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Abstract

To generate genuine random numbers, random number generators based on quantum
theory are essential. However, ensuring that the process used to produce randomness
meets desired security standards can pose challenges for traditional quantum random
number generators. This thesis delves into Device Independent (DI) and Semi-Device
Independent (semi-DI) protocols of randomness expansion, based on a minimal set of
experimentally verifiable security assumptions. The security in DI protocols relies on the
violation of Bell inequalities, which certify the quantum behavior of devices. The semi-DI
protocols discussed in this thesis require the characterization of only one device – a power
meter. These protocols exploit the fact that quantum states can be prepared such that
they cannot be distinguished with certainty, thereby creating a randomness resource.
In this study, we introduce enhanced DI and semi-DI protocols that surpass existing
ones in terms of output randomness rate, security, or in some instances, both. Our
analysis employs the Entropy Accumulation Theorem (EAT) to determine the extractable
randomness for finite rounds. A notable contribution is the introduction of randomness
expansion protocols that recycle input randomness, significantly enhancing finite round
randomness rates for DI protocols based on the CHSH inequality violation. In the final
section of the thesis, we delve into Generalized Probability Theories (GPTs), with a focus
on Boxworld, the largest GPT capable of producing correlations consistent with relativity.
A tractable criterion for identifying a Boxworld channel is presented.
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1

Introduction to protocols of randomness
expansion

Random numbers have a wide range of applications including cryptography, scientific
experiments, games, lotteries, and gambling. Their use in these contexts is to ensure
fairness and unpredictability of outcomes.
The process of generating random numbers is often associated with a certain level of
suspicion. This suspicion stems from the question of whether the numbers generated are
truly random. If the randomness is compromised, the fairness of the numbers, which
is one of their strengths, could be significantly weakened. For example, consider a bet
based on the outcome of a coin toss. If one participant, a resourceful scientist, could
account for all the forces acting on the coin, they could predict the outcome of the
toss. This would make the bet unfair, even though it appears fair on the surface. This
scenario, although impractical to achieve using everyday technology, demonstrates that a
process that appears random to one party may be completely deterministic to another
party. Therefore, any process that appears to be random may not be truly random, and
could be used to gain an unfair advantage.
With the advent of advanced techniques such as machine learning, which can analyze
large sets of data and predict outcomes, the vulnerability of randomness-based systems
increases. Everyday activities such as making payments with a card or conducting
transactions online depend on the security provided by random numbers. The potential
gain from cracking such systems could be substantial, thus providing significant incentives
for individuals or organizations to attempt guessing these random numbers. Similarly, in
our data-driven world, where access to data is often considered key, governments and
companies may be incentivized to break such random-number based security protocols

1



2 Chapter 1. Introduction to protocols of randomness expansion

to gain unauthorized access to private information.
A random number generator (RNG) is a device engineered to produce a sequence of
numbers following a uniform probability distribution. However, as discussed above, this
definition does not entirely capture the complexities and practical necessities associated
with RNGs. A desired characteristic of RNGs is their ability to generate“genuine” or“true”
randomness. This means that the sequence of random numbers they produce is not
only unpredictable to the party using the RNG but also inaccessible or unknown to any
third party, including the manufacturer of the device. In other words, an RNG should be
capable of producing a sequence of numbers following a uniform probability distribution
for every possible agent who wants to determine it. Such a robust definition is critical in
various applications that utilize random numbers, especially when used in applications
such as in cryptographic protocols.
Based on our current understanding of physics, it is not possible to attain randomness via
classical processes. The reason being, classical systems are fundamentally deterministic,
meaning an extremely powerful adversary could, in principle, determine the outcomes of
a classical process with certainty. Moreover, even incomplete knowledge regarding the
mechanism of randomness generation could be used to make informed guesses about the
generated numbers. Consequently, we should focus on quantum processes as potential
candidates for constructing a reliable RNG.
Realizing such a robust RNG presents a significant challenge even when using a quantum
process. Consider, for example, a RNG designed to use a single photon passing through
a 50:50 beam splitter. Theoretically, according to quantum mechanics, performing
this process would result in a photon either going to one port of the beam splitter or
the other with a 50 percent probability. Therefore, in principle, this process can be
used as a quantum random number generator. However, in the real world, there are
no guarantees that the outputs are genuinely uniformly distributed, due to inevitable
practical imperfections in the beam splitter and the laser source.
Moreover, if complex processes are incorporated within the RNG, the entire device must
be meticulously modeled for two primary reasons. First, this is to ensure there has been
no interference or tampering by an adversary, which might even be the manufacturer
of the RNG. Second, detailed modelling of each individual component of the RNG is
crucial to identify and account for any device imperfections. Any imperfections in the
RNG could skew the distribution of the generated numbers or introduce predictability,
both of which would undermine the randomness and security of the RNG.
Device Independent (DI) protocols aim to get around this. They base security on minimal
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and easily verifiable details about pairs of devices and without making any assumption
on the inner working of the devices. Instead, they rely on verifying that the input-output
statistics of the devices exhibit non-locality [1–3]. In essence, Bell’s theorem is used to
assure the privacy of the outputs.
Bell’s theorem implies that if two (or more) devices that cannot communicate are supplied
with random inputs, and violate a Bell inequality they must be generating randomness no
matter what their internal operations are. This suggests using a Bell inequality violation
to construct a Device Independent randomness expansion protocol. In such a protocol,
inputs are repeatedly provided to two separated (non-communicating) devices and their
outputs are stored. We call the inputs Xi and Yi and the respective outputs Ai and
Bi, where i runs from 1 to n (see chapter 6 for examples of such protocols). After
making n inputs we can estimate the average value of some Bell inequality; if there is no
violation (or the violation is too small) then the protocol aborts. If the violation is large
enough, then the raw outputs are run through an extractor to generate the final output
randomness.
Unfortunately, the practical application of DIRNE protocols poses challenges, primarily
because achieving violations of Bell inequalities in experiments is very difficult. Although
Bell’s theorem was introduced in the 1960s, it took decades before the first loophole-free
Bell inequality violations were experimentally verified [4–6], and even these showed only
modest deviations. For example, a 2021 study [7] reported a CHSH score of 0.752484, a
value merely 0.024 above the local bound of 0.75. This violation is significantly smaller
than the maximum possible violation, which is roughly 0.853. As we will delve into later
in this thesis, a high CHSH score is crucial to implement a robust (CHSH-based) DIRNE
protocol.
Although achieving a Bell violation experimentally currently poses a challenge for DI
protocols, significant advancements have been made in this area. For example, the
violation of the local bound increased from 0.00027 in 2018 as reported by [8], to 0.024
in less than three years. As technology evolves to accommodate these needs, it is
worthwhile to explore scenarios where we can trust parts of the system. Such protocols
are termed semi-Device Independent (semi-DI) protocols, which are simpler to implement
experimentally compared to fully device independent protocols.
A novel randomness expansion protocol was recently proposed, which operates based on
energy and overlap bounds [9]. Fundamentally, this protocol is based on a prepare-and-
measure scenario consisting of a source and a measurement device. In the protocol, a
source generates specific states, either ρ0 or ρ1, and the measurement device is used to
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determine if ρ0 or ρ1 was sent. The states ρ0 and ρ1 are prepared in such a way that they
are near-identical (yet not entirely identical) to the unique ground state of the system
(the vacuum state in the case of a laser being the source). Being almost identical, these
states cannot be perfectly distinguished according to quantum mechanics1, which forms
the basis for randomness generation in this protocol.
However, a major assumption in this scenario is that the prepared states are near identical
to the ground state. Unfortunately, this assumption cannot be verified in a device
independent manner. To address this, the protocol assumes the availability of a trusted
power meter, which can measure the energy of the states prepared by the source. For the
protocol that we describe in this work, the power meter is the only trusted component in
the protocol. Thus, this approach is appealing because it only requires the characterization
of a single component of the protocol.
Similar to the DI protocols, this protocol should abort if the outputs do not contain
sufficient extractable randomness. In particular, the protocol should abort if either of
two conditions is met: the energy of the states is too high, or the detector is unable to
distinguish the states ρ0 and ρ1 with the desired accuracy.
In this work, we study randomness expansion protocols based on the key ideas outlined
above. These protocols make minimal assumptions on the inner workings of the devices
used to generate randomness.
While asserting that the protocols discussed in this thesis are secure, we assume that the
quantum theory is correct and complete [10]. However, it is worth noting that the security
of the Device Independent protocols does not rely solely on this assumption; their security
has also been established under a significantly weaker condition: that the eavesdropper
is bound only by the non-signalling principle [11] (see Chapter 11 for an explanation.
Here, the non-signalling principle simply means that no superluminal signalling is possible,
without necessarily asserting the correctness of the quantum theory). We also assume
that the protocol is being carried out in a secure laboratory from which no information
can leak out. It is crucial that humans conducting in the protocol do not cause any data
leaks. In other words, having a laboratory that is well-shielded from the outside world
is crucial for the security of the protocol. These assumptions are however essential for
any protocol of randomness expansion. If such a protective measure is not in place, any
randomness expansion protocol can be compromised, regardless of the strategy used.

1Note that when an arbitrarily large number of copies of two quantum states are available, perfect
distinction between them becomes possible. However, here we consider the case when only a single
copy of either of the two states is sent to the measurement device at a given time.
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Figure 1.1: A typical protocol consists of three steps - randomness generation, parameter
estimation and randomness extraction. Randomness extraction is typically done using
a secure classical computer, using known algorithms. The lab is assumed to be secure
from which no information can leak out.

Typically, Device Independent and semi-Device Independent protocols are carried out in
three different stages as shown in Figure 1.1. These different stages are: generation,
parameter estimation, and randomness extraction. The generation stage is the main part
of the protocol where a certain sub-protocol is repeatedly executed. In the context of DI
protocols, this step involves performing a CHSH test, while in the semi-DI protocol, it is
a “prepare and measure round”.
The parameter estimation stage involves analyzing the input and output statistics collected
in the generation stage. The protocol is aborted if these statistics are not suitable. In
DI protocols, the parameter estimation step involves computation of the Bell score. If
the observed Bell score is too low (for example a CHSH score less than 3/4), then
the protocol is aborted. If the protocol does not abort, then the amount of uniform
randomness that can be extracted from the outputs of the protocol is computed using
only the input-output statistics of the protocol (such as the Bell score).
The final stage is the randomness extraction stage, where the random strings obtained
in the generation stage are processed to produce a string of uniformly distributed
random numbers that are secure against any adversary. This stage also consumes some
randomness. There is a rich literature on randomness extraction (see for example [12]);
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however, this part of the protocol is beyond the scope of this thesis.
After developing these protocols, the primary challenge lies in calculating the amount of
extractable randomness as a function of the observed statistics. The difficulty of this
task is amplified by the lack of structure in the problem: minimal assumptions are made
on how the devices operate, requiring accounting for arbitrary pre-shared entanglement,
arbitrary measurements, and potentially adaptive strategies between the rounds. Two
techniques to address this exist in the literature: the quantum probability estimation
framework [13] and the entropy accumulation theorem (EAT) [14, 15]. In this work, we
employ the latter. The EAT, informally speaking, suggests that the amount of extractable
randomness in the ‘n’ bits long full string of outputs is predominantly ‘n’ times the von
Neumann entropy of a single-round strategy that would yield the observed score if used
in an independent and identically distributed (i.i.d.) way. This implies that if we can
solve the problem for an i.i.d. adversary, we can obtain a bound for the general case.
Consequently, the task of determining the randomness rate (i.e. amount of randomness
generated per round) in a DI and our semi-DI protocol reduces to calculating the least
value of the von Neumann entropy in a single representative round of the protocol.
Computing lower bounds on the von Neumann entropy generally necessitates sophisti-
cated mathematical techniques in optimization theory, especially in the areas of convex
optimization. In this work, we develop techniques that can be employed to compute
lower bounds on the conditional von Neumann entropy when the inputs and outputs in
each round of the protocol are binary. Essentially, this is a situation where we can apply
Jordan’s Lemma, leading to a significant reduction in the complexity of the problem.
This thesis focuses on the first two stages of the DI and semi-DI protocol discussed
above: the generation stage and the parameter estimation stage. Our work focuses on
two main aspects:

• Providing new protocols for randomness expansion that use the same setup as
traditional protocols, but promise more efficient and secure ways of generating
randomness (for example: by reducing experimental assumptions).

• Finding mathematical techniques to compute bounds on randomness rates in DI
and semi-DI protocols is introduced.

We now present a brief outline of the thesis:
The subsequent chapter (Chapter 2) discusses some optimization techniques, including
the entropy accumulation theorem, which are crucial in randomness expansion protocols.
We then move to Chapter 3, where we provide a detailed introduction to DI protocols for
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randomness expansion. We also deliberate on various entropic quantities of interest in
the context of DI protocols for Randomness Expansion and Quantum Key Distribution.
Next, in Chapter 4, we utilize Jordan’s Lemma to calculate numerical upper bounds on
these entropies. In the following chapter (Chapter 5), we derive the lower bounds for
these entropies.
The final chapter in the section on DI protocols for randomness expansion (Chapter 6)
presents all the protocols and exhibits the randomness rates achieved for finite rounds
using the entropy accumulation theorem.
Following our discussion on DI protocols, we shift our focus to semi-DI protocols. We
divide our work into 3 parts. The first part introduces basic framework for the semi-DI
(Chapter 7) and explores different protocols. Subsequently, in the next chapter (Chapter
8), we calculate the rates for these semi-DI protocols and in the final chapter on semi-DI
protocols, we discuss two different protocols along with results and discussion. We
summarize our results on randomness expansion protocols.
Upon concluding our discussion on randomness expansion protocols, we transition to the
part of the thesis dealing with Generalized Probability Theories (GPTs) (Chapters 11
and 12).
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2

Preliminaries

2.1 OPTIMIZATION PROBLEMS IN QUANTUM INFORMATION

The theory of optimization problems is a vast field that has been extensively studied in
various disciplines such as mathematics, computer science, physics, and economics. As
we shall explore further in this chapter, these optimization problems play a key role in
quantum information theory as well. The main goal for the study of optimization theory
is to compute the value for the following:

min
x∈D

g(x). (2.1)

In this case, D is the domain of the optimization problem often also referred to as
the feasible set, while g : D 7→ R is known as the objective function. Because of the
abstract nature of the problem, there are no universal algorithms available to solve a
given optimization problem, as g could be any function and D could be any set.
Nevertheless, there exists a particular category of optimization problems, known as convex
optimization problems, that have gained considerable interest due to their simplicity and
the fact that they often have a unique solution. The optimization problem 2.1 is a convex
optimization problem if the objective function g is a convex function and the domain D
is a convex set.
Let’s define some key terms related to convex optimization:

Definition 1 (Convex Set). A set D is a convex set if for any points x and y in D, the
point µx+ (1 − µ)y also belongs to D for every µ ∈ [0, 1].

Definition 2 (Convex Function). Let D be a convex set, and g : D 7→ R be a function.
The function g is convex if, for any points x and y in D and any value µ ∈ [0, 1],

9
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g(µx+ (1 − µ)y) ≤ µg(x) + (1 − µ)g(y).

Definition 3 (Concave function). A function f is called concave if −f is convex.

Convex optimization problems frequently appear in quantum information theory. This is
primarily due to two fundamental convex sets in quantum theory: the set of states (state
space) and the set of effects (effect space).
In the quantum theory, a physical system is associated with a Hilbert space H. A state is
a non-negative linear map ρ : H 7→ H, with a bounded trace tr(ρ) ≤ 1. We denote the
set of all states on H by the set S(H). This set can be easily shown to be a convex set.
Meanwhile, an effect in quantum theory is defined as a linear map E : S(H) 7→ R such
that, for any state ρ ∈ S(H), E(ρ) = tr(Eρ) ∈ [0, 1]. The set of all effects is also easily
shown to be a convex set. We will further revisit and generalize these concepts in the
chapter discussing Generalized Probability Theories (GPTs) later in Chapter 11.
For completeness, we define a POVM (Positive Operator-Valued Measure) as a collection
of effects {Ei}Ni=1 that sum up to the identity 1. A POVM describes a measurement in
quantum theory, where the probability of obtaining outcome i in an experiment is given
by P [i|ρ] = tr(Eiρ).
Various convex and concave functions arise naturally in quantum theory. One example of
a convex function on the state space is the probability of an outcome corresponding to an
effect, denoted as E(·) := tr(E·). Another concave function that features in quantum
information theory is the von Neumann entropy, denoted by H(ρ). Hence, the theory of
convex optimization is frequently used in the study of quantum information theory. In
the forthcoming sections, we will encounter a range of intriguing convex optimization
problems within the context of quantum information theory. The scope of the thesis for
discussion of the role of optimization problems in quantum information is limited, and
those unfamiliar with the topic are encouraged to go through excellent lecture notes for
a good overview of this topic [16].
As will become clear at the end of this chapter, a key quantity of interest that will
appear as the objective function in most of the optimization problems in this thesis is
the conditional von Neumann entropy:

Definition 4 (von Neumann entropy). The von Neumann entropy of a state ρ ∈ S(HA)
is defined as

H(ρ) ≡ H(A)ρ := − tr (ρ log2 ρ) . (2.2)

Here log2 is the matrix logarithm with base 2.
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Definition 5 (conditional von Neumann entropy). For a state ρAB ∈ S(HA ⊗ HB) the
conditional von Neumann entropy H(A|B)ρAB

is given by

H(A|B)ρAB
:= H(AB)ρAB

−H(B)ρB
, (2.3)

where ρB := trA(ρAB) ∈ S(HB) is the state on the subsystem B.

2.2 SEMI-DEFINITE PROGRAMS

Even though a general convex optimization problem often holds the appeal of having
a unique solution, this solution can be quite challenging to find. The complexity
stems from the lack of efficient numerical algorithms capable of reliably solving such
general convex optimization problems. Nevertheless, certain optimization problems that
we frequently encounter belong to specific classes that can be solved using efficient
numerical algorithms. Prominent examples of such problems include Linear Programs
and Semi-Definite Programs (SDPs).

Definition 6 (Semi-Definite Program). An optimization problem is an SDP if it is of
the following form

g = inf
X∈Hm

tr(CX)

s.t. X � 0

∀i : Ai(X) = Bi.

(2.4)

where C,X ∈ Hm (the set of m×m Hermitian matrices) , Bi ∈ Hni and Ai : Hm 7→ Hni

is a linear map.

As stated above, efficient numerical algorithms exist that can solve SDPs numerically.
Popular software packages like Mosek [17] and CVXPY [18] have integrated these
algorithms in a very user-friendly fashion. These algorithms and details on how to
program them efficiently are beyond the scope of the thesis.
SDPs are particularly relevant to the study of quantum information theory, as we often
need to maximize or minimize a linear function involving arbitrary quantum states or
effects. Consider, for example, the problem of operationally distinguishing two quantum
states. Suppose we are given a uniform mixture of two states, ρ1 and ρ2, and we aim
to perform a single measurement to determine whether ρ1 or ρ2 was prepared. We are
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interested in determining the best possible strategy that allows us to distinguish these
states. This problem can be directly formulated as an optimization problem.
To do so, we establish a decision rule by employing a two-outcome measurement {E1,
E2 = 1 − E1}. If we observe the outcome corresponding to E1, we guess that ρ1 was
prepared, and vice versa. The success probability psucc of our strategy can be computed
as:

psucc = 1
2P[E1|ρ1] + 1

2P[E2|ρ2] (2.5)

= 1
2 (tr (E1ρ1) + tr (E2ρ2))

= 1
2 + 1

2 tr (E1(ρ1 − ρ2)) .

Here P[Ei|ρi] is the probability of observing the outcome i ∈ {0, 1} given that the
state ρi has been prepared. In order to find the optimal measurement, we would like
to maximize the success probability. As {E1, E2} is a POVM, we have the constraint
0 ≤ E1 ≤ 1. This means that our best chance of the guessing the correct state in this
scenario is given by the optimization problem

pmax
succ = sup

(1
2 + 1

2 tr (E1(ρ1 − ρ2))
)

s.t. E1 � 0

1 − E1 � 0.

(2.6)

The above problem can be easily identified as a SDP. Notably, this optimization problem
also has an analytical solution known as the Holevo-Helstrom theorem [19, 20], which
states that the maximum success probability is given by:

pmax
succ = 1

2 + 1
4 ||ρ1 − ρ2||1, (2.7)

where ||.||1 is the trace norm defined as

||τ ||1 := tr
(√

τ 2
)
.

The POVM {E1, E2} which leads to the maximum success probability is the POVM
{P+, P−} where P+ and P− are the positive part and the negative part of the operator
ρ−σ1. In the next sections, we will explore the different SDPs that can arise in studying
protocols of randomness expansion.

1Every Hermitian operator X has a unique deposition X = P+ − P−, where the operators P+ � 0
and P− � 0 are the called the positive and negative part of X respectively. If the operator X is traceless
then P+ + P− = 1.
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2.3 POLYNOMIAL OPTIMIZATION PROBLEMS

Another interesting set of optimization problems are the polynomial optimization problems.
The polynomial optimization problems take the form

min p(x1, · · ·xn)

s.t. gi(x1, · · ·xn) ≥ 0

hj(x1, · · ·xn) = 0,

(2.8)

with p, qi and hj all being polynomials of degree less than or equal to d ∈ N and x1, · · ·xn
being real valued variables - i.e.

p ∈ R[x1, · · · , xn]≤d,

gi ∈ R[x1, · · · , xn]≤d,

hj ∈ R[x1, · · · , xn]≤d.

Note that such optimization problems are not necessarily convex. Due to the lack of
structure in such problems, there are no direct techniques for efficiently solving them.
However, we shall demonstrate that any polynomial optimization problem can be cast
into a converging sequence of SDPs, each of which can be solved using established
algorithms. This approach allows us to compute reliable upper and lower bounds for
these optimization problems. It is important to mention, though, as we go higher up in
the hierarchy, the SDPs become increasingly more time and resource consuming to solve.
Our discussion in this section is primarily based on the lectures on semi-definite program-
ming by Prof. Hamza Fawzi (refer to [21] for the slides). We have provided here a concise
overview of the technique, with a focus on its core principles. For a comprehensive
exploration, references like [22] are highly recommended.

2.3.1 Proving non-negativity of a polynomial

To better understand how to construct such a hierarchy of SDPs that approximately solve
a polynomial optimization problem, we can consider a simpler problem: demonstrating
the non-negativity of a given polynomial:

∀x1, x2, · · ·xn : p(x1, · · ·xn) ≥ 0. (2.9)

We use the notation POS to represent the set of all (globally) non-negative polynomials.



14 Chapter 2. Preliminaries

2.3.1.1 Proving if a function is sum of squares

A simple method to determine the non-negativity of a polynomial is to show that it can
be expressed as a sum of squares. We define SOSd as the set of all polynomials of degree
less than or equal to d that have a sum of squares decomposition.

The problem of determining whether a given polynomial can be expressed as a sum
of squares - i.e. p ∈ SOSd, can be cast as an SDP. To understand why, consider a
polynomial p ∈ SOSd of degree d. Assuming it has a sum of squares decomposition,
p = ∑

i p
2
i , where each pi is a polynomial of degree less than or equal to d/2. Each pi

can be expressed in matrix form:

pi = [1, x1, x2, · · · , x1x2, · · · ]



a0

a1
...
a12
...


,

i.e, pi = xTa, where x is a vector consisting of monomials and a is the vector corre-
sponding coefficients of the monomial. Then, it is easy to see that

p2
i = xTaTax.

Note that the matrix aTa is positive semi-definite. We can immediately deduce that if a
polynomial p ∈ SOSd, then there exists a matrix A such that A is a sum of matrices aTa,
and is itself positive semi-definite. It is also evident from straightforward reasoning that if
p = xTAx for some A � 0, then p can be expressed as a sum of squares of polynomials.
The simplest approach do prove this is to express A through its spectral decomposition
to explicitly construct the sum-of-squares polynomials. Hence, a polynomial p belongs
to the set SOSd if and only if there exists a positive semi-definite matrix A such that
p = xTAx.
Let’s now consider a scenario where we have an arbitrary polynomial g, and our objective
is to determine whether g ∈ SOSd. To achieve this, we aim find a suitable D � 0 such
that g = xTDx.
Since g is a polynomial with a degree at most d, we can uniquely determine it
through a finite set of constraints. These constraints, for instance can take the form
g(c(0)

0 , c
(0)
1 , · · · , c(0)

d ) = b0, g(c(1)
0 , c

(1)
1 , · · · , c(1)

d ) = b1, and so forth. These constraints
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can be expanded as linear conditions on the matrix D:

cTi Dci = bi.

Thus, if there is a solution to the following problem:

max 0

s.t. ∀i ∈ {1, 2, · · · , k} : cTi Dci = bi

D � 0.

(2.10)

Then we have successfully decomposed g into a sum of squares of polynomials. Conversely,
if no solution exists for the above problem, we have demonstrated that g cannot be
expressed as a sum of squares.
Optimization problems with trivial objective functions such as (2.10) are often used to
prove the existence (or lack of existence) of solutions of simultaneous equations and
inequalities. The solution to such an optimization problem is 0 iff there the set of
constraints can be simultaneously satisfied. Having no solution to such an optimization
problem is proof that the constraints can not be simultaneously satisfied.

2.3.1.2 Using SOS condition to determine positivity

In the previous subsection 2.3.1.1, we have seen an efficient method to determine if a
given polynomial p can be expressed as a sum of squares. It is immediately clear that any
polynomial that can be expressed as a sum of squares is non-negative - i.e. SOS ⊆ POS.

However, the intriguing question arises: Is it possible that SOS = POS, or is it the case
that SOS ⊂ POS? If the former holds true, then indeed, we would have already found
an efficient way to determine the positivity of any polynomial.
The answer to this problem is shown to be unfortunately in the negative. However, it
turns out that there is a very interesting relationship between the sets SOS and POS. It
can be shown that

p is non-negative ⇐⇒ ∃ polynomial q such that qp ∈ SOS.

In fact, we can reduce the search of polynomials q to be of the form qn = (x2
1 + · · ·+x2

d)n.
Note that now there is a possibility of coming up with a way to show if a polynomial is
positive. Consider the set SOS(n) defined as

{p : (x2
1 + x2

2 + · · ·x2
d)np ∈ SOS}.
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Then p ∈ POS implies that there exists n ∈ N such that p ∈ SOS(n). Thus, there is a
hierarchy of sets, which will eventually cover all the positive polynomials. Note that we
have now a hierarchy of sets SOS(n) that converge to the set of positive polynomials
from inside

SOS ⊆ SOS(1) ⊆ SOS(2) ⊆ · · · = POS.

See Figure 2.1 for a schematic illustration of the hierarchy. It is also possible to come
up with a converging hierarchy of semi-definite programs that converge to the set POS
from outside. This discussion is beyond the scope of the thesis.

Figure 2.1: A schematic depiction of the converging sets SOS(n) and the set POS.

2.3.2 Solving an unconstrained polynomial optimization problem

Now that we possess a method for determining whether p ∈ POS, we can also extend
this same argument to address the unconstrained polynomial optimization problem

min
x∈Rd

p(x),

by observing that it can be equivalently reformulated as the subsequent optimization
problem:

max
γ∈R

γ

s.t. p− γ ∈ POS.
(2.11)



2.4. Operational meaning of the min-entropy 17

This reformulation can be further transformed into a progressively convergent hierarchy
of SDPs problems, expressed as follows:

max
γ∈R

γ

s.t. p− γ ∈ SOS(n).
(2.12)

2.3.3 Solving a constrained polynomial optimization problem

We saw above that determining global non-negativity of a polynomial can be cast as
a hierarchy of converging semi-definite programs. In order to solve the constrained
polynomial optimization problem such as (2.8), we construct the following polynomial

f(x1 · · · xk) = p(x1..xn) +
∑
i

σi(x1..xr)gi(x1..xn) +
∑
j

ρj(x1 · · · xl)hj(x1..xn),(2.13)

where σi(x1, · · ·xr) ∈ POS are known non-negative polynomials, and ρj(x1, · · ·xr) are
any polynomials. Note that f(x1, · · ·xk) is non-negative whenever the constraints are
satisfied - i.e. when gi(x1, · · ·xn) ≥ 0 and hj(x1, · · ·xn) = 0. We can now find a set of
solutions to our global polynomial optimization problems by solving the following problem

max
γ∈R

γ

s.t.∃f of the form (2.13)
f − γ ∈ POS.

(2.14)

We can again find suitable relaxations of this problem in terms of the semi-definite
programs as discussed in the previous subsection.
These techniques are well known in the convex optimization literature. There are standard
packages for many programming languages such as Python and Matlab that solve such
optimization problems using techniques similar to the one discussed in this section.
The package used to solve the optimization problems in this work is the NCPol2SDPA
package [23]. Other semi-definite programs are solved using solvers PICOS [24].

2.4 OPERATIONAL MEANING OF THE MIN-ENTROPY

In a randomness expansion protocol, the main objective is to quantify the amount of
randomness produced by the protocol. The key question then arises: How can we quantify
the amount of randomness? To address this query, we must accurately characterize the
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broader situation in which we are operating.
Consider a secure laboratory where we have a random variable, denoted A. Intuitively, we
would consider the random variable A as a source of randomness if its outcome cannot
be accurately predicted. However, since we are dealing with a cryptographic scenario,
we must be thorough and also account for the potential existence of an adversary for
whom this random variable should also remain unpredictable. Thus, we will envision an
imaginary adversary, whom we will call Eve or the Eavesdropper (or adversary), possessing
certain information related to the random variable A. This information could include a
correlated random variable or even a quantum state. However, Eve does not have direct
access to the variable A.
In the most general case we allow that adversary to hold a quantum state ρaE for every
outcome a of the random variable A. This scenario can be effectively described using
the Classical-Quantum (CQ) state:

ρCQ =
∑
a

pA(a) |a〉〈a| ⊗ ρaE.

Now, imagine Eve attempts to determine the value of the random variable A. To achieve
this, she performs a POVM, denoted as {Fa}a, on her state, where each outcome
corresponds to a possible value of A. The probability that Eve correctly guesses the
outcome is expressed as:

pguess =
∑
a

pA(a)Fa(ρaE).

Given that the choice of measurement used by Eve can be arbitrary, it is reasonable to
assume that she would select the optimal measurement strategy to maximize her guessing
probability. With this in mind, quantifying the amount of randomness in a cryptographic
scenario is related an optimization problem, which can be formulated as follows:

p∗
guess = sup

∑
a

pA(a)Fa(ρaE)

s.t. {Fa}a is a POVM.
(2.15)

It is easy to see that the optimization problem described above can be written in terms
of an SDP. This is due to the linearity of the objective function with respect to the
variables {Fa}a, and {Fa}a being effects can be represented in terms positive semi-
definite operators {Fa}a by the relation Fa(.) = tr(Fa(.)). Furthermore, the constraints
that ∑a Fa = I (where I is the identity map) is a linear constraint ∑a Fa = 1.
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Figure 2.2: A diagram depicting the scenario in which an adversary is trying to guess the
random variable A in the secure lab.

Intuitively, the amount of randomness should be a function of this optimal guessing
probability p∗

guess. Formally, in quantum information theory, the amount of randomness
in a protocol is quantified using the min-entropy [25]:

Definition 7 (Min-entropy). The min-entropy of a state ρAB ∈ HA ⊗ HB is given by

Hmin(A|B)ρAB
= − inf

σB
{λ| ρAB � 2λ(1A ⊗ σB)}, (2.16)

where σB ∈ S(HB).

To understand the significance of why min-entropy is an appropriate measure for ran-
domness in a cryptographic scenario, we must understand that the primary objective
of such a protocol is to generate random bits that are uniformly (or almost uniformly)
distributed. Moreover, these bits should be independent and uncorrelated with any side
information held by an adversary. Hence, at the end of the protocol, we require a string
of uniformly distributed random numbers R uncorrelated with any system held by a
potential adversary. Randomness extractors are procedures that "extract" such a random
string R from a random-variable A (obtained as an output of a protocol) that could, in
general, be correlated with the side-information of the adversary. Roughly speaking, a
quantum-proof strong extractor Ext is a function that takes a random variable A and an
input random seed U , outputting the desired string: R = Ext(A,U). Technical results,
like the generalized left over-hashing lemma [26], show that it is possible to extract
approximately Hmin(A|E)ρAE

such uniformly random bits from the random variable A
given a particular classical-quantum state ρAE (that describes the protocol). Further
details on randomness extractors are beyond the scope of the thesis.
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However, as it stands, the definition of min-entropy is not very insightful or intuitive. We
sketch the proof from [25] to show that the min-entropy and the guessing probability are
in-fact related to each other.
To begin, let us introduce a new variable σ̃B = 2λσB. Exploiting the monotonicity property
of the logarithms, it becomes apparent that the min-entropy is given by − log2(g), where
g can be computed through the following optimization problem:

g = inf tr(σ̃B)

s.t. (1A ⊗ σ̃B) − ρAB � 0

σ̃B � 0.

(2.17)

We will now show that this function g is , in fact, the best guessing probability p∗
guess.

Using the duality theory of optimization [27], it is known that for every SDP, a corre-
sponding dual SDP can be constructed, and the solutions to both problems are identical.
In the case of the problem above, the dual for the SDP above is:

sup tr(Y ρAB)

s.t. Y � 0

trA(Y ) = 1.

(2.18)

We can now use the Choi–Jamiokowski isomorphism [28] to relate the non-negative
operator Y in terms of a channel E as

Y = dA(1A ⊗ E)(|ΦAB〉〈ΦAB|), (2.19)

where |ΦAB〉 = ∑
x

1
dA

|x, x〉 is the maximally entangled state and dA = dim(HA).
As tr(1A ⊗ E(|ΦAB〉〈ΦAB|)ρAB) = tr

(
|ΦAB〉〈ΦAB|1A ⊗ E†(ρAB)

)
, we can re-write the

trace tr(Y ρAB) as:

tr
(
|ΦAB〉〈ΦAB| I ⊗ E†(ρAB)

)
=
∑
x

〈x, x| (1 ⊗ E†(ρAB)) |x, x〉 . (2.20)

This gives the optimization problem,

g = sup
∑
x

〈x, x| (1 ⊗ F(ρAB)) |x, x〉

s.t. F is a quantum channel,
(2.21)

where F = E† is any channel. We return to the case of computing the min-entropy for
the CQ states of the form

ρAB =
∑
a

pA(a) |a〉〈a| ⊗ ρaB. (2.22)
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Substituting the explicit form of ρAB in the objective function of eqn. (2.21) gives the
following objective function:

∑
a

pA(a) 〈a| F(ρaB) |a〉 ≡ pguess. (2.23)

The collection of maps {Fa ≡ 〈a| F(.) |a〉}a without any loss of generality is an arbitrary
POVM, due to the fact that

∀ρ ∈ S(HA ⊗ HB) :
∑
a

〈a| F(ρ) |a〉 = tr(FρAB) = tr(ρ). (2.24)

Note that above we have used the fact that F = E† can be taken to be trace-preserving.
For consistency, unless stated otherwise, throughout the thesis, we have reserved the
system E for the system of the Eavesdropper or the adversary.

2.5 QUANTIFYING RANDOMNESS IN A PROTOCOL

The framework described in the previous section is very general and can be useful for
any cryptographic scenario. In this thesis, our primary interest is to quantify randomness
in randomness expansion protocols, which has more structure. Randomness expansion
protocols are inherently sequential by design; that is, these protocols are typically carried
out over multiple rounds, each identified by i ∈ {1, · · · , n}. In each round, a sub-
protocol is performed, and this process is repeated n times. For instance, in the Device
Independent scenario, the sub-protocol might correspond to a single CHSH test. The
randomness expansion protocols, in general, may be described using an initial state shared
by the lab and Eve along with a sequence of channels, each representing a sub-protocol
as shown in Figure 2.3.
In the protocols we consider in this thesis, each round i ∈ {1, · · · , n} requires generating
a random number Di from an an existing source of randomness. By the end of round
i, the protocol produces another random number, Ci. When considering CHSH Device
Independent protocols, Di ≡ Xi, Yi are the inputs for Alice and Bob in each round, and
Ci ≡ AiBi represent the outputs of a round of the CHSH test (see Section 3.2 for more
details). Each round is characterized by a channel Ni, and the overall protocol is defined
by the collection of channels {Ni}i where i runs from 1 to n.
The protocol starts with the initial state ρ0

RAE
, where RA represents the laboratory

system, and E is the system in possession of Eve. In randomness expansion protocols,
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Figure 2.3: A protocol of randomness expansion in terms of sub-protocols. ρR0E is the
initial state of the protocol and EAT channels.

this is often an unknown, pre-programmed quantum resource. In each round, the channel
Ni acts on the state ρi−1

Ri−1E
to output classical random variables Ci, Di and a state

ρiRi,E
for the next round2. For CHSH tests, R0 denotes the initial pre-shared quantum

state between Alice, Bob, and Eve. We further make the assumption that inputs Di

are independent random variables, and are uncorrelated with any other input random
variables for any round other than round i. Moreover, Di cannot be correlated with any
outputs A1, A2, · · · , Ai−1 generated before round i.
After the protocol is finished, the objective is to determine the randomness in the
collection C = (C1, C2, · · · , Cn) (or AB = (A0, B0, · · · , An, Bn) in the DI protocol).
This calculation is done conditioned upon a specific event, Ω, taking place. In our
context, Ω is the event that protocol does not abort. Recall that, a DIRNE protocol
aborts if the CHSH score ω does not exceed a given threshold score. In general, the
event Ω (abort condition) is determined by the input-output statistics {Ci, Di}i. Note
that computing the randomness conditioned only on the input and outputs is in the
spirit of Device Independence. The input-output statistics can be directly observed in
the laboratory, and therefore are known quantities to the party conducting the protocol.
The internal mechanism of the devices used to generate the experimentally observed
statistics is dictated by the pre-shared initial state ρR0,E and the channels {Ni}i of the
protocol. As the state and the channels are treated as unknown in the protocol, we make
no assumption on the inner workings of the devices other than the fact that ρR0E is a
valid state in Quantum Theory and {Ni}i are valid quantum channels.
We say that the protocol generates randomness if output string C contains secure random-
ness; that is, given access to the system E and the input string D = (D1, D2, · · · , Dn),

2In reality, devices may receive new states each round. However, it is equally valid to assume that
the devices have pre-shared entangled quantum resources needed for the entire protocol.
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the output string C = (C1, C2, · · · , Cn) cannot be determined with certainty. Con-
sequently, using the discussion in the previous section, our main aim is to determine
Hmin(C|DE)ρ in a protocol that does not abort.
This calculation needs to be done considering the worst-case scenario, where ρR0E is
unknown to the party executing the protocol but fully accessible to Eve. Moreover, the
channels Ni are also known to Eve. The main assumption here is that Eve cannot access
the laboratory system after the protocol begins. Given this immense power granted to
Eve, tackling this optimization problem is extremely challenging. Therefore instead of
finding the exact min-entropy in a given protocol, it is acceptable to determine a lower
bound on the min-entropy. This lower bound tells us the minimum randomness we can
“safely” extract from the protocol. However, it is crucial that this lower bound is not too
far off from the actual value or else we will waste randomness.
In the literature, incremental progress was made towards getting lower bounds on the
min-entropy for a cryptographic protocol. It began with the asymptotic equipartition
theorem [29], then advanced with the Entropy Accumulation Theorem (EAT), and
subsequent proofs catering to more generalized settings [30]. In this thesis, we use the
EAT to compute randomness in a protocol. Informally, the EAT states that

Hmin(C|DE)ρ ≥ n inf H(C|DE) −
√
nv, (2.25)

where H(C|DE) is the single round von Neumann entropy. Here inf is taken over all
single-round strategies, which would reproduce the observed statistics if executed in an
i.i.d. manner.
EAT significantly simplifies the challenge of determining the extractable randomness
for the protocol. Without EAT, one would need to account for every individual and
potentially undefined channel Ni and any arbitrary initial state ρR0E, whereas EAT
permits us to focus solely on the von Neumann entropy of a representative single round
of the protocol. Moreover, as n → ∞, this lower bound becomes tight, implying that
we can use the quantity inf H(C|DE) as the asymptotic randomness rate (amount of
extractable randomness per round) in a protocol. The error term √

nv is intricate and
defined via the min-tradeoff function. These technical details will be elaborated on in
the next section of this thesis.
However, the EAT does not fully resolve the problem of determining rates, leaving
the crucial task of optimizing single-round von Neumann entropies. This optimization
becomes extremely crucial when developing these protocols and is the central theme of
many chapters in this thesis.
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2.6 ENTROPY ACCUMULATION THEOREM

In this section we state the Entropy Accumulation Theorem (EAT) more formally with
all relevant details. The theorem is phrased in terms of a set of channels {Mi}i called
EAT channels, where Mi : S(Ri−1) → S(CiDiUiRi) (here i ∈ {1, 2, · · · , n}).

Definition 8 (EAT Channels). Let {Ri}ni=0 be arbitrary quantum systems and {Ci}ni=1,
{Di}ni=1, and {Ui}ni=1 be finite dimensional classical systems. Suppose that Ui is a
deterministic function of Ci, Di and that {Mi}ni=1, Mi : S(Ri−1) → S(CiDiUiRi)
are a set of quantum channels. These channels form a set of EAT channels if for all
ρR0E ∈ S(R0E) the state ρCDURnE = (Mn ◦ . . .M1)(ρR0E) after applying the channels
satisfies I(Ci−1

1 : Di|Di−1
1 E) = 0, where I is the mutual information, and Ci−1

1 is
shorthand for C1C2 . . . Ci−1.

In the context of protocols, the register Ui records the score for the round i. Each EAT
channel for the randomness expansion protocols is a set of maps of the form

Mi(ρ) =
∑
c,d

|c〉〈c| ⊗ |d〉〈d| ⊗ |u(c, d)〉〈u(c, d)| ⊗ Mc,d
i (ρ) , (2.26)

where u(c, d) records the score in the protocol, and each Mc,d
i is a subnormalized

quantum channel from S(Ri−1) to S(Ri). The joint distribution of the classical variables
Ci and Di is

pCiDi
(c, d) := tr

(
Mc,d

i (ρ)
)
. (2.27)

Definition 9 (Frequency distribution function). Let U = U1U2 . . . Un be a string of
variables. The associated frequency distribution is

FreqU(u) := |{i ∈ {1, . . . , n} : Ui = u}|
n

. (2.28)

In the above equation (eqn. 2.28), the notation |.| is used to represent the cardinality of
a set. We use this notation to denote the cardinality of sets throughout this thesis.

Definition 10. Given a set of channels G whose outputs have a register U , the set of
achievable score distributions is

QG := {pU : M(ρ)U =
∑
u

pU(u) |u〉〈u| for some M ∈ G}. (2.29)

For the spot checking protocol (introduced in Chapter 6), there is an additional quantity
of interest

Qγ
G := {pU : pU(⊥) = (1 − γ) and pU(u) = γp̃U(u) with p̃U ∈ QG}. (2.30)
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The above definition is given for completeness here. The variable ⊥ is defined in Protocol
1 (see chapter 6 for further details).

Definition 11 (Rate function). Let G be a set of EAT channels. A rate function
rate : QG → R is any function that satisfies

rate(q) ≤ inf
(M,ρRE)∈ΓG(q)

H(C|DE)(M⊗IE)(ρRE) , (2.31)

where

ΓG(q) := {(M, ρRE) : (M ⊗ IE)(ρRE)U =
∑
u

q(u) |u〉〈u| for some M ∈ G} (2.32)

is the set of states and channels that can achieve distribution q.

Definition 12 (Min-tradeoff function). A function f : QG → R is a min-tradeoff
function if f is an affine rate function. Since min-tradeoff functions are affine, we can
naturally extend their domain to all probability distributions on U , denoted P .

The entropy accumulation theorem then can be stated as follows (this is Theorem 2
of [31], which is a generalization of the results of [32]).

Theorem 1. Let f be a min-tradeoff function for a set of EAT channels G = {Mi}i
and ρCDUE be the output after applying these channels to initial state ρRE. In addition
let εh ∈ (0, 1), α ∈ (1, 2) and r ∈ R and Ω be an event on U that implies f(FreqU) ≥ r.
We have

Hεh
min(C|DE)ρCDE|Ω >nr − α

α− 1 log
 1
pΩ(1 −

√
1 − ε2

h)

+

n inf
p∈QG

(
∆(f, p) − (α− 1)V (f, p) − (α− 1)2Kα(f)

)
, (2.33)

where ∆(f, p) = rate(p) − f(p), and

V (f, p) = ln 2
2

(
log(1 + 2dC) +

√
2 + Varp(f)

)2

Kα(f) = 1
6(2 − α)3 ln 22(α−1)(log(dC)+Max(f)−MinQG

(f)) ln3
(
2log(dC)+Max(f)−MinQG

(f) + e2
)
,

and we have also used

Max(f) = max
p∈P

f(p)

MinQG
(f) = inf

p∈QG

f(p)

Varp(f) =
∑
u

p(u) (f(δu) − E(f(δu)))2 ,

and δu is the deterministic distribution with outcome u.
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To use this theorem we have to assign the variables Ci and Di to the parameters in the
protocol. For example, as stated in the previous section, in the context of CHSH-based
Device Independent Protocols, the variables Ci can be output variables AiBi and the
variable Di can be taken to be the input variables XiYi.



Part I

Device Independent Protocols

27



3

Introduction to Device Independent Protocols

3.1 INTRODUCTION

Bell’s theorem states that quantum mechanics is not compatible with local hidden variable
theories. A Bell test is a non-local experiment that consists of two (or more) space-like
separated (or non-communicating) observers who share an entangled quantum state.
At the beginning of the experiment, each observer generates a discrete random input
(with a finite number of possible inputs). Based on this input, these observers perform
a measurement on their shared state to generate an output. The observers repeat this
process for a large number of rounds to get some input-output statistics. A Bell inequality
is a relation on the joint input-output statistics of both these parties that is satisfied
if these statistics can be obtained by a local-hidden variable theory. Therefore, if the
obtained input-output statistics indicate the violation of a Bell inequality, then those
statistics cannot have arisen from a local deterministic behaviour.
In the context of Device Independent randomness expansion (DIRNE), the main idea
is that the ability to violate a Bell inequality implies that the devices doing so must be
generating randomness [1, 2] (see section 3.2 for further details). Thus, in a sense, the
protocol self-tests1 [33] the devices during its operation, leading to enhanced security.
Although challenging to accomplish, recently the first experimental demonstrations of
DIRNE were performed [8, 31, 34], following earlier experiments considering randomness
generation [3, 7, 35].
On the theoretical side, the main difficulty is then to calculate how much extractable
randomness there is as a function of the Bell violation. This task is made more challenging

1Roughly speaking, a protocol is called a self testing protocol if we are able to infer the underlying
physical process solely from the observable outcomes of the protocol.

28
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by the lack of structure of the problem: no assumption is made on how the devices operate
and so one has to account for arbitrary pre-shared entanglement, arbitrary measurements,
and strategies that may be adaptive between the rounds. An increasingly sophisticated
series of proofs [36–38] leads to two techniques for dealing with this exist in the literature:
the quantum probability estimation framework [13] and the entropy accumulation theorem
(EAT) [14, 15] (see Section 2.6 for details). We use the latter in this work. Informally
speaking, the EAT states that the amount of extractable randomness in the full string of
outputs is to leading order n times the von Neumann entropy of a single-round strategy
that would give the observed score if used in an i.i.d. way. In other words, the EAT
implies that if we can solve the problem for an i.i.d. adversary, then we can get a bound
for the general case.

