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Abstract 

The prevalence of dementia is increasing globally. Due to the massive resources required, this 

issue is pressuring governments and private healthcare systems. Accurate diagnosis by 

clinicians on the cause of dementia, such as Alzheimer’s disease (AD), is difficult because of 

the time and assessments needed like neuropathological. The issue becomes more challenging 

when considering if various brain lesions contribute to the pathological assessment of 

dementia, the relationship of these lesions to the various dementia conditions, how they 

interact, and how to quantify them. Thereby, systematically assessing neuropathological 

measures by their degree of association with dementia, especially AD, may lead to better 

diagnostic systems and treatment targets. One promising approach that can answer these 

challenges is to develop data-driven solutions with core functions of feature evaluation and 

automatic subject classification based on machine learning (ML).   

Recent research studies in medical diagnosis, including dementia research, reveal that ML 

techniques, when used with feature selection, can identify critical features of Alzheimer-related 

pathologies and their association with the disease’s diagnosis and prognosis. The feature 

selection removes noisy features from the dementia data to increase the predictive performance 

and improve interpretability while reducing the dimensionality and computational complexity. 

However, filter-based feature selection methods can generate dissimilar feature rankings and 

may be sensitive to the correlations among themselves. 

This thesis investigates dementia with a focus on AD neuropathological assessments from a 

data-driven perspective to develop mechanisms to assist pathologists during these clinical 

assessments. The thesis investigation comprises phases such as feature ranking, feature-feature 

correlation, and classification. The work determines the impact of neuropathological feature-

features correlations on the feature ranking for better biomarker identification.  
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The investigation assesses real datasets related to dementia, the Cognitive Function and Aging 

Studies (CFAS) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI), using filter 

methods and classification techniques. The results showed that classification models generated 

from the CFAS and ADNI sets of chosen neuropathological features were strong in terms of 

sensitivity, accuracy, and other measures when mined by different classification techniques. In 

the ADNI dataset results, the significant neuropathological features contributing to AD 

included neocortical neuritic plaques, Braak stage, Thal phase, diffuse plaques, and cerebral 

amyloid angiopathy (CAA), all of which showed a high correlation with AD’s diagnostic label. 

In the CFAS dataset, the results were consistent with those derived from the ADNI dataset. 

Moreover, among the filter methods considered, reliefF had the strongest correlation with 

feature-feature correlations in both ADNI and CFAS datasets, less sensitive to feature-feature 

correlations. However, no filter method had clear dominance over ADNI results. More 

essentially, the results indicated limited consistency in feature rankings between ADNI and 

CFAS. However, reliefF had the most agreement, while the Gain Ratio method had less 

consistency in ranking the features in both datasets. 

In summary, this thesis provided valuable insights into the application of filter methods and 

neuropathology data for developing classification models for dementia conditions’ diagnosis. 

The study demonstrated the significance of considering feature-feature correlations when 

selecting influential features and the impact of different filter methods on feature ranking and 

classification performance. These findings suggest that the proposed approach could 

effectively minimise the discrepancy of feature ranking and generate an impactful set of 

features for classification algorithms. These results had practical implications for pathologists 

in improving the understanding of AD pathology. Furthermore, the study has highlighted the 

potential for future research to leverage diverse filter methods to identify more reliable 

biomarkers and enhance the detection of dementia, particularly for AD.
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Chapter 1 - Introduction 

1.1. Study Background 

The study focuses on a specific healthcare application domain: dementia pathology and 

diagnosis. Dementia is a broad term that describes a group of symptoms with decline in 

cognitive function that interferes with daily activities [1,2]. Some symptoms accompanying 

dementia include memory loss, difficulty with language, disorientation, mood swings, and 

problems with motivation and self-care [3,4]. The most prevalent cause of dementia is AD. 

About 60%–70% of dementia is considered AD, which makes it the most common cause of 

dementia [2]. In the UK, 650 thousand people were estimated to have dementia as of 2015, 

costing £23.0 billion, and expected to be 1.3 million in 2040, costing £80.1 billion [5]. As of 

2018, 50 million people were living with dementia worldwide [6], with the number expected 

to increase to 82 million by 2030 [7]  and to 150 million by 2050 [6].  

The relationship between the cognitive assessment of dementia and neuropathology 

assessment of brains is vital to understand the progression of dementia [8]. Cognitive 

assessment is a crucial way to diagnose dementia, which involves observing and measuring a 

person's ability to think, remember, and reason [9]. However, neuropathological assessment, 

which entails examining brain tissue and cells under a microscope, is essential for studying the 

changes in the brain caused by the condition [9]. Therefore, this research study focuses on 

neuropathological assessments by examining data collected from tissue samples from the 

cadavers of individuals with dementia, mostly AD, to identify the underlying cause. I used 

Machine Learning (ML) techniques such as feature selection filter methods and classification 

algorithms to conduct my investigation. 

https://paperpile.com/c/c3CVUk/pdBbD+RQkAE
https://paperpile.com/c/c3CVUk/flsiC+fvFcw
https://paperpile.com/c/c3CVUk/RQkAE
https://paperpile.com/c/c3CVUk/yQKBg
https://paperpile.com/c/c3CVUk/7PF0x
https://paperpile.com/c/c3CVUk/YQP7P
https://paperpile.com/c/c3CVUk/7PF0x
https://paperpile.com/c/c3CVUk/2xNev
https://paperpile.com/c/c3CVUk/Tcc6U
https://paperpile.com/c/c3CVUk/Tcc6U
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To determine effective neuropathological indicators, which was one of the aims of this 

research work, the study used feature selection considering the associations between each 

feature ranking when considering the diagnosis class, and pairs of feature-feature correlations. 

Through analysing the correlation between each feature's ranking and its correlation with other 

features, it is possible to identify and eliminate any potential redundancies, as well as identify 

which filter method was particularly sensitive to feature-feature correlations. To achieve this 

aim, a data process using two different datasets was used from longitudinal population-based 

studies: the Cognitive Function and Ageing Studies (CFAS) [10–12] and Alzheimer's Disease 

Neuroimaging Initiative (ADNI) [13]. CFAS and ADNI collect neuropathological assessments 

related to AD. 

The purpose of this study was to investigate ML approaches for classifying dementia. Details 

of the aims and research questions are given later in this chapter. 

1.2. Dementia 

As stated earlier, ‘dementia’ is a term used to describe a group of symptoms usually 

associated with decline in cognitive ability, and sometimes with functional impairment, that 

can interfere with an individual’s activities of daily living [1,2]. In earlier times, it was widely 

accepted that ageing caused dementia and considered it part of an unavoidable natural process 

[14]. However, in 1906, Alois Alzheimer examined the brain tissues of a 50 years old who had 

died with dementia, showing age may not be the determinant factor. This form of dementia was 

later named AD by Emil Kraepelin [15,16]. The other common forms of dementia are vascular 

dementia (VD), dementia with Lewy body (DLB), frontotemporal dementia (FD), and other 

dementias. Symptoms of dementia can include [2,17]: 

● Memory loss, particularly for recent events 

● Difficulty with language, such as finding the right word 

https://paperpile.com/c/c3CVUk/k1R89+o4bX8+KLEO9
https://paperpile.com/c/c3CVUk/wPqgf
https://paperpile.com/c/c3CVUk/pdBbD+RQkAE
https://paperpile.com/c/c3CVUk/Fntmo
https://paperpile.com/c/c3CVUk/ltIu4+cTqZ2
https://paperpile.com/c/c3CVUk/RQkAE+S2f3q
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● Disorientation in time and space 

● Challenges with problem-solving and planning 

● Difficulty with coordination and motor functions 

● Changes in mood and behaviour 

● Difficulty with self-care and performing daily activities 

Dementia, recognized as a major neurocognitive disorder, is a term used to include 

conditions that are formed because of abnormal changes in a human's brain structure that 

gradually reduces the individual’s cognitive ability, and is not typically caused by ageing [18]. 

Dementia appears to be of considerable international concern, with repeated estimates 

predicting significant global increases in the following decades [19]. According to the World 

Health Organization, dementia is a major cause of dependency among ageing communities 

worldwide and a primary cause of death [2,20]. 

There have been many improvements in medical services for people with dementia, so 

retaining consistency in diagnostic and methodological practice is challenging, which may 

contribute to further shifts in occurrence and incidence. An early and accurate diagnosis of 

common dementia such as AD can help individuals and their families plan for the future and 

access support and services [2,20]. There is no cure for dementia, and interventions are focused 

on managing symptoms and helping individuals maintain their independence for as long as 

possible [21,22]. 

Dementia research is a challenging field due to the complexity of the contributing 

factors and a lack of understanding of the underlying causes. One challenge is that dementia 

involves multiple symptoms that can occur as a result of various underlying conditions, making 

it difficult to develop effective interventions that target the underlying cause [23–25]. Another 

challenge is that dementia often occurs in the elderly, who may have other health conditions 

https://paperpile.com/c/c3CVUk/YpxUo
https://paperpile.com/c/c3CVUk/54cuT
https://paperpile.com/c/c3CVUk/RQkAE+2uFkk
https://paperpile.com/c/c3CVUk/2uFkk+RQkAE
https://paperpile.com/c/c3CVUk/9j3Uq+l8cx2
https://paperpile.com/c/c3CVUk/L9zcf+oNuD0+Vhycn
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and take several medications [14]. This can make it difficult to determine the specific cause, 

and to develop targeted treatments.  

The diagnosis of dementia diseases can also be challenging because symptoms can be 

similar to other medical conditions and there is no single test that can differentiate dementia 

[23]. This makes identifying people with dementia early, when intervention may be more 

effective, a difficult task. Additionally, there is a lack of funding for dementia research posing 

a challenge to develop effective treatments [26–29]. Ongoing research efforts are helping to 

improve our understanding of dementia and to develop new treatments that can improve not 

only the lives of individuals with the disease, but also their families’ lives [2,30]. This study 

targets the issue of dementia pathology on real neuropathological datasets to develop an 

accurate classification system, and to isolate a small number of influential neuropathological 

indicators. 

1.2.1. Cognitive assessment of dementia 

The assessment of a patient’s cognition involves considering multiple features 

including the patient’s history, and using cognitive tests such as the Mini-Mental State 

Examination (MMSE) for the screening of dementia [31]. Each person has a unique degree of 

intellect and education that may contribute to greater cognitive reserve; therefore, several 

cognitive techniques used to identify cognitive decline for dementia and other cognitive 

impairment conditions [23]. Some research studies reported that people who have spent more 

time in education are more likely to have a ceiling effect on many cognitive tests, making it 

harder to tell whether they have dementia or mild cognitive impairment (MCI), which is a 

precursor of dementia [32]. MCI is diagnosed when symptoms are considered not severe 

enough to interfere with an individual's daily life [33]. 

https://paperpile.com/c/c3CVUk/Fntmo
https://paperpile.com/c/c3CVUk/L9zcf
https://paperpile.com/c/c3CVUk/uI0Pr+4LBBA+4ESqy+vMzjg
https://paperpile.com/c/c3CVUk/RQkAE+Rxx2L
https://paperpile.com/c/c3CVUk/aog0j
https://paperpile.com/c/c3CVUk/L9zcf
https://paperpile.com/c/c3CVUk/3HbNa
https://paperpile.com/c/c3CVUk/7N0L


15 

 

● The MMSE test is a 30-point questionnaire that assesses a person's cognitive abilities 

in areas such as memory, language, and attention, which is usually conducted in a 

clinical setup by a trained healthcare professional. Other cognitive tests used in the 

assessment of dementia include: the Montreal Cognitive Assessment (MoCA) [34]he 

Clock Drawing Test (CDT) [35]he Functional Assessment Staging (FAST) Scale 

[36]he Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) [37]. 

In general, the clinician may use one or more cognitive tests to assess different cognitive areas 

to decide whether the person may exhibit dementia. 

1.2.2. Neuropathology assessment of brains 

Neuropathological assessments of brains involve the examination of brain tissue 

samples taken during an autopsy, which shows the structure and biochemical changes that 

occur in the brain as a result of illnesses such as dementia conditions. Neuropathologists utilise 

diverse techniques to examine abnormal protein clusters and cellular damage patterns in brain 

tissue via microscopic and imaging methods where the information is used to describe the 

changes that take place in the brain as a result of specific diseases or conditions.  

There are characteristic neuropathological changes in AD, often characterised by the 

accumulation of amyloid-beta peptide (Aβ) in the medial temporal lobe and neocortical 

structures of the brain. This accumulation leads to the formation of neuritic plaques and 

neurofibrillary tangles (Figure 1.1), ultimately causing neurodegeneration [38,39]. AD is 

characterised by distinct neuropathological changes in the brain. The primary hallmarks 

include amyloid plaques, which are extracellular deposits of amyloid β protein, and 

neurofibrillary tangles, formed by the accumulation of hyperphosphorylated tau protein inside 

neurons. Additionally, there's noticeable brain atrophy, particularly in the hippocampus, 

accompanied by neuronal and synaptic loss. Neuroinflammation, marked by the activation of 

https://paperpile.com/c/c3CVUk/Q3WYL
https://paperpile.com/c/c3CVUk/Cld2H
https://paperpile.com/c/c3CVUk/RXKCq
https://paperpile.com/c/c3CVUk/p6JKj
https://paperpile.com/c/c3CVUk/UmdEM+wJBbK
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glial cells releasing inflammatory substances, further contributes to the degeneration observed 

in AD [39–43]. 

Several forms of dementia, such as VD, FD, DLB and others, have specific neuropathological 

characteristics. 

 

Figure 1.1: The physiological structure of the brain and neurons in (a) healthy brain and (b) 

Alzheimer’s disease (AD) brain [38]. 

1.2.3. Neuropathological tests related to dementia 

Neuropathology is a subfield of pathology that deals with the study of diseases of the 

nervous system [44]. This includes both structural and functional changes in the brain and 

spinal cord due to various pathological conditions [45]. As stated earlier, the diagnosis of 

dementia conditions like AD is complex, often requiring a combination of clinical, and 

neuropathological tests. Neuropathological tests help to determine the underlying cause(s) of 

dementia and to identify specific brain changes [46].  

https://paperpile.com/c/c3CVUk/moPAS+Zn7l+5VrGb+bAyn+wJBbK
https://paperpile.com/c/c3CVUk/UmdEM
https://paperpile.com/c/c3CVUk/ZiP9
https://paperpile.com/c/c3CVUk/VKovg
https://paperpile.com/c/c3CVUk/vBi5O
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There are various tests used in neuropathology for assessing neuropathological features 

(Table 1.1). This thesis is concerned with the neuropathological features that are carried out 

post-mortem, some of which are depicted in Table 1.1, and all are described in Chapter 3 

(Table 1 – Section 3.3 excluding demographic, and general non-neuropathological features). 

These tests help to diagnose various neurodegenerative diseases such as AD, Parkinson's 

disease, and multiple sclerosis. The combination of different tests provides a comprehensive 

evaluation of the nervous system and helps to determine the most appropriate treatment 

strategies. Some of the tests related to dementia diagnosis are described below. 

● Autopsy: This is an invasive technique. A post-mortem examination of the brain and 

nervous system to identify any abnormalities, injuries or diseases. 

● Magnetic resonance imaging (MRI): A imaging technique that uses a powerful 

magnetic field and radio waves to create detailed images of the brain and spinal cord 

[47]. 

● Computed tomography (CT): A diagnostic non-invasive imaging test that uses X-

rays and computer technology to create cross-sectional images of the body’s internal 

structures [47]. 

● Positron emission tomography (PET): A type of imaging test that uses a radioactive 

tracer to visualise and measure physiological processes in the body, often used to detect 

cancer, heart problems, and brain disorders [47]. 

● Cerebrospinal Fluid Analysis (CSF): This is an invasive technique. A clear fluid that 

circulates in the brain and spinal cord. Analysis of the CSF helps to identify various 

neuropathological changes such as inflammation, infection, and the presence of 

abnormal proteins in the nervous tissue [48]. 

https://paperpile.com/c/c3CVUk/mOu2k
https://paperpile.com/c/c3CVUk/mOu2k
https://paperpile.com/c/c3CVUk/mOu2k
https://paperpile.com/c/c3CVUk/Fy0xN
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Table 1.1: Descriptions of neuropathological and general pathological features 

Feature Description 

Braak stage 

 

The Braak stage is a system used to describe the progression of AD 

based on the spread of neurofibrillary tangles, which are a hallmark of 

the disease. The Braak stages range from 0 to VI, with stage 0 

indicating no tangles and stage VI indicating widespread tangles in the 

brain [42,49]. 

Thal phase 

 

The Thal phase is a specific stage in the Braak staging system for AD. 

It refers to the stage where neurofibrillary tangles are found in the 

hippocampus, a region of the brain involved in memory and learning  

[50,51]. 

CAA 

 

Cerebral amyloid angiopathy (CAA) is a condition in which amyloid 

protein deposits build up in the walls of small and medium-sized blood 

vessels in the brain [12,51]. 

Brain atrophy 

Brain atrophy refers to a decrease in the size of the brain, which can 

occur due to various factors such as ageing, neurodegenerative 

diseases, injury, or lack of oxygen. 

Microinfarcts 

 

Microinfarcts are small, localised areas of tissue damage in the brain 

that can occur as a result of decreased blood flow to a specific area. 

They are often considered a sign of underlying cerebrovascular disease 

and have been associated with an increased risk of dementia and 

cognitive decline [52]. 

TSA 

 

Subpial thorn-shaped astrocytes are a type of glial cells that are found 

in the brain and spinal cord. They are unique in their shape and 

arrangement and have been implicated in AD and other neurological 

disorders [53–56]. 

BrainNet tau stage 

 

The BrainNet Tau stage is a system used to stage the progression of tau 

pathology in the brain, particularly in AD. Tau is a protein that helps 

maintain the structure of neurons but in certain conditions, it can 

become abnormal and form clumps called neurofibrillary tangles. The 

BrainNet Tau stage ranges from 0 to 5, with higher stages indicating 

more advanced tau pathology.and the level of tau protein in the 

cerebrospinal fluid [50]. 

Lewy bodies 

 

Lewy bodies are abnormal structures that form inside the brain cells of 

individuals with certain neurodegenerative disorders. Lewy bodies are 

made up of a protein called alpha-synuclein, and their accumulation in 

the brain is thought to play a role in the development of these 

disorders. 

Neuronal loss 

 

Neuronal loss refers to the reduction in the number of neurons in the 

brain. 

Aβ stage typical 

Aβ stage typical refers to the typical stage of amyloid-beta (Aβ) 

accumulation in the brain in AD. Aβ is a protein that is involved in the 

formation of plaques in the brain. The stage of Aβ accumulation ranges 

from 0 to 5, with higher stages indicating more advanced Aβ 

https://paperpile.com/c/c3CVUk/5VrGb+oOqbd
https://paperpile.com/c/c3CVUk/pMW9p+Cs3XE
https://paperpile.com/c/c3CVUk/KLEO9+Cs3XE
https://paperpile.com/c/c3CVUk/6oVmU
https://paperpile.com/c/c3CVUk/K7H89+NcaYm+Slu4H+T0Aur
https://paperpile.com/c/c3CVUk/pMW9p
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accumulation. 

PART 

Primary age-related tauopathy (PART) refers to a group of 

neurodegenerative disorders characterised by the accumulation of 

abnormal tau protein in the brain, which is associated with ageing. Tau 

protein is involved in maintaining the structure of neurons and is 

essential for normal brain function [57]. 

Infarcts and lacunes 
Infarcts and lacunes are types of brain lesions that can occur in various 

neurodegenerative disorders, including stroke and Parkinson's disease. 

Argyrophilic grain 

disease 

Argyrophilic grain disease is a neurodegenerative disorder 

characterised by the accumulation of abnormal protein deposits in the 

brain, known as argyrophilic grains. These deposits are composed of 

tau protein and are often found in areas of the brain that are involved in 

memory and learning. 

Diffuse plaque 

Diffuse plaque refers to the accumulation of beta-amyloid protein in 

the brain, a hallmark of AD. Beta-amyloid protein is a fragment of a 

larger protein that accumulates in the brain and forms clumps, or 

plaques, between nerve cells. 

Arteriolar sclerosis 

Arteriolosclerosis is a type of arteriosclerosis, which is a disease that 

affects the walls of arteries. Arteriolosclerosis specifically affects the 

arterioles, which are small arteries that branch off from the larger 

arteries and supply blood to the capillaries. 

Atherosclerosis 

Atherosclerosis is a disease that affects the arteries and is characterised 

by the buildup of fatty deposits, known as plaques, in the arterial walls. 

These plaques can restrict blood flow and increase the risk of serious 

health problems, such as heart attack, stroke, and peripheral artery 

disease. 

Neocortical neuritic 

plaques 

Neocortical neuritic plaques are formed by the accumulation of 

amyloid beta (Aβ) protein in the brain. These plaques cause damage to 

neurons and disrupt communication between brain cells. 

Haemorrhage 

Haemorrhage, also known as bleeding, can occur anywhere in the body 

and can be caused by a variety of factors, including injury, disease, or 

abnormalities in the blood vessels. 

Gliosis 

Gliosis is the process by which glial cells, which are the supportive 

cells in the brain, increase in number and size in response to injury, 

disease, or other forms of brain damage. 

 

1.2.4. Neuropathology assessment of post-mortem brains 

Neuropathology is the study of disease and injury of the nervous system using 

techniques such as microscopic examination of brain tissue, both fresh and fixed [58,59]. 

Neuropathological assessment of brains is a crucial component of the diagnosis of various 

https://paperpile.com/c/c3CVUk/bOvzm
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neurological disorders, including dementia and other degenerative conditions, traumatic brain 

injury, and infectious diseases [46,59]. The goal of neuropathological assessment is to identify 

and describe specific changes in the brain that are indicative of a particular disease or condition 

[46]. 

As described in Section 1.2.3, neuropathological assessment starts with a thorough 

search of the patient's medical history, followed by a clinical examination [45]. Next obtaining 

a sample of brain tissue, either through an autopsy or a biopsy procedure following the patient's 

death. The tissue is fixed in formalin and embedded in paraffin for sectioning and staining, or 

it may be frozen for a later time. The tissue is examined under a microscope to help identify 

specific changes in the brain. Changes in the brain can include presence of amyloid plaques 

and neurofibrillary tangles in AD, or presence of inflammation or neuronal loss in other types 

of dementia. Other techniques, such as immunohistochemistry and electron microscopy, can 

also be used to provide more detailed information about the changes that are present in the 

brain [58]. Overall, neuropathological assessment of the post-mortem brain is a complex and 

multi-step process requiring expertise in both pathology and neuroscience. It can, however, 

provide valuable information about the underlying causes of many neurological disorders, 

which is important for the diagnosis of these disorders. 

1.2.5. Clinical Diagnosis of Dementia Gold Standard 

The DSM-5 framework [60] explains the standards used to establish an AD possible or 

AD probable diagnosis. Initially, a level of neurocognitive disorder or dementia is established. 

Major ND entails that the individual has a major deterioration over time in at least one of the 

six cognitive areas: executive function, complex attention, language, perceptual-motor, 

learning and memory, or social cognition. The deterioration can be reported by an informant, 
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physician, or the patient. Cognitive decline is then tested using one or more cognitive tests—

such decline must affect the independence of the individual while performing daily activities.  

To establish minor ND, a reasonable deterioration in cognitive domains is observed 

over time, although the independence of the individual in performing daily activities is not 

impacted. A diagnosis of Minor ND or Major ND also requires that the cognitive deterioration 

is not noticed when the individual is delirious, and that it cannot be better elaborated by other 

mental conditions. Once Minor or Major ND is established, the DSM-5 framework can be used 

to determine whether the cognitive decline is caused by AD (Possible or Probable). To diagnose 

Possible or Probable AD, besides genetic testing and family history, the memory and learning 

domains must show gradual decline in addition to at least one other cognitive area, to be 

considered. More details on the differences between Possible and Probable AD can be found 

in [33]. 

For a final diagnosis of dementia, including AD, more difficult and in-depth criteria are 

considered. For example, for a diagnosis of AD in the ADNI study, subjects have to initially 

be diagnosed with probable AD according to the measures used by the National Institute of 

Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA) [61]. Probable or Possible AD 

are established based on specific criteria outlined earlier by the American Psychiatric 

Association (2013) in which a level of ND must be established first based on six cognitive 

areas in addition to evaluating the level of independence of the subject when performing daily 

activities.  

https://paperpile.com/c/c3CVUk/7N0L
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1.3. Biomedical Applications of Machine Learning 

ML is a subfield of the scientific field of Artificial Intelligence (AI) that concentrates 

on how computers learn from provided data [62–64], without being explicitly programmed. 

