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Abstract

The distribution system is undergoing a transition process of modernisation, where
it is expected to make more efficient use of the available resources and equipment.
This creates challenges for maintaining the system operating within the allowed
operational conditions considering the constant changes of “bidirectional” power
flows. To tackle these challenges, the use of available data may help to describe
the distribution system without relaying on “snapshots” that represent worst-case
scenarios or non-updated information from any of the traditional electric para-
meters used in modelling. This thesis focused on the definition of an approach to
analyse and model the voltage in distribution systems with high penetration of re-
newable energy, and the (potential) use of these models on control applications. A
review of the relevant data-driven modelling approaches was conducted, includ-
ing the background of power systems parameters and modelling, voltage mod-
elling and control for distribution systems with high penetration of renewables,
and observability and controllability in distribution systems. Different modelling
approaches in distribution systems were reviewed, to consider the potential in-
clusion of measurable data and new metrics to help detect the desired system
dynamics to be represented. This data is a set of time-series measurements that
are expected to describe the distribution system itself. An innovative descrip-
tion of the distribution system was introduced, by using a set of new proposed
metrics. These metrics were based on power (dissipated) in lines provided and
voltage covariance between nodes to describe, respectively, size and distance of
perturbations. They give relevant spatial-temporal information of the distribution
system and its perturbations based on time-series data. Different scenarios were
explored to evaluate the limits of the amount of information that can be extrac-
ted from the distribution system. Results showed that the metrics can represent
spatial-temporal features and events occurring in the distribution system, which
make them suitable for real-time applications. Once the metrics were obtained,
an algorithm was proposed to produce a linear model that represents the distri-
bution system using measurable data. This algorithm requires a revision of data
to understand the structure of the proposed model. In this case, the time-series
data must be stationary to produce the linear model. Once this condition was
achieved, the next step was to produce a provisional model to explore the pro-
posed regressors used in modelling. Once a reference case was obtained, the input
data was analysed to detect any conditions that may introduce errors in the model
(e.g., collinearity in some exogenous regressors), improve the response (e.g., ana-
lysis of cross-validation using Granger-causality) and highlight the regressors and
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time lags that improve the response. The first and final models were compared to
explore if the proposed metrics could explain the system dynamics. Results after
applying the algorithm showed that it was possible to obtain a good model for
one-step ahead prediction, which can be easily integrated to any control structure.
Finally, the refined model was improved by presenting a prediction interval based
on bootstrapping and cross-validation techniques used in time-series data.
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Chapter 1

Introduction

This thesis aims to define an approach that assists in the analysis and modelling
of the voltage in distribution systems with high penetration of renewable energy
sources, primarily for controlling applications. Distribution systems have become
interesting connection points for the electric network to obtain energy. However,
grid operators must consider making changes in their planning, operation, and
control to successfully integrate these resources into the power system. Distribu-
tion systems were not designed as points for injecting energy into the network,
and rebuilding the entire power system to achieve this goal is not feasible. That
is the main reason to understand, model and control the grid in a different way,
avoiding regular practices such as curtailing renewable energy in several scenarios.
This chapter sets the stage for the work carried out in this thesis with an overview
of the transition of the distribution system, motivation and related aims linked to
data-driven characterisation and modelling, the path for a possible application of
model predictive control approach in voltage regulation and a description of the
scope and objectives of this thesis, laying the groundwork for the work carried out
in this thesis.

1.1 Voltage Control in Modern Distribution Systems

The increasing interest of governments in reducing CO2 emissions has heightened
the need to improve the distribution system to allow for high penetration of re-
newable energy sources. Distribution systems were built to play a different role in
the power system than what is required today. Their integration into the system
is achieved at different levels, from concentrated big generation parks to remote
small units close to the load [1]. This modernisation is expected to be achieved
without high additional investment in the power grid infrastructure, which means

1
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efficient use of resources and equipment [2]. New operational conditions and func-
tionalities are expected under this scenario, including bidirectional power flows.
This change not only reduces fossil fuel-based generation but also reduces elec-
trical losses around the system due to the transportation of energy [3, 4]. A key
challenge that emerges under this new regime of operation is maintaining the sys-
tem voltage within acceptable limits, despite the high variability and uncertainty
associated with renewable energy sources [5].

Figure 1.1 shows an image of the modern distribution system and the assets
expected to be controlled. Figure 1.1a illustrates the distribution system under real
conditions, including uncertainties associated with generation units (i.e., location
of generation units, rated power, and power availability). The first two presented
scenarios are considered fixed in planning studies, as these are usually known
and determined before they are connected to the grid. However, for operational
studies, it is unpredictable where and which size of new generation units will be
connected. In a traditional radial distribution system with unidirectional power
flow, the voltage drops when it is getting far from the feeder, and the network is
operated and controlled under these assumptions (the load tap changers, voltage
regulators, and capacitor banks are adjusted according to these operational con-
siderations). Current conditions of distribution systems allow the integration of
renewables without violating the operational constraints when the generated en-
ergy is all consumed close to the load. The main issue in this integration is illus-
trated in Figure 1.1b. Power injected by the renewable generator units can exceed
the consumption of the closest loads. Therefore, the power will flow back to the
feeder, which can increase the voltage and become an operational issue [6, 7]. The
traditional problem for a distribution system is maintaining the voltage over the
lower limit because voltage drops in the distribution lines. For a distribution sys-
tem with renewable energy technologies, the problem is the opposite because the
voltage tends to increase above the upper limit when there is reverse power flow.

1.2 Motivation

Existing solutions for reducing overvoltage typically comprise a blend of local
automatic controls (e.g., voltage regulators associated with an asset) and global
(network-level) decisions (e.g., curtailment of renewable energy injection; feeder
voltage change). The limitation of the former is the lack of coordination among ac-
tions, while in the latter control decisions are typically made according to a static
network analysis and/or trial and error rules. This is the most common solution to
overcome the increase in voltage, as illustrated in Figure 1.2. However, this solu-
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Figure 1.1: Example of a modern distribution system and its assets with integra-
tion of renewable energy under different operational conditions
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Figure 1.2: Example of an expected operational outcome for distribution systems
with integration of renewable energy when correct control scheme is applied

tion reduces the amount of renewable energy that can be integrated into the power
system, which contradicts the desire to use as much renewable energy as possible.
It also raises interesting but challenging questions regarding the compensation for
prosumers.

According to what is mentioned before, the control approach aims to be dy-
namic, adaptive, robust, and scalable. Why? The distribution network is a dy-
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namic system, and proper control design requires a dynamic model; if an accept-
ably accurate model can be obtained, it is anticipated that the performance of
the model-based controlled distribution system would exceed what is possible via
the state-of-the-art approaches based on static analyses and uncoordinated local
controllers. The model-based control approach should be adaptive in the sense
that it is capable of self-tuning or self-reconfiguring following the network’s ac-
tual status, such as detecting system topology and faults in distribution systems
or accessing real-time measurements of power consumption/generation profiles.
It should be robust to the uncertainties that pervade the distribution network. Fi-
nally, it must be scalable to manage a growing amount of data, monitoring, and
control decisions by adding components to the system.

Figure 1.3 presents the control idea proposed in the IEEE in Smart Grid en-
vironment vision [8], based on the scenario in which the new control concept
previously presented is adopted. It is important to highlight the construction of
the distribution system model based on data in this control approach. This model
enhances the definition of voltage set points, taking into consideration operational
constraints. Also, variability of renewable energy sources is expected to be an in-
put instead of a disturbance, as done in classical control approaches. This can give
more flexibility in the control targets and relax the limit restrictions (especially
for renewable energy generation units integrated in the system). The main goal
for this control problem is to improve the amount of renewable energy sources
without affecting voltage levels, which might be pursued via different devices
such as OLTC, voltage regulator, batteries, D-STATCOMs, among others.

xt+1 = f(xt, ut, wt)
yt = g(xt, ut)

ŷt = h(yt, rt)
xt+1 = z(xt, ut, ŷt, yt)
yt = c(xt)

ut yt

rt

wt

ŷtyt

xt+1 = f(xt, ut, wt)

xt+1 = z(xt, ut, ŷt, yt)
Set points:
- Economy dispatch
- Adjustable demand
- Uncertainty and intermitency
in renewable energy generation
- Uncertain demand
- Storage location
- Voltage, freqnecy, VAR

Control technology: capacitors,
OLTC, batteries, voltage regulators,
SVC, D-FACTS, D-STATCOMS, etc.

System identification
Measurements

End-to-end
Distribution system

Disturbances: Climate change,
enable energy, cyber attacks

Smart Grid Control: A non-linear,
uncertain, multi-scale and com-
plex

System identified

Goals:
- High integration of renewables
- Empower consumers
- Ensure reliable & secure two-
way power and information flows
- Operate resiliently against
physical and cyberattacks
- Enable efficiency

Figure 1.3: Proposed modern control scheme for distribution systems in Smart
Grid environments based on modernisation vision introduced in [8]

The previous idea can be summarised in the classic controllability and ob-
servability problem, which has been discussed in the context of power systems
[9–13]. They have exposed the requirement of obtaining a model that contains
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relevant information on internal states and can be changed by changing the sys-
tem inputs (e.g., power injections). Additionally, the non-measured states should
be estimated by measuring the relationship input-output. However, this idea of
controllability and observability is focused on maintaining the classical stability of
the power system (rotor angle of generators, voltage, and frequency). This term
of "dynamic" is slightly different from the traditional dynamic system known in
power systems, and it will not be limited only to the action of traditional assets
(e.g., voltage regulators or inverter controllers). It is expected to capture the long-
term effects of loads and renewable inputs on key network voltages as the output
to be controlled (e.g., load profiles according to the time of the year, irradiance
levels in different seasons, among others). If something different is not indicated,
the long-term dynamics on which this thesis is focused are referred with the term
"quasi-dynamics". This requires the execution of multiple load flow calculations
performed at discrete time instances. The time instances are defined by the user,
and in this thesis, they are determined to capture the change in system voltages
and power flows caused by changes in supply and demand on the scale of seconds
to minutes. When the system is partially observable, it is required to analyse all
the available data taken from measurements to select which information is provid-
ing the main picture that can describe the voltage profile and help in tracking to
the desired state. The identification of these quasi-dynamics could be of valu-
able use in developing voltage control approaches for distribution systems with
high penetration of renewables yet low availability of measurements. This is the
motivation for the present thesis.

The primary challenge is the same one encountered whenever a new control-
ler for any system is to be designed: modelling. Typically, this is done using a
physics-based structure, characterised by the topology and parameters of the net-
work. Physics-based models are easy to develop for electricity networks and have
been useful and successful in static analysis (e.g., state estimation; load flow), low-
level control (e.g., of inverters), high-level control (e.g., Automatic Generation Con-
trol (AGC)), and operational decision making (e.g., dispatch and planning). They
are used in Active Network Management (ANM) schemes, which has emerged as
a technology to provide real-time monitoring and control in future distribution
systems [14]. System model becomes the heart of this approach, which operate
in conjunction with real-time measurements to capture and forecast system be-
haviour, detect significant changes to system variables, and provide appropriate
control actions or coordinated signals. However, building such a model is particu-
larly challenging for legacy distribution systems because (i) physics-based models
scale linearly with the number of nodes in the network, which may run into the
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thousands, leading to a large-scale model that is excessively large compared to
the scale of the problem (i.e., typically, over-voltage occurs at a selective subset
of "bottlenecks" nodes) (ii) the voltage quasi-dynamics of the distribution network
are primarily a consequence of the load, which typically comprises a broad mix of
different devices and systems, thus is hard to model from first principles, and (iii)
in practice, operators may not have accurate or complete information on network
assets and system parameters.

For these reasons, the current thesis aims to adopt a data-driven approach to
obtain a model that represents the distribution system and is suitable for control
applications. Approaches based on system identification techniques have seen
great success in traditional industrial control for precisely these reasons: they can
accurately describe, with low-order models, complex processes that are difficult
or undesirable to model from first principles [15–18]. Moreover, system identi-
fication modelling goes hand in hand with adaptive control: system models are
easily refined and updated on-line, using the most recent system data, whereas
physical modelling requires either knowledge of the change or re-modelling from
scratch [19, 20]. Nevertheless, obtaining these models is not just an application of
off-the-shelf system identification methods to a distribution system dataset. There
is an important challenge first in identifying and selecting relevant inputs and out-
puts that can be measurable and suitable to capture the relevant quasi-dynamics
required in the model. This challenge is exacerbated in distribution systems be-
cause in legacy systems, knowledge of system topology and parameters is poor.

1.3 Definitions, terminology and general considerations

In this section, relevant definitions, terminology and general considerations are
specified that are used throughout this thesis. Unless stated otherwise, the follow-
ing terms and assumptions should be considered as given:

1.3.1 Definitions and terminologies

• System dynamics [21] corresponds to a methodology and mathematical mod-
elling technique used to analyse and study the dynamic behaviour of com-
plex systems over time. To achieve this, it is required to recognise the re-
lationships and interactions among the components of a system, including
feedback loops and time delays. In a system dynamics approach, a system
is viewed as one in which its state changes continuously over time. A "state"
refers to a set of variables that collectively characterise the current condition
of the system and its components. These state variables are used to predict
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the future behaviour of the system and how it responds to different inputs
and external influences.

• Dynamics [22] refers to the changes over time of the states of a system in
response to inputs or disturbances. It involves the study of the time evol-
ution of system variables or states and how they interact with each other
to produce the system’s behaviour. In the context of power systems, these
dynamic processes include the electrical machines and inverter-based gener-
ation , system generation governing and prime-mover energy supply, which
are analysed in different time ranges that vary from microsecond to minutes.
The time-range classification is relevant to set the component modelling.

• Quasi-dynamics [23, 24] correspond to the long-term dynamics that repres-
ent the changes of variables, including load consumption, generation pro-
files, and exogenous variables of power systems such as solar irradiance.
Even if they are represented by several load flow calculations (which are
steady-state calculations), the time-series profile of each component pro-
duces variables that change "slowly" over time.

• Dynamic model [21] is a simplified representation of real-world entities in
equations that mimics essential features of the system under study. Since the
model is “dynamic”, then its properties change over time. The construction
of these models is constrained by the variables that can be measured, either
to estimate parameters that are part of the model formulation or to validate
model predictions.

• Voltage dynamics [25] are those dynamics that capture the changes of voltages
for different time scales.

• Stability [26] in power system context is defined as the property of a power
system that enables it to remain in a state of operating equilibrium under
normal operating conditions and to regain an acceptable state of equilibrium
after being subjected to a disturbance.

• Voltage stability [27–29] is the ability of a power system to maintain steady
acceptable voltages at all buses in the system under normal operating con-
ditions and after being subjected to a disturbance:

• Linearization [21] is a method for assessing the local stability of an equilib-
rium point of a system of nonlinear differential equations or discrete dynam-
ical systems.
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• Critical perturbation corresponds to a change in the consumption or genera-
tion that brings the operational values (voltages) outside expected boundar-
ies (which normally corresponds to operational limits).

• Loadability [2] corresponds to the maximum load that a distribution sys-
tem component can handle before encountering an electrical or operational
constraint limitation.

• Measurable data [30] is a broader term that refers to any information or vari-
ables that can be quantified or observed using measurement devices. This is
typically in raw form and may not have a specific context or interpretation
until it is processed or analysed.

• Measurements [30] refer to the process of obtaining quantitative values or
observations of specific properties or variables using instruments or tech-
niques. Measurements involve the application of standard units and scales
to quantify physical characteristics, quantities, or attributes. The data ob-
tained through measurements are the result of this process and represent
the specific values or observations recorded at a particular time or location.
These include voltage and power magnitudes.

• Adaptive [31] refers to the property of a system, component, or controller of
being able to change certain characteristics or behaviour according to new
circumstances or changes in the environment, in order to adapt to new con-
ditions without requiring prior information about the bounds on uncertain
or time-varying parameters.

• Robust [29, 31] refers to the property of a system, component, or controller
of being able to deal with uncertainty, for which some a priori information,
such as bounded modelling errors, is required. Therefore, its parameters are
fixed based on this knowledge.

• Scalable [21] refers to the property of a control system or controller that can
be adapted or expanded to handle larger or more complex tasks without
significant changes to its fundamental structure, while still maintaining its
performance and functionality, and without losing efficiency or effectiveness.

• Controllability [21] refers to the property of a dynamical system of being
driven from any initial state to any desired final state within a certain time
frame (or being able to reach any state within its state space) by applying
suitable control signals or appropriate control inputs.
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• Observability [21] refers to the property of a dynamical system that allows its
internal states to be inferred or estimated from the available measurements
of its outputs over a certain time period. Therefore, an observable system is
one in which all the internal states can be reconstructed or observed based
on the available output measurements and the knowledge of the system
dynamics.

1.3.2 Devices and control schemes

Some of the common devices used in distribution systems for voltage control are
voltage regulators [32], which are auto transformers capable of increasing or redu-
cing voltage to maintain system voltage levels within required ranges by sensing
system voltage and adjusting their tap changers. Additionally, the transformer at
the main feeder has its own OLTC to regulate the main substation node voltage.
Around the system, there are capacitor banks, which are systems consisting of
several capacitors connected in series or parallel to form an energy storage system
and change voltage levels by injecting reactive power. In a similar way, inverter-
based technologies, including Photovoltaic (PV) units units and batteries, inject
active power that can affect the voltage, especially in distribution systems with a
high resistive component in the topology.

The control schemes commonly used for voltage control using the mentioned
devices can be summarised in conventional control architectures (local or remote),
in which the voltage setpoints can be defined locally (by sensing the voltage at the
same point where the device is installed), or remotely by solving load flows that
reflect the best operational condition to achieve the desired voltage level (usually
at the main substation feeder). Voltage/VAR optimisation is another approach,
where an SCADA system mainly defines the action of the devices to achieve the
desired voltage objective. Nowadays, there are new trends of using these devices
to control voltage, such as voltage control by using PV units, decentralised voltage
control, and the combination of these with Volt-Var optimisation. As an example
and illustrated in Figure 1.1, the system has none of the components mentioned
above to regulate the voltages over the nodes. The orchestrated action of batteries
and OLTCs considerably improves the voltage over nodes, as shown in Figure 1.2.

For this thesis, only the action of voltage regulators and capacitor banks is
considered, since they are part of the distribution system used as a reference.
Appendix E presents more details about the components of the reference case. The
control action predefined for this network used as reference corresponds to fixed
settings installed devices and for some nodes across the system (local approach).
Nevertheless, the procedure evaluated in this thesis should not be limited to the
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strategy defined, as it is only reflected in the final model obtained independently
of the control approach.

1.3.3 Considerations for reference data and measured data

The data used in this thesis was synthetically produced according to the proced-
ure presented in Section 3.3, with a resolution of 1 minute. The system used as
a reference is presented in Appendix E. The measurements used were a sampling
of this reference data every 10 minutes, as indicated in Chapters 3 and 4. The
sampling rate of 10 minutes is a realistic window for several real applications that
meet the requirement to properly describe the slow dynamics to be characterised
in this model approach. For this thesis, it is assumed that the data has no noise,
which can considerably affect the results in real applications. Filtering and pro-
cessing techniques should be applied in the presence of noise. However, as the
main purpose of the thesis is to develop data-driven modelling based purely on
data processing, the main focus of the approach is to understand what informa-
tion can be extracted from the measurable data to obtain relevant characteristics
of the system that can describe what is exactly happening within the system in a
specific window of time. Therefore, it is not required to focus on the filtering and
processing of noisy data, which is a topic highly covered in other theses [33–35].

1.4 Thesis scope

This thesis aims to address the goals presented in Section 1.2. Specifically, this
study endeavours to propose an approach for analysing and modelling distribu-
tion systems with high levels of renewable energy and considering the associated
uncertainties and operational constraints. The obtained models can be used for
voltage prediction and potentially for voltage control. Before attempting any mod-
elling and control efforts, it is required to comprehend three essential elements:
(i) what to measure – how informative is it about the required variables to be
controlled? (ii) what to change/manipulate – how powerful is it with respect to
managing these variables? (iii) what the fundamental cause-effect relationship is
between what is changed and what is measured and, ultimately, the components
that are required to be controlled. A key part of the aim is understanding these
aspects first, and developing an approach to solving the problem, with as little
prior knowledge and assumptions as possible. This major task can be divided
into the following smaller objectives:
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1. To review and highlight the range of data-driven modelling approaches and
their applications to control voltages in conventional and future distribu-
tion grids: before starting any regressor selection process or data-modelling
approach, it is required to review the state-of-art for different techniques
currently used in distribution system applications and understand their lim-
itations of representing actual dynamics of the network. Most of these ap-
proaches are physics-parameter-based, which can limit their scalability when
it is required to model a system with several nodes. Additionally, it is chal-
lenging and expensive for some distribution systems to get access to all re-
quired data or measurements to build these models. Therefore, different
modelling approaches and potential strategies to overcome these limitations
will be presented, by using new metrics, which can be obtained from meas-
ured time-series data and represents the system quasi-dynamics.

2. To identify the critical factors, metrics and time-series measurements that
helps to describe relevant features of the distribution systems for maintain-
ing the voltage in acceptable operational ranges: once the required charac-
teristics to overcome traditional modelling approaches are discussed, there
is required to review the features of distribution systems that are measurable
and helps on sketch a representation of the required quasi-dynamics. For in-
stance, spatial characteristics such as electric distance or evolution of voltage
covariance in time, are suitable to describe the system without accessing all
internal states. The scope and limitations of these metrics to catch the voltage
quasi-dynamics will be part of the discussion to fulfil this objective.

3. To develop and compare different data-driven modelling approaches for
voltage quasi-dynamics in distribution networks, resulting in reduced-order,
accurate models for control: after the discussion and selection of most rep-
resentative metrics that helps to describe the distribution system, the next
step corresponds to apply different regression techniques that are suitable
for time-series measurements. It is desired to obtain linear state-space rep-
resentations that are easily to scale and control. Therefore, autoregressive
regressions or Koopman-based techniques are good candidates to fulfil this
requirement. The application of these methods and the discussion of relev-
ant feature of each technique will be part of this objective.

4. To propose an algorithm that estimates actual condition of the distribution
system using available measurements and build a model based on data: the
final objective for this thesis is to obtain a systematic procedure that may be
potentially used in real-time applications for modelling (and controlling) the
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distribution system. Therefore, statistical analysis of the data and the mod-
els are expected to be used and enhance the interpretation of the obtained
results. Additionally, it can give insights on the procedure to increase the
performance of model results based on the analysis of their residuals and
the validation of statistical assumptions. Additionally, the incorporation of
features such as prediction intervals may help to explain the boundaries of
system responses.

1.5 List of Publications

Some of the work presented in this thesis has also been published and/or prepared
for submission:

1.5.1 Published Papers

1. Carlo Viggiano, Paul Trodden, Eduardo Caicedo and Wilfredo Alfonso, "Data-
Driven Characterisation of Distribution Systems for Modelling and Control
Applications," 2022 International Conference on Smart Energy Systems and
Technologies (SEST), Eindhoven, Netherlands, 2022, pp. 1-6, doi: 10.1109 /
SEST53650.2022.989842. (Appendix A).

1.5.2 Submitted Papers and Papers Under Preparation

1. Carlo Viggiano, Paul Trodden, Eduardo Caicedo and Wilfredo Alfonso, "Dis-
tribution Systems Modelling by Data-Driven Voltage Characterisation for
Control Applications-Part I: Input Analysis", journal paper 2022. Submitted
(Appendix B).

2. Carlo Viggiano, Paul Trodden, Eduardo Caicedo and Wilfredo Alfonso, "Dis-
tribution Systems Modelling by Data-Driven Voltage Characterisation for
Control Applications-Part II: Case Studies", journal paper 2022. Submitted
(Appendix C).

3. Carlo Viggiano, Paul Trodden, Eduardo Caicedo and Wilfredo Alfonso, "Data-
Driven Time-Series-based approach for modelling of distribution system with
high penetration of renewable energy sources", journal paper 2023. Under
preparation (Appendix D).
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1.6 Thesis Outline and Main Thesis Contributions

Chapters outline and main contributions of this thesis are presented as follow:

Chapter 2 provides answers to objective 1 by reviewing and highlighting the
range of data-driven modelling approaches. The literature review in this chapter
focuses on various topics that are highly relevant to the aims of the research. These
include power systems parameters and modelling, voltage modelling and control
for distribution systems with high penetration of renewables, observability and
controllability in distribution systems, and data-driven modelling of time-series
background. The basics of power flow are covered in the first section of this
chapter. The power-voltage equation is presented for non-lossless systems, and
the discussion regarding the scenarios of voltage operational restriction is presen-
ted to define the study regime for distribution systems. The possible control ob-
jectives for voltage in distribution systems are presented, and the state-of-the-art
approaches are discussed to highlight the advantages and opportunities for re-
search to increase the possibilities of voltage control in distribution systems. Fol-
lowing this, the controllability and observability problems in distribution systems
are discussed. The chapter concludes by presenting the requirement of developing
data-driven models using measurable data. System identification is presented as
a tool for modelling in modern distribution systems, as well as different potential
techniques to produce state-space representations based on data. Finally, vari-
ous uncertainty analysis approaches and their relevance to analysing renewable
energy sources are discussed.

Chapter 3 provides answers to objective 2, which identifies the critical factors,
metrics, and time-series measurements that help describe relevant features of dis-
tribution systems. Chapter 2 showed the feasibility of using data to produce mod-
els of the distribution system for voltage control application. Chapter 3 offers a
novel description of the distribution system using measurable data that is useful in
the modelling process. As a result, one of the original contributions of this chapter
is a data-driven approach to characterising distribution systems based only on
time-series measurements, which includes relevant spatial-temporal information
of the distribution system and its perturbations. An analysis of the power injec-
tions was conducted to understand the impact of active and reactive power on
voltage variation. The active power (dissipated) and the reactive power (stored)
in lines provided useful information about the system topology and the relevance
of each type of power in the potential control action, without any other previ-
ous information, such as electric line parameters, nodes connectivity, etc. This
description can be used as potential inputs in a control application. A matrix of
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measured power between nodes was enhanced using voltage correlations, which
is the proposed metric to describe the size of the power perturbation. In addition,
the voltage covariance was studied to describe information on nodes connectiv-
ity and electrical distance. The average value of ’normalised’ voltage covariance
was proposed as a potential metric to describe the distance of perturbation action.
Therefore, another point that made this thesis different from related ones was
the definition of a methodology to analyse and reduce model complexity based
on electrical distance by using Fisher z-transform and voltage covariance from
measured data. Different scenarios and the number of measurable nodes were
evaluated to explore the limits of the information that can be extracted from the
proposed metrics, which was also part of the contributions in this chapter. Both
metrics showed high potential to be used in the process of building models for
voltage control applications. A final contribution in this chapter was an interpret-
ation of the new metrics and their potential application in control applications.
The work presented in this chapter was used to produce a conference paper [36]
and a two-part journal paper [37, 38].

Chapter 4 presents results that provide answers for objective 3, which is to
develop and compare different data-driven reduced-order modelling approaches,
and objective 4, which is to propose an algorithm that estimates the actual con-
dition of the distribution system using available data. In this chapter, the use
of metrics proposed in the previous chapter to obtain a data-driven time-series
modelling approach was introduced. A revision of the required conditions over
data was done to produce linear models, which involved checking the stationar-
ity of the data. Additionally, an evaluation of initial assumptions was conducted
to determine if the initial model guessing was adequate to explain the voltage
quasi-dynamics. The dataset was also revised to select critical scenarios that could
represent the desired voltage quasi-dynamics to be modelled. One of the main
contributions in this chapter was the implementation of an analysis of data distri-
bution shape, collinearity, and analysis of cross-validation using Granger-causality
concept to reduce the regressors and lags into only the selected relevant vari-
ables that improve the performance of linear regression. Different structure and
model regression techniques were presented and discussed for this specific prob-
lem. Another analysis of new residuals was conducted and compared with the
first attempt, to understand the impact of the selection of variables’ methodology.
As a result, one of the significant contributions in this chapter was a proposed
data-driven approach to obtain a reduced-order linear representation of the dis-
tribution systems that consider exogenous variables. Finally, the integration of
prediction interval based on bootstrapping and cross-validation techniques was
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explored and discussed. Results showed the impact of the selected variables and
the statistical validity of the obtained models. Additionally, a methodology was
defined to review and improve the performance of models obtained by verifying
initial statistical assumptions, which provides an insight into how they can be im-
proved. This was a significant difference from this thesis with respect to similar
ones. This work was used to produce a journal paper [39].

Chapter 5 is for concluding statements and contributions. Future research
directions are also presented providing insights into some of the opportunities for
building upon the work done in this thesis.



Chapter 2

Background and literature review

Previous chapter presented the requirements to achieve a modelling approach that
takes advantage of data to produce models in modern distribution systems. Also,
the aims of this thesis were introduced, and it is required to review and highlight
a range of data-driven modelling approaches available from the state-of-the-art,
especially evaluate their potential to control voltages in distribution grids. To
achieve this goal, the first task is understanding the regime in which the voltage
in distribution behaves in presence of stochasticity associated with consumers be-
haviours, renewable energy location and injection, among other exogenous vari-
ables that require to be explored. This would help to understand the limitations
of the current modelling approaches to deal with random variables in presence of
no previous knowledge of the distribution system. Therefore, it is introduced in
Section 2.1 a background of distribution system modelling within the concept of
voltage stability. Since the spectrum of the voltage regime under stability concept
is broad, a revision of the general expressions is presented in Section 2.2 to nar-
row the problem to a specific context based on the general condition expected in
distribution systems. Once the context of the problem is delineated and profiled
for distribution system applications, Section 2.3 presents the direction and limit-
ations of the state-of-the-art to deal with the voltage control problem under the
current modelling approach in the assumptions presented in the formulation of
this thesis. This helps to conclude that another perspective is required to introduce
a solution that tackles this limitation. Therefore, a presentation of controllability
and observability is introduced in Section 2.4 as an alternative to deal with this
problem. The notion of considering the distribution system as a plant in rela-
tion to its controllability and observability is not novel; however, it has not been
previously linked in literature as a means to address the modelling of voltage
quasi-dynamics that encompasses exogenous random variables. This constitutes

16
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a key contribution of the present thesis, and it is discussed in section 4.4 and par-
ticularly in section 4.4.2. From this section, it is introduced the relationship of
how this information explains the internal dynamics that were discussed in the
original distribution system background. Finally, the available time-series data in
distribution systems and the limitations of current metrics to feed the modelling
approach (which is related in most cases with system identification approaches) is
presented in Section 2.5.

2.1 Understanding basics on the voltage stability problem
in distribution systems

The main objective of this thesis is to develop models that can be used to control
voltage operation in distribution systems, taking into account the high penetration
of renewable energy resources. Therefore, it is necessary to discuss and analyse
voltage dynamic concepts and operational voltage issues in environments with
high renewable energy penetration. This introduction is intended only as a pre-
liminary exploration to understand the nature of the relationship between voltage
and power based on the complete mathematical expression. The obtained expres-
sion will also provide an idea of how the X/R ratio can affect the evolution of
voltage when the power value changes. This will help to generate preliminary
ideas about the shape of the proposed model, which will guide the discussion in
Chapter 3, and more specifically in Section 3.4. This idea is intended to be im-
plemented for both radial and meshed distribution systems, with the latter being
difficult to evaluate in terms of voltage profiles.

Traditionally, voltage dynamics in power systems is related with voltage sta-
bility, which is a relevant operational concern [40]. Historically, there have been
several discussions regarding the definition of stability (for rotor angle, frequency
and voltage stability) [41, 42]. According to Kundur et al. [26], voltage stability
refers to the system capacity to maintain voltages at acceptable levels after a dis-
turbance from a given initial operating condition. This depends on power system
ability to maintain the equilibrium between demand and supply. Instability in-
curs in a progressive fall or increase of voltage in some nodes. Sometimes the
term voltage collapse is used, which is a sequence of events that brings voltage
instability and finally blackout or low voltages.

The voltage stability analysis can be divided into small-disturbance and large-
disturbance voltage stability [26]. On the one hand, small-disturbance voltage
stability evaluates the ability of the electrical system to maintain voltages at accep-
ted levels when there are small perturbations. This analysis studies the influence
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of continuous controls, discrete controls, and the characteristics of loads at a spe-
cific instant in time. On the other hand, large-disturbance voltage stability refers
to the analysis of the system’s ability to maintain steady voltages during large dis-
turbances such as circuit contingencies, system faults, or loss of generation. For
generation loss, it is necessary to examine the nonlinear response of the power
system over an appropriate period, including the interaction and performance of
devices such as motors and transformer tap changers. The study period of interest
may extend from a few seconds to tens of minutes.

Considering the previous classification, voltage collapses can be analysed ac-
cording to the time scales that the event occurs as follows [43]:

1. In the range of seconds, electromechanical transients (e.g., generators, induc-
tion machines, DC components of short circuit currents) and power electron-
ics (e.g., SVC, D-STATCOM).

2. In the range of tens of seconds, discrete switching devices (e.g., load tap-
changers, excitation limiters)

3. In the range of several minutes, load recovery processes.

According to the list mentioned above, the first-time scale is called the transient
time scale. The second and the third time scale correspond to the ’long-term’ time
scale. Figure 2.1 outlines a power system model relevant to voltage analysis as
was stated above.

Time

Generators and regulators
SVCs, HVDC, Induction motors

Load evolution
Load self-restoration
AGC
Load tap changers
Overexcitation limiters
Automatic switched capacitors/inductors
Secondary voltage control

Transient dynamics
(”fast” variables)

Long-term dynamics
(”slow” variables)

Figure 2.1: Time scales for voltage control

The power system model must be analysed to understand the voltage instabil-
ity condition. Power systems are modelled based on non-linear differential algeb-
raic equations, which arise as a consequence of an electric network of nodes where
power is produced or consumed, interconnected by lines where power flows ac-
cording to physics. This is represented by equation (2.1):
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ẋ = f (x, λ) (2.1)

where:

x ∈ Rn represents a state vector, including the node voltage magnitudes (V)
and angles (δ).

λ ∈ Rm is a parameter vector that represents the real and reactive power
demand or supplied at each node.

The stable operational point corresponds to the conditions in which the power
system’s power flow is represented as shown in equation (2.2):

0 = f (x, λ) (2.2)

Considering these terms, instability is a condition in which there is no long-
term equilibrium. More precisely, a solution of (2.2) could be either a stable equi-
librium point or an unstable equilibrium point. The former has the property that
for any chosen epsilon ϵs > 0, there exists a delta δs > 0 such that

||x(0) − xunstable||< δs ⇒ ||x(k) − xunstable||< ϵs (2.3)

for all k > 0. The unstable point does not have this property, and the system
states tend to move away from it under the smallest perturbations. For instance,
during a restoration process, if power loads surpass the connected generation
capability considerably, or when a post-disturbance steady-state operating point
is small-disturbance unstable, or when there is a lack of attraction toward the
stable post-disturbance equilibrium.

2.2 Voltage expression for distribution systems with non-
lossless condition

To understand the behaviour of the system introduced in Equation (2.2), it is as-
sumed that the parameter λ varies quasistatically in time, which makes the system
with time-varying λ well approximated by keeping λ constant while the quasi-
dynamics of the system act [25]. As it is assumed that the active and reactive
power models are constant, from a quasi-dynamics perspective, power will re-
main the same between periods of time when the measurements are taken (more
than one minute between two points). To illustrate voltage changes according to
this quasi-dynamic expression, this assumption is regularly made to analyse the
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problem from an "operating point", which is a stable equilibrium point and can be
obtained from a reduced representation of the power system [44].

An intuitive way to understand the complexity of the problem is to analyse the
voltage expression when power is transferred from one node to another. There-
fore, the analysis begins with the equation development presented in [45], where
any node can be approximately reduced to an equivalent node, allowing for a
simplified analysis of the relationship between voltage and power, as illustrated
in Figure 2.2. As previously mentioned, the analysis assumes constant power load
type, meaning that the load at the receiving end consumes constant power re-
gardless of changes in voltage. The power Ss is transferred from upstream node s
with voltage Vs φs to downstream node r with voltage Vr φr and associated cur-
rent Ir αr. Complex values are assumed, including for the equivalent impedance
between two nodes since the X/R ratio is unknown [45, 46].

Node s Node r

Cline

2
Cline

2

Zs θ = Rs + jXs

Vs φs, Ss Vr φr, Sr

Ĩr
Sr = Pr + jQr

Sline

Figure 2.2: Power transfer between two nodes of the distribution system

The voltage at node r is

Vr φr = Vs φs − Zs θ Ir αr, (2.4)

where Zs θ (also represented in its complex form Zs θ = Rs + ȷXs) is the line
equivalent impedance with an angle θ seen from the beginning of feeder.

Sr represents the transferred power from node s to node r, which supplies the
load (represented in its complex form as Sr = Pr + jQr). According to the Figure 2.2,
an additional effect is considered because of the nodes’ capacitance. This power
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can also be expressed also according to the following expressions:

Sr = Vr φr[Ir αr]∗ + Qline 90◦

= Vr φr

[
Vs (φs) − Vr (φr)

Zs θ

]∗
+ Qline 90◦

= Vr φr

[
(Vs ( − φs) − Vr ( − φr)

Zs −θ

]
+ Qline 90◦

=
VsVr

Zs
(φr − φs + θ) − V2

r
Zs

θ + Qline 90◦

=
VsVr

Zs
(δ + θ) − V2

r
Zs

θ + Qline 90◦

(2.5)

where the angle difference between both nodes is δ = φr − φs. From the last
expression, apparent power can be split into active and reactive power, as shown
in the following expressions:

P =
VsVr

Zs
cos(δ + θ) − V2

r
Zs

cos θ (2.6)

Q =
VsVr

Zs
sin(δ + θ) − V2

r
Zs

sin θ + V2
r

ωCline

2
(2.7)

However, the reactive power components are small. Usually, they can be neg-
lected without making a significant error for medium voltage cables and not long
overhead lines (shorter than 100 km). Therefore, Cline can be neglected for simpli-
city and equation (2.7) can be written as follows:

Q =
VsVr

Zs
sin(δ + θ) − V2

r
Zs

sin θ (2.8)

Both obtained expressions are equivalent to the transferred power expressions
presented in classic transmission power systems, in which it is assumed that the
X/R ratio is high (X >> R) and θ = 90◦. This is presented later in this section and
compared with other possibilities in distribution system, in which this assumption
can change and the X/R ratio could have different values.

The equations (2.6) and (2.8) can be used for defining the voltage behaviour
in terms of active and reactive powers. To simplify the analysis, it is assumed a
unity impedance between both nodes (| Zs θ |= 1) and the magnitude of the node
s (| Vs φs |= 1), both values in per unit. Therefore, equations (2.6) and (2.8) can be
rewritten in term of per unit values as follows:
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P = Vr cos(δ + θ) − V2
r cos θ (2.9)

Q = Vr sin(δ + θ) − V2
r sin θ (2.10)

Squaring and adding (2.9) and (2.10) the new expression corresponds as fol-
lows:

P2 + 2PV2
r cos θ + V4

r cos2 θ + Q2 + 2QV2
r sin θ + V4

r sin2 θ

= V2
r cos2 (δ + θ) + V2

r sin2 (δ + θ)
(2.11)

which can be rewritten as

P2 + Q2 + Vr
2 (2P cos θ + 2Q sin θ) + Vr

4 = Vr
2 (2.12)

Vr
4 + Vr

2 (2P cos θ + 2Q sin θ − 1) +
(

P2 + Q2) = 0 (2.13)

As shown in (2.13), the relationship between voltage and power is complex
and non-linear. That brings two possible solutions for the voltage, as shown in the
following expression:

Vr =

√√√√1
2
− (P cos θ + Q sin θ)±

√
(2P cos θ + 2Q sin θ − 1)2

4
− (P2 + Q2) (2.14)

In a similar way as presented in the literature previously shown, it is presen-
ted the voltage collapse as the main voltage instability problem in distribution
system, where there is an operational point in which voltage starts to decrease un-
controllably. Solving the equation (2.14) or finding the conditions in which voltage
instability is achieved makes the analysis more straightforward, by using any of
the traditional methods (P-V curve, P-Q curve, or voltage stability indices)[43, 47–
56]. However, this only gives some relevant features associated with loadability
of each node, which normally contributes on surpassing the lower voltage limit
defined in many operational standards.

Nowadays, voltage stability is a major concern in the planning and operation
of modern distribution systems. There are considered the behaviour of Distrib-
uted Generation Units (DGs) and the interactions of both continuous and discrete
protections and controls. A voltage instability in a distribution system is the pos-
sible tripping of its DG by its protection systems and the loss of load in an area
[48]. Therefore, voltage stability analysis cannot be focused only in one parameter
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[57].

Analysing equation (2.14) solution is troublesome if changes in all variables are
done simultaneously. Consequently, different scenarios are required in order to
understand the possible situation that can be presented. The most basic analysis
can be done with the transmission system’s conditions, in which θ = 90◦. The
equation that represents that particular scenario corresponds to the following:

Vr =

√
1
2
− Q ±

√
1
4
− (Q + P2) (2.15)

According to equation (2.15), there are two possible solutions after replacing
the values P and Q. The one with the positive sign is called high voltage solu-
tion, and the other with the negative sign is called low voltage solution. Thus,
to understand voltage instability according to this expression, load perturbation
is assumed (P → P + dP and Q → Q + dQ). On the one hand, a decrease in de-
mand leads to an increase in Vr for the high-voltage solution. For in the limit that
demand falls to zero, Vr tends to Vs and no power is transferred across the line.
On the other hand, a decrease in demand leads to a decrease in Vr for the low-
voltage solution. For in the limit that demand falls to zero, Vr tends to be zero. In
general, there is a voltage-dependent component of the load (i.e. impedance), and
therefore what will happen in practice is a divergence away from the equilibrium
receiving-end voltage (i.e., dQ < 0 implies Vr falls which causes Q to fall further,
and so on.).

An instability problem is observed in the low voltage solution. A drastic
change in the system dynamics will be presented when this point is reached,
which in the literature is presented normally as voltage collapse [58–64]. To il-
lustrate this situation for the quasi-dynamics contexts, Figure 2.3 shows possible
solutions of the equation (2.15) over the "cone" surface. During the sample of
measurement, it can be assumed a constant value of power, but this value can
change for the next sample (in this case, it can be assumed that measurements
are accessible in more than a minute). Therefore, power and voltage are moving
over this surface during different sample periods. In this figure, it is shown that
the possible solution of the system equation where Q = 0 produces the magenta
dashed line that can be projected in a separate plane. This helps to constructs
the family of P-V curves between nodes, which corresponds to the classic curves
for different values of P. The voltage instability occurs when the operation point
moves close to the "nose" of this magenta dashed line, in direction to the low-
voltage solutions presented before. In an analogous way, the same analysis is
applied to produce the VQ curve of the node s with the projected magenta dashed
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(a) Overview of the voltage solution surface for two-nodes
system

(b) View of voltage solution surface from the plane
voltage-active power, which shows the classic P-V curve
as a projected solution

Figure 2.3: Voltage solution surface of equation (2.14) and the P-V curve projected
from surface when Q = 0 and θ = 90◦

line to represent the solutions of the voltage equation, in this case, for P = 0. This
is shown in Figure 2.4. Similar analysis can be done when the power is transferred
in the opposite direction due to the energy surplus.

In practice, most of power systems operate at the higher-voltage solutions of
equation (2.14), so have some inherent stability. Then, the voltage has to drop a lot
before "flips" to the low-voltage solution, and operational limits usually rule this
out. This thesis focuses on the phenomenon around the operational point when
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(a) Voltage solution surface considering the injection of re-
active power

(b) View of voltage solution surface from the plane injected
reactive power - voltage, which shows the classic VQ curve
as a projected solution

Figure 2.4: Voltage solution surface and the VQ curve projected from surface when
P = 0 and θ = 90◦

uncertainties are considered due to the balance generation-consumption. The con-
sideration of disturbance due to the nature of renewables and load fluctuations
makes that the voltage oscillates around the operational point [65]. Changes in
the operational point will not be big enough to put the system in an unstable
point (that means, the basin of attraction from expected operational points can
absorb a perturbation without shifting to an alternative state). The case under
study does not represent an abrupt transition shifts in the voltage when chan-
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ging conditions pass a bifurcation point, since the voltage is oscillating around the
operational point and the allowed operational limits. Therefore, the voltage will
always reach the nominal value when the generation (due to renewable units) and
loads get balanced in the analysed node, as indicated in Figure 2.5. That helps
to conclude that the voltage problem analysis in the distribution system does not
respond to a voltage stability problem considering this quasi-dynamics in the tra-
ditional way if the desired modelling and control will be in a regime close to the
desired operational points. This simplifies the analysis and drives the research to
develop a model (ideally linear), that represents this relationship and reduce the
complexity of the equivalent model seen in equation (2.14).

Basin of attraction Basin of attraction

State

Conditions

Upper limit

Lower limit

Nominal value

Critical transition
due to bifurcation
point

Energy surplus from
distribution system

Allowed operational range

Overloaded system

Basin of attraction

Figure 2.5: Illustration for voltage changes due to increase or reduction

It is assumed the X/R ratio is small for several distribution systems and actu-
ators are focused only on active power due to the higher resistive component R in
most of the grid. However, this assumption can be quite general and discard the
analysis of each active and reactive power’s impact. To illustrate this, Figures 2.6
and 2.7 show an example of the effect of changing the value of θ with higher R that
corresponds to an angle impedance in the particular case of 75◦. For a fixed X/R
ratio seen from the node Vs, there are two possible scenarios for the active power
action: the total balance of active power is negative, where the node is consum-
ing power (which is reflected in the impedance seen from one node to the other
and produces that θ = 75◦), and the opposite when the balance is positive, where
the node is injecting to the system (the angle seen from one node to the other is
then θ = 105◦). Figure 2.6 shows how the surface in both curves is switched from
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one plane to the other, which means that the range of action and the impact of P
increase when the observed θ increases. That is expected when the system has a
high resistive component R, and the node provides power to the system. Figure
2.7 shows how for both scenarios, when active power is consuming or injecting,
the margin of action for the reactive power Q remains within the same range. A
similar analysis can be done as was presented for active power to understand the
node’s behaviour when reactive power is consumed or injected. Therefore, even
for impedance between nodes that are different from the general assumption of
X/R ratio, the shape of surface solution remains the same. In fact, it is import-
ant to highlight how possible solutions keep the same shape while is swift when
X/R ratio and the node is consuming/generating. It is particularly important to
analyse this problem in distribution system with a different assumption from the
traditional value of X/R ratio, especially if a linear approximation is desired to
model the relationship between power and voltage.

This analysis introduces the idea of modelling the distribution system beyond
general assumptions that does not fit with the current status of the network. It
is concluded that the voltage modelling (and potentially controlling) can be ap-
proached from a different perspective, considering that the distribution system is
operating close to a stable operational point from the classic voltage stability per-
spective. Therefore, a new challenge would be to obtain a good representation of
relationship between voltages and active and reactive powers, that would be con-
stantly shifting between generation and consumption and capture the transition in
between. Also, this representation of distribution system must help to maximise
the efficiency of system operation and consider the fluctuations of the operational
conditions for distribution systems. This must be done beyond of assuming gen-
eral conditions in the network such as fixed low X/R ratio, that does not apply
anymore or are not able to represent correctly the nature of these distribution sys-
tem quasi-dynamics. This idea is the base for the preliminary approach presented
in section 4.4 and particularly in section 4.4.2.

2.3 Voltage control for distribution systems with high pen-
etration of renewables

In the previous section, it was introduced the regime of possible voltage solutions
for different operational conditions and contrasted them with different assump-
tions, such as the X/R ratio that differs from the classic ones (reflected in the
variation of θ). The main goal is to establish the fundamentals required to under-
stand what the voltage operational goal would be to achieve once the distribution
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(a) Voltage solution surface of equation (2.14) when θ = 75◦ (X/R ratio rep-
resents the angle of 75◦ and active power is consumed in the node)

(b) Voltage solution surface of equation (2.14) when θ = 105◦ (X/R ratio
represents the angle of 75◦ and active power is generated in the node)

Figure 2.6: Voltage solution displacement when θ is increased and effect on the
P-V curves
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(a) Voltage solution surface of equation (2.14) when θ = 75◦ (X/R ratio rep-
resents the angle of 75◦ and active power is consumed in the node)

(b) Voltage solution surface of equation (2.14) when θ = 105◦ (X/R ratio
represents the angle of 75◦ and active power is generated in the node)

Figure 2.7: Voltage solution displacement when θ is increased and effect on the
VQ curves
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system representation is obtained and to guarantee good operation in the network.
So far, it has been discussed the similarities and differences between understand-
ing voltage in distribution systems and the classic voltage stability problem, as
well as the surface solutions obtained for scenarios with typical assumptions in
transmission systems and how these can change with different assumptions in
distribution systems. In modern distribution systems with high integration of re-
newable energy sources, the problem is slightly different compared to former ra-
dial distribution systems [66, 67], as this assumption can be constantly changing.
During some periods of the day, there may be an energy surplus that flows to the
rest of the network when generation surpasses energy demand at the connection
point. Distribution systems were not initially designed to provide energy to the
rest of the system, which can cause over-voltages and damage different devices.
Therefore, it is crucial to have a deep understanding of how these conditions are
constantly changing from the model to help define a potential control approach.

Assuming that all measurable and available data are processed, and once that
is constructed a model able to represent relevant internal states from the distri-
bution system, it is possible to define the control target to maintain the voltage
under operational limits. Further restrictions, such as component loading and
power balance constraints, may be imposed in addition to the voltage variations
considered in the proposed approach. Nonetheless, the methodology employed
for modelling the distribution system and identifying potential control strategies
can be extended to incorporate these additional constraints.

