions where one
composition is too small. This is because the flexibility of interfaces is limited to
a straight line. All phase spaces reported in this chapter were created within 2-3
days of computation using Python. We span the composition space for each sub-
classes in parallel cores utilising ARC4, part of the High-Performance Computing
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facilities at the University of Leeds. So a better optimisation is necessary for
the script to speed up the creation of phase space and to include more complex
morphologies. This concept can be interpolated for a 3D equivalent of SSP using
a Kelvin cell or octahedron [28].
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Chapter 6

Periodic approximants of
Square-Triangle tilings in ABC star
terpolymers

In this chapter, we are using the SSP method to analyse more complex tilings.
ABC star terpolymer architecture has enough complexity to allow the polymers
to phase separate into complex morphologies like quasicrystals. In Chapter 2, the
linear analysis of ABC star melt shows that certain compositions and monomer
interactions can lead to phase separation with lengthscale ratios which favour qua-
sicrystals. Also, the first block copolymer quasicrystal was discovered in ABC
star terpolymer blend [57]. One way to determine if the phase separated mor-
phology is a quasicrystal is by comparing it to aperiodic tilings. As we have seen
in Chapter 5, phase separated morphologies of ABC star terpolymers behave like
tilings.

Quasicrystals observed in soft matter systems typically exhibit dodecago-
nal rotational symmetry. Most of these dodecagonal quasicrystals can be de-
scribed using aperiodic tiling of squares and triangles [57, 172]. In phase spaces
from Chapter 5, we observed that the majority of phase spaces are occupied by
[8.8.4] (square) and [12.6.4] (triangle) morphologies. This clearly demonstrates
that the ABC star terpolymer architecture does favour these two morpholo-
gies. The Archimedean tiling with squares and triangles called the Σ−phase,
also known as (3.3.4.3.4) is also observed in the phase space for ABC star mor-
phologies [38, 57, 72, 91]. The Σ−phase belongs to the family of the Frank-Kasper
phases, which also includes quasicrystals. All these factors motivate the search
for aperiodic tilings with squares and triangles in them using our SSP method
in ABC terpolymer phase separation.
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There are different ways to build an aperiodic tiling with squares and triangles.
One method is the generalised grid method proposed by Stampfli, in which two
hexagonal grid lattices are arranged such that they superimpose so that their
symmetry axis crosses by π

6
[111]. Another method involves inflation based on

triangular and square tiles which was also introduced by Stampfli [119]. There are
many other complex ways to develop dodecagonal aperiodic tiling with squares
and triangles [111, 171]. Recently Imperor-Clerc et al.[71] came up with the
method of combining four types of Archimedean tilings that contain squares and
triangles: (4.4.4.4) (squares), (3.3.3.3.3.3) (triangles ), (3.3.4.3.4) (Σ−phase) and
(3.3.3.4.4) (H- phase). The numbering indicates numbers of edges on the polygons
shared by a vertex in these tilings. All these methods can produce aperiodic tilings
with different arrangements of squares and triangles that can give quasicrystal
peaks in their corresponding Fourier spectrum.

All these methods provide aperiodic tiling patches without a periodic bound-
ary. For the SSP method to work, we need a periodic patch, so we look for
periodic approximants of aperiodic square and triangle tilings. In this chapter
we do this by identifying periodic patches in a long-range aperiodic tiling like the
one given in the Tiling encyclopedia [136].

6.1 What happens when squares and triangles are
put together?

We start the square-triangle analysis by putting squares and triangles together
starting with simplest combination of squares and triangles, the Archimedean
tiling (3.3.3.4.4) [53], also called the H−phase [71]. The periodic patch for this
tiling consists of one square and two triangles on top of them. The arrangement
is traced by bold black lines in fig. 6.1.(a). The spatial configuration in fig. 6.1.(a)
is the initial structure created using the packing routine discussed in chapter 4.
The resulting minimised configuration with fig. 6.1.(a) as the initial structure is
given in fig. 6.1.(b). Unlike the minimised figures obtained in chapter 5, minimised
configuration here has obvious visual differences. While the outline of the periodic
patch is sustained for all the morphologies considered previously with straight line
edges on the tiles, the outline is curved for H-phase. As discussed in section 4.4
the final minimised configuration was the same for any choice of minimisation
method. All attempts provided with the same result of distorted triangles and
squares upon minimisation.

It is to be noted that in the periodic arrangement of the patch, when squares
are side by side, there are no distortions in shared edges. When squares are
next to triangles the shared edge bows in to the square and shared edge between
triangles appear curved.
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(a) (b)

(c)

Figure 6.1: Morphological analysis of H−phase at different stages. In (a) the
initial configuration of the tiling is given. In (b) configuration is minimised and
the obtained morphological structure is given. The periodic arrangement of H
phase for a bigger range is given in (c). The interaction strengths between the
branches are equal in this case with νAB = νBC = νAC=1.
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6.2 Σ−phase
The Σ−phase was introduced in chapter 4 to demonstrate the application of the
SSP method to larger tilings. The Σ−phase also known as (3.3.4.3.4), is often
observed in ABC star phase separation [57, 81, 91, 159].

The initial configuration is created with symmetric interactions between the
monomers, as explained in Chapter 4, arranging the squares and triangles as
required and then filling them with ABC star SSP s. In the initial configuration
given in fig. 6.2.(a), there are two different types of cores or SSP s present. One
type of core is inside the bold square outline which is [10.8.4], and another is in the
bold triangle outline, [10.6.4], following the nomenclature convention we are using
in this thesis. Hence this is a multi-core structure. Two cores lead to two different
SSP s. Here, both of them are right-angled triangles, one inside the square and
another inside the triangle. The given periodic patch of Σ−phase has 79 free
nodes and 17 periodic nodes. It contains 40 SSP polygons. So the constraint
list has 161 elements in it. The periodicity of this patch is a big square that
connects the outer vertices of a square to a triangle. Unlike the morphologies in
Chapter 5, the initial configuration chosen is not a symmetric architecture with an
equal amount of three different monomer compositions. This structure undergoes
minimisation in the same way as all other morphologies we have discussed so far.
The minimisation of one set of parameters takes approximately 5 minutes using
Python.

For the Σ−phase we obtained fig. 6.2.(b) as the final result of minimisation.
The resulting configuration also shows curving along the square and triangle
borders like the H−phase. The most obvious observation is the curving of the
edge shared by a square and triangle indicated by the bold line in fig. 6.2. (a)
and (b). Unlike in the H−phase the edge shared by the two triangles remains
straight after minimisation. The minimised structure also has new different types
of SSP s. In the previous chapter, a similar result was obtained with [8.6.6; 8.6.4],
where there were new types of SSP s in the minimised structure. In fig. 6.2.(b),
the ‘square’ contains same type of SSP s, which are all [10.8.4], while there are
three different SSP s in the minimised ‘triangle’. All of them are topologically
[10.6.4], sharing the border with the same number of domains but geometrically
different. There is one SSP ‘triangle’ with a straight ‘hypotenuse’ and two with
curved hypotenuses: one curved in and another curved out.
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(d) Reproduced
with permission from
paper[57].

Figure 6.2: Morphology of the Σ−phase in ABC star terpolymer with equal in-
teraction strengths between the branches. In (a) the initial configuration was cre-
ated by tiling and SSP embedding for monomer composition ϕA = 0.5758, ϕB =

0.3813 and ϕC = 0.0429. This configuration undergoes minimisation to reach
the final stable configuration given in (b). In (c) four copies of the minimised
structure are shown with the original square triangle tiling overlayed. In (d) the
TEM image obtained for a blend of terpolymer of polyisoprene, polystyrene and
poly(2-vinylpyridine) (ISP) and homopolymer polystyrene by Hayashida et al.
[57] is given.
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This morphology is a clear compilation of two prominent morphologies present
in ABC star phase separation, [8.8.4] (square) and [12.6.4] (triangle). From the
free energy analysis in Chapter 5, we can say that when the monomer compo-
sitions are (1

3
, 1
3
, 1
3
), the triangle has a higher free energy value compared to the

square morphology. So when we put squares and triangles together, the geomet-
rical restrictions coming from the interfacial and stretching effects of the polymer
chains in a triangle morphology is relaxed when it has a square connected to it.
The free energy imbalance between these two morphologies is compensated by
the curving of their sides. When a triangle shares its side with another trian-
gle, their common side is straight, as there is no additional transfer of interfacial
energy. If we compare the minimised free energies of H− phase and Σ−phase,
the latter has the lowest free energy for the same set of monomer compositions.
The periodic patch of Σ−phase can be taken as a combination of two H−phases.
One with square in the bottom and another with the square on top, which can
be taken as two interlocked H−phases. This conserves the geometrical symmetry
of the patch. By adding SSP s into them, stretching of chains compensated the
additional interfacial energy caused by putting squares and triangles together.

On repeating the minimised periodic patch in 2D space, we obtain the pattern
given in fig. 6.2.(c). This pattern is overlayed by straight-edged squares and
triangles whose vertices are positioned at the centres of the red domains. The
edges shared by a square and triangle in this pattern cross the yellow domains
along their edges. While the edges shared by two triangles cross the yellow
domains across their centres. Figure 6.2.(d) shows the TEM image produced by
Hayashida et al [57] for polymer melt that is a blend of terpolymer of polyisoprene,
polystyrene and poly(2-vinylpyridine) (ISP) and homopolymer polystyrene also
with the phase separated structure overlayed with squares and triangles. In the
image, one can also see shared edges between squares and triangles passing over
the edges of the black domains and shared edges between two triangles passing
through the centres of the black domains. This geometrical resemblance between
a simulated pattern and experimental result supports our observation of the edge
bending that happens in a square-triangle morphology for ABC star terpolymer.
So we can conclude that when we put squares and triangles together with ABC
star polymer melt in them, the conformation entropy will drive them to form
curved squares and triangles.

Taking the minimised structure for symmetric compositions as the starting
point in ternary composition space, the free energy per chain is determined for all
possible compositions that will give a valid SSP configuration for Σ−phase. We
are also keeping the monomer interaction strengths equal νAB = νBC = νAC = 1.
As there are no topological equivalencies between the topological sub-class in
them, six free energy maps are determined. Combining them with the phase
space from Chapter 5 gives a new phase space given in fig. 6.3.
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Figure 6.3: Phase space for ABC star terpolymer with equal interaction
strength νAB = νBC = νAC = 1 between the branches. Regions with yellow
shades indicate different topological sub-classes of Σ-phase morphology.

Comparing with the phase space obtained before in fig. 5.12 there are new
prominent additions due to Σ−phase in fig. 6.3. We found stripes between the
region favouring square and triangular phase where Σ has lower free energy per
chain. There are 6 stripes corresponding to different topological sub-classes of
this morphology. Since the Σ-phase is a combination of [8.8.4] (square) and
[12.6.4] (triangle), it is natural to find them in the phase space in between the
regions of [8.8.4] (purple shades) and [12.6.4] (teal shades). In the phase space
given in fig. 6.3, all the stripes corresponding to different topological sub-classes
of Σ−phase occupy almost equal area.

