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Abstract

This thesis is concerned with the study of endomorphism monoids of certain algebras.
We first describe the semigroup structure of a family of subsemigroups of the
endomorphism monoid of an independence algebra & . Each of these subsemigroups is
associated with a subalgebra 9B of o and is called the subsemigroup of endomorphisms
with restricted range in 9B. Denoted by T(d,B), it consists of all endomorphisms
of I whose image lies in %B. We show in particular that such semigroups are not
regular in general and that they present significant differences in their structure from
that of End(d).

In a similar fashion, we investigate the semigroup structure of End(7,), the
endomorphism monoid of the full transformation monoid of a finite set with n
elements. We describe the ideals of End(7,,) and show that, in particular, 7, and
End(7,) are not respectively embeddable into each other (except in the degenerate
case of n = 1).

We then move on to the study of translational hulls of ideals of the endomorphism
monoid of algebras. We start with the case of an independence algebra o, where
we discuss the translational hull ©(J) of the (0-)minimal ideal J of End(d). We
give conditions under which Q(J) and End(¢) are isomorphic and we construct a
canonical isomorphism where possible. A more general approach of translational hulls
in the case where o is an arbitrary algebra is then presented, where we prove that
any ideal J of End(df) satisfying some representability and separability conditions
on g will be such that its translational hull is isomorphic to End(«). Finally, we
close this thesis by computing the translational hulls of some of the ideals of End(d),

where o will stand either for a free algebra, an independence algebra, or 7,.
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A York semigroupist tradition

C’est un coin de tableau ou chantent des formules
Accrochant follement aux habits des débris
De craies; ou des notions, d’un cerveau somnambule,

Naissent : c’est un petit trou qui de maths est épris.

Un éleve jeune, bouche ouverte, téte nue,
Et le crane baignant dans une pluie d’idées,
Pense ; il se tient debout, en cet endroit reclu,

Considérant ces fonctions, qu’il veut étudier.

Les méninges emballées, il pense. Souriant comme
Sourirait un enfant béat, la il raisonne :

Nature, berce-le savamment : qu’il s’émeuve.

Les problemes présents ne sont que passagers ;
1l pense a son travail, la logique aux aguets,

Fébrile. Il a deux erreurs dans cette preuve.

Le mathématicien du bureau®

! Adaptation de Le dormeur du val d’Arthur Rimbaud



Introduction

For any mathematical object M, the endomorphism monoid of M as well as its group
of units, the automorphism group, are key to understanding the structure of M. A
well-known result of G. Birkhoff [5] for groups, later extended to monoids, tells us
that every group is isomorphic to the automorphism group of some unary algebra;
analogously, every monoid is isomorphic to the endomorphism monoid of some unary
algebra. Here the term algebra is understood in the sense of universal algebra, or
abstract algebra as introduced in the early 20" century (see the introduction of the
book by McKenzie, McNulty and Taylor [34] for a historical perspective of its origin).
In this thesis, we study the endomorphism monoid of certain algebras through the
lenses of restrictions and extensions. These are to be taken in the sense of the study
of subsets of the endomorphism monoid having nice structural properties and we will
see how these can generate the endomorphism monoid via fairly natural constructions

that will be explained below.

A specific class of algebras that will be of particular interest in the coming work
is that of independence algebras. These were introduced by V. Gould [22] in order
to account for the similarities encountered in the structure of the endomorphism
monoid of a vector space when compared to that of the full transformation monoid
of a non-empty set. Independence algebras have been fully classified (see [2, 6, 54])
and include sets and vector spaces, as well as free group acts, affine algebras or
quasifield algebras. The structure of the endomorphism monoid of an independence
algebra has been widely studied, for example by looking at its ideals and Green’s
relations [22], its idempotent generated part [17, 18] or its automorphism groups and

normal subgroups [1]. We take here several different directions.

First, we study the family of subsemigroups of the endomorphism monoid which
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arise from restricting the set of endomorphisms to those whose image lies in a
specific subalgebra. More precisely, given an independence algebra o, denote its
endomorphism monoid by End(d). For each subalgebra 9B of o, we can define the
semigroup of endomorphisms with restricted range in 9RB, denoted by T'(A,RB), as
the subsemigroup which only contains endomorphisms of & whose image lie inside
the subalgebra 98, that is,

T(A,B)={a € End(d) | ima C B}.

Even though these semigroups inherit some structural properties from that of End(sf),
they are very different in many ways and their study will be the object of Chapters II
and III. To start with, a semigroup of the form 7'(d,9B) is not a monoid unless
we are in one of the extreme cases where @B is the whole of & or a singleton, nor
is it a regular semigroup. This leads us not only to study Green’s relations and
the ideal structure of these semigroups, but also the generalised versions of these

notions through the so-called extended Green’s relations and the x- and ~-ideals of

T(sA,B).

Another direction of research is to describe when some subset of End(s) contains
enough information to reconstruct the endomorphism monoid exactly. In order to
make this precise, we investigate the notion of translational hulls of a semigroup.
Given an endomorphism a € End(d), we can define natural actions on ideals
J C End(d) by multiplying elements of J by « either on the left or on the right.
Such actions are called the left and right translations induced by o on J. However, it
might happen that not all left [resp. right] actions on J come from the multiplication
by an endomorphism in End(&). Thus we will define the translational hull of J,
denoted by Q(7J), as the set of all pairs of left and right actions which satisfy some
compatibility conditions. The question is now whether the translational hull of J
only consists of translations induced by elements of End(&). One of the objects of
this thesis is therefore to decide if this holds when J is the ideal consisting of all
endomorphisms whose image lie in a monogenic subalgebra of ¢, which correspond
in our case to the set of maps that have rank at most one. We will show in Chapter V
that this holds for independence algebras with the exception of a few special cases,

and will give conditions to describe when this happens.

In fact, such an approach is not particular to independence algebras, and in

Chapter VI we will generalise this study to more abstract algebras. In other words,
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given an algebra o and an ideal J C End(d), we will provide sufficient conditions
under which the translational hull of J will be isomorphic to the endomorphism
monoid End(¢). In order to illustrate the discussions surrounding these conditions,
we will give examples in Chapter VII where the general theory can be applied, as
well as instances where the actual computation of translational hulls of ideals of
End(d) can be hard to achieve. The latter happens in a prominent fashion when
considering the full transformation monoid 7, on a finite set as our algebra 9. Since
the description of the structure of End(7,) has not been presented before, we will

spend time to do so in Chapter IV.

A FOREWORD CONCERNING THE ORDER OF THE CHAPTERS:

The content presented in this thesis does not consist of a sequence of results which
needs to be read in a linear order. Far from it, the reader is advised to choose and
pick the order in which they will read the coming chapters, after taking into account
the following note.

Not counting the preliminary chapter (which place in this thesis will be explained
in its prologue), there are three main groupings of chapters. The first one, consisting
of Chapters IT1& III, stands separately from the two others as the only place where
the semigroup T'(,9B) is considered. The second grouping, which only includes
Chapter IV with its description of End(7,), sits on its own. Even though Chapters V—
VII can be grouped together since they all deal with translational hulls of ideals,
they can be further separated. Indeed, the ideas and techniques used in Chapter V
are very different from those of Chapter VI, and the classes of algebras examined
are also distinct. This makes the reading of these two chapters mostly independent
from each other. The only chapter for which the reader will need to have read other
parts of this thesis is Chapter VII where ideas discussed in Chapter VI are adapted
to the content of Chapters IV & V.

Thus, after reading the opening of Chapter I, we encourage the reader to cherry-
pick the chapter(s) they want to read based on their urge to learn about a specific
topic, their mood, the time they have at hand, or even the simple roll of a die or
some random thought that would cross their mind at the moment they would lay
their hand on this thesis.

Happy reading!



N

Preliminaries

Throughout this thesis, we will assume that the reader is confident with classical
semigroup theory concepts such as congruences, semigroup homomorphisms and
Green’s relations. If in the coming chapters, the reader needs to refresh their
knowledge about a notion that is not defined in the present chapter, then they
are advised to consult the excellent introductory books of Howie [28], Clifford and
Preston [8, 9] or Higgins [27]. Additionally, the reader is expected to know the basic
notions of universal algebras defined as pairs (A, F') where A is the universe of the
algebra and F' its set of fundamental operations. This includes understanding the
definitions and properties of homomorphisms, terms and the subalgebra operator. A
good reference in this domain is the book from McKenzie, McNulty and Taylor [34].

In this chapter we will give an introduction to the lesser-known notions used in
this thesis. In particular, on the topic of general semigroup theory, Section 1.2 will
describe a generalisation of the notion of semigroup action through the concept of
translational hulls and give the connection between this notion and that of ideal
extensions. Section 1.3 will present extended Green’s relations, a set of equivalence
relations used to study the structure of non-regular semigroups. Following this,
a very important class of universal algebras called independence algebras, which
generalises the concept of sets and vector spaces, will be introduced in Section 1.4.
Since the main object of this thesis concerns endomorphism monoids, we shall close
this chapter by giving properties of the endomorphism monoid of an independence
algebra in Section 1.5.

Apart from a few results, we have taken the decision to include proofs of the
statements in this chapter, in order to be as complete as possible and to help the

reader see how one can play with the definitions and some arguments in a general

4
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context before meeting them again at a later point in the thesis. This means in
particular that it makes this introductory chapter fairly long. Nevertheless, there
is no need to read it all in one go since the different concepts presented here will
be used in different places throughout the thesis. Indeed, Section 1.2 is only needed
from Chapter V onwards even though it is introduced first here. Chapters II, III
and V will need the background on independence algebras of Sections I.4 and I.5.
Finally, Section 1.3 will only be necessary to read Chapters III and IV. For this
reason, the reader is advised to first choose which grouping of chapters they want to
read (II-III, IV or V-VII) before coming here to read only the relevant sections.
In order to facilitate the reading of this thesis, we start with some general

notation.

[.L1 NOTATION

Since this preliminary chapter does not introduce the standard semigroup and
universal algebraic background, it is necessary to describe the basic notation and
conventions that will be used throughout this thesis. Hopefully, we have managed to
conciliate the conciseness of the writing with the clarity of the statements, meaning
that a simple glance over a formula should easily convey most of the information
without being cluttered by too many brackets, parentheses or multiple indices.

In order to facilitate this, a general rule is that elements of a semigroup or an
algebra will use Roman letters, while maps will use Greek letters. However, since we
will consider functions on endomorphism monoids, we will often have to deal with
three different levels of domain and we will distinguish them (as much as the finitary

aspect of our alphabets allows) as follows:
o the “bottom” level, consisting of elements from a semigroup or an algebra, will

be denoted by Roman letters;

o the “middle” level, consisting of endomorphisms on our semigroup or algebra,
will take the first part of the Greek alphabet; and

o the “top” level, consisting of maps acting on the endomorphisms, will be

relegated to use the second part of the Greek alphabet.

Following this general guidance and mindset, we now give the appropriate notation

that will be used without further mention in the following chapters, first by considering
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general notation, and then that which is specific to the two main areas of algebra

involved in the coming work: semigroups and universal algebras.

I.1.1 GENERAL NOTATION

Indexing sets. When it is clear from the context, the set {z; | i € I} will be ab-
breviated as {x;} without necessarily specifying its index set. If such an abbreviation
is used and we need to refer to the indexing set after the definition of this set, we
will render it as the capital letter corresponding to the index used. For example,
the indexing set of {y;} is denoted by J. Moreover, an indexing set will usually be
non-empty and its size not necessarily finite. Whether each of these possibilities can
happen in the given situation will be explicitly mentioned when it cannot be clearly
deduced from the context. For example, one cannot have an infinite indexing set
when picking distinct elements of a finite set, and if we know that the chosen set
of elements is non-empty, then its indexing set is also non-empty. Without loss of
generality, a non-empty set of cardinality at least £ € N will be assumed to contain
elements 1,2,..., k, so that if {y;} is non-empty and contains at least 3 elements,

we can talk about v, y» and y3 without ambiguity.

Set operations. Given two sets A and B, we usually denote their union by AU B.
However, if we want to give the additional information that A and B are disjoint
sets, then we will write their (disjoint) union as A Ll B. By writing B C A, we say
that B is a subset of A, and to further indicate that this is a proper subset we will
use B C A.

Maps and composition. Following the standard convention in semigroup theory,
maps will be right maps, that is, written to the right of their operand. For example,
if ¢ is a map that sends x to y, we write ¢ = y. In the context of translational
hulls, we will allow some specific maps to be written on the left in order to facilitate
some later notation and computations and we will call them left maps. For such
maps, saying that the image of x under A is y will be written as Az = y.
Well-defined compositions of two right [respectively left] maps will not require
extra parentheses (e.g. we can write zaf in place of (z«a)f), whereas they might be
required when both a left and a right map are involved in an expression (e.g. for a

left map A and a right map p, A(xp) might be different from (Az)p).
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Unless specified otherwise, the identity map will usually be denoted by id, or id 4

when we need to explicit the underlying set A.

Two-row writing of maps. Let S be a set with disjoint subsets {z;} and {y;}
Li Yj
a; bj
S (with image in some set A) such that z;a = a; for all ¢ € I and y;o = b; for all

j € J. Notice that this does not mean that the sets {a;} and {b;} are disjoint.

such that S = {z;} U {y;}. By writing o = ) we mean that « is a map on

Image, kernel and endomorphisms. Let S and T be two semigroups, or two
algebras and a: S — 1. Then the image of « is written ima = Sa C T and the
kernel relation of « is keraw = {(s,t) € S x S | sa = ta}.

The monoid of endomorphisms of S is denoted by End(.S), and the automorphism
group by Aut(S). If v is an isomorphism, then we write S = T

1.1.2 ON SEMIGROUPS

Thanks to the associativity property of semigroups we will drop all unnecessary

parentheses.

Transformations. For a set X, we will denote by Tx its full transformation
monoid, by PTx its monoid of partial transformations, and by Iy its symmetric
inverse monoid. In the case where X = {1,...,n}, these will be written as 7,, PT,
and Z, respectively.

If we want to consider left maps instead, we will add the symbol ‘op” as exponent
to the above notation, that is, the sets Ty, PTyx" and Z" will correspond to the
monoids of full, partial, and bijective partial transformations of X when written on
the left.

Idempotents. The set of idempotents of a semigroup S is denoted by E(.S), which
will be often shortened to F.

Green’s relations. The Green’s relations, of utmost importance in semigroup
theory, will be denoted by the letters &, R, D,  and . In case there is a need to
distinguish the semigroup in which these are considered, a subscript will be added to
the relation, writing Lg, Rg, Dg, s and Fg to denote that the Green’s relations

are to be considered using elements of S.
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1.1.3 FOR UNIVERSAL ALGEBRAS

Algebras and their universe. Algebras will always be denoted by calligraphic
letters such as o, 9B and 6, while their universe will be denoted by the corresponding
letter in regular font, here A, B and C. By writing that B C o, we mean that 9B
is a subalgebra of <.

Operations and terms. In order to differentiate them from maps on the algebra,
all fundamental operations and terms will be operating on the left. Given an algebra
o, the set of all terms of o will be denoted T, and the subset of k-ary terms by Z,%.
We associate nullary operation with their image in A, which we call constants, while
terms whose image is a singleton (that is, constant terms) will be called algebraic
constants. The unary term corresponding to the projection on its variable, which is
also the identity map, will be denoted by id.

Moreover, to reduce the amount of parentheses needed, we also agree that terms

will have priority over functions during the evaluation of an expression in an algebra,

that is, given t € T as well as elements ay,...,a; € A and a map ¢ on A, we
write t(ay, ..., ag)¢ for the expression (t(ai,...,ax)) ¢. To shorten notation, when
it is clear from context, given ¢, aq, ..., ar and ¢ as before, we will write ¢(a;) for

t(a,...,a;) and t(@) for t(ay@, ..., ard).

Subalgebra operator. The subalgebra operator will be denoted by (- ), and given
an algebra o, and a set X C A, we will abuse notation and will consider (X) both
as a subuniverse and as a subalgebra. Notice that ((}) is non-empty exactly whenever

9 has constants.

Cardinals. A cardinal which is of special interest is the size of the smallest
generating set of a subalgebra, which we will denote by e. In other words, e = 0 if
(0) # O and e = 1 otherwise. The successor of a cardinal £ will be denoted by <™.

Moreover, following usual conventions, we denote by Ny the smallest infinite cardinal.

[.2  TRANSLATIONAL HULLS

One of the most natural approaches in algebra to study a mathematical object, is to

consider the action of this object on itself, or on another compatible object. More
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precisely, given a semigroup S, it is common to look at the action of S on itself by
left or right multiplication by one of its elements. One of the frameworks aiming to
generalise these actions is the notion of translational hull, which is intimately related
to the description of the left and right actions of elements of S.

Specifically, consider a semigroup S and define for each s in S a left map

As: S — S as well as a right map ps: S — S by
At = st and tps = ts,

for all t € S. These maps can easily be seen to satisfy the following properties for
all u,v € S where A = A\, and p = py:

1) AMuv) = (Au)v,

2) (uwv)p = u(vp), and

3) u(Av) = (up)v.
These observations lead to the study of pairs of functions (A, p) where A is a left
map, p is a right map, and 1), 2) and 3) hold. The study of the translational hull of
a semigroup consists exactly in finding all such pairs.

The translational hulls of many classes of semigroups have already been invest-
igated. In some cases, they were shown to share common properties with their
underlying semigroup. In particular, if a semigroup is cancellative [resp. inverse,
adequate, type A, or a semilattice], then the same holds for its translational hull (see
[4, 16, 21, 41, 44]). For some classes it is even possible to give a complete description
of the elements of the translational hull. This is the case for example for completely
0-simple semigroups as shown by Petrich [42]. In this thesis, we will be interested in
translational hulls of ideals of endomorphism monoids of certain universal algebras.

All the results present in this section are folklore and can be found in classical
books on semigroup theory such as Howie [28] or Clifford and Preston [8, 9], but a
more in-depth survey on translational hulls was written by Petrich [41]. Some of the
proofs are located in other places of the literature but can be uncovered in [40, 42,
52, 53].

1.2.1 DEFINITIONS AND PROPERTIES

Throughout this section, S denotes a semigroup.

Definition 1.2.1. Translations of a semigroup S are defined as follows.
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o A right map p: S — S is a right translation of S if

(st)p = s(tp)
for all s,t € S. The set of all right translations of S is denoted by P(S5).
e Dually, a left map A: S — S is a left translation of S if

A(st) = (As)t

for all s,t € S, and we write A(S) for the set of all left translations of S.

o A left translation A and a right translation p on S are said to be linked if for all

s,t € S we have:
s(At) = (sp)t.
In such case, we call the pair (A, p) a linked pair or a bi-translation of S.

o The set of all linked pairs (A, p) of S is a subset of A(S) x P(S) called the
translational hull of S and is denoted by (.5).

Remark 1.2.2. The main reason why we decided to write left translations as left maps
is to make the linking condition easier to write and to work with. In particular,
given s,t € S and (), p) € Q(S), both possible interpretations of the expressions
stp and Ast coincide, while there is a unique interpretation of s\t and spt since A
acts on the left while p acts on the right. We can therefore remove the parentheses
without making the equations ambiguous, and we will often take the choice to do so.
Writing left translations as left maps instead of right maps will also facilitate the

notation of the product of elements in §(.5).

Definition 1.2.3. The natural projections from Q(S) into P(S) and A(S) are the

maps 7, and m, defined by
(A, p)mp = p, and (A, o)y = A, for all (A, p) € Q(S).
The images of 7, and 7, are respectively denoted by P(S) and A(S).

The most straightforward example of translations that are linked comes from the

trivial map on S.

Lemma 1.2.4. The identity mapping 1p: s — s acting on the right of S is a right
translation of S. Dually, the left identity mapping 1, is a left translation of S.

Furthermore, the pair 1o = (15, 1p) s a bi-translation of S.
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Proof. Clearly if s,t € S, then (st)1p, = st = s(t1p) and similarly 1,(st) = (1,s)t
which shows that 1, € P(S) and 1, € A(S). Last, s(1,t) = st = (s1p)t so that the
pair (1,, 1p) is linked. O

Is it clear from the definition of right and left translations that such maps can be
seen as elements of Tg, and the multiplication in P(S) and A(S) is inherited from
that of 7g as follows.

Lemma 1.2.5. The set P(S) is a submonoid of Ts while A(S) is a submonoid of

7}01) with respective identity 1p and 1, under the multiplication given by
s(pp’) = (sp)p" and  (AX)s = A(XN's),

where s € S, p,p' € P(S) and A\, N € A(S).
Additionally, the set Q(S) is also a monoid with identity 1, = (1,, 1p) when
defining the multiplication for (X, p), (N, p') € Q(S) by

(>‘7 p) ()‘/7 pl) = ()‘)‘/a ppl)'

Proof. By definition of the maps 1, 1, and 1, it is clear that these are two-sided
identities for P(S), A(S) and Q(S) respectively. It only remains to show that these
sets are closed under products since the associativity of the product will follow
directly from that of 7g.

Let p,p’ € P(S) and s,t € S. Then we have the following:

s(t(pp')) = s((tp)p’) = (s(tp))p’ = ((st)p)p’ = (st)(pp),

where the second and third equalities comes from the fact that p’ and p are right
translations. The dual holds for left translations and thus P(S) and A(S) are
monoids.

Now let (A, p), (X, p') € Q(S). From the first part, we have that AN € A(S) and
pp’ € P(S), so it remains to show that these form a linked pair. Indeed, using the
fact that A and p are linked, and similarly for A" and p/, for any s,t € S we have
that:

s((AXN)E) = s(A(N'T)) = (sp)(X't) = ((sp)p)t = (s(pp))t,
which shows that A\ and pp’ are linked and thus ©(.S) is a monoid. O

As a direct consequence from the fact that P(S), A(S) and Q(S) are monoids,

we have the following:
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Corollary 1.2.6. The projections m, and m, are monoid homomorphisms and their
images P(S) and A(S) are submonoids of P(S) and A(S) respectively.
We will later be investigating when these maps are one-one, or onto.

Notation 1.2.7. In light of Lemma [.2.5 we will remove any superfluous parentheses
whenever no ambiguity can arise. For example, given (A, p) € Q(S) and elements

s,t,u,v € S we can write st\uv = stpuv since
stA(uv) = s(tAu)v = s(tpu)v = (st)puv,

which means that all meaningful ways to set parentheses give the same answer.

We have seen in the introduction that some left and right translations arise from
the multiplication on the left or on the right by an element of S. Such translations

form a specific class and are important in their own right.
Definition I.2.8. Given s € S, the map ps € P(S) [resp. \s € A(S)] defined by
tps =ts [resp. Ast = st]

for all t € S is called the inner right [resp. left] translation of S induced by s. We
write by Py(S) [resp. Ao(S)] the set of all right [resp. left] inner translations of S.

Additionally, since the maps A, and p, are clearly seen to be linked for each
s €8, we call g5 = (A, ps) the inner bi-translation induced by s. The set of all inner
bi-translations of S is denoted by X(.5).

It is easy to see that Py(S) and Ay(S) are respective subsemigroups of P(S) and
A(S) since pspy = ps and ANy = Ag. Hence, (g, ps)(Ae, pr) = (Ast, pst), which shows
that ¥(.5) is a subsemigroup of €2(.S). In fact, these sets are more than subsemigroups

as given by the following lemma.

Lemma 1.2.9. Let s € S and take X' € A(S) and p' € P(S). Then we have that
NAs = Avs, and  psp’ = psy

and if the pair (XN, p') is linked, we also get that
AN = Aoy, and  p'ps = pys.

Consequently, Po(S) is a right ideal of P(S), Ao(S) a left ideal of A(S) and 3(S) a
two-sided ideal of 2(.S).
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Proof. The equations follows directly from the fact that if p’ € P(S) then we have
tpsp' =tsp’ = tpsy and if X' € A(S) is linked to p’ we also get
tp'ps =tp's =tNs =tpys,

as well as their dual for A;. Hence Py(S) and Ag(S) are respectively a right ideal of
P(S) and a left ideal of A(S). Moreover, this also shows that

()‘87 p8>(>‘l7 pl) = (ASP'7 IOSP') and (Xv pl)()‘& ps) = ()‘/\’87 p/\'S)v
so that X(5) is a two-sided ideal of 2(.5). O

Not all translations are inner, and this relates to the existence of a right, left or

two-sided identity in S.

Lemma 1.2.10. 1) P(S) = Po(S) if and only if S has a right identity.
2) A(S) = Ao(S) if and only if S has a left identity.
3) QS) = X(S) if and only if S has an identity.

Proof. The proof of 2) is dual to that of 1) so it will be omitted.

1) Suppose that P(S) = Py(S). Since P(S) is a monoid with identity 1p, we get
that there exists e € S such that 1p = p, € Po(5). Thus for all s € S we obtain that
se = sp. = slp = s, which shows that e is a right identity in .S.

Conversely, let e be a right identity of S. Then for all p € P(S) and s € S, by
writing f = ep we have that:

sp = (se)p = s(ep) = sf = spy,
so that p = py € Po(S) and P(S) C Py(.S). Since we also know that Py(S) C P(5)
in general, we get that P(S) = Py(S5).

3) Suppose that Q(S) = 3(S5). Then, as 2(5) is a monoid, we have that there
exists e € S such that (Ae, pe) = 1 = (1, 1p). Then, se = sp. = sand es = Aos = s
as before, from which we have that e is a left and a right identity. Thus S has a
two-sided identity.

Conversely, let e € S be the identity of S and let (A, p) € €(S). By defining
z,y € S asx = Xe and y = ep, we can see that A = A\, and p = p, using the same
argument as above together with its dual. Since the pair (A, p) is linked, we also
have that

r=er =ele =epe=ye=1y,

and thus (A, p) = (A, pz) € X(5). Therefore (S) = 3(S) as required. O
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We mentioned at the beginning of this section that translations generalise the

action of a semigroup on itself. We now make this concrete in the following lemma.

Lemma 1.2.11. The function o: S — Q(S) which sends an element s € S to
0s = (As, ps) s a homomorphism of S onto 3(S5).

Similarly, Po(S) and Ao(S) are homomorphic images of S through the maps
op: S — P(S) and 0, : S — A(S) defined by

sop = ps and S0, = Aq for all s € S.

In particular, we get that o, = o o7, and o, = o om,.

Proof. 1t is clear from the definition of £(5) C Q(S) in 1.2.8 than o is a well-defined
map whose image is 3(.5), and the corresponding statements for o}, and o, also hold.

Moreover, if s,t € S, then we get that os0; = (A, ps)( Ay pr) = (Nsty Pst) = st
that is, sotc = (st)o and thus ¢ is a homomorphism. Similarly, o, and o, are

homomorphisms. O

In order to have that every inner left, right or bi-translation comes from a unique

element of our semigroup S, we need S to satisfy a weak notion of the cancellativity

property.

Definition 1.2.12. A semigroup S is called weakly reductive if for all s,t € S we
have that sx = tx and xs = zt for all x € S implies s = ¢, or equivalently, if A, = X\,
and ps; = p; implies s = ¢.

A semigroup S is called left reductive [resp. right reductive] if for all s,t € S we
have that xs = xt [resp. sz = tx] for all x € S implies s = ¢, that is, if p, = p; [resp.
As = A¢] implies s = t.

A semigroup S is called reductive if it is both a right reductive and a left reductive

semigroup.

Remark 1.2.13. Notice that if S has a left identity, then it is left reductive and dually
for right reductivity, while if S is a monoid, then it is reductive. Moreover we have
that a left or right reductive semigroup S is weakly reductive, so that reductivity

implies weak reductivity, and these notions coincide on a commutative semigroup.

Lemma 1.2.14. For a semigroup S, the following occurs:
e S is left reductive if and only if oy, is injective, and then S = Py(S);

e S is right reductive if and only if o, is injective, and then S = Ay(S);
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e S is weakly reductive if and only if o is injective.

In all cases, we also have that S = 3(S5).

Proof. The equivalences between left, right or weak reductivity with the injectivity
of o, 0, and o respectively follow immediately from the definition. We then obtain

the isomorphisms directly from Lemma [.2.11. O

Combining the above result together with Lemma 1.2.10 we get the following.
Corollary 1.2.15. A semigroup S is a monoid if and only if S = Q(S).

Proof. 1f S is a monoid, then we get that 3(S5) = Q(S5) by Lemma 1.2.10. Moreover,
S is reductive by Remark 1.2.13. Thus S is also weakly reductive and we have that
S = 3(S) by Lemma 1.2.14. Therefore S = Q(S).

Conversely, ©(S) is a monoid with identity 1, by Lemma 1.2.5 and therefore if
S = Q(S), then S must also be a monoid. O

In general, not every right translation is necessarily linked to a left translation,

and vice-versa, but this happens when the semigroup is commutative.

Lemma 1.2.16. If S is commutative, then P(S) = P(S) and A(S) = A(S). Con-

sequently, the projections m, and 7, are surjective and Q(S) = A(S)

X
=~
e

Proof. Let us assume that S is a commutative semigroup. Since we already know
that P(S) C P(S) and A(S) € A(S) by definition, we only need to show the reverse
inclusion.

Let p € P(S) and define a left map A: S — S by As = sp for all s € S. We aim
to show that A is a left translation linked to p, which will give us that (X, p) € Q(9)
and thus p € P(9).

Indeed, let s,t € S. Then, using the commutativity in S, we have that

A(st) = (st)p = (ts)p = t(sp) = spt = (As)t,
which shows that A € A(S). Furthermore, these translations are linked since
spt = t(sp) = (ts)p = A(ts) = (At)s = sAt.

Consequently (), p) € Q(S), and we obtain that P(S) C f’(S), hence the equality
P(S) = P(S). We also get that A(S) = A(S) by duality. O



16 CHAPTER 1. PRELIMINARIES

It is however not necessary for a semigroup to be commutative for every right and
left translation to be part of a bi-translation and we will give an example illustrating
this using rectangular bands in Section 1.2.2.2.

On the other hand, one can ask when the natural projections of €(S) are injective.
In other words, this determines when a right translation is linked to at most one left
translation, or vice-versa. Once again, this is related to the reductivity properties of

the semigroup S.

Lemma 1.2.17. If S is left reductive, then m is injective, and thus Q(S) = f’(S)
Dually, if S is right reductive, then , is injective, and thus Q(S) = /N\(S)
Consequently, if S is reductive, then the natural projections m, and m, are injective

P
and we have that Q(S) = P(S) = A(S).

Proof. Suppose that S is left reductive, and let (X, p), (X, p’) € Q(S) be such that
(A, p)mp = (N, p/)mp. Then p = p' and for all s, € S we have that

s\t = spt = sp't = s\'t.

By the left reductivity of S, we get that At = Mt for all ¢t € S, and thus A = \.
Hence (A, p) = (X,p’) and 7, is injective. By definition, we therefore have that
Q(S) Zimm, = P(S).

The proof of the statement for when S is right reductive is dual, while the second
part of the lemma follows from the fact that a reductive semigroup is both left and

right reductive. O]

Remark 1.2.18. Notice that the converse of the above statements does not hold in
general. Indeed, 7, is injective if (X, p), (X, p) € Q(S) forces A = X'. In particular,
this means that, if sAt = s\t for all s,t € S for some A\, X' € A(S) linked to the

same right translation, we must have A = ). This can be rewritten as
Vie S, Vse S, V(A p), (N, p) € QS) : sht = s\t = It =Nt

This last condition is not equivalent to the property of S being left reductive, unless
S has the additional property that for any a,b € S there exist ¢t € S and A, X' € A(S5)
such that a = At, b = X't and A\, \" are both linked to some p € P(S).

To see this, suppose that S has this additional property and that m, is injective.
Then, for any a,b € S and s € S such that sa = sb, there exists t € S with a = A\t
and b = Nt for some A\, A" € A(S) linked to the same right translation p € P(S). By



1.2. TRANSLATIONAL HULLS 17

injectivity of m,, we have that A\ = X', and thus a = At = X't = b, which shows that

S is left reductive.

Remark 1.2.19. Even though Lemma 1.2.17 tells us that the projections are iso-
morphisms when the semigroup S is reductive, in practice, this is rarely useful on
its own to actually compute the translational hull of S. Indeed, if we know that
these isomorphisms hold, we still need to find the exact conditions for a right or left
translation to belong to a bi-translation. This is not always easy as this process is
equivalent to finding the inverse of one of the projections (m, or ). However, if
we have a good understanding, say, of how right translations behave, and that for
some right translations we are able to create left translations linked to them, then,
knowing that (S) is isomorphic to P(S) allows us to deduce that the left translation
created is unique, which gives a description of the translational hull respectively to

the right translations for which the construction process works.

Before discussing the relationship between translational hulls and ideal extensions,

we give a few examples on the actual computation of translational hulls.

1.2.2 CLASSICAL EXAMPLES

In this section, we will see how one can compute the translational hull of different
types of semigroups, by giving results for right-zero, left-zero and null semigroups,
as well as rectangular bands and Brandt semigroups.

L.2.2.1 Left-zero, right-zero and null semigroups

All of the following results can be found in the work of Tamura [52, 53|, where he
uses the terminology right singular semigroup where we use right-zero semigroup. In

this section, unless specified otherwise, S is an arbitrary semigroup.

Lemma 1.2.20. An element z € S is a left zero if and only if zp = z for all
p e P(9).
Dually, z € S is a right zero if and only if Az = z for all A € A(S5).

Proof. Let z € S be a left-zero and p € P(S). Then we have
zp=(%)p=z(zp) = 2.

Conversely, suppose that z € S is such that zp = z for all p € P(S). In particular,

this means that for all z € S, we have

2T = 2Py = 2,
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which shows that z is a left-zero in S.
Dual arguments show that an element is a right zero if and only if it is fixed by

every left translation of S. [

From this, we immediately obtain the following corollary.

Corollary 1.2.21. An element is a (two-sided) zero of S if and only if it is fized by
every right and left translation of S.

As a useful corollary, we get that if a semigroup S has a zero, then in order for a
map to be a right, left or bi-translation of S, it suffices to verify that the associated

condition holds on all non-zero elements and that this map fixes the zero of S.

Corollary 1.2.22. Let S be a semigroup with a zero 0. Then p € P(S) if and only
if 0p = 0 and (st)p = s(tp) for all s,t € S\ {0}. Dually X € A(S) if and only if
A0 =0 and \(st) = (As)t for all s,t € S\ {0}.

Moreover (\,p) € Q(S) if and only if N0 = 0p = 0 and s\t = spt for all
s, t € S\ {0}.

Proof. The fact that the conditions are necessary is clear from Corollary 1.2.21 above,
so it suffices to prove that they are sufficient.

Let p: S — S be such that 0p = 0 and (st)p = s(tp) for all s,¢ € S\ {0}. In
order for p to be a right translation, we need to consider products st when at least
one of s or t is zero. However, if s = 0 we get that (st)p = 0p =0 = 0(tp) = s(tp),
while if t = 0 we obtain (st)p = 0p = 0 = s0 = s(0p) = s(tp). Thus p is a right
translation, and a dual argument holds for left translations.

Finally, let A € A(S) and p € P(S) be such that A0 = 0p = 0 and s\t = spt for
all s,t € S\ {0}. As above, suppose that s,¢ € S are such that at least one of s or ¢
is 0. Then either s = 0 and we get s\t = 0\t = 0 = 0t = Opt = spt, or t = 0 and
then s\t = sA0 = s0 = 0 = sp0 = spt. In both cases, we have s\t = spt and thus
(A, p) € Q(S). O

We can now describe the translational hulls for right- or left-zero semigroups.

Proposition 1.2.23. The following are equivalent.

1) S is a right-zero semigroup,
2) P(S) ="Ts,
3) A(S) ={1,}.
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Consequently, if S is a right-zero semigroup, then Q(S) = Tg.
Dually, S is a left-zero semigroup if and only if A(S) = Tg" if and only if
P(S) = {1p}, and then Q(S) = TS .

Proof. The results for right- and left-zero semigroups are dual, so we shall only write
the proofs in the case for right-zero semigroups.
1) = 2): Since P(S) C Tg, we let p € Tg. Then for any s,t € S we have

(st)p = tp = s(tp),

where we used the fact that ¢ and tp are both right zeros in S, giving that p € P(.5).
2) = 1): Let s,t € S and p € Tg be such that (st)p =t = tp. Since p € P(S) by
assumption, it follows that t = (st)p = s(tp) = st. Thus S is a right-zero semigroup.
1) = 3): Since all elements of S are right zeros, it follows from Lemma 1.2.20
that every left translation A € A(S) is such that As = s for all s € S. Thus A\ = 1,
and A(S) = {1,}.
3) = 1): Let s,t € S and consider Ay € A(S). Then \; = 1, and

st = N\t =1t =1,

which shows that S is a right-zero semigroup.
It follows from this equivalence that if S is a right-zero semigroup, then P(S) = Tg
and A(S) = {1,}, and thus for all p € P(S) and s,t € S, we have that

spt =t = st = slyt.

Therefore (1, p) € Q(S) and Q(S) = {(1,,p) | p € Ts} = Ts. 0

In a null semigroup, the conditions on being right or left translations are even

more permissive, as given by the following.

Proposition 1.2.24. Let S be a null semigroup with zero 0. Then
Q(S) = {(\p) € Ts¥ x Tg | X0 =0=0p} .

Proof. Let (X, p) € Q(S) C Tg" x Tg. Then, by Corollary 1.2.21, it follows that 0 is
fixed by A and p, that is, A0 = 0 = Op.

Conversely, let A € Tg" and p € Tg be such that A0 = 0 = 0p. Together with the
fact that S is a null semigroup, we get that for all s, € S:



20 CHAPTER 1. PRELIMINARIES

o A(st) =)0 =0=(\s)t,
e (st)p=0p=0=s(tp), and
o« sAt =0 = spt.
Therefore (A, p) € €(S) as required. O

1.2.2.2  Rectangular bands

Let R =1 x J be a rectangular band. Then the right and left translations can be
fully characterised, and respectively correspond to transformations of the underlying
sets J and I.

Lemma 1.2.25. Let p € P(R). Then there exists p € T such that (i,7)p = (i,jp) for
all (i,7) € R. Conversely, any map ¢: J — J gives rise to a unique right translation
p of R defined by (i,7)p = (i,j¢). Furthermore, the bijection P(R) — Ty : pv+> p is
an isomorphism.

Dually, A(R) is isomorphic to T, via the map X — X\ where A(i,7) = (M, j) for
all (i,7) € R.

Proof. Let p € P(R) and let us assume that (i,7)p = (%, j*) for some (i,7) € R.
Then, for all (k,j) € R we have that

(k,3)p = ((k,3)(0,9)) p = (K, ) (5, 5)p) = (K, 3) (@, 57) = (K, J7),

which shows that p induces a map p € T; defined by jp = 7%, where j* is the element
of J such that (i,7)p = (¢,75%) for any i € I.

Conversely, let p € T; and define p: R — R by (z,y)p = (x,yp) for all (z,y) € R.
Then for (i,j), (k,1) € R, we have:

(@, 0)(k, D)) p= (0, 0)p = (i, 1p) = (i,5)(k, 1p) = (i, 5) (K, D)p),

and thus p € P(R).
To show that P(R) and 7 are indeed isomorphic, consider p, p" € P(R) and their
associated maps p, p/ € T;. Then for all (i, j) € R, we get that

(i, 5p0") = (i,5)pp = (i, jp)p’ = (i, jpp’),

so that the bijection is also a morphism, hence an isomorphism.
Similar arguments show that A(R) = 7;”” through the map given in the statement

of the lemma. O
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It is clear that, unless trivial, R is not a commutative semigroup. However, we
can show that every right and every left translation is part of a linked pair, which
shows that the converse of Lemma [.2.16 does not hold. In fact, in a rectangular
band, what can be proved is even stronger, namely, that any pair of a left and a

right translation is a bi-translation.

Lemma 1.2.26. Every right translation of R is linked with every left translation of
R. Consequently, P(R) = P(R), A(R) = A(R) and Q(R) = T, x T,.

Proof. Let p € P(R) and A € A(R). Then, using the description of left and right
translations given in Lemma 1.2.25, for all (7, 5), (k,l) € R we have that:

(6, DAk, 1) = (i, ) (M, 1) = (i,0) = (4, jp) (k1) = (i, 5)p(k, 1).

Therefore, (A, p) is a linked pair, and all the equalities in the statement follow directly
from this. ]

The previous lemma shows that the translational hull of a rectangular band is
very large, and it is easy to see that the action by right multiplication by an element
corresponds to a constant map in 7;. Moreover, these actions are all distinct as can

be seen by the following.

Lemma 1.2.27. The semigroup R is weakly reductive, and thus o is injective and

R~ 3(R).

Proof. Let (i,j), (k,l) € R and suppose that for all z € R we have x(i,7) = z(k,1)
and (i, j)x = (k,l)z. In particular, by letting = (a,b), we get that

<a7j) = (CLJ))(Z,]) = (a,b)(k,l) = (CL, l)v
and thus 7 = [. Similarly, we have that ¢ = k since
(,b) = (2, 5)(a,b) = (k,)(a,b) = (k,b).

Therefore (i,j) = (k,l) and R is weakly reductive. The isomorphism then follows
from Lemma 1.2.14. O
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1.2.2.3 Brandt semigroups
Let B =1 x IU{0} be a Brandt semigroup with trivial subgroups. Recall that the

multiplication of two non-zero elements (1, j), (k,1) € B is given by

o (4,0) ifj=k,
(%J)(kal) -
0 otherwise.

Similarly to the case of the rectangular band, it is easy to show that right and
left translations are in one-to-one correspondence with the partial bijections of
as shown in the next lemma. In fact, we have here a special case of a rectangular
0-band.

Remark 1.2.28. Since B has a zero, it follows from Corollary 1.2.21 that any right

and left translation must fix 0.

Lemma 1.2.29. For every p € P(B), there ezists p € PT; with
dom p={jel|(ij)p#0 for someic I}

such that (i, 7)p = (i, jp) whenever (i,j)p # 0. Conversely, any partial transformation
p of I gives rise to a right translation p of B by setting Op = 0, (i,7)p = (i,jp) if
j € dom p and (i,7)p = 0 otherwise. Moreover, this bijection is an isomorphism of
P(B) onto PT;.

Proof. Let p € P(B), and let (i,7) € B be such that (i,5)p # 0. Suppose that
(i,7)p = (i*,j*), then we have:
(Z*>J*) = (i’j)p = ((Z,Z)(Z,]))p = (Zvl) ((Z’])p) = (Z7Z)(l*’]*)v

which shows that (7,7)(i*, 7*) # 0 and thus ¢* = i. Moreover, for any (k,j) € B, we
also have that (k,j)p # 0 since

(k, 3)p = ((k,0)(0,5)) p = (k) (0, 5)p) = (K, i)(6,57) = (K, J")-

Conversely, if (i,7) € B is such that (i,7)p = 0, then (k,7)p = 0 for all (k,j) € B
since

(k,5)p = ((k,i)(i,9)) p = (k, i) (i, 5)p) = (K, )0 = 0.
Hence, we have that (i,7)p # 0 if and only if (k,j)p # 0 for all k£ € I. We now
define the map p € PTybydom p={j€ |3 €1:(i,7)p # 0} and jp = 5* for all
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j € dom p. It is clear by the previous observation that p is a well-defined map that
satisfies the condition (i, j)p = (i, jp) for all (i,j) € B such that (i,j)p # 0.
On the other hand, let p € P7T; and define p: B — B by 0p = 0, and

. (i,jp) if j € dom p,
(i,7)p = _
0 otherwise.

Let (i,7), (k,1) € B. Then, we have the following:

o (i,0)p it j=F, (i,1p) if j =k and | € dom p,
((5,5)(k, 1)) p = =

0 otherwise, 0 otherwise,
while

() (B D)p) = (i,7)(k,lp) ifl € dom p, _ (i,lp) ifl € dom p and j =k,

0 otherwise, 0 otherwise,

which shows that ((z,7)(k,0))p = (i,7)((k,1)p) in all cases, and thus p is a right
translation by Corollary 1.2.22.

These arguments above show that we have a bijection between P(B) and P7T;.
Thus, it only remains to show that the map ¥: p +— p is a homomorphism. Let
p, P € P(B) be such that pi = p, p'vb = p' and (pp’)y = p. It is well-known that in
PT; we have

j € dom (pp/) < j € dom p and jp € dom p/,

and since
dom p={jel|3iecl:(ij)pp #0}
={jel|jedompand Fiel: (ijp)p #0}
={j€eI]jedompandjpedomp},

we get the equality dom p = dom (pp’). From this, for every j € dom p, we have
(i,3p) = (i,5)pp’ = (i, 5pp"),
which shows that jp = jpp’ and thus ¢ is an isomorphism of P(B) onto P7;. [

Using the same ideas as above, we have a dual characterisation for the left

translations.
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Lemma 1.2.30. For every A € A(B), there exists A\ € PT,; with
dom A= {i € I | \(i,5) # 0 for some j € I}

such that X(i, j) = (M, j) whenever (i, j) # 0. Conversely, any partial left transform-
ation X of I gives rise to a left translation X of B by setting A0 = 0, A(i,j) = (M, j)
if j € dom A and (7, j) = 0 otherwise. Moreover, this bijection is an isomorphism
of A(B) onto PT,;”.

Contrary to the previous examples of this section where every right and left
translations were part of a linked pair, this is not the case for Brandt semigroups. In
fact, only translations whose associated partial transformation is a partial bijection

on I can be linked, as given by the following.

Lemma 1.2.31. Let (), p) € Q(B) with X\ and p their associated partial transforma-
tion on I. Then the following equalities hold:

1) dom p =im A and dom A = im p,
2) Xjp) = j for all j € dom p, and
3) (Xi)p =1 for all i € dom \.
Consequently p € Iy and X € Z,” are inverses of each other (when viewing A as a

right map).

Proof. Let (A, p) € Q(B). Let j € dom p. Then for all (a,b) € B we have:

(a,b) = (a,jp)(5p,b) = (a,7)p(ip, b) = (a, 7)A(jp, b).

Since (a,b) # 0, if follows that A(jp,b) # 0. Hence jp € dom X and im p C dom .
Moreover, we get that (a,b) = (a,7)(\(jp),b), and thus j = \(jp), which also shows
that dom p C im A. Together with the dual argument, we obtain 1) and then 2)
and 3) follow. This shows in particular that A and p are inverses of each other, as

claimed. O

Corollary 1.2.32. The projections , and 7, are injective.

Proof. Suppose that (A, p), (N, p) € Q(B). Then by Lemma 1.2.31 we get that p € Z;
and A\, N € Z;” are both inverses of p, that is, A = X. Using Lemma 1.2.30 we then
obtain that A = X', and therefore 7 is injective. Dual arguments give us that m, is
also injective. O
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In fact, if the partial transformation p associated to a right translation p is a

partial bijection, then this translation is always part of a linked pair as shown by:

Lemma 1.2.33. Let p € P(B) be such that p € Z;. Define A\: B — B by \0 = 0,

and
(ip~,j) ifi€imp,

0 otherwise.

AL, J) =
Then (A, p) € Q(B).

Proof. Let X\: B — B be defined as above and consider (i, ), (k,l) € B. Then

A1) if § =k, ip~1.1) if j =k and i € im p,
A((i,j)(k,l)){() / {(p ) ity €imp

0 otherwise, 0 otherwise,

while

o (ip~t,j)(k,1) ifi€imp, (ip~,1) ificimpandj=Fk,
()‘(27])) (kal) = -

0 otherwise, 0 otherwise,

which shows that A is a left translation of B using Corollary 1.2.22. In order to show

that A and p are linked, we can see that on one hand we have

o (i,7)(kp~t 1) if k € im p, (i,1) ifke€impand j=kp !,
(4, )M (K, 1) = =
0 otherwise 0 otherwise

while on the other hand we find

0 otherwise.

(1,5p)(k, 1) if j € dom p, (i,0) if j € dom p and jp =k,
0 otherwise

(Z,j)p(l{?,l) = { =

Since p € Iy, it follows that k € im p with j = kp~! is equivalent to j € dom p with
jp = k. Therefore (i, j)A\(k, 1) = (i,4)p(k,1) for all (i,7), (k,]) € B. Using the fact
that 0p = A0 = 0, we get that (X, p) € Q(B) by Corollary 1.2.22. O

Clearly, the dual of the previous lemma holds for left translations, and combining

the previous results gives us the following corollary.

Corollary 1.2.34. A right translation p € P(B) is linked if and only if p € Z;, that
is, IS(B) = 7. Consequently, we also have Q(B) = f’(B) = /K(B) =7;.
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Proof. If p € f’(B) then p € Z; by Lemma 1.2.31, while any map p € Z; C P7; gives
rise to a right translation p € P(B) by Lemma 1.2.29 which is then part of a linked
pair using Lemma [.2.33.

Moreover, from Corollary 1.2.32 we get that m, and m, are injective, that is,
Q(B) = P(B) = A(B). O

Remark 1.2.35. We could have deduced from the start that the translational hull was
isomorphic to the semigroups of left and right translations that are linked. Indeed,
suppose that x,y € B are such that xs = ys for all s € B. Then, we either have
that © =y = 0, or x = (4,5), y = (k,l) and by taking s = (j,7), we get that
(1,7) = xs = ys = (k,1)(4, ), which forces [ = j and k = i, that is, z = y, so that B
is right reductive. A similar argument shows that B is also left reductive, and thus
reductive. The isomorphisms then follow from Lemma 1.2.17.

However, the above approach would not have given us the description of the

linked translations that we obtained in Corollary 1.2.34.
Remark 1.2.36. The description of the translational hull of Brandt semigroups is in

fact a particular case of the description for completely 0-simple semigroups presented
by Petrich [42, 43].

1.2.3 IDEALS AND TRANSLATIONS

Throughout this section S denotes a semigroup and 7' C S a subsemigroup. For
x € S, we abuse notation and we define the maps p,: T'— S and \,: T'— S to be
the right and left action by multiplication of z on T', that is, tp, = tx and \,t = xt
forallt € T.

Remark 1.2.37. Notice that under this definition, the maps p, and A\, are inner
translations of S if and only if 7' = S. Similarly, despite the notation, only the maps
p and A\, with x in T are inner translations of T

Nevertheless, the maps p, and A, above satisfy some similar properties to those
held by inner translations. Indeed, by associativity in S, it is clear that for all

x,y € S we have that
(st)pr = stx = s(tx) = s(tps), Au(st) =xst = (A8)t,
tpey =ty = (tx)py, = tpypy, and sA;t = st = sp,t

for all s,t € T. Thus pyy = p.py, (dually, Ay, = A\;A,) and the pair (A, p,) satisfy

the linking condition of bi-translations.
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It is natural to ask whether the maps p, and )\, are, respectively, right and left
translations of 7', which corresponds to the situation where the images of p, and
Az lie in the subsemigroup 7'. In order to do so, we need to consider the notion of

idealisers of the subsemigroup 7.

Definition 1.2.38. The right idealiser [resp. left idealiser] of T in S, denoted by
J(T) [resp. J5(T)], consists of all elements s € S satisfying ts € T [resp. st € T
for all t € T', that is,

(M) ={seS|TsCT}

and dually for I5(T).
The idealiser of T in S, written Jg(7'), is the set of all elements s € S such that
st,ts € T for all t € T, and thus 1g(T") = J%(T) N I5(T).

Notation 1.2.39. When it is clear from the context what the over semigroup S is, we
will drop the subscript and simply write J7(T'), J(T) and J3(T') for the right, left and
(two-sided) idealiser of 7" in S.

Remark 1.2.40. The sets J°(T), 3(T) and I(T') are subsemigroups of S containing 7T'.
Furthermore, if 7" is an ideal of S, then clearly J"(T) = I4(T) = 3(T) = S.

We can now show that only elements from the idealisers give rise to translations

when acting by multiplication.

Lemma 1.2.41. Let x € S. Then we have the following:
1) x € I(T) if and only if p, € P(T);
2) x € IYT) if and only if \, € A(T);
3) x € I(T) if and only if (Ag, pe) € QT).

Proof. 1) If x € J'(T), then tx € T for allt € T, that is, tp, € T and thus p,: T — T.
That p, is a right translation of 7" then follows from Remark [.2.37.

Conversely, if p, € P(T), then tx =tp, € T for all t € T', that is, x € I"(T).

2) Dual of 1).

