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Abstract

The estimation of surgery outcomes is of great value when deciding if surgery
is the best treatment for a particular patient. In the present work, machine
learningmethodswere developed to enable estimation of revision andmortality
risks after joint replacements and also the prediction of postoperative PROMs.
The estimation of the revision and mortality risks are within the domain of sur-
vival analysis which has recently received increased attention in the machine
learning literature with the ultimate goal of achieving universal approximation
similarly to other machine learning tasks. With that purpose, we proposed the
metaparametric neural network (MNN) framework which is a hierarchical altern-
ative to neural networks that allows analytical manipulation of the model func-
tion representation. The Universal Approximation Theorem for Metaparametric
Neural Networks provides a formal guarantee that the proposed class of mod-
els can approximate any continuous function arbitrarily well similarly to other
neural network structures. The MNN framework was applied to survival analysis
allowing the development of three different models, each being derived from
a different class of survival models, proportional hazards (PH-MNN), direct haz-
ards (DH-MNN) and quantile regression (QR-MNN). In particular, the PH-MNN
model achieved the best results and outperformed current state-of-the-art. An
alternative version of the PH-MNN model, nested PH-MNN, was also proposed
achieving similar performance and allowing better interpretability as well as a
transfer learning strategy that successfully reduced overfit. In the prediction of
postoperative PROMs, themain contributionwas casting of the estimation prob-
lem as a classification problem rather than a regression problem. This allowed
a probabilistic modelling that comprehensively represents the data being mod-
elled, allowing retrieval of other metrics with better interpretability. The proposed
approach achieved better estimation performance than state-of-the-art.
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1
Introduction

1.1 Background and context
A joint replacement surgery is a common medical procedure to treat Os-

teoarthritis and other pathologies. While they rarely impose a direct life threat
to patients, these pathologies might have serious consequences in their ability
to perform important daily life activities. Similarly to most medical treatments,
the outcome of joint replacement surgeries is not certain and in rare cases, they
might have severe adverse consequences. As a result, there are several cases in
which it is not possible to determine objectively if a surgery is the best treatment
and this decision should be largely determined by the patient’s perception of
the trade off between the potential benefits to be achieved with it and the risks
to be taken. In order for the medical decisions to best reflect the interest of
the patients, it is important that patients are provided the most accurate pos-
sible knowledge about the impacts of their decision. Based on this need, the
National Joint Registry (NJR) for England, Wales, Northern Ireland and the Isle
of Man has financed the development of a patient decision aid (PDA) web
based tool, which allows patients to enter their information and receive a per-
sonalized assessment of their prognostics after a hip or a knee replacement.
The present PhD project is a part of this development and its main goal was the
development of machine learning methods to estimate the outcomes of joint
replacements, allowing an improvement of the PDA tool.
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There are multiple ways in which the outcome a joint replacement might be
different from what is expected. First, it is possible that the desired improvement
in the performance of daily activities is not achieved. Also, there are cases in
which the joint health worsens again some time after the surgery, being neces-
sary for the patient to undergo a revision surgery. Indeed, according to the
dataset from the NJR, which contains data from over 1,00,000 knee and 800,000
hip replacement surgeries performed in these countries from 2003 to 2018, 4.3%
and 2.9% of patients who undergo respectively a knee or a hip replacement
surgery have a revision within ten years from the first procedure. Even though
they are low risk surgeries, there is also a small chance that a patient might die
during the surgery or because of a later complication. The risk of death within
one month from a joint replacement surgery according to the same dataset is
0.14% and 0.15% respectively after a knee or a hip replacement surgery.

There are several factors that influence the outcome of a surgery, some of
which can be easily measured and accounted for like age, BMI and the type of
implant used, and some of which might be impossible to completely account
for like the ability of the surgeon or how much does the patient comply with
medical recommendations. Although it might be impossible to identify and ac-
count for all factors that may influence the outcome of a surgery, it is important
to do so to the maximum possible extent. Indeed, complications that are rare
for the average population might be more common within specific groups of
patients and identifying this type of pattern is fundamental for improving the de-
cision process about whether or not a surgery is the best treatment for a given
patient.

The PDA tool which is being financed by the NJR intends to overcome these
difficulties in the collaboration between doctor and patient to achieve a de-
cision about the treatment that best reflects the interest of the patient. In this
tool, a web interface is made available to patients, where they can fill their in-
formation either by themselves or with the help of a doctor. In the later case, a
more detailed model is available. As a result, patients are informed of their ex-
pected post operative joint health, which is measured by the patient reported
outcomes measures (PROMs). Additionally, they are informed of the probability
for having to redo the surgery in the following years and the risk of death through-
out the year following the surgery. Before this project the PDA tool used linear
models to estimate each outcome of the surgery, having margin for improve-
ment with the usage of machine learning methods. The present PhD project is
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part of this development and has investigated novel machine learningmethods
to improve the performance of the PDA tool.

1.2 Research aims and objectives
The estimation of the risks of revision and death after a surgery are within the

theoretical framework of survival analysis, which studies methods that estimate,
as a function of the observation time, the probability for some event to have
already occurred. Survival analysis can be interpreted as an extension of both
regression and classification modeling scenarios. In regression problems, it is ne-
cessary to estimate a real valued quantity as a function of input variables. Sur-
vival analysis extends this domain by modeling instead the probability distribu-
tion for the same quantity. In classification problems, it is necessary to estimate
how the probability of a label depends on the input variables. This domain is
extended in survival analysis by making the label probability time dependent.
While the domain of survival analysis models is more general than the domain
of regression and classification models, this imposes additional challenges to
it, which are usually solved by imposing simplifying hypothesis that restrict the
models to a particular class of problems.

The most traditional approach for developing survival models, in which is
based the model currently used in the PDA tool, is the proportional hazards
assumption. It divides the survival model in two parts, one exclusively time de-
pendent and other exclusively dependent on the input variables, usually known
as covariates. Within this assumption, the time dependent component of the
probability distribution is the same for all possible values of the covariates and
the component that is dependent on the covariates has a one dimensional out-
put, allowing the estimation of the model parameters with the available data.
While this assumption makes the estimation process easier, there is no guaran-
tee that the true survival probability of an experimental scenario obeys it. In-
deed, there are numerous practical examples in the literature of circumstances
in which it is not possible to achieve a satisfactory model within the proportional
hazards assumption.

The recent advances in machine learning literature has led to unpreceden-
ted results in statistical modeling task in the presence of big data. The purpose
of the current project is to explore to the maximum possible extent the machine
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learning techniques in the tasks present in the PDA tool. While more generic
models usually require more data to be estimated than less generic models, this
allows the resulting model to achieve a more precise description of the stud-
ied phenomenon. Indeed, a more generic model is capable of producing a
broader class of functions, which means that more data is necessary to choose
between all possible functions that the model can represent and also that this
class of functions is more likely to contain a good approximation of the true
function that is being estimated. The improvement of the estimation accuracy
of the models in the PDA tool leads to a more accurate knowledge by the pa-
tients about the consequences of a joint replacement surgery, which provides
them a better basis to make decisions about the type of treatment they will
undergo. Nevertheless, while the estimations of post-operative PROMs is within
the scope of well established machine learning methods, there are important
challenges to be overcome in the application of machine learning to survival
analysis. The present work has improved the state of the art formachine learning
in survival analysis, and a class of models with universal approximation property
was proposed.

Themost important aspects to be considered in the development of a survival
analysis model are the parametrization of themodel and the objective function
used for parameter estimation. For the first problem, the three most relevant ap-
proaches in the statistical literature are the proportional hazards model, the ac-
celerated failure time (AFT) model and the discrete time model. The AFT model
supposes that the failure process is accelerated or decelerated depending on
the covariates without changes in the shape of the failure probability distribu-
tion. The discrete time models split the follow up time into small intervals, allow-
ing the approximation of the estimates in each interval to standard classifica-
tion methods. Another aspect that is important to the development of survival
models is the extension to competing risks scenarios. This is a type of scenario in
which there are more than one event of interest, which are mutually exclusive.
Although prior to this work, the models in the PDA tool were all single risk, the
possibility to use competing risks models to estimate the probability of different
causes of death or different causes of revision will be studied in this work.

The tasks to be performed in the present work in order to allow the improve-
ment of the PDA tool are:

a) Development of a generic machine learning method for survival mod-
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eling.

b) Establishment of an estimation procedure for the proposed model, al-
lowing parameters to be successfully estimated from data.

c) Competing risks extension of the proposed method.

d) Application of the proposed method to estimation of revision and mor-
tality risks after hip and knee replacement surgeries.

e) Development of a machine learning model for estimation of postoper-
ative PROMs.

1.3 Research Contributions
The main contributions of this work are the following:

a) Proposal of the metaparametric neural network (MNN) framework for
machine learning allowing the extension of a broad range of survival
models andprovidingbetter interpretability of the estimatedmodel due
to its grey-box structure in opposition to the black-box structure of vanilla
neural networks.

b) Proof of the Universal Approximation Theorem for MNNs, which guar-
antees that MNNs can approximate any continuous function provided
that enough parameters are provided.

c) Proof of Theorem 2, which enables estimation of the PH-MNN model
with the profile likelihood and shows that the couple baseline hazard
model class (to which the PH-MNN model belongs) can achieve the
maximum likelihood among all possible survival models.

d) Proof of Theorem 3 providing the theoretical background for the partial
likelihood estimation of the PH-MNN model.

e) Proposal of a transfer learning strategy allowing the use of heterogen-
eous data to avoid overfit.

f) Novel application of classifier neural networks to perform probabilistic
estimation of postoperative PROMs scores.
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1.4 Thesis Outline
The chapters of this thesis are organized as follows:

• Chapter 1 - Introduction: thepresent chapter, which included theback-
ground for the work, the research aims and objectives, the list of contri-
butions and the outline of the thesis.

• Chapter 2 - Literature Review: a detailed description of the state of the
art of survival modeling is provided including both statistical and ma-
chine learning methods.

• Chapter 3 - Metaparametric Neural Networks: a novel class of machine
learning models is proposed and a universal approximation theorem is
proven showing that these models can approximate any continuous
functions over a compact space.

• Chapter 4 - Metaparametric Neural Networks for Survival Analysis: The
MNN modeling approach is applied to survival analysis, resulting in the
extension of multiple classes of survival models to achieve the universal
approximation property.

• Chapter 5 - Maximum Likelihood Derivation of the PH-MNN Estimator
and its Properties: The proof of two theorems is presented. The first show-
ing that the coupled baseline hazard structure (which includes the PH-
MNN model) can achieve the maximum likelihood among all possible
survival models. The second showing that partial likelihood estimation
achieves the same asymptotic properties as profile likelihood estima-
tion.

• Chapter 6 - Survival Modeling of Joint Replacement Surgeries: The nes-
ted PH-MNN model is applied to estimate revision and mortality risks
after hip and knee replacements. A transfer learning strategy is pro-
posed to allow the use of data without preoperative PROMs input as
part of the training of a model that includes preoperative PROMs, re-
ducing overfit.

• Chapter 7 - Neural Network Classifier Approach for Postoperative
PROMs Prediction: The task of estimating postoperative PROMs was
cast as a classification task instead of regression and a classifier neural
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network was used to predict postoperative PROMs, achieving better
performance than current state of the art.

• Chapter 8 - Conclusions and Future Work: The results of the work are
summarized and analyzed with reference to the research aims and ob-
jectives. Possible directions for future research are pointed out.
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2
Literature Review

Survival analysis studies mathematical models of scenarios where subjects are
expected to experience a given event at a timewhich is unknownprior to obser-
vation. The most common application of survival analysis is in medical studies,
where it is desired to determine the risk of death or the risk of a certain disease
as a function of time within a group of patients.

2.1 Basic concepts
2.1.1 Mathematical representations of the survival probability

The main task in survival analysis is to model the occurrence of events as func-
tion of time. In the simplest case in which only one type of event is studied,
there is only one random variable being modeled which is the time for the first
occurrence of the event. Then, the estimation problem can be seen as the es-
timation of the probability distribution of this random variable f (t). There are
two main differences between this and other scenarios where the probability
distribution of a real-valued outcome is estimated. First, that the time horizon for
observation of the event is intrinsically limited because no experimental setting
would allow infinite observation. Second, that there are scenarios in which the
event of interest will never be observed. Therefore, in that case the event time
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probability distribution does not rigorously follow the definition of a probability
distribution since its integral is smaller than 1. In practice, this possibility is typic-
ally ignored in the literature since the time horizon of models is limited and the
event time could simply be larger than the observation horizon. Nonetheless,
there are cases in which an event would never be observed for some subject
even if observed for an indefinite amount of time. In these cases, the math-
ematical rigor can be reestablished by defining a Boolean random variable E
which is 1 if the event happens to the subject of interest in the studied time ho-
rizon and 0 otherwise. Then, it is possible to study the joint probability of E and
t in the form f (t, E = 1) = f (t|E)P(E). Note that this joint probability distribution
is equal to f (t) within the studied time horizon as long as it’s assumed that if an
event is not observed in the time horizon it will be observed later.

Because of the intrinsically limited observation time horizon, the time to event
is typically not modeled directly in the form of a probability distribution, but in
an alternative representation. The following representations of the time to event
probability distribution are defined in [1], Section 1.4, p. 13:

• Survival function: S(t) is the probability for the studied event not happening
to a given subject until time t. It is associated to f (t) through the expression:

S(t) = 1−
∫ t

0
f (t)(d)t . (2.1)

• Incidence function: F(t) is the probability for the event to happen to a
given subject until time t. It is associated to S(t) through the expression:

F(t) = 1− S(t) . (2.2)

• Hazard function: λ(t) is the event probability density at time t given that it
has not happened yet to the subject of interest. It was defined in [2] and
is essential to the definition of the proportional hazards model that will be
detailed in Section 2.2.2. It is associated to S(t) through the expression:

λ(t) = − 1
S(t)

d
dt

S(t) = − d
dt

lnS(t) . (2.3)
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• Cumulative hazard function: Λ(t) is the time integration of λ(t):

Λ(t) =
∫ t

0
λ(ν)dν . (2.4)

It is associated to S(t) through the expression:

S(t) = exp[−Λ(t)] . (2.5)

The survival probability may be modeled either as being the same for the en-
tire population or as depending on a set of features from the subject, which
are called covariates and denoted by x ∈ RNx . If the survival probability is
modeled as a function of the covariates, its mathematical representations be-
come: S(t; x), F(t; x), λ(t; x) and Λ(t; x). There, the covariates x are not modeled
as random variables but treated as parameters of the time to event probability
distribution.

In someapplications, it is necessary tomodelmultiple events. These are called
competing risks scenarios. There, the random variables involved would be the
time for each of the events to happen and the target of the survival model is
to estimate their joint distribution. Similarly to the single risk case, this scenario is
not modeled through a probability distribution but through one of the following
equivalent representations [3]:

• Cause specific hazard function: defined by [3] as the instantaneous prob-
ability density for event j at time t given that it has not happened yet for
the subject of interest:

λj(t, x) = lim
∆t→0+

Pr{t ≤ T < t + ∆t, J = j|T ≥ t; x}/∆t , (2.6)

where Pr denotes a probability, T is the time when the first event was ob-
served for the subject of interest and J is the event type that was observed
at time T. It is possible to retrieve the overall survival function from λj(t, x)
through the expression:

S(t, x) = exp
(
−
∫ t

0
λ(ν, x)dν

)
= exp

(
−
∫ t

0
∑

j
λj(ν, x)dν

)
. (2.7)

• Cumulative Incidence Function: defined by [4] as the probability for an
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specific event to happen until time t. It is given by:

Fj(t, x) = Pr{T ≤ t, J = j|x} . (2.8)

It can be retrieved from the cause specific hazard function:

Fj(t, x) =
∫ t

0
S(ν, x)λj(ν, x)dν . (2.9)

2.1.2 Data censoring
A subject is considered tobecensoredwhen theevent of interest is not observed
during the follow up time and the subject ceases to be observed after it. This
means that when censoring is present, the event time data is not completely
available. The relationship between censoring and the events of interest are
not uniform throughout all applications since it depends on the underlying phe-
nomenon that causes censoring. For example, if censoring happens because
the experimental setting imposes a limit to the maximum follow up time of a
subject, then the censoring has not relationship to the event being modeled.
Conversely, if censoring is caused by an event that happens to a subject, for
example if a subject withdraws from a medical study, then it might be statistic-
ally related to the event of interest or not. However, in survival analysis literature,
the censoring events are most often considered to be statistically independent
from the event of interest.

If censoring is not properly taken into account in estimating a survival model,
it can lead to biased models. As a result, it is important that survival models
are capable of dealing properly with censoring. Two different classifications of
censoring are given in [5]. First, the censoring can be classified according to
the degree of stochasticity (i.e. whether the censoring time can be inferred
deterministically from some hard criteria used in data collection or if it depends
on factors that are not controlled when data is being collected requiring it to
be treated as a random phenomenon):

• Type I censoring: the maximum amount of time that a subject will be ob-
served is fixed prior to the experiment. This happens for example when the
data collection period in a study has a fixed length.

• Type II censoring: the observation stops after a predefined number of
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events have been observed. Here, the censoring time is a random vari-
able that is correlated to the survival time.

• Random censoring: the observation suffers from interruptions that cannot
be controlled because they depend on: the capability of the research
team to keep track of all subjects in the study; or on the voluntary decision
of patients in a medical study; or on greater force reasons that stops the
observation. Here, the censoring time is a random variable that might be
correlated or not to the survival time. In most applications it is assumed
that censoring and survival times are statistically independent.

Second, the censoring can be classified according to the temporal relationship
to the event of interest:

• Right censoring: a subject stops being observed before the studied event
is observed. Making the assumption that the subject will never experience
the event would be incorrect, since this is not what the data is informing.
Indeed, this assumption would lead to a bias for estimating the probability
distribution to be lower than it actually is.

• Left censoring: the subject starts being observed after it has already been
under risk of experiencing the event for some timeand some subjectsmight
already have observed the event when the observation begins. While in
this case, the event time for some subjects is known, it is possible that there
were other subjects that were not observed for some period and have ex-
perienced the event before they started being observed. If left censored
subjects were treated indistinguishably from others, this would lead to lead
to a bias for estimating the event probability to be lower than it actually is.

• Interval censoring: the event was experienced by a subject awithin known
time period, but the event time is not known.

In practice, most survival models only deal with random or type I right cen-
soring, since it is inevitable in most applications. Indeed, by the time a study is
finished, it is rarely the case that all the subjects being studied have already ex-
perienced the event. On the other hand, left, interval or type II censoring can
be avoided in most applications at the time when the data is being collected.
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2.1.3 Modelling approaches in survival analysis

A generic survival model shall be able to assign an arbitrary survival function to
any set of input covariates. It is common for survival functions to not belong to a
restricted family of probability distributions like exponential, Weibull or gamma.
Therefore, a generic survival model shall be able to assign a survival function
with any arbitrary shape to any set of input covariates; and, in principle, this
shape may depend on the value of the covariates. At the same time, the data
used to train a survival model consists of realizations of the survival distribution,
which are either event times or censoring times. As a result, a single observa-
tion provides little information about the shape of the survival function. This usu-
ally requires that some simplifying assumption is made to the survival model, so
that patterns in the survival function that are common to the entire population
do not have to be estimated repeatedly for different values of the covariates.
One of the greatest challenges in developing a survival model is to adequately
choose those assumptions so that the model is flexible enough to model any
experimental scenario. In recent years, the usage of machine learning meth-
ods for survival analysis has increased. This is done primarily with the intention of
developing more general survival models that are capable of representing pat-
terns that cannot be represented by statistical survival models. There are three
different approaches in the literature for applying machine learning to survival
analysis. First, by extending the statistical frameworks, so that the models can
represent more general patterns while still using the statistical simplifying hypo-
thesis. Second, by dividing the problems into several simpler problems in which
only part of the dataset can be used to train each simpler model. Third, by
using a generative approach that allows sampling from the survival probability
distribution, but does not provide an explicit representation of it.

2.2 Statistical frameworks for survival analysis
The statistical frameworks for survival analysis are built uponassumptions about

the class of possible survival models. These frameworks are accompanied by
strong mathematical foundation for the estimation procedure. Nevertheless,
the assumptions upon which they are built restrict the type of patterns that they
are capable of representing. Several approaches to make these frameworks
more generic can be found in the literature. Machine learning models built
within these frameworks focus specially in allowing the representation of non-
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linear patterns. Despite all the effort, none of the extensions proposed so far
allow the representation of a completely generic survival analysis scenario. In
this section, the most important statistical frameworks for survival analysis and
their machine learning extensions are described.

2.2.1 Entire population model

In some applications, the survival probability is considered to be the same for
an entire population. This is done either because the knowledge of how the sur-
vival function varies among individuals is unnecessary or because the amount of
data available is not enough to produce amodel that depends on the input co-
variates. Additionally, there are situations in which an entire population model is
used as a part of a more generic model. When the model is not dependent on
covariates, the modeling problem is simplified and the usage non-parametric
estimation is possible.

The Kaplan-Meier model was proposed by [6], who proved that it is the max-
imum likelihood estimator among the class of all possible functions for the sur-
vival function in an entire population model scenario. This estimator can be
expressed as:

S∗(t) = ∏
j∈{1,...,N|(Tj≤t),(Ej=1)}

N − j
N − j + 1

, (2.10)

where Tj is theminimumbetween the event time and the censoring time for sub-
ject j; Tj is sorted in an increasing order of Tj; and Ej = 1(event happened at Tj)

is an indicator function which is 1 if an event was observed for j and 1 if j was
censored. The Kaplan-Meier model can also be used in competing risks scen-
arios as shown in [7].

The Nelson-Aalen model is an alternative approach proposed by [8]. Instead
of performing maximum likelihood estimation, it models the cumulative hazard
function following amartingale assumption. This estimator can be expressed as:

Λ∗(t) = ∑
j∈{1,...,N|(Tj≤t)}

Ej

rj
, (2.11)

where rj is the number of subjects that are not yet censored and have not yet
experienced the studied event immediately before Tj.
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The Aalen-Johansen [9] uses a martingale assumption to study the transition
of states in a Markov chain and in a competing risks scenario can be used to
estimate the cumulative incidence function:

F∗cause=k(t) = ∑
j∈{1,...,N|(Tj≤t)}

S∗(T−j )
Ej;k

rj
, (2.12)

where S∗(T−j ) is the survival function estimated with the Kaplan-Meier method
at the time right before Tj; Ej;k is 1 if event k happened at Tj and 0 otherwise;
and rj has the same meaning as in equation (2.11).

2.2.2 Proportional hazards model

◦ ω(x)
x

◦ λ0(t)
t

λ(t, x) = λ0(t)ω(x)

ω(x)

λ0(t) λ(t, x)

Figure 2.1.: Graphical description of the PH model.

The proportional hazards (PH) model expresses the survival probability as the
combination of two separate components, one that depends on time and
other that depends on the covariates. This is done through the expression
λ(t, x) = λ0(t)ω(x), where λ(t, x) is the hazards function, λ0(t) the baseline haz-
ard function, and ω(x) the hazard ratio, which is strictly positive. Figure 2.1
provides a graphical description of a generic proportional hazards model. This
model was originally proposed by [2] and its original formulation is known as the
Cox model. In this formulation, the function ω(x) is given by a log-linear regres-
sion model: ω(x) = exp(βTx), where β ∈ RNx are the coefficients in the regres-
sion model. It is shown in [2] that, if the baseline hazard function is strictly pos-
itive and increasing but unknown, a partial likelihood function can be defined.
The original formulation of the partial likelihood is defined for the case in which
ω(x) = exp(βTx), but it can be extended for a generic ω(x) function:

L =
N

∏
j=1

[
ω(xj)

∑N
k=j ω(xk)

]
. (2.13)
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The typical training procedure for a proportional hazards model is divided
into two steps. First, ω(x) is determined through partial likelihood maximization.
Second, λ0(t) is estimated maximizing the total likelihood with ω(x) fixed. There
are several methods in the literature though which this estimation can be per-
formed. One notable example is the method proposed by [10] in which the
baseline hazard function is modeled with a piecewise linear function that has
inflection points at the times in which an event has been observed. An ana-
lytical expression for the slope at each interval is provided through maximum
likelihood estimation. Another notable example is the method proposed by [11]
in Section 4.3, p. 84. It performs non-parametric maximum likelihood estimation
of the baseline function given a fixed hazard ratio ω(x). The estimation proced-
ure leads to a piecewise constant baseline hazard function and an analytical
expression for it is provided. A competing risks extension of the proportional haz-
ardsmodels was proposed by [3], with the hypothesis that cause specific hazard
function is proportional to a baseline hazard function. Another competing risks
extension was provided by [4]. This model provides direct estimation of the cu-
mulative incidence function: Fj(t, x) = 1− exp(−

∫ t
0 λj0(ν) exp(βTx(ν))dν).