The presence of the Σ−phase in the phase space of ABC star terpolymer
with symmetric interactions is reported in previous work on ABC star terpoly-
mer phase separation done with Monte Carlo [162] and SCFT [91] techniques.
We found the Σ−phase at roughly the same position as these works using our
SSP method. Previous works report extremely small regions of the Σ−phase.
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Our phase space lacks some interesting morphologies (examples: lamellar and
bicontinuous phases), but even with this limitation, we do find larger regions in
the phase space with Σ−phase. For the same reasons explained in Chapter 5,
we are only considering the triangle with ϕA ≥ 0.11;ϕB ≥ 0.11;ϕC ≥ 0.11. This
triangle is indicated with a bold dashed line in fig. 6.3.

As discussed above the combination of square and triangular morphology mu-
tually compensates the free energy penalty caused by these morphologies individ-
ually. This assumption is supported by the presence of Σ−phase stripes in the
phase space between triangles [12.6.4] and square [8.8.4] region. At the same time,
H−phase which is also a combination of squares and triangles is not present in
the phase space. As explained earlier there is a geometrical asymmetry associated
with H−phase. The triangles in the periodic patch of H−phase in fig. 6.1.(a)
is inclined to the right. Alternatively, they can also choose to be inclined to the
left without making any difference in the final tiling. But when we add the ABC
terpolymer domains, its free energy also has a role in the symmetry of the pe-
riodic patch. The asymmetrical imbalance H phase elevates its free energy per
chain. This imbalance is compensated in Σ-phase as it is two periodic patches of
H-phase inversely connected.

It takes almost 5 days to span an entire phase space of 4050 composition
points for a single topological sub-class. Free energy map calculation of each
topological sub-class is conducted simultaneously by assigning one script to an
ARC node. As it is only possible to run the code for 48 hours in ARC4, phase
space exploration is conducted in multiple slices of the composition map.

6.2.1 Phase spaces with asymmetric interaction strengths
Motivated by the presence of the Σ-phase in the phase space of ABC star terpoly-
mers with symmetric interactions, we explored the consequence of asymmetric in-
teractions. Calculations for each topological sub-class are repeated for the three
different cases of asymmetric interactions we considered in Chapter 5. Spanning
of composition space with asymmetric interactions took much more run time (2
weeks for case 3) in ARC4 than it took for the case of symmetric interactions. We
compared the free energy per chain for all three cases with different topological
sub-classes of Σ−phase. The resulting phase spaces for three cases are given in
fig. 6.4.

Three different cases of unequal interaction strengths are (i) νAB = νBC = 1,
νAC = 0.8; (ii) νAB = νBC = 1, νAC = 1.4; and (iii) νAB = 1, νBC = 0.6,
νAC = 1.6. The major effects of these interactions on phase space are discussed
in detail in Chapter 5. Along with the shifts in the phase space due to the
asymmetric interactions, strips of Σ−phase are present in all three phase spaces
as shown in fig. 6.4. The Σ−phase stripes are given in shades of yellow. They
are found at the intersection of [8.8.4] and [12.6.4] morphologies as expected. For
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the cases where only νAB = νBC there is a mirror symmetry of the phase space
along the line ϕA = ϕC .

As seen in other multicore morphologies in Chapter 5, the stripes are wider
in the phase space where ϕB is small when νAB = νBC = 1, νAC = 0.8. Here also,
as we saw in Chapter 5 the most favourable morphology is the one with more
neighbouring domains [12.6.4]. These two stripes correspond to the topological
sub-classes ACB and CAB, where monomer type indicates the order of domains
in [10.8.4; 10.6.4] (see fig. 6.3). These two types have a lower composition of B
hence lowering the surface energy at the interfaces AB and BC. The multicore
morphologies bring in the variety in polymer chain configurations that makes
results in more compositions favouring them for lower values of ϕB. The Σ−phase
being a compilation of two prominent morphologies, they are found more in the
phase space when ϕB is small.

Similar but inverse is true for the case with νAB = νBC = 1, νAC = 1.4. Here
these unequal interactions result in multicore morphologies with large B domains
as we saw in chapter 5. The shift of the phase space towards larger values of ϕB is
observed as in Chapter 5. At the same time, the Σ− stripes are observed in lesser
areas covered by the topological sub-classes ACB and CAB. Mirror symmetry
of the phase space along the line ϕA = ϕC still prevails even with Σ−phase in it.

The most interesting phase space is when the interactions are νAB = 1, νBC =
0.6 and νAC = 1.6, which is given in fig. 6.4.(c). In this example, there is a
substantial shift in the phase diagram and the widths of the Σ stripes vary dra-
matically. The cases where B is the 4 neighboured domain almost disappear
except for a narrow line. The stripes corresponding to BCA and CBA are wider
and shorter. The other two topological sub-classes ABC and BAC have a promi-
nent stripe but they are of different widths. As seen in Chapter 5, extreme
differences between interaction strengths favour the curving of different domains.
It is clear that this morphology has drastic changes in the SSP s after minimi-
sation. With unequal interaction strengths, the domain interfaces have a choice
between the configurational variety or to increase the domain area. In multi-
core structures like [10.6.4, 10.6.4; 10.6.6], [8.6.4; 8.6.4; 8.6.6] and Σ−phase, the
domains with lower interfacial tension here (B) favours for the configurational
variety so there are wider strips of sigma at the region with larger ϕB. Here too
the most favourable morphology is [12.6.4] in which B domains share interfaces
with 12 other domains and are almost circular.

There are certain irregularities outside the triangle corresponding to (ϕA, ϕb, ϕC) =
(0.11, 0.11, 0.11) as explained in chapter 5. These compositions need detailed
study including different lamellar structures. All these phase spaces could have
many more feasible morphologies included in order to develop a complete phase
space for 2D tilings in ABC star terpolymer phase separation.
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(a) νAB = νBC = 1, νAC = 0.8 (b) νAB = νBC = 1, νAC = 1.4
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Figure 6.4: Phase spaces for different asymmetric interactions. The strips in
different shades of yellow are the Σ−phase.

Our detailed analysis of the Σ−phase results in interesting observations re-
garding the interfaces and overall structure of the domains. Other phase sep-
aration calculations based on self assembly have missed the curving of squares
and triangles [75, 80, 91, 162]. The bending of the boundaries between squares
and triangles in a soft matter systems was recently reported by Zeng et al. for
columnar liquid crystals [170]. Uncanny resemblance to the experimental image
from Hayashida et al’s work as given in fig. 6.2 supports our observation. The
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methodology successfully finds Σ−phase in all four phase spaces. We report more
composition points with Σ−phase than any other in literature, owing to the fact
that we need to check other 2D morphologies with a core in them to finish the
phase space. The presence of a relatively wide strip with Σ-phase encourages us
to search for more complex square triangle tilings around it. The run time to
span Σ−phase in a single core ACR4, part of the High Performance Computing
facilities at the University of Leeds is up to a week on an average using Python.
This makes it difficult to span bigger periodic patches with more SSP polygons
in them in this phase space. So to check the presence of a periodic approximant of
quasicrystal with squares and triangles in the phase space one should look around
the vicinity of Σ-phase.

6.3 Dodecagonal arrangements of squares and tri-
angles

Periodic approximants of aperiodic tilings with squares and triangles are required
to continue our analysis of ABC star terpolymer morphologies in favour of qua-
sicrystals. As mentioned there are different methods to create aperiodic tilings.
One main technique is the inflation method developed by Stampfli [119]. In this
method, a dodecagon is chosen which is filled with squares and triangles as in
fig. 6.5. Dodecagons are placed at each vertex of these squares (Stampfli squares)
and triangles (Stampfli triangles) and this process is repeated till you get an aperi-
odic tiling patch. When four dodecagons are placed side by side we get a Stampfli
square. Likewise, when we place three dodecagons in a hexagonal arrangement
again side by side we get a Stampfli triangle. At each inflation, there is a reduc-
tion of side length by a factor of

√
2 +

√
3[119]. For a quasiperiodic tiling in a

certain window of the patch, the ratio of the number of triangles to the number of
squares is 4√

3
[119]. There are different orientations in which the dodecagons can

be placed at the square or triangle vertices using Stampfli’s method which results
in different symmetric structures [61]. Another way to create an aperiodic tiling
with squares and triangles is using random tiling where the entropy associated
with the system will drive the alignment of squares and triangles. In this method,
the ratio of squares and triangles in a periodic patch is made equal to 4√

3
to get

a quasicrystalline tile[71, 118].
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Figure 6.5: A dodecagon with square and triangle arrangement in them.

The SSP method demands a periodic patch of tiling. It has the capability
to increase the size of periodicity to create a tiling large enough so that it ap-
proximates a quasiperiodic tiling. From these available methods of generating
aperiodic tilings, we can choose a suitable periodic patch in our search for a sta-
ble quasicrystal. In our case, we need a tiling that is favourable for ABC star
terpolymer phase separation. In the experimentally observed quasicrystals, the
square triangle layout is random with defects in certain places [57]. So we choose
some motifs of periodic patches from different arrangements of dodecagons in
different orientations to find which has the lowest free energy per chain.

We present a few options of square and rectangular periodic arrangements.
This has a mix of Stamplfi squares and one where there is an overlap in do-
decagons. The square motifs are made by aligning dodecagons side by side while
the rectangular one in fig. 6.6.(a) has overlapping dodecagons. The tilings given
in fig. 6.6.(b), (c), (d) and (e) use square arrangements with different orientations
of dodecagons. The differences between these tilings arise at the edges where the
dodecagons touch: whether there is a square next to a square, a triangle next
to a triangle or a square next to a triangle. The empty spaces in these tilings
are filled by a pattern of a square connected to four triangles. In the rectangular
case, where two dodecagons overlap like in fig. 6.6.(a) vacant gaps are filled with
two triangles. We will be referring to these arrangements as square (a), square
(b), square (c), square (d) and square (e) in this chapter. The arrangements
square(a) and square(d) are Stampfli squares used in making the aperiodic tiling
given in [136]. The square itself (indicated by a red dashed line) doesn’t necessar-
ily make a periodic patch that has translational symmetry. For square (a), and
square (c) rectangle and the square itself gives the periodic patch. For square (b)
and square (e), the Stampfli square was mirrored in two directions to make the
periodic patch indicated by the black dashed line. For square (d), the Stampfli
square is mirrored once to get the periodic patch. Considering other orientations
and overlappings might lead to other tilings. This method of generating tiling
can be combined with the Stamplfi inflation rule of placing squares and triangles
at the vertices to generate larger approximants.
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Figure 6.6: Square and rectangular arrangement of dodecagons. Red dashed
lines indicate the Stampfli squares. The black dashed line indicates the periodic
patch. The white space in the arrangement is filled with two triangles in (a) and
with a square and four triangles in (b)-(e).
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Figure 6.7: Triangular arrangement of squares and triangles in dodecagons.
Red dashed lines indicate the Stampfli triangles. Black dashed line indicates the
periodic patch. The white region are filled with one triangle in (b), (c) and (d).

Likewise, a variety of square-triangle tilings can be made from triangular
arrangements by arranging the dodecagons in a triangular fashion with or without
overlapping. We present four such tilings in fig. 6.7. Again, while placing these
dodecagons the choice is made whether to place two squares or two triangles or
a triangle and square adjacent to each other. The tilings given in fig. 6.7 will be
referred as triangle (a), triangle (b), triangle (c) and triangle (d). Triangle (b),
triangle (c) and triangle (d) are identified to form 12 fold symmetric structure
by Hermisson et al [61]. Triangle (b) and triangle (c) are created by mirroring
the Stampfli triangles indicated in red to obtain the periodic patch. Triangle (d)
is a combination of two Stampfli triangles indicated in red which are collectively
mirrored to create the periodic patch. In all these patterns the periodic patch is
indicated by black dashed lines.