3) By the previous points, if z € J(T') = I (T)NIY(T), then p, € P(T) and A\, € A(T).
Moreover, (A, p:) is a linked pair by Remark 1.2.37, so that (A, p.) € QT).
Conversely, if (Az, pz) € Q(T), then p, € P(T) and A\, € A(T'), which shows that
r € J(T)NIT) = I(T) by the previous points, as required. O
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In particular, if T" is an ideal, there are natural homomorphisms between S and

the monoids of right, left or bi-translations of T

Corollary 1.2.42. IfT is an ideal of S, then the maps xp: S — P(T), x,: S — A(T)
and x: S — Q(S) defined by

TXp = Pzy TXy = Ao and  xX = (A, )
are well-defined homomorphisms. Moreover, we have that
Po(T) Cimy, C P(T), Ao(T) Cimx, CAT), and %(T) Cimy C UT).

Proof. Since T is an ideal of S, it follows from Lemma 1.2.41 that for all z € 5,
(Aes pz) € QUT), and thus xg, x, and x are well-defined with their image lying
inside P(T'), A(T) and Q(T) respectively. That these maps are also homomorphisms
whose image contains the inner translations of 71" follows directly from Remark 1.2.37
together with the fact that (A, pz)( Ay, py) = (Aay, pay) for all z,y € S. O

We finish this section by giving some results from the literature showing how
translational hulls are closely related to the notion of ideal extensions. We will not
include their proofs, since the study of such extensions is not the objective of this
thesis. Nevertheless, it is worth noting that during the '60s and ’70s, there was a vast
project led by Eastern-Europe mathematicians aimed at axiomatising the abstract
notion of ideal extensions. This resulted in a long list of publications (as can be seen

from the many references on that matter listed in Petrich’s survey [41]).

Definition 1.2.43. Let A and B be disjoint semigroups with B having a zero element
0. A semigroup V is called an ideal extension of A by B if V' contains A as an ideal,
and if the Rees quotient semigroup V/A is isomorphic to B.

An extension V of A is dense if the only congruence on V' which restricts to the
equality relation on A is the equality relation on V.

A semigroup A is a densely embedded ideal of a semigroup V if V is the largest

semigroup under inclusion which is a dense extension of A.

Remark 1.2.44. Another way to see dense extensions is in terms of non-injective
endomorphisms. In this context, a semigroup A is a densely embedded ideal of a
semigroup V' if A is an ideal of V', and V' is maximal under the condition that every
non-injective homomorphism ¢: V' — S for some semigroup S induces a non-injective

homomorphism ¢j,: A — S.
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Notice in particular that if our subsemigroup 7' is a densely embedded ideal of .S,
then it is an ideal, and the map y is well-defined. We now have the following result
from Gluskin [20] which links the translational hull of a semigroup with its dense

extensions.

Lemma 1.2.45 (Gluskin). A weakly reductive semigroup T is a densely embedded
ideal of a semigroup S if and only if x is an isomorphism of S onto Q(T).

In particular, suppose that T' is a weakly reductive semigroup. Then T is
isomorphic to X(7T') C Q(T') by Lemma [.2.14 so that T is densely embedded into
Q(T) and into any semigroup S isomorphic to (7). Moreover, if V is a dense
extension of T, then the image of V under x|, : V' — Q(7) is a subsemigroup of
Q(T') which contains 3(7") as an ideal (since 3(7") is an ideal of (7). Thus, we
can find all the dense extensions of T' by looking at all the subsemigroups of Q(7')
containing 3(7"). The condition for T to be weakly reductive cannot however be

suppressed, as given by the following result of Shevrin (see [41]).

Lemma 1.2.46 (Shevrin). A semigroup which is not weakly reductive cannot be a

densely embedded ideal of any semigroup.

Contrary to the approach taken by the Eastern-European schools, we are more
interested in actually computing the translational hull of ideals in some semigroup
of interest (such as ideals in endomorphism monoids of certain algebras) and only

view the notion of extensions as a coincidental result.

[.3 EXTENDED GREEN’S RELATIONS

The study of extended Green’s relations was introduced by Pastijn [39] and developed
by Fountain [13], El-Qallali [45], Lawson [29] and many others (see [7, 25, 26, 46]).
The idea was to complement the study of semigroups that are regular, since these
extended relations coincide with the classical Green’s relations in regular semigroups.

Each of Green’s relations &, R, #, D and ¥ have a corresponding *- and
~-relation that generalises them. The x-relations relate elements with mutual
cancellativity properties, while the ~-relations are expressed in terms of idempotent

left or right identities.
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In order to emulate the role that the relations & and & play in regular semigroups,
Fountain [13] introduced the notion of abundant semigroups, which are semigroups
in which each &*- and R*-classes contains an idempotent. This concept was later
extended to the ~ counterpart, giving rise to the now-called Fountain semigroups,
formerly introduced as semi-abundant semigroups by El-Qallali [45], but also called
weakly abundant semigroups in the literature [15].

Throughout this section S will be a semigroup with set of idempotents E = E(S5).
We will give a precise definition of all of the extended * and ~ Green’s relations on
S, as well as some useful results, which will be needed in later chapters. The proofs
included here can be found in [13, 33, 39, 45, 46].

1.3.1 DEFINITIONS

We start by defining the generalisations of the relations &, R, Z and D as their

formulations can be easily given.

Definition 1.3.1. Let a,b € S. The extended Green’s relations on S are defined as
follows:
ad*b<— (axzay@bx:by Va,y € Sl),
AR b <= (xazya@:cbzyb Va,y € Sl),
aLb = (aeza@be:b VeEE),
aR b > (eaza@eb:b ‘v’eEE),
H* = L NR*, H=FLNR,
D =FL*VR*, and D=LVR.

It is straightforward to see that these relations are equivalence relations. Moreover,
if a£*b, and s € S, then asx = asy for some x,y € S' if and only if bsx = bsy,
so that asZ#*bs. Therefore £* is a right congruence, and dually, R* is a left
congruence. However, & and & do not behave similarly and we will give an example
in Chapter III where & is not a left congruence on T(d,B), as well as another
example in Chapter IV where & fails to be a right congruence in End(7,).

On a very different note, notice that the definition of &* seems closely related to
the concept of left translations. In fact, if S' = S, that is, if S is a monoid, then

we can see that a £* b if and only if ker \, = ker \,. Otherwise, S is a semigroup

without an identity and we can consider the map Al to be the inner left translation
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of S associated to a, that is, Al: ST — S and A\lz = ax for all x € S*. With this
notation, we can say that a £*b if and only if ker A} = ker A\}. If we define p} dually
as the inner right translation of S' associated with a, we also get that a R* b if and
only if ker p! = ker p}.

Remark 1.3.2. In fact, this close relation is not coincidental since the & *-relation was
initially defined by Pastijn [39] using partial left translations. A bijective partial left
translation on S is a map A € Zg" which satisfies A\(st) = (\s)t whenever both sides
of the equality are defined. Then, Pastijn defined the relation £* on a semigroup S

by: aZ£* b if and only if there exists a bijective partial left translation A on S such
that Aa = b (and thus A™'b = a).

The relations &£* and R* may be defined in another equivalent manner, as

follows.

Lemma 1.3.3. Let a,b € S. Then a£*b if and only if a and b are L-related in an
oversemigroup T of S. Similarly, a R* b if and only if a and b are R-related in an

oversemigroup T of S.

Proof. Since the statement for R* is dual to that of &£*, we will only prove the case
for R* in order to work with right maps instead of left maps.

Let a,b € S and suppose that a R* b. Tt is well-know [1.1.2 in 28] that S embeds
into 71 through the map s — pl, where pl: ST — St is such that zp! = xs for all
x € S'. As mentioned after the definition of R*, we have that a R* b is equivalent
to ker p} = ker p;. But then, we get that the maps p; and p; are R-related in Tg:
by classical arguments (see for example [2.6 in 8]). Thus a and b are R-related in an
oversemigroup 1" D S.

Conversely, suppose that a,b € S are R-related in an oversemigroup 7" O S.
Therefore, there exist ¢,#' € T! such that at = b and bt’ = a. Subsequently, for
any z,y € S we get that if xza = ya, then xat = yat, that is, xb = yb. Similarly,
if xb = yb, then zbt’ = ybt’, which means that xa = ya. Therefore, a R*b as
required. O

The generalisation of Green’s relation ¥ is not as direct and simple, and requires

the concept of ideal saturation.

Definition I1.3.4. Let L C S x S be an equivalence relation on S, and for all s € S
denote by &, the X-class of s. We say that an ideal I of S is saturated by X if
XL, C I forallacl.
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It is easy to see that the intersection of a set of ideals saturated by an equivalence
relation I is itself saturated by &. Moreover, the semigroup S is clearly saturated
by any equivalence relation, which means that there is a minimal ideal of S saturated
by &. Thus, given a subset I of S, we can look for the smallest ideal containing [

that is saturated by L. We can effectively construct this minimal ideal as follows:

Lemma 1.3.5. Let I be a subset of S and X be an equivalence relation on S. Define

iteratively Iy, as follows:
1) Iy=1, and
2) Iy = {xby | b € X, for some a € I} and x,y € S'}.
Then I%* = Upeno Ix is the smallest ideal of S containing I that is saturated by X.

Proof. Let a € I*®. Then there exists k € N° such that a € I;,. Thus X, C I, and
xay € Iy for all z,y € S, so that I8 is an ideal of S saturated by .

Now let J be an ideal of S saturated by & and containing I. We show that
I?** C J. By definition, we clearly have that I, C .J. Now suppose that I, C J
for some k£ € N and let a € I;. Since J is saturated by X it follows that X, C J.
Moreover, for every b € &,, we have that zby € J for all 2,y € S as J is an ideal.
Therefore I, ;1 C J and by induction we obtain that I*® C J, which finishes proving
that 7" is the minimal ideal of S containing I and saturated by X. O

Definition 1.3.6. Let I C S and & be an equivalence relation. We call the ideal
I the saturation of I by L.

Remark 1.3.7. Notice that if L and Y are two equivalence relations and I C S, the
saturation of I by & and Y correspond to the saturation of I by XV Y. It is easy
to see that this gives the same result as alternatively saturating I by X first, and

then saturating the resulting ideal by Y at each step of the saturation process.

In view of Lemma [.3.5 and Remark 1.3.7 above, for every element a € S, there is
a minimal ideal of S which contains a and is saturated by both £* and R*, that is,
by 2*. This ideal, denoted by J*(a) by Fountain [13], is called the principal x-ideal
generated by a.

Similarly, we define the principal ~-ideal generated by a € S, denoted by J (a),
as the smallest ideal of S containing a and saturated by both & and @, that is,
saturated by 9. We can now define the relations F* and jfv
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Definition 1.3.8. Let a,b € S. Then a $* b if and only if J*(a) = J*(b), and a ¥ b
if and only if J(a) = J(b).

Notation 1.3.9. In the cases where there are multiple semigroups involved in the
discussion and ambiguity can arise, we will add subscripts to the relations. For
example, if S and T" are semigroups, we will write £ and R for the relations £*
and R* when seen in S, while &} and R’ will be relatively to 7T". This is especially
important if 7' is a subsemigroup of S, in which case it is easy to see from the
definition that we will have ZEN (T x T') C Ly and REN (T x T) C R, as well

as the corresponding inclusions for & and R.

1.3.2 CHARACTERISATIONS AND COMPARISONS

Since the meet of two relations is their intersection, we obtain that the descriptions
of #* and # will follow directly from those of £*, R*, £ and R.

On the other hand, the relations &* and P are defined in terms of join, which is
more complicated to describe. Nevertheless, there is a well-known characterisation
(see for example [1.5.11 in 28]) of the join of two arbitrary equivalence relations

which is given as follows:

Lemma 1.3.10. Let 7,7 be equivalence relations on S, and let a,b € S. Then a and
b are Tvr-related if and only if a (T om)" b for some n € N. Moreover, if T and w

commute, then Tvr = T oT.

The relations & and R commute, but in general this is not the case for £* and
R, and neither for & and R. Thus the characterisation of @* and & is given by:

Corollary 1.3.11. Let a,b € S. Then a and b are D*-related in S if and only if

there exist cq,cq,...,Con € S such that
a:0059*01%*02...3*02n_192*02n =b.

Similarly, a is P -related to b if and only if there exist cg,...,con € S such that
a = 00301%02---3021171%0271 =b.

A key result to see that the * and ~ equivalence relations defined in the previous

section are indeed generalisations of classical Green’s relations is given by:
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Lemma 1.3.12. In any semigroup S, we have the following inclusions:

1) LC L CY;
2) RCR CR;
) HCH CH:
}) DCDCD;

5) FCFC ¥ and
6) D* C F* and@@}.

Proof. Let a,b € S.

1) That & C &* is clear from Lemma 1.3.3. By takingz = e € Eand y = 1 in
the definition of &£*, we clearly see that two elements & *-related will be &-related,
which shows that &£* C &.

2) Dual to 1).
3) Follows immediately from 1) and 2).

4) Suppose that a @ b. Then there exists ¢ € S such that a £cRb. Since & C £L*
and R C R* by the points above, we get that a £* ¢ R* b and thus a D* b.

Now, if aD*b, then a = coL*cir R*cy... L* cop_1 R* ¢o, = b for some elements
€o,C1,...,Con € 5. Since L* C & and R* C .A%, it follows directly that a (goﬁ)n b
and thus a & b.

5) If a and b generate the same principal ideal, say I, then it is clear that saturating
I by &* and R* will give us that I*** = J*(a) and I*** = J*(b). Thus a F*b.

Suppose that a F*b. Then J*(a) = J*(b). Since a € J(a) and J(a) is saturated
by D, then J(a) is an ideal saturated by @* C P. However, J*(a) is the smallest
ideal containing a that is saturated by @*, which means that J*(a) C J(a). Thus
be J*b) = J*(a) C J(a), so that J(b) C J(a). Similarly, we get that J(a) C J(b),
so that aj}vb.

6) Suppose that a D*b with a = ¢ L*c; R*ca... L cop1 R* ca, = b for some
Co,C1y- -+, Cn € S. Since J*(a) is saturated by &*, it follows that ¢; € J*(a), and
then ¢y € J*(a) since this ideal is also saturated by R*. By induction, we get that
b € J*(a). The converse gives us that a € J*(b) and thus a F*b.

A similar argument shows that @ C ¥. O
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These inclusions may be strict but some of them become equalities when we

restrict our attention to regular elements, as given in the next lemma.

Lemma 1.3.13. If a and b are both reqular elements of S, then
aLbesaL beaPb and aRbeaR b aRb.

Proof. Since & C &* C & , it suffices to prove that two regular elements that are
P-related must be P-related. The result for & will follow by duality.

So assume that a and b are regular elements such that a Zb. Then there exist
a’,b' € S such that a = ad’a and b = bb'b. Thus a’a and b'b are idempotents and
by the definition of being g—related, we get that a = ab/b and b = bd’a, and thus
aZb. O

Notice however that two regular elements which are &*- or P-related will not
necessarily be @-related, and the same hold for F* and ;‘\f/ relatively to J. However,
this always happens if our semigroup is regular, in which case we have that the

extended Green’s relations coincide exactly with the classical Green’s relations.

Corollary 1.3.14. If S is a regular semigroup, then
S=F" =2, R=R =R, H=H"=%,
P =D =, and F=9=9.

Proof. The cases for &, R and # follow directly from Lemma 1.3.13. Then we have
that D = PVR = LV R =D, and D* =D as well.

Finally, since any ideal is saturated by & and &, hence by L =% =% and
R =R = R, we get that the principal - and ~-ideal generated by an element
a € S coincide with the principal ideal generated by a, so that ¥ = ¥* = ;‘? O

In order to facilitate our discussions when dealing with the relations ¥* and },

we give another characterisation for the principal *- and ~-ideals.

Lemma 1.3.15. Let a € S. Then b € J*(a) if and only if there exist ag, ... ,a, € S
and T1,..., T Y1, ..., Yp € ST such that a = ag, b = a, and a; D* x;a,_1y; for all
1< <n.

Similarly, b € J(a) if and only if there exist elements ag,...,a, € S and
Tl Ty Yls- s Yn € SY such that a = ay, b = a, and aigxi&i,lyi for all
1< <n.
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Proof. We will only prove the lemma for J*(a) since the arguments are similar for
j(a). Let a € S and consider B C S to be the set of all b € S satisfying the given
conditions. We want to show that B = J*(a).

For this, let b € B. Then there exist ag,...,a, €S, T1,...,Tp,Y1,...,Yp € S*
such that a = ag, b = a,, and a; D* z;a;_1y; forall 1 <i < n. If a;_; € J*(a) for some
1 <i <n, then z;a;_1y; € J*(a) since J*(a) is an ideal. Moreover, J*(a) is saturated
by £* and R*, hence also by @* and from the fact that a; D* x;a;_1y; we obtain
that a; € J*(a). Since ag = a € J*(a), it follows by induction that b = a,, € J*(a),
so that B C J*(a).

Conversely, let b € B and aq, ..., a, as before. Then for all z,y € S, we can see
that setting a, 1 = xby we get that a, .1 D* xa,y, so that xby € B. Thus, B is an
ideal. Furthermore, &£*, R* C 9P*, which means that for all ¢ € S lying in the &£*-
or R*-class of b, we get that ¢ D* b, and thus setting a,,1 = c and z,4,1 = Y1 = 1,
we see that c satisfies all conditions to be in B. Therefore B is saturated by both
Z* and R*, and since a € B it follows that J*(a) C B. Hence J*(a) = B. O

1.3.3 CLASSES OF IDEMPOTENTS

We finish this section on extended Green’s relations by mentioning the special role of
idempotents. We first can see that #* and # are idempotent separating equivalence

relations, as given by:
Lemma 1.3.16. Lete,f € E. Thene#*f or e%f if and only ife = f.

Proof. Suppose that e%f. Then e:?;f and e? = e so that fe = f. Also e@f and
f? = f, which gives us fe = e. Hence e = f. n

In a similar way as idempotents are right and left identities for elements in their

Z- and R-class, they have the same role for elements in their £*- and R*-class.

Lemma 1.3.17. Leta € S ande =¢e> € S. Then a<* e if and only if ae = a and
ax = ay implies ex = ey for all x,y € S*.
Similarly, aZe if and only if ae = a and af = a implies ef = e for all f € F.
Dual statements hold for R* and R.

Proof. Clearly we have that > = el, and then a £* e implies that ae = al = a.
Conversely, if ae = a and ex = ey for some z,y € S, then ax = aex = aey = ay.
The result follows. O
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Corollary 1.3.18. Every #*-class of S containing an idempotent is a cancellative

monoid. Consequently, every finite ' *-class is a group.

Proof. Let H} be an # *-class which contains an idempotent e € S. By Lemma 1.3.17,
we know that e is both a left and a right identity for every element in H}. Let
a,b € H and let x,y € S be such that abr = aby. Since a £*e, we get that
bx = ebxr = eby = by, and since bZ* e we get ex = ey. We also have that abe = ab
and thus abZ*e by Lemma 1.3.17. Similarly, abR* e, which shows that H is a
monoid.

Now, suppose that a,b,c € H} are such that ab = ac. Then aZ*e, and we
deduce eb = ec, so that b = c¢. Dually ba = ca implies b = ¢, and therefore H} is

cancellative. OJ

It is well-known that a semigroup is regular if and only if every &- and R-class
contains an idempotent. We can thus make similar definitions to define wider classes

of semigroups by replacing & and R by their extended versions.

Definition 1.3.19. A semigroup S is called right [resp. left] abundant if every
Z*-class [resp. every R*-class| contains an idempotent and right [resp. left] Fountain
if every P-class [resp. every @—class] contains an idempotent.

A semigroup that is both left and right abundant [resp. Fountain] is called an

abundant [resp. Fountain] semigroup.

It is clear from the definition that left [resp. right] abundant implies left [rep.
right] Fountain. The converse is not true. Further, in Chapters III and IV, we will
see examples of semigroups that are right abundant but not even left Fountain, and

others that are left abundant and Fountain.

Remark 1.3.20. Using Lemma 1.3.17 (see [14]), we can get that being right abundant
for a semigroup corresponds to the notion of being right principally projective (RPP
for short), where a semigroup is RPP if every principal right ideal is projective.
In [7] the authors describe other classes of semigroups relative to the presence of

idempotents in each class of a given extended Green’s relation.

[.4 INDEPENDENCE ALGEBRAS

The class of independence algebras was introduced by Gould in [22] in order to

account for the similarities between endomorphisms of sets, vector spaces and free
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group acts, and to allow their study under a common framework. Incidentally, she
noted that these algebras also correspond to the v*-algebras described by Narkiewicz
in [36], which continued the study of different notions of independence in universal
algebras initiated by Marczewski [31]. In this thesis, we will only consider the
notion of independence relative to the closure operator (-) (sometimes also called
C-independence), but v*-algebras were initially defined using another notion of
independence, which is now often called M -independence (with regard to Marczewski).
A good comparison between these two notions of independence can be found in the
article of Aratjo and Fountain [3].

All the results presented in this section are well-known and can be found in the
literature (see [1, 2, 10, 17, 22, 30, 34]). Some proofs are included to make this thesis
as self-contained as possible on this topic, particularly when those proofs are hard to

track down in the literature.

1.4.1 DEFINITION

Throughout this section o = (A, F) will denote an algebra. We first recall a basic

fact on the subalgebra operator.

Lemma 1.4.1. The operator (-) is a closure operator and is algebraic. In particular,
this means that for any X, X'\ Y C A such that (X) = (X'), we have:

1) (XUY)=((X)U(Y)) = (X'UY); and

2) (X)=U{(Z) | Z C X, and Z is finite}.

In order to define independence algebras, we first need to talk about the notion

of independence.

Definition I.4.2. A set X C A is independent if v ¢ (X \ {x}) for all z € X.

If x € A and {x} is independent, then x is an independent element of A.

A mazimal independent set (or subset) is an independent set X such that there
exist no independent set Z with X C Z C A.

A subset B C A is closed if B = (X) for some X C A. In such a case B is a

subuniverse of A and X is said to span B.

It is straightforward to see that the empty set is an independent set. Similarly,

any element that is not a constant is independent. A subset Y C A that is not
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independent will be called dependent. We now consider the existence of maximal

independent subsets.

Lemma 1.4.3 ([2.2.6 in 30]). For any subset X of A, and any independent subset'Y
of X, there exists a maximal independent subset of X containing Y. Consequently,

every subset of A contains a maximal independent subset.

Proof. Let Y be an independent subset of a set X C A and consider the set
S§={ZCA|YCZCX, and Z is independent}. Clearly § # () since it contains
the set Y itself. The result will follow directly from Zorn’s Lemma if we can prove
that any ascending chain in & has an upper bound.

So let S be a totally ordered subset of § and W = Ug,c5 5;. Since Y C W, we
need to show that W is independent. Suppose that w € W and w € (W \ {w}).
Using the fact that (-) is an algebraic operator, it follows that

(W\{w}) = U{(V} VW \{w} and V is ﬁnite},

and thus w € (V) for some finite subset V' of W \ {w}. Therefore VU {w} C W,
and since V' is finite and S is an ordered chain, we must have V U {w} C S; for
some S; € S. This in turn implies that w € (V) C (5, \ {w}), contradicting the
independence of S;. Thus W is an independent set and is therefore an upper bound
for S. Hence every ascending chain in & has an upper bound, which proves the first

part of the statement while the second part follows directly by taking Y =§. [

Since the existence of maximal independent subsets is guaranteed by Lemma 1.4.3

above, we will use this fact without further reference.

Definition I.4.4. The algebra & has the exchange property if any subset X of A

satisfies the following condition:

(EP) foralla,be A, iface <X U {b}> and a ¢ (X), then b € <X U {a}>.

Example 1.4.5. Tt is clear that given a set S, the algebra S = (S, () trivially satisfies
the exchange property, since for any X C S we have (X) = X. Similarly, suppose
that V = (V, {+, 0, {fu}ue&D is a vector space over a field K with operations f,
corresponding to the scalar multiplication by an element x4 € K. The subalgebra
operator corresponds in this case to taking linear combinations. From this, it is clear
that if a,b € V and X C V are such that a € (X U {b}), then there exist scalars
Wi, iy € K such that a = Y, px; + ppb. If a ¢ (X)), this means that ju;, # 0, in which
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case we also have b = 3, — ;' jt;w; + p1, "a, so that b € (X U {a}) and V satisfies the

exchange property.

The exchange property can be formulated differently in terms of the subuniverse

spanned by independent sets, as given by:

Proposition 1.4.6 ([2.3.1 in 30]). The following conditions are equivalent:
i) A has (EP);
it) for every X C A and a € A, if X is independent and a ¢ (X) then X U{a} is

independent;
iii) for every X C A, if Y is a mazimal independent subset of X, then (Y) = (X);

w) for every X, Y C A such that Y C X, if Y is independent, then there is an
independent set Z such thatY C Z C X and (Z) = (X).

Proof. i) = ii): Let X C A be independent and a € A be such that a ¢ (X).
Suppose now that X U {a} is dependent, that is, there exists € X U {a} such that
z e (X U{a})\{z}). Since a ¢ (X), it follows that x # a so that z € X. Since
X is independent, we have x ¢ (X \ {z}). But (X U{a})\ {z} = (X \ {z}) U{a},
and o has (EP) so it follows that a € ((X \ {z}) U{z}) = (X), a contradiction.
Therefore X U {a} is an independent set.

i1) = iii): Let X C A, and assume that Y is a maximal independent subset of X.
Since Y C X, it follows that (Y) C (X). For the reverse inclusion, if an element
x € X such that z ¢ (Y) would exist, then Y U {z} would be independent by
hypothesis i), contradicting the maximality of Y in X. Therefore X C (Y') which
gives that (X) C (Y) and hence the equality.

iii) = v): Let Y C X with Y an independent set. By Lemma 1.4.3 there exists
a maximal independent subset Z of X with Y C Z, and by iii), it follows that
(Z) = (X), as desired.

iv) = ii): Let X be an independent subset of A and a € A be such that a ¢ (X).
Then (X) # (X U {a}) and by iv) there exists X C Z C X U {a} such that Z is
independent with the property that (Z) = (X U {a}). Thus Z = X U {a} and so
X U{a} is independent.

i1) = 1): Let X C A, and let a,b € A such that a ¢ (X) but a € (X U{b}). Suppose
that b ¢ (X) since otherwise, it follows trivially that b € (X U{a}). By Lemma 1.4.3,
there exists a maximal independent subset Z of X. Since we know that i) implies
iii), we get that (Z) = (X). Then a,b ¢ (Z) and so Z U {a} and Z U {b} are
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independent by 7). By Lemma 1.4.1, we have that (X U {b}) = (Z U {b}). Thus
a € (ZU{b}) and therefore Z U {a} U{b} is dependent. Hence Z U {a} and Z U {b}
are both maximal independent subsets of Z U {a} U {b}. Using iii) again, we get

(ZU{a}) =(ZU{a}U{b}) = (ZU{b})

so that b € (Z U {b}) = (Z U {a}) = (X U{a}) using Lemma [.4.1 again. Hence the
algebra o has (EP). O

The relationship between minimal spanning set and maximal independent set
is important, and it can be shown that these coincide in any algebra that has the

exchange property.

Corollary 1.4.7 ([22]). Suppose that A satisfies (EP), and let Y C X C A. Then

the following are equivalent:

i) Y is a mazimal independent subset of X ;
it) Y is independent and (Y) = (X);
i) Y is minimal with respect to (Y) = (X).

Proof. i) = i4i): This is exactly part 4ii) of the above Proposition 1.4.6.

i1) = 4ii): Let Y be an independent set with (Y) = (X) and let Z C Y. Then
taking y € Y \ Z, we have that y ¢ (Z) C (Y \ {y}), so that (Z) C (V) = (X).
Therefore Y is minimal with respect to (Y) = (X) .

i7i) = 1): Let Y be minimal with the property that (Y) = (X). Suppose that
there exists y € Y such that y € (Y \ {y}). Then Y C (Y \ {y}) which shows that
(X) =) C(Y\{y}), so that (Y \ {y}) = (X), contradicting the minimality of
Y. Hence Y is independent. Now, for any Y C Z C X and z € Z\ Y, we have
that z € (X) = (Y) C (Z\ {z}). Thus Z is dependent and so Y is a maximal
independent subset of X. O]

With this result, we can now define the notion of basis.

Definition 1.4.8. Suppose that o has (EP), and let X C A. A basis of X is a
subset Y C X satisfying the equivalent conditions of Corollary 1.4.7.

Remark 1.4.9. Tt is clear that if we take a subset X satisfying X = (X) in Corol-
lary 1.4.7, we have that Y is a maximal independent subset of X if and only if YV
is an independent set that spans X. Thus, the definition of a basis given above

correspond to the well-known definition of basis for a subspace X in a vector space.
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It follows directly from Lemma 1.4.3 and Corollary 1.4.7 by taking X = A that
any algebra & in which (EP) holds has a basis Z of its universe A. In such a case,
we also say that Z is a basis of d. Moreover, if 9B is a subalgebra of o, then by part
iv) of Proposition 1.4.6 and part iz) of Corollary 1.4.7, any independent set Y C B
lies inside a basis X of B. Hence Y U (X \Y) is a basis of B and Y N (X \Y) = 0.

This leads us to the notion of basis extension.

Definition 1.4.10. Suppose that o has (EP). Let B C o and Y C B be an
independent set. A basis extension of Y (in B) is an independent set Z C B such
that Y U Z is a basis of B and Y N Z = (). In this case, we also say that Z extends
Y to a basis of B.

Remark 1.4.11. An important case is when we take B = o, as it means that any
independent subset can be extended to a basis. If the mention of the subalgebra in
which we are doing the basis extension is omitted, it is assumed that the extension

is relative to the algebra of itself.

We now give properties of basis extensions, which are to be expected when
thinking of this notion in the context of vector spaces. The first one relates to the

cardinality of the sets involved.

Proposition 1.4.12 ([2.3.6 in 30]). Suppose that A satisfies (EP), and let B C A.
If X, X" are independent subsets of B such that (X) = (X') and Y, Z are respective
basis extensions of X and X' in B, then |Y| = |Z].

Consequently, all bases of an algebra have the same cardinality, and all basis

extensions of a given set have the same cardinality.

Proof. Let X, X', Y and Z be as given in the statement. Without loss of generality,
assume that |Y| < |Z].

Suppose that Y = {y1,...,y,} is finite, and take Z,, = {z1,...,2,}, a subset of Z
with the same cardinality as Y. Since z; ¢ (X') = (X), but z; € (XUY), there exists
an integer i < n that is the smallest with respect to z; € (X U{y1,...,y;}). Thus

by the exchange property, v; € (X U{z1} U{y1,...,yi1}) S(XU{z1} U \{w:})).
Relabelling the elements of Y for convenience so that ¢ = 1, it follows that

B=(XUY)=(XU{a}U{p2. . 0a}).

Since (X' U {z1}) = (X U{z}) by Lemma 1.4.1, we get that z, ¢ (X U{z}) and
we can now use the same argument replacing X by X U {z} and {yi,...,y,} by
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{y27 I 7yn}7 to get that

We then proceed by induction on the elements of Z,, to obtain that
(X'UZ)=B=(XU{z,...,2,}) = (X' UZ,).

If z€ Z\ Z,, then z € B=(X"UZ,) = <X’ UZz\ {z}> which contradicts the
independence of X' U Z. Thus Z = Z,, and so |Y| = |Z].

Now, consider the case where Y and Z are both infinite. Let y € Y, then since
(+) is an algebraic operator there exist finite subsets X C X and Z, C Z such that
ye(X)U2Z,). Thus Y C <Uyey (x1u2,) > and as X C (X) = (X", it follows
that

XUY C <X’U U (X;uzy)>= <X’U U Zy>.
yey yey

Consequently, B = <XUY> C <X/UUy€Y Zy> C <X’UZ> = B, forcing the equality
(X'UUyey Zy) = (X'UZ). Then, if 2 € Z\Uyey Zy, we get that z € { (X'UZ)\{z}),
contradicting the independence of X'UZ. Therefore Z = UJ,¢y Z, and we also obtain

1z =1U 2,| < >_1Z,|
yeyY yeyY
< Y] Ny as |Z,| is finite for each v,
= Y| since |Y| is infinite.

Together with the starting assumption that |Y| < |Z], the equality of the two
cardinals is proven.

The last part of the proposition follows directly by setting X = ) = X’ in the
first case, and X = X’ in the second. O

We can now define the concept of rank.

Definition 1.4.13. Suppose that o satisfies (EP) and let X C A. The rank of X,
denoted by rank X, is the cardinality of any basis of X. If X is independent, then
the corank of X, denoted by corank X, is the cardinality of any basis extension Y of
X. That rank and corank are well-defined comes from Proposition 1.4.12.

Similarly, if 98 C o, then the rank of A is defined as the rank of B, and the
corank of 9B is the corank of B in A.
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If « € End(d), then im« is a subalgebra of o and we define the rank of a,

denoted by rk(«), as the rank of the subuniverse im a.

Remark 1.4.14. When talking about subalgebras or universes of subalgebras, we
often refer to the rank and corank as the dimension and codimension respectively. In
practice, we will use both terminologies indiscriminately, which means that we will
also use dim 9B, dim B, codim $B and codim B for rank 9B, rank B, corank 9B and

corank B respectively.

Notation 1.4.15. Since the minimal generating set of a subalgebra is a basis, it
follows that the value e defined in Section I.1 corresponds to the minimal rank of a

subalgebra of o, as well as the smallest rank of an endomorphism of .

Notice that if X consists only of algebraic constants, then the empty set is a
basis of X and so rank X = 0. Moreover, for any subset X of A, it is clear that
rank X < rank (X). However the reverse inequality also holds since any basis Y of
X is minimal with respect to (Y) = (X) = ((X)) which shows that it is also a basis
of (X). Hence, we have proved the following:

Lemma 1.4.16. For any X C A, we have rank X = rank (X).

Definition 1.4.17. If o has (EP), then we say that of satisfies the free basis property,
denoted by (F), if any function a: X — A defined on a basis X can be extended to

an endomorphism @ of o .

In [22], Gould noticed that not every algebra satisfying (EP) also satisfies (F),

and constructed the following example.

Example 1.4.18. Let C' be a chain, that is, a totally ordered set regarded as a
semilattice, so zy = x A y = min {x, y}. Thus, we have that (X) = X so any set is
independent. It is easy to see that C' has (EP). Suppose that |C'| = 2 and let z,y € C
be such that = < y, that is, x # y and x = xy = yx. Since {z,y} is maximal and
independent, it is a basis of C' and we define «: {z,y} — C by za =y and ya = x.
If a could be extended to an endomorphism §: C' — C, then it has to agree on
{z,y}. But (zy)f = (zy)a = za = y and zfyf = raya = yr = x, contradicting
the fact that 3 is a homomorphism. Thus C' does not satisfy the free basis property.

We can now give the definition of independence algebra.

Definition 1.4.19. The algebra o is an independence algebra if it satisfies both
(EP) and (F).
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FExample 1.4.20. As we mentioned earlier, sets and vector spaces satisfy the exchange
properties. Moreover, a basis of a set S is itself, so that it trivially satisfies the free
basis property, while for a vector space, this property corresponds to the fact that
linearly extending a map defined on a basis gives an endomorphism. Thus sets and

vector spaces are particular examples of independence algebras.

It is worth noting that independence algebras are fully classified. A first classific-
ation is due to Urbanik [54] using the work of a number of authors on v*-algebras,
while a more recent one for finite independence algebras was given by Cameron and
Szab6 [6]. The equivalence of both classifications was a milestone achieved by Aratjo,
Bentz, Cameron, Kinyon and Konieczny in [2], answering a long standing question,
and giving a clear presentation of the different classes. We will give more details on
this classification in Section 1.5.2 but for now, it is sufficient to know that free group
actions (which also includes sets) and vector spaces form two of the classes present

in this classification.

1.4.2 SOME PROPERTIES OF INDEPENDENCE ALGEBRAS

Throughout this section o will denote an independence algebra. We give here some
useful results which will be used without further mention in the rest of the thesis. We
start by showing some properties of unary terms with regards to the set of algebraic

constants. Recall that 7 denotes the set of terms of arity k.

Lemma 1.4.21. Assume that || > 2 and let t € T,*. Then the following are

equivalent:

1) t is constant on A;
2) there exists a € (0 such that t(x) = a for all x € A; and

3) t(x) € (D) for some x & (D).

It follows that algebraic constants are terms whose image is a constant of A.

Proof. Clearly 2) implies 1) and 3).

1) = 2): Let t be a constant unary term and denote by a its image. Suppose that
a is an independent element and let ¢ € A be such that ¢ # a. Then, since & has
(EP), we can extend {a} to a basis {a} UY of A. Define a map o: {a} UY — A by

ac = c and ya =y for all y € Y. Since o has (F), we extend « to an endomorphism
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@ € End(d), and we obtain that
a =t(c) =t(aa) = t(a)a = aa = c,

contradicting the choice of ¢. Thus a cannot be an independent element, which
shows that the image of ¢ is a constant, and thus ¢ is an algebraic constant.

3) = 1): Let x € A be independent such that t(z) = a € (0). Since o has
(EP), we extend {z} to a basis {z} UY of A. Now, let b € A and define a map
ap: {z}UY — A by xay, = ya, = b. Using the free basis property of o, we extend

ap to an endomorphism @, and we obtain that
t(b) = t(xap) = t(z)a, = ay, = a.

Therefore t(b) = a for all b € A, and ¢ is constant on A.
Now assume that s € T for some k € N is a constant term. Then we can set
t € T by t(x) = s(x,..., ), which is a unary constant term. By the previous part,

it follows that its image is an element a € ((}), so that the image of s is a constant of

A. ]

Remark 1.4.22. In view of this lemma, we will no longer distinguish between constants

and algebraic constants in independence algebras.

Building upon the previous lemma, we can show that any unary term which

contains an independent element in its image is somewhat invertible.

Lemma 1.4.23. Let t € T be a non-constant unary term. Then there exists a
unary term u € T such that tou =wuot = id.

Consequently, the set of non-constant unary terms of A forms a group.

Proof. Let a € A be independent and write b = t(a). Then by Lemma 1.4.21, we
have that b ¢ (0) since ¢ is not a constant term. Since o has (EP), b € ({a}) and
b is independent, it follows that a € ({b}). Thus there exists u € T,* such that
a = u(b). From this, we get that b = t(a) = t(u(b)) and a = u(b) = u(t(a)).

In order to show that t ou = uot = id, we extend {a} to a basis {a} U X of A.
Then for ¢ € A define a: {a} UX — A by aa = ¢ and za = z for all x € X. By
the free basis property, we extend « to @ € End(d), and then we have

c=aa =u(t(a))a = u(t(aa)) = u(t(c)).

Thus it follows that uwot = id for all y € A. A similar argument gives also that
towu =id. O
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Before talking about the endomorphism monoid of &, we first look at properties
of endomorphisms, as well as consequences of the property (F). The most common
example of endomorphisms of an algebra are the identity maps on some subalgebras.

In fact, they correspond exactly to the idempotents, as given by:

Lemma 1.4.24. Let n € End(d). Then n = n* if and only if nlimy= id|im,-
Moreover, if B C o, then there exists n = n? € End() such that imn = B.

Proof. The first part comes from the well-known characterisation of idempotents of
Ts for any set S since End(d) C Ty.

Now, let B C of and X be a basis of B. Let b € B, so that b = u(z;) for some
u € T We extend X to a basis X UY of A, and we define the map e: XUY — A
by ze = z and ye = b. Using the free basis property, we let n € End(s) be the
extension of €. Then we have bn = u(z;)n = u(z;;) = b. Also, for all a € A, there
exist t € T4 2y,...,2, € X and y1,...,ym € Y such that a = t(Tg, ¥), from
which we get that

an® = t (xxP, ymr?) = t (777, b0) = t (T47,b) = t (757, o)) = an),
so that n is an idempotent. O]

We now look more closely into the extension property of a map. We first show
that any map defined on an independent set admits an extension to a homomorphism

and an endomorphism.

Lemma 1.4.25. 1) If X C A is independent and a: X — A, then a can be uniquely
extended to a homomorphism @: (X) — A.

2) Moreover, if B is a subalgebra of A and B: B — A is a homomorphism, then
B can be extended to an endomorphism v € End(d) with im~y = im (.

Proof. 1) If X = (), the result is clear from the fact that any endomorphism must fix
the elements of (f)) whenever this is non-empty. So we assume that X # (.

Since X is independent, let Y be a basis extension of X in A and define
v: XUY — A by

ry=xza and yy= rox

forall z € X and y € Y, where zq € X is arbitrary. Then, by (F) « can be extended
to an endomorphism 7 € End(d). If we now set @ = 7|xy), if follows that for all

x € X we get r& = xy = xa, so that @ is a homomorphism extension of a.
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Suppose now that §: (X) — A is another homomorphism extending «. Then
for all y € (X), there exist t € T and x1,...,7, € X such that y = t(zy,...,7z).
From this we get that

yo =t(xy,...,x)0 = t(x19, ..., x0)
=t(r1, ..., o) = t(T1@, . . ., TQ)

= t(xq,...,Tp)0 = ya.

Thus ¢ = @ and any extension is unique.

2) Suppose now that X is a basis of the subalgebra B and extend it to a basis
X UY of A. Let a = (|x be defined as in part 1). Then § = @ = 7|p and
imy=Ay=(XUY)y=(XUY)y) =(XB) = (X)5 =imp, as claimed. O

If the independent set in Lemma 1.4.25 is in fact a basis of A, then the uniqueness

of the extension gives us the immediate corollary.

Corollary 1.4.26. Two endomorphisms « and [ that agree on a basis of A are

equal.

Remark 1.4.27. In view of Lemma 1.4.25 and Corollary 1.4.26, we can identify without
ambiguity a map defined on a basis of & with its unique endomorphism extension
using the free basis property. When the map is only defined on an independent
set that is not maximal, we can still use Lemma 1.4.25 to extend it first to a
homomorphism @, and then to an endomorphism @. Even though in this last case
we lose uniqueness of the extension, we will usually drop the notation @ and @, and

will also write « for its homomorphism or endomorphism extension.

We now look at results when the map we want to extend has the extra property

that it is injective.

Lemma 1.4.28. Let X C A and o € End(d). If a: X — Xa is injective and X «

is independent, then X is independent.

Proof. Suppose that X is dependent but X « is independent. Then there exist distinct

elements z,71,...,7, € X and a term t € T¥ such that x = t(xy,--- ,x;). Since
« is injective, xa, z1q, . . ., xpa are all distinct, and since it is an endomorphism, it
follows that xa = t(x1, ..., zx)a = t(z10, . .., ), contradicting the independence

of the set Xa. O
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Remark 1.4.29. Before giving a corollary of Lemma 1.4.28, we make an observation
concerning terms built from independent sets. Let X = {zy,...,2,} C A an inde-
pendent set and suppose that t,s € T are such that t(z1,...,2,) = s(z1,...,2,).
Then for any aq,...,a, € A, we define a: X — A by x;a = a;, and extend it to an

endomorphism. Then, we get that
tlay,...,an) =t(xi0,. .., zpa) = t(z1,. .., ) = s(T1,. .., Tp) = s(ag, ..., ay),

which shows that the terms ¢ and s agree on all n-tuples of A.

Corollary 1.4.30. Let X be an independent set and a: X — A be injective. If X

is independent, then the extension of o to a homomorphism is injective.

Proof. Suppose that there exist a,b € (X) such that a@ = b where @ is the extension

of a. Then we have that t(z1,...,2,)a@ = s(t1,...,x,)a for some t,s € T and
x1,..., T, € X, that is, t(r1q, ..., z,0) = s(x10, ..., x,a). By assumption of X«
being independent, we can use Remark 1.4.29 to get that t(zq,...,2,) = s(z1,...,2,),
that is, a = b and @ is injective. O

In view of Lemma [.4.28, we have a well-defined notion of preimage basis as

follows.

Definition 1.4.31. Let o € End(d). A set X C A is a preimage basis of a if o is

injective on X and X« is a basis of im a.

Thus a set X can only be a preimage basis of a map a € End(d) if it is
independent in the first place.

Remark 1.4.32. For a basis Y of im «, define for each y € Y an element z, € A such
that z,o = y. Then « is injective on the set X = {z, : y € Y'}, which shows that X
is a preimage basis of a.

Moreover, we have that | X| = |Y| = rank (Y') = rank (im o) = rk(a).

Notation 1.4.33. Under the consideration of the remark above, given o € End(d),
we will say “let Xa be a basis of im a”, to mean that we pick X to be a preimage

basis of a.

We finish this section by proving that any two isomorphic subalgebras of an

independence algebra must have the same rank, and that the converse also holds.

Lemma 1.4.34. Let B and 6 be subalgebras of . Then B = 6 if and only if
rank B = rank C.
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Proof. Let 0: B — 6 be an isomorphism, and let X6 be a basis of im# = C. Then
rank C' = | X0| = | X| < rank B since X C B. Dually, rank B < rank C' using a basis
of im @', and we get that rank B = rank C.

Conversely, suppose that rank B = rank C', and let X and Y be respective bases
of B and C, so that a: X — Y is a bijection. By Lemma 1.4.25 extend « to the
homomorphism 6: (X) — A. Since im0 = (X)0 = (X0) = (Xa) = (Y) = C, it
follows that @ is onto. Moreover, since Y = X« is an independent set, we get that

is injective by Corollary 1.4.30. Thus 6 is an isomorphism from B to C. [

Remark 1.4.35. It follows from Lemma [.4.34 that all one-dimensional subalgebras of
A are isomorphic. Thus, either all one-dimensional subalgebras are singletons, or

they all have at least two distinct elements.

1.4.3 ADDITIONAL NOTATION

We close this introduction on independence algebras by adding to the notations
presented in Section I.1 in order to facilitate the exposition of the proofs coming
in subsequent chapters. All sets and elements considered below will belong to the

universe of an independence algebra o .

Closed sets and bases. By writing C' = (b;, bs), we mean that C' is the closed
subset of A generated by by and by. If we write C' = ({b1,b2}) instead, it is assumed
that the set {b1, b2} also forms a basis of C.

Similarly, by B = ({z;} U {y;}) we mean that the sets {z;} and {y;} are inde-
pendent sets and that together they form a basis of B. Moreover, if D C B has a
known basis W, we will abuse notation and write B = D U ({2;}) to signify that
D is a subalgebra of B and that the basis W of D can be extended to a basis of B
through {z}.

Endomorphisms. If A= ({z;}U{y;}) and b;,d; € Aforalli € I and j € J,
Ti Yj
b; d;
without further considerations, since we know by Lemma [.4.25 that the map «

when writing o = we will assume that this map is an endomorphism

defined above can be extended to a unique endomorphism of &f. Notice also that

the sets {b;} and {d;} are not necessarily independent nor disjoint.
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Terms. Given an independent set {z;} and a € ({z;}), we will write a = t(7;)
for some term t € T to mean that there exists a finite independent subset
{zi,...,2;,} € {x;} and a k-ary term ¢ such that a = t(x;,...,2; ). In par-
ticular, if {x;} is infinite, this notation allows us to write terms concisely without

requiring the subset to be made explicit.

.5, ENDOMORPHISM MONOIDS OF INDEPENDENCE ALGEB-
RAS

Since this thesis is concerned with endomorphism monoids, we finish this preliminary
chapter with a section giving some properties of the endomorphism monoid of an
independence algebra which will be useful in the coming work. All of the results
contained in this section will be given without proof and can be found in Section 4
of [22].

One of the most important structural properties of the endomorphism monoid of

an independence algebra is the following.

Proposition 1.5.1. Let A be an independence algebra. Then End(dA) is regular.

1.5.1 IDEALS AND GREEN’S RELATIONS

Throughout this section, & denotes an independence algebra of dimension k.
Since ranks of endomorphisms correspond to ranks of subuniverses of A, it follows

that for all & € End(ef) we have rk(a) < k and rk(«) > e, where e is the smallest

rank of a subalgebra of o as described in Notation 1.4.15. The following lemma

gives us that there is an endomorphism of each rank between these two bounds.

Lemma 1.5.2. Suppose that dim A = k and let v be a cardinal such that e < u < k.
Then there exist a subalgebra B C A of rank p and a map o € End(dA) such that
ima = B, so that rk(a) = p.

We now concentrate on particular subsets of End(sf). Recall that x™ denotes

the successor cardinal of k. For each e < p < k™, we define the set 7, C End(d) by
T, ={a € End(d) | rk(ar) < pu}.

Under this notation, it is clear that T,+ = End(&f). Similarly, we have that the set
Ty = {a € End(d) | ima = ()}, which is non-empty if and only if o has constants.
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Remark 1.5.3. Notice that in the definition of 7, we take all maps of rank strictly
less that p. This is necessary if o is infinite dimensional since we can then have
limit cardinals. In the case where & is finite dimensional, then k™ < Ny and each
i is the successor of a finite cardinal, so that we can replace each ideal T}, by the
corresponding ideal T, := {a € o | rk(a) < pu— 1}.

Lemma 1.5.4. For all o, 5 € End(d), we have rk(af) < min {rk(«),rk(5)}.
Consequently, T), is an ideal of End(d) for alle < p < k™.

Remark 1.5.5. Notice that if T} # 0, then it is a left-zero semigroup. Indeed, if o € T}
and 5 € End(of), then for all a € A, we have aa € (). Since f3 is an endomorphism,
it must fix constants, and thus (aa)8 = ac, so that aff = a. Thus « is a left-zero of

End(d) and T} is a left-zero semigroup.

We now give a description of Green’s relations on End(d) as follows:

Proposition 1.5.6. Let o, f € End(A). Then we have the following:
1) aZ B if and only if im o = im 3,
2) aR B if and only if ker a = ker f3;
3) aD S if and only if rk(a) = rk(B);
1) F=D.

Since ideals are unions of ¥-classes, we directly have the following corollary.

Corollary 1.5.7. Any ideal of End(d) is of the form T), for some cardinale < pp < k.
Consequently, the ideals of End(d) form a chain.

Remark 1.5.8. It follows from Corollary 1.5.7 that the minimal ideal of End(d) is
T. .1, that is, it consists of all maps of rank 0 if the algebra o contains any constants

and otherwise of all maps of rank 1.

1.5.2 CLASSIFICATION UP TO EQUIVALENCE

We close this section by giving a classification of endomorphism monoids of independ-
ence algebras provided in [2]. Since all the work involving independence algebras
in this thesis only relate to their endomorphism monoids, we will indeed want to
consider two independence algebras & and 9 as equivalent if their endomorphism

monoids are isomorphic. Formally, this is given by the following definition.
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Definition I.5.9. Two algebras o = (A, F') and B = (B, F’) are called E-equivalent
if there exists a bijection §: A — B such that the mapping oo — 0~ o 06 is an
isomorphism from End(¢) to End(9B).

The classification of independence algebras up to E-equivalence is then given by

the following:

Proposition 1.5.10 ([Theorem 2.10 of 2]). Any independence algebra A = (A, F)
is E-equivalent to a free group action algebra, a quasifield algebra, a linear algebra,

or an affine algebra.

We now describe these classes of independence algebras.

Free group action algebra. Let G be a group of permutations of a non-empty
set A by an action on the left. Suppose that C' C A is such that all fixed points
of any non-identity g € G are in C' and that gC = C for all g € G. A free group
action algebra is an algebra o = (A, F'), where for each g € G and ¢ € C, the set F'

contains a unary operation f, and a nullary operation f. defined for all a € A by

fo(a) =ga and f.() =c.

With this description, it follows that g(A\ C') = A\ C and that this action is free,

that is, if g, h € G are such that ga = ha for some a € A\ C, then g = h. Thus there

exists a set X = {z;} € A\ C so that we can split A\ C into orbits of the form Gz;.
This algebra can then be seen as the G-set

FX|_,0<G) = C L |_| Gl’i,
r,€X

where gx; = hx; if and only if ; = x; and g = h, and the elements of C' are the

constants of the algebra.

Remark 1.5.11. If G is trivial and C' is empty, then the corresponding free group

action algebra is simply a set with no operations.

Quasifield algebra. Let () be a non-empty set with two binary operations, a
multiplication - and a subtraction —. The set ) is a quasifield if there exists
distinct elements 0,1 € @ such that (Q,-) is a semigroup with zero 0, the algebra
(Q \ {0}, {1, 1}) is a group, and for all z,y, z € (Q we have the following:

1) x—0=uz,
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2) z(y — z) = 2y — xz, and
z ifx =y,
3) v —(y—=2)=
(x —y)— (z—y)(y—2)"'2 otherwise.
A k-ary operation f on a quasifield @ is said to be QQ-homogeneous if for every
s, t,xy ...,z € Q we have f(s —txy, s —txg,...,s —txy) = s —tf(x1,...,x%).
A quasifield algebra is an algebra Q = (Q, F') where @) is a quasifield, all operations

of F' are ()-homogeneous and F' contains all binary ()-homogeneous operations.