One of the crucial and efficient technologies for processing complicated medical data is ML 

[65]. Feature selection is a technique used in ML and a critical processing step of a data process 

to pinpoint a relevant set of features that maximise the performance of predictive models 

specially for classification benchmarks [66,67]. Feature selection is an important step that real 

world data may require because most real datasets are messy, unstructured and contain high 

dimensionality hence pre-processing the data to make the learning process feasible is a 

necessity [68]. 

According to Alelyani et al. (2013); Dong and Liu (2018), selection of features is a 

process that directly affects the learning algorithm performance in processing classification 

tasks [69,70]. The quality of the data, which depends on the input features, may affect the 

learning process based on the levels of noise [71,72]. Noisy data involving redundant features 

may hinder the classification model performance in terms of predictive rate and time. Thereby, 

using feature selection on data to achieve desirable outcomes, is essential [71–73]. 

ML algorithms can analyse large medical datasets that consist of patient information, 

electronic health records, medical assessments, etc., to identify patterns and predict outcomes. 

The outputs of the learning algorithms can help researchers identify patients at risk of certain 

conditions, such as dementia, and develop more cost–effective prevention strategies. By 

analysing medical images, such as magnetic resonance imaging (MRI) and positron emission 

tomography (PET) scans, ML algorithms can identify knowledge that cannot be seen by the 

human eye and is fundamental to decision making. Since the development of accurate 

diagnostic tools based on the knowledge discovered, researchers can identify early signs of 
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diseases like AD. Moreover, ML can be used to develop decision support systems that help 

physicians and other healthcare providers make better decisions about patient care. 

1.3.1. Feature selection 

Due to the complexity, unstructured nature, and high dimensionality of real datasets, 

pre-processing these datasets is needed to improve learning outcomes [68]. Features selection 

is defined as reducing the dimensionality of a dataset by eliminating irrelevant, redundant, or 

noisy features [74,75]. Additionally, the process of feature selection may be beneficial in terms 

of improved interpretability, reduced overfitting, and shorter training times [76–79]. One of the 

main advantages of feature selection in medical data is improved interpretability [71–73]. 

When reducing the number of features, the generated solution by the learning algorithm 

becomes easier to understand by the end-user. 

In the case of healthcare applications like for classifying dementia, the results of the 

models need to be transparent and easily explainable to the clinicians and pathologists. 

Additionally, interpretability would help to identify the vital features in the data where those 

features would provide insights into the underlying biology and inform further studies. It is 

also possible to improve generalisation in medical data with feature selection by reducing 

overfitting [79], where a model is too complex and fits too closely to the training data, resulting 

in biassed performance on unseen data [80,81]. This is particularly important in dementia 

pathological assessment applications where the amount of available data is limited, as 

overfitting can lead to misleading predictions. 

According to Chowdhury and Turn (2020), feature selection can reduce the risk of bias 

in medical data analysis [82]. A number of features may also be associated with demographic 

variables or other confounders that may lead to bias in analyses. In order to reduce the risk of 
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bias in the analysis, feature selection can be used to select only relevant features and to remove 

features that are associated with demographics or other confounders. 

In recent years, several feature selection methods have been proposed including filter 

methods, wrapper methods, and embedded methods [74,83,84] (Figure 1.2). Filter methods 

are based on pre-defined feature ranking criteria, such as mutual information, chi-squared test, 

or correlation, to select the most informative features. Filter methods are fast and 

computationally efficient, but they do not consider the classifier's performance [85–87]. 

Wrapper methods, on the other hand, use the classifier performance as a criterion for feature 

selection, by evaluating the performance of the classifier on different feature subsets. Wrapper 

methods are computationally expensive and time-consuming, but they tend to provide more 

accurate results yet they may become infeasible when the dimensionality of the data is high 

[86,88,89]. Embedded methods integrate the feature selection and classifier training processes 

into a single framework. Embedded methods are less computationally expensive compared to 

wrapper methods and can lead to improved results by considering the classifier's performance 

yet they are more complex and still less efficient than filter methods [90]. 

https://paperpile.com/c/c3CVUk/Ub93x+ZJRJx+sdtcD
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Figure 1.2: Categorization of Feature Selection Algorithms [91]. Univariate filter methods 

consider each feature independently, and rank them according to some metric such as 

correlation with the target variable, mutual information, or statistical significance. These 

methods are fast and computationally inexpensive, but may miss important interactions or 

dependencies between features, such as chi-squared test, correlation-based feature selection. 

Multivariate filter methods, on the other hand, consider the joint distribution of all features 

and their relationship with the target variable. These methods are more powerful than 

univariate methods in capturing complex interactions, but can be computationally expensive 

and may require larger datasets, such as principal component analysis (PCA), linear 

discriminant analysis (LDA). 

Each feature selection type has its strengths and weaknesses, and the choice of the ideal 

method depends on the study's specific requirements and the data's characteristics [74,78,92]. 

Further research is needed for feature selection methods specially for medical applications 

because of the density of the features and the data dimensionality besides addressing the 

existing methods' limitations [78]. Therefore, the thesis focuses on ML feature selection related 

to filter methods since such methods are non–biased, quick, and they are not dependent on 

classification algorithms on performance metrics. 

https://paperpile.com/c/c3CVUk/LvqdV
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It can be challenging to identify the significant pathological factors in the diagnosis of 

dementia, because pathologists may interpret the brain's features differently [42,93,94]. This is 

essential for improving the investigation of dementia cases. According to Thabtah et al. (2022) 

and Rajab et al. (2022), identifying the specific sets of features associated with dementia 

pathology is difficult due to the large number involved in the diagnosis of dementia, including 

biological markers and other brain imaging results. These features are collected by healthcare 

professionals during pathological procedures, and are used to determine dementia pathology. 

However, there is a lack of consensus on which features are essential for identification of 

dementia conditions such as AD, which is one of the main aims of this research [95,96]. 

Since the diagnosis of dementia is complex, costly and resource demanding it has 

become crucial to employ data related methods. In recent years, there has been a growing trend 

in the use of feature selection to select relevant features for accurate dementia classification 

[97,98]. Bharati et al. (2022) explored influential features for the detection of AD. The authors 

used feature selection methods with learning algorithms to detect the relevant features from 

MRI images, and clinical data to enhance AD detection rate generated by classification 

algorithms. The study concluded that feature selection when used before classification step in 

a data process the predictive rate of the models developed improved when compared to models 

generated without feature selection or models of traditional non–driven medical methods [97]. 

A study by Mahendran and Vincent PM (2022) presents a deep learning framework that 

incorporates embedded-based feature selection for early detection of AD. The authors 

evaluated the deep learning methods in identifying AD by analysing data related to MRI 

images. According to the results of the study, the deep learning method outperformed other 

ML methods in the early diagnosis of AD [98]. 

1.4. Current Challenges 
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The presence of high dimensional data has rendered the task of feature selection 

challenging due to the need to process a vast number of features, which poses efficiency and 

quality-related difficulties. However, these difficulties present opportunities for exploring and 

developing innovative intelligent techniques to produce a meaningful and concise set of 

features. In this section, I discussed various challenges that researchers and domain experts 

may face when designing, employing, or developing filter methods for data processing. 

1.4.1. Automated models for dementia pathology 

Currently, the diagnosis of dementia conditions, including AD, is a lengthy and labour-

intensive process that involves medical assessments and in-depth investigation. This process is 

often expensive and time-consuming and can be challenging for medical professionals and 

patients alike [99]. Additionally, the accuracy of current diagnostic methods is not always 

reliable, which can lead to misdiagnosis, particularly in the early stages of the disease when 

symptoms may be subtle [100,101]. By introducing an automated system into the dementia 

diagnostic process, it would be possible to improve the accuracy, affordability, equipment, 

medical staff, and data [102–104]. Automated systems are also able to process and analyse a 

large volume of data quickly and efficiently, which can help to reduce the amount of time and 

resources needed to diagnose dementia. In addition, automated systems can be easily integrated 

with existing medical systems, allowing for greater accessibility to data and a more streamlined 

process for diagnosis. Developing an automated system for dementia diagnosis can 

revolutionise how dementia is diagnosed and treated, providing a more objective, and reliable 

diagnostic process [102–104]. 
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1.4.2. Relationship between neuropathological features and dementia 

Dementia is a growing healthcare concern among the elderly, and an accurate and 

timely diagnosis may provide opportunities for treatment. However, dementia, especially in 

older people, is associated with multiple brain pathologies, making it challenging to assess 

interactions among them [105,106]. By analysing the neuropathological features of post-

mortem brains, ML methods can identify cases where dementia status and neuropathological 

features differ, such as those related to Aβ-related assessments and tau.  It would be valuable 

to identify cases of dementia with inadequate pathology when certain features are not 

informative. This can help to reduce resources, such as time, cost, and effort, during 

pathological assessments and highlight the need for more extensive clinical evaluations. 

ML algorithms and feature selection techniques have enabled automated ways of 

classifying heart and skin diseases, and studies investigating dementia involving brain imaging 

have utilised ML algorithms for the diagnosis of AD and VD [107–109]. The CFAS studies 

focus on cognition, and neuropathological research has investigated the correlation between 

dementia phenotypes and pathological characteristics in the brain, such as measures of tau and 

beta-amyloid (Aβ) pathologies [110]. The analysis of brains donated from the CFAS showed 

considerable overlap in the burden of lesions between participants dying with and without 

dementia [105,106]. Attributable risk showed the importance of many other pathologies in the 

brain [44,111].  

1.4.3. Features ranking 

Feature ranking refers to the process of selecting ‘n’ number of features based on their 

computed scores. The scores are normally computed based on a feature’s relevancy to the class 

variable. According to Venkatesh and Anuradha (2019), feature ranking is an independent 
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evaluation process of the available features as per their importance to eliminate potentially 

irrelevant features [83]. The majority of filter methods evaluate the features based on scores 

computed using statistics, information theory, or some functions of the classifier’s output. Gain 

Ratio (GR), Symmetrical Uncertainty (SU), and ReliefF methods are examples of filter 

methods that use a ranking function to sort features. Feature ranking is a crucial step in feature 

selection, commonly used by domain experts to determine the best feature subsets. However, 

filter methods do not provide the number of features to be selected, leaving the decision to the 

user's experience and knowledge. 

Existing filter methods typically display features with their ranks, adopting a 

rudimentary approach that requires careful consideration and accuracy, often resulting in a 

time-consuming process. A significant challenge in filter methods is the discrepancy in results 

obtained from applying different methods to the same dataset [84,96]. This challenge arises 

due to the use of different mathematical models by filter methods to compute the weights per 

feature in the dataset. These models typically use a contingency table that holds the frequency 

of the feature and feature-class together, including observed and expected probabilities, among 

others. Gómez-Ramírez et al. (2020) aims to improve the accuracy of MCI prediction by 

identifying the most relevant features from a large set of self-assessed variables. The study 

suggests that different feature selection methods may produce different results, indicating the 

challenge of selecting the most appropriate method for a given dataset. Additionally, the study 

highlights the challenge of interpreting the results of feature ranking and making meaningful 

clinical inferences from the selected features [112]. A study by Haider et al. (2020) evaluates 

the potential of paralinguistic acoustic features for detecting Alzheimer's dementia in 

spontaneous speech. The study highlights several challenges associated with feature ranking. 

These include the large number of available features and the potential redundancy among them, 

which can lead to difficulty in selecting the most informative features. They also note the 
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importance of selecting appropriate feature selection methods and avoiding overfitting. 

Furthermore, the authors note that the selected features may not be clinically meaningful, and 

there may be challenges in interpreting the results and translating them into clinical practice 

[113]. 

1.4.4. Feature-to-feature correlations  

Most of the available filter methods do not consider feature-to-feature correlation when 

determining the optimal subsets during feature analysis. Valuing this is important because it 

helps to reduce the number of features and provides a set that contains features that do not 

overlap in data instances and are different from each other. This will be vital in medical 

applications like dementia pathology in which several neuropathological, cognitive and 

biomarkers are investigated by healthcare professionals like pathologists and clinicians. 

Identifying dissimilar related features to dementia diagnosis will allow healthcare professionals 

to focus on the critical dementia indicators thus minimising time and valuable medical 

resources. In cases where predictor variables exhibit a high degree of correlation, a 

phenomenon known as "multicollinearity," the ability to discern how a model makes its 

predictions and which variables are most influential in determining the outcome can be 

complicated. This is especially problematic in medical contexts where interpretability is crucial 

for clinical decision-making. In a recent investigation conducted by Lombardi et al. (2022), the 

impact of multicollinearity on the dependability and consistency of explainable artificial 

intelligence markers for mild cognitive impairment and AD was examined. The study found 

that multicollinearity can exert a significant negative influence on the performance of ML 

models, particularly with regards to their stability and reliability [114]. Specifically, when 

predictor variables are highly correlated, the model may struggle to distinguish between their 
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individual contributions to the outcome variable, resulting in less accurate predictions and less 

trustworthy feature importance rankings. 

Limited research investigations highlighted the importance of identifying feature-to-

feature correlation to enhance the performance of the overall feature selection process. The 

study by Yu and Liu (2004a) is one such attempt that addressed the need to incorporate a 

redundant feature analysis process as relevancy is insufficient to determine the best subsets 

[115]. The authors introduced a novel mechanism called fast correlation-based filter (FCBF) 

by selecting relevant features and then identifying predominant features from the selected set 

to enhance the selection process through a redundancy analysis. Another attempt was mRMR 

method [116], which defines relevant features as those with minimum redundancy with each 

other while maintaining the maximum relevance with the class label with mutual information 

as a parameter [116,117]. 

Other research studies have used metrics to identify the intercorrelation among the 

features to produce optimal feature subsets such as the study of Radovic et al. (2017), which 

enhanced the mRMR method by dealing with temporal data (TemRMR) [118]. TemRMR uses 

the value of F-statistics across different time as the parameter to compute the temporal 

information and relevancy among features; this is by applying a dynamical time-warping 

approach to handle temporal gene expression data in an effective manner. Temporal gene 

expression occurs when data encoded within the gene is turned into a function (product) at a 

specific time [119]. 

F-statistics values determine redundant features by identifying features with small and 

large inter-class variances. Gu et al. (2012) presented a more relevance less redundancy method 

(MRLR) that uses mutual information, conditional mutual information, and relevance degree 

to eliminate redundant features [120]. 
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1.4.5. Dementia feature importance and consistency  

One of the major issues in dementia pathology research using data driven methods is 

the reliability of the results obtained on the features reported especially with the limited 

datasets available for researchers that contain neuropathological indicators. Increasing the 

reliability of the features ranking results obtained from different datasets can indeed be an 

indicator of the data goodness and the features consistency degree when measuring 

neuropathological indicators found in different datasets. The problem is obvious when 

researchers may obtain different results in regards to feature significance to dementia 

diagnosis when using the same neuropathological features during the feature engineering 

phase of the data process. 

To ensure that the study under consideration is non-biased toward a single data 

repository, and there is some agreement on features consistency in ranking, we adopted two 

neuropathological cohorts of subjects in an attempt to measure the consistency of feature 

ranking results obtained. Specifically, dementia pathology datasets related to CFAS and 

ADNI [10–13] have been sourced with a concentration on neuropathological features.  Due 

to the different correlation and covariance structures found in different studies, applying filter 

methods to dementia datasets may result in biassed ranking results for the features. Therefore, 

investigating the consistency in the neuropathological ranking derived by filter methods from 

two different cohorts is an essential step that increases the validity and reliability of the 

reported results. 

1.4.6. Filter methods sensitivities  

There is a complex relationship between the degree of similarity between the features 

and the correlation between each feature and the class label in classification datasets. The 
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former shows features, which are similar, and the latter reveals features that are more critical 

to the class, e.g. features that are critical to dementia pathology in our case.  There are 

mathematical methods like chi square testing, Spearman correlation, and others that can 

measure feature-feature correlation and feature-class correlation as described earlier. 

However, there may still be a lack of research studies on investigating filter method sensitivity 

to the ranking of features obtained by these methods.  

Filter method ranks the relevance of features in a dataset based on their impact on the 

target variable. However, the sensitivity of the filter method to various factors can impact its 

reliability and performance. One such factor is the feature-feature correlations, which refers 

to the extent to which the correlation between the features in a dataset affects their ranking 

by the filter method [121]. In cases where there is a high degree of correlation between 

features, the filter method may assign high ranks to multiple features that are highly correlated 

with each other. This may occur even if only one of them is truly relevant to the target 

variable. Such overfitting can lead to poor generalisation performance of the resulting model, 

which is a crucial aspect of model evaluation. 

Alirezanejad et al. (2020) studied the impact of feature correlations on filter-based 

feature selection methods for medical datasets [122]. They used three heuristic filter feature 

selection methods and found that the performance of classification models was sensitive to 

feature correlations, with highly correlated features leading to a decrease in accuracy. 

Different feature selection methods also responded differently to feature correlations. A study 

by Remeseiro et al. (2019) reviewed feature selection methods in medical applications, 

focusing on the sensitivity of filter methods [78]. The authors noted that filter methods are 

sensitive to feature distribution and correlation, often selecting correlated features together 

which can cause redundancy and overfitting. Filter methods can also be biassed towards high 

or low variance features depending on the chosen criterion. To mitigate these issues, the 
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authors recommended preprocessing the data to remove correlated features and standardise 

the features. They also suggested using a combination of filter methods to reduce bias and 

improve robustness. Another study by Khagi et al. (2019) evaluated the performance of 

different ML techniques and feature selection methods for AD classification based on the 

Clinical Dementia Rating (CDR) level [123]. The authors observed that the performance of 

the classification models was sensitive to the ranking of features obtained by the feature 

selection methods, particularly, the accuracy, sensitivity, specificity, and area under the 

receiver operating characteristic (ROC) curve of the classification models varied significantly 

with different feature ranking orders. The study highlighted the sensitivity of filter methods 

to the ranking of features and the need for careful consideration when selecting feature 

selection methods for this task.   

One of the aims of this study is to unfold the association between feature ranking 

computed by filter methods and feature-feature correlation to determine which filter methods 

are more sensitive to feature ranking, and using two different dementia datasets. Specifically, 

the study reveals filter methods that are less sensitive when considering the similarities 

between the neuropathological features themselves to reduce any feature ranking discrepancy 

hence utilising the less redundant subset of features by the classification algorithm during 

construction of the predictive models of dementia. 

1.5. Hypothesis, Aims, and Research Questions 

The hypothesis of this thesis is that developing an automated model using ML with 

feature selection for AD diagnosis would minimise the disparity in feature ranking, account for 

feature-feature correlations, and produce a succinct set of significant features for classification 

algorithms. I aimed to develop and test the approach on two different dementia 
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neuropathological datasets from longitudinal population-based studies CFAS and ADNI with 

the following aims: 

A. Apply filter methods to assess AD-related pathologies in a large cohort of elderly 

individuals, after conducting an in-depth review (Chapter 2 & 3). The aim is to 

investigate filter methods, and then apply them intelligently on dementia-related data 

to identify critical features of Ad-related pathologies. I used classification techniques 

and filter methods for feature ranking to compare neuropathological features and their 

relationship to dementia status in a cohort of 186 individuals from CFAS. This provides 

valuable insights into the potential of using ML techniques for the assessment of AD-

related pathologies of dementia.  

B. Compare sensitivity of filter methods to different neuropathology datasets 

(Chapters 4). Discrepancies can occur when we use different filter methods to rank 

features. This is especially problematic when we examine patients from two different 

studies, such as CFAS and ADNI. I aimed to develop a single feature score that reduces 

the volatility in generating different scores by filter methods. 

C. Measure the impact of feature-feature correlation on the ranking of features (filter 

method sensitivity to feature ranking), and then test classification approaches to 

determine whether they can better classify dementia (Chapter 3 & 4). The ranked 

features obtained from filter methods were evaluated using classification algorithms in 

order to determine whether the classifiers can explain cognitive decline using 

neuropathology features. The models when used by pathologies are able to detect, and 

explain dementia pathology better than conventional medical methods. 

The thesis addresses the following research question: 
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1. How can we rank the various dementia condition features in an unbiased way to 

facilitate ML besides determining redundant information?  

2. What is the smallest subset of neuropathological features needed in an ML model to 

explain dementia using real data?  

3. Which filter methods are less sensitive to feature-feature correlations? 

4. Is there a difference between two cohorts of ageing individuals (ADNI and CFAS) in 

terms of the association between feature-feature scores and feature rankings? 

1.6. Thesis Structure 

Chapter 2 reviews practical challenges for feature selection filter methods and 

background of neuropathological assessments and features. The chapter outlines the practical 

challenges associated with implementing filter methods for feature selection to examine the 

challenges that end-users may encounter when using filter methods for feature selection. The 

review examined the difficulties and limitations of these methods, as well as suggested 

recommendations based on previous experiments and studies. (The Chapter has been 

disseminated in Journal of Information & Knowledge Management, 23 March 2020).  

Chapter 3 details the contribution to the assessment of Alzheimer-related pathologies 

in dementia through the use of feature selection filter methods and other ML techniques. The 

chapter specifically focuses on the application of these methods to the CFAS cohort for 

assessing neuropathological measures and their degree of association with dementia. To 

achieve this, filter methods were utilised to evaluate AD-related pathologies in a large group 

of elderly individuals. We identified essential features that are associated with AD-related 

pathologies and contribute to dementia diagnosis. The Chapter further describes the use of 

classification techniques and filter methods for feature ranking to compare neuropathological 

features with dementia status in the cohort of 186 individuals from CFAS. This analysis 
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provided significant insights into the potential of using machine learning techniques for the 

assessment of AD-related pathologies in dementia. (The Chapter has been published by the 

Journal of Alzheimer’s Research & Therapy, 10 March 2023). Furthermore, Chapter 4 focuses 

on the investigation and analysis of feature-feature correlation on rankers in the CFAS and 

ADNI datasets, along with the identification of the filter method that is less sensitive to feature-

feature correlations. (The Chapter has been submitted to the Journal of GigaScience, 2023). 

The results, and their analysis in this thesis are distributed in Chapters 3 & 4. 

Specifically, in Chapter 3, the use of ML techniques and filter methods has been evaluated to 

measure the ranking of neuropathological features, and to compare neuropathological features 

with dementia status in the cohort of 186 individuals from CFAS. This analysis provided 

significant insights into the potential of using ML techniques for the assessment of AD-related 

pathologies in dementia research. More essentially, empirical results that compare the 

sensitivity of filter methods to various neuropathology datasets (CFAS, ADNI) and emphasise 

the potential discrepancies that can arise when using different filter methods to rank features, 

are discussed at the end of Chapter 4. These possible discrepancies are challenging when 

comparing patients from two separate studies, such as CFAS and ADNI. Hence, in Chapter 4 

we tested a single feature score that reduces the volatility in generating different scores by filter 

methods, and can reveal sensitive methods to feature ranking. This approach can help mitigate 

the discrepancies in feature ranking, account for feature-feature correlations, and produce a 

concise set of influential features for ML algorithms. All ML techniques are compared using 

known performance measures in ML such as sensitivity, specificity, predictive accuracy, and 

others. 

Chapter 5 of the thesis covers the conclusion and future directions section. The chapter 

provides an overview of the contents and results of each previous chapter and offers final 
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concluding remarks. It also highlights the limitations of the study and identifies potential 

avenues for future exploration. The concluding remarks emphasise the importance of the 

study's contribution to the growing body of research on machine learning techniques and 

feature selection filter methods for dementia assessment. Finally, the chapter outlines potential 

directions for future research in this area, such as expanding the sample size and incorporating 

additional features to enhance the effectiveness and generalizability of the developed 

techniques.
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Chapter 2 - Practical Challenges and 

Recommendations of Filter Methods for Feature 

Selection 

2.1. Background 

The main goal of this article was to explore the difficulties and suggestions regarding 

the use of filter methods for feature selection in data analysis. We detailed the benefits and 

drawbacks of filter methods and explored various obstacles such as choosing the right feature 

selection techniques, the consequences of data dimensionality, and the impact of feature 

correlation. Additionally, we provide recommendations for overcoming these challenges, such 

as employing multiple methods for feature selection, scaling features, and handling 

multicollinearity. We provide useful insights for researchers and practitioners who want to 

utilise filter methods for feature selection in data analysis. 