The control stages that applies for this problem can be summarised in data
acquisition, system identification (construction of plant and definition of con-
straints), system analysis and control actions. The first two steps are related one to
each other. An identification of the system quasi-dynamics is required, consider-
ing the partial observability in distribution systems. In this scheme, uncertainties
are presented as disturbance that must be considered in the robustness scheme
of the control strategy. Several control challenges for this problem include the
coordination and control of heterogeneous components (OLTCs, capacitor banks,
and Static VAR Compensators (SVCs)) that possess different timescales, so as to
lead to enhanced operation with minimal participation from the operators dur-
ing normal operation. Also, it is expected an efficient control of reactive power
and voltage control using distribution-level power markets by providing incent-
ives for flexible loads and distributed resources and transient stability, frequency,
and voltage control in the presence of islanding in microgrids, among others.

To tackle this variability, the most widespread practice to achieve acceptable
operational conditions consists of curtailment based on local measurement [68].
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This results in a practical solution in which inverters stop injecting power into the
system. However, this reduces the margin of renewable energy sources that can
be integrated into the distribution system. For some countries, this can also be-
come a source of conflict between customers, since compensation schemes based
on the energy provided to the system can be unfairly defined according to opera-
tional conditions between customers who are close to each other [69]. Therefore,
coordinated voltage control that improves the use of renewable energy sources in
the distribution system is required. Nowadays, elements such as capacitor banks,
batteries, and regulators can be used under the right control scheme to improve
this integration.

A possible recommendation for the suggested approach could be the integra-
tion of uncertainties as inputs instead of disturbances. This is expected to avoid
procedures such as curtailing the energy injection to the system, which means
increasing the flexibility of the control strategy to deal with possible scenarios in-
stead of assuming worst cases as is usually done. What does it mean to consider
something as an input rather than a disturbance? It suggests something that can
be directly manipulated, especially using feedback, to obtain desired outputs. A
disturbance normally represents an exogenous signal that cannot be controlled.

Only with the purpose of illustrating this idea, the following quasi-dynamic
system presented in this section represents the distribution system with all its
exogenous variables, and it is represented by matrices A, B and E in the equation

dx
dt

= Ax(t) + Bu(t) + Ew(t) (2.16)

where u(t) is an input and it is assumed that it can be changed according to
the state x(t) or w(t) (u(t) = g(x(t), w(t))), whereas w(t) is just some uncontrollable
signal that takes values in a given set.

Unfortunately, curtailment seems to fall under the bracket of regarding the
source as an input, because it manipulates the power injection based on current
needs (i.e. the state). A key distinction is that a more systematic and effective
approach is required, rather than relying solely on curtailment. This involves
integrating control as a feedback law like u(t) = g(x(t)) considering, for example,
the quasi-dynamics

dx
dt

= f (x(t), u(t), w(t)) (2.17)

rather than making decisions on curtailment levels based on static power flows.
An alternative view of curtailment could be to regard it still as an exogenous input
but one that is partly controlled by just attenuating its contribution. For example,
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the quasi-dynamic system can be represented as follows:

dx
dt

= Ax(t) + Bu(t) + E(x(t))w(t) (2.18)

where E(x(t)) (the gain between w(t) and the system) is varied by curtailment
strategy. Here the input w(t) itself is not changed, but its amplitude is. More
generally, E(x(t)) could be regarded as a filter.

One of the research questions after reviewing different papers concerns under-
standing voltage control for distribution systems with high integration of renew-
ables, which implies an understanding of the relevant dynamics from this part of
the system. The literature review shows two main philosophies: the first one is
more focused on the power system assets’ capabilities and the measurement avail-
able in the distribution system. This approach has been used for years because
it is a practical and feasible solution. Relevant examples of this control branch
are presented in [5, 69–73]. Normally, this control is simplistic and rule-based for
distribution systems, in which the regulation defines the voltage margin in the
distribution system according to the voltage level. However, there is no dynamics
analysis behind this approach. This rule-based heuristic approach has several dis-
advantages, including the limitation in the amount of power that can be injected
into the distribution system from renewable energy sources, limiting the voltage
action in non-scalable schemes, and short-term and long-term voltage collapses,
among others [74]. The other branch of voltage control is more theoretical and un-
derstands the voltage stability from control theory, in which the voltage dynamics
are written down and advanced analysis/design of the system is done. The level
of control theory content is high, which differentiates this family of papers from
the works of the previous branch. Relevant examples are shown in [40, 54, 56, 75].
However, the papers are exclusively about microgrids and inverter-based control
or transmission networks and reactive power control/optimisation (environments
in which most of the internal states are observable). Therefore, this review high-
lights a gap that represents a good opportunity for this thesis to apply control
theory in the distribution system, which considers partial observability and uses
the capability of installed assets to maintain voltage within operational limits.

A natural strategy for controlling in this kind of environment is Model Predict-
ive Control (MPC) approaches because operational limits are key in a power sys-
tem. This technique predicts the system quasi-dynamic considering constraints,
which makes this approach an interesting candidate to be applied. There are some
experiences for voltage control in power system applications. In [76], the control
scheme was proposed to manage the load shedding and maintain the voltage in
the required range for a transmission system. A quasi-dynamic model for loads
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and the voltage constraints were integrated into the control algorithm. In [77, 78],
fast MPC is applied to control a specific voltage by controlling an inverter associ-
ated with a substation. In [79], MPC is used to define a Voltage/Var Optimization
(VVO) scheme and control capacitor banks and OLTC for a distribution system
with DGs considering uncertainties associated with renewable energies. Similar
work has been done in [80], in which the main goal was the optimisation of voltage
variation reduction by only considering OLTC. Recent works have shown the in-
tegration of other devices such as Energy Storage Systems (ESSs) [81, 82], and
different time-scale control modes have been defined to develop the voltage con-
trol based on sensitivity coefficients [83]. Even there are works developed for
centralised [84] and decentralised MPC [85, 86], which can improve considerably
the impact in the overall control scheme. MPC offers a good compromise between
rigorous control theoretic analysis and synthesis and practical design. Therefore,
it fits the specific requirement and could bridge the gap identified in this thesis,
where on the one hand you have practical rule-based approaches with no guaran-
tees and on the other hand complex control law designs based on first-principles
models.

One disadvantage of using MPC controllers is their high dependency on accur-
ate system models for effective control. This can be problematic for several utilities
in distribution systems where the accuracy of models obtained from non-updated
databases may be limited. Data-driven approaches offer a solution to this problem
by complementing the MPC approach and capturing quasi-dynamics within the
system data, such as voltage, current, and power, as demonstrated in [87] which
used Auto-Regressive-Moving-Average Model (ARMA) for controlling power elec-
tronic converters connected to the electric power system. While model approxima-
tion may not adversely affect the quality of MPC regulation, it is essential to check
for voltage stability problems in distribution systems.

Finally, the MPC approach has shown a significant impact in this type of prob-
lem because of its nature as an adaptive scheme considering constraints. Even
though there are not many applications focused on voltage control for distribution
systems, an interesting research challenge would be to combine system identifica-
tion approaches to obtain a more accurate model and to analyse the uncertainties
that probably affect the robustness of the control. For this thesis, the MPC ap-
proach was not implemented since it is not part of the covered scope. However, it
is important to highlight the fact that the nature of the controller design based on
models suits perfectly with a data-driven approach, which will give a reference of
how the proposed modelling should be developed: a model that captures what is
happening in the distribution system based on measurable information and not on
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any estimated/approximated parameter. Therefore, it is expected that any MPC
approach integrated for controlling voltage, in this case, fits perfectly with a data-
driven model. It could be an interesting research question once a good data-driven
model is obtained, which is in fact the actual focus of this thesis.

2.4 Observability and controllability in distribution sys-
tems

To achieve the control goal presented in the previous section, it is necessary to
explore how well the internal states of the distribution system can be represen-
ted based on what can be sensed or measured from the system. Therefore, these
states must be inferred from the measurements of some variables, as well as evalu-
ate how easily system states can be changed with insignificant risk and effectively.
This corresponds to the observability and controllability problem in the distribu-
tion system. The former represents the capacity to measure the current internal
states of the system by only using information from outputs (e.g., voltages in some
nodes, status of tap changers and circuit breakers, and some exogenous informa-
tion such as census or weather), while the latter is the capability to transfer these
internal states to any particular state, in a finite time duration, when a controlled
input is provided to it (which is mainly associated with power injections or con-
sumption, e.g., load consumption, renewable energy) [88].

The assumption of full controllability and observability in the transmission
system is commonly made because the available data, models and actuators can
sense and manipulate inputs in the system that excite all modes of interest [89, 90].
Unfortunately, in the distribution system, this is not the reality due to the excess-
ive costs associated with adding sensors and actuators over the whole network.
Therefore, there is limited knowledge of the system topology and parameters and
limited availability of measurements. Relevant questions arise from this, such as
which nodal voltages are relevant to represent the internal states that represent the
voltage quasi-dynamics, or if it would be possible to use measurements or any
metrics that help to represent these quasi-dynamics. Additionally, once the dis-
tribution system is represented, it is necessary to evaluate the impact of power
injection/consumption to excite the internal states and bring them to a desired
level, even if not all of them are accessible through measurement.

Recent research on distribution systems, in order to represent their internal
states through classical electric modelling in the absence of complete information,
has focused on the state estimation problem only [91–98]. These approaches rely
on a sufficiently accurate system model that maps states to measured data. In
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several real distribution systems, where the number of nodes and lines may be
large, this model and its parameters may not be known. This has motivated the
use of grey-box modelling approaches to estimate the unknown parameters in
the physical model [99, 100], but even so, a common assumption is the know-
ledge of the system topology. A further limitation common to state estimation
approaches is the technical requirement of system observability. In practice, this
leads to the requirement that there should be sufficient measurement units around
the distribution system to allow accurate state and/or parameter estimation. Un-
fortunately, in many distribution systems, measurement units are not prevalent or
widespread [101]. Accepting this reality, an alternative question and perspective
contemplated in this thesis is: considering an almost complete lack of knowledge
of the system topology and parameters, what kinds of models could be created
by considering the measurements of system variables that are available? Further-
more, what information can be extracted regarding the controllability and observ-
ability of the distribution network? Which nodes are most useful for observation
and control in the context of managing the system voltage?

A possible solution to overcome these issues is to use a data-driven approach,
which can help to develop models in distribution systems with limited observabil-
ity, without relying solely on classical, non-scalable physical-based models [93, 96].
The next section explains in more detail how data can be used to address the issue
of observability in distribution systems.

2.5 Data-driven modelling of time-series background

Previous section introduced the observability and controllability problem in dis-
tribution systems, and also the idea of using data to overcome and improve this
condition. Several data-driven approaches to power system modelling and estim-
ation assume that the system is fully observable, which in turn implies that the
measured data reflects the time evolution of the modes to be analysed [88, 102].
Correspondingly, in many power system control approaches the assumption of full
controllability is made, which in turn implies the manipulable inputs in the sys-
tem are able excite all modes of interest [89, 90, 103, 104]. Therefore, an alternative
problem to be considered is the scenario where there are limited knowledge of the
system topology and parameters, and limited availability of measurements [105].

In this section, it is explored which data can be used and the potential to
improve the partial observability and controllability condition in distribution sys-
tems. The main challenge is that it is impossible to measure everything in dis-
tribution systems, yet it is desirable to have an indication of the current state of
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the network and its proximity to a critical state. This has traditionally been done
in the context of voltage stability, and several effective and practical approaches
have been developed for calculating a "voltage stability index" from available data.
However, a new metric is required now that the problem is different from voltage
stability.

2.5.1 Requirement of new metrics to develop model

As mentioned earlier, it is required to explore whether there is any available data
that can provide insight into the voltage quasi-dynamics, without accessing meas-
urements of all internal states of the distribution system model. Similar to this
approach, the voltage collapse problem can be understood through measurable
parameters that provide an idea of how strong the system is to deal with this par-
ticular condition. To tackle possible voltage collapse problems, the use of voltage
stability indices has been proposed by several authors [47, 52–56]. In [56], a voltage
stability index for distribution systems is presented, which showed satisfactory
performance for traditional radial distribution systems. This index serves as a
good indicator of voltage collapse as it is represented by a scalar value. However,
the performance of this index under new operational conditions, including DGs,
was not discussed or well-supported.

In [52], a dynamic analysis for voltage stability was presented considering the
real behaviour of the system, such as loads (dynamic and static models), DG units,
automatic voltage and frequency control equipment, and the protection systems.
The overall power system was represented by first-order differential equations.
The static analysis was conducted by analysing small-signal stability, which is
achieved in the frequency domain using eigenvalue analysis. In [55], the authors
propose obtaining voltage sensitivity analysis for both active and reactive injection
in the distribution system and modelling the Distributed Energy Resource (DER)
units with a voltage regulation model to deal with the uncertainty of load/genera-
tion over the distribution system for voltage control. The results showed beneficial
under the given voltage regulation target and give full play to the renewable en-
ergy power plant reactive power control capacity.

In [53], an easy-to-implement voltage stability index is proposed, based on load
characteristics, distribution system specifications, and DG characteristics. The in-
dex contains critical data on the distribution system node voltages, such as voltage
stability status and sensitivity of the voltage to power changes. This index can rank
the system nodes based on their voltage profile and voltage stability status, and it
can be used as a practical tool to identify the best candidates for installing new DG
units. The goal is to improve voltage stability and elevate undervoltages without
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causing overvoltages in any of the system nodes.

Since traditional metrics that focus solely on the voltage stability problem rely
on prior knowledge of the system, particularly the topology configuration, addi-
tional measures are needed to assess the impact of DG units, taking into account
the natural behaviour of the system, such as load consumption profiles. The new
metrics must be capable of capturing information about the system, even under
conditions that are far from instability. They should not only reflect the static
overall condition of the system but also adapt to the operational state of the sys-
tem. Therefore, new metrics that concentrate on operational conditions far from
instability need to be explored, describing the system with the available data.

The first natural metric used for this purpose would be the power injected
into each node, since it can provide some insight into how much the voltage may
change according to its changes during different periods of time. Therefore, pre-
dicting how these injections/consumption patterns change over time could give an
idea about voltage variability. However, this occurs in different locations around
the distribution systems, and it may not improve or have an effect on a voltage
variation at a specific point. Therefore, exploring the impact of power across the
system, without relying on system topology or proximity, can be considered. A
similar approach to this idea is proposed in [106], where some power values were
enhanced using the Fisher-Z transform and relying on some topological paramet-
ers for frequency control applications. This kind of approach has not been applied
to modelling, which could be a good reference to investigate and explore the ap-
plication in modelling approaches.

There is another metric that is not commonly associated with these model-
ling approaches. For instance, the distance between measurements is a spatial-
temporal characteristic that gives a notion of ’electrical distance’ between nodes.
This can give a sense of how far two nodes are located and provide a measure of
to what extent a voltage variation at one node can be inferred from variations at
another node. In that sense, it can determine whether the nodes are similar or not
in terms of observed voltage variation and, therefore, whether voltage needs to be
monitored or controlled at just one or both nodes. The literature presents different
works analysing the correlation in voltage to describe this metric and propose a
topology of the system when it is unknown [107–109]. The challenge, however, is
to estimate the electrical distances between different nodes in the network from
measured data.

These are metrics that are able to explain aspects of the system and its assets,
such as the location and size of perturbations. They should be measurable and
stored in time-series data, and potentially used as inputs for a system identifica-



38 2.5. Data-driven modelling of time-series background

tion approach, not necessarily as control inputs, but as parameters that describe
what is happening in the system. This represents a novel approach that could
be achieved by using these metrics in a modelling (and potentially controlling)
framework. Therefore, it is required to develop a model (preferably linear) that
incorporates these new metrics that use the available data to "construct" a picture
of the distribution system. This representation should not rely on iterative cal-
culations or conventional power flow solutions, which require substantial prior
knowledge of the electric system. As a result, it can be used in real-time applica-
tions, which is a significant advantage for distribution systems with thousands of
nodes.

2.5.2 Distribution system modelling and system identification

2.5.2.1 Static vs Dynamic models

Once the metrics are determined, the next step for the voltage analysis corresponds
to the modelling of the distribution system. According to the period that this
analysis is conducted, modelling parameters and analysis procedures are executed
for steady-state events [53, 110] and dynamic events [111–113].

Static modelling and analysis are intended to evaluate the system after it has
transitioned to a new operating state, and to avoid the study of transients in
between the two operating states. Therefore, these analyses are done based on tra-
ditional power flow methods, including the construction of the admittance matrix.
Dynamic modelling and stability analysis are intended to evaluate the transient
voltage behaviour of the distribution system in between two steady-state operat-
ing modes. Therefore, additional characteristics associated with device controllers
must be considered.

The latter is more complex, and there are few methods presented in the liter-
ature to obtain the Electromagnetic Transients Program (EMTP) solution [53, 114–
119]. In [53], both static and dynamic voltage stability analyses of distribution
systems are performed using a voltage-dependent load model. Additionally, a
method based on finding an EMTP solution in the shifted frequency domain and
then transitioning the solution back into the real-time domain is presented [119].
The method, called Shifted Frequency Analysis (SFA), reduces computational cal-
culations effort by finding an equivalent DC system that represents the dynamics.
To clarify and simplify the problem under study, this thesis considers only loads
modelled as constant power, and the analysis of the dynamics under study will be
based on different sources, as explained at the end of Section 2.5.4.

For system planning and operation, dynamic analysis becomes particularly
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important when devices such as generators, inverters or SVCs control participate
in the system. Additionally, the variability of some renewable energy sources
such as PV units may cause unpredictable operational changes that might result
in dynamic voltage instability problems due to the dynamic behaviour of inverters
and step-up transformers [96].

Therefore, voltage stability analysis must include both static and dynamic ana-
lysis to guarantee a better understanding of voltage control in the distribution
system under continuous changes of operational conditions.

2.5.2.2 Physics-based models vs input/output models

For both static and dynamic models explained before, there is a shared require-
ment of a complete knowledge of the system’s parameters for the modelling and
calculation approach. Typically, power system modelling in the form of Physics
Based Models (PBMs) is used, which involves using devices’ characteristics that
have a physical meaning or can be obtained directly from the observation associ-
ated with the analysed phenomenon. In power systems, this method is applied,
for example, to model the connections between different nodes, loads and gener-
ator units through lines, which correspond to the resistance and the inductance
of the real line that makes this connection. Unfortunately, several utilities have
not updated the information of all their assets, and some parameters are difficult
to obtain due to the size of the distribution network. Therefore, a data-driven
approach that considers updated measured data and defines the control target is
required to improve the observability of the distribution system.

[120] is an old paper that predates the smart grid paradigm by some time. In
that sense, it was visionary in anticipating the need to model the network from
data. The approach proposed in this paper involved injecting an impulse signal to
excite some dynamics of the system and construct a model based on the response
obtained. Similarly, in [121], a harmonic generating device was used to inject
a current of 100A peak, and the voltage was measured for different frequency
values. Both methods accurately identified the distribution system with relatively
simple hardware. However, special equipment for a disconnected distribution
system was required to apply this method. A disconnected system cannot provide
a good understanding of the system dynamics, especially when renewable energy
sources are connected. These works highlight the importance of understanding
the different analysis methods when identifying a system that can evolve in space
and time.

Recent research related to distribution system data is mainly focused on distri-
bution system state estimation [91–95, 97, 99, 122, 123], from which the steady-state
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and dynamic states of the distribution system are obtained. With this information,
it is possible to reconstruct certain data from the system. For instance, the use of
real data obtained from Intelligent Electronic Devices (IEDs), such as protection
relays or Phasor Measurement Units (PMUs) is shown in [99]. In [91–93], a real-
time system model is obtained using information available from PMUs based on
the inverse power flow problem. The full admittance matrix can be obtained when
the system is completely observable (without hidden nodes). Nevertheless, a par-
tial admittance matrix can be obtained from a partially observable system (with
hidden nodes) by using Kron reduction and complementing with a proposed al-
gorithm based on graph theory. In [94], a review on distribution system state
estimation approaches based on data is presented. There are several methods,
most of them based on Kalman Filters, such as Weighted Least Square and Iter-
ated Kalman Filter (IKF) methods integrating PMUs[123], Extended Kalman Filter
(EKF)-based State Estimation, Unscented Kalman Filter (UKF) method [122], State
Estimation based on Ensemble Kalman Filtering [95] or Koopman Kalman Fil-
ter [97]. The main disadvantage of these approaches based on state estimation is
the observability assumption of the system. The system model is more accurate,
and the variables are estimated as much as there are several measurement units
around the distribution system, which helps to construct the real status of the sys-
tem. Unfortunately, several utilities do not have enough measurement to estimate
all the dynamics (and quasi-dynamics) of the system.

In [19] a discussion between PBM and Input/Output Model (IOM) was presen-
ted. On one hand the PBMs are easier to develop and understand in power system
applications. However, PBMs have difficulties to get high order dynamics and the
use of more than one model to get different dynamics increases the computational
effort. Additionally, estimation of several parameters is not beneficial and PBMs
are better when the system has only a type of components such as generators,
loads, motors, etc. On the other hand, the IOMs describe external systems and
they are focused on the input/output characteristics rather than its physical struc-
ture inside. This helps to get an updated model with the current characteristic of
the system dynamics, including the load fluctuation and the variable power injec-
ted by renewable energies. For the latter, recent method like the Nonparametric
System identification of Stochastic Switched Linear Systems presented in [124] can
be applied, which tries to construct a good approximated low order model consid-
ering a noisy input-output model. This method uses a probabilistic approach to
consider the switches as exogenous but not as control input, which is useful when
voltage as continuous state is defined as a function of a factors like solar radiation.

A similar work to this thesis that considers data as the source to define voltage
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set-points in the control strategy is presented by Cupelli et al. [125, 126], which
use functional stochastic gradient descent in Reproducing Kernel Hilbert Spaces
(RKHSs), a machine-learning-based method that expands the dimension of the
model to obtain linear relationships. The main disadvantage of this approach
is that the dynamics within the model can lose the meaning that explains how
variables are related.

For some system identification approaches, it is assumed that the system is
fully observable, which implies that the measured data reflects the time evolution
of the modes to be analysed [19, 34, 127]. Additionally, the assumption of full con-
trollability is made, which implies that the inputs can excite all modes of interest.
This represents one of the most significant challenges of this thesis since measure-
ments are not available in every single node of the distribution system, and the
options for sending excitation signals in the distribution system are limited.

In [128], an online virtual metrology of distribution line impedance was used
to calculate parameters from the voltage drop linear equivalent computing model.
The equation to obtain the parameter model can be solved by regression analysis,
average value of solving equations method or smart algorithm based on Artificial
Neural Networks (ANNs). This model worked considering partial observability
for a radial distribution system; however, its use was not stated for identifying a
distribution system that includes renewables or any generation unit. Additionally,
the linearity of the system must be guaranteed, and validation for a meshed sys-
tem was not performed. Finally, an ANN-based approach needs to be installed in
power system equipment, and the selection of the ANN topology does not follow
any procedure.

A discussion of this is presented in [129] focused on the dynamic model rep-
resentation of active distribution network cells and microgrids. Strong points and
drawback of using conventional dynamic system reduction, Ward equivalencing,
Modal Analysis and Coherency based methods are presented. Most of them avoid
the integration of non-linearities, and the measurements-based approaches are
presented as an alternative to deal with this. Using this information, black-box
modelling approach is presented as an alternative by using ANNs (when there is
no information of model parameters available) or grey-box modelling approach
(when the available physical knowledge allows selecting a physically paramet-
erised model structure). The latter approach considering grey-box suits perfectly
for modern distribution systems, which are partially measured and partial inform-
ation of some parameters such as resistance and inductance of lines are available.
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2.5.2.3 Choosing a model structure for system identification

Choosing an appropriate model structure is a crucial part of the system identific-
ation approach [102]. There is no universally best system identification approach
[103], which means that exploring different model structures is required. The
Auto-Regressive Exogenous (ARX) model and state-space models can handle sev-
eral model structures effectively because they have efficient algorithms [89, 90, 102,
104, 130].

In [19], the limitations of the ARX model for system identification in power
systems were discussed, and it was argued that subspace state-space identification
algorithms are more effective. The ARX model is highly dependent on the type
and location of a disturbance used to excite the corresponding dynamic modes of
the system. For distribution networks with DERs, such as Doubly-Fed Induction
Generators (DFIGs) in wind generation, the dynamic equivalent model proposed
in [19] did not show a significant advantage over the constant power model. How-
ever, the opposite was found to be true for distribution networks with several
conventional synchronous generators. Therefore, the model proposed in [19] may
not be suitable for distribution systems that contain diverse types of distributed
generators, but this is an area that could be explored further, for instance, by in-
tegrating Eigensystem Realization Algorithm (ERA) and Observed/Kalman Filter
Identification (OKID) [131–133].

In [134], various Auto-Regressive-Moving-Average Models with Exogenous In-
puts Model (ARMAX) models were evaluated for estimating electromechanical
oscillation damping, and all showed adequate accuracy with slight differences.
ARMAX methods may have low-order model structures that reduce the computa-
tional burden, and the recursive calculation method was rapid during optimizing
the model coefficients.

The previous polynomial regression structures can be converted into a state-
space form, which gives more insight into the internal dynamics [102]. It is import-
ant to mention that this conversion process is not unique. According to Phan and
Longman [135], the relationship between input-output data and the coefficients
of an input-output model is linear. On the other hand, the relationship between
input-output data and the state-space model parameters is non-linear. Therefore,
there are several representations that can be obtained in state-space form that will
capture the internal dynamics presented in the data used for modelling.

One alternative for producing state-space representations is based on using
Koopman operator approaches [136, 137], which is a linear, infinite-dimensional
operator that represents the action of a nonlinear dynamical system on the Hilbert
space of measurement functions of the system states. This is useful for identify-
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ing intrinsic coordinate systems and representing nonlinear dynamics in a linear
framework. This procedure strongly relies on measurements, meaning that the
Koopman operator does not depend on linearization of the dynamics. Instead,
it transforms the measurement to an infinite-dimensional representation in the
Hilbert space, and thus represents the dynamical system’s flow on measurement
functions as an infinite-dimensional operator.

In this approach, the challenge is to find the right Koopman operator that
aids in this representation [31, 138]. Therefore, several procedures are applied
to obtain an approximate finite-dimensional approximation of these operators.
These system identification techniques produce low-rank state-space models using
data-driven techniques such as Dynamic Mode Decomposition (DMD) [138–140],
or extensions such as Extended DMD (eDMD) [141, 142] and Sparse Identifica-
tion of Nonlinear Dynamics (SINDy) [143]. In addition to the previous methods,
some nonlinear techniques can be applied to reproduce internal dynamics, such as
Nonlinear Auto-Regressive-Moving-Average Model with Exogenous Inputs Model
(NARMAX)[144].

Some applications have been attempted for power system models, in small
portions of systems or power electronics models in stability analysis [145–148].
An interesting challenge is the application of these techniques to identify large
systems such as distribution systems.

The main idea of this thesis is to find a procedure that can capture the most
important dynamics around the operational point for voltage analysis based on
information taken from the system. It is not expected to estimate the values of
certain variables such as voltages, but to identify the actual behaviour and make
conclusions regarding its actual operation that drives the voltage control target.
Different model structures used in system identification must be assessed for this
kind of problem, to obtain a low-order dynamic model that can be used for voltage
control. A more precise discussion of the meaning of these "dynamics" (which
differ from the traditional dynamics in power systems analysis) is extended in
section 2.5.4.

2.5.3 Spatio-temporal system identification

In addition to the time characteristics discussed in the previous section, it is
also important to consider the location of perturbations in the modelling ap-
proach [144]. The relevant location of the perturbation and the system component
that may be impacted can be determined based on the existing knowledge of the
system’s topology and the rated values of load/generation units. However, in
cases where there is limited information of the distribution system, the topology
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of the system may not be directly inferred, or it may be unknown altogether. In
such cases, the location of the system perturbation can provide insight into the
selection of a specific node for voltage prediction or potential control.

According to Zhou and Buongiorno [149] and Martin and Oeppen [150], accur-
ately incorporating the structure of spatial dependence into the model is a critical
challenge. It is proposed splitting the problem into two primary tools for opera-
tionalising spatial dependence: spatial weight matrices and spatial lag operators,
as well as the concept of the order of spatial neighbours. The order of spatial
neighbours refers to their distance from a specific location. First-order neighbours
are the closest characteristics to the location, while second-order neighbours are
farther away than first-order neighbours but closer than third-order neighbours,
and so on. For a regular grid system, a standard definition of spatial order is
available; however, for irregular systems, the model builder must define the order
of spatial neighbours [151]. Similar works consider the impact of these weights
and articulate them with ARX or ARMAX model approaches, creating Space-Time
ARX and ARMAX models [152, 153].

In power systems, several studies have employed the concept of location to
construct prediction models [154–156]. However, these studies have used location
as a clustering tool to focus on measuring the impact, instead of deducing location
based on measured data. In Horak et al. [157], the correlation of location was
compared with other features to evaluate the impact of model prediction based
on spatial knowledge, while [156, 158, 159] proposed different indices or features
based on space/distance to provide information about location and impact on the
generated model. In this thesis, to reduce the complexity of the model structure,
location will not be used as a parameter to weight the impact of model components
but rather as a feature to help cluster information. A more detailed discussion is
presented in section 3.5.

2.5.4 Time-series modelling approach in distribution systems

There are relevant challenges in increasing observability and controllability in the
distribution system to achieve this goal. Therefore, the system identification ap-
proach has shown a relevant impact on getting the dynamic nature (including
the static or zero dynamics nature) of the distribution system based on measured
data. However, it is important to highlight that the distribution system with high
integration of renewables is constantly changing. Even traditional systems are
non-static in the sense of load consumption [160, 161]. The voltage and power in
the power system are constantly changing according to the consumption patterns
and generation profile, which will depend on the type of DGs introduced into the
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system [14, 162, 163]. Even the change on measured data must be considered in
the model construction.

From a modelling perspective, traditional voltage analysis and control in the
power system have been carried out considering worst-case scenarios, i.e. the
maximum load demand with the minimum generation of power injected from
renewable energy sources, or minimum load demand with maximum generation
when power is exported from the distribution network. For some assets, such as
small transformers or loads, there are no measurement devices installed, and their
operational conditions are assumed to be at rated values. Therefore, the rated
capacities of transformers, feeders, and lines are achieved more quickly and give
no room for integrating any other device in the system, including the renewable
energy source [69, 164]. This assumption provides a security margin in the op-
erational conditions of the distribution system, even if it does not represent the
reality in most cases. For example, maximum energy consumption is not achieved
during the period of maximum generation of PV units. However, the assumption
of stressed conditions represents a limitation on the number of renewable units in-
tegrated into the feeder, as the voltage easily surpasses the allowed voltage range
once the units start to operate [68].

One solution for modelling these variables is to consider the time-series vari-
able as random variables and model them using traditional parametric or non-
parametric modelling. Some approaches have been presented in [163, 165–169].
This provides a good approximation, but its use for voltage analysis is highly lim-
ited to obtain a good linear approximation. A more accurate approach involves
running the power flow calculations with the actual power profiles for both loads
and generators. Therefore, all profiles should include an associated uncertainty
since profiles are changing over time. This is now possible with the measurements
installed in the distribution system and the computational power of several power
system simulators [47, 160].

The paradigm of using time-series measurements of system variables to con-
struct models for control has seen widespread use and validation in industrial
applications outside of the power domain, stretching back several decades [15–
18, 170, 171]. While time-series analysis has found use in power distribution
network modelling and analysis, particularly in support of power flow analysis
considering the presence of renewables [161], topology detection [98, 172, 173],
and reactive power control [174], to the author’s knowledge no attempt has been
made to identify the broad dynamics of a distribution system from limited avail-
able time-series data, considering the effects and time-evolution of uncontrollable
exogenous variables. These exogenous variables could include consumer beha-
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viour, weather predictions, the location of the generation unit, and other elements
that are not part of the distribution system but interact with it, impacting the way
the voltage evolves over time.

Therefore, if is not indicated something different, the term "dynamics" differs
subtly from the traditional notion of power system dynamics since the relevant
characteristics are not limited to just those of traditional assets, i.e., controllable
power sources, but are expected to capture the dynamic effects of loads and re-
newable inputs on system variables such as voltage. The identification of these
quasi-dynamics could be of valuable use in developing voltage control approaches
for distribution systems with a high penetration of renewables but limited avail-
ability of measurements. This is also a motivation for this thesis.

The identification of these quasi-dynamics using time-series analysis is presen-
ted in [23, 24, 33, 175–177]. These works based their analysis on previous know-
ledge of the distribution system (i.e. system topology, pattern of consumption/-
generation, etc.), to build the time-series results, but they were not focused on
using measurable data to build a model that can or cannot have any physical
representation, as is expected for this thesis.

2.5.5 Integrating uncertainty analysis in distribution systems

A crucial point to consider when dealing with time-series data is the uncertainty
associated with the nature of the random variable that represents the data, as
highlighted in the related literature. In planning and control contexts, worst-case
scenarios are often relied upon (e.g. in "security constrained optimal power flow"
formulations) to design operating points. However, an alternative approach is to
integrate the random variables representing the data using uncertainty analysis.
This method provides relaxed conditions based on statistics, rather than assuming
the worst-case scenario, and thus enables the potential for increased integration of
renewables based on statistical analysis. For example, in an Austrian case study,
[178] presented a way to increase the hosting capacity of photovoltaic generation.
Therefore, due to the significance of stochastic generation on improving renew-
able integration in the distribution system, its impact should be included in the
analysis. Moving to probabilistic models makes decisions regarding risk levels
explicit rather than implicit assumptions [179].

The quasi-dynamics that need to be modelled are nonlinear, stochastic, and
multi-period, which will have an impact on the control design. This thesis aims
to consider this aspect when modelling voltage, taking into account that inputs
and outputs may have associated uncertainties, rather than assuming them as dis-
turbances, which is typical in traditional approaches. At a basic level, the model



Chapter 2. Background and literature review 47

structure is expected to be similar to that presented in Equation (2.17). However,
in this case, x(t) represents the states, u(t) represents the set of control inputs, and
w(t) represents the set of uncertain variables. The uncertain variable includes the
measurement noise and the traditional system perturbations, such as consump-
tion/generation profiles.

The uncertainty analysis provides information about w(t), including state lim-
its, probability density functions or cumulative distribution functions, and more.
It is important to consider these factors when designing the control system. The
controlled system’s analysis and evaluation can also take these into account to
produce performance statistics (e.g. cumulative distribution functions of the con-
trolled system’s voltages). Therefore, it is essential to produce more than just
uncertainty bounds to avoid adopting the traditional conservative approach.

The uncertainty associated with load and renewable-based generation can be
modelled using either set-theoretical or probabilistic approaches. In the set-theoretical
approach, uncertain variations can be seen as forecast errors, where a nominal
forecast is bounded by a confidence level [164, 180, 181]. Alternatively, in the
probabilistic approach, profiles can be modelled as random variables, known as
probabilistic power flow analysis [182]. The results of this approach are also rep-
resented as random variables [66].

The probabilistic approach can be categorised based on how uncertainties are
integrated into the deterministic model base [183–200]. Monte Carlo approaches
are typically employed [198], where random variables associated with load and
generation can be easily integrated. These methods are particularly useful when
mathematical and physical problems are challenging or impossible to model, espe-
cially when the probability distribution of the generation from random variables is
required as inputs. Monte Carlo simulations using simple random sampling can
provide the most accurate stochastic behaviour of the target random variables.
One significant advantage of this approach is its flexibility [187].

Although sampling techniques can be complex, the Monte Carlo method util-
ises a deterministic model that establishes links between the variables being ana-
lysed and the uncertain input variables, and then calculates a set of Monte Carlo
simulation samples of random inputs without requiring any reformulation. This is
equivalent to performing a deterministic approach multiple times using different
input combinations. Consequently, the same nonlinear form of traditional load
flow calculations can be used for this probabilistic approach analysis. However,
achieving convergence requires a significant computational effort.

Other methods for incorporating uncertainties into the probabilistic power
flow approach are the analytical methods, also known as approximate techniques
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based on Linearization [183, 185, 189–192], or by using cumulant calculations com-
bined with the Gram-Charlier expansion theory [184, 186, 188, 193–195]. These
methods are based on convolution techniques for solving calculations with prob-
ability density functions of stochastic input variables. The resulting probability
density functions represent the random variables of line power flows and system
states. Assumptions are made in these methods, such as the linearisation of load
flow equations, the assumption of a normal distribution for the load (although
this is not a mandatory condition), the assumption that the probability distribu-
tion functions of random variables are known, and the assumption of independent
or linear-correlated power variables, as well as a discrete distribution for genera-
tion.

The majority of the analytical methods outlined are restricted to linearisation
of the initial model, which results in fast computation but imprecise results. As
the load flow equations are non-linear, and the input power variables at differ-
ent nodes are typically not entirely independent or linearly correlated, this poses
a challenge when solving probabilistic approaches through this method. Con-
sequently, the primary drawback of this approach is that it linearises the power
system, which overlooks certain dynamics such as OLTCs behaviour. The ap-
proximate methods take into account only a set of deterministic outputs from
the original model to obtain the probabilistic results. First, the deterministic load
flow problem is solved at various sample points, and then each result is assigned
a weight to estimate the output moments. This mechanism is quite similar to
Monte Carlo simulation, but fewer samples are needed, and extra treatment on
the results is required. Methods such as the point estimation method [201–203]
or the unscented transformation [204] can be used to apply this approach. In
[205], a theory based on Dimension-Adaptive Sparse Grid Interpolation and its
combination with Copula is used to obtain the uncertainty analysis. In [206, 207],
a method called the Common Rank Approximation (CRA) method is proposed.
This method relies on a simplified system coupled with a rank-comparing process
and provides high accuracy, low error values, and considerable time savings.

A typical limitation of these approaches is that they do not yield the probab-
ility density functions of outputs; rather, they provide their statistical moments.
The pace of the probabilistic analysis relies on the number of uncertainties. Des-
pite this, approximate methods strike a balance between Monte Carlo simulation
accuracy and analytical method speed, rendering them a viable choice for high-
dimensional uncertainty quantification.

To summarise, with the introduction of stochastic wind and solar generations,
deterministic models are no longer sufficient to understand the power system.
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Several problems in this area are nonlinear, stochastic, and multi-period. By mov-
ing to probabilistic models, decisions regarding risk levels become an explicit de-
cision rather than an implicit assumption [179]. For control action, it is not enough
to consider uncertainties only as a bound that stresses the control requirements,
but it must offer an opportunity to provide flexibility in the control targets based
on statistical analysis. This section demonstrates the challenges in integrating un-
certainties for power system studies, particularly for the voltage control problem.
There is a significant trade-off between complexity and calculation speed. A com-
prehensive understanding of the time-series calculations involved in the dynamics
related to the voltage in distribution systems is required to determine the appro-
priate approach for modelling uncertainty associated with load and generation.

2.5.6 Selection of proposed model structures

With the revision presented above, the requirements for a potential model struc-
ture can be summarised as follows:

• The model should be able to capture the relevant quasi-dynamics of the
distribution system, including patterns of load consumption and generation
injection.

• Measurable data should be in the form of time-series vectors and should
be used as input to produce models, taking into account the uncertainties
associated with the selected inputs.

• The model structure should start from a case of no previous knowledge of
the distribution system and build a purely data-driven model.

State-space representations offer a promising solution to meet these require-
ments since they provide a better understanding of the quasi-dynamics, which
can aid in the development of a tool for predicting (and potentially controlling)
voltage. Spatial characteristics need to be detected (though not necessarily mod-
elled), and therefore, any sense of location would be included as an input feature
instead of being included in the model structure.

Based on this, several structures can potentially be explored to produce the
model. One such structure is the linear autoregressive model, such as ARX and
ARMAX, which has been used in this context and can be easily represented in
state-space form. Additionally, Koopman operator-based representations show
potential as a tool for directly obtaining a reduced-order representation that is
easy and compact to implement, e.g., DMD. These can be contrasted with more
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traditional tools such as the subspace-based methods (a combination of ERA and
OKID algorithms), which has been used to identify systems based on measurable
data due to their capability of decompose measurable data in equivalent "train
of impulses" that can be used later to identify an equivalent system. A detailed
discussion of their characteristics and application in this thesis is presented in
Chapter 4. None of these models were used to provide a representation of com-
plete distribution systems in the works presented. Normally, a Single-Input and
Single-Output (SISO) representation was used to simplify the analysis, which also
represents a good opportunity to explore in this thesis (with either MISO or MIMO
representation).

2.6 Conclusions

This chapter has covered a significant amount of information related to the re-
search conducted in this thesis. Firstly, a background on the subject of voltage
stability in the context of distribution systems was provided. Sections 2.1 and 2.2
presented the main voltage-power equations for distribution systems with non-
lossless conditions in a reduced two-nodes system to explain the relationship
between both variables. After reviewing possible scenarios, it was concluded that
this problem does not correspond to the classical voltage stability problem, and
the matter of interest in this case was far from any critical point in the curve that
represents the voltage-power relationship. Consequently, the model to be con-
sidered can be approximated in a linear representation without losing precision
or the sense of the actual operational conditions.

The addition of uncertainties and exogenous variables was presented in Sec-
tion 2.3, in which the possibility of using MPC to improve the operation of the
distribution system and create more opportunities for integrating renewable gen-
eration units was discussed. A key takeaway from this section is that in order to
achieve this voltage control objective, it is necessary to maximise the renewable in-
jection into the distribution system while considering the operational restrictions
(voltage limits, lines and transformer loadability, etc). In this regard, MPC was
considered as a potential tool for achieving this goal. Therefore, a model that
can provide a good representation of the current network status is required, in
which the main quasi-dynamics are captured to improve the classical rule-based
approach. This traditional method is more focused on voltage restrictions and
does not provide much scope for optimising the integration of renewable energy
sources.

The problem of observability and controllability in distribution systems was
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introduced in Section 2.4. Subsequently, in Section 2.5, the problem of modelling
time-series data in power system applications was introduced, along with the re-
quirements of new metrics that incorporate time into the modelling approach. Tra-
ditional metrics primarily focus on producing indices based on prior knowledge
of the steady-state condition of the system, particularly its topology configuration.
This can significantly limit the evaluation of the variable nature of generation/-
load units and the expected changes in system topology. One potential metric
explored as an indicator relates to the power injected into each node and the size
of its impact across the distribution system, without any prior knowledge of the
system topology, which could be based on Fisher-Z transform. Another poten-
tial metric that could be included in the modelling approach is one that provides
a sense of distance between measurements, as a spatial-temporal characteristic.
These metrics can explain aspects of the distribution system and its assets, are
easily measurable, and have the potential to become an input for the proposed
modelling approach.

After this discussion, various methods for obtaining the static and dynamic
characteristics of the system were explored. Additionally, it was introduced sys-
tem identification as a tool for producing models that relate measurable variables
to obtain a representation of the distribution system. Since it is expected to pro-
duce linear representations that can be used with time-series data and capture the
quasi-dynamics associated with the random variables that represent generation
and consumption, state-space representation is a potential solution to meet these
requirements. While spatio-temporal system identification approaches could be a
possible solution for this, for this thesis, it is expected to measure the spatial char-
acteristics instead of modelling it. Therefore, linear autoregressive models such
as ARX and ARMAX can be explored as possible structures to be implemented
in their state-space form. Koopman operator-based representations such as DMD
and subspace-based methods such as a combination between ERA and OKID have
shown good results in different applications for obtaining reduced-order repres-
entations of various kinds of systems and can also be considered.

From this review, several observations emerge. The nature of the distribution
system, which is partially observable and limited in terms of controllability, poses
a challenge for producing models for control applications. These models must not
only incorporate classical electric parameters but also account for uncertainties
associated with exogenous variables, such as weather and spatial location, which
become increasingly important with the integration of renewable generation units.
Moreover, stakeholder actions are dependent on various factors, such as time of
day and season of the year. New metrics are required to describe distribution
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systems without relying on any prior knowledge of classical electric parameters
and that reflect the actual status of the network based solely on measurable data.
Such metrics will facilitate the production of models that can be easily integrated
with MPC approaches, and the control objective can be adjusted according to real
conditions and operations. These issues represent interesting research areas that
will be addressed in the remainder of this thesis, within the context of voltage
control in future distribution power networks.



Chapter 3

Data-Driven Characterisation of
Distribution Systems

3.1 Introduction

Data-driven approaches are becoming a new trend for system modelling in voltage
control applications at both transmission and distribution systems level. The high
penetration of renewables and a better understanding of customers require flexible
schemes that adapt according to the system’s reality. This task is more challenging
in distribution systems because of the limited observability, and most methods rely
on classical non-scalable physical-based models [19, 93, 96].

Many data-driven approaches to power system modelling and estimation as-
sume that the system is fully observable, implying that the measured data reflects
the time evolution of the modes to be analysed [88, 102]. Correspondingly, several
power system control approaches assume full controllability, meaning the manip-
ulable inputs in the system are able to excite all modes of interest [89, 90, 103, 104].
In this thesis, a more realistic perspective is adopted: considering limited know-
ledge of the system topology and parameters, and limited availability of meas-
urements, what information can be extracted regarding the controllability and
observability of the distribution network? Which nodes are most useful for obser-
vation and control, in the context of managing the system voltage?

In this thesis, the foundations for a new approach are proposed through an
investigation and analysis of the relationship between certain measured data in
the network and what can be inferred about the spatial-temporal profile of the
system voltage. The particular aim is to develop and validate metrics that char-
acterise and quantify this dependency, allowing the wider impact of nodal power
fluctuations (owing to changes in load or power injections) to be predicted. An
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unbalanced network with an arbitrary level of penetration from renewable power
sources is considered, and nothing in particular is assumed about its topology and
parameters.

For the network used as a reference (IEEE 123-nodes), OLTCs are assumed to
be in operation to control voltage locally. This is also compared with the addition
of capacitor banks into the operation of this network. Additionally, some scenarios
with a meshed system are considered to contrast the response of this approach in
both radial and meshed configurations. This will illustrate the conditions in which
the metrics are calculated and provide relevant information about the system, even
with only measured data available. This approach can be extended to networks
with many other kinds of devices/control strategies, or even different times of
the day and seasons of the year, as the approach relies solely on measurements of
voltages and powers, which can capture the nature of the random variables that
describe these operational conditions. This chapter discusses how the metrics are
able to detect these conditions and characteristics of the system without the full
knowledge of the topology.

The examination for this approach focuses on how measurements of power
flows through lines provide information on the equivalent impedance of the sys-
tem. The thesis goes on to propose matrices that use the Fisher z-transformation of
the Pearson correlation values between measured nodal voltages to indicate how
a voltage variation caused by a nodal perturbation propagates through the net-
work, in terms of which other nodes will also see perturbations. Building on this,
the thesis proposes to quantify the voltage variation and propagation in response
to a perturbation event, in the absence of impedance measurements or know-
ledge, using the covariances of voltage measurements at selected nodes. These
developments support the wider aim of developing a framework for identifying
distribution system dynamics under limited knowledge and measurements by en-
abling the identification of the key nodal voltages in the system and offering a
non-parametric characterisation of how they respond to inputs.

Once the proposed metrics are constructed from time-series nodal voltage and
power injection data, it is indicated how they can provide information on two main
aspects: (i) how perturbations or control actions propagate through the distribu-
tion network and (ii) how electrically close nodes are, and how similar and correl-
ated their voltages will be. The potential use of these new metrics is discussed for
obtaining spatial-temporal characteristics of distribution systems, and for identi-
fying suitable variables of interest and candidates for inclusion in a reduced-order
model of the system for voltage control purposes.

The metrics are computed from time-series measurements of system data, in-



Chapter 3. Data-Driven Characterisation of Distribution Systems 55

cluding power injections into lines and nodal voltage in nodes, obviating the need
for a physics-based model and parameter estimation. The effectiveness and valid-
ity of the proposed metrics are evaluated through case study simulations on a
123-node test network subject to diverse types of perturbations. Furthermore,
the model-free, data-driven approach paves the way for capturing the effects of
difficult-to-model, exogenous variables, such as renewable power injections and
load profiles. Additionally, an algorithm for the modelling based on the available
data is proposed. The major contributions of this chapter are:

1. It is proposed a data-driven approach to characterise distribution systems
based only on time-series measurements that provides relevant spatial-temporal
information of the distribution system and the perturbations that occurs dur-
ing operation;

2. It is proposed a methodology to analyse and reduce model complexity of dis-
tribution system based on the electrical distance by using Fisher z-transform
and voltage covariance from measured data;

3. It is demonstrated the use and investigate the efficacy of the metrics pro-
posed via simulations on an unbalanced distribution system (IEEE 123-node
test network) under various scenarios; and

4. It is discussed the interpretation of the new metrics for the spatial-temporal
description of the distribution systems and potential use in developing mod-
els in control applications.

3.2 General problem statement

In Section 2.1, the stability problem was introduced to evaluate the type of dy-
namic system that can potentially be obtained in the system representation. After
further discussing the integration of exogenous variables in this system explained
in time-series data, the quasi-dynamic system model should consider more com-
ponents than just the electrical parameters. Therefore, this research considers a
general distribution network composed of a set of nodes N := 1, . . . , N, where
the voltage–power quasi-dynamics are assumed to be governed by Differential–
Algebraic Equations (DAEs):

ẋ = f (x, u, w, t), (3.1a)

y = g(x, u, r, t). (3.1b)
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As stated, these DAEs are sufficiently general to capture all quasi-dynamics in
the system—including electromagnetic phenomena—but for the purpose of this
thesis, they are assumed to reflect the timescale of interest for voltage control
(i.e. in the range of seconds to minutes). Therefore, these DAEs capture the
voltage–power physics of the electrical network and the non-deterministic, time-
varying and quasi-dynamic actions of consumers and producers. In equation (3.1),
t denotes time, x is a vector of (internal) states, whose time evolution is described
by equation (3.1a). u is a vector of control input variables, including nodal active
and reactive power injections, y is a vector of measured outputs, collecting the
voltages observed at certain nodes, and w and r are vectors of uncertain and/or
exogenous variables affecting, respectively, the state evolution and system output.