The hypothesis made in the Cox model limits the survival function that might
be assigned to each set of input covariates in the following ways:

(i) The function ω(x) is restricted to a log linear model.

(ii) The influence exerted by the covariates in the survival function is not time
dependent.

(iii) The optimization of function ω(x) is performed with the partial likelihood
and the baseline hazard function is estimated with ω(x) frozen, which
might lead to suboptimal results.

The restriction (i) has been dealt with in the literature by modeling ω(x) with a
nonlinear model. Themodel proposed by [12] extends the Coxmodel modeling
the hazard ratio ω(x) with a neural network. Initially, this has not resulted in any
measurable improvement to the algorithm performance. However, later devel-
opments on neural networks made it possible to achieve better results than with
the Cox model. The Faraggi & Simon model was extended in [13] with a deep
neural network architecture; convolutional neural networks were used in [14] to
provide an additional extension of the model in which it is possible to use in-
formation from images in the survival prediction. Both extensions of the Faraggi
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& Simon model achieved better performance than the Cox model. A modified
framework was used in [15], where the function ω(x) is computed with a neural
network and an additional layer is used to estimate the survival function at a
series of observation times. In this method, the function ω(x) is computed us-
ing the Cox partial likelihood, but it is not restricted to the proportional hazards
assumption, since the link function that is used to predict the survival function
might be changed. Nevertheless, this does not solve the restriction (ii), since
there still must be a link between ω(x) and S(t, x), and ω(x) is not time depend-
ent. The Cox-Time model [16] was the first to solve this restriction by representing
ω(x, t) as the output of a neural network that has t as one of its inputs. The main
limitation of this structure is that it makes the computational cost quadratic in
the size of the dataset for both training and estimation. This creates the require-
ment for the use of approximations in the baseline hazard estimation and in the
computation of survival function. For common healthcare applications where
the input data is low-dimensional and a small neural network can be used, this
approach is feasible despite the increased computational cost. Nonetheless,
it would most likely not be possible to scale up this approach to more complex
types of data as images or detailed health records where much larger models
would be required.

The restriction (ii) has been often dealt with in the literature with solutions that
are hand tailored to specific applications. For example, [17] modeled time de-
pendent effects of covariates in kidney transplant patients with severe infections
using natural cubic splines. Generic parametrizations for time dependency in
proportional hazards models in which the coefficients β(t) of the hazard ratio
are made time dependent were proposed in several works that apply different
types of splines to model these time dependencies [18–21]. Nevertheless, this
approach does not generalize automatically to non-linear models, specially to
neural networks, since the number of coefficients is much higher than in a linear
model.

The restriction (iii) arises form the fact that the baseline hazards function is left
completely unspecified when estimating ω(x). Nevertheless, there are in the
literature representations for the baseline hazards function that solve this prob-
lem. The estimator proposed by [10] allows the total likelihood of the model to
be obtained as a function of ω(x) = exp(βββTx). Within the derivation of the non-
parametric approach proposed by [11], it is mentioned during the derivation
that Meier has proposed in 1978 in a personal communication to estimate the
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parameters of both βββ and the baseline hazards function using the total likeli-
hood function. Another notable formulation in which this restriction is solved is
the flexible parametric (FP) model [22]. It models the cumulative baseline haz-
ard function with natural cubic splines and performs joint optimization of Λ0(t)
and ω(x). The FPmodel is built within amoregeneral framework than thepropor-
tional hazards. Themathematical formulation for it is: g[S(t; x)] = log(Λ0(t))+ βx,
where Λ0(t) is modeled with natural cubic splines, and gθ(S) = log((S−θ − 1)/θ)

is a generic link function. If θ → 0, the model is reduced to the proportional haz-
ards assumption. Nevertheless, similarly to the model proposed by [15] it is not
a general model, since it still require that there is some type of correspondence
between the shapes of the survival function for different subjects. A competing
risks extension of the FP method was proposed by [23].

2.2.3 Accelerated failure time model

◦ γ(x)
x

◦

S(t, x) = S0(γ(x)t)
γ(x)

t

S(t, x)

Figure 2.2.: Graphical description of the AFT model.

Theaccelerated failure time (AFT)modelwas proposedby [2] to provideacoun-
terpoint to the Cox model. It is based on the hypothesis that the covariates influ-
ence the failure process by accelerating or decelerating it. Figure 2.2 provides
a graphical representation of this model. In it, a function of the covariates γ(x)
is computed andmultiplied by the time to provide the input for the baseline sur-
vival function S0. Similarly to the proportional hazards model, the original formu-
lation also follows a log-linear model γ(x) = exp(βTx). In the original formulation
of the AFT model, no method is provided for estimating the parameters in it. A
training method based on least squares estimation of the logarithm of the sur-
vival time was preposed in [24], with a Kaplan-Meier estimator of the prediction
error being employed to weight the squared errors of each uncensored predic-
tion. The main weakness of this approach is that it assumes that for any given
x the event time is a random variable with lognormal probability distribution,
which is often not the case.

An alternative estimation approach within the AFT model was proposed by
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[25]. In this approach, the estimation is based on quantile regression instead
of maximum likelihood estimation. This means that instead of estimating the
expected value of the logarithm of the time to event, this approach estimates
the median of the logarithm of the time to event. This overcomes the restriction
of the survival function to a lognormal distribution, but presents two important
limitations:

(i) The shape of the survival function is influenced by the covariates only
through a time scale factor.

(ii) The function γ(x) is restricted to a log linear model.

The limitation (i) was solved by [26]. This was donewith the inclusion of quantile
dependent coefficients in the quantile regression problem. This means that, for
each subject, the model will predict the log of the time at which the probability
of the event to have already occurred is equal to τ. This estimation is made
through linear model in the form β(τ)Tx for 0 < τ < 1 , where the coefficients
depend on τ. More specifically, the coefficients β(τ) aremodeled as piecewise-
constant functions. The estimation of the coefficients are based on martingale
theory and are performed through the minimization of an objective function.
Proofs of uniform consistency and weak convergence are provided.

The limitation (ii) is more difficult to overcome in the context of AFTmodels than
in proportional hazards models. A neural network version of the AFT model was
proposed in [27]. This method overcomes the linearity restriction in the original
model, but it is based on maximum likelihood estimation similarly to [24] and is
consequently restricted to a lognormal probability distribution. A support vector
regression model for survival analysis was proposed by [28] within a framework
similar to [24], in which an estimation for the time to event is provided, but it
is not associated with a probability distribution of the error of this estimation,
which means that the model does not completely specify the survival function.
A neural network extension of the method proposed in [26] is not trivial since
the objective function used is not continuous, which makes it computationally
expensive to be optimized for a nonlinear model.
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2.2.4 Aalen additive model

TheAalen additivemodel [29] is a covariate dependent extension of theNelson-
Aalen model described in Section 2.2.1. In this method, the estimation of a
piecewise constant cumulative hazard function is performed similarly to the
Nelson-Aalenmodel, but each step is computed through the solution of a linear
algebra problem. The hazards function in this model is:

λ(t, x) = x(t)ωωω(t) , (2.14)

where ωωω(t) are time dependent coefficients and the covariates x(t) might vary
with time. The integral of the coefficients is defined by A(t) =

∫ t
0 ωωω(t)dt, where

ωωω(t) is a vectorial function of time, and it is estimated by:

A(t) = ∑
Tk≤t

[x(Tk)
Tx(Tk)]

−1xkEk , (2.15)

where xk are the covariates of a subject in the training set, Ek indicates if Tk is an
event or a censoring time and x(t) is a matrix where row k is xk if Tk ≤ t and zero
otherwise. One limitation of the Aalen additive model is that it provides no guar-
antee that the cumulative function is positive. Although the estimation frame-
work used to derive this model is difficult to generalize to a nonlinear machine
learning approach, the idea of splitting the estimation into different models can
be more easily generalized to machine learning methods. Indeed, it is possible
to see the discrete time models in Section 2.3.2 as machine learning successors
of the Aalen additive model.

2.2.5 Extended Hazard Model

◦ ω(x)
x

◦

λ0(γ(x)t)

t

γ(x)
γ(x)

λ(t, x) = λ0(γ(x)t)ω(x)

ω(x)

λ0(t) λ(t, x)

Figure 2.3.: Graphical description of the EH model.
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The extended hazard (EH)model [30] provides an extension to previousmethods
in the formof a combination of theproportional hazards andaccelerated failure
time model. There, the input variables x can influence both the gain and time
scale of the hazard function in the form λ(t, x) = λ0(tγ(x))ω(x). In the original
formulation, both γ and ω are given by log-linear models, in the form: γ(x) =

exp(βT
1 x) and ω(x) = exp(βT

2 x). A neural network extension of the EH model
has been proposed in [31]. Despite being more generic than the PH or AFT
models, the EH still suffers from the same type of limitation as their less generic
antecedents where the estimated function is constrained to a particular family
of function. The type of extension provided by the EH model allows a smooth
combination of both families but is not enough to allow the representation of
any arbitrary pattern that might be encountered in the data.

2.2.6 Probability score models
Section 2.5 deals with metrics that are used to evaluate survival models. Some
attempts have been made in the literature to perform inference using those
metrics instead of performingmaximum likelihood estimation or other traditional
statistical estimation approaches. It was shown in [32] that the Cox partial like-
lihood is a lower bound to the concordance index [33], which will be further
described in Section 2.5.1. Since the concordance index is not a continuous
function, the direct optimization of it is computationally expensive. As an al-
ternative the article proposes optimization of the concordance index based on
other lower bounds to it. The results achieved are comparable to results of the
Cox model. However, the proposed model does not provide an estimation of
the survival function. Instead, it provides a survival ranking score for subjects in a
population. Similar methods were proposed using support vector machines to
estimate the ranking between survival times in which the concordance index is
optimized either using a lower bound [34] or directly [35].

Amethod in which the estimation is performed using the integrated Brier score
was proposed in [36]. The integrated Brier score is considered a proper score rule
because it is guaranteed to havemaximum expected value for the true survival
probability distribution. In this model, the parameters of a log-normal probability
distribution are fitted as outputs of a neural network and optimized according
to this metric. The model has the advantage of not suffering from the limitations
in the proportional hazards model. Indeed, all the parameters in the probability
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distribution can be determined as the output of an arbitrary non-linear function
and the entire model is optimized with a single metric, which prevents it from suf-
fering from sub-optimality. The experimental results showed that a better result
was achievedwhen the parameters were estimated through theminimization of
the integrated Brier score as opposed to maximum likelihood estimation of the
same model. Nevertheless, the probability distribution is restricted to a lognor-
mal distribution that might not capture the true probability distribution for the
time to event.

2.3 Divide and conquer models for survival analysis
While the search space for survival probability distributions might have infinite

dimension and the survival data used to estimate the model is unidimensional,
the dataset in some applications is so large that this problem can be neglected.
This section is devoted to the description of approaches in which the infinite di-
mension search problem is divided into a large number of simpler problems and
only a small part of the data is relevant for solving each problem. The brute
force methods described in the present section make less efficient use of the
data than the methods described in Section 2.2 in the sense that patterns that
are common to the entire population have to be learnedmultiple times making
use of subsets of the data, which requires a larger amount of data then would
be required if these patterns could be learned using the entire dataset. How-
ever, they have the advantage of being able to represent any arbitrary survival
function and, if the amount of data available is enough, they can be used to
represent patterns that cannot be represented by other methods.

There are two main approaches for developing a brute force model for sur-
vival analysis. First, dividing the data in groups with similar covariates and us-
ing entire population models for each group. Second, transforming the survival
function into a discrete time probability distribution with a large number of time
steps so that the problem at each step is reduced to a classification problem.
The first approach is described in Section 2.3.1 and the second is described in
Section 2.3.2.
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2.3.1 Nearest neighbour models
Nearest neighbor models for survival analysis use the idea of dividing the sub-
jects into groups with similar behavior and using an entire population model
for each group of individuals. Two methods for dividing the subjects were pro-
posed in [37]: selecting the k nearest neighbors to a subject; or assigning differ-
ent weights for the subjects according to a kernel function that measures how
similar two subjects are. In the first case, a Kaplan-Meier estimation is made
using only subjects that are close to the target subject. In the second case,
Kaplan-Meier is adapted using weights for each subject that reflect how close
their covariates are from the target subject. Both approaches suffer from the
fact that the division between subject groups is not influenced by how relevant
each covariate is to the survival function.

◦ x Average
Λ(t, x)

Λ(t)

Figure 2.4.: Graphical description of the random survival forest model.

This limitation is overcame with the use of random survival forest, which is an
adaptation of the random forests model to survival analysis problems. The first
random survival forest method was proposed by [38]. A graphical representa-
tion of a random survival forest is provided in figure 2.4. This methods creates a
set of binary trees that divide the subjects according to their covariates in a way
that maximizes the difference in survival. For each binary tree, a random subset
of the database is selected. The training algorithm for each binary tree be-
gins with all the subjects in the same leaf and recursively find a covariate and
a threshold to divide the subjects in two child leafs with the greatest possible
survival difference among them. This procedure is performed until a minimum
amount of event samples is left in each leaf. After each tree has been created,
each subject will be associated to a single leaf node within a tree, where an es-
timation of the cumulative hazard function is obtained using the Nelson-Aalen
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method described in Section 2.2.1. The final estimation for a given subject is
the average over all trees of the cumulative hazard function. The random sur-
vival forest algorithm was extended to the competing risks scenario in [39]. In
this approach, the cumulative incidence function (CIF) is estimated with the
Aalen-Johansen model. The final estimation for a given subject is obtained by
the average of the CIF estimation for the same subject in each tree.

In classification problems, random forests are known for producing biased res-
ults for underrepresented samples. Based on this fact, [40] proposes an adapt-
ation of boosting algorithm for survival analysis in which each survival tree in
the forest receives a different weight based on the classification accuracy. The
model is built in a competing risks framework, and the Aalen-Johansen estimator
is used at each leaf node.

Although no proof of consistency is provided in the original derivation of the
random survival forest algorithm, [41] provides a non-asymptotic upper bound
for the error for a broad class of nearest neighbor type algorithms, including the
two approaches proposed by [37] and a slightly modified version of the random
survival forest [39] in which the average of the Kaplan-Meier estimators in each
leaf is used instead of the average of the Nelson-Aalen estimators. Additionally,
a new version of the random survival forest is proposed in which, instead of using
the Kaplan-Meier estimation at each leaf, a kernel function is constructedwhich
corresponds to the probability of two subjects to be in the same leaf in a survival
tree. A weighted version of the Kaplan-Meier model is applied making use of
that kernel to compute the weights. Experimental results show that this new
version of the random survival forest algorithm has better performance than the
other algorithms considered in the study.

2.3.2 Discrete time models
The discrete time models for survival analysis simplifies the survival modeling
problem by dividing the time interval in which the model is analysed into a
quantized sequence of times and reframing the problem into a composition
of a different classification problem for each time step. This idea can be traced
from Aalen additive model [29] described in Section 2.2.4, where the hazard
function is computed as a linear function of the input variables where the coef-
ficients varywith time. Adiscrete timemodel namedmulti-task logistic regression
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(MTLR) was proposed in [42], where the survival function for each time point is
represented by a logistic regression model. A comparison is made with classical
survival analysis models, but no quantitative comparison was made in terms of
conventional survival analysis metrics. The MTLR model was extended in [43]
making use of state of the art machine learning tools. A different approach
was proposed in [44] where the survival function at each point is predicted with
a linear model without use of logistic activation function and a cost function
based on the Frobenius norm of the survival status error is used instead of a like-
lihood function. The MTLR model was extended in [45] through the definition
of a different cost function that makes the model compatible with competing
risks. In this formulation, the model predicts the incidence function at each time
step for each possible event as outputs of a neural network. An extension of
the method proposed in [45] was made [46], where the output of a recurrent
neural network (RNN) is used to predict the instantaneous hazard rate at each
time step. Othermethods for applying RNN to discrete time survival models were
proposed by [47] and [48], in which the objective function optimized to train the
RNN is based on the average of the cross entropy across over all sampling times.
While in a classification problem the cross entropy is equivalent to the likelihood,
it is not the case in these models since it would only be possible to average the
likelihood over all the sampling times if the survival function at each time was
independent from each other and this is not the case.

2.4 Monte Carlo models for survival analysis
The models in Sections 2.2 and 2.3 provide explicit estimations of the survival

distribution or the survival time for any subject. However, there are models that
are intrinsically generative because they do not provide an explicit representa-
tion of the survival probability distribution and requires Monte Carlo sampling to
estimate it. Most of these model are built within a Bayesian framework, using a
parametric or semiparametric model for the survival probability distribution and
sampling the parameters of the model through Bayesian inference. Neverthe-
less, this is not always the case and Section 2.4.4 presents a generative model
for survival analysis that is based on generative adversarial networks instead of
Beyesian inference.
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2.4.1 Gaussian processes

Gaussian processes are extensions of the multivariate Gaussian distribution to
infinite dimension spaces. Gaussian processes have been used extensively in
the literature to perform probabilistic estimations of real valued functions. For
that purpose an “a priori” distribution is assumed for the function that will be
estimated. In this “a priori” distribution, a kernel function is chosen to express
the correlation between values in different evaluation points of the function.
According to the kernel function, a different class of “a priori” distribution will
be generated. The training data is then used to perform Bayesian estimation,
making it possible to know the “a posteriori” distribution. This provides, for each
input value, a probability distribution of the target value. In cases in which the
likelihood of a dataset given the target function is not Gaussian, it is usually not
possible to perform analytical inference of the “a posteriori” distribution. Never-
theless, it is possible to sample from that distribution with Markov Chain Monte
Carlo (MCMC) estimation. Alternatively, it is possible to compute an approx-
imation of the “a posteriori” distribution. The first attempts in the literature to
apply Bayesian inference for survival analysis with stochastic processes relied on
other stochastic processes instead of Gaussian processes. A notable example is
provided by [49] in which a gamma process is used. In recent works, the focus
has been shifted to Gaussian processes models, which are broadly used in the
machine learning literature.

The application of Gaussian processes to survival analysis requires the com-
putation of the likelihood of a data sample given the output of the Gaussian
process. The methods available in the literature perform this task by using simple
parametric survival models and consider the parameters to be outputs of the
Gaussian process. The usage of Gaussian processes to estimate a piecewise
constant baseline function in a Cox model was proposed by [50]. This idea was
extended by [51] estimating jointly the covariates coefficients and the paramet-
ers in the piecewise constant baseline hazards function. Alternatively, [52] uses
Gaussian processes to estimate the parameters in an accelerated failure time
model in a competing risks scenario. Chained Gaussian processes are used for
survival modeling in [53]. This method allows parameters of the survival model to
bedependent on the covariates even if they cannot be framed in a generalized
linear model. The usage of a Gaussian process to estimate a time dependent
hazard ratio in the proportional hazards framework was proposed by [54]. This
allows for the covariates to have non-linear time dependent effects on the sur-
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vival function. However, the model does not allow the explicit computation of
the survival function. Instead, it allows sampling from the survival time probabil-
ity distribution. A deepGaussianmodel was used by [55] to estimate the survival
time in terms of the covariates within a competing risks framework. Survival times
cannot generally be modeled directly as outputs of a Gaussian process since it
is wrong to suppose that the survival time follows a Gaussian distribution. With
deep Gaussian models, latent variables are added to the model and the tar-
get value is modeled as the output of a series of Gaussian processes where the
input of each model is the output of the previous model. As a result, the target
variable probability distribution is no longer Gaussian, which makes it possible to
model the survival time directly as the output of this model.

2.4.2 Deep exponential families

zL ∼ E(ηηη) zl ∼ E(g(wT
l zl+1 + bl)) x ∼ E(g(wT

0 z1 + b0))

Figure 2.5.: Graphical description of the deep exponential family model.

Generative survivalmodels havealso beenproposed in the literature using deep
exponential families [56], which are generative models that use a composition
of samples from exponential family probability distributions to generate samples
from a generic multivariate probability distribution. Figure 2.5 gives a graphical
representation of a deep exponential families model. The sampling process in
this model is performed as follows: first, a vector zL ∈ RNL is sampled from an
exponential family E with parameters ηηη ∈ RNL×2; then, each intermediate layer
zl ∈ RNl is sampled from an exponential family E with parameters g(wT

l zl+1 +bl),
where g is a nonlinear link function and wl ∈ RNl×2×Nl+1 and bl ∈ RNl×2 are re-
spectively weights and biases; finally, the visible variables x ∈ RNx are sampled
through the same process as the intermediary layers zl. Once the model has
been trained, it is possible to sample part of the visible variables conditioned
to a subset of them. Training in this model is performed through variational in-
ference, using the “black box” algorithm [57]. Variational inference is an ap-
proximate training method that is used to train Bayesian methods in which it is
not possible to compute the likelihood analytically. The method relies in provid-
ing an analytical lower bound to the likelihood and optimizing it instead of the
likelihood. While variational inference requires that a lower bound is found for
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each model that is going to be optimized, the “black box” algorithm provides
a general variational bound for a class of models.

The first deep exponential family application to survival analysis was proposed
by [58]. In this model, the covariates x are modeled as the visible layer from
a deep exponential family and the event time follows a Weibull distribution in
which λ = log(1 + exp(zT

1a+ b)) and k is fixed, where z1 comes from the deep
exponential family and the values a and b are sampled from Gaussian distri-
butions: a ∼ Normal(0, σW); and b ∼ Normal(0, σb). The survival times can be
sampled from the deep exponential family conditioned to the covariates. A
further development to this method have been made by [59]. In this work, the
Weibull distribution for the event time is expanded by applying a sequence of
monotonic transformations to t. This allows for more flexible representations of
the probability distribution and the experiments show that this results in an bet-
ter survival model.

2.4.3 Lomax delegate races

Lomax delegate races have also been used in generative survival models. In
[60], a framework has been proposed in which failure is modeled as a race
betweenan infinite number of agents and the event time is considered to be the
minimum between the event time in all those agents. Each agent is modelled
as following a Lomax distribution, which is the result of an exponential distribu-
tion t ∼ Exp(λ) where the parameter λ is sampled from a Gamma distribution
λ ∼ Gamma(r, 1/b). A covariate dependent version of this distribution is defined
by making 1/b = eβTx. The number of agents is limited to K in order to make the
estimation computationally tractable. Additionally, in scenarios in which it is ne-
cessary to model competing risks, the agents are divided into J groups with K
agents which so that a particular event is considered to have occurred if an
agent in the correspondent team has had the minimum event time. Bayesian
inference in this model is performed through Gibbs sampling.
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2.4.4 Generative adversarial networks

◦

G(x, ϵϵϵ)

x

◦

D(x, shuffle(t, t̂))
t̂

t

•

Figure 2.6.: Graphical description of the deep adversarial time-to-event (DATE) model.

Generative adversarial networks (GANs) have been proposed by [61] and are
pairs of neural networks that model the underlying probability distribution for a
given set of covariates. It is composed of two neural networks: a generator and
a discriminator. The goal of the generator is to generate random samples from
the covariates distribution and thegoal of the discriminator is to correctly identify
if a sample comes from the real dataset or is artificial. A survival analysis version
of generative adversarial networks (GANs) has beenproposedby [27]. Figure 2.6
gives a graphical description of it. In this model, the generator G(x, ϵϵϵ) predicts a
survival time given the covariates x ∈ RNx and a vector of normally distributed
random variables ϵϵϵ ∈ RNE . The discriminator D(x, shuffle(t, t̂)) estimates whether
or not, in a pair (x, t), the time comes from a true sample or from the generator.
Ideally, this should allow for the generator to learn a good representation of
survival time in terms of the covariates. However, the structure of the generator
model favors the distribution of the generated time to be close to Gaussian,
which is typically not the case in survival scenarios.