2.2. Contribution 

The following version of the accepted manuscript was published in the Journal of 

Information & Knowledge Management 19.01 (2020): 2040019. For this publication I was the 

first author who conceptualised, conducted critical analysis and writing of the manuscript. My 

supervisor Dennis Wang assisted with the conceptualisation and editing of the manuscript. 

2.3. Manuscript 1 

Practical Challenges and Recommendations of Filter 

Methods for Feature Selection 
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Abstract  

Feature selection, the process of identifying relevant features to be incorporated into a proposed 

model, is one of the significant steps of the learning process. It removes noise from the data to 

increase the learning performance while reducing the computational complexity. The literature 

review indicated that most previous studies had focused on improving the overall classifier 

performance or reducing costs associated with training time during building of the classifiers. 

However, in this era of big data, there is an urgent need to deal with more complex issues that 

makes feature selection, especially using filter-based methods, more challenging. This in terms 

of dimensionality, data structures, data format, domain experts’ availability, data sparsity, and 

result discrepancies, among others. Filter methods identify the informative features of a given 

dataset to establish various predictive models using mathematical models. This paper takes a 

new route in an attempt to pinpoint recent practical challenges associated with filter methods, 

and discusses potential areas of development to yield better performance. Several practical 

recommendations, based on recent studies, are made to overcome the identified challenges and 

make the feature selection process simpler and more efficient.   
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Introduction 

The curse of dimensionality is one of the challenges that domain experts often face 

when dealing with massive amounts of data (Town & Thabtah, 2019). Feature selection is a 

critical processing step that directly affects the success of machine learning algorithms by 

reducing space dimensionality through identifying the relevant set of features to be used (Hall, 

2000). It also involves simplifying the classification process by strengthening the decision rules 

of the feature selection algorithm (Kamalov & Thabtah, 2017). Feature selection plays a vital 

role in classification because a robust feature selection mechanism can reduce the 

computational complexity associated with the learning process and improve its generalisation 

capabilities (Maldonado et al., 2014). Domains characterised with a large number of features 

and small number of samples benefit immensely through feature selection mechanisms. For 

instance, domains such as biochemistry, bioinformatics, text mining, medical diagnosis, and 

biomedicine require robust feature selection algorithms to improve the performance and 

comprehensibility of the models; these are often established based on a few samples and a large 

number of features (Yu & Liu, 2004a; Saeys et al., 2008; Thabtah & Peebles, 2019). 

Filter, wrapper and embedded are the three primary types of feature selection methods 

used for learning purposes. The filter method is the most common and involves selecting 

features without utilising a classification algorithm. Basically, this method involves filtering 

out irrelevant features using various selection principles such as information gain (IG) (Rajab, 

2017). Filter methods use selection criteria to assign scores for the available features in the 

training dataset and then invoke a ranker search method to rank each individual feature based 

on the computed scores (Tang et al., 2014). Informative features usually gain higher scores and 
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uninformative features gain lower scores. Finally, the complete features, ranked on computed 

scores, are offered to the end user for subset selection. Based on the selection principles used, 

there are various filter-based feature selection methods such as IG (Quinlan, 1986), Pearson 

Correlation (Hall, 1999) and Fisher’s Score (Gu et al., 2012), among others. Wrapper methods 

consider using a machine learning algorithm to identify classifiers for each possible subset in 

the input dataset. Hence, this kind of feature selection offers the best outcome yet suffers from 

a lengthy, exhaustive search, particularly when the input data is highly dimensional (Thabtah 

et al., 2018). Lastly, embedded methods use a combination of filter and wrapper methods to 

select an ideal set of features. This research is concerned only with filter-based methods. 

Several research studies have evaluated filter-based methods, i.e. Thabtah et al., (2011, 

2018), Rajab, (2017), Zhang, et al., (2014), Estevez et al., (2009), Hall, (2000), Zhao et al., 

(2018), Kamalov & Thabtah, (2017), and Hancer et al., (2017). However, most of these 

investigated functional issues with filter methods such as the impact on predictive performance, 

or enhancing training efficiency; few covered practical challenges related to the basis on which 

features are selected and how results can be interpreted (Cherrington et al., 2019). For example, 

a drawback of the filter methods, such as result dependencies, which make it hard for the end 

user to decide which features to choose prior to the learning process, has been investigated by 

few scholars. These combine results of multiple filter-based methods to reduce results 

variability, i.e. Labani, Moradi et al., (2018); Gao et al., (2018); Rahmaninia and Moradi, 

(2017). Despite this effort, recent research (Cherrington et al., 2019) pinpointed that there is a 

need for a domain expert to manually check the outcomes of filter-based methods to 

recommend the final set of features needed; this can be resource demanding. More importantly, 

the authors indicated that there is no fine line to discriminate among features in the results sets 

which can also be a serious issue. Hence, this research covers practical challenges in filter-

based methods and presents viable recommendations to overcome these issues. Particularly, 
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this research builds upon previous efforts and possible research directions rarely covered 

including feature ranking, results discrepancies, thresholding, feature-to-feature correlation, 

domain expert involvement, and data imbalance. 

The paper consists of multiple sections. The Introduction provides an overall 

understanding of the feature selection process, filter-based methods, aims, objectives, and the 

outline of the paper. The second section further explains the research problem and previous 

related work by various scholars. Discussion, the third section, critically analyses the potential 

challenges of filter-based feature selection methods with practical recommendations to 

overcome identified challenges. The conclusion wraps up the information provided with 

suggestions on future work. 

Problem and Literature Review 

Filter-based feature selection is a research topic that has attracted the attention of many 

scholars and experts in multiple domains. Figure 1 shows filter methods in the learning 

process. The filter method involves carrying out feature selection as a pre-processing step 

without an induction algorithm. Training data is processed through a mathematical criterion to 

compute and assign scores to features in the training dataset, then a feature score is used to rank 

the features. These feature scores vary based on the type of the filter method used, and all the 

feature scores/rankings are offered to the end-user to make relevant decisions. Domain experts, 

or the end-user, decide the features to be used in the learning process based on their computed 

scores. The optimum threshold between selected and eliminated features is determined by the 

end-user based on knowledge and experience. Finally, a machine learning approach is 

employed to process the results set of the features and produce the classifier. The accuracy and 

the performance of the established classifier is evaluated by applying the model on sample data. 
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Figure 1: Filter Method as Part of the Learning Process. 

Thabtah et al., (2019a) introduced an observed frequency-based feature selection 

method called Least Lost (L2) to reduce the dimensionality of data by eliminating noisy data 

from the datasets while maintaining a healthy classifier performance. It is a more simplified 

and in-built approach that involves ranking of each variable in ascending order based on the L2 

distance between observed and expected variables and class labels. The scores are computed 

based on observed and expected probabilities of the available features. Tests conducted using 

datasets from the University of Irvine Repository (UCI) reported that L2, when applied in the 

pre-processing phase, results in fewer features being obtained. When these are further 

processed by a machine learning algorithm, they derive competitive classifiers in terms of 

accuracy. L2 implementation in Java can be accessed at https://github.com/suhelhammoud/L2. 

Zhao et al., (2018) proposed the Redundant Penalty between the Feature Mutual 

Information algorithm (RPFMI), a filter-based feature selection mechanism, to identify optimal 

features in terms of redundancy, relationship between classifier and the selected features, and 

the correlation between selected features and the class labels and small data samples. The 

https://github.com/suhelhammoud/L2
https://github.com/suhelhammoud/L2
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experimental results of the study suggested that the proposed RPFMI is highly effective in 

selecting an optimal set of features for Intrusion detection as it demonstrated a high accuracy.   

Gao et al., (2018) introduced the Dynamic Change of Selected Feature (DCSF), with 

the class a linear filter feature selection method, which takes dynamic information changes of 

the selected features with the class labels into account in the feature selection process; this to 

yield more accurate and efficient results. This novel model uses conditional mutual information 

between candidate features and class labels to identify the most informative features; the other 

conventional filter methods use mutual information to compute the relevancy of the candidate 

features to the select optimal feature subset.  The experimental results implied that DCSF has 

the highest average classification accuracy of all the other compared methods.  

Another filter mechanism presented by Hancer et al., (2017) is quite unique. These 

authors focus on selecting features based on their true rankings obtained by applying ReliefF 

(Robnik-Šikonja & Kononenko, 2003) and Fisher Score (Bishop , 1995) rather than focusing 

on their mutual redundancies. MIRFFS (Mutual Information, ReliefF, and Fisher Score), the 

proposed mechanism used Differential Evolution (DE) (Marinaki & Marinakis, 2013) as the 

search strategy and it has two parts: one mechanism to be applied on single-objective problems 

and the other on multi-objective problems.  

Labani et al., (2018) introduced multivariate relative discrimination criterion (MRDC), 

a novel filter-based feature selection mechanism to enhance the performance of the text 

classification process. This is accomplished by diminishing the dimensionality in feature space 

using minimal-redundancy and maximal-relevancy (mRmR) (Peng et al., 2005). MRDC 

involves identifying the most relevant features using relative discrimination criterion (RDC) 

(Rehman et al., 2015). Since, RDC is not capable of classifying the irrelevant features, it utilises 

the Pearson correlation matrix to perform that task.  
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Kamalov and Thabtah (2017) used three robust filter methods in combination to 

produce a new feature selection mechanism (vectors of scores/ V-score) to select the most 

relevant features of a given dataset while eliminating the shortcomings and maximising the 

advantages. They used information gain (Quinlan, 1986), chi-squared statistic (Liu & Setiono, 

1995), and inter-correlation methods (CFS) (Hall, 1999) together to stabilise each feature’s 

ranking score; they were able to reap more accurate prediction results rather than when 

applying them individually.  

OSFSMI (Online Stream Feature Selection Method based on Mutual Information) and 

OSFSMI-k is another mutual information-based online streaming feature selection method, 

presented by Rahmaninia and Moradi (2017), to distinguish between the most informative and 

uninformative features. This is done by computing the correlation between features and their 

relevancy to the class labels where the number of instances increases exponentially (for 

example, social networks, finance analysis applications, and traffic network monitoring 

systems). The general framework followed by the proposed OSFSMI model, comprises two 

unique phases: online relevancy analysis to compute the relevancy of each newly arriving 

feature, and online redundancy analysis to estimate the effectiveness of each selected feature 

and eliminate any with effectiveness below the average. OSFSMI-k is a modified version of 

OSFSMI, developed to address the issues arising due to the continuously increasing nature of 

features. To end this, OSFSMI-k keeps selecting the correlated features until the size of the 

selected feature subset reaches a constant value (k).  

A research by Estevez et al., (2009) proposed a normalised mutual information feature 

selection (NMIFS), to evaluate the relevancy and redundancy in the features of a given dataset. 

Researchers have used three mutual information-based feature selection methods: Battiti’s 

mutual information feature selector (MIFS), MIFS-U (Battiti, 1994), and min-redundancy max-
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relevance (mRMR) (Peng et al., 2005) criteria to develop NMIFS by enhancing their individual 

strengths and minimising their weaknesses. They also present the Genetic algorithm, guided 

by mutual information for feature selection (GAMIFS), a hybrid version of both the filter and 

wrapper methods that combines NMIFS and genetic algorithms to fine-tune their performance.  

Filter Methods Challenges 

High dimensional data have made feature selection difficult as it necessitates dealing 

with a large number of features during data processing creating multiple challenges related to 

efficiency and quality. These challenges can be opportunities to learn and investigate new 

intelligent techniques to generate a meaningful concise set of features. In this section, we 

discuss various challenges that researchers and domain experts may face when designing, 

employing, or developing filter methods for data processing. 

Results discrepancies 

Results discrepancy is one of the obvious challenges in filter methods as different 

results may be obtained from the same dataset when applying different methods. To 

demonstrate this issue, we applied three different filter methods: IG, Correlation, and ReliefF 

(keeping Ranker as the search method) on a nursery database (Bohanec et al., 1997) using 

WEKA 3.8 (Hall et al., 2009). Table 1 shows the features extracted by the three considered 

filter methods and their ranks based on the assigned weights. The nursery dataset is developed 

to sort the parents’ applications for nursery school using a number of features related to the 

parents’ job, the financial situation of the family, family structure, health status of the family, 

and social aspect. 

Table 1 clearly shows differences in the results generated by the filter methods, 

especially the ranking. For instance, if we consider the results derived by the IG and Correlation 
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methods, after the third ranked feature there is a discrepancy in the results for the remaining 

features ranked 4–8. This discrepancy arises mainly because of the different mathematical 

models used by the considered filter methods to compute the weights per feature in the dataset. 

All these mathematical models primarily employ a contingency table that holds the frequency 

of the feature and that of the feature-class together, besides observed and expected probabilities 

among others. For example, IG uses entropy as a base metric to compute the weights; this relies 

on the information of the feature and the class in the dataset, whereas the chi-square method 

uses the observed and expected probabilities. These differences in computing the weight 

assigned to each feature in the mathematical model can clearly impact the order in which the 

final feature sets are offered to the end-user. Consequently, when these feature sets are 

processed by the learning algorithm, performance may also be impacted such as the predictive 

accuracy of the models derived.     

Table 1: Ranking results generated by each feature selection method 

Ranking  IG Features   Correlation Features  ReliefF Features  

1 Health  Health  Health  

2 Has_nurs  Has_nurs  Has_nurs  

3 Parents  Parents  Parents  

4 Social  Housing  Housing  

5 Housing  Social  Social  

6 Children  Finance  Finance  

7 Form  Children  Form  

8 Finance  Form  Children  

Few studies have addressed this issue and presented viable solutions to stabilise the 

knowledge discovery process through robust feature selection methods. For example, Kamalov 

and Thabtah (2017) pinpointed the results discrepancy in filter methods and showed that this 

problem can lead to selecting the wrong feature subsets thus impacting the performance of the 
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classification models derived by the learning algorithm. The authors suggested a filter 

mechanism that involves combining and normalising IG, Inter-correlation, and CHI feature 

scores to produce one unified score that can be assigned to each available feature. The term 

’normalizing’ refers to the introduction of one unified feature score range instead of several 

that vary according to the feature selection method used. For instance, feature selection 

methods like IG produce data scores ranging from 0 to 1, whereas methods like CHI produce 

feature scores between (-1) and (+1). The experimental results demonstrated that the 

normalisation of feature scores, and then integrating these into one unified score, is highly 

effective in reducing the volatility in the feature selection outcomes. 

A similar approach that deals with the results discrepancy of filter methods was 

proposed by Rajab (2017). The author presented a method that combines the score of IG and 

CHI after normalising the initial scores computed by both methods. The new feature selection 

method was applied on a cybersecurity application for detecting phishing websites and 

contrasted with other common filter methods. Results reported that Rajab’s (2017) method 

indeed reduced the dimensionality of the dataset and selected features sets, and when 

processed, using decision trees and rule induction classification techniques, improved the 

detection rate of phishing websites.    

Feature ranking 

Feature ranking refers to the process of selecting ‘n’ number of features based on their 

computed weights/scores. The weights are normally computed based on a feature’s relevancy 

to the class variable. According to Duch et al. (2003), feature ranking is an independent 

evaluation process of the available features as per their importance to eliminate potentially 

irrelevant features. All filter-based feature selection methods use a “Ranker” to evaluate the 

features based on scores computed using statistics, information theory, or some functions of 
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the classifier’s output. IG, Gain Ratio (GR), Symmetrical Uncertainty (SU), CHI, IG and 

ReliefF methods are examples of filter methods that use Rankers in feature selection. IG ranks 

the features based on the amount of information relevant to the class variable, reflected by each 

candidate feature, whereas GR uses the prediction capabilities of each candidate feature to 

determine their individual rankings (Novakovic et al., 2011).     

Feature ranking is used by domain experts as a basic way of determining the best feature 

subsets; however, Ranker search methods do not provide the number of features to be selected, 

instead leaving the domain expert to decide. Most existing ranking search methods employ an 

elementary approach to display features along with their rank. More importantly, they leave 

the decision of which features to select up to the users’ experience and knowledge, which 

subsequently requires time, care, and accuracy. Therefore, there is a need to develop a new 

intelligent Ranker search method that specifically recommends the features that should be 

chosen and the ones to ignore. The new Ranker should act as a recommendation to the feature 

selection process, be totally independent, and not filter-based-method specific. This will enable 

the Ranker to be embedded with any filter methods without dependency or data sensitivity and 

thus act as a generic search method.    

A number of research studies have evaluated the performance of available feature 

ranking methods. Most concluded that there is no one Ranker method that is intelligent enough 

to distinguish influential features from redundant ones without domain expert involvement (Hu 

et al., 2003; Duch et al., 2004; Novakovic et al., 2011; Cherrington et al., 2019). Further, none 

of the studies found an intelligent solution for ranking within filter methods, hence, more 

research and investigation is needed to develop more advanced Rankers that can be used 

effectively with any feature selection method.  
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Optimum threshold and domain expert involvement 

Determining the optimal threshold between good and useless features is another vital 

issue related to feature selection. Most of the available filter methods do not distinguish the 

cut-off value which could help these methods provide a small subset of features rather than 

relying on the domain expert. Distinguishing between features is a difficult task because of the 

diverse nature of datasets, their characteristics, and filter methods’ mathematical metrics used 

to calculate weights for each feature among others (Thabtah et al., 2018). This difficult 

task relies on the knowledge of the domain expert, requiring additional time, care, and 

resources.     

Let us assume that there is a dataset with over 1,000 features, and IG or CHI is used to 

determine the influential features. Both of these filter methods will return a feature set of 1,000 

ranked on the assigned weights of the filter methods. Then, the user will have to choose 

possibly the top 5, top 10, top 30, top 100, etc. based on his/her requirements and experience. 

The process of selecting which features is lengthy and difficult with a high chance that the user 

may miss prominent features. Having an automated threshold embedded within the filter 

method to offer the domain expert a small subset of features would be advantageous. This 

threshold is important since it represents a boundary between features to be selected and 

features to be eliminated. Using irrelevant features and eliminating relevant features would 

negatively impact the performance of learning algorithms and possibly lead to confusing and 

false predictions. 

More research and development are recommended to establish an automated feature 

selection technique that has an inbuilt metric to identify the optimal threshold between 

informative and uninformative features without having to rely on a domain expert, dataset 

characteristics, and mathematical equations as used in the filter method.     
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Feature-to-feature correlation 

Most of the available feature selection-based filter methods do not consider feature-to-

feature correlation when determining the optimal subsets during feature analysis. Valuing this 

is important as it helps to reduce the number of features and then offers a set that does not 

overlap in data instances and is different from each other yet correlated with the class. One of 

the successful methods that dealt with this issue was mRMR (Peng et al., 2005) and its 

extensions. mRMR ranks each candidate feature based on its relevance to the class identifying 

the redundant features (those correlated with each other). According to Cai et al. (2012), 

mRMR defines relevant features as those with minimum redundancy with each other while 

maintaining the maximum relevance with the class label. Mutual information (MI) is the 

parameter used by mRMR to measure the mutual dependencies between features and class 

labels to identify the redundant and the relevant features. Fast-mRMR and mRMRe (De Jay et 

al., 2013; Ramírez-Gallego et al., 2016) are extensions of mRMR that were developed to 

overcome computational complexities of traditional mRMR and make it more efficient. 

Limited research investigations have been conducted to highlight the importance of 

identifying feature-to-feature correlation to enhance the performance of the overall feature 

selection process. The study by Yu and Liu (2004a) is one such attempt that addressed the need 

to incorporate a redundant feature analysis process as relevancy is insufficient to determine the 

best subsets. The authors introduced a novel mechanism called fast correlation-based filter 

(FCBF). This involves first selecting relevant features and then identifying predominant 

features from the selected set to enhance the selection process through a relevance and 

redundancy analysis. Yu and Liu (2004b) also discussed the importance of identifying and 

eliminating redundant features in gene expression microarray data analysis to classify diseases 

or phenotypes accurately. 
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Various studies have used different mathematical metrics to identify the intercorrelation 

among the features to produce optimal feature subsets. Radovic et al. (2017) proposed the 

temporal mRMR (TmRMR), a filter approach which uses the value of F-statistics across 

different time steps as the parameter to compute the temporal information and relevancy among 

feature; this is by applying a dynamical time-warping approach to handle temporal gene 

expression data in an effective manner. F-statistics values determine redundant features by 

identifying features with small and large inter-class variances. 

Another research by Gu et al. (2012) presented a novel approach called more relevance 

less redundancy (MRLR) that uses mathematical metrics such as information amount, 

conditional mutual information, and relevance degree to eliminate redundant features. Mutual 

information is one of the most common parameters used in identifying feature-to-feature 

correlation in most of the literature. Cai et al. (2012) also used the mutual information value to 

rank features and identify redundant features. In a former study by Yu and Liu (2004a, b), the 

linear correlation coefficient is suggested as a viable mathematical metric to determine the 

goodness of the features. The authors describe this as a successful method as it helps to identify 

the features with near zero correlation with the class and it helps to eliminate the redundant 

features through identifying those with high correlation to each other. Table 2 shows 

mathematical metrics used to identify feature-to-feature relevancy. 
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Table 2: Mathematical metrics used in feature selection approaches to derive feature-to-feature 

correlation. 

Literature  
Filter 

Method  
Mathematical Metrics  Equation  

Radovic et al. (2017)  TmRMR   F-Statistics  
 𝐹(𝑔𝑗 , 𝑐) =

1

𝑇
∑𝑡

𝑡=1 𝐹(𝑔𝑗
(𝑡)

, 𝑐)  

  

Gu et al. (2015)  MRLR  

 information amount, 

 conditional mutual 

information,  

 and relevance degree  

 𝑁𝑀𝐼(𝑓𝑖;  𝑓𝑠) =
𝑀𝐼()

𝑚𝑖𝑛{𝐻(𝑓𝑖).𝐻(𝑓𝑠)}
  

  

Cai et al. (2012)  mRMR   Mutual Information   𝐼(𝑋, 𝑌) = ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥) 𝑝(𝑦)
  

Yu & Liu, (2004a, b)  FCBF  
 Linear Correlation 

Coefficient  
 𝑟 =

∑𝑖 (𝑥𝑖−𝑥𝑖) (𝑦𝑖−𝑦𝑖)

√∑𝑖 (𝑥𝑖−𝑥𝑖)2 √∑𝑖 (𝑦𝑖−𝑦𝑖)2

 

Data imbalance  

The class imbalance is a critical challenge observed in datasets with extremely different 

class distributions, often encountered in the classification tasks, which may result in generating 

results that favour the dominant class in the dataset (the class label with higher frequency) 

(Japkowicz and Stephen, 2002). Data is said to be imbalanced when the majority of the 

classification instances belong to one class and only a few instances belong to a minority class, 

especially in medical applications (Thabtah et al., 2019b). For instance, if we have data of 

1,000 instances, where only 10 of them have been diagnosed with autism, if we consider 

“Autism” and “No Autism” as two class values, this dataset is highly imbalanced. It will be 

imperative to distinguish the features that are related to autism in this dataset, which is difficult 

as most instances belong to the “No Autism” class. Hence, scholars proposed a solution that is 

mainly data-driven to balance the data before feature selection and learning phases such as 

under-sampling and oversampling (Wasikowski and Chen, 2010; Yin et al., 2013).  

Machine learning algorithms are sensitive to data with imbalanced class labels since 

they produce classifiers that are biased to the majority class and overlook the minority class 

label. This is because data instances fed into the learning algorithm tend to assume the 
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unavailable points to make predictions by generalising the available points to the entire 

population. Because of that, the classifier would demonstrate a poor prediction accuracy on the 

minority class (Wasikowski and Chen, 2010).  

A study by Wasikowski and Chen (2010) compared different schemes that include 

sampling and feature selection techniques to evaluate which technique performed better in 

dealing with imbalanced class data. The study revealed that feature selection with signal-to-

noise correlation coefficient (S2N) (Gailey et al., 1997) and feature assessment by sliding 

thresholds (FAST) (Chen and Wasikowski, 2008) techniques are highly effective on class 

imbalanced data. But feature selection methods used for balanced data may not perform as well 

on the imbalanced data, so the feature selection method should focus more on identifying 

features that help to predict the minority classes rather than the majority classes. A major issue 

that is encountered is locating a threshold to distinguish between relevant and irrelevant 

features. In feature selection, various ratios are used to rank the features based on their 

relevancy to the target class labels, but when most of the data belongs to one class, the results 

tend to be biased towards the features relevant to the majority class, ignoring those with more 

potential to predict the minority classes (Pant and Srivastava, 2015).  