The motivation for this thesis is to consider the desire to perform voltage con-
trol in the distribution network, where the quasi-dynamics (3.1) are unknown.
Moreover, the system comprises a large number of unmeasured states, and only
a subset of nodal voltages may be measured, along with a subset of nodal power
injections available for manipulation for control purposes. Therefore, a system iden-
tification process is required to construct a simple yet sufficiently accurate model
of the power–voltage quasi-dynamics at the timescale of interest for voltage reg-
ulation. Prior to identification, it is necessary to determine which nodal voltages
should be measured and which nodal power injections should be made available
for control so that (i) the measured voltages provide an adequate picture of the
voltage profile across the network, and (ii) the nodal power injections made are
capable of adequately influencing the voltage profile across the network. In other
words, which nodes in the system are critical to the observability and controllabil-
ity of the voltage? The aim of this chapter is to answer this question by proposing
a set of metrics that utilise real system measurements to assist in determining the
critical nodes for observability and controllability.

It is considered an unbalanced radial network composed of N nodes. The
topology and parameters of the system are not completely known, and neither
is the composition and nature of the loads. Renewable generation is present in
the network in the form of uncontrollable power injections at certain nodes. It is
assumed that measurements of voltages are available at the feeder and some nodes
in the network, but it may not be known exactly where these nodes are relative to
other nodes. Figure 3.1 illustrates a typical scenario under such assumptions.

A trio of nodes, nk, nj and ne, are shown in relation to the feeder node ni; it
is known that nk and nj are connected by a line, but their specific connections
with upstream and downstream nodes are not known beyond that there exists a
path to the feeder and a path to downstream nodes. The parameters of the line
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Figure 3.1: Illustration of a distribution system with partially known topology and
connectivity

between nk and nj are not necessarily known. It is known that node ne is within
the geographical vicinity of nk and nj but its precise connectivity is unknown. The
OLTC that controls the voltage at the beginning of the feeder in this illustration
will respond to regulate the voltage and maintain it within the operational limits
(if activated, which is commonly the case). This can respond locally by sensing the
voltage at the beginning of the feeder, even if it is not able to measure the voltage
in all nodes downstream. There could be more devices, such as other small OLTCs
or capacitor banks in the area, that are not available for measurement and cannot
be controlled. Nevertheless, the total power flowing through the lines will be
altered up to the beginning of the feeder, and the response of this voltage control
will correspond to this total power balanced across the system. Therefore, if nodal
voltages are measurable and power injections and flows are known at such nodes
and other such nodes in the network, what picture can be gleaned of the overall
network voltage profile in response to power injections—either controllable or
uncontrollable—and demands?

3.3 Analysis and synthetic production of time-series data

The first task this chapter corresponds to analyse features that have a high impact
in the voltage of the distribution system. Therefore, it is required to start exploring
from a high-fidelity model which technical aspects, nodes, variables or scenarios
affect the operational voltage. As part of this thesis, a reference data set is re-
quired to carry all the corresponding project. Synthetic data must be constructed
from a software that allows modelling the distribution system with its components
and their corresponding control functions (for instance, inverter control functions,
OLTC and regulator controllers, etc.). For this thesis problem, only PV units will
be considered as source of renewable energy in the distribution system. Therefore,
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uncertainty associated with this renewable energy source will be studied.

According to [68], the reference data must consider the following characterist-
ics:

• Time-series simulations must be conducted. Therefore, several load flow cal-
culations are required to analyse the profile instead of the traditional steady-
state analysis with fixed values. This involves synthesising time-series data
via a sequence of load flows with different parameter snapshots (e.g., load).
It should not be confused with a full dynamic simulation, which models
the time-varying behaviour of a system described by ordinary differential
equations or partial differential equations.

• The distribution system could be balanced or unbalanced. A "balanced" sys-
tem is one where all line voltages are equal on each phase, and therefore all
line currents are also equal. An "unbalanced" distribution system is usually
composed of unsymmetrical loads, which implies that voltages and currents
are not the same on each phase. Simulation software must be able to work
for both scenarios if required.

• Variability associated with load and generation must also be integrated.
Therefore, the deterministic approach must be changed into a probabilistic
approach.

A combination of OpenDSS and MATLAB was implemented to deal with all
of these requirements. OpenDSS is a free licensed software developed by Electric
Power Research Institute (EPRI) [208], which focuses on modelling distribution
systems and all of the devices and components that can be connected at this part of
the power system (including voltage regulators, capacitor banks, inverters, among
others). This software also allows steady-state simulations, dynamic domain sim-
ulations and fault-events simulations. Figure 3.2 illustrates the integration of both
through a COM server developed for OpenDSS to communicate with MATLAB.
The latter is relevant for developing scripts that automate some calculations, in-
cluding the selection of random inputs (applying Monte-Carlo approaches) and
modelling some control actions and functions if required.

3.3.1 Modelling of the distribution system

The simulations depicted in this thesis consider the IEEE 123-node test network,
an unbalanced distribution system with a total of 269 nodes. This is shown in Fig-
ure 3.3, including the positioning of voltage regulators and the states of switches
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Figure 3.2: COM interface of OpenDSS with MATLAB

in the network (where green denotes an open switch and red a closed switch). It
will provide a baseline dataset for the system in the absence of control and expos-
ing the cause-effect relation between renewables penetration and system voltage
without any obfuscation by the control.

3.3.2 Modelling of load profiles and daily solar radiation

For implementing time-series simulations, the CREST Demand Model from McK-
enna and Thomson [209] was used for both solar radiation and residential load
profiles. All data obtained from this model have a resolution of one minute, res-
ulting in 1440 load flows for simulating the profile of one day. The model can
consider all calendar days of the year.

3.3.2.1 Generation of load consumption profiles

The consumption profiles were created first, and the model used can consider
between 1 to 5 people in a house, distinguishing between weekdays and weekends.
First, the algorithm scanned all the loads connected in the distribution system (us-
ing a constant power model). For the distribution system used as a reference, there
are some nodes that can have single-phase loads and others with three-phase loads
(more details in Appendix E). For each node, a consumption profile is assigned by
selecting a random number of occupants in the house (between 1 and 5, and only
residential consumers are considered), obtained from a MATLAB random gener-
ator function. This number is then input into the CREST Demand Model, which
randomly assigns the type of devices and consumption profiles for each case, tak-
ing into account the season and time of day (previously defined). This produces
a daily consumption profile ranging from 0 to 1. Therefore, the profile is scaled
up by the individual household demands of the rated power of the load over each
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Figure 3.3: IEEE 123-node unbalanced distribution system

node. This represents the assumption in which each transformer over each node
groups houses with the same number of people and the same consumption beha-
viour. Therefore, profiles were generated for each possible number of people in
the house and for each type of day, resulting in 5x2=10 possible profiles. The un-
balanced condition of the system will be reflected in the nature of having different
profiles in different nodes/phases. Figure 3.4 shows some examples of individual
load profiles and Figure 3.5 shows one day example of the total power profile at
the main feeder when there is a 30% of renewable generation integrated into the
system, to illustrate the unbalance condition of the system.

3.3.2.2 Generation of solar radiation profiles

Once the load consumption profiles had been selected and integrated, the solar ra-
diation profiles for each day of the year were created. These profiles were defined
based on the geographical location of the distribution system and the cloudiness
index denoted as Bindex. The solar profiles for this model were defined according
to Equation 3.2:
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Figure 3.4: Examples of profiles obtained after using CREST Demand Model and
the total power flowing through a representative three-phase node
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(b) Reactive power profile

Figure 3.5: An example of a day total power profile at node S149 (main feeder)

PVpro f = ηpanel ∗ ηinv ∗ Apanel ∗ Hindex ∗ Bindex (3.2)

where ηpanel and ηinv are the panel and inverter efficiencies, respectively. The
Apanel area of the panel and the Hindex irradiance profile of the corresponding
month were used to create the solar profiles for each day of the year. Other relevant
assumptions are shown in Table 3.1.

The irradiance profiles were generated using the fixed parameters mentioned
earlier (assuming the location of the distribution system is Sheffield, with the same
dimensions of solar panels and efficiency coefficients for each generation unit),
and the cloudiness index was selected randomly from a matrix of 100 possible
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Variable Value
Latitude 53.38◦

Longitude -1.47◦

Day of the year that summer
time starts

87

Day of the year that summer
time ends

304

Slope of
panel

35◦

Azimuth of panel 0
Panel area Apanel 10 m2

System efficiency (etainv ∗ etapanel) 0.1

Table 3.1: Summary of panels and inverters characteristics.

daily sky brightness/cloudiness index values stored in the CREST Demand Model.
This value was obtained using the MATLAB random generator. For each type of
day (weekday/weekend, summer/winter) and each cloudiness index, the model
provided a solar radiation profile in a similar way to the load profiles described
in the previous section, with values ranging from 0 to 1 for a typical day. These
values were obtained for each day and scaled to the rated power of the generation
unit.

The way in which PV units are integrated was determined based on the amount
of power that was integrated into the system. This is expressed as a percentage
of the total rated load power installed in all nodes. For example, a penetration
level of 50% means that a total amount of 50% of the equivalent rated power of all
loads installed into the distribution system was integrated. The size of each unit
was randomly selected using the MATLAB generator function, and commercial
values for generation units were used, ensuring that all units could achieve the
previously defined power level. The power injection was either single-phase or
three-phase, depending on the load installed at that node. Then, all units share
the same generation profile, assuming that all of them are close enough to receive
the same amount of solar irradiance.

The location of each PV unit is a random position within all nodes that have
loads on the distribution system. To achieve that, all nodes from the distribution
system model were scanned, reduced only to those with load connected, and as-
sumed that the possibility of installing a PV unit was the same on each node. A
more specific discussion of this is presented in next section.
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3.3.3 Modelling of uncertainties

The next step was to identify uncertainties associated with each component. Typ-
ically, the distribution system topology and consumer-rated power are assumed
to be fixed since the system already exists. It is assumed that the IEEE 123-nodes
system will maintain the same configuration topology (no reconfiguration) and
the rated power of each load, as load movement is not expected. The change will
only be focused on the load profile each day. Therefore, the location and rated
power of the loads were known beforehand.

The locations, daily profiles, and rated power of the solar panels were ran-
domly selected. The location of each PV unit was determined using a uniform
random variable, meaning that all nodes connected to loads were equally likely
to receive a PV unit. The rated power of the inverters was defined using the
MATLAB function ’random’ within a range between the minimum and maximum
commercially available values, but not exceeding the maximum load installed in
the distribution system. The random variables associated with the variability of
solar profiles were selected from the previously mentioned pool of profiles, and
the chosen curves were scaled to the rated power of each PV unit. Similarly, the
load profiles were defined based on the variability integrated in the model of
McKenna and Thomson [209], and the profiles were scaled according to the rated
power of each load.

3.3.4 Flow chart for calculation algorithm

The planned flowchart for running all simulations using OpenDSS and MATLAB
is shown in Figure 3.6. It shows how random variables for both load and gen-
eration are assigned to each element, following the explanation given in Section
3.3.3. The amount of PV rated power integrated into the system is determined
based on the renewable penetration level, which represents the amount of renew-
able rated power installed in the distribution system as a percentage of the rated
power of all loads combined. After the locations, rated powers, and profiles for
each component were defined, load flow was run in OpenDSS for a time-series
data set of one day, consisting of 1440 load flows. The results were stored in MAT-
LAB variables and saved for further analysis. In this case, voltage profiles of 1440
points for each node were obtained, representing the voltage value every minute.
The entire process was repeated for each new scenario simulated, with only the
topology of the distribution system and the location and rated power of the load
being fixed, while the rest of the elements and their uncertainties were redefined
for each simulation.
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Table 3.2: Summary of simulation cases

Summer profile: 217 days for possible
combinations

Each day: 1 minute resolution profile
1440 load flows

Winter profile: 148 days for possible
combinations

Each day: 1 minute resolution profile
1440 load flows

1000 possible scenarios (weekdays)
Changing rated power, position

and profile of PV unit.

1000 possible scenarios
1440000 load flows

(Summer - weekdays)

1000 possible scenarios
1440000 load flows

(Winter - weekdays)
1000 possible scenarios (weekends)

Changing rated power, position
and profile of PV unit.

1000 possible scenarios
1440000 load flows

(Summer - weekends)

1000 possible scenarios
1440000 load flows

(Winter - weekends)

Table 3.2 shows a summary of the number of simulations that were done for
this first stage. Relevant data was classified in type of day (weekdays and week-
end) and season (summer or winter). For any of those, a combination of 1000
simulation was done (e.g., one thousand simulations for the distribution system
during summer and considering weekdays). The complete process was repeated
for different penetration levels, varying from 10% to 100%.

Position (uniform random variable)

Rated power (MATLAB random selection code) according to
penetration level (%)

Choose irradiance profile from a pool of 11 different options
(uniform random variable)

Scale profiles according to size (each day of consumption profile
was previously randomised)

Select the type of day (weekday or weekend) and season (winter
or summer)

Setting PV
units

Setting load
profiles

Defining
inputs

Set simulation parameters
in OpenDSS

Run
simulations

Get the results
exported to MATLAB

Analysis and
results

Figure 3.6: Flow chart for simulations

The results expected after running all these simulations are the Cumulative
distribution function (CDF) of the voltage for each node. This procedure illustrates
the probabilistic load flow using Monte-Carlo approach, which gives all details
and includes non-linear dynamics associated with the distribution system.
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3.3.5 Simulation results and discussion of produced data

A first observation prior to the final analysis was done for one case to illustrate the
voltage variation associated with the penetration of renewables in the distribution
system. Figures 3.7 and 3.10 show two nodes at two penetration levels; node 7 is
chosen as one that shows small voltage variations, while node 114 is one with a
large voltage variation over different scenarios. The reference IEEE 123-nodes used
included some capacitor banks that are normally disconnected. To compare the
response including reactive compensation, Figures 3.8 and 3.11 show the system’s
response with these capacitors connected. It is observed that the voltage across
the system changes according to the voltage sensed by the OLTCs. However, the
voltage variability for both nodes exhibits the same pattern as the penetration level
increases.

As was stated in Chapter 2, it is expected as a final goal avoiding voltage issues
reducing the curtailment procedure as much as possible. All countries have na-
tional standards that define allowed variations in voltages (including unbalance)
in high voltage, medium voltage and and low voltage networks. For example,
the standard EN-50160 for low voltage and medium voltage from the European
Committee for Electrotechnical Standardization (CENELEC) [210, 211] suggests
that 95% of the 10-minutes mean rms values of the supply voltage shall be within
the range of +/- 10% of nominal voltage, during each period of one week. Also,
all 10-minute mean rms values of the supply voltage shall be within the range of
+10% and -15% of nominal voltage. Other standard is the VDE-AR-N-4105 from
the Verband der Elektrotechnik, Elektronik und Informationstechnik (VDE) [212],
which suggests that the voltage range from all photovoltaic systems in the dis-
tribution grid may not exceed +/-3% in a load-free scenario. This standard is
applicable only to PV generation systems, and customers in Germany are typic-
ally three-phase connected. For this thesis, operational voltage variation was not
analysed according to the standard VDE-AR-N-4105. Nevertheless, the use of the
voltage variation of +/-3% was used because is more restrictive for voltage vari-
ations than the suggested for EN-50160 and this generally prevents issues with
excessive losses and overloading in simulations. Additionally, a potential linear-
isation process is easier for a narrow range of voltage variations. The ECDF for
each node was constructed according to the function defined for MATLAB.

The first node corresponds to node 7, phase A (7.A). Figures 3.7a and 3.7b
show the 1000 profiles obtained for this scenario with 10% and 70% respectively
considering the capaitor banks disconnected. The limits were also drawn with red
dashed line, in order to have a visual picture when voltage limits are violated. In
a similar way, Figures 3.8a and 3.8b show the same profiles when the capacitor
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banks are connected. The same information can be represented in Figure 3.9,
which show the ECDF of each case, considering every single load flow for its
construction. Even considering the increase of voltage fluctuation in the 70% due
to the renewable energy sources, it shows a strong pattern of avoiding voltage
changing above the allowed limits. In this case, the node is close to the feeder,
which means that voltage regulation is done by the rest of the power system.

The other node corresponds to node 114, phase A (114.A). In the same way as
previous, Figures 3.10a and 3.10b show the 1000 profiles obtained for this scenario
with 10% and 70% respectively, considering the capacitor banks disconnected. In
a similar way, Figures 3.11a and 3.11b show the 1000 profiles obtained for this
scenario with 10% and 70% respectively, considering the capacitor banks connec-
ted. It is shown that the 10% of renewable penetration has some small periods of
times in which voltage achieve values outside the allowed limits. Nevertheless, the
corresponding ECDF curve in Figure 3.12 shows that voltage remains inside the
limits in almost 99% of cases. However, it is shown for the case of 70% of renew-
able penetration level that there are several cases in which voltage surpasses the
voltage limit. The corresponding ECDF shows that achieving the voltage values
within the allowed limits corresponds to the 98% of the cases. Even if the graph
shows several cases with voltage variation, the probability of having the values
below the allowed limits is higher than the 95% of cases. Part of this thesis corres-
pond to understand these variations and the impact for the control criteria. The
outcome of this would result in a different criterion in which the voltage targets
are achieved with a margin of probability, instead of thinking only in fixed values
that reduce flexibility and does not respond to the reality in most of the cases.

Moreover, the amount of renewable energy also impacts the voltage fluctu-
ations across the entire system. Figure 3.13 presents the average voltage profile
for these 1000 simulations. It is evident that, for both nodes, the voltage vari-
ation is generally higher as the number of photovoltaic units increases throughout
the system, regardless of whether the capacitor banks from the reference case are
connected or disconnected.

The results of all simulations can be summarised in Figures 3.14, 3.15, 3.16,
and 3.17, which provide a comprehensive overview of the results across all pen-
etration levels and nodes. These graphs consider the number of customers that
experienced voltage issues at least once, assuming one customer per node and
phase. The figures utilise box plots to represent the distribution of results. Each
box plot displays the interquartile range, with the bar representing the 25th and
75th percentiles, and a middle value indicating the median. The ’Whiskers’ lines
extend to the minimum and maximum values obtained from the distribution, with
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(a) Voltage profiles from 1000 simulations considering 10% of renewable penetration

(b) Voltage profiles from 1000 simulations considering 70% of renewable penetration

Figure 3.7: Results of voltage fluctuations obtained for two different renewable
penetration levels at node 7 phase A (7.A), assuming the scenarios correspond to
summer season weekdays and considering the capacitor banks disconnected

any data beyond these limits considered as outliers. Additionally, for each pen-
etration level, the figures indicate the number of customers experiencing voltages
below the lower limit (or "ll", indicated by the red bars) and above the upper limit
(or "ul", indicated by the blue bars). These scenarios demonstrate that there is only
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(a) Voltage profiles from 1000 simulations considering 10% of renewable penetration

(b) Voltage profiles from 1000 simulations considering 70% of renewable penetration

Figure 3.8: Results of voltage fluctuations obtained for two different renewable
penetration levels at node 7 phase A (7.A), assuming the scenarios correspond to
summer season weekdays and considering the capacitor banks connected

a limited penetration margin without voltage issues. The figures show the median
number of customers that experienced voltage outside the allowed range for the
one thousand simulations. It is evident that achieving a penetration level of only
10% without significant voltage issues is possible in all cases analysed. There is
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Figure 3.9: Results of ECDF voltage curves obtained for two different renewable
penetration levels at node 7 phase A (7.A), assuming the scenarios correspond to
summer season and weekdays

a proportional relationship between the penetration level and the number of cus-
tomers with voltage issues. However, the range of variability changes depending
on the type of day, season, and penetration level. It is crucial to study the prop-
erties of the distribution system carefully to identify patterns and characteristics
that help reduce the number of customers experiencing voltage problems under
varying conditions.

Additional circuit parameters must be analysed in order to find the paramet-
ers that helps on identifying which nodes are sensitive or robust to big voltage
oscillations. These parameters should be measured on nodes in which measure-
ment is available and should be checked as an identification parameter (for ex-
ample current and voltage values, R/X ratio, among others). Moreover, to the
voltage restriction, it is recommended to check current and transformer capacity
during control actions. Therefore, it is required to analyse the dynamics behind
the voltage operation considering fixed components and exogenous variables, to
identify the relevant characteristic of the system that helps to construct the model
using the system identification technique considering partial measurement of the
distribution system.
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(a) Voltage profiles from 1000 simulations considering 10% of renewable penetration

(b) Voltage profiles from 1000 simulations considering 70% of renewable penetration

Figure 3.10: Results of voltage fluctuations obtained for two different renewable
penetration levels at node 114 phase A (114.A), assuming the scenarios correspond
to summer season weekdays and considering the capacitor banks disconnected

3.4 Input analysis: determining the impact of power injec-
tions

After simulations and different scenarios are run, the next step is to identify which
of the network nodes are the critical ones with respect to providing control actions
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(a) Voltage profiles from 1000 simulations considering 10% of renewable penetration

(b) Voltage profiles from 1000 simulations considering 70% of renewable penetration

Figure 3.11: Results of voltage fluctuations obtained for two different renewable
penetration levels at node 114 phase A (114.A), assuming the scenarios correspond
to summer season weekdays and considering the capacitor banks connected

(power injections). In this section, it is presented an analysis of how real data
measurements of line power flows and nodal voltages provide, in the absence
of knowledge on system topology and parameters, information on the impact of
power injections on system voltages. For simplicity, it is assumed that measure-
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Figure 3.12: Results of ECDF voltage curves obtained for two different renewable
penetration levels at node 114 phase A (114.A), assuming the scenarios correspond
to summer season and weekdays

ments are noise-free. Additionally, a scenario of critical perturbation is considered
since the desired condition in which data want to be explored is when voltage
achieve values beyond limits. Unfortunately, as showed in Figures 3.9 and 3.12,
the probability of having these operational issues is low for this system in opera-
tional conditions. Therefore, it was considered for the rest of this chapter a fixed
power profile with a high perturbation size instead of a specific penetration level.

3.4.1 Definition and description of test network and scenarios

As stated previously, for this particular analysis only critical perturbations are
observed using the same methodology presented in Section 3.3.3. These scenarios
are critical in the sense that the load/supply perturbations are they contain lead
to significant overvoltage events at some nodes at certain times during the day.
Scenarios involving other nodes and smaller perturbations are not presented since
they were found to cause less critical voltage responses. The following scenarios
over two days were simulated in the system:

S1 Single-phase perturbation at node 85, phase C. Load consumption with a
rated power of 400 kW and 200 kVAr.
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Figure 3.13: Average of voltage profile for a typical summer weekday, considering
two different penetration levels

S2 Single-phase perturbation at node 85, phase C. Photovoltaic generation with
a rated power of 400 kVA at unity power factor.

S3 Single-phase perturbation at node 66, phase C. Load consumption with a
rated power of 400 kW and 200 kVAr.

S4 Two-phase perturbation at nodes 82, phase A and 85, phase C. Load con-
sumption with a rated power of 400 kW and 200 kVAr.

S5 Three-phase perturbation at node 48. Load consumption with a rated power
of 400 kW and 200 kVAr.

S6 Single-phase perturbations at nodes 66, phase C and 85, phase C (synchron-
ized). Load consumption with a rated power of 400 kW and 200 kVAr.

For the scenarios with high consumption, the perturbation reflected in these
two days of simulation was a result of scaling the consumption profile on a critical
day at the node where consumption was considerably high and commonly reflec-
ted voltage issues, using the simulations developed in the previous section. For
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(a) OLTCs connected and capacitor banks disconnected
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(b) OLTCs connected and capacitor banks connected

Figure 3.14: Number of customers with voltage issues during weekdays in sum-
mer at different penetration levels

the case of generation, a similar approach was taken by scaling the generation pro-
file where voltage showed a higher impact on voltage variation. As an illustration
of some of the scenarios investigated and the data obtained, Figure 3.18 shows the
time-series data of power injections at one node during the ten-day simulation;
Figure 3.18a shows the residential load demand at node 85.C (Scenario S1), and
Figure 3.18b shows the power injection from PVs at the same node (Scenario S2).
The selection of nodes for scenarios was based on the voltage variation observed
in the previous section and the distance from the main feeder (for all scenarios, ex-
cept for node 48, where the only motivation was the inclusion of three-phase load
injection based on the original reference). The nodal voltage and power injection
measurements were sampled at a resolution of 10 minutes for all scenarios. This
sampling rate was considered realistic for voltage measurements and is illustrated
in size between tk and tk+1 in Figure 3.18. In total, 1440 measurements were taken
for each variable in each scenario.

The perturbations used in this study were deliberately large in order to max-
imise their impact on the network, and represent critical scenarios for voltage
control. In distribution systems, it is common for several small perturbations to
occur simultaneously throughout the network. However, these are often auto-
matically or naturally mitigated and the power across the system remains largely
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(a) OLTCs connected and capacitor banks disconnected
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(b) OLTCs connected and capacitor banks connected

Figure 3.15: Number of customers with voltage issues during weekends in sum-
mer at different penetration levels

balanced. The focus of this part of the thesis and the proposed methodology is
on scenarios where additional mitigation via control actions is required to avoid
voltages becoming excessively high or low. These scenarios also approximate reg-
ular operation where one part of the system is showing a high imbalance in power
distribution across the nodes.

The proposed metric in this section is based on a weighted transformed Pear-
son correlation coefficient to indicate the most impacted nodes (in terms of voltage
variations) from a power injection at a given node. This provides a partial assess-
ment of the controllability of the distribution system and potential decision support
on which nodal power injections are effective for voltage control.

3.4.2 Preliminary analysis: inferring the voltage–power characteristic
from data

A basic characteristic used to describe distribution system behaviour is the X/R
ratio. Many existing works on network estimation and identification, e.g. [108,
213], assume a small X/R ratio and therefore that voltage control is achieved by
supplying active power to the grid. In practice, however, small X/R may not be
a reliable assumption and the supply of reactive power (e.g. by inverters) could
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(a) OLTCs connected and capacitor banks disconnected
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(b) OLTCs connected and capacitor banks connected

Figure 3.16: Number of customers with voltage issues during weekdays in winter
at different penetration levels

be beneficial for voltage control; ultimately this depends on the actual, rather than
assumed, voltage–power characteristic of the network. Therefore, in this section a
review is given of how to estimate this characteristic from data when impedance
parameters are unknown.

Even with the X/R ratio not known, voltage and power measurements provide
information about network properties and how voltage control should be actuated,
as the following simple analysis shows. Consider the reduced two-node equivalent
system in Figure 2.2. Equation (2.4) can be rewritten in terms of the line loss as

Slosses = Ṽline Ĩ∗r = (Rs + ȷXs) Ĩr Ĩ∗r
= |Ir|2Rs + ȷ|Ir|2Xs,

(3.3)

where Ṽline := Vs φs − Vr φr is the voltage drop over the line. Since the same
current magnitude determines both real and imaginary parts, it can be concluded
that there are proportional relationships between the active component of the im-
pedance and the active power (Plosses ∝ Rs) and the reactive component of the
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(b) OLTCs connected and capacitor banks connected

Figure 3.17: Number of customers with voltage issues during weekends in winter
at different penetration levels

impedance and the reactive power (Qlosses ∝ Xs). Moreover,

Plosses > Qlosses =⇒ Rs > Xs (3.4)

Plosses < Qlosses =⇒ Rs < Xs (3.5)

Plosses ≈ Qlosses =⇒ Rs ≈ Xs (3.6)

Therefore, determining the power dissipated or stored in lines at discrete points
in the network can indicate the effective X/R ratio at those points and therefore
what kind of power injection is most effective for local voltage control. On the
other hand, such an approach offers no information on which nodal voltages are
effected, and to what extent, by nodal power injections; it is required for that a
more comprehensive model of the voltage–power relationship.

3.4.3 Validations for power flowing through lines

To query this assumption and attempt to expose the R/X ratio for the test network
during the scenarios defined in the previous section, the nodal voltages and line
power injections were measured during each of the described perturbations, and
correlations between nodal voltage variations and line power dissipations/stor-
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(a) Scenario S1: Load consumption, node 85 phase C
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(b) Scenario S2: Photovoltaic generation, node 85 phase C

Figure 3.18: Power profiles at node 85 phase C over ten days, scenarios S1 and S2

ages were examined.

First, the voltage profiles for scenarios S1 and S2 are presented in Figure 3.19a
and Figure 3.19b, respectively. The action–reaction effect of the power–voltage
relation is clearly observed in both results when compared with the applied power
perturbations shown in Figure 3.18. In particular, it can be seen that in Scenario S2,
wherein a significant amount of power is injected by PVs at node 85.C, the network
experiences a significant overvoltage event at more that one node; conversely, and
as expected, significant undervoltages are observed during Scenario S1.

To analyse the simulation results further, the power and voltage data are time-
windowed to extract only those data corresponding to significant voltage events.
Let etk := [tk, tk+1] denote the time window starting at time t = tk and extending to
time t = tk+1. The corresponding windows of interest are indicated in Figures 3.18
and 3.19: in Scenario S1, for example, tk = 640 minutes, while in Scenario S2
tk = 690 minutes. In both cases tk+1 − tk = 60 minutes, i.e. each window is one-hour
long and—considering that the data are sampled every ten minutes—contains
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(a) Scenario S1 (Load perturbation)
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(b) Scenario S2 (PV injection)

Figure 3.19: Voltages at all network nodes during two simulated days of scen-
arios S1 and S2. The ±3% off-nominal voltage limits are indicated by dashed lines

six samples. This choice achieves a reasonable balance between capturing the
quasi-dynamics of interest and data storage requirements for the scenarios under
consideration.

Figures 3.20 and 3.21 then illustrate, for Scenario S1, the difference in act-
ive power dissipation and reactive power storage in lines during the significant
undervoltage event that began at tk = 640 min (i.e., the difference between the
maximum and minimum values of dissipated power observed during that event).
The lines are sorted in descending order of the magnitude of the observed power
dissipation or storage, and only the top 18 lines are presented for each phase.

Similarly Figure 3.22 shows, for the same scenario, the 16 nodes that experi-
enced the largest voltage variation on each phase (compared to the nominal value,
and calculating the difference between the maximum value and the minimum
value experienced during the event ek). For Scenario S2, similar distributions
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(a) Active power through lines on phase A
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(b) Active power through lines on phase B
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(c) Active power through lines on phase C

Figure 3.20: Difference in active power flowing through relevant lines of the sys-
tem during the event when there is a high perturbation at node 85 phase C (Scen-
ario S1, tk = 640min)
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(a) Relevant lines on phase A
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(b) Relevant lines on phase B
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(c) Relevant lines on phase C

Figure 3.21: Difference in reactive power flowing through relevant lines of the
system during the event when there is a high perturbation at node 85 phase C
(Scenario S1, tk = 640min)
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of line power losses/storages were obtained but the voltage variations are pos-
itive on the same phase where perturbation is done, which is consistent with PV
injections—see Figure 3.23.
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(a) Voltage variation results on phase A
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(b) Voltage variation results on phase B
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(c) Voltage variation results on phase C

Figure 3.22: Voltage variations at relevant nodes on each phase during the event
when there is a high perturbation (consumption) at node 85 phase C (Scenario S1,
tk = 640min)

It is shown that the most affected nodes in terms of voltages are also the start
or end nodes in the lines that dissipate or store the most power; for example,
nodes 85.C, 84.C are the two most impacted nodes and also feature in the most
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(c) Voltage variation results on phase C

Figure 3.23: Voltage variations at relevant nodes on each phase during the event
when there is a high perturbation (generation) at node 85 phase C (Scenario S2,
tk = 690min)

affected lines. It can also be observed that for each line the active power dissip-
ated and reactive power stored are similar in magnitude; since, as pointed out in
equation (3.3), this indicates that for this network under these scenarios the R/X
ratio may be around unity.

From this simple example, it can be concluded that a general assumption about
the R/X ratio of a distribution network—and whether voltage control would be
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most effectively achieved by active or reactive power injections—should not be
made without analysing information provided by measurements. On the other
hand, the same example shows that measuring power dissipated or stored in lines
and correlating with voltage measurements can provide some indication of the
R/X ratio even without having system topology information.

3.4.4 Estimating the network power–voltage characteristic from data

System voltages and the power flows lie on the manifold characterised by the
nonlinear power flow equations. In practice, however, voltages and flows may
be confined to only a small region of the manifold around the operating point,
determined by permitted operational limits. This motivates and justifies the use
of linearisation to describe voltage–power relationships. In [214], linearisation of
the power flow equation for radial distribution systems leads to the voltage–power
relation

V̄ = 1 + Φ̄RP̄ + Φ̄XQ̄, (3.7)

where V̄ is the vector of voltages for nodes under analysis (without loss of gener-
ality, it is assumed that the voltage at substation is 1 pu), P̄ and Q̄ are matrices of
active and reactive power injections, and Φ̄R and Φ̄X are matrices of sensitivities of
nodal voltages to active and reactive power injections, respectively; for the voltage
at node i considering power injections at node j

ΦRij =
∂Vi

∂Pj
and ΦXij =

∂Vi

∂Qj
. (3.8)

Where distributed generation is present in the network, equation (3.7) is easily
modified to account for those nodes (denoted g) providing power and those that
constitute loads (denoted d):

V̄ = 1 + Φ̄RP̄g + Φ̄XQ̄g − Φ̄RP̄d − Φ̄XQ̄d. (3.9)

These expressions then provide the desired information about how active and
reactive power injections affect nodal voltages throughout the network. However,
computing the sensitivity matrices Φ̄R and Φ̄X relies on either knowing the system
topology [215, 216] or, if estimated from measurements, that these sensitivities are
time invariant [217–219]. Thus, equations (3.7) and (3.9) represent a traditional
load flow model, whereas the voltage–power characteristic in a modern distri-
bution system is governed by the individual and combined quasi-dynamic beha-
viours of the electrical system, loads and generation; for example, the actions of
consumers within and across days, and the daily and diurnal variations in solar
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and wind availability. Therefore, an alternative approach is needed if the model
should capture these effects.

3.4.5 The Pearson correlation as a tool to identify connectivity

The previous analyses provide methods for characterising the voltage–power re-
lation in a network from measurements, either in the form of the X/R ratio at
discrete points or the linear whole-system model (3.9); the latter quantifies how
power injections affect nodal voltages, but assumes time invariance of this sensit-
ivity. The aim is to establish a similarly informative relationship, using available
measurements of power injections and voltages, albeit also capturing the time-
varying effects of loads and DG. To this end, the first step is to identify the nodal
connectivity in the network in order to define which nodal voltages are affected
by a power injection.

An effective approach to identifying this connectivity is using the statistics
available from real-time voltage measurements; for example, previous works have
used signatures in time-series data to identify topology changes [220] and the Pear-
son correlation coefficient as an indicator of phase identification and connectivity
[108, 221, 222]. This latter idea is adopted here and extended in the next section to
allow determination of the sensitivity of voltages to power injections. First, it was
reviewed this technique and illustrate its usefulness for connectivity and phase
identification.

Suppose Vi(tk, tk+1) denotes the time series of Nt measurements of the voltage
at node i sampled with period T seconds over a window between times tk and
tk+1 = tk + (Nt − 1)T, i.e. {Vi(tk), Vi(tk + T), Vi(tk + 2T), . . . , Vi(tk+1)}. The (sample)
Pearson coefficient relating nodes i and j is

ρ
(
Vi(tk, tk+1), Vj(tk, tk+1)

)
:=

Nt−1

∑
ℓ=0

(Vi(tk + ℓT) − V̄i)
(
Vj(tk + ℓT) − V̄j

)

√
Nt−1

∑
ℓ=0

(Vi(tk + ℓT) − V̄i)
2

√
Nt−1

∑
ℓ=0

(
Vj(tk + ℓT) − V̄j

)2

(3.10)

where

V̄i :=
1

Nt

Nt−1

∑
ℓ=0

Vi(tk + ℓT) (3.11)

is the sample mean of the time series Vi(tk, tk+1) for node i and V̄j is defined ac-
cordingly.

From a geometrical perspective, the Pearson coefficient corresponds to the co-
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sine of the angle between the two random variables [223, 224]. Therefore, this
coefficient reflects how closely the variations in signals Vi and Vj are matched: if
ρ(Vi, Vj) = 1 then all of the variance in Vj is explained by Vi. In literature, there are
other indices that are often used to develop a sense of the strength and direction
of the relationship between two variables, e.g., Spearman coefficient [158, 225] but
they are based on different principles. For instance, Spearman coefficient meas-
ures monotonic relationships, in which two variables move together in the same
direction, and not necessarily at a constant rate. Additionally, it works with or-
dinal data, which is not the data that is expected to be necessarily used in this
context. On the other hand, Pearson coefficients are used to measure linear rela-
tionships and is sensitive to small changes, which can be potentially useful in the
definition of a new metric.

To give a simple visualisation of how the Pearson coefficients may be used to
assess the impact of power injections and identify nodal connectivity, it is calcu-
lated these for the IEEE 123-node system, following the pertubations presented
on each scenario introduced in previous section. All Pearson coefficients obtained
when there is only OLTCs activated are presented in Appendix F. Some of the
relevant results are discussed in this section.

Using a node (149.C) close to the feeder as a reference, it was calculated the
Pearson coefficient between each node and this reference when there is a single-
phase perturbation at node 85.C (Scenario S1). The results are displayed in Figure
3.24. For this and the following examples, unless otherwise specified, the number
of measurements per event used to calculate the Pearson correlations using ex-
pressions (3.10) and (3.11) corresponds to 60 minutes (7 samples per calculation).
Values used for calculations and results of this case are shown in Appendix F,
table F.1. This figure shows the distribution system considering a cable for each
phase (where applicable). It is observed that in the main, there are cables with
three phases, while some phases are not available for some of the downstream
parts. The colour of each line represents the correlation obtained with respect to
the indicated voltage node and phase (some of them will have a positive correla-
tion, while others will have a negative value, which represents the phase in which
the voltage is measured). The applied perturbation and voltage change at 85.C
causes highly correlated voltage changes at all other nodes in the network. (Tak-
ing any other reference node shows a similar result.) Two of the phases (B and
C) respond to the applied perturbation with positive correlation while the other
(A) shows an inverse response because of the electromagnetic compensation in the
system. From these data, it can be readily identified that the network is fully con-
nected. More than that, however, this brief example shows that measured changes
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Figure 3.24: Pearson coefficients obtained for each node when there is an event
with high perturbation at node 85, phase C

in voltages provide information about the phase in which a perturbation occurred.

Another example to understand the impact of power injections corresponds
to perturbations done in different combinations of phases of the distribution sys-
tem. The response in a 3-phase balanced perturbation at node 48 is shown in
Figure 3.25. Values used for calculations and results of this case are shown in
Appendix F, table F.5. This perturbation, applied to all three phases, resulted in
the same voltage change across all nodes in the system. This is because the meas-
ured voltages are highly correlated, with almost the same values from the main
feeder to all the others OLTCs. After this point, the correlation value change (for
the case after node 160, it drops close to 0) but it remains the same for all nodes
and phases. Therefore, knowledge of one phase is sufficient to control the other
two, as is the case in a balanced distribution system, which can be modelled as a
single-phase system. Identifying the distinct phases will not make a difference if
the perturbation or compensation is applied in the same way.

The last case corresponds to the perturbation done in two of three phases. A
power-injected perturbation is done only at nodes 82.A and 85.C. The responses
using different references are presented in Figure 3.26 and Figure 3.27. Values
used for calculations and results of this case are shown in Appendix F, table F.4.
The correlations obtained using node 149.C as a reference show that the applied
perturbation and voltage cause highly correlated voltage changes at the nodes
related to the perturbations. One of the phases (C) responds with high positive
correlation values to the applied perturbation, while the other two phases show
different behaviours. Phase A reflects voltage variations that cause low correl-
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Figure 3.25: Pearson coefficients obtained for each node when there is an event
with high perturbation at node 48 (3-phase perturbation)

ation values (close to +0.4), whereas phase B shows negative correlation values
(-0.4) in response to the perturbation. Some of the values for the OLTCs that are
not close to the perturbation points reflect values that are close to 0 correlation.
The results obtained using node 149.A as a reference show something different,
where phases A and C both show positive correlation (after the OLTC at node
160) and then low correlation values for the same phases, while phase B shows
negative correlation values for the entire network. In both cases, however, it is
possible to identify completely the three phases from the distribution system. In
this case, each phase can be treated individually, and therefore, each one should
be modelled independently.

What is required is to more precisely determine, however, the quantifiable im-
pact on voltages that a perturbation or power injection has. This is addressed in
the next section, wherein it is proposed to weight (transformed) Pearson coeffi-
cients with measurements of line power flows to produce a metric that indicates
the nodes most affected by a perturbation.

3.4.6 A new metric for combined connectivity identification and voltage
sensitivity analysis

It was demonstrated, via a simplified analysis in Section 3.4.2, how measurements
of active and reactive power flows in lines provide information on the equivalent
impedance of the rest of the system. Accordingly, it can be determined whether
it is active or reactive power control that would be the more effective means of
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Figure 3.26: Pearson coefficients obtained for each node when there is an event
with high perturbation at nodes 82, phase A, and 85, phase C, reference at node
149, phase C

achieving voltage regulation. Moreover, in the previous section, it was demon-
strated how the Pearson correlation coefficient enables phase and topology identi-
fication from time-series voltage measurements. In this section, these two ideas are
combined to produce a single metric that provides information on the connectivity
of nodes in the network and indicates the sensitivity of voltages at network nodes
to active and reactive power variations at a reference node. The proposed metric
thus informs on the extent to which a power injection at a controlled node is able
to influence the voltage across the network.

Assume that the voltage is measurable at a certain number of nodes in the
network, the set of which is Nm ⊆ N , and the active and reactive power is meas-
urable at both ends of some set of paths E ⊂ Nm ×Nm; a distinction between a path
and a line is presented to accommodate the problem setting of having incomplete
topology information, explained as follows.

Figure 3.28 depicts two possible situations for measured nodes ni and nk in
a radial network. In (a), it is known that ni and nj are connected via lines (i, k)
and (k, j) and an intermediate node nk, while in (b) the precise arrangement of
lines between ni and nj is not known. For (a), the active power ”loss” and reactive
power ”storage” in the path (i, j) ∈ E are given, respectively, as

Ppath
ij = Pij + Pji = Pij + Pki + Pkj + Pjk, (3.12)

Qpath
ij = Qij + Qji = Qij + Qki + Qkj + Qjk, (3.13)
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Figure 3.27: Pearson coefficients obtained for each node when there is an event
with high perturbation at nodes 82, phase A, and 85, phase C, reference at node
149, phase A

which accounts for the load consumption at k. For (b), the active and reactive path
powers are given as

Ppath
ij = Pij + Pji, (3.14)

Qpath
ij = Qij + Qji. (3.15)

Here Pij is the power injected into the line at ni in the direction of nj, and vice versa;
therefore, it is assumed that for ni ∈ Nm the direction of power flows with respect
to other measured nodes is known, which in turn introduces a tacit assumption on
knowledge of the topology of the system but that is not quite as strong as know-
ing the entire topology. For example, consider the system shown in Figure 3.1
and the problem of calculating Ppath

ie between nodes ni and ne; it is required to
know whether Pec or Per is the relevant line power injection in the sum. Likewise,
to compute Ppath

ek requires knowing whether the direction from ne to nk is along
(e, c) or (e, r). Therefore, preliminary topology identification from data may be
required [108, 109].

The value Spath
ij = Ppath

ij + ȷQpath
ij accounts for any consumption or generation

along the path from ni to nj. Even when ni and nj are not connected by a line
this value provides relevant information on the network with respect to control.
For example, assuming ni and nj are connected by a path, if the value of Spath

ij

small, then the section in between is near balance, further suggesting that addi-
tional control actions are not necessary along that path. On the other hand, if the
value is high, this suggests control action (power injections or extractions) could
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Figure 3.28: Power flows into lines in the cases that the connectivity is (a) known
and (b) unknown

be beneficial.

The method applied is highly adaptable, even when there are controlled devices
between measurable nodes that cannot be directly measured or controlled. Figures
3.29 and 3.30 illustrate examples of how power balance is considered in the pres-
ence of these devices. The operation of the OLTC impacts the balance in Ppathik
due to associated losses. However, the overall balance in Ppathij remains nearly the
same even when the connectivity is unknown. Therefore, the value of Pij can be
calculated in the same way as indicated in 3.14. Similarly, in the presence of a bank
of capacitors, the balance in Qpathik is altered due to the presence of the device op-
eration. However, the overall balance in Qpathij remains almost the same, even
when the connectivity is unknown. Therefore, the value of Qij can be calculated
as indicated in 3.15.
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Figure 3.29: Power flows into lines in the cases that the connectivity is (a) known
and (b) unknown, considering an OLTC device between measurable nodes

It is proposed to enhance the information on network connectivity and phase
information provided by the Pearson correlation coefficients with information
provided by these power balances along paths. In particular, it is weighted the
Pearson coefficient for (i, j) by the maximum difference in Ppath

ij and Qpath
ij over a

time window of observations:

∆Ppath
ij (tk, tk+1) := max

t∈[tk ,tk+1]
[Ppath

ij (tk, tk+1)] − min
t∈[tk ,tk+1]

[Ppath
ij (tk, tk+1)], (3.16)

∆Qpath
ij (tk, tk+1) := max

t∈[tk ,tk+1]
[Qpath

ij (tk, tk+1)] − min
t∈[tk ,tk+1]

[Qpath
ij (tk, tk+1)]. (3.17)
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Figure 3.30: Power flows into lines in the cases that the connectivity is (a) known
and (b) unknown, considering a capacitor bank between measurable nodes

The (i, j) element of the proposed matrices MP and MQ is then defined as

MP
ij(tk, tk+1) := ∆Ppath

ij Z
(
ρ
(
Vi(tk, tk+1), Vj(tk, tk+1)

))
(3.18)

MQ
ij (tk, tk+1) := ∆Qpath

ij Z
(
ρ
(
Vi(tk, tk+1), Vj(tk, tk+1)

))
(3.19)

where the function Z(·) is the Fisher z-transformation [222]

Z(ρ) = arctanh(ρ) (3.20)

which, when applied to the Pearson correlation value, recovers an approximately
normal distribution of coefficients, enhances the values that show higher correla-
tions and can be used for hypothesis testing and confidence interval estimation.
In this case, this helps to more clearly distinguish those nodes that are highly
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correlated with the reference or perturbation point.

The value of MP
ij (MQ

ij ) is largest when the voltages Vi and Vj are highly cor-
related (indicating phase and topological connectivity between ni and nj) and,
simultaneously, the variation in net active (reactive) power between ni and nj is
large; this is indicative that the large power fluctuations in this path are causing the
voltage variations, and control of power injections locally could positively impact
voltage. The value is, on the other hand, small if either the voltages are uncorrel-
ated or the power variations are small, in which case control of power injections
locally would have minimal effect. (If, for example, path (i, j) has a large value
of Ppath

ij but small ∆Ppath
ij , then it is indicated that voltage variations between ni

and nj are not caused by the presence of this net power and the voltage variation,
if present, is explained by some other effect; therefore, manipulation of power
injections locally may have minimal effect on voltages.)

When the connection between two nodes is known and it is done through a
line, it is defined that Spath

ij = Slosses
ij . When this path takes a portion of the system

that is unknown or non-measured, the value Spath
ij will represent the power balance

between both nodes, which might be or not connect through a line. This provides
relevant information of the network.

To illustrate this idea and potential usefulness of these metrics, it is revisited
the simple 123-node example with a perturbation at node 85.C. Results obtained
for all scenarios are presented in more detail in Appendix F. Some of the relevant
results are discussed in this section. Figure 3.31 indicates the resulting paths in
Scenario S1 with a values of MP and MQ higher than 0.5. This path connects
the nodes in which the post-perturbation voltage variation is higher than 0.03 pu.
The figure indicates how the effect of the power injection propagates through the
distribution system in the form of variations to voltage.

The highest values of MP and MQ relates the nodes and lines that are highly
correlated to the perturbation observed in measurements. Some of the highlighted
paths represented the voltage regulators (connection 67C − 160rC). This gives a
numerical indicator which represents the power that flows between nodes beyond
the unperturbed condition (perfect power consumption and power generation bal-
ance). This tells about the sections in which the model should pay more attention
in order to describe the system under study.

Figure 3.32 indicates the node pairs with the largest values of MP and MQ

observed for Scenario S1 during the 60-minute undervoltage event starting at
tk = 640 minutes. Firstly, note that Figure 3.32 is a version of Figures 3.20 and 3.21
enhanced with the connectivity and correlation information offered by the trans-
formed Pearson coefficients: Figure 3.32 performs a reweighting and reordering
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Figure 3.31: Representation of MP and MQ values obtained for values higher than
0.5 when there is a high perturbation at node 85.C (Scenario S1)

of the lines that experienced significant power dissipation in Figure 3.20 or stor-
age in Figure 3.21, ranking higher those that have highly correlated end voltages.
The most notable example of this is line 149–1, close to the feeder, which sees
significant power activity but moves to a lower rank when voltage correlations are
taken into account; indeed, neither node 1C nor node 149C appear in the list of
nodes that experience significant voltage variations during the perturbation event
(Figure 3.22).

Considering that Scenario S1 corresponds to a load consumption at node 85,
phase C, it can be seen that four of the top six lines in terms of magnitude of MP

or MQ—lines 84–81, 85–84, 80–78, 77–76—are graphically close to the perturbation
node and, in particular, are in the radial branch emanating from node 76. All
involve nodes that experience significant voltage perturbations (Figure 3.22). The
other notable observation is the group of lines along a path that contains voltage
regulator at node 160; lines 60–57, 52–152, 67–160, 54–57, 67–72 all rank highly in
terms of MP and MQ and indicate an area of the network that could benefit from
power injection as a control action in response to the large consumption event at
node 85.