We will be looking at each tiling separately by adding ABC star SSP s into
them. Periodic patches used in SSP methodology will have uneven edges to com-
ply with the boundary conditions. We use the SSP packing technique introduced
in Chapter 4 to embed these tilings with ABC star terpolymer domains.
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Figure 6.8: Periodic patch with square and triangle tiles is given in (a). Initial
configuration with ABC star terpolymer SSP is also given.

6.3.1 Square (a)
In the square-triangle arrangement of square (a) four dodecagons are placed such
that two of them overlap in pairs and the pairs are placed such that two triangles
are adjacent to each other. The periodic patch will be from one purple hexagon
to another in the x and y directions. When we tile this patch to do morphology
analysis, we get the pattern in fig. 6.8.(a). As we can see from fig. 6.8 the right
and the top edges have vacant spots. At the same time, the bottom and left edges
have overflowing tiles which will fill in the vacancy on the right and top sides.
The periodic patch contains 12 triangles and 5 squares. The ratio of the number
of triangles to squares, τ is 2.4.

The tiling is filled with SSP s using the technique explained in section 4.2.
Then we embed the tiling with ABC stars taking all monomers to be of equal
compositions. As we have seen in the Σ−phase the square-triangle combination
have lower free energy when the 4 sided domain is smaller with lower composition.
So the ABC star embedded configuration undergoes a first-stage minimisation
with respect to the monomer composition to find a suitable initial configuration to
start with. Thus we obtain the initial configuration given in fig. 6.8.(b). There are
112 SSP s in this patch with 29 periodic nodes and 223 free nodes. The constraint
list corresponding to this tiling has 449 elements in it, including the periodicity
variables. The black rectangle in fig. 6.8.(a) indicates the periodicity. If we try to
classify the cores in the initial configuration, there are two types of SSP triangles.
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Figure 6.9: Minimised configuration for square (a) in fig. 6.8.The thick black
lines in the structure indicate edges of ‘square’ and ‘triangles’.

One within the triangle, [10.6.4] and another within the square [10.8.4]. In this
pattern, the arrangement of triangles in a hexagon will introduce a new triangle
core: [12.6.4]. So using our conventional nomenclature, this morphology can be
called [12.6.4; 10.6.4; 10.8.4].

The resultant configuration after minimisation is given in fig. 6.9. The min-
imisation of one set of monomer compositions took almost 43 minutes to complete
using a single core on ARC4. In this configuration, the squares have their edges
curved in and triangles have their edges curved out where they are adjacent. A
similar effect on the square triangle arrangement was observed in the Σ−phase
arrangement. In the Σ−phase there are two varieties of tiles after minimisation:
a curved in ‘square’ and a ‘triangle’ with two sides curved out. In this tiling,
there are three varieties of ‘triangles’ in the minimised structure and one type of
‘square’ tile. The triangle varieties are one with one edge curved out, another
with two edges curved out and a third with three curved out edges according
to the number of adjacent squares. Curving of original tile edges to minimise
the overall free energy penalty of the structure here agrees with the results from
Σ−phase morphology. The minimised structure has more varieties of SSP s in
them. The topology of cores remains the same but SSP shapes are completely
different. Classifying them has become a bit cumbersome now.
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Figure 6.10: Periodic patch of squares and triangles one type of Stampfli
square[13].

6.3.2 Square (b)
This arrangement of squares and triangles is from Stampfli’s parent square.
Square and triangle quasicrystal tiling have this arrangement in them [13]. Also,
the soft matter quasicrystals with 12-fold symmetry often refer to this arrange-
ment [58, 72, 171]. The square in dashed red lines indicated in fig. 6.6.(b) is
mirrored twice to make this periodic patch enclosed by a large square with black
edges. The periodic patch we need for our analysis is created with uneven tile
placement at the edges. Here in fig. 6.10 the right and the bottom edges have
vacant spots while the top and left edges have overflowing tiles which will fill in
the vacancy on the right and bottom sides. This periodic patch is made of 28
squares and 63 triangles. Thus the ratio of the number of triangles to squares τ is
2.25. This is a bigger periodic patch compared to square (a). This arrangement
has more variety of alignments of squares and triangles in them. A hexagonal
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arrangement of triangles is present at the centre and the corners of this tiling.
These square-triangle placements can be broadly classified using their vertices.
Here one vertex is shared by six triangles. The remaining vertices in the periodic
patch are shared between five tiles: two squares and three triangles. The align-
ment of these five tiles can be different. There are four vertices in the given patch
where two squares are placed adjacent to each other. Squares and triangles are
arranged in the Σ way around the remaining vertices shared by five tiles.

This periodic patch of squares and triangles is embedded with our ABC ter-
polymer SSP s. An initial configuration of the tiling with ABC star domains in
it is obtained. There are 608 SSP s in this periodic patch which is made from
1281 nodes. Among these nodes, 1215 nodes are free and 65 nodes are periodic.
This makes a constraint list that has 2433 entries. This is quite a large size for
the constraint list and the minimisation procedure must vary all these elements
to obtain a stable configuration. This version of the code written in Python takes
a long time to achieve a complete minimisation. So the minimisation of this
structure is executed in multiple steps. Once the tiling is embedded with SSP s,
the configuration undergoes a first-stage minimisation to obtain a good monomer
composition that is not ϕA = ϕB = ϕC = 1

3
to start with. In this minimisa-

tion there are only 6 variables associated; three monomer compositions and three
positions where new nodes are placed on the original square triangle tile as in
section 4.2.(a). The resultant initial configuration after this minimisation is given
in fig. 6.11.(a). This initial configuration undergoes detailed minimisation to find
a stable configuration for given monomer compositions shown in fig. 6.11.(b).
The constraint list is large here so this minimisation is also conducted in differ-
ent stages with difference tolerance as demonstrated in table 4.1. The BFGS
method with tolerance 0.01 provided final function value which is four significant
digits same as the true value in less amount of time. So for this big structure,
minimisation was conducted in two stages with different tolerances, each starting
from an initial configuration closer to the true value of free energy per chain.
The minimisation of one set of monomer compositions took almost 18 hours to
complete using a single core in ARC4.

If we attempt to classify the cores with our conventional nomenclature, we
can find three different cores in this initial patch. There are [12.6.4] inside every
hexagon made by 6 triangles, [10.6.4] inside each triangle and [10.8.4] inside each
square. This is the same as the cores identified in the initial configuration of
square (a). In this patch even if we define the cores, we cannot define the patches
as the arrangement and proportion of these cores are different. For instance, when
two squares are adjacent, cores associated with that patch are still the same but
now with a different arrangement. Hence the topological nomenclature of the
initial configuration does not make any sense any more as this structure is big
enough to introduce the aperiodic complexities of quasicrystal.
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fc = 9.3235

(a)

fc = 8.9880

(b) (c)

Figure 6.11: Periodic patch of square (b) arrangement with SSP for embedded
in them. The tiling in (a) is the initial configuration obtained from the first
stage of minimisation for monomer compositions ϕA = 0.5671, ϕB = 0.3671 and
ϕC = 0.0658. Original triangle and square outlines are given in black lines. The
tiling in (b) is the minimised configuration for the same set of compositions.
White lines are SSP edges and black lines are the square and triangle edges.
The TEM image of ISP reported by Hayashida et al. [57] is adapted in (c) with
the author’s permission.
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Figure 6.12: Different varieties of squares and triangles obtained after minimi-
sation.

The stable configuration after multiple stages of minimisation is given in
fig. 6.11.(b). This configuration also exhibits the curving of tile edges that was
observed in Σ and square (a). Here we obtain 5 tiles given in fig. 6.12 after
minimisation. This patch contains all possible local arrangements of squares and
triangles in a dodecagonal tiling. Hence for any square triangle tiling we are con-
sidering, the minimised structure will contain different combinations of these 5
tiles. When a square is shared by triangles from four sides, the minimised square
is shrunk at four edges. A triangle that is shared by three squares is bulged at
its edges. If the edges are shared by the same shape then that edge is straight.
Any other combination of square triangle arrangement is impossible with the do-
decagonal arrangement we follow. If we look closely at each minimised tile, we
can see that two tiles of are same topological sub-classes are not entirely identical.

In fig. 6.11.(b), white lines are SSP edges. Upon minimisation, there are
many varieties of SSP s. This agrees with our observations from square (a) and
Σ−phase. As this structure is quite big, it is not practical to manually count
the different SSP s and their features. We will need a detailed evaluation of the
structure using Fourier analysis.

Black lines in fig. 6.11.(b) are the skeleton of square-triangle tiling being over-
layed on the minimised structure. In this structure, black edges shared between
a square and a triangle cross yellow domains along the domain edge. A similar
characteristic was seen in Σ−phase in fig. 6.2.(c). As discussed in section 6.2 this
characteristic is observed in experimental results of ABC star terpolymer phase
separation. Image of the quasicrystalline phase obtained by Hayashida et al. is
given in fig. 6.11.(c). In this, they attempt to overlay the structure with squares
and triangles and it is obvious that the edge shared by a square and a triangle
crosses the black domain along its edge like in our simulation. In this image, all
the squares are not identical and they are skewed as they didn’t take the bending
into account. There are adjacent squares and hexagonal arrangements of triangles
in this pattern which are present in the minimised configuration of the square-(b)
in fig. 6.11.(b).
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6.3.3 Square (c)
In this arrangement, the periodic patch is smaller compared to square (b). Here,
two dodecagons are placed such that two squares and two triangles are adjacent
to each other. The periodic patch is the same as a parent square tile with vertices
at hexagon centres. A periodic patch suitable for tiling is given in fig. 6.13.(a)
whose periodicity is indicated by a black square. The triangle-to-square ratio τ
for this periodic patch is 2.28. All vertices inside the periodic patch are shared
by two squares and three triangles arranged in a different order. When tiled, the
border will give the hexagonal arrangement of triangles.
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Figure 6.13: Periodic patch for square (c) arrangement is given in (a). Its
periodicity is indicated by black solid lines, which is the parent square. Initial
configuration with SSP s embedded in the tiling for monomer composition ϕA =

0.5573, ϕB = 0.3641 and ϕC = 0.0786.

Upon adding ABC star domains, there are 152 SSP s in total and the con-
straint list has 609 entries. Even though this configuration is not as big as square
(b), the initial first stage minimisation to find the right monomer composition for
the arrangement was done and the result of this first stage minimisation is given
in fig. 6.13.(b). We can find three different standard cores [12.6.4; 10.8.4; 10.6.4]
in this initial configuration, as in the previous two cases. Their arrangement is
different, which makes this nomenclature not unique for this configuration.
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Figure 6.14: The minimised configuration for square (c) arrangement from the
initial configuration given in fig. 6.13.(b).

The minimised tiling corresponding to the initial configuration given in fig. 6.13
is given in fig. 6.14. Minimisation for one set of monomer compositions took al-
most 1.5 hours to complete using a single core in ARC4. Curving of square and
triangle edges is observed in this case too. This minimised configuration contains
all five curved tiles identified from the previous case. This also has a square-
square arrangement which introduced yet another type of SSP geometry/core
upon minimisation. The characteristics of the minimised structure are the same
as square (a) and square (b) except for the difference in arrangement. It is to
be noted that there are adjacent squares in square (b) and square (c). The free
energy per chain for minimised square (c) is larger than square (b) for almost the
same monomer composition.