Many studies have been conducted on determining the most appropriate feature 

selection method to be used on class imbalanced data to yield a better classifier performance 

(Japkowicz and Stephen, 2002; Wasikowski and Chen, 2010; Yin et al., 2013; Maldonado et 

al., 2014; Thabtah et al., 2019b). Most of them investigated the impact of class imbalance data 

on classifier performance, but little research addresses the impact on the feature selection 

process of imbalanced classes. Yin et al. (2013) addressed this problem and presented two 

feature selection approaches to overcome the issue. One approach is based on class 

decomposition (Maimon and Rokach, 2002), which involves the partition of majority classes 

into small class subsets before feature selection, and the other is based on Hellinger distance 
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(Beran, 1997); this measures the distribution divergence of each class to evaluate its goodness 

for feature selection. The results showed that the proposed two approaches outperformed most 

of the available conventional feature selection methods. In an experiment carried out on protein 

function data, Al-Shahib et al. (2005) showed that under-sampling the majority class prior to 

feature selection significantly increases the classifier performance on imbalanced data. 

Recommendations and Conclusions 

A high level of noise is a major problem that makes managing data difficult, and most 

often this noise is generated from the technology used in collecting data or the source of data 

itself. Dimensionality reduction through filter-based feature selection is a commonly used 

solution to eliminate this problem. However, in the era of big data in which we have different 

feature types, sparse data, and unstructured data, among others, filter methods face practical 

challenges that have been rarely addressed in recent research. This paper critically analysed 

challenges of filter-based methods associated with results quality and performance including 

results discrepancies, ranking of features in the results set, absence of clear threshold between 

good and bad features, handling imbalanced data, and feature-to-feature correlation. 

Different feature selection methods deliver different selection outcomes as a result of 

the mathematical models used to compute the feature scores based on feature-to-feature 

frequencies, feature-to-class frequencies, and expected and observed frequencies of the 

features. Therefore, if two different feature selection methods are employed on the same 

dataset, the end user can get two different outcomes for the most relevant feature subsets. The 

paper highlights the importance of addressing this challenge as the credibility and reliability of 

the final learning algorithm depend enormously on the feature subsets selected through the 

employed filter method. Use of normalised feature scores is recommended to yield more static, 



57 

 

reliable, feature selection outcomes. Further research to develop more normalised advanced 

feature scoring mechanisms is vital. 

All the filter methods use simple rankers to weigh the features based on their importance 

or the relevancy to the class labels. These rankers are very primitive and do not provide 

information on how many features are to be selected or eliminated. Therefore, the number 

highly depends on the end-user's knowledge and level of expertise, requiring an excessive 

amount of time, effort, and care. Hence, there is a need for an advanced Ranker that intelligently 

offers the subset of features by creating a fine line to differentiate good features from useless 

ones. Hence, the end user will not have to scan the entire features within the results set, rather 

just take that ordered by the Ranker. 

Absence of a clear threshold between good and bad features is also another challenge 

pinpointed in the paper that makes conventional filter-based feature selection over-dependent 

on the end-user/domain experts’ involvement. Determining the cut-off between relevant and 

irrelevant features is essential as using irrelevant features in induction models can hinder the 

learning process significantly. Hence, the importance of developing an automated threshold 

embedded into traditional filter methods is emphasised. 

Disregarding the feature redundancies is one of the main drawbacks of filter-based 

feature selection. Identifying the feature-to-feature correlation is of utmost importance as it 

helps to eliminate features that overlap. Therefore, to overcome this challenge, a viable 

approach that determines the feature-to-feature correlation and automatically eliminates the 

redundant features should be embedded into existing filter methods. 

Some data characteristics such as uneven distribution can also make the feature 

selection process biased and inaccurate. Feature selection requires data that is perfectly 

balanced to generate unbiased accurate results. But it is not always practical to have perfectly 



58 

 

balanced data, therefore, the paper highlighted the need for a valid mechanism to balance 

imbalanced data prior to the feature selection process to yield better results. Smart automated 

sampling techniques are recommended to be integrated into filter methods to identify class 

imbalanced data and to balance this without changing the original data. 

Further research and investigation are advised to produce more intelligent automated 

feature selection techniques that mitigate the identified challenges and make the feature 

selection process more effective and efficient. In the near future, we are going to examine a 

number of filter methods on pathological datasets related to dementia in order to determine 

high effective attributes that may have correlations with dementia at different levels. Feature 

selection can provide a bottom-up approach of exploring datasets to reveal hidden useful 

patterns; in the case of diagnosing dementia, features that are hidden from the eyes of a 

pathologist but have clear impact on detecting dementia can be identified. This bottom-up 

approach of recommending features to domain-experts, such as pathologists, must also 

demonstrate that the features are interpretable to clinicians and can reduce observer bias. 

Features that achieve this are much more likely to be adopted by the clinical community and 

used as valuable biomarkers for diagnosing and stratifying patients into subgroups. Further 

work is needed to investigate the determinants of influential features, especially within 

application domains to pinpoint factors that influence feature interpretability and bias. While 

we highlight general best practices for feature filtering, understanding their impact in different 

research domains will be critical for these to have true value. 
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Chapter 3 - Assessment of Alzheimer-related 

Pathologies of Dementia Using Machine Learning 

Feature Selection 

3.1. Background 

This chapter employs feature selection methods to evaluate Alzheimer-related 

pathologies to a population cohort of ageing individuals and investigate the relationship 

between neuropathological features and dementia status. The study employed feature selection 

filter methods, referred to as ‘feature ranking methods’ in this article, and classification 

algorithms to analyze the data and identify the optimal set of features for accurately diagnosing 

AD. This chapter serves as a preliminary investigation before creating the data process 

described in chapter 4.A step-wise ML approach was employed to rank and select Alzheimer-

related pathologies and assess the ability of different measures, such as those related to Aβ-

related assessments and tau, to inform about dementia condition status. The chapter also 

identifies clusters of highly correlated measures in the dataset and tested several classification 

algorithms using various subsets of ranked features to examine the impact of ranking. 

Additionally, the chapter suggests that more specific neuropathology features for specific brain 

regions should be utilized to identify the pathophysiological processes associated with 

dementia in individual patients. 

The chapter will try to reveal misclassification cases if any, indicating discordance 

between neuropathology and dementia, where some demented individuals had no known 

pathology, and some non-demented individuals had pathology. The expected results will 

provide valuable insights into the potential of using ML techniques for assessing Alzheimer-

related pathologies of dementia. The findings will highlight there is a need for further research 
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to enhance the performance of dementia classification and develop better diagnostic systems 

and treatment targets for dementia patients. 

3.2. Contribution 

The following version of the accepted manuscript was published in the Journal of 

Alzheimer’s Research & Therapy, 15, 47 (2023). This publication involves my contribution as 

the first author in the process of data analysis, manuscript drafting, and editing. Specifically, I 

was the main contributor in producing the initial draft of the manuscript and supplementary 

with the assistance of editing from Emmanuel Jammeh, Teruka Taketa, and Dennis Wang. 

Moreover, I was responsible for generating most of the code, figures, and tables used in the 

study, except for the running feature signatures, which were completed by Emmanuel Jammeh 

to demonstrate the association of non-standard pathologies and demographic features with 

clusters. The contributions of other co-authors are duly recognized in the "Contributions" 

section of the paper. 
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Abstract 

Although a variety of brain lesions may contribute to the pathological assessment of dementia, 

the relationship of these lesions to dementia, how they interact and how to quantify them 

remains uncertain. Systematically assessing neuropathological measures by their degree of 

association with dementia may lead to better diagnostic systems and treatment targets. This 

study aims to apply machine learning approaches to feature selection in order to identify critical 

features of Alzheimer-related pathologies associated with dementia. We applied machine 

learning techniques for feature ranking and classification to objectively compare 

neuropathological features and their relationship to dementia status during life using a cohort 

(n=186) from the Cognitive Function and Ageing Study (CFAS). We first tested Alzheimer's 

Disease and tau markers, and then other neuropathologies associated with dementia. Seven 

feature ranking methods using different information criteria consistently ranked 22 out of the 

34 neuropathology features for importance to dementia classification. Although highly 

correlated, Braak neurofibrillary tangle stage, Beta-amyloid and cerebral amyloid angiopathy 

features were ranked the highest. The best-performing dementia classifier using the top eight 

neuropathological features achieved 79% sensitivity, 69% specificity, and 75% precision. 

However, when assessing all seven classifiers and the 22 ranked features, a substantial 

proportion (40.4%) of dementia cases was consistently misclassified. These results highlight 

https://pubmed.ncbi.nlm.nih.gov/10935432/
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the benefits of using machine learning to identify critical indices of plaque, tangle and cerebral 

amyloid angiopathy burdens that may be useful for classifying dementia.  

 

Keywords— Dementia, Alzheimer’s, Feature Selection, Machine Learning, Neuropathology, 

Beta-amyloid 

Introduction  

Dementia is a significant healthcare concern among the elderly, and the number of 

people with dementia will reach 131.5 million worldwide by 2050 [1]. There is no cure for this 

syndrome, but an accurate and timely diagnosis of dementia may create opportunities for 

patients to access symptomatic and potentially disease-modifying therapies. As defined in the 

Diagnostic and Statistical Manual of Mental Disorders 5th edition, cognitive and daily activity 

decline defines the syndrome, often measured using cognitive and functional tests along with 

medical history reported by the patient or caregiver [2]. In clinical settings, further 

investigations are performed primarily on younger onset dementias focused on anatomical and, 

sometimes, functional changes measured by magnetic resonance imaging (MRI) and positron 

emission tomography (PET) scans, and increasingly cerebrospinal fluid (CSF) samples taken 

from a lumbar puncture are considered to be dementia subtype biomarkers. However, dementia, 

as it most often manifests in older people, is associated with multiple brain pathologies [3,4]. 

Research remains challenging when assessing the interactions among multiple brain factors 

related to the syndrome as it manifests during life.  

The Cognitive Function and Ageing Studies (MRC CFAS, CFAS I, CFAS II) were 

longitudinal population-based ageing studies focusing on cognition. This analysis focused on 

brains donated from the original MRC CFAS. More than 550 participants from CFAS 

voluntarily donated their brains to the study after their death in order to undergo a 
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comprehensive pathological assessment [5,6]. Neuropathological investigations have explored 

the relationship of pathological features in the brain to dementia phenotypes, including various 

measures related to tau and beta-amyloid (Aβ) pathologies [7]. These studies showed 

considerable overlap in the burden of lesions between participants dying with and without 

dementia [3,4]. Attributable risk showed the importance of many other pathologies in the brain 

[8,9].   

Machine learning (ML) classification algorithms and feature selection techniques have 

enabled automated ways of classifying heart and skin diseases, and identified the most 

informative combination of predictors of those diseases [10,11]. Studies investigating dementia 

involving brain imaging utilized three supervised ML algorithms (neural network, support 

vector machine, and adaptive neuro-fuzzy inference system) for the diagnosis of Alzheimer’s 

disease (AD) and vascular dementia (VD) [12]. These algorithms used ranked MRI features 

based on their performance in identifying dementia cases within the dataset. Their results 

showed that categorizing AD and VD profiles using ML had high discriminant power with a 

classification accuracy of more than 84% in some cases. ML feature selection approaches were 

applied to enable the identification of neuropsychological measures and MRI features for the 

classification of AD [13]. ML using demographic and clinical features as predictors had also 

been used to predict dementia and neuropathology [14], but this assumes the predictors were 

stable over time. Alternatively, ML techniques could assess the relationship between dementia 

status and the neuropathological features of post-mortem brains, and identify cases where they 

disagreed. Feature selection could also find which features are most informative of dementia. 

Where features are not informative, it could be interesting to reveal cases of dementia with 

insufficient pathology. Identifying informative features could help reduce resources, such as 

time, cost, and effort utilized during pathological assessment and highlight a need for more 

profound clinical assessments. 
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In order to distinguish related indices such as plaque, tangle and CAA burdens, we 

needed an objective approach to rank these pathologies and identify a combination of features 

useful for classifying dementia. In this chapter, we evaluate whether ML feature ranking can 

identify a subset of neuropathological features ordered by their relative contribution to 

dementia. 

The evaluation is performed using Alzheimer-related and other dementia-related 

pathologies measured in a population-representative sub–cohort of CFAS [6,15–18]. There 

were 34 features determined by pathologists, including Aβ features, cerebral amyloid 

angiopathy (CAA) features and plaque scores. These features were automatically ranked, 

filtered and included in ML classifiers of dementia. We also reported the limits of ML 

classification of dementia using neuropathology factors and discussed possible reasons for 

these limitations.  

Material and methods 

Overview of the feature selection approach 

The selection of neuropathology features that were informative of dementia involved 

several steps (Figure 1). We first obtained access to and downloaded the CFAS dataset 

following review and ethics approval by the CFAS management committee. Since the dataset 

contains general features, a re-labelling of the available neuropathological and other types of 

features was performed to assist user understanding, e.g. sample of the used features types: tau, 

Aβ, demographics, etc.  

We then applied supervised learning and feature selection techniques based on multiple 

filter-based methods. Features were ranked based on their importance and the most informative 

features were determined. The smallest subset of features that can classify dementia most 

accurately were identified using several ML classifiers. Finally, we examined misclassified 
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cases in relation to the neuropathology features and linked the associations with other non-

standard pathologies. 

 

Figure 1: Methodology for classification of dementia. The methodology for the 

classification of dementia followed three stages: design, implementation, and evaluation. 

First, we pre-processed and assessed feature-feature correlation after acquiring access to 

neuropathology and clinical data from CFAS.  We then applied feature ranking methods to 

rank and filter all neuropathology features.  Next, classifiers benchmarked with different 

subsets of features were selected according to their rankings. Finally, we compared cases that 

were consistently misclassified and evaluated brain attributes associated with these cases in 

order to improve machine learning. 

Neuropathology features in the CFAS cohort 

The CFAS cohort used for this study included data from two centres (Cambridge and 

Newcastle), totalling 186 subjects with 34 neuropathology features, plus age and brain weight, 

as shown in Table 1. Immunohistochemical detection of Aβ in formalin-fixed, paraffin-

embedded sections (5 μm) as previously described [19]. Assessment of Aβ phase was 

performed according to the Thal scheme, and BrainNet Europe approach [20,21].  

Neurofibrillary tangles were assessed by the Braak stage [22] and plaques were assessed using 
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the CERAD method [23]. The features included basic neuropathological measures for each 

subject, including Braak neurofibrillary tangle (NFT) stage, Brain-Net Europe protocol for tau 

pathology, hippocampal tau NFT stage [24], Thal phase, primary age-related tauopathy 

(PART), cerebral amyloid angiopathy (CAA), thorn-shaped astrocytes (TSA) [17] and 

microinfarct stage [25] (Table 1).  

Table 1: Description of the neuropathology features in addition to the age and brain weight 

features 

No Feature Feature Description Type 

Control 

Dementia 

(n=107) 

No 

Dementia 

(n=70) 

Missing  

(n=9) 

1 Braak NFT stage 
Braak Stage refers to the Braak neurofibrillary tangle (NFT) stage (0-

VI) [22,26]. 
Nominal 107 70 0 

2 Thal phase 

Thal phase refers to the Thal Aβ phase, which is the new BrainNet 

stage for Aβ to detect immunopositive amyloid in cortical and 

subcortical areas and differentiate five phases [20,21]. 

Nominal 107 70 0 

3 Aβ stage typical Aβ stage typical indicates the Aβ stage typical and atypical [18]. Nominal 107 70 0 

4 PART-definite 

PART relates to the new primary age-related-tauopathy concept. 

PARTdefinite as cases having no Aβ pathology (Thal 0) and with Braak 

NFT stage I-IV [27]. 

Nominal 50 47 80 (45.2%) 

5 PART-all 
Those cases with mild Aβ pathology (Thal I-II) and with Braak NFT 

stage I-IV [27]. 
Nominal 71 63 43 (24.3%) 

6 CAA areas 
The number of brain areas examined that have CAA (number of areas 

out of 9 maximum) [19].  
Numeric 107 70 0 

7 CAA type 
As defined by Thal where CAA type 1 are cases with capillary amyloid 

and 2 only in larger vessels and type 0 no CAA [15,19]. 
Nominal 107 70 0 

8 CAA parenchymal 

CAA severity score according to Love et al [28] leptomeningeal and 

parenchymal vascular amyloid in four neocortical areas- So in any area 

CAA can be 1, 2, or 3 and  the score ranges from 0 to 12 [18]. 

Nominal 107 70 0 

9 CAA meningeal 
CAA severity meningeal has the same scoring system as CAA 

parenchymal with the score ranging from 0 to 12 [18]. 
Nominal 107 70 0 

10 CAA total severity 

The scores for parenchymal and leptomeningeal amyloid were summed 

in four areas, scores range from 0 (minimum) to 24 (maximum) for 

severity in cortical areas [19]. 

Numeric 107 70 0 

11 CAA frontal CAA in frontal cortex (Present or Absent) [24]. Nominal 107 70 0 

12 CAA temporal CAA in temporal cortex (Present or Absent) [24]. Nominal 107 70 0 

13 CAA parietal CAA in the parietal cortex (Present or Absent) [24]. Nominal 107 70 0 

14 CAA occipital CAA in occipital cortex (Present or Absent) [24]. Nominal 107 70 0 

15 CAA hippocampus 
CAA in hippocampus and occipitotemporal gyrus (Present or Absent) 

[24]. 
Nominal 107 70 0 

16 CAA cerebellum CAA in cerebellum (Present or Absent) [24]. Nominal 106 69 2 (1.13%) 

17 BrainNet tau stage 

BrainNet tau stage, refers to BrainNet Europe Protocol for tau 

pathology, a six-stage scheme that uses neuropil threads and is 

proposed by the BrainNet Europe Consortium [21]. 

Nominal 107 69 1 (0.6%) 

18 
Hippocampal tau NFT 

stage 
Hippocampal tau neurofibrillary tangles (NFT) stage Nominal 56 35 86 (48%) 

19 
subpial TSA in 

expanded cortex 
The subpial thorn-shaped astrocytes (TSA) in the expanded cortex. Nominal 107 69 1 (0.6%) 

20 
subpial TSA in mesial 

temporal lobe 
The subpial thorn-shaped astrocytes (TSA) in the mesial temporal lobe. Nominal 107 69 1 (0.6%) 

21 
subpial TSA in 

brainstem 
The subpial thorn-shaped astrocytes (TSA) in the brainstem. Nominal 107 67 3 (1.7%) 

22 TSA-any Thorn-shaped astrocytes (TSA) in any brain area. (Present or Absent) Nominal 107 69 1 (0.6%) 

23 TSA-total 
The number of areas in the brain with thorn-shaped astrocytes (TSA)  

[29–32]. 
Numeric 107 69 1 (0.6%) 

24 Tufted astrocytes The tufted parenchymal astrocytes in any brain area. Nominal 107 69 1 (0.6%) 
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25 
Subpial mesial 

temporal 
The subpial tau neurites in the mesial temporal lobe.  Nominal 107 69 1 (0.6%) 

26 Subpial brainstem The subpial tau neurites in the brainstem/subcortical region. Nominal 107 67 3 (1.7%) 

27 Argyrophilic grains The argyrophilic grains disease. Nominal 107 69 1 (0.6%) 

28 Cortical stage 
The cortical microinfarcts stage which distinguishes the number of 

cortical areas that have microinfarcts.  
Numeric 106 70 1 (0.6%) 

29 Subcortical stage 
Subcortical lacune stage which distinguishes the number of subcortical 

areas that have microinfarcts. 
Numeric 106 70 1 (0.6%) 

30 Microinfarct stage 
The total microinfarct stage which differentiate the number of total 

areas that have microinfarcts. 
Numeric 106 70 1 (0.6%) 

31 Frontal microinfarct Frontal microinfarct [25]. Nominal 106 70 1 (0.6%) 

32 Temporal microinfarct Temporal Microinfarct [25]. Nominal 106 70 1 (0.6%) 

33 Parietal microinfarct  Parietal microinfarct [25]. Nominal 106 70 1 (0.6%) 

34 Occipital microinfarct     Occipital Microinfarct [25]. Nominal 106 70 1 (0.6%) 

35 Age Patient’s age at death. Numeric 107 70 0 

36 Brain weight Patient’s brain weight. Numeric 91 59 27 (15%) 

37 Gender Sex Nominal 107 70 0 

38 
Virchow-Robin space 

expansion 

Virchow-Robin spaces (VRS) are cavities filled with cerebrospinal 

fluid surrounding small penetrating cerebral arterioles with extensions 

of the subarachnoid space. 

Nominal 106 70 1 (0.6%) 

39 
Lewy bodies in 

substantia nigra 

The Lewy body is a distinguishing neuronal inclusion. This is always 

found in the substantia nigra and brain regions in Parkinson's disease, 

which occurs wherever there is excessive loss of neurons. 

Nominal 105 68 4 (2.3%) 

40 
Neuronal loss in 

hippocampus 
Neuronal loss in hippocampus Nominal 106 70 1 (0.6%) 

41 
Neuronal loss in 

substantia nigra 
Neuronal loss in substantia nigra Nominal 105 68 4 (2.3%) 

42 
Tangles in temporal 

lobe 
Tangles in temporal lobe Nominal 106 70 1 (0.6%) 

43 
Parenchymal CAA in 

frontal lobe  
Parenchymal CAA in frontal lobe  Nominal 106 70 1 (0.6%) 

44 
Gliosis in 

hippocampus 
Gliosis in hippocampus Nominal 106 70 1 (0.6%) 

45 Dementia Status Class Label (Dementia or No dementia) Status of a patient Binary 107 70 0 

Dementia status 

Dementia status at death for each respondent was determined based on 

interviews/assessments during the last years of the respondent’s life. This included using the 

full Geriatric Mental State-Automated Geriatric Examination for Computer Assisted 

Taxonomy diagnostic algorithm, the Diagnostic and Statistical Manual of Mental Disorders 

(third edition - revised), interviews with the informants after the respondent’s death and the 

cause of death. Respondents were assessed as having no dementia at death if they had not been 

identified with dementia at their last interview less than six months before death or if they did 

not have dementia identified at the last interview and the retrospective interview showed no 

dementia at death. Bayesian analysis was used to estimate the probability of dementia when 

last interviews were more than six months before death, and no record of having dementia at 
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the interview and no retrospective informant interview (RINI) [5,33]. A total of 107 of the 186 

subjects had a diagnosis of dementia, which represented approximately 58% of the cohort. Of 

these 107 cases, 72 were women and 35 were men; their median ages were 89 and 88 

respectively. There was a balanced gender ratio (37 females and 33 males) for participants 

dying without dementia (median age 85, 79 respectively). The Consortium to Establish a 

Registry for Alzheimer's disease (CERAD) criterion determined that in 64 out of the 107 cases 

(60.0%), Alzheimer’s disease was the definite, probable or possible cause of the observed 

symptoms. 

Ranking neuropathology features 

We used several filter-based feature selection methods to determine the relevance of 

each feature to dementia in order to gain preliminary insight. These included Chi-square (CHI) 

[34], gain ratio [35], information gain (IG) [36], reliefF [37,38], symmetrical uncertainty [39], 

least loss [40] and variable analysis [41,42]. Generally, filter-based methods use different 

mathematical models to compute feature relevance. These methods are efficient feature 

selection tools that employ mathematical models to derive scores for each feature based on 

correlations between the features and class labels in the input dataset. There can be 

discrepancies in the ranking of features based on such scores due to the different mathematical 

models used [42,43]. The CFAS cohort consisting of 186 post-mortem and 34 neuropathology 

features was used for feature ranking. In addition to the 34 neuropathology features, age and 

brain weight were included. Using SciPy.stats v1.5.4 in Python3, we used z-score to adjust 

brain weight based on sex. 

CHI utilizes the difference between observed and expected frequencies of the instances, 

as shown in Equation (1).  

             𝑋2 =
(𝑂−𝐸)2

𝐸
            (1) 
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O and E are the Observed and Expected frequencies for a specific feature, respectively. IG 

employs Shannon entropy to measure the correlation between a feature and dementia status 

(Equations 2 & 3).  