Figure 3.33 shows the corresponding MP and MQ values for Scenario S2,
wherein power is injected to node 85C. Similar observations may be made, albeit
in the opposite direction: the high MP and MQ values are found in lines along
paths that link nodes with significant overvoltages (Figure 3.23) and indicate areas
of the network where power extractions could be beneficial control actions.

To assess the impact of unmeasured control devices, the same calculation was
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Figure 3.32: Obtained relevant values MP and MQ for Scenario S1 (tk = 640min)

performed by considering the connection and operation of the capacitor banks
installed in the circuit. Figure 3.34 illustrates the resulting paths in Scenario S1
with values of MP and MQ higher than 0.5. This time, it is observed that additional
nodes in the system are experiencing voltage issues (attributed to the reactive
compensation performed in all three phases). Therefore, the metrics MP and MQ
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Figure 3.33: Obtained relevant values MP and MQ for Scenario S2 ( tk = 690min)

reflect the effects on all phases, in contrast to the previous example where only
one phase was affected.

Figure 3.35 indicates the node pairs with the largest values of MP and MQ

observed for Scenario S1 during the 60-minute undervoltage event starting at tk =
640 minutes. Figure 3.35 performs a reweighting and reordering of the lines that
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Figure 3.34: Representation of MP and MQ values obtained for values higher than
0.5 when there is a high perturbation at node 85.C and the capacitor banks are
connected (Scenario S1)

experienced significant power dissipation, ranking higher those that have highly
correlated end voltages.

Considering that Scenario S1 corresponds to a load consumption at node 85,
phase C, it is observed that four out of the top six lines in terms of the magnitude
of MP or MQ—lines 84–81, 85–84, 80–78, 77–76—are located close to the perturb-
ation node, specifically in the radial branch originating from node 76. The main
difference compared to the previous example is that the metrics now take into
account relevant values in other phases, not just phase C. This is due to the im-
pact of reactive compensation occurring in all phases, which significantly affects
the voltage not only in phase C. However, this effect is only evident up to node
83, which is the connection point between phase C of node 85 and the rest of the
system. Therefore, any compensation performed along the highlighted path will
influence the voltage observed in the nodes marked in the figure. Similarly, in
line with the previous example, the group of lines along a path that includes the
voltage regulator at node 160—lines 60–57, 52–152, 67–160, 54–57, 67–72—ranks
high in terms of both MP and MQ, indicating an area of the network that could
benefit from power injection as a control action in response to the significant con-
sumption event at node 85.

Figure 3.36 shows the corresponding MP and MQ values for Scenario S2,
wherein power is injected to node 85C. Similar observations may be made, al-
beit in the opposite direction: the high MP and MQ values are found in lines
along paths that link nodes with significant overvoltages and indicate areas of the
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Figure 3.35: Obtained relevant values MP and MQ when the capacitor banks are
connected for Scenario S1 (tk = 640min)

network where power extractions could be beneficial control actions.

Additionally, all cases were run with a connection between nodes 54 and 94
was done to evaluate the impact of meshing the circuit. Figure 3.37 illustrates the
resulting paths in Scenario S1 with values of MP and MQ higher than 0.5. It is
shown how some of the lines of phase A that are also part of the meshed region
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Figure 3.36: Obtained relevant values MP and MQ when the capacitor banks are
connected for Scenario S2 ( tk = 690min)

are highlighted by the calculation. Therefore, the metrics MP and MQ reflect the
effects on phases A and C, in contrast to the previous cases where only one phase
was affected (with only the OLTC connected) or all phases (which included the
reactive compensation from capacitor banks in all phases).
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Figure 3.37: Representation of MP and MQ values obtained for values higher than
0.5 when there is a high perturbation at node 85.C and meshed by connection
between nodes 54 and 94(Scenario S1)

Figure 3.38 indicates the node pairs with the largest values of MP and MQ

observed for Scenario S1 during the 60-minute undervoltage event starting at tk =
640 minutes. Figure 3.38 performs a re weighting and reordering of the lines that
experienced significant power dissipation, ranking higher those that have highly
correlated end voltages.

Considering that Scenario S1 corresponds to a load consumption at node 85,
phase C, it is observed, as in previous cases, that four out of the top six lines
in terms of the magnitude of MP or MQ—lines 84–81, 85–84, 80–78, 77–76—are
located close to the perturbation node, specifically in the radial branch originat-
ing from node 76. The notable difference is the appearance of lines associated
with phase A that connect the node from the event to the point used to mesh the
circuit. This indicates that the metrics are capable of capturing the operating con-
dition of the system, whether it is radial or meshed, which is reflected in voltage
correlation and power distribution across the circuit. Once again, any compensa-
tion performed along the highlighted path will influence the voltage observed in
the nodes marked in the figure. Similarly, the group of lines along a path that
includes the voltage regulator at node 160—lines 60–57, 52–152, 67–160, 54–57,
67–72—ranks high in terms of both MP and MQ, indicating an area of the net-
work that could benefit from power injection as a control action in response to the
significant consumption event at node 85.

Figure 3.39 shows the corresponding MP and MQ values for Scenario S2,
wherein power is injected to node 85C. Similar observations may be made, al-



102 3.4. Input analysis: determining the impact of power injections

81
C
-8
4C

84
C
-8
5
C

57
C
-6
0C

15
2C

-5
2C

8C
-1
3C

1C
-7
C

54
C
-5
7C

7C
-8
C

52
C
-5
3C

14
9C

-1
C

78
C
-8
0C

53
C
-5
4C

76
C
-7
7C

80
C
-8
1C

67
C
-7
2C

72
C
-7
6C

57
A
-6
0A

16
0
rC

-6
7C

77
C
-7
8C

93
A
-9
4
A

0

5

10

Line

M
P

(a) Obtained MP values

57
C
-6
0C

15
2C

-5
2C

8C
-1
3C

1C
-7
C

81
C
-8
4C

84
C
-8
5C

54
C
-5
7C

7C
-8
C

52
C
-5
3C

14
9C

-1
C

78
C
-8
0C

53
C
-5
4C

76
C
-7
7
C

80
C
-8
1
C

67
C
-7
2C

72
C
-7
6C

16
0r
C
-6
7C

77
C
-7
8C

5
7A

-6
0A

7
6A

-8
6A

0

5

10

15

20

Line

M
Q

(b) Obtained MQ values

Figure 3.38: Obtained relevant values MP and MQ when the circuit is meshed by
connecting nodes 54 and 94 for Scenario S1 (tk = 640min)

beit in the opposite direction: the high MP and MQ values are found in lines
along paths that link nodes with significant overvoltages and indicate areas of the
network where power extractions could be beneficial control actions.

For other scenarios, the results in Appendix F reflect similar performance of
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Figure 3.39: Obtained relevant values MP and MQ when the circuit is meshed by
connecting nodes 54 and 94 for Scenario S2 ( tk = 690min)

the metric when the system topology is changed or when there is additional power
compensation from capacitor banks. The main conclusion drawn from the applic-
ation of these metrics to each operational condition is that the metrics are capable
of detecting the presence of controlled devices and quantitatively reflecting their
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impact. This is particularly useful in cases where there is no prior knowledge of
the system topology or when an assessment of the current system is desired, re-
gardless of the installed devices or the system’s topology. The metrics provide a
value that indicates whether additional compensation is required when elements
such as capacitor banks are installed, even if they are installed in different phases.
Furthermore, in the case of a meshed distribution system, the metrics capture the
characteristics of the topology and assess whether the newly formed paths, result-
ing from connections, are significant for modelling and control. This is possible
because the values of voltages and power can reflect these changes in the sys-
tem. It is conceivable that the proposed metrics can be calculated from time-series
data collected following power injections performed at different locations in the
network, which would facilitate the identification of nodes that have the greatest
potential to impact the system voltage. As a result, these nodes can be considered
as relevant input points from a control perspective.

3.5 Output analysis: Inferring the network state from ob-
served voltages

Section 3.4 explored the characterisation of inputs—effective nodes for power in-
jections or extractions—from information available in power through path con-
necting nodes and their connectivity. In this section it is explored the characterisa-
tion of possible outputs—effective nodes for voltage measurements—by studying
the voltage variations and propagations caused by a perturbation in the system.
Considering that the aim is to maintain a satisfactory voltage profile, the question
that arises is which nodal voltages are the critical ones in the network, such that
if these are measured and regulated, it can be inferred that network voltages as a
whole are satisfactory.

The underlying idea behind these developments is the concept of electrical dis-
tance between nodes. The correlation between two nodal voltages is related to
their electrical distance. If a voltage variation is observed at node i, the variation
at node j can be inferred, albeit with some level of uncertainty, based on their
electrical distance. When characterising possible sites for voltage measurement, it
may be sufficient to measure the voltage at just one node among a collection of
electrically close nodes, from which the voltages of the rest can be inferred. The
traditional measure of electrical distance, calculated from sensitivities, quantifies
the level of uncertainty and allows for the tracing of voltage variations across elec-
trically close nodes in the network [107]. Similar ideas for modelling unbalanced
distribution systems have been extensively presented in previous works [226–228]
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for balanced systems and [216, 229–233] for unbalanced systems. These works
analyse voltage sensitivity to detect the dominant factors contributing to voltage
fluctuation. However, these approaches require prior knowledge of the system to-
pology. Therefore, the challenge lies in estimating the electrical distances between
different nodes in the network using measured data.

3.5.1 Definitions of electric distance

The electric distance can be used in order to measure the voltage variation propag-
ated into the distribution system. Therefore, setting a definition of electric distance
is required. A first definition corresponds to the impedance that is seen between
nodes. The "closer" a node is from other, the smaller the impedance seen between
nodes. This assumption is done in some papers, where an electrical distance is
required to be calculated [215, 234, 235]. The sensitivity matrices presented before
are used to get the electric distance by relating them to the distance between nodes
and summarising the effect in the electric parameters associated with the electric
line between two nodes. However, this assumption considers that all cables around
the distribution system are the same (i.e., same material and same cross-section),
which is not necessarily true in real systems.

A more precise discussion about electrical distance is done in [107, 236], in
which different ways of defining any distance D(i, j) are analysed under the veri-
fication of the following properties:

• Symmetry: D(i, j) = D(j, i)

• Posivity: D(i, j) ≥ 0

• Nullity: D(i, j) = 0 ⇔ i = j

• Triangular inequality: D(i, j) + D(j, k) ≥ D(i, k)

There are different ways to describe the relationship between nodes, e.g. using
the sensitivity matrices Rij and Xij from equation (3.8), respectively, or obtaining
the Zbus from the system. The magnitude of coupling in terms of voltage between
two nodes of a distribution system can be quantified by the maximum attenu-
ation of voltage variation obtained from the previous matrices mentioned before.
In general terms, a matrix of attenuation between all nodes αij is then available.
Each term αij of the matrix gives a measure of the attenuation at node i with a
voltage variation ∆Vi of a disturbance created at node j with a voltage variation
∆Vj. Equations (3.21) and (3.22) explains this relationship:

∆Vi = αij∆Vj (3.21)
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where αij can be defined as follows:

αij =
∣∣∣∣
Zij

Zjj

∣∣∣∣ =
δVi
δPj

+ δVi
δQj

δVj
δPj

+ δVj
δQj

(3.22)

It is important to remark that this matrix attenuation is not symmetric, since
αij ̸= αji. Additionally, a product of attenuation is required before changing over
from a couple of nodes to others. Figure 3.40 illustrates this idea.

Z ∆V 2Z ∆V
2

2Z ∆V
4

2Z ∆V
8

Z ∆V
16

Z Z Z Z

D D D D

2D

3D

4D

Figure 3.40: Example of voltage attenuation, which is affected by the electric dis-
tance seen in between. A longer distance will produce bigger voltage variation

An interpretation of αij after the electric distance definition can be the attenu-
ation between nodes when the current flows from node j to node i. If the complex
impedance Z̃ij, Z̃ji, Z̃ii and Z̃jj are considered and Z̃ij = Z̃ji, the following relation-
ship can be presented:

Z̃ij

Z̃jj
= αijei(θij−θjj) = αijei(∆θij) (3.23)

Z̃ji

Z̃ii
= αjiei(θji−θii) = αijei(∆θji) (3.24)

It is possible to take the logarithm of attenuation as a definition of the distance
between two nodes. Additionally, the formulation can consider both terms αij and
αji to make the distance definition symmetric. Therefore, the electric distance can
be written, as shown in Equation (3.25).

3.5.2 Results after evaluating definitions of electric distance

In[36], a detailed discussion about the different definitions of electric distance was
presented, including the relationship with the voltage propagation around the
distribution system. Some simulations are presented to validate these definitions
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and their effect on the voltage outcome by comparison. For electric distance, two
definitions are going to be compared: the first definition, which is based in electric
impedance between nodes; the second definition corresponds to the following
expression:

D(i, j) = D(j, i) = − ln

(
Z̃ij

2

Z̃iiZ̃jj

)

= − ln(αijαji) − i(∆θij + ∆θji) = DV(i, j) + Dph(i, j)

(3.25)

It is shown that electrical distance comprises a real component (DV(i, j)) known
as voltage electrical distance and an imaginary component (Dph(i, j)) known as
phase electrical distance. All the mathematical properties mentioned earlier can
be proven for the obtained expression [107]. Since this analysis focuses solely on
voltage variations, the concept of voltage electrical distance will be discussed. A
mathematical expression for the voltage electrical distance between all nodes in
the system can be defined using various elements of the network matrix.

Figure 3.41 and Figure 3.42 present examples of nodes sorted by proximity
using different definitions of electrical distance when a significant perturbation
is applied to node 85, phase C, according to scenario S1. A comparison is made
between nodes sorted by the impedance between nodes as a measure of elec-
trical distance (as shown in Figure 3.41) and the voltage distance metric in equa-
tion (3.25) (as shown in Figure 3.42). In each case, the actual voltage variations
observed at the same nodes are shown as a basis for comparison. The electrical
distances are calculated with respect to the perturbation node, 85C; therefore, the
distance indicated for 85C is zero, and the closest node (according to both distance
definitions) is 84C. Tabulated values for this example and all simulated cases are
presented in Appendix G.

In a similar way, Figure 3.43 and Figure 3.44 present examples of nodes sorted
by proximity using different definitions of electrical distance when a significant
perturbation is applied to node 85, phase C, according to scenario S2.

As shown in both examples, a positive voltage variation indicates an increase
in voltage during the event, while a negative voltage variation reflects a decrease.
The variation pattern differs for each phase, and it is determined by the voltage-
power balance observed at each node. Since the perturbation is applied to phase
C in both scenarios, the highest voltage variation is observed in the same phase.
The variation follows the nature of the perturbation: in Scenario S1, the voltage
on the same phase tends to decrease as it gets closer to the perturbed node due to
the high power consumption, whereas in Scenario S2, the variation is positive as
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Figure 3.41: Electric distances and sorted voltages by measuring only impedance
between nodes when there is a high perturbation at node 85, phase C (scenario S1,
tk = 640min)

some power flows back to the feeder. Since the perturbation is only applied to one
phase, there will be another phase that responds in the opposite manner as it gets
closer to the perturbed node. Finally, the third phase acts to compensate for the
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Figure 3.42: Voltage electrical distance and sorted voltages according to (3.25)
when there is a high perturbation at node 85, phase C (scenario S1, tk = 640min)
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Figure 3.43: Electric distances and sorted voltages by measuring only impedance
between nodes when there is a high perturbation at node 85, phase C (scenario S2,
tk = 690min)

effects observed in the other two phases, but the voltage variation (positive and
negative) is not as significant as that seen in the other two phases.

For the same event, voltage variations are sorted in different ways to gain a bet-
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Figure 3.44: Voltage electrical distance and sorted voltages according to (3.25)
when there is a high perturbation at node 85, phase C (scenario S2, tk = 690min)
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ter understanding of how the concept of distance can assist in building a model of
voltage variation propagation. In the first example, Figure 3.41 displays voltages
sorted according to the definition of impedance observed using the perturbation
node as a reference (S85.C), while Figure 3.42 utilises the electrical distance presen-
ted in equation (3.25). The results obtained from both models indicate that both
electrical distance measures provide a reasonable prediction of voltage variation:
smaller electrical distances generally correspond to larger voltage variations after
perturbation when the reference for calculation is over the same phase. Con-
versely, an inverse effect is observed over the other phases, as the same "point"
would be the farthest if the reference is a fixed node within a specific phase. The
differences in the ranked orders can be explained by the information considered
in each electrical distance calculation: the impedance method focuses on the mag-
nitudes of voltage variations but does not properly account for the network’s to-
pology, whereas the voltage electric distance metric considers both the voltage
variation and the system’s topology. For example, node 60C illustrates this dis-
tinction: it ranks third (in Scenario S1) when sorted by impedance-based electrical
distance, but only 19th when sorted by the voltage electrical distance metric.

Figure 3.22 shows that the voltage variation at node 60C ranks as the 14th
largest in the system following the perturbation. However, node 60C is located on
the other side of a voltage regulator from the perturbation at 85C, which leads to
a misleading effect on the impedance calculation. The voltage distance metric is
more effective in filtering out this effect and accurately determining the nodes that
are truly electrically close. Similar results were obtained for Scenarios S3, S4, and
S5.

The impedance method primarily focuses on the magnitude of voltage vari-
ation, which does not necessarily reflect the reality of the system’s topology. On
the other hand, the voltage electric distance more accurately sorts the nodes by
considering the voltage variation, system position, and topology. This informa-
tion is crucial when clustering nodes is necessary for developing the system model
for control purposes. Only nodes that are electrically close should be clustered to-
gether into a single ’node’ where voltage is measured. In practice, voltage is meas-
ured at one of the nodes in the cluster, and the voltages at other nodes within the
cluster can be inferred from the electrical distance.

The closest voltage variation can be modelled with topology knowledge and
maximum variation and behaves in the same way as the observed system. As-
suming that all nodes are measured, and the biggest voltage variation is detected,
the system can be modelled according to equation (3.21). Figure 3.45 shows the
results obtained from perturbation S1 as an example to illustrate this idea. Blue
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bars correspond to the modelled voltage variations, while the rose (darken) bars
represent the measured voltage variation. Perturbations S2-S5 can be modelled
similarly. Therefore, it is possible to estimate the voltage variations in other nodes
close enough in the sense of electrical distance, if voltage variations are observed in
any node. It is possible to devise a concept of structural observability of proximity
for which the electrical distance gives a quantified measurement of this concept.
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Figure 3.45: Voltage variation obtained from reference measurements (blue bars)
and modelled using equation (3.21), for perturbation S1

It is shown from this figure that the closest voltage variation can be modelled
with knowledge of topology and maximum variation and behaves in the same
way than the system that is observed.

Similarly, when considering the nodes that control the system, the actuators
cannot affect those distant nodes from the generating sets. They will have a
marked influence only in its close vicinity (in this case, measured by the voltage
attenuation). A concept of structural controllability of proximity can be devised
from the electrical distance, which provides a quantified measurement of this
concept (criteria to develop a clustering in the system, instead of modelling the
complete distribution system).

The only case in which response was slightly different was scenario S6, in
which two synchronised perturbations were done at nodes 66 and 85, both phase
C. Figures 3.46 and 3.47 and showed the obtained sorted nodes with both electric
distance concepts. and Figure 3.48 shows the obtained voltage attenuation model.

It can be seen that the sorting of nodes by the voltage distance metric in equa-
tion (3.25) identifies a set of nodes that are electrically close to 66C but that does
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not extend to the branch that includes 85C; the impedance-based calculation, on
the other hand, includes nodes in both sections of the network—those close to
66C and those close to 85C. It can be concluded that for two perturbations that
occur simultaneously it would be difficult to identify electrically close nodes to
each perturbation without further analysis.

Finally, the same analysis is repeated for the other scenarios, including cases
where capacitor banks are connected or parts of the system are meshed. The res-
ults, presented in Appendix I, demonstrate that the addition of new devices such
as capacitors does not drastically change the concept of using electrical distances,
but it does impact the voltage variation. Moreover, the presence of a meshed cir-
cuit affects the distribution of power throughout the system, and consequently,
the propagation of voltage in the distribution system. Nonetheless, the principle
of using electrical distances still applies in a similar manner as previously intro-
duced.

3.5.3 Use of covariance of voltage measurements

Section 3.5.2 introduced the electrical distance to develop a model that explains
the voltage variation when perturbation in the distribution system. Unfortunately,
quantifying the electrical distance requires real-time determination of impedances
or voltage sensitivities at multiple discrete locations throughout the network [107].
As a practical alternative, therefore, it is sought a proxy for electrical distance that
can be computed from available voltage measurements yet provide a similar in-
sight. The main question is: how this electrical distance can be estimated when
there is no knowledge from system topology? Is there any similar concept that
can be used and gives a similar insight of electrical distance obtained from meas-
urement?

For this it is proposed to use the covariance between nodal voltages, which
measures the joint variability of the random variables represented by the time-
series voltage measurement [237]. The covariance sign shows the linear relation-
ship between the variables, representing the distinction between voltage phases.
For a pair of time-series voltage measurements (Vi, Vj) (representing two jointly
distributed real random variables with finite second moments), the covariance is
given by the expected value of the product of their deviations from their expected
values:

cov
(
Vi, Vj

)
= E

[
(Vi − E [Vi])

(
Vj − E

[
Vj
])]

(3.26)

where E[Vi] and E[Vj] are the expected values of Vi and Vj, respectively. A cov-
ariance matrix Σ (known as dispersion matrix or variance–covariance matrix) is
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Figure 3.46: Electric distances and sorted voltages by measuring only impedance
between nodes when there is a high perturbation at node 85, phase C (scenario S6,
tk = 690min)

obtained from computing the covariance between each nodal measurement pair.
For the measurement points {1, 2, . . . , , i, . . . , j, . . . , n}, the (i, j) entry of the covari-
ance matrix Σ is the covariance between voltages Vi and Vj, where the (i, j) element
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Figure 3.47: Voltage electrical distance and sorted voltages according to (3.25)
when there is a high perturbation at node 85, phase C (scenario S6, tk = 690min)

of the matrix is
Σi,j = cov

(
Vi, Vj

)
. (3.27)
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Figure 3.48: Voltage variation obtained from reference measurements (blue bars)
and modelled using equation (3.21), for scenario S6

The matrix Σ is square, symmetric, positive semi-definite, and its diagonal con-
tains variances (i.e., the covariance of each element with itself)–thus meets the ax-
ioms of a valid electrical distance metric [107]—and its diagonal contains variances
(i.e., the covariance of each element with itself). Column j of Σ gives the covari-
ance between the voltage measurement at node j and each of the other measured
nodes.

The use of voltage correlations helps in describing the connectivity of the nodes
across the different phases. It is proposed to use the voltage covariance to check
how the propagation of the voltage variation moves around the system, which
measures the joint variability of two or more random variables (represented by
time-series voltage) [237].

Moreover, Σi,j can be directly expressed as [108]:

cov(Vi, Vj) = E[(Ri(Pi − E[Pi]) + (Xi(Qi − E[Qi]))

(Rj(Pj − E[Pj]) + (Xj(Qj − E[Qj]))]. (3.28)

Therefore, Σ contains information regarding the topology and impedance of the
grid (encoded in Ri, Rj, Xi and Xj), further suggesting its suitability as a proxy
measure of electrical distance.

An interesting advantage of this approach is that it provides a better under-
standing of the interaction between two nodes, as reflected by the covariance value
along a path. For example, considering the configuration shown in Figure 3.29,
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Figure 3.49: Covariance surface obtained from voltage measurements when there
is a high perturbation at node 85, phase C (scenario S1, tk = 640min)

the total power between two non-measurable points may not change significantly,
but the equivalent resistance and reactance between the nodes would affect the
obtained value, compared to the case where the device is not installed. This helps
gain insight into the elements present within a path, even if the electrical inform-
ation of the device is not available. Similarly, in the case presented in Figure
3.30, the covariance will also change based on the power variation along the path
between two nodes. In summary, since covariance considers the equivalent im-
pedance values and power balance between two nodes in a path, any component
that can alter this balance will be reflected in the covariance value, thus providing
relevant information about the current state of the network.

The calculation of covariance values presented in this section are tabuled in
Appendix H. Figure 3.49 shows some of the biggest the values generated by mat-
rix Σ when there is only a big perturbation at node 85, phase C, according to
scenario S1 (load consumption). The higher range of variation in the covariance
values is shown in the nodes close to the perturbation node. However, the ab-
solute magnitude of the covariance obtained in this way lacks physical meaning
and insight, and therefore a normalisation procedure is proposed by dividing for
the biggest covariance value detected on each node to allow comparison of the
columns or rows of Σ and, ultimately, identification of electrically close nodes.
Figure 3.50 illustrates the results after the (raw) values are normalised. Table 3.3
shows the corresponding numerical values of the covariances and normalised co-
variances with respect to node 85C; that is, the column of Σ and its normalised
counterpart corresponding to node 85C. Nodes close to the perturbation point
show similar results.

It is important to highlight, in Table 3.3, that the largest covariance values
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Figure 3.50: Normalised covariance surface obtained from voltage measurements
when there is a high perturbation at node 85, phase C (scenario S1, tk = 640min)

Table 3.3: Voltage covariance values obtained from a large perturbation at node
85, phase C (scenario S1).

Measured node (Node 85, Phase C) Measured voltage
Σi,j Norm. Σi,j Sorted node Ranked nodes Variation

1835.11 1.00 85, phase C 85, phase C -5.08%
1490.11 0.87 84, phase C 84, phase C -4.19%
1148.20 0.74 64, phase C 83, phase C -2.94%
1148.20 0.74 65, phase C 81, phase C -2.94%
1148.19 0.74 66, phase C 82, phase C -2.94%
1148.19 0.74 160, phase C 64, phase C -2.93%
1148.19 0.74 63, phase C 65, phase C -2.93%
1148.19 0.74 61, phase C 66, phase C -2.93%
1148.19 0.74 61, phase C 160, phase C -2.93%
1148.19 0.74 62, phase C 63, phase C -2.93%
1148.19 0.74 60, phase C 61, phase C -2.93%

999.17 0.69 83, phase C 61, phase C -2.93%
999.17 0.69 81, phase C 62, phase C -2.93%

obtained are for nodes close to the perturbation point. Below the highest opera-
tional limit (in this case, 3% of rated voltage), the nodes are sorted according to
this variation. Some of the presented nodes are close to the perturbation point,
which is still contemplating the voltage electric distance presented before. From
Figure 3.50, it is shown that the values of covariance obtained for each node are
around the same range, which can give a consistent sense of position when they
are compared.

Since these results only reflect the system’s perception from a specific node,
it is proposed to average the obtained normalised covariance over each node (i.e.
each row of the normalised Σ is averaged across all columns). Table 3.4 shows the
results of this for Scenario S1. The average normalised covariances higher than
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Table 3.4: Average normalised covariance values obtained from a large perturba-
tion at node 85, phase C (scenario S1).

Voltage variation Rank nodes
Average

norm. Σi,j
Rank nodes

−5.08% 85, phase C 0.99 85, phase C
−4.19% 84, phase C 0.86 84, phase C
−2.94% 83, phase C 0.75 64, phase C
−2.94% 81, phase C 0.75 65, phase C
−2.94% 82, phase C 0.75 66, phase C
−2.93% 64, phase C 0.75 160, phase C
−2.93% 65, phase C 0.75 63, phase C
−2.93% 66, phase C 0.75 61, phase C
−2.93% 160, phase C 0.75 61s, phase C
−2.93% 61, phase C 0.75 62, phase C
−2.93% 61s, phase C 0.75 60, phase C
−2.93% 62, phase C 0.67 83, phase C
−2.93% 63, phase C 0.67 81, phase C
−2.93% 60, phase C 0.67 82, phase C

0.85 correspond to nodes affected under the same voltage perturbation and can
be considered the closest (and would be candidates for clustering as one node for
the purpose of identifying a system model and determining which nodal voltages
should be measured). The nodes that still are close enough to be impacted cor-
respond to those with normalised covariance higher than 0.65. There are some
nodes—such as node 64, phase C—which are highly ranked even though they are
spatially far from the perturbation point. This is an effect of the voltage regulator
in between, which via the action of the tap changer is modifying the equivalent
electrical distance. The voltage variation is an effect of the power balance in the
node plus the electric distance from the perturbation analysed.

The use of this average normalised covariance approach will only have relevant
meaning in these critical scenarios (when the voltage surpass the allowed limits).
For a situation in which the perturbation (generation or consumption) is not high,
this will not have any special meaning, because the covariance surface will not be
remarked for any peaks and all the power between nodes will be totally balanced.

Since, in Table 3.4, the averaged covariances follow a similar rank order to that
of voltage variation per phase, it is suggested that the voltage covariance provides
information closely related to the electrical distance between nodes, and appears
to be an acceptable proxy for the latter. Scenarios S2, S3, S4, and S5 showed a
similar set of results; for example, Figure 3.51 illustrates the covariance matrix,
which exhibit a similar distribution and pattern of values as for scenario S1.
Therefore, the average normalised covariance provided an acceptable proxy for
electrical distance in the event of a single perturbation of either power injection or
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Figure 3.51: Covariance surface obtained from voltage measurements when there
is a high perturbation at node 85, phase C (scenario S2, tk = 690min)

extraction. The main advantage of this corresponds to a structure of the system’s
topology without previous knowledge, which is deducted from available voltage
measurements. This procedure is still valid for different events etk (provided they
are significant events), which will show similar results.

On the other hand, it is observed that for situations in which the perturbation
(be it generation or consumption) is small or moderate (in the sense that voltages
remained within bounds; scenarios that are milder than S1–S6), the covariance
surface did not exhibit significant variations, essentially indicating balance within
the system. The use of the average normalised covariance approach only has
relevant meaning in critical scenarios (i.e., when the voltage profile surpasses the
operational limits).

To validate the covariance results, a Principal Component Analysis (PCA) was
performed on the voltage measurements obtained under different scenarios. The
largest eigenvalues for scenario S1 are presented in Table 3.5, shows that nearly
99% of the variance is explained by the first two principal components; details of
the the corresponding eigenvectors are presented in Table 3.6.

Table 3.5: PCA for voltage measurements when a high perturbation occurs at
node 85, phase C (scenario S1)

Number Eigenvalue Score

1 31598.98 89.29%
2 3022.70 8.54%
3 768.01 2.17%

The first eigenvector is sorted by using the weight of each component. The
list and rank order of nodes is similar to that shown in Table 3.4, which were
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Table 3.6: Sorted eigenvectors associated with the first two eigenvalues of the PCA
for scenario S1

Eigenvector 1 Eigenvector 2

Weight Rank buses Voltage variation Weight Rank buses Voltage variation

0.24 85, phase C -5.08% 0.15 160r, phase C 1.45%
0.20 84, phase C -4.19% 0.14 105, phase C -1.48%
0.15 64, phase C -2.93% 0.14 108, phase C -1.48%
0.15 65, phase C -2.93% 0.14 67, phase C -1.48%
0.15 66, phase C -2.93% 0.14 197, phase C -1.48%
0.15 160, phase C -2.93% 0.14 97, phase C -1.48%
0.15 63, phase C -2.93% 0.14 100, phase C -1.48%
0.15 61, phase C -2.93% 0.14 104, phase C -1.48%
0.15 61s, phase C -2.93% 0.14 102, phase C -1.48%
0.15 62, phase C -2.93% 0.14 450, phase C -1.48%
0.15 60, phase C -2.93% 0.14 101, phase C -1.48%
0.13 83, phase C -2.94% 0.14 103, phase C -1.48%
0.13 81, phase C -2.94% 0.14 98, phase C -1.48%

sorted using the average normalised covariance values. The second eigenvector
obtained could not be explained using any apparent physical representation, and
it is not providing any special information that can be used in this analysis. The
top-ranked node is where there is a voltage regulator installed.

3.5.4 Impact of increasing the number of perturbations in the distribu-
tion system

To investigate the limitations of the proposed metrics, two simultaneous perturb-
ations with the same time-series profile were performed at node 66 and 85, phase
C (scenario S6). The observed voltage variations (ranked in descending order of
magnitude) is presented in Figure 3.52, the corresponding surface from the cov-
ariance matrix is presented in Figure 3.53, and the summarised results with the
normalised covariance values are shown in Table 3.7. The PCA test was again
performed to compare the covariance analysis results, and the results of first ei-
genvalues are presented in Tables 3.8 and 3.9. Similar results to the previous case
were obtained.

As observed with the electrical distance calculations for scenario S6, the rank-
ing of nodes by voltage variations and average normalised covariances predom-
inately determined by just one of the perturbations—the one with the highest
voltage variation. The other perturbation effect is still presented in the sorted
nodes, but it can not directly inform anything about the electrical distance; how-
ever, it is well known measuring the node impedance is not a good indicator of
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Figure 3.52: Voltage variation over each node when there are high perturbations
at nodes 66 and 85, phase C (scenario S6, tk = 640min)
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Figure 3.53: Covariance surface obtained from voltage measurements when there
are high perturbations at nodes 66 and 85, phase C (scenario S6, tk = 640min)

electrical distance when multiple perturbations occurs at the same time [107, 108].
The normalised covariance matrix roughly considers the nodes’ electrical distance
for the worst of the two perturbations. This means that a detailed analysis of the
topology must be done, or previous information is required, to make concrete
conclusions around electrical distances in the event of two perturbations.

3.5.5 Impact of reducing the number of measurements points

The last scenario for this methodology evaluated the performance to characterise
the voltage when the number of measured nodes is reduced. Since the covariance
matrix relies on the magnitude measured, the values and how values are sorted
are the same for the fully observable case exposed before only if the maximum
voltage variation is sensed in the measurement. The normalised values will use
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Table 3.7: Average normalised covariance values obtained from high perturbations
at nodes 66 and 85, phase C (scenario S6)

Voltage variation Rank nodes
Average

norm. Σi,j
Rank nodes

-8.39% 66, phase C 0.99 66, phase C
-7.84% 65, phase C 0.94 65, phase C
-7.12% 64, phase C 0.88 64, phase C
-6.52% 63, phase C 0.83 63, phase C
-6.22% 62, phase C 0.80 62, phase C
-5.80% 160, phase C 0.77 160, phase C
-5.80% 60, phase C 0.77 61, phase C
-5.80% 61, phase C 0.77 61s, phase C
-5.80% 61s, phase C 0.77 60, phase C
-4.43% 85, phase C 0.64 57, phase C
-4.39% 57, phase C 0.62 85, phase C
-3.72% 54, phase C 0.58 55, phase C
-3.72% 55, phase C 0.58 54, phase C
-3.72% 56, phase C 0.58 56, phase C
-3.56% 84, phase C 0.56 53, phase C
-3.48% 53, phase C 0.55 84, phase C
-3.10% 52, phase C 0.53 52, phase C
-2.33% 151, phase C 0.46 42, phase C
-2.33% 21, phase C 0.46 152, phase C

Table 3.8: PCA for voltage measurements when high perturbations occur at nodes
66 and 85, phase C (scenario S6)

Number Eigenvalue Score

1 76153.45 92.38%
2 5751.30 6.98%
3 528.01 0.64%

the same reference, a product from the vector with the highest voltage variation.

Sometimes this maximum variation cannot be measured, but some measuring
units are installed in the surrounding nodes, which will impact the covariance
matrix obtained. Nevertheless, the quasi-dynamics associated with the voltage
variation could be still detected. To investigate this idea, the same analysis was
applied for scenario S1 but reducing 50 measurement points (including the meas-
urement at node 85, which is the node with the highest voltage variation). Tables
3.10 and 3.11 show the covariance values obtained and adjusted according to the
available measurement. The PCA was also done to validate the obtained results,
as shown in Tables 3.12 and 3.13.

The dynamic is still observed in the measurement is close enough to the per-
turbation point. The difference is that the nodes considered close to the perturb-
ation will be referred according to the obtained normalised covariance values.
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Table 3.9: Sorted eigenvectors from the first 2 eigenvalues of the PCA, case per-
turbations at nodes 66 and 85, phase C (scenario S6)

Eigenvector 1 Eigenvector 2

Weight Rank buses Voltage variation Weight Rank buses Voltage variation

0.299 66, phase C -8.39% 0.137 160r, phase A -1.46%
0.268 65, phase C -7.84% 0.135 112, phase A 1.47%
0.243 64, phase C -7.12% 0.135 108, phase A 1.47%
0.223 63, phase C -6.52% 0.135 111, phase A 1.47%
0.213 62, phase C -6.22% 0.135 197, phase A 1.47%
0.199 160, phase C -5.80% 0.135 67, phase A 1.47%
0.198 61, phase C -5.80% 0.135 71, phase A 1.47%
0.198 61s, phase C -5.80% 0.135 97, phase A 1.47%
0.198 60, phase C -5.80% 0.135 70, phase A 1.47%
0.150 57, phase C -4.39% 0.135 100, phase A 1.47%
0.135 85, phase C -4.43% 0.135 101, phase A 1.47%
0.127 55, phase C -3.72% 0.135 113, phase A 1.47%
0.127 54, phase C -3.72% 0.135 450, phase A 1.47%
0.127 56, phase C -3.72% 0.135 68, phase A 1.47%
0.119 53, phase C -3.48% 0.135 69, phase A 1.47%
0.106 52, phase C -3.10% 0.135 99, phase A 1.47%
0.106 84, phase C -3.56% 0.135 105, phase A 1.47%
0.080 42, phase C -2.33% 0.135 109, phase A 1.47%
0.080 152, phase C -2.33% 0.135 114, phase A 1.47%

Therefore, it will be slightly different from the actual connection scheme, but the
model is still accurate enough. The only drawback from this methodology is the
sensor’s proximity to this perturbation point, which will require additional in-
formation if a complete analysis is required. Normally, sensors are placed in the
system’s critical points and can catch the most relevant voltage variation. These
are complemented by the measurement of renewable energy units installed into
the grid that increase the system’s observability.

3.6 Validation of results

The final part of the simulation conducted in this chapter aimed to validate the
consistency of the obtained metrics by comparing them with a reference "full
model." In this case, identical simulations were performed using the same power
profiles but with a higher data resolution of 1 minute. The purpose was to as-
sess the differences compared to the measured values, which were assumed to be
taken every 10 minutes. This analysis sought to demonstrate and confirm that,
even in the partially observed case, all buses on the identified "path" are correctly
identified, similar to the full case, and that the unobserved data closely resemble
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Table 3.10: Voltage covariance values from a high perturbation at node 85, phase
C (scenario S1), with reduced measurements

Measured node (Node 84, Phase C) Measured voltage

Covariance mag. Normalised values Sorted nodes Ranked nodes Variation

1213.76 1.00 84, phase C 84, phase C -4.19%
919.47 0.85 65, phase C 83, phase C -2.94%
919.47 0.85 66, phase C 81, phase C -2.94%
919.47 0.85 63, phase C 65, phase C -2.93%
919.47 0.85 61, phase C 66, phase C -2.93%
919.47 0.85 62, phase C 61, phase C -2.93%
820.52 0.79 83, phase C 62, phase C -2.93%
820.52 0.79 81, phase C 63, phase C -2.93%
769.83 0.77 80, phase C 80, phase C -2.77%
693.78 0.73 57, phase C 78, phase C -2.33%
631.26 0.69 78, phase C 77, phase C -2.24%
602.83 0.68 77, phase C 57, phase C -2.21%
588.08 0.67 54, phase C 54, phase C -1.87%

Table 3.11: Av. normalised covariance values obtained from a high perturbation
(scenario S1), with reduced measurement

Voltage variation Rank nodes
Average

norm. Σi,j
Rank nodes

-4.19% 84, phase C 0.99 84, phase C
-2.94% 83, phase C 0.87 65, phase C
-2.94% 81, phase C 0.87 66, phase C
-2.93% 65, phase C 0.87 63, phase C
-2.93% 66, phase C 0.87 61, phase C
-2.93% 61, phase C 0.87 62, phase C
-2.93% 62, phase C 0.78 83, phase C
-2.93% 63, phase C 0.78 81, phase C
-2.77% 80, phase C 0.75 80, phase C
-2.33% 78, phase C 0.74 57, phase C
-2.24% 77, phase C 0.68 54, phase C
-2.21% 57, phase C 0.68 55, phase C
-1.87% 54, phase C 0.68 56, phase C
-1.87% 55, phase C 0.67 78, phase C

Table 3.12: PCA for scenario S1 with reduced measurements

Number Eigenvalue Score

1 22716.84 88.47%
2 2364.542 9.21%
3 596.6255 2.32%

the observed data in the full case. To ensure comparability, the evaluation win-
dow for the data remained at 60 minutes, consistent with the previous analysis.
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Table 3.13: Sorted eigenvectors from the first 2 eigenvalues of the PCA(scenario
S1), with reduced measurements

Eigenvector 1 Eigenvector 2

Weight Rank buses Voltage variation Weight Rank buses Voltage variation

0.22983 84, phase C -4.19% 0.17 66, phase C -2.93%
0.17463 65, phase C -2.93% 0.17 65, phase C -2.93%
0.17463 66, phase C -2.93% 0.17 61, phase C -2.93%
0.17463 63, phase C -2.93% 0.17 62, phase C -2.93%
0.17463 61, phase C -2.93% 0.17 63, phase C -2.93%
0.17463 62, phase C -2.93% 0.13 57, phase C -2.21%
0.15528 83, phase C -2.94% 0.11 54, phase C -1.87%
0.15528 81, phase C -2.94% 0.11 55, phase C -1.87%
0.14566 80, phase C -2.77% 0.11 56, phase C -1.87%
0.13177 57, phase C -2.21% 0.10 53, phase C -1.75%
0.11951 78, phase C -2.33% 0.09 52, phase C -1.56%

0.114 77, phase C -2.24% 0.07 152, phase C -1.17%
0.1117 54, phase C -1.87% 0.07 35, phase C -1.17%

Consequently, the data used to construct the metrics consisted of 60 data points,
as opposed to the 6 data points used for the 10-minute resolution.

The initial stage focused on the metrics derived from power injections. Tables
from 3.14 to 3.19 summarize the differences in key values compared to the base
case, where measurements were taken every 10 minutes. Validating the system
with fewer installed measurement units for this power-related metric is not neces-
sary, as it is challenging to compare the connectivity of nodes in large distribution
systems. However, objective comparisons can be made for node voltage meas-
urements by simply comparing the two cases with a resolution of 1 minute and
measurements taken every 10 minutes.

The subsequent six tables present the results after scenarios S1, S2, and S6,
where no capacitor banks are installed, and the system employs a radial topology.
The numerical values of the obtained metrics differ from those of the reference
case. This discrepancy arises because the metrics are highly influenced by the
measured values and the events detected in those variables. The power flowing
through the lines, which is captured in the measurements, significantly impacts
the absolute values of the metrics MP and MQ. Nevertheless, the ordering of
the lines remains consistent, and the proportions between the obtained values are
quite similar in comparison to the system measured every 1 minute. Importantly,
the identified path in both cases is exactly the same, which is the primary objective
of these metrics.

The subsequent validation focuses on the propagation of voltage variation



128 3.6. Validation of results

Table 3.14: Validation for MP values during the event analysed in scenario S1.

Nodes MP

(1 minute)
Nodes MP

(10 minute)
Difference

57.C 60.C 71.06 57.C 60.C 36.83 48.17%
52.C 152.C 41.57 52.C 152.C 21.35 48.63%
57.C 54.C 36.95 57.C 54.C 19.02 48.51%

7.C 1.C 32.63 7.C 1.C 16.69 48.86%
8.C 13.C 32.48 8.C 13.C 16.64 48.76%

64.C 65.C 25.16 65.C 64.C 14.4 42.58%
1.C 149.C 23.50 1.C 149.C 12.4 47.21%
8.C 7.C 22.80 63.C 64.C 11.9 47.75%

53.C 52.C 22.58 66.C 65.C 11.8 47.93%
64.C 63.C 20.76 8.C 7.C 11.7 43.87%
66.C 65.C 20.57 53.C 52.C 11.6 43.76%
84.C 81.C 17.57 62.C 60.C 8.62 50.96%
84.C 85.C 17.27 85.C 84.C 7.98 53.79%
62.C 60.C 15.04 84.C 81.C 7.98 46.93%
54.C 53.C 14.87 54.C 53.C 7.61 48.86%
63.C 62.C 11.31 62.C 63.C 6.45 42.98%
80.C 78.C 4.58 78.C 80.C 2.12 53.82%
77.C 76.C 3.22 77.C 76.C 1.51 53.10%
81.C 80.C 2.47 81.C 80.C 1.16 53.25%
72.C 67.C 1.86 67.C 72.C 0.93 50.08%
76.C 72.C 1.80 67.C 160r.C 0.91 49.36%
67.C 160r.C 1.68 72.C 76.C 0.87 48.48%
78.C 77.C 1.38 77.C 78.C 0.65 52.81%

across the system. Tables from 3.20 to 3.25 summarise the differences in key val-
ues compared to the base case, where measurements were taken every 10 minutes,
and considering partial installation of measurement units. Similarly to the previ-
ous tables, the following six tables present the results after scenarios S1, S2, and
S6, where no capacitor banks were installed, and the system adopted a radial
topology.

The metrics obtained for the average normalised covariance exhibit slight dif-
ferences in values between the reference case with measurements installed through-
out the system and the partially observable cases. However, these differences con-
sistently remain in terms of numerical values. A similar effect is observed for
the weights obtained in the main two eigenvectors derived from PCA. It is note-
worthy that the voltage variations captured every minute reflect larger changes
compared to the model that only took measurements every 10 minutes, particu-
larly in the case of S6. Nevertheless, for all cases, it is demonstrated that the nodes
impacted follow the same pattern. The voltage levels across the nodes, which are
captured in the measurements, significantly influence the absolute values of the
average normalised covariance metric, as it is a relative value. Similarly to the
previous findings, the sorting of nodes remains consistent, and the proportions
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Table 3.15: Validation for MQ values during the event analysed in scenario S1.

Nodes MQ

(1 minute)
Nodes MQ

(10 minute)
Difference

57.C 60.C 159.60 57.C 60.C 82.71 48.18%
52.C 152.C 95.92 52.C 152.C 49.27 48.63%
57.C 54.C 82.98 57.C 54.C 42.72 48.52%

7.C 1.C 75.28 7.C 1.C 38.50 48.86%
8.C 13.C 74.95 8.C 13.C 38.40 48.76%
1.C 149.C 54.23 1.C 149.C 28.6 47.22%
8.C 7.C 52.61 8.C 7.C 26.9 48.90%

53.C 52.C 52.11 53.C 52.C 26.7 48.78%
54.C 53.C 34.31 54.C 53.C 17.5 48.86%
84.C 81.C 17.81 85.C 84.C 8.09 54.56%
84.C 85.C 17.51 84.C 81.C 8.09 53.79%
64.C 65.C 12.47 65.C 64.C 7.17 42.54%
80.C 78.C 10.29 63.C 64.C 5.91 42.59%
64.C 63.C 10.29 66.C 65.C 5.84 43.28%
66.C 65.C 10.20 78.C 80.C 4.75 53.39%
62.C 60.C 7.45 62.C 60.C 4.27 42.69%
77.C 76.C 7.23 77.C 76.C 3.39 53.09%
63.C 62.C 5.61 62.C 63.C 3.2 42.95%
81.C 80.C 5.56 81.C 80.C 2.6 53.25%
72.C 67.C 4.19 67.C 72.C 0.93 77.78%
76.C 72.C 4.05 67.C 160r.C 0.91 77.46%
67.C 160r.C 3.78 72.C 76.C 0.87 77.06%
78.C 77.C 3.11 77.C 78.C 0.65 79.00%

Table 3.16: Validation for MP values during the event analysed in scenario S2.

Nodes MP

(1 minute)
Nodes MP

(10 minute)
Difference

84.C 81.C 17.05 84.C 81.C 19.32 -13.31%
85.C 84.C 14.94 85.C 84.C 16.51 -10.51%
60.C 57.C 12.94 60.C 57.C 12.94 0.03%
52.C 152.C 7.60 152.C 52.C 7.57 0.34%
57.C 54.C 6.53 57.C 54.C 6.54 -0.10%

8.C 13.C 5.89 8.C 13.C 5.85 0.63%
7.C 1.C 5.82 7.C 1.C 5.81 0.16%

80.C 78.C 4.87 80.C 78.C 5.64 -15.86%
52.C 53.C 4.12 76.C 77.C 4.52 -9.82%

8.C 7.C 4.08 53.C 52.C 4.11 -0.75%
76.C 77.C 3.87 8.C 7.C 4.07 -5.24%

149.C 1.C 2.79 67.C 160r.C 3.32 -19.04%
160r.C 67.C 2.77 72.C 67.C 3.03 -9.23%

53.C 54.C 2.71 1.C 149.C 2.74 -1.32%
67.C 72.C 2.58 54.C 53.C 2.70 -4.37%
81.C 80.C 2.32 80.C 81.C 2.60 -12.18%
76.C 72.C 2.15 76.C 72.C 2.48 -15.05%
78.C 77.C 1.36 78.C 77.C 1.52 -11.88%

between the obtained values are quite similar in relation to the system measured
every 1 minute. This alignment with the system measured at a higher resolution
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Table 3.17: Validation for MQ values during the event analysed in scenario S2.