2.5 Model evaluation
The study of metrics to evaluate survival models an important part of survival

analysis. The recent developments in machine learning techniques for survival
analysis modeling have an impact to evaluation metrics, since some classical
evaluation metrics rely on assumptions that are not valid for all models.
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2.5.1 Concordance index
The most used metric for evaluating survival models is the concordance index
[33]. It is an adaptation of the area under receiver operation characteristic
curve (AUROC) and it evaluates how well a survival model distinguishes the sur-
vival time in a pair of subjects based on their covariates. This is done by evalu-
ating all the possible pairs of two subjects and selecting the pairs that can be
ordered. This is the case when neither of the subjects has been censored or
when only one subject has been censored but the censoring time is greater or
equal to the event time of the other subject. In the later case, the pair can be
ordered because the event time for the censored subject is certainly greater
than the event time for the other subject. The concordance index is given by:

CI =
1
|ϵ|∑ϵij

1 f (xi)< f (xj)
, (2.16)

where |ϵ| is the number of comparable pairs and 1 f (xi)< f (xj)
is an indicator func-

tion that is: 1 when the predictor f (x) correctly orders the subjects; and 0 when it
orders them incorrectly. The values form the concordance index can vary from
0 to 1. A value of 0.5 means that the model does not provide any information on
the ordering of the events. A value of 1 means that the model is a perfect pre-
dictor of the ordering of the events. A value of 0 means that the model always
makes the wrong order prediction.

The censoring in the data might cause the concordance index to be biased,
since the result of the concordance index in a censored dataset might be differ-
ent fromwhat it would be in case the same dataset was not censored. This hap-
pens because subjects with larger event times have a greater chance of being
censored before the event is observed, and as a result the distribution of event
times in the uncensored dataset is different from what it would be if no subject
had been censored. A modification to the concordance index that prevents
the measurement to be susceptible to the censoring probability was proposed
by [62]. With this modification, all pairs in the concordance index computation
have a weight inversely proportional to the square of the non-censoring prob-
ability at the time of the first event in the pair. The non-censoring probability is
computed through the Kaplan-Meier method, but swapping events with cen-
soring. This estimator has been generalized by [63] through the inverse of the
probability of censoring weighted (IPCW) method, which takes into account
scenarios in which the censoring probabilities depends on the covariates. In
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this method, each pair has a weight that is inversely proportional to the product
of the non-censoring probability for each subject at the time of the first event in
the pair. The concordance index computed with the IPCW method for a given
time t is given by:

CIIPCW =
1

m2 ∑m
i=1 ∑m

j=1 1{S(t, xi) > S(t, xj)}1{Ti < Tj}Ni(t)
1

m2 ∑m
i=1 ∑m

j=1 1{Ti < Tj}Ni(t)
, (2.17)

where the Ni(t) is the event indicator for subject i at time t. A competing risks
extension of the IPCW estimation of the concordance index was proposed by
[64].

2.5.2 Time dependent concordance index
Although the IPCWmethod is able to estimate a concordance index as a func-
tion of time, [65] showed that there might not be a one to one correspondence
when ranking subjects according to the survival function and the expected
value of the event time. This means that, in these scenarios, the concordance
index can not be justified in terms of the AUROC. As an alternative, they have
proposed the time dependent concordance index, defined as a weighted av-
erage of the AUROC estimate at each time:

Ctd =
∑K

k=0 AUROC(tk)w(tk)

∑K
k=0 w(tk)

, (2.18)

where:
AUROC(tk) = Pr{S(tk, xi) < S(tk, xj)|Ni(tk); Nj(tk)} . (2.19)

2.5.3 Brier score
The Brier score [66] is an important metric in classification problems and a
time dependent version of that metric was proposed by [67], which is called
weighted residual sums of squares (WRSS). Similarly to the concordance index,
this metric is biased in the presence of censoring. An unbiased estimator of the
Brier score for survival analysis scenarios with censoring was proposed by [68].
This estimator relies on the hypothesis that the censoring probability does not
dependent on the covariates. A generalization of this estimation with covariate
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dependent censoring was proposed by [69]. In this generalized formulation, the
estimator is:

WRSS(t, S, G) =
1
n

n

∑
i=1

[1(Ti > t)− S(t, xi)]
2

[
1(Ti ≤ t)Ei

G(T−i |xi)
+
1(Ti > t)

G(t|xi)

]
. (2.20)

2.5.4 Calibration plots
Even when a survival model presents better concordance index and Brier score
relative to other models, it is possible for the model to produce undesired pat-
terns in the probability distribution estimation. In order to avoid this situation, it is
customary tomake calibration plots of survival models to guarantee that the av-
erage survival prediction for a population is consistent. This can be done either
for the entire population or for subsets of it. In the first case, the survival function
is estimated for each subject in the population and the average of the survival
estimations is compared with the Kaplan-Meier estimation for that population.
In the later case, the same procedure is followed, but for subsets of the popula-
tion. The subset of the population are separated either using the quantiles of the
survival prediction in a given point for that model or by grouping subjects with
similar values for a covariate of interest. Examples of the usage of calibration
plots can be found in [2] and [4].
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3
Metaparametric neural networks: a
generic hierarchical modelling
framework

Neural networks are parametric functions that can be used to approximate al-
most any continuous multivariate function. However, this versatility comes at the
cost of obscuring the relationship between the input variables and the output.
This "black box" structure is an important obstacle to the larger scale application
of neural networks. In healthcare for example, identifying the underlying mech-
anism producing an observed health outcomemay be the goal of the predict-
ive model. A key function of the applied statistical model is thus to explain the
contributory effects of different input variables upon the outcome. A further lim-
itation of this “black box” structure is the inability to validate the model. Whilst
sensitivity analyses can show trends within the data, the error bounds generated
cannot be relied upon throughout the input space. Errors may be larger in the
unseen data than those inferred from sensitivity analysis in parts of the sparsely
sampled input space. Nonetheless, neural networks often perform consider-
ably better than more easily interpretable statistical models, having achieved
demonstrable success in several domains.

In the present chapter, we propose the metaparametric neural network
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(MNN), a novel framework with better interpretability than “black-box” neural
networks while still being able to represent arbitrary functional relationships. In-
deed, we prove in Theorem 1 the universal approximation property for MNNs
showing that they are able to approximate any continuous function arbitrarily
well. This is achieved through a “grey-box” hierarchical structure where some of
the input variables have a more explicit representation than others. As a result
of their universal approximation property, MNNs can be applied to any problem
where a multi-layer perceptron neural network could be applied, achieving a
more intelligible representation for a subset of the input variables. In particular,
this can be applied to survival analysis where estimation requires an explicit rep-
resentation of how the time influences the event probability, as shown inChapter
4. This requirement is the major obstacle for making completely generic neural
network extensions of survival models like it has been achieved in other domains.
In regression and classification problems for example, the Universal Approxima-
tion Theorem 1 shows that a neural network can fit any continuous function ar-
bitrarily well as long as the number of parameters in the model is large enough.
This property enables their application to virtually any task with a guarantee that
the model is generic enough to represent the patterns present in the data. Sur-
vival models require that the target function is monotonic over time (i.e. if the
target function is the survival function it can not increase with time and if it is the
cumulative hazard function it can not decrease with time), and include code-
pendency between time and other inputs. This hinders the direct application
of neural networks to survival modeling. This requires either adaptations of the
target function like in DeepHit [45] where the event probability distribution is dis-
cretized in time, or making the estimation extremely inefficient like in Cox-Time
[16]. The hierarchical structure of MNNs can solve this problem as will be shown
in Chapter 4.

3.1 Metaparametric neural network framework
The metaparametric neural network (MNN) framework is based on a hybrid

association between neural networks and other parametric approaches with
more explicit and intelligible outcomes. In particular, we show how neural net-
works can be integrated with basis functions and mixture models in order to
achieve a hierarchical model that is more intelligible than standard neural net-
works without having to impose any restriction to the type of functions being
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modeled. Basis functions andmixturemodels by themselves are capable of rep-
resenting virtually any functional relationship, similarly to neural networks. When
compared to neural networks, they have the advantage of allowing a better in-
terpretability of the resultant model. This is the case of audio processing, which
could be viewed as an estimation problem with only one input dimension given
by time with a dataset where one target value is associated with each possible
value for the input. A similar scenario is present in image and video processing,
where the number of input dimensions is two and three respectively. In those ap-
plications, Fourier domain analysis has been shown to be of great value in both
understanding the structure of the data and representing it effectively. How-
ever, the number of parameters in the model must grow exponentially with the
number of input variables in order to keep the model generic and this is why
they are often only used in problems with small number of input variables. With
the MNN framework, it is possible to divide input variables so that most of them
will be accounted for in a black-box neural network while a limited subset of
them are represented with a more intelligible parametric representation.

The definition of an MNN relies on the definition of a neural network as it is one
of the blocks of the MNN. Although several neural networks exist and can be
employed in MNN models, in the present chapter we always assume a multi-
layer perceptron (MLP) architecture to focus on the higher level aspects of the
MNN structure. An MNN can be defined as a model that computes y ∈ RNy

given x ∈ RNx in the form:
h1 = a(Wmx + bm) , (3.1)

hm = a(Wmhm−1 + bm) , (3.2)

ŷ = a(W MhM−1 + bM) , (3.3)

where Wm are matrices of parameters, bm are vectors of parameters and a(·) :
R → R is an activation function, than can in principle be any function chosen
when defining the model and it is aplyed element-wise in vectors. For simplicity,
we denote the vectorized set of all parameters in the MLP as θ in the form ŷ =

ψ(x; θ).
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Definition 1. Let ψ(x, θ) be a parametric neural network with input vari-
ables x ∈ RNx and parameters θ ∈ RNθ and let g(y, ψ) be a parametric
function of y ∈ RNy with parameters ψ ∈ RNψ , where y is a set of input
variables disjoint from x. We define the metaparametric neural network
(MNN) g(y, ψ(x, θ))where the output of ψ(·) serves as the parameters of
g(·). This is a hierarchical model where the input variables are grouped
into a set of implicit variables x and another set of explicit variables y
that allows the outcome g(·) to be explicitly represented as a function
of y for any particular value of x.

This definition was reproduced with permission from IEEE, [70] © 2021 IEEE. From
the definition, it is possible to notice that the parameters ψ in function g(y, ψ)

depend on variables x. Therefore, the parameters are adapted for each value
of x and this is property allows MNNmodels to approximate functions in the form
h(x, y). In practice, this means that the values of ψ are not directly estimated,
since in the overall model they do not act as parameters, but as intermediary
values that are computed by the model with the use of x and θ. Indeed, in
its complete formulation, the MNN equation is given by g(y, ψ(x, θ)), which is a
parametric function of x and y with parameters θ. Thus, the parameters set θ

suffice to specify the MNN and estimation can be performed similarly to any
other neural network model by estimating only parameters θ.

The structure of a MNN model is represented in Figure 3.1, which was repro-
duced with permission from IEEE.

Neural
network

ψ(x; θ)

Interpretable
parametric
function

g(y; ψ)

ψ

y

x

ĥ(y, x; θ)

Figure 3.1.: Graphical description of a metaparametric neural network. [70] © 2021 IEEE.
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3.2 Universal approximation theorem of metaparametric
neural networks
In this section we provide a formal proof that, subject to specified constraints,

the MNN will be capable of representing any continuous functions over a com-
pact and convex space with an arbitrarily small error. This is done in Theorem 1,
whose proof uses the results in Lemmas 1 and 2.

3.2.1 Introduction to Universal Approximation
The purpose of a universal approximation theorem is to guarantee that a par-
ticular class of models can approximate the target function so that the model
choice does not impose any restriction to the estimation accuracy. To better il-
lustrate the importance of this property, we can consider an example of a class
of functions that does not have it. In the case of estimating the function

h(x1, x2) = x1 + x2 (3.4)

using a class of parametric functions in the form:

g(x1, x2, Θ, Φ) = f (x1, Θ)g(x2, Φ) , (3.5)

it would be impossible to achieve an accurate representation of the target func-
tion h(x1, x2). This means that this particular choice of parametrization imposes
a hypothesis to the function that is being modeled and if it is used to estimate a
function that does not follow that hypothesis, the result will always be wrong.

The universal approximation theorem guarantees that it is theoretically pos-
sible with a given class of parametric functions to achieve an arbitrarily small er-
ror when estimating any continuous function in a particular domain. In practice,
it is not possible to achieve an arbitrarily small estimation error because there are
other factors limiting the estimation accuracy, including the size of the dataset
used for estimation and the computational costs of estimating the model. Non-
etheless, the theorem has the important role of guaranteeing that the choice
of the class of functions will not impose any hypothesis that is incompatible with
the function being modeled.

More specifically, a universal approximation theorem is formulated as follows.

3.2 Universal approximation theorem of metaparametric neural net-
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It is desired to approximate a function h(z) : Z → Rp, where Z ⊆ Rn. For that
purpose, a class of parametric functions is used where for every possible num-
ber of parameters m, a different version of the parametric function is provided
gm(z; θ(m)) : Z × T (m) → Rp, where T (m) ⊆ Rm. Since function h(z) might be
any function in a very broad class of possible functions (for example, the class
of all continuous functions), no parametric function gm(z) would be capable of
approximating arbitrarily well every possible function h(z). What is achieved by
the universal approximation theorem is to show that if the number of paramet-
ers is allowed to be increased, the best possible approximation of h(z) will be
progressively better, with the error converging to 0 in the limit for the number of
parameters approaching ∞.

In the specific case of metaparametric neural networks, the class of paramet-
ric functions is a composition of two other classes of parametric functions as
stated in Definition 1. Consequently, the number of input variables for the res-
ulting function will be the sum of the number of input variables for the original
functions. As shown in equation (3.5), given two classes of parametric functions
that individually have universal approximation, it is possible to associate them
so that the resulting class of parametric functions will not have universal approx-
imation property in the resulting function space with increased input dimension.
Therefore, it is necessary to prove an universal approximation theorem for MNNs
in order to guarantee that the MNN structure does not impose any restrictions
to the functions being modeled. The proof provided in Section 3.2.2 follows that
general problem statement provided in the present section, but the input vari-
able z is split into a x component and a y component so that each component
represents the input variables of one of the parametric functions in the MNN.

The definition of Z is often restricted to sets with a certain property, like com-
pact sets in Theorem 1. These restrictions simplify the demonstration, but they do
not completely restrict the use of the result of the theorem results in sets that do
not follow the restrictions. Indeed, the function of interest h(z) might be defined
over set Z ′ ⊂ Z , for example if one of the input variables is categorical. In this
case, as long as it is possible to define an extension of the function h̃(z) : Z → Rp

so that h̃(z) = h(z) for any z ∈ Z , then gm(z; θ[m]) can universily approximate h̃(z)
and consequently it can also universally approximate h(z).
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3.2.2 Universal approximation proof

The main intuition behind Theorem 1 is that for any continuous function h(x, y)
it is possible to define a set of parameters ψ so that g(y; ψ) is arbitrarily close to
h. Then, it would suffice to use a neural network to represent the parameter ψ

as a function of x. However, there are important conditions that must be taken
into account to assure the validity of this procedure. This can be summarized
as follows: Let g(y; ψ) be a class of parametric functions that can approximate
any continuous function provided that the number of parameters ψ is enough
to achieve the required accuracy. An MNN would employ this function to ap-
proximate h(x, y) by making ψ the outputs of a neural network with inputs x.
Indeed, for any value of x, there is a set of parameters ψ that will make g(y; ψ)

satisfactorily close to h(x, y). In order to guarantee the MNN will approximate
h(x, y) satisfactorily, three conditions must be met:

1. the number of parameters ψ must be the same for all values of x. This con-
dition is guaranteed by Lemma 2.

2. the function ψ(x) (defined as the value of ψ that will make g(y, ψ) approx-
imate h(x, y) for each value of x) must be continuous so that it is possible
to guarantee a neural network will approximate it arbitrarily well. This con-
dition is guaranteed by Lemma 1.

3. the change in g(y; ψ) introduced by the neural network approximation of ψ

must be small enough so that g(y; ψ(x)) is still a satisfactory approximation
of h(x, y). This condition is guaranteed by Theorem 1.

We first provide the following definitions that will be used in all results in this
section:

• Z : a convex compact subset of RNx+Ny ;

• X : the set of all x ∈ RNx so that there is a point (x, y) ∈ Z ;

• Y : the set of all y ∈ RNy so that there is a point (x, y) ∈ Z ;

• Y(x): the set of all y ∈ RNy so that (x, y) ∈ Z ;

• ℓ(x; ψ): the supremum over y of the distance between g(y, ψ) and h(x, y),

3.2 Universal approximation theorem of metaparametric neural net-
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as shown in equation (3.6):

ℓ(x; ψ) = sup
y∈Y(x)

∥g(y, ψ)− h(x, y)∥ , (3.6)

where ∥ · ∥ is the ℓ2 − norm.

Lemma 1. Given a continuous function h(x, y) : Z → RNh and a continuous
parametric function g(y; ψ) : Y ×Rn → RNh , and provided that:

(i) g(y, αψ1 + (1− α)ψ2) = αg(y, ψ1) + (1− α)g(y, ψ2), for any ψ1, ψ2 ∈ Rn, any
α ∈ [0, 1], and any y ∈ Y ;

(ii) For any x ∈ X , there exists a function ψ(x) : X → Rn so that ℓ(x; ψ(x)) < η.

It is possible to build a continuous function ψc(x) : X → Rn so that ℓ(x; ψc(x)) ≤ η

for any x ∈ X .

Proof. Let Pη(x) be the set of all ψ ∈ Rn for which ℓ(x, ψ) ≤ η. From the lemma
condition (ii), Pη(x) is not empty. Since Z is compact and convex, the boundary
of Y(x) is continuous in x, thus ℓ(x; ψ) is continuous in x and ψ. Hence, the set
Pη(x) is closed (i.e. contains all its limit points). Also, for any ψ1, ψ2 ∈ Pη(x),
we have from the triangle inequality and from condition (i) that ℓ(x; αψ1 + (1−
α)ψ2) ≤ αℓ(x; ψ1) + (1− α)ℓ(x; ψ2) ≤ η, thus Pη(x) is convex.

In order to prove that there exists at least one continuous solution ψc(x) to
the inequality, we choose the particular solution ψmin(x) that minimizes ∥ψ∥ for
every x. For any x ∈ X we have from the Best Approximation Theorem [71] that
there is one unique point ψmin(x) ∈ Pη(x) that minimizes ∥ψ∥. Therefore, ψmin(x)
is uniquely defined. We now show that ψmin(x) is continuous in X . This has to be
satisfied for each of the two scenarios for an arbitrary point x0 in X :

• If ℓ(x0; ψmin(x0)) < η:

From the continuity of ℓ(x0; ψmin(x0)), there exists a neighborhood of
ψmin(x0) where all points ψ′ satisfy ℓ(x0; ψ′) < η. Thus, in order to ψmin(x0)

to have the minimum norm within this neighborhood, it must necessarily
be the origin, 0.

Also, from the continuity of ℓ(x; 0), there exists a δ > 0 so that ℓ(x; 0) < η

for any x in the neighborhood of x0 defined by ∥x − x0∥ < δ. Thus in the
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neighborhood of x0, ψmin(x) = 0, which implies that ψmin(x) is continuous.

• If ℓ(x0; ψmin(x0)) = η:

From lemma condition (ii), there exists; ψ∗ ̸= ψmin(x0) satisfying ℓ(x0; ψ∗) < η.

Let ψα = (1− α)ψmin(x0) + αψ∗. It follows from condition (i) that g(y, ψα) =

(1 − α)g(y, ψmin(x0)) + αg(y, ψ∗). Thus, from the triangle inequalities we
have:

1. ℓ(x0; ψα) ≤ (1− α)ℓ(x0; ψmin(x0)) + αℓ(x0; ψ∗) < η for any α ∈ (0, 1);

2. ℓ(x0; ψα) ≥ (1 + |α|)ℓ(x0; ψmin(x0))− |α|ℓ(x0; ψ∗) > η for any α < 0.

Then, for any ϵ > 0, there exists ψ+ and ψ− satisfying: ∥ψ+ − ψmin(x0)∥ < ϵ;
∥ψ− − ψmin(x0)∥ < ϵ; ℓ(x; ψ+) > η; and ℓ(x; ψ−) < η;

From the continuity of ℓ(x; ψ), there is r0(ϵ) > 0 so that ℓ(x; ψ+) > η and
ℓ(x; ψ−) < η for any x with ∥x − x0∥ < r0(ϵ). Then, from the Intermediate
Value Theorem, it is possible to define ψη(x; ϵ) so that ∥ψη(x; ϵ)−ψmin(x0)∥ <
ϵ and ℓ(x; ψη(x; ϵ)) = η for any x with ∥x− x0∥ < r0(ϵ). Thus, for any x with
∥x− x0∥ < r0(ϵ),

∥ψmin(x)∥ < ∥ψmin(x0)∥+ ϵ . (3.7)

Assuming by contradiction that ψmin(x0) is not continuous in x0, there exists
K > 0 so that for any δ > 0 there exists a x′ with ∥ψmin(x′)− ψmin(x0)∥ > K
and ∥x′ − x0∥ < δ. Let δ0 > 0 and δj = min(δ0/j, r0(K/j)), then there exists
x′j so that ∥ψmin(x′j) − ψmin(x0)∥ > K and ∥x′ − x0∥ < δj. Thus ∥ψmin(x′j)∥ is
limited by equation (3.7) and from the Bolzano-Weierstrass theorem, there
exists a convergent subsequence so that:

lim
k→∞

ψmin(x′jk) = ψ∗ . (3.8)

From the continuity of the norm, we have

lim
k→∞
∥ψmin(x′jk)∥ = ∥ψ

∗∥ ≤ ∥ψmin(x0)∥ , (3.9)

3.2 Universal approximation theorem of metaparametric neural net-
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but since ℓ(ψmin(x′jk), x′jk) ≤ η and ℓ(x, ψ) is continuous:

lim
k→∞

ℓ(x′jk ; ψmin(x′jk)) = ℓ(x0; ψ∗) ≤ η . (3.10)

Therefore, ψ∗ is the minimum norm solution to ℓ(x; ψ) ≤ η and from equa-
tion (3.8) we have that limk→∞ ψmin(x′jk) = ψmin(x0). This is contradictory
with the assumption that ∥ψmin(x′j)− ψmin(x0)∥ > K for any j > 0. Thus, the
assumption is false and ψmin(x) must be continuous in x0.

Lemma 2. Given a continuous function h(x, y) : Z → RNh , an infinite and strictly
increasing sequence of positive integers, (n0, n1, ...), and a class of continuous
parametric functions in which for every nj on that sequence there is a function
with nj parameters, g(y; ψ(nj)) : Y ×Rnj → RNh . And provided that:

1. g(y, αψ1 + (1− α)ψ2) = αg(y, ψ1) + (1− α)g(y, ψ2) for any ψ1, ψ2 ∈ Rnj , any
α ∈ [0, 1], and any y ∈ Y ;

2. for any x ∈ X and any ϵ > 0, there exists a positive integer N(x) so that for
any nj ≥ N(x) there exists ψ̂(nj)(x) ∈ Rnj for which ℓ(x; ψ̂(nj)(x)) < ϵ.

We have that for any ϵ > 0, there is a positive integer N∗ so that for any nj ≥ N∗,
there exists a continuous function ψ̂

(nj)
c (x) : X → Rnj for which ℓ(x; ψ̂

(nj)
c (x)) ≤ ϵ.

Proof. Assuming by contradiction that N(x) is not bounded, we can build an
infinite sequence xk so that N(xk) > k. Since X is compact, from the Bolzano-
Weierstrass theorem there is a subsequence xkj that converges to some value
x∗ ∈ X . But for any nj ≥ N(x∗) there is ψ̂(nj)(x∗) ∈ Rnj for which ℓ(x∗, ψ̂(nj)(x∗)) <
ϵ. From the continuity of ℓ(x, ψ̂(n)(x)), we have that there is δ > 0 so that
ℓ(x, ψ̂(n)(x)) < ϵ for any x with ∥x − x∗∥ < δ. This is contradictory with N(xkj)

diverging to ∞, thus N(x) is bounded.

Now, let N∗ be an upper bound of N(x). From Lemma 1, it is possible to define
for any nj ≥ N a continuous function ψ̂

(nj)
c (x) so that ℓ(x; ψ̂

(nj)
c (x)) ≤ ϵ for any

x ∈ X .

Theorem 1 (Universal Approximation Theorem for Metaparametric Neural Net-
works). Given:
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• (n0, n1, ...): an infinite and strictly increasing sequence of positive integers
for which a class of continuous parametric functions is defined, g(y; ψ(nj)) :
Y ×P (nj) → RNh , where P (nj) is a convex subset of Rnj ;

• (m0[nj], m1[nj], ...): an infinite and strictly increasing sequence of positive in-
tegers that might depend or not on nj, so that a class of parametric func-
tions is defined, ψ(nj,mk[nj])(y; θ(mk[nj])) : X ×T (mk[nj]) → P (nj), where T (mk[nj],nj)

is a convex subset of Rmk[nj].