In a DIRNE protocol, randomly chosen inputs are made to two separated devices so
that each device cannot determine the input of the other device. We use X and Y to
label the inputs, and A and B to label the outputs, taking into account an adversary
with side information E. This side information could be quantum; the general strategy
allows for the adversary holding the E part of a state ρA′B′E, with the A′ and B′

systems retained by the devices. Each input X to the first device corresponds to a
measurement on A′ yielding outcome A; similarly, each input Y to the other device
corresponds to a measurement on B′ resulting in outcome B. Two quantities of interest
arise, both dependent on the post-measurement state: the first is the score in a non-
local game – a function of the conditional distribution pAB|XY and the second, the von
Neumann entropy of either one or both of the outputs. Specifically, we aim to express
the minimum von Neumann entropy in terms of the score. In this work, we study
six von Neumann entropies: H(AB|X = 0, Y = 0, E), H(AB|XY E), H(AB|E),
H(A|X = 0, Y = 0, E), H(A|XY E), and H(A|E) 2.

In essence, using the EAT, the problem of computing extractible randomness is reduced to
finding the smallest von Neumann entropy of the outputs conditioned on the adversary’s
side information and the inputs, with the property that the state and measurements
used would give a particular Bell value. More precisely, a strategy (for the adversary)
corresponds to picking a quantum state ρA′B′E and for each possible input X = x a
POVM {Ma|x}a on A′, and for each Y = y a POVM {Nb|y}b on B′. From this, the

2In the one-sided cases, conditioning on the variable Y is unnecessary, but it is retained for notational
symmetry.
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implementation of the protocol corresponds to repeated actions of the channel:

N : S(HA′ ⊗ HB′) → S(HA ⊗ HB ⊗ HX ⊗ HY ) :

σ 7→
∑
abxy

pXY (x, y) |a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| tr
(
(Ma|x ⊗Nb|y)σ

)
,

where pXY is the input distribution used in the protocol. Applying this channel to A′B′

and acting as identity on E generates the final state τABXY E = (N ⊗ IE)(ρA′B′E). The
Bell value is a linear function on this state, and we seek to minimize an entropy (e.g.,
H(AB|XY E)) for this state, over all strategies that have a given Bell value (see later
for a discussion of different entropies).
While the minimization of the single round entropic quantities above proves simpler than
the direct optimization of the min-entropy, this minimization remains challenging. The
main challenge is that the von Neumann entropies are non-linear. Additionally, there is no
preliminary upper bound on the dimensions of the systems A′, B′, and E. For instance,
some Bell inequalities suggest that the maximum quantum violation cannot be realized
if A′ and B′ are finite dimensional [39]. Moreover, evidence suggests this remains true
even when X and Y are binary, and A and B have only three possible outcomes [40].
However, when A, B, X, and Y are all binary, Jordan’s lemma [41] asserts that there is
no loss in generality when considering a convex combination of strategies wherein A′ and
B′ are two-dimensional. This observation paved the way for establishing a tight lower
bound on the one-sided entropy based on the CHSH score [42] and is pivotal for this
study.
In Chapter 4, we discuss computing the von Neumann entropy bounds, later presenting
numerically generated upper bound curves for each of the six quantities for the protocols
based on violation of the CHSH inequality 4.12. By employing Jordan’s lemma and other
technical maneuvers [42], we can reduce the problem to seven real parameters (three for
state specification and four for measurement selection), making it suitable for numerical
optimization. Using heuristic numerical techniques we determined bounds which serve
as useful references for the optimal values von Neumann entropic quantities for the six
different cases as a function of the CHSH score, ω (notably, an analytic bound exists for
the first case [42]). For H(A|XY E) and H(AB|XY E), we also propose conjectured
analytic forms for the curves.
In Chapter 5, rigorous lower bounds on the entropic quantitiesH(A|XY E) andH(AB|X =
0, Y = 0, E) as a function of the CHSH score, ω, are also derived. We show that lower
bounds for these quantities can be calculated by solving an optimization problem over
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three real parameters. This realization lets us partition the domain of these new opti-
mization problems into cuboids and compute the objective function on their edges. The
objective function’s value within each cuboid is underestimated using Taylor’s theorem,
allowing us to obtain a lower bound on the entropies by taking the minimum over all the
function’s under-estimations on each cube.

Using a similar method of partitioning the domain into (hyper) cuboids, combined with
techniques for lower bounding polynomial optimization problems, we have also found
reliable lower bounds for the entropy H(AB|XY E).

The derived entropy lower bounds can be made arbitrarily tight by refining the partition,
albeit with increased computation time (see Chapter 5). If one needs to compute the min-
tradeoff function for application to the EAT, a more refined partition can be used since
entropy only needs computation for a limited CHSH score range. Thus, our methodology
has relevance in practical applications of DIRNE protocols. For the entropy H(AB|X =
0, Y = 0, E), our findings are compared with the recent breakthrough technique [43] for
optimizing von Neumann entropies. We find that our the lower bounds are very close to
the numerical upper bounds for both H(A|XY E) and H(AB|X = 0, Y = 0, E). For
the case H(AB|X = 0, Y = 0, E), our lower bounds surpass the one ones obtained
using the technique in [43]. Consequently, we conjecture that the numerical bounds
established for all six entropic quantities are tight. Hence, in our work, the conjectured
bounds are used to determine randomness rates across various protocols for randomness
expansion.

Given the challenges associated with optimizing von Neumann entropies in randomness
expansion protocols, the one-sided quantity H(A|X = 0, Y = 0, E) has often been
used due to its existing analytic bound [42]. However, as this omits Bob’s output, it
can be deemed wasteful in terms of generating randomness. With our new bounds
available, we can now employ the corresponding two-sided quantities in randomness
expansion protocols, such as the spot-checking protocol (refer to Chapter 6). This
bound also facilitates the calculation of randomness expansion in protocols using (heavily)
biased input randomness, allowing for the closure of the locality loophole present in the
spot-checking protocol. Furthermore, the lower bounds for the entropy H(AB|XY E)
allow for the recycling of input randomness, ensuring a more efficient utilization of all
resources.

Our newly derived entropies are employed in a protocol for Device Independent randomness
generation, allowing two key improvements over prior works:
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• The protocol exploits two-sided randomness.

• It recycles input randomness.

These modifications not only improve the randomness rate but also close the locality
loophole associated with the spot-checking protocol. In Chapter 6, we outline rate curves
with finite round numbers (employing the EAT with the updated numerical bounds on
the single-round von Neumann entropy). As anticipated, the gains from the i.i.d. case
transition seamlessly to the finite regime. For example, when taking the experimental
conditions from [31], using two-sided randomness coupled with randomness recycling
culminates in a rate increase of multiple orders of magnitude.

3.2 BELL’S THEOREM AND RANDOMNESS

Before delving into the intricacies of DI protocols for randomness expansion, we will first
discuss the Bell’s theorem and its role in the randomness expansion protocols.
As depicted in Figure 3.1, the simplest scenario of the Bell setup involves two spatially
separated or non communicating parties, say Alice and Bob, sharing a common resource.
This resource could be, in general, a quantum state.
A Bell test is conducted over several rounds. In each round, the procedure remains the
same: an input X is chosen randomly and dispatched to Alice’s device, and similarly,
an input Y is selected and sent to Bob. When Alice and Bob conduct measurements
based on their randomly chosen inputs X and Y , their outcomes are denoted as A and
B, respectively. After numerous repetitions, we can determine the conditional probability
distribution pAB|XY .
John Bell posed the question: can this probability distribution be derived “classically”3

– in other words, can the outputs A,B be solely predetermined by the input random
variables X,Y , and a classical random variable Λ that could, in theory, be known to any
entity within the past light cone of both Alice and Bob?
For this scenario, we consider the simplest situation where the inputs X,Y and the
outputs A,B are binary. The CHSH score, represented as ω, can then be defined as:

ω := 1
4

(∑
a

pAB|00(a, a) +
∑
a

pAB|01(a, a) +
∑
a

pAB|10(a, a) +
∑
a

pAB|11(a, a⊕ 1)
)
,

(3.1)
3Here the word “classical” is used to refer to any theory which obeys local determinism.
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Figure 3.1: A diagram depicting a typical Bell scenario involving two parties.

which can be determined solely using collected input and output statistics pAB|XY . Bell’s
theorem states that if ω > 3

4 , the outputs must have been generated by a non-classical
resource. This means that the outcomes of the given measurement cannot be achieved in
a local deterministic fashion. Thus they cannot be determined with certainty by anyone
including any adversary, who has the full knowledge of the inner workings of the device.
This principle lays the groundwork for the generation of random numbers within the Bell
type setup.
Bell’s theorem is often also described using the scenario where two non-communicating
parties – Alice and Bob are playing a non-local game. In each round, they are posed
a question represented by the value of the input of random variables X ∈ {0, 1} and
Y ∈ {0, 1}. They are then expected to output A,B ∈ {0, 1}. Alice and Bob are
considered to have won a round of the game if XY = A ⊕ B, and they lose if this
condition is not met. If Alice and Bob play this game (referred to as the CHSH game)
using local deterministic strategies, their maximum winning probability is ≤ 3

4 . If they
wish to win with a probability higher than this, they must employ a non-classical strategy.
With the understanding that the outputs A,B are random given the random inputs X,Y
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Figure 3.2: A diagram depicting an informal summary of Bell’s theorem.

and a CHSH score ω ≥ 3
4 , the next question is to consider how much randomness can be

extracted from the outputs. As discussed in Chapter 2, the randomness per CHSH test
is roughly characterized by the von Neumann entropy inf H(AB|XY E). It is important
to note that this value represents the randomness per round in the asymptotic limit (i.e.,
the randomness when the CHSH test is repeated indefinitely). The infimum is taken over
all strategies that achieve a CHSH score ω, assuming the strategy is performed in an i.i.d.
manner (see Chapter 4 and 5 for details). Note that other entropic quantities such as
inf H(AB|X = 0, Y = 0, E) may also be of interest depending upon the protocol being
performed. In the next section, we discuss the role of different entropic quantities that
are useful in Device Independent protocols based on the violation of the (generalized)
CHSH inequality.
In the literature, the inequality ω > 3/4 is called a CHSH inequality. In a more
general setting, if pAB···|XY ··· is a valid n partite probability distribution, a Bell inequality
can be defined as B(pAB···|XY ···) > l, where B is a linear functional on the probability
distribution pAB···|XY ··· and l is the maximum value of B(pAB···|XY ···) that can be achieved
by a probability distribution corresponding to any local deterministic strategy.
It is worth highlighting that the CHSH inequality is not the sole Bell inequality, even
when considering the two-input, two-output, two-party scenario. Distinct classes of Bell
inequalities exist for this simplest scenario, such as the tilted Bell inequalities [44, 45].



3.3. The progress of DIRNE protocols: a brief review 35

Another category pertains to optimal inequalities tailored for randomness expansion [46].
Yet, the CHSH inequality violation remains the most extensively researched in context of
DIRNE protocols. The collection of CHSH inequalities, defined by permutations of inputs
X,Y and outputs A,B in the CHSH score above, stands out as, in the vector space of
all probability distributions, the CHSH inequalities serve as facets of the polytope formed
by all the local deterministic distributions [47]. In this dissertation, while determining
randomness rates for our protocols, we employ generalized Bell inequalities expressed as:

ω :=
∑
a

(
γ00pAB|00(a, a) + γ01pAB|01(a, a) + γ10pAB|10(a, a) + γ11pAB|11(a, a⊕ 1)

)
,(3.2)

where γij ∈ R are some coefficients. However when it comes to analysis of the protocols,
we restrict ourselves to the protocols based only on the CHSH tests.

3.3 THE PROGRESS OF DIRNE PROTOCOLS: A BRIEF REVIEW

Before discussing the DIRNE protocols, let us briefly highlight some foundational literature
on their development.
The first DIRNE protocol was introduced by Colbeck [1, 2] based on the GHZ test. This
work introduced the idea of private randomness generation certified by non-local games.
Building on this work, Pironio et al. [3] presented a construction of DIRNE protocol
along with its experimental demonstration (this was not a loophole-free experimental
demonstration). Further, it was then proven that unbounded randomness can be produced
from a finite initial seed of random numbers using many copies of entangled states [37, 48].
Other works have focused on amplification of randomness from an initial source of weak
randomness [49].
Meanwhile, improving the security proof of the DIRNE protocols started to attract
attention. Pironio and Massar demonstrated that the DIRNE protocol is secure against
classical adversaries [50]. This was followed by Vazirani and Vidick, who proved the
security of the protocol against an entangled adversary [36]; however, this was without
any noise tolerance. Miller and Shi then proved the security in the presence of errors [38].
However, challenges remained for computing reasonable tight bounds on the min-entropy
(which quantifies the randomness in a DIRNE protocol – see Chapter 2) for the outputs
of the protocol. The difficulty stems from the fact that one needs to account for different
collective attacks that a potential adversary may attempt to tamper with the protocol.
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Assuming the protocol is carried out in an i.i.d. fashion, the min-entropy can be bound
using the single round min-entropy [51] at a finite level of the NPA hierarchy [52, 53].
However, these bounds are generally not very tight. This issue was addressed by the
Asymptotic Equipartition Theorem (AEP) [29], which bounds the min-entropy of the
protocol in terms of the single round von Neumann entropy. This bound holds for i.i.d.
protocols and also in the limit that the number of rounds is large. As von Neumann
entropy is larger than the min-entropy, the AEP improves the randomness rates of DIRNE
protocols. Therefore, the main challenge was then reduced to getting bounds on the
min-entropy of the protocol, keeping two aspects in mind: the i.i.d. assumption needs to
be relaxed and the second aspect is to get bounds for finitely many rounds.
Two approaches were developed to address this – the quantum probability estimation
framework [13] and the entropy accumulation theorem (EAT) [14, 15]. The EAT bounds
the min-entropy in terms of the von Neumann entropy, just like AEP does – however
it also provides bounds for finite rounds and for the non-i.i.d. scenario by introducing
a penalty term that vanishes as the number of rounds increases. The penalty term
in the original EAT was not tight and this EAT bound was further refined in [32] and
subsequently in [31]. A generalized version of the EAT was published very recently [30],
which extends EAT to cases where the side information of the adversary can be updated
after every EAT round.
Although the single-round von Neumann entropy is significantly easier to compute
compared to the min-entropy of the entire protocol, the bounds of the single-round von
Neumann entropy are hard to compute even for a single round. The challenge arises due
to the non-linearity of von Neumann entropy and the lack of assumptions about the states
and measurements used. For a vast majority of research up until recently, the randomness
rate was determined using known tight bounds on the randomness of just one of the
devices. In their work, Pironio et al. [42] calculated bounds on the randomness of a
single device in the context of computing key rates for Device Independent Quantum Key
Distribution (DIQKD). Since this represents a bound on the randomness of one device,
we refer to such a bound as a one-sided rate. As the output of one device is a binary,
at most one bit of randomness could be certified using this method. One-sided rates,
as opposed to two-sided rates, are useful for DIQKD because the secret key is formed
from the outputs of only one party. The other party then performs error correction to
agree with the secret key held by the first party. In the literature, this DIQKD bound
was re-used to determine a lower bound on the output randomness of the protocol. The
advantage was that bounds existed for all values of the CHSH score, allowing for a
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non-zero randomness rate as long as there was a violation of the Bell inequality. This
result was employed in one of the first loophole-free experimental demonstrations of
DIRNE protocols [31], which was conducted recently.
Later, it was shown that in principle, up to 2 bits of randomness could be achieved in a
(2-input, 2-output, 2-party) DIRNE protocol using tilted Bell inequalities [44]. This result
showed the existence of such strategies, but did not compute the randomness rates for
all values of Bell violation. One-sided rates for such tilted Bell inequalities (introduced
in the context of DIQKD protocols) for all values of Bell violation were presented by
Woodhead et al. [45]. A significant limitation of using such tilted Bell inequalities is that
2 bits can only be certified while being arbitrarily close to the local set (i.e., the CHSH
score will be near 2), making high randomness rates less robust against noise.
Therefore, determining bounds on randomness rates for DIRNE protocols (i.e., two-
sided bounds) instead of re-using existing one-sided bounds for DIQKD is one the main
motivation for this thesis. While working on this thesis, several other important works
were also done in this direction, each attempting to address the challenge of finding
lower bounds on one-sided and two-sided randomness rates. This led to important
advances in computing these bounds [54–56]. More recently, a breakthrough paper
[43, 57] was published, presenting a method to compute reliable lower bounds on the
von Neumann entropy for the most general non-local games. This technique relies
on semi-definite programming, leveraging the NPA hierarchy and methods from non-
commutative polynomial optimization theory to derive reliable bounds on von Neumann
entropy. Building on this, the recent work by Wooltorton et al. [46] demonstrated that
up to two bits of randomness can be extracted even when the observed correlations are
far from the local bound (up to a CHSH score of about 2.6). Hence, up to 2 bits of
randomness can be extracted from a DIRNE protocol in a more robust manner.
The intriguing question of the quantity of randomness that can be extracted from a
single source through multiple measurements was tackled by Curchod et al. Their
study [58] revealed that by employing the same initial state and conducting repeated
measurements, an unbounded amount of randomness can be extracted. Their method
utilized tilted Bell inequalities to certify this randomness. Even more recently, Brown
and Colbeck [59] demonstrated that the CHSH inequality can be violated an unbounded
number of times, suggesting the potential for extracting unbounded randomness through
numerous violations of the CHSH inequality.
Ongoing advancements in theoretical analysis have yielded considerable enhancements in
DIRNE protocols. Coupled with the rapid progress observed in experiments [7, 8, 31],
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DIRNE protocols are getting increasingly more practical.

3.4 THE SIGNIFICANCE OF VARIOUS ENTROPIC QUANTITIES

In this section, we discuss the significance of the six entropic quantities given above in the
context of DIRNE, noting that the one-sided quantities are also useful for DIQKD (Device
Independent Quantum Key Distribution). To do so, we first describe the general structure
of the raw randomness generation part of a spot-checking and non-spot-checking DIRNE
protocol. A more complete description of the protocols is in Chapter 6.
In a protocol without spot-checking (such as the protocol which recycles input ran-
domness), two untrusted devices are used. In every round, their inputs Xi and Yi are
generated according to some distribution pXY . Often two independent random number
generators are used for this, so that pXY = pXpY . The generated numbers are used as
inputs to the devices, which return two outputs Ai and Bi respectively. This is repeated
for n rounds generating the raw randomness A, B, where the bold font denotes the
concatenation of all the outputs.
In a spot-checking protocol, there is an added step. In this step, each round is declared
either a test round (Ti = 1) or a generation round (Ti = 0). Test rounds occur with
a typically small probability γ. In test rounds, Xi and Yi are generated according to
some distributions pXY . In generation rounds, Xi and Yi are set according to some other
distributions – in this work we use the deterministic distribution Xi = Yi = 0. These
are used as inputs to the devices, which return two outputs Ai and Bi respectively. The
rationale behind using a spot-checking protocol is that randomness is required to perform
a Bell test and it is desirable to be able to run the protocol with a smaller requirement
on the amount of input randomness required. Choosing whether to test or not requires
roughly Hbin(γ) bits of randomness per round4, so choosing γ small enough leads to
an overall saving. Furthermore, protocols often discard the input randomness, in which
case for many Bell tests spot-checking is necessary in order to achieve expansion. In the
CHSH game, for instance, if pXY is chosen uniformly, each test round requires 2 bits of
randomness, but the amount of two-sided randomness output by the quantum strategy
with the highest possible winning probability is only 1 + Hbin(1

2(1 + 1√
2)) ≈ 1.60 bits.

However, as we discuss later, the input randomness need not be discarded.
4Here Hbin : [0, 1] 7→ [0, 1] denotes the binary entropy defined as Hbin(x) = −x log2(x) − (1 −

x) log2(1 − x). Here log2 is the logarithm with base 2. Further, 0 log2 0 is taken to be 0.
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In the case of small γ, almost every round is a generation round hence an eavesdropper
wishes to guess the outputs for the inputs X = 0 and Y = 0. The entropy H(AB|X =
0, Y = 0, E) is thus the relevant quantity for spot-checking DIRNE protocols. The
one-sided quantity H(A|X = 0, Y = 0, E) has often been used instead because of the
existing analytic bound for this [42, 45], but, because this ignores one of the outputs, it is
wasteful as an estimate of the generated randomness. For DIQKD protocols, on the other
hand, the one-sided entropy is the relevant quantity. This is because in order to make
a key, the random strings held by Alice and Bob, A and B respectively should match.
Thus, only one of the strings A can be used as a key, and the other string B should
be corrected to match the with the string A. We also remark that these quantities can
be useful bounds for protocols without spot-checking if the distribution pXY is heavily
biased towards X = Y = 0.
The quantities H(AB|XY E) and H(A|XY E) are useful for protocols without spot
checking. One might imagine, for example, using a source of public randomness, such
as a randomness beacon to choose the inputs to the protocol, in which case X and Y
become known to the adversary (but are not known before the devices are prepared).
In this case, rather than being interested in randomness expansion, the task is to turn
public randomness into private randomness in a Device Independent way. One can
also use H(AB|XY E) and H(A|XY E) in protocols when the input randomness is
recycled. In this case we are really interested in H(ABXY |E), but, because X and
Y are chosen independently of E, this can be expanded as H(XY ) + H(AB|XY E).
Hence H(AB|XY E) is the relevant quantity in this case as well. The one-sided quantity
H(A|XY E) could also be used for DIQKD without spot-checking.
In addition we consider the quantities H(AB|E) and H(A|E). The second of these
could be useful for QKD protocols in which the key generation rounds do not have a
fixed input and where Alice and Bob do not publicly reveal their measurement choices
during the protocol. For instance, the sharing of these choices could be encrypted
using an initial key, analogously to a suggested defence against memory attacks [60]5.
H(AB|E) would be a useful quantity for randomness generation in a protocol without
spot-checking and in which X and Y are kept private after running the protocol and
not used in the overall output. When such protocols are based on the CHSH inequality,
they cannot allow expansion. These quantities can also be thought of as quantifying the

5Note that such protocols would only be useful if more key is generated than is required, so the
protocol we are thinking of here is really quantum key expansion. Furthermore, the results presented in
Figure 4.1 show that the use of H(A|E) only gives a minor advantage over H(A|XY E).
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fundamental amount of randomness obtainable from a given Bell violation. Although
we have computed the graphs for H(AB|E) and H(A|E), existing versions of the EAT
cannot be directly applied to them — see Appendix A.4.



4

Upper bounds on the entropic quantities

In the previous chapter, we noted the necessity for computing lower bounds on entropic
quantities H(.|.E) for any strategy that achieves a CHSH score ω when carried out in
an i.i.d. manner. This computation is crucial for determining the rates of CHSH-based
protocols. In this chapter, we proceed with a rigorous definition of such a strategy,
formulating it as an optimization problem for the entropic quantities. Techniques such
as Jordan’s lemma will be employed to simplify these optimization problems, enabling
us to calculate the asymptotic rates of the protocols (i.e., the randomness per round).
Interestingly, we observe that our techniques have a broader applicability and can be
extended to accommodate a wider class of Bell inequalities, of which the CHSH inequality
is a special case. We refer to these inequalities as CHSH-type inequalities and will define
them in the subsequent section. Nonetheless, for our analysis, we primarily focus on the
CHSH inequality due to its widespread use in literature concerning randomness expansion
protocols.
Parts of Chapter 4, including Sections 4.2, 4.3, 4.4, 4.5, and 4.9, build upon techniques
presented in the work by Pironio et al. [42]. Their work was dedicated to finding tight
bounds on the one-sided rate H(A|X = 0, Y = 0, E) as a function of the CHSH score
ω and was derived for a DIQKD protocol. In this thesis, we extend their approach and
present it within a more mathematically rigorous framework to make the approach taken
compatible with the framework of the entropy accumulation theorem. Moreover, we
extend these results to compute the bounds for all one and two-sided entropies H(.|.E)
as a function of the CHSH score ω (refer to Section 3.4 for the appropriate definitions).
We also show that these techniques can further be extended to find tight bounds for all
the 6 one- and two-sided rates as a function of the generalized CHSH score as defined in
equation 3.2.

41
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4.1 RATES FOR (GENERALIZED) CHSH-BASED PROTOCOLS

We calculate various one-sided and two-sided rates for protocols based on the (generalized)
CHSH game, which involves trying to violate the CHSH Bell inequality [61]. Recall that
in this game, each party uses a binary input and receives a binary output and the game
is won if A⊕B = XY . We define the generalized CHSH score by

ω := γ00
∑
a

pAB|00(a, a) + γ01
∑
a

pAB|01(a, a) + γ10
∑
a

pAB|10(a, a)

+γ11
∑
a

pAB|11(a, a⊕ 1),(4.1)

which is the probability of winning the generalized CHSH game when the inputs are
chosen at random1. Note here that γij are some real coefficients. A special feature of
this class of scores is that they remain invariant under the re-labelling of the output
variables (a, b) → (a ⊕ 1, b ⊕ 1). As we shall see later in this chapter, having such a
relabelling symmetry implies that there are always two different strategies (related by a
deterministic local operation) that yield the same score. This property will be leveraged
to simplify the optimization problem for computing the randomness rates as a function
of the score ω.
The CHSH score is the special case when all the coefficients γij = 1

4 . Classical strategies
the in case of the protocols based on the CHSH inequality can win this game with
probability at most 3/4, while quantum strategies can get as high as 1

2

(
1 + 1√

2

)
≈ 0.85.

For a fixed generalized CHSH score, ω, we wish to compute the minimum von Neumann
entropy over all strategies achieving that score. In this context, a strategy comprises
three Hilbert spaces HA′ , HB′ and HE, POVMs {Ma|x}a on HA′ for both x = 0 and
x = 1, POVMs {Nb|y}b on HB′ for both y = 0 and y = 1, and a state ρA′B′E on
HA′ ⊗ HB′ ⊗ HE. Given a strategy and a distribution pXY there is an associated channel
N that acts on A′B′ and takes the state to the post-measurement state, i.e.,

τABXY E = (N ⊗ IE)(ρA′B′E)

=
∑
abxy

pXY (x, y) |abxy〉〈abxy|A,B,X,Y ⊗ trA′B′

(
(Ma|x ⊗Nb|y ⊗ 1E)ρA′B′E

)
,

where IE is the identity channel on E. The entropic quantities we consider all pertain
to this state2. Note also that the generalized CHSH score that is achieved using the

1Note that even if nonuniform distributions of inputs are used when running protocols, in this work
the CHSH score is always defined as (4.1).

2In the cases where we condition on X = 0 and Y = 0, we can project this state onto |0〉〈0|X ⊗
|0〉〈0|Y and renormalize — see section 4.5 for more detail.
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strategy (if it is performed in an i.i.d. fashion) is a function of τ , which we denote by
S(τ) – in particular S(τ) is defined using Equation (4.1) and substituting pAB|xy(a, b)
by the expression tr

(
(Ma|x ⊗Nb|y ⊗ 1E)ρA′B′E

)
.

For each of the six entropic quantities previously discussed, we consider the infimum over
all strategies that achieve a given score. We use this to define a set of curves corresponding
to each of the 6 entropic quantities. We write FAB|XY E(ω, pXY ) = inf H(AB|XY E)τ ,
where the infimum is over all strategies for which S(τ) = ω. In the same way we define
FAB|E(ω, pXY ), FA|XY E(ω, pXY ) and FA|E(ω, pXY ) by replacing the objective function
with the corresponding entropy. We also define FAB|00E(ω) and FA|00E(ω) analogously,
noting that these are independent of pXY . Furthermore, if we write FAB|XY E(ω) etc.
(i.e., leaving out the pXY ), we refer to the case where pXY is uniform over X and Y .
For a more precise writing of these optimizations, see Equation (4.8).
We also consider a related set of functions GAB|XY E(ω, pXY ), GAB|E(ω, pXY ) etc. that
are defined analogously, but while optimizing over a smaller set of allowed strategies. More
precisely, the G functions are defined by restricting HA′ and HB′ to be two dimensional
and HE to have dimension 4, taking ρA′B′E to be pure with ρA′B′ diagonal in the Bell
basis, and taking the POVMs to be projective measurements onto states of the form
cos(α) |0〉 + sin(α) |1〉 (see Equation (4.14)).
Note that ideally, the family of functions F.|.E(ω, pXY ) and G.|,E(ω, pXY ) should explicitly
indicate the coefficients γij used to define the score. However, for the sake of brevity
and to avoid unnecessary complexity in notation, we will omit this explicit dependence.
In the later parts of this chapter and the entirety of the next chapter, we will use ω to
refer exclusively to the CHSH score.
As we shall see later in this chapter, it turns out that FAB|00E(ω) = GAB|00E(ω),
FA|00E(ω) = GA|00E(ω), and that in each of the other four cases F and G are related by

F = convenv(G). (4.2)

Here convenv(G) represents the convex envelope (or the convex lower bound) of G.
Roughly speaking, the convex envelope of a function g is the smallest convex function f
that is not greater than g. The rigorous definition of this function in its most general
form can be found in Section 8.10. The underlying reason why the above equation (eqn.
4.2) holds is due to the Jordan’s lemma. In our context, Jordan’s lemma [41] implies
that in the case of Bell inequalities with two inputs and two outputs, any strategy is
equivalent to a convex combination of strategies in which A′ and B′ are qubit systems.
This means that if we solve the qubit case, the general case follows by taking the convex
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lower bound. Such an argument was made in [42] and we now proceed to show this in
the next few sections.
A note on notation: in this work we measure entropies in bits, taking log to represent
the logarithm base 2, and ln for the natural logarithm where needed.

4.2 SIMPLIFYING THE STRATEGY

Given a Hilbert space H, we define P(H) to be the set of positive semi-definite operators
on H, and S(H) to be the set of density operators, i.e., elements of P with trace 1. The
pure states on H (elements of S(H) with rank 1) will be denoted SP (H). A POVM on
H is a set of positive operators {Ei}i with Ei ∈ P(H) for all i and ∑iEi = 1H, where
1H is the identity operator on H. A projective measurement on H is a POVM on H
where E2

i = Ei for all i. We define the Bell states

|Φ0〉 = 1√
2

(|00〉 + |11〉) (4.3)

|Φ1〉 = 1√
2

(|00〉 − |11〉) (4.4)

|Φ2〉 = 1√
2

(|01〉 + |10〉) (4.5)

|Φ3〉 = 1√
2

(|01〉 − |10〉) , (4.6)

and use σ1 = |1〉〈0| + |0〉〈1|, σ2 = i |1〉〈0| − i |0〉〈1| and σ3 = |0〉〈0| − |1〉〈1| as the three
Pauli operators.
In this section we make a series of simplifications of the form of the optimization. The
argument given broadly follows the logic of [42] (see also [45] for an alternative).

Definition 13. A single-round 2 − 2 − 2 measurement strategy is a tuple
(HA′ ,HB′ , {Ma|x}x,a, {Nb|y}y,b), where HA′ and HB′ are Hilbert spaces, and {Ma|x}a is
a POVM on HA′ for each x ∈ {0, 1} and likewise {Nb|y}b is a POVM on HB′ for each
y ∈ {0, 1}. In the case that all the POVMs are projective we will call this a single-round
2 − 2 − 2 projective measurement strategy.

Note that here 2 − 2 − 2 stands for 2 possible values of inputs, 2 possible values for the
outputs and 2 parties.
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Definition 14. A single-round 2−2−2 strategy is a single-round 2−2−2 measurement
strategy together with a state ρA′B′E ∈ HA′ ⊗ HB′ ⊗ HE, where HE is an arbitrary
Hilbert space.

Note that in a device-independent scenario, such a strategy can be chosen by the
adversary.

Definition 15. Given a single-round 2 − 2 − 2 measurement strategy and a distribution
pXY over the settings X and Y , the associated 2 − 2 − 2 channel is defined by

N : S(HA′ ⊗ HB′) → S(HA ⊗ HB ⊗ HX ⊗ HY ) :

σ 7→
∑
abxy

pXY (x, y) |a〉〈a| ⊗ |b〉〈b| ⊗ |x〉〈x| ⊗ |y〉〈y| tr
(
(Ma|x ⊗Nb|y)σ

)
,

where HA, HB, HX and HY are two dimensional Hilbert spaces. The union of the sets
of associated 2 − 2 − 2 channels for all single-round 2 − 2 − 2 measurement strategies for
some fixed input distribution pXY is denoted C(pXY ). The union of the sets of associated
2 − 2 − 2 channels for all single-round 2 − 2 − 2 projective measurement strategies is
denoted CΠ(pXY ).

The output of the associated 2 − 2 − 2 channel is classical, and HA ⊗ HB ⊗ HX ⊗ HY

stores the outcomes and the chosen measurements. We will usually apply this channel to
the AB part of a tripartite system, giving

(N ⊗IE)(ρA′B′E) =
∑
abxy

pXY (x, y)pAB|xy(a, b) |a〉〈a|⊗|b〉〈b|⊗|x〉〈x|⊗|y〉〈y|⊗τa,b,x,yE ,

(4.7)
where τa,b,x,yE ∈ S(HE) for each a, b, x, y (it is the normalization of
trA′B′

(
(Ma|x ⊗Nb|y ⊗ 1E)ρA′B′E

)
).

Note that the generalized CHSH score, which we denote S((N ⊗ IE)(ρA′B′E)) does not
depend on the distribution pXY of input settings.
We will be interested in optimization problems of the form

F (ω, pXY ) = inf
R
H̄((N ⊗ IE)(ρA′B′E)), where (4.8)

R = {(N , ρA′B′E) : N ∈ C(pXY ), S((N ⊗ IE)(ρA′B′E)) = ω},

where HE is an arbitrary Hilbert space and the spaces HA′ and HB′ are those from
the chosen element of C(pXY ), i.e., the set R(ω) runs over all possible dimensions of
these spaces, and ω is some fixed real number. Here H̄ can be any one of the following
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entropic quantities defined on the state (N ⊗ IE)(ρA′B′E): H(AB|X = 0, Y = 0, E),
H(AB|XY E), H(AB|E), H(A|X = 0, Y = 0, E), H(A|XY E) or H(A|E). We
consider the family of optimizations in this work and many of the arguments that follow
to be independent of this choice.

4.2.1 Reduction to projective measurements

In this section, we conclude that there is no loss in generality in assuming that the devices
perform projective measurements. More precisely, we prove the following lemma.

Lemma 1. The sets

T1 := {(N ⊗ IE)(ρA′B′E) : N ∈ C(pXY ), ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE)} and
T2 := {(N ⊗ IE)(ρA′B′E) : N ∈ CΠ(pXY ), ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE)}

are identical.

This is a corollary of Naimark’s theorem, which we state in the following way.

Theorem 2 (Naimark’s theorem). Let {Ei}i be a POVM on H. There exists a Hilbert
space H′ and a projective measurement {Πi}i on H ⊗ H′ such that for any ρ ∈ S(H)

∑
i

|i〉〈i| tr(ρEi) =
∑
i

|i〉〈i| tr(Πi(ρ⊗ |0〉〈0|)) .

Proof. We can directly construct this measurement as follows. Consider the isometry
V : H → H ⊗ H′ given by V = ∑

i

√
Ei ⊗ |i〉, and let U be the extension of V to a

unitary with the property that U(|ψ〉 ⊗ |0〉) = ∑
i

√
Ei |ψ〉 ⊗ |i〉 for any |ψ〉 ∈ H. This

construction ensures that the channels

E : ρ 7→
∑
i

|i〉〈i| tr(Eiρ) and

E ′ : ρ 7→
∑
i

|i〉〈i| tr
(
(1 ⊗ |i〉〈i|)U(ρ⊗ |0〉〈0|)U †

)

are identical. The second of these can be rewritten

ρ 7→
∑
i

|i〉〈i| tr (Πi(ρ⊗ |0〉〈0|)) ,

where we take Πi = U †(1 ⊗ |i〉〈i|)U , as required.
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Proof of Lemma 1. By definition T2 ⊆ T1. For the other direction, consider a state
ρA′B′E and POVMs {Ma|x}a,x and {Nb|y}b,y forming a single-round CHSH strategy in T1.
We use the construction in the proof of Theorem 2 to generate the projectors ΠA

a|x and
ΠB
b|y as Naimark extensions of the POVMs. Instead of creating the state ρA′B′E, the state

ρA′B′E ⊗ |0〉〈0|A′′ ⊗ |0〉〈0|B′′ is created, where the projectors ΠA
a|x act on A′A′′ and ΠB

b|y

act on B′B′′. Since the latter is a strategy in T2 leading to the same post-measurement
state (4.7), we have T1 ⊆ T2, which completes the proof.

4.2.2 Reduction to convex combinations of qubit strategies

This is a consequence of Jordan’s lemma [41] and is a special feature that applies only
because the Bell inequality has two inputs and two outputs for each party.

Lemma 2 (Jordan’s lemma). Let A1 and A2 be two Hermitian operators on H with
eigenvalues ±1, then we can decompose H = ⊕

α Hα such that A1 and A2 preserve the
subspaces Hα, and where each Hα has dimension at most 2.

Corollary 1. Let Π1 and Π2 be two projections on H. We can decompose H = ⊕
α Hα

such that Π1, 1 − Π1, Π2 and 1 − Π2 preserve the subspaces Hα, and where each Hα

has dimension at most 2.

Proof. Apply Jordan’s lemma to the Hermitian operators A1 = 2Π1−1 and A2 = 2Π2−1

with eigenvalues ±1, and consider |ψ〉 ∈ Hα for some α. By construction A1 |ψ〉 ∈ Hα

from which it follows that Π1 |ψ〉 ∈ Hα, and hence also (1 − Π1) |ψ〉 ∈ Hα. Thus, Π1

and 1 − Π1 preserve the subspace; likewise Π2 and 1 − Π2.

This implies the following

Lemma 3. Let C2×2(pXY ) be the set of CHSH channels associated with the single-round
CHSH projective measurement strategies where each of the four projectors Ma|x is block
diagonal with 2 × 2 blocks, and each of the four projectors Nb|y is block diagonal with
2 × 2 blocks. The sets

T2 := {(N ⊗ IE)(ρA′B′E) : N ∈ CΠ(pXY ), ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE)} and
T3 := {(N ⊗ IE)(ρA′B′E) : N ∈ C2×2(pXY ), ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE)}

are identical.
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Proof. This follows by applying Corollary 1 to the projectors M0|0 and M0|1 to get the
blocks on HA′ and to the projectors N0|0 and N0|1 to get the blocks on HB′ . Although
some of the blocks may be 1 × 1, we can collect these together and treat them as a
2 × 2 block, or add an extra dimension to the space (on which the state has no support)
to achieve all 2 × 2 blocks.

We can also make the state only have support on the 2 × 2 blocks.

Lemma 4. The sets

T3 := {(N ⊗ IE)(ρA′B′E) : N ∈ C2×2(pXY ), ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE)} and
T4 := {(N ⊗ IE)(ρA′B′E) : N ∈ C2×2(pXY ), ρA′B′E ∈ S2×2(HA′ ⊗ HB′ ⊗ HE)}

are identical. Here S2×2(HA′ ⊗ HB′ ⊗ HE) is the subset of S(HA′ ⊗ HB′ ⊗ HE) such
that ρA′B′E ∈ S2×2(HA′ ⊗ HB′ ⊗ HE) implies

ρA′B′E =
∑
α,β

(Πα
A′ ⊗ Πβ

B′ ⊗ 1E)ρA′B′E(Πα
A′ ⊗ Πβ

B′ ⊗ 1E) ,

where {Πα}α are projectors onto the 2 × 2 diagonal blocks.

Proof. Consider a state ρA′B′E and sets of projectors {Ma|x}a,x and {Nb|y}b,y from the
set T3. For brevity, write Πα,β = Πα

A′ ⊗ Πβ
B′ . Then, since

Ma|x ⊗Nb|y =
∑
α,β

(Πα
A′ ⊗ Πβ

B′)(Ma|x ⊗Nb|y)(Πα
A′ ⊗ Πβ

B′) ,

we have

tr
(
(Ma|x ⊗Nb|y ⊗ 1)ρA′B′E

)
= tr

∑
α,β

(Πα,β ⊗ 1E)(Ma|x ⊗Nb|y ⊗ 1)(Πα,β ⊗ 1E)ρA′B′E


= tr

∑
α,β

(Ma|x ⊗Nb|y ⊗ 1)(Πα,β ⊗ 1E)ρA′B′E(Πα,β ⊗ 1E)


= trA′B′((Ma|x ⊗Nb|y ⊗ 1)ρ′
A′B′E) ,

where ρ′
A′B′E = ∑

α,β(Πα,β ⊗ 1E)ρA′B′E(Πα,β ⊗ 1E) and tr is over the registers A′

and B′. Thus, if we replace ρA′B′E by ρ′
A′B′E we obtain the same post-measurement

state (4.7). Hence T3 ⊆ T4, and, since the other inclusion is trivial, T3 = T4.

Lemma 5. Let N ∈ C2×2(pXY ) and ρA′B′E ∈ S2×2(HA′ ⊗ HB′ ⊗ HE). The state
(N ⊗IE)(ρA′B′E) can be formed as a convex combination of states (Nλ⊗IE)(ρλA′′B′′E),
where for each λ, the channel Nλ is that associated with a single-round measurement
strategy with two 2-dimensional Hilbert spaces and distribution pXY .
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Proof. Since ρA′B′E ∈ S2×2(HA′ ⊗ HB′ ⊗ HE) the 2 × 2 block structure means we
can write ρA′B′E = ∑

α,β pα,βρ
α,β
A′B′E, where pα,βρα,βA′B′E = (Πα,β ⊗1E)ρA′B′E(Πα,β ⊗1E)

and tr
(
ρα,βA′B′E

)
= 1 for all α and β. Likewise, taking Mα

a|x = Πα
A′Ma|xΠα

A′ and Nβ
b|y =

Πβ
B′Nb|yΠβ

B′ we can write Ma|x = ∑
αM

α
a|x and Nb|y = ∑

β N
β
b|y. In terms of these we

have

trA′B′((Ma|x ⊗Nb|y ⊗ 1)ρA′B′E) =
∑
α,β

pα,β trA′B′((Mα
a|x ⊗Nβ

b|y ⊗ 1)ρα,βA′B′E).

We can then associate a value of λ with each pair (α, β), replace each ρα,βA′B′E by a state
on A′′B′′E in which A′′ and B′′ are two-dimensional (the support of ρα,βA′B′ has dimension
at most 4), and likewise replace the projectors by qubit projectors. In terms of these we
have

(N ⊗ IE)(ρA′B′E) =
∑
λ

pλ(Nλ ⊗ IE)(ρλA′′B′′E) .

In other words, any post-measurement state (4.7) that can be generated in the general
case, can also be generated if Eve sends a convex combination of two qubit states, and
where the measurements used by the separated devices depend on the state sent. Eve
could realise such a strategy in practice by using pre-shared randomness. We can proceed
to consider strategies in which qubits are shared between the two devices, and then
consider the mixture of such strategies after doing so.

4.3 QUBIT STRATEGIES

In this section we consider the single-round 2 − 2 − 2 measurement strategies in which
HA′ and HB′ are two-dimensional and the measurements are rank-1 projectors. Given a
distribution pXY we use CΠ1,2(pXY ) to denote the set of associated 2 − 2 − 2 channels.
We restrict to rank-1 projectors because if one of the projectors is equal to the identity it
is not possible to achieve a non-classical generalized CHSH score, and the non-classical
scores are the ones of interest.

Lemma 6. Consider a single-round 2 − 2 − 2 measurement strategy for which one of
the POVM elements is identity and let N be the associated 2 − 2 − 2 channel. For any
state ρA′B′ on which N can act we have S(N (ρA′B′)) ≤ l, where l is the local bound
for the generalized CHSH inequality.
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Proof. Suppose the identity element corresponds to M0|0 (the other cases follow sym-
metrically). Any conditional distribution pAB|XY that obeys the non-signalling conditions
takes the form

X = 0 X = 1
A = 0 A = 1 A = 0 A = 1

Y = 0 B = 0 µ 0 ν µ− ν

B = 1 1 − µ 0 ζ 1 − µ− ζ

Y = 1 B = 0 γ 0 ξ γ − ξ

B = 1 1 − γ 0 ν + ζ − ξ 1 + ξ − γ − ν − ζ

where µ, ν, ζ and γ are any arbitrary non-negative numbers that do not exceed 1. In
order to prove the lemma, it suffices to show that this distribution can be achieved using
a local strategy. For this, we show that the CHSH score for this strategy ≤ 3

4 . The
associated CHSH score is

1
4 (µ+ ν + (1 − µ− ζ) + γ + (γ − ξ) + (ν + ζ − ξ)) = 1

4 (1 + 2ν + 2γ − 2ξ) .

Since every element of the distribution must be between 0 and 1 we have 1+ξ−γ−ν−ζ ≥
0, and hence 1 + 2ν + 2γ − 2ξ ≤ 3 − 2ζ ≤ 3, from which the claim follows.

We will then consider an optimization of the form (4.8), but restricting to CΠ1,2, i.e.

h(ω) = inf
R(ω)

H̄((N ⊗ IE)(ρA′B′E)), where (4.9)

R(ω) = {(N , ρA′B′E) : N ∈ CΠ1,2(pXY ), S((N ⊗ IE)(ρA′B′E)) = ω}.

The next step is to show that without loss of generality we can reduce to states that are
invariant under application of σ2 ⊗ σ2 on A′B′.

Lemma 7. Let pXY be a distribution, N ∈ CΠ1,2(pXY ) and ρA′B′E ∈ S(HA′ ⊗HB′ ⊗HE)
be such that S((N ⊗ IE)(ρA′B′E)) = ω. There exists a state ρ̃A′B′EE′ ∈ S(HA′ ⊗
HB′ ⊗ HE ⊗ HE′) such that S((N ⊗ IEE′)(ρ̃A′B′EE′)) = ω, ρ̃A′B′EE′ = (σ2 ⊗ σ2 ⊗
1EE′)ρ̃A′B′EE′(σ2 ⊗ σ2 ⊗1EE′) and H̄((N ⊗ IEE′)(ρ̃A′B′EE′)) = H̄((N ⊗ IE)(ρA′B′E))
for all six of the entropic functions given earlier.

Note that this implies that pA|X and pB|Y can be taken to be uniform.
This is a consequence of the following lemmas.

Lemma 8. Let {Π0|0,Π1|0} and {Π0|1,Π1|1} be two rank-one projective measure-
ments on a two dimensional Hilbert space H. There exists a basis {|ei〉}2

i=1 such that
〈el| Πi|j |ek〉 ∈ R for all i, j, k, l.
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Proof. Without loss of generality, we can take Π0|0 = |0〉〈0| and Π1|0 = |1〉〈1|, and
then write Π0|1 =

∣∣∣α0|1
〉〈
α0|1

∣∣∣ and Π1|1 =
∣∣∣α1|1

〉〈
α1|1

∣∣∣, where
∣∣∣α0|1

〉
= cos(λ) |0〉 +

eiχ sin(λ) |1〉 and
∣∣∣α1|1

〉
= sin(λ) |0〉−eiχ cos(λ) |1〉. Then, we can re-define |1〉 → eiχ |1〉

so that
∣∣∣α0|1

〉
= cos(λ) |0〉 + sin(λ) |1〉 and

∣∣∣α1|1
〉

= sin(λ) |0〉 − cos(λ) |1〉, with
λ ∈ R.

Lemma 9. Let {Π0|0,Π1|0} and {Π0|1,Π1|1} be two rank-one projective measurements
on a two dimensional Hilbert space H, then, there exists a unitary transformation U

such that UΠj|iU
† = Πj⊕1|i for all i, j.

Proof. Let Πj|i =
∣∣∣α0|1

〉〈
α0|1

∣∣∣ for all i, j. From Lemma 8, we can change basis such that∣∣∣α0|0
〉

= |0〉,
∣∣∣α1|0

〉
= |1〉,

∣∣∣α0|1
〉

= cos(λ) |0〉 + sin(λ) |1〉 and
∣∣∣α1|1

〉
= sin(λ) |0〉 −

cos(λ) |1〉 for some λ ∈ R. Any unitary of the form U = eiφ(|0〉〈1| − |1〉〈0|), with φ ∈ R
then satisfies the desired relations.

The following lemma is well-known (it follows straightforwardly from e.g., [62, Sec-
tion 11.3.5])

Lemma 10. For ρCZEE′ = ∑
i piρ

i
CZE⊗|i〉〈i|E′ we haveH(C|ZEE ′)ρ = ∑

i piH(C|ZE)ρi .