Nodes MQ

(1 minute)
Nodes MQ

(10 minute)
Difference

60.C 57.C 29.08 60.C 57.C 29.07 0.03%
52.C 152.C 17.54 84.C 81.C 19.59 -11.67%
84.C 81.C 17.28 152.C 52.C 17.48 -1.13%
85.C 84.C 15.15 85.C 84.C 16.74 -10.51%
57.C 54.C 14.67 57.C 54.C 14.69 -0.10%

8.C 13.C 13.59 8.C 13.C 13.50 0.63%
7.C 1.C 13.44 7.C 1.C 13.42 0.16%

80.C 78.C 10.93 80.C 78.C 12.66 -15.86%
52.C 53.C 9.51 76.C 77.C 10.16 -6.86%

8.C 7.C 9.41 53.C 52.C 9.48 -0.74%
76.C 77.C 8.70 8.C 7.C 9.41 -8.17%

149.C 1.C 6.45 67.C 160r.C 7.47 -15.83%
53.C 54.C 6.25 72.C 67.C 6.8 -8.81%

160r.C 67.C 6.22 1.C 149.C 6.33 -1.72%
67.C 72.C 5.80 54.C 53.C 6.22 -7.27%
81.C 80.C 5.21 80.C 81.C 5.85 -12.18%
76.C 72.C 4.84 76.C 72.C 5.56 -15.05%
78.C 77.C 3.06 78.C 77.C 3.42 -11.89%

Table 3.18: Validation for MP values during the event analysed in scenario S6.

Nodes MP

(1 minute)
Nodes MP

(10 minute)
Difference

57.C 60.C 20.51 60.C 57.C 10.27 49.91%
84.C 81.C 18.05 84.C 81.C 8.36 53.70%
85.C 84.C 17.26 85.C 84.C 7.99 53.70%
52.C 152.C 11.82 152.C 52.C 5.88 50.26%
54.C 57.C 10.51 57.C 54.C 5.23 50.20%

7.C 1.C 9.20 7.C 1.C 4.57 50.36%
8.C 13.C 9.20 8.C 13.C 4.56 50.37%
7.C 8.C 6.45 8.C 7.C 3.21 50.21%

53.C 52.C 6.42 52.C 53.C 3.19 50.33%
1.C 149.C 6.02 1.C 149.C 2.98 50.44%

78.C 80.C 4.89 80.C 78.C 2.36 51.69%
54.C 53.C 4.20 53.C 54.C 2.08 50.39%
77.C 76.C 3.62 77.C 76.C 1.82 49.77%
81.C 80.C 2.55 67.C 160r.C 1.25 50.94%
67.C 72.C 2.25 81.C 80.C 1.23 45.40%
67.C 160r.C 2.13 67.C 72.C 1.21 43.11%
76.C 72.C 2.05 76.C 72.C 1.06 48.46%
78.C 77.C 1.46 78.C 77.C 0.72 50.82%

represents the main objective of this metric.
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Table 3.19: Validation for MQ values during the event analysed in scenario S6.

Nodes MQ

(1 minute)
Nodes MQ

(10 minute)
Difference

57.C 60.C 46.05 60.C 57.C 23.07 49.91%
52.C 152.C 27.26 152.C 52.C 13.56 50.27%
54.C 57.C 23.60 57.C 54.C 11.75 50.20%

7.C 1.C 21.23 7.C 1.C 10.54 50.37%
8.C 13.C 21.21 8.C 13.C 10.53 50.37%

84.C 81.C 18.30 84.C 81.C 8.47 53.70%
85.C 84.C 17.50 85.C 84.C 8.10 53.70%

7.C 8.C 14.87 8.C 7.C 7.40 50.22%
53.C 52.C 14.80 52.C 53.C 7.35 50.34%

1.C 149.C 13.88 1.C 149.C 6.88 50.45%
78.C 80.C 10.98 80.C 78.C 5.30 51.69%
54.C 53.C 9.69 53.C 54.C 4.81 50.40%
77.C 76.C 8.14 77.C 76.C 4.09 49.77%
81.C 80.C 5.73 67.C 160r.C 2.81 50.95%
67.C 72.C 5.05 81.C 80.C 2.76 45.39%
67.C 160r.C 4.78 67.C 72.C 2.72 43.11%
76.C 72.C 4.60 76.C 72.C 2.37 48.46%
78.C 77.C 3.28 78.C 77.C 1.62 50.81%

Table 3.20: Validation for voltage variation and average normalised covariance in
scenario S1.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Voltage
variation

Average
norm. Σi,j

Voltage
variation

Diff. voltage
variation

Average
norm. Σi,j

Diff. average
norm. Σi,j

Average
norm. Σi,j

Diff. average
norm. Σi,j

S85.C -6.69% 0.99 -5.08% 31.8% 0.99 0.0% – –
S84.C -5.39% 0.85 -4.19% 28.6% 0.86 -1.2% 0.99 -14.0%
S66.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% 0.87 -10.0%
S64.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% – –
S65.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% 0.87 -10.0%

S160.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% – –
S63.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% 0.87 -10.0%
S61.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% 0.87 -10.0%

S61s.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% – –
S62.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% 0.87 -10.0%
S60.C -4.43% 0.77 -2.93% 51.3% 0.75 2.6% – –
S83.C -3.54% 0.65 -2.94% 20.6% 0.67 -3.1% 0.78 -13.0%
S82.C -3.54% 0.65 -2.94% 20.6% 0.67 -3.1% 0.78 -13.0%
S81.C -3.54% 0.65 -2.94% 20.6% 0.67 -3.1% – –
S57.C -3.34% 0.66 -2.21% 51.4% 0.64 3.0% 0.75 -9.0%
S80.C -3.30% 0.62 -2.77% 19.0% 0.65 -4.8% 0.74 -12.0%
S56.C -2.83% 0.6 -1.87% 51.5% 0.59 1.7% – –
S54.C -2.83% 0.6 -1.87% 51.5% 0.59 1.7% 0.67 -7.0%
S55.C -2.83% 0.6 -1.87% 51.5% 0.59 1.7% 0.67 -7.0%
S53.C -2.65% 0.58 -1.75% 51.5% 0.57 1.7% – –
S78.C -2.65% 0.55 -2.33% 13.6% 0.58 -5.5% 0.68 -13.0%
S79.C -2.65% 0.55 -2.33% 13.6% 0.58 -5.5% 0.68 -13.0%
S52.C -2.36% 0.55 -1.56% 51.6% 0.55 0.0% – –
S77.C -2.51% 0.54 -2.24% 12.2% 0.57 -5.6% 0.68 -14.0%

3.7 Practical implementation of the proposed metrics

From the previous results, it is evident that both metrics for power injections and
voltage variations provide insights into the system condition without requiring
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Table 3.21: Validation for eigenvector values in scenario S1.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Eigenv.
1

Eigenv.
2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

S85.C 0.24 -0.02 0.24 0.0% -0.04 8.3% – – – –
S84.C 0.2 0.02 0.20 0.0% 0.00 10.0% 0.23 -14.92% 0.00 0.00%
S66.C 0.17 -0.12 0.15 11.8% -0.14 13.3% – – – –
S64.C 0.17 -0.12 0.15 11.8% -0.14 13.3% 0.17 -16.42% 0.17 221.43%
S65.C 0.17 -0.12 0.15 11.8% -0.14 13.3% 0.17 -16.42% 0.17 221.43%

S160.C 0.17 -0.12 0.15 11.8% -0.14 13.3% 0.17 -16.42% 0.17 221.43%
S63.C 0.17 -0.12 0.15 11.8% -0.14 13.3% – – – –
S61.C 0.17 -0.12 0.15 11.8% -0.14 13.3% 0.17 -16.42% 0.17 221.43%

S61s.C 0.17 -0.12 0.15 11.8% -0.14 13.3% – – – –
S62.C 0.17 -0.12 0.15 11.8% -0.14 13.3% 0.17 -16.42% 0.17 221.43%
S60.C 0.17 -0.12 0.15 11.8% -0.14 13.3% – – – –
S83.C 0.13 0.07 0.13 0.0% 0.06 7.7% 0.16 -19.45% -0.07 221.43%
S82.C 0.13 0.07 0.13 0.0% 0.06 7.7% 0.16 -19.45% -0.07 221.43%
S81.C 0.13 0.07 0.13 0.0% 0.06 7.7% – – – –
S80.C 0.12 0.08 0.12 0.0% 0.07 8.3% 0.15 -21.38% -0.08 218.18%
S57.C 0.13 -0.09 0.11 15.4% -0.11 18.2% 0.13 -19.79% 0.13 218.18%
S78.C 0.09 0.1 0.10 -11.1% 0.09 10.0% 0.12 -19.51% -0.11 218.18%
S79.C 0.09 0.1 0.10 -11.1% 0.09 10.0% – – – –
S77.C 0.09 0.1 0.10 -11.1% 0.10 0.0% 0.11 -14.00% -0.12 222.22%
S56.C 0.11 -0.08 0.10 9.1% -0.09 10.0% 0.11 -11.70% 0.11 222.22%
S54.C 0.11 -0.08 0.10 9.1% -0.09 10.0% 0.11 -11.70% 0.11 222.22%
S55.C 0.11 -0.08 0.10 9.1% -0.09 10.0% 0.11 -11.70% 0.11 222.22%
S53.C 0.1 -0.07 0.09 10.0% -0.08 11.1% 0.10 -11.70% 0.1 225.00%

Table 3.22: Validation for voltage variation and average normalised covariance in
scenario S2.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Voltage
variation

Average
norm. Σi,j

Voltage
variation

Diff. voltage
variation

Average
norm. Σi,j

Diff. average
norm. Σi,j

Average
norm. Σi,j

Diff. average
norm. Σi,j

S85.C 4.93% 0.99 4.92% 0.4% 0.99 0.0% – –
S84.C 4.09% 0.85 4.08% 0.4% 0.87 -2.4% 0.99 -14.0%
S82.C 2.90% 0.77 2.89% 0.4% 0.70 9.1% 0.87 -10.0%
S81.C 2.90% 0.77 2.89% 0.4% 0.70 9.1% – –
S83.C 2.90% 0.77 2.89% 0.4% 0.70 9.1% 0.87 -10.0%
S80.C 2.75% 0.77 2.73% 0.4% 0.68 11.7% – –
S66.C 2.51% 0.77 2.51% 0.3% 0.65 15.6% 0.87 -10.0%
S64.C 2.51% 0.77 2.51% 0.3% 0.65 15.6% 0.87 -10.0%
S63.C 2.51% 0.77 2.51% 0.3% 0.65 15.6% – –
S65.C 2.51% 0.77 2.51% 0.3% 0.65 15.6% 0.87 -10.0%

S160.C 2.51% 0.77 2.51% 0.3% 0.65 15.6% – –
S62.C 2.51% 0.65 2.51% 0.3% 0.65 0.0% 0.78 -13.0%
S60.C 2.51% 0.65 2.51% 0.3% 0.65 0.0% 0.78 -13.0%
S61.C 2.51% 0.65 2.51% 0.3% 0.65 0.0% – –

S61s.C 2.51% 0.66 2.51% 0.3% 0.65 1.5% 0.75 -9.0%
S78.C 2.32% 0.62 2.31% 0.4% 0.62 0.0% 0.74 -12.0%
S79.C 2.32% 0.6 2.31% 0.4% 0.62 -3.3% – –
S77.C 2.23% 0.6 2.22% 0.4% 0.61 -1.7% 0.67 -7.0%
S57.C 1.88% 0.6 1.88% 0.3% 0.56 6.7% 0.67 -7.0%
S91.C 1.88% 0.58 1.87% 0.5% 0.56 3.4% – –
S95.C 1.88% 0.55 1.87% 0.5% 0.56 -1.8% 0.68 -13.0%
S92.C 1.88% 0.55 1.87% 0.5% 0.56 -1.8% 0.68 -13.0%
S93.C 1.88% 0.55 1.87% 0.5% 0.56 -1.8% – –
S87.C 1.88% 0.54 1.87% 0.5% 0.56 -3.7% 0.67 -13.0%
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Table 3.23: Validation for eigenvector values in scenario S2.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Eigenv.
1

Eigenv.
2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

S85.C 0.25 0.03 0.25 0.0% 0.05 -8.0% – – – –
S84.C 0.21 0.06 0.21 0.0% 0.07 -4.8% 0.24 -13.50% -0.08 220.74%
S82.C 0.15 0.10 0.15 0.0% 0.10 0.0% – – – –
S81.C 0.15 0.10 0.15 0.0% 0.10 0.0% 0.17 -16.62% -0.12 220.74%
S83.C 0.15 0.10 0.15 0.0% 0.10 0.0% 0.17 -16.62% -0.12 220.74%
S80.C 0.14 0.11 0.14 0.0% 0.10 7.1% 0.16 -16.62% -0.12 220.74%
S66.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% – – – –
S64.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% 0.15 -16.62% 0.01 220.74%
S63.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% – – – –
S65.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% 0.15 -16.62% 0.01 220.74%

S160.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% – – – –
S62.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% 0.15 -18.37% 0.01 220.74%
S60.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% 0.15 -18.37% 0.01 220.74%
S61.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% – – – –

S61s.C 0.13 -0.05 0.13 0.0% -0.01 -30.8% 0.16 -20.94% 0.01 216.50%
S78.C 0.12 0.12 0.12 0.0% 0.11 8.3% 0.14 -18.70% -0.13 216.50%
S79.C 0.12 0.12 0.12 0.0% 0.11 8.3% 0.14 -18.50% -0.13 216.50%
S77.C 0.11 0.12 0.12 -9.1% 0.11 8.3% – – – –
S57.C 0.10 -0.04 0.10 0.0% 0.11 -150.0% 0.11 -14.00% -0.13 221.00%
S91.C 0.10 0.13 0.10 0.0% 0.11 20.0% 0.11 -11.45% -0.13 221.00%
S95.C 0.10 0.13 0.10 0.0% 0.11 20.0% 0.11 -11.45% -0.13 221.00%
S92.C 0.10 0.13 0.10 0.0% 0.11 20.0% 0.11 -11.45% -0.13 221.00%
S93.C 0.10 0.13 0.10 0.0% 0.11 20.0% 0.11 -11.45% -0.13 221.00%

Table 3.24: Validation for voltage variation and average normalised covariance in
scenario S6.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Voltage
variation

Average
norm. Σi,j

Voltage
variation

Diff. voltage
variation

Average
norm. Σi,j

Diff. average
norm. Σi,j

Average
norm. Σi,j

Diff. average
norm. Σi,j

S66.C -12.3% 0.99 -8.39% 46.9% 0.99 0.0% – –
S65.C -11.5% 0.94 -7.84% 47.2% 0.94 0.0% 0.99 -5.0%
S64.C -10.5% 0.88 -7.12% 47.7% 0.88 0.0% 0.87 1.0%
S63.C -9.7% 0.83 -6.52% 48.3% 0.83 0.0% – –
S62.C -9.2% 0.8 -6.22% 48.6% 0.80 0.0% 0.87 -7.0%

S160.C -8.6% 0.77 -5.80% 49.1% 0.77 0.0% – –
S61.C -8.6% 0.77 -5.80% 49.1% 0.77 0.0% 0.87 -10.0%

S61s.C -8.6% 0.77 -5.80% 49.1% 0.77 0.0% – –
S60.C -8.6% 0.77 -5.80% 49.1% 0.77 0.0% – –
S57.C -6.5% 0.64 -4.39% 49.3% 0.64 0.0% 0.87 -23.0%
S85.C -6.5% 0.61 -4.43% 46.2% 0.62 -1.6% – –
S55.C -5.6% 0.58 -3.72% 49.4% 0.58 0.0% 0.78 -20.0%
S54.C -5.6% 0.58 -3.72% 49.4% 0.58 0.0% 0.78 -20.0%
S56.C -5.6% 0.58 -3.72% 49.4% 0.58 0.0% 0.78 -20.0%
S53.C -5.2% 0.56 -3.48% 49.4% 0.56 0.0% 0.75 -19.0%
S52.C -4.6% 0.53 -3.10% 49.5% 0.53 0.0% – –
S84.C -5.2% 0.54 -3.56% 45.6% 0.55 -1.9% 0.74 -20.0%

prior data on the system topology. These metrics are solely based on data meas-
urements. One of the most interesting features of these metrics is their applicab-
ility to both radial and meshed systems. As demonstrated in section 3.4.6, these
metrics can identify whether the distribution system, under the same perturba-
tion, is radial or meshed based on the highlighted path values in MP and MQ.
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Table 3.25: Validation for eigenvector values in scenario S6.

1-minute
measurements

10-minutes
measurements (full)

10-minutes
measurements (partial)

Node
Eigenv.
1

Eigenv.
2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

Eigenv.
1

Error
Eigenv. 1

Eigenv.
2

Error
Eigenv. 2

S66.C 0.29 0.08 0.29 0.0% 0.08 0.0% – – – –
S65.C 0.27 0.07 0.27 0.0% 0.08 -3.7% 0.31 -13.50% -0.10 223.87%
S64.C 0.25 0.06 0.24 4.0% 0.07 -4.2% 0.26 -16.62% -0.07 222.65%
S63.C 0.23 0.05 0.22 4.3% 0.06 -4.5% – – – –
S62.C 0.21 0.05 0.21 0.0% 0.06 -4.8% 0.24 -16.62% -0.07 222.65%

S160.C 0.20 0.05 0.20 0.0% 0.05 0.0% – – – –
S61.C 0.20 0.05 0.20 0.0% 0.05 0.0% 0.23 -16.62% -0.06 222.65%

S61s.C 0.20 0.05 0.20 0.0% 0.05 0.0% – – – –
S60.C 0.20 0.05 0.20 0.0% 0.05 0.0% – – – –
S57.C 0.15 0.03 0.15 0.0% 0.04 -6.7% 0.17 -16.62% -0.05 222.65%
S85.C 0.14 -0.07 0.14 0.0% -0.05 -14.3% – – – –
S55.C 0.13 0.03 0.13 0.0% 0.03 0.0% 0.15 -18.37% -0.04 218.73%
S54.C 0.13 0.03 0.13 0.0% 0.03 0.0% 0.15 -18.37% -0.04 218.73%
S56.C 0.13 0.03 0.13 0.0% 0.03 0.0% 0.15 -18.37% -0.04 218.73%
S53.C 0.12 0.03 0.12 0.0% 0.03 0.0% 0.15 -20.94% -0.04 218.73%
S52.C 0.11 0.02 0.11 0.0% 0.03 -9.1% – – – –
S84.C 0.11 -0.07 0.11 0.0% -0.06 -9.1% 0.13 -18.50% 0.07 215.70%

Similarly, as shown in section 3.5.3, voltage covariance can serve as an indicator
of how far voltage variation is propagated across the system, and it can demon-
strate the impact based on the system topology, regardless of whether it is radial
or meshed. This is particularly useful when attempting to understand power dis-
tribution across a network with unknown topology or without previous data on
how measurements are interconnected. However, these metrics cannot precisely
identify the specific type of devices used in the system for voltage level control or
power distribution, such as OLTC or capacitor banks. Nevertheless, if there are no
measurements associated with these devices, the metrics can still reflect their pres-
ence in the system, as they will affect the magnitude of the metrics. Once again,
this is highly valuable when dealing with an unknown or partially unknown dis-
tribution system that needs to be described based on the actual system conditions,
rather than relying on general approximations or assumptions based on outdated
data.

One potential application for these metrics is the development of real-time
system models for prediction and control, especially when there is no available
data from the system or when a purely data-driven model is desired for the entire
system or a specific portion of it. The main advantage of these metrics is that
they rely solely on measured data and are easy to implement. As demonstrated,
even with power and voltage magnitudes alone, significant information about the
system topology can be deduced, even in unbalanced conditions. A similar ap-
proach can be applied using other types of measurements, such as phasorial data
from PMUs, which can further enhance the understanding of the system. In this
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case, however, the metrics were developed using the most common type of data
available in distribution systems worldwide. These metrics can be integrated into
any system identification methodology to develop models based on regressions or
non-linear descriptions of the system, as illustrated in the next chapter.

Although this data-based description provides a good understanding of real-
time events, it can be influenced by various factors. The main limitation of the
metrics is the number of available measurements from the system. As shown in
section 3.5.4, as the number of measurements decreases, it becomes challenging
to differentiate between different sections or portions of the system, thereby re-
ducing the understanding of each developed path in the system. Therefore, these
metrics require measurements to be installed in key parts of the system that need
to be described. Additionally, these metrics are designed to evaluate critical sys-
tem conditions, as the system response is reflected in the quasi-dynamics to be
identified during significant perturbations. Consequently, it is required to eval-
uate the descriptions of events in the distribution system that do not experience
high perturbations, which is part of the work done in next chapter. Furthermore,
if there are multiple significant perturbations, the system tends to approximate
the behaviour by combining both perturbations into a single description, requir-
ing additional information to distinguish the contribution of each perturbation. In
this thesis, the most extreme case was assumed (no previous description of the
distribution system), and this can be significantly improved when historical data
is available, as the user can deduce information regarding the number of loads,
their locations, the nature of the perturbation, etc.

3.8 Discussion

The proposed metrics serve the purpose of characterising the spatial-temporal
variations in voltage within a distribution system using limited measurements.
The ultimate goal is to identify the nodes that are most crucial for observation
and influential for control. These novel metrics, denoted as MP and MQ, are
computed based on the available time series measurements of nodal voltages and
power injections. The voltage covariance matrix, on the other hand, is derived
solely from the time series voltage measurements. The objective of these metrics
is to extract the most relevant characteristics of the system, such as the nodes that
are most affected by a perturbation or control action, as well as the nodes that are
most critical to monitor.

In terms of model development, utilising MP and MQ enables the identification
of the most effective nodes for locating control actions, while nodes that exhibit
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large covariance values can be identified as electrically close. This approach poten-
tially allows the identification of the most critical nodes for control (which nodal
power injections should be included in the control input vector, denoted as u) and
observation (which nodal voltages should be included in the measurement vector,
denoted as y). Consequently, it reduces the complexity of the model compared
to a comprehensive whole-system model that aims to capture every node and
line. For instance, nodes with controllable power injections, such as those from
inverter-based devices, and with high values of MP/MQ should be considered for
inclusion in the input vector u, while nodes with the highest average normalised
covariance values should be considered for inclusion in the measurement vector
y.

The objective of this analysis is to ascertain the maximum amount of inform-
ation that can be extracted from the available power and voltage measurements
in the distribution system. These metrics can serve as inputs for modelling since
they provide spatial and temporal descriptions of the system’s quasi-dynamics.
The richness of the model can be enhanced when additional information about
the system is available. For instance, if the topology of the distribution system,
or at least the connectivity of nodes, is known, it becomes possible to reconstruct
the voltage magnitude at critical nodes. Unfortunately, detailed and up-to-date
information about the system is sometimes lacking.

The analysis of voltage magnitudes yields valuable insights due to the unbal-
anced electromagnetic compensation across all three phases. The magnitude of the
Fisher z-transformation offers tentative information about the location of perturb-
ations by analysing MP and MQ. This approach provides a deeper understanding
of power distribution and the impact of voltage within the circuit. Patterns have
been identified across various types of perturbations, asset configurations, and
topology arrangements, making it applicable for both balanced and unbalanced
analyses.

Furthermore, the power transmitted within the distribution grid is constantly
changing, leading to variations in the impedance values. The conventional model
approach relies on static knowledge of the distribution system with fixed paramet-
ers. However, assumptions such as transformers operating at rated values may not
be realistic. Therefore, in order to facilitate the increased integration of renewable
energy sources, a more accurate model that captures the dynamic nature of the
system and captures the most relevant quasi-dynamics is required.

One of the significant advantages of the previously presented analysis is the
utilisation of available measurements within the system. However, it is important
to acknowledge the limitations associated with the number of measurable points
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and the magnitude of perturbations, which are constrained by the information
entropy limit [236]. Nevertheless, it has been concluded that having complete
knowledge of the entire system, including voltage sensitivities throughout, is not
necessary. It is sufficient to analyse the system’s components in proximity to the
perturbation point, as indicated by the electrical distance quantified through the
average normalised covariance of measured voltages and patterns in power con-
sumption/generation. This allows for the establishment of a criterion to cluster
the system based on their proximity and group together nodes that are affected
by a specific perturbation. This approach ensures accuracy without imposing lim-
itations through localised models. The criteria for proximity will be flexible and
adjusted according to the actual conditions of the system.

A Perturbation-Compensation (Actuator/Observation) approach for building
voltage control models could be proposed using the information within the values
of MP and MQ for the actuation vector, while values such as the average nor-
malised covariance of the measured nodes can represented spatial characteristics
of the system. Additional exogenous variables such as solar irradiance (in case
of photovoltaic injections) and consumed power can be used to enrich the model
approach. The output could be the prediction of voltages/ desired voltage to be
controlled, which can be related in the time-series. After analysing the data and
finding the linearity of the event under study, there are several ways to relate both
inputs and outputs, such as using statistical analysis of time series model approach
based on linear regression such as ARMAXs, or using Koopman-operator based
approaches, which relates the data to obtain State-Space representations. This also
can be highly improved by adding a layer of Non-linear PCA. Additionally, there
are other approaches based on non-linear regression, such as using computational
intelligence to model it, e.g., through ANN. NARMAXs can also be considered by
adding Non-linear PCA to obtain the intrinsic coordinates of the system and ease
the construction of the model.

In the next chapter, a methodology based on statistics analysis of inputs is
presented to develop models using these approaches and validate its stability and
performance.

3.9 Conclusions

This chapter focuses on utilising measured data to obtain insights into the control-
lability and observability of voltages in a distribution system. Specifically, the aim
is to identify which nodal voltages are most affected by power injections or per-
turbations, as well as which voltages are electrically close and can be considered
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similar in terms of measurements. The problem statement, which includes time-
series data of electrical variables and exogenous agents impacting this relation-
ship, is introduced in Sections 3.1 and 3.2. The generation of the data set used
for analysis and the incorporation of uncertainties related to location and weather
variables are explained in detail in Section 3.3. Notably, a probabilistic perspective
is applied to assess voltage variations. It is important to consider that undesired
voltage levels may not always correspond to the most probable case, which must
be taken into account when constructing the model.

Section 3.4 examined the impact of power injections on the system and em-
phasises the significance of active and reactive power in potential control ac-
tions, taking into account the system’s topology. New metrics, namely MP and
MQ, are proposed to identify and quantify voltage perturbations at nodes result-
ing from power injections or consumption. These metrics require measurements
of nodal voltages and injected line powers for their calculation. Section 3.5 ex-
plored alternative concepts of electrical distance to assess the level of connectivity
between measurable nodes in the distribution system. A covariance matrix of
nodal voltages, which is normalised and averaged, is proposed as a useful proxy
measure for electrical distance. This matrix enables the identification of "electric-
ally close" nodes, implying that not all nodes need to be observed to estimate the
system voltages accurately. The metrics developed in this study were evaluated
using different components and topological configurations, demonstrating their
effectiveness in describing the system under various operational conditions. Sec-
tion 3.6 presented a validation of the metrics, comparing them to a high-resolution
reference case. The results showed that even with partial measurements, the met-
rics consistently ranked the relevance of components during the analysed scen-
ario. Section 3.7 discussed the opportunities and limitations of implementing
these metrics in real applications, highlighting the importance of measurement
granularity and the detection of relevant system elements to be modelled. Des-
pite these challenges, the metrics proved to be valuable for developing real-time
models in situations where limited information, such as topology, is available and
accurate predictions of high-perturbation impacts are desired.

Sections 3.8 and 3.9 provided a relevant discussion on the potential use of these
metrics and presented conclusions based on the obtained results. The data-driven
approach for analyzing voltage variations and power transmission between nodes
was emphasized. The proposed approach was evaluated for different types of
power and voltage fluctuations, and the simulation results consistently supported
the effectiveness of the procedure. Furthermore, the results demonstrated how
to maximize the utilization of available data to describe the distribution system
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in real-time, identifying key data requirements for model construction, such as
maximum voltage variation during defined perturbations.

While some of the proposed scenarios with limited measured data highlighted
the need for additional data inputs to develop accurate models, the data-driven
approach presented remarkable potential for reducing model complexity and cap-
turing the necessary quasi-dynamics. By defining a criterion for system clustering
and integrating multiple input/output regression methods, control models can
be established. The study aimed to provide an alternative to complex techniques
used in system reduction, such as moment matching or Hankel matrix, which
may require advanced control theory knowledge and can be challenging to un-
derstand for distribution system operators. The primary motivation was to enable
researchers to establish a reference for characterising key parameters relevant to
constructing time-series control models while preserving the physical interpreta-
tion of the distribution system.



Chapter 4

Time-series modelling application
in distribution systems

4.1 Introduction

In Chapter 3, new metrics were introduced to describe the distribution system.
The subsequent task is to develop models based on this description. The im-
plementation of ANM systems has facilitated the utilisation of real-time data for
monitoring and control purposes [69]. However, ANM systems rely on physically-
based models, which pose challenges in terms of maintaining up-to-date models.
Moreover, these models make forecasts based on partial measurements available
in the system. In general, keeping the system model updated and installing meas-
urements throughout the system can be costly. Consequently, constructing models
for ANM systems under such conditions presents a challenge for distribution sys-
tem operators [8].

The information provided by traditional metrics, such as electric parameters,
and other measurable data used to describe the distribution system, is subject to
temporal changes. Consequently, the application of time-series analysis tools be-
comes essential. Time-series analysis allows the extraction of meaningful statistics
and relevant system characteristics in the face of constant changes, as observed in
electric networks [170, 171]. These extracted features can then be used to identify
control models. With the significant increase in DERs participating in distribution
systems, their integration has become a reality in distribution system operations.
The uncertainties and high variability associated with renewable energy sources
have intensified the interest in analysing the statistical behaviour of time-series
data obtained from available measurements, including the conventional Probabil-
ity density function (PDF) associated with load consumption [161].

140
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Using time-series measurements of system variables for constructing control
models has been extensively used and validated in industrial applications out-
side the power domain [15–18]. While time-series analysis has also found utility
in power distribution network modelling and analysis, particularly in support of
power flow analysis considering the presence of renewables [161], topology de-
tection [98, 172, 173], and reactive power control [174], these analyses do not en-
compass the identification of the "broad dynamics" of a distribution system based
on limited available time-series data, considering the effects and time-evolution of
uncontrollable exogenous variables. As mentioned in Section 1.3.1, these "dynam-
ics" differ subtly from the traditional notion of power system dynamics, as they
encompass not only the dynamics of traditional assets but also capture the dy-
namic effects of loads and renewable inputs on system variables, such as voltage.
They reflect the long-term interaction of all these assets, which is often referred to
as "quasi-dynamics". For the purposes of this thesis, unless stated otherwise, the
term "dynamics" or "quasi-dynamics" in this chapter corresponds to this defini-
tion.

The analysis required to produce these models should be divided into two
parts: the first by extracting relevant variables using statistical analysis; the second
by generating the model based on regression techniques. It is common to define
the selected explanatory variables in the modelling and their relevant time lags [238–
240]. Research done in transmission systems intuitively integrates this concept [240,
241], and other applications considering time lags are used to predict electricity
price, which is a strong field studied in economics [242, 243]. Developing causal
analysis in time-series modelling is a challenging task [171, 244–246], for which
is not required a deep “causation” study in the context of power systems. The
main question for this task should be, is it possible to predict a variable due to its
interaction with another (measurable) explanatory variable, in different time lags?

Regarding using regression techniques to predict variables, most of applica-
tions are focused on load forecasting using statistical models [142, 145–147, 245,
247–252]. These regressions are highly impacted with the load type or size. There
was also an attempt of directly model voltage PDF based on knowledge of topo-
logy according to [236] or evaluating different variables such as rated power in
transformers and lines[253]. Additionally, computational learning-based methods
are also used [239, 254–259] to fit a regression that represent the data. However,
these methods do not provide an explanation for the underlying nature that gener-
ates the distribution function. While these methods are directly applied to predict
the desired parameter, they offer a broad approximation of the variable for a por-
tion of the distribution system. There is a need to develop representations that
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also consider the spatial characteristics of the variables. Hence, a comprehensive
analysis of all variables is necessary to determine which variables can effectively
explain the quasi-dynamics of the desired parameter. Acknowledging this reality,
an alternative question and perspective addressed in this thesis is whether it is
possible to develop purely data-based models using only measurable variables,
including both endogenous and exogenous variables, that are available in the sys-
tem?

Proposed variables are presented in Chapter 3 and used as a start point to pro-
duce the desired models. It is proposed a methodology to select the relevant data
to be considered in the modelling approach. The objective is to develop a model
that predicts voltage and can integrate exogenous variables and control inputs.
Since several variables could explain same of the quasi-dynamics, they should be
removed and grouped to simplify the model (collinearity problem). This revi-
sion includes also checking relevant properties, such as stationary, heteroscedasti-
city, and normality. With the data "cleaned", relevant lags are revised using the
Granger-causality concept. With relevant variables and lags selected, data regres-
sion models are performed using different techniques, some of them based on
classic representations such as ARX, ARMAX and others based on Koopman op-
erator representations, e.g., DMD. A comparison of performance using statistical
tools explains the model’s validity. Finally, distinct types of model configura-
tion are evaluated, i.e., Multiple-Input and Single-Output (MISO), Multiple-Input
and Multiple-Output (MIMO). Using the information available, it is considered
an unbalanced network with an arbitrary penetration level from renewable power
sources and assumed nothing about its topology and parameters. It is investigated
the efficacy and validity of the proposed methodology via case study simulations
on a 123-bus test network.

This chapter presents an approach that relies solely on measured data to con-
struct a reduced-order representation of the system for voltage control in an unbal-
anced distribution system. The main contribution of this chapter is the introduc-
tion of a methodology for developing data-driven models for distribution system
applications, based on statistical analysis of measurable data and exogenous data.
These models aim to reconstruct the desired quasi-dynamics and predict/control
certain system variables, such as voltage levels. Typically, the development of such
models involves working with partial knowledge of the system (e.g., presuming
system topology). This often requires estimating the missing variables or using
non-linear regression techniques, such as artificial intelligence, to build a repres-
entation that aligns with the available data. In contrast, this chapter introduces a
statistically supported regression approach that can linearly predict voltage based
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Distribution system
xt+1 = f(xt, ut, wt)
yt = g(xt, ut)

Measurement
ŷt = h(yt, rt)

System identification
xt+1 = z(xt, ut, ŷt, yt)
yt = c(xt)

ut yt

rtwt

ŷt yt

Figure 4.1: Description of the modelling approach scheme

on the measurable data. The key contributions of this chapter towards achieving
this methodology are as follows:

1. It is contrasted response analysis of static and time-variant responses to
define relevant lags, using cross-correlation analysis and contrasted with
Granger-causality analysis;

2. It is proposed a data-driven approach to get a reduced-order linear repres-
entation of the distribution systems that consider exogenous variables to get
one-step voltage ahead; and

3. It is verified some general assumptions in the statistical approach and presen-
ted a methodology to improve the response based on the analysis of time-
series data.

4.2 Problem statement

A general representation of the problem is presented in Figure 4.1. It is considered
a general distribution network wherein the voltage–power quasi-dynamics are as-
sumed to be governed by DAEs presented in equation (3.1).

These DAEs capture the physics of the electrical network and the time-varying,
non-deterministic and dynamic actions of consumers and producers. For practical
purposes, equation (3.1) that represent the distribution system will be presented
in this chapter in its discrete-time representation; t denotes time, x is a vector of
(internal) states, whose time evolution is described by equation (3.1a), u is a input
vector that contains exogenous variables (and potential control inputs), which in
this case are active/reactive power injections at nodes that can be measured an-
d/or controlled, the irradiance, and the new metric proposed in Chapter 3, y is
vector collecting the voltages at each node i ∈ {1, . . . , N}, and w is a vector of
uncertain variables affecting the state evolution.

The motivation for this thesis is to perform voltage predictions that can be
used in control of the distribution network without knowledge about its quasi-
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dynamics introduced in equation (3.1) are unknown. Moreover, the system should
comprise several unmeasured states, i.e., only a subset of the nodal voltages is
measured, and other subset of nodal power injections is available for measuring
(and control) purposes. All measurements are stored in vector ŷ, which include a
subset of measured values of y, and it is affected by the vector of uncertainties r.

The aim of this chapter is to perform a system identification process, which is
required to construct a simple yet sufficiently accurate model of the power–voltage
quasi-dynamics at the timescale of interest for voltage regulation. Therefore, the
system identification will produce a model according to the DAEs:

x̄t+1 = f (x̄t, ut, ŷt, ȳt) (4.1a)

ȳt = c(x̄t) (4.1b)

In equation (4.1), t + 1 denotes time one-step ahead, x is a vector of (internal) states,
whose time evolution is described by equation (4.1a) and represent the reduced
order model of the original system in equation (3.1). y is a vector collecting the
predicted voltages at measured nodes. Further explanations of distribution sys-
tems to be identified and measurement conditions are presented in Sections 3.2
and 3.4.4.

In this chapter, the inputs and outputs used to build the models are discussed
in more detail in the following sections. The inputs encompass all available his-
torical data used to describe the studied quasi-dynamics. Specifically, these inputs
include the magnitude of voltage at various nodes, power consumption by the
load, power injected into the system by PV units, and solar irradiance. These in-
puts complement the information provided by the newly proposed metrics MP

and MQ, as well as the average normalised covariance. The output of the model
is the predicted voltage. For the purpose of this chapter, all the data used are
synthetic/generated time-series data, following the procedure presented in Sec-
tion 3.3. However, in real applications, historical data from actual or measured
time-series can be utilised instead. More detailed information about the data used
to generate the model is presented in Section 4.3, while the proposed methodology
and its inputs and outputs are explained in Section 4.4.

4.3 Checking of data input in the modelling approach

Before proceeding with the system identification process, it is required to exam-
ine the characteristics of the data. Time-series simulations were performed using
OpenDSS, and the results were processed using MATLAB following the method-
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ology described in Section 3.3. The IEEE 123-node system, shown in Figure 3.3,
was used as the reference system. The locations of power injections and the as-
signment of generation/consumption profiles followed the procedure outlined in
that section. For this chapter, a fixed renewable penetration level of 30% of the
total rated power of loads was established, resulting in the installation of 17 ran-
domly assigned PV generation units throughout the system. For this case, the
OLTCs are connected and operating, while the capacitor banks are not connected
nor there is any meshed component in topology of the system. It is noted that the
total penetration level is calculated based on the total rated power installed across
the distribution system. While a specific PV unit may inject more power than a
particular load, the total installed generation capacity in the system represents a
percentage of the total rated power of all loads. In this case, the 17 installed units
collectively contribute to 30% of the total power consumed by all loads.

One of the PV units was located at node 85, phase C. The installed PV units are
listed in Table 4.1. The irradiance data for the PV units is calculated assuming the
network’s location is Sheffield, using the CREST model introduced in the previ-
ous chapter. The time-series simulations were conducted for 1000 typical summer
weekdays, and the representation of two arbitrary days is shown in Figures 4.2,
4.3, 4.4 and 4.5. Figures 4.2 and 4.3 illustrate the input data used for the model-
ling, providing insights into the nature of power, voltage, and exogenous variables
(except for irradiance, which is not represented here). Figures 4.4 and 4.5 display
the proposed metrics obtained from the time-series data. Similar to the previous
chapter, the measurement sampling time in this case is set to 10 minutes.

Table 4.1: Assignation of PV units installed across the system

Name and location of PV unit Size (kVA)

PV S85.C 87.77
PV S38.B 87.77
PV S49.A 52.61
PV S100.C 87.77
PV S4.C 61.89
PV S7.A 87.76
PV S80.B 45.72
PV S111.A 87.77
PV S76.A 50.80
PV S76.B 50.97
PV S53.A 81.93
PV S68.A 87.77
PV S65.A 5.68
PV S65.C 5.61
PV S42.A 87.77
PV S59.B 68.55
PV S99.B 87.77
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(c) Voltage profiles of measured nodes, phase C

Figure 4.2: Arbitrary selection of data voltage results after simulation with a pen-
etration level of 30%

An exploration of critical measurable point is required to understand the ca-
pacity of the proposed approach. The measurement points selection is based on
location in the system (end and middle of feeder), where they are normally located
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Figure 4.3: Arbitrary selection of data results of power consumed and generated
from measured nodes after simulation with a penetration level of 30%

in real distribution systems. Responses over different nodes or lines in different
phases will not change considerably the modelling methodology approach tested
in this chapter. The optimal location of measurement points is not part of this
thesis scope. Therefore, it is assumed that voltage measurements units are ac-
cessible only at nodes 57, 60, 81, 84 and 85. Equivalently, power measurements
over lines 60-57, 81-84, and 85-84 are the only available measurements. The power
measured in the system corresponds to load consumption at nodes 84 and 85,
phase C, node 60, phase A, and the power injected for a photovoltaic generation
unit at node 85, phase C. Additionally, the irradiance level was measured. The in-
put vector u includes the time-series data of exogenous variables of consumed/in-
jected power, the irradiance levels and the proposed new metrics (MP,MQ and the
average normalised covariance). The measured vector ŷ corresponds to time-series
data of the voltages from vector y.

When creating time-series models, it is assumed stationarity of data [246].
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Figure 4.4: MP and MQ metrics obtained from arbitrary selection of data results

Thus, the data must present an autocorrelation structure and constant mean and
variance. To understand how the suggested model approach should be construc-
ted, a revision of this statement is required in this context.

The analysis is done only in phase C as an illustration, however, the outcome
is the same for the other two phases. Any time series can be described accord-
ing to its trend-cycle component Tt, its seasonal component St and its remainder
component Rt in the additive decomposition as shown in equation (4.2):

yt = Tt + St + Rt (4.2)

The original intention of dividing the data into weekdays/weekend and sum-
mer/winter cases was to mitigate the influence of seasonality patterns, which can
complicate the construction of models. However, other patterns are still observed,
as depicted in Figures 4.6 and 4.7. These figures illustrate the decomposition of
a portion of the voltage data into its total components. Figure 4.6a displays the
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(c) Profile obtained for Phase C

Figure 4.5: Average normalised standard metrics obtained from arbitrary selection
of data results

total components, while Figures 4.6b,4.7a, and4.7b represent the individual com-
ponents Tt, St, and Rt, respectively.

The presence of these components in the data can be attributed to certain pat-
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(a) Measured voltage
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(b) Trend component Tt

Figure 4.6: Voltage reference and first component (trend) of measured voltages
from arbitrary selection of data results

terns that repeat within a 24-hour period. Although the voltages tend to remain
within a range of 0.99 and 1.01, as shown in Figure 4.6b, other characteristics re-
lated to cyclic patterns in consumer consumption and solar irradiation profiles
are captured by the seasonal component St, as depicted in Figure 4.7a. The re-
mainder component shown in Figure 4.7b is associated with the stochastic nature
of random variables representing consumer behaviour and renewable generation
units.

There are several approaches to deal with this. One of the simplest is data
differencing [246], which means that a data value D at time t is differenced in
order one, as indicated in the equation:

∆D(1)
t = Dt − Dt−1 (4.3)

The data trend has been removed after differencing and is now stationary.
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Figure 4.7: Second and third components (seasonal and remainder) of measured
voltages from arbitrary selection of data results

This eases the model creation since it will not have any AutoRegressive Integ-
rated Moving Average (ARIMA) structure but a shape of a regression model in
difference with ARMA errors. Therefore, it is required that all data used must be
differenced in the same way as indicated in equation (4.3).

4.4 Proposed methodology for time-series data modelling

The proposed methodology consists of five steps, involving the revision, selection,
organisation, and preparation of all measured data for use in a linear regression
approach. Once the model is created, statistical assumptions are verified to de-
termine its suitability for predicting and controlling voltage levels at each node.
The procedure is summarised in Algorithm 4.1. This algorithm should be executed
whenever there is a need to obtain a representation of critical nodes in the distri-
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bution system, such as when measured or historical data indicate potential opera-
tional limit issues. For real-time applications, the algorithm can be re-evaluated at
each sampling interval or according to a predefined schedule based on available
historical data.

To build the model, the minimum amount of required data is determined by
the production of the proposed metric introduced in Chapter 3. For this chapter,
a window size of thirty minutes is used, which corresponds to three samples
considering that data is sampled every ten minutes. However, it is important to
note that this algorithm relies on having a sufficient amount of data to improve
the performance of the model. To illustrate the application of the algorithm, it is
assumed that the previously introduced measurements are critical nodes that are
the only ones being monitored (and potentially controlled), and there is historical
data spanning one thousand days.

For linear regression, it is desired that the estimators used as input follow a
normal distribution since they help to obtain optimal response and produce results
that can be easily analysed (e.g., the definition of a prediction interval), which
is hard to obtain [260]. The most relevant assumption after building the model
is that the obtained residual follows a white noise structure. Then, normality
must be checked over residuals to validated a Gaussian distribution function of
these random variables. Additionally, heteroscedasticity should be also checked,
to confirm that is not present in the residuals, i.e., the variance is equal over the
range of measured values.

Figure 4.8 illustrates the proposed approach for obtaining models, which en-
compasses steps 1-3 in Algorithm 4.1. Table 4.2 provides a summary of the inputs
and outputs considered in the modelling process. The first step involves intro-
ducing the input data at time t, which includes control variables, exogenous vari-
ables, and the output voltage to be predicted. The next step is data pre-processing,
where relevant measurements are selected after detrending or ensuring stationar-
ity. A collinearity analysis is then performed to address issues of multicollinearity,
which can increase variance unnecessarily due to the presence of redundant inputs
[260]. Additionally, the relevant lags for better response are determined through
cross-correlation analysis and Granger-causality analysis [246]. Once the data has
been pre-processed, the next stage is to select data for training and validation pur-
poses. In this case, the data is divided into 50% for training and the remaining 50%
for validation. Finally, linear regression is performed using relevant techniques
such as polynomial-based regression [102, 104] or Koopman-operator-based re-
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Algorithm 4.1 Data-driven time-series modelling approach

Input: Historical data: V, PD
K , PG

L , Irradiance, MP, MQ, Av.norm.cov,
Output: Model representation (State-Space), Predicted V
initialization
Step 1 - Data revision and pre-processing
while Data stationary==false do

Difference data according to (4.3)
end
Evaluate first attempt of linear regression
Check residuals properties (Autocorrelation, Heteroscedasticity, Normality)
if Residual == white noise then

The model is completed, and it is fully explained statistically speaking
else

Data requires processing
end
Step 2 - Data processing and selection
Selection of critical data to be modelled
Check balance of training/validation datasets
Check normality properties of data
if Data == normal distribution then

Do nothing
else

Transform to normal distribution using (4.63)
end
Check collinearity in used data
if Data collinearity == true then

Remove redundant data
else

Do nothing
end
Check relevant lags (model order) using cross-correlation analysis and Granger
causality test
Step 3 - Creation of Linear time-invariant (LTI) model using revised data
Select I/O relationship (MISO, MIMO)
Apply regression method (Autoregressive-based, Koopman-based, etc)
Step 4 - Checking validity of assumptions
Check residuals properties (Autocorrelation, Heteroscedasticity, Normality)
if Residual == white noise then

The model is completed, and it is fully explained statistically speaking
else

More data/info is required to explain the quasi-dynamics/ increase horizon of
prediction

end
Step 5 - Obtaining prediction interval for the time-series modelling
Calculating predicted voltages according to (4.4)
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gression [136, 261], following the specified structure

yt+1 = yt + ∆yt+1 (4.4)

where the term ∆yt+1 corresponds to the variation obtained from the LTI system
model obtained in State-Space form

xt+1 = Axt + B∆ut + wt (4.5a)

∆yt = Cxt + D∆ut + et (4.5b)

where wt and et are assumed to be white noise for process and measurement.
The matrices A, B, C, and D play specific roles in defining the behaviour of the
system. The matrix A represents the quasi-dynamics of the system, describing
how the state of the system evolves over time. The matrix B captures the effect
of actuation, indicating how control inputs impact the system’s dynamics. The
matrix C defines the sensing strategy, determining which states are measured or
observed. Finally, the matrix D represents the effect of actuation feed-through,
accounting for any direct influence of control inputs on the output. When making
predictions using the state estimate xt+1, it is assumed that the current information
of the plant is required for accurate predictions. This assumption implies that the
input cannot instantaneously affect the output. Consequently, in the plant model,
it can be assumed D = 0, indicating that there is no direct feed-through of the
control input to the output. This assumption simplifies the model and assumes
that the output is solely dependent on the system’s internal dynamics and the
control inputs indirectly through the state variables.

The dimension of the model produced after regression varies depending on the
number of inputs and outputs selected during the preprocessing stage. Also, the
definition of key/relevant measurements will depend on the scenario and type of
perturbation done into the system. The internal parameters of the model, obtained
through regression, respond to the current measured situation of the system. As
a result, the model is not constrained by the system’s topology (radial or meshed)
or by unmeasured devices. The effects of these factors on the system response
are captured in the measurements, as discussed in the previous chapter. This
facilitates the process of model creation without sacrificing generality.

In order to explore the capacity of the proposed approach, it is necessary to
consider the selection of critical measurable points in the system. For this thesis,
the measurement points are chosen based on their location in the system, which
typically corresponds to the end and middle of feeders in real distribution systems.
The methodology and approach tested in this chapter are not significantly affected
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Figure 4.8: Proposed modelling approach for voltage prediction (Steps 1-3 of Al-
gorithm 4.1)

by the specific nodes or lines selected for measurements. The optimal location of
measurement points is beyond the scope of this thesis. In this case, it is assumed
that voltage measurements are accessible at nodes 57, 60, 81, 84, and 85 in all
available phases at each node. Similarly, power measurements are available on
lines 60-57, 81-84, and 85-84. The power measurements in the system correspond
to the load consumption at nodes 84 and 85 in phase C, the load consumption at
node 60 in phase A, and the power injection from a photovoltaic generation unit at
node 85 in phase C. Additionally, the irradiance level is also measured. The input
vector, denoted as u, consists of the time-series data of the exogenous variables,
including the consumed/injected power, irradiance levels, and the proposed new
metrics (MP, MQ, and the average normalised covariance). On the other hand, the
measured vector, denoted as ŷ, corresponds to the time-series data of the voltages
from the vector y. The selected inputs and outputs for the modelling process are
summarised in Table 4.2.