Remark 1.5.12. In a quasifield algebra Q, there are no nullary operations and the
only unary operation is the trivial operation. Indeed, if f is a ()-homogeneous unary
operation and x € @, then f(z) = f(x —0-1) =2 —0f(1) = 2. Thus, every element
of @) is a closed independent set, so that the one-dimensional subalgebras of Q are

all the singletons.

Linear algebra. Let V be a vector space over a division ring K, and Vj a subspace
of V. By a linear algebra, we mean an algebra V = (V| F') where F consists of the

following operations:

flz,y) =z +y, fulx) = px,and f,() = w,

where 7,y € V, u € K and w € Vj. It is easy to see that under this definition, we

have that any k-ary term ¢ € TV is of the form

k

t(xlv B ,I‘k) = Z:uzxz + w,
=1

for some {u;} C K and w € V. Moreover, if Vj = {0} is the trivial subspace and K

a field, it follows that this algebra coincides with the classical notion of vector space.

Affine algebra. Let A be a non-trivial vector space over a division ring K and
Ay a subspace of A. An affine algebra is defined as an algebra o = (A, F') with

operations
k
f(il}l, c. ,I’k) = Z/\zxz + a,
i=1

where k£ > 1, the scalars \; € K are such that Zle A =1 and a € A,.

Remark 1.5.13. In an affine algebra, all unary operations are of the form f(z) = z+a
for some a € Ag. Moreover, there are no nullary operations, since in the definition,
we require k > 1. This means in particular that if Ay is the trivial subspace of A,

then all one-dimensional subalgebras are singletons.



An introduction to semigroups of

endomorphisms with restricted range

In this chapter, we introduce a type of subsemigroup of the endomorphism monoid
of an independence algebra and we make initial study of its structure. Most of the
results presented here are already known for some types of independence algebras
such as sets and vector spaces, or in the context of principal one-sided ideals. We
only expand upon this work and generalise it to the context of independence algebras.
For this reason, the origin of the ideas we use throughout the proofs may be traced
back in the literature to existing work [35, 37, 38, 47, 50]. Some results may also be
deduced from [12] by considering results on Green’s relations for principal one-sided
ideals of a semigroup. Some new results are also presented here for use in the next

chapter.

This chapter is structured as follows: we start in Section II.1 by defining the
semigroup 7T'(,9B) which will be the object of our study, after giving a brief
overview of the special cases previously studied. We will then compare T (A, %RB)
to the endomorphism monoid End(s) in Section I1.2, to show that these are very
different objects. In Section I1.3 we will focus on the regular elements of T'(f, %)
before describing its Green’s relations in Section II.4 and its ideal structure in
Section IL.5.

Note. Content from this chapter has already appeared in a paper [24], but we give

more details and additional results here.

95
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II.1 HISTORICAL CONSIDERATIONS

The full transformation monoid Tx of a set X, the monoid of linear transformations
End(V') on a vector space V', as well as their generalisation to the endomorphism
monoid End(¢) of an independence algebra o, have been the focus of a consider-
able amount of research during the last decades. Following Malcev’s work on the
automorphism group of Ty, Symons [51] investigated the automorphism group of the
subsemigroup of Ty consisting of all maps with range restricted to a subset Y C X
which he denoted by T'(X,Y). Later, Nenthein, Youngkhong and Kemprasit [38]
started the study of the properties of T'(X,Y") which led to similar studies of T'(V, W),
the semigroup of linear transformations of a vector space V' with range restricted to
a subspace W. As noticed in Section 1.4, both sets and vector spaces are examples
of independence algebras. Our aim here is to put the work on 7'(X,Y") and T'(V, W)
into the general context they provide.

Let o be an independence algebra, and 9B a subalgebra of 9. We make no
global assumptions concerning the cardinalities of o and 98: these may be either

finite or infinite dimensional algebras.

Definition I1.1.1. The semigroup of endomorphisms of A with restricted range in
AR is the set
T(A,B) ={a € End(d) | ima C B},

with product inherited from that of End(«).

It is clear from the definition that if B = () then T(f,%B) = ) and we will
therefore exclude this case. Otherwise, the set T(d,B) is easily seen to be a
subsemigroup of End(d), and if BB = o it is equal to the monoid End(d). In fact,
we will prove in Section I1.2 that unless B = o or & is a singleton, then T'(A, RB)
is not isomorphic to the endomorphism monoid on any independence algebra. Thus
T(d,9B) holds a special place in the study of subsemigroups of End(s) and is of
particular interest.

In the case where our algebra o is simply a set, Green’s relations on T'(A, %)
have been studied by Sanwong and Sommanee [47]. In the case where o is a vector
space, Nenthein, Youngkhong and Kemprasit [37, 38| determined the regular elements
and then Sullivan [50] studied Green’s relations. Subsequently, Mendes-Gongalves
and Sullivan [35, 50] gave the structure of the ideals of T'(, 9B) for both the set and

the vector space case. For each cardinal r, the set {o € T'(d,9RB) | rank o < r} is an
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ideal of T'(,9B). However, unlike the case for End () itself, these ideals are not in
general the only ones present in T'(, %), nor do they form a chain. In [35, 50|, the
authors used the ideal structure when the dimension of the subalgebra 98 is at least
3 in order to construct two ideals that are not comparable under containment. In
this way, they showed a weaker version of Corollary 11.2.3, namely, that if dim 98 > 3
then T'(d,9B) cannot be isomorphic to End(€) for any € a set or a vector space,
as appropriate, since ideals of the latter always form a chain. We show via a more
direct route that there cannot be such an isomorphism for any independence algebras
apart from the trivial cases. Nevertheless, we will give similar examples of ideals not
forming a chain to give the reader an idea on this particular behaviour.

Another way to study the semigroup T'(9f, 9B) is to use the fact that this semigroup
corresponds to the principal left ideal of End(9f) generated by any idempotent with
image the subalgebra 9. Such an approach has been taken by East [12], where
he investigated some aspects of the structure of principal one-sided ideals of a
semigroup. In particular, the subset of regular elements, Green’s relations, as well as
the idempotent-generated subsemigroup of principal one-sided ideals were exhibited.
Even though some of the proofs contained in this chapter can be seen as a special case
of the results of East, the context of independence algebras allows us to give explicit
constructions, and we also develop other properties which will be used throughout
Chapter III. From now on, & will denote a general independence algebra, and 9% a

non-empty subalgebra of .

II.2 INITIAL COMPARISONS WITH THE ENDOMORPHISM
MONOID

As mentioned earlier, the semigroup 7'(d, 9B) is not a monoid, unless the subalgebra

A has some specific conditions, as given by the following lemma:

Lemma I1.2.1. The semigroup T'(A,B) is a monoid if and only if B = A, or B

is a singleton.

Proof. Clearly if B = o then T'(dA,B) = End(d), and if 9B is a singleton, say {b},
then T'(A,RB) = {c¢p}, where ¢, is the constant map with value b. Moreover, both of

these are indeed monoids.
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Let us now assume that B C o and let by, by € B. Since o is an independence
algebra and 9B # 9, there exists an independent element a € A\ B. Let X be a
basis of B and extend it to a basis X U {a} UY of A, where Y is possibly empty.
We now define two maps «, 8 € End(d) as follows:

o (xz a yj) and = (xz a yj).
z; by by z; by by
Clearly both im o and im 3 lie in B, which means that o and 8 belong to T'(, 9B).
Suppose that T (9, 9B) is a monoid, and denote its identity by €. Now let ¢ € B be
such that ae = ¢. Since ¢ is a left identity for a and a|p is the identity on B, we
need by = aa = aca = ca = ¢. Similarly, € is a left identity for § and thus we have
that by = a8 = aeff = ¢. Therefore by = by, which means that 9 is a singleton as
these elements were taken arbitrarily. This shows that for any proper subalgebra

B with at least two distinct elements, the semigroup 7'(d, %) does not contain a

two-sided identity, and thus is not a monoid. O

Remark 11.2.2. Notice that the proof shows a stronger result, namely that there is

no general left-identity in 7'(o,9RB) unless o = 9B or A is a singleton.

This, together with the fact that the trivial monoid is the endomorphism monoid
of an independence algebra with a single element, directly gives us the following

result:

Corollary 11.2.3. The semigroup T(A,B) is isomorphic to End(€) for € an
independence algebra if and only if B =, or B is a singleton.

In spite of the fact that T'(of,9B) has exhibited a very basic difference from
End(d), by virtue of not being a monoid, some results are inherited directly from
the structure of the independence algebra and are thus similar between these two
objects. We give here two results that emphasize this fact, and that will be used

later.
Notation 11.2.4. Following our notation for elements of End(&f) in Section 1.4.3, for

A = ({x;} U{y;}) when we say that a € T'(A,9RB) is defined by o = <? cyl] , it
i Uy

suffices to verify that {¢;},{d;} C B as then ima = (¢;,d;) C B.

Lemma I1.2.5. Let o, € T(A,9RB) be such that ima = im 3. Then there exist
v, b € T(A,RB) such that:

e imy =1imf and kery = ker o; and
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e impu =ima and ker u = ker 3.

Proof. Since ima = im 3, there exists an isomorphism ¢: Aa — Af. Define
v € T(A,B) by v = a¢ and = B¢~t. Then, imy = Ay = (Ada)dp = AB = im 3
and similarly im 4 = im«a. Additionally, since ¢ is injective, we get that for all
a,be A

(a,b) € kery <= aap =bap <= aa =ba <= (a,b) € kera,

so that ker v = ker o and using similar arguments we have that ker u = ker 5 which

concludes the proof. O

Lemma I1.2.6. Let 6 be a non-empty subalgebra of 9B. Then there exists an
idempotent n € T(A,B) such that imn = 6.
Consequently, for all o € T(A,B), there exists n = n* € T(A,RB) such that

imn =ima and thus an = .

Proof. Let 6 be a non-empty subalgebra of 98. Then 6 is also a subalgebra of o
and it follows from Lemma 1.4.24 that there exists an idempotent n € T'(A,9RB) such
that imn = C C B. Thusn € T(d4,RB).

Let a € T(A,RB) and € = ima. Then by taking n as above, we have that
imn = ima. Moreover, 7|im,= id|imy, by Lemma 1.4.24 again, so that an = « as

claimed. O

II.3 REGULAR ELEMENTS

We have already mentioned in Proposition 1.5.1 that the endomorphism monoid of
any independence algebra is regular. Thus, in the case where 9B = o, it follows
that T'(d,9B) is regular. However, in general T'(d,9RB) is not regular and we list
explicitly the cases where it is. Showing that all other cases do not give a regular
semigroup will be the purpose of Corollary I1.3.3, and the remainder of this section
will be devoted to proving useful results on the presence of regular elements in our
semigroup.

Assume first that (§) # 0 and take B = (). Then T(,RB) is a left-zero
semigroup, and is thus regular. Indeed, since any endomorphism has to act as the
identity on ((), it follows that for any o, 8 € T(d,9B) we have that im a = (})) = A

and since f|p= id|g, we obtain that a5 = «a.
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Assume now that () = () and dim B = 1. We show that in this case T'(,%B) is
also regular. In order to see this, we let {b} to be a basis of B which is then extended
to a basis {b} Ll {z;} of A. Since & has no constants, by Lemma 1.4.21 and 1.4.23,
we know that the set of unary terms is a group, which we denote G. Moreover, since
the only subalgebra of 9B is A itself, we get that any element of B can be written
as g(b) for some g € G. Let a € T(A,9RB). Then, ba = g,(b) for some g, € G, and
for all i € I we also have x;a = g;(b) for some g; € G. If we define g € T(A,RB) by
b3 = g, *(b) and x;8 = g;(b) for all i € I, then we get that bBa = g, (gs(b)) = b and
thus

riafa = g;(b)fa = g;(bfa) = g;(b) = x;a  and
bafa = gy(bfa) = gy(b) = ba,

so that afa = a and therefore T'(d, 9B) is regular.
Remark 11.3.1. In the above case where (}) = () and dim B = 1, if our algebra o

is finite dimensional, say with rank n, we can also realise the semigroup T'(, 9B)
as a wreath product as follows. Taking G, b and X = {xs,...,z,} as before, we set
Y = {b} U X as a basis of A and we let ¢; € T, be the constant map with image
the element 1, that is, kc; = 1 for all k € {1,...,n}. Define W = G {c1} to be the
semigroup on G™ x {¢;}, where for any g1,...,9n, b1, ..., h, € G the multiplication

is given by

((917 s 7gn>7 Cl) ((hla s 7hn)7 Cl) = ((glh1017 s >gnhncl)7 cl)
= ((g1h1,-- -, gnh1), 1) -

Then the map ¢: W — T'(A,9B) which sends the element ((gi,...,9s),¢1) to the
T

g1(0) 9:(b) i
shorthand for ((g¢1,...,9s), 1), and suppose that g¢ = he, that is a, = a;. This

map o, = € T'(d,RB) is an isomorphism. To see that, write g as a

means in particular that for any z; € X, we have that ¢;(b) = 2,04 = x5 = h;(b),
and similarly, ¢1(b) = bay, = bay, = hy(b). Since these unary terms are equal on
the independent set {b}, they must be equal everywhere by Remark 1.4.29. Thus
gy = hy, which shows that g = h and therefore ¢ is injective. It is obvious that ¢ is
also surjective, and thus it is a bijection. Additionally, for any z; € X we have that
2i(gohe) = ziagan = gi(b)ay = gihi (b) = x:(gh)¢, and similarly b(gphe) = b(gh)d
which shows that ¢ is a morphism, and thus it is an isomorphism of W onto T'(, %).
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We now want to show that unless we are in the cases above, the semigroup
T(d,B) is not regular. Notice first that if o € T'(A,RB) is a regular element, then
there exists v € T'(d,9RB) such that o = ey and from this, we obtain that

Ao = (Aay)a C Ba.
Following [50], we define the set () which will contain all regular elements by
Q={acT(d,RB)| Ao C Ba}.

It is clear that for any element o € T'(A, ARB), the condition Ao C Ba on the elements
of @ can be rewritten as Ao = Ba or as (A \ B)a C Ba, and these equivalent
conditions will be equally used to define an element of ().

We can now show that the regular elements of T'(d,B) are exactly those of the
set () defined above.

Proposition I1.3.2. The set Q) consists of all the reqular elements of T(A,RB), and
is a right ideal of T (A, 9RB).

Proof. As per the initial remark above, any regular element of T'(,9B) lies in Q.
Moreover, for any a € Q and § € T(A,9B) we have that

A(ap) = (Aa)B € (Ba)B = B(ap),
and thus af € @ and @ is a right ideal.

Let us now show that any element of @) is regular. Let a € @ and write
Ba = ({b;a}), so that {b;} C B is a preimage basis of a. We also take an element
c € ({b;}), which exists as 9B is non-empty. Since ima = Aa C Ba, then for any
a € A there exists a term ¢ such that aae = t(@) = t(E)a. If welet A= ({b;}u{z;})

and we define u; = z;a = t; (bTa), then we have that the map a can be written as

bi X
o = .
bZ'Oé Uj

Additionally, let {a;} € A be such that A = ({b;ja}U{a;}), and define v € T'(d, RB)

by:
biOé a;
v = ( bz C) ’

where ¢ € B is arbitrary. Then v € @ and we can see that a = avya since b;aya = b«
and zjaya =t (bTa)’ya = xja, which finishes the proof that any element in @ is

regular. O
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For ease of use, the set of non-regular maps, that is, the set T'(d, %) \ @ will be
denoted by Q°. We can now prove under which condition the semigroup T'(s, 9B) is
not regular, that is, when T'(sf,98) \ Q # 0.

Corollary 11.3.3. For B # A, the semigroup T(A,B) is not reqular if and only if
one of the following happen:

e dimB > 2; or

o dim B =1 and (0) # 0.

Proof. 1f either dim B = 1 and () = (), or B = () # 0, then we have shown that
T(dA,RB) is regular at the beginning of Section II.3.

Now suppose that dim B > 2 or that dim B = 1 and () # (). If dim B > 2, then
there exists an independent set {b;, b2} C B. On the other hand, if dim B = 1 and
(@) # 0, then there exists an independent element b; € B, and a constant by € B. In
both cases, we have two elements b, by € B such that by ¢ (bs). Now let B = ({z;}),
A= ({z;} U{y;}) and define o € T'(A, RB) by

[T Y
a= .
Then we have that Ba = (bs) C (b1, be) = Aa and thus « is not in Q. O

If the semigroup T (A, B) is regular, then we automatically obtain most of its
structure such as Green’s relations and the ideals from the study of End(d). For
the remainder of this chapter, we will concentrate on the study of T'(,9B) in the
cases when it is not regular, that is, we will assume throughout this chapter that
B #+ 9 and that either dim B > 2 or we have dim B = 1 with () # 0.

We would like to avoid having to distinguish these two cases in the proofs, so we
give a useful tool in the following lemma. Recall from Section I.4 that we denote

by e the minimal rank of a subalgebra of of, which also corresponds to the minimal
rank of maps in 7'(A, RB).

Lemma I1.3.4. There ezist two distinct elements by and by in B such that by ¢ (by).
Let a € T(A,RB). If rk(a) > e, then there exist {ay,as} C A such that a; ¢ {(as)

and aya ¢ {asa).

Proof. All the algebras we are considering have either dim B > 2, or dim B = 1 and
(D) # 0. Thus the same argument as in the proof of the Corollary 11.3.3 works, and
we find two elements by, by € B such that by ¢ (by).
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Now let o« € T(A,B) be such that rk(a) > e. If rk(a) > 2, then « has a
pre-image basis of size at least two, that is, there exist aj,as € A such that {a;,as}
is part of a pre-image basis of a. But then, by definition of pre-image basis, we
have that a; ¢ (as) and aja ¢ (aser). If rk(a) = 1, this means that e = 0, and thus
(D) # 0. Then, by taking {a;} to be a pre-image basis of @ and ay € (@), we get that
a; ¢ (D) = (by) and ay@ ¢ (D) = (bax). O

In view of Lemma I1.3.4, we can treat in a similar way algebras of a given rank

that contain constants with algebras of a rank one higher that do not have them.

Remark 11.3.5. A few notes on the structure of () worth mentioning are the following:
o Q is always non-empty: let B = ({b;}) and A = ({b;} U {a,}), then the map
b; a;
a = ( “ is an idempotent and is clearly in Q.
i 01
o () is not a left ideal: let by, by € B such that by ¢ (by) and define the algebras
C = (b1,b2), B=CU{y;}), and A= BU ({z;}) together with the following

maps:
o bi by y; x; and f = bi by y; x; .
by by by by by by by by
Then it follows that o ¢ @ and § € @ are such that a5 = a ¢ Q.

o Any map in Q) has a preimage basis in B: for a € () we have ima = Aa = Ba,
so there exist {b;} C B such that im«a = ({b;a}), and then {b;} is a preimage
basis for . Consequently, the elements a; and as in Lemma I1.3.4 can be
assumed to be in B directly. From now on, these two facts will be used without

explicit mention.

Since regular maps will be of the utmost importance in the description of Green’s
relations in T'(d,9RB), some lemmas are given here for later use. The first one gives

us a necessary and sufficient condition on when the product of two maps lies in Q.

Lemma 11.3.6. For o, € T(dA,RB) we have that aff € Q if and only if for all
x € A, there exists an element y € B such that (zo, ya) € ker N (B x B).

Proof. Suppose first that a8 € (). From the remarks above, there exists a preimage
basis of af in B, say {b;}. Therefore, for any = € A, we have that zaf € ({b,a5})
and thus there exists a term t such that zaf = t(b;af) = t(b;)af. Since t(b;) € B
and (xoz, t(bii)oz) € ker SN (B x B), the first direction is proved.
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For the converse, we have that Ao = {za | v € A} 5. However, each element
of the set {xa | x € A} lies in B and is ker S-related to some element yo in Ba by
assumption. Thus Aaf = {ya | y € B} f = Ba/$ which gives us that af € Q. O

The next lemma shows that we can always create a map o' in @ from a non-
regular map o with the same image, and that the converse is also true given that

the rank of « is not minimal.

Lemma I1.3.7. For any map o € Q°, there exists a map o € @Q such that
ima’ =ima. Similarly, for any map B € @Q such that vk(8) > e, there exists
B € Q° such that im 3 = im f3.

Proof. Let us assume first that o € Q°. Then Ba = ({b;a}) (with I possibly empty)
and we extend this to a basis {b;a} U {aja} of ima # Ba, so that J # ). Since
dim B > |I| + |J|, we can write B = ({¢;} U{x;} U{yx}) where the set K is possibly
empty. Finally letting A = B U ({#5}) and defining o/ as the following:

O/ _ C; $j Yk Zg
bia aja yra zso 7
we have that
Ad' Cima = ({ba}tU{aa}) = {a}U{z;})a’ C Bd,

and thus o’ € @ with imo’ = im a.

For the second part of the lemma, assume that § € @ is such that rk(8) > e.
Then, im § = Bf and there exist two elements by,by € B such that b5 ¢ (bs/3)
together with a set {z;} C B such that A5 = Bf = (b1, 025) U ({z;5}). Write
B = (by,b) U {{z;}) U ({yr}), A= BU ({a;}) and define

5= b2} @y e @i )
by 3 %ﬂ b3 b1

Then AG' = (b6, bo6) U ({;8}) and BF' = (5u) U ({;8}) = (B \ {ba})B. Hence
b1 5 ¢ BB’ which gives us that A5’ # Bf’. Therefore 5’ ¢ ), and we also have that

im /' = im 3 as required. O

When we consider a non-regular map «, even though the equation Aa = Ba
is not satisfied, we can nonetheless have that Aa = Ba, which happens precisely

when Aa and Ba have the same rank as given in Lemma 1.4.34. As an example,
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consider A = ({z;}), B = ({z;} \ {z1}) where I = N, and define a € T'(A,%RB) by
xpae = Tp41. Then clearly x5 € Aa\ Ba, so that o ¢ @), but we nevertheless have
that rk(a) = dim B = Xy = dim(Ba). This peculiar behaviour of non-regular maps
can however only happen if o has infinite rank. This is made clear in the following

lemma.

Lemma I1.3.8. Let a € T'(A,RB) be such that Aa = Ba.. Then either a € Q, or
rk(a) > Ry. Consequently, rk(a) = dim(Ba) implies a € Q only if rk(«) is finite.

Proof. If Ao = Ba, then rank (Aa) = rank (Ba) = k. Since Ba C Aq, if & is finite
then we must have Ba = A« and thus a € Q). m

The contrapositive statement immediately gives us the following:

Corollary I1.3.9. If a ¢ Q has finite rank, then
rk(a|p) = dim(Ba) < dim(Aa) = rk(a).

Another important property of regular maps is that they are the only ones that
have left identities, which will be a useful consideration in the coming study of the

semigroup T'(,9RB). This is formally given by the following lemma.

Lemma I1.3.10. Let o € T(dA,RB). Then the following are equivalent:

1) « is regular;

2) a = na for some idempotent n € T(A,RB) with rk(n) = rk(a); and

3) a =~a for some vy € T(A,RB).
Proof. 1 = 2: Since « is regular, then o = afa for some g € T(A,B) and taking
n = af gives the desired result.

2 = 3: Putting v = 1 gives the result immediately.
3= 1:If @ = ya, then Aa = (Ay)a C Ba and thus « € Q. O

Remark 11.3.11. Given a regular map a € T(,9B), one can easily construct an
idempotent left identity for a. Indeed, let {b;a}, {b;} U {x;} and {b;} U {x;} U {ax}

be bases for im o, B and A respectively. With this notation, we can write « as

o bz T Qe
b w5) w(na))
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for some terms u; and vy,. Define n € T'(d,9B) by

bi X Qe
n= AN
Then, we have that 7 is an idempotent such that na = o and imn = ({b;}) so that

rk(n) = || = rk(a). Notice that we have constructed 7 in such a way that we also

have that ker oo = kern.

II.4 GREEN’S RELATIONS

In order to better understand the structure of T'(,9B), as for any semigroup, we
start by looking at Green’s relations. There are three relevant semigroups in question
here: End(d), T'(d,9B) and Q. To avoid confusion, where the relation is on End (<)
or (), we use a subscript (we consider T'(,9RB) as our base case and so do not
use a subscript here). For example, R4, R and R denote Green’s relation R on
End(d), T(d,B) and Q respectively. Recall from Proposition 1.5.6 that Green’s
relations are given on End(d) by: a R4 S if and only if ker o = ker 5, a &£y (3 if and
only if ima = im 8, and a P4 § if and only if rk(a) = rk(5). Since @ is a regular
subsemigroup of End(d), we directly have the following:

Lemma I1.4.1. In Q, we have that Rg = RaN(Q x Q), Lo =ZLaN(Q x Q) and
thus also Do = DaN(Q X Q).

The description of Green’s relations in the semigroup 7'(, %) is however slightly
different. This will be the purpose of the remainder of this section. We thus extend
the results of Sullivan, Sanwong and Sommanee [47, 50], using similar techniques to
theirs.

We start by showing that R = Ry N(T'(A,B) x T'(A,RB)).

Proposition 11.4.2. Let o, 5 € T'(A,RB). Then o = Bu for some p € T(A,RB) if
and only if ker 5 C ker av.
Consequently, « R B in T(A,RB) if and only if ker o« = ker 3.

Proof. Clearly if a = fu then ker § C ker . Now suppose that ker g C ker ar, and
let AB = ({a;8}). We also let A = ({a;5} U {z;}) and define v € (A, RB) by:

. CLZ‘B Ij
T a0 ;3 .
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By definition of {a;3}, for any z € A, there exists a term ¢ such that z3 = t(a;3) =
t(a;) which shows that (z,(a@;)) € ker 8 C ker «r, and thus

2Py =t (m) y=t ((aﬁ)w) =t(ma) = t(@;)a = za.

Therefore we have that a = 7.
It follows that kera = ker 8 if and only if @« = fu and f = au’ for some
w, ' € T(A,PB) if and only if a R . O

Remark 11.4.3. Notice that regular maps can only be R-related to other regular
maps since B C P and in any semigroup either all elements in a &-class are regular,
or none of them are. Thus, if o, 3 € T(A,ARB) are such that ker o = ker 3, then
either a, 8 € Q, or o, 5 € Q°.

The relation &, however, does not behave exactly as in End(&) and is more

restrictive on the non-regular part of 7'(d,%B).

Proposition I1.4.4. Ifa € T(d,B) and 5 € Q, then a = \§ for some X\ € T(A,RB)
if and only if ima C im f3.

Consequently, « L 5 in T(A,RB) if and only if one of the following happen:

e o= f3; or

e o, €@ and ima = im .

Proof. Let o € T(A,RB) and f € Q. Clearly if « = AF, then ima C imf.
Conversely, let us assume that ima C im 8 and write Ao = ({a;a}). Since § € @,
we have that ima C Bf and thus {a;a} is an independent set in Bf. This means
that we can rewrite each element of this set as some f;3 where f; € B, that is,
we have a set {f;} C B such that a;a = f;8 for all i € I and the set {f;5} is
independent. We now take {f;} C B such that A = Bf = ({f;5} U{f;3}) so that
{fi} U{f;} € B is independent, and we let {z;} and {y,} be subsets of A such that
A= ({a;} U{xr}) and A= ({fi} U{f;} U {ye}). With this notation, we can write

the maps a and [ as follows:

[ @ Ty, - fi i e
o= and 8= .
(aia tk(aia)) (fzﬂ fib yeﬁ)

where each ¢, is a term of our algebra. If we define a map A € T'(A,%B) by

s
fi te(F))
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we get that a;,\8 = fif = a;a and 2\ = t,(f;) 8 = t1(fiB) = tr(@a) = zpa. Thus
a = A3, which concludes the first statement of the proposition.

Now, let us assume that a & 3 in T'(d,B). Then, there exist \, N € T'(4,RB)*
such that « = Af and 8 = Na. If A =1 or N = 1 then we have that a = (.

Otherwise, we have that
a=Na and B=N)\3,

from which we get that a and g are regular elements using Lemma I1.3.10. From the
first part of the proposition we also have that ima C im 8 and im § C im «, hence
the equality. The converse follows directly from the description of &£ given above
whenever a # 3. m

From R and & we immediately get the characterisation of the #Z relation as:

Corollary I1.4.5. Let o, € T(A,RB). Then a# B if and only if one of the
following happen:

e a= [, or

e a, € (Q with keraw = ker 8 and ima = im (3. ]

We know that in End(d) the relations @4 and F4 coincide. However, this
is not the case in T'(f,9RB) and these relations are described in the following two

propositions.

Proposition 11.4.6. If a, 8 € T(A,B), then aD [ in T(A,RB) if and only if one
of the following happen:

o kera = ker 3; or

e «, 3 € Q with rk(a) = 1k(p).

Proof. Assume that « @ . Then there exists v € T'(d,9B) such that a R~y Z 5.
By Propositions 11.4.2 and 11.4.4 we have that ker a = ker~, and either v = 3 or
~v and 3 are both regular with im~ = im 5. In the case where v = 3 we obtain
that ker « = ker v = ker (3, as required. Assume now that we are in the case where
v, 5 € @ and im~y = im 3. Then, by Remark 11.4.3, « is also in @) since a R v, and

we also get that

rk(5) = rk(v) = dim(A/ kerv) = dim(A/ ker o) = rk(a).
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Conversely, if ker o« = ker 3, then a R  and thus a9 5. Otherwise, assume
that rk(a) = 1k(8) and «, 5 € Q. Therefore, by Lemmas 1.4.34 and I1.2.5 we have
that im« = im § and then there exists v € T(9,9B) such that im~ = im 3, and
ker v = ker . Furthermore, since a € (), we get that v € ) by Remark 11.4.3, which
finishes showing that a« R v Z ( for some v € T'(A,9B), and therefore a D . O

Proposition I1.4.7. Let a, 8 € T(A,B). Then o = \Bu for some X € T(A,RB)
and € T(A,RB)* if and only if tk(a) < dim(Bf). Consequently, o F 3 in T(A,RB)
if and only if one of the following happens:

e kera = ker 3, or

e tk(a) = dim(Ba) = dim(Bfj) = rk(5).

Proof. Let us assume first that o = ABu for some \ € T'(,9RB) and p € T(dA,B)".
Then Aa = (AN)Su C (BS)p, from which we get that

rk(a) = dim(Aa) < dim ((BfS)p) < dim(Bp).

Conversely, suppose that rk(a) < dim(Bfj). If rk(a) = 0, then « is a left zero of
T(dA,9B) and thus a = af, giving us the result with A = o and g = 1. Otherwise,
suppose that rk(a) > 1 and write Ao = ({x;a}). Since rk(a) < dim(Bf), there
exists an independent set {b;} C B such that A = ({b;8} U {yx}). Thus we can
write A = ({z;}U{z}}) = ({bi} U{yr} U{w}) and the maps a and 8 may be defined

by
N ] ond = bi Yk W
zio ui(T;) biB yrB ve(biB, yx )

for some terms u; and v,. Extend {b;3} into a basis of A via {z,,} and define A and
win T(d,RB) by the following:

A= Tt and p= b zm .
bi U](bz) T T1Q

Then it can be easily seen that z;A\8u = z;a and ZiA\Bp = w; (Ta) = ', which
shows that \fu = a.

In order to prove the second part of the proposition, let us first assume that
a F (3, that is, there exist A, u, N, ' € T(,B)! such that @ = A\Bu and = Nay'.
If A =X =1, then we have that a« R [ and thus Proposition 11.4.2 gives us that

ker a = ker 3. If we have that only one of A and X is 1, we show that we can find
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v,y € T(A,B) and §,0' € T(A,9RB)* such that « = v45 and = v'ad’. Indeed,
assuming without loss of generality that A =1 # )| we get that

a=Pp=Nap'p=Np(up' 1)

and the equations above are satisfied by taking v =+ = X, 0 = up/p and &' = /.
By the previous part of the proposition we therefore have that rk(a) < dim(Bpj)
and rk(5) < dim(Ba). From this, we get that:

dim(Aa) = rk(a) < dim(Bp) < dim(Af) = rk(f) < dim(Ba) < dim(Aa),

thus forcing the required equalities.
Conversely, assume that ker « = ker 8. Then a R 3 by Proposition 11.4.2 and thus
a f fsince R C F. On the other hand, if rk(a) = dim(Bf) = dim(Ba) = rk(f),

then we use the first part of the proof in order to obtain the desired result. O

Remark 11.4.8. In the proof of Proposition 11.4.7 given above, notice that the maps
A and p are constructed in such a way that p € @, and whenever {z;} C B we also

have A € Q.

From Lemma I1.3.8, we know that the condition rk(a) = dim(Ba) is equivalent
to a € @ only if a has finite rank, which means that & = ¥ whenever 3B is
finite dimensional. On the other hand, if 98 is infinite dimensional, then there
exist non-regular maps of infinite rank that are f-related to regular maps of the
same rank. Indeed, assume that A = ({z;}) with I = N, B = ({z;>2}) and define

= {o1, 2} %2'3 and = “" ). Then we have that a € Q, ¢ Q but

T2 Z; Tit1
rk(a) = dim(Ba) = rk(f) = dim(B/5) = Ny, which means that o ¥ 8. However, « is

not D-related to 5 by Proposition 11.4.6, which shows that & C ¥ in that case.

Nevertheless, on the regular subsemigroup () the relations & and ¥ coincide, as

«

is given by the following:

Lemma I1.4.9. Let o, € ). Then o = A\Bu for some \,u € Q if and only
if tk(a) < 1k(B). Consequently, a Fq B if and only if tk(a) = rk(B), and thus
Fo=Dq-

Proof. Clearly if a = A then rk(a) < rk(Su) < rk(5) by Lemma 1.5.4. Conversely,
assume that rk(a) < rk(f). Since both a and 5 lie in @), we have that Aa = Ba and
rk(5) = dim(AB) = dim(Bf3). Thus we let Aa = ({z;a}) and A = ({b;8} U{yx5})
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where {x;} and {b;} U {yx} are preimage bases of a and § respectively, which are
both taken to be in B. We also write A = ({z;} U {xé}) = ({b;f}U{zn}) and define

A\p€T(d,RB) by:
[ . bz m
A= |t and = b =
bi Uj(bz) T T1Q

where the terms wu; are such that zia = wu;(7ia). Clearly A and p are in Q
since they have a preimage basis in B, and we also have z;A\6py = x;a and
LA B = u(Ti@) = xa, so that a = ABpu.

We know that Do C Fo, so it suffices to prove the converse. Suppose that
a o . Then rk(a) = rk(B) by the first part, and by Proposition 11.4.6 we know
that a and § are D-related in T(d,9B), that is, there exists v € T'(d,9B) with
ima = im~y and kery = ker 8. By Remark [1.4.3 we then have v € @ since [ is

regular, and thus a @ [, which finishes showing Zq = ¥¢. m

II.5 IDEALS

In the same way that Section I1.4 generalised the approach to Green’s relations
exhibited in the cases of vector spaces and sets, this section is generalising the
description of the ideals of T'(9f,9RB) using the same ideas developed by Sullivan
and Mendes-Gongalves [35, 50]. Recall from Corollary 1.5.7 that the ideals of the
endomorphism monoid of an independence algebra are precisely the sets of the
form {o € End(d) | rk(a) < k} for each k < (dim A)". However, in the context of
T(dA,B), the ideals are not solely determined by ranks. Nevertheless, the ideals of
the subsemigroup () are in one-to-one correspondence with the cardinals not greater
than (dim B)™.

Recall that e denotes the smallest rank of a non-empty subalgebra of &, or

equivalently, the smallest rank of a map in T'(d, %B).
Proposition 11.5.1. The ideals of Q) are precisely the sets
Qr ={a€Q|rk(a) <r}

where e < r < (dim B)*.
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Proof. Let us assume that [ is an ideal of ) and denote by r the cardinal defined by
r= min{e <k < (dim B)* | rk(B) < k for all B € I}.

We claim that [ = @),. By definition of r, we clearly have that I C Q),.

For the reverse inclusion, consider a map o € @,. If rk(8) < rk(a) for all g € I,
this forces rk(a) > r by minimality of r, contradicting the fact that o € @,. Thus,
there exists some § € I with rk(a) < 1k(8). By Lemma I1.4.9, it follows that there
exist A\, u € @ such that o = A\fu. This gives us that o € I since [ is an ideal and
thus @, C I. Therefore I = @), completing the proof. O

Following the usual definition in End(d), we define the sets T}, for any k > e by
Ty ={aeT(d,RB) | rk(a) < k}.

These are easily seen to be ideals of T'(,RB) using Lemma [.5.4. It is obvious that
for all £ > (dim B)" we have that Ty, = Tiqim )+ = T(4,B). Moreover, we have a

minimal ideal, as given by:
Lemma I1.5.2. The ideal T.+ is the minimal ideal of T(A,RB).

Proof. Clearly any element « of T,+ is regular using the converse of Corollary 11.3.9
together with the fact that e < dim(Ba) < dim(Aa) = e.

Now let I be an ideal of T'(A,9B), € I and o € T,+. Then pa € I NT,+, so
that we can assume that rk(/3) = e in the first place. Then for all § € T+, we have
that rk(/5) = rk(d). Thus 8 o ¢ by Lemma I1.4.9, so that § € I since [ is an ideal.
Hence T,+ C I, which shows that T,+ is the minimal ideal of T'(d, ). O

Following the footsteps of [35, 50], we define for any non-empty subset S of
T(d,9RB) the cardinal r(S) and the subset K(S) C T(d,RB) as follows:

r(S) = min{x < (dim B)" | dim(Ba) < k, Va € S},
and K(S)={p e T(A,RB) | kera C ker 5, for some o € S}.

Notice that S C K(S) and by Proposition 11.4.2, we can also express K(S) as
KS)={peT(d,RB) | =au, forsomea e Sand pecT(A,RB)}.

From this, it is clear that if § € K(S) and A € T(dA,9B), then we have that
BA € K(5) and thus K(S) is a right ideal, namely, K(S) = ST (A, RB).
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We now want to show that any ideal of T'(d,9B) is of the form 7}y U K(S) or
T(sy+ U K(S) for some non-empty subset S C T'(d, %), where we can see that

Trsy UK(S) ={BeT(d,RB) | 1k(B) <r(S), or keraw C ker 3 for some o € S} .

Since the union of two right ideals is again a right ideal, it follows that 7}y U K(S)
and T, (sy+ U K(S) are right ideals of T'(¢f,9). We first show that all the ideals of

the form T}, can be written as of one of these two forms.

Lemma I1.5.3. For any cardinal e < k < (dim B)*, we have that Ty, = T,s) U K(S)

Proof. Let S = Tj,. Then for each m < k, there exists a subalgebra € C 9% of rank
m and by Lemma I1.2.6, we have an idempotent n,, € T(d,9B) with imn,, = C,
so that rk(n) = m. Thus n,, € T}, which shows that (S) > m. Since this is true
for each m < k, we get that r(S) = k. Additionally, if 8 € K(S), then § = au for
some o € Ty, and p € T(A,9B). Since T}, is an ideal, we get that 5 € T} and thus
K(S) C Tj,. Therefore T}, = T,(s) U K(S5) as claimed. O

Before we can show that all ideals are of the form T,y U K(S) or T, g+ U K(S5)
for non-empty S C T'(A,ARB), we first need to show that such sets are indeed ideals.

Lemma I1.5.4. For each non-empty subset S of T(A,RB), the sets T,(s) U K(S)
and T,(s)+ U K(S) are ideals of T(A,RB).

Proof. Let ) # S C T'(d,9). As mentioned earlier, we have that T,(s) is an ideal
and T(sy U K(S) is a right ideal. Now let 3 € K(S); then there exists o € S and
we T(d,RB) such that f = au. For A € T(A,RB), we then get

rk(A\3) = dim(ANG) < dim(Bf) = dim(Bau) < dim(Ba) < r(S),
and therefore A3 € T,(g). Hence T, U K(S) and T,(s)+ U K(S) are ideals. O

In order to show the reverse statement, we need two small lemmas beforehand

which will become handy when choosing an adequate set S for each ideal of T'(A, %B).

Lemma IL.5.5. Ifa € Q and e < s < rk(«), then there exists a map \ € T(A,RB)
such that Aa ¢ @ and dim(BAa) = s.
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Proof. Since o € @, then Aa = Ba = ({b;a}) for some {b;} C B, and by letting
A= ({b;} U{x;}) the map « can be written as

. bz X
= bl'Oé Uj (bZiOé) ’

for some terms u;. Now take {b} U {b1} C {b;} such that |K| = s (which is
possible by the assumption on the value of s), and take some z € A\ B such that
A= ({b}u{z}U{ye}). Define A € T(d,9RB) by

\ = b, 2 Y
v, by c)’

where ¢ can be taken in (()) whenever this is non-empty, and otherwise we can take

¢ to be any element in {b).} # () since s > e = 1 in that case. Then we have
Ba = ({bro}) # ({bro} U {bia}) = Ada,
which gives that Aa ¢ Q. Moreover, dim(BAa) = |K| = s as required. O

Lemma I1.5.6. Let I # T,+ be an ideal of T(A,RB). Then there exists a map v € 1
such that v ¢ Q.

Proof. Let I # T,+ be an ideal of T'(A,9ARB). Since T,+ C I by Lemma I1.5.2, there
exists @ € I\T.+. Then rk(«) > e and by Lemma I1.3.4, there exist 21, 2o € ima C B
such that z; ¢ (29). If we can find two elements satisfying this property such that
one of z; and z3 does not lie in Ba, then we have that Ao # Ba and thus a ¢ Q
and we can take v = a.

On the other hand, assume that any two elements z; and 25 satisfying the property
above lie in Ba. Let ima = ({b;a}). If there exists a € {b;} such that a € A\ B,
then we have that aa ¢ ({b;a | b; # a}) # 0, which contradicts the assumption on
21 and zo. Thus {b;} C B, which means that Aa C Ba and a € Q. Since rk(a) > e,
invoking Lemma I1.5.5 with s = e gives us the existence of a map A € T'(d,%B) such
that Aa ¢ Q. Moreover, we also have that Aa € I because [ is an ideal. Therefore

the map v := A« satisfies the requirements of the lemma. m

We can now finally give the characterisation of the ideals in 7'(, %B).

Theorem I1.5.7. The ideals of T(A,RB) are precisely the sets T,sy U K(S) and
Ty(sy+ U K(S) where S is a non-empty subset of T'(A,RB).
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In particular, if I is an ideal of T(A,9B) and S =1\ Q, then
o [ =T 5 UK(S) if rk(y) <r(S) forally € INQ; or

o [ =T,s+UK(S) otherwise.

Proof. From Lemma I1.5.4, any set of the form T, sy U K(S) or T,(s)+ U K(S) with
0 #£SCT(dA,RB) is an ideal. Suppose now that I is an ideal of T'(A,B). We show
that there is a non-empty set .S such that I = T,y U K(S) or I = T,sy+ U K(95).

If I is the minimal ideal of T'(A,B), that is, if I = T,+, then we set S = T,+.
By Lemma I1.5.3, we obtain that I = T,y U K(S) as required.

From now on, let us assume that I # T,+. Then S = I \ @ is non-empty by
Lemma I1.5.6, and by setting r = r(S), we show that I is equal to either T, U K(S)
or T+ UK(S).

First, we have that 7, U K(S) C I. Indeed, if g € K(S5), then § = au for some
a€ SCIland pe T(dA,B), and thus § € I. On the other hand, let § € T,.
If rk(B8) > dim(Ba) for all a € I, then, in particular, rk(5) > dim(Bea) for all
a € S, which contradicts the minimality of r since rk(3) < r. Therefore, there
exists a € I such that rk(8) < dim(Bea). By Proposition 11.4.7, this means that
B = Aau for some \ € T'(A,B), € T(A,PB)" which shows that 3 € I. Therefore
T, UK(S) CI.

It is also clear that I\ @ = S C K(S) and that for any v € I N @ such that
dim(B7y) < r, we have that r > dim(B~) = rk(y), so that v € T,. We now need to
distinguish between the case where [ =T, U K(S) and I = T,+ U K(S) by looking
at the possible values of dim(B~) for y € I N Q.

On one hand, if dim(B~y) < r for all ¥ € INQ then we have shown that INQ C T,
and thus [ =T, U K(S) by combining all previous inclusions.

On the other hand, assume that there exists at least one § € I N () such that
dim(Bg) > r and set k = rk(f) = dim(Bp). If k > r, then using Lemma I1.5.5
with s = r, we get that there exists A € T'(d,9B) such that dim(BAjS) = r and
AB ¢ Q. But then A\g € I\ @ = S and this contradicts the definition of r = r(.5).
Therefore we must have that x = r from which we have that g € T,+. This gives
us that 7 N Q C T+ and therefore I C T,+ U K(S). In order to get an equality in
this last equation, we only need to show that 7T,.+ C I since we already know that
T, U K(S) C I. For this, consider v € T,+. Since in the current case there exists
a map § € [ with dim(Bj) = r, we have that rk(y) < r = dim(B/5). Then by
Proposition 11.4.7, v = A\3u for some A € T(A,RB), u € T(A,9B)* which shows that



76 CHAPTER II. AN INTRODUCTION TO T'(dA,9RB)

~v € I and gives us that T,.+ C I. Therefore, when there exists a map v € I N Q with
rk(y) > r, we have that I = T,+ U K(S). O

Remark 11.5.8. Notice that for & > e and two distinct sets S and S’, one can
have T,s) U K(S) = T,y U K(S). Similarly, for an ideal I, there might exist
sets S and S’ such that I = T,(s) U K(S) and I = T,(gn+ U K(S'). Indeed, if we
take I = T}, then we know that I = T, U K(S) for S = T}, by Lemma II.5.3,
but we can also obtain [ using Theorem I1.5.7 with the set S’ = I \ Q). More
precisely, if k is finite, then by Corollary I1.3.9, we have that rk(a|g) < rk(a) <7
for all & € S’ so that r(S") < k — 1. Now, T} contains idempotents of rank k — 1
corresponding to each subalgebra of % of rank k — 1. Thus we fall into the second
case of Theorem I1.5.7 and we get that T}, = I = T, g/y+ UK (S’). On the other hand,
if k£ is infinite, then we directly have that r(S’) = k and that all elements of I are
such that dim(Bv) < rk(y) < k. Thus the first case of Theorem I1.5.7 gives us that
T, =1 =T, sy UK(S') in this case.

We can now give examples of the construction of two ideals that are not compar-
able under inclusion, as long as we are not in the case where the algebra o is a set
with 3 elements {z1, x5, x3} and its subalgebra 9B has dimension exactly 2, that is,

B = {x1,x2}. In that specific case, T'(,RB) is composed of 8 maps given by

(131 T2 Ig) (Il T 1’3) (Il T LU3)
a1 = ) Qo = ) M= )
r1 1 1 Ty To9 T2 1 T1 T2
Ny = (I1 X2 $3) ’ (st _ <$1 T2 xs) 7 and 52,k _ <I1 T2 1’3) 7

To To9 T Tr1 To T To T1 T
for k € {1,2}. Tt is easy to see that there are only three ideals, namely the sets
Ty ={o, a0}, ThU{a € Q° | k(o) = 2} = {1, aa, 71, 72} and T'(A, RB) itself, and
that these ideals form a chain.
Example 11.5.9. Let us assume that there exist independent elements by, by € B, that
9 does not have any constants and that B has codimension at least 2 in A. Let
B = <{b1, bg} U{d3}> and A = <{b1, bQ} U{dj} L {Il, (L’g} L {yk}> Define the fOHOWiIlg
maps in T'(dA, RB):

0o [ {bi, dj, o, yi and = 2 {bi, dj, 1, yx } '

b by b1 by

From this we have that rk(a) = rk(f) = 2 with dim(Ba) = dim(Bg) = 1 and
(x1,b1) € ker 5\ kera while (x9,01) € kera \ ker 8, which shows that ker a and
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ker 8 are incomparable. Since r({a}) = r({f}) = 2, we let I, = To U K({a}) and
I3 = T, U K({f}), which are both ideals from the previous theorem. Now it is
easy to see that a € I, \ I and 8 € I3\ I,, which shows that these two ideals are
incomparable. Notice that if b, is a constant in the above, the maps « and [ are
still well-defined elements of T'(d,9B) and the conclusion still hold.

Similarly, if B = ({b1,ba, b3} U {d;}) and A = ({b1,b9,b3} U {d;} U {z1} U{ys}),

then we modify the maps above as follows:

oo [ bi {ba,b3,d;, yr} and f = x1 by {b1,b3,d;,yi} '
bl bg b3 bl b2 b3

Then we have that rk(a) = rk(5) = 3 but dim(Ba) = dim(Bfg) = 2, while we
also get that (bg,b3) € kera \ ker 8 and (by1,b3) € ker 8\ ker . Hence ker o and
ker 8 are incomparable and we have that r({a}) = r({}) = 3. Then the ideals
I, =T;UK({a}) and Iz = T3 U K({}) are incomparable since a € I, \ Iz and
B € I\ I, as required. Once again, setting bs to be a constant with the same maps

still give the same result.



— III —

Extended Green’s relations on semigroups

of endomorphisms with restricted range

It was shown earlier in Corollary 11.3.3 that the semigroup of endomorphisms with
restricted range is not regular in general, so it makes sense to look into its extended
Green’s relations. We thus restrict ourselves to the cases where this semigroup is not
regular. Hence, throughout this chapter, & will denote an independence algebra, and
B C o has either dimension at least two, or has dimension one and a non-empty set
of constants. By Lemma I1.3.4, this means in particular that there exist by,b, € B
such that b; ¢ (be), and we will use this fact without further mention. As before, we
will also denote by @ the set of regular elements, and we write £ = E(T(d4,9B)) for
the set of idempotents of T'(A, RB).

In this chapter we will describe all extended Green’s relations defined in Section 1.3
on the semigroup T(A,RB), starting with the relations £*, R*, & and & in
Section III.1. From this, we get that T'(,9B) is a right abundant semigroup,
but is not left Fountain, and that the relation R is not a left congruence in general.
Moreover, the relations &£* and &* do not commute in 7(d,%B), making the
description of their join much harder to compute. However, by looking at their
composition £* o R* in Section I11.2, we fully characterise both @* = £* Vv R* and
P = PV R in Section 1.3 and show that F*=D* and jf =9.

Note. The results present in this chapter constitute the second part of the article
published in Semigroup Forum [24]. However, the long proofs have been reworked to

provide greater clarity and make them easier to follow.

78
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1.1 THE RELATIONS &*, &, ®* AND X

As a direct consequence of Lemma 1.3.13, we have that the relations &g, £, and
.@Q are equal (and similarly Rq = R} = ﬁQ), but this is not true for T'(d, RB).
Indeed, the following propositions will show that on T'(d,9RB) the extended Green’s
relations £*, R*, & and R differ from the relations & and & given in Propositions
I1.4.4 and 11.4.2.

We have seen in Lemma 11.3.10 that in 7'(d,9B), a map admits an idempotent
as a left identity if and only if it is regular. We give here an alternative equivalence

for a map to have an idempotent as a right identity.

Lemma III.1.1. Let « € T(A,RB) and n € E. Then an = « if and only if

ima C immn.

Proof. Let a € T(A,9RB) and n € E. If an = «, then it is clear that ima C im 7.
Conversely, assume that ima C im7. Since 7 is an idempotent, it follows that

Nimy= idimy, by Lemma 1.4.24. Hence, 7|im o= idim which shows that an =a. O

We can now give the description of £* and & , which happen to be the same for
T(dA,RB), as follows:

Proposition II1.1.2. Let a, f € T(A,9B). Then &§5 if and only if im o = im f3.
Consequently, L* = £ in T(A,RB).

Proof. Assume first that a B. By Lemma I1.2.6, there exist two idempotents
n,0 € T(A,9B) such that imn = ima, im@ = im 3, so that an = a and 0 = S.
Since Oz.gjﬁ, it follows that af = o and fn = . Hence, by Lemma III.1.1 we have
that ima C im# = im § and im $ C im7 = im «. Therefore im o = im .
Conversely, suppose that ima = im 3 and let n be an idempotent such that
an = «. Then, using Lemma III.1.1, we have that im o C imn so that im 3 C im 7.
Therefore fn = 3, and exchanging the role of a and [ in this argument gives us that
for any idempotent 6, having 56 = 3 implies af = a. Thus « and 3 are Prelated.
To show that &* = &£, notice that any two maps P-related in End (o) will be
Z*-related in T'(d,B) by Lemma 1.3.3. Using Proposition 1.5.6, we get the following

inclusions:
{(0, ) |ima =im B} CL* C L= {(a, ) | ima = im 3},
which forces the equalities, and so £* = <. O
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Whereas the description of £* and & follows the description of &, the same
cannot be said for R* and R. Their explicit descriptions are given by Propositions
I11.1.3 and III.1.4.