We now prove Lemma 7.

Proof of Lemma 7. Let UA and UB be the unitaries formed by applying Lemma 9 to
respective measurements of each device and using the choice of basis specified in
the proof of Lemma 9 we can take UA = σ2 and UB = σ2. Then define ρ′

A′B′E =
(σ2 ⊗σ2 ⊗1E)ρA′B′E(σ2 ⊗σ2 ⊗1E). The states (N ⊗IE)(ρ′

A′B′E) and (N ⊗IE)(ρA′B′E)
are related by

(N ⊗ IE)(ρ′
A′B′E) = (1XY E ⊗ σ1 ⊗ σ1)(N ⊗ IE)(ρA′B′E)(1XY E ⊗ σ1 ⊗ σ1) .

In other words (N ⊗ IE)(ρ′
A′B′E) is identical to (N ⊗ IE)(ρA′B′E), except that the

outcomes of each device have been relabelled (a, b) → (a⊕1, b⊕1). Note that our choice
of the generalized CHSH score is invariant under the re-labelling of the outputs. It follows
that S((N ⊗ IE)(ρ′

A′B′E)) = ω and H̄((N ⊗ IE)(ρ′
A′B′E)) = H̄((N ⊗ IE)(ρA′B′E)).

Now consider the state ρ̃A′B′EE′ = (ρA′B′E ⊗ |0〉〈0|E′ + ρ′
A′B′E′ ⊗ |1〉〈1|E′)/2. We have

(N ⊗IEE′)(ρ̃A′B′EE′) = ((N ⊗IE)(ρA′B′E)⊗|0〉〈0|E′ +(N ⊗IE)(ρ′
A′B′E′)⊗|1〉〈1|E′)/2.

Since the score is linear, we have S((N ⊗ IEE′)(ρ̃A′B′EE′)) = ω. By construction,
ρ̃A′B′E = (σ2 ⊗ σ2 ⊗ 1E)ρ̃A′B′E(σ2 ⊗ σ2 ⊗ 1E). Finally, as a consequence of Lemma 10,
for any of the entropy functions H we have H̄(ρ̃A′B′EE′) = H̄(ρA′B′E).
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Corollary 2. Any optimization of the form (4.9) is equivalent to an optimization of the
same form but where each of the projectors are onto states of the form α |0〉 + β |1〉
with α, β ∈ R and ρA′B′E = (σ2 ⊗ σ2 ⊗ 1)ρA′B′E(σ2 ⊗ σ2 ⊗ 1).

Next we consider the form of the reduced state ρA′B′ in the Bell basis.

Lemma 11. Let N be the channel associated with a single-round CHSH strategy in
which each POVM element is a projector of the form cos(α) |0〉+sin(α) |1〉 with α ∈ R.
The state ρPA′B′E satisfies (N ⊗IE)(ρPA′B′E) = (N ⊗IE)(ρA′B′E), where ρPA′B′E is formed
from ρA′B′E by taking the partial transpose on A′B′ in the Bell basis.

Proof. By definition, the partial transpose generates the state

ρPA′B′E =
∑
ij

(|Ψi〉〈Ψj| ⊗ 1E)ρA′B′E(|Ψi〉〈Ψj| ⊗ 1E) . (4.10)

Writing the partial trace out in the Bell basis, for any two projectors Π1 and Π2 on HA′

and HB′ we have

tr
(
(Π1 ⊗ Π2 ⊗ 1E)ρPA′B′E

)
=

∑
i

(〈Ψi| (Π1 ⊗ Π2) ⊗ 1E)ρPA′B′E(|Ψi〉 ⊗ 1E)

=
∑
ijk

((〈Ψi| (Π1 ⊗ Π2) |Ψj〉〈Ψk|) ⊗ 1E)ρA′B′E

(|Ψj〉〈Ψk| |Ψi〉 ⊗ 1E)

=
∑
ij

〈Ψi| (Π1 ⊗ Π2) |Ψj〉 (〈Ψi| ⊗ 1E)ρA′B′E

(|Ψj〉 ⊗ 1E) .(4.11)

When Π1 and Π2 are each projectors onto states of the form cos(α) |0〉 + sin(α) |1〉 a
short calculation reveals 〈Ψi| (Π1 ⊗ Π2) |Ψj〉 = 〈Ψj| (Π1 ⊗ Π2) |Ψi〉. Using this in (4.11)
we can conclude that

trA′B′((Π1 ⊗ Π2 ⊗ 1E)ρPA′B′E) = trA′B′((Π1 ⊗ Π2 ⊗ 1E)ρA′B′E) ,

from which it follows that (N ⊗ IE)(ρPA′B′E) = (N ⊗ IE)(ρA′B′E).

Corollary 3. Any optimization of the form (4.9) is equivalent to an optimization of the
same form but where each of the projectors are onto states of the form α |0〉 + β |1〉
with α, β ∈ R, ρA′B′E = (σ2 ⊗ σ2 ⊗ 1)ρA′B′E(σ2 ⊗ σ2 ⊗ 1) and ρA′B′E = ρPA′B′E.
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Proof. We established the invariance under (σ2 ⊗ σ2 ⊗ 1) in Corollary 2. Since (N ⊗
IE)(ρPA′B′E) = (N ⊗ IE)(ρA′B′E), if Eve uses the state (ρA′B′E ⊗ |0〉〈0|E′ + ρPA′B′E ⊗
|1〉〈1|E′)/2, then, by the same argument used at the end of the proof of Lemma 7, the
entropy and scores are unchanged while the state satisfies the required conditions.

The next step is to show that the state on A′B′ can be taken to come from the set of
density operators that are diagonal in the Bell basis. We define

SB := {λ0 |Φ0〉〈Φ0| + λ1 |Φ1〉〈Φ1| + λ2 |Φ2〉〈Φ2| + λ3 |Φ3〉〈Φ3| : 1 ≥ λ0 ≥ λ3 ≥ 0,

1 ≥ λ1 ≥ λ2 ≥ 0, λ0 − λ3 ≥ λ1 − λ2,
∑
i

λi = 1} ,

(4.12)

where the states {|φi〉}i are defined by (4.3)–(4.6).

Lemma 12. Any optimization of the form (4.9) is equivalent to an optimization of the
same form but where each of the projectors are onto states of the form cos(α) |0〉 +
sin(α) |1〉 with α ∈ R and ρA′B′ ∈ SB.

Proof. From Corollary 3, we have that ρA′B′ can be taken to be invariant under σ2 ⊗ σ2.
Hence we can write

ρA′B′ =


λ′

0 0 0 r1

0 λ′
1 r2 0

0 r∗
2 λ′

2 0
r∗

1 0 0 λ′
3

 (4.13)

where the matrix is expressing the coefficients in the Bell basis. From corollary 3 we
can impose that ρA′B′ = ρTA′B′ , which then implies that r1 and r2 are real. Note that in
order that ρA′B′ is a positive operator we require r2

1 ≤ λ′
0λ

′
3 and r2

2 ≤ λ′
1λ

′
2.

Let Uθ = cos(θ/2) |0〉〈0| + sin(θ/2) |0〉〈1| − sin(θ/2) |1〉〈0| + cos(θ/2) |1〉〈1|, so that Uθ
preserves the set {cos(α) |0〉 + sin(α) |1〉 : α ∈ R}. We proceed to show that for any
state of the form (4.13) with r1 and r2 real, there exist values of θA and θB such that

ρ′
A′B′ = (UθA

⊗ UθB
)ρA′B′(U †

θA
⊗ U †

θB
)

is diagonal in the Bell basis. We can compute the form of ρ′
A′B′ in the Bell basis. This has

the same form as (4.13), but with r1 replaced by r1 cos(θA − θB) + λ′
0−λ′

3
2 sin(θA − θB)

and r2 replaced by r2 cos(θA + θB) + λ′
2−λ′

1
2 sin(θA + θB). To make these zero we need
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to choose θA and θB such that cos2(θA − θB) = (λ′
0−λ′

3)2

(λ′
0−λ′

3)2+4r2
1

and cos2(θA + θB) =
(λ′

1−λ′
2)2

(λ′
1−λ′

2)2+4r2
2
. If we write

φ1 = cos−1

 λ′
0 − λ′

3√
(λ′

0 − λ′
3)2 + 4r2

1

 , φ2 = cos−1

 λ′
1 − λ′

2√
(λ′

1 − λ′
2)2 + 4r2

2

 ,
ζA = φ1 + φ2

2 and ζB = φ1 − φ2

2

then we can express the four solutions

(θA, θB) = (ζA, ζB), (ζA + π/2, ζB − π/2), (ζA + π/2, ζB + π/2), (ζA + π, ζB) .

Each of these brings the state into the form ρA′B′ = λ0 |Φ0〉〈Φ0| + λ1 |Φ1〉〈Φ1| +
λ2 |Φ2〉〈Φ2| + λ3 |Φ3〉〈Φ3|. The difference between the first two of these is an exchange
of λ0 with λ3, the difference between the first and the third is an exchange of λ1 with λ2

and the difference between the first and the fourth is an exchange of λ0 with λ3 and of λ1

with λ2. It follows that we can ensure λ0 ≥ λ3 and λ1 ≥ λ2. Finally, if λ0 −λ3 < λ1 −λ2

we can apply σ3 ⊗ 1 to the resulting state, which simultaneously switches λ0 with λ1

and λ2 with λ3, while again preserving the set {cos(α) |0〉 + sin(α) |1〉 : α ∈ R}.

The culmination of this section is the following.

Lemma 13. For given pXY , let

R1(ω) := {(N , ρA′B′E) : N ∈ CΠ1,2(pXY ),

ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE), S((N ⊗ IE)(ρA′B′E)) = ω} and
R2(ω) := {(N , ρA′B′E) : N ∈ CΠ1,2(pXY ),

ρA′B′E ∈ S(HA′ ⊗ HB′ ⊗ HE), ρA′B′ ∈ SB, S((N ⊗ IE)(ρA′B′E)) = ω} .

We have infR2(ω) H̄((N ⊗ IE)(ρA′B′E)) = infR1(ω) H̄((N ⊗ IE)(ρA′B′E)) for any of the
six entropy functions H̄.

4.4 REDUCTION TO PURE STATES

Here we show that it is sufficient to restrict any of the optimizations we are interested in
to pure states.
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Lemma 14. For given pXY let R2(ω) be as in Lemma 13 and consider

R3(ω) := {(N , ρA′B′E) : N ∈ CΠ1,2(pXY ), ρA′B′E ∈ SP (HA′ ⊗ HB′ ⊗ HE),

ρA′B′ ∈ SB, S((N ⊗ IE)(ρA′B′E)) = ω} .

We have infR3(ω) H̄((N ⊗ IE)(ρA′B′E)) = infR2(ω) H̄((N ⊗ IE)(ρA′B′E)) for any of the
six entropy functions H̄.

Proof. Since R3 ⊂ R2, we have infR3(ω) H̄((N ⊗ IE)(ρA′B′E)) ≥ infR2(ω) H̄((N ⊗
IE)(ρA′B′E)). For the other direction, consider a state ρA′B′E from the set R2, and
let ρA′B′EE′ be its purification. Using the strong subadditivity of the von-Neumann
entropy, H(C|ZEE ′) ≤ H(C|ZE), a new strategy in which the only change is that
Eve holds a purification of ρA′B′E cannot increase any of the entropic quantities of
interest and makes no change to the score. Thus, infR3(ω) H̄((N ⊗ IE)(ρA′B′E)) ≤
infR2(ω) H̄((N ⊗ IE)(ρA′B′E)).

Note that this also means that we can restrict HE to be 4 dimensional.

4.5 SIMPLIFICATIONS OF QUBIT STRATEGIES FOR SPECIFIC EN-
TROPIC QUANTITIES

In this section, we compute expressions for each of the entropies of interest, based on
the simplifications from the previous section. In other words, we are considering the
optimizations

G(ω, pXY ) := min H̄((N ⊗ IE)(ρA′B′E)) (4.14)
HA′ = HB′ = C2, HE = C4, (4.15)
ρA′B′E ∈ SP (HA′ ⊗ HB′ ⊗ HE), ρA′B′ ∈ SB
N : is of the form 4.20∣∣∣φAa|x

〉
= cos

(
αa|x

)
|0〉 + sin

(
αa|x

)
|1〉 and (4.16)∣∣∣φBb|y〉 = cos

(
βb|y

)
|0〉 + sin

(
βb|y

)
|1〉 (4.17)

α1|x = π/2 + α0|x and β1|x = π/2 + β0|x (4.18)
S((N ⊗ IE)(ρA′B′E)) = ω. (4.19)
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For convenience we sometimes use αx = α0|x and βx = β0|x and

σA′B′ 7→
∑
abxy

pXY (x, y) |abxy〉〈abxy| tr
((∣∣∣φAa|x

〉〈
φAa|x

∣∣∣⊗ ∣∣∣φBb|y〉〈φBb|y∣∣∣)σA′B′

))
(4.20)

Let

τABXY E = (N ⊗ IE)(ρA′B′E)

=
∑
abxy

pXY (x, y) |abxy〉〈abxy| ⊗ tr
((∣∣∣φAa|x

〉〈
φAa|x

∣∣∣⊗ ∣∣∣φBb|y〉〈φBb|y∣∣∣⊗ 1E
)
ρA′B′E

)
=

∑
abxy

pXY (x, y)pAB|xy(a, b) |abxy〉〈abxy| ⊗ τabxyE , (4.21)

where {τabxyE } are normalized and tr is with respect to the systems A′B′.
We make a few initial observations.
Consider pAB|xy(a, b)τabxyE = trA′B′

((∣∣∣φAa|x

〉〈
φAa|x

∣∣∣⊗ ∣∣∣φBb|y〉〈φBb|y∣∣∣⊗ 1E
)
ρA′B′E

)
. Since

ρA′B′E is pure, we can use the Schmidt decomposition to write ρA′B′E = |Φ〉〈Φ|A′B′E,
where

|Φ〉A′B′E =
∑
i

√
λi |Ψi〉 ⊗ |i〉

where {|i〉} is an orthonormal basis for HE. We have

pAB|xy(a, b)τabxyE =
∑
ij

√
λiλj

(〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψi〉 〈Ψj|
(∣∣∣φAa|x

〉
⊗
∣∣∣φBb|y〉) |i〉〈j|

=
∣∣∣ζabxy〉〈ζabxy∣∣∣ ,

where ∣∣∣ζabxy〉 =
∑
i

√
λi(
〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψi〉 |i〉 and (4.22)

pAB|xy(a, b) =
∑
i

λi
∣∣∣(〈φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψi〉
∣∣∣2 . (4.23)

Hence τabxyE is pure for each a, b, x, y. Note also that

(〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψ0〉 =
cos
(
βb|y − αa|x

)
√

2
(4.24)

(〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψ1〉 =
cos
(
βb|y + αa|x

)
√

2
(4.25)

(〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψ2〉 =
sin
(
βb|y + αa|x

)
√

2
(4.26)

(〈
φAa|x

∣∣∣⊗ 〈
φBb|y

∣∣∣) |Ψ3〉 =
sin
(
βb|y − αa|x

)
√

2
(4.27)
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Because τABXY E is formed from ρA′B′E without acting on E, we have H(E)τ = H(E)ρ,
and because ρA′B′E is pure, H(E)ρ = H(A′B′)ρ = H({λ0, λ1, λ2, λ3}).3 For the same
reason, ∑ab pAB(a, b)τabxyE = τE for all x, y.

Lemma 15. For σAXE = ∑
ax pAX(a, x) |a〉〈a| ⊗ |x〉〈x| ⊗ σa,xE , we have

H(A|XE) = H(A|X) +
∑
ax

pAX(a, x)H(σa,xE ) −
∑
x

pX(x)H
(∑

a

pA|x(a)σa,xE
)
.

Proof. We have

H(A|XE) = H(AXE) −H(XE)

= H(AX) +
∑
ax

pAX(a, x)H(E|A = a,X = x) −H(X)−∑
x

pX(x)H(E|X = x)

= H(A|X) +
∑
ax

pAX(a, x)
(
H(σa,xE ) −H

(∑
a′
pA|x(a′)σa

′,x
E

))
.

We can parameterize the Bell diagonal state in the following way:

λ0 = 1
4 + R cos(θ)

2 + δ (4.28)

λ1 = 1
4 + R sin(θ)

2 − δ (4.29)

λ2 = 1
4 − R sin(θ)

2 − δ (4.30)

λ3 = 1
4 − R cos(θ)

2 + δ (4.31)

where 0 ≤ R ≤ 1, 0 ≤ θ ≤ π/4 if R ≤ 1/
√

2, or 0 ≤ θ ≤ π/4 − cos−1(1/(R
√

2)) if
R > 1/

√
2 and −1/4 +R cos(θ)/2 ≤ δ ≤ 1/4 −R sin(θ)/2.

Lemma 16. For R > 1/
√

2, maxδH({λ0, λ1, λ2, λ3}) is achieved when δ = δ∗ =
R2 cos(2θ)

4 .

Proof. One can compute the derivative of H({λ0, λ1, λ2, λ3}) with respect to δ to see
that it is 0 only for δ = δ∗ := R2 cos(2θ)

4 .
We next check that δ∗ is in the valid range of δ. The condition δ∗ ≤ 1/4 −R sin(θ)/2
rearranges to 2R2 sin2(θ) − 2R sin(θ) + 1 −R2 ≥ 0. The roots of the quadratic equation
2R2x2 − 2Rx + 1 − R2 are at x = 1

2R(1 ±
√

2R2 − 1). For R ≥ 1√
2 the roots are

real4. Our condition on θ implies that 0 ≤ sin(θ) ≤ 1
2R(1 −

√
2R2 − 1), hence taking

3We use H for both the von Neumann and Shannon entropies; if a list of probabilities is given as
the argument to H it signifies the Shannon entropy.

4If R < 1√
2 there are no real roots and the condition always holds.
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x = sin(θ) we are always to the left of the first root and so δ∗ ≤ 1/4 −R sin(θ)/2. A
similar argument shows δ∗ ≥ −1/4 +R cos(θ)/2.
We can then compute the double derivative of H({λ0, λ1, λ2, λ3}) with respect to δ

and evaluate it at δ∗. This gives − 32
ln(2)(2−4R2+R4+R4 cos(4θ)) , which can be shown to be

negative for R > 1/
√

2 and any valid θ using a similar argument to that above.

Using this state and the specified measurements, the probability table for the observed
distribution has the form given in the table below (whose entries correspond to pAB|XY ):

Y = 0 Y = 1
B = 0 B = 1 B = 0 A = 1

X = 0 A = 0 ε00
1
2 − ε00 ε01

1
2 − ε01

A = 1 1
2 − ε00 ε00

1
2 − ε01 ε01

X = 1 A = 0 ε10
1
2 − ε10

1
2 − ε11 ε11

A = 1 1
2 − ε10 ε10 ε11

1
2 − ε11

where

ε00 = 1
4 (1 +R cos(θ) cos(2(α0 − β0)) +R sin(θ) cos(2(α0 + β0)))

ε01 = 1
4 (1 +R cos(θ) cos(2(α0 − β1)) +R sin(θ) cos(2(α0 + β1)))

ε10 = 1
4 (1 +R cos(θ) cos(2(α1 − β0)) +R sin(θ) cos(2(α1 + β0)))

ε11 = 1
4 (1 −R cos(θ) cos(2(α1 − β1)) −R sin(θ) cos(2(α1 + β1))) .

Note that

S(τABXY ) =2
∑
ij

γijεij (4.32)

is independent of δ. In the upcoming sections, we use these simplifications to obtain
analytic forms for entropic quantities for the qubit case.

4.6 H(AB|X=0,Y=0,E)

For H(AB|X = 0, Y = 0, E) we are interested in the state

τ ′
ABE =

∑
ab

pAB|00(a, b) |a〉〈a| ⊗ |b〉〈b| ⊗ τab00
E



4.7. H(AB|XYE) 59

since H(AB|X = 0, Y = 0, E)τ = H(AB|E)τ ′ . Note that, as above, H(E)τ ′ = H(E)ρ.
Using Lemma 15 we have

H(AB|E)τ ′ = H(AB)τ ′ +
∑
ab

pAB(a, b)H(τab00
E ) −H

(∑
ab

pAB(a, b)τab00
E

)

= H(AB)τ ′ +
∑
ab

pAB(a, b)H(τab00
E ) −H(E)τ ′ .

However, since τab00
E is pure for each a, b, H(τab00

E ) = 0 and we find

H(AB|E)τ ′ = H(AB)τ ′ −H(E)ρ
= H({ε00, ε00, 1/2 − ε00, 1/2 − ε00}) −H({λ0, λ1, λ2, λ3})

= 1 +Hbin(2ε00) −H({λ0, λ1, λ2, λ3}) .

Lemma 16 shows that maxδH({λ0, λ1, λ2, λ3}) is achieved for δ = δ∗ = R2 cos(2θ)
4 . Since

the score is independent of δ we can take the state to satisfy δ = δ∗ and remove δ from
the optimization.

4.7 H(AB|XYE)

In this case we again use Lemma 15 to obtain

H(AB|XY E) = H(AB|XY ) +
∑
abxy

pABXY (a, b, x, y)H(τabxyE )−

∑
xy

pXY (x, y)H
(∑
ab

pAB|xy(a, b)τabxyE

)

= H(AB|XY ) −H(E) ,

where we again use that H(τabxyE ) = 0, and note that ∑ab pAB|xy(a, b)τabxyE = ρE for all
x, y. Note that

H(AB|XY ) =
∑
xy

pXY (x, y)H(AB|X = x, Y = y)

= 1 +
∑
xy

pXY (x, y)Hbin(2εxy) ,

and so we have

H(AB|XY E) = 1 +
∑
xy

pXY (x, y)Hbin(2εxy) −H({λ0, λ1, λ2, λ3}) . (4.33)

This is again independent of δ, so, like in the case of H(AB|X = 0, Y = 0, E) we can
take δ = δ∗ and remove δ from the optimization.
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4.8 H(AB|E)

We first trace out XY to give τABE = ∑
ab pAB |a〉〈a| ⊗ |b〉〈b| ⊗∑

xy pXY |ab(x, y)τabxyE .
For this state, Lemma 15 gives

H(AB|E) = H(AB) +
∑
ab

pAB(a, b)H
(∑
xy

pXY |ab(x, y)τabxyE

)
−

H

∑
abxy

pAB(a, b)pXY |ab(x, y)τabxyE


= H(AB) +

∑
ab

pAB(a, b)H
(∑
xy

pXY |ab(x, y)τabxyE

)
−H(E)

= H(AB) +
∑
ab

pAB(a, b)H
(∑
xy

pXY (x, y)pAB|xy(a, b)τabxyE

pAB(a, b)

)
−H(E) .

In this case we cannot remove the middle term, and the middle term is not independent
of δ. The optimization in this case is hence significantly more complicated. Note that

H(AB) = 1 +Hbin

2
 ∑

(x,y)6=(1,1)
pXY (x, y)εxy + pXY (1, 1)

(1
2 − ε11

) .

4.9 H(A|X=0,Y=0,E)

For this section, we only focus on the case when ω is the CHSH score. This case
was already covered in [42] where it was solved analytically (see also [45] for a slight
generalization).

Lemma 17. For 3/4 ≤ ω ≤ 1
2(1 + 1√

2) the solution to the optimization problem (4.14)
when H̄ = H(A|X = 0, Y = 0, E) is 1 −Hbin

(
1
2(1 +

√
16ω(ω − 1) + 3)

)
.

For completeness we give a proof here as well. We first show that the maximum CHSH
score for a Bell diagonal state depends only on R.

Lemma 18. Given a state ρA′B′E with ρA′B′ parameterized as in (4.28)–(4.31), if N
satisfies the requirements of the optimization problem (4.14), then τABXY E = (N ⊗
IE)(ρA′B′E) satisfies S(τABXY E) ≤ 1

2 + R
2
√

2 , and there exists a channel N achieving
equality.
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Proof. Consider the score function (4.32). Collecting all the terms involving α0 and α1

and some manipulation gives

S(τABXY E) =1
2 + R

2
√

2
cos(β0 − β1)A1 + R

2
√

2
sin(β0 − β1)B1,

where we have used cos(θ)+sin(θ) =
√

2 sin
(
π
4 + θ

)
and cos(θ)−sin(θ) =

√
2 cos

(
π
4 + θ

)
and

A1 =
[
sin(2α0) sin(β0 + β1) cos

(
π

4 + θ
)

+ cos(2α0) cos(β0 + β1) sin
(
π

4 + θ
)]

B1 =
[
sin(2α1) cos(β0 + β1) cos

(
π

4 + θ
)

− cos(2α1) sin(β0 + β1) sin
(
π

4 + θ
)]

. For brevity we write θ̄ = π
4 + θ. We then use that for r, t, φ ∈ R we have r cos(φ) +

t sin(φ) ≤
√
r2 + t2 with equality if r cos(φ) + t sin(φ) ≥ 0 and r sin(φ) = t cos(φ).

This allows us to form the bound

S(τABXY E) ≤1
2 + R

2
√

2

(
| cos(β0 − β1)|

√
sin2(β0 + β1) cos2(θ̄) + cos2(β0 + β1) sin2(θ̄)

+| sin(β0 − β1)|
√

cos2(β0 + β1) cos2(θ̄) + sin2(β0 + β1) sin2(θ̄)
)

≤1
2 + R

2
√

2
.

Choosing α0 = 0, α1 = π/4, β0 = π
8 − θ

2 , β1 = −π
8 + θ

2 achieves equality (for
instance).

It follows that ω > 3/4 is only possible if R > 1/
√

2.
We now turn to the entropy. In this case we trace out B from the state τ ′ in Section 4.6
to give τ ′

AE = ∑
a pA|00(a) |a〉〈a|⊗∑b pB|a00(b)τab00

E , so that H(A|X = 0, Y = 0, E)τ =
H(A|E)τ ′ . Using Lemma 15 we have

H(A|E)τ ′ = H(A)τ ′ +
∑
a

pA|00(a)H
(∑

b

pB|a00(b)τab00
E

)
−H

(∑
ab

pAB|00(a, b)τab00
E

)

= 1 +
∑
a

1
2H

(∑
b

pB|a00(b)τab00
E

)
−H(E)ρ

= 1 +
∑
a

1
2H

(∑
b

2pAB|00(a, b)τab00
E

)
−H(E)ρ ,

where we have used the fact that pA|00(a) = 1/2 for a = 0, 1. The eigenvalues of∑
b 2pAB|00(a, b)τab00

E turn out to be
1
2

(
1 ±

√
2(λ0 − λ3)(λ1 − λ2) cos(4α0) + (λ0 − λ3)2 + (λ1 − λ2)2

)
,
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independently of a. Hence, we can write H(A|E)τ ′ in terms of the Bell diagonal state
using∑

a

1
2H

(∑
b

2pAB|00(a, b)τab00
E

)
= Φs

(
2(λ0 − λ3)(λ1 − λ2) cos(4α0)

+ (λ0 − λ3)2 + (λ1 − λ2)2
)

H(E)ρ = H({λ0, λ1, λ2, λ3})

where Φs(x) = Hbin(1
2 +

√
x

2 ) is a short-hand notation. Having established this, we show
the following.

Lemma 19. Let ρA′B′E be pure with HA′ = HB′ = C2, and let ρA′B′ be a Bell diagonal
state parameterized by (4.28)–(4.31) with R > 1/

√
2. Let τ be the state defined

by (4.21) H(A|X = 0, Y = 0, E)τ ≥ 1 + Hbin
(

1
2

(
1 +

√
2R2 − 1

))
where equality is

achievable for α0 = 0.

Proof. We note that∑
a

1
2H

(∑
b

2pAB|00(a, b)τab00
E

)
≥ Φs

(
2(λ0 − λ3)(λ1 − λ2) + (λ0 − λ3)2 + (λ1 − λ2)2

)
= Hbin(λ0 + λ1) ,

with equality for α0 = 0. Hence

H(A|E)τ ′ ≥ 1 +Hbin(λ0 + λ1) −H({λ0, λ1, λ2, λ3}) . (4.34)

Using the parameterization of (4.28)–(4.31) we have λ0 + λ1 = 1/2(1 + R(cos(θ) +
sin(θ))). Thus, the minimum of H(A|E)τ ′ over δ is achieved for δ = δ∗ (as in the case
H(AB|X = 0, Y = 0, E)). Taking δ = δ∗ and differentiating the resulting expression
with respect to θ yields

R

2 (cos(θ) + sin(θ)) log
(

1 −R cos(θ) +R sin(θ)
1 +R cos(θ) −R sin(θ)

)
.

Since cos(θ) + sin(θ) =
√

2 sin(π/4 + θ), the leading factor is always positive over
our range of θ. The logarithm term is always negative, except for θ = π/4 where it
reaches zero. Thus, the minimum over θ is always obtained at the largest possible θ, i.e.,
θ = π/4 − cos−1

(
1/(R

√
2)
)
.

With this substitution the right hand side of (4.34) reduces to

1 +Hbin

(1
2
(
1 +

√
2R2 − 1

))
,

establishing the claim.
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Lemma 17 is then a corollary of Lemmas 18 and 19.

Proof of Lemma 17. From Lemma 19 we have

H(A|X = 0, Y = 0, E)τ ≥ 1 +Hbin

(1
2
(
1 +

√
2R2 − 1

))
.

However, Lemma 18 then implies

H(A|X = 0, Y = 0, E)τ ≥ 1 +Hbin

(1
2

(
1 +

√
4(2ω − 1)2 − 1

))
= 1 +Hbin

(1
2

(
1 +

√
16ω(ω − 1) + 3)

))
,

where we use the fact that Hbin(p) is decreasing and concave for p ≥ 1/2. Equality is
achievable by taking α0 = 0, α1 = π/4, β0 = π

8 − θ
2 , β1 = −π

8 + θ
2 .

We use this case to gain confidence in our numerics, since we can make a direct comparison
to the analytic curve.

4.10 H(A|XYE)

In this case Lemma 15 gives

H(A|XY E) = H(A|XY ) +
∑
axy

pAXY (a, x, y)H
(∑

b

pB|axy(b)τabxyE

)

−
∑
xy

pXY (x, y)H
(∑
ab

pAB|xy(a, b)τabxyE

)

= 1 +
∑
axy

pXY (x, y)pA|xy(a)H
(∑

b

2pAB|xy(a, b)τabxyE

)
−H(E) .

The eigenvalues of ∑b 2pAB|xy(a, b)τabxyE can be computed to be

1
2

(
1 ±

√
2(λ0 − λ3)(λ1 − λ2) cos(4αx) + (λ0 − λ3)2 + (λ1 − λ2)2

)
,

independently of a, y. If we define

g(α) := 1
2

(
1 +

√
2(λ0 − λ3)(λ1 − λ2) cos(4α) + (λ0 − λ3)2 + (λ1 − λ2)2

)
then

H(A|XY E) = 1 +∑
x pX(x)Hbin(g(αx)) −H(E) . (4.35)
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Note that using the parameterization (4.28)–(4.31) we have

g(α) = 1
2

(
1 +R

√
1 + sin(2θ) cos(4α)

)
.

Since this is independent of δ, we can again use δ = δ∗ to remove one parameter when
minimizing H(A|XY E).

4.11 H(A|E)

In this case Lemma 15 gives

H(A|E) = H(A) +
∑
a

pA(a)H
∑
bxy

pBXY |a(b, x, y)τabxyE

−

H

∑
abxy

pAB(a, b)pXY |ab(x, y)τabxyE


= 1 + 1

2
∑
a

H

∑
bxy

2pABXY (a, b, x, y)τabxyE

−H(E)

= 1 + 1
2
∑
a

H

∑
bxy

2pXY (x, y)PAB|xy(a, b)τabxyE

−H(E)

= 1 + 1
2
∑
a

H

(∑
x

2pX(x) trA′

((∣∣∣φAa|x

〉〈
φAa|x

∣∣∣⊗ 1E
)
ρA′E

))
−H(E) .

Like in the case H(AB|E) the middle term cannot be removed and this term is not
independent of δ.

4.12 NUMERICALLY COMPUTING UPPER BOUNDS ON RATES

As we have shown, the optimizations that define the G functions can be expressed
in terms of at-most 7 real parameters (3 to specify the state and 4 to choose the
measurements). They are hence amenable to numerical optimizations. We note also
that except in the cases GAB|E(ω, pXY ) and GA|E(ω, pXY ) we can remove an additional
parameter. In this section, we present a heuristic method to estimate the rates. We
restrict ourselves to the case when ω is the CHSH score (i.e. γij = 1

4). This is also the
case for the next chapter.
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We obtain upper bounds by using numerical solvers that attempt to compute G (these
give upper bounds because the computations are not guaranteed to converge). Our
program for computing G runs in N iterations. In each iteration the program starts
by making a random guess for the parameters from within the valid range. It then
uses sequential quadratic programming to minimize H̄((N ⊗ IE)(ρA′B′E)) subject to
the CHSH score being fixed [here H̄ is a placeholder for one of the entropic quantities
of interest]. On each iteration, the program arrives at a candidate for the minimum
value, and we run N ≈ 104 iterations to arrive at the conjectured minimum value for
H̄((N ⊗ IE)(ρA′B′E)). The numerical optimization is performed in Python using the
sequential least squares programming (SLSQP) solver in SciPy. The curves obtained
were found to match those generated by solving numerically in Mathematica and Matlab.
Since these optimizations are not guaranteed to converge, the generated curves are upper
bounds on the infima. Some confidence of their tightness comes from the smoothness of
the curves, the consistency across different numerical solvers, and that the generated
points match the known analytic tight bound in the case H(A|X = 0, Y = 0, E).
They also closely match the numerical lower bounds we computed for GA|XY E and
GAB|X=0,Y=0,E discussed in the next chapter 5.
GAB|00E and GA|00E are convex functions, and hence F = G for these. For the other
cases we generate the graphs in the case where pXY is uniform, observing that each of
the G curves starts with a concave part and switches to convex for larger CHSH scores.
Since the minimum entropy is always zero for classical scores, each of the G curves
approach 0 as ω approaches 3/4. Each of the F curves can be found from G by finding
the tangent to G that passes through (3/4, 0). We call the score at which this tangent
is taken ω∗, defined by (ω∗ − 3/4)G′(ω∗) = G(ω∗). We then have

F (ω) =

G
′(ω∗)(ω − 3

4) if ω ≤ ω∗

G(ω) otherwise
. (4.36)

We give estimates for ω∗ for each of the cases below. In essence, what this means is that
for ω < ω∗ the optimal strategy for Eve is to either use a deterministic classical strategy
with score 3/4 or a strategy that achieves score ω∗, mixing these such that the average
score is ω. Eve can remember which strategy she used, and hence the entropy from her
perspective is also the convex mixture of the entropies of the endpoints.
Figure 4.1 shows the curves we obtained for the functions F in each of the six cases. Note
that, except in the cases where we condition on X = 0 and Y = 0, the graphs all have
linear sections as a result of taking the convex lower bound. In the figure 4.1 we show
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(a) (b)
Figure 4.1: Graphs of the rates for (a) the one-sided and (b) the two-sided randomness
with uniformly chosen inputs. Each of these curves has a non-linear part and the blue
curves do not have a linear part.

the graphs for G together with those for F . The approximate coordinate of the top of
the linear segment for FAB|E is (0.8523, 1.8735) and for FA|E it is (0.8505, 0.967). Note
also that 1 +Hbin

(
1
2 + 1√

32

)
≈ 1.908 is the maximum value on the graph FAB|E(ω).

By examining the parameters that come out of the numerical optimizations we have the
following.

Lemma 20. Consider the curve g1(ω) = 1 +Hbin(ω) − 2Hbin(1
2 + 2ω−1√

2 ). FAB|XY E(ω)
can be upper bounded in terms of g1 as follows

FAB|XY E(ω) ≤

g1(ω) ω∗
AB|XY E ≤ ω ≤ 1

2

(
1 + 1√

2

)
g′

1(ω∗
AB|XY E)(ω − 3/4) 3/4 ≤ ω ≤ ω∗

AB|XY E

. (4.37)

where ω∗
AB|XY E ≈ 0.84403 is the solution to g′

1(ω)(ω − 3/4) = g1(ω). Note that
g1(ω∗

AB|XY E) ≈ 1.4186 and the maximum value reached is 1 +Hbin(1/2 + 1/(2
√

2)) ≈
1.601.

Proof. We first consider an upper bound on GAB|XY E(ω). In section 4.5 we give a
parameterization of a two-qubit state (with parameters R, θ and δ) and measurements
(with parameters α0, α1, β0 and β1) before computing an expression for H(AB|XY E) in
terms of these (see (4.33)). We also obtain an expression for the CHSH score (see (4.32)).
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Choosing R =
√

2(2ω− 1), θ = 0, δ = R2/4, α0 = 0, α1 = π/4, β0 = π/8, β1 = −π/8
we find a score ω, and calculating H(AB|XY E) we obtain H(AB|XY E) = g1(ω) and
hence GAB|XY E(ω) ≤ g1(ω). Since, GAB|XY E(3/4) = 0, and FAB|XY E is formed from
GAB|XY E by taking the convex lower bound, we establish the claim.

Lemma 21. Consider the curve g2(ω) = 1 − Hbin
(

1
2 + 2ω−1√

2

)
. FA|XY E(ω) is upper

bounded by the convex lower bound of g2(ω). In other words,

FA|XY E(ω) ≤

g2(ω) ω∗
A|XY E ≤ ω ≤ 1

2

(
1 + 1√

2

)
g′

2(ω∗
A|XY E)(ω − 3/4) 3/4 ≤ ω ≤ ω∗

A|XY E

. (4.38)

where ω∗
A|XY E ≈ 0.84698 is the solution to g′

2(ω)(ω − 3/4) = g2(ω). Note that
g2(ω∗

A|XY E) ≈ 0.92394.

Proof. The proof is the same as for Lemma 20, except that g1 is replaced by g2 — the
choice of state and measurements remains the same.

4.13 UPPER BOUNDS FOR OTHER ENTROPIC QUANTITIES

(a) (b)
Figure 4.2: (a) Two-sided and (b) one-sided entropy curves conditioned on X, Y and
E with uniform input distribution.

Figure 4.2 gives one-sided and two-sided randomness rates as a function of CHSH score
when inputs are chosen uniformly at random. Recall that the curves for FA|E(ω) and
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(a) (b)
Figure 4.3: (a) Two-sided and (b) one-sided entropy curves conditioned on E with
uniform input distribution.

FAB|E(ω) (Fig 4.3) are fundamental upper bounds on one-sided and two-sided output
randomness rates as a function of the CHSH score. The curves F.|.E are obtained by
taking the convex lower bound (of convex envelope) of G.|.E, which is the randomness
rates if only qubit-strategies were used – i.e. Alice and Bob are only allowed to share
qubit strategies.
Figure 4.2(a) gives the graphs of FAB|XY E(ω) and GAB|XY E(ω), while Figure 4.2(b)
shows those for FA|XY E(ω) and GA|XY E(ω). In each case the G graphs have a concave
and convex part and the F graphs are formed by taking the convex lower bound. For
these cases the points at which the tangents are taken are ω∗

AB|XY E ≈ 0.8440 and
ω∗
A|XY E ≈ 0.8470.

Figure 4.3(a) gives the graphs of FAB|E(ω) and GAB|E(ω), while Figure 4.3(b) shows
those for FA|XY E(ω) and GA|XY E(ω). Again, in each case the G graphs have a concave
and convex part and the F graphs are formed by taking the convex lower bound. For these
cases the points at which the tangents are taken are ω∗

A|E ≈ 0.8505 and ω∗
AB|E ≈ 0.8523.

These curves are generated using heuristic numerical optimizations, and therefore can be
only be treated as good estimates for the randomness rate. In the next chapter, we shall
derive some of these curves using reliable and rigorous techniques.



5

Lower bounds on the entropies

5.1 LOWER BOUNDS

Lemma 21 gives an upper bound on the one-sided randomness using an explicit strategy.
However, for security proofs a lower bound is needed. In this chapter, we compute such
lower bounds for GA|XY E, GAB|X=0,Y=0,E and GAB|XY E. Note that for this chapter, we
restrict to the case when ω is the CHSH score instead of the generalized CHSH score.
The idea behind our lower bounds is as follows. We first show that for every fixed
value of ω the functions GA|XY E(ω) and GAB|X=0,Y=0,E(ω) can each be expressed as
a minimization over 3 real parameters. For the function GAB|XY E, we use polynomial
optimization techniques to form a lower bound. For fixed ω we compute the values of
the objective function on a grid of points comprising these parameters. By bounding
the derivative of the objective function within the cuboids generated by the grid we
establish a lower bound on the function over the possible parameters. The lower bound
we generate can in principle be made arbitrarily good by decreasing the grid spacing (at
the expense of taking more time to evaluate).
Given lower bounds on GA|XY E(ω), GAB|X=0,Y=0,E(ω) and GAB|XY E(ω) for a finite set
of values of ω, we can get lower bounds for all values of ω by using that the G functions
are monotonically increasing in ω, so we have G(ω) ≤ G(ω + ν), where ν is the spacing
between the finite set of values of ω. Hence, we can only compute the lower bounds
for finitely many values W = {ω1, ω2, . . .} in the range (3/4, (1/2)(1 + (1/2)1/2)]. We
can then consider the points {(ω1, 0), (ω2, G(ω1)), (ω3, G(ω2)), . . .}, i.e., where each is
shifted one place. Taking the convex lower bound of these shifted points gives a convex
lower bound for GA|XY E and GAB|X=0,Y=0,E. By taking more points in the set W tighter
lower bounds can be obtained.

69
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In the next few sections of this chapter, we shall find ways to compute reliable lower
bounds on GA|XY E(ω), GAB|X=0,Y=0,E(ω) and GAB|XY E(ω) for any arbitrary score ω ∈
[3

4 ,
1
2 + 1

2
√

2 ].

5.2 H(A|XYE)

Recall from 4.35 that

H(A|XY E) = 1 +∑
x pX(x)Hbin(g(αx)) −H(E) . (5.1)

where we define

g(α) := 1
2

(
1 +

√
2(λ0 − λ3)(λ1 − λ2) cos(4α) + (λ0 − λ3)2 + (λ1 − λ2)2

)
Using the parameterization (4.28)–(4.31) we have

g(α) = 1
2

(
1 +R

√
1 + sin(2θ) cos(4α)

)
.

We now restrict to the case where pX(x) = 1/2 for x = 0, 1. Since H(E) is independent
of {αx}, we can consider the optimization

min
α0,α1,β0,β1

Hbin(g(α0)) +Hbin(g(α1))

subject to S(τABXY E) = ω (5.2)

for some fixed values of ω, R and θ.
We proceed to make a series of simplifications of this optimization.

Lemma 22. The optimization (5.2) is equivalent to

min
u,v

Hbin(g((v + u)/4)) +Hbin(g((v − u)/4))

s.t. S(u, v) := 1
2 + R

4

(
cos
(
u

2

)√
1 + cos(v) sin(2θ)

+ sin
(
u

2

)√
1 − cos(v) sin(2θ)

)
= ω (5.3)

0 ≤ u ≤ π

Proof. Noting that the objective function in (5.2) is independent of Bob’s angles (β0

and β1), analogously to the derivation of Lemma (18) we can bound the score function
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using

S(τABXY E) ≤ 1
2 + R

2
√

2

(
|cos(α0 − α1)|

√
sin2(α0 + α1) cos2(θ̄) + cos2(α0 + α1) sin2(θ̄)

+ |sin(α0 − α1)|
√

cos2(α0 + α1) cos2(θ̄) + sin2(α0 + α1) sin2(θ̄)
)
.

We now substitute v/2 = α0 + α1 and u/2 = α0 − α1 and rearrange (recalling that
θ̄ = π/4 + θ) to give

S(τABXY E) ≤ 1
2 + R

4

( ∣∣∣∣cos
(
u

2

)∣∣∣∣√1 + cos(v) sin(2θ)

+
∣∣∣∣sin(u2

)∣∣∣∣√1 − cos(v) sin(2θ)
)
.

Since GA|XY E(ω) is monotonically increasing in ω (see section 5.5), it follows that we
wish to choose the angles to achieve the largest possible score function.
We first note that if cos(u/2) < 0 we can make the substitution α0 7→ π/2 + α1 and
α1 7→ α0 −π/2 which maintains the objective function, constraint, v and sin(u/2), while
changing the sign of cos(u/2). In addition, if sin(u/2) < 0, the substitution α0 7→ α1 and
α1 7→ α0 maintains the objective function, constraint, v and cos(u/2) while changing the
sign of sin(u/2). It follows that the maximum of Hbin(g((v+u)/4))+Hbin(g((v−u)/4))
for fixed score is obtained when

S(τABXY E) = S(u, v) := 1
2 + R

4

(
cos(u/2)

√
1 + cos(v) sin(2θ)

+ sin(u/2)
√

1 − cos(v) sin(2θ)
)

and when both cos(u/2) ≥ 0 and sin(u/2) ≥ 0, or, alternatively 0 ≤ u ≤ π.

Lemma 23. In the optimization (5.3) we can restrict to 0 ≤ u ≤ π/2 and 0 ≤ v ≤ π/2
without affecting the result.

Proof. Consider a u that satisfies 0 ≤ u ≤ π. If cos(u/2) ≥ sin(u/2) then 0 ≤ u ≤ π/2.
Otherwise, consider u 7→ π− u, v 7→ π− v. This maintains the constraint and the value
of the objective function and hence the optimal value can still be obtained, but now with
cos(u/2) ≥ sin(u/2), so we can assume 0 ≤ u ≤ π/2.
For the restriction on v, first note that transforming v 7→ −v has no affect on either the
objective function or the constraint so we can take sin(v) ≥ 0, or 0 ≤ v ≤ π. If v > π/2,
then cos(v + u) < 0. Furthermore, cos(v − u) + cos(v + u) = 2 cos(v) cos(u) ≤ 0 and
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hence cos(v − u) ≤ | cos(v + u)|. Let v̄ = π − v. We have

S(u, v) − S(u, v̄) = R

4

(
(sin(u/2) − cos(u/2))

(√
1 − cos(v) sin(2θ)

−
√

1 + cos(v) sin(2θ)
))

≤ 0 ,

where the inequality follows from cos(v) < 0, sin(2θ) ≥ 0 and cos(u/2) ≥ sin(u/2).
Hence, the mapping v 7→ π − v increases S(u, v).
Consider now the effect on the objective function

J(u, v) := Φ
(
R
√

1 + sin(2θ) cos(v + u)
)

+ Φ
(
R
√

1 + sin(2θ) cos(v − u)
)
,

where we have used the notation

Φ(x) := Hbin

(1
2 + x

2

)
,

which will be useful shorthand throughout this thesis. Note that each binary entropy
term decreases as its cosine term increases. We have

J(u, v̄) := Φ
(
R
√

1 − sin(2θ) cos(v + u)
)

+ Φ
(
R
√

1 − sin(2θ) cos(v − u)
)
.

If cos(v − u) ≤ 0 then J(u, v̄) ≤ J(u, v), so the transformation decreases the objective
function.
On the other hand, if cos(v − u) ≥ 0 we must have cos(v − u) ≤ | cos(v + u)| and
hence √

1 − sin(2θ) cos(v + u) ≥
√

1 + sin(2θ) cos(v − u)

≥
√

1 − sin(2θ) cos(v − u)

≥
√

1 + sin(2θ) cos(v + u).

Thus, J(u, v̄) ≤ J(u, v) and the transformation decreases the objective function.
Thus, in both cases the transformation decreases the objective function while increasing
the score. Using the monotonicity of GA|XY E(ω) with the score ω (see section 5.5), it
follows that we can further reduce the objective function while bringing the score back
to its original level.