4.4.1 Data revision and pre-processing

The first step in this methodology corresponds to data revision and pre-processing.
This step is summarised in the first step of the Algorithm 4.1.

As shown previously, data must be checked for stationarity. This could be
checked visually, using Autocorrelation Function (ACF) and Partial Autocorrela-
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Table 4.2: Selected inputs and outputs for linear regression

Inputs Outputs

∆Power consumed node 85 phase C ∆Predicted voltage value node 85 phase C
∆Power consumed node 84 phase C ∆Predicted voltage value node 84 phase C
∆Power consumed node 60 phase A ∆Predicted voltage value node 81 phase A
∆Power PV node 85 phase C ∆Predicted voltage value node 81 phase B
∆Solar irradiance ∆Predicted voltage value node 81 phase C
∆MP

60A−57A ∆Predicted voltage value node 60 phase A
∆MP

60B−57B ∆Predicted voltage value node 60 phase B
∆MP

60C−57C ∆Predicted voltage value node 60 phase C
∆MP

84C−85C ∆Predicted voltage value node 57 phase A
∆MP

84C−81C ∆Predicted voltage value node 57 phase B
∆MQ

60A−57A ∆Predicted voltage value node 57 phase C
∆MQ

60B−57B
∆MQ

60C−57C
∆MQ

84C−85C
∆MQ

84C−81C
∆Average normalised covariance node 85 phase C
∆Average normalised covariance node 84 phase C
∆Average normalised covariance node 81 phase A
∆Average normalised covariance node 81 phase B
∆Average normalised covariance node 81 phase C
∆Average normalised covariance node 60 phase A
∆Average normalised covariance node 60 phase B
∆Average normalised covariance node 60 phase C
∆Average normalised covariance node 57 phase A
∆Average normalised covariance node 57 phase B
∆Average normalised covariance node 57 phase C
∆Current voltage value node 85 phase C
∆Current voltage value node 84 phase C
∆Current voltage value node 81 phase A
∆Current voltage value node 81 phase B
∆Current voltage value node 81 phase C
∆Current voltage value node 60 phase A
∆Current voltage value node 60 phase B
∆Current voltage value node 60 phase C
∆Current voltage value node 57 phase A
∆Current voltage value node 57 phase B
∆Current voltage value node 57 phase C

tion Function (PACF). According to [262], the autocorrelation rk for lag k between
the univariate time series and stochastic process yt and yt+k, where k = 0, · · · , K is
defined as

rk =
1
T ∑T−k

t=1 (yt − ȳm)(yt+k − ȳm)
c0

, (4.6)

where ȳm indicates the mean of y and c0 is the sample variance of the time
series. On the other hand, the PACF is defined as the autocorrelation between yt

and yt+k with the linear dependence of yt on yt+1 through yt+k−1 removed. That is
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the same as calculating the autocorrelation between yt and yt+k that is not accoun-
ted for by lags one through k − 1, inclusive:

ϕ1,1 = corr(yt+1, yt), for k = 1, (4.7a)

ϕk,k = corr(yt+k − ỹt+k, yt − ỹt), for k ≥ 2, (4.7b)

where ỹt+k and ỹt are linear combinations of {yt+1, yt+2, · · · , yt+k−1} that min-
imise the mean squared error of yt+k and yt, respectively. The theoretical sta-
tionary time series partial autocorrelation function can be calculated by using the
Durbin–Levinson Algorithm [262].

Figures 4.9 and 4.10 show the corresponding voltage profiles and their corres-
ponding ACF and PACF. More results for all phases are presented in Appendix J.
As it is shown, there are high correlation levels for all lags in the ACF, a common
behaviour in non-stationary systems. For higher-order lags that were not plotted,
the data show how autocorrelation patterns periodically fluctuate and resemble
a sinusoidal wave, and the significant partial auto-correlation in the lags were
seasonal period restart, indicating seasonality.

4.4.1.1 Revision of non-stationarity of data

The analytical way to check the non-stationary condition corresponds to applying
the Augmented Dickey-Fuller (ADF) test, which is a statistical significance test
and indicates a failure to reject the null hypothesis that a unit root is present [171,
246, 260].

Consider the discrete-time stochastic process (yt, t = 1, 2, 3, · · ·), supposing that
is represented by an autoregressive process of order p, yt = a1yt−1 + a2yt−2 + · · · +
apyt−p + εt, where εt is a serially uncorrelated, zero-mean stochastic process with
constant variance σ2. Assuming y0 = 0 (for convenience), if m = 1 is a root of
the characteristic equation of multiplicity 1 (mp − mp−1a1 − mp−2a2 − · · · − ap = 0),
then the stochastic process has a unit root.

The unit root is a property of a non-stationary time series that can lead to
a wrong inference as a consequence of spurious regressions. Any unit root test
evaluates if a time series variable possesses a unit root and it is non-stationary.
The unit root test can be represented as shown in equation (4.2), where the basic
concept of the unit root test is to determine whether the stochastic component
consists of a unit root or not.
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Figure 4.9: Distribution shape, ACF and PACF results of voltage distributions ob-
tained from the reference case, showing non-Gaussian shapes and non-stationarity
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Figure 4.10: Distribution shape, ACF and PACF results of voltage distributions ob-
tained from the reference case, showing non-Gaussian shapes and non-stationarity
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Table 4.3: Tests results from measured voltages (on phase C)

Node Test rejection p-values Test statistics DFτ

S85.C Failure to reject H0 0.4545 -0.5392
S84.C Failure to reject H0 0.4635 -0.5143
S81.C Failure to reject H0 0.4761 -0.4801
S60.C Failure to reject H0 0.5016 -0.4104
S57.C Failure to reject H0 0.5276 -0.3395

As a result, a p-value helps infer the time series’ stationarity. The testing pro-
cedure for the ADF test is applied to the model:

∆yt = α + βt + γyt−1 + δ1∆yt−1 + · · · + δp−1∆yt−p+1 + εt, (4.8)

where α is a constant, β is the coefficient on a time trend, and p is the lag
order of the autoregressive process. A random walk is modelled by setting the
constraints α = 0 and β = 0, and making only β = 0 corresponds to modelling
a random walk with a drift. Higher-order autoregressive processes are allowed
when lags of the order p are included in the ADF formulation. Different ways
of testing then include testing down from high orders lag length p and examine
the t-values on coefficients or examining information criteria such as the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC).

The unit root test is then conducted under the null hypothesis γ = 0 against the
alternative hypothesis of γ < 0. The test statistic is computed and then compared
with the relevant critical value for the Dickey-Fuller test, which follows a specific-
ally known distribution as the Dickey–Fuller table for critical values. Calculation
of test value is obtained from expression

DFτ =
γ̂

SE(γ̂)
(4.9)

If the calculated test statistic is less than the critical value, then the null hypo-
thesis γ = 0 is rejected and no unit root is present.

The results of applying the test over the data are shown in Table 4.3 (this values
are only for phase C, however, this results applies for all phases), and it shows
for each dataset the test rejection decisions for null hypothesis, the Test statistic
p-values (which was the one sample t-test for left-tail probabilities) and the test
statistic DFτ.
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4.4.1.2 First regression attempt and exploring of all data

From results obtained in Table 4.3, it is concluded that the data obtained requires
to be differenced to make it stationary. Normally, applying data differencing of
order one is enough to become stationary [246]. It can be an iterative process
for several order until stationarity is achieved. However, a good revision of the
data and the model would be suggested to give an interpretation to the obtained
models and results.

The data presented before is now differenced and not absolute values. Once
this data is stationary, it is desired to build an “good” LTI model from the stat-
istical point of view. To achieve that, it is assumed (and desired) that the input
data follows characteristics such as normality in the distribution’s functions (a
straightforward way to prove independence between variables).

A first preliminary regression is done in order to explore the residuals. The
techniques that were explored in this thesis can be grouped as follow:

4.4.1.3 Linear autoregressive models

This approach has been used to obtain empirical models that relates inputs ut and
outputs yt [102]. Most of these models are based on the equation error model
structure, which is the simplest input-output relationship for stochastic processes,
and the current output is product of the interaction between previous inputs and
outputs. The family of possible models is big (about 32 possible model struc-
ture sets), but only ARXs and ARMAXs models will be discussed as the tradi-
tional tools used to provide a parsimonious description of the (weakly) stationary
stochastic process. The most basic representation corresponds to the ARX model
represented by

yt +
na

∑
i=1

aiyt−i =
nb

∑
j=1

bjut−j + et (4.10)

where et is white noise and the values of ai and bj are adjustable parameters
that are found using linear regression. The name of this model comes from using
autoregressive components associated with the outputs, plus the participation of
exogenous variables associated with the inputs.

Previous model can be expanded considering the participation of the disturb-
ance in the system summarised in et. Then, the ARMAX model is described as
follow:

yt +
na

∑
i=1

aiyt−i =
nb

∑
j=1

bjut−j + et +
nc

∑
k=1

cket−k (4.11)

This addition increases flexibility in the model and describes the error as a moving
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an average of white noise.

4.4.1.4 Koopman-operator-based models

Models presented before are based on a classical statistical and geometric perspect-
ives on dynamical systems. There are other approaches based on the evolution
of measurements of the system. The Koopman operator theory introduces a third
operator-theoretic perspective, in which is expected to take advantage on the avail-
ability of measurement data from complex systems [136]. Koopman theory looks
to the identification of intrinsic coordinate of a system to get a linear framework
of its nonlinear dynamics [263]. Considering the original quasi-dynamic system
presented in (3.1), the state of the system x ∈ M, where M is a differentiable mani-
fold, often given by M = Rn. The quasi-dynamics of the discrete equivalent system
are given by xk+1 = F(xk), where F may be the flow map of the quasi-dynamics of
(3.1). A Koopman operator κt represents an infinite-dimensional linear operator
that advances measurement functions of the state g : M → R with the flow F of
the quasi-dynamics given by

κtg = g ◦ F (4.12)

One of the interesting and promising properties of this operator is its linearity
in his infinite dimensional representation, which produce problem in its computa-
tion [31]. Therefore, it is expected to apply the Koopman analysis to approximates
the evolution on a subspace spanned by a finite-dimensional set of measurement
functions to an invariant subspace, instead of capturing the evolution of all meas-
urement functions in a Hilbert space. As in any linear representation, a Koopman
invariant subspace is spanned by any set of eigenfunctions γ(x) of the Koopman
operator, corresponding to eigenvalue λ, and it satisfies

κtγ = λγ (4.13)

Obtaining these eigenfunctions from data or analytically is challenging in gen-
eral but discovering these eigenfunctions enables globally linear representations of
strongly nonlinear systems in terms of these intrinsic observables [143]. One solu-
tion for this is a method called Dynamic Mode Decomposition or DMD, which
is a simple numerical algorithm that approximates the Koopman operator [139].
This method consists of a modal decomposition, where each mode consists of spa-
tially correlated structures that have the same linear behaviour in time. This pro-
duces the best-fit linear dynamical system that advances high-dimensional meas-
urements forward in time [140]. The infinite-dimensional Koopman operator is
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approximated with a finite-dimensional matrix A that advances the system state
x:

xk+1 ≈ Axk (4.14)

Using data that represents the non-linear system, it is possible to represent the
system using "snapshots" stored in matrices X = [x1, x2 · · · xm−1]T and time-shifted
X

′
= [x2, x3 · · · xm]T. Equation (4.14) can be represented as follows:

X
′ ≈ AX (4.15)

The DMD algorithm tries to find the leading eigendecomposition of the best-fit
linear operator, given by

A = arg min
A∗

∥X
′ − A∗X∥F (4.16)

where ∥·∥F is the Frobenius norm. The best-fit A is given by A = X
′
X† , where

† is the pseudo-inverse, which is computed via Singular Value Decomposition
(SVD).

This is how DMD approximates the Koopman operator restricted to the set
of direct measurements of the state of a high-dimensional system. In this case, it
was developed a Dynamic Mode Decomposition with Control (DMDc) to integrate
the exogenous variables that are used to explain the voltage quasi-dynamic, and
potentially used for control applications [132]. This extension proposed by Proctor
et al. [264], consider the participation of natural unforced dynamics and the effect
of actuation. In an equivalent way as shown in (4.15), the quasi-dynamics are
represented by

xk+1 ≈ Axk + Buk (4.17)

Therefore, to obtain matrices A and B it is required also the data vectors X, X
′

and
an actuation history matrix Υ = [u1, u2 · · · um]T. Therefore, Equation (4.17) can be
represented as follows:

X
′ ≈ AX + BΥ (4.18)

When matrix B is unknown (in this case, it is expected to obtain a reduced
equivalent system quasi-dynamic), both matrices A and B must be calculated sim-
ultaneously. The approximation presented in (4.18) is reorganised as follows
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X
′ ≈

[
A B

] [X
Υ

]
= GΩ (4.19)

The matrix G is obtained using a least-squares regression, given by:

G ≈ X
′
Ω† (4.20)

The high-dimensional matrix Ω = [X∗Υ∗]∗ is approximated using SVD, as fol-
lows:

Ω = ŨΣ̃Ṽ∗ (4.21)

where Ũ = [Ũ∗
1 Ũ∗

2 ]∗provides a reduced bases for the input space. On the other
hand, a reduced basis for the output space Û defines the value of X

′
as follows:

X
′

= ÛΣ̂V̂∗ (4.22)

Then, the matrix G can be approximated by projecting onto this basis:

G̃ = Û∗G

[
Û
I

]
(4.23)

The resulting projected matrices Ã and B̃ in G̃ are calculated as follows:

Ã = Û∗AÛ = Û∗X
′
ṼΣ̃−1Ũ∗

1 Û (4.24a)

B̃ = Û∗B = Û∗X
′
ṼΣ̃−1Ũ∗

2 (4.24b)

Normally, the tuning is focused only on the dimension of first matrix X
′

presented in (4.22).

4.4.1.5 Subspace identification methods

Another technique used was the subspace identification method called Observed/Kal-
man Filter Identification and Eigensystem Realization Algorithm (OKID-ERA),
which both algorithms constitute a classic system identification technique used
in several applications. Nevertheless, the previous modal decomposition method
have been shown to be intimately connected to OKID-ERA [265]. These two dif-
ferent algorithms are complemented to the system identification purpose: the
first part produces a de-noised linear impulse response from the input, while the
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second oversees producing a reduced-order state-space system[132].

The ERA algorithm uses impulse response data and produces low-dimension
linear input–output models based on the “minimal realisation" theory, in which a
Hankel matrix H is produced by stacking shifted time-series of impulse response
measurements. The resulting is a low order defined by the numerical rank of the
controllability and observability subspaces [102].

To explain how ERA algorithm works, consider the discrete-time system with
a time-step k:

xk+1 = Adxk + Bduk (4.25a)

yk = Cdxk + Dduk (4.25b)

A discrete-time delta function input in the actuation gives rise to a discrete-
time impulse response in the sensors, as shown in the equations (4.26) and (4.27),
respectively:

uδ
k ≜ uδ(k∆t) =

{
I k = 0
0 k = 1, 2, 3 · · · (4.26)

yδ
k ≜ yδ(k∆t) =

{
Dd k = 0

Cd Ak−1
d Bd k = 1, 2, 3 · · · (4.27)

This interaction applying several inputs p is typically done one for each of the
separate input channels q. The output responses are collected for each impulsive
input at a given time-step k, which will produce a Hankel matrix. In fact, the
presented matrices Ad,Bd,Cd and Dd could exist or not, since this method is data-
driven and these matrices are representing what is represented by the Hankel
matrix, which is formed by stacking shifted time-series impulse-response from
measurements, as shown in the following expression:
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H =




yδ
1 yδ

2 · · · yδ
mc

yδ
2 yδ

3 · · · yδ
mc+1

...
...

. . .
...

yδ
mo

yδ
mo+1 · · · yδ

mc+mo−1




=




CdBd Cd AdBd · · · Cd Amc−1
d Bd

Cd AdBd Cd A2
dBd · · · Cd Amc

d Bd
...

...
. . .

...
Cd Amo−1

d Bd Cd Amo
d Bd · · · Cd Amc+mo−2

d Bd




(4.28)

Since the equivalent matrices of system are not required to be accessed, a shif-
ted Hankel matrix H

′
can be used instead:

H
′

=




yδ
2 yδ

3 · · · yδ
mc+1

yδ
3 yδ

4 · · · yδ
mc+2

...
...

. . .
...

yδ
mo+1 yδ

mo+2 · · · yδ
mc+mo




=




Cd AdBd Cd A2
dBd · · · Cd Amc

d Bd

Cd A2
dBd Cd A3

dBd · · · Cd Amc+1
d Bd

...
...

. . .
...

Cd Amo
d Bd Cd Amo+1

d Bd · · · Cd Amc+mo−1
d Bd




(4.29)

Based on the matrices H and H
′
, it is possible to construct a reduced-order

model by detecting the dominant temporal patterns obtained from the SVD of H:

H = UΣV∗ =
[
Ũ Ut

] [Σ̃ 0
0 Σt

] [
Ṽ∗

V∗
t

]
≈ ŨΣ̃Ṽ∗ (4.30)

Therefore, the reduced model system that can be obtained as follows:

x̃k+1 = Ãx̃k + B̃ũ (4.31a)

y = C̃x̃k (4.31b)

where
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Ã = Σ̃−1/2Ũ∗H
′
ṼΣ̃−1/2 (4.32a)

B̃ = Σ̃1/2Ṽ∗
[

Ip 0
0 0

]
(4.32b)

C̃ =

[
Iq 0
0 0

]
ŨΣ̃1/2 (4.32c)

It is not required some knowledge from the system; however, this algorithm
is based on impulse response measurements which is not normally available in
power system applications. The OKID algorithm works as a complement, since
it approximates the impulse response from arbitrary input–output data. This al-
gorithm uses an asymptotically stable Kalman filter to identify the Markov para-
meters of a system augmented [133, 266, 267]. These parameters are extracted
from the observer Markov parameters, which approximate the impulse response
of the system and can be used as inputs to the ERA algorithm.

4.4.1.6 Non-Linear regression (NN-based)

Finally, Nonlinear Auto-Regressive Model with Exogenous Inputs Mode (NARX)
was used to contrast the previous results with a non-linear approach as refer-
ence of performance [144], which is a recurrent dynamic network with feed-
back connections enclosing several layers of a Neural Network (NN) used to map
the non-linear components, and then referred to a regular ARX model structure.
This method has been closely related with the Koopman-operator-based method
SINDy, since both identifies the structure of models from time-series data through
an orthogonal least square procedure [31, 268].

4.4.1.7 System State Identification

The previous linear models can be represented in state-space form, which is the
main goal in this thesis. In general, linear structures can be represented in State-
Space form [102, 130]. For example, most of linear models can be represented
using the general-linear polynomial model or the general-linear model by the ex-
pression:

y(t) = G(q−1)u(t) + H(q−1)e(t) (4.33)

where G and H are transfer functions in the time delay operator q−1. This
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general representation can be written as follows:

A(q−1)y(t) = q−d B(q−1)
F(q−1)

u(t) +
C(q−1)
D(q−1)

e0(t) (4.34)

where d is some multiple of the sampling period. Linear models such as ARX
or ARMAX are particular model structures of this representation. To illustrate
the equivalence between this representation with State-Sapce representation, ARX
will be used as an example, in which the transfer function G and H are defined
using parameters θ by the expressions:

G(q−1, θ) = q−d BARX(q−1)
FARX(q−1)

(4.35a)

H(q−1, θ) = q−d 1
AARX(q−1)

(4.35b)

A simple relationship between the state space innovations and the general
input-output form exists and it is given by the expressions:

G(q−1, θ) = CSSIF(θ)[qI − ASSIF(θ)]−1BSSIF(θ) (4.36a)

H(q−1, θ) = CSSIF(θ)[qI − ASSIF(θ)]−1KSSIF(θ) + I (4.36b)

Therefore, the deterministic part G of both expression can be rewritten as fol-
lows:

q−d BARX(q−1)
FARX(q−1)

= CSSIF(θ)[qI − ASSIF(θ)]−1BSSIF(θ) (4.37)

After some manipulations, it can be verified that the poles of the predictor are
the eigenvalues from A − KC. The set Dm is given by the expression:

Dm = {θ|eig[A(θ) − K(θ)C(θ)]inside the unit circle} (4.38)

When estimating state space models, the elements in K(θ) are typically estim-
ated directly rather than using the detour of estimating the covariance matrices
and solving the Ricatti equation before computing K(θ). Then the parameters
A, B, C and K must be identified, which is not identifiable from input-output
data. Therefore, the same input-output relationship can be described by different
choices of A, B, C and K. Consequently, converting from input-output model to
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state-space model is not done in a unique way, and there is not guarantee that the
new state-space model will take all critical states to be observed/controlled. Nev-
ertheless, there are advantages of this representation (e.g., easy implementation,
take into account initial conditions, gives some insight of other properties of the
system such as controllability and observability, this is a time domain method suit-
able for digital computer computation, among others), even if there is not unique
way to make this conversion (in the case of linear autoregressive model) [104]. If
it is not stated something different, all obtained models will be presented in their
state-space form, as presented in equation (4.5).

4.4.1.8 Obtained models and output results after first regressions

In this part of the approach, a MIMO structure is assumed to integrate the inputs
and outputs. As this is an exploratory phase aimed at understanding the nature of
the data and avoiding computational issues, the modelling is split into two parts.
The first part comprises a model that includes variables from phases A and B,
while the second part focuses on phase C. The obtained parameters for both parts
of each model are presented in Appendix J.

A portion of the results obtained from the first guess and the predicted voltages
are presented in Figures 4.11 and 4.13, for all phases from the 50% of data used for
training, while in Figures 4.12 and 4.14, for all phases from the 50% of data used
for validation. These figures include the reference signals and the response from
a simple persistent model (with constant output). Tables 4.4 and 4.5 summarise
general characteristics of each obtained models. To make all models comparable
regarding the capacity of representing the system quasi-dynamics using available
data, all models were developed under similar conditions of dimension size (only
the model obtained using DMDc is naturally reduced due to the algorithm sim-
plification based on the SVD). It is not part of this thesis aim to get the optimal
model for each algorithm. Therefore, it was not required a wide search space for
models dimension.

Table 4.4: Obtained models dimensions for voltage prediction using raw training
dataset (phase A and B)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 48x48 48x48 6x6 48x48 -
Dimension B 48x12 48x12 6x12 48x12 -
Dimension C 6x48 6x48 6x6 6x48 -
Dimension D 6x12 6x12 6x12 6x12 -
Comp. time (s) 122.37 30.98 0.32 1023.6 195.13
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Figure 4.11: Portion of voltage predictions 1 step ahead using raw training dataset
Phase A and B



Chapter 4. Time-series modelling application in distribution systems 171

1.3 1.4 1.5

·104

0.97

0.98

0.99

1

1.01

Time (minutes)

V
o
lt
ag

e
(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(a) Node S81A

1.3 1.4 1.5

·104

0.97

0.98

0.99

1

1.01

Time (minutes)

V
o
lt
ag

e
(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(b) Node S60A

1.3 1.4 1.5

·104

0.96

0.98

1

1.02

Time (minutes)

V
ol
ta
ge

(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(c) Node S57A

1.3 1.4 1.5

·104

0.96

0.98

1

1.02

Time (minutes)

V
ol
ta
ge

(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(d) Node S81B

1.3 1.4 1.5

·104

0.96

0.98

1

1.02

Time (minutes)

V
o
lt
ag

e
(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(e) Node S60B

1.3 1.4 1.5

·104

0.97

0.98

0.99

1

1.01

Time (minutes)

V
ol
ta
ge

(p
u
)

ARX ARMAX DMDc OKID-ERA

NARX Ref. C.O.

(f) Node S57B

Figure 4.12: Portion of voltage predictions 1 step ahead using raw validation data-
set Phase A and B
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Figure 4.13: Portion of voltage predictions 1 step ahead using raw training dataset
Phase C
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Figure 4.14: Portion of voltage predictions 1 step ahead using raw validation data-
set Phase C
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Table 4.5: Obtained models dimensions for voltage prediction using raw training
dataset (phase C)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 40x40 40x40 5x5 40x40 -
Dimension B 40x15 40x15 5x15 40x15 -
Dimension C 5x40 5x40 5x5 5x40 -
Dimension D 5x15 5x15 5x15 5x15 -
Comp. time (s) 124.94 46.84 0.77 740.03 252.46

ARX and ARMAX models are presented in their state-space (SS) represent-
ation. The autoregressive structures ARX, ARMAX and NARX consider output
delays up to lag 7, and internal input delay up to lag 3. The first matrix X

′
for

DMDc consider the matrix order equivalent of the ARX state-space representation
in the exploration process, to have a broader exploration of relevant eigenvalues
obtained after the SVD process. Then, the process reduces the matrix by up to the
number of outputs. The OKID-ERA approach showed the best performance when
the number of Markov parameters was set up to 20.

Tables 4.6 and 4.8 shows the performance for training and validation for the
model of phases A and B, while Tables 4.7 and 4.9 shows the performance for
training and validation for the model of phase C, respectively. Also, the response
from the simple persistent model or constant output is used as reference in the
obtained metrics. These metrics to compare models performance are commonly
used in similar works. The R-squared (R2) is a statistical measure to compare the
data to the fitted regression line, which is the percentage of the response variable
variation that is explained by a linear model, as shown in the following equation:

R2 = 1 − SSres

SStot
, (4.39)

where SSres = ∑n
i (yi − fi)2 is the sum of squares of residuals, yi is the observed

data and fi is the fitted data and SStot = ∑n
i=1(yi − ȳm)2 is the total sum of squares.

This metric gives an estimate of the relationship between movements of a depend-
ent variable based on an independent variable’s movements, but it doesn’t say
anything whether the data and predictions are biased, nor whether how good the
model is. That is why it is required to use additional metrics to have a better
understanding of the obtained models.

The root-mean-square error (RMSE) is a used to represent the square root of
the quadratic mean of the differences between predicted and observed values. This
metric is commonly normalised to facilitate the comparison between models with
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Table 4.6: Results of models for voltage prediction using raw training dataset,
phases A and B

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX Constant O.

R2 S81A 0.51 0.51 0.53 0.44 0.75 0.44
R2 S60A 0.68 0.67 0.69 0.65 0.74 0.60
R2 S57A 0.62 0.61 0.63 0.59 0.83 0.54
R2 S81B 0.69 0.71 0.72 0.58 0.76 0.62
R2 S60B 0.64 0.64 0.65 0.63 0.92 0.54
R2 S57B 0.81 0.80 0.81 0.78 0.93 0.74
NRMSE S81A 0.14 0.14 0.13 0.15 0.10 0.21
NRMSE S60A 0.13 0.13 0.12 0.13 0.11 0.21
NRMSE S57A 0.08 0.08 0.08 0.08 0.05 0.16
NRMSE S81B 0.06 0.05 0.05 0.06 0.05 0.13
NRMSE S60B 0.09 0.09 0.09 0.09 0.04 0.18
NRMSE S57B 0.05 0.05 0.05 0.06 0.03 0.12
AIC -3.825e5 -3.821e5 -3.835e5 -3.784e5 -4.051e5 -3.83e5
BIC -3.824e5 -3.821e5 -3.835e5 -3.783e5 -4.051e5 -3.82e5

different scales, called normalised root-mean-square error (NRMSE), calculated
using the following expression:

NRMSE =

√
∑n

i=1( fi i−yi)2

n

ymax − ymin
(4.40)

NRMSE perform well if the response variable is log-transformed, standardised,
or otherwise modified, or if comparing models fits for different response variables.
However, the downside is that it is lost the units associated with the response
variable. Additional metrics are used to compare model relative performances:
AIC and BIC, which are given according to the following equations, respectively:

AIC = n log(SSres/n) + 2p, (4.41)

BIC = n log(SSres/n) + 2(p + 2)s − 2q2, (4.42)

where p is the number of model parameters, q = nσ2/SSres, and σ2 is an estim-
ate of the pure error variance from fitting the full model. The selection of correct
model is a complex balance of checking all these metrics, which are used in this
thesis to compare relative performances between models for the prepared data.

So far, the models are done using the inputs and outputs presented in Section
4.3. These results show that most of the methods for system identification used
were suitable for the problem and the variables used in modelling. All methods
except for OKID-ERA were able to produce a better performance in comparison
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Table 4.7: Results of models for voltage prediction using raw training dataset,
phase C

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX Constant O.

R2 S85C 0.67 0.67 0.68 -254.13 0.77 0.60
R2 S84C 0.66 0.66 0.67 -284.03 0.79 0.60
R2 S81C 0.66 0.66 0.67 -325.23 0.80 0.60
R2 S60C 0.70 0.70 0.71 -302.73 0.83 0.61
R2 S57C 0.76 0.76 0.77 -246.06 0.87 0.69
NRMSE S85C 0.11 0.11 0.11 2.98 0.09 0.18
NRMSE S84C 0.11 0.11 0.11 3.27 0.09 0.18
NRMSE S81C 0.12 0.12 0.12 3.82 0.10 0.18
NRMSE S60C 0.06 0.06 0.06 1.82 0.04 0.12
NRMSE S57C 0.06 0.06 0.05 1.80 0.04 0.12
AIC -3.789e5 -3.789e5 -3.8e5 -1.654e5 -3.946e5 -3.78e5
BIC -3.789e5 -3.789e5 -3.8e5 -1.654e5 -3.945e5 -3.78e5

Table 4.8: Results of models for voltage prediction using raw validation dataset,
phases A and B

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX Constant O.

R2 S81A 0.51 0.51 0.52 0.43 0.74 0.44
R2 S60A 0.66 0.65 0.67 0.63 0.73 0.59
R2 S57A 0.61 0.59 0.62 0.57 0.82 0.54
R2 S81B 0.68 0.69 0.70 0.56 0.74 0.61
R2 S60B 0.62 0.62 0.63 0.61 0.91 0.55
R2 S57B 0.80 0.79 0.80 0.77 0.92 0.73
NRMSE S81A 0.13 0.13 0.13 0.14 0.10 0.21
NRMSE S60A 0.13 0.13 0.13 0.14 0.12 0.21
NRMSE S57A 0.09 0.09 0.09 0.10 0.06 0.17
NRMSE S81B 0.06 0.05 0.05 0.06 0.05 0.14
NRMSE S60B 0.10 0.10 0.10 0.10 0.05 0.17
NRMSE S57B 0.05 0.05 0.05 0.06 0.03 0.12
AIC -3.816e5 -3.811e5 -3.826e5 -3.773e5 -4.038e5 -3.81e5
BIC -3.815e5 -3.811e5 -3.825e5 -3.773e5 -4.038e5 -3.82e5

the the simple persistent model. The worst performance was obtained from the
OKID-ERA algorithm, which is quite sensitive during the tuning of parameters
(in this case, the balance between the observer Markov parameter dimension and
the identified system order). For this reason, the results from OKID-ERA were
not plotted from Figures 4.13 and 4.14. Among the linear approaches tested, the
best performance was obtained from the DMDc method. It outperformed other
linear approaches such as ARX and ARMAX in terms of performance indicators
and computation time. The DMDc method provided more favourable results, with
smaller dimensions of the obtained matrices and significantly shorter computation
time. On the other hand, it was expected that the NARX method would show
better performance due to its ability to capture nonlinear dynamics. However, the
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Table 4.9: Results of models for voltage prediction using raw validation dataset,
phase C

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX Constant O.

R2 S85C 0.66 0.66 0.67 -265.98 0.77 0.59
R2 S84C 0.66 0.66 0.67 -298.46 0.78 0.59
R2 S81C 0.65 0.65 0.67 -343.79 0.79 0.59
R2 S60C 0.69 0.69 0.70 -320.59 0.83 0.62
R2 S57C 0.76 0.75 0.76 -261.24 0.87 0.69
NRMSE S85C 0.11 0.11 0.10 2.99 0.09 0.18
NRMSE S84C 0.11 0.11 0.11 3.29 0.09 0.18
NRMSE S81C 0.12 0.12 0.12 3.90 0.10 0.20
NRMSE S60C 0.08 0.08 0.07 2.47 0.06 0.15
NRMSE S57C 0.07 0.07 0.07 2.34 0.05 0.14
AIC -3.784e5 -3.783e5 -3.7950e5 -1.641e5 -3.946e5 -3.77e5
BIC -3.784e5 -3.782e5 -3.7945e5 -1.640e5 -3.945e5 -3.77e5

DMDc method proved to be more effective in this case. One disadvantage of the
NARX method is its inability to incorporate features that describe the system’s
internal dynamics. This is a desired characteristic in traditional linear control
approaches. Additionally, the NARX method is computationally expensive, which
can make it challenging to integrate into a real-time control approach.

4.4.1.9 Evaluating the residuals after first regressions

For a linear model in standard conditions, a good regression produces residuals
that follow a normal distribution function (white noise), and additionally, no auto-
correlation nor heteroscedasticity components [246, 260]. Therefore, it is required
to see the characteristics of the residuals obtained after the first approximation.
As illustration, Figures 4.15 and 4.16 presents the histogram, the quantile-quantile
plot or the Q-Q plot (a probability plot used in this case to compare the normal
distribution function with the obtained probability distributions by plotting their
quantiles against each other), and ACF components of the residuals for training
and validation of DMDc in phase C, which showed the best performance in over-
all from the linear modelling approaches. Comparable results were obtained for
the other methods and phases. Figures 4.17 and 4.18 presents the results for the
residuals of NARX to compare the performance. It is shown for both methods
graphically that the distribution residuals are heavy-tailed, non-Gaussian with
autocorrelation components, which means that the error obtained is still depend-
ing on previous values. These were not part of the initial assumptions. These
characteristics are explored using different techniques to make a more rigorous
analysis.
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Figure 4.15: Histogram, Q-Q plot and ACF of residuals from voltages predictions
on phase C using DMDc technique and raw training dataset
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Figure 4.16: Histogram, Q-Q plot and ACF of residuals from voltages predictions
on phase C using DMDc technique and raw validation dataset
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Figure 4.17: Histogram, Q-Q plot and ACF of residuals from voltages predictions
on phase C using NARX technique and raw training dataset
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Figure 4.18: Histogram, Q-Q plot and ACF of residuals from voltages predictions
on phase C using NARX technique and raw validation dataset
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For the normality tests presented in this section, it is defined the following
hypothesises:

Hypothesis H0: The data follow a normal distribution.

Hypothesis H1: The data do not follow the normal distribution.

• Anderson-Darling test [269, 270]:

The Anderson–Darling test is based on empirical distribution function, more
specifically to the quadratic empirical distribution function statistics, which
measure the distance between the hypothesised distribution F (in this case,
the Gaussian distribution) and empirical cumulative distribution function
Fn, given by

n
∫ ∞

−∞
(Fn(x) − F(x))2 w(x) dF(x), (4.43)

where n represents the sample size, and w(x) is a weighting function. For
this test, the weighting function is assumed as w(x) = [F(x) (1− F(x))]−1, and
the test is based on the distance A2, which is calculated as follows:

A2 = n
∫ ∞

−∞
(

Fn(x) − F(x))2

F(x) (1 − F(x))
dF(x), (4.44)

This Anderson–Darling distance gives more weight to all observations in
the tails of the distribution, in comparison with other tests such as the
Cramér–von Mises test.

The Anderson–Darling test makes use of the fact that the CDF of the data can
be assumed to follow a uniform distribution, when given the hypothesised
underlying distribution and assuming the data does arise from this normal
distribution. The test statistic is compared against its p value from the theor-
etical distribution with a significance level α. Additionally, it is not required
to estimate any parameters in relation to the cumulative normal distribution
function F.

The formula for the test statistic A to assess if sorted data {x1 < · · · < xn}
comes from a CDF of F is defined as follows:

A2 = −n − S, (4.45)

where

S =
n

∑
i=1

2i − 1
n

[ln(F(xi)) + ln (1 − F(xn+1−i))] (4.46)
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• Cramer-Von Mises Test [271]:

The Cramer-Von Mises Test works similar to the Anderson-Darling Test, in
which is measured the distance between the hypothesised distribution F (in
this case, the Gaussian distribution) and empirical cumulative distribution
function Fn, given by

ω2 =
∫ ∞

−∞
(Fn(x) − F(x))2 dF(x), (4.47)

In this test, one of the functions F is the theoretical distribution and Fn is the
empirically observed distribution, which is called one-sample case, while the
two two-sample case occurs when both distributions are empirically estim-
ated.

The formula for the test statistic T to assess if sorted data {x1 < · · · < xn}
comes from a CDF of F is defined as follows:

T = nω2 =
1

12n
+

n

∑
i=1

[
2i − 1

2n
− F(xi)

]2

(4.48)

The test statistic is compared against its p value from the theoretical distri-
bution with a significance level α.

• Shapiro-Wilk Test [270, 272]:

The Shapiro-Wilk Test considers the randomly sorted data {x1 < · · · < xn}
and evaluates the null hypothesis that this sample is represented by a normal
distribution function. The test statistic W is calculated as follows:

W =

(
∑n

i=1 aix(i)
)2

∑n
i=1(xi − x)2 (4.49)

where x(i) is the ith order statistic, i.e., the ith-smallest number in the sample
or the sorted vector of x (it is not the same as xi), and x is the sample mean.
The values of (a1, . . . , an) are constants generated from the means, variances
and covariances of the order statistics of a sample of size n from a normal
distribution, and they are given by the formula:

(a1, . . . , an) =
mTV−1

∥V−1m∥ =
mTV−1

(mTV−1V−1m)1/2
(4.50)

where V is the covariance matrix of those normal order statistics, and the
vector m = (m1, . . . , mn)T is constructed using the expected values of the
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order statistics of independent and identically distributed random variables
sampled from the standard normal distribution. The distribution W has no
name and the cut-off values for the statistics are calculated using Monte
Carlo simulations. The test statistic is compared against its p value with a
significance level α.

• D’Agostino and Pearson Test [273, 274]: This test is based on calculating the
sample skewness and kurtosis and compare it with the reference of same val-
ues in a normal distribution function. The values are calculated as follows,
respectively:

g1 =
m3

m3/2
2

=
1
n ∑n

i=1 (xi − x̄)3

(
1
n ∑n

i=1 (xi − x̄)2
)3/2

, (4.51)

g2 =
m4

m2
2
− 3 =

1
n ∑n

i=1 (xi − x̄)4

(
1
n ∑n

i=1 (xi − x̄)2
)2 − 3 (4.52)

where mj are the j-th sample central moments, and x̄ is the sample mean
with a size n. The sample skewness g1 and kurtosis g2 are both asymptot-
ically normal, but the rate of their convergence to the distribution limit is
considerably slow. To improve this response, it is suggested to transform the
values in a way that makes their distribution as close to standard normal
distribution as possible. If the sample comes from a normal population, the
exact finite sample distributions of the skewness and kurtosis can themselves
be analysed in terms of their means, variances, skewnesses, and kurtoses,
which derives to the following expressions, respectively:

µ1(g1) = 0, (4.53a)

µ2(g1) =
6(n − 2)

(n + 1)(n + 3)
, (4.53b)

γ1(g1) ≡ µ3(g1)
µ2(g1)3/2

= 0, (4.53c)

γ2(g1) ≡ µ4(g1)
µ2(g1)2 − 3 =

36(n − 7)(n2 + 2n − 5)
(n − 2)(n + 5)(n + 7)(n + 9)

. (4.53d)
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µ1(g2) = − 6
n + 1

, (4.54a)

µ2(g2) =
24n(n − 2)(n − 3)

(n + 1)2(n + 3)(n + 5)
, (4.54b)

γ1(g2) ≡ µ3(g2)
µ2(g2)3/2

=
6(n2 − 5n + 2)
(n + 7)(n + 9)

√
6(n + 3)(n + 5)

n(n − 2)(n − 3)
, (4.54c)

γ2(g2) ≡ µ4(g2)
µ2(g2)2 − 3 =

36(15n6 − 36n5 − 628n4 + 982n3 + 5777n2 − 6402n + 900)
n(n − 3)(n − 2)(n + 7)(n + 9)(n + 11)(n + 13)

.

(4.54d)

The transformation proposed for this test corresponds to the following equa-
tions:

Z1(g1) = δ asinh

(
g1

α′√µ2(g1)

)
, (4.55a)

δ =
1√

ln W ′ , (4.55b)

α
′2 =

2
(W ′2 − 1)

, (4.55c)

W
′2 =

√
2γ2(g1) + 4 − 1. (4.55d)

Z2(g2) =

√
9A
2





1 − 2
9A

−




1 − 2
A

1 + g2−µ1(g2)√
µ2(g2)

√
2

(A−4)




1/3




, (4.56a)

A = 6 +
8

γ1(g2)

(
2

γ1(g2)
+

√
1 +

4
γ1(g2)2

)
. (4.56b)

(4.56c)

Finally, statistics Z1(g1) and Z2(g2) are combined to produce an omnibus
test K2, which is capable to detect deviations from normality due to either
skewness or kurtosis, calculated as follows:

K2 = Z1(g1)2 + Z2(g2)2 (4.57)

The test statistic is compared against its p value with a significance level α.
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• Kolmogorov–Smirnov (KS) Lilliefors Modification test [275, 276]:

This test (based on Kolmogorov–Smirnov test) measures the maximum dis-
tance between the hypothesised distribution F (in this case, a normal distri-
bution function) and the empirical cumulative distribution function Fn for
the sorted data {x1 < · · · < xn}, and it is given by

D∗ = max
x

|Fn(x) − F(x)| (4.58)

This calculation is done by first estimating the population mean and vari-
ance of the data. the value D∗ is calculated, which is the test statistic that is
compared against its p value with a significance level α. The purpose of this
method is to assess whether the maximum discrepancy is large enough to
be statistically significant. The obtained distribution is called Lilliefors dis-
tribution, and tables for this distribution is computed only by Monte Carlo
methods.

Autocorrelation in the time series residual suggests that the values are obtained
in function of previous values, which is not showing independence between val-
ues [277]. The revision of autocorrelation can be done visually or using Durbin-
Watson test or Ljung-Box Q-test. Considering a residual et given by the expression
et = ρet−1 + νt, both tests evaluate the following hypothesis:

Hypothesis H0: The data are independently distributed, which implies from pre-
vious expression of residual that ρ = 0 (i.e., the correlations in the population from
which the sample is taken are 0, so that any observed correlations in the data
result from randomness of the sampling process).

Hypothesis H1: The data are not independently distributed; they exhibit serial
correlation, which implies alternative hypothesis ρ ̸= 0.

• Durbin-Watson test [278, 279]:

This test calculates for a residual et with number of observations n the fol-
lowing test statistic:

d = ∑n
t=2(et − et−1)2

∑n
t=1 e2

t
(4.59)

Considering the sample autocorrelation of the residuals ρ̂, the test statistic
d is approximately equal to 2(1 − ρ̂). The value of d lies between 0 and 4,
with d = 2 indicating no autocorrelation. There is evidence of positive serial
correlation if d < 2. Therefore, small values of d indicate successive error
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terms are positively correlated. If d > 2, successive error terms are negat-
ively correlated, which can imply underestimation of the level of statistical
significance α.

• Ljung-Box Q-test [246, 280]:

This test evaluates the expression below considering a number of observa-
tions n:

Q = n(n + 2)
h

∑
k=1

ρ̂2
k

n − k
(4.60)

where ρ̂k is the sample autocorrelation at lag k, and h is the number of
tested lags. Under the null hypothesis the statistic Q asymptotically follows
a chi-squared distribution with h degrees of freedom. The critical region for
rejection of the hypothesis of randomness at significance level α corresponds
to

Q > χ2
1−α,h (4.61)

where χ2
1−α,h is the (1 − α)-quantile of the chi-squared distribution with h

degrees of freedom.

In an equivalent way, the presence of heteroscedasticity in the time series re-
sidual suggests that the variance alongside the values is not constant [246]. In
order to develop this test, it is required to explain how Autoregressive Condi-
tional Heteroskedasticity (ARCH) models are constructed. Assuming ϵt the series
error term (represented by a stochastic component zt) is a strong white noise pro-
cess, and a time-dependent standard deviation σt, defined as ϵt = σtzt. The series
σ2

t is modelled as follows:

σ2
t = α0 + α1ϵ2

t−1 + · · · + αqϵ2
t−q = α0 +

q

∑
i=1

αiϵ
2
t−i (4.62)

where α0 > 0 and αi ≥ 0, i > 0. Heteroscedasticity is checked by using Ljung-
Box Q-test from squared residuals or the Engle’s ARCH test, which evaluate the
following hypothesis:

Hypothesis H0: The series of residuals σt exhibits no conditional heteroscedasti-
city (any ARCH effects).

Hypothesis H1: An ARCH(q) model describes the series.
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• Engle’s ARCH test [246, 281]:

The test statistic of the data with a sample size n using this approach corres-
ponds to the Lagrange multiplier statistic nR2, where R2 corresponds to the
coefficient of determination from fitting the ARCH(q) model for a number
of lags q using regression. The asymptotic distribution of the test statistic
under the null hypothesis is chi-square with q degrees of freedom.

• Ljung-Box Q-test from squared residuals: It is based on the same Ljung-
Box Q-test statistic, but it is required to square the values of the analysed
residuals. Rejecting the null hypothesis suggests presence of autoregressive
conditional heteroscedasticity.

Showing all the tests that can be used to valuate distribution, they were ap-
plied over residuals to analyse the results obtained after predictions. Unless it is
indicated something different, all the test applied in this thesis considered a signi-
ficance level α=95%. For normality tests, only Anderson-Darling test, Lilliefors test
and One-sample and One-sample Kolmogorov-Smirnov test are enough to eval-
uate the normality condition of residuals. Results are summarised in Tables J.31
and J.32 for the DMDc approach and Tables J.33 and J.34 for NARX approach, Ap-
pendix J.1. All of the tested methods failed on the normality test of the residuals,
indicating that the results obtained so far can be further improved. Autocorrela-
tion is a critical condition that needs to be checked in the residuals of a model.
In the linear approach, both the training and validation datasets exhibited auto-
correlation, as confirmed by the Durbin-Watson test. However, the coefficient d
of around 2.4 indicates that the correlation observed is not critical. (Values of d
above four indicate a critical condition [246]). To refine the models and improve
their performance, it is necessary to evaluate the variables used in the regression.
These variables include the input vector consisting of consumed/injected power,
irradiance levels, and the proposed metrics MP, MQ, and the average normalised
covariance. The measured vector corresponds to the voltage measurements. The
next steps focus on processing and selecting the relevant inputs for the modelling
approach in order to address the autocorrelation issue.

4.4.2 Data processing and selection

At this stage, the first obtained models can serve as reference for comparing and
improving the modelling performance. However, the variables used as inputs
in the modelling process have not been thoroughly analysed from a statistical
perspective. The next step, as outlined in Algorithm 4.1, involves selecting relevant
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data and analysing the variables used in the model. One approach to simplify
the model is by analysing the collinearity between the explanatory variables and
evaluating their impact by adding responses at different time lags. This analysis
helps to explain the model’s quasi-dynamics more concisely, which is crucial for
predicting the voltage to be controlled. The current models should be examined,
as the characteristics of the system may deviate from ideal conditions. The results
presented so far have been obtained using the complete dataset of one thousand
days. However, it is possible to reduce the dataset to focus only on critical values.

In this case, only the days in which any voltage variation exceeds ±1.15% are
selected, resulting in a considerable reduction in the number of days to around 120
while still capturing voltages within the range of ±3%. The remaining days rep-
resent the "most probable" scenario, where minimal prediction and control actions
are required, and including them in the model would not be necessary. With this
reduced dataset, the predicted voltages and the predictors used can be analysed to
simplify the model complexity. When predicting the quasi-dynamics, correlated
predictors can still be used without the need to separate their effects. However,
it becomes problematic if the scenarios involve relationships between predictors
and require a historical analysis of the contributions of various predictors. This
situation is similar to multicollinearity, which occurs when two or more predictor
variables in a multiple regression provide similar information [282–284]. Multicol-
linearity does not affect the predictive power of the model, but it can inflate the
variance of individual predictor variables. Therefore, it is desirable to reduce this
effect, particularly in the exogenous variables used in the model.

As the first approach, it is desired to check exogenous data that achieve critical
values at lag 0, which variables are important or improve the observation of the
phenomenon to be modelled. It is important to highlight that this is not a causality
analysis, which is complex to give between variables in time-series. Causation is
different from correlation, nor causation and forecasting [246, 260] It is desired to
know if a variable x is useful to predict a variable y, but this is not saying that
x is causing y. Only the data around values close to the critical scenarios will
be considered in this case. It could be the presence of confounding (a variable
that influences both predictor and response variable) that makes it difficult to
determine if it is related to causation with others. However, it could not necessarily
affect the prediction. Nevertheless, correlations are useful for predicting, even
when there is a confounding or no causal relationship between the two variables.
After reducing the dataset to only 120 days with 160 critical voltage values, it
is performed a collinearity analysis with these remaining data. The idea is to
check which variables are highly correlated in a regression model structure, which
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reduces the precision of the estimated coefficients [260].

Figure 4.19 shows the results of computing correlation analysis of the remain-
ing data. Here, the voltages on phase C at nodes 81, 84, and 85 are highly cor-
related, which is explained using the electric distance concept embedded into the
covariance relationship between voltages, and explained in the previous chapter.
For this purpose, the modelling can consider only one of these three nodes (in
this case, the node showing higher voltage variation). The others two will follow
the same response (assuming a radial topology, a common distribution system in
most cases). The same applies for each phases on nodes 57 and 60, which are also
highly correlated. Therefore, the voltages that remain after this the analysis are
∆V S85C,∆V S81A, ∆V S81B, ∆V S60A, ∆V S60B and ∆V S60C.

It is performed the same analysis for the variables used as regressors. These
consist of regressors used as potential signals in the control approach and other
exogenous variables. The contribution of these potential control signals is useful in
the model, and they are not required to reduce the number of delays. However, the
exogenous variables must be processed since it is desired to reduce the variance.
In this case, the input signal for controlling are the metrics MP and MQ, while
the input signals are the average normalised covariance (for nodes 57, 60, 81, 84
and 85), consumed (nodes 84 and 85), power injections (node 85) and the solar
irradiance.