𝐼𝐺 (𝑆, 𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)  − ∑ (( | 𝑆𝑣 |  ÷ | 𝑆 |)  ×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣))    (2) 

where Entropy (T) =− ∑ 𝑃𝑐𝑃𝑐         (3) 

𝑃 is the probability that S belongs to class label c. Sv is the subset of S for which a feature has 

value v. |Sv| is the number of data instances in Sv, and |S| is the size of S. 

A gain ratio is a normalized form of IG, which is estimated by dividing the IG by the 

Entropy of the feature with respect to the class (Equations 4 and 5).  

Gain Ratio = 
𝐼𝐺

𝐸𝑁𝑇(𝑆,𝐹)
          (4) 

𝐸𝑁𝑇(𝑆, 𝐹)=− ∑
𝑆𝑖

𝑆
𝑙𝑜𝑔2

𝑆𝑖

𝑆
         (5) 

where IG denotes the information gain, and ENT is the Entropy of feature F over a set of 

examples S. 

Symmetrical uncertainty deals with the bias of IG that occurs due to a large number of 

distinct values for the feature and presents a normalized score (Equation 6).  

𝑆𝑈(𝐴, 𝐵)  =  
2 × 𝐼𝐺(𝐴|𝐵)

𝐸(𝐴) + 𝐸(𝐵)
         (6) 

where 𝐼𝐺(𝐴|𝐵) denotes the information gained by A after knowing the class. E(A) and E(B) 

are the Entropy values of A and B, respectively.  

ReliefF calculates the scores of each available feature with the class using the 

differences between the neighboring data instances and the target instances (Equation 7).  

W[A] = W[A] -  
(𝑑𝑖𝑓𝑓

𝐴,𝑅𝑖,𝐻

𝑚
)

 (𝑑𝑖𝑓𝑓
𝐴,𝑅𝑖,𝑀

𝑚
)
           (7) 
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where W[A] is the feature weights, A is the number of features, and m is the number of random 

training data instances out of the ‘n’ number of training data instances used to amend W. 

𝑅𝑖 = A randomly chosen test instance, and H/M is the nearest hit and nearest miss 

Least loss is computed per feature based on the simplified expected and observed 

frequencies of the features (Equation 8), and Variable Analysis employs a vector of scores of 

both CHI and IG results, normalizes the scores, and then computes the vector magnitude 

(V_score) (See Equations 9 & 10).  

𝐿2(𝑌, 𝑋) =  ∑𝑖,𝑗 [𝑃(𝑌𝑖,𝑋𝑗) − 𝑃(𝑌𝑖)𝑃(𝑋𝑗)]2       (8) 

where X is the independent feature class, Y is the class label, 𝑃(𝑌𝑖) is the theoretical marginal 

distribution of 𝑌, and 𝑃(𝑋𝑗) is the theoretical marginal distribution of X, 𝑃(𝑌𝑖,𝑋𝑗) is the 

theoretical joint probability distribution of X and Y. 

𝑉𝑎 = (
𝐼𝐺𝑥

𝐶𝑆𝑇𝑥
)           (9) 

|𝑉𝑎| = √(𝐼𝐺)2 + (𝑇𝑆𝑇)2
                   (10) 

where 𝑉𝑎 is the square root of the sum of the square of its CHI and IG results of a feature. 

The V_score and the Correlation Feature Set results [44] are then integrated to represent 

a new measure of goodness to select relevant features. 

𝐼𝐺 (𝑆, 𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)  − ∑ (( | 𝑆𝑣 |  ÷ | 𝑆 |)  ×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣))     (2) 

The number of samples used in the feature selection process was 177 out of 186 after 

removing the nine missing values in the diagnostic class and 36 features (34 neuropathology 

features plus brain weight and age features). All filter-based feature selection was conducted 

using Waikato Environment for Knowledge Analysis (WEKA version 3.9.1) [45]. The 
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percentage contribution of each feature was calculated by averaging the total weights assigned 

by all filter methods to each feature after normalizing weights scores.  

Dementia conditions classification 

We attempted the classification of dementia status in 146 samples after removing 

missing values from the 177 that were used in the feature selection process. The 146 samples 

had a slight class imbalance, with 89 demented versus 57 non-demented patients. Before 

training our models, we randomly selected 57 patients from the demented group using the 

sample() function from the random module in Python3. Then, the rows were shuffled using 

sklearn.utils version 0.22.2.post1. As a result, 114 samples were utilized after balancing the 

class label. The 32 samples were held-out for final assessment.  The hippocampal tau stage 

feature, which had 50% missing values, was dropped during the training process. Age and brain 

weight were removed before training the models, ending up with 22 features and 114 samples 

for classification. The dataset was split into a training set of 70% (80 samples) and a testing set 

of 30% (34 samples). 

Seven classification algorithms were trained to classify individuals’ dementia status 

from the 22 top-ranked features. Scikit-learn version 0.22.2.post1 was used to implement and 

train the ML classifiers, and then measure their classification performance. Logistic regression 

was implemented using the sklearn.linear_model package where penalty was set to 12, the 

regularization parameter C was set to 1, the maximum number of iterations taken for the solvers 

to converge was set to 2000, and other parameters were set to default values. A decision tree 

classifier was implemented using the sklearn.tree package. K-nearest neighbors classifier was 

implemented using the sklearn.neighbors with the number of neighbors set to 5, the function 

“uniform weights” used for prediction, the “Minkowski” distance metric utilized for the tree, 

and with other parameters were set to default values. The linear discriminant analysis classifier 
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was implemented using the sklearn.discriminant_analysis package with singular value 

decomposition for solver hyperparameter and other parameters were set to default values. The 

Gaussian naïve Bayes classifier was implemented using sklearn.naive_bayes. The support 

vector machine with a radial basis function kernel (SVM-RBF) was implemented using 

sklearn.svm with the regularization parameter C set to 1, the kernel coefficient gamma= 

“scale”, and other parameters were set to default values. The support vector machine with a 

linear kernel (SVM-LINEAR) was implemented using the sklearn.svm package with 

regularization parameter C set to 1, with a “linear” kernel, gamma coefficient “scale”, and other 

parameters were set to default. The sklearn.metrics package was used to report classification 

performance. Training and performance evaluation were performed 500 times, from which the 

average performance measure was calculated as overall performance. Accuracy, balanced 

accuracy, F1-score, precision, sensitivity, and specificity utilizing regression plots, were 

measures used for performance. ML models and feature selection libraries were built using 

Python 3.7.3. 

Classification with multiple feature sets 

We created subsets of neuropathological features from the 22 top-ranked features in a 

stepwise manner to identify the smallest subset that included features with at least 5% 

contribution towards the classifier model. We initially created a feature set that contained the 

single top-ranked feature N(1), which was used to train the ML algorithms to classify dementia 

and calculate their classification performances. Then, the second top-ranked feature was added 

to the feature subset to generate a feature set with N(1)+1 features. The ML classifiers were 

trained using the new feature subset, and the classification performances were calculated. This 

process was repeated in descending rank order until a feature set containing all ranked features 

was included in the feature set. This process resulted in 22 feature sets that ranged in size from 
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1 to 22 features, with the performance of each feature subset in classifying dementia calculated. 

The best subset of features was determined as a compromise between performance and size. 

The data was split into a 30% test set and a 70% training set for each feature set.  

Evaluation of classification performance 

We formulated the prediction of dementia as a binary classification problem (Dementia, 

Control); therefore, evaluation metrics, such as accuracy, F1-score, balanced accuracy, 

precision, specificity, and sensitivity, were used to measure the performance of the subsets of 

features. The following evaluation metrics were used: 

● True positives (TP): Number of dementia cases that were correctly classified. 

● False positives (FP): Number of healthy subjects incorrectly classified as dementia cases. 

● True negatives (TN): Number of healthy subjects correctly classified. 

● False negatives (FN): Number of dementia cases incorrectly classified as healthy subjects.  

● Accuracy (%): The proportion of correct classifications among total classifications: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑛
                   (11) 

where n is the number of total classifications per test. 

● Sensitivity (%): The proportion of correctly classified dementia cases. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                   (12) 

● Specificity (%): The proportion of correctly classified healthy subjects. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                        (13) 

● Precision: The proportion of subjects classified as dementia cases who have dementia. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (14) 
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● F1-score (F-measure) (%): Harmonic mean of precision and sensitivity. 

 𝐹1 =  2 ×
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 =  

𝑇𝑃

𝑇𝑃+(𝐹𝑃+𝐹𝑁)/2
               (15) 

Identifying misclassified cases 

Leave-one-out cross-validation was used for training and performance evaluation of 

trained classifiers using Scikit-learn version 0.22.2.post1 [46] in Python3. A split() function 

was used to enumerate training and test sets for evaluation. The classification algorithms 

trained the classical AD features using the top-ranked 22 subsets and 114 samples, where one 

feature was added at a time creating 22 subsets of features for each classifier. All samples were 

clustered into true positive & true negative, false positive and false negative based on the 

performance of each classification run, and visualized using a heatmap to highlight the 

differences. The “clustermap” function in Seaborn package version 0.11.0 [46] was used for 

hierarchical clustering. The linkage method was set to average, and the distance metric was 

euclidean.  

Explaining misclassified cases 

To identify pathological and demographic features distinguishing the three clusters of 

classification performance, we used robust feature selection based on recursive feature 

elimination (RFE) with a linear SVM as the estimator [47] to identify the smallest set of non-

standard pathological features for each of the three clusters [48]. This technique balances 

performance and computational cost [49]. The linear SVM was initially trained using the 

complete feature set of the training data with the C-parameter set to one. The absolute weights 

in the weights vector of the hyperplane of the trained model were used to rank features 

according to importance, and the worst-performing feature was pruned from the feature set. 

This process was repeated until the required number of features in the signature was achieved. 
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For a dataset with J samples and K features, M=100 subsamples were randomly sampled, 

feature selection was carried out in each subsample, and classification performance was 

calculated. For each cluster, different sizes of signatures ranged from one to the complete 

feature set. Each feature set was used to train an XGBoost model to classify the cluster against 

the rest [50]. The best signature of features for each cluster was chosen as a trade-off between 

signature size and classification performance. Accuracy and F1-score were used as 

classification metrics. ML models and feature selection libraries were built using Python 3.8.5, 

Scikit-learn 24.2, and Jupyterlab 2.2.6. We used the 114 samples and a ‘leave-one-out’ cross-

validation for training and performance evaluation of trained classifiers. 

Code availability 

Links for python script codes in GitHub (https://github.com/mdrajab/CFAS-ranking-code) for 

the processes of ranking neuropathology features and classification models and 

(https://github.com/emmanueljammeh/cfas) for feature signatures showing association of 

the non-standard pathologies and demographics features with clusters. 

Results 

Distribution of neuropathology feature scores across dementia cases 

Figure 2 depicts the distribution of values of participants dying with and without 

dementia across all neuropathological features in our study containing 186 samples and 34 

attributes. In addition to the 34 neuropathological features, age and brain weight were included. 

People between 80 and 89 years had a higher frequency of dementia than other age sub-groups. 

The proportion of individuals with dementia increased with increasing Braak NFT stage, Thal 

phase and hippocampal tau stage. This validates previous findings from multivariable 

regression models of dementia and neuropathology [19]. The measures of CAA across subjects 

https://github.com/mdrajab/CFAS-ranking-code
https://github.com/emmanueljammeh/cfas
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revealed that the proportion of dementia cases increased as the number of brain areas with CAA 

increased. Microinfarct features, in the frontal, occipital and parietal regions, were observed in 

individuals who died with dementia. A similar observation was seen with Aβ stage typical and 

Argyrophilic grains, which may limit classifiers from differentiating subjects using these 

features. 

 

Figure 2: CFAS Neuropathology features distribution. The figure depicts neuropathology 

features distribution including age and brain weight (proportion of individuals with and 
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without dementia of the CFAS neuropathology Dataset). All features shown were based on 

the ranking features list, from left to right. Most features were categorical, but some were 

ordinal, such as age, CAA total severity, brain weight, CAA areas, TSA-total, cortical stage, 

subcortical stage and Microinfarct Stage. 

Highly correlated neuropathology features  

The comparison of features identified highly correlated features (Spearman rho > 0.7), 

such as CAA-related features. Since CAA-related features, including CAA type, CAA areas, 

and CAA total severity (CAA meningeal, CAA parenchymal), were shared among the top 

features presented by the different feature selection methods (Supplementary Table 1), we 

needed to ensure that only distinct features were chosen by minimizing feature-to-feature 

correlations. We identified three main clusters of highly correlated features (Figure 3) when 

comparing all neuropathology features in our study. Hence, some of these features may be 

redundant for assessing dementia based on neuropathological features. 
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Figure 3: Spearman correlation of the complete CFAS neuropathological data set. Heat 

map Spearman correlation of the complete CFAS neuropathological data set 34 

neuropathology features in addition to age and brain weight features as a benchmark, 36 

features in total and 186 samples. A coefficient close to 1(blue colour) means a high positive 

correlation between the two variables. The diagonal line is the same variable, i.e. spearman 

rho 1. 

 

Ranking of neuropathology features 

The ranking of neuropathology features was conducted to estimate each feature's 

contribution to dementia using seven feature ranking methods (Supplementary Table 1). A 

high ranking of the Braak NFT stage, which showed the neurofibrillary tangle stage (0–VI), 

supported it as a highly relevant feature for dementia pathology [22]. All ranking techniques 
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(CHI, gain ratio, information gain, reliefF, symmetrical uncertainty, least loss and variable 

analysis) ranked the Braak NFT score in the top six, making it useful for human and computer-

aided dementia diagnosis, and should be considered a primary attribute.  Different feature 

selection techniques reported different rankings of the features, however, the most commonly 

used features were consistently highly ranked. For example, Braak stage, BrainNet tau stage, 

CAA type, Thal phase, subpial brainstem, and subpial TSA in the mesial temporal lobe were 

consistently ranked in the top 12 (out of 36) notwithstanding which ranking method was used.  

BrainNet tau stage appeared as the top of ranked features, and it had been previously 

found to be highly correlated with the Braak NFT stage as tangles and neuropil threads seemed 

to progress together [17]. BrainNet tau stage, a six-stage scheme that uses neuropil threads and 

was proposed by the BrainNet Europe consortium [51], and has been used to predict dementia 

in recent research studies. CAA-related features, including CAA type, CAA areas, and CAA 

total severity, were common among the top features presented by the different feature selection 

methods (Supplementary Table 1). We believed this may be partly due to the high correlation 

among these CAA-related features (Figure 3). Therefore, we evaluated these features to ensure 

that only dissimilar features were chosen by minimizing feature-to-feature correlations. Lastly, 

subpial TSA in the mesial temporal lobe appears frequently in the results of all feature selection 

methods with a high rank. This indicated that the presence of subpial TSA in the mesial 

temporal lobe had a strong association with dementia. 

All 34 neuropathology features, in addition to age and brain weight, and 186 samples 

were assessed using seven ranking methods (Supplementary Table 1; Figure 4). We 

calculated each feature's contribution percentage based on each ranker's weights. We did this 

by taking each feature's average of the total weight assigned by all filter methods. All features, 

except parietal microinfarct and Tufted astrocytes, were estimated by one ranking method to 
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have at least 1% contribution to dementia classification. We found a subset of 25 features where 

all ranking methods estimated a percentage of contribution and at least 5% contribution. In 

order to assess the utility of neuropathology features to classify dementia, we removed the non-

neuropathology features (age and brain weight) and hippocampal tau stage due to high 

missingness, leaving 22 top ranked features. 

 

Figure 4: Ranking of neuropathology features. Ranking 34 neuropathology features plus 

age and brain weight using seven filter methods. After normalizing the weight scores of each 

feature, the percentage contribution of each feature was calculated by averaging the total 

weights assigned to each feature by all filter methods. The dotted line indicates features to be 

dropped, which features percentage contribution show less than 7%. 

Classification of the ranked neuropathology features  

We further investigated subsets of the top 22 ranked neuropathological features and 114 

samples using ML classification. A single feature was successively added from the 22 top 

ranked feature set to create subsets with sizes ranging from 1 to 22 (from top to lower-ranked 
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features). The dataset was randomly split into a training set containing 70% of the samples and 

the remaining 30% was used for testing.  The training set was used to train classification models 

using logistic regression, decision tree, k-nearest neighbors, linear discriminant analysis, 

gaussian naïve Bayes, SVM-RBF, and SVM-LINEAR classification algorithms. The 

performance of each trained model was evaluated using the test set for prediction. 

Supplementary Figure 1 depicts the F1-score performance of all subsets of features (by 

forward and backward order of ranked features) in classifying dementia status for the seven 

ML classifiers considered. In the F1-score, the top eight features had the highest performance 

of 74% using the algorithms SVM-RBF and logistic regression. For comparison with a 

traditional univariate approach, we trained each neuropathology feature using the seven 

classifiers and reported their F1-scores. The Thal phase was found to have achieved 69% F1-

score using SVM-LINEAR (Supplementary Figure 2). The results were supported by the 

accuracy and balanced accuracy that showed the top eight features’ achieving 74% with most 

classifiers (Supplementary Figures 3 & 4). There was no significant improvement in 

classification beyond the use of eight features. As the number of features was increased beyond 

eight, most of the trained models performed slightly worse in identifying dementia patients, 

possibly due to overfitting. We also showed sensitivity and specificity for all models to explain 

why some of the forward-ranking performances increased when adding the last three features 

(Supplementary Figures 6 & 7). Some of these had class imbalance, resulting in high 

specificity but low sensitivity. For example, in the linear discriminant analysis classifier, the 

last five features achieved 84% sensitivity but 50% specificity. 

Limits to the accuracy of classification of neuropathology features 

Classification results of different feature subsets using the seven classifiers, 114 

samples and 22 top-ranked neuropathology features showed that 40.4% of patients were 
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misclassified out of 114 individuals using cross-validation. Further, we investigated the cause 

of the high misclassification rate. Heatmaps used to visualize the classification of each patient 

revealed that some cases were misclassified as false positives or negatives, irrespective of the 

machine learning algorithm used. Supplementary Figure 7 shows the clustering of patients’ 

classifications from seven classification techniques using multiple subsets of features in order 

to identify similarities in their performance. Three clusters were identified, containing cases 

classified correctly, and misclassified as a false positive or false negative. The false positive 

cluster denoted cases where neuropathology features classified them as having had dementia 

when in actuality, they did not. Conversely, the false negative cluster denotes cases classified 

as not having dementia, but in reality, they did. Perhaps, this cluster could correspond to cases 

of dementia with insufficient neuropathology changes [52]. 

For each misclassified case (false positive or false negative), we looked at the Mini-

Mental State Exam (MMSE) scores at baseline and final interviews (Supplementary Figure 

8). For false negatives, there were observations of more moderate and severe cases at the final 

interview compared with baseline. On the other hand, the false positives were evenly 

distributed as normal, mild and moderate at baseline, with no severe cases. Then we performed 

further analyses to determine which features were associated with cases where the ranked 

neuropathology features alone could not explain dementia. Since the classical markers of 

neuropathology features summarizing the prevalence of plaques and tangles did not classify a 

large proportion of patients, we hypothesized that non-standard pathologies for rarer dementia 

syndromes and regional markers could be more helpful. These less common and ‘disregarded’ 

pathologies have been described across the CFAS cohort [53]. The non-standard features used 

were based on more granular neuropathology features in different regions in the brain, such as 

neuronal loss, gliosis, pick bodies, Lewy bodies, spongiform changes, superficial gliosis, 
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tangles, virchow-robin space expansion and ballooned neurons and some demographic features 

such as gender, age, and brain weight features.  

Our best-performing model for non-standard features, SVM-RFE, effectively removed 

irrelevant and redundant features to achieve good generalization. The level of each non-

standard feature was compared to the classification performance of the classifiers using 

standard neuropathology (Figure 5). We found that the mean age for false negative cases was 

the highest, with a mean of 89.3 years. In contrast, the false positive mean age was 84.5, and 

the true positive & true negative mean ages were (88.5 and 80.6) respectively. We also found 

that the mean brain weight was lower in the false negative cases than in the false positives, true 

positives, and true negatives. Lewy bodies in the substantia nigra, neuronal loss in the 

hippocampus, neuronal loss in the substantia nigra, tangles in the temporal lobe, parenchymal 

CAA in the frontal lobe, and gliosis in the hippocampus could all be combined to explain the 

classification performance of standard neuropathology (Supplementary Figure 9). However, 

a high proportion of misclassifications occurred where there was a lack of any pathology 

(Supplementary Figure 10). A t-test of each feature also demonstrated no difference in the 

values of non-standard pathology features between false positives and negatives 

(Supplementary Table 2).  

For further evaluation, we combined the top eight classical neuropathological features 

with the ten non-standard features associated with classifier performance. Together, we tested 

subsets of the 18 features to classify dementia status.  When using classical features, we 

observed that 40.4% of cases were misclassified; however, when the feature sets were 

combined, the misclassified cases decreased to 35.1% (Supplementary Figure 10). The 

decrease in misclassification was observed in individuals of at least 85 years old (46.3% to 

40.3%) and in those younger than 85 years (31.9% to 27.7%).  Of the 32 cases held out, we 
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observed a sensitivity of 68.8% (logistic regression) using the top eight neuropathology 

features. In contrast, the combined standard and non-standard neuropathological features 

achieved a better sensitivity of 81.3%. 
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Figure 5: Associations of standard and non-standard neuropathological and 

demographic features. Non-standard neuropathological and demographic features were 

associated with misclassified and correctly classified cases by classifiers that used the 

standard neuropathology features.  

Discussions 

In this study, we introduced an ML approach to describe how neuropathological 

features at the end of life were related to dementia. Our step-wise ML approach to rank and 

select Alzheimer-related pathologies allowed us to investigate how the different measures, such 

as those related to Aβ-related assessments and tau, can inform about dementia status. The 

different feature ranking methods resulted in a slightly different ordering of the features in 

terms of their association with dementia status. However, the top-ranked features were 

consistent across methods. For example, the Braak NFT and BrainNet tau stages were the top 

two selected features in line with previous studies [6,17,18,54,55]. However, our results also 

showed that subpial TSA in the mesial temporal lobe was highly ranked, presenting a 

contradictory finding from prior studies [6]. Additionally, we identified three clusters of highly 

correlated measures in the dataset, CAA, TSA, and microinfarct-related, demonstrating that 

some measures were redundant. Removing these redundant features may reduce collinearity 

and improve the performance of feature selection and classification accuracy [56–60]. 

In order to examine the impact of ranking, we tested seven classification algorithms 

using different subsets of ranked features. Cross-validation during classifier training yielded a 

maximum classification accuracy of, at most, 74%, using the top eight ranked features. Two 

subgroups of misclassified participants were identified (false positives and negatives), 

accounting for 21.2% and 19.3%, respectively. These individuals were consistently 

misclassified across all classification algorithms. In order to improve classification accuracy, 

we also considered whether more specific neuropathology features for particular brain regions, 

which were collected in addition to the standard assessment, could help with classification. 
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Consistent with previous reports, dementia was most associated with age and brain weights [4]. 

We further found that the classification of dementia using AD pathology differed between 

younger and older individuals [8]. Our results suggested that imaging and body fluid 

biomarkers for a range of pathological changes should be used to identify pathophysiologic 

processes associated with dementia in individual patients [61–64]. The feature ranking and 

filtering approaches could be applied to these other sources of pathology data.  

The high proportion of misclassifications (35.1%) also indicated discordance between 

neuropathology and dementia, where some demented individuals had no known pathology and 

some non-demented individuals with pathology.  An explanation for the poor classification 

performance is that some cases express dementia during life without classical 

neuropathological changes [52]. Corrada et al. reported that 22% of demented participants did 

not have sufficient pathology to account for cognitive loss [65]. Using the Vantaa 85+ cohort, 

Hall et al. showed that cognition and education predicted dementia but not AD or amyloid-

related pathologies in the elderly [14]. When combining the top eight neuropathology features 

with the non-standard pathologies’ features, the discordance was less for older individuals (85 

years old and above).  