Proposition I11.1.3. Let o, 8 € T(A,RB). Then a R* B if and only if one of the

following occurs:
1) kerao =ker 8 and o, B € Q; or
2) keranN (B x B)=kerfN (B x B) and o, 5 ¢ Q.

Proof. Let v € Q and 3 € T(dA,B) and assume that « R* 5. From Lemma I1.3.10,
we know that there exists v € T'(d,9B) such that & = ya. Since a R* 5 we also
get that g = v, so that v is a left-identity for 5. Using Lemma I1.3.10 again, this
forces 5 € (. This means in particular that regular maps can only be &R *-related to
regular maps. Then, using Proposition I1.4.2 together with the fact that Rq = R},
we get that two regular elements o and 3 are R*-related if and only if ker oo = ker f3.

We now consider the case where both a and § are non-regular elements. Notice
first that for any map o € T(A,RB), if ya = da with v # § = 1, we obtain that
Aa = Aya C Ba and then o € Q. For this reason, in what follows,; either y =0 =1
or neither + nor ¢ is equal to 1.

Let «, 8 € Q° and assume that o R* 3, that is, ya = da if and only if v8 = 0
for 7,8 € T(s,B)'. In order to show that kera N (B x B) C ker 3N (B x B),
we construct for each pair of elements in the the kernel of o two specific maps
7,0 € T'(A,B) satisfying the relation ya = da. To this end, let B = ({yx}) and
A = ({yr} U{u} U{z;}). Then for any pair (b1,b2) € keraN (B x B) with by # by,
we define v, 6 € T(d,B) by:

v = Yp U T and 8 = ykuxj.
Yk b1 yr b2 11

It is clear that ya = d«, and since a R* 3, it follows that v3 = 05. Therefore
b1 = uyB = udf = byf3 and thus (b1, by) € ker SN (B x B). Using the same argument
interchanging the roles of o and 3, we deduce that keraN (B x B) = ker 5N (B x B).

Conversely, assume that kera N (B x B) = ker N (B x B) and that ya = d«a
for some 7,0 € T(A,9B). Then for any a € A we have aya = ada from which
(ay,ad) € ker . But since avy,ad € B, it follows that (ay,ad) € ker 8. Therefore
ayf = ad3, and since this is true for any a € A we get that y8 = §3. By symmetry
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of the argument, we see that yoo = dav if and only if v = §5 for any v, € T'(A, RB).
Since this equivalence also holds when v = § = 1 and using the note made earlier in

the proof, we conclude that a R* 8 as required. O

Proposition I11.1.4. Let o, € T(A,B). Then agiﬁ if and only if one of the
following happens:

1) kera = ker 8 and o, f € Q; or
2) a,p € Q°.

Proof. From Lemma I1.3.10 we know that @ = na for some n € F if and only if
a is regular. It follows that regular maps can only be R-related to regular maps.
Using this, the fact that Ry = @Q, and Proposition 11.4.2; the proposition follows
easily. O]

From the description of our extended Green’s relations, we can see that T'(, 9B)
is not abundant nor Fountain since no idempotent lies in the R*- or R-class of
an element in Q°. However, using Lemma I1.2.6, we can see that each &*-class of
T(dA,B) contains an idempotent and thus 7'(, %) is a right-abundant semigroup.

As noticed in Section 1.3.1 the relations &£* and R* are respectively right and
left congruences, and thus & is also a right congruence. However, R fails to be a

left congruence in T'(f,9B) as soon as dim B > 3, as given by the following lemma.

Lemma II1.1.5. Ifdim B > 3, then there exist o, 3,7y € T'(A,B) such a@ﬂ, but
Yo %6 : B
Consequently, R is not a congruence relation on T'(A,RB) if dim B > 3.

Proof. Suppose that dim B > 3 and write B = ({y,, }U{b;}) and A = BU({z}U{a;})
where |M| = 3 and the sets {a;} and {b;} are possibly empty. Consider the following

maps:

o= (yl {y27y37bz’7aj} 95) and = (yl {y27y37biva’j} x)

Y3 Y3 U1 Y2 Y3 U1

Since neither a nor f is regular, it follows that aR (5. But we also have that

042 _ ({x’ymaajvbi}> and 046 _ (l’ {ymaa']abz}) :

Ys Yo Y3

which shows that a? € Q while a8 ¢ @ and thus they cannot be R-related. O
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It is possible to determine exactly the conditions on the subalgebra 98 under
which & becomes a left congruence, which we do in Lemma III1.1.7. However, before
that, we give the following lemma hinting that one needs to look outside of R *-classes

to find examples where the congruence property fails.

Lemma II1.1.6. Let o, 5 € T'(A,RB) be such that keraN (B x B) = ker BN (B x B).
Then ker ya = ker v and 704@ B for all v € T(A,RB).

Proof. Consider «, 5 € T(A,9RB) such that kera N (B x B) =ker N (B x B). Let
veT(A,RB)and z,y € A. Then:

(x,y) € kerya <= (a7y,y7) € kera
< (av,y7) € ker (since z7y and yy are in B)
< (z,y) € kervp,

so that ker va = kerv(3. Additionally, Lemma I1.3.6 tells us that va € @ if and only
if 8 € ). Thus either both of ya and ~f lie in () and have the same kernel, or
neither of them is in (). In both cases Proposition I11.1.4 gives that ya and (3 are
@—related, as required. O

We can now give the exact characterisation of the subalgebras B that will permit

R to be a left congruence.

Lemma II1.1.7. The equivalence R is a left congruence if and only if one of the

following occurs:

1) dim B = 2 and one-dimensional subalgebras are singletons; or

2) dim B =1 and the constant subalgebra is a singleton.

Proof. First notice that since @Q = Ry, it follows that R is a left congruence on
@ x Q. Thus R can only fail to be a left congruence if we use non-regular elements.
This will happen if we can find maps «, € Q¢ (which are then R-related by
Proposition I11.1.4) and a map v € T'(, 9B) such that ya and v are not R-related.
This, in turn, will be the case either if only one of ya and g lie in @, or if both
products are regular but have a different kernel.

With this in mind, let us assume that dim B = 2 and that one-dimensional
subalgebras are singletons and let o, 5 ¢ Q). Then Ba C Aa C B and similarly

for 8 so that rk(a|g) = rk(B|g) = 1. Also, since one-dimensional subalgebras are
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singletons, this forces Ba = {c} and B = {¢'} for some ¢, € B. This means in
particular that keraN (B x B) =ker 5N (B x B) = B x B. By Lemma III.1.6 it
follows that for any map v € T'(d,9B), we have that 704@ v, and thus R is a left
congruence for such an algebra.

Similarly, if dim B = 1 and the constant subalgebra only consists of a single
element, say 0, then it is clear that for any map « ¢ @, we have that Ba = {0}.
Therefore, the argument used above can be applied in a similar manner to give that

R is a left congruence in this case.

In order to show that outside of these cases & fails to be a left congruence,
we exhibit counterexamples. The first one was given in Lemma II1.1.5 whenever
dim B > 3, so we can focus on the cases where dim B < 2.

So assume that dim B < 2 and write B = (b1, by), A = BU({a;}) where by ¢ (bs)
and there exists a term g € 7, with g(by) # by. This means that either {b;, by}
is an independent set, and thus we are in the case where B has dimension 2 and
subalgebras are not singletons (since ({b2}) contains at least two elements); or b, is
a constant, and we are in the case where B has dimension 1 but contains at least

two constants (namely, by and g(by)). We now define the following maps:

o = Q; bl b2 7 B: Q; bl bg ’ andy: Q; bl bg ‘
by by by by g(bz) by by by by

Notice that since byaw = by 5 = byy = by, this maps are well-defined endomorphisms

even if by is a constant. Then, we have the following:

e «a,f ¢ @ and thus a@ﬁ;

i by b
. fya:(a] ! 2) and thus ya € Q;

by by by

Q; b1 bQ
. = d th :
w (Q(bz) 9(b2) b2) nd s e @

o (b1,b2) € kerya, but (by, by) ¢ ker~p.
Therefore we have that ya and v are not @-related, whereas a and [ are which
shows that &R is not a left congruence in these two cases. This concludes the proof

since all cases have now been covered. O

Before moving on to working with compositions of the relations &£* and R*, we
give a technical lemma that will allow us to compare kernels of maps by looking at

their definition on a basis.
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Lemma II1.1.8. Let B = ({bx} U {b;}) and A= BU ({a;}). Suppose that the maps
7,0 € T(A,B) can be expressed as follows:

b b, . ’ ,
¥ = K . @ and 0= bk ZL % )
fi () 95 7 4i(T) Y

for some terms t;, where the sets { fr} and {xy} are respective bases of im (B~y) and
im (BJ). Then we have that kery N (B x B) =kerd N (B x B).
Consequently, if v,0 € Q° we also obtain that v R*J.

Proof. Let 7,6 € T(dA,9B) be given as above and let (a,b) € kery N (B x B). Then
there exist terms v and v such that a = u(@, b7) and b = v(@, E), which gives us

that
u(Fe (7)) = av = by = o(Fots(T) ).
Now we extend {fi} to a basis of A through {d,,}, and we define n € T'(d,9B) by

n= .
T T1

a6 = u(by, b:) 0 = u(Tr, :(75))
= ayn = byn
— o ts(Fe) ) = v(7w. 5Ew)) = b0,

which means that (a,b) € kerd N (B x B). Hence keryN (B x B) Ckerd N (B x B).

From this we get the following:

The reverse inclusion works similarly by using the map 0 = Thfm e T(A,RB).
koJ1

Therefore we have that kery N (B x B) = kerd N (B x B). Moreover, if v, € Q°

then Proposition I11.1.3 allows us to conclude that v R* 9. O]

[II.2  WORKING ON THE COMPOSITION &*oR*

As mentioned in Section 1.3, the relations £* and &* do not commute in general,

as can be seen in the following example.
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Ezxample 111.2.1. Let A = ({z1, 29,23, 24,25}) and B = ({x3,x4,25}). Define
a,B,v € T(dA,RB) by the following:

X1 T T3 Ty Ts Ty To T3z T4 Ts
a = ) /8 = )
XT3 T3 T3 T4 Tp X3 T3 Ts T Tp

Tl T2 T3 T4 Ts
and v = .

T3 Ty T Ts Ty
Then we clearly have that « € @, f ¢ Q, v ¢ @ and these maps satisfy the relations
ima = imvy and ker 3 N (B x B) = kery N (B x B). From Propositions I11.1.2
and I11.1.3 we therefore have that o £*o%R*  through ~.

Now, in order to have a R*oZL* 3, we need to find § € T(dA,9B) such that
imd = im = ({x3,25}) and ker a = ker § (since a € @)). However, for any such §

we would need
imdy = A/ kerd = A/ kera = im «,

giving that dim(im ¢) = 3 which is impossible. Therefore, no such 6 € T'(d,9B) can
exist and £* and R* do not commute in 7'(A, RB).

When replacing in the example above the relation R* by @, the same arguments
hold since 7, 5 ¢ @ implies that 7@ B. Therefore, similarly to &£* and R*, we can
see that the relations & = £* and & do not commute in T(sf, B), exhibiting a
different behaviour from the usual Green’s relations.

Nevertheless, in the case of T'(, 9B) it is possible to give a precise characterisation
for @*. We do this in Theorem II1.3.1. Somewhat surprisingly, it depends on the
corank of the subalgebra 9 inside . In order to achieve this, we will look closely
into a single composition of the relations £* and R* to give an exact description in
Proposition I11.2.6. We will then look at consequences of this result when considering
only maps of finite rank in Section I11.2.2, or the opposite, when focusing on maps

having infinite rank in Section II1.2.3.

I111.2.1 A STEP TOWARDS 9*

Since we know that two maps are D-related in End(df) if and only if they have the
same rank, one could ask if this is a sufficient condition to be @* related in T'(d, 9B).

That is indeed the case as given by the following lemma.

Lemma II1.2.2. Let a, f € T(A,B) be such that rk(a)) = rk(8). Then a L*oR*
and thus o D* .
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Proof. For any o, f € T(d,B) with rk(a) = rk(), Lemmas 1.4.34 and 11.2.5 give
us that there exists p € T'(d,9B) with im o = im p and ker § = ker u (so that also
ker N (B x B) = ker uN (B x B)). Thus a £* u by Proposition I11.1.2. Additionally,
since two maps with the same kernel are either both regular or both non-regular by

Remark I1.4.3, using the appropriate case in Proposition I11.1.3 gives that uR* 3.
Therefore we have a L*oR* 5 and a D* 5. m

The full characterisation of &* requires us to also concentrate on the composition

ZL*oR*. The next two lemmas give us sufficient conditions for two maps to be
ZLFoR*-related.

Lemma I11.2.3. Let o € T(A,RB). If a non-reqular map 5 € T(A,RB) is such that
tk(B|g) > Ng and B = im«, then a L oR* 5.

Proof. Assume that 5 ¢ @ is such that rk(5|p) > Xy and Bf = ima. We then
write B = ({bxf}), B = ({bx} U {b;}) and A = B U ({a;}). By the assumption
on the image of o, we also can write Ao = ({zxa}) for some {z,} C A. Since
|K| = rk(8|g) > No, there exists a bijection ¢ between K and K’ = K \ {1} and for
each k € K, we set z;, = x5 We now define a map v in T'(,9B) by:

(bk bz Q; )

= _ )

2, ti(ZK) ma

where the terms t; are such that b;3 = t;(by3). Then, we have that im o = ({zpa}) =

imy # ({z}) = im(v|g) and thus aZ*y with v ¢ Q. Also, looking at the
bk bZ a

J
biB t; (W) a;f
Lemma II1.1.8. Therefore o« £*oR* 3 as expected. ]

expression for v and noting that § = , we have that vy R* 3 by

Remark 111.2.4. For any map v € T(d,RB), we clearly have that rk(y|p) < rk(v).
Moreover, by writing By = ({bxy}) and im~vy = ({byv} U {a;7}), we have that
|J| < codimp B, and therefore rk(y) < rk(v|p) + codimy B.

Lemma I11.2.5. Let o € T(A,RB). If a non-reqular map 5 € T'(A,RB) satisfies the
inequality

rk(B|5) < rk(a) < 1k(5|g) + codimy B,

then a L*oR* 3.
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Proof. Let a and [ be as in the statement. Using the same notation as in the
previous lemma, we write B = ({by5}), B = ({bx}U{b;}) and A = BU({a;}). Since
rk(a) > rk(5| ), there exists a set L # () such that we also have Ao = ({zpa}U{y,})
for some {zx},{y,} C A. By noticing that codima B = |J|, we can now rewrite the

condition rk(5|g) < rk(a) < rk(5|g) + codima B in terms of the underlying sets as
|K| < |KUL| <|KUJ|.

Clearly, if dim(Bf) = | K| is finite, then we obtain from this equation that |L| < |J|.
Otherwise, | K| is infinite and we have that |K| < |K U L| = max {| K|, |L|}, so that
|L| > |K|. So |L| = |KUL| <|KUJ|=|[J|. Thus in both the finite and the infinite
dimensional cases, we have that |L| < |J| and we can extract a subset J' C J such
that there exists a bijection ¢: J" — L. From this, we define elements {z;} C B by
z; = yje if 7 € J" and z; = y1a (which necessarily exists) otherwise, which implies
that (z;) = ({yea}). Now we define a map v € T'(d,RB) as follows:

bk bl a;
Y= . )
rra t(Tra) 24
where the terms ¢; are such that b;8 = t; (m) Then we have that

im~y = ({zxa} U{ya}) =ima,

and thus a &*~ by Proposition II1.1.2. We can also see that y;« € im~v \ By so
that v ¢ @, while y &* 8 by Lemma II1.1.8. Therefore a £*oR* 3, which concludes
the proof. O]

We can now give the exact description of the relation £ *oR*.

Proposition I11.2.6. Let o € T(A,B). Then a L*oR* 5 for some € T(A,RB)
if and only if one of the following happens:

1) € Q and ima = im j3;
2) B¢ Q and BS = ima with tk(5]p) > No;
3) B¢ Q and vk(B|p) < rk(a) < rk(f|p) + codimy B.

Ezxchanging the roles of a and (3, we have the dual characterisation for when

a R L* 3.
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Proof. Let a € T(d,9B) and consider the three given conditions. The cases when
B ¢ @ are directly given by Lemmas I11.2.3 and II1.2.5, whereas when 3 € ) and
ima = im $ we use Lemma I11.2.2 to also obtain that a £L*oR* j.

To show the converse, assume that § € T'(d,9B) is such that « L*oR* 5. Then
there exists v € T'(A,9B) such that a £*y and yR* 3. Therefore im o = im~ by
Proposition II1.1.2, and Proposition II1.1.3 tells us that either 3,y € @ are such that
kery = ker 8, or 5,7 ¢ Q and keryN (B x B) =kerfN (B x B). If § € Q (and
hence also v € )), then we have that

ima =im~y = A/ kery = A/ ker f = im f3,
which gives us the first case.
We now assume that 3, ¢ Q). Thus
im f|p= B/ (ker fN (B x B)) = B/ (keryN (B x B)) = im~|g,

so that rk(8|g) = rk(v|g). If rk() = rk(v|p), then rk(y) > Ry by Lemma I1.3.8
and from rk(8|g) = rk(vy) = rk(a) we get that BS = im o which corresponds to the
second case. Otherwise, rk(y|g) < rk(vy) and then, setting Z to be a basis extension
of B in A, we have that
rk(B|g) = rk(v|p) < rk(a) = rk(y) = dim(Ay) < dim(B~) + dim(Z7)
<rk(y|g) + dim Z = rk(B|p) + codimy B,

giving us the remaining case. ]

Remark 111.2.7. Notice that if § € Q¢ is such that rk(3|g) > max {Ro, codima B},
then the third case in Proposition I11.2.6 cannot happen. For, in this situation, we
obtain that rk(/5|g) + codima B = rk(f|p). Using the inequalities of Remark I11.2.4,
this also means that rk(3) = rk(5|p).

As a direct corollary from this proposition we get that two maps cannot be
ZL*oR*-related if their ranks are more than codima B apart. This also shows how

important the codimension of 9 is in order to characterise &*.
Corollary I11.2.8. Let o, 5 € T(A,RB). If a L*oR* 3, then

rk(a) < 1k(B) + codimpy B and rk(f) < rk(a) + codimy B.
Consequently, if a« D* 3, then for some natural number n, we have that

rk(a) <tk(5) +n-codimpy B and 1k(f8) < rk(a)+ n - codimy B.
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Proof. Let o, 5 € T(A,9RB) be such that « £*oR* 5, and consider the different cases
of Proposition I11.2.6:

1) if 5 € @ and im o = im 3, then rk(«) = rk(5);

2) if B ¢ @ and Bf = imq, then we get rk(a) = rk(5|p) < rk(5) and also
rk(B) < rk(f|s) + codimp B = rk(a) 4 codimy B;

3) otherwise, § ¢ @Q and we have that rk(8|g) < rk(a) < rk(8|g) + codimy B.
Then we get that rk(5) < rk(f|p) + codimp B < rk(a) + codimy B and also
rk(a) < rk(5) + codimy B.

In all cases we can see that the two inequalities rk(a) < rk(5) + codima B and
rk(5) < rk(a) + codima B always hold as expected.
For the second part of the proposition, we now assume that o £* 3. Then there

exists a finite sequence Yo, v1, - . ., Yon in T (A, 9B) such that
a=%L " NR L .. L Yo 1 R Y2, = B

Thus a L*oR* v, and oy L*oR* 9,45 for all 1 < i < n. Therefore we obtain
the left inequalities of the previous part for each of these ~9;, that is, we have
rk(a) < rk(7y2) + codimp B and rk(ve;) < rk(72i42) + codimy B for all 1 < i < n.
Combining them all together, we get that

rk(a) < rk(y2,) +n - codimpa B = rk(5) + n - codimy B.

Similarly, rk(8) < rk(a) + n - codimp B by using the same argument on the right

inequalities, which concludes the proof. O

I11.2.2 EQUIVALENCE CLASSES IN FINITE RANKS

In this section, we restrict ourselves only to maps of finite rank. First of all, we
can show that maps with minimal rank e can only be related to another map with

minimal rank.

Lemma II1.2.9. Let o € T(A,RB) be such that tk(a) = e. Then a L*oR* [ for
B eT(A,RB) if and only if rk(p) = e. Consequently, a« D* 3 if and only if 5 € T,+.

Proof. For both statements, one direction is given by Lemma I11.2.2, so we are only
left to show that having minimal rank is a necessary condition to be related to a

map of rank e.
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Let 5 € T'(A,9B) be such that a L*oR* 3. Then there exists v € T'(A,RB) such
that a £*~ and yR* 5. By Proposition II1.1.2, we have that ima = im~ and
thus rk(y) = e and v € @. From this, Proposition I11.1.3 gives us that § € @ and
ker v = ker § which implies that im v = im 3 so that rk(3) = e as required.

Similarly, if & ©* 3, then there exist 71, ...,7, such that

ag*ogi*'ylg*ogi*’yg-"’Yn_lg*ogi*%z = 57

and by induction on the argument above, we obtain that rk(/3) = e. Therefore, a

map in T,+ can only be &*-related to another one with same rank e. O]

If A is a maximal proper subalgebra of o, then the set of maps that can be
reached through a series of composition of £* and R* starting from a map « with
finite rank is restricted to those having the same rank as «. This is given formally

by the following:

Lemma II1.2.10. Assume that codimy B = 1 and let « € T(A,B) be a map of
finite rank. Then a L*oR* 3 for some € T(A,RB) if and only if rk(a) = rk(S).
Consequently, « D* B for € T(A,RB) if and only if rk(a) = k().

Proof. Since the sufficient condition was given by Lemma II1.2.2, we only need to
show one direction. So we let 5 € T'(,%B) be such that a L*oR* 3.

We first suppose that 5 € Q. Then by Proposition I11.2.6, « £*oR* 3 if and only
if im a = im # which is equivalent to rk(a) = rk(f).

Now suppose that § ¢ . Since « has finite rank, only case 3) of Proposi-

tion I11.2.6 can occur. Hence we have that
tk(8]p) < rk(a) < rk(B|p) + codima B = rk(8|p) + 1.

This forces rk(5|p) to be finite and using the contrapositive of Lemma I1.3.8 we get
that

rk(flp) = dim(Bf) < k() = dim(Ap)
< dim(Bf) + codimp B
=1k(8]p) + 1,
which in turn forces rk(5) = rk(5|p) + 1. This also forces rk(a) = rk(3|5) + 1, and
thus rk(a) = rk(3), as required.
As a direct consequence, if a«©* 8 for some 8 € T(d,%B), then o (L*R*)"

for some n € N, and by induction on n, we get that rk(«) = rk(3), which concludes
the proof. O
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If we now look at a subalgebra that is not a maximal proper subalgebra then, by
consecutive compositions of £* and R*, we are able to go up and down the finite
ranks as long as we keep clear of T,+. This process is given formally by the following

lemma.

Lemma II1.2.11. Assume that codima B > 2 and let o € Q) be a map of finite rank
strictly greater than e.

If tk(a)) > e+ 2 then there exist 6y ¢ Q and v, € Q such that tk(0,) = rk(y1) =
rk(a) — 1 and a L*oR* 61 L* ;.

If rk(a) < dim B, then there exist 03 ¢ @ and 72 € Q such that tk(d2) = rk(a),
tk(72) = rk(a) + 1 and a £* 6 R*oL* v,.

Consequently, for all 5 € T'(A,RB) such that e < k() < Vo, there exists n € N
such that o (L*R*)" 5.

Proof. Suppose that codima B > 2 and consider a € @ such that e < rk(a) < V.
Since « is regular, we let Ao = Ba = ({ba}), B = ({b;}U{cx}) and A = BU ({;})
with |J| > 2. Then we have that

for some terms uy and v;.

For the first part, since |I| = rk(a) > e + 2, define 6; and ~; as follows:

5, = bz’23 {blabZ} Cr Ty and y = 5122 by ¢k Z; :
biOé d d bQOé biOé bQOé bQOé bQOé

where the set {b;>3} is possibly empty and the element d € B is taken as a constant
if e = 0, and d = by otherwise (which necessarily exists since |I| = rk(«) > 3 in
that case). Thus 0; ¢ @, 11 € @ and we have that im 6; = ({b;a} \ {bia}) = im~,
so that 0 £* v, and rk(d,) = rk(y1) = [I| — 1. Also 1k(d1|p) = |I| — 2 < |I| = rk(«)
and rk(6;|g) + codimpy B > |I| — 2 4+ 2 = rk(a), which shows that a« £*oR* 6, by
Proposition I11.2.6, finishing the first part of the proof.

Now assume that e < rk(a) < dim B, then there exists an element z € B such
that z ¢ im«. Using the same notation as above with this time |I| = rk(a) > 1,

define 65 and 5 by

bi>o b ; b; ;
5y = >2 01 Cp X and  p = Ck Ty 7
ba d d b« b z xja
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where the set {b;>2} is again possibly empty and the element d € B is defined in
a similar way as before, that is, d is chosen as any constant if e = 0 and is set to
bocr (which then exists) otherwise. Then clearly ds ¢ @ and im a = im dy s0 o L* .
Also {z;a} C ({bia}) so 12 € Q. Finally, since codima B > 2, we have that

rk(da|p) = [I] — 1 < tk(y2) = [I] + 1 < 1k(d2|5) + codimp B.

Hence o L*0R* 5 by Proposition I11.2.6, finishing the proof of the second part of
the lemma.

Now consider § € T(d,9B) such that e < rk(8) < Wo. If § ¢ Q, then by
Lemma I1.3.7, there exists 5 € @ such that im ' = im 8 and thus, 8/ &£* 8R* 3,
so we can assume that § € @ in the first place. Similarly, we can assume that
rk(a) > rk(/3) since otherwise we can exchange the role of a and . If rk(«) = rk(5),
then a £*oR* § by Lemma I11.2.2] so we can assume that rk(a) > rk(f). Set
m = rk(a) — rk(f) and construct ~q,...,7, € @ by the process described in the

first part of the lemma with the following properties:
e 1k(71) = rk(a) — 1 and o (L R*)* ;
¢ tk(7) = 1k(3); and
o 1k(Y41) = 1k(7,) — 1 and v, (L*oR*) 7,41 forall 1 <7 <m — 1.

Then we have that o (&£ *Q%*)Qm Y and 7, L*oR* 3. Therefore, in all cases, we
have that o (Z*oR*)" § for some integer n. O

I11.2.3 DEALING WITH INFINITE RANKS

While the previous section was concerned by maps of finite rank, on the other hand,
this one is focused on maps of infinite rank, whenever this is possible. For it to make
sense, we are assuming that the dimension of o and 9B are both infinite. We first
show that if the subalgebra 98 has a codimension smaller than its dimension, then
a map with rank larger that the codimension of B cannot be &*oR*-related with

maps of a different rank.

Lemma II1.2.12. Assume that codimy B < k < dim B for some infinite cardinal k
and let o € T(A,B) be such that k(o) = k. Let 5 € T(A,RB). Then a L*oR* [ if
and only if rk(B) = rk(«).

Proof. One direction is already given by Lemma I11.2.2. We therefore assume that
aZLoR* [ and we go through the cases of Proposition I11.2.6. If ima = im f,
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then we directly have that rk(a) = rk(5). On the other hand, if ima = Bf then
tk(8|gp) = k. But then v = rk(B|g) < rk(8) < rk(B|g) + codimpa B = k, and
therefore rk(/3) = k = rk(«). Notice that the third case of the proposition cannot
occur since we would have that k = rk(a) < rk(8|p) + codima B which forces
rk(5|g) = k and thus the condition rk(5|g) < rk(«) is not satisfied. O

In another way, if the dimension and codimension of 9% are both infinite cardinals,
then from a map with rank at least Ny we can reach maps with larger infinite rank
through the relation £*oR*, as long as we do not go further than the codimension

of B. This idea is given more formally in the following lemma.

Lemma II1.2.13. Assume that dim B and codima B are both infinite cardinals, and
set M = min{dim B, codima B}. Let o € Q) be such that Xy < rk(a) < M. Then
for all v with tk(a) < v < M there ezists B € T'(A,RB) such that vk(8) = v and
aFL*oR* 3.

Proof. Let a € Q. Then we can write Ao = Ba = ({bya}), B = ({bx} U {c}) and
A = BU ({a;}). By assumption on the rank of «, we have that |K U | =dim B >
rk(a) = |K| > Ny, and thus it follows that |/| = dim B > X;. Now, let v be such
that rk(a) < v < M = min{|I|,|J|}. Then there exist sets S C J and S’ C I such
that |S| = |9'| = v, and we let ¢: S — S’ be a bijection between them. For all
J € J we now set elements z; € B by z; = ¢4 if j € S and z; = ¢; otherwise, and
we define the map € T(d,RB) as:

6 _ bk G aj '
bra bia z;
Clearly we have that 8 ¢ Q and rk(5) = |[K U S| = |K|+ v =rk(a) + v =v. Also

Bp = ({bra}) = im« and from the second case of Proposition I11.2.6 we have that
aL*oR* B, which concludes the proof. m

Finally, we can show that if the codimension of 9 is infinite, then it is possible
to bridge the gap between any map of finite rank with a map of infinite rank smaller

than the codimension of 9 with only a few iterations of the composition L*oR*.
Lemma II1.2.14. Assume that codimp B = k for some infinite cardinal k and let
a, €T (A, B) be such that the following inequalities hold:

e <rk(a) < Xy <1k(f) < k.

Then o (L*oR*)* B and thus o« D* 5.
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Proof. Given «a,f € T(d,9B) as in the statement, we create maps ; and v, in
T(dA,B) such that a« L*oR* 71 L oR* yo L*oR* B.

For this, we write Aa = ({zza}), B = {u} U {b}) and A = B U ({q;}).
Since e < rk(a) = |K| < Rg we set L = K \ {1}, so that |L| = |K| — 1 and
{yr} = {y1} U{ys}. By assumption, we have that

|K U 1| =dim B > rk(8) > N,

so that |I| > Ny, and |J| = codimpy B = k. Therefore, there exist two subsets S C .J
and S’ C I such that |S| = |S'| = Ry and we have a bijection ¢: S — S’ between
these sets. For all j € J, we now set elements z; € B by z; = b;s if j € S and z; = b;
otherwise. Under this setup, we define vy, € T'(d,RB) as:

(yl Ye b; Clj)

T = )

c Yy ¢ z

where ¢ € ({y,}) (which necessarily exists). Then we have that rk(vy;) = Ry and
By = {ye}) € Quet U {z;}) = An, so that v ¢ Q. Moreover,

rkm/l‘B) = ’L’ < ‘K‘ = rk(O‘) <Ny <K= Yk(’h‘B) + codimy B,

and thus a L*oR* v, by the third case of Proposition I11.2.6. Now, either we
have that Xy = rk(v;) = rk(8) and we directly get that v £*oR* 8 by Lemma
II1.2.2, or we have that Xy = rk(y;) < rk(8). If the latter occurs, then we also
have that rk(8) < min {dim B, codims B} < k by the initial assumptions. Since
7 ¢ @, by Lemma I1.3.7, there exists 7, € @ with im~; = 5. Thus v; "0 R* v,
by Proposition II1.1.2, and we also have that Ry = rk(7,) = rk(y1) < k. We can
now invoke Lemma II1.2.13 using v, and v = rk(5) to get a map v3 € T(d,RB)
such that tk(y3) = rk(8) and v, L*oR* 3, which means that vo(L*oR*)?S by
Lemma II1.2.2. Therefore, in both situations, we have that a(£*R*)43 and thus
aD* 3, as required. H

II1.3 THE HIGHER EXTENDED GREEN’S RELATIONS

We now have all the tools needed to prove the characterisation of all of the remaining
extended Green’s relation. We start by giving the theorem we have been working

towards over the last section: the description of the relation &*.
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Theorem II1.3.1. Let o, € T(A,B). Then aD* if and only if one of the
following happens:

(i) codimy B =1 and rk(«) = rk(p);
(77) 2 < codimp B < Xy and either e < rk(a),rk(8) < Ry or rk(a) = rk(5);

(7ii) codimp B = K for some infinite cardinal k, and either e < rk(«),rk(8) < K or

rk(a) = k().

Proof. Let o, B € T(A,B) be such that a« D* 5. In order to show that the conditions
of the theorem are necessary, we focus on the different situations. Since we know
from Lemma I11.2.9 that T,+ is a @*-class, this gives us the appropriate part of each
condition, and we can assume from now on that all maps have rank larger than e.

Similarly, assume that codimy B = 1. Then, if rk(«a) is finite, Lemma I11.2.10
directly gives us that rk(5) = rk(a). On the other hand, if rk(a) > Ry, then by
Lemma I11.2.12, any map § € T'(d,RB) satisfying a« £ oR*§, will be such that
rk(a) = rk(d). Since we have that o (£*R*)" 3 for some n € N, we obtain by
induction that rk(a) = rk(3), and case (i) is therefore proved.

We now assume that codima B > 2 and we let x be an infinite cardinal. From

Corollary I11.2.8, we know that for some n € N
rk(a) < tk(B) +n-codimy B and rk(8) < rk(a) + n - codimy B. (%)

If both rk(«) and codimy B are finite, then we have that rk(8) < rk(a) +
n - codima B < Yo, which shows that in this case we have e < rk(a),rk(5) < Wy as
presented in case (ii).

In a similar manner, suppose that codima B = & for some infinite cardinal x and
rk(a) < k. Then we obtain that rk(5) < rk(a) + n - codima B = codima B. This
gives us that e < rk(a),rk(8) < k, which corresponds to the first part of case (iii).

Lastly, if rk(a) > Ry and rk(a) > codima B, then using the left inequality of
(%), we get that rk(a) < rk(8) + n - codimy B = max {rk(/),n - codima B} which
forces rk(f) > Ny and then rk(a) > rk(f3). Using the right inequality of (x), we
also obtain rk(5) < rk(a) 4+ n - codimp B = rk(a), and thus rk(5) = rk(«). This
argument shows in particular that if 2 < codimy B < Xy and rk(a) > N, or that
codima B = k and rk(a) > &, then rk(f) = rk(a) which corresponds respectively to

the second part of cases (ii) and (iii).
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Since all the possible values for codima B and rk(a) are covered in the different
arguments above, we have therefore proved that the conditions (i)-(iii) given in the

theorem are necessary conditions to obtain a 2* 3.

Conversely, we now assume that one of conditions (i), (ii) or (iii) hold and we
verify that this is sufficient to get o« @* 8. In other words, for any «, 5 € T'(A,RB),
we want to show that a(Z*oR*)"5 for some natural number n whenever one of
these conditions is satisfied.

Notice that if 5 ¢ @, then there exists 5 € @ such that im ' = im 8 by Lemma
I1.3.7. This means that 5/ &£* 8 by Proposition II1.1.2 and thus ' £*R* 5. If we
get that a(ZL*oR*)™3 for some m € N, we then get a(ZL*oR*)" 3. Therefore we
can assume from now on that 5 € Q.

We already know from Lemma I11.2.2 that if rk(«) = rk(53), then a 9* 3, which
shows that the appropriate part of cases (i), (ii) and (iii) are sufficient conditions to
get that the two maps are D*-related. The only possibilities left to verify are those
where the ranks of a and § are different and lie in the intervals given in conditions
(ii) and (iii).

Assume that 2 < codimy B and that e < rk(a),rk(8) < ¥, that is, either
condition (ii) holds, or we have condition (iii) with two maps of finite rank. Then,
by invoking the third part of Lemma II[.2.11, there exists a n € N such that
a(L*oR*)" and therefore o D* 3.

From now on, we assume that condition (iii) holds with codimy B = k and
e < rk(a),rk(5) < k for some infinite cardinal x. Without loss of generality, we
also assume that rk(a) < rk(g). If both ranks are infinite, then we can use Lemma
[11.2.13 with v = rk(p) (since dim B > rk(8) > rk(«) > Xy in that case) to get a
map v € T(d,B) such that « L*oR* v and rk(y) = rk(S). But then a(ZL*oR*)?j
using Lemma II1.2.2 and thus a 9* 5.

Otherwise, we are in the situation where rk(a) < Xy < rk(5) and we can conclude
that o @* 5 using Lemma I11.2.14, which finishes the proof of the characterisation
of D*. O

From the characterisation of &* in Theorem II1.3.1 it is easy to see that if B is
finite dimensional and codima B > 2, then &* is made of only 2 classes, namely 7T,+
and 7.5 . In fact, the same goes for the ¥* classes since these are equal, as given by

the following proposition.
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Proposition I11.3.2. In T'(d,9B), we have that D* = F*.

Proof. Since we know that @* C #*, it remains to show the converse. To this end,
we are going to determine the ¥*-classes of certain cases by describing the principal
x-ideals generated by specific elements. Combining these cases with the description
of the @*-classes given in Theorem I11.3.1 will finish the proof.

As a general setup, we consider «, 5 € T(d,B) with f € J*(a). Then, by
Lemma 1.3.15, there exist vg,...,7, € T(A,9B) and {\;},{u} CT(A,RB) such
that:

Yo=0a, Yo=p0 and (v, Y1) € DT forall 1 <i<n.

Assume first that codima B = 1. Then, by Theorem III.3.1, we get that
rk(y1) = rk(AMapy) < rk(a) and by induction, we obtain rk(v;) < rk(a) for all
1 < i <mn, from which conclude that rk(5) < rk(a). Reversing the roles of o and g
we have that if « € J*((), then rk(«) < rk(f3). Therefore if a F* 3, then 5 € J*(«)
and « € J*(B), which forces rk(a) = rk(f3).

From now on, we assume that codima B > 2. In the case where rk(a) = e, then
we also have that rk(Aauy) = e. Since v D* Aoy, this forces rk(y1) = rk(Ajapy)
by condition (ii) of Theorem III.3.1, and thus rk(v;) = e. By induction on the v;’s,
we get that rk(5) = e = rk(a). Therefore J*(«) = T+, from which we have that if
a F* 5 with rk(a) = e, then rk(5) = rk(«).

From now on, we assume rk(a) > e. Consider the case when codimy B = & for
some infinite cardinal k, and suppose that rk(5) > codima B. Then, from the fact
that 8 = 7, D* N\ Yn_1/in, we necessarily have that k() = rk(\,y,_1/,) from (iii)
of Theorem I11.3.1 and therefore rk(v,—1) > rk(f) > codima B. By reverse induction
on i from n — 1 to 1, we get that rk(y;—1) > rk(v;) > codima B for all ¢ and thus
rk(a) > rk(5) > codimy B. This shows that 5 € J*(«) with rk(5) > codima B only
if rk(a) > codimp B and rk(a) > rk(5). Together with the reverse statement, we
conclude that if rk(a) > codimp B > Wy, then o F* 8 implies rk(a) = rk(p).

Using a similar argument when codima B < R, we also have that if § € J*(«)
with rk(3) > Ny, then we get rk(«) > rk(f). Therefore, this case gives us that if
rk(a) > Ry > codimy B and « F* 3, then rk(«) = rk(5).

In all of the above cases, we can see that if two maps a and § are ¥*-related,
then they have the same rank and thus they are @*-related by Lemma I11.2.2. The
remaining cases to consider are when we either have that 2 < codimy B < Ny and
e < rk(a),1k(B8) < Ny, or we have that codimay B = k and e < rk(«),rk(5) < k.
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However, any two maps « and S which are F*-related and satisfy these conditions
will be D*-related by the first part of conditions (ii) and (iii) in Theorem III.3.1.
Thus the F*-classes of T'(,9B) coincide with the D*-classes, which completes the
proof that * = 9*. ]

Remark 111.3.3. Another way to determine J*(«) for an element o € T'(d,B) with
finite rank would have been to use the description of the ideals of T'(9f,9B) given in
Section II.5 before saturating them by &* and R*. If we let I = T,5) U K(S) be
an ideal generated by S = {a}, we can see that in order for it to be saturated by
Z*, we always need to have K(S) C T,(s). On the other hand, as long as r(5) > e*
and codimp B > 1, saturating by &R* allows us to reach maps with a rank up to
the limit cardinal that is the maximum between the codimension of B and ¥y. Two
maps would then be F*-related if the associated limit cardinal is the same. Similar
arguments can be used to give all the possible descriptions of *-ideals by using the

general description of ideals in T'(d, 9RB).

To finish off the study of these extended Green’s relations in 7'(d, %), we show
that the relations & and jfv only have two equivalence classes, since the corank of 9%

has no impact in that situation.
Proposition I11.3.4. In T(d,9B), the only D and f classes are T+ and TS .

Proof. Let o, 5 € T(Szf AB) be such that rk(a) = rk(8) = e. Then a D* 5 by Lemma
I11.2.2, and thus aD B since D* C P. On the other hand, assume that the rank of
both a and § is strictly greater than e. If o € ) then, by Lemma I1.3.7, there exists
o € @Q° such that ima = im o/, while if o € Q° in the first place, we simply set
o' = «. In both cases, we have that aPa’ and similarly, 3 & G’ for some [’ € Q°.
Then, by Proposition I11.1.4, we get that o R A, and so aPoR o@ﬁ. Therefore
a@ﬁ for any «, 8 €

For the converse, notice first that if v € T'(, 9RB) is such that rk(y) = e, then for
any § € T'(A,9RB) we have that rk(0) = e whenever YRS or v£6. Indeed, if YR 6
then, by Proposition II1.1.4 together with the fact that v € @, we get that 6 € Q
and ker § = ker~y. Consequently, im § = im~y and so rk(§) = rk(y) =e. Similarly, if
~ 6, then Proposition I11.1.2 gives us that im § = im v and thus rk(d) = rk(y) =
proving the claim. Now consider «, 5 € T(&zf 9B) such that oD (. Then there exists
a finite sequence of compositions of & and & relating a to 8. If rk(a) = e, then finite

induction gives us that all maps in that sequence have rank e, and thus rk(f) = e.
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Similarly, if rk(«) # e, then by symmetry of the arguments, we necessarily get that
rk(f3) # e, which concludes the proof of the characterisation of &.

Since @ C . in order to determine the ¥-classes in T(A,B), it suffices to
show whether an element of 7.+ can be }/—related to an element of T.5. So let
a,f € T(d,RB) with a¥ B and o € T.+. Then by Lemma 1.3.15, there exist
Yoy -V € T(A,B) and i, ..., Ny, i1, e € T(A,B)! such that vy = a,
Yo = B and (v, \ivic1p) € P for all 1 <i < n. But then, rk(Ayou1) = rk(a) = e
since e is the minimal rank. Moreover, since 7, D A1You1, we get by the first part of
this proof that rk(y;) = rk(Avyou1) = e. By induction, rk(v;) = e for all 1 <i <n,
so that rk(3) = e. Therefore, o can only be related to maps in T+, which shows

that @ has two equivalence classes and that ¥ = P. O



IV
The structure of End(7,)

The full transformation semigroup 7, on a finite set {1,...,n} is an important
object in algebra. It is therefore natural to study its endomorphism monoid End(7,).
Even though the elements of End(7,) were described by Schein and Teclezghi [48],
surprisingly, the algebraic structure of End(7,) has not been further explored. The
main focus of our work will be on the general behaviour of End(7,) which emerges
for n > 5. The cases n < 4 exhibit several degenerate or exceptional behaviours: for
instance, it is immediate that End(7;) = Aut(77) is the trivial group, and we will
see that End(7;) is unique in that it contains endomorphisms which only exist in
End(7,) if n = 4.

In this chapter, we will follow a similar approach to that used to study the
semigroup T'(, 9B) in Chapters IT and I1I. We will start in Section IV.1 by describing
the elements of the semigroup End(7,) we will study, using the results from [48]. In
Section 1V.2 we will study more closely the singular endomorphisms of 7,,, that is,
the endomorphisms which are not automorphisms, leading us to the exhibition in
Section IV.3 of a partition of End(7,,) into sets containing maps which present a
similar behaviour. In order to allow general arguments to be used, in Sections IV.4
to IV.7 we restrict ourselves to the study of End(7,,) for n > 5. We first describe
some properties of the idempotents and determine the regular elements of End(7,)
in Section IV.4. We then give a description of Green’s relations in Section 1V.5
and use this to determine the ideal structure of End(7,,) in Section IV.6. Since the
monoid End(7;,) is not regular for n > 5, we consider its extended Green’s relations

in Section IV.7. To complete the picture, in Section IV.8, we analyse the structure
of End(7,) for n < 4.

100
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Note. The work in this chapter comes from a collaboration with Prof. Victoria
Gould and Dr. Marianne Johnson, which has been submitted for publication [23].
The present chapter includes some additional results and expand proofs for the case

n = 4 that were only sketched in the paper.

IV.1 INTRODUCTION

IV.1.1 NOTATION AND CONVENTIONS

Throughout this chapter, we write S,, C 7, to denote the symmetric group and
A, C S, the alternating group, that is, the subgroup of S, of all even permutations.
By a slight abuse of notation, we suppress the dependence on n and write simply id
to denote the identity element of 7,,. For an element g € S,,, and s € 7, we denote
by s9 the product g~'sg. For 1 <i # j < n we also write (i j) for the transposition
swapping ¢ and j in S, and ¢; for the constant map with image ¢ in 7,,.

For n # 4, the alternating group is the only non-trivial proper normal subgroup
of §,,, whilst for n = 4 there is one additional normal subgroup, namely, the Klein
subgroup K = {id, (12)(34),(13)(24),(14)(23)}. By direct calculation, we have the

following result concerning the cosets of .

Lemma IV.1.1. For any s € S, there is a unique element of Ks which fizes 4.
More explicitly, if we denote this element by ps, we have that

id if s € IC,

2)  ifse{(12),(34),(1324),(1423)},

3) if s€{(13),(24),(1324),(1432)},

3)  ifse{(23),(14),(1243),(1342)},

23) ifse€{(123),(142),(134),(243)}, and
32) ifse{(132),(124),(143),(234)}.

In particular, {ps: s € Sq} ={h € 84 : 4h =4} and ps = s if and only if 4s = 4.

DPs =

(
(
(
( 14
( 12
To facilitate readability, we will consider that the semigroup 7, will be our

“bottom level” so that, following our convention, its elements will be written using

Roman letters (elements of {1,...,n} will be constrained to letters i to [). We
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will also use the short-hand notation &, = End(7,) and G, = Aut(7,) for the
endomorphism monoid and automorphism group of 7, respectively. The identity
element of &, (and hence also of G,) is the trivial automorphism, which will be

denoted by e (again, suppressing the dependence on n where convenient).

IV.1.2 DESCRIPTION OF THE ENDOMORPHISMS

We are interested in the semigroup endomorphisms of 7,, that is, the maps on 7,
which preserve the multiplication, but not necessarily the identity. Their character-

isation is due to Schein and Teclezghi [48] which we recall below.

Theorem IV.1.2 ([48]). Let g € S,, and t,e € T, and define maps Vg, ¢re: T — Tn
for any s € T, by:
t ifseS,\ A,
sg=s? and s¢e = (t* if s € A,
e ifs€Ty\ S
Then the automorphisms and endomorphisms of T,, are described as follows.
1) G, ={vy,:9€S,}.
2) For n # 4,

En =0 U{re tie €T, t* =t te=ct=c’>=c}.
3) Forn =4
54:Q4U{¢t,€:t,e€72,t3:t, te=ct=e’=c}U{0?: g€ 8},

where so = ps if s €Sy, s0 =cy if s € T4\ Sy and for all s € Ty and all g € Sy

so9 = (so)I.

Notice that with the above notation, we have that ¢ = ¢'¢ and ;4 = €. For
a € &, we write im « to denote the image of a, and define the rank of a,, denoted by
rk(a), to be the cardinality of im . Then, it is easy to see that the image of each
automorphism 1, is the whole of 7, and hence has rank |7,| = n". On the other
end, the image of each endomorphism of the form ¢, . is the set {¢,¢?, e}, which can
have up to three distinct elements, so that its rank is 1, 2 or 3. If n = 4, we can
also see that im 09 = {p?: s € Sy} U{cay}, which is isomorphic to S3U {c4} and thus

each endomorphism of the form o9 has rank exactly 7.
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Definition IV.1.3. An endomorphism « € &, is singular if rk(a) < n™, that is, if
« is not an automorphism.

The set of all singular endomorphisms is denoted by &, \ G,.
In fact the group of automorphisms of 7, is isomorphic to S,, as given by:

Lemma IV.1.4. Let g,h € S,,. Then vy =y, if and only if g = h. Consequently,
Aut(T,) = G, = {y: g € Sy} is isomorphic to S, = Aut({1,...,n}).

Proof. Let 14,1 € G,, and suppose that 1, = 1;,. Then for any 1 < i < n we have
cihy = g reig = ¢ig = ¢y, and similarly ¢;¢, = ¢ This gives us ig = ih for all
1 <7< nand thus g = h.

Additionally, it is clear from their definition that for all ¢4, ¢, € &, we have that
Yy = Vg, € E,. Hence, the map S,, = G, sending g to 1, is an isomorphism. [

Remark TV.1.5. When working with the symmetric group S, it is often expected to
encounter exceptions when n =4 or n = 6. We have already seen in Theorem IV.1.2
that there are some additional endomorphisms which only exist in &, if n = 4.
However, for n = 6, Lemma IV.1.4 shows that we need not worry about the outer

automorphisms of Sg when considering 7s.

IV.1.3 PROPERTIES OF THE ENDOMORPHISM o

We finish this introductory section by giving some properties of the map o in the

case when n = 4.
Lemma IV.1.6. For s,t,g € Sy, we have p,0? = pJ, ps = pspr and ps—1 = py .

Proof. That pso = p, follows from Lemma IV.1.1. Thus pso? = (ps0)? = p? for all
g € S;. Also, since o is an endomorphism, we have that py = (st)o = soto = pspy,

and then, psp,—1 = pig = id, which shows that p,-1 = p; . O

These facts will now be used without further comment. We can also see that the

maps 09 keeps the special subgroups of 7, separated, as given by:

Lemma IV.1.7. Let t € T, and g € S;. Then to9 € S, \ Ay [resp. to € Ay,
to € T4\ S4f if and only if t € Sy \ Ay [resp. t € Ay, t € Ty \ S4f.
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Proof. If t € Ty \ Sy, then to? = ¢4y, hence to?9 € Ty \ Sy. Conversely, for all s € Sy,
we have so = ps € Sy and thus so9 € Sy, so that td9 € T, \ Sy only if t € Ty \ Ss.
Now, let t € S;. It follows from the description of p; in Lemma IV.1.1 that
pr € Ay if and only if ¢t € A4. Since conjugating by an element g of S4 does not
change the cycle structure, we get that to € Ay if and only if to? € Ay, which

concludes the proof. O

IV.2 SINGULAR ENDOMORPHISMS

In this section, we focus on the set of singular endomorphisms &, \ G,, that is, on

endomorphisms of rank 1, 2, 3 or 7.

IV.2.1 ENDOMORPHISMS OF RANK AT MOST 3

In order to encapsulate the conditions of the elements ¢ and e in 7, so that ¢, . is an

endomorphism, we let
Un:{te’ﬁl\t3:twithte:et:e2:eforsomeeeﬁ}.

We say that (t,e) form a permissible pair, if ¢, € &,, and we denote by P, the

set of all permissible pairs, that is,
Pn:{(t,e) |t € Uy, te:et:eQZe}.

Before considering the endomorphisms in &, further, we give some important

properties of the sets U,, and P,.

Lemma IV.2.1. The set U, consists of all elements t = t* satisfying kt = k for at

least one 1 < k < n. Moreover, fort € U, the number of permissible pairs with first

7]
Z <‘J’>TI+J|—T
r=1 r

where J = {k : kt =k} and I is maximal such that t restricts to a fived point free

component equal to t is

permutation on I U It.

Proof. Let t € U,. By definition we have t* = ¢t. Note that if there exists e € 7T,
such that et = e, then then for all k£ € {1,...,n} we must have ket = ke, giving that
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all elements in the image of e are fixed by t. Conversely, suppose that t3 = ¢ and
kt = k. Then it is easy to see that ¢yt = tcy, = ¢, = ci, and hence t € U,,.

Note that if ¢ € 7,, satisfies t> = t then for all k € {1,...,n} there exist iy, ji such
that kt = jj, kt? = jit = i;, and kt3 = iyt = j,t2 = kt. If j, = k then also i, = k. It
follows that J ={k iy =ji =k}, K ={k 1k # jx = iy}, L ={k : k =iy # ji}
and M = {k : k # ji, k # iy and jj # i}, partition the domain {1,...,n} of t. It is
clear from these definitions that ¢ restricts to the identity on J, Kt C J and Mt C L.
Moreover, L is maximal such that t restricts to a fixed-point free permutation of
order 2 on L.