Figure 4.20 shows the results of computing correlation analysis of these vari-
ables. It is shown that average normalised covariance on phase C at nodes 81,
84 and 85 are highly correlated, in a similar way as presented in previous case
for voltage values. Same applies for each phase on nodes 57 and 60, which are
also highly correlated. The power consumed in both nodes are not correlated,
while the power injected due to renewable, and the irradiance level is also highly
correlated. In this case, the irradiance is chosen as the variable to be used in the
model.

Table 4.10: Belsley collinearity diagnosis for observed voltages

sValue condIdx ∆V S85C ∆V S84C ∆V S81C ∆V S60C ∆V S57C

2.0891 1.000 0.0000 0.0000 0.0000 0.0001 0.0001
0.7916 2.6390 0.0000 0.0000 0.0001 0.0014 0.0015
0.0861 24.2566 0.0147 0.0002 0.0416 0.0000 0.0023
0.0381 54.8112 0.0003 0.0000 0.0006 0.9918 0.9940
0.0078 268.7685 0.9849 0.9998 0.9576 0.0066 0.0021
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Figure 4.19: Histogram and correlations of observed voltages (only days for critical
values)



192 4.4. Proposed methodology for time-series data modelling

Figure 4.20: Histogram and correlations of exogenous inputs (only for critical
values)
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Table 4.11: Belsley collinearity diagnosis for exogenous regressors in input

sValue condIdx
∆Av. norm.
cov. S85C

∆Av. norm.
cov. S84C

∆Av. norm.
cov. S81C

∆Av. norm.
cov. S60C

∆Av. norm.
cov. S57C

∆PD
S85C

∆PD
S84C

∆PG
S85C Irrad.

1.8313 1 0.0000 0.0000 0.0001 0.0003 0.0003 0.0012 0.0043 0.0000 0.0000
1.4214 1.2884 0.0000 0.0000 0.0000 0.0004 0.0004 0.0026 0.0015 0.0017 0.0017
1.3140 1.3937 0.0000 0.0000 0.0000 0.0018 0.0018 0.0362 0.0211 0.0002 0.0002
1.0514 1.7418 0.0000 0.0000 0.0000 0.0005 0.0006 0.3419 0.3570 0.0001 0.0001
0.8757 2.0914 0.0000 0.0000 0.0000 0.0000 0.0000 0.5526 0.5885 0.0001 0.0000
0.1329 13.7817 0.0089 0.0001 0.0259 0.0275 0.0367 0.0479 0.0038 0.0000 0.0001
0.0730 25.0712 0.0038 0.0000 0.0091 0.9179 0.9284 0.0047 0.0001 0.0003 0.0004
0.0645 28.3775 0.0000 0.0000 0.0000 0.0007 0.0009 0.0092 0.0002 0.9968 0.9958
0.0100 183.8411 0.9872 0.9999 0.9649 0.0510 0.0309 0.0038 0.0234 0.0008 0.0016

This is also confirmed using the Belsley collinearity diagnosis, which assess the
strength of collinearity and possible sources among variables in a multiple linear
regression structure, assuming that regressors are following a Gaussian distribu-
tion function [285, 286]. Only for illustration, results after applying this on phase
C are shown in Tables 4.10 and 4.11. Values highlighted in both tables showed the
variables that have a high strength of collinearity, which coincide with those ob-
tained from the Figures 4.19 and 4.20. Therefore, the exogenous variables that
remain after this the analysis are ∆Av. norm. cov. S81A, ∆Av. norm. cov. S81B,
∆Av. norm. cov. S81C, ∆Av. norm. cov. S57A, ∆Av. norm. cov. S60B, ∆ Av. norm.
cov. S60C, ∆PD S85C, ∆PD S84C and ∆PPV S85C. The inputs potentially used
for control remain the same on the same phase: MP 60A-57A, MQ 60A-57A,
MP 60B-57B, MQ 60B-57B, MP 60C-57C, MQ 60C-57C, MP 81C-84C, MQ 81C-84C,
MP 84C-85C and MQ 84C-85C.

It is also recommended to work with data that follows a normal distribution.
This can be checked used the methods presented in the previous step for the resid-
uals. If the data does not follow a normal distribution, it can be transformed using
a Box-Cox transformation [260, 287], which is part of the power transform family
function and is defined for positive and negative values as follows, respectively:

y(λ)
i =





yλ
i − 1

λ
if λ ̸= 0,

ln yi if λ = 0,
(4.63a)

y(λ)
i =





(yi + λ2)λ1 − 1
λ1

if λ1 ̸= 0,

ln(yi + λ2) if λ1 = 0,
(4.63b)

The first transformations hold for yi > 0, while the second for yi > −λ2.
The parameters λ, λ1 and λ2 are estimated using goodness-of-fit tests and profile
likelihood functions.
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Figures 4.19 and 4.20 show the histograms of the obtained voltages scenarios
and the exogenous variables used in the input and the reduced dataset that rep-
resent the 120 days. Results after running normality test for the selected variables
on phase C are presented in Tables J.35 and J.36. All the test mentioned in previ-
ous section were used to evaluate the distributions for all the variables (including
the input used for controlling). All distribution showed to follow a Gaussian dis-
tribution according to the Cramer-Von Mises test, as it confirmed in the result of
Rejecting H1. Similar results can be obtained for phases A and B. Therefore, it can
be concluded that it is not required to transform any of these analysed variable,
and all can be used directly in the new model generation.

Finally, a selection of corresponding lags is done using a combination of cross-
correlation analysis and Granger-causality analysis in the time-series data of re-
gressors previously selected. The first tool is mainly static analysis (because it
does not consider information from previous time steps) and measures similarity
of two time-series as a function of the lag of one with respect to the other. Figures
4.21 to 4.26 show the results obtained after applying this procedure.

The way how the correlation is selected depends on the size of the series,
which in this case is high and it would make hard the decision of selecting relev-
ant lags. Therefore, it is a problem to define the threshold in the correlation ob-
tained from the cross-correlation analysis, which is defined in terms of the inverse
of the amount of data 1/

√
n, and that would make to be relevant every correlation

obtained in the analysis. In this work, it is proposed to use Granger-causality ana-
lysis to complement this analysis by providing a much more stringent criterion for
causation than simply observing high correlation with some lag-lead relationship.
Therefore, both static responses captured in the cross-correlation analysis and the
dynamical response obtained from the Granger-causality analysis are contrasted
for selecting the best lags [246, 260].

The Granger-causality analysis is an alternative to avoid thinking about caus-
ality in time-series analysis. This statistical hypothesis test determines whether
one time series is useful in predicting another. An evolving-time variable x (t)
“Granger-causes” another variable y (t) if predictions of y (t) based on its own
past values and on the past values of x (t) are better than predictions of y (t)
based purely on its own past values, i.e., x (t) helps to predict y (t).
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Figure 4.21: Cross-correlation analysis for first-lags relevant regressors at node
S85C
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Figure 4.22: Cross-correlation analysis for first-lags relevant regressors at node
S81A
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Figure 4.23: Cross-correlation analysis for first-lags relevant regressors at node
S81B
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Figure 4.24: Cross-correlation analysis for first-lags relevant regressors at node
S60A



Chapter 4. Time-series modelling application in distribution systems 199

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

la
g

s

-0
.3

-0
.2

-0
.10

0
.1

0
.2

0
.3

0
.4

0
.5

Correlation

M
p
 6

0
A

-5
7
A

M
p
 6

0
B

-5
7
B

M
p
 6

0
C

-5
7
C

M
p
 8

4
C

-8
5
C

M
p
 8

1
C

-8
4
C

M
q
 6

0
A

-5
7
A

M
q
 6

0
B

-5
7
B

M
q
 6

0
C

-5
7
C

M
q
 8

4
C

-8
5
C

M
q
 8

1
C

-8
4
C

A
v
. 
n
o
rm

. 
c
o
v
. 
S

8
1
C

A
v
. 
n
o
rm

. 
c
o
v
. 
S

8
1
A

A
v
. 
n
o
rm

. 
c
o
v
. 
S

8
1
B

A
v
. 
n
o
rm

. 
c
o
v
. 
S

5
7
A

A
v
. 
n
o
rm

. 
c
o
v
. 
S

6
0
B

A
v
. 
n
o
rm

. 
c
o
v
. 
S

6
0
C

P
D

 S
8
5
C

P
D

 S
8
4
C

P
D

 S
6
0
A

P
P

V
 S

8
5
C

Figure 4.25: Cross-correlation analysis for first-lags relevant regressors at node
S60B
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Figure 4.26: Cross-correlation analysis for first-lags relevant regressors at node
S60C
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This analysis is done by fitting two Vector Autoregressive Models (VARs) to
the time series. A time series x(t) is called a Granger cause of another time series
y(t), if at least one of the elements βτ for τ = 1, . . . , q is significantly larger than
zero (in absolute value). For this, the following two models are used:

y(t) = γ0 +
q

∑
τ=1

γτy(t − τ) + e(t) (4.64a)

y(t) = α0 +
q

∑
τ=1

ατy(t − τ) +
q

∑
τ=1

βτx(t − τ) + ε(t) (4.64b)

where e(t) and ε(t) are white Gaussian random vectors. For the test statistic
implies that the model in (4.64a) does not add information or provides a better
model of y(t), when comparing it to the model in (4.64b). Intuitively, the null
hypothesis requires that ∀τ, βτ = 0.

To run the test, it is assumed that the future values cannot inform past values,
and the variables related with the cause only informs the variable related with the
effect and no other variables are able to provide information (once at time). This
test evaluates the following hypothesis:

Hypothesis H0: A lagged x-value do not explain the variation in y, i.e., x(t) does
not Granger-cause y(t).

Hypothesis H1: A lagged x-value does explain the variation in y, i.e., x(t) does
Granger-cause y(t).

It is used F-test to assess the alternative hypothesis considering both regres-
sions with a significance level of α (also for this thesis, α=95%). Results after ap-
plying this test are shown in Table 4.12, in which relevant time lags are presented
for the analysed variables with respect of the analysed voltage nodes.

Based on the results obtained from Figures 4.21 to 4.26 and Table 4.12, it can
be concluded that the relevant lags for predicting voltage are 3, and 4. This means
that considering the previous 30 and 40 minutes of data will help in predicting the
voltage in the next 10-minute step. The selected regressors can be a combination
of the results obtained from both analyses. To further reduce the complexity of
the model, redundant signals can be eliminated using backward elimination [246].
This process helps to reduce the number of regressors used in the analysis.

In summary, after this analysis, the voltages observed at the 11 nodes can
be reduced to only 6 nodes for all phases. The total of 26 possible regressors
can be reduced to 18 relevant regressors, taking into account the different lags.
This reduction has several advantages, including improving model stability and
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Table 4.12: Relevant lags highlighted after applying Granger-causality analysis

∆V S85C ∆V S81A ∆V S81B ∆V S60A ∆V S60B ∆V S60C

∆MP 60A-57A 5,6,7 — — 6,7,8 6,7,8 0,3,5
∆MP 60B-57B — — — — 4,5,6 —
∆MP 60C-57C 0 — — — 2,5 —
∆MP 84C-85C 8,9 — 8,9 — — 6,7,9
∆MP 81C-84C 6,8,9 — 7,8,9 — — 7,8,9
∆MQ 60A-57A 7 — — 4,8 — 6,8
∆MQ 60B-57B — — 3 — 5,6 —
∆MQ 60C-57C — — 7 — 2,5 3,5,6,7
∆MQ 84C-85C 8,9 — 8,9 — — 6,7,9
∆MQ 81C-84C 6,8,9 — 7,8,9 — — 7,8,9
∆Av. norm. cov. S81C — — — — — —
∆Av. norm. cov. S81A — — — — — —
∆Av. norm. cov. S81B — — — — 0 —
∆Av. norm. cov. S57A — — — 3 — —
∆Av. norm. cov. S60B — — — — 3 —
∆Av. norm. cov. S60C — — — — — 3
∆PD S85C 3,4,5 3,4 3,4,8 3,5 3,6,7,8 3,4,5,6
∆PD S84C 2,3,4,5 3,4 3,4 3,8 2,3 3,5,8
∆PD S60A 3,4 2,3 3 4,5 3 3,4,5,8
∆PPV S85C 3,4 3,4 3,4,6 3,4 3,4 3,4,5,9

reducing complexity. The specific variables to be selected from this reduced set
will depend on the desired approach for developing the modelling, whether it is
a MISO or MIMO approach, which will be discussed in more detail in the next
section.

4.4.3 Creation of LTI model using revised data

Once relevant regressors and lags are selected, the process of linear regression is
done again to obtain a model that helps on the prediction by detecting the voltage
quasi-dynamics. In this step, which corresponds to Step 3 of Algorithm 4.1,
the process of linear regression is performed again with the selected relevant re-
gressors and common lags. This reduces the number of system inputs and out-
puts.

Table 4.13 presents the obtained regressors from the previous step that will
be used in each approach, with common regressors highlighted in italics. Two
structures are evaluated this time: a MISO system considering each output inde-
pendently and only the relevant lags found for each output, and a MIMO system
considering only the common relevant regressors and lags. Since the number of
regressors is reduced, the MIMO model is developed for all phases together.
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Table 4.13: Input selected for each approach
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Since the effect of lags was evaluated to simplify the system model and im-
prove prediction, both approaches consider the lagged inputs as independent re-
gressors, which will impact the order of the models. Therefore, the autoregressive
structures ARX, ARMAX, and NARX consider output delays up to lag 0 (as it is
already considered in the input vector), and internal input delays up to lag 0. In an
equivalent way to before, the first matrix X

′
for DMDc considers the matrix order

equivalent to the ARX state-space representation in the exploration process. The
OKID-ERA approach showed the best performance when the number of Markov
parameters was set to 50. Similar to the first attempt at regression, all models were
developed under similar conditions of dimension size to ensure that all models
were comparable regarding their ability to represent the system dynamics using
available data. It is not required for this thesis to obtain the optimal model for
each algorithm, and therefore, a wide search space for model dimensions.

Training of all models was done using the portion of data that represents the
critical cases presented before (critical 120 days). The validation of results was
performed with the original dataset to make the results comparable with the first
guess and detect any differences.

A portion of the results obtained from the MISO structure and the predicted
voltages are presented in Figures 4.27 and 4.28 from the original training and val-
idation dataset, respectively. Tables from 4.14 to 4.19 summarise general features
of the models obtained on each case. Table 4.20 shows the performance for train-
ing on each node; Table 4.21 shows the performance for validation on each node.
In a similar way, a portion of the results obtained from the MIMO structure and
the predicted voltages are presented in Figures 4.29 and 4.30 from the original
training and validation dataset, respectively; Table 4.22 summarises general char-
acteristics of the models obtained. Table 4.23 and 4.24 show the performance for
training and validation.

Table 4.14: Obtained models dimensions for voltage prediction at node S85C using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x11 1x11 1x11 6x11 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x11 1x11 1x11 1x11 —
Comp. time (s) 4.33 10.00 0.37 3.84 8.86
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Figure 4.27: Portion of voltage predictions 1 step ahead using selected regressors
training dataset in MISO structure
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Figure 4.28: Portion of voltage predictions 1 step ahead using selected regressors
validation dataset in MISO structure
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Table 4.15: Obtained models dimensions for voltage prediction at node S81A using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x6 1x6 1x6 6x6 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x6 1x6 1x6 1x6 —
Comp. time (s) 0.38 2.05 0.09 2.70 1.90

Table 4.16: Obtained models dimensions for voltage prediction at node S81B using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x6 1x6 1x6 6x6 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x6 1x6 1x6 1x6 —
Comp. time (s) 0.14 1.56 0.07 2.72 1.58

Table 4.17: Obtained models dimensions for voltage prediction at node S60A using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x6 1x6 1x6 6x6 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x6 1x6 1x6 1x6 —
Comp. time (s) 0.14 1.41 0.07 2.75 1.74

Table 4.18: Obtained models dimensions for voltage prediction at node S60B using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x7 1x7 1x7 6x7 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x7 1x7 1x7 1x7 —
Comp. time (s) 0.14 1.70 0.07 3.09 2.16
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Table 4.19: Obtained models dimensions for voltage prediction at node S60C using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 1x1 1x1 1x1 6x6 —
Dimension B 1x11 1x11 1x11 6x11 —
Dimension C 1x1 1x1 1x1 1x6 —
Dimension D 1x11 1x11 1x11 1x11 —
Comp. time (s) 0.18 1.72 0.07 3.73 1.70

Table 4.20: Results of models for voltage prediction on each measured node using
selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.64 0.26 0.63 0.66 0.63
R2 S81A 0.46 0.28 0.46 0.45 0.44
R2 S82B 0.67 0.31 0.67 -3.78 0.66
R2 S60A 0.59 0.52 0.60 0.49 0.58
R2 S60B 0.70 0.52 0.70 0.67 0.70
R2 S60C 0.68 0.67 0.68 0.59 0.67
NRMSE S85C 0.11 0.16 0.11 0.11 0.11
NRMSE S81A 0.14 0.17 0.14 0.15 0.15
NRMSE S82B 0.13 0.19 0.13 0.49 0.13
NRMSE S60A 0.08 0.09 0.08 0.09 0.08
NRMSE S60B 0.05 0.09 0.05 0.06 0.06
NRMSE S60C 0.06 0.06 0.06 0.07 0.06
AIC S85C -3.65e5 -3.42e5 -3.64e5 -3.66e5 -3.64e5
BIC S85C -3.64e5 -3.42e5 -3.64e5 -3.66e5 -3.64e5
AIC S81A -3.64e5 -3.55e5 -3.64e5 -3.63e5 -3.63e5
BIC S81A -3.64e5 -3.55e5 -3.64e5 -3.63e5 -3.63e5
AIC S81B -3.77e5 -3.54e5 -3.77e5 -2.94e5 -3.77e5
BIC S81B -3.77e5 -3.54e5 -3.77e5 -2.94e5 -3.77e5
AIC S60A -3.65e5 -3.61e5 -3.66e5 -3.58e5 -3.65e5
BIC S60A -3.65e5 -3.61e5 -3.66e5 -3.58e5 -3.65e5
AIC S60B -3.95e5 -3.61e5 -3.95e5 -3.91e5 -3.94e5
BIC S60B -3.95e5 -3.61e5 -3.95e5 -3.91e5 -3.94e5
AIC S60C -3.83e5 -3.92e5 -3.83e5 -3.75e5 -3.82e5
BIC S60C -3.83e5 -3.92e5 -3.83e5 -3.75e5 -3.82e5
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Table 4.21: Results of models for voltage prediction on each measured node using
selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.63 0.24 0.62 0.65 0.62
R2 S81A 0.45 0.27 0.45 0.44 0.43
R2 S82B 0.65 0.28 0.65 -4.05 0.64
R2 S60A 0.57 0.50 0.58 0.47 0.57
R2 S60B 0.69 0.50 0.69 0.65 0.68
R2 S60C 0.67 0.66 0.67 0.58 0.66
NRMSE S85C 0.11 0.16 0.11 0.11 0.11
NRMSE S81A 0.14 0.16 0.14 0.14 0.14
NRMSE S82B 0.13 0.19 0.13 0.50 0.13
NRMSE S60A 0.10 0.10 0.10 0.11 0.10
NRMSE S60B 0.06 0.10 0.06 0.06 0.06
NRMSE S60C 0.08 0.06 0.08 0.09 0.08
AIC S85C -3.64e5 -3.41e5 -3.64e5 -3.66e5 -3.63e5
BIC S85C -3.64e5 -3.41e5 -3.64e5 -3.65e5 -3.63e5
AIC S81A -3.64e5 -3.55e5 -3.64e5 -3.63e5 -3.63e5
BIC S81A -3.64e5 -3.55e5 -3.64e5 -3.63e5 -3.63e5
AIC S81B -3.76e5 -3.53e5 -3.76e5 -2.92e5 -3.75e5
BIC S81B -3.76e5 -3.53e5 -3.76e5 -2.92e5 -3.75e5
AIC S60A -3.65e5 -3.60e5 -3.66e5 -3.58e5 -3.64e5
BIC S60A -3.65e5 -3.60e5 -3.65e5 -3.58e5 -3.64e5
AIC S60B -3.93e5 -3.60e5 -3.93e5 -3.90e5 -3.93e5
BIC S60B -3.93e5 -3.60e5 -3.93e5 -3.90e5 -3.93e5
AIC S60C -3.83e5 -3.91e5 -3.83e5 -3.75e5 -3.81e5
BIC S60C -3.83e5 -3.91e5 -3.83e5 -3.75e5 -3.81e5

Table 4.22: Obtained models dimensions for voltage prediction using selected
regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

Dimension A 6x6 6x6 6x6 6x6 —
Dimension B 6x1 6x1 6x1 6x1 —
Dimension C 6x6 6x6 6x6 6x6 —
Dimension D 6x1 6x1 6x1 6x1 —
Comp. time (s) 2.52 5.30 0.16 2.85 5.35
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Table 4.23: Results of models for voltage prediction using selected regressors train-
ing dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.63 0.57 0.63 -5.60 0.63
R2 S81A 0.42 0.35 0.43 -21.87 0.43
R2 S82B 0.65 0.57 0.66 -1.48 0.65
R2 S60A 0.59 0.50 0.59 -25.27 0.59
R2 S60B 0.70 0.64 0.70 -6.34 0.69
R2 S60C 0.68 0.65 0.68 -9.91 0.68
NRMSE S85C 0.11 0.12 0.11 0.48 0.11
NRMSE S81A 0.15 0.16 0.15 0.94 0.15
NRMSE S82B 0.13 0.15 0.13 0.35 0.13
NRMSE S60A 0.08 0.09 0.08 0.66 0.08
NRMSE S60B 0.06 0.06 0.06 0.27 0.06
NRMSE S60C 0.06 0.06 0.06 0.34 0.06
AIC -3.74e5 -3.69e5 -3.74e5 -2.73e5 -3.74e5
BIC -3.74e5 -3.69e5 -3.74e5 -2.73e5 -3.74e5

Table 4.24: Results of models for voltage prediction using selected regressors val-
idation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.62 0.56 0.63 -6.07 0.62
R2 S81A 0.42 0.33 0.42 -23.89 0.41
R2 S82B 0.63 0.54 0.64 -1.66 0.63
R2 S60A 0.58 0.48 0.58 -27.68 0.57
R2 S60B 0.68 0.62 0.68 -6.85 0.68
R2 S60C 0.67 0.64 0.67 -10.73 0.67
NRMSE S85C 0.11 0.12 0.11 0.49 0.11
NRMSE S81A 0.14 0.15 0.14 0.95 0.15
NRMSE S82B 0.14 0.15 0.13 0.36 0.14
NRMSE S60A 0.10 0.11 0.10 0.79 0.10
NRMSE S60B 0.06 0.07 0.06 0.30 0.06
NRMSE S60C 0.08 0.08 0.08 0.47 0.08
AIC -3.73e5 -3.68e5 -3.74e5 -2.71e5 -3.73e5
BIC -3.73e5 -3.68e5 -3.74e5 -2.71e5 -3.73e5
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Figure 4.29: Portion of voltage predictions 1 step ahead using selected regressors
training dataset in MIMO structure
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Figure 4.30: Portion of voltage predictions 1 step ahead using selected regressors
validation dataset in MIMO structure
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From the results obtained, it is shown that all models improved with the se-
lected regressors. The results obtained from the predicted voltages in comparison
with the first attempt presented from Figures 4.11 to 4.14 showed visually that all
models responds in a similar way.

It is also confirmed from the similar values obtained for R2 and NRMSE that
were introduced in Tables 4.4, 4.5 and Tables 4.6 and 4.7. Even if the response from
OKID-ERA were not satisfactory, the overall responses in both cases improved
considerably. Computational time and model order were reduced in comparison
with the first attempt, which is a good indicator for real-time applications.

It is consistently shown that the best response from all linear approaches con-
sidering complexity, computational time, AIC and BIC is DMDc (as mentioned in
Section 4.4.1.2, AIC and BIC are presented as indicators of relative performance
only for each compared model approach). NARX structure was not significantly
better in comparison with the rest of procedures. In general, the R-squared index
was not highly improved (most of cases values were equal or slightly reduced).

These results are satisfactory, considering all other features that were improved,
without losing prediction capability. Nevertheless, a high value of R2 is not always
a good indicator of better performance[246], and there could be several reasons
that produce a high value of R2, such as data overfitting. To get the full picture, it
must be considered R-squared values in combination with residual plots, in-depth
knowledge of the subject area and other statistics.

Based on dimension size, computational time and performance metrics, the
structure that showed better performance in overall was MISO. Nevertheless, it
can be noticed that the number of inputs is higher in comparison with MIMO case.
This helps on having more elements to describe the system, presuming that each
node should be considered individually. With the idea of producing a model that
presumes interaction between the nodes, MIMO approach can be more useful.

4.4.4 Checking validity of assumptions

Step 4 of Algorithm 4.1 corresponds to see if there is any improvement in the resid-
uals obtained, to validate the assumptions done for the linear model approaches.
Ideally, the obtained residual should represent white noise (normal distribution,
no autocorrelation, and no heteroscedasticity). Therefore, it is required to see the
characteristics of the residuals obtained after the regressor analysis.

Figures 4.31 and 4.32 presents the histogram, Q-Q plot and ACF components
of the residuals for training and validation of DMDc (MISO approach), which
showed the best performance in overall from the linear modelling approaches.
Figures 4.33 and 4.34 presents the results for the residuals of NARX to compare
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the performance. Figures 4.35 and 4.36 presents the histogram, Q-Q plot and
ACF components of the residuals for training and validation of DMDc for MIMO
approach. Figures 4.37 and 4.38 presents the results for the residuals of NARX.

From these figures, it is shown that for both MISO and MIMO approaches
that, even if the residuals obtained are not following a normal distribution, the
heavy-tailed shape is improved (compared with the corresponding residuals on
phase C in Figures 4.15 and 4.16 for DMDc approach and Figures 4.17 and 4.18
for the NARX approach). These results are confirmed using the tests introduced
in Section 4.4.1.9 in Tables J.106 and J.107 for the MISO DMDc approach, tables
J.108 and J.109 for the MISO NARX approach, tables J.110 and J.111 for the MIMO
DMDc approach, and tables J.112 and J.113 for the MIMO NARX approach.

Using the first attempt results presented in Section 4.4.1.9 as reference, it is
shown that even if there are still distribution residuals with heavy-tailed, non-
Gaussian shapes with autocorrelation components, it can be noticed that there
were several improvements for both MISO and MIMO approaches. In both cases,
the autocorrelation components in the DMDc model was reduced considerably
(slightly better for the MISO case).

It can be concluded that the selected regressors explained in a better way the
system to be modelled with respect of the first approach with no regressor selec-
tion analysis. Additionally, even if the heteroscedasticity tests failed to reject the
alternative hypothesis, it was explored graphically if the variance obtained were
increased in the time series representation, and for all cases the voltages residuals
remained bounded at constant variance.

In the case of the obtained responses of NARX models, they also showed no rel-
evant improvement in the revision of these assumptions. For the case of autocor-
relation, one of the lags seems to be increased slightly in comparison with the first
regression. Therefore, the ANN structure used is not improving the non-linear
behaviour obtained by this input simplification and a more complex structure is
required (i.e., increasing model order or the number of neurons/layers implied in
the construction of model).

After this analysis, it can be concluded that the selected regressors are not
able to fully explain the system to be modelled, and therefore, other regressor
should be explored to improve the performance. Nevertheless, this is required if
the model is desired to develop long-term voltage predictions.
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Figure 4.31: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using DMDc technique and training dataset of selected regressors in MISO struc-
ture



216 4.4. Proposed methodology for time-series data modelling

Figure 4.32: Histogram, Q-Q plot and ACF of residuals from voltages predic-
tions using DMDc technique and validation dataset of selected regressors in MISO
structure
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Figure 4.33: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using NARX technique and training dataset of selected regressors in MISO struc-
ture
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Figure 4.34: Histogram, Q-Q plot and ACF of residuals from voltages predic-
tions using NARX technique and validation dataset of selected regressors in MISO
structure
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Figure 4.35: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using DMDc technique and training dataset of selected regressors in MIMO struc-
ture
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Figure 4.36: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using DMDc technique and validation dataset of selected regressors in MIMO
structure
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Figure 4.37: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using NARX technique and training dataset of selected regressors in MIMO struc-
ture
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Figure 4.38: Histogram, Q-Q plot and ACF of residuals from voltages predictions
using NARX technique and validation dataset of selected regressors in MIMO
structure
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For this purpose, it is shown that it is still doing a good work for 1-step ahead,
and the obtained models are stable with all the advantages of a reduced-order
linear representation. This means that even if the results were not fully as expec-
ted, they are able to represent the voltage dynamics to predict using the proposed
metrics, which are based purely in measurements.

To complement the obtained results, models and predictions are normally fol-
lowed by a prediction interval supported statistically speaking to offer some com-
pensation for the inaccuracies obtained in models. This interval might results
useful, especially when models are applied in the context of robust or stochastic
control, where those intervals can be used to inform control decisions. The defin-
ition of these intervals and the procedure is explained in section 4.7.

4.5 Validation of obtained models

In order to evaluate the performance of the obtained models using reference data,
a comparison of the responses is done with the original data set of measurements
obtained every 1-minute. A portion of the results obtained from the MISO struc-
ture and the predicted voltages are presented in Figures 4.39 and 4.40 from the
original training and validation datasets with 1-minute resolution, respectively.
Table 4.25 shows the performance for training on each node; Table 4.26 shows the
performance for validation on each node. In a similar way, a portion of the res-
ults obtained from the MIMO structure and the predicted voltages are presented
in Figures 4.41 and 4.42 from the original training and validation dataset with 1-
minute resolution, respectively. Table 4.27 and 4.28 show the performance for both
datasets.

Since the model provides responses with a 10-minute resolution, it is assumed
that the obtained voltage will remain constant every 10 minutes, while the ref-
erence data is changing every minute. It is shown that the performance metrics
are reduced compared to the same dataset using a 10-minute resolution, as there
are voltage oscillations in the reference signal with higher resolution. Neverthe-
less, both graphical responses for the obtained results shown in tables confirm
that both model structures are consistent with the obtained responses, providing
good performance for all the models (with the exception of OKID-ERA, which still
showed difficulties in the tuning process). This shows that the models were able
to follow the nature of voltage oscillation with higher resolution, even if the data
is measured every 10 minutes.
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Figure 4.39: Portion of voltage predictions 1 step ahead using selected regressors
training dataset in MISO structure (1-minute resolution)
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Figure 4.40: Portion of voltage predictions 1 step ahead using selected regressors
validation dataset in MISO structure (1-minute resolution)
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Table 4.25: Results of models for voltage prediction on each measured node using
selected regressors training dataset in MISO structure (1-minute resolution)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.45 0.16 0.45 0.47 0.45
R2 S81A 0.28 0.14 0.28 0.27 0.26
R2 S81B 0.44 0.18 0.44 -2.67 0.44
R2 S60A 0.40 0.35 0.40 0.32 0.39
R2 S60B 0.40 0.38 0.40 0.37 0.39
R2 S60C 0.43 0.43 0.43 0.37 0.42
NRMSE S85C 0.12 0.15 0.12 0.12 0.12
NRMSE S81A 0.14 0.15 0.14 0.14 0.14
NRMSE S82B 0.13 0.19 0.13 0.49 0.13
NRMSE S60A 0.09 0.10 0.09 0.10 0.09
NRMSE S60B 0.08 0.08 0.08 0.08 0.08
NRMSE S60C 0.08 0.08 0.08 0.08 0.08
AIC S85C -3.43e6 -3.30e6 -3.43e6 -3.44e6 -3.43e6
BIC S85C -3.43e6 -3.30e6 -3.43e6 -3.44e6 -3.43e6
AIC S81A -3.43e6 -3.38e6 -3.43e6 -3.43e6 -3.43e6
BIC S81A -3.43e6 -3.38e6 -3.43e6 -3.43e6 -3.43e6
AIC S81B -3.50e6 -3.38e6 -3.50e6 -2.91e6 -3.49e6
BIC S81B -3.50e6 -3.38e6 -3.50e6 -2.91e6 -3.49e6
AIC S60A -3.44e6 -3.41e6 -3.44e6 -3.40e6 -3.43e6
BIC S60A -3.44e6 -3.41e6 -3.44e6 -3.40e6 -3.43e6
AIC S60B -3.57e6 -3.56e6 -3.57e6 -3.55e6 -3.56e6
BIC S60B -3.57e6 -3.56e6 -3.57e6 -3.55e6 -3.56e6
AIC S60C -3.52e6 -3.52e6 -3.52e6 -3.49e6 -3.52e6
BIC S60C -3.52e6 -3.52e6 -3.52e6 -3.49e6 -3.52e6

Table 4.27: Results of models for voltage prediction using selected regressors train-
ing dataset in MIMO structure (1-minute resolution)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.45 0.40 0.45 -4.29 0.45
R2 S81A 0.25 0.19 0.26 -14.99 0.25
R2 S81B 0.43 0.36 0.43 -1.07 0.43
R2 S60A 0.40 0.33 0.40 -18.54 0.40
R2 S60B 0.39 0.35 0.39 -3.80 0.39
R2 S60C 0.43 0.41 0.43 -6.61 0.43
NRMSE S85C 0.12 0.12 0.12 0.36 0.12
NRMSE S81A 0.14 0.15 0.14 0.66 0.14
NRMSE S82B 0.13 0.14 0.13 0.26 0.13
NRMSE S60A 0.09 0.10 0.09 0.52 0.09
NRMSE S60B 0.08 0.08 0.08 0.22 0.08
NRMSE S60C 0.08 0.08 0.08 0.29 0.08
AIC -3.48e6 -3.45e6 -3.48e6 -2.71e6 -3.48e6
BIC -3.48e6 -3.45e6 -3.48e6 -2.71e6 -3.48e6
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Table 4.26: Results of models for voltage prediction on each measured node using
selected regressors validation dataset in MISO structure (1-minute resolution)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.45 0.14 0.45 0.46 0.44
R2 S81A 0.27 0.13 0.27 0.26 0.26
R2 S81B 0.43 0.15 0.42 -2.85 0.42
R2 S60A 0.38 0.33 0.39 0.30 0.38
R2 S60B 0.39 0.37 0.39 0.36 0.38
R2 S60C 0.42 0.42 0.42 0.36 0.41
NRMSE S85C 0.12 0.14 0.12 0.11 0.12
NRMSE S81A 0.14 0.15 0.14 0.14 0.14
NRMSE S82B 0.14 0.17 0.14 0.35 0.14
NRMSE S60A 0.10 0.11 0.10 0.11 0.10
NRMSE S60B 0.08 0.09 0.08 0.09 0.09
NRMSE S60C 0.10 0.10 0.10 0.10 0.10
AIC S85C -3.43e6 -3.29e6 -3.43e6 -3.44e6 -3.43e6
BIC S85C -3.43e6 -3.29e6 -3.43e6 -3.44e6 -3.43e6
AIC S81A -3.43e6 -3.38e6 -3.43e6 -3.43e6 -3.42e6
BIC S81A -3.43e6 -3.38e6 -3.43e6 -3.43e6 -3.42e6
AIC S81B -3.49e6 -3.37e6 -3.49e6 -2.90e6 -3.49e6
BIC S81B -3.49e6 -3.37e6 -3.49e6 -2.90e6 -3.49e6
AIC S60A -3.43e6 -3.41e6 -3.44e6 -3.40e6 -3.43e6
BIC S60A -3.43e6 -3.41e6 -3.44e6 -3.40e6 -3.43e6
AIC S60B -3.56e6 -3.55e6 -3.56e6 -3.55e6 -3.56e6
BIC S60B -3.56e6 -3.55e6 -3.56e6 -3.55e6 -3.56e6
AIC S60C -3.52e6 -3.52e6 -3.52e6 -3.49e6 -3.51e6
BIC S60C -3.52e6 -3.52e6 -3.52e6 -3.49e6 -3.51e6

Table 4.28: Results of models for voltage prediction using selected regressors val-
idation dataset in MIMO structure (1-minute resolution)

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.44 0.39 0.44 -4.65 0.44
R2 S81A 0.25 0.19 0.25 -16.34 0.24
R2 S81B 0.41 0.35 0.41 -1.20 0.41
R2 S60A 0.38 0.31 0.38 -20.19 0.38
R2 S60B 0.38 0.34 0.38 -4.11 0.38
R2 S60C 0.42 0.40 0.42 -7.14 0.42
NRMSE S85C 0.12 0.12 0.12 0.38 0.12
NRMSE S81A 0.14 0.15 0.14 0.69 0.14
NRMSE S82B 0.14 0.14 0.14 0.26 0.14
NRMSE S60A 0.10 0.11 0.10 0.61 0.10
NRMSE S60B 0.08 0.09 0.08 0.24 0.08
NRMSE S60C 0.10 0.10 0.10 0.37 0.10
AIC -3.47e6 -3.45e6 -3.47e6 -2.69e6 -3.47e6
BIC -3.47e6 -3.45e6 -3.47e6 -2.69e6 -3.47e6
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Figure 4.41: Portion of voltage predictions 1 step ahead using selected regressors
training dataset in MIMO structure (1-minute resolution)
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Figure 4.42: Portion of voltage predictions 1 step ahead using selected regressors
validation dataset in MIMO structure (1-minute resolution)
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4.6 Obtained results for “n-step ahead” predictions

The previous results show that the initial assumptions of the results were not met,
and it is not possible to draw conclusive findings about the performance of the
models for different step-ahead horizons. Nevertheless, an evaluation of responses
was conducted for different horizons to assess the capability of the obtained model
to predict the response several steps into the future (beyond 1 step ahead).

It is shown that even though there is no way to guarantee the response statist-
ically beyond one step ahead, due to the nature of the problem, the performance
of the model 2 steps ahead is relatively good. For step 3, the performance drops
considerably in some of the nodes. For longer horizons (more than 6 steps or one
hour), the model is not able to predict voltage variations in a reasonable way. This
indicates that this approach is not meant to be used for long-horizon predictions,
but rather for short-term predictions.

Table 4.29: Results of models for 2-steps voltage prediction on each measured
node using selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.45 0.27 0.44 0.42 0.43
R2 S81A 0.18 0.10 0.17 0.03 0.17
R2 S81B 0.47 0.28 0.47 -5.11 0.47
R2 S60A 0.37 0.33 0.36 0.28 0.35
R2 S60B 0.52 0.51 0.52 0.49 0.52
R2 S60C 0.51 0.50 0.49 0.50 0.48
NRMSE S85C 0.14 0.16 0.14 0.14 0.14
NRMSE S81A 0.18 0.19 0.18 0.19 0.18
NRMSE S82B 0.16 0.19 0.16 0.55 0.16
NRMSE S60A 0.10 0.10 0.10 0.11 0.10
NRMSE S60B 0.07 0.07 0.07 0.07 0.07
NRMSE S60C 0.07 0.07 0.07 0.07 0.08
AIC S85C -3.51e5 -3.43e5 -3.51e5 -3.50e5 -3.50e5
BIC S85C -3.51e5 -3.43e5 -3.51e5 -3.50e5 -3.50e5
AIC S81A -3.51e5 -3.48e5 -3.51e5 -3.46e5 -3.51e5
BIC S81A -3.51e5 -3.48e5 -3.51e5 -3.46e5 -3.51e5
AIC S81B -3.63e5 -3.53e5 -3.62e5 -2.86e5 -3.62e5
BIC S81B -3.63e5 -3.53e5 -3.62e5 -2.86e5 -3.62e5
AIC S60A -3.52e5 -3.50e5 -3.52e5 -3.48e5 -3.51e5
BIC S60A -3.52e5 -3.50e5 -3.52e5 -3.48e5 -3.51e5
AIC S60B -3.80e5 -3.79e5 -3.80e5 -3.78e5 -3.80e5
BIC S60B -3.80e5 -3.79e5 -3.80e5 -3.78e5 -3.80e5
AIC S60C -3.69e5 -3.69e5 -3.68e5 -3.69e5 -3.68e5
BIC S60C -3.69e5 -3.69e5 -3.68e5 -3.69e5 -3.68e5
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Table 4.30: Results of models for 2-steps voltage prediction on each measured
node using selected regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.44 0.41 0.45 -5.11 0.42
R2 S81A 0.19 0.13 0.19 -14.72 0.14
R2 S81B 0.47 0.41 0.47 -2.97 0.45
R2 S60A 0.37 0.33 0.37 -26.85 0.35
R2 S60B 0.52 0.50 0.52 -6.50 0.51
R2 S60C 0.50 0.49 0.50 -11.93 0.49
NRMSE S85C 0.14 0.14 0.14 0.46 0.14
NRMSE S81A 0.18 0.18 0.18 0.78 0.18
NRMSE S82B 0.16 0.17 0.16 0.44 0.16
NRMSE S60A 0.10 0.10 0.10 0.68 0.10
NRMSE S60B 0.07 0.07 0.07 0.27 0.07
NRMSE S60C 0.07 0.07 0.07 0.38 0.07
AIC -3.61e5 -3.59e5 -3.61e5 -2.72e5 -3.60e5
BIC -3.61e5 -3.59e5 -3.61e5 -2.72e5 -3.60e5

Table 4.31: Results of models for 2-steps voltage prediction on each measured
node using selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.43 0.25 0.43 0.41 0.42
R2 S81A 0.16 0.09 0.15 0.01 0.15
R2 S81B 0.45 0.24 0.44 -5.39 0.44
R2 S60A 0.35 0.31 0.35 0.27 0.34
R2 S60B 0.49 0.48 0.50 0.46 0.49
R2 S60C 0.49 0.49 0.47 0.49 0.47
NRMSE S85C 0.14 0.16 0.14 0.14 0.14
NRMSE S81A 0.17 0.18 0.17 0.19 0.17
NRMSE S82B 0.17 0.19 0.17 0.56 0.17
NRMSE S60A 0.12 0.12 0.12 0.13 0.12
NRMSE S60B 0.08 0.08 0.08 0.08 0.08
NRMSE S60C 0.10 0.10 0.10 0.10 0.10
AIC S85C -3.51e5 -3.42e5 -3.50e5 -3.49e5 -3.50e5
BIC S85C -3.51e5 -3.42e5 -3.50e5 -3.49e5 -3.50e5
AIC S81A -3.51e5 -3.48e5 -3.50e5 -3.46e5 -3.50e5
BIC S81A -3.51e5 -3.48e5 -3.50e5 -3.46e5 -3.50e5
AIC S81B -3.61e5 -3.52e5 -3.61e5 -2.85e5 -3.61e5
BIC S81B -3.61e5 -3.51e5 -3.61e5 -2.85e5 -3.61e5
AIC S60A -3.52e5 -3.50e5 -3.52e5 -3.48e5 -3.51e5
BIC S60A -3.52e5 -3.50e5 -3.52e5 -3.48e5 -3.51e5
AIC S60B -3.78e5 -3.78e5 -3.78e5 -3.76e5 -3.78e5
BIC S60B -3.78e5 -3.78e5 -3.78e5 -3.76e5 -3.78e5
AIC S60C -3.69e5 -3.69e5 -3.68e5 -3.69e5 -3.67e5
BIC S60C -3.69e5 -3.69e5 -3.68e5 -3.69e5 -3.67e5
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Table 4.32: Results of models for 2-steps voltage prediction on each measured
node using selected regressors validation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.43 0.40 0.43 -5.55 0.41
R2 S81A 0.17 0.12 0.18 -16.11 0.13
R2 S81B 0.44 0.38 0.44 -3.29 0.44
R2 S60A 0.35 0.31 0.35 -30.20 0.34
R2 S60B 0.50 0.48 0.50 -7.09 0.50
R2 S60C 0.49 0.48 0.49 -13.24 0.48
NRMSE S85C 0.14 0.14 0.14 0.47 0.15
NRMSE S81A 0.17 0.18 0.17 0.78 0.19
NRMSE S82B 0.17 0.18 0.17 0.46 0.17
NRMSE S60A 0.12 0.12 0.12 0.82 0.11
NRMSE S60B 0.08 0.08 0.08 0.31 0.08
NRMSE S60C 0.10 0.10 0.10 0.52 0.08
AIC -3.60e5 -3.59e5 -3.60e5 -2.69e5 -3.59e5
BIC -3.60e5 -3.59e5 -3.60e5 -2.69e5 -3.59e5

Table 4.33: Results of models for 3-steps voltage prediction on each measured
node using selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.33 0.01 0.31 0.30 0.32
R2 S81A 0.03 -0.02 0.06 -0.35 0.06
R2 S81B 0.34 -0.12 0.35 -15.62 0.35
R2 S60A 0.25 0.21 0.24 0.18 0.25
R2 S60B 0.42 0.40 0.43 0.39 0.42
R2 S60C 0.41 0.41 0.41 0.25 0.40
NRMSE S85C 0.15 0.19 0.15 0.16 0.15
NRMSE S81A 0.19 0.20 0.19 0.23 0.19
NRMSE S82B 0.18 0.24 0.18 0.91 0.18
NRMSE S60A 0.11 0.11 0.11 0.12 0.11
NRMSE S60B 0.08 0.08 0.08 0.08 0.08
NRMSE S60C 0.08 0.08 0.08 0.09 0.08
AIC S85C -3.45e5 -3.33e5 -3.45e5 -3.44e5 -3.45e5
BIC S85C -3.45e5 -3.33e5 -3.45e5 -3.44e5 -3.45e5
AIC S81A -3.46e5 -3.44e5 -3.47e5 -3.35e5 -3.47e5
BIC S81A -3.46e5 -3.44e5 -3.47e5 -3.35e5 -3.47e5
AIC S81B -3.56e5 -3.39e5 -3.56e5 -2.54e5 -3.56e5
BIC S81B -3.56e5 -3.39e5 -3.56e5 -2.55e5 -3.56e5
AIC S60A -3.46e5 -3.45e5 -3.46e5 -3.43e5 -3.46e5
BIC S60A -3.46e5 -3.45e5 -3.46e5 -3.43e5 -3.46e5
AIC S60B -3.74e5 -3.73e5 -3.75e5 -3.72e5 -3.74e5
BIC S60B -3.74e5 -3.73e5 -3.75e5 -3.72e5 -3.74e5
AIC S60C -3.64e5 -3.64e5 -3.64e5 -3.56e5 -3.63e5
BIC S60C -3.64e5 -3.64e5 -3.64e5 -3.56e5 -3.63e5
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Table 4.34: Results of models for 3-steps voltage prediction on each measured
node using selected regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.32 0.30 0.33 -1.74 0.30
R2 S81A 0.04 -0.01 0.04 -3.72 0.00
R2 S81B 0.34 0.29 0.34 -1.35 0.32
R2 S60A 0.25 0.22 0.25 -5.05 0.23
R2 S60B 0.42 0.40 0.42 -1.65 0.41
R2 S60C 0.41 0.40 0.41 -2.36 0.39
NRMSE S85C 0.15 0.16 0.15 0.31 0.16
NRMSE S81A 0.19 0.20 0.19 0.43 0.20
NRMSE S82B 0.18 0.19 0.18 0.34 0.18
NRMSE S60A 0.11 0.11 0.11 0.32 0.11
NRMSE S60B 0.08 0.08 0.08 0.16 0.08
NRMSE S60C 0.08 0.08 0.08 0.19 0.08
AIC -3.55e5 -3.54e5 -3.55e5 -3.05e5 -3.54e5
BIC -3.55e5 -3.54e5 -3.55e5 -3.05e5 -3.54e5

Table 4.35: Results of models for 3-steps voltage prediction on each measured
node using selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.31 -0.02 0.30 0.29 0.30
R2 S81A 0.02 -0.03 0.05 -0.37 0.04
R2 S81B 0.32 -0.17 0.32 -16.22 0.32
R2 S60A 0.23 0.19 0.22 0.16 0.23
R2 S60B 0.40 0.38 0.41 0.36 0.40
R2 S60C 0.39 0.39 0.39 0.22 0.38
NRMSE S85C 0.15 0.18 0.15 0.15 0.15
NRMSE S81A 0.19 0.19 0.19 0.22 0.19
NRMSE S82B 0.18 0.24 0.18 0.93 0.18
NRMSE S60A 0.13 0.13 0.13 0.14 0.13
NRMSE S60B 0.08 0.08 0.08 0.09 0.08
NRMSE S60C 0.11 0.11 0.11 0.12 0.11
AIC S85C -3.45e5 -3.32e5 -3.44e5 -3.44e5 -3.44e5
BIC S85C -3.45e5 -3.32e5 -3.44e5 -3.44e5 -3.44e5
AIC S81A -3.46e5 -3.44e5 -3.47e5 -3.35e5 -3.46e5
BIC S81A -3.46e5 -3.44e5 -3.47e5 -3.35e5 -3.46e5
AIC S81B -3.55e5 -3.38e5 -3.55e5 -2.54e5 -3.55e5
BIC S81B -3.55e5 -3.38e5 -3.55e5 -2.54e5 -3.55e5
AIC S60A -3.47e5 -3.45e5 -3.46e5 -3.44e5 -3.47e5
BIC S60A -3.47e5 -3.45e5 -3.46e5 -3.44e5 -3.47e5
AIC S60B -3.73e5 -3.72e5 -3.73e5 -3.71e5 -3.73e5
BIC S60B -3.73e5 -3.72e5 -3.73e5 -3.71e5 -3.73e5
AIC S60C -3.63e5 -3.63e5 -3.63e5 -3.56e5 -3.63e5
BIC S60C -3.63e5 -3.63e5 -3.63e5 -3.56e5 -3.63e5
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Table 4.36: Results of models for 3-steps voltage prediction on each measured
node using selected regressors validation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.32 0.30 0.33 -1.74 0.30
R2 S81A 0.04 -0.01 0.04 -3.72 0.00
R2 S81B 0.34 0.29 0.34 -1.35 0.32
R2 S60A 0.25 0.22 0.25 -5.05 0.23
R2 S60B 0.42 0.40 0.42 -1.65 0.41
R2 S60C 0.41 0.40 0.41 -2.36 0.39
NRMSE S85C 0.15 0.16 0.15 0.31 0.16
NRMSE S81A 0.19 0.20 0.19 0.43 0.20
NRMSE S82B 0.18 0.19 0.18 0.34 0.18
NRMSE S60A 0.11 0.11 0.11 0.32 0.11
NRMSE S60B 0.08 0.08 0.08 0.16 0.08
NRMSE S60C 0.08 0.08 0.08 0.19 0.08
AIC -3.55e5 -3.54e5 -3.55e5 -3.05e5 -3.54e5
BIC -3.55e5 -3.54e5 -3.55e5 -3.05e5 -3.54e5