And provided that:

1. g(y, αψ
(nj)

1 + (1 − α)ψ
(nj)

2 ) = αg(y, ψ
(nj)

1 ) + (1 − α)g(y, ψ
(nj)

2 ) for any ψ1, ψ2 ∈
P (nj), any α ∈ [0, 1], and any y ∈ Y ;

2. for any continuous function f (y) : Y → RNh and any ϵ > 0, there exists a
positive integer N so that for any nj ≥ N there exists ψ̂(nj) ∈ P (nj) for which
supy∈Y ∥g(nj)(y, ψ̂(nj))− f (y)∥ < ϵ;

3. for any nj, any continuous function f (x) : X → Rnj and any ϵ > 0, there
exists a positive integer M[nj] so that for any mk[nj] ≥ M[nj] there exists
θ̂(mk[nj]) ∈ T (mk[nj]) for which supx∈X ∥ψ(nj,mk[nj])(x, θ̂(mk[nj]))− f (x)∥ < ϵ.

For any continuous function h(x, y) : Z → RNh and any ϵ > 0, there exist J and
K[j] so that for any j ≥ J and k ≥ K[j] there exists θ̂ ∈ T (mk[nj]) so that:

sup
(x,y)∈Z

∥g(nj)(y, ψ(nj,mk[nj])(x, θ̂(mk[nj])))− h(x, y)∥ < ϵ . (3.11)

Proof. In this proof, we adopt the following notation:

L
(

ψ(nj)(·)
)
= sup

(x,y)∈Z

∣∣∣∣∣∣g(nj)
(

y, ψ(nj)(x)
)
− h(x, y)

∣∣∣∣∣∣ . (3.12)

From Lemma 2, for any ϵ/2 > 0 there is J so that for any j ≥ J there is a con-
tinuous function ψ̂(nj)(x) : X → T (nj) so that L(x, ψ̂(nj)(·)) ≤ ϵ/2.

Since g(nj)(·) is bounded and linear in ψ(nj)(·), L(ψ(nj)(·)) will be continuous in
ψ(nj)(·). Thus, for any ϵ > 0 and j ≥ J there is δnj(ϵ) > 0 so that for any ψ(nj)(·) with
supx∈X ∥ψ(nj)(x)− ψ̂(nj)(x)∥ < δ(nj)(ϵ) we have L(ψ(nj)(·)) < ϵ.

Finally, from the theorem conditions there is K so that for any k ≥ K there is

3.2 Universal approximation theorem of metaparametric neural net-
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θ̂(mk[nj]) ∈ T (mk[nj]) for which supx∈X ∥ψ(nj,mk[nj])(x, θ̂(mk[nj]))− ψ̂(nj)(x)∥ < δ(nj)(ϵ).

3.2.3 Nested MNNs
From Theorem 1, it is known that anMNN can approximate any continuous func-
tion equally well as a neural network. An immediate consequence from it is that
an MNN can be used to replace the black-box block in another MNN.

Corollary 1. Given a neural network ψ(x, θ) and K parametrizations gk(yk, ψk) fol-
lowing the Theorem 1 conditions, it is possible to build a mataparametric neural
network in the form gK(yK; gK−1(yK−1; ...g1(y1; ψ(x, θ))...)) that universally approx-
imates any continuous function defined in the closed bounded subset Z .

This does not serve as a solution for completely eliminating the need of a
neural network component in the MNN model because, if this procedure is per-
formed iteratively until all input variables are captured by other parametric rep-
resentations, this would make the number of parameters in the model grow ex-
ponentially. Nonetheless, this property is useful when there is some advantage in
handling different input variables with different classes of parametric functions.

3.3 Possible choices for the blocks composing a
metaparametric neural network
Now that Theorem 1 has been proven, we proceed to showing particular

choices of parametrizations gψ(y) that fulfils the conditions in the theorem so
that the resulting MNN will represent arbitrarily well any continuous function in a
compact subset of RNx+Ny .

3.3.1 Basis function representations
We first analyze the case in which the parametrization g(·) is given by a set of
basis function with arbitrary real-valued weights. In a basis function represent-
ation, a basis set with n functions of y, νn(y), is used to achieve the paramet-
ric representation g(y; ψ) which is given by the linear combination of νn(y) with

46 Metaparametric neural networks: a generic hierarchical modelling framework



weights ψn. This representation is expressed by equation:

g(y; ψ) =
N

∑
n=1

ψnνn(y) . (3.13)

When using basis function representations in the explicit block of an MNN,
the first block of the MNN will have an arbitrary real valued output. There are
numerous possible choices of basis function that can be used in the explicit layer
of an MNN model and the best choice will depend on the application.

Polynomial basis functions

In polynomial basis functions representations, the basis νn(y) are definedas poly-
nomial functions. The use of polynomials basis functions is supported by Taylor’s
Theorem [72], which provides a guarantee that any continuously differentiable
function can be approximated arbitrarily well by an M-dimensional polynomial
of order N in the form:

g(y; ψ) = ∑
(n1,...,nM)|n1+...+nM≤N

[
ψn1,...,nM

M

∏
m=1

ymnm

]
. (3.14)

The most notable property of the Taylor series relationship between the coeffi-
cients ψn1,...,nm with the partial derivatives of the function.

Numerous other polynomial basis functions have been proposed, most com-
monly with the purpose of achieving an orthogonal basis. Examples of ortho-
gonal polynomial basis functions include Jacobi polynomials, Laguerre polyno-
mials and Hermite polynomials.

Fourier series

The Fourier series basis function representation is given by:

g(y; a, b) = a0

N

∑
n=1

[ancos(2πn f y) + bnsin(2πn f y)] , (3.15)

3.3 Possible choices for the blocks composing a metaparametric
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or in its multidimensional version by:

g(y; ψ) =
N

∑
n1=−N

...
N

∑
nM=−N

ψn1,...,nM exp

(
i

M

∑
m=1

ωmnmym

)
. (3.16)

When using Fourier series representations in MNNs, it is important to notice that
the standard formulation of Fourier series assumes that the target function is peri-
odic. If an MNN would be used in an application where the target function was
restricted to be periodic, this could be a good way of embedding this restric-
tion into the model. However, in the present work and most likely in most other
applications, this is not the case and this restriction can be avoided by forcing
the function to be symmetric and only using half the interval where it is defined.

Spline basis functions

Splines are functions that are often used to interpolate discrete samples, which
can be viewed as a low dimensional machine learning problem. They are
defined as piecewise polynomial functions, ie. the estimation interval is split into
sub-intervals inside which the splines are low order polynomials and in the sub-
interval intersections there is a discontinuity in the highest non-zero component
of the polynomial. These sub-intervals are defined by a set of points that corres-
ponds to the intersection between them and are typically called knots. Spline
basis functions are mainly characterized by the fact that the basis functions are
concentrated in limited sub-intervals of the function domain, being equal to 0
outside this sub-interval. This property is extremely useful in machine learning
applications since it is often the case that the correlation between points in a
target function is large for neighbor points and tend to vanish for points that are
far apart. This property is better understood in opposition to polynomial and
Fourier series basis functions where each basis function has non-null compon-
ents in all regions of the input domain; there if only one region of the function is
to be changed this requires jointly changing all coefficients in a way that pro-
duces the desired change while minimizing the effect in other regions of the
function domain.

Despite not being typically classified as a spline representation, the simplest
set of basis functions that can be classified as splines is the piecewise-constant.
There, each basis function is constant in a particular sub-interval and null outside
it, thus being a 0-order polynomial. This results in a piecewise-constant function
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with a stair-like shape with discontinuities in the knots.

The second simplest set of spline basis functions are the piecewise-linear.
There, each basis function has a triangular shape, being non-null in two adja-
cent intervals and null in the remaining of the domain. The representation that
results from this basis set is a piecewise-linear function that is linear within each
sub-interval and has a discontinuity in the first derivative in the knots.

For any natural number, it is possible to define a different set of splines basis
functions using polynomials of that order andmaking the discontinuity only hap-
pen in the highest order. For each order, it is possible to define a set of basis
function that is spatially localized, helping estimation to be independent across
different regions of the function domain. In practice, low order splines are the
most useful since the higher the order of the splines the larger the number of
sub-intervals where each basis function is non-null, which makes the behaviour
of the basis functions approach that of polynomial basis functions as the spline
order increases.

Another set of splines basis functions that commonly used is the third order
polynomial, commonly referred to as natural cubic splines. They have previ-
ously been represented by a set of non-localized functions that have second
and third order components within a few sub-intervals and are linear in the re-
maining of the function domain [22]. This representation is not ideal for neural
networks since the magnitude of each function in a particular point might differ
substantially, making the scale for each coefficient different, which is problem-
atic for gradient based optimization. We propose an alternative representation
that restricts the number of functions that is non-null within each sub-interval.
Given knots tp, p ∈ {0, . . . , P}, this basis is denoted by:

vp(t) =



t + (t0 + t1 − 2t2 − g0(t))/3 , p = 0 ,

gP(t)/3 , p = 1 ,

1− h0(t) , p = 2 ,

hP−3(t) , p = 3 ,

hp−3(t)− hp−4(t) , p > 3 ,

(3.17)

3.3 Possible choices for the blocks composing a metaparametric
neural network
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where p ∈ {0, . . . , P} and:

hp(t) =
gp(t)− gp+1(t)
(tp+3 − tp)

, (3.18)

with gp(t) being the basis set used in [22]:

gp(t) =−
max(0, t− tp+1)

3

(tp+2 − tp+1)(tp+1 − tp)
+

max(0, t− tp)3

(tp+2 − tp)(tp+1 − tp)
(3.19)

+
max(0, t− tp+2)

3

(tp+2 − tp)(tp+2 − tp+1)
. (3.20)
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Figure 3.2.: Natural cubic splines basis set for knots defined at points 0, 2, 4, 5, 7, 9 and 10.

Figure 3.2 illustrates this basis for a particular set of knots. In particular, func-
tions v0(t) and vP−2(t) are smooth functions that transition between 0 an 1 in the
interval delimited by the four first or last knots respectively, and is constant else-
where. Functions vp(t), p ∈ {1, . . . , P− 3} are smooth functions that are positive
in the interval (tp−1, tp+3) and null elsewhere.
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3.3.2 Mixture model representation

In addition to basis function representations, we also propose the use of mixture
models as the explicit layer of MNNmodels. Mixture models are typically used in
statistics in order to describe quantities in populations where for each individual,
the target quantity follows a different probability distribution. Given that mixture
models were designed to model compositions of probability distributions, the
obey the restriction that a probability cannot be negative and must have an
aggregate value of 1. As a result, the difference between a basis functions
representations and mixture models is that in mixture models the weights are
restricted so that all the weights are non-negative and their weight is equal to 1.

Despite being originally developed to model probability distributions, mixture
models can be extremely useful for regression models when used within the
MNN framework. There, n different functions are used in order to delimit pos-
sible functional relationships between the explicit variables and the outcome
and for every combination of implicit input variables the outcome will be given
by the weighted average of those components with the weights being given
by the output of the neural network block of the MNN model, which will have
a softmax activation function. Because of this structure, each component of
the mixture model should represent a realistic relationship between the explicit
variables and the outcomes, different from the basis functionMNNs where each
basis function does not need to individually represent a realistic instance of the
target function. For this reason, we define each component with a parametric
representation. More specifically, each component is defined with a basis func-
tion representation and the outputs of the neural network block of the MNN are
not used as the weights in the basis function representation but as weights in
the weighted average of different components. This structure is represented in
Figure 3.3.

With this representation, the resulting function space is given by an (n-1)-
dimensional concave polytope (ie. a hyperspace version of a polyhedron) with
n vertices given by the functions in the basis set. On the other hand, in basis
function representations, the function space is given by a (n-1)-dimension hy-
perplane that intersects all functions in the basis set. This means that the result-
ant function in amixturemodel representation is constrained by its components.
Consequently, it is easier to inspect the resulting model and as long as the be-
haviour of each of the n components in the mixture model is consistent, the

3.3 Possible choices for the blocks composing a metaparametric
neural network
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Figure 3.3.: Graphical description of a mixture model MNN.

resulting of the mixture model will be a combination of them and should also
be consistent. Additionally, this can help to prevent overfitting since only a few
components are available in a mixture model and it is unlikely that one of them
will be used to overfit outliers.

Mixture models do not strictly fit the MNN structure used in the demonstration
of Theorem 1. Nonetheless, it is possible to show the universal approximation
property is maintained andwewill now provide and ontline of how this could be
demonstrated. Let each mode gn(y; ϕ) be defined by a different combination
of weights in a set of basis functions:

gn(y; ϕ) =
J

∑
j=1

ϕn,jνj(y) . (3.21)

The output of the MNN is then given by:

ĥ(y, x; ϕ, θ) =
N

∑
n=1

J

∑
j=1

ψn(x; θ)ϕn,jνj(y) , (3.22)

where the activation function of the neural network is a softmax function, so
that ψn(x; θ) > 0 for any n and ∑N

n=1 ψn(x; θ) = 1.

If the basis set νj(y) was used directly in an MNN model, the resulting neural
network component of the model ψ∗j (x; θ) would be a continuous function in a
compact domain. Then, ψ∗j (x, θ∗)will be superiorly and inferiorly boundedwhen
approximating and continuous function h(y, x). Denoting these bound as ψ∗j,min
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Figure 3.4.: Graphical description of a nested MNN.

and ψ∗j,max, we define the following components for the mixture model:

gn(y; ϕ) =
J

∑
j=1

ψ∗j,minνj(y) +

0 , n = 1 ,

n× (ψ∗n−1,max − ψ∗n−1,min)× νn−1(y) , n > 1 .
(3.23)

Then, themixturemodel will produce an accurate estimation of h(y, x) if its coef-
fients are given by:

ψn(x; θ) =

1−∑J+1
k=2 ψk(x; θ) , n = 1 ,

ψ∗n−1(x;θ∗)−ψ∗n−1,min
ψ∗n−1,max−ψ∗n−1,min

, n > 1 .
(3.24)

From the construction of ψn(x; θ), it follows that it is continuous, and followall con-
strains for the mixture model. Therefore, the neural network block of the mixture
model MNN will be capable of approximating it with the required accuracy.

3.3 Possible choices for the blocks composing a metaparametric
neural network

53



Nested MNNs

A further consequence of Theorem 1 is that in the mixture MNN formulation, it
is possible to stack multiple mixture models as described in Figure 3.4. There,
the basis function representation for y1 together with parameters γ work as a
mixture MNN model where there is no implicit variables; therefore, the univer-
sal approximation property is valid for this block. Then, the output ϕ2(y1; γ, ϕ1) is
used as the implicit block for the basis function representation of y2 in the form
of a basis function MNN, so the universal approximation property holds for the
resulting block. Finally, the resulting block is used to replace the basis function
representation in the standardmixturemodel MNN. Because of the universal ap-
proximation property, this block can approximate any continuous function of y1

and y2. Therefore, if this block is used to approximate the modes in a standard
mixture model with both y1 and y2 as explicit variables, it will be possible to ap-
proximate any continuous function h(y1, y2, x) and the universal approximation
property is true for the entire nested model.

The advantage of this structure over the standard mixture model is that a bot-
tleneck is introduced, so that the number of parameters in the explicit block
will not grow exponentially with the number of explicit variables. One import-
ant feature of this bottleneck is that despite limiting the amount of information
represented by the model, it does not interfere with the type of structure that
can be represented by it. This bottleneck is analogous to a reduction of the
number of hidden units in a neural network, where the number of parameters is
reduced but there is no fundamental change in the structure of the model. In
principle, this nested structure could be used to achieve a completely explicit
MNN model without the need of representing any variable implicitly through a
neural network block, but this possibility was not explored in detail in the present
project and may be a theme for future works.

3.4 Relationship with other neural network architectures
The proposed architecture for the MNN resembles other existing structures in

the literature and its relationship to them will be detailed in the present sec-
tion. The first is the mixture of experts [73, 74]. There, assuming that a function
h(z) : Z → RJ is being modeled, multiple experts are used to model it in paral-
lel, ψ1(z), . . . , ψM(z). Then, an additional neural network called gating function
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ρ(z) is used to weight each expert ψm(z) with the goal of attributing a higher
weight to the model that has the best performance in the specific point z. In
the training process, all experts and the gating function are trained at the same
time forming a large joint model that outputs the average of the outcome of
each expert weighted by the gating function. Similarly to the mixture of exterts,
an MNN also has multiple estimations that are weighted using a function of in-
put covariates. Indeed, if the choice of basis funcitons in an MNN is so that all
bassis functions are non-netative and their sum is always 1, then they could be
seen as a gating function. Despite this structural similarity, there is a fundamental
difference which is that in the mixture of experts architecture both the experts
and the gating function have the same input variables, whereas in the MNN
architecture there is a separation of the inputs between implicit variables x and
explicit variables y. This separation is precisely what allows MNNs to fulfill their
main purposes, which are to improve interpretability of the resultant model and
to allow analytic operations like integration and derivative to be performed over
the explicit variables. Indeed, this separation allows the use of basis functions
given the reduced dimensionality of y. This means that for any fixed value that
is chosen for x, the MNN will provide a basis function representation of its estim-
ate of h(x, y). This representation can be interpreted easier than neural networks
and also allows analytic derivative and integration.

Another class of models that resembles the MNN structure is the mixture dens-
ity network [75], where a Gaussian mixture model of the outcome variable is
obtained with its parameters being the outputs of a neural network with a dif-
ferent set of input variables:

f (y|x) =
M

∑
m=1

ρm(x)ϕµm(x),σm(x)2(y) , (3.25)

where for every m, ϕµm(x),σm(x)2(y) if the Gaussian probability density function with
mean µm(x) and variance σm(x)2 and ρm(x) is the weight for distribution m in the
Gaussianmixturemodel. Although this architecture can be represented in terms
of the MNN framework, it is a specific case of an MNN and not an equivalent
to it. Indeed, the MNN framework allows the representation not only of a prob-
ability distribution over the outcome variable but also the representation of a
generic function as the output of a neural network. Conversely, in mixture dens-
ity networks, the arguments y of the Gaussian mixture is seen as the outcome
of the model and not an input variable, with the aim of creating a probabilistic
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representation of the outcome. The application of MNNs to survival modeling
performed in the next chapters of this thesis provides practical results that illus-
trate well the improvements achieved with the MNN framework. First, in the
PH-MNN model in Section 4.3.1, where the MNN is used to represent the hazard
ratio, which is not a probability distribution over time, but a non-negative func-
tion of time that modulates the baseline hazard function. There, it would be
possible to achieve an structure analogous to the DH-MNN model using a mix-
ture density network, since there the outcome of the model is precisely a prob-
ability distribution. However, the PH-MNN model uses the separation between
hazard ratio and baseline hazard function proposed in [2] which allows high fre-
quency components of the time-to-event probability distribution to bemodeled
without covariate dependency. This has led to improved estimation accuracy
as shown in Section 4.4. Second, in the nested PN-MNN model where the out-
come is modeled with a hierarchical structure that improves interpretability as
shown in Section 4.5. Third, in the transfer learning strategy proposed in Section
6.2. There, the separation of modes present in the nested PH-MNN model was
used to reduce overfitting in a scenario where part of the input variables was
only available in a reduced subset of the data.
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4
Metaparametric neural networks for
survival analysis

In the present chapter we show how the MNN framework can be applied to
survival analysis. Additionally, we show that the main works done so far on the
application of neural networks to survival analysis can be cast as restricted in-
stances of the MNN survival models. The content of this chapter is derived from
[70].

In current neural network models for survival analysis, it is possible to see im-
portant limitations caused by the black-box structure. Current extensions of stat-
istical approaches to survival modeling impose limitations on the functional re-
lationships to bemodeled in order to allow better interpretability of the influence
that time has on the event probability. Indeed, most neural network extensions
of the proportional hazards model assume that the hazard ratio is time invari-
ant, with the only exception being Cox-time [16] which is extremely computa-
tional costly. The extensions of the accelerated failure time model assume that
the event probability conforms to particular families of probability distributions.
Conversely, discrete time models compute the output for several numbers of
time points in order to represent the functional relationship between the time
and the event probability. This does not directly solve the lack of interpretabil-
ity of the influence time has on the event probability, but divides the problems
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into several smaller problems so that in each smaller problem this influence can
be neglected. However, this approach restricts estimation to points included in
the sample and increasing the sample size would lead to an increased num-
ber of parameters and possibly also the need for more data to train the model.
Although it is possible to use interpolation methods to achieve estimations in
intermediary points, it is preferable to employ a model that uses the same para-
metric representation during training so that the neural network is optimized to
represent outcomes at the entire range of follow up times.

The MNN framework the will be applied to survival analysis in the present
chapter allowing the generalization of several survival models. Indeed, it is
shown in Section 4.1 that various survival models can be interpreted as particular
instances of MNNs and this knowledge is used in Section 4.2 to extend existing
models. This results in tree different models, each coming from a different class
of models. The advantage of the MNN approach in the present work is shown
experimentally in Section 4.4.2. Additionally, the introduction of a more inter-
pretable structure to the model allows for further improvements, including the
possibility of models that can be more easily scrutinized as will be shown in Sec-
tion 4.5.2 and the possibility of combining datasets with different sets of input
variables as will be shown in Section 6.2.

4.1 Interpretation of other neural network survival models
in the form of MNNs
The MNN structure can be used as a generic framework for survival analysis

and most survival models can be described as specific cases of it. The exist-
ing neural network extensions of the proportional hazards model can be cast
in the metaparametric form. This is achieved by making for each event type
j: λj(t; x) = gj(t; ψj(x; θ)) = λ0,j(t) exp(ψj(x; θ)), where λ0,j(t) is the baseline haz-
ard function for event type j and ψj(x; θ) is the output of a neural network. In
the case of Cox-Time [16], the follow-up time t is included as part of vector x.
Also, the original Cox proportional hazards model and both Fine & Gray [4] and
Kalbfleish & Prentice [3] competing risks extensions of it can also be seen as a
particular instance of it by restricting ψj(x; θ) to a linear model.

Similarly, the neural network versions of the AFT model [27] can also be ex-
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pressed in a metaparametric form. This is done by making g(t; ψ(x; θ)) a log-
normal probability distribution with parameters µ = ψ1(x; θ) and log σ = ψ2(x; θ),
where ψ[1,2](x; θ) are the outputs of a neural network. The original AFT model
can also be seen as a particular instance of it by restricting ψ[1,2](x; θ) to a linear
model.

The discrete time-interval models can also fit in a metaparametric struc-
ture, with the use of a series of Kronecker delta functions. This results in a
cause-specific hazard function that is defined over a time interval, as follows:
λj[κ; x] = gj[κ; ψj,[0,...,K](x; θ)] = ψj,κ(x; θ), where κ is the index of a time interval
and ψj,[0,...,K](x; θ) are the outputs of a neural network.

More importantly, theMNN framework can be used to formulatemore generic
models. This requires:

1. showing how the output of the MNN will describe the survival probability
distribution, which is covered in Section 4.2;

2. making a choice of parametric function gj(t; ψ(x; θ)), which is covered in
Section 4.2.5

3. estimating the parameters of the neural networks, which is covered in Sec-
tion 4.3.

4.2 MNN survival modeling framework
As shown in Section 4.1, the metaparametric structure provides a formal gen-

eric framework for most neural network based survival models. Here, we exploit
this finding to derive novel extensions for all three classes of survival models.

4.2.1 Proportional hazards metaparametric neural network (PH-MNN)

We define the PH-MNN with the expression:

λj(t, x) = λ0,j(t)ωj(t, x) , (4.1)
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where λ0,j(t) is the cause-specific baseline hazard function and ωj(t, x) is the
time-dependent hazard ratio, given by:

ωj(t, x) = a

(
K

∑
k=1

ψk,j(x)νk(t)

)
, (4.2)

where νk(t) is a set of basis functions over time; ψk,j(x) are outputs of a neural
network; and a(·) is a strictly positive function. Typically, a(·) is chosen to be
the exponential function. The choice of the basis νk(t) and the function a(·)
will strongly influence the model estimation procedure and its computational
requirements. If the basis νk(t) is localized in time, being positive inside a finite
interval and null outside it, the following simplified structure is useful:

ωj(t, x) =
K

∑
k=1

a
(
ψk,j(x)

)
νk(t) . (4.3)

Here, the time localization and non-negativity of the basis is required to guaran-
tee that ωj(t, x) ≥ 0. The variability in the amount of data for each type of event
may dictate that we choose a different basis set νk(t) for each event type j.