The general picture to have in mind is as follows. For each transformation t € 7T,

satisfying 3 = ¢, we may partition the domain of ¢ as:

{1,...,n} = JUK ULUM, where

J = {j:jt=jt*=j} Je

K = {k:kt=Fkt*+#k} k—— kt D
LS

L=Al:lt#£1t?=1} [ = [t? It
~_ "

Ve
M = {m:m#mt#mt>#m} m— mt mt?
S~
Noting that [ € L if and only if [t € L, it is clear that L may be further partitioned
into two sets of equal size, I = {is} and It = {ist}. Thus we may write each ¢ such
that t3 =t in the form:

ok iy it om .
t= ] ) . , with k&t € J and mt € I U It,
J kt igt iy mt

where here j, k and m denote arbitrary elements of the sets J, K and M respectively.

We claim that the elements e satisfying e = e = te = et are precisely those of the

(i ki it om
- (jf Rf if iof mtf’>’
where f is any function f: J U — R fixing a non-empty subset R C J pointwise,
and f': I UIt — R is defined by i, tf =i,.f =1i,.f.

form:

12345
For example, given the transformation t = t3 = 1391 2) , this description

12345

yields that e =
11111

) is the unique idempotent satisfying te = et = e.
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Indeed, if ¢ fixes exactly one element then we have no choice but to take R = J, and
since this is a singleton set this leaves no choice for the function f.

Now to prove the claim. If ¢ € U,, then by the first paragraph of the proof we
may assume that |J| > 0. It is then straightforward to describe the elements e which
satisfy et = te = e = e2. The condition that e is idempotent implies that e fixes each
element of its image. Further, if R is a subset of {1,...,n}, then there is a bijection
between functions f : {1,...,n} \ R — R and idempotents with image equal to R.
Note that (as observed above) the condition et = e implies that the image of e is
contained in J. Let R be a non-empty subset of J. We aim to show that every
function f: (J\ R) UI — R extends uniquely to the whole of {1,...,n} to give an
idempotent e € 7, with image R satisfying the constraints et = te = e.

We have observed that every idempotent must fix its image. Thus, if e is to be an
idempotent with image R extending f, we have no choice on how e must act on JUI.
Now the condition te = e forces ke = kte for all k € {1,...,n} = JUKUIUItUM.
If £ € K then kt € J and ke = kte = (kt)f. If k € It, then kt € I and the
condition e = te forces ke = kte = (kt)f. If k € M then kt € I U It and hence
either kt € I and ke = kte = (kt)f, or kt € It. In the latter case, certainly kt* € I,
so that kt = kt3 = it for i, = kt?> € I, and then ke = kte = i), f. Since the sets
JUK UITUItU M partition the domain of ¢, this shows that there is exactly one
way to extend f to an idempotent e € 7, with image R satisfying et = te = e.

For a fixed ¢, the number of idempotents such that (¢,e) € P, is therefore found
by summing the total number of functions f : (J\ R) UI — R as R ranges over
non-empty subsets of J. That is, for t € U,, with partition as given above we have
that the number of idempotents e satisfying (t,e) € P, is Z‘,f]:‘l (“7{|>r”|+“]|_r. ]

We now gather together some routine but useful facts concerning the set P,.

Lemma IV.2.2. Letk e N, t,e€ T, and g € S,,.
1) If t is idempotent, then t € U, and (t,t) € P,.
2) If (t,e) € P, with t* = e, then t = e.
3) We have t € S,, N U, if and only if t* = id. Consequently, t € S, N U, is a

product of an odd number [resp. even number]| no more than (n — 1)/2 of
disjoint transpositions if t € S, \ A, [resp. if t € A,].

4) We have (tg)k = t9 if and only if t* = t. Additionally, tY = id if and only if
t =id.
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5) If (t,e) € P,, then (19,¢9) € P,.

6) If (t,e) € P, and e = id, then t = id.

7) If (t,e) € P,, then t* is idempotent and (t*,¢) € P,.
(t,e)

8) If (t,e) € Py and g € Sy, then (to?9,eq9) € Py.

Proof. 1) Let t € T, be an idempotent. Then clearly t> = ¢t = t?, and hence

2)

3)

(t,t) € P,.

Let (t,e) € P, be such that t* = e. Then we immediately obtain that ¢t = > =

t? = te = e.

If t € S, from t3 =t we get that t* = tt7! = id, while t ¢ S,, directly implies
that t? # id. The second part follows from the fact that a permutation of order
2 is a product of disjoint transpositions, and that ¢ € U,, must fix at least one
element of {1,...,n} by Lemma IV.2.1.

If t* = ¢, then we have that (t9)* = (g7 'tg)* = g~ 1tFg = g~ 'tg = t9. Conversely,
if (t9)F = 19, then we have g~'tfg = g~'tg which immediately gives us that t* = ¢.

1

Finally, g 'tg = t9 = id if and only if t = gid ¢~! = id as required.

Let (t,e) € P, and g € S,,. Since t3 = ¢, by the previous argument, we get that
(t9)3 = t9. Also, t9¢9 = g teg = g teg = €9 and similarly e9t9 = 9 = (e9)2,

which shows that (t9,¢e9) € P,.

Let (t,e) € P, so that te = e. Then, if ¢ = id we get that t = tid = id, as

required.

Let (t,e) € P,. Then from t* = t we directly obtain that (t?)? = 3 = t* and
thus #? is an idempotent and lies in U,, by point 1). Since te = et = e, we have
that t?e = t(te) = te = e, and similarly et? = e. Hence t?e = et? = e = €%, which
shows that (%, ¢e) € P,.

Let (t,e) € Py and g € S4. We first show that (to,ec) € P, and then apply 5)
to obtain the full result. Notice that if t,e € T, \ S,, then to = eo = ¢4, while
if t = e = id, then to = eoc = id, which by part 1) shows in both cases that
(to,ec) € P;. Otherwise, t € Sy and e # id, and then tc = p; and ec = ¢4.
Since o is an endomorphism, we get that (to)? = t30 = to. Moreover, as p; € S,
fixes 4 by definition, it follows that p;cy = cyps = ¢4 = ¢ and we thus have
(to,ec) = (pt,cq) € Py. O
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We now give some characteristics of the endomorphisms of 7,, with rank at most
three that will play an important part in the discussions to come. Elements of the
proofs of the following two results given explicitly can be found scattered throughout
the proof of Theorem IV.1.2 in [48]. They are only included here for convenience,

and to prepare the reader for similar arguments to come.

Corollary IV.2.3. 1) An endomorphism o € &, has rank 1 if and only if & = ¢ .
for some €* = e € T,. There is a one-to-one correspondence between the

endomorphisms of rank 1 and the one-element subsemigroups of T,,.

2) An endomorphism o € &, has rank 2 if and only if o = ¢r. for some (t,e) € P,
with t? =t # e. There is a one-to-one correspondence between the endomorph-

isms of rank 2 and the two-element semilattices {t,e} C T, with e < t.

3) An endomorphism o € &, has rank 3 if and only if o = ¢r. for some (t,e) € P,
with t # t* # e. There is a one-to one correspondence between the endo-
morphisms of rank 3 and the three-element subsemigroups of T, consisting
of a two-element subgroup {t,t*} having identity element t*, together with an

adjoined zero e.
4) The map ¢r3q € &, if and only if t = id.

5) If duy € &y for some u, f € Ty, then ¢y2 s, ¢p 5 and @242 are also in &E,.

Proof. Let a € &, be an element of rank at most three. Thus a = ¢;. for some
(t,e) € P, and it follows from the definition of ¢, . that im ¢, = {t,1? e}.

For part 1) it is clear that o has rank 1 if and only if t = ¢ = e. In this case,
since e is idempotent it is clear that the image of ¢, . is the trivial semigroup {e}.
Conversely, for each idempotent e there is a unique endomorphism ¢, . of rank 1
with image {e}.

For part 2), we note that it follows from Lemma IV.2.2 part 2) that ¢;. having
rank 2 is equivalent to the condition that t = t? # e (indeed, this tells us that it is
not possible to simultaneously have ¢ # t? and t? = e, and since e is idempotent it is
also not possible to simultaneously have ¢t = e and ¢* # t). In this case, the image
of ¢ is {e,t} and the relations e = ¢* = te = et and t = t* yield that this is a
two element semilattice with e < ¢t. Conversely, for each pair of distinct comparable

idempotents ¢, e with ¢t > e there is a unique endomorphism ¢; . of rank 2 with image

{t,e}.
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For part 3), it is clear that ¢; . has rank 3 if and only if ¢ # t* # e. In this case
¢1e has image {e,t,t*} and using the fact that ¢* is idempotent and (¢?,¢e) € P,
by Lemma IV.2.2 part 7), we obtain that {¢,¢?, e} is a subsemigroup of 7,, where
the idempotent t2 acts identically on the left and right of ¢, and the idempotent e
acts as a left and right zero on all three elements. Conversely, for each two-element
subgroup {t,t*} where t? is idempotent, and each idempotent e such that {t,t* e}
is a group with a zero e adjoined, we have a unique endomorphism ¢, . of rank 3
with image {t,t%, e}. This proves parts 1)-3).

To see that 4) holds note that for the map ¢y ;q to be in &,, we require (¢,id) € P,,
which forces ¢t = id by 6) of Lemma IV.2.2; and then ¢;iq = ¢iq.d-

Finally, for part 5), we know that ¢, s € &, if and only if (u, f) € P,. But then,
using parts 7) and 1) of Lemma IV.2.2 we have that v? and f are idempotents, and
we therefore have that u?, f € U, as well as (u?, f) € P,. Hence ¢,z s, ¢ and ¢,z2 .2

satisfy all conditions to be endomorphisms. O]

The next result is surprising in that singular elements of &, of rank no greater
than 3 (so, all singular elements in the case n > 5) are entirely determined by their

images. This has significant consequences later when we consider Green’s relations.

Lemma IV.2.4. Let ¢1e, @y s € Ey. Then ¢pe = ¢y ¢ if and only if im ¢y = im @y, 5
if and only ift =u and e = f.

Proof. Suppose that im ¢, = im ¢,, ; and consider the description of the images
corresponding to the possible ranks of these maps as given in Corollary IV.2.3.
Clearly if ¢¢ . and ¢, s have rank 1, then t = e = u = f. Suppose that they have rank
2 so that im ¢ . = {t, e} and im ¢,y = {u, f} where ¢, e, u and f are all idempotents.
Then, since their images are two element semilattices with e < t and f < u, we get
that e = f and ¢ = u. Finally, if ¢, . and ¢, ; have rank 3, then {¢,t% e} = {u, u?, f}
where t and u are the only non idempotent elements, and e and f are the zeros,
respectively, which together forces t = v and e = f. In all cases, we have shown that
if im ¢y = im ¢, ¢ then t = v and e = f, and therefore ¢y, = ¢, s. All the other

equivalences follows directly from this. m

We also describe below the explicit multiplication of elements in &, for n # 4 as

this will be a cornerstone of many later proofs.
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Corollary IV.2.5. Let g,h € S,, and (t,e), (u, f) € P,. Then we have the following
compositions in E,:

1) Yoty = Ygn;

2) ¢g¢t,e = ¢t,e;

3) Gty = broeo; and

buyr  ift €S, \ A, and e #id,
b2y fteA, and e #id,

drp  ift €T, \S, and e # id,
Guz2 ift=e=id.

4) gbt,egbu,f -

Proof. All of the products are straightforward computations using the definition in
Theorem IV.1.2; we only detail that for 4). It is nonetheless worth noting that the

map on the right-hand side of product 3) is well-defined and indeed belongs to &, by
point 5) of Lemma IV.2.2.
So consider (t,e), (u, f) € P, so that ¢, ., ¢, 5 € E,, and let s € T,,. Then:

toyr ifseS,\ A,
SOtePuf = {Puy if s € Ay,

epur ifseTy\ S
Recall from Lemma IV.2.2 part 6) that if e = id then we must also have ¢ = id.
Clearly, if t = e = id, then we have that t¢, ; = t?¢u; = epy s = idg, s = u?
so that ¢ ¢y = @22 in this case. Thus in all remaining cases we may assume
that e # id and hence e € T, \ S,. If t € 7, \ Sy, then t* e € T, \ S, so that
thu s = t*¢u = edyr = f. Therefore we get that ¢; .4, s = @7 whenever t € T,\S,..
If t €S, then t* = id by Lemma IV.2.2 part 3), so that t*¢, ; = id¢, s = u*. In the
case where t € A,, we get that

tour=u? ifseS,\ A,

5Pt eQu,p = idg,, ; = u? if se A,

epur=f ifseT,\Sn

which shows that ¢ ¢, f = ¢y2 ¢. Otherwise, t € S, \ \A,, and we obtain

tour=u ifseS,\ A,

$Qtebuyr = {idg,r =u* if s € A,,

epyr=f fseT,\Sn

so that ¢y, = ¢y 5 in that case. O
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Notice that for n # 4 the previous result encapsulates the multiplication table of

&n. In the next section we record the remaining products in the case n = 4.

IV.2.2 ENDOMORPHISMS OF RANK 7 IN END(7})

Let D(4) = {09 : g € S;} denote the set of all endomorphisms of rank 7 in £;. We
complete the multiplication table presented in Corollary IV.2.5 to account for these

additional elements in &;.

Lemma IV.2.6. The sets D(4) and E4\ D(4) are subsemigroups of £4. Moreover,

we have the following compositions in E4:

1) 090" = gPe";

2) o9y, = o9;

3) Yo = ogPhd;

4) 0901e = bre; and

5) Gre0? = Proo,con-
Proof. That & \ D(4) is a subsemigroup follows from Corollary IV.2.5. To see
that D(4) is a subsemigroup, consider 09, 0" € D(4). Using the fact that o is an

endomorphism, for all s € 7, we have:

SO’gO'h o (gflpsg)ah if s € 84, B hil(pgflpspg)h T 84,
C4go'h 1f8€7:1\84’ Cap, lfSGE\S4,
= soPoh,

where we use the fact that both p, and p, fix 4 and hence pyo = p, and ¢y = cap,n-
This shows that 1) holds, and hence that D(4) is a subsemigroup.
For all s € 7Ty, it is clear that so9%¢;, = h™tso9h = so9", and so 2) holds. Similarly,

using the fact that ¢ is an endomorphism, we get
spo? = (h~'sh)o? = g 'p, tsopng = soPHd,

as given in 3).
Using Lemma IV.1.7 we have that for all s € 7; and 09, ¢, € &

t if80'9684\./44, t ifSES4\A4,
5090 e = (2 if s09 € Ay, =112 if s € Ay,
e if so9 € Ty\ Sy, e ifseT\Sy,
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so that 09¢; . = ¢, and 4) holds.
Finally, for all s € T, we have

tod if8€S4\.A4,
s5¢pe0? = (t?09  if s € Ay,
ecd ifseT,\ S

Notice that since 09 is an endomorphism, we have that t?09 = (t09)2. The result of
5) then follows from the fact that (t09,e0?) € P, by 8) of Lemma IV.2.2. O

IV.3 A DECOMPOSITION VIA RANK AND TYPE

The monoid &, can be partitioned in a convenient way by considering the following
subsets of &, \ Gy:

(n) = {¢re € En: t € Sy \ A, e # id},

(n) ={pte €& :te A, t#id #e},

(n) {¢t,e€5nitEE\Sn,t#tQ#e#id},
Es(n) = {¢iae € Eu: e #id},

(m) = {

(n)

For n = 4 we also define E7(4) ={09: 9 € K} C D(4) = {09 : g € S;}. To reduce
notation, when it is clear from context we will suppress the dependence on n and
write simply Fs, A, B, Ey,C, Eq, E7 and D. These subsets group together maps that

share similar properties, such as the idempotents of a given rank:

Lemma IV.3.1. For k =1,2,3,7 the set E} consists of all the idempotents of rank
k in E,. The set of idempotents of &, is therefore

E(E {eJUE,UE3UE,UE; ifn=4,
{e}UE3UEyUE, otherwise.
Proof. Clearly, the only idempotent element of G, is . It follows from the multiplic-

ation in Corollary IV.2.5 that a = ¢, € &, is idempotent if and only if either (¢) ¢ is
odd and e # id (in which case « € Fj3), or (ii) t = t* # e and t € S,, (in which case
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t =id and a € FEy) or (ii1) t = e from the last two cases of 4) in Corollary IV.2.5
(in which case o € E;). For n = 4 it follows from Lemma IV.2.6 that 09 € D is
idempotent if and only if p, = id or, in other words, if and only if g € K. n

The remaining sets A, B, C' (together with D\ E7 in the case n = 4) account for
all the non-idempotent singular maps; the reasoning behind this grouping shall be

made apparent shortly.

Lemma IV.3.2. The endomorphism monoid &, can be written as:

G.UDU(E3UB)U(E,UC)U (Ei\{¢uaa} U{diaua}) ifn=4,
gn U (E3 U A U B) U (EQ U C) U (E1 \ {Qbid,id} U {¢id,id}) otherwise,

where subsets containing endomorphisms of the same rank are bracketed together.

For n > 2 this union is disjoint and the set &, \ G, is an ideal of &,.

Proof. That &, is the union of the given sets follows from Theorem IV.1.2 and
Corollary 1V.2.3, noting that the constraints of the given sets cover all eventualities
and that the set A is empty in the case of n = 4 (since if ¢ € A, \ {id}, then
t has no fixed points, and thus ¢ ¢ U, by Lemma IV.2.1). The fact that the
bracketed expressions are the sets of endomorphisms of the same rank also follows
from Corollary IV.2.3. Each automorphism of &, has rank n" and hence the union
is disjoint for n > 2. O

As we have seen in Corollary IV.2.5, there is an important distinction in the
multiplicative behaviour of elements ¢; . depending on where the element ¢ € 7, lies
and whether e = id. Since this will be of great importance to determine Green’s
relations and the ideal structure of &,, we define the type of an endomorphism 6

relative to the type of the underlying transformations associated with 6.

Definition IV.3.3. We say that 0 € &, is of:
o group type if 6 € G,,;
o cxceptional type if n =4 and 0 € D,
o odd type if 6 € Ej;
o even type if 0 € AU Es;
 non-permutation type if 0 € BUC U (E1\{¢iaia});

o trivial type it 0 = ¢iq iq.
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Notice that the partition of &, given by Lemma IV.3.2 is therefore a partition into

subsets of elements having the same rank and type.

The notion of type is a good one since this characteristic of a map is stable under

multiplication by automorphisms.

Lemma IV.3.4. 1) For any ¢ € &, and ¢, € G, we have that
gbt,ea ¢g¢t,e = ¢t,e and ¢t,e¢g = Cbtg,eg
have the same type.
2) For any o" € D and any ¢, € G4 we have that
" ¢gah =oP"  and ahwg = ol
have the same (exceptional) type.

3) Letn # 4 and v € &,. For any ¢r. € X where X is one of A, B or C, we
have ¢, .y € X if and only if v € G,,.

Proof. The proof of parts 1) and 2) follow immediately from Corollary IV.2.5 and
Lemma IV.2.6, together with the observation that conjugation in &, preserves the
parity of elements in §,, and the rank of all elements.

To show that 3) holds, it only remains to show the converse. Let ¢;. be in A, so
that it is of even type and rank 3. By Corollary IV.2.5 we have that for any ¢, r € &,,
the product ¢, ¢, 5 = ¢,2 ¢ has rank at most 2, so cannot lie in A. Similarly, if
¢re is in B or C, so that it has non-permutation type and is of rank 3 or 2, then

Ot.ebu s = @55 has rank 1, so cannot lie in B or C. [

Definition IV.3.5. For a € &, we define the orbit of o to be aG,. It is easy to see
that all elements of a given orbit have the same rank and (by Lemma IV.3.4) the
same type.

In view of the decomposition given in Lemma IV.3.2, we note that each of the sets
Gn, B3, A, B, E,,C, Ey (and D in the case n = 4) is a union of orbits. For ¢, € X
where X is one of A, B or C, it will sometimes be convenient to write X, . to denote
the orbit of ¢, ., in order to easily recall the rank and type of elements in this orbit

without specific mention of the corresponding properties of ¢ and e.

For all n > 5, being of the same type is equivalent to acting in the same way by

multiplication on the left on the singular part of &,.
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Lemma IV.3.6. Letn > 5 and let o, 5 € €, \ G,. Then a and ( are of the same
type if and only if ay = By for ally € &, \ Gn.

Proof. Since a, 8,7 € &, \ Gn, only 4) in Corollary IV.2.5 is relevant. It follows
immediately from the description of this multiplication that if o and § are of the
same type, then ay = v for all v € £, \ G,.

Conversely, suppose «, 5 € &, \ G, are such that ay = g for all v € &, \ G,,. If
Y = ¢uy € E, where u = (23) #id = u® # [ = ¢ # u, then the maps ¢, 7, ¢u2 s,
¢55 and ¢,2 2 are all distinct. From this, it is clear that if o and 3 have different
types, then we fall into into a different case for the multiplication and therefore

avy # [y, which gives us the equivalence. m

Remark IV.3.7. The authors of [48] gave explicit formulae to count the number of
endomorphisms of each rank. Since G, and S, are isomorphic we have |G, | = n!.
Meanwhile, it is clear that for any e = e? € &, we have that (e,e) € P, and if e # id
then also (id, €) € P,. Consequently, |Ei(n)| = |Es(n)| +1=|{e € T,: ¢ = e}|. We
shall not attempt to give formulae for the cardinality of the remaining sets in our
partition of &,, but it is useful to note that for n > 5 each set in this partition is
non-empty. We conclude this section by recording examples to demonstrate this

below; some of these examples will be utilised in later proofs.

FExample IV.3.8. Let n > 5 and let t,u,p,q,e, f € T, be defined as follows:
; 1234 is5 1234 is5 1234 is5

= - , et - s e = - ,
1321 i b 2143 14 5555 1

1234 1>5 1234 155 7 1234 1>5
u = - s = - 5 == - .
1114 4 1 1324 4 1111 1
It is easy to verify that p,q € S,,, p € A, ¢ € S, \ A, and t,u,e, f € T, \ S, are
such that:

CemetidAf=fE
e PP=id=¢* pe=e=epand qf = f = fqso that (p,e),(q, f) € Py;
o 1> =tand te=ec = et so that (t,e) € P,.

e v’ =wand uf = f = fuso that (u, f) € P,.
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It then follows that the maps ¢p¢, @q,r, Gte, Pia,f and ¢, s are endomorphisms of 7,,.
Moreover, it is clear from definition that ¢, € Es(n), ¢, € A(n), ¢t € B(n),

bia,r € Ea(n), ¢ur € C(n), and ¢ € E1 \ {diaia}-

Remark TV.3.9. We will make use of the preceding results repeatedly in the following
sections where we describe the regular elements, Green’s relations, ideal structure
and extended Green’s relations for &,. In order to state our results in their most
general form, it will be convenient to assume that n > 5; this, of course, bypasses the
case when n = 4, where the structure of &£, is more complicated due to the additional
maps of rank 7, as well as some degenerate behaviour for n < 3 (where there are in
some sense too few maps for the general behaviour to emerge). We will return to

these special cases in Section I'V.8.

IV.4 IDEMPOTENTS AND REGULARITY

Throughout this section we assume that n > 5. In particular, this means that the
set &, \ G, of singular endomorphisms is equal to the set of endomorphisms of rank

at most three:

En\gn:{¢t7e:(t,e)EPn}:{qbt’e|t,eEEWitht?’:tandte:etZGQZG}.

IV.4.1 'THE LEFT ACTION OF THE ENDOMORPHISM MONOID ON THE SINGULAR
PART

For (t,e) € P, the maps ¢w2., ¢.. and ¢ are all closely related to the map
¢1e. Indeed their images are all contained in that of ¢,. and by Corollary IV.2.5
they are all in &,¢; .. Lemma IV.3.6 allows us to define a notation facilitating this

identification.

Definition IV.4.1. Let a € £, \ G,. Then we define o™, a~ and oY as:
e at =~aforany v € &, \ G, of even type;
e« a~ =~a for any v € &, \ G, of non-permutation type; and

o ¥ = ¢ggiqa (that is, ya for y € &, \ G, of trivial type).
Additionally, for X C &,\ G, and t € {+,—,0}, we define X' to be the set
{aT: aeX }
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Remark 1V.4.2. Under this definition, we can now see that if a € &, \ G,, then
ya € {a,a™,a”,a’} for any v € &, and thus £,a = {a,a’,a™,a’}. Additionally,

if we write o as ¢, then we have that

a= Qg if v has group type or odd type,

at = ¢z, if vy has even type,
o=
o~ = ¢ if v has non-permutation type,

a’ = ¢z 2 if 4 has trivial type.

We now show how each of the sets involved in the decomposition of &, behave

under the operations mapping a to a™, o~ or .

Lemma IV.4.3. Let a« € £, \ G,,. Then
1) 1=r1k(a’) =rk(a”) < rk(at) <rk(a) < 3;
2) at =« if and only if k() < 2 if and only if « € E; UC U Ey;
3) a~ =« if and only if a® = « if and only if rk(a)) = 1 if and only if o € Ey;
J) EYUA* CE,=Ef, B*CC=C", and Ef = Ey;
5) Eg UA-UB UC™ C Ey\{puu} =FEy, and E; = Ey;

6) BuC’ C b \ {¢id,id} = (El \ {¢id,id})07 and
AV = E:? =Ey = {diaa} = {¢1d,1d}0.
Consequently, we have (£,\Gn)" = E;UCUE] and (E,\G,)™ = (£,\G.)° = E.

Proof. Let a = ¢ € &, for some (t,e) € P,. Throughout this proof, we use the
description of a™, o~ and o given in Remark IV.4.2.

Part 1) follows immediately from Remark IV.4.2. For part 2), suppose first that
o = a, which means that ¢ = ¢ ., so that ¢ = ¢* and rk(a) < 2. If t € S,,, this
forces t = id, and thus o = ¢yq. € Fo. Otherwise, t € 7, \ S,, and either ¢ # e, which
means that o € C, or t = e and then a = ¢.. € E;. Conversely, if « € F, UC U Ej,
then ¢ = ¢? from which we have that a has rank at most 2 and o™ = ¢z, = ¢ = a.

For part 3), if « = a~, then we have that ¢, = ¢. . which forces ¢t = e, while if
a = o, we require ¢, = @22 which implies that ¢ = t* = e. In both cases, this
gives us that o € Ey, that is, has rank 1. Conversely, if & € E;, then t = > = ¢ and

a” = ¢ = a while o’ = D122 = Qe e = QU
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For part 4), notice that we have already seen that Ef = E,, CT = C and
Ef =E,. Ifa=¢,. € E3UAsothat t €S, then a™ = ¢, = diq. € Fa. On the
other hand, if & = ¢ € B, we have that t* # e and then o™ = ¢, € C.

Similarly, for part 5) if « = ¢, € E3 UAU BU Ey U C then e # id and so
Q= ¢ € By \ {¢iqia}, whilst for each idempotent e # id we have that ¢i; . = ¢e.
and so By = Ey \ {¢iaia}. The remaining equality is given by part 3). Likewise, for
part 6) if &« = ¢y, € BUCUE; \{¢iaa} then t? # id and so a® = ¢y2 2 € Ey\{diaia},
whilst for a = ¢y € E3 U AU Fy U {¢iqa} we have t* =id and so a® = ¢jq5q. U

The inclusions given in the previous lemma, as well as the representation of the
action of the maps a +— o® for x € {4+, —,0} can be seen in Figure IV.1 alongside
the depiction of the F-order of the monoid &,. The latter will be given explicitly in
Proposition IV.6.1.

As a direct consequence of the previous lemma, we can describe the composition

of the operations mapping o € &, \ G, to a™, a™ or a°.

Lemma IV.4.4. Let a € E,\ G,,. Then for any x,y € {+,—,0} we have (a*)? = ¥

if v =+ and ()Y = o® otherwise.

Proof. For any a € &, \ G,,, we have that a~,a® € E;. Tt follows from Lemma IV.4.3
that if z € {—,0}, then we get that (a®)? = ao® for all y € {+,—,0}. On the
other hand, since o™ € E, UC U E; we get that (at)” = at. If we now assume

that o = ¢y, then using Remark IV.4.2 we have that (o)™ = ¢p, = ¢ee = a~

and (o)’ = ¢% . = ¢ = a’. Hence, we have proved that (a®)! = o¥ for all

y € {+,—,0} whenever x = +. m

IV.4.2 IDEMPOTENTS

The set of idempotents of &,, which we denote by £ = E(&,,), has very nice properties

as given by:

Lemma 1V.4.5. In &, we have the following:
1) Ifa€é&, and B € &, \ G, is idempotent, then aff € E.
2) If a, p € E are idempotents, then aff € E.

8) Let o = ¢y € E,\ Gy and g € S,,. Then, o € E; for some 1 < i < 3 if and only
Zf ¢t,e¢g = Cbtg@g - Ei.
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4) Let a, 3 € E. Then 3 is a left identity for «, that is, Ba = «, if and only if one

of the following hold:
e v=¢=(;
e € FE3and € {c}UEFE;3;
e € Fyand € {c} UE3U Ey;
e € FEand B € FE.

On the other hand, B is a right identity for «, that is, af = «, if and only if
one of the following hold:

e x =¢ = B;‘
o (¥ & E3 and ,8 € {5705};
e X = gbid,e € E2 and /6 S {6) gbid,e} U {¢u,e: RS S’fl is odd and (U, 6) = Pn};

a = gbe,e S \ {¢id,id} and
B € {e, bides Peet U{Pue: u €S, is odd and (u,e) € P,}; or

e o= iaia € E1 and € {e, piaia} U E3 U Es.

Proof. 1) Let « € &, and 8 € &, \ G,. If @ € G, then aff = [ which shows

that a8 € E whenever § € E. On the other hand, if a € &, \ G,, then
af € {B3,5%,5,3°}. Thus, it suffices to show that if 3 is idempotent, then so
are each of 87,3~ and £°. By Lemma IV.4.3, we have that 5, 3° € E;, while
Bt e Eyif Be Eyand T =pif B € By U Ey.

If either @ = € or § = &, then the result is trivial. Otherwise, «, 5 € &, \ G,, and

the result follows from part 1).

Let o = ¢, € E and ¢y, € G,,. Since ¢, and ¢y s are of the same type by
Lemma IV.3.4, it follows that if & € E5 then o), € F3. If a = ¢iq € Fs, then
idY = id so that ¢u9 cs = @iges € Eo, while v = ¢ € Ej forces ¢ro co = s o € Ei.

The converse is clear from the fact that ¢ . = ¢ co1y-1.

Suppose that «, § € E, so that a, € {¢} U F3 U Ey U E;. Notice that in all
cases, we can have = ¢ and it is the only possibility whenever v = €. Thus we
can assume that 8 = ¢,y € F3 U Ey U Ey and we consider the products o and
Ba using the expressions given in Remark IV.4.2 and the uniqueness of writing

exposed in Lemma IV.2.4.
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« Suppose that a = ¢, € E3 (and hence is of odd type). If fa = «, then
this means that we need ¢, ;¢ = ¢y. Since t # t? # e, it follows that ¢, s
must be of odd type, which shows that § € E3. On the other hand, for any
b € E3U Ey U Eq, we have that a8 = 3 since « has odd type, and thus the
equation aff = « forces = a.

« Suppose that o = ¢iq. € Ey (and hence is of even type). Since a = ot but
e # id, it follows that Sa = « only if 3 is either of odd or even type, that is,
B € E3 U Ey. Additionally, a3 = S and if we assume that a8 = «, then
we require ¢iq. = @ = = ¢,2 ;. This means that v* = id and f = e, so
that either 5 = «, or u € S, is such that (u,e) € P,.

e If @ = ¢ € Fy, then a = o™ = o= = o by Lemma 1V.4.3, and thus
Ba=aforall g e FE.

o Ifa=¢.. € FEy\ {¢aa} (and hence is of non-permutation type) then we
get that aff = = = ¢ s. Thus if aff = «, we get that f = e and (u,e) € P,.
This occurs whenever u =id, u = e or u € S, is odd with (u,e) € P,.

o If & = ¢igia (and hence is of trivial type) then we have aff = % = ¢,z2 2.
Thus af = « forces u? = id and thus 8 € F3U Ey U {didia}-

Finally, for each point above the converse directly follows from the description of the

multiplication in Remark 1V.4.2 according to the type of the maps considered. [

As a direct corollary, we give some properties of the set of idempotents of a given
rank.
Corollary IV.4.6. 1) Each element of Es is a left identity of &, \ Gn.

2) Each element of Ey is a right zero of &, \ G,.

3) The minimal ideal of &, is Fj.

4) The set of all singular idempotents FE3 U Ey U Ey forms a left ideal of &,.

5) The set of all idempotents E = {e} U E3U Ey U Ey is a band, and forms a chain

of right-zero semigroups.

Proof. The fact that elements of E3 are left identities for &, \ G, is immediate from
Corollary IV.2.5, as is the fact that elements of E; are right zeroes for &, \ G,. Since
rk(af) < min {rk(a),rk(8)} for all «, 8 € &,, and that elements of E; have rank 1,

it follows that FE; is an ideal of £,. Since F; is a right-zero semigroup, it has no
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proper ideals and is therefore the minimal ideal of &,,. That F3 U Es U E; forms a
left ideal of &, follows directly from part 1) of Lemma IV.4.5, while the fact that
E is a band is immediate from the fact that it is a subsemigroup by part 2) of the
same lemma and only consists of idempotents. Finally, it is easy to see from part 4)
of Lemma IV.4.5 that F5 and FE, are right-zero semigroups. Since € is the identity of
the monoid &, it only remains to show that E;E3 C E5. However, this is immediate

from the fact that each ¢iq. € Fy is of even type, and then, for all ¢, 5 € Es3, we
have that ¢id,e¢u,f = ¢u27f = Cbid,f € Fs. ]

Remark 1V.4.7. Combining the results of Lemma [V.4.5 and Corollary IV.4.6, we
have shown that the idempotents of &, form a left reqular band, that is, a band that
satisfies the identity zyxr = yx.

IV.4.3 REGULAR ELEMENTS

We now have all the tools necessary to describe the regular elements of &,,. Recall

that we have a standing assumption that n > 5.

Proposition IV.4.8. The set of all reqular elements of &, is G, U E(E,). Further-

more, this is a proper subsemigroup of &,. In particular, &, is not reqular.

Proof. Clearly if o € &, is an automorphism or an idempotent, then it is a regular
element. The fact that G, U E(&,) forms a (proper) subsemigroup is immediate from
Lemma IV.3.4 and Corollary IV.4.6.

Conversely, let a € &, \ G, be a regular element of &, so that aya = o where
v € &,. Suppose for contradiction that « is not idempotent (that is, « € AUBUC).
Then it follows from Corollary IV.2.5 part 2) that v € &, \ G,, as it would otherwise
contradict the fact that o # «. Note that oy must be an idempotent left identity
for a and hence of the same rank as a. If « € AU B, then « has rank 3; but since
v € &, \ Gn and « has even or non-permutation type, the rank of oy is no greater
than 2, contradicting that ay has the same rank as «. Similarly, if o € C, then «
has rank 2; but since o has non-permutation type, the rank of ay is 1. This shows
that the only regular elements of &, \ G,, are the idempotents.

The fact that G, U E(&,) is a subsemigroup of &, follows from part 1) and 3) of
Lemma IV.4.5, and since AU B U C' # (), this finishes to show that regular elements

form a proper subsemigroup of &,, so that &, is not regular. O
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Remark 1V.4.9. We will see in Section IV.8 that the only values of n € N such that

&, is regular are n = 1 and n = 2.

A consequence that the regular elements of &, lie inside G,, U E is that 7,, cannot

embed into &,. In fact the converse is also true as given by the following.

Corollary IV.4.10. The semigroup T, does not embed into End(7T,). Conversely,
End(7,) does not embed into T, either.

Proof. Suppose first that there exists an embedding 6 from 7, into End(7,). Since

all elements of 7, are regular, it follows that the image of € lies in G, U E. Now

12k
t= =3 67:17
23 3

so that t2 = c3 # t. Since G, = S,,, we must have that t0 € E5 U E, U E;. But then
t0 = (t0)*> = (t*)0, a contradiction with the fact that 6 is supposed to be injective.
For the converse, notice that for any morphism 6: End(7,,) — 7,, idempotents

consider

of End(7,) must map to idempotents of 7,,. However, by Remark IV.3.7, we know
that |E)| = |Fa| + 1 = |{e = ¢* € T,}| > 3 so that § cannot be injective, and thus

cannot be an embedding. ]

IV.5  GREEN’S RELATIONS

Throughout this section we again assume that n > 5 so that the set &, \ G, of
singular endomorphisms is equal to the set of all endomorphisms of the form ¢,
each having rank at most three. Here we turn our attention to Green’s relations
R, L, D, # and ¥. It is well known that in a finite monoid, the R-class and the
Z-class of the identity coincide, and are hence equal to the # -class of the identity,
which is the group of invertible elements (see for example [49, Corollary 1.5]). In the
case of &, is is easy to see this directly, using considerations of rank.

We first show that the &-classes of &, are singletons except for elements of G,,,

which from the above form a single &-class.

Proposition IV.5.1. Let o, f € &,,.
1) Ifa € E,\G, then the principal left ideal generated by o is E,a = {a, at,a~, a}.
2) aZ B if and only if ima =im S if and only if « = B or a, 5 € G,,.
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Proof. 1) By Example 1V.3.8 we know that &, contains an element of each type,
and so Remark IV.4.2 applies here to give that the principal left ideal is indeed
Ea={a,a, a",a’}.

2) Clearly if @ = 8, then «Z . On the other hand, if o, 5 € G,, then as
remarked above a & 3.

Conversely, suppose that o & 3, so that a = v and 3 = da for some v, € &,.
It follows that im o = im 3. Clearly if this image is the whole of 7, then «, 8 € G,,.
Otherwise «, 8 € &, \ Gy, so that o = ¢, and § = ¢, s for some (t,e), (u, f) € P,
which gives us that o = 3 by Lemma IV.2.4. [

Remark IV.5.2. Recall that if X is one of A,B or C, then X is the union of orbits
X:. where (t,e) € P, is such that ¢;. € X. Moreover, it is easy to see that
(Xt,e)+ = {(¢t9,eg)+i g€ Sn} = {¢(t9)2,e93 g€ Sn}
= {¢t2,ewg: g€ Sn} = ¢t2,egn = Qb;_egna

and we simply write this set as X;fe. Notice that Lemma IV.4.3 gives C’;fe ccC
whilst A/, ¢ A and B/, ¢ B.

Proposition IV.5.1 shows that & that is surprisingly restrictive. However, the

R-classes of &, are much larger, as given by the following.

Proposition IV.5.3. Let o € &,,. The principal right ideal of £, generated by « is

equal to:

En if o € Gy,
En\ Gn if a € Ej,
A UEBRUCUE,  ifa=¢. €A,

alp = E,UCUE, if a € FEy,
B,.UE, ifo= ¢ € B,
Cie UE) ifa=¢e€C,or
Ey if a € B

Consequently, G,, Ez, Ey and E; each consist of a single R-class, whilst each

remaining R-class is the orbit of an element in A, B or C.

Proof. First note that if o € G,,, then of,, = &, while if a = ¢, € &, \ G, then by
Corollary IV.2.5 and Remark IV.4.2, we have that

O-/gn = {¢t9769: g € gn} U {’Vx 7 S gn \ gn}a
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where 7 is one of v, v+, 77, or 7Y, depending on the type of a. For example, if
a = ¢ € B, then

agn = ¢t,egnu {’7_: v e gn\gn} = Bt,eu{¢f,f: f2 - f € 7:1} = Bt,eUEl'

Similar reasoning demonstrates that the principal right ideal generated by « is as
stated in each of the remaining cases.

Since a R [ if and only if a&, = BE,, it follows directly that G,,, E3, Ey and E;
each consist of a single R-class, and that «, 5 € AU BUC are R-related if and only
if they lie in the same orbit of the form ¢; .G, O

Corollary IV.5.4. In &, we have that ## =L CR =D = F.

Proof. From Propositions IV.5.1 and IV.5.3, one can directly see that £ C R, and
therefore # = NR = £ while D = LoR = LVAR =R. Additionally, since &,
is finite, we have that & = ¥ (see [28, Proposition II 1.4]). O

IV.6 IDEAL STRUCTURE AND ¥-ORDER

We have already described the principal left and right ideals of &, in Proposi-
tions IV.5.1 and IV.5.3. Corollary IV.5.4 determines the ¥-relation, and hence when
two principal ideals coincide. Nevertheless, it is worthwhile recording their form

explicitly.

Proposition IV.6.1. Let a € &,,. Then the principal two-sided ideal generated by «

5

En if o € Gn,

En\ Gn if a € Es,

A UE,UCUE,  ifa=¢ €A,
&k, =< B, UCUE, if a € By,

By UCp.UE, if o = ¢ € B,

Cie UEy if o= ¢ €C,

E, if o € Ej.

Proof. We have already given a description of the principal right ideals a&, in
Proposition IV.5.3. It is clear that &,a&, = a&, for all a € G,,. Suppose then that
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a € &, \ G, By Corollary IV.2.5 and Remark 1V.4.2 the description of the principal
two-sided ideals £,a&,, can therefore be found by taking the closure of the principal
right ideal a&, under the operations v — ¥,y — v~ and 7 — 7°. By Lemma IV.4.3
we note that each ideal a&, is closed under the latter two operations, and if « ¢ B
then it is closed under all three operations, giving £,a&,, = a&,. For a = ¢y 00 € By,
we note that ot = @20 = G290 € Ci e, giving that &,a&, = a, U Cp, as
required. O]

As an immediate consequence of the description of all the principal ideals of &,,

we can describe the J-order of elements in &, as follows:
Corollary IV.6.2. Let a, B € &,. Then 8 <g a if and only if one of the following
holds:

1) a€G,;

2) a € E3 and B € &, \ Gn;

3) a=¢re €A and f € A, UE,UCUE;

4) a € By and B € B UC U Ey;

5) a=¢re€Band € B UCp,.UE;

6) a=¢r.€Cand feCUE; or

7) o, € Fy.

Using this, we can now see the structure of the F-order of &, as laid out in
Figure IV.1 below, where we have added how the maps a +— o” for z € {+,—,0}
act on the different components of &,.

From the description of the principal ideals of &,, we can also give an explicit
formulation for each ideal of £,. In order to do so, we use the notation introduced

in Definition IV.3.5. Notice in particular that if ¥ is a union of orbits of elements of

B, that is, Y = U OreGn = U B, . for some B’ C B, then

ot,e€B’ ¢t,eEB’
Y+ = U {(¢t9,€g)+: g € Sn} = U {¢t2,e¢g: g S Sn}
¢t,e€B’ ¢t,e€B’
= U ¢t2,egn = U Ctz,e'
¢t,e€B/ ¢t,e€B/

Thus, Y+ C C is again a union of orbits. Since each ideal is a union of principal

ideals, we can call upon Proposition IV.6.1 to describe the ideals of &, as follows.
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gn wg: gGSn

| Fs Groi 1 €S\ A, t 12 # ¢ #id)

te A,

t€Tn\ Sn,
t#12#£e#id

t£t2#£e#id
Bt,e

at—0
[ diaia | E, Dot € =€/P)

Figure IV.1: The ¥-order of &, for n > 5. Each rectangle represents a ¥-class,
whilst the ovals represent the groupings of elements according to the sets A, B, C.
Black lines indicate the F-order, whilst directed lines indicate the action of the maps
a o for z € {+,—,0}.

Corollary 1V.6.3. Any ideal of &, takes one of the following forms:

1) &, (the only ideal containing automorphisms);
2) £, \ Gn (the only proper ideal containing elements of odd type);

3) XUY UE,UCUE; (ideals containing elements of even type, but no elements
of odd type); or

4) YUY TUZUE; (ideals containing only elements of trivial or non-permutation
type),

where the sets X, Y and Z are (possibly empty) unions of orbits taken from sets

A, B and C respectively.
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Proof. Part 1) and 2) are clear from the description of the principal ideals of &, in
Proposition IV.6.1.

For 3), suppose that J is an ideal of &, containing an element of even type
¢re € AU Ey but no elements of odd type. Then clearly, J C &, \ (G, U Es3) and by
Proposition IV.6.1, we have that A, U E, UC U E; C J. Moreover, if we let

X = U £G, = U Au,f and Y = U BG, = U Bu,f7

BeJnA bu,pEINA BeJNB bu,€INB

we can see that X UY C J. Since XT, X, XY+ Y-, Y C E,b,UCUE, by
Lemma IV .4.3 and X and Y are stable under multiplication by automorphisms of G,,,
it follows that XUY UE>;UCUE] is an ideal of £, and therefore J = XUYUE;UCUE].

Similarly, for 4), suppose that J is an ideal that contains only elements of trivial
or non-permutation type, that is, J C BU C U FE;. Clearly, since F; is the minimal
ideal of &,, we have that E; C J. Additionally, if J contains an element ¢,. € B,
then we have that B, U Cpz . U Ey C J. In particular, if we define Y = Uge jnp BGn
as before, we see that we need Y UY ™ C J. Since it is possible for J to contain
elements of C' that are not in &£,8&, for any 5 € Y, we define Z as the union of all
of their orbits, that is,

Z = U ¢t2,egn-

&2 ,€JNC,
¢t,e¢J

Then Z C J. Since Y=,Y% Z=,Z° C B, C J and Z* = Z by Lemma IV .4.3, it
follows that Y UY ' U Z U Ej is closed under multiplication and therefore we obtain
that J =Y UYTUZUE;. O

IV.7 EXTENDED GREEN’S RELATIONS AND GENERALISED
REGULARITY PROPERTIES

We assume once more that n > 5 so that, as shown in Proposition IV.4.8, the monoid
&, is not regular. In order to better understand the structure of these endomorphism

monoids, we turn to the extended Green’s relations. Recall their definition from
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Section 1.3:
aR B = (ya=daeyB=03 V,0€&),
0L B = (ay=ad e fy=p0 Vy,0€E,),
a%ﬁ <:>(77a:04<:>775:6 Vn:n2€5n>,
agﬁ ﬁ(anza@ﬁnzﬁ Vn:n265n>,
H* =L AR =L*NR, H =L NR=ZLNR,
P* =LV R*, P =LVR,

aF'B = J(a)=J(8), and
af B = J(a)=J(B),

where J*(a) [resp. J(a)] is the smallest ideal containing o that is saturated by &*
and R* [resp. by & and 9{}
Before describing these relations on &,, notice that G, is an #-class and therefore

G,, is contained in an # *-class and hence in an %—class.
Lemma IV.7.1. The group G, is an R*-class and an R-class of .

Proof. Since G, lies in an R*-class, and that R* C §i, it only remains to show that
if 5 ¢ G,, then 3 is not R-related to €. But this is clear since 5 = ¢, . for any odd
Gre, but certainly € # ¢, €. O

For the description of the other &R *-classes we can show, using the type of maps
in &, \ G,, that it is sufficient to consider idempotents acting on the left in order to

characterise the relation &* for elements in &, \ G,.

Lemma IV.7.2. For any o, B € &,, aR* [ is equivalent to

na=Ca <= nf=¢f Vn,¢ e L&)

Proof. Suppose first that a R* 5. By definition, for all v, € &, we have that
va = da if and only if 75 = §3. In particular, this statement holds for all idempotents
v,0 € &,.

Conversely, suppose that for all ,( € E(E,) we have na = (a <= nf = (.
Notice that for all & € &, \ G, we have that ¢ = ¢, for all ¢, € E3. We
immediately get from this that is a € G, then the above condition is satisfied only

if 5 € G,, which by the previous result gives that a« R* 5 in this case. Suppose



I1V.7. EXTENDED GREEN’S RELATIONS AND REGULARITY PROPERTIES 129

then that o, 5 € &, \ G, and let 7,6 € &, be such that yoo = dav. Since there is an
idempotent of each type, it follows from Lemma IV.3.6 that na = (o where 7 is an
idempotent of the same type as v and ( is an idempotent of the same type as ¢, and
hence v5 =np = (S = 05. A dual argument shows that v = §5 implies ya = da,
and hence a R* . m

Since R* and R only depend on idempotents, we start by showing when a map

admits a left identity.

Lemma IV.7.3. Let a € &,. Then na = « forn € &, if and only if one of the
following holds:

1) « has rank n™ and n = € (equivalently, o € G,,, and n = €);

2) a has rank 3 and n has group or odd type (equivalently, « € E3U AU B and
ne€g,UEs);
3) a has rank 2 and n has group, odd, or even type (equivalently, o € E5 UC and
neG,UEsUAUE;); or
4) a has rank 1 and n € &, (equivalently, « € Ey andn € &,) .
In particular, if n is an idempotent then, no = o if and only if a <g 7.

Proof. 1t is clear that ¢ is the only left identity for a € G,. Assume now that
a € E,\ G,. By consideration of rank, we can immediately determine the idempotent
left identities. The result follows from Corollary 1V.6.2 and Lemma IV.7.2. O]

Furthermore, two idempotents 1 and ( satisfying na. = (« for a given map o € &,
must lie above « in the ¥ order, or have the same type. This is formally given by

the following.

Lemma IV.7.4. Let a = ¢y € £, \ G,. Then na = Ca for some n,¢ € E(E,) if
and only if one of the following happens:

e a<gnanda<g(; or

e 1 and ¢ have the same type.

Proof. It n,¢ € E(&,) are such that a <g n and a <y (, then na = « and (o = «
by Lemma IV.7.3, which shows that na = (. Similarly, if n and ¢ have the same
type, then na = (a by Lemma [V.3.6 and the fact that ¢ is the only idempotent of

group type.
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For the converse, suppose that that na = (a. If @ <y n, then na = a by
Lemma IV.7.3. Therefore (o = na = a so that a <g ¢, which corresponds to the
first case. Thus, we can now assume that o £¢ n and o €5 ¢. In particular, this
means that a ¢ E; and so t # e and that 7, € Ey U E;. Assume that 7 is of even
type and ( is of trivial or non-permutation type, that is, n € E5 and { € F;. Then

na = (a gives

¢t2,t2 if C = ¢id,ida
¢t2,e =
¢ee  Otherwise,
which shows in either case that t* = e, so that t = ¢ by Lemma IV.2.2 part 2), a
contradiction. A similar contradiction arises when considering 7 of trivial type and

¢ of non-permutation type. Therefore  and ¢ must have the same type. O]
We can now easily determine the R* and %R relations.

Proposition IV.7.5. Let o, B € £,. Then the following conditions are equivalent:
1) aR*B;
2) aR B;
3) a and B are R-below the same idempotents;
4) a and 8 are §-below the same idempotents;

5) a and B have the same rank.

Consequently, R =R isa left congruence and the R*-classes of &, are G,,
EgUAUB, EQUC CLTT,dEl.

Proof. Tf 1) holds, then so also does 2), since R* C %. In any semigroup S, if
ea = a for some e,a € 9, then clearly a <g e. On the other hand, if a <g f for
some idempotent f € S, then from a = fb for b € S! we obtain fa = ffb= fb=a.
Applying this to &, gives that 2) and 3) are equivalent. Examination of Lemma IV.7.3
now yields that 3), 4) and 5) are equivalent.

Tt remains to show that if o R B then a R* 3. Suppose therefore that aR £ and
na = o where 7, ¢ are idempotent. Using Lemma IV.7.4, either o <g nand o <y ¢
so that the same is true for 5 and ng = 8 = (B; or n and ( have the same type, in
which case certainly n8 = (5 by Lemma IV.3.6. Lemma IV.7.2 finishes the proof
that o« R* 3, that is, 1) holds.
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That R is a left congruence then follows from the fact that in any semigroup
S the relation R* is a left congruence. By point 5) the congruence classes are as

given. O

We now turn our attention toward the relations £* and &. In what follows,
for each (t,e) € P, we write Fix(t,e) = {g € S,: 9 =t and e? = e}. Notice in
particular that Fix(id, e) = Fix(e, e) for all € = e and Fix(id, id) = G,,. The next

lemma is immediate.

Lemma IV.7.6. For any ¢i. € £, \ G, and Yy € G, we have that ¢, ehg = Gpe if
and only if g € Fix(t,e).

We can also describe when a map admits a right identity.

Lemma IV.7.7. Let a € &,. Then an = « forn € &, if and only if one of the
following holds:

1) aeG,andn=c¢;
2) a=¢r. € Es andn € {,: g € Fix(t,e)} U{a} C G, U{a};
3) o= ¢, € Ey and
n € {v,: g € Fix(e,e)}U{dy.: v? =id and (u,e) € P,} C G,UE3;UAU{a};
4) a = e, € Er\ {¢iaa} and
n€{Yy: g € Fix(e,e)} U{due: (u,e) € P} C (6, \ Er) U{a};
5) o= ¢jd’id € FE; and ne gn U E3 UAU Es U {d)id,id};
6) a=¢. ¢ EE,) andn e {¢,: g € Fix(t,e)} C G,.