Let us turn to the constraint. We have

ω = 1
2 + R

4

(
cos(u/2)

√
1 + cos(v) sin(2θ) + sin(u/2)

√
1 − cos(v) sin(2θ)

)
= 1

2 + R

2
√

2
cos(u/2 − φ) ,
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where cos(φ) =
√

(1 + cos(v) sin(2θ))/2 and sin(φ) =
√

(1 − cos(v) sin(2θ))/2. We
can rearrange this to cos(u/2 − φ) =

√
2(2ω−1)/R and hence there are two possibilities

for u:
u± = 2 cos−1

√
(1 + cos(v) sin(2θ))/2 ± 2 cos−1(

√
2(2ω − 1)/R). (5.4)

We can hence remove the constraint and consider the optimizations

min
v

J(u±(v), v)

Summarizing the above analysis we have the following.

Corollary 4. Let ω ∈ (3/4, (1 + 1/
√

2)/2] and

K(R, θ) = 1 −H({λ0(R, θ), λ1(R, θ), λ2(R, θ), λ3(R, θ)}),

where {λi(R, θ)}3
i=0 are given by (4.28)–(4.31) with δ = δ∗. Defining

Dω = {(R, θ, v) : R ∈ [
√

2(2ω − 1), 1], θ ∈ [0, π4 − cos−1
(
1/(

√
2R)

)
], v ∈ [0, π2 ]},

we have

GA|XY E(ω) = min
Dω ,u∈{u+,u−}

J(u(v), v)/2 +K(R, θ) . (5.5)

5.2.1 Monotonicity properties of the function K

The following monotonicity properties of the function K(R, θ) will be useful later.

Lemma 24. For any ω ∈ (3/4, (1+1/
√

2)/2], and (R, θ) ∈ Dω we have ∂RK(R, θ) ≥ 0.

Proof. Note that
λ0λ3

λ1λ2
= 1

and λ0 > λ3 and λ1 > λ2. We differentiate K(R, θ) with respect to R

∂RK(R, θ) =
∑
i

(
log(λi) + 1

ln 2

)
∂λi
∂R

= 1
2

(
(cos(θ) +R cos(2θ)) (log λ0 + 1

ln 2) + (sin(θ) −R cos(2θ)) (log λ1 + 1
ln 2)−

(sin(θ) +R cos(2θ)) (log λ2 + 1
ln 2) − (cos(θ) −R cos(2θ)) (log λ3 + 1

ln 2)
)

= 1
2

(
log

(
λ0

λ3

)
cos(θ) + log

(
λ1

λ2

)
sin(θ) +R cos(2θ) log

(
λ0λ3

λ1λ2

))

= log
(
λ0

λ3

)
cos(θ) + log

(
λ1

λ2

)
sin(θ) ≥ 0

as claimed.
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We derive a similar result for monotonicity of K(R, θ) with respect to θ

Lemma 25. For any ω ∈ (3/4, (1+1/
√

2)/2], and (R, θ) ∈ Dω we have ∂θK(R, θ) ≥ 0.

Proof. We differentiate K(R, θ) with respect to θ

∂θK(R, θ) =
∑
i

(
log(λi) + 1

ln 2

)
∂λi
∂θ

=
∑
i

(
log(λi)

∂λi
∂θ

)
+ 1

ln 2
∑
i

∂λi
∂θ

=
∑
i

(
log(λi)

∂λi
∂θ

)

= 1
2

(
− log

(
λ0

λ3

)
R sin(θ) + log

(
λ1

λ2

)
R cos(θ) −R2 sin(2θ) log

(
λ0λ3

λ1λ2

))

= −R sin(θ)
2 log

(
λ0

λ3

)
+ R cos(θ)

2 log
(
λ1

λ2

)
We now consider the function

f(R, θ) = 2 ln 2
R

∂θK(R, θ) = − sin(θ) ln
(
λ0(R, θ)
λ3(R, θ)

)
+ cos(θ) ln

(
λ0(R, θ)
λ3(R, θ)

)
(5.6)

Note that ω ∈ (3/4, (1 + 1/
√

2)/2] implies 1/
√

2 < R ≤ 1 and 0 ≤ θ ≤ π/4 −
cos−1(1/(R

√
2)), or 0 ≤ θ ≤ π/4, 1/

√
2 < R ≤ 1/(cos(θ) + sin(θ)). We can extend

the domain of f(R, θ) to 0 ≤ θ ≤ π/4, 0 ≤ R ≤ 1/(cos(θ) + sin(θ)).
Taking derivative of f with respect to R gives

∂Rf(R, θ) = 2R2 sin(4θ)
(1 −R2(cos(θ) + sin(θ))2)(1 −R2(cos(θ) − sin(θ))2) . (5.7)

Thus, ∂Rf(R, θ) > 0 whenever θ ∈ [0, π4 ]. We can then infer that ∂θK(R, θ) =
R

2 ln 2f(R, θ) ≥ R
2 ln 2f(0, θ) = 0.

5.2.2 Lower bounding the objective function

In this section, we propose a method to compute the lower bound of the function G.|.E

by partitioning the domain. We start by considering an abstract version of the problem,
which has the form

min
x∈D

Q(x) (5.8)

where D ⊂ Rn is a compact set and Q : D 7→ R is bounded. Furthermore, we assume
we know an upper bound M such that Q(x) ≤ M for all x ∈ D.
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We use the notation Ca,b = [a1, b1] × [a2, b2] × · · · × [an, bn], i.e., Ca,b is a hyper-cuboid
with a and b as two opposite vertices. Then let C ⊇ D be any hyper-cuboid that
completely contains D. We say P = {Cai,bi}i is a partition of C if

C =
⋃
i

Cai,bi (5.9)

where {Cai,bi}i are cuboids whose intersection has zero volume.
The main idea behind our lower bounds is to find lower bounds on Q(x) that hold on
each cuboid and then to take the minimum of all the lower bounds. In some cases these
bounds are formed by starting from a corner and using bounds on the derivatives of Q(x)
on the cuboid to form a bound that holds across the cuboid. In other cases, we use
monotonicity arguments to imply that evaluation at one of the corners lower bounds the
whole cuboid. Some of our cuboids lie entirely outside the original domain D. To save
calculation we assign the known upper bound on the function as the upper bound on
cuboids in our partition that lie outside of D.

5.2.3 Obtaining a lower bound on GA|XY E

We now return to our optimization problem (5.5). It is convenient to switch param-
eterization to use η := cos−1(

√
2(2ω − 1)/R) instead of R. Taking x = (η, θ, v) we

rewrite (5.5) as

GA|XY E(ω) = min
x∈Dω ,u∈{u+,u−}

F1(η, θ, v) + F2(η, θ, v) +K(R(η), θ) (5.10)

where

F1(η, θ, v) = 1
2Hbin

(1
2 + R(η)

2

√
1 + cos(u(v) + v) sin(2θ)

)
F2(η, θ, v) = 1

2Hbin

(1
2 + R(η)

2

√
1 + cos(u(v) − v) sin(2θ)

)
R(η) =

√
2(2ω − 1)
cos(η) .

Here the domain Dω is the set

Dω =
{

(η, θ, v) : η ∈ [0, cos−1
(√

2(2ω − 1)
)
]

, θ ∈ [0, π4 − cos−1(cos(η)/(4ω − 2))], v ∈ [0, π2 ]
}
. (5.11)

Define a cuboid C ⊇ Dω as [0, cos−1
(√

2(2ω−1)
)
]× [0, π4 −cos−1

(
1/(4ω−2)

)
]× [0, π2 ].

We then partition C as follows. We take {ηi}N+1
i=0 to be such that 0 = η0 < η1 <
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η2 · · · < ηN+1 = cos−1
(√

2(2ω − 1)
)
. Similarly define {θ(i)

j }M(i)+1
j=0 be such that

0 = θ
(i)
0 < θ

(i)
1 < · · · < θ

(i)
M(i)+1 = π

4 −cos−1
(
1/(4ω−2)

)
and {v(i,j)

k }P (i,j)+1
k=0 be such that

0 = v
(i,j)
0 < v

(i,j)
1 < v

(i,j)
2 · · · < v

(i,j)
P (i,j)+1 = π

2 . Thus C = ⋃
i,j,k Ci,j,k, where, to streamline

the notation, we have used Ci,j,k := Cxi,j,k,xi+1,j+1,k+1 with xi,j,k := (ηi, θ(i)
j , v

(i,j)
k ).

From (5.4) there are two possible functional forms of u±. Taking derivatives we find

∂ηu± = ±2

∂θu± = −2 cos(2θ) cos(v)√
1 − sin2(2θ) cos2(v)

∈ [−2, 0] (5.12)

∂vu± = sin(2θ) sin(v)√
1 − sin2(2θ) cos2(v)

∈ [0, 1].

We return to the problem of deriving an upper bound on the functions F1 and F2. To do
so, we first need bounds on the functions cos(u± ± v) sin(2θ). Our bounds use Taylor’s
theorem, which we first state for convenience.

Theorem 3 (Taylor). Let D ⊆ Rn be compact and f : D → R be differentiable on D,
then for all a,x ∈ D there exists x′ ∈ D such that

f(x) = f(a) + ∇f
∣∣∣
x′

· (x − a).

Thus, we can find lower bounds on f in the domain D by computing f at any
point a ∈ D and the upper-bound maxx′∈D ∇f(x′). We apply this to the functions
cos(u±(x ± v)) sin(2θ) in appendix A.1, where we shall the show all the detailed calcu-
lations. For brevity, we write g±,y(x) = u±(x) + (−1)yv with y ∈ {0, 1}. In particular,
we show that we have the following bounds for any x ∈ Ci,j,k:

cos(g+,y(x)) sin(2θ) ≤ ζ i,j,k+,y and cos(g−,y(x)) sin(2θ) ≤ ζ i,j,k−,y (5.13)

where,

ζ i,j,k+,y :=


(

cos(g+,y(xi,j,k)) + ∆+,y
)

sin
(
2θ(i)

j

)
if
(

cos(g+,y(xi,j,k)) + ∆+,y
)
< 0(

cos(g+,y(xi,j,k)) + ∆+,y
)

sin
(
2θ(i)

j+1

)
otherwise

ζ i,j,k−,y :=


(

cos(g−,y(xi,j,k)) + ∆−,y
)

sin
(
2θ(i)

j

)
if cos(g−,y(xi,j,k)) + ∆−,y < 0(

cos(g−,y(xi,j,k)) + ∆−,y
)

sin
(
2θ(i)

j+1

)
otherwise

.
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and

∆+,0 = max(2(θ(i)
j+1 − θ

(i)
j ), 2(ηi+1 − ηi) + 2(v(i,j)

k+1 − v
(i,j)
k ))

∆+,1 = max(2(ηi+1 − ηi), 2(θ(i)
j+1 − θ

(i)
j ) + (v(i,j)

k+1 − v
(i,j)
k )

∆−,0 = max(2(v(i,j)
k+1 − v

(i,j)
k ), 2(ηi+1 − ηi) + 2(θ(i)

j+1 − θ
(i)
j ))

∆−,1 = 2(ηi+1 − ηi) + 2(θ(i)
j+1 − θ

(i)
j ) + (v(i,j)

k+1 − v
(i,j)
k ).

With this established we return to the optimization problem (5.10). We define the
objective function Q(η, θ, v) := F1(η, θ, v) + F2(η, θ, v) +K(R(η), θ), which we want
to optimize over Dω and u ∈ {u+, u−}.

Lemma 26. Let P = ⋃
i,j,k Ci,j,k be a partition of C as specified above. Define gi,j,k

and hi,j,k as follows

gi,j,k := 1
2Φ

(
R(ηi+1)

√
1 + ζ i,j,k+,0

)
+ 1

2Φ
(
R(ηi+1)

√
1 + ζ i,j,k+,1

)
+K

(
R(ηi), θ(i)

j

)
hi,j,k := 1

2Φ
(
R(ηi+1)

√
1 + ζ i,j,k−,0

)
+ 1

2Φ
(
R(ηi+1)

√
1 + ζ i,j,k−,1

)
+K

(
R(ηi), θ(i)

j

)
.

Let M ∈ R be any upper bound on Q, i.e., M ≥ maxx∈D Q(x). Then

Q(x) ≥ fi,j,k :=

min{gi,j,k, hi,j,k} if x ∈ Ci,j,k such that Ci,j,k ∩ D 6= ∅

M otherwise.
(5.14)

Proof. From Lemmas 24 and 25 we know that ∂RK > 0 and ∂θK > 0. In addi-
tion, ∂ηK(R(η), θ) =

√
2(2ω−1) sin(η)

cos2(η) ∂RK(R, θ). Positivity of ∂ηK and ∂θK, implies
K(R(η), θ) ≥ K(R(ηi), θ(i)

j ) within Ci,j,k. Furthermore, Hbin(1
2 + x

2 ) is decreasing for
x ≥ 0. Since R(η)

√
1 + cos(v ± u) sin(2θ) > 0,

Φ
(
R(η)

√
1 + cos(u+ ± v) sin(2θ)

)
≥ Φ

(
R(ηi+1)

√
1 + cos(u+ ± v) sin(2θ)

)
= Φ

(
R(ηi+1)

√
1 + cos

(
g+,(1∓1)/2

)
sin(2θ)

)

≥ Φ
(
R(ηi+1)

√
1 + ζ i,j,k+,(1∓1)/2

)
.

Similarly,

Φ
(
R(ηi+1)

√
1 + cos(u− ± v) sin(2θ)

)
≥ Φ

(
R(ηi+1)

√
1 + ζ i,j,k−,(1∓1)/2

)
,

which establishes the claim.
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Combining the results in this section we obtain the following corollary.

Corollary 5. Let ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] be fixed. Let Dω be defined as in (5.11) and
P = ⋃

i,j,k Ci,j,k be any partition of the cuboid C = [0, cos−1
(√

2(2ω − 1)
)
] × [0, π4 −

cos−1
(
(4ω − 2)−1

)
] × [0, π2 ]. Then

GA|XY E(ω) ≥ min
i,j,k

fi,j,k. (5.15)

where fi,j,k are defined in (5.14).

This means that for fixed ω we can lower bound the randomness by evaluating fi,j,k at
all grid points in the relevant cuboid and taking the minimum. This is how our numerical
algorithm works (note that the lower bound gets tighter as the number of grid points is
increased).

5.2.4 Lower bounding the randomness rate

In the previous section, we derived a technique to lower bound the function GA|XY E(ω)
for a fixed value of the score, ω. In Section 4.3, we showed that the asymptotic rate
FA|XY E can be computed by taking the convex lower bound on GA|XY E. In this section,
we construct a lower bound on the function FA|XY E using a lower bound on GA|XY E.
We start with a general lemma.

Lemma 27. Let a and b be real numbers, a < b and G̃ : [a, b] → R be a lower bound
on G : [a, b] → R. Let F̃ [a, b] → R and F [a, b] → R be convex lower bounds on G̃ and
G respectively. Then F̃ is a lower bound on F .

Proof. Let Mω0 be the set of probability measures on the interval [a, b] satisfying∫
dµ(ω)ω = ω0.

F (ω0) = inf
µ∈Mω0

∫
dµ(ω)G(ω) (5.16)

Since G(ω) ≥ G̃(ω) for every value of ω ∈ [a, b], for every measure µ ∈ Mω we must
have that ∫ dµ(ω)G(ω) ≥

∫
dµ(ω)G̃(ω). Thus

F (ω0) := inf
µ∈ω0

∫
dµ(ω)G(ω) ≥ inf

µ∈ω0

∫
dµ(ω)G̃(ω) ≥ F̃ (ω0).

Since we can only compute our lower bound GP
A|XY E on GA|XY E for a finite set of

values of ω, to form a lower bound that holds for all values of ω, we construct a
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function G̃A|XY E as follows. Let {ωi}Ni=1 be an ordered set of values in [3
4 ,

1
2 + 1

2
√

2 ]
with ω1 = 3/4 at which we have computed GP

A|XY E. We define G̃A|XY E(ω) to be equal
to GP

A|XY E(ωi) for ω ∈ [ωi, ωi+1), and equal to GP
A|XY E(ωN) for ω ≥ ωN . Because

GA|XY E is monotonically increasing in ω (see Lemma 36), it follows that for ω ∈ [ωi, ωi+1),
GA|XY E(ω) ≥ GA|XY E(ωi) ≥ GP

A|XY E(ωi) = G̃A|XY E(ω).
A lower bound F̃A|XY E of FA|XY E can then be formed by taking the convex lower bound
of G̃P

A|XY E (see Lemma 27).

5.3 H(AB|X=0, Y=0, E)

Recall from the section 4.6 that

H(AB|X = 0, Y = 0, E) = 1 +Hbin(2ε00) −H({λ0, λ1, λ2, λ3})

= Hbin(2ε00) +K(R, θ).

Thus we need to minimize the above function with respect to the constraint:∑
ij

εi,j = 2(2ω − 1) .

5.3.1 Reparameterizing the optimisation problem

We introduce some notation for convenience. Let x = (R, θ, α0, α1, β0, β1) and define

ε̂00(x) := cos(θ) cos(2α0 − 2β0) + sin(θ) cos(2α0 + 2β0) (5.17)
ε̂10(x) := cos(θ) cos(2α1 − 2β0) + sin(θ) cos(2α1 + 2β0) (5.18)
ε̂01(x) := cos(θ) cos(2α0 − 2β1) + sin(θ) cos(2α0 + 2β1) (5.19)
ε̂11(x) := − cos(θ) cos(2α1 − 2β1) − sin(θ) cos(2α1 + 2β1) (5.20)
K(x) := K(R, θ) , (5.21)

where K(R, θ) is given in Corollary 4. In this notation, the equation for the constraint is∑
ij

ε̂i,j = 4(2ω − 1)
R

, (5.22)

and hence the optimization problem is

GAB|X=0,Y=0,E(ω) = min
x∈Dω

(
Hbin

(1
2 + R

2 ε̂00(x)
)

+K(x)
)

s.t.
∑
ij

ε̂ij(x) = 4(2ω − 1)
R

,
(5.23)
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where Dω = {R ∈ [
√

2(2ω−1), 1], θ ∈ [0, π/4−cos−1(1/(R
√

2))], (α0, α1, β0, β1) ∈ R4}
(see Lemma 18 for the justification of the range of R).
For brevity we use P (x) for the objective function. We call x ∈ Dω a solution to the
optimization problem (5.23) if GAB|X=0,Y=0,E(ω) = P (x) and x satisfies the constraint.
For reasons that shall be clear later, we now define the following functions on the extended
domain

Ĥbin(x) =

Hbin(x) if x ∈ [1
2 , 1]

1 otherwise
(5.24)

and

K̂(R, θ) =

K(R, θ) if
√

2(2ω − 1) ≤ R ≤ 1 and 0 ≤ θ ≤ π
4 − cos−1

(
1√
2R

)
1 otherwise

(5.25)

Here K̂(R, θ) and Ĥbin both take the value 1 when the functions K(R, θ) and Hbin(x)
are outside the stated range. These values are chosen such that upon extension of the
domain, the resulting optimization problem still has the same minimum1.

Lemma 28. Let Xω be the set of solutions of (5.23) for some ω ∈ (3
4 ,

1
2 + 1

2
√

2 ]. There
exists x ∈ Xω such that ε̂00(x) > 0 and ε̂00(x) = max

i,j
|εij(x)|.

Proof. We first prove that we can choose

|ε̂00(x)| = max
i,j

|ε̂ij(x)|. (5.26)

From the symmetry of the binary entropy, Hbin(1
2 + y1

2 ) < Hbin(1
2 + y2

2 ) for |y1| > |y2|.
Now consider the following cases

• Suppose |ε̂00(x)| < |ε̂10(x)|: Perform the transformation α0 ↔ α1 and β1 → β1+ π
2 .

Under this transformation ε̂00(x) ↔ ε̂01(x) and ε̂10(x) ↔ ε̂11(x). The CHSH score
is hence preserved. This transformation also decreases the objective function, so x
cannot have been an solution to (5.23) prior to the transformation.

• Suppose |ε̂00(x)| < |ε̂01(x)|: Perform the transformation β0 ↔ β1 and α1 → α1+ π
2 .

Under this transformation ε̂00(x) ↔ ε̂10(x) and ε̂01(x) ↔ ε̂11(x). Again, this
preserves the CHSH score while reducing the objective function.

1That Hbin(x) ≤ 1 and K(R, θ) ≤ 1 whenever defined justifies the choice made for defining Ĥbin(x)
and K̂(R, θ).
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• Suppose |ε̂00(x)| < |ε̂11(x)|: Perform the transformation α0 → α1 + π
2 , α1 → α0,

β0 → β1 and β1 → β0 + π
2 . Under this transformation ε̂00(x) ↔ ε̂11(x) and

ε̂01(x) ↔ ε̂10(x). Again, this preserves the CHSH score while reducing the
objective function.

Finally, we can show that ε̂00(x) > 0 by observing that for ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] we have

R
∑
i,j

ε̂ij(x) = 4(2ω − 1) > 2. (5.27)

In addition, for all i, j,

Rε̂ij(x) ≤ R(cos(θ) + sin(θ)) ≤ 1, (5.28)

where the last inequality follows from (4.28) and (4.29) whose sum can be at most 1.
Now suppose that |ε̂00(x)| = max

i,j
|ε̂ij| and ε̂00(x) < 0. It follows that

R
∑
i,j

ε̂ij = R
(
ε̂00 + ε̂01

)
+R

(
ε̂10 + ε̂11

)
≤ R

(
ε̂00 + ε̂01

)
+ 2

≤ 2,

where the first inequality uses (5.28). This is in contradiction with (5.27).

Lemma 29. Let P̂ be the objective function with extended domain, i.e., P̂ (x) :=
Ĥbin

(
1
2 + Rε00(x)

2

)
+K̂(x), ω ∈ (3

4 ,
1
2 + 1

2
√

2 ], and let X be a set such that Dω ⊆ X ⊆ R6.
Then,

GAB|X=0,Y=0,E(ω) = min
x∈X

P̂ (x)

s.t.
∑
ij

ε̂ij(x) = 4(2ω − 1)
R

,
(5.29)

i.e., optimizing over P̂ on an extended domain X gives the same solution as the original
optimization (5.23). Furthermore ∃x ∈ Dω that is a solution to both optimization
problems.

Proof. Let x′ ∈ Dω achieve the optimal value of P and have ε̂00(x′) > 0. [From
Lemma 28 such an x′ exists.] Since P̂ (x) = P (x) ≤ 2 for all x ∈ Dω, and P̂ (x) = 2
for x ∈ R6 \ Dω, x′ must also achieve the optimal value of P̂ , where it takes the same
value.
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5.3.2 Some simplifications

Lemma 30. Let Xω the set of solutions to the optimization problem (5.23) for some
ω ∈ (3

4 ,
1
2 + 1

2
√

2 ]. There exists x = (R, θ, α0, α1, β0, β1) ∈ Xω such that the following
hold

• sin(β0 + β1) ≥ 0

• sin(β0 − β1) ≤ 0

Proof. The expression for the CHSH score satisfies:

√
2(2ω − 1) =R cos(β0 − β1)A1 +R sin(β0 − β1)B1.

where,

A1 =
[
sin(2α0) sin(β0 + β1) cos

(
π

4 + θ
)

+ cos(2α0) cos(β0 + β1) sin
(
π

4 + θ
)]

B1 =
[
sin(2α1) cos(β0 + β1) cos

(
π

4 + θ
)

− cos(2α1) sin(β0 + β1) sin
(
π

4 + θ
)]

Let α0, α1, β0, β1 be optimal parameters. Consider the following algorithm, in which each
step is performed in the order shown and depends on the previous ones.

1. If sin(β0 + β1) < 0, then perform the transformations βi → −βi and αi → −αi.
We get sin(β0 + β1) ≥ 0 from this step onwards.

2. If sin(β0 − β1) > 0 then perform the transformations β0 → β0 + π
2 , β1 → β1 − π

2 ,
αi → αi + π

2 . This step does not affect sin(β0 + β1). Thus we ensure that
sin(β0 − β1) ≤ 0 and sin(β0 + β1) ≥ 0.

In each step of the algorithm, the values of εij for all i, j remain the same, hence
the CHSH score and the objective function remains invariant throughout. Thus, the
transformations maintain optimal parameters.
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5.3.3 Reduction in parameters

To rewrite the optimization in a way that removes the constraint we introduce the
following functions

α̂0(λ, v, θ) := −2 tan−1

 1
tan(λ) tan

(
π
4 + θ

)
+ tan−1

 1
tan(v) tan

(
π
4 + θ

)


ε̃(λ, v, θ) := cos(θ) cos(α̂0 − 2v + λ) + sin(θ) cos(α̂0 + 2v − λ) (5.30)

z(λ, v, θ) = cos(λ−v)
[
sin(α̂0) sin(v) cos

(
π

4 +θ
)

+cos(α̂0) cos(v) sin
(
π

4 +θ
)]

+sin(λ− v)√
2

√
1−cos(2v) sin(2θ)

R̂(λ, v, θ) :=
√

2(2ω − 1)
z(λ, v, θ) . (5.31)

We also state the following small lemma for convenience.

Lemma 31. Let a, b ∈ R with a 6= 0. The values of γ ∈ R that form extrema of
a cos(γ) + b sin(γ) are

γ = tan−1(b/a) + nπ (5.32)

for any n ∈ Z. If a > 0 the maxima occur when n is even and the minima when n is
odd, and vice-versa if a < 0.

Proof. The problem is equivalent to maximizing

a√
a2 + b2

cos(γ) + b√
a2 + b2

sin(γ).

Let φ satisfy cos(φ) =
(

a√
a2+b2

)
and sin(φ) =

(
b√

a2+b2

)
. Thus, the expression is

equivalent to cos(γ − φ) which has maxima for γ = φ + 2nπ and minima for γ =
φ+ π + 2nπ for n ∈ Z.
If a > 0 then this gives maxima for γ = tan−1(b/a) + 2nπ and minima for γ =
tan−1(b/a) + (2n+ 1)π.
Alternatively, if a < 0 then this gives maxima for γ = tan−1(b/a) + (2n + 1)π and
minima for γ = tan−1(b/a) + 2nπ.

Lemma 32. Let ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] and

D′
ω =

{
(λ, v, θ) ∈ R3 : λ ∈ [0, π], v ∈ [0, π], θ ∈ [0, π4 − cos−1 (1/(4ω − 2))]

}
,
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then

GAB|X=0,Y=0,E(ω) = inf
D′

ω

(
Ĥbin

(
1
2 + R̂(λ, v, θ)ε̃(λ, v, θ)

2

)
+ K̂(R̂, θ)

)
(5.33)

Proof. Start from the form of G in Lemma 29. The objective function P̂ is independent
of the parameters α1 and β1, and, as shown in Lemma 29, the optimum is achieved
for some x ∈ Dω. Because the function GAB|X=0,Y=0,E(ω) is increasing in ω (see
Lemma 37), the optimal values of the parameters α1 and β1 must maximize the CHSH
score. Recall that the score can be related to αi and βi by

√
2(2ω − 1) =R cos(β0 − β1)A1 +R sin(β0 − β1), (5.34)

where

A1 =
[
sin(2α0) sin(β0 + β1) cos

(
π

4 + θ
)

+ cos(2α0) cos(β0 + β0) sin
(
π

4 + θ
)]

B1 =
[
sin(2α1) cos(β0 + β1) cos

(
π

4 + θ
)

− cos(2α1) sin(β0 + β1) sin
(
π

4 + θ
)]
.

Consider maximizing this over α1. From Lemma 30 we can assume sin(β0 − β1) ≤ 0, so
we want to minimize the second term in square brackets in (5.34). This has the form
of the expression in Lemma 31. Since the sine and cosine of π/4 + θ are both positive,
and from Lemma 30 we can assume sin(β0 + β1) ≥ 0, the minima of the square bracket
(and hence maxima overall) occur for

2α1 = − tan−1
(

cot(β0 + β1) cot
(
π

4 + θ
))

+ 2nπ. (5.35)

The CHSH score is symmetric in the parameters for Alice and Bob, so we can re-write it
as

√
2(2ω − 1) =R cos(α0 − α1)Â1 +R sin(α0 − α1)B̂1

where,

Â1 =
[
sin(2β0) sin(α0 + α1) cos

(
π

4 + θ
)

+ cos(2β0) cos(α0 + α0) sin
(
π

4 + θ
)]

B̂1 =
[
sin(2β1) cos(α0 + α1) cos

(
π

4 + θ
)

− cos(2β1) sin(α0 + α1) sin
(
π

4 + θ
)]
.

If we now maximize over β1, from Lemma 30 the solutions either satisfy

2β1 = − tan−1
(

cot(α0 + α1) cot
(
π

4 + θ
))

+ 2nπ or

2β1 = − tan−1
(

cot(α0 + α1) cot
(
π

4 + θ
))

+ (2n+ 1)π
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for n ∈ Z. (Which one holds depends on the signs of sin(α0 − α1) and sin(α0 + α1).)
In both cases, tan(2β1) = cot(α0 + α1) cot

(
π
4 + θ

)
.

By symmetry (and because we can take sin(α0 − α1) ≤ 0 and sin(α0 + α1) ≥ 0 from
Lemma 30) the maxima of this over β1 occur for

2β1 = − tan−1
(

cot(α0 + α1) cot
(
π

4 + θ
))

+ 2nπ. (5.36)

Rearranging gives
tan(α0 + α1) = − cot(2β1) cot

(
π

4 + θ
)
, (5.37)

and hence

α0 = −α1 − tan−1
(

cot(2β1) cot
(
π

4 + θ
))

+ nπ

for n ∈ Z. Using (5.35) we find

2α0 = tan−1
(

cot(β0 + β1) cot
(
π

4 + θ
))

− 2 tan−1
(

cot(2β1) cot
(
π

4 + θ
))

+ 2nπ.
(5.38)

The proof proceeds as follows. We use (5.35) to eliminate α1 from the constraint, noting
that the value of n in (5.35) does not change the value so we can take n = 0. We
then use (5.38) to reparameterize the objective function in terms of β1 instead of α0

(again the value of n in (5.38) makes no difference and we take n = 0). The parameters
that remain are hence β0, β1, R and θ. We then reparameterize using v = β0 + β1 and
λ = 2β1, so that both the constraint and objective function are written in terms of v,
λ, R and θ. We then use the constraint to write R in terms of the other parameters,
reducing the objective function to an unconstrained optimization over v, λ and θ.
At this stage v and λ range over all reals, which can readily be restricted to [0, 2π]. In
fact, we can restrict both to [0, π] by noting that Lemma 30 shows that it suffices to
take sin(v) = sin(β0 + β1) ≥ 0 hence v ∈ [0, π]. We then consider the transformation
(λ 7→ 2π − λ, v 7→ π − v). We find

α̂0(2π − λ, π − v, θ) = −α̂0(λ, v, θ)

ε̃(2π − λ, π − v, θ) = ε̃(λ, v, θ)

R̂(2π − λ, π − v, θ) = R̂(λ, v, θ) ,

from which it follows that we can restrict both λ and v to the range [0, π]. Finally, the
original range of θ is [0, π/4 − cos−1(1/(R

√
2)], with R ∈ [

√
2(2ω − 1), 1], hence the

largest θ that needs to be considered for a given ω is π/4 − cos−1(1/(4ω− 2)). Since we
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are using the functions with extended domain, it does not matter that we allow the range
of θ to potentially be incompatible with the value of R̂. This gives the optimization
claimed in (5.33).

5.3.4 Lower bounding the function

Consider a partition P of D′
ω. Let Ci,j,k be a cuboid (with i label corresponding to λ,

j label for v and k label for θ). Again using Taylor’s theorem, we bound the objective
function

(
Ĥbin

(
1
2 + R̂(λ, v, θ)ε̃(λ, v, θ)

2

)
+ K̂(R̂, θ)

)
in the cuboid Ci,j,k , by upper-bounding the absolute values of the derivatives in the
cuboid. Let us define z(λ, v, θ) to be the denominator in (5.31), i.e.,

z(λ, v, θ) := cos(v−λ)
[
sin(α̂0) sin(v) cos

(
π

4 +θ
)

+cos(α̂0) cos(v) sin
(
π

4 +θ
)]

− sin(v−λ)√
2

√
1−cos(2v) sin(2θ).

In appendix A.2 we use taylor’s theorem and some monotonicity results to find the
parameters zλ, zv, zθ and ελ, εv, εθ defined as the following upper-bounds :

zλ ≥ max
x∈Ci,j,k

|∂λz|, zv ≥ max
x∈Ci,j,k

|∂vz| and zθ ≥ max
x∈Ci,j,k

|∂θz|

ελ ≥ max
x∈Ci,j,k

|∂λε̃|, εv ≥ max
x∈Ci,j,k

|∂v ε̃| and εθ ≥ max
x∈Ci,j,k

|∂θ ε̃|.

Let ∆z = zλ(λi+1 − λi) + zv(v(i)
j+1 − v

(i)
j ) + zθ(θ(i,j)

k+1 − θ
(i,j)
k ), then in Ci,j,k.

Ri,j,k
min :=

√
2(2ω − 1)

z(λi, v(i)
j , θ

(i,j)
k ) + ∆z

≤ R̂(λ, v, θ) =
√

2(2ω − 1)
z(λi, v(i)

j , θ
(i,j)
k )

(5.39)

Ri,j,k
max :=

√
2(2ω − 1)

z(λi, v(i)
j , θ

(i,j)
k ) − ∆z

≥ R̂(λ, v, θ) (5.40)

Also let ∆ε := ελ(λi+1 − λi) + εv(v(i)
j+1 − v

(i)
j ) + εθ(θ(i,j)

k+1 − θ
(i,j)
k ), then in Ci,j,k we have

ε̃(λ, v, θ) ≤ εi,j,kmax := ε̃(λi, vj, θk) + ∆ε (5.41)

For each cuboid we define a continuous function gi,j,k : Ci,j,k → R such that gi,j,k(x) ≤
P̂ (x) for all x ∈ Ci,j,k. Then we lower bound GAB|X=0,Y=0,E by using the following.
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Lemma 33. Let

gi,j,k := Ĥbin

(
1
2 + Ri,j,k

maxε
i,j,k
max

2

)
+ K̂(Ri,j,k

min , θ
(i,j)
k ). (5.42)

Then P̂ (x) ≥ gi,j,k for all x ∈ Ci,j,k.

Proof. By definition, we have Ri,j,k
maxε

i,j,k
max ≥ R̂(λ, v, θ)ε̃(λ, v, θ) for all x ∈ Ci,j,k. Using

the monotonicity of the function Ĥbin(1
2 + x

2 ), we obtain Ĥbin(1
2 + Ri,j,k

max ε
i,j,k
max

2 ) ≤ Ĥbin(1
2 +

R̂(λ,v,θ)ε̃(λ,v,θ)
2 ). Similarly, the monotonicity of K̂(R, θ) with respect to R and θ (see

Lemmas 24 and 25) implies K̂(R(λ, v, θ), θ) ≥ K̂(Rmin, θ
(i,j)
k ) for all x ∈ Ci,j,k. These

imply the claim.

Combining all the results in this section, we have the following

Corollary 6. Let ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] be fixed. Let D′
ω = {(λ, v, θ) ∈ R3 : λ ∈ [0, π], v ∈

[0, π], θ ∈ [0, π4 − cos−1
(

1
2(2ω−1)

)
]} and P = ⋃

i,j,k Ci,j,k be a partition of any cuboid
C ⊇ D′(ω) as specified above. Then

GAB|X=0,Y=0,E(ω) ≥ min
i,j,k

gi,j,k (5.43)

where gi,j,k are defined in (5.42).

Proof. This is a direct consequence of Lemmas 29 and 33.

5.4 H(AB|XYE)

From section 4.7, recall that

H(AB|XY E) = 1 +
∑
xy

pXY (x, y)Hbin(2εxy) −H({λ0, λ1, λ2, λ3}) . (5.44)

So, we set δ = δ∗, as argued in the section 4.7, and arrive at the optimization problem:

GAB|XY E(ω) = min
∑
ij

1
4Hbin(εij) +K(R, θ)

s.t.
∑
i,j

εij = 2(2ω − 1)

R cos(θ) +R sin(θ) ≤ 1
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5.4.1 Optimization of H(AB|XYE)

We introduce some notation for convenience. Let x = (R, θ, α0, α1, β0, β1) and define

ε̂00(x) := R cos(θ) cos(2α0 − 2β0) +R sin(θ) cos(2α0 + 2β0)

ε̂10(x) := R cos(θ) cos(2α1 − 2β0) +R sin(θ) cos(2α1 + 2β0)

ε̂01(x) := R cos(θ) cos(2α0 − 2β1) +R sin(θ) cos(2α0 + 2β1)

ε̂11(x) := −R cos(θ) cos(2α1 − 2β1) −R sin(θ) cos(2α1 + 2β1)

K(x) := K(R, θ) ,

where K(R, θ) is given in Corollary 4. In this notation, the equation for the constraint is
∑
ij

ε̂i,j = 4(2ω − 1) . (5.45)

Hence we obtain the optimization problem:

GAB|XY E(ω) = min
x∈Dω

∑
ij

1
4Φ (ε̂ij(x)) +K(x)

s.t.
∑
ij

ε̂ij(x) = 4(2ω − 1) ,
(5.46)

where,

Dω = {R ∈ [
√

2(2ω − 1), 1], θ ∈ [0, π/4 − cos−1(1/(R
√

2))], (α0, α1, β0, β1) ∈ R4}

(see Lemma 18 for the justification of the range of R). Due to the monotonocity of the
function GAB|XY E(ω) (see lemma 38).
In the following section, we will demonstrate how to obtain reliable lower bounds for
GAB|XY E (converging in the asymptotic limit) by considering a sequence of polynomial
optimization problems. To initiate this process of finding appropriate lower bounds, we
first introduce the following modified optimization problem:

G
(n)
AB|XY E(ω) = min

x∈Dω

∑
ij

1
4Φn (Rε̂ij(x)) +K(x)

s.t.
∑
ij

ε̂ij(x) ≥ 4(2ω − 1).
(5.47)

Here, Φn(x) is a polynomial that serves as a lower bound to the function Φ(x) in the
range [−1, 1]. Conveniently, we have a set of polynomial lower bounds for the function
Φ(x), discussed in detail during the discussion of rates for semi Device Independent
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protocols in Section 8.9. These functions possess an appealing property, in that they
converge to Φ(x) from below. Specifically, for all x ∈ [0, 1], the following holds:

lim
n→∞

(Φ(x) − Φn(x)) = 0.

If we chose Φn(x) functions to be these special sequence of functions, then we obtain a
sequence {G(n)

AB|XY E}n that must converge to the function GAB|XY E from below.

5.4.2 Partitioning the domain

Let P be a partition of the set

D′
ω := {(R, θ) ∈ R2 : R ∈ [

√
2(2ω − 1), 1], θ ∈ [0, π/4 − cos−1(1/(R

√
2))]}.

Let Ca,b be a cuboid [Ra, Ra+1]×[θ(a)
b , θ

(a)
b+1] and xa,b := (Ra, θ

(a)
b ). Let ∆R := Ra+1−Ra

and ∆Θ := θ
(a)
b+1 − θ

(a)
b .

Furthermore define

ε̂
(a,b)
00 (x) := Ra cos

(
θ

(a)
b

)
cos(2α0 − 2β0) +Ra sin

(
θ

(a)
b

)
cos(2α0 + 2β0))

ε̂
(a,b)
10 (x) := Ra cos

(
θ

(a)
b

)
cos(2α1 − 2β0) +Ra sin

(
θ

(a)
b

)
cos(2α1 + 2β0)

ε̂
(a,b)
01 (x) := Ra cos

(
θ

(a)
b

)
cos(2α0 − 2β1) +Ra sin

(
θ

(a)
b

)
cos(2α0 + 2β1)

ε̂
(a,b)
11 (x) := −Ra cos

(
θ

(a)
b

)
cos(2α1 − 2β1) −Ra sin

(
θ

(a)
b

)
cos(2α1 + 2β1)

On a cuboid Ca,b define the restriction of the optimization problem (5.47) on the set Ca,b
as:

G
(n)
Ca,b

(ω) := min
(R,θ)∈Ca,b

∑
i,j

Φn (ε̂i,j) +K(R, θ)

s.t.
∑
ij

ε̂ij(x) ≥ 4(2ω − 1)

∀i, j : αi, βj ∈ R.

We now seek a lower bound g(n)
a,b for the function G(n)

Ca,b
, which will allow us to compute

a lower bound on the function G(n)
AB|XY E using Lemma 29. The following result finds

appropriate lower bounds g(n)
a,b .
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Lemma 34. Let ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] be fixed, and P = ⋃
a,b Ca,b be a partition of any

cuboid C ⊇ D′(ω) as specified above. For any Ca,b in the partition, we define:

ga,b := min
(R,θ)∈Ca,b

1
4
∑
i,j

Φn

(
ε̂

(a,b)
i,j

)
+K(Ri, θ

(i)
j ) − 2|Φ′

n(1)|
√

∆R2 + ∆θ2

s.t.
∑
ij

ε̂ij(x) ≥ 4(2ω − 1) − 2
√

(∆R)2 + (∆θ)2

∀i, j : αi, βj ∈ R.

Then, for every Ca,b in the partition, we have ga,b ≤ G
(n)
Ca,b

.

Proof. We invoke lemma 58 (see appendix A.3) to compute the lower bound on the
optimization problem for (5.48).
Let x = (R, θ) and y = (α0, α1, β0, β1) be vectors corresponding to the parameters in
our domain. This allows us to compare optimization problem (5.48) to the optimization
problem in lemma 58 by identifying functions g(x,y) = ∑

a,b Φn(ε̂i,j) and h(x) = K(R, θ).
The constraint function f1(x,y) = ∑

i,j ε̂i,j(x,y).
The monotonicity of K̂(R, θ) with respect to R and θ (see Lemmas 24 and 25) implies
K̂(R, θ) ≥ K̂(Ra, θ

(a)
b ) for all x ∈ Ca,b. This inspires us to choose x0 = (Ra, θ

(a)
b ).

Now, we find the ∆max, gmax and fmax. To find ∆max note that every x ∈ Ca,b, the
following holds:

||∆x0(x)|| =
√

(R −Ra)2 + (θ − θ
(a)
b )2 ≤

√
(∆R)2 + (∆θ)2.

Now, we can bound the gradients:

|∂Rε̂i,j| ≤ (cos(θ) + sin(θ)) ≤
√

2

|∂θ ε̂i,j| ≤ R (cos(θ) + sin(θ)) ≤
√

2

|∂Rg| ≤ |Φ′
n(1)||∂Rε̂i,j| ≤

√
2|Φ′

n(1)|

|∂θg| ≤ |Φ′
n(1)||∂θ ε̂i,j| ≤

√
2|Φ′

n(1)|,

where we have used the fact that the functions maxx∈[−1,1] : |Φ′
n(x)| = |Φ′

n(1)| =
|Φ′

n(−1)|. Combining the values of the derivatives gives gmax = 2Φ′(1) and fmax = 2.

Combining all the results in this section, we have the following

Corollary 7. Let ω ∈ (3
4 ,

1
2 + 1

2
√

2 ] be fixed. Let D′
ω := {(R, θ) ∈ R2 : R ∈

[
√

2(2ω − 1), 1], θ ∈ [0, π/4 − cos−1(1/(R
√

2))]} and P = ⋃
a,b Ca,b be a partition of
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any cuboid C ⊇ D′(ω) as specified above. Then

GAB|XY E(ω) ≥ min
a,b

ga,b, (5.48)

where ga,b are defined in Lemma 34.

Proof. This is a direct consequence of Lemmas 29 and 34.

The primary motivation for going through the various steps and simplifications is to
recognize that g(n)

a,b can be easily cast to a polynomial optimization problem. This
realization stems from the fact that both, the objective function and the constraints
involve the sine and cosine of variables α0, α1, β0, β1 ∈ R. Therefore, we introduce new
variables cos(αi) = xαi

and sin(αi) = yαi
, along with analogous variables for βj. By

doing so, both the objective function and the constraints in the optimization problem 5.48
can be expressed in terms of polynomials involving xαi

, yαi
, xβj

, yβj
. Further, we should

introduce the additional constraints x2
αi

+y2
αi

= 1 and x2
βj

+y2
βj

= 1 to ensure that x and
y correspond to cosine and sine of a valid angle. Consequently, we can determine reliable
lower bounds for ga,b using the SDP based techniques to solve polynomial optimization
problems as discussed in the section 2.3. These lower bounds converge asymptotically to
the actual value of ga,b. Furthermore, refining the partition leads to a reduction in the
size of cuboid dimensions ∆R and ∆θ, giving arbitrary tight lower bounds on GAB|XY E.

5.5 MONOTONICITY OF RATES

In this section we prove the monotonicity of the functions GA|XY E(ω), GAB|00E(ω) and
GAB|XY E(ω). There is a common part to the proofs, which we first establish.

Lemma 35. Let λ0(R, θ), λ1(R, θ), λ2(R, θ) and λ3(R, θ) be the eigenvalues of a Bell-
diagonal state ρA′B′ as in (4.28)–(4.31) in the case where δ = R2

4 cos(2θ). Then
∂

∂R
(Hbin(λ0 + λ1) −H({λ0, λ1, λ2, λ3})) > 0. (5.49)

Proof.
∂

∂R

(
Hbin(λ0 + λ1)

)
= − log(λ0 + λ1)

∂

∂R
(λ0 + λ1) − log(λ2 + λ3)

∂

∂R
(λ2 + λ3)

The equality above follows from the fact that 1 − λ1 − λ0 = λ2 + λ3 and thus Hbin(λ0 +
λ1) = −(λ0 + λ1) log(λ1 + λ0) − (λ2 + λ3) log(λ2 + λ3). We also have that

∂

∂R
H({λ0, λ1, λ2, λ3}) = −

∑
i

log λi
∂λi
∂R

. (5.50)
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For convenience, we write

G = Hbin(λ0 + λ1) −H({λ0, λ1, λ2, λ3}).

Adding the derivatives, we define

∂

∂R

(
G
)

= log
(

λ0

λ0 + λ1

)
∂λ0

∂R
+ log

(
λ1

λ0 + λ1

)
∂λ1

∂R

+ log
(

λ2

λ3 + λ2

)
∂λ2

∂R
+ log

(
λ3

λ2 + λ3

)
∂λ3

∂R

= log2

(
λ0

λ0 + λ1

)
∂

∂R
(λ0 + λ2) + log2

(
λ1

λ0 + λ1

)
∂

∂R
(λ1 + λ3)

= log
(
λ0

λ1

)
∂

∂R
(λ0 + λ2) = log

(
λ0

λ1

)
cos(θ) − sin(θ)

2
≥ 0, (5.51)

where the second equality follows from the fact that for Bell-diagonal states parameterized
by δ = R2

4 cos(2θ), the eigenvalues obey

λ0

λ0 + λ1
= λ2

λ2 + λ3
and λ1

λ0 + λ1
= λ3

λ2 + λ3

and the inequality comes from the parameterization.

Lemma 36. For ω ∈ (3
4 ,

1
2(1+ 1√

2)) and any distribution pXY , the functionGA|XY E(ω, pXY )
is increasing in ω.

Proof. Let us fix the score ω. From the analysis in section 5.2 we know that the optimum
value of δ is R2

4 cos(2θ). Throughout this proof we take δ = R2

4 cos(2θ) and consider
ρA′B′ to depend on two parameters R and θ. Let (N ∗, ρ∗) ≡ ρ(R∗, θ∗) be the channel
and state that that solves the optimization problem for GA|XY E(ω, pXY ), i.e., such
that GA|XY E(ω, pXY ) = H(A|XY E)(N ∗⊗IE)(ρA′B′E(R∗,θ∗)). It suffices to show that there
exists a curve σ : [−1, 0] 7→ S(HA′ ⊗ HB′ ⊗ HE), such that

1. σ(0) = ρ∗

2. g(t) := H(A|XY E)(N ∗⊗IE)(σ(t)) is differentiable for all t ∈ [−1, 0].