6.3.4 Triangle (a)
This is a triangular arrangement of dodecagons given in fig. 6.7.(a). In this, the
parent triangle is smaller than the regular Stampfli triangle. Three dodecagons
are overlapped such that they have four common triangles and three common
squares. Unlike other arrangements we have, there are no gaps in this one. This
tiling has two vertices, one shared by three triangles and another shared by three
triangles and two squares [36, 32.4.3.4] [72]. This square-triangle arrangement
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is found in the quasicrystal patch reported by Hayashida et al [57]. The peri-
odic patch here is chosen to be a rectangle indicated by the solid black lines in
fig. 6.15.(a). The triangle-to-square number ratio τ is 2.67.

The initial configuration is created from square-triangle tiling in exactly the
same way as in previous cases. The initial configuration is deduced from a first-
stage minimisation to determine the asymmetric monomer compositions similar
to the previous cases. With the chosen periodic patch ABC, star tilings will have
144 SSP s. The periodic patch has 287 free nodes and 33 periodic nodes and
the constraint list corresponding to this periodic patch has 577 elements. It is
possible to choose another periodic patch which is smaller in size for this case.

(a) (b)

Figure 6.15: Periodic patch corresponding to triangle (a) square-triangle ar-
rangement is given in (a). The minimised structure for monomer composition
ϕA = 0.5658, ϕB = 0.3568 and ϕC = 0.0774 is given in (b). Regular square-
triangle tiling is overlayed on top of the minimised tiling to detect the curving.

The minimisation of one set of monomer compositions took almost 2 hours
to complete using a single core in ARC4. Upon minimisation, this configuration
also exhibits tile curving for squares and triangles as shown in fig. 6.15.(b). It
also has different SSP s in it after minimisation. The square triangle tiling is
overlayed on top of the minimised structure and curving of the tiling is visible
in fig. 6.15.(b). In this minimised tiling there are three types of minimised tiles
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here, a square curved in all sides, a triangle with one curved side and another
triangle with three curved sides.

(a)

(b)

Figure 6.16: Periodic patch of the triangle (b) arrangement of the square-
triangle tiling is given in (a). Minimised structure for monomer compositions
ϕA = 0.5671, ϕB = 0.3671 and ϕC = 0.0658 for this arrangement is given in (b).
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6.3.5 Triangle (b)
Triangle (b) is another Stampfli parent triangle where dodecagons are placed
at the corners. These dodecagons are placed such that two triangles face each
other where two dodecagons meet. This arrangement is found in soft matter
quasicrystal tilings [57, 72]. The triangle-to-square number ratio τ is 2.33 for
this arrangement, which is closer to quasicrystal tilling favourable ratio 4√

3
. The

periodic patch here is a rhombus indicated by solid black lines in fig. 6.16.
The minimisation procedure is the same as in the previous square triangle

cases. After a minimisation based on the tiling and monomer composition, an
initial configuration is obtained. There are 132 SSP polygons in this periodic
patch. The corresponding constraint list consists of 529 entries.

The final configuration after minimising with the constraint list is given in
fig. 6.16. (b). The minimisation of one set of monomer compositions took al-
most 1.6 hours to complete using a single core in ARC4. This configuration also
exhibits square and triangle curving. There are four types of minimised tiles
in this configuration. As two squares are never adjacent to each other in this
arrangement, there is only one type of minimised square here. On overlaying reg-
ular tiling on the minimised pattern, square triangle edges cross yellow domains
along their edge. This also has all the characteristics we have seen in minimised
structures of previous cases.

We can continue this kind of analysis by checking different square-triangle
arrangements in a similar manner, expecting to find similar pattern characteristics
in different combinations. From the above analysis we can conclude that when
we place the ABC star in a square triangle tiling, the tiling will be curved from
the effects of monomer interactions and stretching. When you have squares or
triangles adjacent to each other, the edge shared between them remains straight.
When a square shares edges with a triangle, those edges curve into the square.
The methodology is equipped to analyse square triangle tiling of any periodicity
length. It is clear from the above cases arrangement of a square-triangle affects the
final free energy of the morphology. Figuring out if any of these arrangements are
present in the phase space is the next task. We are using a different approach to
check their presence in phase space, which will be demonstrated in the upcoming
section.

6.4 Linear phase spaces
We have five varieties of square triangle arrangements to compare in order to find
which one has the lowest free energy per chain. We are also interested in knowing
if any of these are present in ABC star phase space. In section 6.3, we saw that
minimisation time for these configurations varies from 1 hour to 18 hours for one
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single data point in the phase space. In our ternary phase space, we calculate up
to 4050 data points. This scale of phase space exploration is very time-consuming
as well as not computationally feasible with the present version of the script using
Python. So we undertook a linear phase space exploration where a line is taken
across the phase space taking one monomer composition to be constant.

In ABC star terpolymer with symmetric interactions, we found Σ−phase at
the intersection of squares [8.8.4] and triangles [12.6.4]. This encourages us to
anticipate the presence of other square-triangle phases around the same region.
These Σ−phase strips in fig. 6.3 and fig. 6.4 are uniform along their lengths, even
when the widths change due to differences in interactions. So if we take a straight
line across the Σ strip from the square to the triangle region, we can see if there
are any square triangle arrangements in the phase space. We will compare square
[8.8.4], triangle [12.6.4], Σ-phase, square (a), square (b), square (c), triangle (a)
and triangle (b) along this line.

Figure 6.17: Linear phase space varying only ϕA for different varieties of square-
triangle tilings for ABC star terpolymer with equal interaction between branches.
Here νAB = νBC = νAC = 1 and the monomer compositions of C and B are
ϕC = 0.065 and ϕB = 0.935−ϕA. The magnified region where all square-triangle
lines are crowded together is also given in the box on the side.

In the phase space of ABC star with same interaction strength between its
branches, the Σ region is identical for all topological sub-classes. The phase
space is symmetric in all directions. If we take a line across one topological
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sub-class of Σ−phase, it will be same for the other five regions. We take a
straight line across topological sub-classes ABC which has A monomer in large
domains and C monomer in small domains. We take the line corresponding to
ϕC = 0.065, varying ϕA with ϕB = 0.935 − ϕA, and evaluate the free energy for
all the morphologies mentioned. The resulting slice of the phase space is given in
fig. 6.17.

Tiling arrange-
ment

τ =
Ntriangle

Nsquare
,

τQ = 2.309

Value free en-
ergy per chain
(kBT ) at ϕA =

0.568

Time of one min-
imisation

[12.6.4] Not applicable 8.9974 30 seconds
Square (a) 2.40 8.9818 43.12 minutes
Square (b) 2.25 8.9871 18 hours
Square (c) 2.28 8.9927 1.5 hours
Triangle (a) 2.67 8.9842 2 hours
Triangle (b) 2.33 8.9832 1.6 hours
Σ-phase 2.00 8.9735 4 minutes

Table 6.1: Free energy values of different morphologies given in linear phase
space when ϕA = 0.568. The time taken for a complete minimisation is also
given.

In the resulting linear phase space, the blue line is square morphology and the
orange indicates the triangular morphology. As we go along the x axis in fig. 6.17,
for values of ϕA from 0.450 to 0.54, the square morphology has the lowest free
energy. For values larger than 0.575 the triangle morphology has the lowest free
energy. Near to the value of ϕA where these two lines intersect, morphologies with
square-triangle arrangements have lower free energy values. Free energy lines
corresponding to different square triangle arrangements are close and crowded
together in this region. On a closer look at the magnified figure on the right, it is
clear that Σ−phase has the lowest free energy among the square-triangle tilings
we have. This means the phase space will be the same as fig. 6.3 with no other
morphologies popping in at least for this value of ϕC . The free energy values
of these morphologies at ϕA = 0.568 are listed in table 6.1. From the table and
graphs it is obvious that square (b) and square (a) have higher free energy values.
Among these morphologies triangle (a), square (a) and triangle (b) have lower
free energy per chain values than Σ-phase when ϕA ⪆ 0.6. Free energy minima
for square-triangle morphologies lie in the region where [12.6.4] has the lowest
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free energy. There are two adjacent squares in square (b) and square (c). This
alignment of squares tend to increase the free energy of a given morphology. This
value of ϕA is close to where lines corresponding to square-triangle morphologies
intersect with [12.6.4]. From this table, it is clear that the free energy value is
closer to each other to the extent that they are the same for two significant digits.
Thus any perturbation to the monomer density can introduce a phase transition
in this system that will favour complex square-triangle tiling-like morphology.

In order to see the effects of unequal interactions between ABC branches
similar linear phases are plotted for three cases introduced in Chapter 5. In the
modified phase spaces introduced earlier, strips with Σ−phase have uneven width.
We chose the straight line across the wider strips in each phase space. Square (b)
in the symmetric case has higher free energy compared to other square-triangle
morphologies and it takes 18 hours for the minimisation of one set of composition.
Hence, we omit square (b) in the phase space study with unequal interactions.
For the case where νAB = νBC = 1, νAC = 0.8 we chose the line ϕB = 0.099
where ACB sub-class are favoured. With νAB = νBC = 1, νAC = 1.4, we take
the line ϕC = 0.068 where the class BAC is favoured. Finally for the case where
νAB = 1, νBC = 0.6, νAC = 1.6 we take the line ϕA = 0.114 where the sub-class
CBA is favoured. In this case ϕB is varied. For all these cases, calculations for
melt with symmetric interactions are repeated with updated interactions in its
scripts and free energy lines are plotted in figs. 6.18 to 6.20.

Figure 6.18: Linear phase space for νAB = νBC = 1, νAC = 0.8 across
the Σ stripe for ACB topological sub-class. Here value of (ϕA, ϕB, ϕC) =

(ϕA, 0.099, 0.901− ϕA).
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Figure 6.19: Linear phase space for νAB = νBC = 1, νAC = 1.4 across the
Σ stripe for BAC topological sub-class. Here the value of ϕC = 0.068 is kept
constant and ϕA is varied with ϕB = 0.932− ϕA.

Figure 6.20: Linear phase space for νAB = 1, νBC = 0.6, νAC = 1.6 across the
Σ stripe for CBA topological sub-class. Here the value of ϕA = 0.114 is kept
constant and ϕB is varied with ϕC = 0.886− ϕB.

219



6. Periodic approximants of Square-Triangle tilings in ABC star terpolymers

In all three plots, at the point where the lines corresponding to [8.8.4] and
[12.6.4] intersect the square-triangle tiling morphologies all have lower free energy.
All lines corresponding to these morphologies are close to each other, the Σ-
phase always has the lowest free energy per chain in these linear explorations and
so is present in the phase space. In all three linear phase spaces, the red line
corresponding to square (c) has the highest free energy amongst square-triangle
morphologies. The triangle (a) and square (a) are both smaller periodic patches
and have lower free energies after the Σ-phase. The height difference between the
intersection point between Σ-phase line and [12.6.4] and square (a) and [12.6.4]
(green line - teal line ) are 0.0065, 0.0096 and 0.0025 in fig. 6.18,fig. 6.19 and
fig. 6.20 respectively. For any of the square-triangle arrangements to appear in
the phase space, these values have to be less than zero. We can see that the
interactions are inducing shifts in intersection points, but we are yet to find the
right perturbation that will make square-triangle tilings stable.