Proof. Part 1) is immediate from the multiplication in Corollary IV.2.5.

Let us now assume that a = ¢, € &, \ G,. The case where € G, is given by
Lemma IV.7.6, so we therefore assume that n = ¢, € &, \ G, and we look at the
product an as in Remark IV.4.2.

o Since elements of Ej are left identities for &, \ G, by Corollary 1V.4.6, it follows
that if & € Ej3, then an = « if and only if n = a.

o If @ = ¢iq., then an = ¢,2 y and thus an = « if and only if n = ¢, . for some
u? = id.

o If & = ¢ee # Piaa, then an = ¢y ¢ which gives us that an = o if and only if
f =e, that is, n = ¢, for any u € U,, such that (u,e) € P,.
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o If @ = iqiq, then an = ¢,2,2 and therefore an = « if and only if u? = id, that

is, if and only if n € EsU AU Ey U {¢iqia}-
By consideration of rank, it is clear that if « € AU BUC, then rk(an) < rk(a), and
thus an # « for all n € &, \ G,, as required. m

As a direct consequence, we obtain the description of the relation 2

Proposition IV.7.8. The $-classes of &, are &, \ (B3 U Ey U Ey) and all the
singletons {n} where n = n? # ¢.

Proof. In order to show that a g for some a, § € &,, we need to show that they
have the same idempotents as right identities. It is clear by specialising Lemma IV.7.3
to the case where 7 is idempotent that G, UAUBUC form a single P-class. Moreover,
from Lemma [.3.13, we know that idempotents are P-related if and only if they are
Z-related, and hence by Proposition IV.5.1, if and only if they are equal. Since any
idempotent is a right identity for itself, the result follows. m

Remark TV.7.9. Unlike the situation for R* and @, we find that &* is a strictly
smaller relation than <. Indeed, in general, the relation &£* on a semigroup S is
well-known to be a right congruence. However, it is easy to see that Zis not a right
congruence. Indeed, taking o € A, f € B and ¢, € E3 we find that o [ whilst

Qe = Gigia and B, = ¢e . are distinct idempotents, and hence not P-related.

We can now give the description of &£*.

Proposition IV.7.10. Let o, 5 € &,. Then a &* S if and only if one of the following

occurs:

e o, €Gy;
e a,0 € E3UFE,UFE; and o= (3; or

e o, € AUBUC are such that o = ¢r, B = ¢u ¢ have the same type and
Fix(t,e) = Fix(u, f).

Proof. Since & C &* C .Ej, we have that all elements of G, are & *-related, and
that idempotents of &£, distinct from e form their own P-class by Proposition IV.7.8
and thus they also form their own &*-class. Therefore, it only remains to show that
elements of G, cannot be £ *-related to non-regular elements (that is, elements of
AU BUC) and that two non-regular elements are & *-related if and only if they

have the same type and are fixed by the same automorphisms of G,,.
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To see first that no elements of G, can be £*-related to elements of AU BUC,
consider « € G, and 8 € AUBUC, and let t = (12), e = c3 € T,,. Since t* = id
and (t,e) € P, we have ¢rc, Gide, Pee € En. Clearly adre, adig. and ag. . are all
distinct. If B € A, then we have that 8¢, = piae = Boiae, while if 5 € BUC
we have 8¢y = ¢ee = Ppiae. Therefore elements of G, cannot be &*-related to
elements of AU BUC.

From now on, we assume that a, § are non-regular (i.e. contained in AU B U C),
and that a = ¢, and § = ¢, ¢ for some (v, k), (u, f) € P,.

Suppose that a &£* 8 and consider the maps ¢, ¢ig. and ¢, in &, as above.
To see that a and 8 must have the same type, notice that if « € A and g € BUC,
then a¢i. = ¢ige # Gee = a@Pe While B¢y . = ¢ = Boe. Which contradicts the fact
that a £* 5. Thus either a, 5 € A, or o, 8 € BU C which shows that & *-related
maps must be of the same type. Lemma IV.7.6 gives that Fix(v, k) = Fix(u, f).

Conversely, assume that o and 3 have the same type and that Fix(v, k) = Fix(u, f).
By Lemma IV.3.6 we have that an = gn for all n € &, \ G,,. Suppose now that ¢, ¥,
in G,. If ayy = ayy, then arhy,-1 = a. It follows that gh™' € Fix(v, k) = Fix(u, f)
and so Bv, = Biy,. Finally, it is easy to see that it « € AUBUC, v € G,, and
d € £, \ Gn, then as the rank of ay is the same as the rank of «, but the rank of ad is
strictly less than the rank of a, we cannot have that ay = ad. Using the symmetry

in the arguments used above concludes the proof. O]
Using Propositions IV.7.5, IV.7.8 and IV.7.10, we immediately get the following.

Proposition IV.7.11. For n > 5 the semigroup &, is left abundant (and hence left
Fountain), right Fountain but not right abundant.

We can now describe the relations &* and F*.

Proposition IV.7.12. The D*-classes of &, are G,, Ey and &, \ (G, U E1) and
further, D* = F*.

Proof. By Propositions IV.7.5 and IV.7.10 we know that the elements of G,, form a
single R*-class and a single £*-class. Thus it follows that G, is also a @*-class.

Let o € E; and suppose that « £* o R* § for some § € £, \ G,. Then there exists
n € &, \ G, such that « £*nR* . By Proposition 1V.7.10 we find that n = a € Ej,
and by Proposition IV.7.5 we see that 0 € E;. It follows from this argument together
with the fact that E, is an &*-class that E; is also a @*-class.
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Suppose then that a € &€, \ (G, U E;) and a D* 4. It follows from the above that
€&\ (G, UE;). We aim to show that if a,0 € &, \ (G, U Ey) then o 2* .

Notice that by our partition of &, we have that
E\ (G, UE) =(EsUAUB)U (Ey,UC),

is the union of all elements of rank 3 and all elements of rank 2. Moreover, it follows

from Proposition IV.7.5 that if «, 0 either both have rank 3 or both have rank 2,

then a R* 9, and hence a D*§. We show that there is an element § € B of rank 3

and v € C of rank 2 such that 8 Z£*~, which will complete the description of &*.
We recall from Example IV.3.8 that for

. 1234 i 1234 is 7 12341
fry - , u = _’ — _’
1321 i 1114 4 1111 1

we have 8 := ¢,y € B and v := ¢, 5 € C, so that 8 and v have the same type. We
show that Fix(t, f) = Fix(u, f), so that 8 Z*~ by Proposition IV.7.10.

Since f = ¢; we see that that Fix(¢, f) = {g € S, : gt = tg and 1g = 1}.
If g € Fix(t, f) we therefore have 1 = 1g = 4tg = 4gt and hence (since g is a
permutation and 1g = 1) 4g = 4. For all i > 5 we have ig = itg = igt, that is, ig is
fixed by ¢ from which it follows that g > 5 for all « > 5. Finally we have 2g = 3¢t
and 3g = 2¢gt. Thus

Fix(t, f) ={9,(23)g : g € Sp,ig =i for 1 <i < 4},

Similarly Fix(u, f) = {g € S, : gu = ug and 1g = 1}. If g € Fix(u, f) we
therefore have 1 = 1g = 1gu = 2gu = 3gu and hence (since g is a permutation and
lg = 1) we must have {2¢,3¢g} = {2,3}. Thus for all i > 4 we have that ig > 4.
Moreover, since u fixes 4g we must have 4g = 4 since 4 is the only value distinct

from 1 that is fixed by u. It is then easy to see that
Fix(u, f) ={9,(23)g : g € Sp,ig =1 for 1 <1 <4} = Fix(¢, f).

We now look at the F* relation. Since @* C F* and that &,, &, \ G, and E; are
distinct ideals of &, saturated by &*, it follows that these ideals are associated with
distinct F*-classes, and thus F* = P*. H

Finally, the P and ;‘?—relations are only composed of two classes: the minimal

ideal F; and its complement &, \ Fj.

Proposition IV.7.13. The D -classes of €y are £, \ By and Ey and further, } =9.
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Proof. Propositions IV.7.5 and IV.7.8 immediately give us that there are two
D-classes, namely &, \ E; and E;. Since E; is an ideal saturated by 9, it is

a jfv—class and the result follows. O

IV.8 THE STRUCTURE OF END(7,) FOR n < 4

In order to have clean statements with uniform proofs, in the previous sections we
focussed on the case where n > 5. To complete the picture, in this section we describe
the structure of &, in the cases where n < 4. We note that the decomposition in
terms of rank and type given in Lemma IV.3.2 can also be used to describe the
structure of &, in these small cases, however, some of the sets turn out to be empty.

Indeed, & = Gy = {e} is a trivial group, and & decomposes as a disjoint union
E = G, U E5(2) U Ey(2) where Gy = {€,%12)} is the automorphism group, whilst
E>(2) = {ider, Pidye, } and E1(2) = {Pidid; Pe,c1» Pesrer } are the idempotents of rank
2 and 1 respectively. We note in particular that these two semigroups (consisting of
group elements and idempotents only) are regular.

For n = 3, the endomorphism monoid &3 decomposes as the disjoint union
& =G5 U E3(3) U Ey(3) UC(3) U E1(3). The elements of C'(3) are not regular (note
that the reasoning given in the proof of Proposition IV.4.8 also applies here), so that
&3 is not a regular semigroup.

For the case n = 4, recall that the endomorphism monoid &, was described in
Lemma IV.3.2 as & = G, U D(4) U E3(4) U B(4) U E5(4) U C(4) U Ey(4) where each
set is non-empty and D(4) contains idempotents of rank 7, namely the elements in
the set E7(4) = {09: g € K}.

In spite of these differences, certain properties turn out to be common to all
endomorphism monoids &,. Their proofs are often akin to those presented in
Sections IV.4-IV.7 and these results could be obtained by direct enumeration using
a computer program such as GAP, but we will give here a detailed account for the

case n = 4, which happens to be more complicated to handle.

IV.8.1 (GENERAL CONSIDERATIONS

In order to use the same techniques as in the case for n > 5, we start by giving a

weakened version of Lemma IV.3.6.
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Lemma IV.8.1. Let a, B € £, \ G If a and [ are of the same type, then ay = [
forally € E,\ G, if n # 4 and ary = By for all v € €4\ (G4 U D(4)) if n = 4.

Proof. If n # 4, this follows directly from 4) of Corollary 1V.2.5, while if n = 4, it
suffices to add the results in Lemma IV.2.6. [

Using this lemma, Definition IV.4.1 is now valid for all n > 2, where for n = 4,
we restrict ourselves to define a™, o~ and o to elements of & \ (G4 U D(4)).
We now give a result containing all the properties that are common in &, for all

values of n.

Proposition IV.8.2. Let n € N. In the endomorphism monoid &,, the following

statements hold:

1) the set of all idempotents is a band, and forms a rank-ordered chain of right

Zero Semigroups;
2) the set of idempotents of rank 1 is the minimal ideal of E,;
) H =L_CR=D=F;
4) R = R and the classes are the sets of elements with the same rank;

5) &, is a left abundant semigroup.

Proof. These facts have already been explicitly proven for n > 5 in the previous
sections, and it is straightforward to check that the details go through in just the
same way for all n # 4. Indeed, for all n # 4, statements 1) and 2) follow in exactly
the same way as in the proof of Corollary IV.4.6, whilst it is readily verified that the
characterisation of the & and R relations given in Section IV.5 (« & f if and only if
a=porafeq, and aR S if and only if o, 5 € Ej, for some k or o, 3 € G,, or
aG,, = BG,) also hold in these cases, from which statement 3) follows (since & C R).
Part 4) and 5) are trivial in the case where n =1 or n = 2 since these semigroups
are regular. The astute reader will also notice that the proofs of the results present
between Lemma IV.7.1 and Proposition IV.7.5 hold without modifications in the
case n = 3 since there is an idempotent of every type.

The case n = 4 is a little different, since there are extra endomorphisms to consider.
We use extensively the multiplication of elements described in Corollary 1V.2.5 and
Lemma IV.2.6. It is clear from these results that F;(4) is the minimal ideal of
&4 by consideration of ranks and that E(4) < Ey(4) < E3(4) < {e} is a chain of

right-zero semigroups. Since p, = id for all g € K, it follows that 096" = o" for all
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09,0 € E;(4), and thus F7(4) is also a right-zero semigroup. To complete the proof
of 1), it suffices to verify that E;(4)E(4) C Ex(4) and Ex(4)E7(4) C Ex(4) for all
k < 3, which follows from Lemma [V.2.6 together with Lemma IV.1.7.

The fact that parts 3) and 4) hold when n = 4 will be shown in Corollary IV.8.11
and Lemma IV.8.12 below, since their proofs are more involved and require specific

attention. O

Since & is a regular semigroup, we know that Green’s and extended Green’s
relations coincide on this semigroup, and thus Proposition IV.8.2 contains all the
information of the algebraic structure of & that have been studied in this chapter.
On the other hand, we mentioned that &3 is not regular, and so it makes sense to

consider the extended Green’s relations.

Proposition IV.8.3. In &; the following statements hold:

1) L*CR =D = F" = R and the R*-classes are Gs, Es(3), E2(3) U C(3)
and Ey(3) (i.e. elements of the same rank);

2) agﬁ if and only if « = B or o, 5 € G3 U C(3);

3) aZ* B if and only if o, € Gy or a* =a =3 =% or a = ¢y, f = Py s both
lie in C'(3) with Fix(t,e) = Fix(u, f);

4) the P-classes are Gy U E>(3)UC(3), E5(3) and E1(3);

5) the ¥ -classes are & \ Ey(3) and Ey(3).

Proof. Since &3 contains an idempotent of each type as defined in Section 1V.3,
almost all of the arguments given in Section IV.7 go through verbatim. The only
two notable differences concern the relations @* and @. Indeed for @* the proof
of Proposition IV.7.12 utilises an element of B(n) to deduce that certain elements
are D*-related, but since B(3) = (), this argument is not valid for n = 3. The result
however follows directly from the observation that £* C R* so that D* = R*, while
the proof that @* = ¥* is just as before. In a similar manner in the case of @, the
proof of Proposition IV.7.13 relies on the fact that elements of A(n), B(n) and C(n)
are P-related in order to show that elements of Es(n), E3(n) and G, are P-related.
Since A(3) = B(3) = () this argument does not hold for n = 3. However, it is easy to
see that elements of Fs5(3) form a single P-class, while elements of G and E(3) are
& oR-related. Thus the classes of D are as given in the statement. Finally P C },
and since classes of ;‘? are ideals saturated by & and @, it follows that the only two
classes are F;(3) and & \ F1(3). O
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We can generalise Corollary 1V.4.10 to the smaller values of n as follows.

Proposition IV.8.4. Let n € N. Then the following conditions are mutually

exclusive:
1) T, is isomorphic to &,, and then n = 1;
2) T, embeds into &,, but &, does not embed into T,,, and then n = 2; and

3) there is no embedding between T, and E,, and then n > 3.

Proof. Notice that the arguments used in Corollary IV.4.10 are in fact valid for all
values of n > 3, since the element considered lie in 73 together with the fact that 7,
has at least 3 idempotents in this case.

Suppose now that 7, and &, are isomorphic. Since 7, is regular and &, is not
regular for n > 3, we must have n < 2. But |T3| =4 < 7 = |&], so that the only
possible value is n = 1, where we know that 77 = & is the trivial group.

Finally, suppose that ¢: 7, — &, is an embedding but that there is no embedding
of &, into T,. Then the only possibility is that n = 2. In this case, such an embedding

exists, for example:

id — g, (]_ 2) — €1z, € — gbcl’q and Co > gbc%@. O

IV.8.2 THE CASE OF &

Throughout this section, we set n = 4.

Because of the presence of additional endomorphisms of rank 7, namely, the
elements of D(4), we cannot deduce the results for &, directly from the results of the
previous sections in the same way we have done for £5. Nonetheless, the structure of
&4 is not too far away from the structure of &, when n > 5, and it is possible to use
the earlier proofs by following the strategy that we now give.

Recall first from Lemma IV.2.6 that D(4) and &, \ D(4) are subsemigroups of
&y, and write T'(4) for £\ D(4). In order to describe the algebraic structure of &,
we want to show that the presence of the elements of D(4) does not influence the
algebraic structure of T'(4), so that we can work with 7'(4) and D(4) separately in a

perfectly sound manner.

Remark 1V.8.5. Recall that for any subsemigroup () of a semigroup S, we have

ZsN(QxQ) S Ly and RsN(Q x Q) C R,
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and similarly,

ZsN@*xQ) S Z5  RsN(QxQ) € Ry,
gg ﬂ(Q X Q) - g@ and @S ﬂ(Q X Q) - @Q.

To work with Green’s and extended Green’s relations, we will consider that any
relation written without a subscript will be relatively to the semigroup &, but we
will add a subscript D or T when they are to be considered in the subsemigroups
D(4) and T'(4) = &, \ D(4) respectively, that is, we will write &, &p and Lr for
the Z-relation on &, D(4) and T'(4) respectively. We will show that, if L is one of
LR, L* R, & or @, we have:

LN(TA) x T(A) =Ly and LN (D) x D(4)) = Lp,

so that X = Lr UL p. This way, it will suffice to describe Lp to obtain a description
of the I-relation on &, since the description of Lr will be obtained from the work
done in Sections IV.5 and IV.7.

In order to facilitate readability, we will remove the dependence on 4 in the proofs
of this section for the sets T'(4), D(4), E5(4), Ex(4), B(4), C(4) and E;(4). We will
make heavy use of the results contained in Sections IV.1 and IV.2.2 which concern
properties of elements of D(4), in particular with respect to the elements ps and
the multiplication in &;. A direct consequence of Lemma IV.1.7 is that ao? has the
same type as « for all & = ¢ € &\ (G4 U D(4)), and moreover, if o = ¢ is of
non-permutation type, then ao? = ¢, .,, € £1(4). The aim of this section is to

prove the results contained in the following proposition.

Proposition IV.8.6. In the endomorphism monoid £ = End(T,), the following
statements hold:
e the regular elements of &, are G4, U D(4) U E(&,), so that &4 is not reqular;

e aZ B if and only if o = 8 or a, B € Gy or a = 09, B = o both lie in D(4)
with 4g = 4h;

e @R B if and only if a, € Ex(4) for some 1 < k < 3 or a, € Gy or
OZ,BED(Z]:) or ag4:5g4;.

e H =L _R=D=YF;
e R* =R and the R*-classes are Gu, D(4), Es(4)UB(4), E;UC(4) and Ey(4);
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. agﬂ if and only if « = B or o, B € G4 U B(4) UC(4) or a = a9, 8= c" both
lie in D(4) with 4g = 4h;

e aL*Bifand onlyif o, B € Gy ora = 8 ora = 09, 3 = o both lie in D(4) with
4g = 4h or o = ¢y, B = ¢u 5 both lie in B(4) UC(4) with Fix(t, e) = Fix(u, f);

e D* = F* and the D*-classes are Gy, D(4), E3(4) U B(4) U E2(4) U C(4) and
E1(4);

e the D-classes are D(4), Ey(4) and €4\ (D(4) U Ey(4));
e the F-classes are £ \ F1(4) and Ey(4).

We start by showing that &, is not regular.

Lemma IV.8.7. The regular elements of £y are G4, U D(4) U E(&,). Consequently,

D(4) is a reqular subsemigroup and £y is not regular.

Proof. Clearly, elements of G4 U E(&,) are regular. Now let 09 € D, and let h = g~*
so that p, = p;l. Then we get

o9oc9 = gPslh 9 — FPaPrI — o9,

which shows that all elements of D are regular.

To see that an element o € B U C is not regular, notice that acfa = o? # «,
and using the arguments of the proof of Proposition IV.4.8, we also get that a does
not have an inverse in 7. Hence B U C' consists of non-regular elements and &, is

not a regular semigroup. O]

Remark 1V.8.8. Since D(4) is a regular subsemigroup, it is well-known (see [2.4.2 in
28]) that £p =L N (D(4) x D(4)) and Rp = RN (D(4) x D(4)).
IV.8.2.1 Green’s relations

We now prove the description of Green’s relations in &;.

Lemma IV.8.9. Let o, 5 € . Then:
1) the principal left ideal generated by o € &, \ Gy is:
a) Exa={a,at,a”,a} ifa € &\ (G4 UD(4)), and
b) Esa = {optg, Dp cags Pesgieags Pidia * L € 84} if a =09 € D(4);

2) a8 if and only if a = B or a, B € Gy or a = o9, B = o both lie in D(4)
with 49 = 4h;
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3) Zp = LN (DA) x D)) and Lr = L0 (T(4) x T(4)), so that L = LrUZp.

Proof. We already know that elements of D cannot be Z-related to elements of T
since £p = LN (D x D). Since 09¢; . = ¢ for all 09 € D and ¢ € €4\ (G4UD), it
follows from Proposition IV.5.1 that if a € £\ (G4U D), then E,a = {a,a™, a™, a’},
while Ey4a = & is a € Gy, so that Lr =L N (T x T).

On the other hand, the principal left ideal generated by o9 € D is

09 = {wtag, olod it e 84} U{¢te0? it €Sy and e #id} U
{pre0? i t,e € Ty \ Sa} U{pia a0’}
= {07t € S} U{dypc,, 1t € Si}U{ ey, } U {Sidia}-

Moreover, since im o9 = {t9: t € 8,4t = 4} U {c4,}, it follows that if 09 £ ", then
we have imo9 = imo”, which forces 4g = 4h. Conversely, let 09, 0" € D be
such that 49 = 4h. Then hg' fixes 4, which shows that (hg*1)0 = hg~! and
hg™! o" = 09. Thus the

Z-classes are as given in the statement and & = £y U Zp. O

chi g8 = ghvT'9 = gh and similarly for gh™! giving oo

Lemma IV.8.10. Let a € &4. The principal right ideal of £, generated by « is equal

to:

&, if v € Gy,
Ei\ Gy if « € D(4),
&\ (94U D(4)) if a € Es(4),

aly = Ey(4)UC(4) UE(4)  if a € Ex(4),
Bio(4) U E1(4) if = ¢ € B(4),
Cre(4) U E(4) if o = ¢ € C(4),0r
Ei(4) if o € E1(4).

Consequently, for o, € &, we have a R [ if and only if o, B € Ei(4) for some
1<k<3ora,Be€GyorapfeD4)oraG,=LpG,.
Furthermore, Rp = RN (D(4) x D(4)) and Ry = RN (T(4) x T(4)).

Proof. We already know that D is a union of R-classes and that its elements
are left identities for & \ (G4 U D), so that o9&, = &, \ G4. Furthermore, for all
g,h € 8 we have that p,'h,p,'g € Sy, which gives that oIgPs'h = gPops'h = gh

1 1 .
and o"oPn 9 = gPrPr 9 = g9, Hence D is an R-class.
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By the remarks made at the beginning of this section, for all « € FEj with
1 <k <3, we have that D C Ej. Also for « € BU C, we have aD C E,. Thus
a&y = aT, and the result then follows from Proposition I1V.5.3. O

The proof of the following corollary is then immediate.
Corollary IV.8.11. In &, we have X =L C R =D = F.

1V.8.2.2 Extended Green’s relations

We start by looking at the relations R* and R.

Lemma IV.8.12. In &, R* = R and the R*-classes are Gy, D(4), E3(4) U B(4),
E,UC(4) and E1(4).
Consequently, o R* 3 if and only if o and [ lie R-below the same idempotents if
and only if a and B lie F-below the same idempotents if and only if tk(«) = rk(/3).
Furthermore, we have R}, = R* N (D(4) x D(4)) and Ry = R*N(T(4) x T'(4)).

Proof. Notice first that elements of E; are left identities for all elements of &, \ G4
but they are not left identities for elements of G4. Similarly, elements of E3 are left
identities for & \ (G4 U D) but are not left identities for G4 U D. Thus, elements of
D cannot be R-related to any element of T'.

Moreover, D is regular, so that by Corollary 1.3.14, we have that Rp = R}, = Rp
which shows D is an %&- and an R*-class.

Tt follows from this that T is a union of &* and R-classes. Using the same
arguments as in the proofs of Lemma IV.7.1 and Proposition IV.7.5, we get that the
R’ and @T—classes are Gy, E3U B, E, UC and F;. By the remark at the beginning
of this proof, it is clear that these are R-classes in &y. We aim to show that the
presence of elements from D does not split these classes further for R*. In order to
do so, it suffices to show that if two elements of E3 U B or Ey U C are R’-related,
then they must be R*-related.

So let ¢y, du,y € E4 be such that ¢, R} ¢y, . Since elements of D act as left iden-
tities on &4\ (G4U D), it follows that if y¢, . = ¢ for some 7,0 € &, either v,0 € D
and then trivially v¢, s = d¢, f, or 7,0 € T and thus v¢, ; = d¢, s by assumption,
or v € D and § € T in which case we have y¢, . = n¢y. = d¢.. Now, using the
assumption that ¢, R} ¢y r, We get Ny r = ¢y, f, SO that Yo, r = n¢u s = 00 5.
Exchanging the role of ¢, and ¢, ¢, we get that if ¢, R by r, then ¢ R* ¢ .
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Therefore, the R*-classes are as given, and the other equivalences follow directly
from Lemma IV.8.10 and Corollary IV.8.11.

The last part follows from the intermediary results present in the proof. O

The relations & and &£* are also closely following the descriptions of §T and
.
Lemma 1V.8.13. In &4 we have the following:
1) a§5 if and only if « = B or o, B € Gy U B(4) UC(4) or a = 09, 8 = o" both
lie in D(4) with 4g = 4h;
2) Pp =20 (DA) x D(4)) and Lr = LN (T(4) x T(4));
3) aZ*Bifand onlyifa, B € Gy ora = B ora = o9, 3 = o both lie in D(4) with
4g = 4h or o = ¢y, B = Py s both lie in B(4)UC(4) with Fix(t,e) = Fix(u, f);
4) L =ZL*N(D4) x D4)) and L; =ZL*N(T(4) x T(4)).

Proof. Notice that since D is a regular semigroup, each element of D has an idem-
potent of F; as a right identity. Moreover, elements of E; cannot be right identities
for elements of G, nor of BU C' (since ¢ .09 € E; for all ¢, € BUC), while
every element of F3 U Ey U E; is a right identity for itself but not for elements
of D. Therefore we obtain that elements of D cannot be Z-related (and hence
cannot be £ *-related) to elements of T so that o9 Zo" if and only if o9 Zpo". But
gD = Z}, = &p by Corollary 1.3.14 which gives the P- and L*-classes of D by
Lemma IV.8.9.

It follows that 7T is a union of &- and &*-classes. Using the remarks above and
Proposition IV.7.8, we get that G4 U BU C is an P-class since the only idempotent
acting as a right identity for elements of this set is €, while idempotents of F3UFEsU E;
form singleton P-classes in T and thus also in &y

Since idempotents form their own g—classes, then they also form singletons
Z*-classes. From Proposition IV.7.10, we also know that G, is an Z£j-class, and
since it is already an Z-class and & C &£*, we get that G4 is an L *-class. Finally,
B U C splits into smaller & -classes where two elements are Zj-related if they are
fixed by the same automorphisms. Hence, in order to finish the description of the
Z*-classes of &y, it suffices to show that two elements of BUC which are &j-related
will be &*-related.

Let o, 5 € BUC be such that a &} 5. Consider v, € & satisfying ay = . If
v € D, then ay = ¢, c,, = B, and similarly if v = ¢,y € &, then oy = ¢y 5 = (.
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Thus if v,d € &, \ Gy, then we get that Sy = ay = ad = 6§ directly. Note that
we cannot have v € G, and § € D since apy, € B U C while ao? =€ E;. For the
remaining cases, we have v, € T, and by assumption of « and 5 being Z;-related,
we get By = 4. Interchanging the role of o and 3, we obtain that o £* 3, finishing
to show that £ = Z*N(T'(4) x T(4)). Therefore the & *-classes of £, are as given in
the statement while the other parts can be deduced from the steps of this proof. [

An immediate consequence of Lemma IV.8.13 is the following.
Corollary IV.8.14. The semigroup &, is right Fountain but not right abundant.
We can now easily deduce the description of &* and F*.

Corollary 1V.8.15. Let a, f € E;. Then a D* B if and only if a« D B or a D}, [.
Moreover, the D*-classes are Gy, D(4), E3(4) U B(4) U Ey(4) U C(4) and Ei(4),
and ¥* = D*.

Proof. Let a, f € & and assume that a &* 5. Then there exist o, v1,...,%% € &
such that

a=%RNL v R Yop1 L Yo = B

By Lemma IV.8.12 we have that if « € D then v, € D, and then using Lemma IV.8.13,
this also forces v, € D. By induction, we get that v; € D for all 1 < <n, so that
B € D and a D7, f. Similarly, if a € T, then we get that each ; is in 7" and thus
g eT and a D [.

Since &}y C R}, and that D is an R*-class, it follows that it is a D*-class. For
the other classes, we use the fact that the R*- and &L *-classes of elements of T’
are the R~ and ZLj-classes to deduce that the proof of Proposition IV.7.12 can be
followed entirely, with the only caveat that we need to slightly change the elements
used to show that there is an element of B that is & *-related to an element of C.
For this, it suffices to consider the restriction of the elements ¢, u and f to the set
{1,2,3,4}, that is, to use the elements

1234 1234 1234
t = ., u= , and f= ,
1321 1114 1111

since we then have that ¢, ; € B and ¢,y € C are fixed by the same automorphisms
and are thus &*-related.
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Since we know that @* C F*, it only remains to show that elements of distinct
D*-classes cannot be F*-related. But this follows from the fact that £y, & \ (G4 U D),
&1\ G4 and &, are all distinct ideals of &, saturated by &*, and thus correspond to
the principal *-ideals of &;. n

We finally give the description of P and } which differ in &;.

Lemma IV.8.16. In & we have that:
o the D-classes are D(4), Ey(4) and €4\ (D(4) U E1(4)); and

e the F-classes are £\ E1(4) and Ey(4).

Proof. By Lemmas IV.8.12 and [V.8.13, it is clear that F; and D are both P-classes
of &;. Moreover, any element of & \ (D U E}) is R* o L*-related to e, which shows
that this also constitutes a P-class.

Since @ - ;‘? and F is an ideal saturated by @, it suffices to prove that elements
of D are ;‘\f/-related to elements of G4. If @ € D, then the principal ideal generated by
ais Eqa&y = €4\ Gy Since elements of G4 are P-related to elements of B , it follows
that this ideal is not ~-saturated, so that J(a) = & = J(¢). Hence, « is F-related
to e, which shows that &, \ F; is a single jf—class. O

IV.9 FURTHER CONSIDERATIONS

It is clear that this chapter only constitutes an opening in the discussion of endo-
morphism monoids of special algebras, and as such there are many possible extensions

for this work. We list here a few potential directions.

Presentations and orbits. Since &, is a finite semigroup with a fairly nice
structure, we would like to give a finite presentation of this monoid. In [23], we give
some results on how to find a set of generators and a presentation. However, we
would like to be able to exactly describe the elements a minimal generating set must
contain. This boils down to understanding the orbits of elements of &,, and how the
sets A(n), B(n) and C(n) are split relative to these. In particular, we know that all
elements inside a given orbit have the same rank, so that we can talk about orbits
of a given rank. It is clear that orbits of rank 3 cannot be generated from orbits of

higher rank, or other orbits of rank 3. However, in C'(n), we can see that some orbits
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of rank 2 will be generated by orbits of rank 3, while others will not. Being able to
describe all orbits of rank 2 that cannot be generated by orbits of higher rank would

allow us to give a presentation of &, with a possibly minimal number of generators.

Endomorphism monoids of other semigroups. In this chapter, we have
looked at the monoid &, = End(7,) as 7, is arguably the most natural semigroup of
finite transformations. Since the automorphisms and endomorphisms of PT,, and
Z,, have already been described by different authors (see [19, Chap. 7]), a similar
study could be made to describe the structure of the monoids End(P7,), End(Z,)
and End(S,,). What similarities and differences in the structure of the monoid would
these have when compared to End(7,)?

Moving away from transformation semigroups, one could consider related semi-
groups, such as Brauer monoids and partition monoids (see, for example, [11]), where
here the endomorphisms have been determined [32].

We have assumed throughout that we were looking at the transformation semi-
group of a finite set. What would be the endomorphism monoid of the full trans-

formation monoid (and related semigroups) of an infinite set, such as N7

Iteration. We have mentioned that 7, and &, are not mutually embeddable in
each other in general. One could pursue our iteration procedure by now considering
the monoid End(&,,) = End(End(7,)). How would that monoid compare relatively

to T, or £,7 Even more generally, what can be said about the sequence of monoids

Tn, End(7,), End(End(7,)), ...7



vV

The translational hull of the 0-minimal
ideal of the endomorphism monoid of an

independence algebra

This chapter is concerned with translational hulls and ideal extensions described in
Section 1.2 of the preliminaries when studied in the context of the endomorphism
monoid of an independence algebra. Let of be an independence algebra and 9t be
the smallest ideal of End(¢f) containing maps of rank at least 1, and call this ideal
the (0-)minimal ideal of End(¢f). The following question was asked by Prof. Stuart
Margolis:

Is the translational hull of the (0-)minimal ideal M isomorphic to the

endomorphism monoid End(d)?

which can be reformulated as:

Is the monoid End(d) the largest semigroup that contains its (0-)minimal
ideal M as a dense ideal?
Whenever End(¢) has no other ideals than itself, we trivially get a positive
answer from Corollary 1.2.15 since End(¢) is a monoid, so we will only consider
independence algebras for which End (&) has a proper ideal. Notice also that if the

set of constants of & is non-empty, then it follows that the set
M= {0 €End(d) | imd = (D)} =T,

is the minimal ideal of End(&f) by Remark 1.5.8. However, this ideal is also a left-zero
semigroup by Remark [.5.5, which means that its translational hull is isomorphic
to Ty, by Proposition 1.2.23. In particular, this shows that Q(9t) in this case is

147
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not isomorphic to End(¢) and is fully determined. For this reason we will not look
at the minimal ideal of End(d) if our algebra o has constants. Thus, we restrict
ourselves to algebras that have a proper (0-)minimal ideal, that is, algebras of rank
at least 2.

From the results expressed in Section 1.2, by Corollaries [.2.6 and [.2.42 we know
that for any ideal 3 C End(d), the maps 7,: Q(J) — P(J), x;: End(d) — P(J)
and y: End(d) — Q(J) defined by

(A o) = p, OXp = Po and  ¢x = (Ap, pg)

are all morphisms. This chapter aims to give necessary and sufficient conditions for
these morphisms to be isomorphisms in the case where J is the (0-)minimal ideal of
End(d), that is, finding conditions so that the following commuting diagram only

consists of isomorphisms:

P(7)
Tp Xp
/ \
Q(J)e—————;{ ——————— End(of)

We study the maps 7, and x;, in Section V.1 and exhibit a necessary and sufficient

condition in Theorem V.1.18 under which ©(J) and End(¢f) are isomorphic through

the composition of m, and x".

algebras in Section V.2, we see that the conditions exhibited are not always easy to

By looking closely at examples of independence

verify, and can be too restrictive if we only care to obtain an isomorphism between
Q(J) and End(d).

Even though this approach is generalised in Section V.3 to a larger class of
universal algebras which are free on their basis, we search for conditions that are less
reliant on the special structure of our algebra. This will be used in Chapter VI in
order to find when the map x is an isomorphism in the context of a general universal

algebra.

Remark. Our approach in this chapter is to focus on right translations, and a curious
reader could wonder why this choice was preferred compared to the one that would
involve left translations instead. A quick answer would be to say that it is more
convenient to only deal with right maps (being either translations or morphisms),

rather than having a combination of left and right maps in our expressions. However,
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there is also a more subtle reason why looking at right translations when dealing with
independence algebras is the most practical and efficient way to describe translational
hull, relying on the fact that such algebras are free on their basis, but this reason will

only become apparent through the developments carried in Chapters VI and VII.

V.1 TRANSLATIONAL HULLS IN END(H)

Let & be an arbitrary universal algebra. We start by adapting the common notion

of 0-minimal ideals defined for semigroups with a zero to the context at hand.

V.1.1 THE (0-)MINIMAL IDEAL

Definition V.1.1. If ¢ has constants, we let O denote the ideal of End (4 ) consisting
of maps whose image is the constant subalgebra (()). We note that O is a left-zero
semigroup.

Let T be a (two-sided) ideal of the endomorphism monoid End(sf). Then ¥ is
called minimal if it does not properly contain any ideal of End(¢f).

Furthermore, ¥ is called 0-minimal if:
i) T# 9, and

ii) O is the only ideal properly contained in ¥.

As a shorthand, we will talk about the (0-)minimal ideal of End(s) to denote
its minimal ideal whenever the constant subalgebra (()) of o is empty, and to be its
0-minimal ideal otherwise.

We now define a set J of endomorphisms as follows:

J:={a € End(d) | im « lies inside a monogenic subalgebra}

={a € End(d) | Ir, € A with ima C (r,)} C End(d),
which is an ideal as given by the following.
Lemma V.1.2. The set J is a two-sided ideal of End(d).

Proof. Let a € J and v € End(d). Then we have that im (ya) C im «, which lies

in a monogenic subalgebra, so that ya € 7.
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Similarly, since im « lies inside a monogenic subalgebra, there exists an element
ro € A such that ima C (r,). Thus

m (ay) = Aay C (ra)y = (ra7),
which gives us that ay € J. Therefore J is a two-sided ideal of End(). O

In general, the fact that the image of a map « lies inside a monogenic subalgebra
9B does not imply that im o = 9B whenever im o # (f)). However, this is the case in

independence algebras as shown by:

Lemma V.1.3. If d is an independence algebra, then for all o € End(A) we have

that im o C (r,) for some ro € A if and only if ima = (0) or ima = (r,).

Proof. Clearly, if ima = () or im« = (r,) where r, € A, then ima C (r,).

Conversely, suppose that ima C (r,) for some r, € A. If r, € (), we get that
0y Cima C (ry) = (0), hence ima = (). Otherwise, r, is an independent element.
If for all x € im «, we have that x € ((}), then im o = ((}). Otherwise there exists
an independent element z € im o C (r,), so that & = t(r,) for some t € T which
shows that ¢ is not constant on A by Lemma 1.4.21, and thus there exists u € T
such that uw ot =id by Lemma [.4.23. Then we get that

ro = u(t(ry)) = u(r) € ima,

which shows that (r,) C im «, and therefore we have equality. O

We now restrict ourselves to the framework of independence algebras. For the
remainder of Section V.1, we therefore assume that & is an independence algebra of
rank at least 2. Moreover we let X = {z;} be a basis of o, where I is a (possibly

infinite) indexing set.
Corollary V.1.4. The set J is the (0-)minimal ideal of End(d).

Proof. Since 4 is an independence algebra, by Lemma V.1.3 we get that

J={a € End(d) | ima= (D) or ima = (r,) for some r, € A\ (0)}
={a € End(d) | rk(a) < 1}.

Moreover, since the ideals of End(d) are of the form T}, for some cardinal x by
Corollary 1.5.7, and that they form a chain, it follows that 3 = 75 is (0-)minimal. [
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Remark V.1.5. Even though we now have that J = T5, we prefer to look at this
ideal with respect to monogenic subalgebras since this will allow us to generalise
the results obtained in the rest of this section to algebras outside of the context of

independence algebra, an approach that we will take in Section V.3.

Since any endomorphism in End(&f) is uniquely determined by its description on
a basis of our algebra of, those that sends all basis elements to a single element of A

are of particular interest, and will be granted a specific notation.

Definition V.1.6. For each i € [ and r € A, we define the maps «;, o, € End(A)
for all z € X by:

TRy = X; and TRy, = T.
Under this definition, we immediately obtain the following facts:

Lemma V.1.7. For anyi € I and r € A, we have that:

1) a; = oy, if and only if i = k, and o; = o if and only if r = x;;

2) ima; = {x;), k(o) = 1 and of = «; since «; is the identity map on (x;);

3) ima, = (r) so that rk(a,) =0 if r € (D) and rk(a,.) = 1 otherwise;

4) o, €7T;

5) for all v € End(d), we have x;y = x;a7y.

We will now investigate the translational hull Q(3J) of this (0-)minimal ideal as well
as its semigroup of right translations P(J), and their relations to the endomorphism

monoid End(¢f) through the maps 7, and X, in order to get an isomorphism x by

composition.

V.1.2 LINKED PAIRS
Consider a linked pair (A, p) € Q(J). Then for any z; € X and € J we have that:
NG = 2,0, \B = 05 p0. (V.1.1)

Furthermore, if we take o € J and denote for each i € I the term t& € T defined

by z;a = t¢(7;), then we have:
iaAB = t8(T)AB = t8 (2;AB) = t&(w;0;08) = t2(T;0;) 3.

We have therefore shown the following:
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Lemma V.1.8. Let (A, p) € Q(T). Then the equation
(ziap)B = t7(x;0;p) 8 (V.1.2)
holds for all a, 5 € J and all 1 € I. ]

Notation V.1.9. For a map o € End(d), we denote by T the set of terms which

correspond to the basis elements, that is,
T = {t0 € T | ma = t3(7;5) for z; € X}.

Conversely, if equation (V.1.2) hold for a right translation p, then it is possible

to create a left translation A such that (A, p) forms a linked pair.

Lemma V.1.10. Let p € P(3). Then the map A: 3 — End(d) defined by

Xy = zi(aup)y

for all x; € X and all v € T is a left translation of J.
Furthermore, suppose that for all o, 8 € J and x; € X the equation

(zi0p)8 = £ (T35 (V.12)

holds, where each t§ € T* is defined as above. Then (\,p) € Q(J), so that m, is

surjective.

Proof. First of all, let v € J and a € A. Then there exists a term u such that

a = u(7;). From this, we have that
a\y = u(T;) Ay = u(@)@) = u(a:i(aip)'y> = u(T;ap)y € A,

and thus im Ay C im~ which lies in a monogenic subalgebra of A. Therefore \y € J.
Additionally, using the definition of A\ and the associativity in End(sf), we have
that for any 8,0 € J

2 M(B6) = xi(aip)(B0) = xi(aipB)s = (x:iAB)0,

which shows that A(59) = (A3)d so that A is a left translation of J.
Finally, if equation (V.1.2) holds, then for all «, 5 € J we obtain

(wiap)B = t2(T5a;p) 3 = 12 (2j0508) = 17 (2;A5) = t8(T)AB = madB,

which gives us that apf = aAf, so that the pair (), p) is linked as required. O
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V.1.3 ISOMORPHISM OF THE PROJECTION MAP

We now look closely at the map 7, which is easily shown to be injective in the

context of independence algebras.
Lemma V.1.11. The projection m,: Q(J) — P(J) is injective.

Proof. Let (A, p), (XN, p) € Q(T). Since A and X are linked to p, then for all § € 7,
equation (V.1.1) gives us that

A3 = 10 \B = ziupB = miauN' B = 2N B,
which shows that A\ = X3, and thus A = ). a

Remark V.1.12. In fact, we could have proved that m, is injective using Lemma 1.2.17
by arguing that J is left reductive. Indeed, let 5,0 € J and suppose that aff = «ad
for all @ € J. Then for all z; € X, we get z;8 = ;a8 = x;0,;6 = x;6, which shows
that g = 0, and thus J is left reductive.

The equation exhibited in Lemma V.1.10 is in fact exactly the condition corres-

ponding to 7, being an isomorphism, as we show below.

Proposition V.1.13. The projection my: A(J) — P(J) is an isomorphism if and

only if the independence algebra A satisfies the equation

(ziap)p =t (z;0;p) 8 (x)
for all a, 5 € T and p € P(J), with t& € T*.

Proof. The fact that the map 7, is injective is given by Lemma V.1.11. Moreover, if
d satisfies equation (x), then 7, is surjective by Lemma V.1.10, so that Q(J) = P(J).

Conversely, if 7, is an isomorphism, then it is surjective, and for all p € P(J),
there exists A € A(J) such that (A, p) € Q(J). Using equation (V.1.1) together with
Lemma V.1.8 we obtain that condition (x) holds in . O

V.1.4 ISOMORPHISM OF INDUCED RIGHT TRANSLATION

We now focus our attention on the second isomorphism we are looking for, by
considering the map x,: End(&) — P(J) which sends an endomorphism ¢ to the
right translation py defined by apy = a¢ for all &« € J. Since J is an ideal of End (),
it follows from Corollary 1.2.42 that x,, is a well-defined homomorphism. Thus it

only remains to show that it is a bijection.
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Lemma V.1.14. The map xp is injective. In other words py = py implies ¢ = ¢'.

Proof. Let ¢,¢’ € End(d) and suppose that ¢x, = ¢'xp = p. Then for all z; € X,
we get that 7,0 = ;040 = 73050 = 73049 = 2;¢', so that ¢ = ¢’. Hence y; is

injective. [l

In order for the map x;, to be surjective, we need each p € P(J) to behave like a
homomorphism. In other words, we want the definition of p on any map o € J to be
uniquely determined by the definition of p on the maps «;. This condition is given

in the following lemma:

Lemma V.1.15. The map X, is surjective if and only if the algebra o satisfies the
equation
z;op = t3(T;05p) (V.1.3)

for all map o € 3 and p € P(J), where t& € T°.

Proof. If xy, is surjective, then we have that for any p € P(J) there exists ¢ € End ()
such that ¢x, = p. Thus, for any o € J and its associated terms t§ € 7 we get
that

ziap = wiag =1 (75)0 = 7 (5,6) = 17 (vj0;0) = 17 (T5057),
that is, equation (V.1.3) holds for all @ € J and p € P(J).

Conversely, assume that o satisfies (V.1.3). For each p € P(J), we define
¢, € End(d) by z;¢, = x;a;p. Then for a € J, we have

e o (1 o (V.1.3)
T, = 17 (T5)pp = 1 <xj¢p) = 17 (T;05p) = wiap,

which shows that ap = ag, for all & € J. Therefore p = ¢,xp and x;, is surjective. [

Using the previous lemmas, we can now show when our map x;, is an isomorphism.

Proposition V.1.16. The map xp: End(d) — P(J) is an isomorphism if and only
if the independence algebra A satisfies equation (V.1.3) for all « € T and p € P(J).

Proof. Clearly, if x;, is an isomorphism, then it is surjective, and we get by Lemma
V.1.15 that equation (V.1.3) is satisfied.

Conversely, we know that x, is an injective homomorphism by Lemma V.1.14.
Furthermore, if equation (V.1.3) holds, then it follows X, is also surjective by
Lemma V.1.15, which means that it is an isomorphism of End(d) onto P(J). O
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Remark V.1.17. It is easy to see that equation (V.1.3) implies equation (%), so that
by Propositions V.1.13 and V.1.16, we get that if x, is an isomorphism, then , is

an isomorphism as well.

V.1.5 ISOMORPHISM BETWEEN THE ENDOMORPHISM MONOID AND THE TRANS-
LATIONAL HULL OF ITS (0-)MINIMAL IDEAL

In view of the previous sections, we can now answer the original question, by giving
a condition under which the endomorphism monoid of an independence algebra is

isomorphic to the translational hull of its (0-)minimal ideal.

Theorem V.1.18. Let A be an independence algebra with basis X, and consider
the (0-)minimal ideal J of its endomorphism monoid End(d), that is, the ideal
J:={a € End(d) | rk(a) < 1}. Assume that A satisfies the condition

ziop = £ (T;05p) (%)

for all « € 3 and p € P(J), where t& € T. Then the translational hull of J is

isomorphic to the endomorphism monoid of A, that is, Q(J) = End(d).
Conversely, if End(d) is isomorphic to Q(J) through the composition of iso-

morphisms X, and 771;1, then the condition (xx) holds for all « € J and p € P(J).

Proof. Notice that condition (xx) was denoted by (V.1.3) in the previous results. The
theorem then follows directly from Remark V.1.17 together with Propositions V.1.13
and V.1.16. N

Remark V.1.19. From the fact that any o € J with ima C (@) is a left-zero
endomorphism by Remark 1.5.5, and that any right translation must fix left zero
elements by Lemma 1.2.20, it follows that condition (%) simply corresponds to the
definition of the terms ¢, and thus equations (%) and () trivially hold for such
endomorphisms. Furthermore, we will see in Lemma V.3.8 that the two conditions
are equivalent if our ideal J satisfies some sort of separation property on the algebra
A, namely that if a # b € A, then there exists v € J such that avy # by. The fact
that condition (xx) is strictly stronger is not obvious, but this will be shown in
Corollary V.2.10.
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V.2  APPLICATION TO SPECIFIC INDEPENDENCE ALGEBRAS

The equations (%) and (%) hide the structure of the algebras considered by bypassing
the core of the computations, which makes it hard to see which algebras satisfy them.
In order to illustrate the utility of Theorem V.1.18 we show in this section how it
can be applied to different independence algebras, by showing which of the above
conditions hold.

Because of the classification given in Proposition [.5.10 and the fact that we are
only interested in independence algebras of rank at least 2, we will only give the
result for some independence algebras since the result for the others can either be
deduced from the corresponding F-equivalent algebras, or follows directly from the
remarks given in the introduction of this chapter. The most common examples of
independence algebras which are sets and vector spaces will be treated first, where we
will show that the isomorphism between 2(J) and End (&) hold, but in different ways.
In affine and quasi-field algebras however, the singular structure of one-dimensional
subalgebras that they share makes condition (xx) fail to hold even though both
types of algebras satisfy equation (x). Nonetheless, it is possible to give an exact

description of the translational hull of their minimal ideal.

V.2.1 FREE GROUP ALGEBRAS

Let o = Fxc(G) be a free group algebra of a group G with basis X and set of

constants C. From this, we get that

J={a€End(d) | ima =C orima = (z;) for some 5 € X}

={a € End(d) |ima =C orima = G -z for some x, € X}.

Notice that if a € J is such that ima = C, then af = « for all § € J and otherwise,
there exists k € I such that a = aay, where im o = ().

With this observation, we obtain the following proposition:

Proposition V.2.1. For any free group algebra d = Fx o(G), we have an iso-
morphism Q(J) = End(d) via the maps m, and xp.

Proof. In order to prove the proposition, it suffices to show that condition (%*)
of Theorem V.1.18 holds. From Remark V.1.19, it is enough to show this when

ima = (xg) for some z;, € X. Hence, let @ € J be such that ima = (x;) with
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x € X. Then, for any z; € X we have that z;a = g¢;(x) for some g; € G or
zia = ¢; € (D). Thus z;a = t¥(xy) for some unary terms t¢ € 7<, and we have for

any p € P(J) that:
zi(ap) = x; ((aar)p) = zioawp) = £ (xx)owp = £ (zpowp),

which shows that the condition (¥*) holds as required. ]

V.2.2 LINEAR ALGEBRAS

Let o be a linear algebra over a field K with basis X = {x;} and fixed subspace A,.
For each one-dimensional subalgebra 98 of o, we pick an independent element r of
B such that its projection on Ay is 0, to be considered as the representative of B and
we denote by R O X the set of all representatives of one-dimensional subalgebras of
A . In particular, this means that each one-dimensional subalgebra has a canonical
basis, which corresponds to the singleton set containing its representative in R.

Using this notation, we have that:

J={a€End(d)|ima= Ay or ima = (r) for some r € R}
= {OzEEnd(Sﬂ) | ima = Ap or ima = {/M’+a: W e K,rER,aEAO}}.

In order to facilitate the computations, for each i € I we define 3; € J by
TP = x; and xxfB; =0 for all xp # x;,

where 0 is the zero of our vector space &. Additionally, for any r € R there exists a
finite subset J, C I such that r =Y ; v;z; where {v;} 5 C K*, and we define v, € J
by

TiYe = ml/i_lxl ifi € J,, and x;YV = x; otherwise.
T
In particular, im~, = (z1) as well as vy, = 2 since
1 ]
—1 T
Y = Z ViiYr = T Z le/j T = T Iy = Ty,
jEdn |2 /7, ||

and if r € X, we have that v, = a;.

Lemma V.2.2. For any o € J with ima # Ay, we have that « = ay,«,., where

r € R is the representative of im «.
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Proof. Let aw € J with im v # Ay. Then there exists r € R such that ima = (r).
Moreover, for all i« € I we have z;a = a; for some a; € Ag, or z;a = (;r for some
G € k. If z;a0 = a; € Ay, then we directly have that z;av,a, = a7, = a; = x;01.

Otherwise, we get that
Ty, 0 = GTy,0 = GT1Q, = T = T;0,

which shows that a = a7,«, as required. O

Remark V.2.3. Let p € P(J) and a € J, then by Lemma V.2.2 we have that
ap = (ayar)p = ar(anp),

for some r € R, which shows that the action of p on J is uniquely determined by
its action on the set {a,, € J | r € R}. Thus, it is enough to study the action of the

right translations on this subset of J.