The results can be further investigated using other ML techniques, such as embedded 

feature selection and additional cohorts with the same pathology features and clinical 

outcomes. Alzheimer’s Disease Neuroimaging Initiative [66] or the Rush Memory and Ageing 

Project [67] could be cohorts to validate our findings from CFAS. However, this requires 

adjusting for demographic and measurement differences between these other cohorts. Another 

challenge in relating neuropathology assessments to the clinical diagnosis of dementia was the 

time lapse between the last assessment of dementia and the post-mortem assessment of the 

brain. Further follow-up reports on the participant’s cognitive status could be collected from 

those who knew the individual up to the time of death. Pathological features may differ between 
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different types of dementia, such as AD, frontotemporal dementia, vascular disease, and Lewy 

body dementia [68–70]. There is a need to quantify measures of other key age-related brain 

pathologies, particularly vascular disease, synuclein staging and age-related Transactive 

response DNA-binding protein 43 (TDP43) pathology (limbic predominant age-related TDP43 

encephalopathy). By doing so, we could link pathology with other symptoms related to 

dementia. Rather than assessing associations between one feature and an outcome at a time, it 

would be helpful to investigate whether combinations of features were associated with 

dementia [71–75].  

This study provided a new approach to understanding how much cognitive 

classification of dementia can be explained by pathological features of the brain. The 

application of ML as a means of robust evaluation of neuropathological assessments and scores 

for 186 subjects and 34 neuropathology features from the CFAS cohort highlighted key indices 

of Alzheimer-related pathologies that may contribute to dementia. While we found that as many 

as 22 neuropathology features could be independently associated with dementia, tau-related 

assessments were most informative for ML classifiers of dementia. We hope that further 

neuropathology studies using multiple feature ranking techniques can lead to identifying more 

robust biomarkers and enhance the early detection of disease. 
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Supplementary Materials (Manuscript 2) 

Supplementary Figure 1. Performance of all subsets of neuropathology features.  F1-score 

performance of all subsets of neuropathology features from the rank list forward and 

backward rankings. Forward ranking (blue) adds to the classifier model from the top feature 

to the lowest feature, while backward ranking (orange) adds to the model from the lowest 

feature to the top feature. Seven classifiers were utilized in this investigation: logistic 

regression, decision tree, k-nearest neighbors, linear discriminant analysis, gaussian naive 

bayes, support vector machines with radial basis function kernel, and support vector 

machines with linear kernel. Please see (Supplementary: Figures 3-6) for other metrics such 

as accuracy, balanced accuracy, sensitivity, and specificity. 
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Supplementary Figure 2. F1-score performance of each single neuropathology feature from 

the rank list. This is to show comparison of a traditional univariate approach. Seven 

classifiers were utilized in this investigation with top score in each: Logistic Regression 

(Braak stage: 0.65), Decision Tree (Subpial Brainstem: 0.68), k-Nearest Neighbors (Braak 

stage: 0.63), Linear Discriminant Analysis (Braak stage: 0.65), Gaussian Naive Bayes (Braak 

stage: 0.65), Support Vector Machines with Radial Basis Function kernel (Braak stage: 0.65), 

and Support Vector Machines with Linear kernel (Thal phase: 0.69). 
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Supplementary Figure 3. Accuracy performance of all subsets of neuropathology features 

from the rank list forward and backward rankings. Forward ranking (blue) adds to the 

classifier model from the top feature to the lowest feature while the backward ranking 

(orange) adds to the model from the lowest feature to the top feature. Seven classifiers were 

utilized in this investigation: Logistic Regression, Decision Tree, k-Nearest Neighbors, 

Linear Discriminant Analysis, Gaussian Naive Bayes, Support Vector Machines with Radial 

Basis Function kernel, and Support Vector Machines with Linear kernel. 
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Supplementary Figure 4. Balanced Accuracy performance of all subsets of neuropathology 

features from the rank list forward and backward rankings. Forward ranking (blue) adds to 

the classifier model from the top feature to the lowest feature while the backward ranking 

(orange) adds to the model from the lowest feature to the top feature. Seven classifiers were 

utilized in this investigation: Logistic Regression, Decision Tree, k-Nearest Neighbors, 

Linear Discriminant Analysis, Gaussian Naive Bayes, Support Vector Machines with Radial 

Basis Function kernel, and Support Vector Machines with Linear kernel. 
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Supplementary Figure 5. Sensitivity performance of all subsets of neuropathology features 

from the rank list forward and backward rankings. Forward ranking (blue) adds to the 

classifier model from the top feature to the lowest feature while the backward ranking 

(orange) adds to the model from the lowest feature to the top feature. Seven classifiers were 

utilized in this investigation: Logistic Regression, Decision Tree, k-Nearest Neighbors, 

Linear Discriminant Analysis, Gaussian Naive Bayes, Support Vector Machines with Radial 

Basis Function kernel, and Support Vector Machines with Linear kernel. 
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Supplementary Figure 6. Specificity performance of all subsets of neuropathology features 

from the rank list forward and backward rankings. Forward ranking (blue) adds to the 

classifier model from the top feature to the lowest feature while the backward ranking 

(orange) adds to the model from the lowest feature to the top feature. Seven classifiers were 

utilized in this investigation: Logistic Regression, Decision Tree, k-Nearest Neighbors, 

Linear Discriminant Analysis, Gaussian Naive Bayes, Support Vector Machines with Radial 

Basis Function kernel, and Support Vector Machines with Linear kernel. 
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Supplementary Figure 7.  Clustering of classification performance. Clustering of 

classification performance from leave one out cross-validation on 114 CFAS participants and 

top 22 ranked standard neuropathology features. Each cluster illustrates a classification that 

was given to individuals consistently or nearly consistently, irrespective of what classification 

algorithm was used. Evaluation of 7 classifiers revealed 24 individuals (blue) were mostly 

misclassified as a false positive, 22 individuals (red) were mostly misclassified as false 

negative, and 68 individuals (grey) were mostly correctly classified as true positive or true 

negative. Each algorithm evaluated subsets of ranked features from 1 (top feature) to 22 

features (all ranked features). 
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Supplementary Figure 8. Distribution of MMSE scores at baseline and final for all 

misclassified cases (False positive and False Negative). 

 

Supplementary Figure 9. Non-standard neuropathological and demographic features that 

were associated with misclassified and correctly classified cases by the classic 

neuropathology features. The coefficients shown for each variable were extracted from the 

most predictive support vector machine classifiers: demographics features such as age, brain 

weight and sex. 
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Supplementary Figure 10. Clustering of cross-validation classification performance on 114 

CFAS participants and subsets of 18 features, including eight top-ranked neuropathology 

features and ten non-standard neuropathology features. Each cluster illustrates a classification 

that was given to individuals consistently, or nearly consistently, irrespective of what 

classification algorithm was used. Evaluation of 7 classifiers revealed 23 individuals (blue) 

were mostly misclassified as false positive, 15 individuals (red) were mostly misclassified as 

false negative, and 76 individuals (grey) were mostly correctly classified as true positive or 

true negative.  
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Supplementary Table 1. Ranking of the CFAS Dataset Features using Different Feature 

Selection Techniques Seven feature-ranking methods were  presented: Chi-Square (CHI), Gain 

Ratio (GR), Information Gain (IG), ReliefF (RF), Symmetrical Uncertainty (SmyUn), Least 

Loss (L2) and Variable Analysis (Va). 

N

O 
Chi-Squares Gain Ratio 

Information 

Gain 
ReliefF 

Symmetrical 

Uncertainty 
Least Loss 

Variable 

Analysis 

1 BraakStage age BraakStage BrainNetStage age CAAType BraakStage 

2 BrainNetStage CAATotalSev BrainNetStage BraakStage BraakStage brain weight 
BrainNetStag

e 

3 
CAAMeningea

l 

AbStageTypic

al 

CAAMeningea

l 
MTSPETSA BrainNetStage age 

CAAMening

eal 

4 CAAParenc brain weight CAAParenc TSAAny CAATotalSev BrainNetStage CAAParenc 

5 age BraakStage age 
SubpialMesTe

mp 
brain weight MTSPETSA age 

6 ThalStage BrainNetStage ThalStage ThalStage CAAType BraakStage ThalStage 

7 CAAType CAAAreas CAAType age 
CAAMeningea

l 
CAAAreas CAAType 

8 brain weight 
SubpialBrainst

em 
brain weight CAAType CAAParenc 

CAAHippoca

mpus 
brain weight 

9 
SubpialBrainst

em 
CAAType CAATotalSev TSATotal 

SubpialBrainst

em 

SubpialBrainst

em 

SubpialBrain

stem 

10 CAAAreas MTSPETSA 
SubpialBrainst

em 

SubpialBrainst

em 
CAAAreas CAAParietal 

CAATotalSe

v 

11 CAATotalSev BSSPETSA CAAAreas 
HippocTauSta

ge 
ThalStage ThalStage CAAAreas 

12 MTSPETSA 
CAAMeningea

l 
MTSPETSA 

SubcorticalSta

ge 
MTSPETSA CAAFrontal MTSPETSA 

13 
CAAHippoca

mpus 
TempMicroinf 

CAAHippoca

mpus 
brain weight BSSPETSA CAATemp 

CAAHippoc

ampus 

14 CAAParietal CAAParenc CAAParietal BSSPETSA 
CAAHippoca

mpus 
CAAOccipital CAAParietal 

15 CAAFrontal ThalStage CAAFrontal CAAOccipital CAAParietal TSAAny CAAFrontal 

16 CAAOccipital 
CAAHippoca

mpus 
BSSPETSA CAAParietal CAAOccipital 

CAACerebellu

m 

CAAOccipit

al 

17 
HippocTauSta

ge 
CAAOccipital CAAOccipital PARTall CAAFrontal 

CAAMeningea

l 

HippocTauSt

age 

18 CAATemp CAAParietal 
HippocTauSta

ge 

CAAMeningea

l 
CAATemp 

SubpialMesTe

mp 
BSSPETSA 

19 BSSPETSA CAAFrontal CAATemp 
CAAHippoca

mpus 
TSAAny CAAParenc CAATemp 

20 TSAAny CAATemp TSAAny 
MicroinfarctSt

age 

CAACerebellu

m 
CAATotalSev TSAAny 

21 
CAACerebellu

m 
TSAAny 

CAACerebellu

m 

CAACerebellu

m 

AbStageTypic

al 

HippocTauSta

ge 

CAACerebel

lum 
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22 
SubpialMesTe

mp 
FrontalMicroin 

SubpialMesTe

mp 
CAAParenc 

SubpialMesTe

mp 
BSSPETSA 

SubpialMesT

emp 

23 
AbStageTypic

al 

CAACerebellu

m 

AbStageTypica

l 
CAATotalSev 

HippocTauSta

ge 
FrontalMicroin 

AbStageTypi

cal 

24 TempMicroinf 
SubpialMesTe

mp 
TempMicroinf CAAAreas TempMicroinf TempMicroinf 

TempMicroi

nf 

25 FrontalMicroin 
HippocTauSta

ge 
FrontalMicroin CxSPETSA FrontalMicroin PARTdefinite 

FrontalMicro

in 

26 PARTdefinite ArgyrGrains PARTdefinite PARTdefinite ParMicrin 
AbStageTypica

l 

PARTdefinit

e 

27 ParMicrin ParMicrin ParMicrin ArgyrGrains PARTdefinite ParMicrin ParMicrin 

28 ArgyrGrains PARTdefinite ArgyrGrains TempMicroinf ArgyrGrains OccipMicroing ArgyrGrains 

29 OccipMicroing CxSPETSA OccipMicroing CorticalStage OccipMicroing ArgyrGrains 
OccipMicroi

ng 

30 CxSPETSA OccipMicroing CxSPETSA 
AbStageTypic

al 
CxSPETSA PARTall CxSPETSA 

31 TuftedAst TuftedAst TuftedAst FrontalMicroin TuftedAst TuftedAst TuftedAst 

32 PARTall PARTall PARTall OccipMicroing PARTall CxSPETSA PARTall 

33 
MicroinfarctSt

age 
CorticalStage 

SubcorticalSta

ge 
CAATemp 

SubcorticalSta

ge 
CorticalStage 

Microinfarct

Stae 

34 TSATotal TSATotal 
MicroinfarctSt

age 
ParMicrin CorticalStage 

SubcorticalSta

ge 
TSATotal 

35 
SubcorticalSta

ge 

SubcorticalSta

ge 
TSATotal CAAFrontal TSATotal TSATotal 

SubcorticalSt

age 

36 CorticalStage 
MicroinfarctSt

age 
CorticalStage TuftedAst 

MicroinfarctSt

age 

MicroinfarctSt

age 
CorticalStage 

Supplementary Table 2. T-test and p-values for all non-standard and demographic features. 

The result shows that there statistically significant differences in the values of non-standard 

features between false positives and false negatives 

No Feature T test P-value 

1 Age  3.132 0.00 

2 Brain weight -3.741 0.001 

3 Virchow-Robin Space (VRS) Expansion 0.607 0.547 

4 Gender  -0.842 0.404 

5 Lewy Bodies in Substantia Nigra 0.328 0.744 

6 Neuronal Loss in Substantia Nigra 0.478 0.635 

7 Neuronal Loss in Hippocampus 0.541 0.591 

8 Tangles in Temporal Lobe -1.046 0.301 

9 Parenchymal CAA in Frontal Lobe -1.734 0.090 

10 Gliosis in Hippocampus 0.644 0.523 
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Chapter 4 - Feature-feature Correlations Biases 

Ranking of Dementia Features in Machine Learning 

Studies 

 

4.1. Background 

The aim of this study is to identify the effective filter methods for detecting dementia 

and reducing the negative impacts of the disease. The study assesses two real datasets related 

to dementia conditions, namely, CFAS and ADNI. We investigated the correlation between 

dementia conditions’ levels, features, and filter methods, focusing on the associations between 

feature ranking obtained by filter methods and correlations among the features themselves. The 

research identified which filter methods were less sensitive to similarities among the 

neuropathological features and the impact of varying features' rankings between different data 

cohorts on dementia conditions’ prediction models.  

We investigated filter methods sensitivity to feature-feature correlation in dementia 

conditions’ diagnosis. We applied seven filter methods to two cohorts of aging individuals, 

ADNI and CFAS, then applied Kendall’s tau to detect the agreement between results. We 

developed a multiple regression classification model to mathematically model the association 

between the results of the classification model and feature ranking for each filter method. We 

evaluated the system with classification algorithms to indicate if the diagnosis models 

developed were competitive. 

4.2. Contribution  

The following version of the accepted manuscript has been submitted to the Journal of 

GigaScience. This manuscript details my primary contribution as the lead author in the data 
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analysis process, manuscript drafting writing. My supervisor, Dennis Wang, provided 

exceptional guidance and unwavering support throughout the entire process, editing, analysing 

and manuscript drafts. In particular, I was the main contributor in producing the initial draft of 

the manuscript, while also taking responsibility for the generation of code, figures, and tables 

used in the study. Additionally, Teruka Taketa's contribution to this paper involved referencing 

a common features and features dictionary, which she developed during her Master's degree. 
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Features in Machine Learning Studies 
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Abstract 

Background 

The prevalence of dementia is increasing globally. Due to the significant resources required to 

treat the condition, governments and private healthcare systems are experiencing pressures. 

Early diagnosis of dementia diseases, such as Alzheimer’s disease, is difficult because of the 

time and resources needed to perform neuropsychological and pathological assessments. Given 

the increasing use of machine learning methods to evaluate neuropathology features in the 

brains of dementia patients, it is important to investigate how the selection of features may be 

impacted and which features are most important for the classification of dementia.  

Results 

The study investigated feature ranking, feature-feature correlation, multiple regression, and 

classification in two real dementia datasets, the Cognitive Function and Aging Studies (CFAS) 

and Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ReliefF filter method was the 

most biased by feature-feature correlation but its ranking was also most consistent in both 

ADNI and CFAS. The least-loss and gain ratios filter methods were the least impacted by 

feature-feature correlations in both datasets. A Random Forest classifier achieved high 

performance in classifying dementia status  with 94.4% accuracy, 90.0% sensitivity, and 98.4% 

specificity in ADNI while in CFAS Naive Bayes performed best at 70.6% accuracy, 81.3% 

sensitivity, and 54.3% specificity.  

Conclusions 

The study showed that for selecting relevant neuropathology features related to dementia, 

feature-feature correlation impacts feature rankings obtained by filter methods and can vary 

between cohort studies. By examining bias in filter methods, we can reduce discrepancies in 

feature ranking and identify a minimal set of features for accurate classification of dementia. 
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Keywords— Dementia, Alzheimer’s, Feature Selection, Machine Learning, Neuropathology, 

Feature-feature Correlation 

Introduction 

Dementia poses a significant global challenge, affecting the lives of individuals, their 

families, and caregivers [1]. The economic burden of dementia was estimated to exceed $818 

billion in 2015, and the number of people living with dementia is expected to surpass 75 million 

by 2030 [2]. Early diagnosis and intervention are crucial in mitigating the negative impact of 

dementia [3]. However, identifying the determinants of dementia can be difficult due to its 

complex spectrum of characteristics, encompassing various disorders with distinct pathologies. 

Alzheimer's disease (AD) is the most common form of dementia, characterised by the presence 

of amyloid plaques and neurofibrillary tangles in the brain [4]. 

Feature selection methods play a vital role in biomedical data analysis, helping to 

identify the most relevant features contributing to a health outcome while eliminating noise, 

redundancy, and irrelevant factors [5–7]. Biomedical datasets collected from human 

biosamples often contain many features, some of which may be irrelevant to the outcome of 

interest. Analysing all features can lead to overfitting, reduced accuracy, and a less concise 

understanding of the underlying biological processes [5,8,9]. Filter methods measure the 

relevance of features based on their correlation with the outcome. While commonly used to 

select features for downstream analysis or machine learning of biomedical datasets, there lacks 

a systematic comparison of filter methods when used to study complex human disorders, such 

as dementia. 

Previous studies have employed filter methods to identify features related to AD [10–

12]. Gómez-Ramírez et al. (2020) focused on self-reported data, investigating demographics 

and other relevant factors associated with the development of dementia from Mild Cognitive 
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Impairment (MCI). Permutation-based methods were employed as a filter to identify 

significant cognitive decline features. Subsequently, the Random Forest algorithm was applied 

to identify features strongly correlated with cognitive impairment [13]. Thabtah et al. (2022) 

conducted a comprehensive analysis of feature selection methods using continuous features 

derived from MRI images to detect dementia. The study compared popular methods such as 

mutual information gain [14], Pearson correlation [15], and Symmetrical Uncertainty [16]. 

Univariate feature selection and recursive feature elimination techniques were also employed 

to identify the most informative features correlating with AD using the Functional Activities 

Questionnaire (FAQ), a common neuropsychological assessment [17,18]. The authors further 

investigated the relationships between cognitive and functional features across different levels 

of dementia progression. 

While the relationship between cognitive function and neuropathology features has 

been extensively explored, less attention has been given to how feature correlation might 

impact machine learning of dementia. Given the diversity of filter methods and features, it is 

essential to identify the methods that are less sensitive to similarities or differences between 

neuropathological features in order to minimise discrepancies in feature rankings. To address 

these issues, we focused on data from two large dementia studies in the UK and USA, and 

hypothesised that there would be associations between feature-feature correlations and the 

ranking scores computed by filter methods. Several questions arise regarding the ranking of 

neuropathology features: 1) Which filter methods are less sensitive to feature-feature 

correlations? 2) Are there differences in feature-feature correlations and rankings between the 

separate dementia cohorts? 3) How do variations in feature rankings between the cohorts 

impact dementia prediction models? To investigate these questions, we applied seven filter 

methods to the two cohort datasets [19–21] to generate feature rankings and observed how they 

varied depending on the degree of similarity between features. We are able to identify the best 
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performing feature selection techniques for neuropathology data and assess the level of 

reproducibility in the associations with dementia found in the two studies. 

Material and Method 

Overview of Feature Ranking Analysis 

We examined the correlation structure of neuropathology and its relationship with 

dementia (as depicted in Figure 1). Following a comprehensive review and subsequent ethics 

approval from the management committees, we downloaded the pathological assessments from 

the Cognitive Function and Ageing Study (CFAS) [21] and the Alzheimer's Disease 

Neuroimaging Initiative (ADNI)[22]. After conducting pre-processing on both datasets, we 

pinpointed features that were present in both, ensuring their compatibility in terms of features 

and data types whenever possible. In both datasets, neuropathological features were evaluated 

and ranked by utilising a range of feature selection techniques centred around various filter 

methods. We then gauged the ranking disparities between the neuropathological features of 

CFAS and ADNI, in addition to the consistency between both datasets for each filter method 

applied. To discover the relationship between a given feature and the remaining ones, we 

delved into feature-feature correlations using the R2 metric, which is based on multiple 

regression analyses. We considered both the correlation among the features and their rankings, 

which was achieved by implementing classification algorithms and noting accuracy, 

sensitivity, and specificity values. From these insights, we inferred that certain feature subsets 

can be classified as dementia. 

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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Figure 1: Methodology for Dementia Classification using CFAS and ADNI Datasets. The 

dementia classification methodology was developed and executed in three key stages: design, 

implementation, and evaluation. After acquiring neuropathology data, we carried out 

preprocessing and determined the correlation between different features. Utilising seven filter 

methods, we ranked all neuropathological features. Subsequently, we explored the connection 

between feature-feature correlation and feature ranking across all applied filter methods. 

Thereafter, classifiers were evaluated using various feature subsets, depending on their 

interrelations. 

CFAS Cohort 

This study considered the donated brains of 186 participants, and 13 neuropathological 

features were assessed (Table 1). These features constituted fundamental neuropathological 

assessments for each participant, including Braak neurofibrillary tangle (NFT) stage, Thal 

phase, and cerebral amyloid angiopathy (CAA). Of the total participants, 107 (equivalent to 

58%) had been diagnosed with dementia. The participant pool consisted of 72 women and 35 

men, with respective median ages of 89 and 88. Among those participants who passed away 

without a dementia diagnosis (with median ages of 85 for females and 79 for males), the gender 

distribution was evenly balanced with 37 females and 33 males [23]. 
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ADNI Cohort 

The data utilised for the creation of this article were acquired from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), which was established 

in 2003 as a collaboration between public and private entities. The neuropathology data version 

utilised in the ADNI database was NEUROPATH_07_06_21. The ADNI cohort consisted of 

1,736 individuals, including 85 clinical features across ADNI-1, ADNI-GO, and ADNI-2. For 

this study, we specifically focused on 80 post-mortem brains, which exhibited 13 

neuropathological features, as detailed in Table 1. These features involved fundamental 

measures of neuropathology for each subject, such as Braak neurofibrillary tangle (NFT) stage, 

Thal phase, and cerebral amyloid angiopathy (CAA). Within the cohort, 77.5% of participants 

(62 out of 80) were diagnosed with dementia, while 12.5% had mild cognitive impairment 

(MCI), and 10% were cognitively normal (CN). Among the 62 dementia cases, 16 were women 

and 46 were men, with median ages of 79 and 81.5, respectively. The MCI participants 

exhibited a gender ratio of 1 female to 9 males (with a median age of 85 for both genders), 

while those who passed away without a dementia diagnosis had a gender ratio of 5 females to 

3 males (with median age of 84 for females and 79 for males). To ensure consistency with the 

CFAS dataset comparisons, we excluded the 10 participants diagnosed with MCI, leaving us 

with 70 participants diagnosed with dementia or CN for this study [24–26]. 

Table 1: Neuropathology features from the CFAS and ADNI cohorts considered for feature 

selection. 

No 
Feature Feature Description 

CFAS ADNI 

Type 
Dementia 

(n=107) 

No 

Dementia 

(n=70) 

Missing 

(n=9) 
Type 

Dementia 

(n=62) 

No 

Dementia 

(n=8) 

Missing 

(n=0) 

1 
Braak stage 

Braak neurofibrillary tangle 

(NFT) stage[26,27]. 
Nominal 107 70 0 Nominal 62 8 0 

2 
Thal phase 

Detects immunopositive 

amyloids in cortical and 

subcortical areas[28,29]. 

Nominal 107 70 0 Nominal 62 8 0 
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3 Cortical 

atrophy 

A condition in which the 

brain’s cortex—the outer 

layer of the cerebrum––

thins and shrinks in size. 

Binary 103 67 7(4.0%) Nominal 57 8 5(7.1%) 

4 Hippocampus 

atrophy 

Characterised by a decrease 

in the size of the 

hippocampus, the area of 

the brain responsible for the 

formation and recall of 

memories. 

Nominal 81 39 57(32.2%) Nominal 57 8 5(7.1%) 

5 
Atherosclerosis  

A condition that is 

characterised by the 

hardening and narrowing of 

arteries due to a buildup of 

fatty deposits known as 

plaque. 