3. dg(t)
dt

∣∣∣
t=0

> 0

4. ∀t : d
dtS ((N ∗ ⊗ IE)(σ(t))) > 0.
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Then, if 1–4 hold, using the fact that g(t) is continuous and has a positive derivative
at t = 0, there exists t0 < 0 such that for t ∈ (t0, 0), g(t) < g(0). Since the
S ((N ∗ ⊗ IE)(σ(t))) is continuous function, we must have that for any t ∈ (t0, 0)

H(A|XY E)(N ∗⊗IE)(ρ∗
A′B′E

) > H(A|XY E)(N ∗⊗IE)(σ(t)) (5.52)
≥ GA|XY E (S((N ∗ ⊗ IE)(σ(t)), pXY ) . (5.53)

Since S((N ∗ ⊗ IE)(σ(t)) < ω this establishes the claim.
It remains to show that there exists a function σ(t) such that 1–4 hold. Recall from
section 5.2 that we can write

H(A|XY E) = 1 +
∑

x∈{0,1}
pX(x)Hbin(g(θ, αx)) −H({λ0, λ1, λ2, λ3}), (5.54)

where g(θ, α) := 1
2

(
1 +R

√
1 + sin(2θ) cos(4α)

)
. We then set

σ(t) = ρ(R∗ + κt, θ∗) (5.55)

for some positive number κ such that R∗ −κ > 3/4. Thus, σ(0) = ρ∗ and differentiability
of g(t) can be shown using the form (5.54). We compute the t derivative:

dg(t)
dt

∣∣∣∣∣
t=0

= κ
∂

∂R

(
H(A|XY E)(N ∗⊗IE)(ρA′B′E(R,θ))

)∣∣∣∣∣
R=R∗,θ=θ∗

. (5.56)

Note that

∂

∂R
Hbin(g(θ, α)) = H ′

bin(g(θ, α))

√
1 + sin(2θ) cos(4α)

2

≥ H ′
bin

(1
2 + R

2 (cos(θ) + sin(θ))
)cos(θ) + sin(θ)

2

= H ′
bin(λ0 + λ1)

∂

∂R
(λ0 + λ1)

= ∂

∂R
Hbin(λ0 + λ1) ,

where we have used that H ′
bin(p) is decreasing in p for p > 1/2, so we take α = 0 to

obtain a bound. It follows that
dg(t)

dt

∣∣∣∣∣
t=0

= κ
∂

∂R

(
Hbin(λ0 + λ1) −H({λ0, λ1, λ2, λ3})

)
> 0 ,

where the inequality is Lemma 35.
Finally, the function

S((N ∗ ⊗ IE)(σ(t)) = 1
2
∑
i,j

εij

increases linearly with t (the score is linear in R).
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Lemma 37. For ω ∈ (3
4 ,

1
2(1 + 1√

2)), the function GAB|X=0,Y=0,E(ω) is increasing in ω.

Proof. The proof follows the same lines as the previous lemma but with the entropy
changed. From section 4.6 we have

H(AB|X = 0, Y = 0, E) = 1 +Hbin(2ε00) −H({λ0, λ1, λ2, λ3}).

We have
∂

∂R
Hbin(2ε00) = H ′

bin(2ε00)
cos(θ) cos(2(α0 − β0)) + sin(θ) cos(2(α0 + β0))

2

≥ H ′
bin

(1
2 + R

2 (cos(θ) + sin(θ))
) cos(θ) + sin(θ)

2 (5.57)

and the remainder of the argument matches the previous proof.

Lemma 38. For ω ∈ (3
4 ,

1
2(1+ 1√

2)) and any distribution pXY , the functionGAB|XY E(ω, pXY )
is increasing in ω.

Proof. The proof for this again follows those above, except in this case (see section 4.7)

H(AB|XY E) = 1 +
∑
xy

pXY (x, y)Hbin(2εxy) −H({λ0, λ1, λ2, λ3}) . (5.58)

The bound that holds for ε00 in (5.57) holds for all εxy, and hence the rest of the argument
goes through as before.

5.6 RESULTS FOR THE LOWER BOUNDS

Lower bounds generated in this way are shown in Fig. 5.1, and can be seen to be close to
the upper bounds. In Fig. 5.1(b) we also compare with a lower bound on GAB|X=0,Y=0,E

from [43]. The lower bounds from our technique can be improved by refining the partition
of the domain at the expense of increasing the computational time required. As seen in
Fig. 5.1(b), refining the partition moves the lower bound closer to the upper bound. The
lower bounds for FAB|XY E can be seen in Figure 5.2 Our numerical evidence suggests
that the upper-bounds generated in the previous chapters are tight, as the lower bounds
appear to converge to the upper bounds. So, in the remainder of the work, we use upper
bounds for computing rates for protocols.

Conjecture 1. The upper bounds in Lemmas 20 and 21 are tight.
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(a) (b)
Figure 5.1: Graphs of the conjectured rates and lower bounds for (a) GA|XY E (b)
GAB|X=0,Y=0,E with uniformly chosen inputs. For GAB|X=0,Y=0,E we also show a
lower bound from Brown et al. [43]. We also demonstrate that the lower bound for
GAB|X=0,Y=0,E can be tightened by refining the partitioning of the domain for a specific
point (due to the increased computation time, we did not do this throughout).

Figure 5.2: Graphs for lower bounds on GAB|XY E(ω) and FAB|XY E(ω)
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Results and discussion

In this chapter, we discuss CHSH-based protocols for DIRNE of both the spot-checking
and non spot-checking types. We pick specific protocols for concreteness, but there are
many possible variations. For instance, the protocols we discuss condense the observed
statistics to a single score, but this is not necessary, and in some cases and for some sets
of experimental conditions it can be advantageous to use multiple scores [51, 56].
Before getting to the protocols, we first describe the setup, assumptions and security
definition. Although DIRNE requires no assumptions on how the devices used operate,
the setup for DIRNE involves a user who performs the protocol within a secure laboratory,
from which information cannot leak. Individual devices can also be isolated within their
own sub-laboratory and the user can ensure that these devices only learn the information
necessary for the protocol (in particular, they cannot learn any inputs given to other
devices). The user has access to a trusted classical computer and an initial source (or
sources) of trusted randomness.
The quantum devices used for the protocol are only limited by the laws of quantum theory
and may share arbitrary entanglement with each other and with an adversary. However,
they cannot communicate with each other, or to the adversary after the protocol starts.
Furthermore, we assume they are kept isolated after the protocol (see the discussion in
Appendix A.5).
For security of the protocols, we use a composable security definition. Consider a protocol
with output Z and use Ω to denote the event that it does not abort. The protocol is
(εS, εC)-secure if

1. 1
2pΩ||ρZE|Ω − 1

dZ
1Z ⊗ ρE|Ω||1 ≤ εS, where E represents all the systems held by an

adversary and dZ is the dimension of system Z; and

96
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2. There exists a quantum strategy such that pΩ ≥ 1 − εC .
Here εS is called the soundness error, and εC is the completeness error.

6.1 CHSH-BASED SPOT-CHECKING PROTOCOL FOR RANDOM-
NESS EXPANSION

We now describe a spot-checking protocol for randomness expansion. It uses a central
biased random number generator RT and two other random number generators, RA and
RB that are near each of the devices used to run the protocol.

Protocol 1. (Spot-checking protocol)

Parameters:
n – number of rounds
γ – test probability
ωexp – expected CHSH score
δ – confidence width for the score

1. Set i = 1 for the first round, or increase i by 1.

2. Use RT to choose Ti ∈ {0, 1} where Ti = 1 occurs with probability γ.

3. If Ti = 1 (test round), RA is used to choose Xi uniformly, which is input to one
device giving output Ai. Likewise RB is used to choose Yi uniformly, which is
input to the other device giving output Bi. Set Ui = 1 if Ai ⊕ Bi = XiYi and
Ui = 0 otherwise.

4. If Ti = 0 (generation round), the devices are given inputs Xi = Yi = 0, and return
the outputs Ai and Bi. Set Ui = ⊥.

5. Return to Step 1 unless i = n.

6. Calculate the number of rounds in which Ui = 0 occurred, and abort the protocol
if this is larger than nγ(1 − ωexp + δ).

7. Process the concatenation of all the outputs with a quantum-proof strong extractor
Ext to yield Ext(AB,R), where R is a random seed for the extractor. Since a
strong extractor is used, the final outcome can be taken to be the concatenation
of R and Ext(AB,R) (see Section 2.4 for details of randomness extraction).
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There are a few important points to take into account when running the protocol. Firstly,
it is crucial that each device only learns its own input and not the value of the other
input, or of Ti. If this is not satisfied it is easy for devices to pass the protocol without
generating randomness. Secondly, for implementations in which devices can fail to record
outcomes when they should, it is important to close the detection loophole, which can
be done by assigning an outcome, say 0, when a device fails to make a detection.
In order to run the protocol, some initial randomness is needed to choose which rounds are
test rounds, to choose the inputs in the test rounds and to seed the extractor. Since the
extractor randomness forms part of the final output, it is not consumed in the protocol, so
for considering the rate at which the protocol consumes randomness we can work out the
amount of uniform randomness needed to supply the inputs. Using the rounded interval
algorithm [63] to make the biased random number generator, n(Hbin(γ) + 2γ) + 3 is
the expected amount of input randomness required. To achieve expansion, the number
of output bits must be greater than this. We use the entropy accumulation theorem
(EAT) to lower bound the amount of output randomness. Asymptotically the relevant
quantity is H(AB|X = 0, Y = 0, E). The quantity H(A|X = 0, Y = 0, E) acts as a
lower bound for this, and can be used in its place if convenient, for instance in analyses
that are more straightforward with an analytic curve.

6.2 CHSH-BASED PROTOCOLS WITHOUT SPOT-CHECKING

In this section we discuss two protocols which do not require spot checking. Protocol 2
uses two biased local random number generators to choose the inputs on each round.
Protocol 3 eliminates the bias, but also recycles the input randomness. Recycling the
input randomness is necessary when unbiased random number generators are used, since
otherwise more randomness is required to run the protocol than is generated. Protocol 3
gives the highest randomness generation rate of all the protocols we discuss.

Protocol 2. (Protocol with biased local random number generators)

Parameters:
n – number of rounds
ζA – probability of 1 for random number generator RA (taken to be below 1/2)
ζB – probability of 1 for random number generator RB (taken to be below 1/2)
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ωexp – expected CHSH score.
δ – confidence widths for each score.

1. Set i = 1 for the first round, or increase i by 1.

2. Use RA to choose Xi ∈ {0, 1}, which is input to one of the devices giving output
Ai ∈ {0, 1}. Likewise use RB to generate Yi ∈ {0, 1}, which is input to the other
device giving output Bi ∈ {0, 1}. Here Xi = 1 occurs with probability ζA and
Yi = 1 occurs with probability ζB. Set Ui = (Xi, Yi, 1) if Ai ⊕ Bi = XiYi and
Ui = (Xi, Yi, 0) otherwise.

3. Return to Step 1 unless i = n.

4. Compute the value

ω = 1
4
∑
x,y

|{i : Ui = (x, y, 1)}|
npX(x)pY (y) (6.1)

and abort the protocol if ω < ωexp − δ. Here pX(1) = ζA, pX(0) = 1 − ζA,
pY (1) = ζB and pY (0) = 1 − ζB.

5. Process the concatenation of all the outputs with a quantum-proof strong extractor
Ext to yield Ext(AB,R), where R is a random seed for the extractor. Since a
strong extractor is used, the final outcome can be taken to be the concatenation
of R and Ext(AB,R) (see Section 2.4 for details).

Note that the quantity |{i : Ui = (x, y, 1)}|/(npX(x)pY (y)) in (6.1) is an estimate of
the probability of winning the CHSH game for inputs X = x and Y = y, and hence the
ω computed in Step 4 is an estimate of the CHSH value that would be observed if the
same setup was used but with X and Y chosen uniformly.
The input randomness required per round in this protocol is roughly Hbin(ζA)+Hbin(ζB).
To quantify the amount of output randomness (before randomness extraction is per-
formed), in the asymptotic limit similar to the spot checking protocol, the relevant
operational quantity is the von Neumann entropy H(AB|XY E). Expansion hence
cannot be achieved if H(AB|XY E) − Hbin(ζA) − Hbin(ζB) < 0, which places con-
straints on the pairs of possible (ζA, ζB). For ζA and ζB smaller than 1/2, the quantity
H(AB|XY E) −Hbin(ζA) −Hbin(ζB) increases as ζA and ζB decrease, and hence we
want to take these to be small. They only need to be large enough to ensure that
X = 1, Y = 1 occurs often enough to give a good estimate of the empirical score.
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Since

H(AB|XY E) =
∑
xy

pXY (x, y)H(AB|XY E)

≥ min
x,y

H(AB|X = x, Y = y, E), (6.2)

we can use the bounds formed for H(AB|X = 0, Y = 0, E) instead, albeit with a loss
of entropy (this loss of entropy is small if ζA and ζB are small)1.
One reason for using Protocol 2 rather than Protocol 1 is that the former enables the
locality loophole to be closed while expanding randomness. In order to perform the Bell
tests as part of a device-independent protocol we need to make inputs to two devices
in such a way that neither device knows the input of the other. One way to ensure
this is by using independent random number generators on each side of the experiment,
and ensuring the outcome of each device is given at space-like separation from the
production of the random input to the other. Although space-like separation can provide
a guarantee (within the laws of physics) that each device does not know the input of
the other2, in a cryptographic setting it is necessary to assume a secure laboratory to
prevent any unwanted information leaking from inside the lab to an eavesdropper. The
same mechanism by which the lab is shielded from the outside world can be used to
shield devices in the lab from one another and hence can prevent communication between
the two devices during the protocol. However, although unnecessary for cryptographic
purposes, it is interesting to consider closing the locality loophole while expanding
randomness.
This is not possible in a typical spot-checking protocol, where a central random number
generator is used to decide whether a round is a test round or not. Considering Protocol 1,
the locality loophole can be readily closed during the test rounds, but the use of the central
random number generator means that, if one is worried that hidden communication
channels are being exploited, there is a loophole that the devices could behave differently
on test rounds and generation rounds. For instance, measurement devices that know
whether a round is a test or generation round could supply pre-programmed outputs in
generation rounds, while behaving honestly in test rounds. Thus, spot-checking protocols
do not enable fully closing the locality loophole while expanding randomness.

1There is nothing special about the choice X = 0 and Y = 0 when computing the bounds for
H(AB|X = 0, Y = 0, E).

2Provided we have a reasonable way to give a time before which the output of RA and RB did not
exist.
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When using Protocol 2 with ζA = ζB − ζ, the main difference to Protocol 1 is that
the distribution of X and Y is ((1 − ζ)2, ζ(1 − ζ), ζ(1 − ζ), ζ2) rather than (1 −
3γ/4, γ/4, γ/4, γ/4). In the analysis this manifests itself in the statistics, and the much
lower probability of X = 1, Y = 1 requires an adjustment of δ to achieve the same error
parameters for the protocol. A comparison between the output rates for Protocols 1
and 2 is shown in Figures 6.1 and 6.2.

Protocol 3. (Protocol with recycled input randomness)

Parameters:
n – number of rounds
ωexp – expected CHSH score.
δ – confidence width.

1. Set i = 1 for the first round, or increase i by 1.

2. Use RA to choose Xi ∈ {0, 1} uniformly, serving as the input to one of the devices
giving output Ai ∈ {0, 1}. Likewise use RB to generate Yi ∈ {0, 1} uniformly,
which is input to the other device giving output Bi ∈ {0, 1}. Set Ui = 1 if
Ai ⊕Bi = XiYi and Ui = 0 otherwise.

3. Return to Step 1 unless i = n.

4. Count the number of rounds for which Ui = 0 occurred and abort the protocol if
this is above n(1 − ωexp + δ).

5. Process the concatenation of all the inputs and outputs with a quantum-proof
strong extractor Ext to yield Ext(ABXY,R), where R is a random seed for the
extractor. Since a strong extractor is used, the final outcome can be taken to be
the concatenation of R and Ext(ABXY,R).

An important difference in this protocol compared to Protocols 1 and 2 is in the extraction
step, which now extracts randomness from the input strings X and Y as well as the
outputs. Without recycling the inputs, expansion would not be possible in Protocol 3.
With this modification, the relevant quantity to decide the length of the output is
H(ABXY |E), and so H(AB|XY E) = H(ABXY |E)−H(XY ) = H(ABXY |E)−2
is the relevant quantity for calculating the rate of expansion. Note that in order to reuse
the input in a composable way, it also needs to be run through an extractor [2] (for a
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discussion of why it is important to do so and a few more composability-related issues,
see Appendix A.5).
We could also consider an adaptation of Protocol 1 in which the input randomness is
recycled, forming Protocol 1′ from Protocol 1 by replacing Step 7 by

7′. Process the concatenation of all the inputs and outputs with a quantum-proof
strong extractor Ext to yield Ext(ABXY,R), where R is a random seed for the
extractor. Since a strong extractor is used, the final outcome can be taken to be
the concatenation of R and Ext(ABXY,R).

In this case, as the number of rounds, n, increases the advantage gained by this
modification decreases, becoming negligible asymptotically. This is because as n increases,
the value of γ required to give the same overall security tends to zero, and hence the
amount of input randomness required becomes negligible. Note that recycling the input
randomness in Protocol 2 in the case where ζA = ζB = 1/2 is equivalent to Protocol 3.
Like Protocol 2, Protocol 3 also allows the locality loophole to be closed if on each round
i, the random choice Xi is space-like separated from the output Bi and the random
choice Yi is space-like separated from the output Ai.
In each of the protocols, the parameter δ should be chosen depending on the desired
completeness error. For the spot-checking protocol, the relation between the two is
discussed in [31, Supplementary Information I D]. The analysis there can be applied to
the protocol with recycled input randomness by setting γ = 1 and the protocol with
biased local random number generators is discussed in Appendix A.4.3.2.
Figures 6.1 and 6.2 show how the amount of certifiable randomness varies with the score,
ω, and round number, n. Note that in the cases where the rate curves are linear, they
are linear for most of their ranges. Extending the linear part to the full range of quantum
scores makes it easier to use the EAT while only resulting in a small drop in rate for
scores close to the maximum quantum value. Note that, as mentioned above, strictly
speaking, the numerical curves we provided for the von Neumann entropy are upper
bounds; the curves in Figures 6.1 and 6.2 are generated under the assumption that these
upper bounds are tight. [We could also use our lower bound instead. This would result
in a small down-shifting of the curves, but means that the bounds are provably reliable.]
To demonstrate the increased practicality of the two-sided curves, we use the parameters
from a recent experiment [31] with Protocol 1. There a score of just over 0.752 was
obtained, for which it would require about 9 × 1010 rounds to achieve expansion using
Protocol 1 with γ = 3.383×10−4, εS = 3.09×10−12, εC = 10−6 and taking the one-sided
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Figure 6.1: Graphs of the net rate of certifiable randomness according to the EAT
for (a) the spot checking protocol (Protocol 1), (b) the protocol with recycled input
randomness (Protocol 3), and (c) the protocol with biased local random number generators
(Protocol 2), showing the variation with the number of rounds for three different scores,
ω. The error parameters used were εS = 3.09 × 10−12 and εC = 10−6. For each point
on the curve (a) an optimization over γ was performed to maximize the randomness;
similarly, the values of ζA = ζB were optimized over to generate the curves in (c).
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Figure 6.2: Graphs of the net rate of certifiable randomness according to the EAT
for (a) the spot checking protocol (Protocol 1), (b) the protocol with recycled input
randomness (Protocol 3), and (c) the protocol with biased local random number generators
(Protocol 2), showing the variation with the CHSH score ω. The round numbers, n,
are indicated in the legend. The error parameters used were εS = 3.09 × 10−12 and
εC = 10−6. As in Figure 6.1, the values of γ (for (a)) and ζA = ζB (for (c)) were
optimized over for each point.
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randomness [31]. Using Protocol 3 instead, and taking the two-sided randomness for
the same score and error parameters allows expansion for n & 8 × 107, significantly
increasing the practicality. For instance, the main experiment of [31] was based on a
spot-checking protocol and took 19.2 hours; the use of Protocol 3 instead would allow
the same amount of expansion in about 60 seconds (this time holds under the assumption
that the same repetition rate of the experiment can be met in the non-spot checking
protocol3). Protocol 2, however, produces lower randomness rates compared to the
spot-checking protocol. This is partly because more input randomness is required, and
also because the completeness error has a worse behaviour. Protocol 2 is hence useful
when inputs are not recycled and when closing the locality loophole is desirable.
When discussing randomness expansion we have considered the figure of merit to be the
amount of expansion per entangled pair shared. An alternative figure of merit is the
ratio of the final randomness to the initial randomness, i.e., here we are considering how
much randomness we can get from a given amount of initial randomness. For the latter
figure of merit, Protocol 3 is no longer optimal, since the amount of expansion cannot
exceed the amount of input randomness. For the other two protocols the ratio of output
randomness to input randomness can be made much higher by taking either γ or ζAζB

to be small.

6.3 DISCUSSION

In chapters 3, 4, 5, and 6 we discussed CHSH based protocols for randomness expansion.
We have given numerical bounds on various conditional von Neumann entropies that
are relevant for CHSH-based device-independent protocols and discussed when each can
be applied. We have investigated their implications using explicit protocols, comparing
the finite statistics rates using the EAT, showing use of two-sided randomness has the
potential to make a big difference. We also looked at protocols beyond the usual spot
checking type. The first removes the spot checking to allow expansion while closing the
locality loophole, and the second recycles the input randomness, so allowing expansion
while performing a CHSH test on every round.
It remains an open question to find an analytic form for FAB|X=0,Y=0,E, FA|E and FAB|E.
Since the curves FA|E and FAB|E are linear for all but the very highest (experimentally

3In some experiments, the rate at which we can switch between the two measurements is relatively
slow, and hence when using Protocol 3, where switching is required on most rounds, the switching rate
dominates, slightly increasing the time.
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least achievable) scores, in these cases not much is lost by extending the line to all scores
forming a lower bound that tightly covers all of the experimentally relevant cases. On the
other hand FAB|X=0,Y=0,E is a convex curve throughout and hence a tight analytic form
would be particularly useful in this case. Our initial analysis suggests that the form of the
parameters achieving the optimal values for these functions is sufficiently complicated
that any analytic expression would not be compact. A reasonably tight analytic lower
bound for FAB|X=0,Y=0,E could also be useful for theoretical analysis. Note also that the
bound FA|E ≥ FA|XY E appears to be fairly tight (see Figure 4.1(a)) so the analytic form
for FA|XY E can be used to bound FA|E with little loss. Another open problem is to find
a concrete scenario in which FAB|E is directly useful.
The use of Jordan’s lemma in this work prevents the techniques used being extended to
general protocols, and finding improved ways to bound the conditional von Neumann
entropy numerically in general cases remains of interest. For example, protocols that use
three inputs for one party can allow up to 2 bits of randomness per entangled pair (see,
e.g. [51]), and a way to tightly lower bound the von Neumann entropy in this case would
further ease the experimental burden required to demonstrate DIQKD in the lab.
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Introduction to semi-Device Independent
Protocols

7.1 INTRODUCTION

As outlined in the introduction, the Device Independent protocols of randomness expansion
make minimal assumptions for certifying randomness. However, as they currently stand,
these protocols are extremely difficult to implement in a laboratory setting, even with
the most advanced technology available. The primary obstacle in this regard is the
performance of a loophole-free Bell test. There are two main loopholes that have
traditionally caused problems in performing the Bell test. The first is the locality loophole,
which refers to the requirement that the devices are spacelike separated when carrying
out the Bell test. The second is the detection loophole, resulting from inefficient
measurements.
For protocols of randomness expansion, the locality loophole might not be as critical
to close, assuming we have control over the laboratory. Shielding mechanisms can
be used between the devices to ensure that no communication occurs among them.
Theoretically, this could be the same shielding that prevents any data leak from the lab
to the outside world. The remaining challenge is the detection loophole, the closure of
which requires very high-efficiency detectors. While such detectors are available, they
tend to be expensive, and maintaining good-quality entanglement over a relatively large
distance presents a significant practical problem.
As noted in the introduction, progress is being made in this direction, but until these
challenges can be overcome in a more practical way, Device Independent protocols for
randomness expansion can only be used for a select few top-security applications. On a
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practical level, however, the security of random numbers is desired. Therefore, there is a
need for protocols that are not fully Device Independent but rather allow for a certain
degree of trust on the components.
By imposing well-chosen assumptions on the devices or the system’s underlying process,
semi-Device Independent (semi-DI) approaches can achieve most of the security benefits
of a fully Device Independent (DI) protocol whilst bypassing the need for challenging
experimental implementations. This intermediate scenario strikes a balance between
security and practicality, making it a promising approach for implementing quantum
random number generators.
Many semi-DI protocols have been introduced in the scientific literature. A typical setup
for these protocols involves having a source that prepares a quantum state, and then
sends it to a measurement device that performs a measurement on the prepared quantum
state. One advantage of this method is that it doesn’t rely on sharing entangled states
over a distance, which is a requirement of the Device Independent protocols. This type
of experimental setup is often referred to as a “prepare and measure” setup (or scenario).
The assumptions underlying a semi-DI scheme can vary based on specific needs. For
example, one might consider source-DI or measurement-DI cases, where either the source
device or the measurement device is trusted, respectively.
In this section of the thesis, we work on protocol based on a “prepare and measure”
scenario where the source and measurement devices are both uncharacterized. Thus,
it is both source-DI and measurement-DI. This method was first introduced in [9] and
been subsequently been studied in [64–69]. These works discuss semi-DI Quantum
Random Number Generators (QRNGs) that employ a physical system with a unique
ground state – i.e. the lowest eigenvalue state of the system Hamiltonian is unique. The
outlined protocols are based on the source preparing the states with low energy or high
overlap1 with the unique ground state. The component of the protocol responsible for
the verification of these energy and overlap constraints is trusted, hence making these
protocols semi-Device Independent.
The idea for the protocol is as follows: Recall from section 2.2 that two quantum states
ρ0 and ρ1, when prepared with a uniform probability distribution, cannot be perfectly
distinguished if the distance between them, represented as ||ρ0 − ρ1||1, is small. Now
consider the following scenario: we randomly select X ∈ {0, 1} and prepare ρx (x = 0 or
1) depending on the outcome of X = x, and then task our measurement device with

1Overlap here is defined as the fidelity between the state and the ground state.
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distinguishing between the states ρ0 and ρ1 to produce a bit Y with the intent that
Y = X. If the states ρ0 and ρ1 are sufficiently close2, then the probability that Y = X

is strictly less than 1, insinuating that Y must possess randomness, even if X is later
revealed. This forms the basis of our protocol.
The advantage of such a protocol is that it has the features of Device Independent
protocols, in the sense that the security of the protocol solely relies on the input-output
statistics, namely the probability that the outputs and inputs are different - i.e. P (Y 6= X).
Furthermore, observe that the protocol does not also depend upon which states are
prepared, all that matters is the quantity ||ρ0 − ρ1||1. Intuitively, given that the protocol
hinges on the inability to perfectly distinguish sufficiently close quantum states, one
would anticipate that the randomness generated in the protocol increases as the distance
between the states decreases. This intuition will be confirmed when we compute the
rates of the protocols in Chapter 9. Thus, if there is an experimental way to ensure the
distance ||ρ0 − ρ1||1 is small, then we have a good protocol for randomness expansion.
To ensure the distance between the generated states is small, one strategy involves
seeking systems with a unique ground state, meaning the system’s lowest energy state is
non-degenerate. If the system’s energy is observed to approximate the vacuum energy
(i.e., the energy of the ground state), then both states must be nearly equivalent to
the ground state and, by extension, to each other. Provided that the measured energy
is low enough, it is possible to find bounds on the distance between the states simply
by knowing the energies of the states produced using simple arguments. Note that
theoretically, the ground state isn’t inherently special; the key lies in generating nearly
identical states. In practical terms, when the state source is a laser pulse - common in
many prepare-and-measure situations - the source might produce two coherent states,
|α0〉〈α0| and |α1〉〈α1|, both with minimal mean photon numbers, rendering them close
to the vacuum state.
Unfortunately, measuring the energy of the system is not possible in a Device Independent
fashion. Thus, we need to have a trusted power meter, whose role is to measure the
energy of the states, making this protocol semi-Device Independent. We use the same
principle for our protocol of randomness, however, we do not measure energy of the
states. Rather, we assume that we have access to a power-meter, which can determine if
the prepared states have more than a threshold energy - so it is a yes/no machine (similar
to an on/off photo diode). The details of this will become clear in the next section. We

2Here, two states are close to each other if the trace distance between them is small.
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can also include an additional component such as a variable attenuator, that can help by
reducing the energy of the emitted states.
For this semi-DI protocol, the primary assumption is that the power meter is a trusted
component and has not been tampered with by any adversary nor is it damaged. However,
depending on the context, the studies mentioned above have required one or more
additional assumptions:

• Each protocol round is independent of the previous one, and the initial conditions
are identical before each round (i.i.d. assumption). This condition implies that
the source or the measurement devices do not have an internal memory set by the
eavesdropper.

• Only classical side-information is considered, which can be caused by device
imperfections or classical correlations. This assumption limits the eavesdropper
from being entangled with the quantum state prepared by the source. Furthermore,
this also supposes that the eavesdropper has no quantum memory.

• The source and measurement devices are not entangled with each other.
The assumptions above can be rather strong in many scenarios. For instance, the
assumption that all the rounds are identical and that the eavesdropper only has a classical
side information is difficult to verify in the experimental setting. The above assumptions
also explicitly rule out the case, in which, the adversary shares entanglement with the
source and the measurement device, which cannot be easily justified when the RNG is
purchased from a untrustworthy party. Furthermore, device imperfections, environmental
changes, and experimental errors make it impossible to achieve identical experiment
rounds. Furthermore, suppose the adversary has a quantum correlation with the devices,
such as generated states being entangled with her states. In that case, it becomes easier
for her to predict the QRNG measurement outcome.
Our analysis discards all these assumptions, except for the last one, in which the source
and the measurement devices share some entanglement. Though we do allow for pre-
shared randomness between the source and the measurement device. We permit the
eavesdropper to share entanglement with the source and the states prepared by the
source. We also allow for a fully uncharacterized measurement device known to the
adversary and permit the eavesdropper, source, and measurement device to pre-share
arbitrary classical randomness, thereby accounting for a quantum adversary.
In quantum state preparation and measurement, the memory effect means that earlier
measurements can influence subsequent ones, and earlier prepared states may impact
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those prepared later. These memory effects have implications for security, as they
introduce correlations and dependencies in the outcomes. To mitigate this issue, we
consider the memory effect and other potential sources of correlation in the security
estimation stage.

The main advantage is that our protocol is formulated in a way that the Entropy
Accumulation Theorem (EAT) can be readily applied. Though this has not been done in
the thesis, it can be done in a relatively straightforward manner, thus exploiting several
benefits of EAT. The primary advantage is the relaxation of the i.i.d. assumption in the
protocol, and accounting for memory effects. Furthermore, the EAT also accounts for
the adversary holding quantum side information. Using EAT, the problem of computing
randomness rates (randomness per round) is reduced to computing the lower bound on
the single round von Neumann entropy of a representative round of a protocol. The
problem of computing lower bounds on the single round von Neumann entropies for the
semi-DI protocol described above is one of the main aims of this section of the thesis.

One of the challenging aspects of the protocol is that no assumptions have been made
on the dimensions of the states ρx. Fortunately, similar to DI protocols, we show that
we can leverage Jordan’s Lemma for such semi-DI protocols, significantly reducing the
complexity of computing the rates of the protocols. Jordan’s Lemma allows us to relax
the problem to a scenario where the source generates qubit states, and the measurement
device performs projective measurements, simplifying the process into an optimization
problem involving less than eleven variables. Further simplifications, along with reliable
numerical techniques for obtaining lower bounds on polynomial optimization problems as
discussed in Chapter 2, enable us to reliably compute the rates for the protocol. The
problem of computing these rates will be discussed in the next chapter (Chapter 8).

In this work, we present two types of protocols: one for randomness expansion, similar
to protocol 3 in the DI setting, where input randomness is recycled, and another for
converting public randomness to private randomness, analogous to protocol 2 in the
DI setting. The protocols are detailed in Chapter 9, along with a discussion on the
asymptotic rates for these protocols.

In the remainder of the chapter, we do a brief literature survey of different Quantum
Random Number Generators (QRNGs) and then proceed to giving a sketch of the protocol
that we study in this thesis.
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7.2 A BRIEF REVIEW OF DIFFERENT QRNGS

Before delving into the main semi-DI protocol of randomness expansion discussed in
this thesis, we deliver a very brief and non-exhaustive survey of the literature on various
Quantum Random Number Generators (QRNGs). There is a vast literature on a range
of different protocols for building QRNGs. As discussed in the previous section, there is
generally a trade-off between the ease of experimental implementation of a protocol and
the security of the protocol. Here, we call a protocol more “secure” if it requires fewer
experimental assumptions. Broadly speaking, QRNGs fall into one of these categories:

1. Fully Device-dependent protocols (DD) (for example see [70–72]);

2. Source DI protocols (for example see [73, 74]), wherein the source is untrusted
but the measurement apparatus is reliable;

3. MDI protocols (for example see [75–77]), where the measurement device is un-
trusted, but not the source;

4. Semi-DI protocols;

5. DI protocols.

The DD protocols are the easiest to implement since all components are trusted, and
no characterization of the device is needed. However, this simplicity might come at
the expense of security. On the other hand, the DI protocols are the most difficult
to implement with the current technology but promise the highest possible security.
The source-DI, measurement-DI, and semi-DI protocols are in the middle with security
somewhere in between DD and DI and the practicality also somewhere in between DD
and DI. Source and measurement DI protocols have also been studied widely in the
literature. These protocols are useful when the user can either characterize the source,
which can prepare desired states with minimal noise, or characterize the measurement
device that comes equipped with highly efficient detectors.
The exploration of semi-DI protocols in the quantum information theory literature can
be traced back to Liang et al. [78]. Their work focused on semi-DI protocols for
entanglement detection. Building upon these concepts, Pawłowski et al. [79] extended
this framework to include semi-DI protocols for Quantum Key Distribution (QKD). This
work was further extended by Li et al. [80] to construct a semi-DI protocol for randomness
expansion. These semi-DI protocols operate within the prepare-and-measure scenario
and do not make any assumptions about the internal workings of the device, other than
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the assumption that the dimension of the Hilbert space of the produced states is both
bounded and known.

The primary challenge with randomness expansion protocols that depend on a dimension
bound for the prepared states is the inability to experimentally verify such an assumption.
While a lower bound on the Hilbert space dimension can be certified without trusting the
devices [81, 82], an upper bound cannot be similarly certified. This limitation stems from
the fact that the dimension of the Hilbert space is not a directly measurable quantity in
quantum theory, leaving no reliable method to validate assumptions about the Hilbert
space dimensions of prepared states.

The protocol by Van Himbeeck et al. addresses this issue [9]. Their idea is that the
dimension of the Hilbert space can be indirectly deduced through energy measurements.
In many quantum systems, both the Hamiltonian and its spectrum are known. The
essence of the protocol is that the Hilbert space dimension can be inferred by measuring
the energy of the system. For example, if the source prepares quantum states in a system
with a known, non-degenerate energy spectrum {Ei}∞

i=0, and the highest observed energy
after numerous measurements is Ek, we can deduce, with high confidence, that the
Hilbert space dimension is k + 1. This method remains applicable to a degenerate
spectrum, as long as the full spectrum, including degeneracies, is known. Importantly,
Van Himbeeck et al. [9] realized that if the measured energy stays below a specific
threshold, the system can effectively be seen as two-dimensional, with one ground state
and all other states can be effectively combined as a single excited state. Subsequent
research has further developed and expanded upon these findings [64–69].

The method described above for building semi-DI protocols is by no means exhaustive.
There are other semi-DI protocols based on different physical or information-theoretic
principles (for example, see references [83–85]). Moreover, just as quantum behavior can
be certified using Bell non-locality, another fundamental concept, contextuality, can also
certify whether the experimentally observable statistics admit a quantum behaviour or
not. Unfortunately, unlike non-locality, non-contextuality cannot be tested in a Device
Independent manner. However, without delving into any details, if we place appropriate
(partial) trust in the source or the measurement device, it is possible to devise semi-DI
protocols of randomness expansion based on the distinction between contextual and
non-contextual behaviors. The groundwork for such protocols has been established for
the QKD setting in [86] and later extended to randomness expansion in [87].
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Figure 7.1: A schematic diagram of our semi-DI protocol.

7.3 GENERAL SEMI-DEVICE INDEPENDENT PROTOCOL

Figure 7.3 offers a schematic illustration of the protocol, which is split into three
primary stages: preparation, testing, and measurement. It’s crucial to note that full
characterization is necessary only for the component in the testing phase. Both the
source and measurement stages remain uncharacterized.
For the protocol to operate effectively, two separate input seeds are essential. The initial
seed guides the source in state preparation, while the secondary seed dictates whether the
prepared states undergo testing. Keeping these seeds hidden from potential adversaries
before the protocol’s initiation is vital for protocol’s security .
Here is a brief overview of the protocol:
Preparation Phase: The source accepts input of a random variable X ∈ {0, 1} that
is generated with a probability distribution pX(x). Based on this input, the source
prepares either ρ0 or ρ1 contingent on whether X equals 0 or 1. The state then gets
relayed to component BS, which determines if the state should proceed to the testing or
measurement phase. Essentially, device BS functions as a switch. Utilizing a random
number T produced by the random number generator Rγ , BS sends the signal to either
testing or measurement (for example, if it receives T = 0, then it will send the signal to
measurement, otherwise it sends the signal for testing). The bias of Rγ is set to ensure
most signals reach the measurement phase. If BS channels the state for testing, we
denote that round a test round; otherwise, we call the round ameasurement round.
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In practice, if the source is a laser, the device BS can be a mechanical switch that
controls a mirror. Depending on the random variable T , it directs the signal to the testing
phase or the measurement phase. However, such a switch can be lossy and therefore
may not very suitable for practical implementation. Alternatively, the device BS can be
a half-silvered mirror or a beam splitter, which is a passive optical device that transmits
the signal to the measurement device with probability pT (0) = γ or reflects the signal
with probability 1 − γ. If such a half-silvered mirror is used, it also needs to be fully
characterized and assumed not be tampered with by any adversary.
Testing Phase: This is the protocol’s fully characterized segment. Recall that the
protocol derives its randomness if the states ρ0 and ρ1 are near identical. This is ensured
by ensuring both states are close3 to the system’s unique ground state, symbolized by
|0〉〈0| or Π0, often referred to as the vacuum state. Essentially, the idea is that if both
states are reasonably close to the vacuum state (in the state space), they are close to
each other (in the state space). Formally, the definition of closeness that we use here is
overlap of two states with vacuum state. The overlap for state ρ with the vacuum is
defines as:

tr (ρΠ0) = 〈0| ρ |0〉 . (7.1)

From a theoretical viewpoint, measuring this overlap requires an on-off device that can
execute a two-outcome measurement {Π0,1 − Π0}, with Π0 representing the projection
onto the vacuum state. Alternatively, the overlap can be deduced from the state’s
energy, given that this measured energy remains below a certain threshold. Therefore,
experimentally, this mandates the use of a power-meter or photodiode. For simplicity,
this on-off device is often termed a ’power meter’, symbolized by PM . If we define the
vacuum’s energy as zero, this device’s primary function becomes the detection of any
existing positive energy.
Considering PM could receive states ρ0 or ρ1 depending on the source’s preparation,
there are two separate overlaps with the ground state in a protocol. In our context, the
term “overlap” (of the protocol) is defined as the average of these individual overlaps of
ρ0 and ρ1 with the ground state. Specifically, the overlap Θ for a protocol is:

Θ = 1
2tr(ρ0Π0) + 1

2tr
(
ρ1Π0

)
. (7.2)

3Here closeness of two states is measured in terms of them having either high fidelity or low trace
distance.
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Ideally, this value should be at its maximum to ensure that the source S consistently
produces states with substantial individual overlaps.
Measurement Phase: Here, states ρ0 or ρ1 are sent to the measurement apparatus M .
This device’s primary role is to determine whether ρ0 or ρ1 has been sent. Essentially,
it should produce a bit Y aiming for Y to equal X. If the overlap is notable, then M
cannot perfectly distinguish between the states, ensuring that the output Y contains
private randomness even if X is later revealed.
During the generation round, a “win” is declared if Y equals X. Theoretically, the
measurement device performs a two outcome POVM {M0,M1 ≡ 1 − M0}. The
protocol’s score is the mean probability of securing a win, defined as:

ω := 1
2 tr

(
M0ρ

0
)

+ 1
2 tr

(
M1ρ

0
)
, (7.3)

Here, tr(Mxρ
x) is the probability of winning a generate round when X = x is prepared.

A high score is desirable for our protocol. As we have discussed earlier achieving a high
overlap is crucial for the protocol’s optimal function. Yet, even with a specific overlap, a
high score remains preferable. A low score can arise from strategies like the following:
the source prepares two states (ρx depending upon the inputs X = x) that are best
distinguished given a fixed overlap. The measurement device can act as follows: with
a very high probability, it may ignore the incoming states and output using pre-shared
randomness, which is accessible to the adversary. With a smaller probability, it might
perform the optimal measurement that distinguishes ρ0 and ρ1. Such a strategy will
produce negligible private randomness, as for most rounds, some pre-shared randomness
is outputted.
Various protocols can be conceived considering the process of input and output strings.
Future chapters will probe two such protocols, focusing on discussions about computing
the randomness rate for these protocols.



8

Optimizing the von Neumann entropy

As with the Device Independent (DI) protocols, we can use the Entropy Accumulation
Theorem (EAT) to compute the randomness rate (randomness per round) of the semi-DI
protocol. Recall that informally, EAT states that to compute the randomness generated
in a protocol, it is sufficient to calculate the von Neumann entropy of a single round that
is representative of the full protocol. As we shall see in the next chapter, in the context
of the protocols considered here, it suffices to compute a lower bound on single round of
von Neumann entropy conditioned on the same score ω and the same overlap Θ. The
main aim of the chapter is to perform this optimization problem. To do so we make this
formalism more rigorous.

8.1 STRATEGIES

We begin by defining a strategy for our semi-Device Independent protocol:

Definition 16 (Strategy). Let ρxAE ∈ S(HA ⊗ HE) and {M0,M1 ≡ 1 − M1} be a
POVM. A tuple C = (ρ0

AE, ρ
1
AE,M0) is called a strategy.

In the definition of a strategy, we allow the states to be sub-normalized as well. However,
if a strategy defines our protocol, then the states ρxAE should be normalized. Similar to
the Device Independent scenario, this strategy is chosen by the adversary Eve.
Each strategy has an associated CQ state. Let pX be the input probability distribution,
then the CQ state associated with the strategy above is given by

ρC :=
∑
x

pX(x) |x〉〈x|X ⊗ |y〉〈y|Y ⊗ tr (My ⊗ 1Eρ
x
AE) .

119
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We introduce a short hand notation of H(Y |XE)C ≡ H(Y |XE)ρC when referring to
the conditional von Neumann entropy of the CQ state ρC.
Given a strategy, it is also possible to determine the score it achieves and the overlap
that shall be observed, provided the strategy is used in an i.i.d. fashion. Thus it is useful
to define the following:

Definition 17 (Score of a strategy). The score of a strategy C = (ρ0
AE, ρ

1
AE,M0) is

defined as:

S(C) = 1
2
∑
x

tr (ρxAEMx ⊗ 1E) . (8.1)

Note that M1 = 1 −M0 is implicitly assumed when defining a strategy.

Similarly, we can define the overlap of the strategy (where Π0 is the projector onto the
ground state)

Definition 18 (Overlap of a strategy). The overlap of a strategy C = (ρ0
AE, ρ

1
AE,M0) is

given by

OΠ0(C) =
∑
x

1
2 tr (ρxAEΠ0 ⊗ 1E) . (8.2)

There are certain special classes of strategies that may be interesting to consider:

Definition 19 (Pure state Strategy). A strategy C = (ρ0
AE, ρ

1
AE,M0) is a pure-state

strategy if ρ0
AE and ρ1

AE are pure states.

Definition 20 (Projective Strategy). A strategy C = (ρ0
AE, ρ

1
AE, P0) is a projective

strategy if P0 is a projection operator.

In the next chapter, it will be shown that, in the asymptotic limit, the rate of the protocol
can be found by computing (or by finding an appropriate lower bound for) of the function
FpX

(ω,Θ). This function is given by the optimization problem:

inf
C∈Γ[ω,Θ]

H(Y |XE)ρC ,

where Γ[ω,Θ] are the strategies that achieve a fixed score ω and have an overlap Θ. -
i.e.

Γ := {C : S(C) = ω,OΠ0(C) = Θ}.

The optimization problem above can be simplified right-away by showing that it is
sufficient to restrict to cases when the states ρxAE are pure.
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Lemma 39. For every strategy C = (ρ0

AE, ρ
1
AE,M0) there exists a pure state strategy

C ′ = (ρ̃0
AE, ρ̃

1
AE,M0) such that

H(Y |XE)C ≥ H(Y |XE)C′

Proof. Suppose ρ̃xAE are not pure states, then let ρxAEE′ be any purification of ρxAE. Let
C ′ = (ρ̃0

AEE′ , ρ̃1
AEE′ ,M0). Then simple computation shows that trE′ ρC′ = ρC. Thus

H(Y |XEE ′)C′ ≤ H(Y |XE)C (8.3)

follows from strong subadditivity of the von Neumann entropy.

As we restrict to the set of pure states for the rest of the analysis, it shall be understood
that the tuple (ρ0

A, ρ
1
A,M0) is the short-hand for any strategy (ρ0

AE, ρ
1
AE,M0), where

ρxAE is any purification of ρxA.

8.2 INCORPORATING PRE-SHARED RANDOMNESS AND REDUC-
TION TO PROJECTIVE STRATEGIES

When executing the protocol, it is necessary to consider potential attacks by the eaves-
dropper, who may possess pre-shared randomness with the source and measurement
devices. During a round of the protocol, the eavesdropper could have complete knowl-
edge of this pre-shared randomness. Additionally, the eavesdropper may instruct the
devices to prepare a state based on this pre-shared randomness and can also instruct the
measurement device to perform a specific measurement depending on the value of the
pre-shared randomness.
To account for such an attack, we assume that the state ρxAE can take the following
most general form:

ρxAE =
∑
λ

p(λ)ρλAẼ ⊗ |λ〉〈λ|Λ , (8.4)

where E = ΛẼ, is the system accessible to E. Here, Λ represents an additional classical
register held by Eve, the source, and the measurement device. It is important to note
that the system Λ does not possess any information about the input X, as it solely



122 Chapter 8. Optimizing the von Neumann entropy

represents pre-shared randomness. Since the system Λ is not transferred from the source
to the device (and the power meter) during each round, the overlap constraint for the
protocol is expressed using the projector Π0 ⊗ 1Λ ⊗ 1Ẽ.
In the strategy involving pre-shared randomness, the measurement device acts based on
the pre-shared randomness. The most general measurement operator for our protocol
can be defined as follows

M̂0 =
∑
λ

Mλ
0 ⊗ |λ〉〈λ|Λ ⊗ 1Ẽ, M̂1 =

∑
λ

(
1 −Mλ

0

)
⊗ |λ〉〈λ|Λ ⊗ 1Ẽ. (8.5)

The definition of the measurement operator has been slightly altered from what was
presented in the previous section. In this context, the measurement operator can act on
the system Λ, which the Eavesdropper can access. This change is simply an artefact
of our short hand notation. A more accurate representation of the protocol would
segregate it into three separate yet perfectly correlated random variables: ΛS for the
source, ΛM for the measurement device, and ΛE for the eavesdropper. The states that
the source produces depend on the value of ΛS (which is a local random variable), and
the measurement operator determines the value of the local random variable ΛM and
performs a measurement {Mλ,1 −Mλ}, depending upon the value of ΛM = ΛS = λ.
To streamline the notation, we merged these into a single classical register, Λ. As a
consequence of this simplification, we effectively allow the measurement apparatus to
perform a measurement on a system that is accessible to the eavesdropper.
To summarize the discussion above: our strategy is given by a tuple C = (ρ0

AE, ρ
1
AE, M̂0)

where ρxAE is of the form (8.4). Meanwhile, the measurement operator M̂0 is of the form
(8.5). The CQ state relevant to the most generalized strategy is given by

ρC =
n∑
λ=1

∑
x,y

p(λ)pX(x) |x〉〈x|X ⊗ |y〉〈y|Y ⊗ trA
(
Mλ

y ⊗ 1Eρ
x,λ

AẼ

)
⊗ |λ〉〈λ|Λ . (8.6)

The score and overlap of a strategy are defined via:

ω(C) = 1
2
∑
x

tr
(
M̂xρ

x
AE

)
ΘΠ0(C) = 1

2
∑
x

tr (Π0 ⊗ 1Eρ
x
AE) .