In order to obtain that ©(J) = End(«) by using Theorem V.1.18, we would need
to show that condition (+*) holds for all & € J. Notice first that if r = 3°; vjz; € R,
then for all z; € X we have that
T, =1 =Y vz =t (7).
Jr

Thus, for (x*) to hold for ., we need

ziapp = 77 (T5a50) = Y vi(wj0p) (V.2.1)
I
for all p € P(J). In fact, it suffices to verify this holds for all c, with » € R, in order
to get that (xx) will hold for all & € J, as given by the following:

Lemma V.2.4. Letr € R, a € J with ima = (r) and p € P(J). If we have that
zioep = 37 (T;a5p) for all x; € X where t7m € T, then x,ap = t(T;05p) for all
x; € X where t& € T°.

Consequently, condition (%) holds for all o« € J if and only if (V.2.1) holds for
all a. € T and all p € P(T), where r € R.

Proof. Let aw € J with ima = (r) for some r € R. Then, for each z; € X, there
exist u; € K and a; € Ay such that

T =+ a; = Zuiijj + a; =: t7(7;).
JIr
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Moreover, using Lemma V.2.2, we get that o = ay,.a, and thus ap = ay,.(a,p). Let
p € P(J) and suppose that z;a,p =t (T;a;p) for all z; € X, where ¢t € T . In
particular, by equation (V.2.1) above, we get that zyo,.p = > ; v;(z;a;p). Therefore

ziap = riay(onp) = (pir + ai)ye(arp)
= pi(rye(arp)) + a; = pi(r100p) + @
= Hi (JZ Vj(xjajp)) +a; = JZMW(%’%‘P) t+a;
= 6 (T50;p),
as required, and the second part follows immediately from requiring this to hold for
all p € P(J). O

The approach to obtain the isomorphism Q(J) = P(J) = End(d) by showing
that equation (V.2.1) holds for all o, € J and all p € P(J) requires to know in the
first place which maps from J to J are right translations. At this stage, there is no
easy way of describing them directly without going through an extensive search of
all the possible maps p: J — J. This can possibly be achieved for small finite fields
and low-dimensional vector spaces on a computer by using some program like GAP,
but it quickly exceeds the capacities of any computer.

Nonetheless, it is possible to show that there is an isomorphism between the
translational hull ©(J) and the endomorphism monoid End(d) directly, without
requiring them to be isomorphic to the set of right translations P(J). In order to do
so, we first prove that equation V.2.1 is satisfied by all right translations which are

part of a linked pair.

Lemma V.2.5. Let (A, p) € QJ). Letie I, reR,yeT and x; € X. Then we
have:

o TNy = Tj04p7;

o TNy = xja,pY; and

o Ti0np =5 vixiop where v =Y ;5 vix;, that is, condition (V.2.1) holds.
Proof. Let (X, p) € Q(J). Then we have that

LAY = Tjou\y = 20607,

and if r € R we also get:

TAY = Tj0\Y = T0,p7.
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Let p € RU{0} be such that im (a,.p) = (p), and denote by K, C I the finite set
such that p = > g prrg. Similarly, for each j € J,, there exists a finite set K; C [
and an element ¢; € R U {0} such that im (a;p) = (¢;) and q; = Xk, pry.-

Set K :=U; K; UK, CI. Then K is finite and £ = Y () € End(d) is a right
identity for all maps in the set {ap, a,p | j € J,}. Indeed, if we take j € J,, then
for all z; € X we have that z;ap = Drek; Mo + a; for some p, € K and a; € Ao,

and from this we get:
Ty p§ = ( > e+ az‘)f = > e | Do wB | fai= Y puwe+ a; = zap,
(eK; (eK; keK (eK;

so that a;p§ = ajp, and similarly o, p§ = o, p. Notice in particular that since 3, € J

and a;p is an endomorphism for all j € J,, it follows that

keK keK keK

ajp = a;p§ = a;p (Z ﬁk) =Y aipf =Y a;\b,

and similarly o,.p = > 1k - ABk.
We can now show that (V.2.1) holds for all right translations p belonging to a
linked pair (A, p). Indeed for any x; € X we have:

Tiopp = Z T AP, = Z ALy

keK keK

= v | A= D vz Ab
keK \jeJ, jeJr keK

= > D vEiaABe = Y vixg | D ag\Bi
jeJr keK jeJIr keK

= Z ViZjo;p,
JjEJr

as required. O

Using the previous lemma we can create the isomorphism we wanted.

Proposition V.2.6. In any linear algebra A, End(A) is isomorphic to QU(T) through
the map x : ¢ — (Ag, py), where Ay = pa and apy = ap for all a € J.

Proof. Let x: End(d) — Q(J) be defined as in the statement. Since J is an ideal of
End(d), it follows from Corollary 1.2.42 that x is well-defined homomorphism.
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Let ¢, ¢ € End(d) and suppose that ¢y = ¢'x = (A, p). Then for all i € I, we
get that x;¢ = r;0,0 = x;04p = T;040" = 1;¢, so that ¢ = ¢’ and x is injective.

Now consider (), p) € Q(J) and define ¢ € End(d) by z;¢ = z;a;p for all i € I.
Then ¢x = (A, p) if (A, p) = (A4, py), that is, if for all @ € T we have A\a = ¢ and
ap = a¢. Notice that if we have ap = a¢ for all « € J, then for all § € T and i € I,
we get

TiAB = ziipP = 1008 = 2P,

so that A3 = ¢f. Combining this with Remark V.2.3, it follows that if a,.p = a,.¢
for all r € R then we get that ap = a¢ for all @ € T and we obtain ¢x = (A, p). So,
let r =3, vjz; € R. Then, using Lemma V.2.5 and the definition of ¢, we have
that for all x; € X

Ti0p = Z ViTjop = Z viri$ = (Z ijj) ¢ =rp=x;0:0.

JE€Jr Jjedr jeJr

Hence a,.p = a,.¢ for all r € R and thus ¢x = (A, p). Therefore x is surjective, which
completes the proof that x is an isomorphism from End(d) onto Q(J). O

Open Problem V.2.7. Proposition V.2.6 gives the explicit isomorphism between (J)
and End(d) but does not provides an answer on whether these are isomorphic to
P(J). It is therefore natural to ask the following question:

Is there an equivalent condition to equation (%) that only depends on the

field K. and the fized subspace Ay in order to get that m, is surjective?

V.2.3 ALGEBRAS WITH SINGLETON SUBALGEBRAS

In this section we will treat both the quasifield algebras and the affine algebras since
their one-dimensional subalgebras are singletons. Thus we consider an independence
algebra 9 whose monogenic subalgebras are all singletons, and with a basis X # A
so that we are not in the situation of an algebra that is merely a set. This means in
particular that A has at least three distinct elements and that there exist at least

one element that does not lie in X. Then, the minimal ideal of End () is
J={a€End(d) |ima = {a} for some a € A},

which consists of the constant maps -, defined as by, = a for all b € A. Thus J is a
right-zero semigroup and if x; € X, then the map ~,, corresponds to the map «; of
Section V.1.
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Remark V.2.8. From Proposition 1.2.23, we have that any map from p: J — J is
a right translation, linked to the only left translation, which is the identity map.
Thus §2(J) is isomorphic to P(J). This can also be seen from the fact that (%) is

straightforward to verify on right-zero semigroups and is proven here in generality.

Lemma V.2.9. If an ideal J of an independence algebra A is a right-zero semigroup,

then condition (x) is satisfied.

Proof. Let J be an ideal that is a right-zero semigroup, and X be a basis of o as
usual. Take o € J with 7% defined as before. Then for all 5 € J and x; € X, we

have the following:

(zi0p) B = (1;6%p) B = zi0(pB) since o = «
= x;af3 since J is a right-zero semigroup
= t2(75)8 = 7 (2,5)
=t (xjaj pﬁ) since J is a right-zero semigroup
=t (T;5p) B,
which shows that equation (%) holds. O

On the other end, condition (%x) does not hold for all right translations p in
these algebras, as given by the following counterexample.

Let x # y € X, and let a € A\ {z,y} be such that a = t(x,y) for some term ¢.
Denote by 7., 7, and 7, the maps with image {z}, {y} and {a} respectively and let
p: J — J be a right translation such that

Vo = VP =Ya  and  Yap = Ya

Now take any basis element z € X and consider z7, = a = t(z,y). Then we obtain

that zv,p = 27, = x and

tH(xyp, y1yp) = t(TY0, YY) = t(a,a) = a,

where the last equality comes from the fact that all monogenic subalgebras are
singletons. This shows that zv,p # t(xv,p, yy,p), so that the equation (%) does not
hold and Theorem V.1.18 cannot be applied here. This also shows the following

corollary:
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Corollary V.2.10. For an independence algebra, conditions (x) and (xx) are not

equivalent in general. O

In the current case, it is however possible to explicitly compute the translational

hull of J, as given by the following lemma.

Lemma V.2.11. For any independence algebra o that is not a set where each
monogenic subalgebra is a singleton, the translational hull Q(J) is isomorphic to the

full transformation monoid T,.

Proof. Notice first that since J = {v, | a € A} and ~, # v if a # b, it immediately
follows that J is in bijection with A. Since J is a right-zero semigroup, we get that
Q(3) = T; by Proposition 1.2.23, and thus Q(J) = Tj. O

V.3 EXTENDING THE RESULTS

Since the initial question was asked in the setting of independence algebras, it was
natural to look for an answer inside this framework. Nonetheless, it directly prompts
the question of whether the above results are only valid on such algebras, or if
they are true for a more general class of algebras. As it happens, many of the
arguments used in Section V.1 only rely on the fact that our endomorphisms can
be uniquely defined from their action on a basis of our algebra, which gives an easy
way to extend this to algebras that are freely generated on a basis. This will be
the purpose of Section V.3.1. Another direction to extend the earlier results in the
context of an independence algebra is to look at other ideals rather than focusing on
the (0-)minimal one. In Section V.3.2.1 we show that we can get some information
about the translational hull of other ideals from the translational hull of the ideals
of lower ranks, and that most of these translational hulls are in fact isomorphic
to the endomorphism monoid. However, in order to state these results for other
classes of universal algebras where we cannot define properly the endomorphisms «;,
we need to look at our conditions under a different light, which will be the goal of
Section V.3.2.3.

V.3.1 ALGEBRAS FREE ON A BASIS

Most of the results contained in Section V.1 hold in a setting broader than inde-

pendence algebras. Indeed, let o be a free algebra over a set X = {z;} C A, that is,
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an algebra generated by X in such a way that any map from X to A extends to an

endomorphism of o, and define the set J as before by
J={a € End(d) | im« lies inside a monogenic subalgebra} .

By Lemma V.1.2 we have that J is an ideal of End(s). However, this ideal is no
longer necessarily (0-)minimal since there could exist ideals different from O strictly
contained in J (see Example V.3.3 below). This happens in particular whenever
having ima C (r) for some a € End(¢f) and r € A does not imply ima = (())
or ima = (r), or equivalently, when there exists ¢t € T, such that r ¢ (¢(r)) for
some r € A, that is, when the set of non-constant unary terms in 7% is not a
group. Notice also that the notion of rank of a subalgebra is not well-defined, since
not all minimal generating sets have the same cardinality (for example {1} and
{2,3} are both minimal generating sets for Z), and thus the notion of rank for an
endomorphism is not well-defined either.

Nonetheless, the maps «; and «, introduced in Definition V.1.6 as well as their
properties given in Lemma V.1.7 still hold (except for the mention of the rank of

a,), and J has some sort of minimality property, as given by:

Lemma V.3.1. The set J is the smallest ideal of End(d) containing at least one
of the «;.

Proof. Since J is an ideal of End(s) by Lemma V.1.2 and clearly contains all of the
«;, it suffices to show this is the smallest ideal that contains at least one of them.

Let ¥ be an ideal of End (4 ) containing one of the «a;, which we denote by «y, for
some k € I. Then we have that o; = aga; € T for all 7+ € I since T is an ideal. In
particular, the ideal ¥ is independent of the initial choice of ay. Similarly, we also
get that a, = aga,. € T for all r € A.

Thus, we now consider 9t as the smallest ideal of End(&) containing all of the
a; and we let £ € 3. Then im ¢ C (r) for some element r € A and for all z; € X we
get that 2;& = t;(r) for some t; € T. Pick an element z, € X and define 3 € J by
x;f = t;(zy) for all z; € X. Then we have

z;foy = ti(zp)oy = ti(zpoy) = t(r) = ;€

for all x; € X, which shows that £ = [a,.. Using the fact that a, € 991 by the
previous point and that 9 is an ideal of End(¢f), it follows that £ € 9. This shows
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that J C 9t and then, by minimality of 9, it follows that J = 9N, so that J is the

smallest ideal of End(d) containing at least one, and hence all, of the «;. O

An astute reader can now verify that all the subsequent results contained in
Sections V.1.2 to V.1.5 hold without any modifications of the proofs if they are
stated within the setting of an algebra freely generated on a basis. This leads us to

the more general result:

Theorem V.3.2. Let o be a universal algebra freely generated on a basis X, and
consider the ideal 3 = {a € End(d) | ima C (r) for some r € A}. Assume that A
satisfies the condition

riap = 12 (T55) (V.3.1)

for all a € 3 and p € P(3), where t@ € T*. Then the translational hull of J is
isomorphic to the endomorphism monoid of A, that is, Q(J) = End(d).

Conversely, if Q(3), P(J) and End(A) are all isomorphic to each other, then the
condition (V.3.1) holds for all « € 3 and p € P(J).

Example V.3.3. A good example of it would be to consider the free action of a monoid
M on a set X, denoted by Fx (M), which provides a generalisation of the example
of free group algebras exposed earlier in Section V.2.1. More precisely, Fx (M) is
the algebra composed of the set of all formal elements {mz; | m € M and z; € X'}
together with the set of unary operations {f, | a € M} defined as f,(mz;) = (am)x;
for all m € M and z; € X. It is clear from the description that all monogenic
subalgebras of Fx(M) are of the form (azy) for some a € M and x; € X and that
these are not all generated by elements of the basis unless M is a group.

Now if we let J be defined as above and o« € J, then there exist m, € M
and z; € X such that ima = (m,zy). Moreover, for any x; € X, we have that
ria = fo,(myzy) for some a; € M and thus z;o0 = fym, (xx). This shows that if m,
is not left invertible in M, then the ideal generated by « will not contain the map oy,
and hence J is not a minimal ideal. However, we still have that the translational hull
of J is isomorphic to the whole endomorphism monoid. Indeed, for any p € P(J), we
have that

zi(ap) = x; ((aay)p) = (via)agp

= fo,(MaZr)p = fama (k)P = faime (Trup)-

Therefore, condition (**) of Theorem V.1.18 holds, and thus Q(J) = End(Fx(M)).
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V.3.2 FURTHER CONSIDERATIONS

In this section, we go back to the setting where & is an arbitrary independence
algebra with a basis X = {x;}.

V.3.2.1 Additional results

Recall from Section 1.5 that in End(d), all maps of a given rank k form a single
P-class denoted Dy and that the ideals of End(¢f) have the form
T, = {a € End(d) | tk(e) < } = |J D,,
p<k
for any given cardinal x > 0.

In Section V.1 we only dealt with the (0-)minimal ideal J of End(d). It is
natural to wonder if the translational hull of another ideal 7}, can be compared
to that of 3. We know that if we consider End(sf) as an ideal in itself, then it is
isomorphic to its translational hull by Lemma [.2.15 since it is a monoid. Moreover,
we have shown in Section V.2 that in the context of independence algebras, either
Q(3) 2 End(d) or Q(T) = T4. We aim to show that in fact, if the former happens,
we have Q(T},) = End(d) for all k > 2.

We start by giving a useful lemma which shows that left and right translations

cannot map an endomorphism to one of higher rank.

Lemma V.3.4. Let T =T, be an ideal of End(). Then for any o € T we have
that rk(ap) < rk(a) [resp. k(A ) < k()] for all p € P(X) [resp. for all X € A(T)].
Consequently, for all p € P(T) and A € A(T) we have that Typ, \Ty, C Ty, for all

cardinals k < k.

Proof. Let T = T, be an ideal of End(d) and consider a map « € T with k < k.
Since End(d) is regular by Proposition 1.5.1, it follows that & = aya for some
v € End(d). Since rk(ya) < rk(a) < k, we get that ya € ¥.

Now, let p € P(%) and A € A(T). Then we have the following:

tk(ap) = tk((ara)p) = rk(av(ap)) < tk(a) < k, and
rk(Aa) = rk(A(aya)) = rk((Aa)ya) < rk(a) < k,
which shows that ap, A\a € T}, as required. O

Now we can prove that the monoid of right translations of a larger ideal embeds

in the monoid of right translations of a smaller one.
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Lemma V.3.5. For each 1 < k < dimd and k < v < (dim )", the monoid P(T),)
embeds into P(T},) through the morphism 6: p— plr, .

Proof. Let 1 < k <dimd, k < v < (dim¢)" and let p € P(T,). Consider the map
p = p|lr,- By Lemma V.3.4 we know that for any o € T, we have ap € T}, so that
im p C T},.. Moreover, for any «, 5 € T}, we have af8 € T}, and thus

(@B)p = (af)p = a(Bp) = a(Bp),
which shows that p € P(T}). Hence the map 6: P(7,) — P(T}) is well-defined. The

fact that this is also a morphism follows directly from the composition in P(7,) and
Lemma V.3.4.
Now let p' € P(7,) be such that p'§ = p= pf. For a € T,,, we let Y = {y;} be a

basis of 9B = im «, which we extend via Z = {z,} to a basis of A. Since |Y| > 1, we

o Yj Zs
Y= .
Yi N

Then clearly, we have that v is idempotent and ay = « since ~ is the identity on

define a map v € T, by:

im . Moreover, for all y; € Y, the map  is the identity on the one-dimensional

subalgebra (y;) = im «,, so that a,,v = ay, € Ty C Tj.. Thus we obtain that:

yivp = T1oy, (7p) = w1(ay,7)p
= X1y, P = T10y,P
=m0y, 0’ = z1(ay,7)p
= yvp
Using the fact that 42 = 7 together with the previous equation, we see that

2P = 2Y(7p) = y1yp
= y170" = z7(7/)
= 2570’
for all z, € Z. This means in particular that vp and vp" agree on the basis Y LI Z of
A and thus vp = vp'. Finally,
ap = (ay)p = a(yp) = a(yp) = (a7)p = ap,

which shows that p = p’ since a € T,, was chosen arbitrarily. Therefore 6 is injective

and is an embedding. O
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Corollary V.3.6. If End(d) = P(T}) via ¢ — py for some 1 < k < dim o, then
P(T,) 2 End(dA) for allk < v < (dim¢f)™".

Proof. Notice first that for any ideal T' of End(9f), by Corollary 1.2.42, we know
that there is a well-defined morphism yp: End(d) — P(T): ¢ — pg, where py is
defined by apy = a¢ for all « € T'. Thus, in order to distinguish the morphism for
T, from that for T}, we will write the cardinal associated to each ideal in exponent
of the morphism and the right translation, that is, X will denote the map sending
¢ € End(d) to p} € P(T,), while Xlli will be for the map sending ¢ € End(d) to
pk € P(Ty).

Now assume that End(d) = P(T}) via Xlli and let 0: P(T,) — P(T}) be defined
by p”6 = ,0”|Tk. Since for all a € T}, we have

and that X is an isomorphism, it follows that (x)~" is injective and thus p(’;’Tk = pk
as p’;(x]’;)_l = ¢. Hence p46 = pf.

Define 7: P(T,,) — End(gf) by 7 = 0(x;)~". Since both § and (x})~" are injective
morphisms by Lemma V.3.5 and assumption on the fact that Xf, is an isomorphism,
it follows that 7 is an injective morphism. Now, let ¢ € End(9f) and consider

pl € P(T,) defined by ap} = a¢ for all a € T,,. Then we have
PeT=ph00) " = P50 = ¢,

which shows that 7 is surjective, and therefore we have that 7 is an isomorphism of
P(T,) onto End(sf) whose inverse is x;.. O

V.3.2.2  Equivalence of conditions (x) and (%)

We have seen earlier in Corollary V.2.10 that condition (%) of Proposition V.1.13 is
not equivalent in general to condition (xx) of Theorem V.1.18. It is therefore natural
to ask when this is the case. Since the latter condition implies the former, we only
need to find requirements on our algebra so that the converse also holds. In other
words, given an independence algebra & on a basis X with J the (0-)minimal ideal
of End(d), and given any a € J and p € P(J), we want to get a condition under

which we have that
(viap)B = :(T@0)8 VB €2, (V.3.2)
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implies that
ziap = 12 (F57) (V.3.3)

where ; € X and ¢ € T«

In order to do so, we introduce the concept of separative ideals.

Definition V.3.7. For an algebra of, an ideal T of End(d) is called separative for
A if any two distinct elements of A can be separated by an element of T, that is, if
for all a # b € A, there exists v € T such that ay # by.

We can now give an answer to the question above, as follows.

Lemma V.3.8. Let A be an independence algebra and J the (0-)minimal ideal of
its endomorphism monoid End(d). If J is separative for A, then conditions (V.3.3)
and (V.3.2) are equivalent.

Proof. Suppose that J is separative for A. One direction for the equivalence of the
conditions is clear, so we want to show that if equation (V.3.2) holds, then so does
(V.3.3). By contradiction, let us assume that (V.3.2) holds and that there exist
z; € X, a € Jand p € P(J) such that z;ap # t3(T;a;p). Now set a = z,ap € A
and b = t3(z;a;p) € A. Thus a # b and by assumption on J being separative for A,
there exists v € J such that ay # by. But this contradicts equation (V.3.2), which

shows that the two conditions are equivalent in this case. O

V.3.2.8 Towards a more general approach

The arguments developed in Section V.1 required both Q(J) and End(d) to be
isomorphic to P(J). However, this requirement appears to be unnecessarily strong,
since we showed that in the linear algebra case Q(J) = End(d), without showing
that they are isomorphic to P(J). Thus, we want to find other conditions that will
allow us to appropriately decide when is the translational hull of J isomorphic to
the endomorphism monoid End(d).

The first thing to notice is that for any ideal T C End(d), we have that the
maps 7, : (T) — P(%) and xp,: End(d) — P(T) are both injective morphisms by
Lemmas V.1.11 and V.1.14. In fact, the proofs for these results used the existence of
the special maps a; which exist as long as our algebra is free on a basis. Nevertheless,

this can be generalised by introducing a new notion as follows.
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Definition V.3.9. Let o be an algebra, and ¥ an ideal of End(of). We say that of
is representable by ¥ if A = U im~y.
vET
In other words, if o is representable by ¥, we have that any element of A lies in
the image of some v € T, that is, any element a € A can be written as a = by for
some b € A and v € ¥.

Lemma V.3.10. If d is representable by T, then the maps m,: Q(T) — P(T) and
Xp: End() — P(%) are injective.

Proof. Consider an element a € A. Since & is representable by ¥, we get that
a = by for some b € A and v € .

To see that m, is injective, let (X, p), (N, p) € Q(%). Since A and A" are both
linked to p, then for all g € T we obtain that

a\f = by\3 = bypf = byN B = aN .

Since a € A was chosen arbitrarily, this shows that A3 = X' for all § € ¥, and thus
A=\,

Similarly, suppose that ¢x, = ¢'xp = p for some ¢, ¢’ € End(4). Then we get
that ap = by¢ = byp = by¢’ = a¢’, and therefore ¢ = ¢', finishing the proof that x;

is injective. O

In light of Lemma V.3.10, we can have injectivity of the maps 7, and x;, using a
condition on an algebra relative to an ideal of its endomorphism monoid. Since this
can be expressed in the general context of universal algebras, it makes more sense to
consider conditions of that form rather than those presented in (x) and (xx).

Moreover, since the images of m, and x, both lie in P(%), it seems a better
approach to exhibit conditions under which they will coincide in P(T), without
requiring them to be equal to the full monoid P(¥). This is the approach we will take
in Chapter VI in order to generalise the results developed throughout Section V.1.



VI
Translational hulls of ideals of the

endomorphism monoid of a universal

algebra

Following the ideas developed in Chapter V, we wish to study the translational hulls
of ideals of the endomorphism monoid of a universal algebra & in order to find out
when this translational hull is isomorphic to the endomorphism monoid End ().
More precisely, given an ideal J of End(of), we will consider two properties of J
relative to o, called REP and SEP, which are very similar to those introduced in
Section V.3.2.3, in the sense that REP is concerned with the property that elements
of A can be written using the image of endomorphisms in J while SEP is saying that

J can separate any two elements of A.

In Section VI.1 we will define these two properties and discuss their connection
with the notion of reductivity of J introduced in Section 1.2. We will then show
in Section VI.2 that if o and J are such that the conditions REP and SEP hold,
then the translational hull ©(J) is isomorphic to the endomorphism monoid End ().
After that, Sections VI.3 and V1.4 will consider the cases where we only have one of
these two conditions, to see how much we can understand from having one but not
the other. Since there are still many gaps in the development of this theory, we close

each section with some open questions that we consider good directions of research.

Note. The content of this chapter is the result of an ongoing collaboration with
Prof. Victoria Gould, Dr. Marianne Johnson and Prof. Mark Kambites.

171



172 CHAPTER VI. TRANSLATIONAL HULLS FOR UNIVERSAL ALGEBRAS

VI.1 DEFINITIONS

Throughout this chapter, & will denote a universal algebra and J will be an ideal of

End(d).

Definition VI.1.1. We say that the pair (d,J) satisfies:
« REP if A is generated by the images of the endomorphisms of J, that is, if
A= <Ua€3 im a>,
o SEP if every pair of distinct elements of A can be distinguished by an en-
domorphism of J, that is, if for all @ # b € A, there exists v € J such that

ay # by.

Remark VI.1.2. Notice that SEP corresponds to the definition of J being separative
for A as defined in Section V.3.2.3. On the other hand, condition REP is weaker
than requiring o to be representable by J, since we do not require every element
of & to lie in the image of an endomorphism of J. In the context of independence
algebras, it can however be shown that having REP or having representability is
equivalent. We will delay further comments and comparisons concerning the specific

case of independence algebras to the corresponding section in Chapter VII.

Remark VI1.1.3. Notice that if 3 = End(&), then id € 7, so that (&,J) has both
REP and SEP. Also J is then a monoid and by Corollary 1.2.15, we have that
Q(J7) =73 = End(d4). Thus we are truly interested in only proper ideals of End(d).

We now show that the properties REP and SEP are closely related to the notions
of left and right reductivity.

Lemma VI.1.4. 1) If the pair (4,T) satisfies REP, then J is left reductive.
2) If the pair (d,7) satisfies SEP, then J is right reductive.

Proof. 1) Let o, B € J and suppose that ya = v/ for all v € J. To show that J is left
reductive, we need to argue that a = 5. Let a € A. Since the pair (d,T) satisfies
REP, there exist some t € T9, {z;} C A and {§;} C J such that a = t(ﬂ) Then

we have
aq = t(m)a — t(xi(%a)
- t(x@ﬂ) - t(mi&)ﬁ
— aB.
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Since a € A was arbitrary, it follows that o = [ as required.

2) Let «, 8 € J and suppose that ay = 7 for all v € 3. Assume that « # p.
Then there exists a € A such that aa # a3. Since the pair (o,J) has SEP, it follows
that there exists v € J such that aay # a7, contradicting the fact that ay = 5.
Thus o« = 8 and J is right reductive. O]

Throughout this chapter, we will use the following maps, introduced in Section I.2:
: Q(3) — P(J) is defined by (A, p)m, = p and has image im 7, = P(J);

: Q(3) — A(J) is defined by (A, p)m, = A and has image im 7, = A(3);

e Xp: End(dA) — P(3) defined by ®Xp = pg, Where apy = ag for all a € J;

e X,: End(d) — /~\(3) defined by ¢x, = A where A\ya = ¢a for all o € J; and

o x: End(d) — Q(3J) defined by ¢x = (Ay, ps)-
The fact that these are all well-defined morphisms comes from Corollaries 1.2.6
and 1.2.42, since J is an ideal of End(d). Moreover, it is clear that the image of
the identity endomorphism of End(&f) under x,, is the trivial right translation ILp.
Similarly, idx, = 1, so that idy = 1 and we have that x,, x, and x are monoid

homomorphisms.

Definition VI.1.5. We say that Q(J) is naturally isomorphic to P(J) [resp. to

A(3)] if T, [resp. 7] is an isomorphism.
We now get an immediate corollary.

Corollary VI1.1.6. If (d4,7) satisfies REP, then Q(3J) is naturally isomorphic to
P(3). Dually, if (d,3) satisfies SEP, then Q(3J) is naturally isomorphic to A(J).
Consequently, if the pair (d,3) satisfies REP and SEP, then Q(J) = P(J) and

Q(3) = A(J) via natural isomorphisms T, and T, .

Proof. 1f the pair (d,J) has REP, then J is left reductive by Lemma VI.1.4, and
by Lemma 1.2.17, we obtain that 7, is injective and (J) = P(J). Dually, if (o, 7)
has SEP, we get that J is right reductive and thus Q(J) is naturally isomorphic to
A(3). O

We now show that the properties REP and SEP respectively imply the injectivity
of xp and x,.

Lemma VI.1.7. If the pair (4,7) satisfies REP, then X, is injective.
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Proof. Let ¢,v € End(d) and suppose that ps = p,. We want to show that a¢ = a
for all a € A. Since (4, 7J) has REP, for all a € A we have that a = t(xiozi) for some
teT? 2, € Aand o; € J. Thus,

a¢ = t(w:0;) 6 = (10,0
t(a: zp¢>) = t(:z: azpw)
= t(a: aﬂﬂ) = t(a:zal)w
= a1,
so that ¢ = v and x;, is injective. O

Lemma VI.1.8. If the pair (4,3J) satisfies SEP, then x, is injective.

Proof. Let ¢,v € End(d) and suppose that A\, = A,. If there exists a € A such
that a¢ # ai, then by the fact that (&,7J) has SEP, we get that a¢y # ayy for
some v € J, that is, a\sy # a)y7, contradicting the fact that Ay = \y,. Thus ¢ =9

and Yy, is injective. O

Remark VI.1.9. In fact, part 1) of Lemma VI.1.4 can be seen as a consequence of
Lemma VI.1.7. Indeed, suppose that (,J) has REP, so that y; is injective. Let
¢,v € J be such that ap = a1 for all « € J. Then apy = apy, for all o € T, which
shows that py = py and thus ¢ = ¢ by injectivity of x;,. Hence J is left reductive.
Dually, we can see that Lemma VI.1.8 effectively proves part 2) of Lemma VI.1.4.

We finish this section by defining some terminology that we shall use later.

Definition VI.1.10. We say that End(f) is naturally isomorphic to P(3) [resp. to

A(3) if Xp [resp. x,] is an isomorphism.

VI.2 TRANSLATIONAL HULLS UNDER REP AND SEP

In Section V.1.5, we gave a necessary and sufficient condition in the context of
independence algebras to obtain an isomorphism of the endomorphism monoid with
the right translations and the bitranslations of the (0-)minimal ideal. Since we
are now considering a larger class of universal algebras, and we are not restricting
ourselves to a specific ideal of the endomorphism monoid, obtaining necessary and

sufficient conditions in all generality will be be harder to achieve. However, we can
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show that REP and SEP are at least sufficient conditions to obtain the desired

isomorphisms.

Theorem VI.2.1. If (A,7) satisfies REP and SEP, then

P(J) = A(J) = End(d)

12

©(7)

via natural isomorphisms. In particular, every bitranslation of J is realised by an

endomorphism of A.

Proof. Since (o, 7) satisfies REP and SEP, we get that Q(J) = P(3) = A(J) by
Corollary VI.1.6. Moreover, x;,: End(d) — P(J) is injective by Lemma VI.1.7. We
show that x,, is surjective, so that we will have an isomorphism from End(¢f) to
Q(3J) via the composition x,m .

Let p € P(J), so that there exists A € A(J) such that (A, p) € (7). We aim to
show that there exists an endomorphism ¢ € End(sf) such that p = ps, and hence
oxp = p and X, will be surjective.

Since (d,7) has REP, for all @ € A, we have a = t(xiozi) for some t € T,
{z;} € A and {a;} € J. We now define ¢: A — A by

ap = t(zi01) ¢ = t(zi0p).

In order to show that ¢ is well-defined, we need to show that if ¢ xiai) = s(y]ﬂj)
for some s € T {y;} C A and {3;} C 7, then we get t(@) = s(yjﬁjp>. So, let
v € J. Then we have that

t(ﬂfioéip)’Y = t(%%’/ﬂ) = t(l"iOéi)\'Y)
- (= s()
= s(wB7) = s (wBin)

Since this is valid for all v € J and that (9, J) has SEP, we get t(xiozip) = s(yjﬁjp),
that is, t(M)¢ = s(m)qﬁ and therefore ¢ is well-defined.

We now need to show that ¢ is an endomorphism, that is, we need to show that
ulay,...,a,)¢ =u(aro,...,a,¢) for all u € T and a,, ..., a, € A. However, since
(d,7) has REP, for each 1 < i < n, there exists k; € N such that a; = (m),
where t* € ‘Z;qu, b, ... ,b}'ﬂ € Aand 3, ... ,5}% € J. Then, by writing s € T for the
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term composition of u with all the ' (so that s has arity > k;), we get that:

u(ay, . ( (bh,BL), -t (bznﬂkn)) ¢
s(bklﬂkl, by BR )gb writing as a single term,
s(bklﬁklp, by BR p) by definition of ¢,
u( 6k1 St (W)) by definition of s,
u< b,lﬂﬁkl O, .. 1" (W) gb) by definition of ¢,
=u(ai,...,a,9) by definition of the a;’s.

Thus ¢ € End(d). It only remains to show that vps = vp for all v € 3. But we can
see that

(@)oo = u(i77) = u(i)o = (@) = u(@)o
Hence, pg = p, so that x;, is surjective, and we get that End(d) = P(3). O

Even though we cannot prove whether or not REP and SEP are necessary
conditions to obtain the isomorphisms, we can nonetheless show that the ideal has

to satisfy the weaker condition of being reductive for the isomorphisms to happen.

Lemma VI.2.2. If End(d) and P(J) are naturally isomorphic via Xp, then T is

left reductive and then End(el) = Q(3). Dually, if End(s) and A(3) are naturally

isomorphic via x,, then J is right reductive and then End(d) = Q(7J).
Consequently, if Q(3) = A(J) = P(J) = End(d) via natural isomorphisms, then

T is reductive.

Proof. Suppose that x,: End(d) — f)(”) is an isomorphism and let o, 5 € J be
such that ya = v for all v € 3. Since p,, ps € Po(J), we get that yp, = vps for
all v € J, and thus p, = pg. However, x,, is injective, which means that o = 3 and
therefore J is left reductive. Using Lemma 1.2.17, we then get that 7, is injective
and Q(3) 2 P(J), as required.

The proof that J is right reductive when x, is an isomorphism is dual, and the

last result follows immediately. O
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Notice that in the proof of Theorem VI.2.1, we used multiple times the argument
that (&,J) had REP but only used once the fact that it had SEP in order to show
that the map ¢ created from the right translation p is well-defined.

Question V1.2.3. Is it possible to weaken the assumption that (9f,J) has SEP in
Theorem VI.2.17

In view of Lemma VI.2.2, if we want to have the four-fold isomorphisms between
P(3), A(J), Q(J) and End(f) we need to start with an ideal that is reductive.

Question V1.2.4. Considering a reductive ideal J, is there an assumption weaker than
REP and SEP that would allow us to get the same result as in Theorem VI.2.17

VI.3 REP WITHOUT SEP

In this section, we will assume that our pair (o, J) satisfies REP but not SEP. This
means that by Corollary VI.1.6 and Lemma VI.1.7 we have that 7, is an isomorphism

and X, is injective, which means that we get
End(d) — P(3) = Q(J).

This means in particular that every right translation of 15(3) is linked to exactly one
left translation of J and comes from at most one endomorphism of & .

The main work of Theorem VI.2.1 was to construct this endomorphism of & from
a right translation that is linked. Since we no longer have SEP, we want to show
that we can at least construct a well-defined endomorphism of a quotient algebra of
A by defining a congruence relation which will play the role of SEP in the proof to

show that the map constructed is well-defined.

Definition VI.3.1. Let ~ be the relation on & defined by a ~ b for a,b € A if and

only if aae = ba for all & € 3. The ~-class of an element a € A will be denoted [a].

Remark VI.3.2. It follows immediately from the definition that ~ is an equivalence

relation. Moreover, this relation is equality exactly when (9f,7) has SEP.
Lemma VI1.3.3. The relation ~ is a congruence on A.

Proof. Let {a;},{b;} € A and suppose that a; ~ b; for all i. Then for all « € J and
all terms ¢ € T we have that t(aii)oz = t(aTJz) = t(l)?)z) = t(b:)oz, as required. [J
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We now turn our attention towards the algebra /.

Lemma VI1.3.4. The ideal J acts on the right of A/~ by endomorphisms of /-
via [ala = [aa] for all a € A and all a € T, that is, the equation t(@)a = t([ai]a)
holds for all {a;} C A, t € T and a € 7.

Proof. Let a,b € A be such that [a] = [b]. Then by definition of ~ we have that
aa = ba for all @ € 7, so that [aa] = [ba]. Hence [a]a is well-defined.

Moreover, for all a, 5 € J and a € A, we have that
[a](aB) = [aaf] = [ac]B = ([a]@)B,
which shows that J acts by semigroup transformations on /..
Now, let {a;} € A, t € T and o € J. Since ~ is a congruence on 9, we have
that t(@) = {t(aﬁ-)}, from which we get that
t([a])a = [t@)|a = [H@)a] = [(@m)] = t([aia]) = t([aia),

where we used the definition of the action and the fact that o € End(d). O

We now construct endomorphisms of &/, from right translations which are
linked.

Lemma VI.3.5. Suppose that (d4,7) satisfies REP. Then every p € P(J) induces
a map ¢: A/ — A/ defined by [a]¢ = {t(ziaip)} where a = t(T;05), such that for
alla € T and m € A/ we have:

e ¢ is a well-defined morphism;

e map = mago; and

o MAa = moa;

where \ € /~\(3) is the unique left translation linked to p.

Proof. Let p € P(J). Then there exists a unique A € A(J) such that (X, p) € Q(J).
Also, from the fact that (f,7) satisfies REP, every [a] € 9/~ can be expressed
as [a] = {t(m)} for some t € T9, {z;} € A and {a;} C J. We now define
¢: A/ — A/ by

)¢ = [t(zim)| ¢ = [t(Ti0p) .

Notice in particular that under this definition, for all a € J we have that

laap] = [t(@an)ap| = [t(ziailap))| = [t(zi(eia)p)| = [t@ma)|é = [aale.
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To show that ¢ is well-defined, suppose that t(xZaZ) ~ s(yjﬁj) for some s € T4,
{y;} €T Aand {#;} C3J. Then for all v € J we get that

t(maip)y = t(ziaipy) = t(wad7)
()
= s(y;BM) = s(u;B0)7,
).

which shows that t(xl 1/)) ~ 3( that is, {t(xiai)}gb = {s(m)}qﬁ, so that ¢

is well-defined.
Moreover, for all [a] € /., and o € T, we have [a]ap = [aap] = [aa]d = [a]ag,

while

la| A\ = {t(:c,;ai)]ka = {t(xiai)\a)}
= {t(W)] = [t(:vzaip)}a
= [t(za)| da = [aléa

Therefore, for all m € 9/, we have map = mag and mAa = moa.

It only remains to show that ¢ is a morphism. So consider the expression
[a1],...,[a,n]) where v € T and [ai1],...,[a,] € /. Using REP, for each
1 < i < n we write a; = tl( 26}6) for some k; € N, t' € T2, {b}%} C A and
{ﬁ}ﬁ } C 7. Then, we get

u(

u([al], e [an])gb = { ulay,...,a } since ~ is a congruence,
- ( b,1€1 ﬁkl . (M))] ¢ by definition of a;,

=15 <b}§15,§1, o ,bznﬂgnﬂ [0} writing as a single term,

= -s <b,1ﬁﬁlilp, . ,W)] by definition of ¢,

= u(t b,lﬂﬂkl . (W))] by definition of s,

u<[t b}ﬂﬁkl . [t” (W)D since ~ is a congruence,

u([tl b}ﬂﬁkl Oy [t” (m)} (b) by definition of ¢,

lai]o, .. [an]QS) by definition of a;.

Thus ¢ is indeed an endomorphlsm of /-, and all the results are proved. O
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Remark VI1.3.6. Notice that if ~ is equality, that is, if (&,J) has SEP, then this
proof reproduces exactly the arguments of the proof of Theorem VI.2.1.

Moreover, we can show that the map ¢ of Lemma VI.3.5 is uniquely tied to the

left translation of the linked pair considered.

Lemma VI.3.7. Suppose that (9,7) satisfies REP. Define 6: P(J) — End(&q/w)

by pf = ¢, where ¢ is as given in Lemma VI.3.5. Then 0 is a morphism such that
p0 = p'0 if and only if p and p' are linked to the same left translation A € A(J).

Proof. Since (,73) has REP, then each [a] € &/~ can be written as [a] = [t(T;0;)]
for some t € T {2;} C A and {o;} C J. Then we let 0: P(J) — End(s/..) be
such that pf = ¢, where ¢ is defined by [a]¢ = [t(Z;q;p)] for [a] € d/~. The fact
that 0 is well-defined follows from Lemma VI.3.5.

Moreover, if pf = ¢ and p'0 = ¢', then by definition of ¢ and ¢’, we have that

tman)|od' = [tmaip)|¢' = [t(zilain)p')] = [t(zicilop))].
which shows that pfp'0 = (pp')0 and thus 6 is a homomorphism.
Finally, let \,\ € A(J) be the unique left translations linked to p and p'
respectively, and suppose that ¢ = ¢'. Then for all s € T {y;} C A and {8,} C 7,

we have that
[5(38ir)] = [s(wiBi)|¢ = [s(035:)]¢' = [s(uiBir)].
which means that s(y;5;0)y = s(y;8;p')y for all v € 3. Thus, for a = t(7;05) € A
and g € J, we get
a\f = t(:z:ia,-)\ﬁ> = t(l‘iozip)ﬁ = t(:niaip’)ﬁ = t(l‘iozi)\’B) = a\ 3.
Since this is valid for all a € A and 8 € 7, it follows that A = \.

For the converse, suppose that (\, p), (A, p') € Q(J) and let ¢ = pf and ¢’ = p'6.
Let [a] € 9/ with a = t(7;a5) for some t € T, {x;} C A and {a;} C J by using
the assumption that (f,J) has REP. Then for all g € J, we get:

t(%%‘ﬂ)ﬁ = t(%%‘ﬂﬁ) = t(%‘ai)\ﬁ) - t(%‘%‘ﬂ'ﬁ) = 75(%'0@,0')57
from which we get that ¢(Z;a;p) ~ t(mmm’), and thus
)¢ = [t(@am)|¢ = [tmawp)| = [t(ria)] = [t@)]¢ = [ae
Since this is valid for all [a] € &/~ it follows that ¢ = ¢'. O

We have seen that J acts on 9/, but there is no reason to suppose that it acts

faithfully. So we consider a relation ~ on J defined as follows.
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Definition VI.3.8. Let = be the congruence on J induced by the action of J on
d/, that is, for o, 8 € J we have a =~ 3 if and only if ac ~ af3 for all a € A. The

~-class of an element o € J will be denoted [[c]].

We easily get another characterisation of & in terms of multiplication by elements

of J, as given by:
Lemma VI1.3.9. Let o, 5 € 3. Then o = B if and only if ay = By for all v € 7.

Proof. This is immediate since
ar~f < aa~af foralla€A,
<= aay=afy forallae Aand~ €7,
<~ ay=py forallyel. m

Under this new relation, we can now show that we have a faithful action on /.

Lemma VI1.3.10. The semigroup I/~ acts faithfully on the right of A/~ by endo-
morphisms of A/~ via [a][[a]] = [aa] for alla € A and a € 7.

Proof. Let a,b € A and o, € J be such that [a] = [b] and [[a]] = [[8]]. Then by
definition of ~ we get that aa = ba and a8 = b, so that

[aa] = [ba] = [b5] = [af3],

where the middle equality follows from « = (. This gives us that the action is
well-defined. Moreover, if [a][[a]] = [a][[5]] for all a € A, then we get that [ac] = [af],
that is, aa ~ a3, which shows that a ~ 8 and thus [[a]] = [[]], so that the action is
faithful.

Finally, let {[a;]} € d/~, t € T and [[a]] € J/~. Since ~ is a congruence on o,
we have that t(@) = [t(aﬁ-)}, from which we get that

t([a])lll] = [t(@)]l[a]] = [t@)a] = [t@@)] = t([aa]) = #([a]l[a]]).

and thus I/~ acts on &/~ by morphisms. O

In view of Lemma VI.3.10, since J/~ acts faithfully on &/~ by morphisms, we can
view J/~ as embedded in End(sﬂ/,\,). However, J/x is not necessarily a right or a left
ideal of End(&ﬁ/w). Thus, by Lemma 1.2.41, we have that only the endomorphisms

of A/ lying in the idealiser of I/~ will induce a bi-translation of J/.



182 CHAPTER VI. TRANSLATIONAL HULLS FOR UNIVERSAL ALGEBRAS

Nevertheless, if we consider the definition of the property REP extended to
subsemigroups, we can see that we have a new pair satisfying this condition, as given

by the following lemma.
Lemma VI.3.11. The pair (.Qf/N,j/%) satisfies REP.

Proof. Let [a] € /. Since (d,7) has REP, then a = t(7;q;) for some t € T,
{z;} € A and {a;} C 7. Thus, we have that

la] = [t(min)] = t([zi0]) = ¢ ([wi][[o]]).

Since [z;] € 9/~ and [[a;]] € T/, it follows that 9/~ is generated by Ujayeay im [[a]],
and thus (.SZQ/N, ’J/%> has the property REP. ]

On the other hand, we may not have that (Qf/N, 3/%> has SEP in general, but
this might happen under some conditions on J.

For example, suppose that 3 = J2. Then for all [a] # [b] € /-, there exists
a € J such that ac # ba. Since o € J = 72, there exist 5,6 € J such that o = j39.
Then a6 = aa # ba = b3d, and thus [af] # [bF], that is, [a][[5]] # [b][[5]]. Thus
every pair of distinct elements in &/~ can be separated by an element of J/~, which
means that (.SZQ/N, ’J/%) has SEP.

Question VI1.3.12. Is it possible to adapt ~ and & such that J/x is an ideal of
End(sd/~) and the pair (9, J/x) has both REP and SEP?

Recall that the initial aim was to compute the translational hull of J.

Question V1.3.13. What is the relationship between Q(J) and Q(TJ/%)? Since we
have lost information by taking the quotient using the relation &, is there a canonical
way to reconstruct Q(J) from Q(ﬁ/z) and /.7

VI.4 SEP WITHOUT REP

In this section, we will assume that our pair (,J) satisfies SEP but not REP.
Then <Ua63 im a> is a proper subalgebra of ¢, which we denote by 9B. Since
(d,7) satisfies SEP, we have by Corollary VI.1.6 and Lemma VI.1.8 that m, is an

isomorphism and Yy, is injective, so that

End(d) — A(3) = Q(7).
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This means in particular that every left translation of A(J) is linked to exactly one
right translation of J and comes from at most one endomorphism of &. We would
like to show that every A € A(J) comes from an endomorphism of ¢f. However, we

get the following weaker statement.

Lemma VI.4.1. Suppose that (d,7T) satisfies SEP, and let 9B be the subalgebra of
d generated by Uyeyima. Then every \ € /N\(ﬁ) induces a map V: B — B such
that for all o € J we have:

e 1 is a well-defined homomorphism;
« Ylaly) = (Aa)ls;

e )= ap;
where p € P(J) is the unique right translation linked to \.

Proof. Let A € A(J). Then there exists a unique p € P(J) such that (), p) € Q(3).
By definition of 9B, for all b € B, there exist t € T%, {y;} C A and {8;} C J such
that b = t(yjﬁj). We now define ¢¥: B — B by:

b = t(y;3;)¢ = t(y;B:p)

Notice that since §;p € J, we get that y;5,p € B, and using the fact that 9B is a
subalgebra, we obtain t(W) € B so that imy C B.

To show that v is well-defined, suppose that t(@) = 5(@) for some s € T4,
{zr} € A and {6;} € J. Then for all v € J we get that

t(y;Bp)y = t(yiBipy) = t(y;BM)
(i) = s(a)
= s(z0M) = s(210k0) 7
Since (4,7J) has SEP, it follows that t(W) = s(mekp), which means that
t(ﬁ)zﬁ = s(@)@b and thus v is well-defined on B.
Moreover, for a € J, we have
bpo = t(M)q/Ja = t(m)a = t(y]ﬂjpa) = t(yjﬁj)\a) = t(@))\a = bl

so that ¢¥(a|,) = (Aa)|,. Also, for o,y € J and a € A, by using the fact that
ac € B, we get that

aaqhy = aa\y = aqpry.
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Thus apy = apy, and since (4, 7T) has SEP, we obtain that ai) = ap.
It only remains to show that 1 is a homomorphism of B. Let v € T% and
{b;} € B. Then u(E) € B and for all v € J we have:

u(bi) vy = u(bi) My = u(bixy) = u(by) = u(bid)y,
which shows that u(E)w = u(@) by SEP. Therefore ¢ € End(9) as required. [

Remark V1.4.2. In fact, the above result tells us that every p € f’(ﬁ) arises from a
morphism ¢ : B — B. And then, if p is linked to the left translations A and X', we
obtain that the restriction of Aa and XNa to the subalgebra 9B must agree for all
a € J. However, this does not necessarily mean that if ¢ could be extended to an
endomorphism 1) of End(d), we would have that ¥a = Ao for all a € J.

We now look into the converse of Lemma VI.4.1, by considering under which
conditions do we have that an endomorphism v of 9B gives rise to a linked pair (A, p)
of Q(7) such that Ya = (Aa)|p and ay) = ap for all @« € J. Notice first that if we
denote by T'(,RB) the subsemigroup of End(s) consisting of all endomorphisms

whose image lie in 9B, as we did in Chapter II, that is, the semigroup
T(A,RB)={a € End(d) | ima C B},

then it is easy to see that J C T'(d,9B) and that J is an ideal of 7'(A,9B). Since for
any o € J and ¢: B — B, the composition of maps a1/ is well-defined, we then get
that ayp € T'(A,B). However, because ¢ ¢ End(d), there is no reason to assume
that a1 actually lies in J.

Definition VI.4.3. We say that a morphism ¢: B — B is J-closed if ay) € T for
all v € 7.

Remark V1.4.4. Given a left translation A € /N\(J), we say that the map 1) described
in Lemma VI.4.1 is the morphism on B induced by A. Moreover, notice that 1 is
then J-closed, since for all & € J, we have that ai) = ap € J, where p is the unique
right translation linked with A.

Lemma VI1.4.5. Let ¥ : B — B be an J-closed morphism. Then the map py,: I —J
defined by apy = o) is a right translation of J. Moreover, distinct J-closed morph-

isms determine distinct right translations.
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Proof. Since 1) is J-closed, we have that ai) € J for all o € J, so that imp, C 7.
Moreover, for any v, d € J, using the associativity of function composition, we have
that

(70)py = (70)Y = v(69) = v(dpy)

and thus py, € P(J).

Now let ¢, ¢ € End(9B) be J-closed with py, = ps. By definition of %, let b € B
be such that b = t(ﬁ) for some t € T%, {z;} C A and {a;} C J. Using the fact
that z;a; € B, we have that

b = t(zas ) = t(wia) = t(wicipy) = t(zicips) = t(w:id) = t(w:0:) 6 = bo,
and since this holds for all b € B, we get that ¢ = ¢ as required. n

Combining the two previous results, we obtain the following corollary.

Corollary VI.4.6. There ezists a subsemigroup € C End(9B) consisting of J-closed

morphisms, such that € is isomorphic to f’(ﬁ)

Proof. Using Lemma VI.4.1 and Remark VI.4.4, if we define the set € by
¢ ={¢: B— B[4 is induced by ), for some A € A(3)},

we get that all elements of € are J-closed morphisms.

Moreover, suppose that \ € /K(J), and let 1) € € be its induced endomorphism of
AB. By Lemma VI.4.5, we have that p, is a right translation. Moreover, if we let
pE f’(j) be the unique right translation linked to A, then we get that ap, = a) = ap
for all € J by definition of py, so that p, = p € 15(3) In particular, this shows
that € is a subsemigroup of End(9B).