From this analysis, it is suggested that an arrangement with two squares
adjacent to each other is not favourable for ABC star phase separations. The
abundance of triangles in the tiling reduces the free energy value. Hence we are
not considering the square (d) and triangle (c) in our analysis. Square (e) and
triangle (d) are large patches which will take almost the same amount of time
or more time as square (b). So we are not attempting those morphologies in the
focus of this chapter.

6.5 Fourier analysis of square-triangle tilings
The lengthscales that emerge in these tilings with ABC star domains can be
studied in a qualitative way from their Fourier spectrum. In our tiling patterns,
monomer domains are of different shapes and colours, in square, rectangular and
rhombic periodic boxes. Hence we need to use wavevectors Q specific for each
tiling. The reciprocal lattice space for each tiling is created using the indices
(m1,m2) such that the wavevector Q = m1Q1 + m2Q2 using the expression in
eq. (4.11). Depending on the periodic box, this reciprocal lattice can be a square,
rectangle or rhombus. The value of the indices m1 and m2 are chosen separately
for each tiling and it will set the range for a given periodic patch. For simpler tiling
patterns like square and triangle, (m1,m2) = (10, 10) will provide all necessary
sharp peaks and their higher order peaks. Large and more complex patterns like
square (b) require higher indices (m1,m2) = (25, 25) so that the reciprocal lattice
is closely packed and we do not miss sharp peaks.

The tiling is converted into a black and white pattern by taking ρA = 0 ,
ρB = 1 and ρC = 1 in eq. (4.15). The tiling now has red domains empty or in
white, and yellow and blue domains in black. Thus the scattering density ρ∆0ij

(Q)
in eq. (4.15) is determined for an SSP for each spot in the tile that corresponds
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to some wavevector Q = qxi+ qyj in the reciprocal lattice. For each point in the
reciprocal lattice, the total scattering density is determined by summing up the
scattering density for all SSP s involved in that periodic patch multiplied by an
appropriate phase factor. This total value is then squared to get the scattering
intensity at each wavevector due to the patterns in the tiling.

While plotting the intensity in the reciprocal lattice, omitting the peak at
Q = 0, we highlight the point corresponding to the wavevector that undergoes
the strongest scattering. For each tiling, the intensities obtained for each point
in this reciprocal lattice is divided by the largest intensity value. Then we take
the logarithm of the obtained scaled intensity. This scaling will let us identify the
prominent peaks available in each tiling. The dot size and colour of each point in
the reciprocal lattice are scaled according to these normalised values. All Fourier
spectrum are plotted between qx = [−10, 10] and qy = [−10, 10].

We have compared the Fourier spectra for each tiling pattern discussed in this
chapter and are reporting some of them in fig. 6.21. All these spectra are deter-
mined for minimised tiling patterns with monomer compositions (ϕA, ϕB, ϕC) =
(0.5671, 0.3670, 0.0659). We present the morphologies: [8.8.4], [12.6.4], square
(a), square (b), triangle (a) and triangle (c). The blue circles in these spectra
correspond to the length between the centres of two red domains. There are no
distinctive peaks inside the blue circle in all examples, so the patterns are uniform
at lengthscale larger than the ones indicated by a blue circle.

The spectrum for the [8.8.4] morphology in fig. 6.21 (top left) has four promi-
nent dots separated by an angle of π

2
just outside the blue circle. This indicates

the lengthscale associated with the [8.8.4] morphology. On the blue circle there
are four smaller dots indicating the red domains. The pattern demonstrates 4-
fold symmetry. There are more Fourier dots present with the same symmetry as
we go away from the centre.

In the Fourier spectrum associated with [12.6.4] morphology in fig. 6.21, there
are 6 sharp and distinct spots separated by an angle of π

3
. They indicate the

presence of red domains distributed in a hexagonal pattern in the tilings. This
shows the tiling has six-fold rotational symmetry. There is only one prominent
lengthscale here. Scattering at higher order is indicated by dots in a hexagonal
lattice as we go away from the centre.

The Σ-phase exhibits more prominent peaks in the chosen range of Q. Just
outside the blue circle, it has a set of three dots on four sides indicating the
existence of a prominent four-fold symmetry in the tiling. But this pattern is
more complicated than [8.8.4] and [12.6.4]. Along with the 4 dots on the blue
circle due to some red domains, four-fold symmetry is demonstrated by other
domains which are more prominent.

221



6. Periodic approximants of Square-Triangle tilings in ABC star terpolymers

Figure 6.21: Morphologies and their corresponding Fourier spectra are listed.
Morphologies [8.8.4], [12, 6, 4] and Σ-phase are in the first row from the top,
square (a) and triangle (a) are in the second row and triangle (b) and square (b)
are in the third row. The blue circle indicates 2π over the length between the
centres of two red domains in the given structures.
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When we consider more complex square-triangle patterns, there are more
Fourier dots in the spectrum. In square (a) and triangle (a), we see an emergence
of 12 dots in the inner circle. They are not equidistant so lengthscale correspond-
ing to 6-fold symmetry is prominent in square (a) pattern. The twelve dots are
more equi-spaced for larger examples like triangle (b) and square (b).

The tiling triangle (a) displays Fourier peak characteristics similar to square
(a). Here there are 12 dots just outside the blue circle indicating red to red
distance. In this pairs of dots are more closer to each other compared to the
spectrum of square (a). The hexagonal symmetry associated is more pronounced
in this spectrum, as are sharper peaks among the higher order scattering peaks.

In the spectrum corresponding to triangle (b), there are 12 dots aligned in a
circle closest to the centre. These dots are almost equidistant hence they exhibit
12-fold rotational symmetry. The most prominent peaks are the ones from higher-
order scattering. So the prominent lengthscales here are smaller than red to red
length.

Looking into the largest square-triangle tiling we have in this chapter, the
spectrum for square (b) also has 12 distinct peaks aligned in a circle close to
the centre. These peaks are almost equidistant to each other separated by an
angle of π

12
. In this spectrum, there are three prominent rings with darkest spots.

The most prominent spots are observed at lengthscales smaller than red-to-red
distance.

From Chapter 2 we know that in ABC star there exist composition parameters
that can potentially lead to phase separation into morphologies with two length-
scales in a weakly segregated regime. In these strongly segregated morphologies,
we are looking for prominent lengthscales to identify the emergence of two length-
scales. In both triangle (b) and square (b) we can see 12-fold symmetry emerging
and there are several prominent rings of peaks in the spectrum which indicates
the presence of more than one lengthscale. These are square-triangle periodic
patches made from Stampfli parent triangle and square [119]. Now compared to
a quasicrystal, the two tilings we have are short-ranged, hence the presence of
two prominent lengthscales is not explicit from the obtained spectrum. The spec-
trum also detects intermediate lengthscales that can be caused by the twining or
overlapping of two lengthscales. When these two tiles are combined together to
create a larger periodic approximants of square-triangle aperiodic tiling, a more
interesting Fourier spectrum with quasicrystalline features can be obtained.

In these Fourier spectra, the prominent lengths are not entirely evident, since
this is a quick conversion of domains to the reciprocal lattice with a discontinuous
density. Non-smooth interfaces make it difficult to calculate the true scattering
spectrum of the structure. The reciprocal lattice is limited to packed square dots
which limit the placement of the dots. The analysis has its limitations, but the
emergence of 12 approximately equidistant peaks and concentric circles suggests
the connection to the idea that having two lengthscales plays a role in quasicrystal
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morphology in ABC star phase separation. Using the methodology we can have
tiling with larger periodicities can be analysed, and we hope to be able to find a
second prominent set of peaks as predicted in Chapter 2.

6.6 Discussion
In this chapter, we saw that our SSP methodology works well with large complex
morphologies. We have produced phase spaces which are presented in chapters 5
and 6 and that agree with existing phase spaces in the literature. Despite only
considering the free energy balance between the stretching of polymer chains and
interfacial energy of the domains, we successfully reproduced the same phase space
with limited morphologies as the one produced using SCFT [91]. In addition to
that, our work shines a light on new interesting observations regarding the square-
triangle morphologies found in ABC star terpolymers. In our work, we present
the analysis of various square-triangle tilings within the ABC star terpolymer
system focusing on aperiodic tiling for the first time. Until now, researchers
did find square-triangle tilings in the ABC star melt [57], but the cause of its
formation remains unsolved.

We arranged the classical square-triangle dodecagons given in fig. 6.5 in differ-
ent ways to create periodic patches of tiling that vary in length and arrangement.
The ABC star terpolymers are added to these tiling patterns to evaluate the
free energy per chain for the arrangement in each tiling and hence determine its
stable configuration. The most noticeable observation from these morphologies
is the curving of squares and triangles at their stable configuration. This fea-
ture is supported by the qualitative comparison with experimental results [57].
The curving of squares and triangles is observed in all tiling patterns we have
considered in this chapter, and we expect it should persist for all square-triangle
arrangements. This curving is dependent on the placement of squares and trian-
gles in the tiling. When a triangle shares a side with a square, the shared side
curves into the square. When a triangle or square shares a side with another
triangle or square respectively, the edges are straight. We assume the curving
helps the efficient packing of the chains and curved edges contribute to lowering
the total free energy per chain.

Among the tilings we have analysed, the Σ−phase is the most stable square-
triangle arrangement. The Σ−phase remains the stable square-triangle configu-
ration even with asymmetric monomer interactions in the melt. It also appears in
all phase spaces. With asymmetric interactions, the area of regions of Σ−phase
varies within each phase space. This observation is new to the ABC phase sepa-
ration study. The Σ−phase is reported as stable structure in other phase spaces
in the literature [27, 34, 91]. All other square-triangle arrangements are observed
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to have very close free energy values to the Σ−phase. As these are large com-
plex structures we conducted a line-based exploration in our phase spaces. From
these linear phase spaces in figs. 6.17 to 6.20 for square-triangle arrangements, it
is clear that placement of squares and triangles contributes towards stability of
the patch. The periodic patches that contain two adjacent squares as in square
(b) and square (c) have higher free energy per chain. The square (c) is a com-
parably simple configuration which surprisingly has the highest free energy per
chain amongst all square-triangle arrangements we are considering. The impor-
tant feature of this arrangement is two adjacent squares. With this information,
we propose that for a square-triangle tiling in ABC star morphology to be stable
it should have as few adjacent pairs of squares as possible. The minima for most
of the square-triangle combinations are found in the phase spaces in regions where
the triangle morphologies are most stable. The triangle morphology is favoured
more by ABC star terpolymers in all our phase spaces owing to its overlaying
hexagonal packing. Thus we need more triangles in the pattern to achieve the
desired triangle-square ratio. It is also seen that the tilings with more triangles
in them are more stable.