Nominal 98 65 14(7.9%) Nominal 54 7 9(12.9%) 

6 
haemorrhage 

A medical condition in 

which there is a loss of 

blood. 

Binary 47 27 103(58.2%) Binary 62 8 0 

7 
Neocortical 

neuritic 

plaques 

Accumulation of amyloid 

beta peptides in the brain in 

the form of neuritic plaques, 

comprising dense deposits 

of amyloid beta protein. 

Nominal 88 56 33(18.6%) Nominal 62 8 0 

8 
Neuronal loss 

in substantia 

nigra 

Characterised by the death 

of neurons in the substantia 

nigra, a part of the brain 

associated with movement 

and coordination. 

Nominal 105 68 4(2.3%) Nominal 61 8 1(1.3%) 

9 Argyrophilic 

grains disease 

A type of tauopathy which 

is a class of 

neurodegenerative diseases 

caused by an accumulation 

of the tau protein in the 

brain. 

Binary 107 69 1(0.6%) Binary 27 7 36(51.4%) 

10 

Cerebral 

amyloid 

angiopathy 

(CAA) 

A form of cerebrovascular 

disease in which amyloid 

protein deposits accumulate 

in the walls of small blood 

vessels in the brain. 

Numeric 84 42 51(28.8%) Nominal 62 8 0 

11 Infarcts and 

lacunes 

Types of brain lesions that 

are commonly associated 

with a stroke. Infarcts are 

areas of tissue death caused 

by a lack of oxygen due to a 

blockage of the brain's 

blood vessels. Lacunes are 

small cavities that develop 

when parts of the brain 

become damaged or die due 

to a lack of oxygen or other 

factors. Often caused by 

small strokes or other 

vascular changes. 

Binary 51 29 97(54.8%) Binary 62 8 0 

12 Arteriolar 

sclerosis 

A condition in which the 

walls of the arterioles 

become stiff and thickened 

Nominal 105 69 3(1.7%) Nominal 62 8 0 
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due to deposits of fatty 

material. 

13 
Diffuse plaques 

Caused by deposits of 

amyloid-beta proteins 

accumulating in the brain. 

These proteins form clumps 

that disrupt normal cell 

functioning, leading to 

inflammation and damage. 

Binary 107 70 0 Nominal 62 8 0 

14 
Diagnostic  

Class label (dementia or no 

dementia) status of a patient 
Binary 107 69 0 Binary 62 8 0 

 

Feature Pre-processing 

In the ADNI dataset, certain features were represented as individual columns, whereas 

in CFAS, multiple columns were employed to capture related attributes such as 'infarcts and 

lacunae' and 'diffuse plaques'. Furthermore, CFAS distinguished between infarcts and lacunae 

separately, whereas ADNI combined them. To address this disparity, our study unified infarcts 

and lacunae into a single category, treating them as binary indicators of pathology within 

CFAS. We encountered a similar challenge with the diffuse plaques feature in CFAS, where 

columns were grouped based on their presence or absence. We refrained from encoding feature 

measures in both datasets to ensure unbiased feature ranking and analysis. For instance, CFAS 

utilised a binary representation for cortical atrophy, while ADNI employed an ordinal scale 

consisting of four categories: no atrophy, mild, moderate, or severe. Upon encoding cortical 

atrophy as a binary feature, we discovered a 100% correlation between this attribute and certain 

other features. A similar issue was encountered with ADNI's diffuse plaques feature. Following 

the preprocessing stage, we analysed a total of 177 post-mortems from CFAS and 70 post-

mortems from ADNI, examining 13 neuropathology features for feature ranking.  

Ranking Neuropathology Features 

To gain preliminary insight and highlight influential neuropathological features of 

dementia, we used a variety of feature selection filter methods to measure each feature’s 
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relevance. Chi-square (CHI) [31], gain ratio [32], information gain (IG) [14], reliefF [33,34], 

symmetrical uncertainty [16], least loss [35], and variable analysis [36,37] were included in the 

analysis. Scores varied according to the mathematical criteria and type of filter method used. 

Due to the different models, there may be discrepancies in the ranking of features based on 

such scores [37,38]. Details of the mathematical formulation of the considered filter methods 

follow: 

CHI utilises the difference between observed and expected frequencies of the instances 

as shown in Equation (1).  

             𝑋2 =
(𝑂−𝐸)2

𝐸
            (1) 

where O and E are the Observed and Expected frequencies for a specific feature, respectively. 

IG employs Shannon entropy to measure the correlation between a feature and dementia 

status (Equations 2 and 3).  

𝐼𝐺 (𝑆, 𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)  − ∑ (( | 𝑆𝑣 |  ÷ | 𝑆 |)  ×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣))    (2) 

where Entropy (T) =− ∑ 𝑃𝑐𝑃𝑐         (3) 

𝑃 is the probability that S belongs to class label c. Sv is the subset of S for which a feature has 

value v. |Sv| is the number of data instances in Sv, and |S| is the size of S. 

Gain ratio is a normalised form of IG which is estimated by dividing the IG with the 

entropy of the feature with respect to the class (Equations 4 and 5).  

Gain ratio = 
𝐼𝐺

𝐸𝑁𝑇(𝑆,𝐹)
          (4) 

𝐸𝑁𝑇(𝑆, 𝐹)=− ∑
𝑆𝑖

𝑆
𝑙𝑜𝑔2 

𝑆𝑖

𝑆
         (5) 

where IG denotes the information gain and ENT is the Entropy of feature F over a set of 

examples S. 
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Symmetrical uncertainty deals with the bias of IG that occurs due to a large number of 

distinct values for the feature and presents a normalised score (Equation 6).  

𝑆𝑈(𝐴, 𝐵)  =  
2 × 𝐼𝐺(𝐴|𝐵)

𝐸(𝐴) + 𝐸(𝐵)
         (6) 

where 𝐼𝐺(𝐴|𝐵) denotes the information gain of A after knowing the class. E(A) and E(B) are 

the entropy values of A and B, respectively.  

ReliefF calculates the scores of each available feature with the class using the 

differences between the neighbouring data instances and the target instances (Equation 7).  

W[A] = W[A] -  
(𝑑𝑖𝑓𝑓

𝐴,𝑅𝑖,𝐻

𝑚
)

 (𝑑𝑖𝑓𝑓
𝐴,𝑅𝑖,𝑀

𝑚
)
           (7) 

where, W[A] are the feature weights, A is the number of features, m is the number of random 

training data instances out of ‘n’ number of training data instances used to amend W. 

𝑅𝑖 = A random chosen test instance and H/M is nearest hit and nearest miss 

Least loss is computed per feature based on the simplified expected and observed 

frequencies of the features (Equation 8), and variable analysis employs a vector of scores of 

both CHI and IG results, normalises the scores, and then computes the vector magnitude 

(V_score) (See Equations 9 and 10).  

𝐿2(𝑌, 𝑋) =  ∑𝑖,𝑗 [𝑃(𝑌𝑖,𝑋𝑗) − 𝑃(𝑌𝑖)𝑃(𝑋𝑗)]2       (8) 

where X is the independent feature class, Y is class label, 𝑃(𝑌𝑖) is the theoretical marginal 

distribution of 𝑌, and 𝑃(𝑋𝑗) is the theoretical marginal distribution of X. 𝑃(𝑌𝑖 𝑋𝑗) is the 

theoretical joint probability distributions of X and Y. 

𝑉𝑎 = (
𝐼𝐺𝑥

𝐶𝑆𝑇𝑥
)           (9) 

|𝑉𝑎| = √(𝐼𝐺)2 + (𝑇𝑆𝑇)2
                   (10) 
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where 𝑉𝑎 is the square root of the sum of the square of its CHI and IG results of a feature. 

The V_score and the Correlation Feature Set results [39] are then integrated to represent 

a new measure of goodness by which to select relevant features. 

𝐼𝐺 (𝑆, 𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆)  − ∑ (( | 𝑆𝑣 |  ÷ | 𝑆 |)  ×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣))    (2) 

The experiment-related filter-based feature selection was conducted using Waikato 

Environment for Knowledge Analysis (WEKA version 3.9.1) [40]. The percentage 

contribution of each feature was calculated by averaging the total weights assigned by all filter 

methods to each feature after normalising the weight scores. 

Measuring Filter Methods Consistency 

Kendall's tau, a measure of correlation between two ranking lists, provides insights into 

the level of agreement or disagreement between them. Values closer to 1 indicate a stronger 

agreement, while values closer to -1 indicate a stronger disagreement. A value of tau = 0 

suggests no association between the ranking lists. To compare the feature rankings between 

CFAS and ADNI datasets for each filter method, we utilised the kendalltau() function from the 

Python3 machine learning package (scipy.stats version 1.7.3). Specifically, we employed this 

function, available in version v1.9.3, to assess the correlation between the CFAS and ADNI 

cohorts. The comparison involved seven filter methods and 13 distinct features. 

Imputing Missing Values 

Due to the limitations of the considered cohorts (ADNI = 70 samples, CFAS = 177 

samples) and the tendency of machine learning models to encounter errors when encountering 

NaN values, addressing missing values became necessary. To handle this, we adopted an 

iterative imputer approach utilising the Scikit-learn version 0.22.2.post1 [41] library in 

Python3. This approach allowed us to impute missing values for both numerical and categorical 
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features. For numerical and categorical values, we employed the IterativeImputer from the 

sklearn.impute package to perform the imputation transformation. To replace missing numeric 

values, we utilised the RandomForestRegressor from the sklearn.ensemble [42] package as an 

estimator. The missing values were initially initialised with the mean and underwent a 

maximum of five iterations. Similarly, for categorical values, we constructed a model 

employing the RandomForestClassifier from the sklearn.ensemble package. The missing 

values were initialised with the mean, and the imputation process followed a maximum of five 

iterations. All the machine learning models and feature selection libraries utilised in this study 

were developed using Python 3.7.3, ensuring consistency across the analysis. 

Measuring Feature-Feature Correlation 

In our analysis of CFAS, a total of 177 subjects were included. However, nine subjects 

had to be excluded from the analysis due to missing values in the class label. Regarding the 

ADNI dataset, individuals with mild cognitive impairment (MCI) were excluded, leaving us 

with a cohort of 70 out of 80 participants who were classified as either cognitively normal (CN) 

or diagnosed with dementia. To investigate the relationship between each feature, treated as a 

dependent variable, and the remaining features, considered as independent variables, we 

utilised multiple linear regression models. These models were implemented on both the ADNI 

and CFAS neuropathology cohorts. The coefficients R2 obtained from the models (specifically 

Equations 11–13) were used to describe the relationships between the features. To ensure 

consistency in the analysis, we applied feature normalisation to the numerical features. This 

was achieved using the minmaxScaler package from scikit-learn version 0.22.2.post1 [41]. For 

the linear regression models, we employed the ordinary least squares method with the 

statsmodels.formula.api package version 0.13.2. 
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The determination of coefficient (R2) represents the similarity of the dependent feature 

with the independent features by showing to which level the remaining features can explain the 

variability of the feature at hand. 

𝑅2  =  1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
         (11) 

where 𝑅𝑆𝑆 is the sum of squares residuals (Equation 12) and 𝑇𝑆𝑆 is the total sum of squares 

(Equation 13). 

𝑅𝑆𝑆 = ∑𝑛
𝑖=1 (𝑦𝑖  −  𝑓(𝑥𝑖))2      (12) 

where 𝑛 is the upper limit of summation, 𝑦𝑖 is the ith value of the feature to be predicted, and 

𝑓(𝑥𝑖) is the predicted value of 𝑦𝑖. 

𝑇𝑆𝑆 = ∑𝑛
𝑖=1 (𝑦𝑖  −  𝑦)2       (13) 

where 𝑛 is the number of the observation, 𝑦𝑖 is the the value in a sample, and 𝑦 is the mean 

value of a sample. 

Evaluation of Feature Ranks Against Feature-feature Correlation 

To normalise the scores of the CFAS and ADNI features, we utilised the minmaxScaler 

package from scikit-learn version 0.22.2.post1 [41]. This scaling process ensured that the 

feature scores were within the range of [0, 1]. Consequently, we performed linear regression 

analyses to examine the relationship between the feature scores and their corresponding R2 

values for each filter method. For data visualisation and fitting linear regression models, we 

employed the regplot() function from the Seaborn package version 0.11.0 [43]. The function 

creates a scatterplot with a linear regression model fit. It employs the Least Squares method to 

estimate the linear regression coefficients, minimising the sum of the squares of the differences 

between the observed and predicted values. The function also computes and plots a 95% 
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confidence interval for the regression line, which estimates the uncertainty around the line of 

best fit. This interval is calculated using bootstrapping with 1000 iterations by default, a 

resampling method that generates an empirical representation of the sampling distribution and 

quantifies the uncertainty of the estimate. This allowed us to plot the data and visualise the 

linear relationship. To calculate the correlation coefficients and corresponding p-values, we 

utilised the pearsonr() function from the SciPy.stats package version 1.7.3 [44]. This statistical 

analysis provided valuable insights into the strength and significance of the correlations 

between the variables. 

Dementia Classification 

In the CFAS dataset, a total of 177 subjects were initially included. However, nine 

subjects had to be excluded due to missing values in the class label. For the ADNI dataset, 

individuals with mild cognitive impairment (MCI) were removed, and the remaining 

participants with cognitive impairment or dementia were retained. Given the imbalance in the 

class label of the ADNI dataset, where there were 62 instances of 'Dementia' and only 8 of 'No 

Dementia,' we utilised the Synthetic Minority Oversampling Techniques for Numerical and 

Categorical Features (SMOTE-NC) [45,46]. This method was applied using the imbalanced-

learn toolbox, version 0.9.1 [47]. This technique involved generating synthetic data instances 

for the minority class label using the k-Nearest Neighbours classification algorithm with k=5. 

After balancing the ADNI dataset, we were left with 124 samples and 13 features. To train and 

evaluate the classifiers, we utilised scikit-learn version 0.22.2.post1 in Python3. The evaluation 

was performed using the "leave-one-out" cross-validation approach, ensuring robustness in the 

analysis. 

For further assessment of the neuropathological features, we employed various 

supervised learning techniques, primarily Random Forest (RF) [13] and Gaussian Naive Bayes 
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(GNB) [48]. The default parameter settings were used for both RF and GNB. Specifically, RF 

was configured with 100 estimators (the number of trees in the forest), and the quality of the 

split was measured using the Gini impurity function. The minimum number of samples 

required to split a node (min_samples_split) and the minimum number of samples required to 

be a leaf node (min_samples_leaf) were both set to 1. 

Evaluation of Classification Performance 

In this study, we approached the prediction of dementia as a binary classification 

problem, with the two classes being "Dementia" and "No dementia." To assess the performance 

of the feature subsets, we employed evaluation metrics such as accuracy, sensitivity, and 

specificity. These metrics provided valuable insights into the effectiveness of the selected 

features in predicting dementia. The following evaluation metrics were utilised for 

performance assessment: 

● True positives (TP): Number of dementia cases that were correctly classified 

● False positives (FP): Number of healthy subjects incorrectly classified as dementia cases 

● True negatives (TN): Number of healthy subjects correctly classified 

● False negatives (FN): Number of dementia cases incorrectly classified as healthy subjects  

● Accuracy (%): The proportion of correct classifications among total classifications: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑛
                   (14) 

where n is the number of total classifications per test 

● Sensitivity (%): The proportion of dementia cases correctly classified 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (15) 

● Specificity (%): The proportion of healthy subjects correctly classified 



127 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                   (16) 

Results 

Distribution of Neuropathology Feature Scores Across Dementia Cases 

Examining the distribution of neuropathology feature scores among dementia cases was 

crucial for gaining deeper insights into these features. We conducted an analysis to detect any 

dissimilarities in the feature distributions between cohorts and to provide plausible 

explanations for these variations. For this purpose, we plotted the distributions of all 

neuropathology features for the CFAS and ADNI cohorts, comprising 186 and 70 individuals, 

respectively (Figure 2). An interesting observation was made regarding the ADNI dataset 

diffuse plaques feature, which posed a similar challenge as the infarcts and lacunae feature in 

CFAS. In both cases, we had to group the columns corresponding to diffuse plaques based on 

their presence or absence. Our findings revealed notable differences in the distributions of 

certain features between the two cohorts. For instance, cortical atrophy, represented as a binary 

feature in CFAS and ordinally in ADNI, exhibited distinct distributions. Additionally, other 

features such as atherosclerosis, neocortical neuritic plaques, neuronal loss in the substantia 

nigra, argyrophilic grains disease, and diffuse plaques demonstrated different distribution 

patterns. We attribute these differences in feature distributions to a combination of factors, 

including the varying number of cases in CFAS (n=186) and ADNI (n=70) and the contrasting 

class distributions within the datasets. Notably, the CFAS dataset displayed a relatively 

balanced distribution, with 60.5% classified as dementia and 39.5% as non-dementia, as shown 

in Table 1. On the other hand, the ADNI dataset exhibited an imbalanced distribution, with 

88.6% classified as dementia and 11.4% as non-dementia. These findings underscore the 

importance of considering the dataset characteristics, including sample sizes and class 
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distributions when interpreting and comparing the distributions of neuropathology features 

across cohorts. 
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Figure 2:  Distribution of Neuropathology Features in CFAS and ADNI Datasets. The 

distribution of individuals with and without dementia was examined in both the CFAS and 

ADNI neuropathology datasets. The features presented in the table were arranged based on 

their ranking in the features list, moving from left to right. It is important to note that all 

features, except for cerebral amyloid angiopathy, were categorical in nature. In CFAS, 

cerebral amyloid angiopathy was the only feature that had numeric values. 

Ranking of Neuropathology Features 

To examine the utility of filter methods on dementia-related features, we conducted a 

feature selection analysis using two neuropathological datasets, CFAS and ADNI. We aimed 

to rank the features consistently across both datasets and derive valuable insights for improving 

dementia diagnosis and treatment. To achieve unbiased and comprehensive results, we 

employed multiple filter methods to assess the sets of neuropathological features in each 

dataset. By applying these methods, we calculated feature scores based on the models generated 

for each filter method (Figure 3). The ranking of features in descending order based on their 

scores provided a comprehensive and cross-dataset comparison, aiding the medical profession 

in better understanding dementia pathology. 

The consistent findings across both datasets revealed the significance of certain features 

in contributing to dementia. The Braak stage emerged as the most influential pathological 

feature, demonstrating strong correlations, particularly in the CFAS dataset (Figure 3A). In the 

ADNI dataset, other features such as neocortical neuritic plaques, Thal phase, diffuse plaques, 

and cerebral amyloid angiopathy were also highly correlated with dementia (Figure 3B). 

Notably, these results were consistent with those obtained from the CFAS dataset, which 

identified the Braak stage, Thal phase, and cerebral amyloid angiopathy as relevant factors 

associated with dementia. To further investigate the consistency of feature ranking across the 

filter methods in both CFAS and ADNI datasets, we conducted a detailed analysis. The overall 

outcomes of our study provided crucial insights into the neuropathological features that play a 

role in dementia. Furthermore, employing multiple filter methods ensures generalizability and 
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reduces the risk of biased outcomes, emphasising the importance of considering diverse 

approaches in feature ranking. 

 

Figure 3: Ranking of neuropathology features in order of association to dementia status as 

estimated by filter methods in (A) CFAS and (B) ADNI. The cumulative contributions of 13 

neuropathology features to dementia status in the CFAS and ADNI datasets are estimated by 

seven filter methods. The weight scores of each feature were normalised, and the percentage 

contribution of each feature was calculated by averaging the total weights assigned to it by 

the filter methods.  
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Consistency in the Ranking of Features Between Studies 

In this study, pathological feature rankings from the CFAS and ADNI datasets were 

assessed using various filter methods to identify quantitative discrepancies between these 

rankings. We compared the positional differences in feature rankings between the two cohort 

datasets (Figure 4A). 

Both datasets consistently positioned the top two features (Braak stage and Thal phase) 

and the ninth feature (atherosclerosis) identically. However, significant statistical divergence 

was observed for other feature rankings. For instance, neuronal loss in the substantia nigra and 

cortical atrophy occupied the third and fifth positions in CFAS, yet these were ranked four and 

six positions higher in ADNI. In contrast, diffuse plaques and arteriolar sclerosis, ranked eighth 

and tenth in CFAS, were higher in ADNI, sitting at fourth and eighth positions. 

Evaluation of the filter methods, including information gain, reliefF, symmetrical 

uncertainty, and least loss, revealed considerable variations in feature ranking. Of note, the 

most prominent discrepancies were identified using the least loss filter method, with the top 

two features in CFAS and ADNI descending six and nine positions, respectively. 

To summarise, there is considerable variability in pathological feature rankings in 

CFAS and ADNI datasets across the examined filter methods. However, certain features, like 

the Braak stage, demonstrated consistent patterns irrespective of the filter method employed. 

The discrepancy in ranking positions might result from differing models used by the filter 

methods to compute feature-to-class correlations. Despite normalising average scores to a 

unified scale to mitigate deviations, some features displayed diverse rankings.  
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Figure 4: Comparison of feature rankings in CFAS and ADNI. (A) Relative difference in the 

ranking of each neuropathology feature as estimated by each filter method. (B) Kendall's tau 

measure of correlation between CFAS and ADNI feature rankings from each filter method. 

The study used Figure 4B to compare different filter methods, aiming to showcase the 

consistency of each method when applied to two datasets, CFAS and ADNI. Kendall's tau 

measure was used to evaluate the level of consistent feature ranking within each dataset by 

each filter method. Kendall's tau measures the correlation between two ranking lists, with 

values near 1 signalling agreement, and values near -1 indicating disagreement. Filter methods 
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were assessed based on their statistical relationships between the ranked features in both 

datasets. 

We show in Figure 4B that the reliefF, Chi-Square, and least loss filter methods 

exhibited positive correlations in feature rankings for both ADNI and CFAS datasets. These 

results were in line with the earlier feature ranking for these filter methods. For instance, the 

reliefF, Chi-Square, and least loss methods showed similar rankings for features such as Thal 

phase, Braak stage, neuronal loss in substantia nigra, neocortical neuritic plaque, and cortical 

atrophy, with minor variations, indicating their reproducibility in feature ranking. Three 

methods maintained some consistency in feature rankings for the ADNI dataset, including the 

Braak stage, Thal phase, and neocortical neuritic plaque. Conversely, negative correlations 

were observed for variable analysis and information gain filter methods with -0.36, -0.18, 

respectively, when applied to ADNI and CFAS datasets. Additionally, the gain ratio and 

symmetrical uncertainty filter methods showed only slight consistency in feature ranking 

between the ADNI and CFAS datasets, with Kendall correlation coefficients (-0.03 and -0.03, 

respectively) close to zero. Of all methods, reliefF displayed the highest agreement between 

CFAS and ADNI feature rankings with Kendall correlation coefficients of 0.21, while variable 

analysis exhibited the most significant disagreement with Kendall correlation coefficients of -

0.36. Overall, reliefF, Chi-square, and least loss filter methods showed some degree of 

consistency with Kendall correlation coefficients 0.21, 0.18, and 0.18 respectively, whereas the 

remaining methods resulted in inconsistent feature ranking between the two datasets. 

High Correlations Between Alzheimer’s Disease Pathological Features 

Our study conducted a thorough analysis of the CFAS and ADNI datasets, which 

included 13 shared features. The analysis involved plotting the feature-feature correlation to 

identify highly correlated features. For instance, in neocortical neuritic plaques, we observed 
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correlation coefficients of 0.55, 0.52, 0.63, and 0.73 for diffuse plaques, CAA stage, Braak 

phase, and Thal phase, respectively. Figure 5A shows a positive correlation of Thal phase with 

diffuse plaques, CAA, and Braak stage with values of 0.49, 0.63, and 0.63, respectively. 

Additionally, The CAA was positively correlated with diffuse plaques with a value of 0.65, as 

reflected in Figure 5B. Furthermore, atherosclerosis demonstrated positive correlations with 

diffuse plaques, CAA, and arteriolar sclerosis of 0.80, 0.64, and 0.61, respectively. CAA also 

exhibited positive correlations with neuronal loss at substantia nigra and Braak stages of 0.53 

and 0.47, respectively. These correlations suggest a possible cluster of features that include the 

Thal phase, Braak stage, CAA, neocortical neuritic plaques, and diffuse plaques. 