The PH-MNN structure allows universal approximation of any continuous sur-
vival function given that the baseline hazard function λ0,j(t) is non-parametric,
being able to approximate any continuous unidimentional function, while
ωj(t, x) is represented by an MNN, following the universal approximation prop-
erty as shown in Theorem 1. Although the MNN block in the PH-MNN model has
the restriction of being non-negative, which is achieved through the activation
function a(·), this does not harm its universal approximation property since the
hazard ratio to be estimated is required to be non-negative by definition.

4.2.2 Quantile regression metaparametric neural network (QR-MNN)
We define the QR-MNN quantile function as:

Q(τ, x) =
∫ − log τ

u=0
a

(
K

∑
k=1

ψk(x)νk(u)

)
du , (4.4)

where Q(τ, x) = inf{t : 1− S(t|x) ≥ τ}. The metaparametric formulation must re-
spect the constraint that Q(τ, x) should be strictly increasingwith time. A suitable
basis set νk(t) should provide an analytical expression for the integral in equa-
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tion (4.4). Analogous to the PH-MNNmodel, an alternative parametrization can
be obtained by placing the function a(·) inside the summation resulting in the
following form:

Q(τ, x) =
K

∑
k=1

a (ψk(x))
∫ − log τ

u=0
νk(u)du . (4.5)

This makes analytical integration more simple. A competing risks extension can
be achieved using a cause-specific quantile, which we define as Qj(τ, x) =

inf{t : 1 − exp(−Λj(t; x)) ≥ τ}, where Λj(t; x) = Pr[Tevent < t; j|x] is the cause-
specific cumulative hazard function.

Note that either the quantile function or its competing risks extension fully spe-
cifies the event probability distribution and the correspondent hazard function
can be retrieved from it:

λj(t, x) = − d
dt

log
[
1−Q−1

j (t, x)
]

. (4.6)

The QR-MNN model satisfies the universal approximation property since the
derivative of its quantile function is represented by an MNN model. Here, the
restriction for this derivative to be non-negative also does not hurt the universal
approximation property since the derivative that is being estimated is required
to be non-negative by definition.

4.2.3 Direct hazard metaparametric neural network (DH-MNN)

We define the DH-MNN as a continuous time extension of the discrete time-
interval models. This is achieved with the following formulation:

λj(t, x) = a

(
K

∑
k=1

ψk,j(x)νk(t)

)
, (4.7)

where the function a(·) should be positive for the model to be coherent, in the
sense that the hazard function is never negative. This is a direct functional rep-
resentation of the hazard function and; therefore, can be termed as a direct
hazard model.
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An alternative formulation, as in the PH-MNN and QR-MNN, is:

λj(t, x) =
K

∑
k=1

a
(
ψk,j(x)

)
νk(t) , (4.8)

where the basis set νk(t) should be positive and localized in time.

In the DH-MNN, the hazard function, which is non-negative by definition is dir-
ectly modeled by an MNN with activation function a(·) that guarantees non-
negativity. This makes the universal approximation also valid for this model. Note
that the DeepHit model [45], being a particular instance of the DH-MNN with
Dirac delta activation function will not universally approximate the hazard ratio
but will universally approximate the cumulative hazard function. Indeed, the
DeepHit model was an important step towards the development of the MNN
framework. Nonetheless, its use of a discrete basis function requires more unites
than higher order polynomials to achieve a precise representation of the time
dependency of the survival function, making it preferable to use other versions
of the DH-MNN model.

4.2.4 General remarks
In all of the above models, an infinite set of basis functions can represent any
square integrable function of time in a finite interval [76]. Restricting the number
of basis functions to be finite has an effect analogous to eliminating the high
frequency components of the target function. In practice, a sufficient approx-
imation accuracy to any function can be achieved by a suitable finite set of
basis functions. This approach provides a continuous and smooth representa-
tion of the target function, whilst reducing the required number of basis func-
tions, and consequently the risk of overfitting. The extension of the proportional
hazards model has the additional advantage of allowing the inclusion of high
frequency components of the hazard function that are common to all values
of x, via the baseline hazard function.

4.2.5 Choice of basis functions
After presenting the application of the MNN framework to survival analysis, we
now proceed to further describing the choices of basis function presented in
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3.3.1 but now in the context of survival models. More specifically, we show how
this choice affects the possibility of analytical computation in equations (4.2) to
(4.8).

Piecewise constant basis functions

Given a set of time knots [T̄0, T̄1, ..., T̄K], the set of basis functions for a piecewise
constant model will be:

νk(t) =

{
1, T̄k−1 ≤ t < T̄k

0, otherwise .
(4.9)

This set of basis functions is completely separated in time, simplifyingmodel com-
putation.

For a PH-MNN model, this basis choice makes equations (4.2) and (4.3) equi-
valent and removes the need to compute a(·) for each time point separately in
the objective function. Also, this choice of basis functions allows analytical con-
version between different representations of the event probability distribution for
all MNN models, thereby reducing the computational cost of the estimation.

Although the computation is simpler thanwith other choices of basis functions,
a smooth transition between intervals cannot be achieved, with discontinuities
in the modeled hazard function despite the target function being smooth.

Piecewise linear basis functions

Given a set of time knots [T̄0, T̄1, ..., T̄K], the set of basis functions for a piecewise
constant model will be:

νk(t) =


(t− T̄k−1)/(T̄k − T̄k−1), T̄k−1 ≤ t < T̄k

(T̄k+1 − t)/(T̄k+1 − T̄k), T̄k ≤ t < T̄k+1

0, otherwise
. (4.10)

In contrast to the piecewise constant models, the basis functions are continu-
ous. For the PH-MNNmodel, equations (4.2) and (4.3) are no longer equivalent.
Although both formulations are possible, (4.3) will have smaller computational
cost for estimation, as discussed in Section 4.3. The same is true of QR-MNN or
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DH-MNN models and computation will be simplified with the use of equations
(4.5) and (4.8) respectively. This choice of basis functions also allow analytic
conversion among different representations of the event probability distribution,
analogous to the piecewise constant basis functions.

Natural cubic splines

When used in the formulation provided in Section 3.3.1, it is also possible to use
the model formulations in equations (4.3), (4.5) and (4.8).

Other basis functions

Other choices of basis functions are possible that make the resultant model
smoother than in the piecewise models. These include higher order polynomi-
als and Fourier basis functions. In this case, it is not possible to use the model
formulations provided in equations (4.3), (4.5) and (4.8). Instead, a similar effect
is achieved by making a(y) = y2 in equations (4.2), (4.4) and (4.7). Given a set
of unconstrained coefficients of y, a convolution property can be used to com-
pute a set of coefficients that will produce y2 in the same basis either in Fourier
or in polynomial representations. If the convolution property is used, Λj(t, x) can
be computed analytically through the integration of each basis function indi-
vidually. For a QR-MNN model, the inverse of the quantile function cannot be
computed analytically, requiring a numerical approximation to be used.

4.2.6 Nested MNN for survival analysis

The nested MNN formulation proposed in Section 3.3.2 can be applied to the
survival models proposed in Section 4.2. Here, the advantage of this formulation
would be to allow easier scrutiny of all possible outcomes of the survival model
as they unfold in time. In the present chapter we evaluate the nested version of
the PH-MNN model (nested PH-MNN). This is done in Section 4.4 where its estim-
ation error is compared to other models and in Section 4.5 where the practical
impacts of the nested PH-MNN structure is further explored.
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4.3 Estimation of MNN models
4.3.1 Proportional hazards metaparametric neural networks

The original estimation method for the proportional hazards model is the partial
likelihood maximization [2], with competing risks extensions proposed by [3, 4,
77]. These estimators are compatible with time-dependent hazard ratios and
require no further development for implementation with the PH-MNN structure,
regardless of the different forms of the partial likelihood objective function. Non-
etheless, existing proofs of asymptotic properties of the estimation cease to be
valid in the case of the PH-MNN model. The theoretical background for the use
of partial likelihood estimation in the PH-MNNmodel will be provided in Chapter
5.

In addition the the asymptotic properties of the estimator, special care is re-
quired in the implementation to avoid impractical computational cost and this is
the focus of the present section. We show here the estimation procedure for the
Cox partial likelihood estimator, but same procedure can be applied to other
objective functions presented in Chapter 5.

The Cox partial log-likelihood is given by:

L = ∑
n
Ln , (4.11)

where:
Ln =

[
log ω(t, xn)− log

N

∑
m=n

ω(t, xm)

]
En . (4.12)

There En indicates if an event has occurred to subject n at time Tn. For N subjects,
the computational complexity of a training step isO(N2NK + N(CF +CB)), where
NK is the number of basis functions, and CF and CB are respectively the com-
putational costs of feed-forward and back-propagation in the chosen neural
network architecture. This is impractical for large datasets, and is avoided in tra-
ditional neural networks by mini-batch approximation or by on-line training [78].
Here, an extension of this technique is required since standard mini-batch ap-
proximation would still lead to a computational cost that grows linearly with N.
This is achieved by training the data with two independent sets of mini batches:

1. the first containing an arbitrary set of subjects with size Nb;
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2. and the second containing only uncensored subjects with size Ñb.

The mini batch approximation of log ∑N
m=n ω(t, xm) is achieved by replacing the

summation with the average of ω(t, xm) for all xm in the mini batch 1. The ap-
proximation of L is given as the average of all Ln in mini batch 2. For simplicity,
we normalize the log-likelihood by the number of uncensored subjects. Note
that for each subject in mini batch 2, it is necessary to make an independent
estimation within mini batch 1. Then, the cost of one training iteration becomes
O(NK NbÑb + (Nb + Ñb)(CF + CB)).

The estimation of the baseline hazard function requires consideration of time
variation. The Kalbfleish & Prentice estimator [11] and the Breslow estimator [10]
both provide an analytical expression for the baseline hazard function, but as-
sumea time-invariant proportionality factor and a single risk. However, Kalbfleish
& Prentice can be extended by computing the cumulative hazard in the form:

Λj(x, t) = ∑
Tn<t;En=1;jn=j

− ωj(x, Tn)

ωj(xn, Tn)
log

[
1− ωj(xn, Tn)

∑Tm≥Tn ωj(xm, Tn)

]
. (4.13)

Although the proof ofmaximum likelihood for this estimator provided in [11] does
not extend directly to the case of the PH-MNN model, an extension of this proof
is provided in Chapter 5. Note that if the model is based in equation (4.2), the
computational cost of estimating the survival probability for one single subject
after the model has been trained grows linearly with the training dataset size. If
the model is based on equation (4.3), the summation in equation (4.13) can be
rearranged as follows:

Λ0,j(t) = ∑
Tn<t;En=1;jn=j

−∑K
k=1 a

(
ψk,j(x)

)
νk(Tn)

ωj(xn, Tn)
log

[
1− ωj(xn, Tn)

∑Tm≥Tn ωj(xm, Tn)

]

=
K

∑
k=1

a
(
ψk,j(x)

)
Hk,j(t) , (4.14)

where:

Hk,j(t) = ∑
Tn<t;En=1;jn=j

− νk(Tn)

ωj(xn, Tn)
log

[
1− ωj(xn, Tn)

∑Tm≥Tn ωj(xm, Tn)

]
. (4.15)

There, Hk,j(t) only needs to be computed oncewith the values for each Tn in the
dataset being recordedwhile iterating through the summation. This makes com-
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putational complexity of calculating the survival function for each new subject
O(CF + log N).

4.3.2 Quantile regression metaparametric neural networks
Estimation in the QR-MNN model is performed by maximizing its log-likelihood,
given by:

L =
N

∑
n=1

[
En log(λjn(xn, Tn))−

J

∑
j=1

Λj(xn, Tn)

]
, (4.16)

where Λj(x, t) =
∫ t

0 λj(x, ν)dν and the cause-specific hazard function λj(x, t) can
be retrieved from the cause-specific quantile function in equation (4.6). Here,
standard mini-batch approximation can be performed. Note that the estim-
ation of this likelihood requires the computation of the inverse of the quantile
function, so estimation will be impacted by the choice of basis functions as
highlighted in Section 4.2.5. If the basis function is chosen to be piecewise con-
stant or piecewise linear, the inverse of the quantile function can be computed
analytically and the computational complexity of training a single batch will
be O(Nb(CF + CB)), where Nb is the size of the mini-batch, and CF and CB are re-
spectively the costs of feed-forwardandback-propagation in the chosen neural
network architecture.

4.3.3 Direct hazard metaparametric neural networks
Weestimate the DH-MNNmodel bymaximizing its log-likelihood, given by equa-
tion (4.16) in Section 4.3.2. The computation of the likelihood is simplified if the
version of the model in equation (4.8) is used, since the integral can be com-
puted analytically. Here, the standard mini-batch approximation can also be
performed. If the basis functions are chosen to be piecewise constant or piece-
wise linear, as detained in Section 4.2.5, the computational complexity of train-
ing a single batch will be O(Nb(CF + CB)), as with the QR-MNN model.

4.4 Experimental comparison of MNNs with other models
In the present section we perform a comparison of baseline implementations

of each type of MNN based survival model with other survival models.
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4.4.1 Application to synthetic data modeling
We first provide an example of the application of the proposed models to es-
timate the cause-specific survival probability distribution in a synthetic dataset.
The synthetic data used has two input covariate and two possible events, with
the cause-specific hazard function being:

λ1(t, x) = 0.03(1+ 0.5 cos(2πt/10)) exp(tan−1(2x[0])1(t < 5)+ tan−1(2x[1])1(t > 5)) ,
(4.17)

and

λ2(t, x) = 0.03(1 + 0.5 sin(2πt/10)) exp(sin(x[1])1(t < 5) + sin(x[0])1(t > 5)) ,
(4.18)

where x[0] and x[1] have independent normal distributions with mean equal to
0 and standard deviation equal to 1 and 1(·) is the indicator function, which
takes the value of 1 when the argument is true and 0 otherwise.

In all neural network models, the same structure was used to compute ψk,j(x),
which included Gaussian dropout [79]. This structure is described in Fig. 4.1,
reproduced with permission from IEEE.
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Figure 4.1.: Graphical description of the neural network structure applied in all models. [70] ©
2021 IEEE.

The following models were compared:

• PH-MNN: with piecewise linear basis functions and time knots equally dis-
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tributed in intervals of 2. The pseudo-code for this model is provided in
Algorithm 5 in Appendix A.

• QR-MNN: with piecewise linear basis functions and quantile knots given by
exp(−Λk)with Λk ∈ {0.01, 0.03, 0.06, 0.1, 0.2}. The pseudo-code for this model
is provided in Algorithm 6 in Appendix A.

• DH-MNN: with piecewise linear basis functions and time knots equally dis-
tributed in intervals of 2. The pseudo-code for this model is provided in
Algorithm 7 in Appendix A.

• Cox: the proportional hazard model [2] with the baseline hazard function
being estimated using the Kalbfleish & Prentice estimator [11]. Compet-
ing risks were accounted for as in [3]. The pseudo-code for this model is
provided in Algorithm 8 in Appendix A.

• QR: the quantile regression model, as in [26]. The pseudo-code for this
model is provided in Algorithm 9 in Appendix A.

• DeepSurv: a neural network adaptation of the Cox model [13], which is
equivalent to a restricted version of the PH-MNN model with a single time
constant basis function. The pseudo-code for this model is provided in Al-
gorithm 10 in Appendix A.

• Cox-Time: a neural network adaptation of the Cox model [16], which
extends DeepSurv by the inclusion of time as one of the input variables,
achieving universal approximation at the cost of an extremely increased
computational cost. The pseudo-code for this model is provided in Al-
gorithm 11 in Appendix A.

• Cox-Time (fast): equal to Cox-Time but with less training iterations to make
training time similar to other models. The pseudo-code for this model is
provided in Algorithm 11 in Appendix A.

• DeepHit: a discrete time-interval model proposed in [45], which can be
viewed as a direct hazard model. Two different time discretization intervals
of 2 and 0.1 were used to study the effect of a large discretization inter-
val on the model. Being a discrete time model, the conversion between
cumulative incidence function and cause-specific representations is only
fully specified at the limit for an infinitely small discretization step. This might
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Figure 4.2.: Averaged integrated squared error of the survival function for different dataset sizes.
The results are the average of 3 independent models trained with independently
generated datasets.

lead to a greater estimation error when a large discretization step is used.
The pseudo-code for this model is provided in Algorithm 12 in Appendix A.

• RSF: the random survival forest model implemented in scikit-survival [80].
The competing risks were taken into account by training two models sep-
arately and considering events other than the target one as censoring.
With this procedure, each model will estimate the cause-specific hazard
function for a different event type.

Fig. 4.2 shows how the averaged integrated squared error of the survival func-
tion varies with training dataset size. This squared error is defined as the integ-
ral over time of the squared difference between the true cumulative hazard
function and the model estimation divided by the length of the time interval.
Given that this is a synthetic data experiment, the underlying cumulative haz-
ard function is known, allowing the estimation error of the model to be com-
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puted. All of the MNN models performed better than previous state of the art in
their respective model class. Despite most models reaching a saturation point
where the error ceases to improve at the same rate as a function of the data-
set size, the PH-MNN and nested PH-MNN maintain a clear trend of improve-
ment in the entire range. This shows that the PH-MNN has more flexibility than
the other models when given the same number of parameters, consistent with
it’s use of a nonparametric baseline hazard function. Fig. 4.3 shows how the
averaged integrated squared error of the survival function evolves with model
training time. Although in neural networks the training time is flexible and com-
paring training times of algorithms can be misleading, Figure 4.3 shows that all
the proposed metaparametric neural network models have a shorter conver-
gence curve than their respective existing state-of-the-art models. This means
that the improvement achieved by the proposed models does not require a
higher computational time to be achieved. Fig. 4.4 shows how each model es-
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Figure 4.3.: Averaged integrated squared error of the survival function over training time using a
single synthetic dataset with 100000 data points. Computation was performed with
a RTX 2070 graphics card and the models were implemented with TensorFlow 2.3.1.
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Figure 4.4.: Cumulative cause-specific hazard function for event type 1 in the synthetic data
as a function of time and variable x[1] when x[0] = 0. The values estimated are
the averaged over 3 independent models trained with independently generated
datasets, each one with 100000 data points.

timates the event type 1 in the synthetic data with x[0] = 0 as a function of time
and x[1]. Note that all MNNmodels and also the DeepHit model are capable of
representing the nonlinearities and time-dependencies in the model with differ-
ent accuracies, as measured in Figs. 4.2 and 4.3. However, the DeepSurv, Cox
and QR models are incapable of fully representing the target probability dis-
tribution, and so they would never converge to the underlying true probability
distribution.

4.4.2 Application to a clinical dataset
We now proceed to the application of the proposed models to the estimation
of the risks of death and revision surgery for patients who undergo hip replace-
ment surgery, using data collected by the National Joint Registry in the United
Kingdom. This dataset contains outcomes information from1132875 hip replace-
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ment surgeries performed from 2003 to 2019. Here, modeling was restricted to
procedures performed from April 2009 to March 2019. Within this period, 855044
hip replacements were performed. The data was filtered to include only sur-
geries with complete data and only those where the reason for surgery was
osteoarthritis, resulting in a total of 612914 procedures. The covariates used for
estimation were:

• numerical variables:

– age: restricted to the interval from 30 to 100;

– BMI: restricted to the interval from 15 to 60;

– cup size: ranging from 26 to 62;

– head size: ranging from 26 to 60;

– stem size: ranging from 26 to 46.

• Boolean variables:

– procedure type: either complex or not;

– gender: either male or female;

– bone graft acetabular: whether or not this technique was used;

– bone graft femur: whether or not this technique was used;

– minimally invasive technique: whether or not this techniquewas used.

• categorical variables:

– Approach: anterior, antero-lateral, direct anterior, Hardinge,
Hardinge/anterolateral, lateral (inc Hardinge), posterior, trochanteric
osteotomy or other;

– cup fixation: cemented, cementless HA coated, cementless non HA
coated;

– stem fixation: cemented, cementless HA coated, cementless non HA
coated;
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– side: left, right or bilateral;

– patient procedure: cemented, cementless, other;

– ASA: American Society of Anaesthesiologists physical status classifica-
tion ranging from 1 to 4;

– primary surgical unit: id of each of the 485 different surgical units from
where hip replacements were registered;

– implant reason: one of 28 differentmedical indications for hip replace-
ment;

– cup type: custom, monobloc, preassembled cup/liner, resurfacing,
standard or not used;

– cup composition: ceramic, metal, metal ceramic combination, metal
polyethylene combination, polyethylene, not used;

– head type: custom, modular, resurfacing or not used;

– head composition: ceramic, metal or not used.

To improve estimation performance, all numerical inputs were normalized
through a linear transformation to make their mean 0 and their standard de-
viation 1. All categorical inputs were provided with one-hot encoding (i.e. a
vector of c numbers where c is the number of categories and all values are equal
to 0 except for the number that corresponds to the category specified, which is
1). As described in Figure 4.1, all categorical inputs passed through a layer with
10 hidden units, signoid activation and 0.7 Gaussian dropout.

The observed population survival curves are shown in the Kaplan-Meier estim-
ate [6]. The performance of the proposed MNN models, together with those of
benchmark and current state-of-the-art approaches were compared against
the observed Kaplan-Meier estimate. The models used for comparison were
the same as in Section 4.4.1. For the PH-MNN, the time knots used were 2, 4, and
7. For the DH-MNN and DeepHit, time knots were equally distributed in intervals
of 6 months.

The models were evaluated with plots of the estimated cumulative hazard ra-
tio (CHR) marginalized as a function of age and BMI. We chose age and BMI as
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example predictor variables as they demonstrate a nonlinear relationship with
survival, which the proposed methods should be able to capture. The margin-
alized CHR estimation as a function of either the age or the BMI used a sliding
window with width equal to 4 in respective units and centered successively in
each target value, where:

• the Kaplan-Meier estimate of the survival function within the window was
performed, SKM(t|x ∈ ξ(w)), where ξ(w) is a window centered in w;

• the marginal model estimate within the window is computed as the aver-
age of the estimated survival function for each patient within the window,
Smodel(t|x ∈ ξ(w));

• the Kaplan-Meier estimate was computed for the entire test population,
SKM(t);

• the Kaplan-Meier estimation of the marginalized CHR was given by:

CHRKM =
log(SKM(t|x ∈ ξ(w)))

log(SKM(t))
; (4.19)

• the model estimation of the marginalized CHR was given by:

CHRmodel =
log(Smodel(t|x ∈ ξ(w)))

log(SKM(t))
. (4.20)

This process was repeated 250 times, for each model in a group of 50 random
repetitions of 5-fold cross validation. The results of the estimated marginal CHR
as a function of age or BMI averaged for all 250 runs are shown in Figs. 4.6-
4.9. The results are evaluated according to the accuracy of representation of
nonlinearities, adaptability of the shape as a function of time, and calibration.
These three aspects are captured by the root mean square error of the model
estimate of the log marginal CHR relative to the Kaplan-Meier estimate of the
same quantity. For a given time t, this RMSE is given by:

RMSE =

∫
p(x ∈ ξ(w)) log2

(
log(Smodel(t|x∈ξ(w)))
log(SKM(t|x∈ξ(w)))

)
dw∫

p(x ∈ ξ(w))dw
, (4.21)

where p(x) is the population density inside the window ξ(w) centered in w, and
w is either the age or the BMI. This RMSE represents an integratedmeasure of two
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factors: first, the difference between the relationship of the model estimate and
the observed data as a function of the attribute; and second the systematic
bias between the two that is common for all values of the attribute. This bias can
be defined at each time as the constant that if added to the estimation of the
cumulative hazard ratio in that time would minimize the RMSE of the estimation
as a function of either age or BMI. By estimating a bias that will minimize this
RMSE, the two components can be identified as the unbiased RMSE (URMSE)
and the bias. There, the unbiased RMSE is the residual RMSE in the estimation
when the bias is removed. An intuition of the meaning of these error measures
can be obtained by examining Figure 4.6. At time=0.25 years, it is possible to
see that the estimation of the DeepHit model has a large positive bias, with
the estimation being larger than the Kaplan-Meier estimation for most values
of age. However, the shape of curve is similar to the Kaplan-Meier estimation,
which means that the unbiased RMSE is small.