This chapter started with the search for stable quasicrystal structures in ABC
star terpolymer melt but in fact, we find that the square-triangle morphology with
the lowest free energy is the periodic Σ−phase. The experimentally reported mor-
phology that gives twelve-fold rotational symmetry is an arrangement of squares
and triangles in random order with structural defects in it [57]. The Matsushita
lab used polymer melt which is a blend of ISP star terpolymer composed of poly-
isoprene, polystyrene, and poly(2-vinylpyridine) and homopolymer polystyrene
(S) for their extensive work on ABC star terpolymer morphologies. The change
of compositions to compare different morphologies is achieved by the addition of
homopolymer instead of changing the branch length as we are proposing in our
work. In our work, the melt considered consists only of the terpolymer and it is
expected to reach a stable state without any external stimulus. In addition to
the composition disparity, in the experiment, the quasicrystalline film is obtained
after casting, drying and annealing at 170◦C for three days [57]. All these fac-
tors might have introduced the necessary energy perturbation we suggested for a
square-triangle arrangement to achieve lower free energy than the Σ−phase.

In this chapter, we have a computational setup in which any periodic patch do-
decagonal 2D tiling can be explored irrespective of the arrangement of prototiles
in them and their overall size. We observe the emergence of 12 fold symmetry
in the Fourier spectrum for square (b) arrangement. For an actual quasicrys-
tal, we need a much bigger structure. So in order to continue the search in the
right direction, we need a larger patch that is favoured by ABC star terpoly-
mer. Until now, in most of the literature, the quest has been for a dodecagonal
arrangement. We are posing the question of which tiling is more probable to
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appear. From this chapter, we are equipped with the tools to answer that ques-
tion. Our observations propose a tiling with the following conditions satisfied to
be a favourable quasicrystalline candidate for ABC star terpolymers. We need a
periodic patch where, (i) the triangles to square ratio τ = 4√

3
as reported in the

literature [57, 119, 172]; (ii) there should be no adjacent squares in them; and (iii)
upon minimisation it should have 12 sharp equidistant peaks. Until now, all work
on dodecagonal quasicrystal tilings didn’t require conditions on the alignment of
prototiles in them. These restrictions are introduced by the soft matter system we
are considering: ABC star terpolymers. So depending on the soft matter system
and its architecture the quasicrystal tilings differ. Recently Zeng et al [170] also
reported different features in their quasicrystalline tiling, which features squares,
triangles and other quadrilaterals, dependent on the molecule structure [70].

While our method is capable of accommodating tilings of any size and ar-
rangement, computation time is a major limitation. For the biggest structure,
square (b), it took 18 hours to minimise the configuration for one set of monomer
compositions. Increasing the tiling size or complete spanning of the phase space
is not practical with the current version of the scripts written in Python. We
need a custom-made minimisation routine for this problem which can take the
constraint list of any size and compute the stable configuration. Rewriting the
script in a faster programming language and/or implementing a more powerful
minimisation scheme is proposed.
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Chapter 7

Conclusion

In this thesis, we have investigated how to design block copolymer architectures
so that they can phase separate into stable quasicrystal structures. In that pro-
cess, we developed two methods to analyse phase separation in block copolymers
at two stages of monomer segregation. In the first method, we aim to predict
the lengthscales that emerge in phase-separation of a homogeneous melt of block
copolymer, based on their monomer composition. We explicitly look for simulta-
neous occurrence of two lengthscales such that their ratios will be favourable for
quasicrystals. In the second method, we analyse morphologies of ABC star ter-
polymers in the strongly segregated melt, in which domains of different polymer
types form patterns similar to tilings. We compare the free energy of different
morphologies using this technique to find the stable structure for a given monomer
composition. Results obtained from both these projects provide significant in-
sights into understanding the phase separation and stability of quasicrystals in
block copolymers.

In Chapter 2 we use the RPA to investigate the structure factor of polymer
melts. We consider two classes of block copolymer models. The first has alternat-
ing lengths of polymers of two different types, and the second has three different
monomer types in a terpolymer star configuration. In both cases, while there is
phase separation in a single lengthscale, we also see significant regions in the com-
position space where two lengthscales emerge at phase separation. The transition
from one to two length scales occurs at a point (a cusp) in the parameter space
when the length scale ratio is one. Beyond this cusp, the length scale ratio can
be made much larger than one. In principle, the ideas and techniques developed
here apply to arbitrary configurations of different types of monomers: we have
explored only the simplest examples. Prior work in this area [110] took ϕA = ϕB;
our work covers parameter values that would allow considerably easier synthesis
of the polymers in regimes that ought to favour the formation of quasicrystals.
In two component systems with alternating blocks, experimental observations
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have found only relatively simple structures, such as hexagons and lamellae with
several layer thicknesses [44]. To our knowledge, ours is the first presentation
of phase separation with two length scales in the ABC star terpolymer system.
This system is where quasicrystals and close approximants have been found ex-
perimentally [57]. As in the AL(BAS)n case, values of the three Nχ parameters
are quite large, suggesting that self-consistent field theory or strong segregation
theory would be an appropriate next step.

We chose to proceed with the analysis of morphologies in the ABC star
terpolymer system using strong segregation theory (SST ) in which there are
two contributions to the free energy, from the stretching of monomers and from
the interfaces between regions of different monomers. The remarkable similar-
ity between the phase-separated structures observed in this terpolymer melt and
square-triangle tilings inspired us to use SST . In our approach, we have de-
veloped a novel methodology where we have entities called Strongly Segregated
Polygons (SSP s), which can be tiled together to create phase separated patterns
in two dimensions. An SSP is a six-sided polygon with adjustable edges, which
contains one terpolymer core where three phase-separated domains meet. In our
method, we pack these SSP s in a periodic box such that when tiled it will form
the required phase separated structure. We successfully developed the theoreti-
cal framework and computational platform using Python. Our method has the
capability to accept any 2D morphology as input and provide the corresponding
structure with the lowest free energy.

The software Surface Evolver is extensively used to minimise the surface area
in tessellations and Euclidean and Non-Euclidean surfaces based on a given ge-
ometry [2, 24]. In the SSP framework we are developing a platform designed
specifically for ABC terpolymers which minimises a given pattern based on its
geometry as well as the chemical behaviour of the polymers in it. In chapters 3
and 4 we explained the theory and numerical tools developed to create the SSP
framework.

In Chapter 5, we used the SSP method to investigate all experimentally
known morphologies except lamellae observed in phase separation of ABC star
terpolymers. For the purpose of this thesis, we have focused on the following mor-
phologies: [6.6.6], [8.8.4], [12.6.4], [8.6.4; 8.6.4; 8.8.6], and [10.6.4; 10.6.4.; 10.6.6].
Our analysis involves a qualitative assessment of each morphology formed by
polymer melt at the mesoscopic lengthscale scale. Notably, we have successfully
generated phase spaces with these morphologies, that align with existing phase
spaces in the literature. Additionally, we have extended our investigation to
include phase spaces for ABC terpolymers with different interaction strengths
between branches. This is a novel contribution since modifying the interaction
potential is typically challenging, but it is necessary to produce results that can be
experimentally reproduced. This demonstrates the potential for creating phase
spaces for any desired monomer interactions. Phase spaces of ABC terpolymer
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with asymmetric branch interactions show shifts in the composition regions in
accordance with the interaction strengths. This is an effective methodology that
has the potential to become the initial step in phase separation studies to have
an idea of morphologies in the phase space. Once the phase space is made it can
be checked for accuracy using SCFT . Even with a limited number of morpholo-
gies, we have demonstrated the potential of our framework to accommodate any
complex morphology. More morphologies can be added into the phase space just
by identifying their periodic patches.

We demonstrate the capability of our SSP framework to accommodate more
complex morphologies in chapter 6. Here we seek stable square-triangle periodic
approximants exploring various arrangements of square and triangle motifs to
identify the most stable configuration for ABC star terpolymers. We examine
square-triangle periodic patches of different sizes constructed using the system-
atic techniques explained in Chapter 4. Through this study, we gain a deeper
understanding of square-triangle patterns and their influence on the structures
produced by the self-assembly of ABC star terpolymers. Notably, we discover the
tendency of squares and triangles to exhibit curved edges to attain stability. This
observation is visible in experimentally reported square-triangle patches observed
in ABC star terpolymers [57]. Additionally, our analysis reveals a prominent
presence of the Σ-phase in our phase spaces. We examined six different periodic
approximants of square-triangle tilings constructed by rearranging dodecagons
made of squares and triangles. Interestingly, the free energy values associated
with these arrangements were found to be extremely close to each other. This
indicates that a slight perturbation in the appropriate direction would be suffi-
cient to position a periodic approximant or an aperiodic arrangement of square
triangle tiling in the ABC terpolymer phase space.

When investigating the phase separation of ABC star terpolymers, a crucial
question arises: What is the optimal square-triangle arrangement for achieving a
quasicrystalline structure? Our research has provided evidence that simply rely-
ing on an aperiodic arrangement is insufficient to ensure the stability of the struc-
ture containing ABC terpolymers. Therefore, finding the right square-triangle
arrangement becomes a critical consideration in the quest for a stable quasicrys-
talline phase.

Our SSP platform offers a reliable, efficient and fast tool for studying and
analysing the stability of morphologies compared to existing morphological anal-
ysis. In comparison to the computational and mathematical intake that is re-
quired to build phase spaces using other methodologies (SCFT , DPD and Monte
Carlo), ours uses straight forward mathematics and significantly less computa-
tional time even using Python. This framework demonstrates remarkable com-
putational potential, enabling us to perform these intensive calculations on large
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Figure 7.1: The phase spaces obtained for ABC star terpolymer with symmetric
interactions between its branches at (a) weakly segregated limit and (b) strongly
segregated limit.

periodic patches like a square (b) with manageable effort. Given enough compu-
tational resources, our methodology is capable of analysing square-triangle peri-
odic approximant of any large size and arrangement and with any combination
of interaction strengths between the ABC terpolymer branches.

In Chapter 2 we predict block copolymer architectures that can induce self-
assembly of domains in multiple lengthscales simultaneously at the point of phase
separation. The rest of the thesis treats the stability of strongly segregated struc-
tures. In both cases, we have composition spaces for ABC star terpolymers that
indicate the regions where complex morphologies could be found. The composi-
tion spaces for terpolymer with symmetric interactions between the branches for
weakly and strongly segregated melt are figs. 2.24 and 6.3 respectively which are
presented again in fig. 7.1. In our SST phase space, complex morphologies are
expected to be observed around the vicinity of Σ−phase in fig. 7.1.(b) closer to
the centre of the composition triangle. In contrast in the composition space of
the weakly segregated melt the two lengthscales that would favour a dodecagonal
phase are found closer to the corners in fig. 7.1.(a). There are regions closer to
the centre of the tip of the curves in fig. 7.1.(a) coincide with the Σ−phase region
in fig. 7.1.(b). As we are analysing phase separation at two stages of segregation,
there is an evident disparity in these phase spaces. We have not covered what
happens between these two stages in this thesis. This could be done using SCFT
[91] or DPD[27].
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A preliminary investigation of polymer self assembly was done using Kirkens-
gaard et al’s [81] script to simulate phase separation in an ABC star terpolymer
melt. This approach uses molecular dynamics based on Dissipative Particle Dy-
namics (DPD) [52]. In this framework, a coarse-grained polymer chain is consid-
ered as a chain of beads, as shown in fig. 7.2.(a). Here each bead represents the ag-
gregated section of the polymer chain on a lengthscale similar to the Kuhn length
in our methodology. The simulation is conducted using the extensive molecular
dynamics library HOOMD [6, 123], which facilitates large scale geometrical and
MD simulations. Here, the ABC star terpolymer is designed as three chains of
beads attached to a common bead (white), which is equivalent to the core illus-
trated in fig. 7.2.(a). The total number of beads including the core is fixed. Here
it is 21. We can choose the number of beads to agree with the necessary monomer
composition. Here we choose (nA, nB, nC) = (9, 6, 5) which roughly corresponds
to (ϕA, ϕB, ϕC) = (0.4285, 0.2857, 0.2380). In our phase space, this point is close
to the Σ−phase region. The presence of core particles makes the composition
conversion not accurate. The box size (height, length, width) = (20, 20, 3) is
chosen in accordance with the scaling in [81]. A thin periodic box is chosen to
enable 2D phase separation to give tilings. The initial state before the simulation
is given in fig. 7.2.(b), which is a random arrangement of the ABC terpolymer
molecules. There are 14385 beads in 685 molecules in this box. The simulation
resulted in the arrangement in fig. 7.2.(c), where domains are well defined.