The sets Γ[ω,Θ] are defined identically as in the previous section.
We now argue that we can assume the measurement {Mλ

y ,1 −Mλ
y } to be a projective

measurement without losing any generality. This is because any effect, Mλ
0 , can be
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expressed in terms of convex combination of extremal effects. In quantum theory, these
extremal effects are projections 1. Therefore, we can write

Mλ
0 =

∑
µ

qµM
λ,µ
0 , Mλ

1 =
∑
µ

qµM
λ,µ
1 ,

for some probability distribution {qµ}. This means, if there are strategies that use
non-projective measurements, they can be executed using an extra classical register that
only the measurement device can access. Note that having this extra register does not
change the score and the overlap of the strategy.
Because of the strong subadditivity of the conditional von Neumann entropy, letting Eve
and the source use this extra classical register cannot worsen the strategy from the point
of view of Eve. Considering that the measurement device is not fully characterized, Eve
might also have this register in the form of pre-shared randomness instead. Therefore,
this classical register can also be integrated into the register Λ.
We now show that the problem for computing the rate in the most general attack can be
reduced to the problem of computing the rate when the eavesdropper does not pre-share
any randomness. To facilitate this, we denote the set CP1 [ω,Θ] ⊂ Γ[ω,Θ] to be the
set of all projective strategies which do not allow for any pre-shared randomness , i.e.
the strategies for which E = Ẽ. In the following, convenv(.) represents the convex
envelope (or convex lower bound) as introduced in Chapter 4 (see 8.10 for a more detailed
explanation).

Lemma 40. FpX
(ω,Θ) = convenv

(
GpX

(ω,Θ)
)
, where the function GpX

(ω,Θ) is com-
puted using the optimization problem

inf
C∈C1[ω,Θ]

H(Y |XE)C, (8.7)

where the set CP1 [ω,Θ] ⊂ Γ[ω,Θ] represents the set of all pure state and projective
strategies that do not allow for any pre-shared randomness - i.e. the collection of the
strategies in the set Γ[ω,Θ], for which the classical register Λ is trivial.

Proof. Let C be any strategy. Then the CQ state ρC is of the form

ρC =
n∑
λ=1

∑
x,y

p(λ)pX(x) |x〉〈x|X ⊗ |y〉〈y|Y ⊗ trA
(
Mλ

y ⊗ 1Eρ
x,λ

AẼ

)
⊗ |λ〉〈λ|Λ .

1Note any operator P satisfying P 2 = P is called a projector. Importantly, this also includes the
operators 1 and zero operator O for our case.
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The above motivates us to define strategies Cλ = (ρ0,λ
AE, ρ

1,λ
AE,M

λ
0 ). By construction,

every strategy Cλ, is in the set C1[ωλ,Θλ] for some ωλ and Θλ ∈ [0, 1].
It is easy now to see that

OΠ0(C) = 1
2
∑
x

tr
(
Π0 ⊗ 1E

(
p(λ)ρx,λ

AẼ
⊗ |λ〉〈λ|

))
= 1

2
∑
x

p(λ) tr
(
Π0ρ

x,λ
A

)
=

∑
λ

p(λ)OΠ0(Cλ). (8.8)

Similarly, we can show that S(C) = ∑
λ p(λ)S(Cλ).

Finally,

H(Y |XΛE)C =
∑
λ

p(λ)H(Y |X,Λ = λ,E)C

=
∑
λ

p(λ)H(Y |XE)Cλ
.

Combining all the above gives the objective function

H(Y |XΛẼ) =
∑
λ

p(λ)H(Y |XẼ)Cλ
, (8.9)

and the constraints are given by
∑
λ

p(λ)OΠ0(Cλ) = Θ (8.10)∑
λ

p(λ)S(Cλ) = ω. (8.11)

Thus, solving the for the function

GpX
(ω,Θ) := inf H(Y |XẼ)Cλ

OΠ0(Cλ) = Θ

S(Cλ) = ω,

(8.12)

and taking the convex lower bound of the function, will give the function FpX
(ω,Θ).

In section 8.10, we have examined the methods used to calculate the lower bounds over
arbitrary probability distributions p(µ). The fundamental idea of the Lemma above is
that when computing rates, it is possible to restrict the calculation to a scenario in which
no prior randomness has been shared, by deferring the consideration of lower bounds
across all convex combinations at this stage.
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8.3 REDUCTION TO QUBIT STRATEGIES

The main issue with the optimization problem GpX
(ω,Θ) is that no assumption has been

made on the dimensions of the state ρxAE. We saw in Chapter 4 that the complexity of
these optimization problems is reduced using Jordan’s Lemma. Jordan’s Lemma shall be
useful for our protocols here as well. We had stated Jordan’s Lemma in Chapter 4 (see
lemma 2), however, we state it here again for convenience.

Lemma 41 (Jordan’s Lemma Extended). Let A,B ∈ S(H) be two projections. Then

H =
⊕
α

Hα (8.13)

such that each Hα is an invariant subspace of H under the action of A, B, 1 − A and
1 −B . Moreover, the dimension of each subspace Hα is at most 2.

We will now prove the following technical result:

Lemma 42. Let P0 and Π0 be two projectors on the Hilbert space H. Further let Π0

be a rank one projector. Consider the Jordan decomposition of H = ⊕
λ Hλ defined

by the operators {P0,Π0,1 − P0,1 − Π0}. Among these subspaces, all spaces Hλ are
contained within the null space of Π0, except for a single subspace denoted as Hλ0 .
Furthermore, the projector onto Hλ0 takes the form:

Pλ = Π0 + P̄ , (8.14)

where P̄ is any projection, up to rank 1, onto the null space of Π0

Proof. From Lemma 64, we can deduce that [Π0, Pλ] = 0, indicating that Pλ and Π0

share common eigenvectors. Likewise, [1 − Π0, Pλ] = 0 implies that 1 − Π0 shares
eigenvectors with Pλ. Since Pλ is a projection onto a subspace of dimension at most
2, it must take the form Pλ = αλΠ0 + βλP̄λ, where P̄λ is any projection onto the
null space of Π0, and αλ, βλ ∈ R. Considering any two subspaces, Hλ1 and Hλ2 , with
orthogonal supports, we observe that αλ1αλ2 = αλ1 , implying that αλ ∈ [0, 1] for every
λ. Furthermore, due to the orthogonality of the supports of Hλ, αλ = 1 can only hold
for a single subspace.

We employ Jordan’s Lemma to achieve a result that significantly simplifies the problem.
This result lets us effectively transform the problem into one concerning only the convex
combination of qubits. In essence, the approach is to employ Jordan’s Lemma to express
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the states ρxAE in a block diagonal form of size 2 × 2, denoted by a direct sum ⊕
λ ρ

x,λ
AE.

Here ρx,λA ∈ S(Hλ) is a qubit state. Moreover, the measurement operators {M0,1−M0}
also act on the a projective measurement on each subspace Hλ - i.e. My = ⊕

λM
λ
y .

This transformation effectively simplifies our problem to an optimization problem over
qubits, thereby significantly reducing its complexity. Moreover, as we shall see the lemma
above can be used to show that the overlap of the strategy arises solely from a single
Jordan block, implying that only one qubit block is relevant for analysis. As a result, the
optimization problem can be effectively viewed as a scenario in which the source shares a
single pair of qubits, rather than a state with unrestricted dimensions.

Lemma 43. GpX
(ω,Θ) ≥ G(2)

pX
(ω,Θ), where

G(2)
pX

(ω,Θ) = inf
∑

x∈{0,1}
ηxpX(x)H(Y |E)ρx

s.t. ∀x ∈ {0, 1} : ηx ∈ [0, 1]

∀x ∈ {0, 1} : ρxA ∈ S(H2)

∀y ∈ {0, 1} : My = |φ〉〈φ| for some |φ〉 ∈ H2

M0 +M1 = 12

ρx =
∑

y∈{0,1}
|y〉〈y|Y ⊗ tr ((My ⊗ 1E)ρxAE)

∑
x∈{0,1}

(1
2ηx trA (Mxρ

x
A)
)

∈ [ω −
∑
x

1
2(1 − ηx), ω]

∑
x∈{0,1}

1
2ηx trA (Π0ρ

x
A) = Θ,

(8.15)

where H2 is a two dimensional Hilbert space and 12 is the identity on the space.

Proof. Let C = (ρ0
AE, ρ

1
AE,M0) ∈ C1

P . Let Pλ be the projection onto 2 dimensional
sub-space Hλ, where Hλ is any subspace that is invariant under the actions of the
projectors Π0,M0,1 −M0 and 1 − Π0. Now for the strategy C consider the following:

ρC =
∑
y,x

pX(x) |y, x〉〈y, x| ⊗ (ρxAEMy ⊗ 1E)

=
∑
y,x

pX(x) |y, x〉〈y, x| ⊗ trA
(
ρxAE

(∑
λ

P 2
λ ⊗ 1E

)
My ⊗ 1E

)
=

∑
y,x,λ

pX(x) |y, x〉〈y, x| ⊗ trA ((Pλ ⊗ 1Eρ
x
AEPλ ⊗ 1E) (PλMyPλ) ⊗ 1E) .

We introduce the quantities ηλxρx,λAE = Pλ ⊗ 1Eρ
x
AEPλ ⊗ 1E and Mλ

y = PλMyPλ, where
ηλx ∈ [0, 1] (normalization constant) and ρx,λAE are any normalized states. Furthermore, it
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is easy to verify that PλMyPλ is a projector and ρx,λA are qubits. Further define ρλx to be
the following CQ state

ρλx =
∑
y

|y〉〈y|Y ⊗ |x〉〈x|X ⊗ tr
(
My ⊗ 12ρ

x,λ
AE

)
.

Using the concavity of the von Neumann entropy, we have that

H(Y |XE)C =
∑
x

pX(x)H(Y |X = x,E)ρC

≥
∑
x

pX(x)
∑
λ

ηλxH(Y |X = x,E)ρλ
x

≥
∑
x

pX(x)η0
xH(Y |X = x,E)ρ0

x
.

From Lemma 42, let H0 be the unique subspace which is not entirely in the nullspace of
Π0. The score function for the strategy is given by:

S(C) =
∑
λ,x

1
2 trA

(
ηλxρ

x,λ
A Mλ

x

)
=

∑
x

1
2 trA

(
η0
xρ

x,0
A M0

x

)
+

∑
λ6=0,x

1
2 trA

(
ηλxρ

x,λ
A Mλ

x

)
,

with ωλx := tr
(
Mλ

x ρ
x,λ
A

)
. The expression above allows us to split the contribution of

the strategy into a term that depends only on the single set of qubit states ρx,0A and
projective measurements M0

y , and a term that depends on the other possible qubit states
and measurements. To obtain lower bound and upper bound on the score function S(C),
we can set ωλx ∈ [0, 1] . As ∑λ η

λ
x = 1, we get the following bounds:

∑
x

1
2
(
η0
x trA

(
ρx,0A Mx

))
≤ S(C) ≤

∑
x

1
2
(
η0
x trA

(
ρx,0A Mx

)
+ (1 − ηx)

)
.

The most importantly, for the overlap conditions, we have that

OΠ0(C) =
∑
x

1
2ηx tr (Π0ρ

x
A)

=
∑
x,λ

1
2η

λ
x tr (Π0Pλρ

x
AEPλ)

=
∑
x,λ

1
2η

0
x tr

(
Π0ρ

x,0
AE

)
= Θ.

Now, replacing η0
x → ηx, ρx,0AE → ρxAE and M0

y → My proves the lemma.
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8.4 CONVERTING THE OPTIMIZATION PROBLEM TO A TRADI-
TIONAL FORM

In the previous section, we showed that it is sufficient to restrict to qubit strategies. The
aim now is to simplify the optimization problem obtained in the previous section to a
more traditional optimization problem that can be solved using numerical techniques.
We begin by simplifying the expression of the von Neumann entropy as

H(Y |E) = H(Y,E) −H(E)

= H(Y ) +H(E|Y ) −H(E)

≥ H(Y ) −H(E).

We used the chain rule for conditional von Neumann entropy, as well as the fact that
H(E|Y )ρ ≥ 0 if ρ = ∑

y pY (y) |y〉〈y| ⊗ ρyE. In fact, the inequality above becomes tight
when ρyE is a pure state, which is the case in our setting.
Next, we express the CQ state of our protocol when X = x is observed:

∑
Y

pxY (y) |y〉〈y| ⊗ trA

Mx
y ⊗ 1Eρ

x
AE

trA
(
Mx

y ρ
x
A

)
 , (8.16)

where pxY (y) := trA (ρxAMy). By noting that pxY (y) = 1 − pxY (y ⊕ 1), we can compute
the expression for H(Y ) as

H(Y ) = −
∑
y

pxY (y) log2 (pxY ) = Hbin (tr (ρxAM0)) . (8.17)

Similarly, we can compute H(E) by noting that ρxAE is a purification of ρxA. Specifically,
note that

ρxE =
∑
y

pxY (y) trA
(
My ⊗ 1ρxAE
trA (ρxAM0)

)

= trA
(

(
∑
y

My) ⊗ 1Eρ
x
AE

)
= trAE (ρxAE) .

By applying Lemma 65, we can conclude that the entropies H(ρxE) and H(ρxA) are
equivalent if ρxAE is a purification of ρxA.
The discussion above leads to the following result
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Lemma 44. The optimization problem (8.15) can be expressed as

G(2)
pX

(ω,Θ) = inf
∑

x∈{0,1}
ηxpX(x) (Hbin (tr (ρxAM0)) −H(ρxA))

s.t. ∀x ∈ {0, 1} : ηx ∈ [0, 1]

∀x ∈ {0, 1} : ρxA ∈ S(H2)

∀y ∈ {0, 1} : My = |φ〉〈φ| for some |φ〉 ∈ H2

M0 +M1 = 12

ρx =
∑

y∈{0,1}
|y〉〈y|Y ⊗ tr ((My ⊗ 1E)ρxAE)

∑
x∈{0,1}

(1
2ηx trA (Mxρ

x
A)
)

∈ [ω −
∑
x

1
2(1 − ηx), ω]

∑
x∈{0,1}

1
2ηx trA (Π0ρ

x
A) = Θ.

(8.18)

8.5 OPTIMIZATION PROBLEM IN TERMS OF BOUNDED REAL
VARIABLES

The problem with Lemma 8.18 is that it is expressed in terms of the states ρxA and the
measurement My. We would like to re-express this optimization problem in terms of
a standard optimization problem on a bounded domain D ⊆ Rn. To achieve this, we
without any loss of generality we parameterize

ρxA = 1

2 +
3∑
i=1

axi
2 σi, M0 = |ψ0〉〈ψ0| = 1

2 +
3∑
i=1

bi
2 σi and Π0 = |0〉〈0| = 1

2 + σ1

2 .

(8.19)

Here {σi}3
i=1 are Pauli x, y, z operators. The constraints ∑i(axi )2 ≤ 1 and ∑i b

2
i = 1

must be satisfied, as they ensure that the parameters {axi }3
i=1 and {bi}3

i=1 represent
a valid density operator and a projective measurement, respectively. We now have an
optimization problem over 11 variables- 3 parameters for each state ρxA, three parameters
describing the measurement operator and 2 parameters η0 and η1 that give the probability
of the Jordan Block H0 occurring. Thus, the optimization problem can be cast as an
optimization problem over a compact subset of Rd, where d = 11 at this stage. We will
now reduce the value of d to simplify the optimization problem - i.e. get rid of some
redundant variables.
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Before we simplify this optimization problem any further, we introduce the following
function that will help keep the expressions compact

Φ(x) := Hbin

(1
2 + x

2

)
. (8.20)

Several properties of Φ(x) including its monotocity etc. can be easily inferred from the
properties of the binary entropy Hbin. Some other useful properties of Φ(x) that are
relevant to our proof are discussed in Appendix B.1. Now consider the following result

Lemma 45. The optimization problem (8.18) is equivalent to the following optimization
problem

inf
∑
x

ηxpX(x) (Φ (ax cos(θx − φ)) − Φ (ax))

s.t. ∀x ∈ {0, 1} : ηx, ax ∈ [0, 1]

∀x ∈ {0, 1} : θx ∈ [0, 2π]

φ ∈ [0, 2π]∑
x

1
2ηx

(
1
2 + (−1)xax cos(θx − φ)

2

)
∈ [ω −

∑
x

1
2(1 − ηx), ω]

∑
x

1
2ηx

(
1
2 + ax cos(θx)

2

)
= Θ.

(8.21)

Proof. First, note that the objective function and constraints in the optimization problem
(8.18) are expressed solely in terms of trA (M0ρ

x
A), trA (Π0ρ

x
A), and H(ρxA), so it is useful

to express them in terms of the Bloch vectors. Define ax and b the Bloch vector that
denotes the qubit states ρxA and the projection M0. Further notice that Π0 = |0〉〈0| can
be equivalently expressed as the vector ẑ in this notation. Thus,

trA (M0ρ
x
A) = 1

2 + ax.b
2

trA (Π0ρ
x
A) = 1

2 + ax.ẑ
2 .

Without any loss of generality, we can chose a basis such that z = (1, 0, 0) and
b = (cos(φ), sin(φ), 0). Furthermore, we write that ax = (ax cos(θx), ax sin(θx), ãx). In
this notation, this gives:

trA (M0ρ
x
A) = 1

2 + ax cos(θx − φ)
2

trA (Π0ρ
x
A) = 1

2 + ax cos(θx)
2 .
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The entropy H(ρxA) can be computed in terms of its eigenvalues 1
2 + |ax|

2 and 1
2 − |ax|

2 as

H(ρxA) = Hbin

(
1
2 + |ax|

2

)
= Φ (|ax|) .

We can use the monotonicity of Φ(x) for x > 0, so that

H(ρxA) = Φ
(√

a2
x + ã2

x

)
≤ Φ (ax) .

Note that when optimizing over all strategies, the inequality is tight. Combining all the
results above and performing the substitutions in (8.18), we can prove the lemma.

8.6 EXTENDING THE DOMAIN

To compute the rates, we want to solve the optimization problem 8.21 using numerical
techniques. We find that this optimization problem is resource consuming to solve
directly, and therefore, we aim to lower bound this problem, which can be effectively
handled numerically. By Lemma 63 (see Appendix B), we can lower-bound the objective
function by noting that

ηx (Φ (ax cos(ξx)) − Φ (ax)) ≥ (Φ (ηxax cos(ξx)) − Φ (ηxax)) . (8.22)

Furthermore, we can replace the constraints

∑
x

1
2ηx

(
1
2 + (−1)xax cos(θx − φ)

2

)
∈ [ω −

∑
x

1
2(1 − ηx), ω]

∑
x

1
2ηx

(
1
2 + ax cos(θx)

2

)
= Θ

of the optimization problem (8.21) by the relaxed constraints

∑
x

1
2ηx

(
1
2 + (−1)xax cos(θx − φ)

2

)
≥ ω −

∑
x

1
2(1 − ηx)

∑
x

1
2ηx

(
1
2 + ax cos(θx)

2

)
≥ Θ.

Such a relaxation can only decrease the minimal value, as the feasible set of (8.21) is a
subset of the relaxed feasible set. As, we shall eventually take the convex envelope of
the function later on, this relaxation, does not affect the overall tightness of our rate.
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It can now be useful to re-label the variables ηxax = ãx. As ax ∈ [0, 1], we can add
another constraint that ãx ≤ ηx, completely eliminating the role of ax in the optimization
problem. We now make the following substitutions θx − φ → ξx Summarizing all the
above leads to the following result:

Lemma 46. A lower bound on the function G(2)
pX

(ω,Θ) can be achieved by computing
the optimization problem

inf
∑
x

pX(x) (Φ (ãx cos(ξx)) − Φ (ãx))

s.t. ∀x ∈ {0, 1} : 1 ≥ ηx ≥ ãx ≥ 0

∀x : ξx ∈ [0, 1]∑
x

(−ηx + (−1)xãx cos(ξx))) ≥ 4ω − 4∑
x

(ηx + ãx cos(ξx + φ)) ≥ 4Θ.

(8.23)

8.7 ELIMINATING ONE MORE VARIABLE

Now, we can immediately simplify the final constraint in terms of overlap by observing
that φ only appears one of the constraints. We should, without any loss of generality,
choose the value of φ that optimizes the constraint (See lemma 66 in appendix B). We
observe that:

∑
x

ηxax cos(ξx + φ) =
(∑

x

ηxax cos(ξx)
)

cos(φ) −
(∑

x

ηxax sin(ξx)
)

sin(φ)

≤

√√√√(∑
x

ηxax cos(ξx)
)2

+
(∑

x

ηxax sin(ξx)
)2

. (8.24)

Note2 that because Θ −∑
x ηx ≥ 0 for Θ ≥ 1

2 and√√√√(∑
x

ηxax cos(ξx)
)2

+
(∑

x

ηxax sin(ξx)
)2

+
∑
x

ηx ≥ 4Θ (8.25)

implies that(∑
x

ηxax cos(ξx)
)2

+
(∑

x

ηxax sin(ξx)
)2

≥
(

4Θ −
∑
x

ηx

)2

. (8.26)

2It is easy to see that GpX
(ω, Θ) = 0 when Θ ≤ 1

2 , so Θ ≥ 1
2 is the domain of our interest to begin

with.
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Summarizing all the above long with the results in Lemma 46 leads to the following
result:

Lemma 47. The function GpX
(ω,Θ) defined by

inf
∑
x

pX(x) (Φ (ãx cos(ξx)) − Φ (ãx))

s.t.
∑
x

(−ηx + (−1)xãx cos(ξx))) ≥ 4ω − 4(∑
x

ãx cos(ξx)
)2

+
(∑

x

ãx sin(ξx)
)2

−
(

4Θ −
∑
x

ηx

)2

≥ 0

∀x ∈ {0, 1} : 1 ≥ ηx ≥ ãx ≥ 0.

(8.27)

is a lower bound on the function G(2)
pX

(ω,Θ).

In the appendix B, we shall show that the function GpX
(ω,Θ)is monotonically increasing

in ω and Θ.

8.8 COMPUTING THE OPTIMIZATION PROBLEM OVER GRIDS

We now address the problem of computing the convex envelope of the function GpX
(ω,Θ).

As the functional form of this is difficult to obtain, we can try to compute this numerically
using known optimization techniques. However, in order to compute the convex envelope
numerically, we can only compute this on a finite set of points or a finite grid. So, we
construct another a lower bound GP

pX
(ω,Θ) of the function GpX

(ω,Θ), that can be only
computed using a finite collection of points. For Θ > 1

2 define:

GP
pX

(ω,Θ) := GpX
(ωP ,ΘP), (8.28)

where

ωP := max{ωi : (ωi,Θj) ∈ P , ωi ≤ ω,Θj ≤ Θ}

ΘP := max{Θj : (ωi,Θj) ∈ P , ωi ≤ ω,Θj ≤ Θ}.

Note that GP
pX

(ω,Θ) is a lower bound on the function GpX
(ωP ,ΘP) as GpX

(ωP ,ΘP) is
also monotonically increasing in ω and Θ; precisely, ∂ωGpX

≥ 0 and ∂ΘGpX
≥ 0.

Using the algorithms described in the section 8.10, the function FpX
(ω,Θ) := convenv(GP

pX
(ω,Θ))

can be computed in linear time over the partition P , which can be extended to the entire
domain using the same trick above.
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Note that FP
pX

can be shown to be a lower bound of the FpX
in the section 5.2.4. The

optimization problem for GP
pX

(ω,Θ) can be easily relaxed to a polynomial optimization
problem by lower bounding the objective function

Φ(ãx cos(ξx)) − Φ(x) → Φn(ãx cos(ξx)) − Φm(ãx) − Im+1,

and by replacing the variables cos(ξx) 7→ cx, sin(ξx) 7→ dx with an additional constraint
c2
x + d2

x = 1. Here Φn,Φm are appropriate polynomial approximations of the function
Φ(x) and Im+1 := supx∈[−1,1] |Φ(x) − Φm(x)|. In the next section, we shall explicitly
construct such polynomial approximations.

8.9 CONVERTING THE OPTIMIZATION PROBLEM TO A POLYNO-
MIAL OPTIMIZATION PROBLEM

In this section, we approximate the binary entropy function (and its difference) in terms
of polynomials.
We begin by the integral representation of the binary entropy

log(x) = 1
ln(2)

∫ 1

0

x− 1
t(x− 1) + 1dt. (8.29)

From this representation, we can derive the integral representation of the function
Φ(x) := Hbin(1

2 + x
2 ) as

Φ(x) =
∫ 1

0
(1 − x2) (2 − t)

(2 − t(1 − x))(2 − t(1 + x)))dt. (8.30)

Upon performing some rearrangements, and performing change in variable, we obtain
the following expression

Φ(x) =
∫ 1

1
2

1
z ln(2)

 1 − x2

1 −
(

1−z
z

)2
x2

 dz (8.31)

Now as 1−z
z
x ∈ [0, 1] in the range z ∈ [1

2 , 1] and x ∈ [−1, 1], we can expand the integrand
to the following convergent infinite sum

Φ(z) =
∞∑
n=0

(∫ 1

1
2

1
z ln(2)

(1 − z

z

)2n
dz
)
x2n(1 − x2). (8.32)
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Note here that the integrals

In :=
∫ 1

1
2

1
z ln(2)

(1 − z

z

)2n
dz. (8.33)

are analytically solvable, e.g. I0 = 1, I1 = 1 − 1/(2 ln(2)) , I3 = 1 − 7/(12 ln(2)) and
so on. Furthermore, using this technique, we obtain lower-bounds on the binary entropy
as In(x) ≥ 0 can be trivially established. An approximation for the binary entropy can
be made by truncating the summation to a certain term

Φ(x) ≈ Φn(x) :=
n∑
k=1

Ikx
2k(1 − x2). (8.34)

The error term is given by

Φ(x) − Φn(x) = (1 − x2)
∞∑

k=n+1
Ikx

2k

≤ (1 − x2)In+1

∞∑
k=n+1

x2k

= In+1x
2(n+1),

where we have used the fact that In > In+k for every k ∈ N. We lower bound the
objective function in (8.23) by introducing the functions

Pn(ã, cos(ξ)) := Φn(ã cos(ξ)) − Φn(ã) − In+1. (8.35)

There is still some work to do in order to lower bound the optimization problem (8.23)
to a polynomial problem, as cos(ξx) are not polynomials. However, we can identify the
functions λ1,x = ãx cos(ξx) and λ2,x = ãx sin(ξx). Now, if treat λi,x as free variables in
our optimization problem by introducing additional constraints

∑
i

λ2
i,x = ã2

x,

then we can lower bound (8.23) to a polynomial optimization problem. Lower bounds
can now be obtained to P1(Θ, ω) by solving this polynomial optimization problem using
a sum-of-squares relaxation by using software such as Ncpol2sdpa. The final optimization
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problem is now of the form

P1(ω,Θ) := inf
∑
x

pX(x) (Φn (λ1,x)) − Φn (ãx)) − In+1

s.t.
∑
x

(−ηx + (−1)xλ1,x)) ≥ 4ω − 4(∑
x

λ1,x

)2

+
(∑

x

λ2,x

)2

≥
(

4Θ −
∑
x

ηx

)2

λ2
1,x + λ2

2,x = ãx

ηx ≥ ãx

1 ≥ ηx

ãx ≥ 0.

(8.36)

Note that this is a constrained polynomial optimization problem over 8 real variables.
Actually, the number of variables is 6, and we have two dummy variables here. Thus, we
can summarize the final result of the chapter:

Theorem 4. Let P1(ω,Θ) be defined as in (8.36), then

inf
C∈Γ[ω,Θ]

H(Y |XE)ρC ≥ convenv (P1(ω,Θ)) . (8.37)

8.10 TAKING THE CONVEX LOWER-BOUND OF THE RATE

Upon computing the rate for a single strategy, now we are in the position to compute
the rate for the convex combination of such strategies. In this section, we shall discuss
a method that allows us to compute the convex envelope of any function f : Rn 7→ R.
We start by defining the following

Definition 21 (Convex envelope). Let f : Rn 7→ R be any function, then the convex
envelope of f given by convenv(f) is the function

convenv(f) := max{g : g is convex and ∀x : g(x) ≤ f(x)}. (8.38)

Here max is taken to be point-wise maximum.

In simple words, convenv(f) is the biggest convex function that is not greater than f . In
other words, the convenv(f) is the solution of the optimization problem

convenv(f(x∗)) = inf
µ

∫
dµ(x)f(xµ)

s.t.
∫

dµ(x)x = x∗,
(8.39)
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where inf is taken over all the probability measures. We now define an important tool in
convex analysis that allows us to compute the convex envelope of a function.

Definition 22 (Legendre-Fenchel transform). Let f : Rn 7→ R be any function. Then
f ∗ : Rn 7→ R is its Legendre-Fenchel transform if

f ∗(k) := sup
x∈Rn

(〈k, x〉 − f(x)) . (8.40)

The following can be shown for f ∗(x)

Lemma 48. Let f : D 7→ R be bounded. Then the following holds
• f ∗ is convex

• (f ∗)∗ = convenv(f)

The proof of the lemma above can be found in textbooks of convex analysis such as [88]
and shall be omitted in the work. There are algorithms in available in the literature [89, 90]
to compute the convex envelopes by computing the LF conjugate of the function twice.
We compute the convex envelope using the method of [90], the code for which was
generously provided by the authors to us.
Finally, we prove the final result about the fact that rate is non-decreasing.

Lemma 49. Let f : R2 → R be a convex function such that f ≥ 0. Suppose that
f(x, y) = 0 for x ≤ x0 or y ≤ y0 for some x0, y0 ∈ R. Then f(x, y) is non-decreasing.

Proof. Since f is convex, the functions gy := f(·, y) and hx := f(x, ·) are convex as
well.
Take x′ > x and µ ∈ [0, 1] such that µx′ + (1 − µ)x0 = x. Then, by the convexity of gy,
we have

µgy(x) + (1 − µ)gy(x′) ≥ gy(µx′ + (1 − µ)x0) = gy(x),

which implies µf(x′, y) ≥ f(x, y) for all y. Thus, we have f(x′, y) ≥ f(x, y) for all y,
showing that f is non-decreasing in x. Similarly, we can show that f is non-decreasing
in y using the convexity of hx.
Therefore, f(x, y) is non-decreasing in both variables.
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Results and discussion

In the previous chapter, we discussed how to find the minimum of the single round von
Neumann entropies for strategies that achieve a particular score and have a threshold
overlap. In this chapter, we will look into some semi-DI protocols and apply our results
to compute randomness rates for these protocols.
In protocols of randomness expansion, we assume that the input randomness is not
accessible to any eavesdropper during each round of the protocol. This assumption is
crucial for the security of the protocol, as if the Eavesdropper knows the input randomness,
then they can easily pre-program the devices to produce deterministic outputs. We design
two types of protocols, depending on the source of input randomness: private and public.
Before discussing the protocols in detail, we have a discussion regarding the assumptions
under which our protocol operates.
Beyond the assumption that the source and the measurement device do not share any
pre-existing entanglement, and that we have access to a trusted power meter, we have
not made any assumptions regarding the functioning of the source and the measurement
device. It remains an open question whether having this pre-existing entanglement offers
any significant advantage to an eavesdropper’s ability to predict the inputs and outputs
of the protocol.
However, it is worth noting that we assume the source and the measurement device can
only communicate through the signal ρx sent by the source and cannot communicate
by any other means. In order to ensure this, similar to the DI case, the source and
measurement devices must be properly shielded. Much like in Device Independent
scenarios, once the protocol commences, neither the source nor the measurement device
can convey information to potential adversaries. After the protocol, these devices must
remain isolated (see Appendix A.5) and should not be used again.

138
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In the traditional prepare-and-measure scenario, it is crucial to recognize that the source
and the measurement device might access alternative communication avenues. These
methods could potentially convey the input’s information indirectly, rather than encoding
it directly within the source. Consider a scenario where the source sends signals ρx with
time lags, ∆t, based on input X. This makes it straightforward for the measurement
device to identify the input and send outputs using a pre-determined strategy. Ideally,
these attacks can be avoided by introducing an additional abort condition which is based
on the statistics of the test round of the protocol. In other words, our protocol should
abort if the power meter, our trusted component, detects any anomaly in signal reception
timings (for instance, the protocol aborts if the root mean square value of the time lag
between consecutive signals is bigger than a threshold). However, this study does not
address preventing such attacks.
A practical method to circumvent both timing and entanglement-based attacks in semi-
Device Independent protocols is to acquire the source and measurement devices from
separate manufacturers. While this strategy does not guarantee absolute protection, it is
a reasonable precaution in real-world scenarios, based on the security demands of the
protocols.
For the security of the protocol we use a composable security definition, as detailed in
Chapter 3. In the next two sections, we discuss two semi-Device Independent protocols
based on the setup described in Section 7.3. These protocols are inspired by the
protocols 2 and 3 in Chapter 6.

9.1 RECYCLED INPUTS PROTOCOL

As discussed in the Chapter 6, in a standard randomness expansion protocol, it is assumed
that the initial randomness is a private source of randomness. If this is the case, there
is no incentive to make this initial randomness public. In fact, this input randomness
should be recycled, and run through the randomness extractor along with the string of
bits generated via the measurement device. This idea forms the basis for the following
protocol:

Protocol 4. Parameters:
n – number of rounds
p0 – probability of 1 for random number generator RA (taken to be below 1/2)
γ – probability of 1 for random number generator Rγ (taken to be below 1/2)
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ωexp – expected score.
Θexp – expected overlap.
δΘ – confidence width for the overlap
δω – confidence with for the score

1. Set i = 1 for the first round, or increase i by 1.

2. Use RA to choose Xi ∈ {0, 1}, which is input to the device S. Here Xi = 1 occurs
with probability p0. The device S prepares a state ρxi (unknown) and sends it to
BS.

3. Use RT to choose Ti ∈ {0, 1}, which is input to BS. BS sends the state to M if
Ti = 0 or sends it to PM if Ti = 1.

4. If Ti = 0 (Generate round): M receives ρxi and outputs Yi ∈ {0, 1}. Set
Ui = (Ti, Xi, Yi).

5. If Ti = 1 (Test round): PM receives ρxi and outputs Yi. Set Ui = (Ti, Xi, Yi).

6. Return to Step 1 unless i = n.

7. Compute the empirical scores U# and ω# as

U# := 1
2
∑
i

|{i : Ui = (0, xi, 1)}|
npX(x)γ ,

ω# := 1
2
∑
i

|{i : Ui = (1, xi, xi)}|
npX(x)(1 − γ) .

8. Abort the protocol if either of the conditions are not met

a) ω# > ωexp − δω.
b) U# > Θexp − δΘ.

9. Process the concatenation of all the outputs with a quantum-proof strong extractor
Ext to yield Ext(XY,R), where R is a random seed for the extractor. Since a
strong extractor is used, the final outcome can be taken to be the concatenation
of R and Ext(XY,R).

9.2 A PROTOCOL TO GENERATE PRIVATE RANDOMNESS

There maybe situations in which the initial source of randomness comes from a public
source of randomness such as a randomness beacon. Such a source can also be used for
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randomness expansion as long as the devices are prepared and put in a secure lab before
the public randomness is made accessible. In such a scenario, the input randomness cannot
be recycled, as any adversary will have access to the input randomness. Nonetheless, the
public source of randomness can be converted to a source of private randomness. The
only difference in this protocol would be to replace the Step 9 to Step 9’ in the previous
protocol (Protocol 4), where instead of extracting the key from XY, we only extract the
key from X.

Protocol 5. Parameters:
n – number of rounds
p0 – probability of 1 for random number generator RA (taken to be below 1/2)
γ – probability of 1 for random number generator Rγ (taken to be below 1/2)
ωexp – expected score.
Θexp – expected overlap.
δΘ – confidence width for the overlap
δω – confidence with for the score

1. Set i = 1 for the first round, or increase i by 1.

2. Use RA to choose Xi ∈ {0, 1}, which is input to the device S. Here Xi = 1 occurs
with probability p0. The device S prepares a state ρxi (unknown) and sends it to
BS.

3. Use RT to choose Ti ∈ {0, 1}, which is input to BS. BS sends the state to M if
Ti = 0 or sends it to PM if Ti = 1.

4. If Ti = 0 (Generate round): M receives ρxi and outputs Yi ∈ {0, 1}. Set
Ui = (Ti, Xi, Yi) .

5. If Ti = 1 (Test round): PM receives ρxi and outputs Yi. Set Ui = (Ti, Xi, Yi).

6. Return to Step 1 unless i = n.

7. Compute the empirical scores U# and ω# as

U# := 1
2
∑
i

|{i : Ui = (0, xi, 1)}|
npX(x)γ

ω# := 1
2
∑
i

|{i : Ui = (1, xi, xi)}|
npX(x)(1 − γ)

8. Abort the protocol if either of the conditions are not met
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a) ω# > ωexp − δω.

b) U# > Θexp − δΘ.

9. Process the concatenation of all the outputs with a quantum-proof strong extractor
Ext to yield Ext(X,R), where R is a random seed for the extractor. Since a
strong extractor is used, the final outcome can be taken to be the concatenation
of R and Ext(X,R).

9.3 RATES OF THE PROTOCOL

We will now discuss the computation of rates for the protocol. Similar to the protocols
for DIRNE, we can use the Entropy Accumulation Theorem (EAT) to calculate the
rates [14, 32]. However, during the course of our project, a more robust extension of
EAT called the generalized Entropy Accumulation Theorem was published [30], which
can also be used to compute the finite round key rates. It should be noted that the
computation of finite round rates for the protocol is not covered in this thesis and is left
as future work.
Roughly speaking, according to the EAT the asymptotic rates for our protocol can be
computed by computing the infimum of the single round conditional von Neumann
entropy H(Y |XE) over all possible strategies that achieve a score ω and an overlap Θ.
Given that the protocol consists of two distinct round types, the channel describing a
single round of a protocol N can be expressed as

N = (1 − γ)NG + γNT ,

where NG and NT are the EAT channels corresponding to the generate and the test
rounds and γ is the testing probability.
The EAT channel corresponding to the generate round is given by

NG : ρAE 7→ ρC,

where ρAE is some quantum state initial quantum state of the form 8.4 and ρC is the
state of the form 8.6. The channel describing the test round is of the form:

NT (ρAE) =
∑
x,y

|x〉〈x| ⊗ |y〉〈y| ⊗ trA
(
Π0ρ

λ
x

)
⊗ |λ〉〈λ|Λ . (9.1)
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We can use the concavity of the conditional von Neumann entropy to obtain a lower
bound

H(Y |XE)N (ρAE) ≥ (1 − γ)H(Y |XE)NG(ρAE).

In other words, the output randomness in a protocol randout can be computed using
the conditional von Neumann entropy from the generate rounds only. This justifies our
choice of optimizing H(Y |XE)ρC in the previous chapter.
Now, let us focus our discussion on the asymptotic rates for individual protocols. In
protocol 5, the randomness expansion per unit round can be computed by

randout − randin = (1 − γ)H(Y |XE) −H(X), (9.2)

where H(X) denotes the input randomness, which can be computed to be Hbin(pX(0)).
Note that the entropy H(Y |XE) here is the entropy for generate rounds only.
For Protocol 4, since both the input and output strings are used, the difference in the
output randomness (in the asymptotic limit) is given by

randout − randin = (1 − γ)H(XY |E) −H(X) = (1 − γ)H(Y |XE) − γH(X), (9.3)

where we have used the chain rule for the conditional von Neumann entropy. Again,
here, the entropy H(Y |XE) is the entropy of generate rounds only. Thus, in order to
compute the rates of the protocols, one should compute the quantity

FpX
(ω,Θ) := inf H(Y |XE),

where the infimum is taken over all the single round strategies that achieve a score ω in
the generate rounds and have an overlap Θ.

9.4 RESULTS

In the previous chapter (Chapter 8), we calculated the asymptotic rates FpX
(ω,Θ). The

rates are shown in Figure 9.2 as a function of ω for various overlap values.
As discussed in Chapter 8, the function FpX

(ω,Θ) can be obtained by computing the
convex envelope (i.e., the smallest convex function below G) of GpX

(ω,Θ), which
is derived from qubit strategies. Importantly, not all values of the tuple (ω,Θ) ∈
[1/2, 1]× [1/2, 1] are attainable using a quantum strategy (see [9, 69]). In such situations,
our optimization problem for GpX

(ω,Θ) also does not show any feasible solutions. To
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Figure 9.1: Lower bound of the function G over the extended domain (ω,Θ) ∈ [1/2, 1] ×
[1/2, 1] in the case when pX(0) = 1

2 . The region with G(ω,Θ) = 2, is the region where
no quantum strategies are found.

Figure 9.2: Asymptotic rates in the generate round of our protocol. Figure (a) are the
rates when pX(0) = 1

2 and Figure (b) are the rates when pX(0) = 1
100 . Note that the

rates reported are valid in the limit γ → 0.

determine the convex envelope of GpX
(ω,Θ) using numerical algorithms (see [89, 90]

for fast algorithms for convex envelope), we extend the domain of GpX
(ω,Θ) to the

entire range of [1/2, 1] × [1/2, 1] and assign it an arbitrarily high value when no feasible
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quantum strategy is found. This extension results in a function FpX
(ω,Θ) over the

domain [1/2, 1] × [1/2, 1]. The function reported in Fig 9.2 as FpX
(ω,Θ) is a lower

bound on the randomness rate if there is a quantum achievable strategy. For the regions
of the extended domain where no quantum achievable strategy exists, the values of
FpX

(ω,Θ) should be disregarded. Nonetheless, this extended domain proves useful when
EAT is used to get bounds on finite round rates. In particular, it turns out that the
min-tradeoff function needs to be defined on the extended domain,.
As anticipated, the protocol yields a high randomness rate for a fixed score (assuming
quantum strategies can achieve this) when the overlap is significant. Conversely, with
minimal overlap, a higher score is essential for generating randomness. This stems from
the fact that deterministic strategies, akin to local deterministic strategies in the DI
case, can only attain a low score. For instance, achieving a score around 0.5 is feasible
through mere chance combined with some pre-programming of the devices. To get a
large score, a genuine quantum strategy is required, ensuring the presence of randomness
in the outputs.
For quantum achievable strategies, our results are promising. For instance, we identify
the strategy Θ = 0.8 and ω = 0.878 as attainable using quantum theory, achieving
approximately 0.319 bits per round when pX(0) = 1

2 . As shown in the figure, a
higher overlap yields better values of randomness rounds. However, it is crucial to
consider that the power meter used in the experiment will have a detector efficiency
η < 1. Consequently, for security reasons, we must adopt a pessimistic approach and
underestimate the experimental overlap by a factor of η. Thus, under this pessimistic
scenario, an experimental setup (consisting of good power meters with high detector
efficiency) would likely result in an overlap value less than 0.8. Therefore, one should
anticipate a randomness expansion of approximately 0.3(1 − γ) bits per round using this
protocol, where γ represents the testing probability.
Furthermore, we have plotted the function FpX

(ω,Θ) for the scenario where pX(0) = 1
100 .

In this case, the protocol resembles a spot-checking type protocol, where the input
randomness is negligible because most of the time X = 1 is being sent. Only occasionally,
X = 0 is sent as a spot check. Since this behavior is unknown to the adversary, for the
protocol not to abort, the devices must function honestly during most of the rounds. As
expected, this spot-checking protocol provides a lower randomness rate. However, if the
figure of merit is the ratio of output to input randomness, then having pX(0) � 1 may
be more suitable. Furthermore, for a finite number of rounds, having pX(0) � 1, similar
to the spot-checking protocol, faces challenges in providing good rates. A significantly
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large number of rounds is needed to gather enough statistics to be confident in ω and Θ,
especially given the scarcity of rounds with X = 0.