Table 4.37: Results of models for 6-steps voltage prediction on each measured
node using selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.08 -0.21 0.08 0.10 -0.02
R2 S81A -0.24 -0.23 -0.22 -0.39 -0.37
R2 S81B 0.07 0.05 0.10 -13.25 0.00
R2 S60A 0.05 -0.06 0.02 0.05 -0.11
R2 S60B 0.22 0.18 0.23 0.24 0.16
R2 S60C 0.21 0.22 0.22 0.19 0.07
NRMSE S85C 0.18 0.20 0.18 0.18 0.19
NRMSE S81A 0.22 0.22 0.22 0.23 0.23
NRMSE S82B 0.21 0.22 0.21 0.84 0.22
NRMSE S60A 0.12 0.13 0.13 0.12 0.14
NRMSE S60B 0.09 0.09 0.09 0.09 0.09
NRMSE S60C 0.09 0.09 0.09 0.09 0.10
AIC S85C -3.36e5 -3.27e5 -3.35e5 -3.36e5 -3.32e5
BIC S85C -3.36e5 -3.27e5 -3.35e5 -3.36e5 -3.32e5
AIC S81A -3.38e5 -3.38e5 -3.39e5 -3.35e5 -3.35e5
BIC S81A -3.38e5 -3.38e5 -3.39e5 -3.34e5 -3.35e5
AIC S81B -3.45e5 -3.44e5 -3.46e5 -2.60e5 -3.43e5
BIC S81B -3.45e5 -3.44e5 -3.46e5 -2.59e5 -3.43e5
AIC S60A -3.39e5 -3.35e5 -3.38e5 -3.39e5 -3.34e5
BIC S60A -3.39e5 -3.35e5 -3.38e5 -3.39e5 -3.34e5
AIC S60B -3.65e5 -3.63e5 -3.65e5 -3.66e5 -3.62e5
BIC S60B -3.65e5 -3.63e5 -3.65e5 -3.66e5 -3.62e5
AIC S60C -3.55e5 -3.55e5 -3.55e5 -3.54e5 -3.49e5
BIC S60C -3.55e5 -3.55e5 -3.55e5 -3.54e5 -3.49e5
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Table 4.38: Results of models for 6-steps voltage prediction on each measured
node using selected regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.09 0.10 0.09 -2.01 -0.04
R2 S81A -0.23 -0.22 -0.23 -7.54 -0.45
R2 S81B 0.06 0.08 0.06 -2.52 -0.05
R2 S60A 0.03 0.02 0.03 -9.53 -0.11
R2 S60B 0.21 0.21 0.21 -1.97 0.11
R2 S60C 0.22 0.21 0.22 -3.20 0.10
NRMSE S85C 0.18 0.18 0.18 0.32 0.19
NRMSE S81A 0.22 0.22 0.22 0.57 0.24
NRMSE S82B 0.22 0.21 0.22 0.42 0.23
NRMSE S60A 0.13 0.13 0.13 0.42 0.14
NRMSE S60B 0.09 0.09 0.09 0.17 0.09
NRMSE S60C 0.09 0.09 0.09 0.21 0.10
AIC -3.46e5 -3.46e5 -3.46e5 -2.95e5 -3.42e5
BIC -3.46e5 -3.46e5 -3.46e5 -2.95e5 -3.42e5

Table 4.39: Results of models for 6-steps voltage prediction on each measured
node using selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.06 -0.23 0.05 0.08 -0.04
R2 S81A -0.27 -0.26 -0.24 -0.42 -0.40
R2 S81B 0.03 0.00 0.06 -13.83 -0.04
R2 S60A 0.03 -0.09 0.00 0.03 -0.14
R2 S60B 0.19 0.14 0.20 0.21 0.12
R2 S60C 0.19 0.20 0.20 0.16 0.04
NRMSE S85C 0.18 0.20 0.18 0.18 0.19
NRMSE S81A 0.21 0.21 0.21 0.23 0.22
NRMSE S82B 0.22 0.22 0.22 0.86 0.23
NRMSE S60A 0.15 0.15 0.15 0.15 0.16
NRMSE S60B 0.10 0.10 0.10 0.10 0.10
NRMSE S60C 0.12 0.12 0.12 0.13 0.14
AIC S85C -3.35e5 -3.26e5 -3.35e5 -3.35e5 -3.32e5
BIC S85C -3.35e5 -3.26e5 -3.35e5 -3.35e5 -3.32e5
AIC S81A -3.38e5 -3.38e5 -3.38e5 -3.34e5 -3.35e5
BIC S81A -3.38e5 -3.38e5 -3.38e5 -3.34e5 -3.35e5
AIC S81B -3.44e5 -3.43e5 -3.45e5 -2.59e5 -3.42e5
BIC S81B -3.44e5 -3.43e5 -3.45e5 -2.59e5 -3.42e5
AIC S60A -3.39e5 -3.36e5 -3.38e5 -3.39e5 -3.34e5
BIC S60A -3.39e5 -3.36e5 -3.38e5 -3.39e5 -3.34e5
AIC S60B -3.64e5 -3.62e5 -3.64e5 -3.64e5 -3.61e5
BIC S60B -3.64e5 -3.62e5 -3.64e5 -3.64e5 -3.61e5
AIC S60C -3.54e5 -3.55e5 -3.55e5 -3.53e5 -3.49e5
BIC S60C -3.54e5 -3.55e5 -3.55e5 -3.53e5 -3.49e5
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Table 4.40: Results of models for 6-steps voltage prediction on each measured
node using selected regressors validation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C 0.07 0.08 0.07 -2.07 -0.05
R2 S81A -0.26 -0.25 -0.26 -7.84 -0.46
R2 S81B 0.02 0.04 0.02 -2.78 -0.06
R2 S60A 0.00 0.00 0.00 -10.56 -0.12
R2 S60B 0.18 0.17 0.18 -2.09 0.10
R2 S60C 0.19 0.19 0.20 -3.54 0.09
NRMSE S85C 0.18 0.18 0.18 0.32 0.20
NRMSE S81A 0.21 0.21 0.21 0.56 0.25
NRMSE S82B 0.22 0.22 0.22 0.43 0.24
NRMSE S60A 0.15 0.15 0.15 0.50 0.15
NRMSE S60B 0.10 0.10 0.10 0.19 0.10
NRMSE S60C 0.12 0.12 0.12 0.29 0.11
AIC -3.45e5 -3.46e5 -3.45e5 -2.93e5 -3.42e5
BIC -3.45e5 -3.46e5 -3.45e5 -2.93e5 -3.42e5

Table 4.41: Results of models for 12-steps voltage prediction on each measured
node using selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.21 -0.47 -0.17 -0.21 -0.25
R2 S81A -0.53 -0.53 -0.51 -0.90 -0.59
R2 S81B -0.29 -0.36 -0.26 -33.24 -0.33
R2 S60A -0.23 -0.35 -0.27 -0.26 -0.32
R2 S60B -0.05 -0.10 -0.05 -0.06 -0.10
R2 S60C -0.06 -0.05 -0.04 -0.24 -0.10
NRMSE S85C 0.21 0.23 0.20 0.21 0.21
NRMSE S81A 0.24 0.24 0.24 0.27 0.25
NRMSE S82B 0.25 0.26 0.25 1.30 0.26
NRMSE S60A 0.14 0.15 0.14 0.14 0.15
NRMSE S60B 0.10 0.10 0.10 0.10 0.10
NRMSE S60C 0.11 0.11 0.11 0.12 0.11
AIC S85C -3.27e5 -3.21e5 -3.28e5 -3.27e5 -3.26e5
BIC S85C -3.27e5 -3.21e5 -3.28e5 -3.27e5 -3.26e5
AIC S81A -3.31e5 -3.31e5 -3.32e5 -3.25e5 -3.30e5
BIC S81A -3.31e5 -3.31e5 -3.32e5 -3.25e5 -3.30e5
AIC S81B -3.35e5 -3.33e5 -3.35e5 -2.32e5 -3.34e5
BIC S81B -3.35e5 -3.33e5 -3.35e5 -2.32e5 -3.34e5
AIC S60A -3.31e5 -3.28e5 -3.30e5 -3.30e5 -3.29e5
BIC S60A -3.31e5 -3.28e5 -3.30e5 -3.30e5 -3.29e5
AIC S60B -3.55e5 -3.54e5 -3.55e5 -3.55e5 -3.54e5
BIC S60B -3.55e5 -3.54e5 -3.55e5 -3.55e5 -3.54e5
AIC S60C -3.46e5 -3.46e5 -3.46e5 -3.40e5 -3.44e5
BIC S60C -3.45e5 -3.46e5 -3.46e5 -3.40e5 -3.44e5
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Table 4.42: Results of models for 12-steps voltage prediction on each measured
node using selected regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.22 -0.22 -0.22 -0.84 -0.24
R2 S81A -0.53 -0.52 -0.52 -2.24 -0.55
R2 S81B -0.30 -0.30 -0.30 -1.30 -0.31
R2 S60A -0.26 -0.27 -0.26 -1.53 -0.30
R2 S60B -0.07 -0.07 -0.07 -0.88 -0.10
R2 S60C -0.05 -0.05 -0.05 -0.34 -0.08
NRMSE S85C 0.21 0.21 0.21 0.25 0.21
NRMSE S81A 0.24 0.24 0.24 0.35 0.24
NRMSE S82B 0.25 0.25 0.25 0.34 0.25
NRMSE S60A 0.14 0.14 0.14 0.20 0.15
NRMSE S60B 0.10 0.10 0.10 0.14 0.11
NRMSE S60C 0.11 0.11 0.11 0.12 0.11
AIC -3.37e5 -3.37e5 -3.37e5 -3.20e5 -3.36e5
BIC -3.37e5 -3.37e5 -3.37e5 -3.20e5 -3.36e5

Table 4.43: Results of models for 12-steps voltage prediction on each measured
node using selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.22 -0.49 -0.18 -0.22 -0.26
R2 S81A -0.56 -0.57 -0.54 -0.95 -0.63
R2 S81B -0.33 -0.41 -0.30 -35.29 -0.37
R2 S60A -0.26 -0.38 -0.29 -0.28 -0.35
R2 S60B -0.08 -0.12 -0.07 -0.08 -0.12
R2 S60C -0.07 -0.06 -0.06 -0.26 -0.12
NRMSE S85C 0.20 0.22 0.20 0.20 0.21
NRMSE S81A 0.24 0.24 0.24 0.26 0.24
NRMSE S82B 0.26 0.26 0.25 1.35 0.26
NRMSE S60A 0.17 0.17 0.17 0.17 0.17
NRMSE S60B 0.11 0.11 0.11 0.11 0.11
NRMSE S60C 0.14 0.14 0.14 0.15 0.15
AIC S85C -3.27e5 -3.20e5 -3.28e5 -3.27e5 -3.26e5
BIC S85C -3.27e5 -3.20e5 -3.28e5 -3.26e5 -3.26e5
AIC S81A -3.31e5 -3.31e5 -3.32e5 -3.24e5 -3.30e5
BIC S81A -3.31e5 -3.31e5 -3.32e5 -3.24e5 -3.30e5
AIC S81B -3.34e5 -3.32e5 -3.35e5 -2.31e5 -3.33e5
BIC S81B -3.34e5 -3.32e5 -3.35e5 -2.31e5 -3.33e5
AIC S60A -3.31e5 -3.28e5 -3.30e5 -3.30e5 -3.29e5
BIC S60A -3.31e5 -3.28e5 -3.30e5 -3.30e5 -3.29e5
AIC S60B -3.55e5 -3.53e5 -3.55e5 -3.54e5 -3.53e5
BIC S60B -3.54e5 -3.53e5 -3.55e5 -3.54e5 -3.53e5
AIC S60C -3.46e5 -3.46e5 -3.46e5 -3.40e5 -3.44e5
BIC S60C -3.46e5 -3.46e5 -3.46e5 -3.40e5 -3.44e5
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Table 4.44: Results of models for 12-steps voltage prediction on each measured
node using selected regressors validation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.23 -0.23 -0.23 -0.87 -0.25
R2 S81A -0.56 -0.55 -0.56 -2.32 -0.56
R2 S81B -0.34 -0.33 -0.34 -1.41 -0.32
R2 S60A -0.29 -0.29 -0.29 -1.69 -0.31
R2 S60B -0.09 -0.10 -0.09 -0.91 -0.11
R2 S60C -0.07 -0.07 -0.06 -0.36 -0.09
NRMSE S85C 0.20 0.20 0.20 0.25 0.22
NRMSE S81A 0.24 0.24 0.24 0.35 0.25
NRMSE S82B 0.26 0.26 0.26 0.35 0.26
NRMSE S60A 0.17 0.17 0.17 0.24 0.16
NRMSE S60B 0.11 0.11 0.11 0.15 0.12
NRMSE S60C 0.14 0.14 0.14 0.16 0.12
AIC -3.37e5 -3.37e5 -3.37e5 -3.20e5 -3.36e5
BIC -3.37e5 -3.37e5 -3.37e5 -3.20e5 -3.36e5

Table 4.45: Results of models for 144-steps voltage prediction on each measured
node using selected regressors training dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.04 -0.39 -0.04 -0.05 -0.08
R2 S81A -0.32 -0.32 -0.30 -0.72 -0.36
R2 S81B -0.13 -0.37 -0.10 -172.76 -0.16
R2 S60A -0.08 -0.19 -0.11 -0.12 -0.15
R2 S60B -0.10 -0.14 -0.09 -0.10 -0.14
R2 S60C 0.02 0.03 0.04 0.00 -0.01
NRMSE S85C 0.19 0.22 0.19 0.19 0.19
NRMSE S81A 0.23 0.23 0.22 0.26 0.23
NRMSE S82B 0.24 0.26 0.23 2.93 0.24
NRMSE S60A 0.13 0.14 0.14 0.14 0.14
NRMSE S60B 0.11 0.11 0.10 0.11 0.11
NRMSE S60C 0.10 0.10 0.10 0.10 0.10
AIC S85C -3.31e5 -3.22e5 -3.31e5 -3.31e5 -3.30e5
BIC S85C -3.31e5 -3.22e5 -3.31e5 -3.31e5 -3.30e5
AIC S81A -3.36e5 -3.35e5 -3.36e5 -3.27e5 -3.34e5
BIC S81A -3.35e5 -3.35e5 -3.36e5 -3.27e5 -3.34e5
AIC S81B -3.38e5 -3.32e5 -3.39e5 -1.81e5 -3.37e5
BIC S81B -3.38e5 -3.32e5 -3.39e5 -1.81e5 -3.37e5
AIC S60A -3.34e5 -3.31e5 -3.33e5 -3.33e5 -3.32e5
BIC S60A -3.34e5 -3.31e5 -3.33e5 -3.33e5 -3.32e5
AIC S60B -3.53e5 -3.52e5 -3.53e5 -3.53e5 -3.52e5
BIC S60B -3.53e5 -3.52e5 -3.53e5 -3.53e5 -3.52e5
AIC S60C -3.47e5 -3.48e5 -3.48e5 -3.47e5 -3.46e5
BIC S60C -3.47e5 -3.47e5 -3.48e5 -3.47e5 -3.46e5
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Table 4.46: Results of models for 144-steps voltage prediction on each measured
node using selected regressors training dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.05 -0.05 -0.05 -3.50 -0.08
R2 S81A -0.31 -0.31 -0.31 -6.73 -0.37
R2 S81B -0.14 -0.14 -0.14 -1.58 -0.17
R2 S60A -0.11 -0.12 -0.11 -3.71 -0.13
R2 S60B -0.11 -0.12 -0.11 -2.66 -0.14
R2 S60C 0.03 0.02 0.03 -1.95 0.01
NRMSE S85C 0.19 0.19 0.19 0.40 0.19
NRMSE S81A 0.22 0.22 0.22 0.55 0.23
NRMSE S82B 0.24 0.24 0.24 0.36 0.24
NRMSE S60A 0.13 0.14 0.13 0.28 0.14
NRMSE S60B 0.11 0.11 0.11 0.19 0.11
NRMSE S60C 0.10 0.10 0.10 0.18 0.10
AIC -3.40e5 -3.40e5 -3.40e5 -2.99e5 -3.39e5
BIC -3.40e5 -3.40e5 -3.40e5 -2.99e5 -3.39e5

Table 4.47: Results of models for 144-steps voltage prediction on each measured
node using selected regressors validation dataset in MISO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.04 -0.39 -0.04 -0.05 -0.08
R2 S81A -0.32 -0.32 -0.30 -0.72 -0.36
R2 S81B -0.13 -0.37 -0.10 -172.76 -0.16
R2 S60A -0.08 -0.19 -0.11 -0.12 -0.15
R2 S60B -0.10 -0.14 -0.09 -0.10 -0.14
R2 S60C 0.02 0.03 0.04 0.00 -0.01
NRMSE S85C 0.19 0.22 0.19 0.19 0.19
NRMSE S81A 0.23 0.23 0.22 0.26 0.23
NRMSE S82B 0.24 0.26 0.23 2.93 0.24
NRMSE S60A 0.13 0.14 0.14 0.14 0.14
NRMSE S60B 0.11 0.11 0.10 0.11 0.11
NRMSE S60C 0.10 0.10 0.10 0.10 0.10
AIC S85C -3.31e5 -3.22e5 -3.31e5 -3.31e5 -3.30e5
BIC S85C -3.31e5 -3.22e5 -3.31e5 -3.31e5 -3.30e5
AIC S81A -3.36e5 -3.35e5 -3.36e5 -3.27e5 -3.34e5
BIC S81A -3.35e5 -3.35e5 -3.36e5 -3.27e5 -3.34e5
AIC S81B -3.38e5 -3.32e5 -3.39e5 -1.81e5 -3.37e5
BIC S81B -3.38e5 -3.32e5 -3.39e5 -1.81e5 -3.37e5
AIC S60A -3.34e5 -3.31e5 -3.33e5 -3.33e5 -3.32e5
BIC S60A -3.34e5 -3.31e5 -3.33e5 -3.33e5 -3.32e5
AIC S60B -3.53e5 -3.52e5 -3.53e5 -3.53e5 -3.52e5
BIC S60B -3.53e5 -3.52e5 -3.53e5 -3.53e5 -3.52e5
AIC S60C -3.47e5 -3.48e5 -3.48e5 -3.47e5 -3.46e5
BIC S60C -3.47e5 -3.47e5 -3.48e5 -3.47e5 -3.46e5
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Table 4.48: Results of models for 144-steps voltage prediction on each measured
node using selected regressors validation dataset in MIMO structure

Characteristics ARX (SS) ARMAX (SS) DMDc OKID-ERA NARX

R2 S85C -0.05 -0.05 -0.05 -3.64 -0.09
R2 S81A -0.36 -0.36 -0.36 -7.11 -0.38
R2 S81B -0.13 -0.13 -0.13 -1.68 -0.18
R2 S60A -0.15 -0.16 -0.15 -3.94 -0.14
R2 S60B -0.16 -0.17 -0.16 -2.77 -0.15
R2 S60C 0.02 0.01 0.02 -2.03 0.00
NRMSE S85C 0.19 0.19 0.19 0.39 0.20
NRMSE S81A 0.22 0.22 0.22 0.54 0.24
NRMSE S82B 0.24 0.24 0.24 0.37 0.25
NRMSE S60A 0.16 0.16 0.16 0.33 0.15
NRMSE S60B 0.12 0.12 0.12 0.21 0.12
NRMSE S60C 0.14 0.14 0.14 0.24 0.11
AIC -3.39e5 -3.39e5 -3.39e5 -2.98e5 -3.39e5
BIC -3.39e5 -3.39e5 -3.39e5 -2.98e5 -3.39e5

4.7 Obtaining prediction interval for the time-series mod-
elling

From previous steps, it is obtained a linear representation that represents the
voltage quasi-dynamics based on the selected regressors after analysis. Last step of
Algorithm 4.1 (Step 5), corresponds to obtaining prediction interval for the time-
series modelling. Normally, time-series representations come with a prediction
interval that gives a statistical boundary in which the obtained values lie with a
specified probability [246]. According to Equations (4.4) and (4.5), the prediction
interval is not for the predicted voltage, but it is constructed linear model that
relates the differenced regressors and voltages.

A prediction interval gives an interval within which the predicted value ∆y(tk+1)
from equation (4.5) is expected to lie with a specified probability. This value is
commonly given for a 95% prediction interval for the h-step horizon [246]. This
margin can be calculated by using pre-defined values from standard distributions
(normal, t-distribution, etc.). Since the distributions obtained for residuals are not
following the expected standard distribution shape, it is part of the main challenge
of this part of the thesis to use another technique that fits with empirical residuals.

For any modelling approach, the uncertainty associated with the prediction is
product of the error associated with model parameters and the unpredictable er-
rors from external causes [288]. The obtained heavy-tailed distribution in residuals
would not increase the effect of the errors associated with the estimators in the lin-
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ear regression [289]. This is because the error is averaged out in the least-squares
estimate. Nevertheless, this will affect the prediction interval and it is required to
explore the margin of the prediction interval obtained under these conditions.

One of the most common techniques to obtain this unpredictable error is
applying bootstrapping in the residuals [290–293]. Bootstrapping is one of the
broader resampling methods, in which any test or metric relies on random sampling
with replacement, and at the same time assuming that the data that have not been
selected are the test dataset. This procedure is repeated several times and com-
pute the average score as estimation of model performance. However, the basic
bootstrap depends on the initial sample consisting of independent and identic-
ally distributed random variables draws from a fixed population distribution. In
practice and as was obtained before, residuals showed correlation components.

Another possibility is cross-validation resampling without replacement [238].
This procedure splits the training data into k parts (that is also called k-fold cross
validation). Then, it is assumed that k − 1 parts are used for training and the other
for testing/validating. The procedure is repeated k times taking different part of
the data each time. Finally, the average of the k scores is calculated as performance
estimation. In time series, there are issues that must be considered [294]; the
prediction horizon is affected according to the portion of dataset that is taken, and
there will be issues with the data before the selected training data (because the
prediction would be given to "past values" instead). Finally, the method can suffer
from variance or bias according to the size of the fold.

The possible solution for this in time-series data is a mixture of both techniques
under special considerations. In this work, two techniques were implemented to
obtain the prediction intervals:

• Time-Series Split Cross-Validation (TSSCV) [295]: In this method, the cross-
validation is done considering the historical correlation of data. A small
portion of the variables is selected to validate, while the rest is taken for
training. Figure 4.43 summarises the representation of the selected dataset
on each iteration. The horizontal axis shows the training set size while the
vertical axis shows the cross-validation iterations. The folds used for training
and validation are depicted in blue and orange, respectively. The horizontal
axis represents the time progression line that have not shuffled the dataset
and maintained the chronological order. Therefore, time series is split into
two folds at each iteration, where validation set is always ahead of the train-
ing set.

• Blocked Cross-Validation (BCV) [296]: This method considers leakages from
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Figure 4.43: Time-series split and selection process of TSSCV method for predic-
tion interval for training dataset (blue bar) and validation dataset (orange bar)
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Figure 4.44: Time-series split and selection process of BCV method for prediction
interval for training dataset (blue bar) and validation dataset (orange bar)

future data to the model, and therefore, future patterns are observed. Fig-
ure 4.44 summarises the selection of data, following a similar presentation
of previous figure. In this case, two margins are added: the first between
the training and validation folds (to avoid that the model observes lag val-
ues that are used twice, once as a regressor and as a response); and the
second between the folds used at each iteration to avoid memorising pat-
terns between each iteration.

The procedure to calculate the prediction interval using the methods men-
tioned before is presented in Algorithm 4.2.
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Algorithm 4.2 Prediction interval calculation from data-driven time-series model-
ling approach
Input: Selected data, Number of repetition B, window resolution for each iteration

fold
Output: Prediction interval
initialisation
Step 1 - Calculate ∆V(tk+1);
for iter = 1 : B do

Step 2 - Set the size of each fold
Step 3 - Choose the time-series cross-validation method (TSSCV or BCV);
choose a random initial point in the training set (uniform distribution)
Step 4 - Run regressions using the obtained training/testing dataset and
calculate the residual

end
Step 5 - Calculate percentiles 2.5 and 97.5 from the obtained residual distributions
(95% confidence)
Step 6 - Calculate prediction intervals, add the values to ∆V(tk+1)

The calculation of percentiles is done using the empirical method called t-
digest [297]. This technique uses a sparse representation of the ECDF of a data set,
and it is useful for computing approximations of rank-based statistics (percentiles
and quantiles). T-digest is used to estimate the median and any percentile from
either distributed data or streaming data. The first step consists of obtaining a t-
digest in each partition of the data. Once each sparse representation is "ingested",
the algorithm finds from the data structure the "interesting" points of the CDF to
be learned, which are called centroids, and an accumulated weight that represents
the number of samples contributing to the cluster. Once the t-digest that represents
the complete data set is obtained, the endpoints (or boundaries) can be estimated
for each cluster and the accurate quantile is estimated by interpolating between
the endpoints of each cluster.

Table 4.49: Prediction intervals and computation times obtained for the model
DMDc in MISO structure

TSSCV BCV
∆V S85C ∆V S60C ∆V S85C ∆V S60C

B = 10000 [-0.0073 , 0.0070] [-0.0063 , 0.0059] [-0.0114 , 0.0111] [-0.0088 , 0.0087]
TimeB10000 (min) 124.77 117.69
B = 1000 [-0.0073 , 0.0069] [-0.0064 , 0.0059] [-0.0113 , 0.0111] [-0.0089 , 0.0088]
TimeB1000 (min) 12.47 12.78
B = 500 [-0.0073 , 0.0070] [-0.002 , 0.0058] [-0.0113 , 0.0111] [-0.0090 , 0.0091]
TimeB500 (min) 7.00 6.81
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Table 4.50: Prediction intervals and computation times obtained for the model
DMDc in MIMO structure

TSSCV BCV
∆V S85C ∆V S60C ∆V S85C ∆V S60C

B = 10000 [-0.0075 , 0.0070] [-0.0062 , 0.0058] [-0.0105 , 0.0094] [-0.0079 , 0.0084]
TimeB10000 (min) 83.41 73.55
B = 1000 [-0.0076 , 0.0070] [-0.0062 , 0.0058] [-0.0105 , 0.0095] [-0.0078 , 0.0084]
TimeB1000 (min) 8.82 7.82
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Figure 4.45: Portion of voltage variation predictions 1 step ahead and prediction
intervals using selected regressors in MISO structure

To produce the residuals for both methods, the complete dataset of 1000 days
were considered in as reference to be used. As illustration, results on phase C
are summarised in Tables 4.49 and 4.50. A representative portion of data results
are presented in Figures 4.45 and 4.46. This prediction interval is done for DMDc
model. Nevertheless, same approach can be applied for each of the models.

These results show that the actual values remain within the boundaries defined
in the prediction intervals for each structure. The margin obtained from BCV is
wider than the one obtained from TSSCV, and both results remain within the
95% confidence level (meaning that at least 95% of cases are inside the boundaries
even when there are some spikes outside of the intervals on a few occasions). The
computational time for BCV is slightly lower than TSSCV. Both methods showed
similar results in the obtained prediction intervals. As indicated in Tables 4.49



Chapter 4. Time-series modelling application in distribution systems 245

1.3 1.4 1.5 1.6 1.7 1.8

·104

−2

0

2
·10−2

Time (minutes)

V
ol
ta
g
e
(p
u
)

DMDc PI-TSSCV (95%) PI-BCV (95%) Reference

(a) ∆V S85C

1.3 1.4 1.5 1.6 1.7 1.8

·104

−2

0

2
·10−2

Time (minutes)

V
ol
ta
g
e
(p
u
)

DMDc PI-TSSCV (95%) PI-BCV (95%) Reference

(b) ∆V S60C

Figure 4.46: Portion of voltage variation predictions 1 step ahead and prediction
intervals using selected regressors in MIMO structure

and 4.50, for the MISO case, the maximum iteration in which the response re-
mains within the prediction time corresponds to the case of B = 500 repetitions,
while it is about B = 1000 repetitions for the MIMO case. This is because the MISO
case represents a model for each predicted voltage, which requires running repeti-
tions for each one. These methods rely on the number of repetitions to guarantee
the quality of the unpredicted response, but there is always a balance between
the computational time (here limited in the prediction horizon) and the number
of repetitions. Nevertheless, the prediction intervals for both TSSCV and BCV are
similar for the lowest number of repetitions in each method to the reference cases
of B = 10000 repetitions. In both figures, it is shown that the prediction interval is
wide enough to encompass most of the predictions. Ideally, this interval should
be small in order to prove that the obtained values from the model are highly
accurate. However, the approach starts from the fact that there are only measure-
ments available. If the regression is not fully able to capture all the details from
the predicted values, it would result in a reduction of accuracy, which is translated
into a broad prediction interval. One solution for this would be a mix of a known
representation or more detailed knowledge from the distribution system that can
complement the obtained information from the data-driven model. That should
be translated to a reduced bandwidth in the prediction interval.
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4.8 Discussion

The results obtained demonstrate that data can be effectively used to describe
spatial-temporal perturbations in the distribution system. The use of MP, MQ,
and the covariance can define relevant characteristics of the system, such as the
size of perturbation and the distance and impacted nodes. By defining a covari-
ance threshold, only closer nodes to the perturbation are considered, reducing the
complexity of the model. Additionally, voltage magnitude analysis provides valu-
able information due to the unbalanced electromagnetic compensation in all three
phases. These components can be potentially used as the input vector u and the
measured voltage from selected nodes as the output vector y in the construction
of control models.

The proposed methodology demonstrates that the analysis of measurable data
is beneficial in constructing a good state-space model in a data-driven approach.
The flexibility of this methodology allows for the use of different regression ap-
proaches and model structures. Among the linear autoregressive models, ARX
models consistently showed one of the best performances in different stages and
structures, while ARMAX models also produced satisfactory results. However,
both methods lack a unique way to convert the model from the classical repres-
entation to the space-state representation, which can impact the dimensions of the
model and computational time, especially for large and complex systems. The
performance improved significantly after the reduction and simplification of se-
lected regressors. The Koopman-operator-based method presented in this thesis
(DMDc) also consistently showed similar performance to ARX, but the repres-
entation of the reduced-order model is always consistent, and the dimension of
obtained models and computational time were considerably reduced. This is an
advantage when a simple quick response is required to be computed. An exten-
ded revision of the size of the model is required to evaluate if the minimum size
selected (number of outputs) can capture the relevant quasi-dynamics in different
environments with different levels of observability. Classical subspace identific-
ation methods, such as OKID-ERA, sometimes produced better performances in
some of the responses than the previously mentioned methods, but in most cases,
the obtained responses did not match the reference predicted signal. The main
problem with this approach is the tuning process of parameters in the algorithm
to produce the model (especially when setting the "synthetic" Hankel matrix),
which makes the approach difficult to be used in automation applications based
on standard procedures. Additionally, computational times were not better than
any of the previously obtained methods. Finally, the non-linear regression used
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(NARX) showed that it can considerably fit the predicted curve in most cases
and structures, but computational time is long, and it is impossible to describe
anything about the internal dynamics of the obtained model. This can limit the
analysis of the obtained outputs. For all the discussed models, the MISO approach
showed better prediction than the MIMO case, but the trade-off is the individual
analysis of each input, resulting in the production of individual models. This may
increase the complexity in calculation and control approaches. Nevertheless, com-
parable results were obtained for both MISO and MIMO approaches. The selection
of each method will depend on the chosen strategy in the control approach to be
implemented.

Figures 4.45 and 4.46 also provide valuable insights into the obtained results
using the proposed method. For the selected regressors, it is currently not possible
to predict a big swing of power-voltage change, which is reflected in the moment
when the model is not able to follow the substantial change in voltage from the
reference case (which is evident as the horizon is only for one step ahead). Nev-
ertheless, under the previous assumption of constant variance (failed in the test
but observed graphically) after analyzing residuals, it is shown that even these
extreme cases still fall within the prediction interval boundaries. As mentioned
before, one possible solution to this issue is to explore other potential regressors
that can help detect these quicker quasi-dynamics that are not currently captured
in this approach.

Other possible and compatible solution would be the integration of another
model that helps to explain some of the quasi-dynamics to be modelled and pre-
dicted. The proposed approach starts from the assumption that there no previous
knowledge from the system that helps on predict the voltage behaviour, and there-
fore, only relies on available measurement. It was explored the use of different re-
gressors to explain a possible linear representation of the variables and obtained a
reduced-order model that is suitable for control. This does not make the approach
incompatible with any other methods that relies on previous knowledge/models
of the system. This would change slightly the structure of the model, but it will re-
quire for the algorithm to reduce the complexity of relating control and exogenous
inputs and will be more focused to improve the response.

The cases presented in this thesis were critical cases, and consequently, they
were the most representative to produce models. The most critical component
to be aware of is the assumption in the obtained residuals. Residuals were not
fulfilling initial assumptions, but according to the results, models are still good
for short-term predictions, which is enough of a control horizon in a system with
stochasticity in measurable regressors. The inclusion of exogenous variables gives
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a spatial-temporal insight of the system, which is helpful to understand the voltage
dynamic to be predicted (and controlled).

Since models are obtained in state-space representation, there are good applic-
ations that can be implemented to produce a linear control approach. Addition-
ally, these linear state-space representation can be integrated with Kalman filtering
approaches that can increase the performance of the prediction by filtering and
smoothing the responses. For this, it would be required to explore more carefully
the assumption of independent and identically distributed random variables, and
normality in the inputs. An alternative could be the integration of EKF and UKF,
which consider a non-optimised linear model and non-Gaussian variables.

Future work suggested after this research includes the integration of different
exogenous variables that helps on improving the explanation of the obtained linear
model (and the assumption in the residuals). Additionally, the proof-of-concept
for the implementation of this approach in a control strategy that catch relevant
quasi-dynamics in the voltage control problem is suggested to be the next step
and validate its effectiveness in a real-time model application.

4.9 Conclusions

In this chapter, the application of the proposed metrics to obtain a data-driven
time-series modeling approach is introduced. Section 4.2 presents general con-
siderations of the reference system that will be used to explore the proposed ap-
proach. Once the scenario to be explored is detailed, Section 4.3 presents a revision
of stationarity conditions in the time-series measured data, which is a condition to
apply time-series linear regressions. The proposed methodology is finally intro-
duced in Section 4.4, which becomes one of the main contributions of this work.
This is summarized in an algorithm that reviews the current condition of the dis-
tribution system using available measurements and builds a linear model. This
is applied to an unbalanced distribution system, producing a model that helps
predict voltage in each of the phases or available measured nodes of the system.
Results over each stage are presented for each measured node/phase.

A first revision of data is introduced in Section 4.4.1, also attempting an initial
regression model and a revision of initial assumptions to check if the regression
model can explain statistically the voltage quasi-dynamics. Different data-driven
modeling approaches were compared for voltage quasi-dynamics in distribution
networks. Then, Section 4.4.2 is one of the key steps in the proposed methodo-
logy, as it involves a revision of the dataset to improve the results obtained after
the first guess. Therefore, it is required to develop a data selection based on crit-
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ical scenarios that can characterize the quasi-dynamics to be modeled. Addition-
ally, an analysis of collinearity and distribution shape of regressors is performed,
and an analysis of cross-validation and Granger-causality is applied to contrast
the response analysis of static and time-variant data, defining relevant lags and
reducing the regressors to only selected variables that improve the performance
of linear regression. The next step is presented in Section 4.4.3, where the pro-
posed data-driven technique can reduce model complexity by system clustering
and then being integrated with MISO/MIMO regression methods for the defini-
tion of control models. Different model regression techniques were presented and
discussed for this specific problem, which showed promising results for the ap-
proach based on the Koopman operator (DMDc). The obtained linear data-driven
representation is helpful to produce state-space linear representation, compatible
with model predictive control applications. The initial assumptions were checked
again in Section 4.4.4, showing an important improvement compared to the refer-
ence initial case. Nevertheless, the initial assumptions were not finally fulfilled in
the statistical tests, even if the predicted values were close to the expected values
in the training and validation. The previous models were validated using the ori-
ginal data with 1-minute resolution in Section 4.5, and the results showed that the
capability of prediction is not highly reduced, considering the difference of gran-
ularity in the data measurements. In Section 4.6, it was explored if the obtained
models were capable of giving a good voltage prediction beyond one step ahead,
even if the previous results showed that it is not possible to conclude anything
about their capability of predicting. It is shown that the responses still provide
reasonable results after 2-3 steps ahead. The last part of the proposed method-
ology is explained in Section 4.7, in which an integration of prediction interval
based on bootstrapping and cross-validation techniques was explored. This can
complement the previous results, and even if the initial assumptions were not ful-
filled, it is possible to justify statistically that the results showed validity for the
obtained models. The fact that the prediction values remain within the prediction
intervals makes the model suitable for short-term prediction.
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Conclusion and Future Work

Data-driven methods aimed at enhancing the integration of renewable energy
sources are now recognised as integral components of smart grid applications.
These methods offer significant opportunities for electric networks to achieve more
efficient and reliable distribution system planning and operation. Voltage control
emerges as a crucial function required to upgrade distribution systems into smart
grids. The objective is to integrate customers and renewable energy sources by em-
ploying a model that aligns with the current situation, without being constrained
by generic assumptions of fixed power profiles or network models. In this thesis,
novel metrics based on measured data are not only tested but also proposed to
characterise the system. These metrics are considered as variables that evolve in
space-time, allowing for a comprehensive description of the distribution system
without the need for in-depth knowledge of network topology or conventional
electrical parameters. Instead, a representation of quasi-dynamics is introduced,
integrating the electric system with customer and weather behaviours, while re-
taining an electric interpretation of the metrics. Moreover, time-series analysis has
proven to be an effective tool for modelling (and, it is anticipated after this thesis,
for control) based solely on measurable data. This approach aids in describing the
current state of the distribution system. Various regression techniques, including
autoregressive components and Koopman operators, have been tested to invest-
igate how selected regressors and lags can explain the system under study. The
outcome is a reduced-order linear model that captures relevant dynamics, which
will prove valuable in the voltage control approach. Statistical analysis has been
conducted on the obtained results to comprehend the models and their capabilit-
ies, as well as to identify avenues for future research to enhance their performance.
This chapter provides a concise overview of the work conducted in this thesis,
highlighting the main contributions and discussing potential directions for future
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investigations.

5.1 Conclusions and contributions

The main objective of this thesis was to develop an approach for analysing meas-
urable data and generating reduced-order linear models that capture the relev-
ant quasi-dynamics of voltage in distribution systems. This approach takes into
account the time-series behaviour of customers and the high penetration of re-
newable energy sources, with the potential to be integrated with a control ap-
proach like MPC. The proposed approach considers operational constraints and
uncertainties, such as location, rated power, and variability. The key difference
between conventional approaches and the approach adopted in this thesis is the
utilisation of measurable data to construct models in a purely data-driven manner.
The metrics developed in this thesis are based on the concept of electric distance
and perturbation size, providing information on the location and impact within
the distribution system. These metrics can be easily integrated into a statistical-
based approach, offering a robust representation of the system and establishing
a baseline for comparison and improvement through time-series analysis of the
obtained regressors (measurable data). Although the results were not fully ex-
plained from a statistical perspective (meaning that the initial assumptions for
linear regression were not entirely met), the integration of the proposed metrics
demonstrated a significant improvement over initial conditions. The predicted
values remained within the obtained prediction interval, which is satisfactory for
short-term control approaches. The main contributions put forward in this thesis
are now listed.

• Chapter 2 primarily focused on conducting a comprehensive review of the
state-of-the-art literature to identify the most suitable approach within the
research area for developing a model based solely on measurable data. In
this chapter, a thorough understanding of the voltage control problem in
the context of high-level integration of renewable energy was developed.
The fundamentals and traditional assumptions were revisited, leading to the
realisation that the problem addressed in this thesis is significantly differ-
ent from critical points on the conventional power-voltage curve. Instead,
the problem can be effectively approximated using a linear representation
without compromising precision or understanding of the actual operational
conditions. Based on this understanding, the voltage control objective for
a potential control approach was introduced, which aims to maximise the
integration of renewable energy into the distribution system while adhering
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to voltage restrictions. To achieve this objective, it is crucial to have a reli-
able model that accurately represents the current status of the distribution
system. This model can then be integrated into a control approach such as
MPC to effectively manage disturbances and exogenous variables that im-
pact voltage operation. The challenges of modelling time-series data and
ensuring observability and controllability in distribution systems were dis-
cussed. Distribution systems are only partially observable and have limited
controllability, presenting a challenge when developing real-time models.
Furthermore, these models should account for the quasi-dynamics associ-
ated with electric parameters, such as system topology and rated powers
for generation and consumption, as well as uncertainties related to exo-
genous variables, weather conditions, and spatial location of components.
To address these challenges, it is necessary to develop new metrics that
not only represent the traditional electric parameters but also provide in-
sights into the actual status of the network based solely on measurable data.
These metrics should capture the dynamics of the distribution system and
enable a comprehensive understanding of its behaviour. Lastly, various data-
driven modelling approaches were reviewed, highlighting their applications
in voltage control for both conventional and future distribution grids. These
approaches offer valuable insights and methodologies for developing effect-
ive control strategies based on measurable data, further emphasising the
importance of data-driven modelling in addressing the challenges of voltage
control in modern distribution systems.

• Chapter 3 focuses on identifying metrics and time-series measurements that
aid in describing key features of distribution systems. The chapter begins
by investigating the utilisation of measurement data to gain insights into the
controllability and observability aspects of voltage in distribution systems.
Specifically, it examines information related to nodes that are most affected
by power injections or perturbations, as well as an electric distance metric
that provides spatial information about voltage variations. A data-driven
approach is proposed to enhance the analysis of time-series measured data
by characterising relevant inputs and outputs for the modelling process. The
chapter explores significant information derived from power fluctuations,
voltage covariance, and correlation to improve the understanding of distri-
bution system behaviour. The main contributions of this chapter include
the development of two novel metrics, namely MP and MQ, which serve as
alternatives for identifying and quantifying voltage perturbations based on
nodal voltage and injected line power measurements. Additionally, a nor-
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malised and averaged covariance matrix of nodal voltages is proposed as
a valuable proxy measure for electrical distance, allowing for the classifica-
tion of node perturbations based on their spatial distance from the source of
perturbations. These metrics are evaluated using various types of power/-
voltage fluctuations, demonstrating their effectiveness in capturing relevant
information from the available data and describing the distribution system.
The metrics employed in this study successfully captured the characteristics
of the distribution system under various conditions, including the presence
of different devices such as capacitor banks and OLTCs. Additionally, the
metrics were able to detect whether the system was configured in a radial or
meshed topology. This indicates the effectiveness of the metrics in describing
and distinguishing different system configurations and the impact of various
control elements. Such insights are valuable for understanding the behaviour
and performance of the distribution system under different operating condi-
tions. The proposed data-driven approach shows promise in reducing model
complexity by providing a criterion for node system clustering, while also
capturing the voltage quasi-dynamics. Overall, this chapter provides a refer-
ence for characterising key parameters necessary for constructing time-series
models without sacrificing the interpretability of the underlying distribution
system. Certain portions of this contribution have been published in a con-
ference paper, and a submission to a journal is currently under review (see
Appendices A, B, C).

• Chapter 4 of this thesis compares different data-driven modelling approaches
to assess their effectiveness in capturing voltage quasi-dynamics in distribu-
tion networks. The goal is to generate reduced-order models that are suitable
for control applications. The proposed data-driven technique aims to reduce
model complexity by establishing a criterion for system clustering and integ-
rating it with MISO/MIMO regression methods. Initially, a review of critical
days was conducted to characterise the distribution system under standard
conditions. The response analysis of static and time-variant responses was
then contrasted for the proposed regressors to determine relevant lags. This
involved utilising cross-correlation analysis and Granger-causality analysis.
A significant original contribution of this chapter is the introduction of an al-
gorithm that assesses the current condition of the distribution system using
available measurements and builds a data-based linear model. One key dis-
tinction between this thesis and others in the state-of-the-art is the approach
to capturing quasi-dynamics. While traditional system identification tech-
niques consider stochastic inputs as exogenous variables, this thesis treats
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them as part of the system with their own quasi-dynamics to be identified.
This methodology is compatible with various time-series linear regression
approaches, including autoregressive models such as ARX, ARMAX, those
based on the principle of Koopman operators or Subspace identification
methods. Among these approaches, ARX and DMDc demonstrate the best
performances, particularly in producing a state-space linear representation.
OKID-ERA was occasionally produce better results, but not consistently and
after an exhaustive exploring in the tuning process. Although the results did
not fully meet the initial assumptions, the short-term predictions remained
within the prediction intervals, which statistically support their acceptance
for modelling and control purposes. The corresponding validation of results
showed a consistency in the obtained responses, and the models are able to
produce three-phases responses for distribution system with unbalance con-
ditions. Certain portions of the contributions presented in this chapter are
planned to be submitted for publication in a journal (see Appendix D).

In conclusion, this thesis demonstrates the potential application of time-series
data-driven modelling for capturing the quasi-dynamics of a system. The ap-
proach integrates the stochastic behaviour of variables used as regressors, making
it suitable for plug-and-play real-time applications. The use of measurable data
enables insights into the distribution system without relying on prior knowledge
of traditional electric system parameters. This representation, based on metrics,
allows the model to be adapted over time according to the current system con-
ditions. The obtained results are reinforced by statistical analysis, which helps
assess the regressors’ capabilities in describing the distribution system.

5.2 Final discussion and future research directions

The results obtained in this thesis demonstrate the effectiveness of the proposed
metrics and methodology in describing distribution systems under the influence
of different devices, controllers, and topological configurations. However, it is im-
portant to note that the impact of measurement noise was not considered in this
study, and its inclusion could significantly affect the performance of the results.
Furthermore, it should be acknowledged that the availability of comprehensive
measurement data, as utilised in this research, may not be readily accessible in
practical scenarios. Therefore, it would be necessary to complement this meth-
odology with an analysis to determine the minimum required measurements or
key measurement points needed to construct a model that captures the essential
quasi-dynamics of the system.
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The modelling approach primarily focused on voltage variations and did not
encompass other variables such as frequency variations or line loadability. How-
ever, it is expected that the approach would not be significantly impacted by the
inclusion of these variables. Additionally, constraints such as unbalance limits
or component loading were not specifically discussed or evaluated in this study.
It would be interesting to investigate the metrics and modelling approach under
these constraints to assess their impact and effectiveness in capturing the system
behaviour.

In view of the results presented in this thesis, there exists several avenues for
possible future work in useful technical directions:

• The results presented in Chapter 3 were obtained using synthetic data gener-
ated from simulations, which provided access to nodal and line data for com-
parisons and understanding the behaviour of the proposed metrics. How-
ever, it is worth noting that the proposed metrics do not require full access
to nodal voltages for calculation. An important question to be addressed in
future research is what information the proposed metrics can provide about
the state or behaviour of unobserved parts of the network when measure-
ments are incomplete. This is particularly relevant in the case of a partially
observable network with real stochastic behaviour. Future work will focus
on identifying the key variables for observation and control, incorporating
them into a data-driven model, and utilising them for voltage control. Ad-
ditionally, exploring different locations for key measurements to ensure that
relevant quasi-dynamics are captured in a partially observable system will
be investigated. A methodology based on measurable data, such as electric
distance or similar parameters, can be developed to determine the optimal
position of these measurements. While this thesis has a strong practical fo-
cus, there are also works that employ a more system-theoretical background.
The research conducted by Professor Van den Hof’s group on the identifica-
tion and identifiability of networked systems, as highlighted in papers such
as [298–300], is highly relevant to the problem considered in this thesis. In-
corporating their developments can provide a system-theoretic foundation
to support the proposed metrics and methodology.

• In Chapter 4, a pure data-driven model was obtained to represent the dis-
tribution system without any previous knowledge of electric characteristic.
This was done to assess the capabilities of the methodology in extreme scen-
arios. However, there is also possible to access to other historical/measured
data that has been carefully updated for the owner of the model. This meth-
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odology could be integrated with previous knowledge of the system to im-
prove the performance of predictions by reducing the amount of information
to be explained from regressors. A hybrid data-driven/model approach can
be explored and compared with the one obtained in this methodology. Also,
the integration of different exogenous variables that helps on improving the
explanation of the obtained linear model is a future work (that means, re-
vising other variables that helps on guarantee the initial assumptions in the
residuals of the obtained model to be linear). Additionally, the purpose of
this thesis was to obtain a linear model that can be used develop (ideally)
linear control. That means, it would be ideal to have inputs and residuals
that follows the assumptions for linear models. Since models are obtained in
state-space representation, they can be integrated with Kalman filtering and
smoothing approaches. For this, it would be required to explore the integ-
ration of EKF and UKF, which consider a non-optimised linear model and
non-Gaussian variables. Finally, it is proposed to develop a proof-of-concept
for the implementation of this modelling approach in a control strategy (such
as MPC) and validate its effectiveness in a real-time model application.
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