(a) (b) (c) (d)

Figure 7.2: Results of DPD simulation are summarised. We consider a polymer
molecule assuming it is beads in a chain as given in (a). In (b) the initial state of
the simulation is given where the chains are randomly assembled. The final stage
is given in (c) and (d) which has well-defined domains of red, blue and yellow
beads with core beads popping up in the interfacial junctions. We attempt to
detect the underlying morphology by joining red domains with straight lines in
(d).

In the final state of the simulation, there are core beads lining along the
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junction where three domains align as expected for ABC terpolymer phase sep-
aration. The morphology is not evident in fig. 7.2.(c) from the chosen box size.
So we tried to overlay the obtained pattern with straight lines to recognise the
morphology. The domain size for each monomer type varies within the box. We
choose straight lines such that they join two red domains and pass through or
close to a yellow domain. This results in the image given in fig. 7.2.(d), where
there are two quadrilaterals (similar to squares) and two triangles. It is clear
that the simulation requires a larger box size to identify the morphology which is
time-consuming: one set of monomer composition took approximately 45 minutes
to simulate even without any attempt to optimise the domain size. This indicates
that it will require a lot of time to create phase diagrams similar to the ones we
have created in this thesis.

Through this thesis, we address the question of which parameters will encour-
age self-assembly of block copolymers in complex and interesting morphologies.
From our work, we provide experimentally feasible sets of parameters that can
produce complex and quasicrystalline structures along with a simple framework
to analyse these morphology. The two projects together provide a jump start for
structural analysis when looking for complex morphologies like quasicrystals and
bicontinuous structures.

7.1 Future research proposed
This thesis is a part of a long-term investigation into designing stable quasicrys-
tals in soft matter. We have applied known stability criteria to a practical system
like block copolymers, where phase separation is an important self-driven phe-
nomenon. We have presented experimentally feasible results thorough our work,
which can be proceeded in different directions, of which a few are mentioned here.

Our results in Chapter 2 provide the initial screening of monomer composi-
tions. One could study further the stability of different morphologies in a weakly
segregated melt by considering the third and fourth terms of the free energy [87].
Stability analysis of different morphologies can be done using weak segregation
theory in the same way we have done with Strong Segregation Theory in chapters
3-6. Work has been conducted to study the stability of morphologies in this seg-
regation limit for alternating AB blocks [108, 110]. We have found a window of
parameters in which complex morphologies will be encouraged. This provides a
good starting point for a full stability analysis in this limit. Morphological anal-
ysis for block copolymers with three components has been conducted in the weak
segregation limit, but only for fairly simple morphologies [43] and with symmetric
compositions. A similar analysis is possible for our terpolymer. Hence the phase
space for ABC star terpolymers in the weak segregation limit can be created.
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7. Conclusion

Quasicrystals are reported in block copolymers with two components [86, 90,
93]. The majority of investigations into phase separation in two component sys-
tems in search of quasicrystals have been conducted on blends containing diblock
melts or branched block copolymers. In these cases diblock will assemble as mi-
celles which then assemble into interesting crystallographic motifs. There is very
limited analysis on the alternating AB block copolymer model we consider. Thus
we cannot predict real space structures for these models yet. They may form mi-
celles for certain monomer compositions or they can form some other microphase
separated structure due to the incompatibility introduced by alternating blocks
of different lengths. Self assembly of these alternating block copolymer models
can be studied by using the SCFT formulation or molecular dynamics. This is
a straightforward direction to proceed with the monodisperse models AL(BAS)n
and ABC star terpolymer in chapter 2. Our polydisperse model offers practical
parameters that should be comparatively easy to manufacture in the laboratory.

We have presented the beginning of a phase space for ABC terpolymer in a
strong segregation limit. Although we have presented all the experimentally ob-
served morphologies for ABC star terpolymers there are many other combinations
of domain tilings we have yet to explore. Between different phase spaces present
in literature, there is a disparity between the presence of multi-core morphologies
[75, 81, 91, 102]. Most of the structures reported here and in the literature can
be formed in a melt containing a blend of A, B and C polymer chains in different
proportions. It can be a pure ABC star terpolymer blend as we have considered
in our work, a blend of the terpolymer and homopolymer of one component or
blend of terpolymer and triblock. In their work, Kirkensgaard et al. [81] proposes
the Spoke method to identify all topological arrangements of A, B and C do-
mains where they are connected by a core. It is advisable to check all existing 2D
morphologies reported in ABC star phase separation to build the complete phase
space. This phase space will only show those structures that will be formed in a
homogeneous blend of ABC star terpolymers.

In order to include all possible 2D tiling morphologies, structural limitations
present in Strongly Segregated Polygons (SSP ) need to be addressed. The cur-
rent version of the SSP method uses hexagons which is unable to accommodate
any morphology with lamellae in it. This can solved by increasing the number
of nodes in the polygon. To attain flexibility at the interfaces, the number of
nodes can be increased to the extent of finite element methods, such that the
edges of SSP polygons can form curves. We have reported curving of interfaces
in our square-triangle arrangements even without limited edge flexibility. Further
other 3D morphologies like lamellar+sphere, gyroids, etc can be considered if we
consider packing of modified Kelvin cell or truncated octahedron [28] filled with
monomer volumes. In the 3D equivalent of SSP , the cores can be considered as
a curve.
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7. Conclusion

One urgent development required for this work is improving the efficiency
of the script. This efficiency is necessary for both scripting and implementing a
better minimisation scheme. Stimulated annealing is a candidate method for min-
imisation. It will be beneficial to convert the script into a high-level programming
language for improved performance.

The quest for stable quasicrystals in ABC star terpolymer is continuing. From
our work, it is conclusive that stability of the morphology is dependent on the
arrangement of squares and triangles in the tilings. We have a candidate periodic
approximant, which satisfies the absence of two adjacent square conditions, trian-
gle (d). This has two different Stamplfi triangles in it. Once the script is efficient
this is an interesting arrangement to study. Alternatively, periodic patches can
be made by the random arrangement of square-triangle tiling using the random
tiling method proposed by Imperor et al. [71] The quasicrystal patch discovered
by Hayashida et al [57], consists of random arrangement of squares and trian-
gles with structural defects. Hence random tiling of squares and triangles can be
another potential candidate motif to look at.

Recently it has been discovered that soft matter quasicrystals can also form
tilings from three tiles: squares, equilateral triangles and thin rhombuses [70, 170].
These aperiodic tiling arrangements prove to have fewer defects in a columnar liq-
uid crystal system compared to the square-triangle tilings. It would be intriguing
to investigate other dodecagonal aperiodic tilings with more than two prototiles,
the third tile being a rhombus or a shield purely for the sake of exploration and
expanding our understanding of these systems [170].

There is an evident connection between phase separation at weak and strong
segregation regimes, but there are gaps in our understanding that need to be ad-
dressed. A detailed study of the lengthscales emerging in the strongly segregated
regime is required. We started the Fourier analysis to identify the overall length-
scales and rotational symmetry of the structure. This needs more exploration
to fill in the gaps between phase separation at weakly segregated and strongly
segregated stages.
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Appendix A

A.1 Calculation of internal energy in polymer
melt of one component

Here is the detailed derivation for internal energy for one component polymer
melt in Fourier space given in eq. (2.22) . Consider the internal energy between
two monomer units at positions in chain α and α′ be rα

l and rα′

l′ ,

U

kBT
=

1

2

∑
α,l
α′,l′

V (rα
l − rα′

l′ ) (A.1)

Now multiplying the above term with delta functions at rα
l and rα′

l′ , we get:

U{ρ}
kBT

=
1

2

∑
α,l
α′,l′

∫
d3rα

l δ(r − rα
l )

∫
d3rα′

l′ δ(r − rα′

l′ )V (rα
l − rα′

l′ ) (A.2)

In terms of monomer density at these positions,

U{ρ}
kBT

=
1

2

∫
d3rα

l ρ(r
α
l )

∫
d3rα′

l′ ρ(r
α′

l′ )V (rα
l − rα′

l′ ) (A.3)

Now taking the Fourier transform of the above expression for wave vector q,

Uq

kBT
=

1

2

∫
d3rα

l ρ(r
α
l )

∫
d3rα′

l′
1

Ω
ρqe

−iq·rα′
l′
1

Ω
Vqe

−iq·(rα
l −rα′

l′ )

=
1

2Ω2

∫
d3rα

l ρ(r
α
l )

∫
d3rα′

l′ ρqe
−iq·rα′

l′ Vqe
−iq·(rα

l −rα′
l′ )

(A.4)

Rewriting the integral as summation over q′,

Uq

kBT
=

1

2Ω2

∫
d3rα

l ρ(r
α
l )
∑
q′

Ωδ(q − q′)ρqe
−iq·rα

l Vq (A.5)
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When q = q′, the delta function will be 1. Along with it
∫
d3rα

l ρ(r
α
l )e

−iq·rα
l =

ρ−q. So in Fourier space, the internal free energy becomes:

Uq

kBT
=

1

2Ω

∑
q

ρqρ−qVq (A.6)

A.2 Calculation of W̃q

Here we describe the calculation of W̃q in (2.69).
Partition function Z for a three component system in (2.66) is in a three-

by-three matrix. After imposing incompressibility this three-by-three matrix is
reduced to a two by two matrix. The monomer density distribution for the three
component system is

ψ0

(
{ρAq , ρBq , ρCq }

)
= exp

−1

2

∑
q

[
ρAq ρBq ρCq

]
S−1
q


ρA−q

ρB−q

ρC−q



 , (A.7)

where S−1
q is the inverse of the structure factor matrix,

S−1
q =

1

ΩρN


ΓAA ΓAB ΓAC

ΓAB ΓBB ΓBC

ΓAC ΓBC ΓCC

 . (A.8)

On applying incompressibility condition,

ρCq = −(ρAq + ρBq ), (A.9)

to the expression for the distribution function, the matrices inside the exponential
are rewritten as

[
ρAq ρBq −(ρAq + ρBq )

]

ΓAA ΓAB ΓAC

ΓAB ΓBB ΓBC

ΓAC ΓBC ΓCC




ρA−q

ρB−q

−(ρAq + ρBq )

 . (A.10)
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Using matrix multiplication the expression is expanded and later re-written in
terms of ρAq and ρBq . The worked-out expansion is given below:

[
ρAq ρBq −(ρAq + ρBq )

]