9.5 DISCUSSION

In this work, we have conducted an analysis of the semi-Device Independent protocol
based on the energy and overlap bounds. We have proposed a protocol that recycles
input randomness for the semi-Device Independent protocols and have also introduced
another protocol that converts public randomness to private randomness.
The structure and analysis of these protocols closely resemble Device Independent
protocols for randomness expansion. As a result, there are numerous opportunities
for applying similar techniques and ideas from Device Independence to enhance these
protocols. Just like in Device Independence, alternative score functions other than the
CHSH score, as discussed in references [45, 46], might yield better performance in
our semi-DI protocols. However, determining the optimal functional form of the score
remains an open question. Furthermore, the choice of score can significantly impact the
performance of the protocols, especially given available experimental statistics.
There is a possibility of exploring connections with concepts like self-testing, as introduced
in [91] that often occur in the discussions of the DI protocols. Self-tests can yield
interesting score definitions that could contribute to a partial answer to the question of
finding the best score given experimental statistics.
Moreover, developing an NPA-like hierarchy for such protocols [52], could be beneficial.
Such a hierarchy may allow us to use results for optimizing von Neumann entropies, such
as those presented in [43], to analyze these protocols for arbitrary inputs and outputs.
The current proof based on Jordan’s lemma is limited to protocols with only 2 inputs
and 2 outputs, so a more generalized approach is desirable.
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Conclusion and outlook

In this section of the thesis, we delved into a comprehensive exploration of randomness
expansion protocols based on minimal assumptions regarding the inner workings of the
devices. The thesis commenced with an exploration of the need for randomness expansion
protocols. Subsequently, we delved into various protocols for achieving randomness
expansion. In Chapter 2, we discussed the pivotal role of optimization problems within the
context of randomness expansion protocols. We discussed the significance of semi-definite
programs in solving polynomial optimization problems. Additionally, we identified the
role of min-entropy as a suitable measure for quantifying randomness in a cryptographic
scenario. The presentation of the Entropy Accumulation Theorem, as an approach for
establishing reliable bounds on min-entropy in randomness expansion protocols, was also
discussed at the end of the chapter.
Shifting focus to protocols based on the violation of (generalized) CHSH inequalities in
Chapter 3, we explored the concept of Bell’s theorem within the context of randomness
expansion. Chapters 4 and 5 delved into strategies for establishing tight lower bounds on
conditional von Neumann entropy relevant to DIQKD and DIRNE protocols which rely
on violating generalized CHSH inequalities. Our work culminated in Chapter 6, where we
introduced and compared three CHSH-based protocols for randomness expansion: the
spot-checking protocol (with randomness extracted from both parties), a protocol that
recycles input randomness, and a protocol leveraging heavily biased input randomness.
Notably, the latter two protocols close the locality loophole. Upon comparative analysis,
our results reveal that the protocols that recycle input randomness exhibit exponential
enhancements in the finite-round regime, rendering DIRNE protocols notably more
practical.
Subsequently, the exploration extended to semi-Device Independent (semi-DI) protocols
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of randomness expansion. In Chapter 7, the foundational structure of our semi-DI
protocol was introduced, focusing on the preparation of states with low energy or high
overlap in a system having a unique ground state. The subsequent chapter, 8, dealt with
the computation of lower bounds on the von Neumann entropic quantity H(Y |XE) for
protocols that attain a fixed a overlap with the ground state and a fixed score. Notably,
in the final chapter of semi-DI protocols (Chapter 9) we introduced two protocols - one
for randomness expansion and another facilitating the conversion of public randomness
to private randomness.
Throughout this thesis, we presented significant enhancements in both Device Independent
and semi-Device Independent randomness expansion protocols. Our contributions include
the development of superior protocols in terms of rates and security. Furthermore,
we devised novel approaches to establish tighter bounds on the randomness rate. An
important advantage of our work lies in our ability to recycle input randomness for our
protocols. The ability to recycle input randomness remarkably yields exponential increases
in randomness rates, especially for finite rounds.
While our methodology proficiently computes rates for conventional score definitions,
such as the CHSH score in the DI case and the guessing probability in the semi-DI
scenario, it can adapt to other linear functions of input-output statistics for generating
randomness. We acknowledge the potential of alternative functionals, as demonstrated
in [45, 46], which might better suit randomness expansion and QKD.
An additional avenue for improvement involves harnessing the potential offered by Multi-
partite Bell inequalities. Protocols based on these inequalities offer the promise of
generating up to n bits of randomness. While experimentally violating these Multi-partite
Bell inequalities proves to be an even greater challenge compared to the CHSH inequality,
the theoretical exploration of these scenarios remains invaluable. Such investigations
enable us to grasp the true extent of quantum theory’s capabilities and equip us with the
necessary insights for a future where their implementation becomes more feasible.
Another avenue of investigation is to for look protocols based on multiple inputs and
outputs, rather than restricting to the two input-two output case. It is worth noting that
our existing protocols are tailored for binary inputs and outputs due to the reliance on
Jordan’s Lemma. Unfortunately, no equivalent principle to Jordan’s Lemma exists for
scenarios involving non-binary inputs or outputs.
Although there are approaches to bypass the limitations of Jordan’s Lemma, these
strategies often come with resource-intensive requirements, and/or they do not give
good randomness rates. In particular, a computationally feasible way is to obtain bounds
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on the randomness for multi-partite scenario is using the NPA hierarchy [52] and lower
bounding the von Neumann entropy in terms of the min-entropy [51]. However, this
method loses tightness. Another way to obtain bounds on the randomness is by adopting
the approach from the recently introduced seminal work by Brown et.al. [57]. As it stands,
this approach proves challenging for practical execution in multi-partite scenarios, even
in tri-partite scenarios where randomness is drawn from all the three parties. However, in
simpler cases such as the two-input two-output bipartite scenarios, this method proves
to be highly practical. Therefore, it might be worthwhile to look into ways in which this
method can be made less resource extensive.
Interestingly, when it comes to DIRNE protocols, there isn’t always a need to close
all loopholes in practical implementations. The importance of addressing the locality
loophole is somewhat lessened since, in the DIRNE protocols, all devices function within
a single lab. Protective shielding methods, implemented to avoid any unwanted external
data transmissions, can be also be used to shield the devices themselves and eliminate any
potential for device-to-device communications. While obstacles linked to the detection
loophole remain, it’s worth noting that to exploit this loophole, an eavesdropper would
need to craft near-perfect detectors and covertly install them in the devices, which itself
is challenging for an adversary to achieve practically.
In this context, the fair sampling assumption [61, 92] also is essential when performing
DI protocols. This assumption forms the foundation for constructing semi-DI protocols
based on the violation of a Bell inequality. Consequently, this provides further rationale
for developing protocols rooted in different Bell inequalities, even with present day
technology.
To bridge the gap between theory and experimentation, an ideal protocol should align with
the best theoretical strategy, thereby achieving optimal rates. Experimental outcomes,
however, often diverge from theoretical predictions due to factors like noise, device
imperfections, or possible eavesdropping. As a result, statistics gathered from experiments
should then be utilized to compute a lower bound on randomness rate. This raises the
question: what is the best computed lower bound given the experimental statistics
obtained? At first glance, one might consider using all available statistics and employ a
method like the one presented in our thesis to determine the best possible rate. Intuitively,
this seems to be the optimal method, and is indeed the case in the asymptotic limit (i.e.
for very large number of rounds). Nonetheless, this method has limitations in finite-round
cases, primarily because the error term in the Entropy Accumulation Theorem deteriorates
when the rate is determined by a very detailed abort condition of the protocol. This



150 Chapter 10. Conclusion and outlook

translates to the scenario in which if we condition the protocol on the full experimentally
achieved input-output distribution pAB|XY , then the error term is significantly worse than
if we merely condition on the observation of a CHSH score, which is only a function of
the full distribution pAB|XY .
Thus, a trade-off emerges when considering which statistics to condition upon for finitely
many rounds. It is therefore crucial to strike the right balance: over-conditioning can
worsen the error term while enhancing the primary term. The practicality of various
conditioning strategies varies with the finite round regime, and pinpointing the best
conditions often requires a case-by-case assessment. It is also worth noting that while the
error term of EAT provides a lower bound, it might not be tight. For instance, the error
terms of EAT were revised in [32] and subsequently in [31], improving the error term
from the original EAT statement. Looking ahead, we might see even more refinements to
the error term of EAT, which could influence the optimality of how stringent our abort
conditions should be to achieve the best rates.
In summary, this thesis delivers advancements in Device Independent and semi-Device
Independent randomness expansion protocols. Our contributions span enhanced proto-
cols, tighter bounds, and the inclusion of input randomness recycling. The protocols’
practical implementation depends on a delicate balance between theoretical strategies
and experimental realities, an aspect that warrants further investigation.
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Generalized Probability Theories

11.1 INTRODUCTION

The Generalized Probability Theory (GPT) [93, 94] framework provides a description
of physical theories based on the experimentally achievable input-output statistics of
measurements, given preparations and channels. Each GPT is characterized by its
state space, effect space, and set of channels. In this framework, a normalized state is
represented by an element σ belonging to a convex set C. The state space consists of
tuples of the form ω = (λ, σ), where λ ranges from 0 to 1 and σ belongs to C. The
value λ ∈ [0, 1] called normalization constant. An effect is defined as a linear map v on
the state space satisfying 0 ≤ v(ω) ≤ 1. Physically, an effect represents an outcome of
a measurement in the GPT, and its action on the state v(ω) assigns a probability to
the occurrence of the event. A channel, denoted as M, describes the dynamics of the
system under specific physical processes.
Quantum theory is a particular GPT where the state space consists of density operators ρ,
which are positive operators with a trace less than or equal to 1. Therefore, for quantum
theory, the convex set C is identified as the set of non-negative operators with trace 1,
and the normalization constant λ = tr(ρ). The effect space in quantum theory includes
any non-negative operator E such that 1−E is also positive. The probability of an event
occurring is given by tr(ρE). The set of channels M in quantum theory corresponds to
Trace-non increasing Completely Positive Maps (TCPMs).
Checking the complete positivity requirement for a channel can be a-priori challenging, as
it requires verifying the positivity of M ⊗ Ik for arbitrary natural numbers k. However,
there are known results, such as Choi’s theorem, that provides a tractable criterion
to check whether a given linear map is a channel in quantum theory. Furthermore,
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it is known that any completely positive map can always be expressed using a Kraus
operator decomposition. That is, a map M is completely positive if and only if there
exist operators {Ki}ni satisfying ∑n

i K
†
iKi ≥ 0, such that M(ρ) = ∑n

i KiρK
†
i .

In any GPT, similar concepts of complete positivity and positivity come into play. Just
like in quantum theory, where effects and channels must adhere to the notion of complete
positivity, the same is true for GPTs. Computing the set of “positive” maps for most
GPTs should be relatively straightforward (provided the state space can be embedded in
finite dimensional Hilbert spaces), and in principle, numerical algorithms can be employed
for this purpose, depending on the complexity of the state space.
However, verifying the condition for complete positivity in GPTs is a significantly more
challenging task. Unlike in (finite dimensional) quantum theory, where determining
whether a linear map is a channel is in principle achievable using computational methods,
there are no equivalent results available for arbitrary GPTs. The main problem is that,
for an arbitrary GPT, there is no unique method or principle to define composite state
spaces. Furthermore, there are no existing results that allow us to express any completely
positive map in an analogous Kraus operator representation. In this section of the thesis,
our primary focus is to determine a tractable way to determine the set of channels for
Boxworld.
Boxworld is a well-studied GPT that has attracted considerable attention [95] in the
literature. In Boxworld, the state space consists of all probability distributions that do not
allow super-luminal signaling. Therefore Boxworld stands as the largest theory, in terms
of achievable input-output correlations, that is consistent with relativity and includes
the quantum theory state space as a strict subset. The extremal points in the 2-input,
2-output state space of Boxworld are known as PR boxes [96]. These PR boxes represent
non-signaling states capable of achieving a maximal CHSH score of 1, surpassing the
Tsirelson bound of 1

2 + 1
2
√

2 in quantum theory.
While Boxworld shares some fundamental properties with quantum mechanics, such as
the no-cloning and no-broadcasting theorems, as well as the monogamy of correlations
[97], it also exhibits distinct features. Notably, Boxworld allows for significantly enhanced
communication power compared to quantum mechanics, as demonstrated by van Dam
et al. [98] and Brassard et al. [99]. Additionally, Linden et al. [100] proved how certain
post-quantum theories, including Boxworld, enable nonlocal computation tasks that are
unattainable in quantum mechanics. Consequently, information-theoretic tasks have been
proposed as means to distinguish Boxworld from quantum mechanics.
Even if Boxworld is the largest GPT in terms of the achievable input-output correlation,
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it has very simple mathematical features. This is because Boxworld’s larger state
space, compared to quantum theory, significantly restricts the dynamics it can exhibit.
Barrett [93] demonstrated the absence of joint measurements in Boxworld for two
parties. This means that any measurement in Boxworld for two parties is essentially
a local measurement, and unlike quantum theory, global measurements do not exist.
Further work by Gross et al. [95] proved that reversible dynamics within Boxworld are
trivial; i.e., any reversible transformation in Boxworld consists solely of local operations
and permutations of systems. Notably, the ability to perform joint measurements on
two systems is a fundamental aspect of phenomena like teleportation and entanglement
swapping [101, 102], and hence these features of quantum theory also cannot be replicated
in Boxworld. By studying Boxworld’s dynamics, we can understand what sets quantum
theory apart from generalized theories and gain a deeper understanding of the phenomena
that arise in quantum mechanics.
In the next chapter, we carefully define Boxworld in terms of its state space. Through
this definition, we develop a linear algebraic framework for Boxworld that can be applied
to scenarios involving any number of non-communicating (or space-like separated) parties.
Using this framework, we prove that any valid linear map that maps a Boxworld state to
another state is a channel in Boxworld. Borrowing terminology from quantum theory,
this means that any “positive” map in Boxworld is automatically “completely positive”.
This observation indicates that the set of channels in Boxworld is numerically tractable
(simply check the action of the channel on the extremal Boxworld states), facilitating an
efficient characterization of the dynamics of the theory.
In the remainder of the chapter, we define various aspects of the GPT framework such
as states, effects and channels. Furthermore, we shall prove certain fundamental facts
within the GPT framework, which apply to all GPTs.

11.2 THE GPT FRAMEWORK: A CONCISE LITERATURE OVERVIEW

Before delving into the intricacies of the GPT framework, we provide a brief overview of
the literature on GPTs. The GPT framework emerged in the context of axiomatizations
of quantum theory. Rather than depending on the conventional “textbook” axioms of
quantum theory, which are based on abstract mathematical constructs without clear
physical motivations, the goal was to formulate quantum theory with axioms from well-
motivated physical principles [103–106]. To do so, the GPT framework was used to
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identify the essential features a physical theory should possess and to introduce axioms
to derive quantum theory from. The GPT framework appears especially appropriate for
such a pursuit, as it operates under minimal requirements – it describes a physical theory
solely in terms of its ability to reproduce the observable statistics of any experiment
deemed physical. In other words, the GPT framework only aims to reproduce operational
aspects of a theory.
The pursuit of axiomatizing quantum theory led to the conception of Boxworld. Popescu
and Rohrlich, in their seminal paper [103], questioned whether the ability to violate
the Bell inequality (specifically, the CHSH inequality) was unique to quantum theory.
They explored whether the principles of non-locality and relativistic causality (which for
the context of this work simply means that faster than speed of light communication
is not possible) were sufficient to recover all experimental correlations consistent with
the predictions of quantum theory. Surprisingly, they identified non-local correlations
beyond the purview of quantum theory, suggesting that merely adopting non-locality and
relativistic causality as axioms fails to fully reproduce quantum theory.
Barrett [93] constructed “the generalized non-signaling theory” keeping non-locality
and relativistic causality two as the sole axioms. The generalized non-signaling theory
[93] subsequently became known as “Boxworld”. This theory encompasses all non-local
correlations, including those identified by Popescu and Rohrlich, which were later called
the “PR box”.
Although the GPT framework was initially introduced to study quantum theory through
physically motivated axioms, it has since been applied in a wide variety of contexts.
For example, this framework has been extended to investigate computation [107–112]
and information-theoretic tasks such as bit commitment and communication complexity
[98–100, 113, 114]. An interesting question to address is the extent to which the structure
of quantum theory is crucial for proving security in various Device Independent protocols.
In this context, Barrett et al. [11] illustrated that the standard Device Independent
Quantum Key Distribution (DIQKD) protocol remains secure against a spectrum of
attacks by post-quantum eavesdroppers, who are limited solely by the non-signaling
principle.
The generality of the GPT framework has led to a deep understanding of the “logical
architecture” of quantum theory. A vast body of research exists that seeks to understand
different features of quantum theory that are absent in classical theory. Investigating
whether these features are also present in other theoretical constructs not only enhances
our understanding of quantum theory but also reveals how multiple features of a theory
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might be a consequence of the same logical architecture. This research offers insights
into the interplay between various quantum features and the “minimal assumptions”
needed for operational theories to replicate those features. Non-local features such as
entanglement, Bell violation, and steering have been studied in various GPTs [115–119].
Beyond non-locality, other attributes of quantum theory, like non-contextuality, have also
been studied within the GPT framework [120–122]. Additionally, the GPT framework
has been used to explore theories compatible with various other physical principles and
physical theories, such as causality [123], and thermodynamics [124–126]. The framework
is also instrumental in addressing (apparent) logical paradoxes [127] and interpretational
issues [128] in quantum theory. Furthermore, GPTs have also been used to study theories
resulting from the omission of specific axioms of quantum theory [129, 130].
In summary, the quest to understand axioms for quantum theory has evolved into a vast
and rich domain, allowing to study diverse operational aspects of different mathematically
conceivable physical theories.

11.3 STATE SPACES

In a GPT, each system is described using a mathematical quantity known as a state.
Similar to quantum states, these states provide complete information about the probability
of any outcome that can occur in any given measurement performed on the system. The
collection of all possible states is referred to as the state space of the GPT.
We start by defining the state space. For each system in the GPT, we associate a Hilbert
space, denoted as H. We refer dual space of H by the notation H∗ (the set of all linear
maps H 7→ R). The most general state space corresponding to the system is constructed
as follows:

• Identify a set Sn known as the set of normalized states. This set is a convex
set that possesses a specific property: there exists a vector I ∈ H∗ such that
〈I, ψ〉 = 1 for every ψ ∈ Sn. The vector I is referred to as the identity effect, and
it is unique in fulfilling this property.

• Then the set S is simply defined as

S = {(λ, ψ) ≡ λψ| λ ∈ [0, 1], ψ ∈ Sn}. (11.1)

When λ < 1, then we say that the state is un-normalized or sub-normalized. Sub-
normalized states cannot represent a physical process completely, as they assign an
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overall probability of less than 1 to the outcomes of any measurement. Nonetheless, they
are extremely useful mathematically. Just as in quantum theory, where sub-normalized
states arise naturally when considering the action of a quantum channel on a quantum
state, they also emerge naturally in the GPT framework when we describe the action of
a channel (defined in the next section) on a state.
In analogy with the quantum theory, for GPTs, we can define the set of pure states as the
states that are not “mixed” – i.e. they cannot be a expressed as the statistical mixture
of different states. The pure states are on the boundary of the state space and the state
space is the convex hull of the set of pure states. We denote the set of pure states by
the symbol ∂S (not to be confused with the boundary of the set S)

∂S := {ψ ∈ S : ψ = µψ1 + (1 − µ)ψ2 =⇒ ψ1 = ψ2 = ψ}. (11.2)

The GPT framework also allows for a complete description of the experimental statistics
of multiple systems. This is done by essentially treating multiple systems as effectively a
single system, with a single measurement identified as a collection of measurements on
each system1.
For a multi-system GPT capable of describing interesting phenomena, it must allow for
multi-system states which produce correlated outcomes when local measurements are
performed on each system. Furthermore, it is also interesting if the multi-system GPT
allows for performing non-trivial “joint measurements” – i.e. a measurement that cannot
be expressed as a collection of independent measurements on each system.
The way we describe a multi-system state space is by first labelling every system in our
theory using a unique natural number n ∈ N. We then label the single or multi-system
state space using an index i ⊂ N. For example, S{1,2,4} represents the composite state
space describing the systems 1, 2, and 4. Similarly, we use the notation Hi for the Hilbert
space that embeds the state space Si. Therefore, the full description of state spaces in a
GPT consists of a collection of these state spaces:

TS := {Si|i ⊂ N}. (11.3)

In order to ensure consistency within our theory, it is necessary for multi-system state
spaces to include single-system state spaces. This means that each multi-system state

1There may be other types of measurements in such GPTs, however, this form of measurement
must always be present.
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space must contain subsets that are isomorphic to the corresponding single-system state
spaces. Deferring the discussion on measurements to a later section, as is conventional
in the literature, we assume the validity of local tomography for our theories. Roughly
speaking, this property asserts that the global state can be fully characterized through
local measurements. Under the assumption of local tomography, the constraint on
single-system Hilbert spaces is given by2 [93]

Hitj ∼= Hi ⊗ Hj.

Here ⊗ is the standard tensor product of Hilbert spaces. Unless stated otherwise, this
assumption is made in this thesis. To visually represent multi-system states, we use
diagrams with multiple wires, where each wire corresponds to a system’s state space. For
example, a two-system state φ ∈ S{1,2} is given by

H1

H2

φ ≡ {1,2}
φ . (11.4)

The diagrammatic representation of the state space in GPTs offers a visual approach to
understand different aspects of the GPT framework, which is often very useful proving
important statements about the GPTs. We shall expand upon the diagrammatic version
of GPTs in the last section of this chapter.

11.4 TRANSFORMATIONS

The description of a physical theory remains incomplete without a means of representing
“dynamics” in systems. Within the GPT framework, such dynamics are represented using
“channels”.
One of the most basic behaviors a system can exhibit is remaining static, without any
evolution. This lack of evolution or change is captured by a map known as the “identity
channel”, denoted by I. This channel is defined as follows:

Definition 23 (Identity channel or map). Let Sk be a state space. The identity channel
Ik is a unique map that obeys

∀ψ ∈ Sk : Ikψ = ψ. (11.5)
2Here t represents the disjoint union of two sets - i.e. it is implicitly understood that sets i and j

are disjoint.
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The identity channel is a valid physical transformation of any GPT [94] by assumption.
For majority of the GPTs, the identity map is chosen to be the map 1 on the underlying
Hilbert space that embeds the state space.
Consider preparing two states, ψ1 with probability µ and ψ2 with probability 1 −µ. When
subjected to the physical process represented by M, the resulting states, Mψ1 and
Mψ2, should retain their probabilities as µ and 1 − µ, respectively. In other words, a
channel must respect the convex structure of the state space i.e. -

∀ψ1, ψ2 ∈ S,∀µ ∈ [0, 1] : M(µψ1 + (1 − µ)ψ2) = µM(ψ1) + (1 − µ)M(ψ2). (11.6)

On the level of the Hilbert space H, the above condition can be fulfilled if M is a linear
map on H. Thus, we assume that the channels for our GPTs are linear maps acting on
the Hilbert space H.
Before formally defining a channel, we begin by defining a “transformation” or “positive
map” in the context of GPTs.

Definition 24 (Transformation or Positive map). Let Si be a state-space embedded in
the Hilbert space Hi, and Sj be a state-space embedded in the Hilbert space Hj. Any
linear map M : Hi → Hj is called a transformation if:

∀ψ ∈ Si : M(ψ) ∈ Sj.

For a transformation to be considered a channel, it must satisfy an additional requirement
that it consistently acts as a transformation on composite state spaces as well. This is
the analogue of the notion “complete positivity” in GPTs. We use this requirement to
define channels in GPTs.

Definition 25 (Channel or completely positive map). A transformation M : Si → Sj is
a channel if for any state space Sitk, the map M ⊗ Ik is a transformation.

We will adopt the following diagrammatic representation for the transformation. For
example, the transformation M : S{1,2} 7→ S{1,2} is denoted by:

H1 H1

H2 H2

M . (11.7)
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11.5 EFFECTS

As the GPT framework aims to describe experimentally achievable statistics in any
measurement, it is essential to have the ability to assign probabilities to outcomes of
these measurements. These outcomes are represented by mathematical objects known
as effects. When an outcome is observed in a given experiment, the probability of the
outcome can be computed by action of the effect on the state in which the system is
prepared. As motivated by the set of transformations, the map E must be linear in order
to preserve the convexity of the state space. Thus, the effects are also taken to be linear
maps. When a state resides in the space H, the set of effects, being linear maps on the
set of states, exists in the dual space H∗.
Similar to the subtleties between channels and transformations, caution is required when
defining effects. We define a witness as any linear map that assigns a probability to any
state within our state space.

Definition 26 (Witness). A linear map Hi 7→ R is a witness if

∀ψ ∈ Si : E(ψ) ∈ [0, 1].

For a witness E to correspond to an outcome of an experiment in a GPT, E ⊗ I also
needs to be a witness on all state spaces that contain the state space S. Witnesses that
can be assigned to outcomes of an experiment in a GPT are called effects.

Definition 27 (Effect). A witness E is an effect, if
• for every state space Sitk, the map E ⊗ Ik is a channel, and

• I − E is an effect.

While the first condition of E⊗I stems from the fact that an effect should act consistently
on the composite state space, the condition that I − E is also an effect is used in order
to ensure an effect must form a part of a measurement in our GPT. We also assume
that the set of effects, or the effect space, is a convex set. This means that any convex
combination of two effects must also be an effect in the GPT.
Mathematically, it is significantly easier to check if a particular map serves as a witness
than to determine if it qualifies as an effect. This is because, to verify that a linear map
E is an effect, one must confirm that an infinite number of linear maps of the form
E ⊗ idk act as witnesses. We denote the set of witnesses for the state space Si by the
notation S∗

i .
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This duality between states and witnesses is much stronger. Given a state space, there is
a unique set of witness, however, the relation goes the other way round too – given the
set of witnesses, the set

(S∗)∗ := {φ ∈ H | ∀E ∈ S∗ : E(φ) ∈ [0, 1]}

of maps that assign probability to the witnesses is precisely the state space.

Lemma 50. Let S be any state space, then

(S∗)∗ = S.

Proof. Let φ ∈ (S∗)∗ be such that

∀E ∈ S∗ : Eφ ∈ [0, 1],

but φ /∈ S. We prove that such a vector φ cannot exist. If such a vector φ existed, then
a witness that assigns a negative probability to φ would also exist, which contradicts our
assumption.
As S is a state space, it is a convex set by construction. Thus, by the separating
hyperplane theorem, there exists a linear map F such that

Fφ ≤ 0 and Fψ ≥ 0 ∀ψ ∈ S.

Let λ = maxψ∈S(Fψ), then clearly 1
λ
F ∈ S∗. However 1

λ
Fφ < 0, which leads to the

conclusion that 1
λ
F /∈ S∗, which leads to a contradiction.

Often in GPTs, the set of states and effects are put on an equal footing. This translates to
the demand that given a state space S, the set of effects must be the set of witnesses S∗.
We call this property the no-restriction hypothesis [105, 131]. While this symmetry in
preparations and measurements may not be crucial for an arbitrary GPT, it should be
noted that this holds for quantum theory.

We also use diagrams to express the set of effects. For example, an effect E for the
state space S{1,2} is given by:

H1

H2

E . (11.8)

Finally, we are able to define a measurement in the GPT framework:

Definition 28. We can define a measurement in the GPT framework in terms of
measurement {Ei}i such that ∑iEi = I.
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11.6 GPTS AS DIAGRAMS

The diagrammatic notation (see [94] for a full discussion and refer to papers such as
[132] and [133] for examples of usage of the notation) proves to be highly convenient
when dealing with GPTs and demonstrating important claims about them. Its visual
nature allows us to easily identify results that might remain obscured in the conventional
linear algebraic framework. A similar diagrammatic framework for finite dimensional
quantum theory was introduced by Coecke et. al. [134, 135]. This graphical framework
has been used for various areas, such as quantum error correction, quantum natural
language processing, among other areas of quantum information theory and quantum
computing [136].

Throughout the chapter, we have familiarized ourselves with the diagrammatic notation,
for states, channels and effects. In light of this, let us consider expressing a state
µψ1 + (1 − µ)ψ2 in terms of two states ψ1 and ψ2, where µ ∈ [0, 1]. Employing the
diagrammatic notation, this can be expressed as follows:

µψ1 + (1 − µ)ψ2 = µ ψ1 + (1 − µ) ψ2 .

Similarly holds for effects:

µE1 + (1 − µ)E2 = µ E1 + (1 − µ) E2 .

Note that above, we have dropped the label for the Hilbert space on the wires. We
will omit the explicit Hilbert space label on the wires whenever the interpretation of the
diagram remains unambiguous.

The primary function of GPT is to compute the probability of outcomes in any given
experiment. This probability is determined by the inner product of effects and states. In
the diagrammatic notation, the inner products are given by diagrams with closed legs.
Let E be an effect and ψ be a state, then the probability E(ψ) is given by:

E(ψ) = ψ E .

Representing transformations in the diagrammatic framework is relatively straightforward.
The identity channel in the GPT is denote by a wire:

= I .
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To illustrate how all three components of our GPT fit together, let’s consider the following
example:

E(Mψ) = .ψ M E .

As can be seen, this notation makes the linear algebraic expressions visual and thus easy
to understand and perform mathematical manipulations.
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Channels in Boxworld

This chapter is solely dedicated to exploring Boxworld, which stands as the largest theory
(in terms of achievable measurement statistics) that remains consistent with the principles
of relativity, as introduced in the previous chapter. This chapter begins with the definition
of the most general Boxworld state space and the corresponding set of channels for
Boxworld.
Following this, we delve into redefining the state space in terms of non-signaling vectors,
which helps us to construct a linear-algebraic framework for Boxworld. In the final section
of this chapter, we employ this framework to prove that, unlike the case with quantum
theory, every transformation in Boxworld is also a channel.

12.1 NOTATIONS AND DEFINITIONS

In this section, we present the most general definition of Boxworld state space. Our aim
is to establish a clear and well-defined representation of Boxworld, which will serve as the
foundation for constructing a linear algebraic framework of the theory. This framework
will not only facilitate our analysis but also contribute to the proof of our central result,
namely the equivalence of transformations and channels in Boxworld.
The physical scenario described by Boxworld involves systems being prepared by a source
and subsequently measured by spacelike-separated (or non-communicating) entities such
as distinct laboratories or parties. Recall that a state in the GPT framework provides
complete information about the probability of any outcome that can occur in any given
measurement performed on the system. In Boxworld, a state provides the probability for
every possible outcome of all the local measurements performed by the distinct parties.

165
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A multi-system or multipartite Boxworld state can be uniquely described by conditional
probability distributions of the form:

pψ(a1, a2, . . . , an|x1, x2, . . . , xn).

Here, xi ∈ {0, 1, . . . , pi} represents the set of distinct measurements that the ith party can
perform, and ai ∈ {0, 1, . . . , ki} denotes the set of outcomes of each measurement. For
convenience, we assume a fixed number of outcomes for each measurement performed by
a party, although our results can be generalized to cases where this assumption does not
hold. However, as the parties performing measurement are non-communicating, Boxworld
can only allow for states that correspond to “non-signalling” probability distributions.
For example, in the case of a two partite distribution pψ, the distribution is considered
non-signaling (NS) if the following condition holds:

NS : pψ(a1|x1, x2) = pψ(a1|x1, x
′
2)

This condition must hold for all possible values of a1, x1, x2, and x′
2. In general, we

introduce the set of the non-signalling distributions:

Definition 29 (Non-signalling set). A probability distribution p is considered to be a
non-signalling probability distribution if it satisfies the following:

∀j :
kj∑
aj=0

p(a1, a2, · · · , aj, · · · , an|x1, x2, · · · , xj, · · · , xn) is independent of xj.

Conditions such as the one above are called “non-signalling conditions”. We denote the
collection of all the probability distributions that obey the non-signalling conditions by
the set N S.

It is worth noting that the set of non-signaling probability distributions is convex, and
therefore can be consistently defined to be a state space. The proof of this fact is
straightforward, we shall skip the proof here for brevity.
Let us now formally define the Boxworld state space. We begin by describing a single
system state space. If we label the measurements as x ∈ {0, 1, · · · , p} and assign the
labels a ∈ {0, 1, · · · , k} to the outcomes of each measurement, an element in the state
space of the single system (or party) Boxworld can be expressed as follows:
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ψ =



pψ(0|0)
...

pψ(k|0)
− − −−
pψ(1|1)

...
− − −−
pψ(0|p)

...
pψ(k|p)



∈ Rkp. (12.1)

Here, pψ(a|x) represents the conditional probability of obtaining outcome a when mea-
surement x is performed. The state in equation 12.1 is a list of kp non-negative numbers,
and therefore, can be treated as an element of the vector space Rkp. This means that
the state space of a single system Boxworld state space is a convex set in the space Rkp

for some k, p ∈ N.
To facilitate a more convenient representation of Boxworld states space, we will transition
to using the Dirac Notation. This transition involves using the bra-ket notation, such
as |ψ〉, to represent states instead of simple Greek letters like ψ. Referring back to the
state ψ as in Equation (12.1), we express it as:

|ψ〉 =
k1∑
a1=0

p1∑
x1=0

p(a1|x1)
∣∣∣ea1|x1

〉
. (12.2)

Here, {|ea1|x1〉} represents orthonormal basis in Rkp.
This notation proves to be particularly useful as it allows us to express the multi-system
state ψ in a concise manner1:

|ψ〉 =
n∑
a

n∑
x

pψ(a1, a2, · · · an|x1, x2, · · · xn)
∣∣∣ea1|x1

〉
⊗
∣∣∣ea2|x2

〉
⊗ · · ·

∣∣∣ean|xn

〉
, (12.3)

where, pψ(a1, · · · , an|x1, · · · , xn) is the probability of obtaining the outcomes (a1, · · · , an)
when performing the measurement labeled by (x1, x2, · · · , xn) are performed.
The underlying vector space that embeds our Boxworld state space is the tensor product
space ⊗iRkipi , which, moving forward, will be denoted by Hk,p

N . We can now define the
state space for Boxworld as follows:

1Here
∑n

a and
∑n

x are shorthand notations for
∑k1

a1=0 · · ·
∑kn

an=0 and
∑p1

x1=0 · · ·
∑pn

xn=0 respec-
tively.
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Definition 30 (Boxworld state space). Let n ∈ N denote the number of parties. Let
k = (k1, k2, . . . , kn) denote the vector corresponding to the number of outputs for each
measurement, and let p = (p1, p2, . . . , pn) be the vector representing the number of
distinct measurements made by each party. The state space B(n,k,p) is defined as the
set of all vectors |ψ〉 ∈ ⊗n

i=1 Rkipi such that the distribution pψ defined by:2

pψ(a1, a2, · · · an|x1, x2, · · ·xn) :=
〈
ea1|x1 , ea2|x2 , . . . , ean|xn

∣∣∣ψ〉 (12.4)

is a (sub-normalized) non-signalling distribution i.e. pψ = λp for some λ ∈ [0, 1] and
p ∈ N S.

If the parameter λ = 1, then we call the state ψ as a normalized state. For a normalized
state |ψ〉, if |ψ〉 ∈ ∂B(n,k,p) ,then we call it a “pure” state. This notation is borrowed
from quantum theory, in which the pure states are the boundaries of the state space. If
λ < 1, then we call the state un-normalized. In general, this parameter λ defines the
norm of the state.

Definition 31 (Norm). Let |ψ〉 ∈ B(n,k,p), and let pψ be the distribution defined by
(12.3). Since pψ = λp for some p ∈ N S and λ ∈ [0, 1], we define the norm of |ψ〉 as
|| |ψ〉 || = λ.

The norm defined above, when acting as a map ||.|| : B(n,k,p) 7→ [0, 1] is linear.
This can be shown by observing that for any λ, ε ∈ R and p1, p2 ∈ N S, the dis-
tribution λp1 + εp2 can be expressed as (λ + ε)

(
λ
λ+εp1 + ε

λ+εp2
)
. It is evident that

λ
λ+εp1 + ε

λ+εp2 ∈ N S, which follows from the convexity of N S. Hence, the linearity
of the norm map follows from the one to one correspondence of Boxworld states and
probability distributions.

Now that we have defined the state space, we can proceed to define transformations
in Boxworld. Recall that transformations in GPTs are linear maps between any two
state spaces in the GPT, and not every transformation is a channel. A channel is a
transformation that acts consistently on composite state spaces as well. However, here
we deviate from this terminology, and instead, adopt the terminology inspired from the
quantum theory. Consider the following definitions:

Definition 32 (Positive maps). A linear map M : Hkp
n 7→ Hk′p′

n′ is positive if

∀ |ψ〉 ∈ B(n,k,p) : M |ψ〉 ∈ B(n′,k′,p′).
2The notation |x, y〉 and |x〉 ⊗ |y〉 will be used interchangeably in this context.
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We introduce the notion of l positive maps

Definition 33 (l positive maps). A positive linear map M : Hkp
n 7→ Hk′p′

n′ is a l positive
if the map M ⊗ 1l : Hkp

n ⊗ Hk̃p̃
l 7→ Hk′p′

n′ ⊗ Hk̃p̃
l is positive. Here 1l is the identity

defined on the space Hk̃p̃.

This inspires the definition of completely positive maps.

Definition 34 (Completely positive maps). A linear map M is completely positive if M
is k positive for every k ∈ N.

We adopted the terminology of ‘positivity’ and ‘complete positivity’ over ’transformations’
and ’channels’ because it allows us to draw parallels between concepts in Boxworld and
those in quantum theory.

12.2 REDEFINING BOXWORLD STATE SPACE

In this section, our objective is to find an alternative definition of the Box-world state
space which is free from the direct reference to the probability distribution associated
with the state. To do so, we start by introducing a special set of vectors known as the
non-signaling vectors:

Definition 35 (Non-signalling vectors). Let

|fxi,x′
i
〉 :=

ki∑
ai=0

(
|eai|xi

〉 − |eai|x′
i
〉
)
,

then we define the set vN S as the set of all the vectors of the form∣∣∣ea1|x1 , · · · , eai|xi
, · · · , fxj ,x′

j
, · · · , ean|xn

〉
.

As we will show next, the set vN S comprises vectors that have a one-to-one correspondence
with the non-signaling constraints.

Lemma 51. Let |ψ〉 ∈ B(n,k,p), then ∀ |w〉 ∈ vN S , 〈w|ψ〉 = 0 .

Proof. Let pψ be the probability distribution associated with the state ψ. Since pψ obeys
the non-signalling constraints, we have that:
kj∑
aj=0

(
pψ(· · · , aj, · · · | · · · , xj, · · ·xl, · · · ) − pψ(· · · , aj, · · · | · · · , x′

j, · · · xl, · · · )
)

= 0.
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The above can be re-written as
kj∑
aj=0

(
〈ea1|x1 | ⊗ · · · ⊗

(
〈eaj |xj

| − 〈eaj |x′
j
|
)

· · · ⊗ 〈eal|xl
| ⊗ · · · ⊗ 〈ean|xn|

)
|ψ〉 = 0.

This is equivalent to 〈w|ψ〉 = 0 for every |w〉 ∈ vN S .

The non-signalling vectors defines a sub-space

NS := span ({|w〉 | |w〉 ∈ vN S})

of all the vectors orthogonal to the state space. Each vector |w〉 ∈ NS can be used to
define a different non-signalling condition, making this subspace interesting to analyse.
The discussion in the section helps us to re-define Boxworld state space.

Lemma 52. An element |ψ〉 ∈ Hkp
n is a state in Boxworld iff it satisfies the following:

• Positive: For every a1 · · · an and for every x1 · · ·xn: 〈ea1|x1 , · · · , ean|xn|ψ〉 ≥ 0.
• Normalizable: || |ψ〉 || ≤ 1.
• Non-signalling: ∀ |w〉 ∈ NS : 〈w|ψ〉 = 0.

12.3 SOME EXAMPLES AND PROPERTIES OF COMPLETELY POSI-
TIVE MAP

Now, let’s consider some examples and properties of completely positive maps in Boxworld.
We will specifically focus on examples that will be useful for proving our results in the
next section. Let’s consider the following example:

Lemma 53. The map Mai|xi
defined by

Mai|xi
|ψ〉 = 〈eai|xi

|ψ〉

is a completely positive map.

Proof. To simplify the argument, we show that Ma1|x1 is a completely positive map,
as the reasoning is not explicitly dependent on the specific number of measurement
outcomes or the total number of measurements. Let pψ be the probability distribution
associated with the state |ψ〉 as defined in equation (12.3). We show that the distribution
q defined by the components

q(a2 · · · an|x2 · · ·xn) := pψ(a1, a2 · · · an|x1, x2 · · ·xn) (12.5)
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is indeed a (sub-normalized) non-signaling probability distribution - i.e. q is of the
form λp for some p ∈ N S and λ ∈ [0, 1]. Note that the positivity of the components
q(a2 · · · an|x2 · · ·xn) follows trivially for the expression above. To show that q is a (sub-
normalized) non-signalling probability distribution, we show that ||Ma1|x1 |ψ〉 || ≤ || |ψ〉 ||
and that q obeys all the non-signalling constraints.
We first show that ||Ma1|x1 |ψ〉 || ≤ || |ψ〉 || as follows:3

n∑
a6=1

q(a2, a3 · · · an|x2, x3, · · ·xn) =
n∑
a6=1

pψ(a1, a2, · · · , an|x1, x2, · · · , xn)

≤
n∑
a

pψ(a1, a2, · · · , an|x1, x2, · · · , xn) (12.6)

= || |ψ〉 ||.

The inequality (12.6) holds as a consequence of pψ(a1, · · · , an|x1, · · · , xn) all non-
negative.
We now check if q obeys the non-signalling conditions. Observe that

kj∑
aj=0

q(· · · , aj, · · · |x2, · · · , xj, · · · ) =
kj∑
aj=1

pψ(a1, · · · , aj, · · · |x1 · · · , xj, · · · )

=
kj∑
aj=0

pψ(a1, · · · , aj, · · · |x1 · · · , x′
j, · · · , )

=
kj∑
aj=0

q(· · · , aj, · · · |x2, · · · , x′
j, · · · ).

Importantly, the validity of our argument is independent of the number of parties and the
number of measurements each party makes, meaning that M is completely positive.

By utilizing distinct positive maps in Boxworld, we can construct other completely positive
maps. One straightforward way to achieve this is by composing positive maps. If we have
two completely positive maps M and N , their composition M ◦ N is also a completely
positive map. Consequently, the composition of multiple maps of the form Mai|xi

- i.e.
maps of the form

Ma1|x1 ◦ Ma2|x2 ◦ · · · ◦ Maj |xj

is a completely positive map.

3The notation
∑n

a 6=1 is a short hand notation for
∑k2

a2=0 · · ·
∑k3

a3=0 · · ·
∑kn

an
.
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In some cases, summing two completely positive maps can result in the construction
of a new completely positive map. To see why this is the case, let |ψ〉 be a Boxworld
state. If M and N are both completely positive maps, then the vector (M + N ) |ψ〉
is orthogonal to the set NS, which can be easily seen by taking the appropriate inner
products. Therefore, to establish whether (M + N ) |ψ〉 is a valid state, we only need to
verify if ||(M + N ) |ψ〉 || ≤ 1 holds for every state |ψ〉.
One such example is the map Mx1 defined by

Mxi
|ψ〉 = 〈exi

|ψ〉.

where |exi
〉 := ∑ki

ai=0

∣∣∣eai|xi

〉
. From the discussion above, to show that this map is

completely positive, it suffices to show that Mxi
is norm non-increasing. In fact, we

show that this map preserves the norm of the state:

||Mx1 |ψ〉 || =
k1∑
a1=0

||Ma1|x1 |ψ〉 ||

=
k1∑
a1=0

n∑
a6=1

pψ(a1, a2, · · · , an|x1, x2, · · · , xn)

= || |ψ〉 ||.

Here, we have used the linearity of the norm map. Therefore, the map Mx1 is completely
positive.
Again, it is worth mentioning explicitly that the composition of such maps such as

Mx1 ◦ Mx2 ◦ · · · ◦ Mxn

yields a completely positive map. Moreover, this composition of maps individually
preserves the norm of the state. Thus, we can define the norm map in terms of such
composition - i.e. for every ψ ∈ B(n,k,p) :

‖|ψ〉‖ = ‖Mx1 ◦ Mx2 ◦ · · · ◦ Mxn |ψ〉‖.

Observe that Mxi
does not increase the norm of the state. We will now prove a more

general claim: any transformation (positive map) in a GPT cannot increase the norm of
the state. Here, we prove this claim in context of Boxworld, the arguments employed are
applicable to any GPT.

Lemma 54. Let M : B(n,k,p) 7→ B(n′,k′,p′) be a positive map. Then, for all
|ψ〉 ∈ B(n,k,p), we have || |ψ〉 || ≥ ||M |ψ〉 ||.
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Proof. Assume the existence of |ψ〉 ∈ B(n,k,p) such that || |ψ〉 || < ||M |ψ〉 || ≤ 1.
Choose λ ∈

(
1

||M|ψ〉|| ,
1

|||ψ〉||

)
. Clearly, ||λ |ψ〉 || < 1, indicating that λ |ψ〉 ∈ B(n,k,p).

However, we observe that ||M(λ |ψ〉)|| = ||λM |ψ〉 || ≥ 1. Therefore, M(λ |ψ〉) /∈
B(n′,k′,p′). As a result, M is not a positive map, leading to a contradiction.

Note that replacing B(n,k,p) by Sn and B(n′,k′,p′) by Sm proves the claim for general
GPTs.

12.4 POSITIVE MAPS AND COMPLETELY POSITIVE MAPS IN BOX-
WORLD

We are now prepared to prove the central claim of this chapter, which asserts that any
positive map in Boxworld is also completely positive. Recall that to establish a vector as
a state in Boxworld, it is sufficient to prove that the vector possesses three properties: it
has non-negative entries in the canonical bases, it has a norm less than or equal to 1,
and it is orthogonal to the set NS. We will break our proof into three steps, wherein we
demonstrate that M ⊗ 1l |ψ〉, for any l ∈ N, satisfies all three conditions when M is a
positive map and |ψ〉 is a Boxworld state (in the domain of M ⊗ 1l |ψ〉). Let us begin
by proving that M ⊗ 1l |ψ〉 exhibits non-negative components in all canonical bases for
every Boxworld state |ψ〉 in the domain of M ⊗ 1l |ψ〉.

Lemma 55. Let M : Hkp
n 7→ Hk′p′

n′ be a positive map, and let |ψ〉 ∈ Hkp
n ⊗ Hk̃p̃

n′ be
any Boxworld, state then

〈ea1|x1 , · · · , ean′ |xn′ , · · · , ean′+l|xn′+l
|M ⊗ 1l|ψ〉 ≥ 0 (12.7)

holds for every possible of measurement (x0, x1, · · ·xn′+l) and output (a1, a2, · · · an′+l)
.

Proof. Let |ψ〉 ∈ Hkp
n ⊗ Hk′p′

l be a Boxworld state. Notice that the inner product

〈ea1|x1 , ea2|x2 , · · · , ean′ |xn′ | ⊗ 〈ean′+1|xn′+1
, · · · , ean′+l|xn′+l

|M ⊗ 1l|ψ〉

can be rewritten as

〈ea1|x1 , ea2|x2 , · · · , ean′ |xn′ |M
(
〈ean′+1|xn′+1

, · · · ean′+l|xn′+l
|ψ〉

)
.
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By Lemma 53, the vector
∣∣∣ψ̃〉 defined by

(
〈ean′+1|xn′+1

, · · · ean′+l|xn′+l
|ψ〉

)
is indeed

an n-partite state, i.e.,
∣∣∣ψ̃〉 =

(
〈ean′+1|xn′+1

, · · · ean′+l|xn′+l
|ψ〉

)
∈ B(n,k,p). This is

because

〈ean′+1|xn′+1
, · · · , ean′+l|xn′+l

|ψ〉 = Man′+1|xn′+1
◦ Man′+2|xn′+2

◦ · · · ◦ Man′+l|xn′+l
|ψ〉

is a vector that is obtained by repeated application of positive maps and thus results in a
state in the set B(n,k,p).
Now, by definition, 〈ea1|x1 , ea2|x2 , · · · , ean′ |xn′ |M|ψ̃〉 ∈ B(n′,k′,p′) since M is a positive
map. Thus,

〈ea1|x1 , · · · , ean′ |xn′ , · · · , ean′+l|xn′+l
|M ⊗ 1l|ψ〉 ≥ 0.

In the second part of our proof, we face the most challenging aspect of the overall
argument. We show that M ⊗ 1l cannot be a signalling map. This means that the
resulting vector, obtained by applying M ⊗ 1l to a state in Boxworld, is orthogonal to
the subspace NS.

Lemma 56. If M : Hkp
n 7→ Hk′p′

n′ is positive, then ∀ |w〉 ∈ vN S ,

〈w|M ⊗ 1l|ψ〉 = 0

holds for all Boxworld states |ψ〉 ∈ Hkp
n ⊗ Hk̃p̃

l .

Proof. As we know that M is a positive map, the following holds for every |φ〉 ∈
B(n,k,p) and for every |w〉 ∈ NS,

〈w| M |φ〉 = 0.

The only way the equation above holds for every |φ〉 ∈ B(n,k,p) is when M† leaves
the space NS invariant - i.e. ∀ |w〉 ∈ NS : M† |w〉 ∈ NS.
We need to check if for every |w〉 ∈ NS, 〈w| (M ⊗ 1l) |ψ〉 = 0. As the map M acts
on the first n tensor factors of the state |ψ〉, the vector M† on |w〉 acts on the first n′

tensor factors in the dual space. This allows us to consider 2 distinct types of vectors
|w〉 (up to relabeling of parties)

Case 1 : |v1〉 =
∣∣∣fx1,x′

1
, ea2|x2 , · · · , ean′ |xn′

〉
⊗
∣∣∣ean′+1|xn′+1

, · · · , ean′+l|xn′+l

〉
.

Case 2 : |v2〉 =
∣∣∣ea1|x1 , ea2|x2 , .., ean′ |xn′

〉
⊗
∣∣∣fxn′+1,x

′
n′+1

, ean′+2|xn′+2
, · · · , ean′+l|xn′+l

〉
.
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We now deal with both the cases individually.
Case 1: We can write

M† ⊗ 1l |v1〉 = (M†
∣∣∣fx1,x′

1
, ea2|x2 , · · · , ean′ |xn′

〉
) ⊗

∣∣∣ean′+1|xn′+1
, · · · , ean′+l|xn′+l

〉
.

Here, M†
∣∣∣fx1,x′

1
, ea2|x2 , · · · , ean′ |xn′

〉
∈ NS as discussed above. Thus, (M ⊗ 1l) |v1〉

must be expressable as a linear combination of vectors of the form

|w〉 ⊗ |ean′+1|xn′+1
, · · · , ean′+l|xn′+l

〉,

where |w〉 ∈ vN S . This shows that 〈v1|M ⊗ 1l|ψ〉 = 0.