Thus, let £: € — 15(3) be the map which sends v to p,. The fact that this is
surjective and well-defined follows from the arguments above, while injectivity comes
from Lemma VI.4.5.

Finally, if ¥, ¢ € €, then for all & € J, we get that

apyg = ahd = () py = apypy,

where the second equality comes from the fact that ai) € J since v is J-closed. Thus

¢ is an isomorphism from € onto P(J). O

The construction above immediately raises the following question.
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Question V1.4.7. Is it possible to give a characterisation for the elements of the

semigroup € of Corollary VI.4.67

We know that every left translation is linked to at most one right translation. On
the contrary, a right translation could be linked to multiple left translations. Since
Lemma VI1.4.5 and Corollary VI.4.6 are concerned with right translations that are

linked, we can ask the following.

Question V1.4.8. Given a right translation p € P(J), can we describe all left transla-
tions A € A(J) such that (X, p) € Q(J)?



— VII —

Computing translational hulls

We have seen in Chapter VI that given an algebra of and J an ideal of its en-
domorphism monoid End(d), if the pair (o, J) satisfies REP and SEP, then we
obtain an isomorphism between the translational hull Q(J) and End(«). In this
chapter, we will give applications of this result for certain algebras, and present some
limits to this approach when either or both conditions are not met, and where the
translational hulls are hard to compute.

We will start by looking at free algebras in Section VII.1 before considering the
special case of independence algebras in Section VII.2, where we will compare the
results obtained through this approach with those given in Chapter V. Finally, in
Section VIL.3, we will focus on the endomorphism monoid End(7,) described in
Chapter IV. Even though we are able to describe all left and right translations on
each ideal of End(7,,), we will show that bi-translations are very hard to understand
and to compute, since they are not necessarily coming from transformations of the

underlying algebra 7,,.

Note. Work present on this chapter follows from collaborations with Prof. Victoria
Gould, Dr. Marianne Johnson and Prof. Mark Kambites.

VII.1 FREE ALGEBRAS

Throughout this section, we assume that & is a free algebra over X = {z;} C A.
Hence, we can write any a € A as a = t(T;) for some t € T, and we will make use

of this fact without further mention. Recall that e denote the smallest cardinality of

187
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a generating set for a subalgebra of o, and that ™ denotes the successor cardinal

of k.

Lemma VIIL.1.1. For each e < u < |X|*, the set
J,={a€End(d) |ima C(Y) for someY C A with |Y| < u}
is an ideal of End(d).

Proof. If o € 3, with ima C (Y'), and 5 € End(d), then we have that im (Sa) C
ima C (Y) and im (af) C (V) = (Y 3). Since |Y| < p we also have that |Y 5| < p
and thus a3, fa € J,, so that J, is an ideal of End(d). ]

We now consider the properties REP and SEP. Clearly, if = | X|", we get that
J, = End(d), so that both conditions hold for the pair (&,7,). In fact, it is easy
to show that we will always have REP if 4 > 1.

Lemma VII.1.2. The pair (4,3,) has REP unless 1 =1 and 0 # (0) # A.

Proof. Let us assume first that p > 2, and define for each a € A a map «, € End(HA)
by z;0, = a for all z; € X. Then ima, C (a), which shows that a, € J,, and we
immediately get that A = U,cq imay C (Uaez, im @), so that (o, 73,) has REP.
The only possibility left is when g = 1 which can only happens when (@) # 0.
Then either () = A, in which case the argument above works and (9, J;) has REP,
or (P) # A, which means that there exists some a € A such that a ¢ (0), so that

aé <Ua€31 im a>, and we do not have REP in this case. O

On the other hand, when considering SEP, we have that if 4 = 2 and |im«a| =1
for all & € J,, then no two elements of A can be separated by an element of J,, so
that (4,3J,) does not satisfy SEP in that case. In fact, the property SEP is almost
always equivalent to the fact that the ideal considered is right reductive, as given by

the following.

Lemma VII.1.3. Suppose that > 1. Then (d,3,) has SEP if and only if J,, is

right reductive.

Proof. One direction is directly given by Lemma VI.1.4. So assume that J, is right
reductive. Let a # b € A, and consider the maps «, § € End(d) defined by x;a = a
and x;5 = b for all z; € X. Then ima C (a) and im 5 C (b), which shows that
a, 3 € J, since p > 2. Let us assume that ay = by for all v € J,. Then we get that
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x;ovy = x5 for all x; € X, and thus oy = fy for all v € 3, as A = (X). Since J,
is right reductive, it follows that a = 3, that is, a = x;a = ;8 = b, a contradiction.
Therefore for all a # b € A, there exists v € J,, such that ay # by, that is, (4,7,)
has SEP. O]

When we do have that (,3J,) has SEP, we can of course use Theorem VI.2.1
to get that 2(J,) = d. Finding out when SEP is satisfied relies a lot on the actual

structure of the algebra considered, as is shown by the following example.

FEzxample VII.1.4. We give two different free algebras where we consider J,, and show
that SEP will be satisfied in one case but not in the other.

1) Let o be a free group action algebra of a non-trivial group G over a set X
(as defined in Section 1.5.2). Then « € J, if and only if ima = (z) = Gz for some
x € X. Now let a # b € A be such that a = g(x;) and b = h(zy) for some g,h € G
and z;,z, € X. If 2; = xy, it follows that h # g, and we can define o € Jy by
z;o0 = x; for all z; € X, from which we get that aa = g(x;) # h(x;) = ba. Otherwise,
x; # xj, and since G is not trivial, there exists f € G such that Af # g. Then
define o € Jy by xpa = f(z;) and z;o0 = z; for all z;, # z; € X. It follows that
aa = g(x;) # hf(x;) = ba. In both cases, we get that there exists a € J5 such that
ac # ba, so that (o, J5) has SEP.

2) Let o be the free monoid on two elements, that is, A = {a,b}". Then for each
« € Jq, there exists a word u € A such that ima C {uk k> 0}. Then, if aav = u™
and ba = u™ for some m,n € Ny, it follows that a is completely determined by u,
m and n. Thus for each word u € A, and each pair of non-negative integers m and

(mn) t6 denote the unique element of J, mapping a to u™ and b to u™.

n, we write u
Now for z € {a,b}, denote by |u|, the number of occurrences of letter = in u, and
let v # w € A be such that |v|, = |w|, and |v|, = |w|,. Then it is easy to see that

for all u™" € J,, we have

) — gy mlvlatnlvl) — g (rlwlatnhul) — g, mm)

so that (o, J2) does not satisfy SEP.

Since we have REP but not SEP, we could follow the process in Section VI.3
to quotient & and J,. However, it is possible to describe the translational hull of
J,, precisely in free algebras as coming from maps ¢: A — A which behave well

with respect to the endomorphisms in J,. We start by some definitions, where we
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write ~,, for the congruence relation on ¢ induced by elements of J, as given in
Definition VI.3.1, that is, a ~, b if and only if ay = by for all v € J,.

Definition VII.1.5. Let ¢: A — A. Then the map ¢ is a
o 7right p-morphism of A if for all Y C A with |Y| < p we have that ¢[yy: (V) — A

is a morphism;
o left u-morphism of A if t(w) ~, t(aci)gb for all t € T or

o p-morphism of A if ¢ is a right g-morphism and a left g-morphism.

Remark VIL.1.6. Notice that if ~, is equality, that is, if (f,J,) has SEP, then a left

p-morphism is precisely a morphism.

Using these definitions, we can now describe the right and left translations of J,

in terms of maps on A.

Lemma VIIL.1.7. A map ¢: A — A is a right u-morphism if and only if the map
Po: Iy — Ty given by apy = o is a right translation of J,,.

Proof. Let ¢: A — A be a right g-morphism and o € J,. Then ima C (Y) = B
for some Y C A with |Y| < p. By definition, we also have that ¢|g is a morphism.
Moreover, im (a¢) C im (¢|p) = (Y¢) with |Y¢| < |Y| < pu. Therefore ag € J, for
all @ € J,. It follows from this observation that the map ps: J, — J, given by
apy = a¢ is well-defined. Using the associativity of composition of maps, for all
7,0 € J, we also have that (v0)ps = vd¢ = v(dps), which shows that py is indeed a
right translation of J,,.

Conversely, suppose that ¢: A — A is such that py, € P(J,). Let {y;} =Y C A
be such that |Y| < p. Then |Y| < |X| and for each y; € Y, we pick some z; € X
to define o € End(d) by zja = y; and zyov = ¢ for some ¢ € (Y) if x, ¢ {z;}.
Therefore im o C (Y'), which shows that a € J,. Now, for all t € T we have that

776 = H(T50)6 = H(T;) a6 = t(T))ap, = t(z;0p,) = t(z;00) = t(y;0),

where we used the fact that ap, € J,,. Hence, the map ¢ restricts to a morphism on
(Y). Since Y C A was arbitrary under the property that |Y| < u, it follows that ¢
is a right g-morphism. ]

Lemma VII.1.8. A map ¢: A — A is a left u-morphism if and only if the map
Ao Ty — T, given by Aa = ¢a is a left translation of J,.
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Proof. Let ¢: A — A be a left y-morphism and o € J,,. Then for all t € T we get
t(ziga) = t(z:0)a = t(z;)da,

where the last equality comes from the fact that ¢(z;¢) ~, t(T;)¢ by definition.
Hence, ¢a is a morphism of A. Moreover, im (¢a) C ima C (Y) with |Y| < u,
so that ¢ € J,. This shows that the map A\,: J, — J, is well-defined. Now, by
associativity of composition of maps, we have that A\s(7d) = ¢y0 = (Agy)d for all
7,0 € J,. Therefore A4 is a left translation of J,,.

Conversely, let ¢: A — A be such that A\, € A(J,). Then for all « € J,, and
t € T, we have that ga = A\ga € J, and then

t(ﬁgb)a = t(miqﬁa) = t(:viAd,a) = t(E) ApQ = t(xj-)qboz,
which shows that t(fgb) ~u t(xj-)qﬁ. Therefore ¢ is a left g-morphism. O

We can now give an exact description of the translational hull of J,,.

Theorem VIIL.1.9. For i > 2, the translational hull of J,, is given by

Q3,) = {(Ap, po) : ¢ is a p-morphism of A}.

Proof. If ¢: A — A is a u-morphism, then it is a right and a left y-morphism, so
that by Lemmas VII.1.7 and VII.1.8, we obtain the translations p, € P(J,) and
Ay € A(J,). Moreover, for all 7,8 € J,,, we have that

A0 = Y3 = Ypy0,

and thus (A4, pg) € Q(T,,).

Conversely, we want to show that if (A, p) € ©(J,,), then there exists a g-morphism
¢ of A such that p = p, and A = \;. We start with some notation. Since & is a free
algebra over X = {z;}, for a € End(d) such that z;a = a; with {a;} C A, we write
a = (a;), as a shorthand. In particular, (a), denotes the morphism that maps all
generators in X to the same element a € A.

Let p € f’(ju). We first show that for all a € A, there exists b € A such that
(a)yp = (b)y. By definition, since (a),p € J,, there exists {b;} C A such that
(a)yp = (b;)y. Then for all y € X, we have that (y),(a), = (a),, and thus

X
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In particular, for all b, € {b;}, we get
bk = xk’(bz)x = x1($k)x (bl)x = $1<bi)x = bl?

which shows that (a),p = (b), for some b € A.

We can now define ¢: A — A by a¢ = b where b € A is such that (a), p = (b), or,
equivalently, a¢ = y((a), p) for any y € X. In particular, given {a;},{b;} C A such
that (a;),, (bi)y€ J, and (a;),p = (bi)y, we obtain that for all y € X and a;, € {a;}:

ard = y(ard)y = y((ar)cp) = y((@r)x (@) )p

and thus (a;),p = (a;0),. We shall now see that ¢ is the desired p-morphism. Since
p € P(3,), there exists A € A(J,,) such that (), p) is a linked pair. We now show
that p = py and X = .

o p=ps: Let (a;), €TJ,. Then for all z; € X, we have:

zi(ai)yp = zi(a:id)y = a;0 = z(a;) P,
which shows that (a;),p = (a;), ¢, and therefore p = p,.
e A\ =)y For any a € A, we have that (a), € J,. Then, for any f € J, and y € X,
we get:
apf = y(a)ydf = y(a)ypf = y(a) A8 = aAp,
which shows that ¢8 = A3, and thus A = A.

Since py and Ay are respectively a right and a left translation, it follows by
Lemmas VII.1.7 and VII.1.8 that ¢ is a right g-morphism as well as a left g-morphism,
hence a p-morphism. Therefore Q(J) C {(Ay, py) : ¢ is a p-morphism of A}, which
finishes the proof. O

As an immediate consequence, we get the following corollary.

Corollary VIIL.1.10. For > 2, Q(3) = End(dA) if and only if all p-morphisms of

A are endomorphisms.

Proof. Since (4,7,) has REP by Lemma VII.1.2, it follows that x,: End(d) —
Q(3J,,) sending ¢ to (Mg, pp) is an injective morphism by Lemma VI.1.7. Hence, using
Theorem VII.1.9, we get that x, is an isomorphism if and only if it is surjective, if

and only if all g-morphisms of A are endomorphisms. O
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Remark VII.1.11. Notice that if © = 1, then J, is a left-zero semigroup, and by
Proposition 1.2.23, we get that Q(3J,) = 7}(;1).

Ezxample VII.1.12. Coming back to 2) in Example VII.1.4, it can be shown that
¢: A — A is a right 2-morphism if and only if for all words u € A and k£ € Ny,
we have (u*)¢ = (u¢)¥, and the right translation associated to it is defined by
u(m’”)p¢ = (u¢)™™. On the other hand ¢: A — A is a left 2-morphism if and only

if for all © € A we have
‘u¢|a = ‘u’a‘a‘ma + |u|b|b¢|a and
[udly = |ulo|adly + |uls|bos,

that is, ¢ is linearly increasing the number of letters a and b in the word, but does not
recognise the order in which they appear. Because elements of J5 acts on the same
way on words with the same letters, it follows that the left translation associated
to a left 2-morphism ¢ is defined by Ayu(m™) = y(mladlatnladly, mibélatnibél)  Thus we
have bi-translations that do not come from endomorphisms since the 2-morphisms
of A do not “see” the word they act upon, but only the number of letters it contains.
For example, if ¢: A — A is the map reversing a word, then ¢ is a 2-morphism, but

it is not an endomorphism.

VIL.2 INDEPENDENCE ALGEBRAS

Throughout this section, let & be an independence algebra. We know by Corol-
lary 1.5.7 that any ideal of End(«) is of the form 7, = {a € End(d) | rk(a) < p},
which in this case corresponds exactly to the ideals J, defined above. We have
already treated the case of the (0-)minimal ideal of End(¢f) in Chapter V, but
we can now consider any ideals of End(&f) by using the properties REP and SEP.
Since an independence algebra is free on its basis, it follows that all the results of
Section VIIL.1 above hold, and thus by Lemma VII.1.2, we have that (o,3J,) has
REP, for all u > 2.

Remark VIL.2.1. Note that for independence algebras, the definition of REP is
equivalent to that of representability given in Section V.3.2. Indeed, suppose that

X = {z;} € Ais a basis of A, and that (4,7,) has REP. Let a € A and define
a, € End(d) by z;a, = a for all z; € X. Clearly, if > 1, then o, € J,, so that

A= U ima, = U im -y,

acA YETL
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and d is representable by J,,.

Now, suppose that pu = 1. If a ¢ (0), then a ¢ <U7€3u im 7> since im~y C (@) for
all v € 7, which contradicts the fact that (f,7J,) has REP. Thus we must have that
a € (0) for all a € A in this case, and therefore o, € J,, so that & is representable
by J,.

Moreover, in an independence algebra, it is easy to see that (&,3J,) has SEP for

all i > 1, unless 1-dimensional subalgebras are singletons, as given by the following:

Lemma VIL.2.2. Let yp > 1. Then (A,3,) has SEP if and only if one of the
following happens:

1) uw>2; or

2) every 1-dimensional subalgebra of A contains at least two elements.

Proof. Suppose that (d,7,) has SEP and = 2. Let a # b € A. Then there exists
v € J,, such that ay # by. Since p = 2, it follows that im+ is a one-dimensional
subalgebra which contains at least two elements. Since all one-dimensional subalgeb-
ras are isomorphic, it follows from Remark 1.4.35 that they must all contain at least
two elements, as required.

We now want to show that if either of conditions 1) or 2) hold, then we must have
that (o,7,) satisfies SEP. Let a # b € & and write B = (a,b) and A = BU ({z;}).
If a,b € (), then ay = a # b = by for all ¥ € J,, so assume from now on that
a & (D), so that either b = t(a) for some t € T,*, or {a, b} is independent.

If b = t(a), we define v = (Z f;), so that rk(y) = 1 < p, and thus v € J,,.
Moreover, by = t(a)y = t(ay) = t(a) = b # a = av.

Suppose now that {a, b} is independent. If y > 2, we let v =

ab a
rk(y) = 2 and then v € J, with ay = a # b = by. If 4 = 2 and 1-dimensional

ab xi), so that

subalgebras are not singleton, it follows that there exists s € 7, such that a # s(a).

Then, if we define v = (a b

a s(a
also have ay = a # s(a) = by.

) x;), we get that rk(y) = 1 so that v € J,, and we

Hence, in all cases, there exists a map v € J, such that ay # by, which shows
that (4,37,) has SEP under either condition. O

The case when () # () and u = 1 is very different and is given by:
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Lemma VII.2.3. Let p =1 and C = (0). Then (4,3,) has SEP if and only if
|C'| > 2 and for all non-constant unary terms t # id there exists ¢ € C with ¢ # t(c).

Proof. Notice first that since 1 = 1, it follows that imy = C for all v € J,,.

If (o,3,) has SEP, then for a # b € A, there exists v € J,, such that ay # by.
Thus |C| > 2. Moreover, if t € T is a non-constant unary term such that ¢ # id,
then for all independent elements a € A, we have that t(a) # a. Then, by SEP,
there exists v € J, such that ay # t(a)y = t(ay), that is, there exists ¢ € C' such
that ¢ # t(c).

Conversely, suppose that |C| > 2 and that for each non-constant unary term
t € T \ {id}, we have an element ¢; € C such that c¢; # t(c;). Let a # b € A. If
a,b € C, then clearly ay # by for all v € J,, so suppose that a ¢ C, so that a is
independent and we can write B = (a,b) and A = B U ({z;}). We then have one of

the following situations:

e be (), sothat b # d for some d € C' and we define vy = (Z l‘z‘>;

« b=t(a) for some non-constant t € T,;¥, and we let v = (g ?), or
¢ Ct

ab x
cd d

In all cases, we get that v € J, with a7y # by and thus (4,7,) has SEP. O

 {a,b} is independent, and we define v = ( ) for some ¢ #£ d € C.

We can now give equivalent conditions for when the translational hull of J, is
naturally isomorphic to P(J,), A(J,) and End(d).

Corollary VII1.2.4. Let n > 1. Then the following are equivalent:
1) (4,3,) has SEP;
2) ©(3,) = P(3,) = A(3,) = End(sl);
3) 3, is a reductive ideal;

4) 1> 2, or p =2 and every 1-dimensional subalgebra contains at least two

elements.

Proof. Recall that (d,7,) always has REP when y > 1 by Lemma VIIL.1.2.
Under this observation, we have that 1) = 2) by Theorem VI.2.1 and 2) = 3)
by Lemma VI.2.2. The fact that 3) = 1) comes directly from Lemma VII.1.3 since

a reductive ideal is right reductive. Finally, the equivalence of 1) and 4) is exactly
Lemma VII.2.2. 0
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Remark VIL.2.5. When p = 1 the situation is slightly more complicated and we do
not have equivalence between statements 1) and 3) of Corollary VII.2.4. Since J,
is a left-zero semigroup, it is right reductive, but (,3J,) has SEP only under the
conditions given in Lemma VII.2.3.

Similarly, if C' = (0) # A, then (4,J,) does not have REP by Lemma VII.1.2
but J, is left reductive if and only if (0) is a singleton. Indeed, J, is a left-zero
semigroup and thus ya = yf = v for all o, 3,7 € J,. Hence, we either have that
J,, is not left reductive, or a = g for all o, B € T, that is, J, is a singleton. In the
latter case, since C' # A, there exists an independent element a € A, and thus for all
c € U, there exists a map v € J, which sends a to c. The fact that J, is a singleton

forces C' to be a singleton, as required.

To finish this section, we recall that in Chapter V we were interested in the
situation when Q(J) = P(J) = End(d). The result of Corollary VII.2.4 is slightly
different. Tt is clear that if Q(J) = P(J), then P(J) = P(J). However, even though
from each right translation p € P(J), we can define a left translation A: 3 — J by
A0 = x;a5p0 for all x; € X, Lemma V.1.10 tells us that these will form a linked
pair only if equation V.1.2 holds.

Therefore, working with REP and SEP presents the advantage that we can
treat all ideals directly in a more general abstraction whereas the approach with
equations (x) and (+*) in Section V.1 is only made for the ideal of rank 1 but gives

us the additional information that all right translations are part of a linked pair.

VIL.3 THE FULL TRANSFORMATION MONOID 7T,

The algebras we have considered so far are types of free algebras, which means
that REP has always been satisfied. In order to better understand the intricacies
and limits of the approach with REP and SEP, we consider here an example of an
algebra that is far from being a free algebra. For this reason, in this section we
will look at the translational hull of ideals of End(7,) for some n € N, using the
descriptions provided in Chapter IV. In order to avoid pathological cases, let us
assume throughout this section that n > 5. We quickly recall here the structure and
the ideals of End(7,).
From Lemma IV.3.2, the monoid &, = End(7,) can be decomposed as

En=0nUEsU(AUE,)U(BUCUE\{$uia})U{duau},
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where subsets containing endomorphisms of the same type are bracketed together.

Moreover, by Corollary 1V.6.3, the ideals of &, are of the following form:

1) &, (the only ideal containing automorphisms);
2) &, \ G, (the only proper ideal containing elements of odd type);

3) XUY UE>;UCU E; (ideals containing elements of even type, but no elements
of odd type); and

4) YUY TUZUE, (ideals containing only elements of trivial or non-permutation
type);
where the sets X, Y, and Z are (possibly empty) union of orbits taken from the
sets A, B and C respectively. Last, we remind the reader of the notation given in
Remark IV.4.2: if & = ¢y € &, \ G, and v € &,, then we have that

o= Qe if v has group type or odd type (i.e. v € G, U E3),

at = ¢p, if y has even type (i.e. v € AU Ey),
v =
a” = ¢, if v has non-permutation type (i.e. v € BUCU E1\{¢iqida}),

a® = ¢ 2 if 7 has trivial type (i.e. 7 = ¢iaia)-

From now on, let J be an ideal of &,. It is easy to show that the only ideal such
that (£,,7) has REP and SEP is &, itself, as given by the following.

Lemma VII.3.1. The pair (E,,7) satisfies REP if and only if 3 = &, or T = &,\ Gy,
while (&,,7) satisfies SEP if and only if 3 =&,.

Proof. Let e = ¢ € T,,. Then we have that ¢q. € &, \ G, is such that egiq. = e.
Moreover, for all u = (i j) € S,, there exists 1 < k <n with i # k # j, and then if
we let f = ¢, € T,,, the map with constant image k, we get that fu = uf = f = f2,
so that ¢, s € &, \ G, and u¢, r = u. Since every element of 7, can be generated
using idempotents and transpositions, it follows that if 3 =&, or 3 =&, \ G,, then
(€n,J) has REP.

Conversely, notice that the image of elements in &, \ (G, U E3) only contains
elements of T, \ S, or of A,,. Since transpositions cannot be generated using even
permutations and singular transformations, it follows that for any ideal 3 C &, \ G,,
we get that (12) ¢ <U¢t‘e€3 im qbt’e>. Therefore (&,,7J) does not have REP if J # &,
and J # &, \ Gn.
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We already know that (£,,7) has SEP if 7 = &, since &, is a monoid. Conversely,
if 3 # &, and s1,52 € S, \ A, then s1¢p . = sa¢py for all ¢, € &, \ G,,, which shows
that (&,,7J) does not have SEP in this case. O

It follows from Lemma VII.3.1 that Theorem VI.2.1 cannot be applied if J # &,.

We now look at the conditions under which J is left or right reductive.

Lemma VII.3.2. Suppose that J # &,. Then J is not right reductive, and J is left
reductive if and only if 3=E,\ G, or I C E; UC U Ey.

Proof. Recall that since J # &, all endomorphisms of J are of the form ¢, . for some
(t,e) € P,.

In particular, by Lemma IV.3.6, we get that if ¢, ¢, r € J have the same type,
then ¢y .o = ¢, so for all « € J, and thus J cannot be right reductive.

Now suppose that J = &, \ G,. Let ¢r., ¢ur € T be such that ad,. = g, s
for all @« € J. In particular, this applies to all @« € Fj3, and since elements of
Es are left identities for elements of &, \ G, by Corollary 1V.4.6, it follows that
Ote = QQre = QQy 5 = Oy 5, and therefore J is left reductive.

Suppose now that J # &, \ G, that is, J does not contain elements of group or
odd type, and let ¢y, ¢,y € J. Notice first that if ¢;, = ¢, ; and ¢}, = ¢}, ;, then
we get that ¢e . = ¢y 5 and ¢z 12 = @242, so that e = f and t* = u? by Lemma IV.2.4
and thus ¢, = ¢z = P2 p = :;f. Since By C 7, it follows that a¢,. = ag, ¢
for all a € J if and only if ¢;, = ¢, ; and ¢}, = ¢ ;. Therefore J is left reductive
if and only if ¢2 . = ¢,2 ; implies ¢y = ¢, 5, that is, if and only if there exist no
bre # Gue €T such that 2 = u?.

As a consequence, if there exists ¢, € IN (AU B), then ¢, € J by the
description of the ideals. Since ¢ is idempotent, it follows that ¢;, = ¢ee = D2
and gbge = Q2 = gb?z’e, so that J is not left reductive. On the other hand, if
J C E;UC U Ey, then any ¢, € J is such that t* = ¢, which means that ¢;, = P s
and ¢f, = ¢}, ; if and only if e = f and t = t* = u* = u, which shows that ¢;. = ¢y,

and therefore J is left reductive. O

Corollary VIL.3.3. In &,, have that Q(3) = P(J) = A(J) = End() if and only if
J=E,.

Proof. 1t 3 = &, then (&,,7) has REP and SEP, and thus €(
End(¢) by Theorem VI.2.1.

) = P(J) = A7) =

(SR
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Conversely, if J is an ideal such that Q(J) = P(J) = A(J) = End(d), then by
Lemma VI.2.2, we get that J is right and left reductive. Since no proper ideal is right
reductive by Lemma VII.3.2 and that a monoid is always reductive by Remark 1.2.13,
we get that J =E,,. m

Since the case of &, is special and has now been treated, for the remainder of
this chapter we will assume that J is a proper ideal of &,.

Another ideal for which we can directly describe its translational hull is the min-
imal ideal F;. Indeed, E; is a right-zero semigroup by Corollary 1V.4.6, which means
that Q(E;) = Tg, by Proposition 1.2.23. Since elements of E; are in one-to-one corres-
pondence with the idempotents of T, it follows that Q(E;) = {«a: E(T,) — E(T,)}.

In order to look at the translational hulls of other ideals of &£,, we need first to

focus on the left and right translations.

VII.3.1 LEFT TRANSLATIONS

We start by giving some properties of left translations on all proper ideals of &,.

Lemma VIL.3.4. Let A € A(J) and a, € TCE, \ Gy
1) If a and B are of the same type, then (Aa)y = (A\B)y for all v € 7.

2) If v is idempotent, then Ao is idempotent.
3) If a has a left identity in J, then Aa € {a,a™, a™,a’}.

4) If a is idempotent, then the restriction of A to E,a&,, C T is one of the following
maps:

Y=y, o y=aT, v, or =l

Proof. 1) If @ and J have the same type, it follows by Lemma IV.3.6 that ay = 5y
for all v € 3 C &, \ G, which shows that (Aa)y = Aay) = A(By) = (A\8)7.

2) If a? = a, we get that Aa = (Aa)a. Since Aa € &, \ G, and « is idempotent,
it follows from part 1) of Lemma IV.4.5 that (Aa)«a is idempotent, that is, A« is
idempotent.

3) This follows directly from the fact that if &« = fa for some § € 7, then
A= (AB)a € {a,a™,a,a’} since a € &, \ G,.

4) Suppose that « is idempotent and g € &,a&, C J. Since idempotents act
as left identities on all elements ¥-below themselves by Lemma IV.7.3, it follows
that a8 = 3. Hence, by part 3), we get that AS is one of 8, 37, 3~ or 5% which
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only depends on the type of Aa. Since this holds for all 5 € &,a&,, it follows that A

restricts to one of the maps given on &,a&,. O

We can now describe the left translations of all proper ideals, starting with the
ideal &, \ G,.

Corollary VIL.3.5. If J contains an element of odd type, then 3 = &, \ G, and
A(D) = {Aid, AT A, /\0} which are defined for all a« € J by:

MNa=a, MNMa=a", Na=a and Na=a".
Proof. Let @« = ¢, € J be an element of odd type, so that 3 = &, \ G, by
the description of the ideals given at the beginning of this section. Moreover, by
Proposition IV.6.1, we have that &,a&, = &, \ G, and since elements of F3 are left
identities for all elements of &, \ G, by Corollary 1V.4.6, it follows by part 4) of
Lemma VII.3.4 that the maps A4, A*, A\~ and A\° defined above are the only possible
left translations of J. Finally these four maps are all distinct because o, at = ¢iqe,

a” = ¢e and a¥ = ¢y q are all distinct elements of J. ]

The next ideals we consider are those that do not contain elements of odd type,

but have elements of even type.

Lemma VII.3.6. Suppose that J contains an element of even type, but does not
contain any element of odd type, and let T := E, UC U FEy C 3. Then, the left
translations of J are precisely the maps \: J — J such that the following conditions
are satisfied for some y € {+,—,0}:

i) for all @ € T, we have that Aa = a¥;

i) for all a € TN A, we have that (Aa)p = (Y for all € J; and

i) for all « € 3N B, we have that Ao has non-permutation type.

Proof. Notice first that by using the description of the ideals given at the beginning
of this section, we have that if J contains an element of even type, but no element
of odd type, then 3 = X UY U E; UC U F; for some X C A and Y C B. Hence,
conditions 7)—iii) cover all possible elements of 7.

Let n € Ey and suppose that A € A(J). Then &,7, = T and by part 4) of
Lemma VII.3.4, it follows that the restriction of A to ¥ is a map sending v to one

of v, 7, v~ or 4°. Since v = 4+ for all ¥ € ¥ by Lemma IV.4.3, it follows that \
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restricts to v + ¥ on ¥ for some y € {+, —, 0}, and we get condition 7). Moreover,
for all o, € J, we have that o € T, and thus

(Aa)B = Map) = (af)” = (67)",

for some x € {+, —,0} depending on the type of a. In particular, if « € 3N A, we

have that af = 1, and then by Lemma IV .4.4, we get that (51)Y = 8Y. Hence,

(M) = BY, which is condition #i). On the other hand, if we consider « € TN B, we

have that aff = = and by Lemma IV.4.4 we get that (Aa)f = (7)Y = 8~, which

shows that Aa has non-permutation type and condition i) holds.

Conversely, suppose that A: J — T satisfies conditions i)—iii) with y € {4, —, 0}.
Then for all «, 5 € J we have that af € T so that A(af) = («f)Y. We now consider
all cases for elements in J, and use Lemma IV.4.4 appropriately:

o ifae By C %, then (aB)? = (81)Y = ¥ and since a™, a~ and o are respectively
of even, non-permutation and trivial type, it follows by ¢) that for all 5 € J, we
have (Aa)f = oY = [5Y;

o if € CUE\{¢aia} C F, then (af)¥ = (87)Y = f~. Moreover, a¥ has non-
permutation type for all y € {4+, —, 0} and we get by i) that (\a)5 = ¥ = §7;

o if @ =¢iga C T, then (af)? = (8°)Y = B°. Furthermore, a¥ = @ = ¢jq4q and by
condition i) we obtain (A\a)B = a¥ = aff = 3%

o if € TN A, then (af)¥ = (B1)Y = Y, and by ii) we also have that (Aa)S = Y;

o if @« € 3N B, then (af)¥ = (7)Y = 7, and by iii), we have that Aa has
non-permutation type, so that (Aa)8 = 5.
In all cases, we see that AM(af) = (af)¥ = (Aa)p, and therefore A € A(7J). O

Finally, for ideals which do not contain any element of even type, we get the

following;:

Lemma VII1.3.7. Suppose that J only contains elements of trivial or non-permutation

type. Then
1) either 3 = Ey, and then the only left translation of J is 1,;
2) otherwise 3N C' # (0, and then the left translations of J are precisely the maps
A2 T — T such that Ao = « for all o € Ey and Ao # piaa if @ # Pidia-

Proof. Notice first that the only element of trivial type is ¢iqiq € £1, and thus all

other elements of J have non-permutation type.
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If 3 = E4, then J is a right-zero semigroup by Corollary IV.4.6 and thus we have
that A(J) = {1, } by Proposition 1.2.23.

Suppose then that 3N C # (). If A € A(J), then by Lemma 1.2.20 we have that
Aa = « for all @ € Ej since all elements of E; are right zeros. By assumption, there
exists ¢, € INC. Now, if v € T\ E is such that \y = ¢q4, we get that

¢e,e = )‘¢e,e = A(7¢t,e) = ()\P)/)Qst,e = ¢id,id¢t,e = ¢t2,t2a

which forces e = t? = t, a contradiction. Hence, we have that Ay # ¢iq;q for all
v ¢ Ey, and for v € By, Ay = ¢iqia is equivalent to v = ¢iq4q, that is Ao # ¢iqiq if
o # Pidid-

Conversely, suppose that A: J — J is such that Aa = « for all @ € F; and
A # ¢iqa for all a # ¢iqiq. Then, for all o, B € J, we have that a3 € E; and thus

MaB) = aff = = if o # diaa whilst (Aa)j — B~ if A # ¢iqia

B0 if o = digia; B2 if A = digia-
However, since Ao # ¢iqa for all & # ¢iqia, and Adigia = @idia, it follows that
AMap) = (Aa)p for all o, 8 € T, that is, A € A(T). O

Remark VIIL.3.8. We can see from Corollary VII.3.5 that all left translations of the
ideal &, \ G, come from a multiplication by a map on the left. However, this is not
the case for the other proper ideals of &,. For example, suppose that ¢,. € J with
t=(12)(34) and e = c5 and let u = t1® = (14)(23). Then ¢, € ¢;.G, C J and if
we define A: 3 — T by Ay = ¢y and Ao = « for all o # ¢, we get that A € A(T)
by Lemma VIIL.3.6 (with y = +). However, this cannot come from a multiplication
by a map on the left since ¢y, & E,dre = {Pre, Pides Pees Pidia}- A similar example
when there are no even elements can be created by sending an element of B U C' to
one of its conjugate and fixing all the others. Such a map will be a left translation

by Lemma VII.3.7 but is not coming from a multiplication on the left.

VII.3.2 RIGHT TRANSLATIONS

The description of the right translations is slightly more complicated. Throughout
this section we will write F' for the set of idempotents of 7, to distinguish it from
the sets F; which contain idempotents of &,. It is well-known that there is a partial

order on the idempotents of 7,, which is defined as e < f if and only if e = ef = fe
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for e, f € F'. In particular, it follows that for any e, f € F, we have that e < f if
and only if ¢, € &,.

Recall first that £; C J for all ideals J C &,,, and thus ¢.. € J for all e € F".
Moreover, if p € P(J) and e € F, then we have that ¢.. € £y C J and

¢e,ep - (Qse,egbe,e)p - ¢e,e(¢e,ep) S El-

Thus there exists a unique f € F' such that ¢..p = ¢4 . This shows in particular
that p|E1: FE, — E; induces a map d: F — F sending e to the unique element f
such that ¢..p = ¢ ¢. To simplify notation, we will write this as d. = f, so that
Pe,ep = Pded, -

We now gives some properties that any right translation on a proper ideal of &,

must satisfy.

Lemma VIL.3.9. Let p be a right translation of 3 C &, \ G,. Then we have that:
1) de =tgeep for all e € T and t € Ty;
2) for all ¢ € T, there exists ry . € T, with 7’26 = d2 such that ¢.p = gzﬁ,«t’e’de ;
3) for all ¢;. € T with f*> = f, we have ’I“J%,e =dy and d. < dy;

4) if 3 contains an element of even type, then r;, = dy for all idempotents e < f.

Proof. 1) For e € F and t € T,,, we have t¢. .p = tpg, 4. = de.
2) Let ¢y € J and h = h? # id and suppose that ¢, .p = @, . Then we have

Pderde = Pe,eP = (Dnpn@re)p = Onn(Prep) = Onnbus = Or.f

so that f = d., whilst

¢dt2,dt2 = Q2 2p = (0id,idPre) P = Pidiid(Prep) = DididPuf = Puz w2,

which gives that u*> = dp». Hence, we can pick ,, = u € T, to obtain that
Prep = r, _d. 15 such that rt, = dp.

3) If we set t = f = f? in the previous part, we get that ¢s.p = ¢4, with
u=r;,and u* = dgp» = dy. Moreover, since J is an ideal and ¢, 4, € 7, it follows that
BidePud. = Guz.a, € J. Then we get that u?d, = deu? = d,, that is, dyd. = d.d; = d,,
which shows that d. < dy.

4) If J contains an element of even type, then we know that Fo UC U E; C 7.
Hence, two idempotents e, f € F' are such that e < f if and only if ¢, € EUCU E;.
Then we have that

Or, de = Qrep = (¢id,e¢f,e)ﬂ = ¢id,e(¢f,eﬂ) = Qid,ePr, do = P12 4.

f.e’ f.e’ fer €
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which shows that r,, = 7"?76 = dy as required. ]

This allows us to give the description of all the right translations on ideals that

do not contain elements of even type.

Lemma VII.3.10. Suppose that J only contains elements of trivial and non-

permutation type. Then the right translations of J are precisely the maps p defined
by Guep = v, ., where:
i) d: F — F with d. < dy whenever ¢, € J;
i) if ¢r. €T, then qbrwde €7J;
ii) 1, ., = d. for all idempotents e;

) r, = dge.

Proof. Suppose first that p € P(J). Then using Lemma VII.3.9 we get i) and iv)
directly, while i7) comes from the fact that if ¢;. € J, then ¢, .p € J and condition
i4i) is obtained by noticing that d. = id¢. p = id¢y, 4. = 7., using the definition of
d and part 2).

Conversely, let us assume that p: J — J is defined by ¢, .p = (bn,e:de forall ¢, €37
and that it satisfies conditions i)—iv). Condition 7i) ensures us that p is well-defined.
In order for p to be a right translation, we need to show that (ag;e)p = a(prep) for
all o, ¢ € J. Since both sides of the equality only depend on the type of «, and
that J only contains elements of trivial type and non-permutation type, we look into

the two possible cases.

o If a = ¢iqiq, that is, a has trivial type, then we have that

(a¢t,e)p = Cbt?,t?P - ¢Tt2,t2’dt2 = ¢dt2,dt27

where the last equality comes from #ii) using the fact that t* is idempotent.
Also,
O‘(¢t,eﬁ) = a¢rt75,de = ¢Tt2,ev7"t2,e’

and using i), we get that a(¢rep) = Pd,p.a,, = (are)p.
 If @ has non-permutation type, then o = ¢,y with f # id, and then we have

(a¢t7e)P = ¢e,ep = ¢7‘e’e,de = ¢de,de = aqﬁrt’e,de = a(¢t,ep)a

where the middle equality uses ii) since e is idempotent.
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Hence in all cases, we have that (a¢:.)p = a(¢rep) for all o, ¢ € T, so that p is a
right translation of J. O

The description of the right translations for ideals that contain endomorphisms

of even type is almost identical, with an added restriction on idempotents of F'.

Lemma VII.3.11. Suppose that J contains an element of even type. Then the right
translations of J are precisely the maps p: ¢ = ¢y, 4, where:

i) d: F — F is an order preserving map;
i) if ¢re €T, then ¢, 4. € J;
iii) if f2 = f, then e = dy for all idempotents e < f;

i) 12, = dp.

Proof. Notice first that since J contains an element of even type, then we have that
E, UC U E; C 7, which means that for all idempotents e, f € F such that e < f,
we get ¢r. € J.

Then it is clear that if p € P(J), we get by Lemma VII.3.9 that p must satisfy
the stated conditions.

Conversely, suppose that p: J — J is defined by ¢, .p = @t,e,de for all ¢, € J and
that r and d satisfy conditions i)—iv). In particular, p is well-defined by condition

i1). Let ¢ € J and consider the type of a € J.
o If @ € J has odd type, then « is a left identity for all elements of J so that

(QPre)p = Prep = Prep).
o If @ € J has even type then we have that

(a(bt,e)p = ¢t2,6p = ¢Tt2’e,de = ¢dt2,dea
where the last equality comes from #ii) together with the fact that t* is

idempotent. On the other hand,

a(¢t,ep) - Ofgzsrtye,de = ¢Tt2,e’de = gbdtg,de

by using iv), so that (ad.)p = a(@uep).

 If a € J has trivial or non-permutation type, then (a¢..)p = a(¢prp) by using
the same arguments made in the proof of Lemma VII.3.10 above, since i)
implies that 7y = d; for all idempotents f € F' and all other conditions are

similar.
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Thus, in all cases, we get that (a¢:e)p = a(¢rep), which shows that p is a right

translation of J. OJ

Remark VIL.3.12. From Lemmas VII.3.10 and VII.3.11, we get a description of the
right translations for all proper ideals of &,, and we can see that right translations
do not necessarily come from multiplication by an element of &, on the right since
the conditions on d and r are too loose to enforce this. In particular, we can send
elements of B of the form ¢, to the element ¢p2 . € C, but since B(E,\ G,,) NC =0
such a right translation cannot come from a multiplication by an element on the

right. For a more involved example, see Remark VII.3.15 below.

VII.3.3 TRANSLATIONAL HULLS

In view of the results above, the right and left translations of arbitrary ideals of
&, can be pretty wild, and we will therefore not attempt to characterise all the
linked pairs. In fact, the condition for a left and a right translation to be linked does
not even ensure that they come from functions on the algebra 7, as given by the

following.

Lemma VII.3.13. If there exist elements ¢y 5 # ¢up € IN (AU B), then Q(3J) is

not realised by transformations of T,.

Proof. Notice first that since ¢, y € AU B, it follows that ¢,2 y # ¢, ¢ but ¢,2 ; has
the same type as ¢, .

We now define p: 3 — T by ¢ sp = ¢u2 5 and ¢y ep = ¢y for all ¢ € T\ {0 s}
By direct computation, or by taking d to be the identity map (which is then order
preserving), and letting 7, = u? and r; . = t for all ¢, . # Py r, we get that p satisfies
all conditions of Lemmas VII.3.10 and VIIL.3.11, so that p € P(J).

Moreover, for all «, 5 € J we have that apf = aff if o # ¢, ¢ and otherwise
GufPB = Gu2, 53 = ¢u B, where the last equality comes from Lemma IV.3.6 since
¢y2 ¢ and ¢, y have the same type. This shows in particular that p is linked to the
left translation 1,.

Now, let s € T, be an odd permutation. Then we get that s¢, rp = s,z f = u*.
On the other hand, we have that ¢, 7# ¢, ¢ so that s¢,,p = s¢,, = u. Suppose
now that there exists 6: 7,, — 7, such that ¢, .p = ¢, 00 for all ¢, € J. Then we
get that u? = sy, p = s¢, s06 = uf and simultaneously u = s¢, pp = $Gy 00 = ub,
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which is not possible since u # u®. Hence (1,,p) € Q(J) is not realised by a

transformation of 7,,. O

As shown by Lemma VII.3.13, we have that even right translations linked to the
identity left translation are hard to tame and to understand since there could be so
many of them.

We close this chapter by showing that not every right or left translation can be

part of a linked pair, and that some restrictions will occur.

Lemma VII.3.14. Suppose that 3 =&, \ G, and let (A, p) € QT). Then for each
Ore €T, the type of ¢rep is fully determined by the left translation \.

Proof. By Corollary VII.3.5, we know that A is one of X, A*, A~ or A\°, which is
equivalent to having that Ay = a7 for some specific « of a given type.
Since (A, p) € Q(J), we have that for all ¢y, ¢y r €T

¢rtyc,de¢u,f = qbt,equmf = ¢t,e/\¢u,f = ¢t,ea¢u,f-

We now look at the possible types for .

Clearly, if a has odd type, then ¢ cad, s = ¢t cdu s, and thus by Lemma IV.3.6,
we get that ¢, 4 must have the same type as ¢; . for all ¢;. € J.

If a has evén type, then we get ¢ .o, r = Gy ¢, and the type of (bn,yde is

determined as follows:

o if ¢y € E3U AU By, then ¢y chy2 5 = g2 5, and thus we must have r, . € Ay;
o if ¢y € BUCU E1\{¢iq;ia}, then ¢y 2y = ¢y, so that 1, € T, \ Sp; and
o if ¢re = Gidid, then ¢pedy2 f = Py2 2 which forces Tpe = de = 1d.

Now if o has non-permutation type, then we get that ¢, .a¢, r = ¢redr s = 055
since elements of £ are right zeros, and therefore r,, € T, \ S, for all ¢, € 7.
Similarly, if a is of trivial type, then ¢y .a¢,r = Gredu2u2 = @u2,2, and thus
Ty = de = id, that is, ¢y .p = Piaq for all ¢y, € J.

This shows that for each possible left translation A on &, \ G,, the type of the

map ¢p for ¢, € J and p a right translation linked with X is fully determined by
A O

Remark VI1.3.15. By looking at the proof of Lemma VII.3.14, we can notice that
a right translation of &, \ G, that is linked must send the endomorphisms of non-

permutation type to a subset of &, \ G, which only contains one of the types. To see
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that some right translations are not linked, we create a right translation p that does
not satisfy this condition.

1 iZQ
2 1
or v =id for v € T,, that is, ¢, € &, if and only if v = h or v = id. Now define d

Consider h = € F. Then we have that vh = hv = h if and only if v = h

and r as follows:

id ife=h, id ift2=h,
d, = and Tpe = (VIL3.1)
e otherwise, t  otherwise.

Then one can verify that all the conditions from Lemma VII.3.11 are satisfied, so

that the map p: ¢1. — ¢y, a4, is a right translation. Explicitly, we have

e fP=h+#e,
Grep = Giaia ifh=-e (leif e = dian OF Pre = nn),

¢t  otherwise,

from which it is easy to see that all elements of E; \ {¢idid, ¢nn} are sent to elements
of non-permutation type, while ¢y, ;, is sent to the element of trivial type, and elements
of the form ¢, . € B with t* = h are sent to elements of even type. Hence, p cannot
be linked to any of the four left translations of &, \ G,.

Lemma VII.3.16. Suppose that 3 = C' U Ey and let (A, p) € QU(T). Then one of the

following occurs:
1) Apup = Gy and ry, = 1q5q = id;
2) Abuy =gy andry, #id #1354 or
3) AQuf = Qu,p and Tid,id = id # Ttes
for all ¢,y € C and ¢ € 7.
Consequently, the only left translations that are linked come from the multiplication

by an endomorphism on the left, while right translations which are linked have

additional restrictions on the maps d and r they induce.

Proof. Let ¢,y € C, so that v = u # f = f?, and let Ad, ; = ¢,,. Then since
(A, p) is a linked pair, we have that for all ¢, € J

¢rt’e,de¢u,f - qbt,equu,f - gbt,e)\gbu,f - ¢t,e¢p,q-
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It follows in particular that p,q € {u, f} and we cannot have p = f and ¢ = u since
uf = fu = f. The different cases will now follow from a study of the two possible
types for (/b'f't’eyde:

1) Suppose that 1, . = id for some ¢y, € T\ ¢iqia- Then we get that d. = id and
Guzuz = ¢gq- Thus ¢ = u? = u, which forces p = u and therefore Ap, f = ¢y, for
all ¢,y € C. Moreover, for all ¢, € J, we then get @M,dh%,f = v hPuu = Duu,
which shows that we also get r, , = dj, = id.

2) Suppose that Tiaja 7 1d. Then ¢p; = ¢Tid’id7did¢u7f = (ididPpq = Pp2p2 = Dpp;
which shows that p = f and thus ¢ = f. Hence A\, s = ¢y s for all ¢,y € C, and we
also get that gzﬁTt’e,degf)u,f = ¢y.5, which means that r, . # id for all ¢;. € 7.

3) Lastly, suppose that 4,y = id but r, . # id for some ¢, € T\ {¢iqia}. On
one hand, we get that ¢,, = gbrid,id’di 1Puf = Opp, while on the other hand we
have ¢fr = ér, 4. Ous = @qq, giving that ¢, = ¢y . Thus A = 1, and for all
Gon € T\ {¢iaia} we have that ¢rv,h’dh¢u’f = Quntus = @5, which means that
T, p 7 id.

From the description of the cases above, it is then clear that A\ comes from the
multiplication by an element of &, of trivial type for case 1), of non-permutation type
for case 2) and of group, odd or even type for case 3). Similarly, a right translation
p will not be linked if the conditions on the value of 74,4 coming from the cases
above are not satisfied, which shows that many right translations will not be linked
(since there are barely any restrictions on this element given in the conditions of
Lemma VII.3.10). O



List of symbols and index

In what follows S is a semigroup, T'C S and I is a Green’s relation.

LIST OF COMMON SYMBOLS

(X): subalgebra generated by X, 8
()

rk(a): rank of a, 44

: identity left translation, 10

(): constant subalgebra, 8

: identity right translation, 10
: identity bi-translation, 10
No:

e: smallest cardinality of a generating set

smallest infinite cardinal, 8

for a subalgebra, 8
kT: successor cardinal of x, 8
Az: left translation induced by an
element z, 26
pg: right translation induced by an
element z, 26
s map (A, p) — A, 10
: map (A, p) — p, 10
D map T Ay, 28
D map T — pg, 28
X: map = — (Ag, pz), 28

A, B, ...:

universal algebras, 8
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&n: endomorphism monoid of 7,, 102
E(S): set of idempotents, 7

A,: alternating group, 101

K: Klein 4 subgroup, 101

Sy,: symmetric group, 101

Gp: automorphism group of 7,, 102

15(T): left idealiser of T in S, 27
J5(T): right idealiser of T in S, 27
Js(T): idealiser of T in S, 27

J*(a): principal *-ideal generated by a,
32

J (a): principal ~-ideal generated by a,
32

(S): monoid of left translations, 10

(S): set of linked left translations, 10
Ao(S): set of inner left translations, 12
P(S

):
P(95):

A
A

monoid of right translations, 10

set of linked right translations, 10
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Po(S): set of inner right translations, 12
Q
(

Q: regular elements of T'(d, %), 61

translational hull, 10

S):
S): set of inner bi-translations, 12

T(d,RB): semigroup of endomorphisms
with restricted range, 56
T,: ideal of End(d), 51

T set of all terms of o, 8
T%: set of terms defining « on a basis,
152

GENERAL INDEX

algebra
affine , b4
E-equivalent algebras, 53
free group , 53
independence , 44
linear , b4
quasifield , b3
representable by J, 170
basis, 41
extension, 42
preimage , 49
closed, 38
corank, 43

dependent, see independent

endomorphisms

(left, right, -) p-endomorphism, 190

with restricted range, 56
J-closed , 184
, 103

singular
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‘Zﬁ : set of all k-ary terms of o, 8

Tx, PTx, Zx: monoids of full, partial
and bijective partial
transformations, 7

T, PTx , I when

composed of left maps, 7

Ls: A-class of an element s, 31

Lg: relation X on the semigroup S, 7
I*: extended x*-relation of I, 30, 33
X : extended ~-relation of Z, 30, 33

exchange property, 39

extension
dense , 28
ideal , 28

free basis property, 44

Green’s relations, 7

extended , 30, 33

ideal

extension, see extension
saturated by I, 31

densely embedded , 28
(0-)minimal, 149
principal (-, ~-) , 32

separative , 169
idealiser (right, left, two-sided), 27

independent

set or element, 38

maximal independent set, 38

linked pair, see bi-translation
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orbit, 114 (left, right, -) Fountain , 37
(weakly, left, right, -) reductive

rank, 43, 44 — 14

reductive, see semigroup SEP, property, 172

REP, property, 172 span, 38

saturated, see ideal translation

saturation of an ideal, 32 (right, left, bi-) , 10

semigroup inner (right, left, bi-) , 12
(left, right, -) abundant , 37 translational hull, 10
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