Themodel were evaluated through the computation of the RMSE, URMSE and
absolute bias in the time interval from 6 months to 8 years with steps of 1 month.
Tables 4.1, 4.2 and 4.3 present for each type of model the maximum value over
time of each evaluation criteria with their 95% confidence interval. To highlight
the improvement achieved with the metaparametric neural network structure,
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Figure 4.5.: Estimated cumulative hazard ratio for the mortality risk marginalized as a function of
the age.
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the results were grouped by type of model. For the direct hazards models, eval-
uation was performed in 6 months intervals to allow a fair comparison between
both the discrete and continuous-time models.
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Figure 4.6.: Estimated cumulative hazard ratio for the mortality risk marginalized as a function of
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Table 4.1.: Maximum value over time of each error component in proportional hazards models
Cox DeepSurv Cox-Time PH-MNN nested PH-MNN RSF

Revision
by Age

RMSE 0.231± 0.010 0.217± 0.014 0.175± 0.004 0.154± 0.011 0.163± 0.010 0.174± 0.007

URMSE 0.227± 0.013 0.214± 0.015 0.157± 0.005 0.148± 0.014 0.160± 0.011 0.169± 0.009

abs. bias 0.059± 0.008 0.054± 0.007 0.097± 0.013 0.067± 0.001 0.065± 0.008 0.068± 0.005

Mortality
by Age

RMSE 0.564± 0.005 0.310± 0.023 0.211± 0.027 0.194± 0.016 0.195± 0.028 0.199± 0.026

URMSE 0.521± 0.007 0.281± 0.021 0.193± 0.025 0.189± 0.013 0.188± 0.026 0.192± 0.024

abs. bias 0.236± 0.002 0.152± 0.016 0.099± 0.013 0.057± 0.011 0.073± 0.001 0.069± 0.010

Revision
by BMI

RMSE 0.143± 0.003 0.137± 0.009 0.138± 0.017 0.122± 0.008 0.118± 0.005 0.121± 0.001

URMSE 0.136± 0.003 0.130± 0.007 0.106± 0.001 0.106± 0.010 0.109± 0.003 0.107± 0.001

abs. bias 0.071± 0.002 0.063± 0.000 0.101± 0.015 0.078± 0.002 0.066± 0.006 0.070± 0.004

Mortality
by BMI

RMSE 0.192± 0.002 0.134± 0.002 0.147± 0.015 0.132± 0.005 0.133± 0.009 0.135± 0.007

URMSE 0.187± 0.001 0.125± 0.004 0.122± 0.007 0.119± 0.007 0.126± 0.008 0.128± 0.006

abs. bias 0.053± 0.007 0.054± 0.007 0.088± 0.013 0.062± 0.009 0.049± 0.004 0.048± 0.003

Table 4.2.: Maximum value over time of each error component in direct hazards models
DeepHit DH-MNN

Revision
by Age

RMSE 0.463± 0.010 0.260± 0.018

URMSE 0.161± 0.011 0.148± 0.013

abs. bias 0.436± 0.004 0.217± 0.012

Mortality
by Age

RMSE 1.006± 0.005 0.242± 0.033

URMSE 0.198± 0.018 0.186± 0.015

abs. bias 0.987± 0.007 0.156± 0.029

Revision
by BMI

RMSE 0.449± 0.008 0.241± 0.015

URMSE 0.111± 0.010 0.105± 0.010

abs. bias 0.437± 0.005 0.217± 0.014

Mortality
by BMI

RMSE 0.986± 0.011 0.188± 0.017

URMSE 0.130± 0.004 0.119± 0.007

abs. bias 0.977± 0.011 0.146± 0.019

The PH-MNN, DH-MNN,QR-MNN, DeepSurv andDeepHitmodels captured the
nonlinearities, while the Cox did not. The QR model partially captured some
nonlinearities through the variation of coefficients with the quantile, but they
were not entirely captured since this variation is shared to represent both non-
linearities and time variations. This can be seen in the figures and is reflected by
a smaller URMSE for the neural network models in most cases. The nonlinearities
of the CHR could be adapted as a function of time for all the metaparametric
neural networks and for the DeepHit model. The model structure for the others
does not permit this variation of nonlinearities over time.

In the case of the proportional hazards models, the PH-MNN overall perform-
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Table 4.3.: Maximum value over time of each error component in quantile regression models
QR QR-MNN

Revision
by Age

RMSE 2.671± 0.077 0.725± 0.257

URMSE 0.186± 0.014 0.176± 0.021

abs. bias 2.666± 0.078 0.700± 0.259

Mortality
by Age

RMSE 2.424± 0.125 0.563± 0.133

URMSE 0.340± 0.008 0.323± 0.055

abs. bias 2.403± 0.125 0.448± 0.110

Revision
by BMI

RMSE 2.652± 0.080 0.730± 0.267

URMSE 0.149± 0.014 0.172± 0.020

abs. bias 2.649± 0.079 0.710± 0.265

Mortality
by BMI

RMSE 2.012± 0.102 0.496± 0.082

URMSE 0.181± 0.010 0.199± 0.025

abs. bias 2.007± 0.102 0.425± 0.087

ance measured by the RMSE was better than the established methods. When
this RMSE measure is broken down into its components, URMSE and absolute
bias, the DeepSurv model had a slightly smaller bias. However the PH-MNN bias
was still small and stable across the different risks and attributes. For the dir-
ect hazards models, the DH-MNN overall performance, URMS and bias were all
consistently better than DeepHit. Finally, for the quantile regression models, the
QR-MNN model overall performance was also consistently better than the QR
method, apart from revision by BMI in which the two methods were equivalent.

4.5 Evaluation of MNN internal architecture
Now that we have shown the success of theMNN framework when compared

to other survival models, we make a comparison between the baseline MNN
architecture shown in the previous section with the nested MNN architecture
proposed in Section 3.3.2.

4.5.1 Impact of hyper-parameters
In the first comparison, we use synthetically generated data to make an assess-
ment of how themodel hyper-parameters affect the estimation error in both the
baseline MNN model and the nested MNN model. Data was generated from a
proportional subdistribution hazard model with nonlinear and time-dependent
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hazard ratio:

λ̃1(t, x) = 0.03(1+ 0.5 cos(2πt/10)) exp(tan−1(2x[0])1(t < 5)+ tan−1(2x[1])1(t > 5)) ,
(4.22)

λ̃2(t, x) = 0.03(1 + 0.5 sin(2πt/10)) exp(sin(x[1])1(t < 5) + sin(x[0])1(t > 5)) ,
(4.23)

where [x[0], x[1]] ∼ N ([0, 0], I2). Censoring was included with uniform probability
distribution for the censoring time within the interval [0, 10]. Figure 4.10 shows the
response of both the standard PH-MNN model and the nested mixture model
PH-MNN to changes in the hyper-parameters. The the same dataset size is used
for all analysis. In the standard PH-MNN model the overfit was a function of the
number of hidden layers in the neural network, but in the nested mixture model
PH-MNN it was a function of the number of knots in the explicit variable basis
function representation. This improves interpretability of the choice of hyper-
parameters in the model since the marginal distribution of the explicit variable
can easily be observed from the raw data.

4.5.2 Nested PH-MNN mode analysis on COVID-19 hospitalization data
The Brazilian COVID-19 hospitalization dataset included data from all known
COVID-19 related hospitalizations in Brazil from 1 Jan 2021 to 26 Nov 2021, with a
total of more than 1,1 million hospitalizations. We have used this dataset to illus-
trate how the nested PH-MNN structure can be used to help interpretation and
validation of themodel. The data was filtered to include only patients who were
hospitalized and confirmed with COVID-19. The outcome was split between
mortality and hospital discharge. The following input variables were used in the
model:

• numerical variables:

– age: ranging from 0 to 100;

– hospitalization day: day of the year when hospitalization happened
ranging from 0 to 300.

• Boolean variables:

– Sex: patient sex;
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– Hospital Contamination: whether contamination happened at the
hospital;

– Risk - Puerperium: whether patient has recently delivered a child;

– Risk - Chronic cardiac disease: whether or not any chronic cardiac
disease is present;

– Risk - Down syndrome: whether or not the patient has Down syn-
drome;

– Risk - Chronic liver disease: whether or not any chronic liver disease is
present;

– Risk - Asthma: whether or not patient suffers from asthma;

– Risk - Diabetes mellitus: whether or not patient suffers from diabetes;

– Risk - Neurological disease: whether or not patient suffers from any
neurological disease;

– Risk - Other chronic lung disease: whether or not patient suffers from
any chronic lung disease;

– Risk - Immunodeficiency: whether or not suppers from any type of
immunodeficiency;

– Risk - Chronic kidney disease: whether or not any chronic kidney dis-
ease is present;

– Risk - Obesity: whether or not patient is obese;

– Risk - Others: whether or not other risks were present.

• categorical variables:

– Pregnancy: 8 possible values distinguishing whether or not the patient
is pregnant and the pregnancy period;

– Notification UF: one of 28 Brazilian Federation Units;

– Risk - Other (description): 81636 different values of ‘Other’ risk descrip-
tion;
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– Ethnicity: white, black, mixed ethnic groups, yellow or indigenous;

– City: 2860 different cities from which data was available;

– Healthcare Unit: 5844 different healthcare units from which data was
available.

The model was structured with the nested PH-MNN structure described in Fig-
ure 3.4 with a total of 3 modes. Time was represented with a piecewise linear
basis functions and time knots 2,7,14,28 and 60 days. The patient’s age and
the hospitalization day were modeled as explicit variable using natural cubic
splines with knots 0,30,60,90,120,150,180,210,240,270 and 300 for the hospitalization
day and 0,10,20,40,60,80 and 100 for age. The remaining variables were used as
input of a neural network with softmax output in order to compute the weight
of each basis function in a mixture model using the structure as in Figure 4.1.
Algorithm 1 provides the pseudo-code for the computation of the model out-
come: Figure 4.11 show the three resulting basis function for the 7 days mortality
Algorithm 1 Computation of the hazard ratio (ωj) in the nested PH-MNN model.
Require: a (age)
Require: d (hospitalization day)
Require: t (follow-up time)
Require: ψ(x) (output of the neural network block of the model)
Require: ν

[d]
k (d) (natural cubic splines basis functions for hospitalization day)

Require: ν
[a]
k (a) (natural cubic splines basis functions for age)

Require: ν
[t]
k (t) (piecewise linear basis functions for follow-up time)

Require: Θ4×7×11
1,j (parameters)

Require: Θ3×5×4
2,j (parameters)

for j in event types do
ei,j(d, a)← ∑k,l Θi,l,k

1,j ν
[a]
l (a)ν[d]k (d)

wm,n,j(d, a)← softmax(∑i Θm,n,i
2,j ei,j(d, a))

ωj(t, d, a, x)← ∑m,n wm,n,j(d, a)ν[t]n (t)ψm(x)
end for

and discharge respectively as a function of age and hospitalization day. This
shows the age dependency is nearly constant over time and has approximately
the same shape across all modes, but the total riskmagnitude differs significantly
depending on other covariates. Figure 4.12 shows the distribution of weights for
the different modes, being an illustration of how variable other than age and
hospitalization day affect the outcome.
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5
Maximum Likelihood Derivation of the
PH-MNN Estimator and its Properties

In Chapter 4, the metaparametric neural network framework was successfully
applied to survival analysis, leading an improvement over the state-of-the-art.
This was done with three different models: proportional hazards (PH-MNN), dir-
ect hazard (DH-MNN) and quantile regression (QR-MNN). The experimental suc-
cess is consistent with Theorem 1 which guarantees that the MNN framework
can represent any continuous survival probability distribution. In special, the PH-
MNN model achieved the best results among all three alternatives, which can
be explained by the use of the baseline hazard function. Indeed, this use al-
lows the model to simultaneously have a high time resolution for covariate inde-
pendent components and a low time resolution for covariate dependent ones.
Nonetheless, despite the vast literature on the theoretical justifications for the
proportional hazards model, it does not cover all possible scenarios and the PH-
MNNmodel is capable of representing patterns that are not covered by current
literature. Although the experiments in Sections 4.4 and 4.5 show the success
of the PH-MNN in a variety of scenarios, it is important to expand the theoret-
ical background for the proportional hazards model in order to provide more
confidence in the use of the PH-MNN model.

The two main aspects of a data based model that makes it adequate or not
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to some estimation task are: the capability of representing the target patterns
and the convergence of the model to the closest possible representation of the
true pattern as the dataset increases. The adoption of ametaparametric neural
network structure aims specifically at improving the first aspect. Indeed, the PH-
MNN model can represent virtually any survival function according to Theorem
1, and Chapter 4 provides examples of patterns that cannot be represented
by a standard proportional hazards model and are successfully represented by
a PH-MNN model. Once it has been established that the universal approxim-
ation is achieved by the PH-MNN model, it is now necessary to show that the
model convergence is not harmed by the introduction of additional complex-
ity to the model. This chapter aims specifically at studying the estimation of
a PH-MNN model considering the adequacy of the likelihood function and its
convergence properties. Similarly to other neural network models, a proof of
convergence would be challenging. Nonetheless, in the present chapter we
provide a proof of convergence assuming that the hidden layers have been
pre-trained and set to be constant during the training of the linear basis function
layers. This does not mean that the layers in the MNN model cannot be trained
jointly in practice. Indeed, it has already been experimentally demonstrated in
Chapter 4 that this can be successfully done.

Current literature already provides analysis of the likelihood function and con-
vergence properties for the standard proportional hazards model. Proofs of
the asymptotic properties of the partial likelihood estimator in the standard Cox
model were provided in [81] and [82]. Some methods allow the direct optimiz-
ation of the total likelihood and they can be divided into two groups. The first
group consists of methods in which a parametric model is used for the baseline
hazard function, permitting joint optimization with the hazard ratio [22, 23]. The
second group of methods estimate the baseline hazard function as a function
of the hazard ratio, allowing a likelihood expression that depends exclusively on
the hazard ratio. The resulting likelihood is called a profile likelihood. The model-
ing of the baseline hazard function as a piecewise constant function that only
changes when an event is observed has been proposed by [10]. The profile like-
lihood in this model is proportional to the partial likelihood, which shows that op-
timizing the partial likelihood or the total likelihood is equivalent if the piecewise
constant baseline hazard function is used. Another method was proposed by
[11]. In this method, nonparametric estimation of the baseline hazard function is
performed as a function of a time-invariant hazard ratio that relies on partial like-
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lihood maximization. Although the Breslow and the Kalbfleisch & Prentice meth-
ods require a time-constant hazard ratio, the method in [83] does not. Here,
the baseline cumulative hazard function is estimated within a counting process
framework. A profile likelihood is obtained that is also proportional to the partial
likelihood. Nevertheless, this specific counting process formulation allows mul-
tiple instances of the same event to be experienced simultaneously by the same
subject, which is incompatible with conventional survival analysis problems. The
first to propose a joint estimation method based on a profile likelihood that is not
equivalent to the partial likelihood estimation was [84]. However, this method
also assumes a time-invariant hazard ratio.

The competing risks extensions of the proportional hazards model has been
performed in three different way in the literature: the cause specific hazard [3];
the subdistribution hazard [4]; and the mixture model [77, 85, 86]. In their stand-
ard formulation, each of the extensions will allow the representation of a par-
ticular subset of survival functions. Therefore, each formulation might be best
suited to a different set of problems and it is difficult to know the problems in
which each model will perform the best. In the PH-MNN extension, this problem
becomes of little relevance since one single formulation can represent virtually
any survival function. With this extended model flexibility, it is necessary to in-
vestigate whether the same convergence properties of standard competing
models still hold. Indeed, all convergence analysis of competing risks models
found in the literature were restricted to time-constant linear models and the
PH-MNN can be at the same time both tide-dependent and nonlinear.

In Section 5.1, we propose a novel semi-parametric approach in which we
first choose a generic covariate dependent survival function. Then, through
nonparametric maximum likelihood estimation, a subset of the possible survival
functions that includes the optimal model structure is obtained. This novel pro-
cedure creates a time-dependent and competing risks extension of the model
proposed by [11] and [84]. It is proved that the supremumof the likelihoodwithin
the resultant subset of models is equal to the supremum of the likelihood within
the class of all survival models. In most survival analysis applications it is not
possible to perform an entirely nonparametric maximum likelihood estimation,
which would only be achievable if for each possible combination of input vari-
ables, therewere enough data to create a different Kaplan-Meiermodel. There-
fore, an “a posteriori” parametric representation is required after performing the
first step of nonparametric estimation. Nevertheless, the estimation procedure
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is not affected by the parametrization chosen, thus allowing an approach that
better suits any particular problemwithout the need to developa newestimator.
Indeed, in Section 5.1.6 we show that the Kaplan-Meier estimator and variations
of the proportional hazards, the proportional subdistribution hazard, and the
mixture model can be obtained as particular instances of the proposed model.
The structure of the resulting model can be seen as the theoretical substract
of a model without a particular implementation and the PH-MNN provides and
implementation to it. In Section 5.2, it is shown that in a particular subset of PH-
MNN models there is a class of objective functions with equivalent asymptotic
behavior to which both the partial likelihood and the proposed profile likelihood
belong. However, the small sample behavior of each estimator in this class is dif-
ferent. We additionally show that both the partial likelihood and the profile like-
lihood estimators will be biased for small samples, and propose an alternative
objective function that compensates for this bias.

5.1 Maximum likelihood derivation for semi-parametric
survival models
In the present section, we provide an alternative derivation for the PH-MNN

model where nonparametric estimation is used to partially constrain a com-
pletely generic survival function. The model obtained by this procedure was
named the coupled baseline hazard (CBH) model. It depends on a multidi-
mensional function ωj(x, t) andprovides a profile likelihood for estimation of ωj(·)
and a procedure for obtained the survival function from ωj(·). Representing the
function ωj(x, t) with an MNN with t as the explicit variable leads to the PH-MNN
model, thus providing a mechanism for maximum likelihood estimation of the
PH-MNN model without need of the partial likelihood.

5.1.1 Problem statement
In a competing risks survival model scenario, we assume that for a set of subjects
in a dataset, the following data will be available:

• xn: the vector of covariates for subject n.

• Tn: time when subject n either stoped being observed or experienced one
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of the events of interest.

• En: and indicator that is 1 when some event of interest has happened to
subject n in time Tn and that is 0 when subject n stoped being observed at
time Tn without experiencing any of the events of interest.

• jn: is the type of event observed for subject n, which is undefined in the
case of censoring.

We denote this dataset as follows:

D = {xn; Tn; jn; En|n ∈ {1, 2, . . . , N}; Tn ≤ Tm, ∀n < m} . (5.1)

In this scenario, we first define function Nn(t) which is 0 if subject n has not ex-
perienced any event of any type until time t and 1 otherwise. It is then possible
to define the overall survival function as the probability that a subject will not
experience any event type until a particular time t:

S(xn, t) = P(Nn(t) = 0|x) . (5.2)

This probabilistic description of the event time can be extended to the compet-
ing risks scenario by combining the overall survival function with the probability
of each event type given the time when the event happened:

pj(x, t) = P(jn = j|xn = x, En = 1, Tn = t) . (5.3)

We denote this set of probability distributions as follows:

S(x, t) = [S(x, t), p1(x, t), . . . , pJ(x, t)] . (5.4)

The likelihood of the dataset D for a given survival model S(x, t) is given by:

L{D|S} =
N

∏
n=1
L{Dn|S} , (5.5)

where
L{Dn|S} =

S (xn, Tn) , En = 0 ,

[S (xn, T−n )− S (xn, Tn)] pjn (xn, Tn) , En = 1 .
(5.6)

An intuition of the meaning of each component in equation (5.6) can be
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achieved by analysis each case separately. If En = 0, all the information con-
tained in the dataset about subject n apart from the input covariates xn is that
no event has been observed until time Tn, whose probability is given by the over-
all survival function S(xn, Tn). If En = 1, then event jn has happened at time Tn

andnoother event has happenedbefore. Denoting S(xn, T−n ) = limt→T−n S(xn, t),
we have that S(xn, Tn) = P(Nn(Tn) = 0|xn) and S(xn, T−n ) = P(Nn(T−n ) = 0|xn).
Therefore, S(xn, T−n ) − S(xn, Tn) = P(Nn(T−n ) = 0, Nn(Tn) = 1|xn), which is the
probability of the first event happening at time Tn, regardless of its type. Thus,
the probability of the first event happening at time Tn with event type jn is given
by [S (xn, T−n )− S (xn, Tn)] pjn (xn, Tn).

When estimating a function through nonparametric maximum likelihood es-
timation, the target is to find the function that will maximize the likelihood of
the data given the model. This can be mathematically formulated as finding
S∗(x, t) = arg maxS(L{Dn|S}), where S is the class of all possible survival mod-
els. This optimization is performed in the class of all possible functions in a par-
ticular domain. Therefore, the dimensionality of the search space in this op-
timization problem is infinite, in contrast with the case of parametric maximum
likelihood estimation where the search space of the target function is limited
to a finite dimensionality through a parametrization where a finite number of
parameters is used. As detailed in Section 5.1.5, we only partially constrain the
model using nonparametric maximum likelihood estimation as a purely non-
parametric estimation procedurewould be unfeasible due to the required data-
set size that should grow exponentially with the number of input covariates in
the model. Instead, we impose successive restrictions to the nonparametric
model S(xn, t) where in every step it is guaranteed that the supremum of the
likelihood in the restricted search space is equal to the supremum of the likeli-
hood in the broader search space. This task can be formulatedmathematically
as finding a subset of the class of all possible survival models C ⊂ S so that
supC(L{Dn|S}) = supS(L{Dn|S}).

5.1.2 Piecewise constant restriction of the model

In [6], it was proven that the Kaplan-Meier model is the maximum likelihood es-
timator for a generic covariate-independent survival scenario with randomcen-
soring. This proof can be divided into three steps:
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Step 1. showing that the maximum likelihood estimator for the survival function
will necessarily be a piecewise constant model in which the survival function
only changes when an event occurs.

Step 2. rewriting the likelihood function in a factorized form so that each variable
to be estimated appears in a separate factor.

Step 3. analytically optimizing the factorized likelihood to obtain a closed form
solution.

In this section, we extend steps 1 and 2 to a generic survival model with com-
peting risks and covariate dependent survival function. We use the following
notation: xn is the vector of covariates for subject n; Tn is the minimum observed
time for subject n (either event or censoring); jn is the type of event observed
for subject n, which is undefined in the case of censoring; En is the indicator of
censoring, which is 0 if subject n is censored and 1 if uncensored; S(x, t) is the
overall survival function; pj(x, t) is the probability of event type j given that an
event occurred at time t.

Lemma 3. Given: a dataset D = {xn; Tn; jn; En|n ∈ {1, 2, . . . , N}; Tn ≤ Tm, ∀n <

m}; a competing risks survival model S(x, t) = [S(x, t), p1(x, t), . . . , pJ(x, t)]; and a
piecewise constant version of S(x, t) denoted by S∗(x, t) = [S∗(x, t), p1(x, t), . . . ,
pJ(x, t)] so that: S∗(x, t) = 1 if t < T1; and S∗(x, t) = S(x, Tn) otherwise, where
n = max{n|Tn ≤ t}. The likelihood of S∗(x, t) is greater or equal to the likelihood
of S(x, t).

Proof. The likelihood of S(x, t) is given by:

L{D|S} =
N

∏
n=1
L{Dn|S} , (5.7)

where

L{Dn|S} = S (xn, Tn)
(1−En)

[
S
(
xn, T−n

)
− S (xn, Tn)

]En pjn (xn, Tn)
En . (5.8)

Analysing separately L{Dn|S} for the possible values of En, it can be shown that:

• For En = 0:

L{Dn|S} = S (xn, Tn) = S∗ (xn, Tn) = L{Dn|S∗} . (5.9)
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• For En = 1:

L{Dn|S} =
[
S
(
xn, T−n

)
− S (xn, Tn)

]
pjn (xn, Tn) ≤[

S
(

xn, Tν[n]−1

)
− S (xn, Tn)

]
pjn (xn, Tn) = L{Dn|S∗} , (5.10)

where ν[n] = min{ν ∈ {1, . . . , N}|Tν = Tn}.

Thus, L{Dn|S∗} ≥ L{Dn|S}, ∀n ∈ {1, . . . , N} ⇒ L{D|S∗} = ∏N
n=1 L{Dn|S∗} ≥

∏N
n=1 L{Dn|S} = L{D|S}.