Alternatively, we can prove 〈v1| M ⊗ 1l |ψ〉 = 0 by observing that 〈v1| M ⊗ 1l |ψ〉 can
be written as:

〈v1|M|ψ〉 = 〈(fx1,x′
1
, ea2|x2 , · · · , ean′ |xn′ |M

(〈
ean′+1|xn′+1

, · · · , ean′+l|xn′+l

∣∣∣ψ〉)
However, notice from Lemma 53, we can infer that∣∣∣ψ̃〉 :=

〈
ean′+1|xn′+1

, ean′+2|xn′+2
, · · · , ean′+l|xn′+l

∣∣∣ψ〉 ∈ B(n,k,p),

as it is obtained as a composition of positive maps acting on a Boxworld state. Thus,

〈v1| M ⊗ 1l |ψ〉 = 〈fx1,x′
1
, ea2|x2 , · · · , ean′ |xn′ |ψ̃〉 = 0,

since |fx1,x′
1
, ea2|x2 , · · · , ean′ |xn′ 〉 ∈ NS.

Case 2: Notice that, vectors of the form
∣∣∣ea1|x1 , ea2|x2 , · · · , ean′ |xn′

〉
span the entire space

Hk′p′

n′ . Thus, we can express M†
∣∣∣ea1|x1 , ea2|x2 , · · · , ean′ |xn′

〉
using a linear combination:

n′∑
a

n′∑
x

αa1,a2,··· ,an′ ;x1,x2,···xn′

∣∣∣ea1|x1 , ea2|x2 , · · · , ean|xn′

〉
,

where αa1,a2,···an′ ;x1,x2,···xn′ ∈ R are some real coefficients. Thus,

M† ⊗ 1l |v2〉 =
n′∑
a

n′∑
x

αa1,a2,··· ,an′ ;x1,x2,···xn′

∣∣∣ea1|x1 , ea2|x2 , · · · , ean|xn′

〉
⊗ |w〉 ,

where |w〉 ∈ vN S . Thus, M† ⊗ 1l |v2〉 ∈ NS. This implies that 〈v2| M ⊗ 1l |ψ〉 = 0.
Combining the results for Case 1 and Case 2, we can prove the claim.
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We now end the proof by showing that M ⊗ 1k cannot increase the norm of the states.

Lemma 57. If M : Hkp
n 7→ Hk′p′

n′ is positive, then M ⊗ 1k is norm non-increasing.

Proof. Let |ψ〉 ∈ Hkp
n ⊗ Hk̃p̃

l be a state. From our discussion in the previous section,
we can express ||M ⊗ 1l |ψ〉 || as

〈ex1 , ex2 , · · · exn′ |M(〈exn′+1 , · · · , exn′+l
|ψ〉) ≡ 〈ex1 , ex2 , · · · exn′ |M|ψ̂〉)

for some Boxworld state |ψ̂〉 := 〈exn′+1 , · · · , exn′+l
|ψ〉. Note that |ψ̂〉 is a Boxworld state

as
〈exn′+1 , · · · , exn′+l

|ψ〉 = Mxn′+1 ◦ · · · ◦ Mxn′+l
|ψ〉 = |ψ̂〉.

Using above and discussion from the previous section, we can also infer that |||ψ̂〉|| =
|| |ψ〉 ||. From above, we know that,

||M ⊗ 1l |ψ〉 || = 〈ex1 , · · · , exn′ |M|ψ̂〉

= ||M
∣∣∣ψ̂〉 ||

≤ ||
∣∣∣ψ̂〉 ||

= || |ψ〉 ||.

The inequality above follows from the Lemma 54.

12.5 CONCLUSION

In this chapter, we began by introducing a general definition of Boxworld for arbitrary
many parties. We briefly discussed what non-signalling probability distributions are and
defined an appropriate state-space for both single-party and multi-partite Boxworld state
spaces. Subsequently, we re-defined the Boxworld state space using a linear algebraic
framework that does not directly reference the probability distributions associated with
a state. Instead, it is described using three different linear algebraic constraints that
are equivalent to verifying if the underlying probability distribution is a non-signalling
probability distribution. We also explored some straightforward examples of completely
composite maps in Boxworld and discussed some easily provable properties of completely
positive maps. Using these examples and the three alternative criteria, we proved that
any positive map in Boxworld is also completely positive.
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It remains an open problem to identify all theories in which such a straightforward result
is true. Additionally, it’s interesting to determine if all the GPTs that abide by such a
result also indeed lack non-trivial channels, as is the case in Boxworld. We discuss some
of these problems, as well as some (partial) progress in this direction, in the next and
final chapter of the thesis.



13

Discussion and conclusion

In this section of the thesis, we delve into the GPT framework, starting with the definitions
of states, effects, and channels. Given the analogous concept of complete positivity in a
GPT, we highlight the mathematical challenges associated with defining a channel and
an effect when a GPT is determined solely by its state space. We then turn our attention
to Boxworld, the theory that is capable of producing any multi-partite non-signaling
probability distributions. Importantly, we make no assumptions about the number of
parties involved, the number of measurements each party can conduct, or the number of
outputs for each measurement.
Our definition of Boxworld results in a fully linear algebraic framework for the theory.
Contrasting with quantum theory, a distinction arises: in Boxworld, any transformation
(positive map) is a channel (completely positive map). This insight provides a tractable
criterion, in principle, for determining whether a particular linear map qualifies as a
channel within Boxworld.
Boxworld’s limited dynamics have lead to variations like Houseworld [116, 137] and Noisy
Boxworld [131] to capture specific quantum theory features absent in classical theory.
Houseworld emerged to address the absence of non-locality swapping in Boxworld, an
analog of entanglement swapping in quantum theory. In Houseworld, specific effects
demonstrate non-locality swapping, illustrating that this phenomenon isn’t exclusive to
quantum theory. The two-party state space in Houseworld is defined by excluding certain
extremal states (PR boxes) from Boxworld’s state space.
Noisy Boxworld replicates various quantum theory aspects, especially Tsirelson’s bound
for maximally entangled states. The state space (or the effect space) of this theory is
constructed by taking a convex hull of “noisy” versions of extremal states (or effects) of
Boxworld.
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Both Houseworld and certain Noisy Boxworld instances lack specific relabeling symmetries.
Preliminary research (in collaboration with Mr. Kuntal Sengupta) suggests tractable
criteria for defining effects in these theories when using the min-tensor product. Notably,
the no-restriction hypothesis appears inconsistent with the max tensor product in these
contexts.
This indicates a need to delve deeper into discerning sets of channels and effects,
as such determinations can be intricate. Addressing such questions is important for
understanding non-trivial GPTs, especially those being designed to study interesting
properties of multi-partite state spaces.
Ultimately, one of the important pursuit of understanding GPTs is to axiomatize quantum
theory from an information-theoretical perspective. A good method for defining the
effects and channels for GPTs allowing for composite state spaces will play a crucial role
if our goal is to understand all non-classical features of quantum theory using the GPT
framework.
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A

Appendix for Device Independent Protocols

A.1 UPPER BOUNDING THE DERIVATIVES - H(A|XYE)

In this section, we derive bounds on the functions cos(u(x) ± v) sin(2θ). Since sin(2θ)
is always positive and increasing in θ in our domain, we get the following result for any
(η, θ, v) ∈ Ci,j,k. We can lower bound cos(u(x) ± v) sin(2θ) as


maxx∈Ci,j,k

(
cos(u(x) ± v)

)
sin(2θi+1) if maxx∈Ci,j,k

(
cos(u(xi,j,k) ± v)

)
> 0

maxx∈Ci,j,k

(
cos(u(x) ± v)

)
sin(2θi) if maxx∈Ci,j,k

(
cos(u(xi,j,k) ± v)

)
< 0.

(A.1)

Let x = (η, θ, v) ∈ Ci,j,k and, for brevity, write g±,y(x) = u±(x)+(−1)yv with y ∈ {0, 1}.
Then, by Taylor’s theorem (cf. Theorem 3), there exists x′ ∈ Ci,j,k such that

cos(g±,y(x)) = cos(g±,y(xi,j,k)) + ∂η cos(g±,y(x))
∣∣∣
x′

(η − ηi) +

∂θ cos(g±,y(x))
∣∣∣
x′

(θ − θ
(i)
j ) + ∂v cos(g±,y(x))

∣∣∣
x′

(v − v
(i,j)
k ).(A.2)

We upper bound this by upper bounding each of the partial derivatives on Ci,j,k:

∂η cos(g±,y(x)) = − sin(g±,y(x))∂ηu±

∂θ cos(g±,y(x)) = − sin(g±,y(x))∂θu±

∂v cos(g±,y(x)) = − sin(g±,y(x))(∂vu± + (−1)y).

We have bounded the derivatives of u on Ci,j,k in (5.12).
We now consider the different cases. Firstly, suppose maxx∈Ci,j,k

[− sin(g±,y(x))] ≥ 0.
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Consider the terms in (A.2). Using the bounds in (5.12), we have

∂η cos(g+,y(x))
∣∣∣
x′

(η − ηi) ≤ 2 max
x∈Ci,j,k

[− sin(g+,y(x))] (ηi+1 − ηi)

∂θ cos(g+,y(x))
∣∣∣
x′

(θ − θ
(i)
j ) ≤ 0

∂v cos(g+,y(x))
∣∣∣
x′

(v − v
(i,j)
k ) ≤

2 maxx∈Ci,j,k
[− sin(g+,0(x))] (v(i,j)

k+1 − v
(i,j)
k ) y = 0

0 y = 1
.

Similarly,

∂η cos(g−,y(x))
∣∣∣
x′

(η − ηi) ≤ 0

∂θ cos(g−,y(x))
∣∣∣
x′

(θ − θ
(i)
j ) ≤ 0

∂v cos(g−,y(x))
∣∣∣
x′

(v − v
(i,j)
k ) ≤

2 maxx∈Ci,j,k
[− sin(g−,0(x))] (v(i,j)

k+1 − v
(i,j)
k ) y = 0

0 y = 1
.

Combining all of these, and bounding the − sin(g±,y(x)) terms by 1, we find

cos(g+,0(x)) ≤ cos(g+,0(xi,j,k)) + 2(ηi+1 − ηi) + 2(v(i,j)
k+1 − v

(i,j)
k )

cos(g+,1(x)) ≤ cos(g+,1(xi,j,k)) + 2(ηi+1 − ηi) (A.3)
cos(g−,0(x)) ≤ cos(g−,0(xi,j,k)) + 2(v(i,j)

k+1 − v
(i,j)
k )

cos(g−,1(x)) ≤ cos(g−,1(xi,j,k))

Secondly, in the case maxx∈Ci,j,k
[− sin(g±,y(x))] ≤ 0, we have

∂η cos(g+,y(x))
∣∣∣
x′

(η − ηi) ≤ 0

∂θ cos(g+,y(x))
∣∣∣
x′

(θ − θ
(i)
j ) ≤ −2 min

x∈Ci,j,k

[− sin(g±,y(x))] (θ(i)
j+1 − θ

(i)
j )

∂v cos(g+,y(x))
∣∣∣
x′

(v − v
(i,j)
k ) ≤

0 y = 0

− minx∈Ci,j,k
[− sin(g+,0(x))] (v(i,j)

k+1 − v
(i,j)
k ) y = 1

.

and

∂η cos(g−,y(x))
∣∣∣
x′

(η − ηi) ≤ −2 min
x∈Ci,j,k

[− sin(g±,y(x))] (ηi+1 − ηi)

∂θ cos(g−,y(x))
∣∣∣
x′

(θ − θ
(i)
j ) ≤ −2 min

x∈Ci,j,k

[− sin(g±,y(x))] (θ(i)
j+1 − θ

(i)
j )

∂v cos(g−,y(x))
∣∣∣
x′

(v − v
(i,j)
k ) ≤

0 y = 0

− minx∈Ci,j,k
[− sin(g+,0(x))] (v(i,j)

k+1 − v
(i,j)
k ) y = 1

.
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Combining all of these, and bounding the − sin(g±,y(x)) terms by −1, we find

cos(g+,0(x)) ≤ cos(g+,0(xi,j,k)) + 2(θ(i)
j+1 − θ

(i)
j )

cos(g+,1(x)) ≤ cos(g+,1(xi,j,k)) + 2(θ(i)
j+1 − θ

(i)
j ) + (v(i,j)

k+1 − v
(i,j)
k ) (A.4)

cos(g−,0(x)) ≤ cos(g−,0(xi,j,k)) + 2(ηi+1 − ηi) + 2(θ(i)
j+1 − θ

(i)
j )

cos(g−,1(x)) ≤ cos(g−,1(xi,j,k)) + 2(ηi+1 − ηi) + 2(θ(i)
j+1 − θ

(i)
j ) + (v(i,j)

k+1 − v
(i,j)
k ).

A.2 UPPER BOUNDING THE DERIVATIVES - H(AB|00E)

For brevity in this section we often use θ̄ = π/4 + θ. We upper-bound the derivatives for
the functions α̂0, ε̃, R̂. We first upper bound the derivatives for α as

∣∣∣∣∂λα̂0

∣∣∣∣ =
∣∣∣∣ 2 cot

(
θ̄
)

csc2(λ)

cot2
(
θ̄
)

cot2(λ) + 1

∣∣∣∣ (A.5)

∣∣∣∣∂vα̂0

∣∣∣∣ =
∣∣∣∣ cot

(
θ̄
)

csc2(v)

cot2
(
θ̄
)

cot2(v) + 1

∣∣∣∣ (A.6)

∣∣∣∣∂θ̄α̂0

∣∣∣∣ =
∣∣∣∣ 2 csc2

(
θ̄
)

cot(λ)

cot2
(
θ̄
)

cot2(λ) + 1
−

csc2
(
θ̄
)

cot(v)(
cot2

(
θ̄
)

cot2(v) + 1
)∣∣∣∣. (A.7)

Observe that for x ∈ R

a csc2(x)
a2 cot2(x) + 1 ≤ max{a, 1

a
}. (A.8)

Noting that cot
(
θ̄
)

≤ 1 for θ ∈ [0, π4 ]. This gives us

|∂λα̂0| ≤ 2 tan
(
θ̄
)

=: αλ (A.9)

|∂vα̂0| ≤ tan
(
θ̄
)

=: αv. (A.10)

The identity x
1+a2x2 ≤ 1

2|a| can be used to get the following upper bound

∣∣∣∣∂θ̄α̂0

∣∣∣∣ ≤
∣∣∣∣ 2 csc2

(
θ̄
)

cot(λ)

cot2
(
θ̄
)

cot2(λ) + 1

∣∣∣∣+ ∣∣∣∣ csc2
(
θ̄
)

cot(v)(
cot2

(
θ̄
)

cot2(v) + 1
)∣∣∣∣

≤ 2
csc2(θ̄) tan

(
θ̄
)

2 +
csc2(θ̄) tan

(
θ̄
)

2
= 3

2 sin
(
2θ̄
) := αθ̄.
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Define z(λ, v, θ) to be the denominator in (5.31), i.e.,

z(λ, v, θ) := cos(v−λ)
[
sin(α̂0) sin(v) cos

(
π

4 +θ
)

+cos(α̂0) cos(v) sin
(
π

4 +θ
)]

− sin(v−λ)√
2

√
1−cos(2v) sin(2θ). (A.11)

We now compute the derivatives of z. For the derivative with respect to λ, we write
∂λz = (b1 + b3) + b2∂λα̂0, where

b1 = sin(v − λ)
(
sin(α̂0) sin(v) cos

(
θ̄
)

+ cos(α̂0) cos(v) sin
(
θ̄
))

b2 = cos(v − λ)
(
cos(α̂0) sin(v) cos

(
θ̄
)

− sin(α̂0) cos(v) sin
(
θ̄
))

b3 =
cos(v − λ)

√
1 − cos(2v) sin(2θ)

√
2

.

We can then bound these by b1 ≤ cos
(
θ̄
)

+ sin
(
θ̄
)

+ 1/
√

2 ≤
√

2 + 1/
√

2 and
b2 ≤ cos

(
θ̄
)

+ sin
(
θ̄
)

≤
√

2, so that

|∂λz| ≤
√

2(3/2 + αλ) =: zλ. (A.12)

Note that ∂v[cos(v − λ) sin(v)] = cos(λ− 2v) and ∂v[cos(v − λ) cos(v)] = sin(λ− 2v).
We can hence write the v derivative as

∂vz = a1 + a2 + a3∂vα̂0, where (A.13)

a1 = cos(λ− 2v) sin(α̂0) cos
(
θ̄
)

+ sin(λ− 2v) cos(α̂0) sin
(
θ̄
)

≤ cos
(
θ̄
)

+ sin
(
θ̄
)

≤
√

2

a2 = −
cos(v − λ)

√
1 − sin(2θ) cos(2v)

√
2

− sin(2θ) sin(2v) sin(v − λ)
√

2
√

1 − sin(2θ) cos(2v)
≤

√
2

a3 = cos(v − λ)
(
cos
(
θ̄
)

sin(v) cos(α̂0) − sin
(
θ̄
)

cos(v) sin(α̂0)
)

≤ cos
(
θ̄
)

+ sin
(
θ̄
)

≤
√

2,

and where we obtained the bound on a2 using | sin(2v) sin(2θ)√
1−sin(2θ) cos(2v))

| ≤
√

2. Hence, we can
bound

|∂vz| ≤
√

2(2 + αv) =: zv. (A.14)

Finally we compute the θ̄ derivative

∂θ̄z = c1 + c2 + c3∂θ̄α̂0 (A.15)
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where

c1 = cos(v − λ)
(
cos(α̂0) cos(v) cos

(
θ̄
)

− sin(α̂0) sin(v) sin
(
θ̄
))

≤ cos
(
θ̄
)

+ sin
(
θ̄
)

≤
√

2

c2 = cos(2θ) cos(2v) sin(v − λ)
√

2
√

1 − sin(2θ) cos(2v)
≤ cos(2θ)

√
2
√

1 − sin(2θ)
=
√

1 + sin(2θ)
2 ≤ 1

c3 = cos(v − λ)
(
cos(α̂0) sin(v) cos

(
θ̄
)

− sin(α̂0) cos(v) sin
(
θ̄
))

≤ cos
(
θ̄
)

+ sin
(
θ̄
)

≤
√

2

We hence obtain

|∂θ̄z| ≤
√

2 + 1 +
√

2αθ̄ =: zθ. (A.16)

We now compute the derivatives of ε̃:

∂λε̃ = −∂λα̂0(cos(θ) sin(α̂0 + λ− 2v) + sin(θ) sin(α̂0 − λ+ 2v))

+ sin(θ) sin(α̂0 − λ+ 2v) − cos(θ) sin(α̂0 + λ− 2v)

∂v ε̃ = −∂vα̂0(cos(θ) sin(α̂0 + λ− 2v) + sin(θ) sin(α̂0 − λ+ 2v))

−2 sin(θ) sin(α̂0 − λ+ 2v) + 2 cos(θ) sin(α̂0 + λ− 2v)

∂θ ε̃ = −∂θα̂0(cos(θ) sin(α̂0 + λ− 2v) + sin(θ) sin(α̂0 − λ+ 2v)) + cos(θ) cos(α̂0 − λ+ 2v)

− sin(θ) cos(α̂0 + λ− 2v).

Using the same techniques as above, we find the following bounds

|∂λε̃| ≤ αλ(cos(θ) + sin(θ)) + cos(θ) + sin(θ)

≤
√

2(αλ + 1) =: ελ
|∂v ε̃| ≤ αv(cos(θ) + sin(θ)) + 2 cos(θ) + 2 sin(θ)

≤
√

2(αv + 2) =: εv
|∂θ ε̃| ≤ αθ(cos(θ) + sin(θ)) + cos(θ) + sin(θ)

≤
√

2(αθ + 1) =: εθ.

A.3 APPENDIX FOR H(AB|XYE)

A.3.1 General result on Grids

Suppose that we want to optimize the function:

min
x∈C,y∈D

g(x,y) + h(x)

s.t. ∀i : f i(x,y) ≥ 0.
(A.17)
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where x = (x0, x1, · · · , xn) ∈ Rn and y = (y0, y1, · · · , ym) ∈ Rm. Also, we assume that
fi, g, h are differentiable functions in the respective domains.
Our goal is to eliminate certain parameters in the optimization problem, making it suitable
for numerical optimizations. We further assume that there exists x0 such that

inf
x∈C

: h(x) ≥ h(x0). (A.18)

Let ∆x0 be the difference vector defined by

∆x0(x) := x − x0.

and the gradient restricted in Rn given by

∇xg(x,y) = (∂x0g(x,y), ∂x1g(x,y), · · · , ∂xng(x,y))

We can lower bound the objective function in terms of the function using the Taylor’s
theorem

g(x,y) + h(x) ≥ g(x0, y) + h(x0) − ∇xg(x̃, ỹ).∆x0(x̃)

≥ g(x0, y) + h(x0) − gmax∆max (A.19)

for some x̃ ∈ C, ỹ ∈ D and gmax and ∆max are any positive numbers satisfying:

gmax ≥ max
x∈C,y∈D

||∇xg(x0,y)|| and ∆max ≥ max
x∈C

||∆x0 ||. (A.20)

For the sake of completion, we also define the quantity

f imax ≥ max
x∈C,y∈D

||∇xf
i(x0,y)||. (A.21)

Now consider the following result that shall enable us to compute the lower bound of the
optimization problem (A.17):

Lemma 58. Consider the optimization problem defined as follows:

min
y∈D

g(x0,y) + h(x0) − gmax∆max

s.t. ∀i : fmax(x0,y) ≥ −f imax∆max,
(A.22)

where x0 is defined according to (A.18), and gmax, ∆max, and fmax are defined as in
(A.20) and (A.21), respectively. This optimization problem serves as a lower bound on
the problem (A.17).
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Proof. In the discussion above, we showed that the objective function in (A.17) can
be bounded from below using (A.19). It remains to show that the feasible set of the
optimization problem (A.17) is subset of that of (A.22). This can also be shown using
Taylor’s Theorem. Let (x,y) be any point in the feasible set of (A.17), then

f i(x,y) = f i(x0,y) − ∇xf
i(x̃0, ỹ).∆x0(x̃)

for some x̃0 ∈ C, ỹ ∈ D. Now, it is straightforward to see that,

f i(x0,y) − ∇xf
i(x̃0, ỹ).∆x0(x̃) ≥ 0 =⇒ f i(x0,y) + fmax∆max ≥ 0.

Thus, the set of feasible points of the problem (A.17), remain feasible for the optimization
problem (A.22) as well.

A.4 USAGE OF EAT FOR DIFFERENT PROTOCOLS

A.4.1 Protocol with recycled input randomness (Protocol 3)

For this protocol we want to extract randomness from the inputs and outputs. We hence
set Ci = AiBiXiYi and take Di to be trivial. When running a protocol, we do not
generally know the set of EAT channels being used (these are set by the adversary), but
instead only know that they have the no-signalling form, i.e., we have

M(ρA′B′) =
∑
abxy

|a〉〈a|⊗|b〉〈b|⊗|x〉〈x|⊗|y〉〈y|⊗|u(a, b, x, y)〉〈u(a, b, x, y)|⊗Mabxy(ρA′B′) ,

where Mabxy(ρA′B′) = pXY (x, y)(Ex,a ⊗ Fy,b)(ρA′B′) and {Ex,a}a and {Fy,b}b are
instruments on A′ and B′ respectively (cf. (2.26)). Henceforth, the set G will refer to
all channels of this type.
In the CHSH protocol without spot-checking the rate function should be a lower bound
on H(ABXY |E) = 2 +H(AB|XY E) and we can form our rate function via rate({1 −
s, s}) = 2+FAB|XY E(s) or rate({1−s, s}) = 2+FA|XY E(s), the former being preferred
as it is larger. A min-tradeoff function can then be obtained by taking the tangent at some
point. Since FAB|XY E(s) is linear for 3/4 ≤ s ≤ ω∗

AB|XY E ≈ 0.847, for experimentally
relevant scores we can form the min-tradeoff function using the extension of this line
to the domain [0, 1], i.e., we can take f({1 − s, s}) = 2 + G′

AB|XY E(ω∗)(s − 3/4) in
Theorem 1 when applying to Protocol 3, and in this case dC = dAdBdXdY = 16 and
we get a bound on Hεh

min(ABXY|E). The theorem holds for all α ∈ (1, 2) and we can
optimize over α to increase the bound.
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A.4.2 Spot-checking CHSH protocol (Protocol 1)

To use the EAT in the spot-checking CHSH protocol (Protocol 1) we set Ci = AiBi and
Di = XiYi in Theorem 1. The channels again have the no-signalling form mentioned
above, and we can use either FAB|00E or FA|00E as the basis of our rate function. Since
the two-sided version is larger, it is better to work with FAB|00E(s), and the related
min-tradeoff function based on taking its tangent at some point. Modification is required
to account for the spot-checking structure. If we let gt({1 − s, s}) be the tangent of
FAB|00E(s) taken at t then we can form the spot-checking min-tradeoff functions

ft(δu) =


1
γ
gt(δu) + (1 − 1

γ
)gt(δ1) u ∈ {0, 1}

gt(δ1) u = ⊥
.

where t can be chosen (see e.g. [32, Section 5] for the argument behind this). Using this
construction the following theorem can be derived (this is an adaptation of Theorem 3
in [31]).

Theorem 5 (Entropy Accumulation Theorem for spot-checking CHSH protocol). Let
ρABXYUE be a CQ state obtained using the spot-checking CHSH protocol (Protocol 1).
Let Ω be the event |{i : Ui = 0}| ≤ nγ(1−ωexp +δ) with pΩ being the probability of this
event in ρABXYUE, and let ρABXYUE|Ω be the state conditioned on Ω. Let εh ∈ (0, 1)
and α ∈ (1, 2). Then for any r such that ft(FreqU) ≥ r for all events in Ω we have

Hεh
min(AB|XYE)ρABXYE|Ω > nr − α

α− 1 log
 1
pΩ(1 −

√
1 − ε2

h)


+n inf

p∈Qγ
G

(∆(ft, p) − (α− 1)V (ft, p) − (α− 1)2Kα(ft)) ,

where

∆(ft, p) := FAB|XY E(p(1)/γ) − ft(p)

V (ft, p) = ln 2
2

(
log(9) +

√
Varp(ft) + 2

)2

Kα(ft) = 1
6 log(2 − α)3 ln 2

2(α−1)(2+Max(ft)−MinQγ
G

(ft)) ln3(22+Max(ft)−MinQγ
G

(ft) + e2).

To use this theorem we can take r = (FAB|00E(t) + (ωexp − δ − t)F ′
AB|00E(t)) (cf. the

discussion in [31]), and since the theorem holds for any t and α these can be optimized
over.
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A.4.3 Protocol with biased local random numbers (Protocol 2)

To derive the randomness rates, we use Theorem 1 with Ci = AiBi and Di = XiYi, as
in the previous subsection. What remains is to derive the min-tradeoff function and error
terms. In this section, we compute these quantities and derive the expression for the
completeness error in terms of the biasing parameters ζA, ζB and statistical error δ.

A.4.3.1 Deriving the min-tradeoff function

We seek a min-tradeoff function suitable for using with Protocol 2. To construct it we
write the EAT channel in a slightly different way that is explicit in the input distribution
pXY :

MpXY
(ρ) =

∑
abxy

pXY (x, y) |a〉〈a|A ⊗ |b〉〈b|B ⊗ |x〉〈x|X

⊗ |y〉〈y|Y ⊗ |(x, y, w)〉〈(x, y, w)|U ⊗ Mx,y
a,b (ρ) ,(A.23)

where Mx,y
a,b are subnormalized channels. We can also consider the analogous channel

where the U register only stores w (we use M̃ to indicate this case). Next consider the
entropy H(AB|X = 0, Y = 0E), this entropy is calculated for the normalization of the
state

(|0〉〈0|X ⊗ |0〉〈0|Y ⊗ 1ABUE)(MpXY
⊗ IE)(ρRE)(|0〉〈0|X ⊗ |0〉〈0|Y ⊗ 1ABUE) .

For fixed {Mx,y
a,b}, this is independent of pXY (it is defined provided pXY (0, 0) 6= 0).

We next note that for q as the distribution on the score (U) register

(MpXY
⊗ IE)(ρRE)U =

∑
abxyw

pXY tr
(
Mx,y

a,b (ρR)
)

|(x, y, w)〉〈(x, y, w)|

=
∑
xyw

q(x, y, w) |(x, y, w)〉〈(x, y, w)|

(M1/4 ⊗ IE)(ρRE)U =
∑
abxyw

1
4 tr

(
Mx,y

a,b (ρR)
)

|(x, y, w)〉〈(x, y, w)|

=
∑
xyw

q(x, y, w)
4pXY

|(x, y, w)〉〈(x, y, w)| ,

and hence
(M̃1/4 ⊗ IE)(ρRE)U =

∑
xyw

q(x, y, w)
4pXY

|w〉〈w| .
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It follows that{
H(AB|X = 0, Y = 0, E)(M̃1/4⊗IE)(ρRE) : (M̃1/4 ⊗ IE)(ρRE)U = (1 − s) |0〉〈0| + s |1〉〈1| ,

s =
∑
xy

q(x, y, 1)
4pXY

}

=
{
H(AB|X = 0, Y = 0, E)(MpXY ⊗IE)(ρRE) : (MpXY

⊗ IE)(ρRE)U

=
∑
xyw

q(x, y, w) |(x, y, w)〉〈(x, y, w)|
}
.

Let GζA,ζB be the set of channels for which X and Y are independent, X is 1 with
probability ζA and Y is 1 with probability ζB.

Lemma 59. The function FAB|00E as defined in the main text can be used to define a
rate function for GζA,ζB by taking rateζA,ζB (q) = FAB|00E(ω(q)) for q ∈ QG

ζA,ζB
where

ω(q) = 1
4
∑
xy

1
pX(x)pY (y)q((x, y, 1)) . (A.24)

Proof. We have

FAB|00E(ω(q)) := inf
(M̃,ρRE)

{
H(AB|X = 0, Y = 0, E)(M̃1/4⊗IE)(ρRE) : (M̃1/4 ⊗ IE)(ρRE)U

= (1 − ω(q)) |0〉〈0| + ω(q) |1〉〈1|
}

= inf
(M,ρRE)

{
H(AB|X = 0, Y = 0, E)(MpX pY

⊗IE)(ρRE) : (MpXpY
⊗ IE)(ρRE)U

=
∑
xyw

q(x, y, w) |(x, y, w)〉〈(x, y, w)|
}

≤ inf
(M,ρRE)

{
H(AB|XY E)(MpX pY

⊗IE)(ρRE) : (MpXpY
⊗ IE)(ρRE)U

=
∑
xyw

q(x, y, w) |(x, y, w)〉〈(x, y, w)|
}
,

and hence FAB|00E(ω(q)) is a rate function for q ∈ QG
ζA,ζB

.

We can hence form min-tradeoff functions suitable for using with Protocol 2 by taking
affine lower bounds to FAB|00E. Taking the tangent to FAB|00E at t we have min-tradeoff
function

ft(q) := FAB|00E(t) + F ′
AB|00E(t)

(
1
4
∑
x,y

1
pX(x)pY (y)q((x, y, 1)) − t

)
,
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or, in other words, considering deterministic distributions on U = (x, y, w)

ft(δ(x,y,w)) =


F ′

AB|00E
(t)

4pX(x)pY (y) + FAB|00E(t) − tF ′
AB|00E(t) if w = 1

FAB|00E(t) − tF ′
AB|00E(t) if w = 0

We have

Max(ft) =
F ′
AB|00E(t)
4ζAζB + FAB|00E(t) − tF ′

AB|00E(t)

MinQG
ζA,ζB

(ft) = FAB|00E(t) − F ′
AB|00E(t)

(
t− 1

2

(
1 − 1√

2

))

We now find a bound on Varq(ft) using the Bhatia-Davis bound [138].

Lemma 60 (Bhatia-Davis bound). LetX be a real-valued random variable with max(X) =
M , min(X) = m and E(X) = µ, then

VarX ≤ (M − µ)(µ−m) . (A.25)

In our case, M = Max(ft), m = FAB|00E(t)−tF ′
AB|00E(t) and µ = Eq(ft) = FAB|00E(t)+

F ′
AB|00E(t) (ω(q) − t), where ω(q) is defined in (A.24). Thus,

Varq(ft) ≤ (F ′
AB|00E(t))2ω(q)

(
1

4ζAζB − ω(q)
)

≤


(F ′

AB|00E(t))2
(

1
4ζAζB − 1

)
if ζAζB < 1/8(

F ′
AB|00E

(t)
8ζAζB

)2
if ζAζB ≥ 1/8

where we have optimized over ω(q) ∈ [0, 1] for the second inequality.

A.4.3.2 Completeness error

We can form a bound on the completeness error using Hoeffding’s inequality [139].

Lemma 61 (Hoeffding’s inequality). LetXi be n i.i.d. random variables with a ≤ Xi ≤ b,
a, b ∈ R. If S = ∑

iXi and µ = E(S). Then for t > 0

P(S − µ ≥ t) ≤ e− 2t2
n(b−a)2 . (A.26)

Theorem 6. Suppose Protocol 2 is run using honest devices that behave in an i.i.d.
fashion and that have an expected CHSH score ωexp. The probability that the protocol
aborts is no greater than

e−32n(δζAζB)2
. (A.27)
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Proof. Recall the abort condition in the protocol, which states that ω < ωexp − δ where

ω = 1
4
∑
x,y

|{i : Ui = (x, y, 1)}|
npX(x)pY (y) .

We can write this as ∑i Ji, where

Ji((x, y, w)) =

0 if w = 0

1/(4npX(x)pY (y)) if w = 1
(A.28)

This construction gives E [∑i Ji] = nE[Ji] = ∑
xy

1
4pX(x)pY (y)P(U = (x, y, 1)). In an

honest implementation of the protocol, the distribution on the register U takes the form

P(U = (x, y, w)) =

pX(x)pY (y)(1 − ωxy) if w = 0

pX(x)pY (y)ωxy if w = 1
(A.29)

where ∑xy ωxy = 4ωexp, and hence E [∑i Ji] = ωexp. The abort condition can be
expressed as ωexp −∑

i Ji > δ. We have

P(ωexp −
∑
i

Ji > δ) = P(
∑
i

(−Ji) − (−ωexp) > δ)

≤ e−32n(δζAζB)2
,

where we have used Hoeffding’s inequality for the random variable −Ji with a =
−1/(4nζAζB) and b = 0.

A.4.4 Error parameters

Both Theorems 1 and 5 are stated in terms of the probability that the protocol does
not abort, pΩ, which is unknown to the users of the protocol. However, if we replace
pΩ by εEAT, then if pΩ ≥ εEAT we have a correct bound on the entropy. On the other
hand, if pΩ < εEAT then the protocol aborts with probability greater than 1 − εEAT. In
other words, prior to running the protocol the probability that it will both not abort and
that the entropy is not valid is at most εEAT. The soundness error of the protocol is
εS = max(εEAT, 2εh + εEXT), where εEXT is the extractor error (essentially the probability
that the extraction fails). A summary of the aspects of extraction relevant to the present
discussion and in the same notation as used here can be found in [31, Supplementary
Information I C].
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A.4.5 Application to H(AB|E) and H(A|E)

Note that the EAT as stated in Theorem 1 cannot be directly used in conjunction with
H(AB|E) and H(A|E). The basic reason is that the event Ω should be an event on U,
which in turn should be a deterministic function of C and D. To use H(AB|E) and
H(A|E) we need D to be empty and C to be AB. This means the register U cannot
depend on the inputs, XY, but without a score that depends on the inputs we cannot
certify non-classicality let alone randomness.
Since we do not have strong use cases for H(AB|E) and H(A|E) , we do not consider
possible extensions of the EAT in this work.
An alternative, which loses tightness, is to use an idea from [140, Appendix B.3]. Applying
to the present case this would mean taking D to be empty and C to be either ABV or
AV, where Vi records whether the CHSH game was won on the ith round, with Ui = Vi.
Then, proceeding with the former, because H(ABV |E) ≥ H(AB|E) we can base our
min-tradeoff function on H(AB|E), and we can use a chain rule to recover a bound on
the smooth min entropy of AB given E from that of ABV given E. The bounds used
in this approach are tightest when V has low entropy, so we expect better performance
with spot-checking protocols.

A.5 DISCUSSION OF COMPOSABILITY

Throughout this work we consider a composable security definition, which means that,
except with some small probability, the output randomness can be treated as a perfect
random string as part of any larger protocol. Composable security definitions involve a
distinguisher who tries to guess whether the real protocol or a hypothetical ideal protocol
is being run. This distinguisher is allowed access to all the systems an eavesdropper has
access to and is also assumed to learn whether or not the protocol was successful.
The main purpose of this appendix is to briefly discuss composability for protocols that
recycle the input randomness. [The discussion here is not relevant for protocols without
such recycling.] In general, input randomness (the strings X and Y) is not directly
reusable without processing [2]. For instance, the devices could be set up such that the
protocol aborts unless X1 = 0 and so if the protocol passes it is known that X1 = 0. If
X directly forms part of the output, then with probability 1/2 one bit of the final output
is known, which contradicts the security claim that the probability of distinguishing the
output from perfect randomness is at most the soundness error.
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Hence, in order to recycle the input randomness, it also has to undergo extraction to
remove possible information that has leaked about it. The only mechanism for information
leak allowed by the correct running of the protocol is whether it aborted or not, which
constitutes at most one bit. This is easily remedied by compressing the concatenation of
all inputs and outputs by one extra bit during the extraction step (the argument mirrors
the more general case below).
One could also imagine more general protocols in which the length of the string output by
the protocol is a variable (that depends on the actual score observed in the experimental
run), in contrast to the protocols we use in the present paper whose outputs are all
a pre-determined fixed length that depends on the expected CHSH score. Note that
allowing varying output length requires a modified security definition with a different ideal
state, as well as a modified analysis, both of which are beyond the scope of the present
paper (see, e.g., [141, 142]). The main point we wish to make here is that if additional
information L potentially leaks during the protocol then this could convey information
about the input string. In protocols that recycle the input randomness, we can deal with
this by additional compression in the extraction step. More precisely, Equation (3.21)
of [143] implies Hεh

min(R|SL) ≥ Hεh
min(R|S) − log dL, where dL is the dimension of L.

In a protocol with variable output length, the distinguisher can get potentially useful infor-
mation from the length L of the final random string. Given a bound on Hεh

min(ABXY|E)
(to reiterate: obtaining this bound and the correct security definition are beyond the
scope of this work), we can account for the information potentially conveyed by the final
string length as follows. Conservatively, in a CHSH-based protocol with n rounds, the
concatenation ABXY comprises at most 4n bits. Therefore, the length of the final
output should satisfy

Hεh
min(ABXY|EL) ≥ Hεh

min(ABXY|E) − log dL ≥ Hεh
min(ABXY|E) − log(4n) .

Hence, if we reduce the length of the extractor output by log(4n) bits we can recycle
the input randomness. Since the leading order term in Hεh

min(ABXY|E) is proportional
to n, this reduction is minor.
Because we are working with device-independent protocols, the ongoing security of any
randomness generated can be compromised if the devices used for one instance of the
protocol are subsequently reused [60]. Hence, our discussion of security assumes devices
are not reused (possible modifications to protocols that aim to allow restricted reuse are
also discussed in [60]).
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Appendix for semi-Device Independent
protocols

B.1 USEFUL CLAIMS

This section is comprised of a series of standalone proofs that substantiate the claims
presented in the main text. These proofs are independent of one another unless explicitly
linked by a reference.

Lemma 62. Let θ ∈ [0, π2 ] and x, h > 0 are any reals (such that the functions below
are defined), consider the functions

Λ0(x, h, θ) :=
(

Φ((x+ h) cos(θ)) − Φ(x+ h)
)

−
(

Φ(x cos(θ)) − Φ(x)
)

(B.1)

Λ1(x, h, θ) :=
(

Φ((x+ h) cos(θ)) − Φ(x cos(θ))
)

(B.2)

Then Λ0(x, h, θ1) ≥ Λ(x, h, θ2) and Λ1(x, h, θ1) ≥ Λ1(x, h, θ2) if θ1 > θ2.

Proof.

∂θΛ0(x, h, θ) = ∂θΛ1(x, h, θ) =
(

− Φ′(x cos(θ) + h cos(θ))(1 + h) + Φ′(x cos(θ))
)

sin(θ)

≥
(

− Φ′(x cos(θ) + h cos(θ)) + Φ′(x cos(θ))
)

sin(θ)

≥ 0

Where the last line follows from the fact that −Φ(x) > −Φ(y) if x > y and x, y > 0.

Lemma 63. Let θ ∈ [0, π2 ]. The function

f(x) := Φ(x cos(θ)) − Φ(x) (B.3)

195
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is increasing for all x ∈ [0, 1].

Proof. Consider the function

Λ(x, h, θ) :=
(

Φ((x+ h) cos(θ)) − Φ(x+ h)
)

−
(

Φ(x cos(θ)) − Φ(x)
)

(B.4)

We need to show that Λ(x, h, θ) > 0 . We first start by proving this claim for θ ≤
cos−1

(
x

x+h

)
. The choice of such θ shall be made clear in the second part of the proof.

Suppose, that we are able to show that Λ(x, h, cos−1
(

x
x+h

)
) ≥ 0, then we prove the

Λ(x, h, θ) ≥ 0 for θ ≥ cos−1
(

x
x+h

)
by using 62 and the obervation

Λ(x, h, θ) ≥ Λ(x, h, cos−1( x

x+ h
)) ≥ 0 (B.5)

We now prove that Λ(x, h, θ) ≥ 0 for every θ ∈ [0, cos−1
(

x
x+h

)
]. For any θ in this range,

the sets [x cos(θ), x] and [(x+ h) cos(θ), x+ h] are disjoint. Using Taylor’s theorem, we
know that there exists c1 ∈ [x cos(θ), x] such that

Φ(x cos(θ)) − Φ(x) = −Φ′(c1)x(1 − cos(θ))

Thus, ∃c2 ∈ [(x+ h) cos(θ), x+ h] > c1 such that

Λ(x, h, θ) = −Φ′(c2)(x+ h) cos(θ) + Φ′(c1)x cos(θ)

≥
(

− Φ′(c2) + Φ′(c1)
)
x cos(θ)

≥ 0 (B.6)

The last line here follows from the fact that c2 > c1 > 0 implies −Φ′(c2) > −Φ′(c1).

Lemma 64. If Hλ is invariant under the action of Ô. If Pλ is the projection onto the
subspace Hλ then

PλÔ ∈ Hλ and [Pλ, Ô] = 0 (B.7)

Proof. Let |v〉 ∈ Hλ. As Hλ is invariant under the action of Ô, Ô |v〉 = |w〉 for some
|w〉 ∈ Hλ. Then Pλ |w〉 ∈ Hλ =⇒ PλÔ |v〉 ∈ Hλ.
Finally PλÔ |v〉 = |w〉 = Ô |v〉 = ÔPλ |v〉. As |v〉 is any-arbitrary element of Hλ and
∀ |u〉 ∈ H : PλÔ |u〉 ∈ Hλ, we must have [Pλ, Ô] = 0.

Another result that we use is the corollary of the no-signalling for our protocol
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Lemma 65. Let ρxAE be any purification of ρxA. Then, the von Neumann entropy of the
reduced state on system E, denoted by H(ρxE), is equal to the von Neumann entropy
of ρxA, denoted by H(ρxA).

Proof. First, note that any two purifications of ρxA, ρxAE and ρ̃xAE, are related by a unitary
U acting on system E, i.e., ρ̃xAE = (1A ⊗ U)ρxAE(1A ⊗ U †). Using the properties of
partial trace, we have

trA(ρ̃xAE) = trA
[
(1A ⊗ U)ρxAE(1A ⊗ U †)

]
= (1A ⊗ U) trA(ρxAE)(1A ⊗ U †)

= U trA(ρxAE)U †.

Since H(UρU †) = H(ρ) holds for any state ρ and unitary U , it suffices to construct any
specific purification of ρxA and compute its entropy.
Let |i〉 be the eigenbasis of ρxA, and let λi be the corresponding eigenvalues. Consider
the following purification of ρxA:

ρxAE =
∑
i,j

√
λiλj |i〉〈j|A ⊗ |i〉〈j|E .

It is easy to verify that ρxAE is indeed a purification of ρxA. Moreover, it is easy to check
that

trA(ρxAE) =
∑
i

λi |i〉〈i|E .

Thus, we have
H(ρxE) = H (trA(ρxAE)) = H(ρxA),

as desired.

B.2 ELMINATING SOME PARAMETERS

The proofs below help in reduction of the parameter space for optimization problem for
computing the rate functions.

Lemma 66. Suppose we have the optimization problem:

inf f(x1, x2, · · · , xn, y)

s.t. ∀i : hi(x1, x2, · · · , xn) ≥ 0

g(x1, x2, · · · , xn, y) ≥ 0

. (B.8)
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The optimization problem B.8 is equivalent to the following problem:

inf f(x1, x2, · · · , xn, y)

s.t. ∀i : hi(x1, x2, · · · , xn) ≥ 0

g(x1, x2, · · · , xn, y) ≥ 0

y ∈ Y ∗

(B.9)

where Y ∗ is the following set:

Y ∗ := {y ∈ R : ∂yg(x1, x2, · · · , xn, y) = 0}

Proof. We can solve the optimization problem (B.8) by writing the lagrangian:

L(x1, · · · , xn, y) := f(x1, · · · , xn, y) −
∑
i

λihi(x1, · · · , xn) − µg(x1, · · · , xn, y)

where λi, µ ∈ R are some KKT multipliers. To determine the optimal parameter y, we
must have that ∂yL = 0, which is equivalent to

µ∂yg(x1, · · · , xn, y) = 0.

Which gives the result unless µ = 0. If µ = 0, then the optimal solution for the (B.8) does
not depend upon the value y, as y only appears in the constraint g(x1, · · · , xn, y) = 0.
Thus, we can choose y ∈ Y ∗ without any loss of generality.

B.3 MONOTONICITY OF RATES

This section consists of proofs for the monotonicity of the rate function GpX
.

Lemma 67. The function gω(Θ) := GpX
(ω,Θ) is increasing for all ω ∈ [1

2 , 1] and
Θ ≥ 1

2 .

Proof. It suffices to show that the set of feasible points for the optimization problem
GpX

(ω,Θ) is a strict subset of the feasible set for the optimization problem for GpX
(ω,Θ−

δΘ) for all δΘ ∈ [0,Θ − 1
2 ].

The parameter Θ appears in only one constraint denoted by:(∑
x

ãx cos(ξx)
)2

+
(∑

x

ãx sin(ξx)
)2

−
(

4Θ −
∑
x

ηx

)2

≥ 0. (B.10)
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Thus we aim to show that the set of points that obey(∑
x

ãx cos(ξx)
)2

+
(∑

x

ãx sin(ξx)
)2

−
(

4(Θ − δΘ) −
∑
x

ηx

)2

≥ 0, (B.11)

also obey (B.10). This can be easily proved by observing that:

−
(

4(Θ − δΘ) −
∑
x

ηx

)2

= −
(

4Θ −
∑
x

ηx

)2

+ 8δΘ
((

4Θ −
∑
x

ηx

)
− 2δΘ

)
.

Furthermore, it is easy to check that ∀δΘ ∈ [0,Θ − 1
2 ], the following holds:

8δΘ
((

4Θ −
∑
x

ηx

)
− 2δΘ

)
≥ 0.

Thus, we can see that the set of points that obey (B.10), must automatically obey
(B.11).

Lemma 68. The function gΘ(ω) := GpX
(ω,Θ) is increasing for all Θ ∈ [1

2 , 1] and
ω ≥ 1

2 .

Proof. As in the previous proof, it suffices to show that the set of feasible points for the
optimization problem GpX

(ω,Θ) is a strict subset of the feasible set for the optimization
problem for GpX

(ω− δω,Θ) for all δω ∈ [0,Θ − 1
2 ]. This is even more straightforward in

this case as
∑
x

(−ηx + (−1)xãx cos(ξx))) ≥ 4ω − 4 ≥ 4(ω − δω) − 4

holds for all δω ∈ [0, 1].
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