ΓAA ΓAB ΓAC

ΓAB ΓBB ΓBC

ΓAC ΓBC ΓCC




ρA−q

ρB−q

−(ρAq + ρBq )

 =

ρAq Γ
AAρA−q + ρBq Γ

ABρA−q − ρAq Γ
ACρA−q − ρBq Γ

ACρA−q+

ρAq Γ
ABρB−q + ρBq Γ

BBρB−q − ρAq Γ
BCρB−q − ρBq Γ

BCρB−q−

ρAq Γ
ACρA−q − ρAq Γ

ACρB−q − ρBq Γ
BCρA−q − ρBq Γ

BCρB−q+

ρAq Γ
CCρA−q + ρAq Γ

CCρB−q + ρBq Γ
CCρA−q + ρBq Γ

CCρB−q

=ρAq (Γ
AA − 2ΓAC + ΓCC)ρA−q + ρBq (Γ

AB − ΓAC − ΓBC + ΓCC)ρA−q+

ρAq (Γ
AB − ΓBC − ΓAC + ΓCC)ρB−q + ρBq (Γ

BB − 2ΓBC + ΓCC)ρB−q

=

[
ρAq ρBq

] ΓAA − 2ΓAC + ΓCC ΓAB − ΓAC − ΓBC + ΓCC

ΓAB − ΓAC − ΓBC + ΓCC ΓBB − 2ΓBC + ΓCC


ρA−q

ρB−q

 .
(A.11)

Thus ψ0 in terms of ρAq and ρBq is,

ψ0 = exp

(
− 1

2ΩρN

∑
q

[
ρAq ρBq

]
× ΓAA − 2ΓAC + ΓCC ΓAB − ΓAC − ΓBC + ΓCC

ΓAB − ΓAC − ΓBC + ΓCC ΓBB − 2ΓBC + ΓCC

×

ρA−q

ρB−q


 .

(A.12)
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Similarly, the internal energy matrix can also be reduced to a 2× 2 matrix. The
internal energy for a three component system is written as,

U
(
{ρAq , ρBq , ρCq }

)
kBT

=
1

2Ω

∑
q

[
ρAq ρBq ρCq

]

VAA VAB VAC

VAB VBB VBC

VAC VBC VCC




ρA−q

ρB−q

ρC−q

 . (A.13)

On applying the same simplification as above we get

[
ρAq ρBq −(ρAq + ρBq )

]

VAA VAB VAC

VAB VBB VBC

VAC VBC VCC




ρA−q

ρB−q

−(ρAq + ρBq )

 =

[
ρAq ρBq

] VAA − 2VAC + VCC VAB − VAC − VBC + VCC

VAB − VAC − VBC + VCC VBB − 2VBC + VCC


ρA−q

ρB−q


(A.14)

But Flory’s interaction parameters, χAB, χBC , χAC is introduced to the matrix
from its definition (2.65) as

VAA − 2VAC + VCC = −2χAC

ρ
,

VBB − 2VBC + VCC = −2χBC

ρ
,

2χAB

ρ
− 2χAC

ρ
− 2χBC

ρ
= −VAA − VBB + 2VAB + VAA+

VCC − 2VAC + VBB + VCC − 2VBC ,

=⇒ χAB − χAC − χBC

ρ
= VAB − VAC − VBC + VCC .

(A.15)

So the internal energy will become,

U
(
{ρAq , ρBq , ρCq }

)
kBT

=
1

2Ωρ

[
ρAq ρBq

] −2χAC χAB − χBC − χAC

χAB − χBC − χAC −2χBC


ρA−q

ρB−q

 .
(A.16)
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Combining all these the partition function Z is rewritten as

Z =

∫
DρAq Dρ

B
q exp

(
−1

2

∑
q

[
ρAq ρBq

]
 1

ΩρN

 ΓAA − 2ΓAC + ΓCC ΓAB − ΓAC − ΓBC + ΓCC

ΓAB − ΓAC − ΓBC + ΓCC ΓBB − 2ΓBC + ΓCC

+

1

Ωρ

 −2χAC χAB − χBC − χAC

χAB − χBC − χAC −2χBC



ρA−q

ρB−q


 .

(A.17)

Here Wq is defined as,

Wq =
1

ΩρN


 ΓAA − 2ΓAC + ΓCC ΓAB − ΓAC − ΓBC + ΓCC

ΓAB − ΓAC − ΓBC + ΓCC ΓBB − 2ΓBC + ΓCC

+

N

 −2χAC χAB − χBC − χAC

χAB − χBC − χAC −2χBC


 .

(A.18)

Now we define W̃q = NΩρWq and find the eigenvalues of W̃q as explained in
section 2.1.3.

Z =

∫
DρAq Dρ

B
q exp

−1

2

∑
q

[
ρA−q ρB−q

]
W̃q

ρAq
ρBq


 (A.19)
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Appendix B

B.1 Stretching free energy for a wedge
Now stretching energy due to this wedge is to be determined. As the number of
chains per cross sectional area σ changes according to the height, the stretching
energy due to A type monomers in the wedge is

fstretchA
=

∫ NA

0

3π2h2(σA)

8NAb2A
dn. (B.1)

Here h(σA) gives the height of cross section where chain per area is σA = NA

a(β)
.

This concerns the red region in fig 3.5. Similarly for B part the stretching energy
is

fstretchB
=

∫ NB

0

3π2h2(σB)

8NBb2B
dn. (B.2)

Since the height is dependent on the chains per unit area the expression is rewrit-
ten in terms of the monomer compositions . Given that there are NA monomer
units in the wedge of type A, the total volume occupied by A type monomers,
VA is defined in terms of the height of the interface as

VA = NAΩA = v(zω)− v(zω − hA) (B.3)

where ΩA is the volume of a single A type monomer unit and hA is the height
of A section in the wedge. If total volume of contents in the wedge is Ω, then
monomer fraction for type A, ϕA = ΩA

Ω
and monomer fraction for type B, ϕB−ΩB

Ω
.

Rewriting the above expression in terms of σA and β as in [117],

σAa(β)ϕAΩ

Rw

= v(β)− v

(
β − hA

Rw

)
. (B.4)
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Similarly for B part of the wedge relation between chains per cross section and
height is

σBa(β)ϕBΩ

Rw

= v(β)− v

(
β +

hB
Rw

)
. (B.5)

Thus the variation in the monomer density with cross section is accounted in
terms of the chain height. The change in height is reflected as the change in
chains per unit area. In terms of the chains per unit area the number of monomer
units for A and B will be NA = σAa(zw) and NB = σBa(zw). Also if the total
number of chains in the wedge is nw, then nw = σwa(zw), where σ is the chains
per cross section at the interface. If the change in the monomers with height is
dnA and dnB for A and B respectively, then

dnA = dσAa(zw)

dnB = dσBa(zw).

(B.6)

With this the expression for stretching free energy for A type monomers and B
type monomers will be

fstretchA
=

∫ σw

0

3π2h2(σA)

8R2
A

a(zw)dσA

fstretchB
=

∫ σw

0

3π2h2(σB)

8R2
B

a(zw)dσB.

(B.7)

The stretching free energy per chain contribution by A and B type monomers are

fstretchA
=

1

nw

∫ σw

0

3π2h2(σA)

8R2
A

a(zw)dσA

=
1

σw

∫ σw

0

3π2h2(σA)

8R2
A

dσA

fstretchB
=

1

σw

∫ σw

0

3π2h2(σB)

8R2
B

dσB.

(B.8)

Following the expressions for chains per cross sectional area in eq. (B.4) and
eq. (B.5) the change in cross sectional areas are

dσA =
a(β − hA

Rw
)

ΩϕAa(β)
dhA (B.9)

dσB =
a(β + hB

Rw
)

ΩϕBa(β)
dhB. (B.10)
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Substituting dσ to the expressions for stretching energy we get

fstretchA
=

3π2

8σwΩa(β)

∫ zw

0

h2A
R2

A

a(β − hA

Rw
)

ϕA

dhA

fstretchB
=

3π2

8σwΩa(β)

∫ zw

0

h2B
R2

B

a(β + hB

Rw
)

ϕB

dhB.

(B.11)

In order to simplify the integrals we substitute hm

Rw
= y for monomer type m in

the above equation. Then the expressions will become

fstretchA
=

3π2R3
w

8σwΩa(β)

∫ β

0

y2

R2
A

a(β − y)

ϕA

dy

fstretchB
=

3π2R3
w

8σwΩa(β)

∫ β

0

y2

R2
B

a(β + y)

ϕB

dy.

(B.12)

In the above expression a(β) = a(zw)
a(Rw)

. This will allow us to define the volume
of the wedge as v(Rw) = RwA(Rw). Also from [117] v(β) = v(1)ϕA. Taking the
stretching free energy for A type monomers

fstretchA
=

3π2R3
wa(Rw)

8σwΩa(zw)

∫ β

0

y2

R2
A

a(β − y)

ϕA

dy,

=
3π2R2

wv(Rw)

8nwΩ

∫ β

0

y2

R2
A

a(β − y)

ϕA

dy,

=
3π2R2

w

8v(1)

∫ β

0

y2

R2
A

a(β − y)

ϕA

dy.

(B.13)

For the B type region in the wedge, the contribution to stretching free energy
per chain will be

fstretchB
=

3π2R2
w

8v(1)

∫ 1−β

0

y2

R2
B

a(β + y)

ϕB

dy. (B.14)
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B.2 Input file structure
Here is the template for the input.txt file for Σ−phase. All details regarding
the polymer composition and geometry saved here. This can be uploaded to
create the constraint list for monomer composition given in the ’.txt’ file. The
file contains the monomer compositions of ϕA and ϕB indicated by ‘ #Phi values’.
The interaction strengths (νAB, νBC , νAC) between A and B, B and C and A and
C is given in th line below ‘#Chi values’. The core to step length ratioRd is chosen
to be 10. The periodicites vxx, vxy and vyy are given the lines after ‘#Periodicity
from constraint list’. The number of vertices and the x and y coordinates of the
vertices are also listed. The identifiers for the free nodes are listed after ’#Free
nodes. The periodic nodes are listed after ’#Periodic nodes’. The four entries in
each line are identifiers of the free node, the node at the given periodicity and
indices of the patch (l,m). The nodes associated with the SSP s are also listed
in the order of nodes. This file will make a valid SSP patch for Σ−phase.
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#Phi values
0.5757514382719816 0.38133001897103386
#Chi values
1.0 1.0 1.0
Rd 10.0
#Periodicity from constraint list
3.338768699431094
-6.177059853472972e-06
3.3387693982284024
#Number of vertices:
97
#Initial values of vertices with its id:
0 0.0 0.0
1 1.6693820653694853 0.48918419600230045
2 0.48918720037217683 1.669384353090657
.
.
.
95 2.8149180332422956 2.6824140792798885
96 3.633722800009016 2.5034044235461215
#Number of free nodes:
79
#Free nodes:
2
4
15
16
.
.
.
94
95
96
#Number of periodic nodes:
17
#Periodic nodes:
0 5 0.0 1.0
0 6 1.0 0.0
.
.
.
43 34 0.0 -1.0
44 35 0.0 -1.0
#SSP arrangement
#Number of polygons:
40
52  51  57  16  17  0
52  51  55  10  9  0
.
.
.
.
93  90  95  46  45  8
93  90  96  49  48  8
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