Lemma 4. Given a dataset D = {xn; Tn; jn; En|n ∈ {1, 2, . . . , N}; Tn ≤ Tm, ∀n < m}
and a piecewise constant survival model S(x, t) = [S(x, t), p1(x, t), . . . , pJ(x, t)] so
that: S(x, t) = 1 if t < T1; and S(x, t) = S(x, Tn) otherwise, where n = max{n|Tn ≤
t}. It is possible to represent S(x, t) through a custom set of functions f j,n(x), with
the following properties:

Property 1. S(x, Tn) = ∏n
m=1

[
1−∑J

j=1 f j,m(x)
]
.

Property 2. pj(x, Tn)∑J
γ=1 fγ,n(x) = f j,n(x).

Property 3. f j,m(x) ≥ 0, ∑J
j=1 f j,m(x) ≤ 1, ∀x, j.

The likelihood of S(x, t) will be given by L{D|S} = ∏N
n=1 Ln, where:

Ln =

∏N
m=n

[
1−∑J

j=1 f j,n(xm)
]

, En = 0 ,

f jn,ν[n](xn)∏N
m=ν[n]+1

[
1−∑J

j=1 f j,ν[n](xm)
]

, En = 1 ,
(5.11)

and ν[n] = min{ν ∈ {1, . . . , N}|Tν = Tn}.

Proof. Making f j,n(x) = pj(x, Tn) [1− sn(x)], where: sn(x) = 0, if S(x, Tn−1) = 0;
and sn(x) = S(x, Tn)/S(x, Tn−1) otherwise. S(x, Tn) will be fully specified for all x
and t; and pj(x, Tn) will be fully specified in points where S(x, t) < limt→t− S(x, t).
The properties are obtained as follows:

• property 1:
J

∑
j=1

pj,n(x) = 1⇒
J

∑
j=1

f j,n(x) = 1− sn(x)⇒ S(x, Tn) =
n

∏
m=1

[
1−

J

∑
j=1

f j,m(x)

]
,

(5.12)
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• property 2:

pj(x, Tn)
J

∑
γ=1

fγ,n(x) = pj(x, Tn)(1− sn(x)) = f j,n(x) , (5.13)

• property 3 (if S(x, Tn−1) = 0):
sn(x) = 0 , (5.14)

• property 3 (other cases):

0 ≤ S(x, Tn) ≤ S(x, Tn−1) ≤ 1⇒ 0 ≤ sn(x) ≤ 1 . (5.15)

Additionally,
0 ≤ pj,n(x) ≤ 1 . (5.16)

The likelihood of S can be computed as follows:

L{D|S} =
N

∏
n=1

S
(

xn, Tν[n]

)(1−En) [[
S
(

xn, Tν[n]−1

)
− S

(
xn, Tν[n]

)]
pjn,n (xn)

]En

=

[
N

∏
n=1

ν[n]−1

∏
k=1

sk(xn)

]
N

∏
n=1

sν[n] (xn)
(1−En) f jn,ν[n] (xn)

En

=

 N

∏
n=1

N

∏
k=ν[n]+1

sn (xk)

 N

∏
n=1

sν[n] (xn)
(1−En) f jn,ν[n] (xn)

En

=
N

∏
n=1

sν[n] (xn)
(1−En) f jn,ν[n] (xn)

En
N

∏
k=ν[n]+1

sn (xk)


=

N

∏
n=1

[1−
J

∑
j=1

f j,ν[n] (xn)

](1−En)

f jn,ν[n] (xn)
En

N

∏
k=ν[n]+1

1−
J

∑
j=1

f j,n(xk)

 .

(5.17)

Note that, ∀k > n|Tk = Tn, S(x, Tn) = S(x, Tk)⇒ sk(x) = 1.

Lemmas 3 and 4 extend steps 1 and 2 of the Kaplan-Meier model derivation.
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5.1.3 The coupled baseline hazard model

In this section we introduce the coupled baseline hazard model. We derive
a profile likelihood for the model and prove that maximizing it is equivalent to
maximizing the likelihood within the class of all possible survival functions with
the same input covariates.

Definition 2. Given a survival dataset D = {xn; Tn; jn; En|n ∈ {1, 2, . . . , N}; Tn ≤
Tm, ∀n < m; Em = 0, ∀m > n, Tm = Tn}, a coupled baseline hazard model for D
is a piecewise constant survival model that only changes at the time points Tn

and is specified by the functions:

f j,n(x) =


0 , En = 0 or jn ̸= j ,

1−
(

∑N
m=n+1 ωj,n(xm)

∑N
m=n ωj,n(xm)

) ωj,n(x)

ωj,n(xn)
, En = 1, jn = j .

(5.18)

where ωj,n(x) is a strictly positive function of x for any n ∈ {1, . . . , N}, j ∈ {1, . . . , J}.

The coupled baseline hazardmodel can be interpreted as a time-dependent
and competing risks extension of the model proposed by [11] (equation 4.25 p.
86), and further developed by [84]. Indeed, if the log-linear hazard ratio is re-
placed by a generic function ω(x, t), the Kalbfleish & Prentice model results in
the coupled baseline hazard model for single risk scenarios. The demonstration
in [11] assumes a time-invariant hazard ratio andaproportional hazard structure.
Nonetheless, we show that this time-dependent extension can be obtained
without any parametric assumption. In Theorem 2, we derive the profile likeli-
hood for the coupled baseline hazard model and show that the model within
this class that maximizes this likelihood also maximizes the likelihood among all
survival models.

Theorem 2. Given a survival dataset D = {xn; Tn; jn; En|n ∈ {1, 2, . . . , N}; Tn ≤ Tm,
∀n < m; Em = 0, ∀m > n, Tm = Tn}, with random censoring, the likelihood of a
coupled baseline hazard model is equal to the profile likelihood:

L = ∏
n∈{1,...,N|Ei=1}

Φjn,n
(
1−Φjn,n

)(Φ−1
jn ,n−1) , (5.19)

where:
Φj,n =

ωj,n(xn)

∑N
m=n ωj,n(xm)

. (5.20)
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The supremum of the profile likelihood within the class of all coupled baseline
hazard models is equal to the supremum of the likelihood in the class of all pos-
sible survival models in the form S(x, t).

Proof. The first claim in the theorem can be proven as follows. A coupled
baseline hazard model follows the form given by equation (5.18):

f j,n(x) = 1−
(

∑N
k=n+1 ωj,n(xk)

∑N
k=n ωj,n(xk)

) En1(jn=j)ωj,n(x)

ωj,n(xn)

= 1− (1−Φj,n)

En1(jn=j)ωj,n(x)

ωj,n(xn) . (5.21)

Lemma 4 shows that the likelihood is given by:

L{D|S} =
N

∏
n=1

[1−
J

∑
j=1

f j,ν[n] (xn)

](1−En)

f jn,ν[n](xn)
En

N

∏
k=ν[n]+1

[
1−

J

∑
j=1

f j,n(xk)

]
= ∏

n∈{1,...,N|En=1}

[
f jn,n(xn)

N

∏
k=n+1

[
1− f j,n(xk)

]]

= ∏
n∈{1,...,N|En=1}

Φjn,n
(
1−Φjn,n

)(Φ−1
jn ,n−1) . (5.22)

The second claim can be proven as follows. Lemma 1 guarantees that, the
supremum of the likelihood among the classM of all models that follow equa-
tion (1) is equal to the supremum of the likelihood among the class of all possible
survival models. First, the supremum necessarily exists since the likelihood is by
definition superiorly bounded by 1. Second, if L∗ is the supremum of the likeli-
hood among the class of all survival models, there is a sequence of models S(k)

so that limk→∞ L(D|S(k)) = L∗. Using lemma 1, we construct a sequence S∗(k)

so that L(D|S∗(k)) ≥ L(D|S(k)) ⇒ limk→∞ L(D|S(k)) ≥ limk→∞ L(D|S(k)) = L∗.
Since L∗ is the supremum likelihood among the class of all models, we have:
⇒ limk→∞ L(D|S(k)) ≤ L∗. Hence, the supremum amongM is also L∗.

Writing this model in the form proposed in lemma 2, we define the class of
modelsM+ so that sn(x) > 0, ∀n, x and either f j,n(x) = 0, ∀x or f j,n(x) > 0, ∀x. The
supremum ofM+ is also L∗, since it is possible to construct a model withinM+

that has likelihood arbitrarily close to the likelihood of any model inM. Within
M+, it is possible to rewrite f j,n(x) in the form f j,i(x) = α

ωj,n(x)
j,n , where 0 < αj,n ≤ 1,

and ωj,n(x) > 0, ∀x. According to lemma 2, the likelihood of a model inM+ is
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given by L{D|S} = ∏N
n=1 Ln, where:

Ln =


∏N

k=n

[
1−∑J

j=1

[
1− α

ωj,ν[n](xn)

j,ν[n]

]]
, En = 0 ,[

1− α
ωjn ,n(xn)

jn,n

]
∏N

k=ν[n]+1

[
1−∑J

j=n

[
1− α

ωj,ν[n](xn)

j,ν[n]

]]
, En = 1 .

(5.23)

If En = 0 and Ek = 0, ∀k|Tn = Tk, we have: f j,k(x) = 0, ∀j, k|k > n; Tk = Tn ⇒
αj,k = 1, ∀j, k|k > n; Tk = Tn. Thus LTn is maximized by making pj,n = 1.

If En = 1: Tk < Tn|k < n and there might be values of k so that Tk = Tn, k > n
and Ek = 0; f j,k(x) = 0, ∀j, k|k > n; Tk = Tn ⇒ αj,k = 1, ∀j, k|k > n; Tk = Tn. Thus LTn

is maximized by making αjn,n = Φ
1/ωjn ,n(xn)

jn,n and αj,n = 1∀j ̸= jn.

Finally, this means that, for any survival model S inM+, it is possible to build a
coupled baseline hazard model Sc by making:

• ωc
j,n(x) = ωj,n(x);

• αc
jn,n = Φ

1/ωjn ,n(xn)

jn,n , ∀n|En = 1;

• αc
j,k = 1, ∀j, n|(j ̸= jn)or(En = 0).

which will ensure that L{D|Sc} ≥ L{D|S}. Once again, it is possible to show
that the supremum of the likelihoods of models inM+ is equal to the supremum
of the likelihoods coupled baseline hazard models, since given a sequence of
models S(n) ∈ M+ that converges to the supremum L∗ it is possible to build a
sequence of coupled baseline hazard models Sc(n) that also converges to L∗.
Hence, the supremum of the likelihoods of coupled baseline hazard models is
equal to the supremum is likelihoods of models in the class of all possible survival
models.

5.1.4 Cause specific hazard and cumulative incidence

Although the coupled baseline hazard model has been derived using an un-
conventional notation chosen to facilitate theoretical derivation, it is possible to
convert it to other notations. The cumulative incidence function for a coupled
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baseline hazard model can be retrieved as follows:

Fj(x, t) =Pr{T ≤ t, j|x} = ∑
n|Tn≤t

[S(x, Tν[n]−1)− S(x, Tn)]pj(x, Tn)

= ∑
n|Tn≤t

f j,n(x)S(x, Tν[n]−1)

= ∑
n|Tn≤t,En=1,jn=j

1−
(

∑N
m=n+1 ωj,n(xm)

∑N
m=n ωj,n(xm)

) ωj,n(x)

ωj,n(xn)

 S(x, Tn−1) , (5.24)

where:

S(x, Tn−1) = ∏
m|m<n,Em=1

(
∑N

k=m+1 ωjm,m(xk)

∑N
k=m ωjm,m(xk)

) ωjm ,m(x)

ωjm ,m(xm)

. (5.25)

The cause specific hazard for a coupled baseline hazard model can be ex-
pressed in terms of the Dirac delta function, since the survival function is not
continuous. Alternatively, the cause specific survival function can be expressed
as follows:

Sj(x, t) =Pr{T > t|x, j} = exp
(∫ t

0
λ(x, u)du

)
= ∏

n∈{1,...,N}|Tn≤t
1− f j,n(x)

= ∏
n∈{1,...,N}|Tn≤t,En=1,jn=j

(
∑N

m=n+1 ωj,n(xm)

∑N
m=n ωj,n(xm)

) ωj,n(x)

ωj,n(xn)

. (5.26)

5.1.5 The PH-MNN model as an specific implementation of the
coupled baseline hazard model
In principle, it would be possible to perform nonparametric maximum likelihood
estimation of the functions ωj,n(x) while imposing no restriction on their covari-
ate dependence. In this case, the likelihood would be maximized by making
ωj,n(x)→ 0 for any x ̸= xn and any j ̸= jn. The outcome of this procedure would
be to create a stratified Kaplan-Meier estimator in which a different estimator
is generated for every possible value of x. This is not a viable solution in most
applications, as there are insufficient subjects with identical values for all covari-
ates. This creates the need of a parametric representation of ωj,n(x). For that,
we first replace the time index by a continuous time variable in the form ωj(x, t).
There, the original formulation can be retrieved by making ωj,n(x) = ωj(x, Tn).

5.1 Maximum likelihood derivation for semi-parametric survival models 99



Note that this change does not affect the original model because, although
ωj was originally only defined for time points in which an event has been ob-
served within the dataset, this does not create any constraints for the function
in the points that are used in the model. With this continuous time representa-
tion, a semiparametric implementation of the coupled baseline hazard function
can be obtained by making a parametric representation of ωj(x, t). Neverthe-
less, computation in the model for a single input variable x requires the function
ωj(x, t) to be computed for a set of t that grows linearly with the number of sub-
jects in the dataset. If a standard neural network was used to represent it, the
computation would easily become unfeasible. Instead, we use a metapara-
metric neural network that has t as an explicit variable, leading to the PH-MNN
model. There, a basis function representation can be used to represent the time
dependency so that re-computation of the neural network is not necessary as
detailed in [70]. Given Theorem 1, we see that if the number of parameters in
the model was infinite, the PH-MNN model would approach a nonparametric
model. Therefore, any limitation in the capability of the PH-MNN to represent
a target probability distribution is caused by the limited number of parameters
adopted in a particular instance of it and not by a limitation in the structure of
the model itself.

5.1.6 Relationship with other survival models
The coupled baselinemodel was derived as ameans of justifying the structure of
the PH-MNN model. Nonetheless, other model also be retrieved as less generic
versions of it. This shows that the coupled baseline hazard model is a generic
framework for survival analysis that unifies the theoretical background of various
models.

Relationship with the Kaplan-Meier model

The derivation for themaximum likelihood property of the coupled baseline haz-
ard model is an extension of the maximum likelihood derivation of the Kaplan-
Meier model provided by [6]. As a result, the Kaplan-Meier model can be re-
trieved if it is assumed that the survival function does not depend on x. Indeed,
if in a single risk model ω1,n(x) = w1,n > 0, ∀n ∈ {1, . . . , N}, where w1,n is a positive
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constant, equation (5.18) is reduced to the Kaplan-Meier estimator:

S(x, t) = ∏
n|Tn≤t

(
N − n

N − n + 1

)En

. (5.27)

In the case of a competing risks scenario, the Kaplan-Meier model also provides
the maximum likelihood estimator for the survival probability distribution, as dis-
cussed in [7]. This estimator can be retrieved from the coupled baseline hazard
model by making ωj,n(x) = wj,n > 0, ∀n ∈ {1, . . . , N}, j ∈ {1, . . . , J}, where wj,n are
positive constants.

Relationship with the Cox proportional hazards model

The Cox proportional hazards model can also be retrieved as a special case of
the coupled baseline hazard model. In a single risk scenario in which ω1,n(x) =
exp(βββTx), ∀n ∈ {1, . . . , N}, the coupled baseline hazardmodel can be expressed
as Λ(x, t) = Λ0(t) exp(βββTx), where Λ0(t) is the nonparametric estimator for the
baseline hazard function defined in [11]. Additionally, the partial likelihood can
be related to the log profile likelihood as follows:

log(L) = ∑
n∈{1,...,N|En=1}

log(Φn) +
(

Φ−1
n − 1

)
log(1−Φn) , (5.28)

where the log partial likelihood is:

log(Φn) = βββTxn − log

(
N

∑
k=n

exp(βββTxk)

)
. (5.29)

In Section 5.2.1 we show that both estimators have equivalent large sample
properties and propose a new objective function that also has equivalent large
sample properties, but with reduced small sample bias.

Relationship with other competing risks models

In a competing risks scenario the proportional cause specific hazard model [3]
can be obtained from an approximation of the coupled baseline hazardmodel
using an analogous approach. On the other hand, a proportional subdistribu-
tion hazard model [4] cannot be obtained from the coupled baseline hazard
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model. This is because the likelihood factorization used to prove Theorem 2 is
not possible within a proportional subdistribution hazard framework.

The representation used for the survival function in the proof of Theorem 2 has
a similar form to a mixture model. Nevertheless, this model cannot be retrieved
directly from the coupled baseline hazard model. Alternatively, it is possible to
adapt Theorem 2 towards achieving a model that has a closer representation
to a mixture model. In this case, the resulting model can be represented by the
functions:

f j,n(x) =


0 , En = 0 ,

pj,n(x)

1−
(

∑N
m=n+1 ωn(xm)

∑N
m=n ωn(xm)

) ωn(x)
ωn(xn)

 , En = 1 ,
(5.30)

and the profile likelihood will be given by:

L = ∏
n∈{1,...,N|En=1}

pj,n(x)Φn (1−Φn)
(Φ−1

n −1) , (5.31)

where Φn = ωn(xn)/ ∑N
m=n ωn(xm).

The main disadvantage of this alternative form is that the distributions for all
risks are based on the same baseline cumulative hazard function. If the shape
of the distribution for each risk is different, this has to be compensated by the
functions pj,n(x). In particular, if there is a relevant high frequency difference
between the distributions for each risk, the functions pj,n(x) will require high fre-
quency components to compensate for it.

5.2 Asymptotic properties
5.2.1 Asymptotic equivalence theorem

Given that the profile likelihood proposed here is analogous to the Cox partial
likelihood, in this section we investigate the relationship between the asymptotic
properties of both estimators. For that purpose, we define a class of transform-
ations that can be performed on the partial likelihood without changing the
asymptotic behavior of the estimator. For simplicity, we restrict the study of this
transformation to the specific case in which the neural network block in the PH-
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MNN model is replaced by a linear model. Similarly to other neural network
models, studying the asymptotic behavior of a PH-MNN model is challenging
because there is ambiguity in the combination of weights that can lead to the
same output function. Nonetheless, the study of the linear version of it covers
the specific difference between MNNs and standard neural networks showing
that if the feature extraction is fixed, the top layer of the PH-MNN models would
converge.

Theorem 3. Given a proportional subdistribution hazard model in the form:

λj(t, xn) = λj(t, [x1,n, . . . , xI,n]) = λj,0(t) exp

(
I

∑
i=1

K

∑
k=1

βi,j,kgk(t)xn,i

)
, (5.32)

where:

1. |gk(t)| ≤ G, ∀t, k.

2. ∃C, t > 0 | ∀Y > 0, Pr[exp(xn,i) > Y] ≤ C exp(−tY), Pr[exp(−xn,i) > Y] ≤
C exp(−tY).

3. log(Φ) = ∑N
n=1 En log(Φn), where log(Φ) is the log partial likelihood, En is

the event indicator, log(Φn) = ωjn(xn, Tn)/ ∑N
m=n ωjn(xm, Tn) and ωj(xn, t) =

exp(∑I
i=1 ∑K

k=1 βi,j,kgk(t)xn,i).

4. two different subjects do not experience an event at the exact same time.

5. constants p ≥ 1 and qi,j,k > 0.

Let h(u) be a function defined in (−∞, 0] which is differentiable in (−∞, 0) and
has its derivative bounded by |1− h′(u)| ≤ α/(exp(−u)− 1), α > 0, ∀u < 0.

The function N−1/2[∇(∑i,j,k qi,j,k|βi,j,k|p + ∑N−1
n=1 Enh(log(Φn))

)
− ∇ log(Φ)

]
will

converge in probability to 0 for N → ∞ in any bounded subspace of fi = [βi,j,k|i ∈
{1, . . . , I}; j ∈ {1, . . . , J}; k ∈ {1, . . . , K}].

Proof. The absolute value of the difference between both score functions is
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bounded by:∣∣∣∣∣ ∂

∂βi,j,k

[
−∑

i,j,k
qi,j,k|βi,j,k|p +

N−1

∑
n=1

(log(Φn)− h(log(Φn)))

]∣∣∣∣∣ ≤
qi,j,kBp−1p +

N−1

∑
n=1

∣∣∣∣∣(1− h′(log(Φn)))
∂

∂βi,j,k
log(Φn)

∣∣∣∣∣ ≤
qi,j,kBp−1p +

N−1

∑
n=1

Enα

Φ−1
n − 1

∣∣∣∣∣∑
N
m=n gk(Tn)(xn,i − xm,i)ωj(i)(xm, Tn)

∑N
m=n ωj(i)(xm, Tn)

∣∣∣∣∣ =
qi,j,kBp−1p +

N−1

∑
n=1

Enαωjn(xn, Tn)|gk(Tn)|
∑N

m=n+1 ωjn(xm, Tn)

∣∣∣∣∣∑
N
m=n(xn,i − xm,i)ωj(i)(xm, Tn)

∑N
m=n ωjn(xm, Tn)

∣∣∣∣∣ ≤
qi,j,kBp−1p +

N−1

∑
n=1

αωjn(xn, Tn)GX

∑N
m=n+1 ωj(i)(xm, Tn)

≤

qi,j,kBp−1p + αGX
maxn ωjn(xn, Tn)

minm ωjn(xm, Tn)

N−1

∑
n=1

1
N − n

≤

qi,j,kBp−1p + α exp (IKBGX) GX
N−1

∑
n=1

1
N − n

≤

qi,j,kBp−1p + α exp ((IKB + 1)GX) log(N) , (5.33)

where I is the length of vector xn; K is the number of functions gk(t); B is an upper
bound for βi,j,k; and X = maxn,m,i |xn,i − xm,i|.

For each component i of x, the probability distribution of X can be bounded
as follows:

Pr[exp(max
n,m,i

(xn,i − xm,i)) > Y] ≤

Pr[exp(max
n,i

(xn,i)) > Y/2] + Pr[exp(−min
n,i

(xn,i)) > Y/2] ≤

NI(Pr[exp(xn,i) > Y/2] + Pr[exp(−xn,i) > Y/2]) ≤
2NIC exp(−tY/2) . (5.34)
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Therefore, for any ϵ > 0:

Pr

[∣∣∣∣∣N−1/2 ∂

∂βi,j,k

[
−∑

i,j,k
qi,j,k|βi,j,k|p +

N−1

∑
n=1

(log(Φn)− h(log(Φn)))

]∣∣∣∣∣ > ϵ

]
≤

Pr
[

N−1/2
[
qi,j,kBp−1p + α exp ((IKB + 1)GX) log(N)

]
> ϵ

]
=

Pr

exp(X) >

(
ϵ
√

N − qi,j,kBp−1p
α log(N)

) 1
(IKB+1)G

 ≤
2NIC exp

− t
2

(ϵ
√

N − qi,j,kBp−1p
α log(N)

) 1
(IKB+1)G

 =

2IC exp


1−

αt
(

ϵ
√

N − qi,j,kBp−1p
) 1

(IKB+1)G

2 (α log(N))
1

(IKB+1)G+1

 log(N)

 . (5.35)

Since limN→∞ Na/ logb(N) = ∞,∀a, b > 0, we have for all values of i, j and k that:

lim
N→∞

Pr

(∣∣∣∣∣N−1/2 ∂

∂βi,j,k

(
−∑

i,j,k
qi,j,k|βi,j,k|p +

N−1

∑
n=1

(log(Φn)− h(log(Φn)))

)∣∣∣∣∣ > ϵ

]
= 0 .

(5.36)
Therefore

lim
N→∞

Pr

[∣∣∣∣∣N−1/2

(
∇ log(Φ)−∇

(
∑
i,j,k

qi,j,k|βi,j,k|p +
N−1

∑
n=1

Enh(log(Φn))

))∣∣∣∣∣ > ϵ

]
= 0 .

(5.37)

As a consequence the proposed profile likelihood will have equivalent large
sample behavior to the partial likelihood, given that the probability distribution
of x follows the appropriate condition. For example, a Gaussian distribution sat-
isfies this condition, since for x ∼ N (µ, σ2) neither exp(x) or exp(−x) will have a
heavy-tailed distribution. Also, the asymptotic properties will be preserved with
both nonlinear transformations that follow the conditions in the theorem and
with arbitrary regularizers from L1 to L∞.
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5.2.2 Sample complexity of PH-MNN model estimation

In this section we present a brief discussion of the the sample complexity of
estimating the PH-MNN model. Based on Theorem 3, we have restricted this
analysis for the case of partial likelihood estimation. The sample complexity can
be defined as the amount of data necessary to achieve a givenmaximum error
ϵ in estimation with probability 1− δ [87]. Similarly to Theorem 3, we restrict the
study to the outer layer of the PH-MNN model. There, the target is to estimate
the hazard ratio as a function of time and covariates.