Our study aimed to investigate whether the feature-feature correlations significantly 

influence the feature ranking determined by filter methods and which filter methods were most 

sensitive to these associations. To achieve this, we excluded the diagnostic class and considered 

each feature as a dependent variable, and the rest of the features as independent variables. We 

then utilised multiple regression models to determine the coefficient (R2), which measures the 

similarity of the available feature to the rest of the dataset by identifying how the remaining 

features can explain the feature's variability. In both CFAS and ADNI, the Thal phase, 

neocortical neuritic plaque, and Braak stage showed the highest R2 scores, indicating their 

potential significance in these datasets, with scores of 66%, 65%, and 61% for CFAS and 87%, 

83%, and 82% for ADNI, respectively. Therefore, to investigate the impact of feature-feature 

correlations on feature ranking using filter methods, it is necessary to analyse the association 

between feature correlations and feature ranking scores. 
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Figure 5: Spearman Correlations and R2 of Pathological Features from the ADNI and CFAS 

Datasets. (A) A heat map of Spearman correlation for the CFAS neuropathological dataset. 

(B). Spearman correlation for the ADNI neuropathological dataset. A correlation coefficient 

close to 1 (red) indicates a very strong positive correlation between the two variables, while a 

correlation coefficient closer to -1 (blue) indicates a strong negative correlation. Generally, 

the lighter the colour, the closer it is to white (zero), and the weaker the correlation. On the 

right-hand side of panels, A and B, the R2 values range from [0-1]. 
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Impact of Feature-Feature Correlations on Feature Ranking 

   The study investigated discrepancies and inconsistencies in feature rankings obtained 

by filter methods, as some methods resulted in inconsistent feature ranking between two 

neuropathology datasets. The investigation considered the impact of feature-feature 

correlations on feature ranking scores. The aim was to identify filter methods that were less 

sensitive to similarities among the neuropathological features themselves in order to reduce 

any feature ranking discrepancy. 

Pearson correlation was used to measure the association between the feature ranking 

scores and R2 since all values were numeric, and a Min-Max normalisation technique was 

applied on feature ranking scores to ensure that all values were on the same scale. For the CFAS 

dataset, the results indicated a weak positive relationship between feature ranking scores and 

R2 for all filter methods as shown in Figure 6. However, a weak relationship was observed for 

the gain ratio filter method. Most features were located below the relationship line, indicating 

that this filter method is not sensitive to the relationship between feature ranking and feature-

to-feature correlation. A similar pattern was observed for the remaining filter methods, though 

with a slightly higher positive correlation. 

The results of feature rankings obtained from the ADNI dataset were consistent with 

those from the CFAS dataset. There was a significant positive correlation between feature 

ranking scores and R2 values, which ranged between r=0.79 and r=0.92 in ADNI. CFAS had a 

slightly lower positive correlation ranging between r=0.23 and r=0.63. Consequently, ADNI 

demonstrated a stronger correlation between feature ranking and feature-feature correlation 

represented by R2 than CFAS for all feature selection methods considered. As the coefficients 

of ADNI data were somewhat similar, no filter method stood out from the rest. 
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Pearson correlations (coefficients and p-values) were used to determine which filter 

method was affected by feature-feature correlation when ranking features. Statistically 

significant correlations were found between ReliefF and CFAS (r=0.61, p-value=2.81e-02) and 

ADNI (r=0.92, p-value=8.85e-06). Conversely, the gain ratio and the least loss ranked last two, 

respectively, in terms of correlation coefficients, with the most sensitivities (CFAS: r=0.28, p-

value=3.46e-01) and (ADNI: r=0.88, p-value=6.32e-05) for Gain Ratio, (CFAS: r=0.23, p-

value=4.46e-01) and (ADNI: r=0.79, p-value=1.34e-03) for Least Loss, based on feature-

feature correlations and feature rankings.  



138 

 

Figure 6: The relationship between feature-feature correlation and feature ranking obtained 

from filter methods using ADNI-pathology and CFAS datasets. Best fit linear models with 

confidence intervals (shading) describe the relationship. Pearson’s correlation coefficients (r) 

and p-values (p) are reported. 

Classification Using Highly Ranked Neuropathology Features 

The study employed classification models, specifically the Random Forest and Naive 

Bayes classifiers [13], to evaluate the efficacy of selected neuropathological features. We 
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assessed the performance of dementia classification on specific subsets of data from both ADNI 

and CFAS datasets. The features selected for evaluation in the CFAS and ADNI datasets were 

presented in Table 2.  

Table 2: Selected sets of features from the CFAS and ADNI Datasets based on feature ranking 

and feature-feature correlations 

Description  CFAS ADNI 

All features All 13 features All 13 features 

Features ranking higher 

than expected (RHE)⁺ 

1. Braak stage 

2. Cortical atrophy 

3. Neuronal loss in substantia 

nigra 

1. Atherosclerosis 

2. Braak stage 

3. CAA 

4. Neocortical neuritic plaques 

Features ranking lower 

than expected (RLE)⁻ 

1. Haemorrhage 

2. Infarcts & Lacunes  

1. Hippocampus 

2. Cortical atrophy 

3. Argyrophilic grain disease 

⁺ Features ranking higher than expected: Features that rank higher than expected, based on feature-

feature correlation, are denoted as the features that fall below the confidence intervals in Figure 6. 

⁻ Features ranking lower than expected:  Features that rank lower than expected, based on feature-

feature correlation, are denoted as the features that fall below the confidence intervals in Figure 6. 

Accuracy, sensitivity, and specificity rates of the Random Forest and Naive Bayes 

classifiers on distinct subsets of neuropathological features in the CFAS and ADNI datasets 

were investigated and compared. Figure 7A shows that the dementia classifications obtained 

from the Random Forest algorithm using ADNI in all group subsets were superior to those 

derived from CFAS, except for the sensitivity rate calculated by the Random Forest algorithm 

on the CFAS dataset. The same pattern was observed with the Naive Bayes algorithm based on 

the same group subsets Figure 7B. 
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Figure 7: Classification performance using subsets of ranked features. (A) Performance 

results obtained by the Random Forest algorithm on the different subsets of features. (B) 

Performance results obtained by the Naive Bayes algorithm on the different subsets of 

features. For both classification algorithms, the accuracy, sensitivity, and specificity measures 

were used for subsets of features for CFAS and ADNI datasets. The feature names for the 

subsets were shown in Table 2. 

The classification algorithms derived from distinct sets of neuropathological features 

demonstrate higher sensitivity rates. Higher sensitivity rates are desirable to minimise false 

negatives and ensure that individuals with dementia are accurately identified. Notably, CFAS 

exhibits remarkable sensitivity rates for RHE. For instance, the Random Forest classifiers 

derived from such features in CFAS have a sensitivity rate of 81.3%. A similar trend was 

observed with Naive Bayes classifiers derived from RHE subset in CFAS with a sensitivity 

rate of 81.3%. 

However, the specificity rate of the CFAS features RHE was low 54.3%. This subset's 

low specificity implies that the classifiers cannot distinguish patients without dementia from 
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those with the condition. Overall, the classification algorithms and all neuropathological 

subsets generated low specificity rates, at least for the CFAS dataset. 

Conversely, the classification algorithms performed exceptionally well for distinct 

subsets of the neuropathological features in ADNI. According to the ADNI results, a Random 

Forest algorithm produced the best classifier for features RHE, with a 94.40% accuracy, 90.0% 

sensitivity, and 98.4% specificity, demonstrating high predictive power. While in CFAS, Naive 

Bayes performed best for a subset of ranking higher than expected at 70.6% accuracy, 81.3% 

sensitivity, and 54.3% specificity.  

The feature selection analysis results align with the classification algorithms’ findings. 

Based on these results, clinicians can leverage significant neuropathological features during 

the clinical assessment of dementia, including features RHE by feature-feature correlation from 

ADNI. Furthermore, although the sensitivity results obtained from the distinct feature subsets 

of CFAS by the classification algorithm were remarkable, the ADNI feature subset results were 

more convincing. This was because the performance measures results were balanced, making 

ADNI more suitable for dementia analysis, at least when neuropathological features were 

considered. 

Discussions & Conclusions 

According to the initial analysis presented in the distribution of neuropathology feature 

scores across dementia cases, several findings were observed, some of which have been 

previously published. Both the CFAS and ADNI studies showed that the percentage of 

individuals with dementia increased as the Braak stage increased, with a peak at stage IV for 

CFAS and stage V for ADNI [20,49]. Similarly, both studies observed an increase in the Thal 

phase [20,49]. The CFAS data showed higher cerebral amyloid angiopathy across individuals, 

while ADNI revealed a higher rate of dementia was associated with a higher number of brain 
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areas with cerebral amyloid angiopathy and its severity. Additionally, both studies observed 

brain atrophy in dementia patients. 

The ranking of neuropathological features was consistent with the results obtained by 

different filter methods. Using Kendall's tau as a measure of comparison between filter 

methods, the rank order of features was found to be correlated between ADNI and CFAS for 

those generated by the same methods. Some filter methods, including reliefF, Chi-Square, and 

least loss, generated similar rankings for specific neuropathological features in both datasets. 

However, other filter methods, including gain ratios and symmetrical uncertainty, produced 

different rankings between the ADNI and CFAS datasets. We also compared feature rankings 

for ADNI and CFAS in relation to the correlation between features, as measured by 

multivariate regression R2. ReliefF filter method had the strongest association with feature-

feature correlations in both datasets. Compared to the CFAS dataset, the ADNI dataset showed 

stronger relationships between filter methods and feature-feature correlations. Feature-feature 

correlations had the most influence on the rankings from the gain ratio filter method in both 

datasets. 

We further assessed the impact of selecting subsets of ranked features on the 

classification of dementia. Classification algorithms developed from distinct sets of 

neuropathological features had a high accuracy of up to 94.4%,  90.3% sensitivity, and 98.4% 

specificity using the Random Forest classifier in ADNI for ranked features impacted by feature-

feature correlation. While in CFAS, the Naive Bayes classifier achieved the highest 

performance in classifying dementia status with 70.6% accuracy, 81.3% sensitivity, and 54.3% 

specificity for the subset of highly ranked features. This classification performance is consistent 

with the previous classification models using neuropathology features in CFAS [20], and using 

imaging features from ADNI in deep neural networks [50,51]. 
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In conclusion, this research demonstrated the association between feature-feature 

correlation and the feature ranking scores obtained by filter methods in medical applications 

such as dementia diagnosis. The study found that the ReliefF filter method is less sensitive to 

feature-feature correlations and that these correlations significantly impact the ranking of 

features and the performance of diagnosis models developed from the two dementia cohorts. 

The findings of this study indicate that filter methods for selecting neuropathology features 

associated with dementia are impacted by the feature-feature correlation and may differ 

between cohort studies. It's important to note that these results are based on the analysis of just 

two datasets, and further study may be required for broader applicability. By investigating the 

potential bias in filter methods, it is possible to minimise discrepancies in feature rankings and 

determine a reliable set of significant features for the purpose of classification algorithms. 

Code Availability and Requirements 

Links for python script codes in GitHub for the process and producing all results and figures  

(https://github.com/mdrajab/CFAS-and-ADNI-Neuropathology.git). The machine was used in 

this study: macOS Monterey version 12.6.2, MacBook Pro (13-inch), and Processor: 2.3 GHz 

Dual-Core Intel Core i5. Anaconda Navigator 1.9.12 was used to launch Jupyter Notebook 

version 6.1.4. 

Availability of data and materials  

Data from the CFAS study is accessible via application to the CFAS 

(http://www.cfas.ac.uk/cfas-i/data/#cfasi-data-request), under the custodianship of FM and 

CB. Data from the ADNI study is accessible via application to the ADNI 

(https://adni.loni.usc.edu/about/), contingent on adherence to the ADNI Data Use Agreement. 
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Chapter 5 - Conclusion and Future Directions 

This thesis investigated applying filter methods to neuropathology data to address a number of 

challenges, and to achieve the main aims that are briefly summarised hereunder:  

1. Assessing AD-related pathologies in a large cohort of elderly individuals (CAFS) to 

seek influential features.  

2. Investigating neuropathological feature ranking in CFAS and ADNI data to evaluate 

feature ranking consistency among different dementia data cohorts, and to develop a 

global score per feature. 

3. Evaluating the impact of feature-feature correlation on the ranking of features to 

determine a sensitive filter method for feature ranking.  

4. Testing ML algorithms to determine whether they can better classify dementia 

conditions.  

To achieve the first aim, and answer the research questions on how to rank features in 

an unbiased way, and determine influential neuropathological features, the study investigated 

using CFAS that Alzheimer-related and other dementia-related pathologies were measured, 

and reported the limits of ML classification of dementia utilising neuropathology indicators. 

Although different feature ranking methods yielded slightly different orders of association with 

dementia status, the top-ranked features were consistent across methods. Specifically, the 

Braak NFT and BrainNet tau stages were the top two selected features, in line with previous 

studies [10–12,124,125]. These indicators, which were detected, are passed to a classification 

algorithm to develop AD detection models that would help pathologists and clinicians 

understand dementia pathology. Interestingly, the results also indicated that subpial thorn-

shaped astrocytes (TSA) in the mesial temporal lobe were highly ranked, contrasting with prior 

studies [12]. Additionally, three clusters were found of highly correlated measures in the 

https://paperpile.com/c/c3CVUk/o4bX8+9mfOG+k1R89+Wt60P+KLEO9
https://paperpile.com/c/c3CVUk/KLEO9
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dataset: CAA, TSA, and microinfarct-related, indicating redundancy. Eliminating redundant 

features may reduce collinearity and improve the performance of feature selection and 

classification accuracy [126–130]. 

To achieve the second aim of the thesis, and answer the research question on which 

filter methods are less sensitive to feature-feature correlations, the study empirically developed 

a process to rank scores for neuropathological features, and modelled the correlation between 

these scores and among the features themselves using ML techniques and rigorous empirical 

analysis. The approach was evaluated using classification algorithms to ascertain the usability 

and medical performance of the developed diagnosis models, particularly in terms of evaluation 

metrics such as detection rate. The empirical evaluation was conducted using AD-related 

neuropathological indicators and their correlations on two datasets, CFAS and ADNI. 

 The proposed approach was evaluated to achieve the third aim of the thesis and to 

answer the research question of whether there is a difference between two cohorts of ageing 

individuals (ADNI and CFAS) in terms of the association between feature-feature scores and 

feature rankings. Answering this question will reduce the discrepancy in feature ranking, and 

possibly generate a concise set of neuropathological indicators that can be passed to the ML 

algorithms to achieve the fourth aim of the thesis. An in-depth analysis of the neuropathological 

features of dementia was conducted utilising CFAS and ADNI and a multiple regression 

method. In this approach, the correlation between each feature and diagnostic class was 

modelled. Following, a test of whether feature-feature correlations significantly influence 

feature ranking, and the filter methods most sensitive to such associations are identified. 

Reported results indicated consistent rankings of indicators across filter methods, with 

some differences noted between the ADNI and CFAS datasets. The ReliefF filter method was 

found to be less sensitive to feature-feature correlations, while the gain ratio filter method was 

https://paperpile.com/c/c3CVUk/CSU5Z+d75XW+Np438+Vx9xO+424lO
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the most sensitive to such correlations in both datasets. For the CFAS dataset, ReliefF and 

information gain showed the strongest positive correlation with feature-feature correlations, 

while the Chi-square and symmetrical uncertainty filter methods also showed moderate 

positive correlations. The least loss and gain ratio filter methods exhibited weak positive 

correlations. For the ADNI dataset, ReliefF and Chi-square showed the strongest positive 

correlation with feature-feature correlations, while information gain and variable analysis had 

moderate positive correlations. Gain ratio and the least loss filter methods had weak positive 

correlations. Overall, results suggested that ReliefF is less sensitive to similarities in data 

features, showing the strongest positive correlation with feature-feature correlations in both 

datasets. Chi-square also showed relatively strong positive correlations in both datasets. 

However, other filter methods showed varying degrees of sensitivity to similarities in data 

features, with some showing only weak positive correlations (e.g., gain ratio and the least loss) 

and others showing moderate to strong positive correlations (e.g., information gain and variable 

analysis). 

The study demonstrated that feature-feature correlations significantly impact the 

ranking of features and the performance of diagnosis models for dementia and can vary 

between cohort studies. The proposed approach can reduce the discrepancy in feature ranking 

and generate a robust set of important features for classification algorithms. Thus, future studies 

on neuropathology in the context of dementia research can employ various filter methods to 

identify more reliable biomarkers and improve the early detection of diseases. 

To achieve the forth aim, the study evaluated several classification algorithms to 

determine whether the diagnosis models developed are competitive in terms of evaluation 

metrics. The study assessed the effectiveness of selected neuropathological indicators in 

classifying dementia and found that dementia classification models constructed from the ADNI 

data subjects' performance were superior in terms of sensitivity rates of the dementia predictive 
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models to those constructed from the CFAS dataset. Neuropathological indicators, particularly 

the Braak stage, were found to have the highest correlation with dementia in the CFAS dataset, 

while neocortical neuritic plaques had the highest correlation in the ADNI dataset. 

5.1. Limitations and Ethical Implications 

Utilising data–driven approaches based on ML with feature selection techniques have 

shown superior performance in classification accuracy, recall, and precision rates of the 

dementia predictive models, in addition to identifying informative dementia neuropathological 

indicators that can help pathologists during dementia conditions evaluation. However, machine 

learning with small datasets can be considered one of the limitations of this thesis due to the 

limited number of subjects with neuropathological indicators. In addition, there were fewer 

samples after data pre-processing and quality control, which ensured that the input data were 

adequate for learning classification models by considering class balancing normalisation, 

smoothing, and missing values, among others. Without considering these pre-processing 

operations on the original data subsets from ADNI and CFAS may result in biassed models 

with inaccurate measurements due to the generally proportional relationship between dataset 

size and the recognition of patterns by ML algorithms [131–133].  

Additionally, variations in the measurement of features across different datasets, such 

as the CFAS and ADNI datasets, may introduce bias when ranking features or training models, 

thereby limiting the performance in terms of the predictability of classification models. 

Addressing these discrepancies requires careful consideration of feature selection and data 

standardisation techniques to ensure consistent interpretation of the same feature across 

different datasets [134]. Furthermore, the interpretation of common features between datasets 

may be limited by the high number of neuropathological features and the need for expert 

interpretation. Also, the time lapse between dementia assessment and post-mortem brain 

https://paperpile.com/c/c3CVUk/zZv5w+M5r7u+gTi94
https://paperpile.com/c/c3CVUk/WD0ml
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assessment may pose a challenge in relating neuropathology assessments to clinical diagnoses 

of dementia. 

Another limitation of this research is the disproportionate focus on one form of 

dementia, namely AD. For instance, all data subjects in ADNI are associated with AD, and 

most of the data subjects in CFAS are also associated with AD although no condition type is 

provided for this study. This limitation is attributed to the limited accessible data available for 

scholars for dementia conditions other than AD. 

Not considering clinical evaluation of dementia using neuropsychological assessments 

such as MMSE, ADAS-13, MoCA, can limit the scope of the work to post-mortem 

investigations. Whereas studying dementia in its preliminary stage is imperative for quick 

intervention and healthcare accessibility. For example, screening for a dementia precursor such 

as MCI or light dementia is more challenging since in these stages there is multiple overlapping 

between dementia and other cognitive conditions. More crucially, patients and caregivers can 

take advantage of early screening to manage the process of progression, and thus follow more 

optimised therapy and disease management plans. Analysing cognitive elements could help the 

proposed model expand the scope of the research work into dementia screening. This could be 

critical for dementia research, especially when innovative, accurate, and cost-effective 

technology such as ML is used. We consider this limitation a potential research opportunity for 

others to pursue in which they include additional cognitive items related to cognitive tests from 

dementia data studies such as ADNI. 

Other possible ethical implications of this study are the model’s accuracy and fairness. 

Since this research entails the use of ML techniques, the accuracy of the models developed is 

subject to the features and the data observations used. In applications such as dementia 

diagnosis, false positives can increase the cost of detecting dementia, including AD, by asking 
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for assessments, while false negatives may postpone effective interventions. It is imperative to 

reduce the number of false positives and false negatives. For model and process fairness, from 

one angle the research study involved not only experts in computational theory and ML, but 

also medical professionals such as pathologists to ensure that the data driven process followed, 

and the outcomes, are fair and not biased. Consequently, decisions made by the ML models 

have been contested and evaluated by medical professionals. 

Dementia conditions’ diagnosis is a sensitive medical application due to the 

involvement of elderly people who are inherently vulnerable. Therefore, this type of research 

poses challenging ethical matters requiring an ethical framework to be established for 

dementia-related research. Examples of ethical matters related to dementia research include 

consent capacity, consent approval, data collection, patient support, caregiver support, data 

security, etc.  

Since this research study has dealt with dementia, specifically AD, using ML to build 

models to help pathologists understand certain dementia conditions, and important 

neuropathological indicators, there are some ethical issues that may arise in relation to data 

analysis, and decision making. For example, the process of evaluating neuropathological 

features used for constructing the decision-making models, is automated. In this context, and 

according to General Data Protection Regulation (GDPR), particularly the section that entails 

‘automated decision making’ for subjects’ data processing, there will be some ethical issues 

such as that the ML models (results generated) are normally biased toward the type of learning 

involved during the training step. The models generated and tested will possibly hold a certain 

bias toward their learning scheme.  

Moreover, the analysis conducted using feature selection also holds a certain bias to the 

mathematical models used to model the feature-diagnostic and feature-feature associations, 
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which have been primarily employed to develop the global score and to measure filter 

sensitivity. Another possible ethical implication of this study is the way the diagnostic class 

was allocated to the dementia conditions. For instance, in the ADNI study, the diagnostic class 

was allocated by clinicians using clinical experience as well as clinical neuropsychological 

tests such as MMSE and CDR-SB. However, the way the diagnostic class was assigned in the 

CFAS study was primarily based on brain tissue from deceased individuals and by using 

neuropathological features. Despite these factors, this research investigated common 

neuropathological features and in each data study the class allocation procedure is different 

which can be seen also as a limitation. 

In terms of ethical implication, the difference in diagnostic class allocation between 

ADNI and CFAS studies poses an ethical challenge, especially in that invasive procedures have 

been used, even after the subject’s death. These procedures are often costly and require the 

availability of specialised medical professionals and laboratories. More importantly, in future 

studies related to the diagnosis of dementia, there is a possibility of using fewer invasive 

procedures to determine early signs of MCI or mild dementia and using fewer cognitive tests 

(one or more) or neuroimaging. The former is more cost effective.  

5.2. Future Directions 

Further investigations of the approach can be carried out by exploring alternative ML 

techniques, including embedded feature selection, and evaluating additional cohorts with 

similar pathology features and clinical outcomes, such as the Rush Memory and Ageing Project 

[135] or UK Biobank, to validate the findings from the CFAS and ADNI datasets. As the 

number of available samples is limited, it may be necessary to employ simulated or resampled 

data to evaluate the approach on larger datasets. Despite that there are datasets that captures 

the cognitive status of patients and cognitively normal subjects, there is limited research on 

https://paperpile.com/c/c3CVUk/GuBW5
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how the cognitive status associates with neuropathological indicators during the disease 

progression, and how such association differs between dementia severity, e.g. mild dementia 

to severe dementia, pre-dementia to mild dementia. 

It is important to note that different types of dementia may exhibit distinct pathological 

features that must be quantified to link with dementia symptoms [136–138]. To address this 

issue, follow-up reports on the cognitive status of participants could be collected from 

individuals who knew the person until the time of death. To improve the conciseness and 

standardisation of neuropathological features across different datasets, it is recommended that 

pathologists or other experts contribute to the interpretation and inclusion of features. 

Furthermore, to ensure generalizability, the approach should be applied to datasets beyond 

dementia to other complex disorders. Finally, create a tool that can independently select 

relevant features in ML. This tool will have multiple filter methods that can be selected, 

allowing users to rank features based on their importance. Additionally, the tool will consider 

the association between the rank scores of features and feature-feature correlations to produce 

global feature ranking results. 

ML algorithms, through their profound ability to analyse vast medical datasets, are 

paving the way for transformative real-world applications in healthcare. Furthermore, ML-

driven decision-support systems are now becoming part of many hospital infrastructures, 

aiding physicians in making evidence-based decisions that directly impact patient outcomes. 

The fusion of ML with real-world medical applications ensures that the path from diagnosis to 

treatment becomes more streamlined, precise, and patient-centric.

https://paperpile.com/c/c3CVUk/L2ANV+Ll4Ta+zj83E
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