From Theorem 8.4.4 of [88] we have the conditions under which it is possible to
guarantee the asymptotic distribution of βi,j,k. Despite basis functions not being
used there, the same results can be achieved by defining:

zn,i,k(t) = gk(t)xn,i . (5.38)

Then, zn,i,k(t) will be equivalent to time-dependent covariates and the asymp-
totic distribution of β will be:

n1/2(β− β0)→ N (0, Σ−1(β0, τ)) , (5.39)

as n→ ∞, where τ is the follow up time horizon in the model.

The error in the log-hazard ratio for risk j is given by:

Ej = ∥ log ωj(x, t)− log ωj,0(x, t)∥ = ∥(βj − βj,0)x∥ , (5.40)

where ωj,0(x, t) indicates the true hazard ratio for event j and βj,0 indicates the
true values of βj. Thus, the error is bounded by:

Ej ≤∑
i,k
∥βi,j,k − βi,j,k,0∥GX , (5.41)

Where X is the upper boundary for xi and G is the upper boundary for gk(t). For
a target error boundary ϵ, we assume that all dimensions of βj must have error
less or equal to ϵ/(IKGX), where I is the dimension of x and K is the number
of basis functions gk(t). For each dimension, the probability of the error being
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larger than the threshold will be bounded by:

lim
n→∞

P
(
|βi,j,k − βi,j,k,0| ≥

ϵ

IGKX

)
≤ erfc

(
ϵ
√

n
IGKXσmax(β0, τ)

√
2

)
, (5.42)

where σmax(β0, τ) is the standard deviation in the principle direction of
N (0, Σ−1(β0, τ)). Then, for Ej to be bounded by ϵ with probability 1 − δ in the
limit for n→ ∞, the following condition suffices:

erfc

(
ϵ
√

n
IGKXσmax(β0, τ)

√
2

)
≤ δ

IK
, (5.43)

which is equivalent to:

n ≥ 2

(
IGKXσmax(β0, τ) erfc−1(δ/IK)

ϵ

)2

. (5.44)

Thus, the asymptotic limit of the sample complexity of the PH-MNNmodel (outer
layer) is superiorly bounded by O((erfc−1(δ/IK)/ϵ)2).

5.2.3 Small sample bias minimization
Based on the existence of a family of estimators with equivalent asymptotic be-
haviour, we now investigate which estimator leads to the smallest small sample
bias. Although no described method provides an analytical expression for the
best possible estimator, an improvement over the partial likelihood estimator
can be achieved through the following procedure.

We define the log reduced likelihood as r = ∑N−1
n=1 Enrn, where En is the indic-

ator of censoring and:

rn = ∑
k,i

βi,jn,k fk(Tn)xn,i − log

(
N−1

∑
m=n+1

exp

(
∑
k,i

βi,jn,k fk(Tn)xm,i

))
. (5.45)

Each component of the partial likelihood is obtained from the respective com-
ponent of the reduced likelihood, through the expression log(Φn) = − log(1 +

exp(−rn)). Although the large sample behavior for both the reduced and the
partial likelihood estimators is equivalent, as shown in Theorem 3, the definition
of the reduced likelihood clarifies the small sample behavior of the partial likeli-
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hood. In particular, we study the behavior of the reduced likelihood for extreme
values of some of the parameters βi,jn,k. If the other parameters are bounded:

lim
βi,jn ,k→∞

[
rn − βi,jn,k

(
fk(Tn)xn,i −max

m>n
[ fk(Tn)xm,i]

)]
= 0 , (5.46)

and:
lim

βi,jn ,k→−∞

[
rn − βi,jn,k

(
fk(Tn)xn,i −min

m>n
[ fk(Tn)xm,i]

)]
= 0 . (5.47)

The behavior of the likelihood for extreme values of βi,jn,k is illustrated in Fig.
5.1. The probability distribution of fk(Tn)xn,i for subject n will be different from
the probability distribution of other subjects at risk at Tn. This is because the
event probability is proportional to fk(Tn)xn,i. Consequently, the smaller a data-
set is the more likely it is for fk(Tn)xn,i to fall outside the closed interval from
minm>n [ fk(Tn)xm,i] to maxm>n [ fk(Tn)xm,i] (Figure 5.1(a)). If this is the case, the
likelihood diverges to ∞ for either βi,jn,k → ∞ or βi,jn,k → −∞, making the estim-
ation of βi,jn,k diverge. On the other hand, the larger a dataset is the less likely
this is to happen, making the reduced likelihood converge to 0 and preventing
βi,jn,k from divergence (Fig. 5.1(b)).
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Figure 5.1.: Illustration of the effect of the dataset size on the log reduced likelihood function. For
simplicity, a scenario with unidimensional covariate and time-constant hazard ratio
is assumed. In panel (a), the horizontal axis of all four graphs represents the values
of the covariate x. In the uppermost axis, the dot represents x for a subject that
has experienced the event at time Tn, whilst in the second and third axis, the dots
represent x for subjects at risk immediately after time Tn in a small or large dataset
respectively. The bottom graph shows the probability distributions of x for subject
who experienced the event at time Tn (dashed line), and for other subjects at risk
immediately after Tn (solid line). Panel (b) illustrates how the size of the dataset in
panel (a) reflect on the nth component of the log reduced likelihood.

This issue is partly solved in the partial likelihoodby the transformation of the log
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reduced likelihood rn through the function log(Φn) = − log(1 + exp(−rn)). This
transformation limits the components of the log likelihood to a limiting value of
0. This causes a bias because it is still possible that the log likelihoodwill bemono-
tonic for the entire range of a parameter βi,jn,k, but with the advantage that it is
less likely to happen. Indeed, one single sample n whose likelihood converges
to 0 for both extremes of βi,jn,k will be enough to prevent the estimation from di-
verging. A similar scenario appears with the profile likelihood used in this work,
since the profile likelihood can be obtained from the reduced likelihood through
the transformation log(Ln) = − log(1+ exp(−rn))− exp(−rn) log(1+ exp(rn)). This
will induce equivalent asymptotic behavior to log(Φn) = − log(1 + exp(−rn)).

This asymptotic analysis suggests the use of an improved likelihood that has
the property of not only limiting the likelihood to 0, but also introduces a small
slope with opposite sign whenever rn > 0. The balanced likelihood achieves this
by defining components Bn as:

log(Bn) = − log(1 + exp(−rn))− α log(1 + exp(rn)) , (5.48)

where α is a positive hyper-parameter. When α = 0, the balanced likelihood be-
comes equal to the partial likelihood. This objective function leads to a reduced
bias and prevents the estimator from diverging, while being equivalent to both
the partial and theprofile likelihoodestimators for largedatasets as shown in The-
orem 3. This estimator for the hazard ratio, when combined with the coupled
baseline hazardmodel, results in the balanced coupled baseline hazardmodel.

5.3 Experimental investigation of the sample size effect
The asymptotic behavior of the PH-MNN model was evaluated using a syn-

thetic competing risks dataset with nonlinear and time-dependent survival func-
tion. The pseudo-code for the PH-MNN model is provided in Algorithm 5 in Ap-
pendix A. The structure of the neural network block of the PH-MNN model is
provided in Figure 4.1. Data was generated from a proportional subdistribution
hazard model with nonlinear and time-dependent hazard ratio:

λ̃1(t, x) = 0.03(1+ 0.5 cos(2πt/10)) exp(tan−1(2x[0])1(t < 5)+ tan−1(2x[1])1(t > 5)) ,
(5.49)
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λ̃2(t, x) = 0.03(1 + 0.5 sin(2πt/10)) exp(sin(x[1])1(t < 5) + sin(x[0])1(t > 5)) ,
(5.50)

where [x[0], x[1]] ∼ N (0, I). Censoring was included with uniform probability
distribution for the censoring time within the interval [0, 10].

Fig. 5.2 shows expected value of the mean integrated square error for the
PH-MNN, nested PH-MNN and Cox models. For each model, three different ver-
sions were trained with different likelihoods: partial, profile and balanced. A
sequence of progressively larger dataset sizes was generated, and 100 inde-
pendent realizations were generated for each dataset size. Estimation was per-
formed for each model with the same 100 random realizations of the dataset. In
the nested PH-MNN model, the neural network component, ψ(x; θ) had x[0] as
its only input variable, with y1 being set to be x[1] and y2 the observation time.
Figure 5.2 shows that a clear improvement is obtained with the nested structure.
The likely reason of it the introduction of a bottleneck that makes it harder for
the model to overfit in regions where little data is available. However, the differ-
ent likelihoods didn’t have a significant impact in training with small data sizes.
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Figure 5.2.: L2 error of the cumulative incidence function as a function of the dataset size.

110 Maximum Likelihood Derivation of the PH-MNN Estimator and its Properties



This suggests that the structure of the model might play a more important role
in reducing training bias than the loss function.
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6
Survival Modelling of Joint
Replacement Surgeries

The main purpose of hip and knee replacement surgeries in the treatment of
osteoarthritis is to reduce pain and improve functioning of the replaced joint,
which should ultimately lead to an improvement to the patient’s quality of life.
Similarly to any surgical procedure, joint replacements are not free from risks so
the decision of whether or not surgery is the best treatment should be based
on a trade-off that takes into account the main risks and benefits of it. Con-

Table 6.1.: Number of complete data observations and events for the unlinked (without PROMs
as input) and linked (with PROMs as input) hip replacement datasets. Revisions were
only includedwhen they have occurredwithin 10 years from theprimary joint replace-
ment.

Dataset Unlinked Linked
Number of patients 504415 206913

aseptic loosening/lysis 1537 677
dislocation/subluxation 1715 732

fracture 1228 530
infection 1604 684

pain 347 168
other 1057 431

deaths within 1 year 4792 1950
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Table 6.2.: Number of complete data observations and events for the unlinked (without PROMs
as input) and linked (with PROMs as input) knee replacement datasets. Revisions
were only included when they have occurred within 10 years from the primary joint
replacement.

Dataset Unlinked Linked
Number of patients 735071 255454

aseptic loosening/lysis 4006 1142
dislocation/subluxation 541 114

fracture 464 161
infection 3480 1270
instability 1921 684

pain 1803 530
progressive arthritis 2153 461

stiffness 529 228
other 2696 790

deaths within 1 year 6255 2214

sidering that this decision involves a balance between different aspects of a
patient’s life, the best decision will require an active role of the patient, who in
most cases will not have in depth knowledge of the possible outcomes of the
surgery. Therefore, conveying that knowledge to the patients is an important
part of this decision process.

In the present chapter, we apply the nested PH-MNN model to the estima-
tion of mortality and revision risks after hip and knee replacement surgeries in
patients with osteoarthritis using data collected by the National Joint Registry
(NJR). Additionally to the covariates present in the NJR dataset, we also use the
preoperative patient reported outcome measures (PROMs) score as input for
the survival models. PROMs are numeric evaluations of some aspect of a pa-
tient’s health. This is obtained through a questionnaire that is answered directly
by patients. The PROMs scores used in the model were the Oxford Hip Score
(OHS) [89] and the Oxford Knee Score (OKS) [90] for hip and knee replacement
surgeries respectively. The OHS a and OKS inputs were the answers to individual
questions in the questionnaire instead of the overall scores. For the mortality
model, we have performed single risk estimation with a maximum follow up of
1 year, since any deaths that happen after that period will most likely not be
caused by the surgery. For the revision risk, we have divided the outcomes in dif-
ferent event types depending on the main indication for revision. The maximum
follow up time for the revision models was 10 years. One important challenge
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with the competing risks revision models is the small number of events observed
in the complete data. In the present study, only complete data was used and
data from joint replacements where not all input variables were known were
not taken into account. Tables 6.1 and 6.2 show the complete dataset size for
hip and knee replacements both when using or not preoperative PROMs as in-
puts. Then smaller dataset sizewhen preoperative PROMs are used as inputs was
overcame with a transfer learning strategy that was possible due to the nested
PH-MNNmodel hierarchical structure. This strategy has enabled the use of data
from procedures for which the preoperative PROMs is not available, minimizing
the overfit.

6.1 Nested model structure
The present analysis was split into four models, one for each combination of

joint type (hip or knee) and outcome of interest (mortality or revision). Although
the PH-MNN model is a competing risks model and could in principle estimate
mortality and revision risks simultaneously, it was preferred to split the model into
two because the timescale of interest for the followup is different for each case.
In the case of mortality risk, a follow up of 1 year was adopted since deaths
directly related to orthopedic surgeries happen within the first year after the sur-
gery. In the case of revision risk, the long term behavior of the implant is of great
interest when choosing a treatment option so a follow up time of 10 years was
adopted. The revision risk model was split into different indications for revision
as competing risks allowing a more detailed analysis of the effect produced by
any input variable of the model. The hip revision model, the competing risks
were: aseptic loosening/lysis, dislocation/subluxation, fracture, infection, pain
and other. For the knee revision model, the risks were: aseptic loosening/lysis,
dislocation/subluxation, fracture, infection, instability, pain, progressive arthritis,
stiffness and other. The complete list of input variables in the model are presen-
ted in Figures 6.5 and 6.8. A pseudo-code description of the computation of
ωj(x) with the PH-MNN model is provided in Algorithm 2. A detailed description
of the structure of the model is provided in Figure 6.1.
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Algorithm 2 Computation of the hazard ratio (ωj) in the nested PH-MNN model
for joint replacement outcome estimation.
Require: ψ(x) (output of the neural network block of the model)
Require: ν

[age]
k (age) (natural cubic splines basis functions for age with knots

30,54,68,80,100)
Require: ν

[BMI]
k (BMI) (natural cubic splines basis functions for BMI with knots

15,23,28,36,55)
Require: ν

[t]
k (t) (piecewise linear basis functions for follow-up time with knots

0.2,0.3,1.6,4.3)
Require: Θ4×5×5

1,j (parameters)
Require: Θ3×4×4

2,j (parameters)
for j in event types do

eu,j(age, BMI)← ∑k,l Θu,l,k
1,j ν

[a]
l (age)ν[b]k (BMI)

wi,n,j(age, BMI)← softmax(∑i Θm,n,i
2,j ei,j(age, BMI))

ωj(t, age, BMI, x)← ∑i,n wi,n,j(age, BMI)ν[t]n (t)ψm(x)
end for

6.2 Transfer learning for overfit reduction
In order to avoid overfit to be caused by the smaller amount of data available

when using preoperative PROMs data as input, we nowpropose a transfer learn-
ing strategy that was made possible by the nested structure described in Figure
6.1. The strategy starts by training the model in the unlinked dataset, which has
data from more joint replacements but does not contain PROMs scores. Then
the structure of the neural network ψij(x) is modified toalso include PROMs scores
as inputs. This modifiedmodel can be split into two components: λi,j(BMI, age, t)
and ψij(x). There, λij(BMI, age, t) are the different modes (i) in which the haz-
ard ratio can depend on BMI, age and t for each competing risk j. ψij(x) are
the set of weights for each mode and each competing risk as a function of
the remaining input variables. Although the set of input variables is different in
the linked and unlinked datasets, this difference only affects the neural network
component of the model: ψ(x). The structure basis function component of the
model, λij(BMI, age, t) is not affectedby the increased number of inputs andcan
be transferred from one model to the other. The parameters of λij(BMI, age, t)
are then fixed to be the same as estimated in the unlinked dataset and the
linked dataset is used only to train the neural network component of the model.
Moreover, the existence of different competing risks with heterogeneous under-
lying patternsmakes the training speeddifferent for each competing risks so that
during the training process it is possible that the model has already fit one par-
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Figure 6.1.: Graphical description of the nested PH-MNN model used in the present chapter.

ticular risk but not the other. To overcome this asymmetry and allow optimum
training points for all risks, we increment the transfer learning strategy by stop-
ping the training of the modes λij(BMI, age, t) at different points depending on
the risk j.

With the description of the proposed strategy, it is clear that the scenario
where we propose it differs from the standard transfer learning scenario where
features extracted with one particular dataset are used as initial parameters to
train a model in another dataset with possibly different outcome but with the
same structure for the input data. In our case, despite the target outcome be-
ing unchanged, the number of inputs changes as a consequence of limited
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data availability. This means that the structure of the model needs to change
to account for the additional inputs. Nonetheless, we decided to use the same
term to designate the strategy because it keeps the core component of the
strategy, which is the use of learned parameters from one model in the training
of another model. Indeed, we believe that the idea of transfer learning has not
been previously used to tackle the problem of learning with missing data pre-
cisely because it is challenging to reuse neural network parameters in models
with different sets o inputs, and this was made possible with the MNN framework
proposed in this work.
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Figure 6.2.: Learning curves comparison of standard and transfer learning approaches in hip
replacement revision model.

Figures 6.2, 6.3 and 6.4 show the results of transfer learning procedure in the
estimation of revision or mortality after hip or knee replacements. This is done by
displaying the training curves with both train and test datasets in two different
scenarios: one where transfer learning strategy is used and other where train-
ing is performed directly in the linked dataset. The results represent the mean
and standard deviation after 10 repetitions of 5-fold cross validation, where the
dataset has been randomly permuted before each repetition. In the case of
the transfer learning results, the results represent only the training in the linked
dataset, after the modes have been fixed. The points where the training of the
modes for each competing risk stopped were determined by inspecting the
training curves in the unlinked data. This was done using the results of only one
split in the first 5-fold cross-validation repetition and the points were kept con-
stant in all instances. In the case of the revision model for knee replacements, it

118 Survival Modelling of Joint Replacement Surgeries



0 2000 4000
Iterations

0.0520

0.0525
Ev

en
t l

og
-li

ke
lih

oo
d aseptic loosening/lysis

0 2000 4000
Iterations

0.0052

0.0053

0.0054

Ev
en

t l
og

-li
ke

lih
oo

d dislocation subluxation

0 2000 4000
Iterations

0.0072

0.0073

0.0074

Ev
en

t l
og

-li
ke

lih
oo

d fracture

0 2000 4000
Iterations

0.05925

0.05950

0.05975

Ev
en

t l
og

-li
ke

lih
oo

d infection

0 2000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ev
en

t l
og

-li
ke

lih
oo

d instability

0 2000 4000
Iterations

0.02425

0.02450

0.02475

Ev
en

t l
og

-li
ke

lih
oo

d pain

0 2000 4000
Iterations

0.0210

0.0212

0.0214

Ev
en

t l
og

-li
ke

lih
oo

d ProgressiveArthritis

0 2000 4000
Iterations

0.0104

0.0105

0.0106

0.0107

Ev
en

t l
og

-li
ke

lih
oo

d stiffness

0 2000 4000
Iterations

0.0364

0.0366

0.0368

0.0370

Ev
en

t l
og

-li
ke

lih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525

Ne
g.

 lo
g-

lik
el

ih
oo

d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

0 1000 2000 3000 4000
Iterations

0.0520

0.0525
Ne

g.
 lo

g-
lik

el
ih

oo
d aseptic loosening/lysis

0 1000 2000 3000 4000
Iterations

0.0052

0.0053

Ne
g.

 lo
g-

lik
el

ih
oo

d dislocation subluxation

0 1000 2000 3000 4000
Iterations

0.0072

0.0073

0.0074

Ne
g.

 lo
g-

lik
el

ih
oo

d fracture

0 1000 2000 3000 4000
Iterations

0.05900

0.05925

0.05950

0.05975

Ne
g.

 lo
g-

lik
el

ih
oo

d infection

0 1000 2000 3000 4000
Iterations

0.03125

0.03150

0.03175

0.03200

Ne
g.

 lo
g-

lik
el

ih
oo

d instability

0 1000 2000 3000 4000
Iterations

0.0242

0.0244

0.0246

0.0248

Ne
g.

 lo
g-

lik
el

ih
oo

d pain

0 1000 2000 3000 4000
Iterations

0.0210

0.0212

0.0214

Ne
g.

 lo
g-

lik
el

ih
oo

d ProgressiveArthritis

0 1000 2000 3000 4000
Iterations

0.0105

0.0106

0.0107

Ne
g.

 lo
g-

lik
el

ih
oo

d stiffness

0 1000 2000 3000 4000
Iterations

0.0366

0.0368

0.0370

Ne
g.

 lo
g-

lik
el

ih
oo

d other

transfer learning (train)
transfer learning (test)

standard (train)
standard (test)

std. dev.

Figure 6.3.: Learning curves comparison of standard and transfer learning approaches in knee
replacement revision model.
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Figure 6.4.: Learning curves comparison of standard and transfer learning approaches in hip
and knee replacement mortality model.

was initially observed that fixing the modes to the shapes obtained without the
preoperative PROMs inputs resulted in a slight decreased performance for the
estimation of instability, pain, progressive arthritis and other. This indicates that in-
troduction of PROMs inputs allowed the distinction of patients within subgroups
with that affected the age and BMI dependency of the hazard ratio. Addi-
tionally, these risks had a high number of observed events in the linked dataset
when compared to other risks in the same dataset, allowing for the modes to
be trained without overfit for those particular event types. Our transfer learn-
ing strategy allowed a simple solution to this problem which consisted in not
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fixing the modes for those event types, using the modes learned in the unlinked
dataset only as initial values. Indeed, the hierarchical structure of the nested
PH-MNN model has independent heads for each event type, thus allowing the
transfer learning strategy to be applied in a modular way only for event types
where overfit could be observed. The results displayed in Figure 6.3 reflect the
results obtained when not fixing the modes for instability, pain, progressive arth-
ritis and other. The results show that the transfer learning strategy improved the
results with a better overall cost and smaller overfitting. The final transfer learning
strategy used is summarized in Algorithm 3.

Algorithm 3 Pseudo-code description of transfer learning strategy.
Require: Dataset DPROMs,train with PROMs data and NPROMs,train subjects
Require: Dataset DPROMs,test with PROMs data and NPROMs,test subjects
Require: ψPROMS(xPROMs) (neural network block of the model with PROMs input)
Require: Dataset Dtrain without PROMs data and Ntrain subjects (containing all
subjects in DPROMs,train)

Require: Dataset Dtest without PROMs data and Ntest subjects (containing all
subjects in DPROMs,test)

Require: ψ(x) (neural network block of the model without PROMs input)
Require: Θ4×5×5

1,j , Θ3×4×4
2,j (parameters)

Require: np (baseline number of training iterations with D)
Require: nTL (baseline number of training iterations with DTL)

Θ[ref]
1,j , Θ[ref]

2,j , ψ(x)← MLE using DPROMs,train with nTL iterations.
Θ1,j, Θ2,j, ψ(x)← MLE using Dtrain with np iterations
for j in risk types do

if overfit observed in training history for risk j then
np,j ← Number of iterations bofore overfit (through visual inspection)

else
np,j ← np

end if
end for
Θ[TL]

1,j , Θ[TL]
2,j ← value from iteration nj of MLE

ψ[TL](x)← MLE using DPROMs,train with Θ[TL]
1,j and Θ[TL]

2,j constant for every j.
Repeat MLE with DPROMs,train, but also optimizing Θ[TL]

1,j , Θ[TL]
2,j for every j with

which the test likelihood with Θ[ref]
1,j , Θ[ref]

2,j and ψ(x) is better than with Θ[TL]
1,j ,

Θ[TL]
2,j and ψ[TL](x).
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6.3 Analysis of the resultant models
6.3.1 Hip revision model

The concordance index results for the resulting model are displayed in Table 6.3.
Despite the high concordance index for independent event types, when the es-
timations are aggregated into a single risk estimation, the concordance index
becomes considerably lower. This can be explained by the opposing trends
observed for different event types. It is noted that the concordance index res-
ults do not reflect the overfit observed in the training curves in Figure 6.2. This is
consistent with the fact that the concordance index only measure the correct
ordering among different estimations but not the calibration of the estimation,
so it is possible for a model to achieve perfect concordance index and at the
same time estimate survival functions that are completely different from what is
observed in the data. Nonetheless, the reduced concordance index for event
type “other” with the transfer learning strategy is an indicator that despite the
reduction in overfit, there might be aspects of the relationship between the pre-
operative PROMs and the revision risk that could be not be captured by the
model because of the fixation of the age and BMI modes.

Although it is not possible to visualize all variable relationships captured by the
model, we provide an illustration of them in Figure 6.5 by showing how each
input variable affects the estimation when all other variables are fixed to refer-
ence values. These reference values were chosen to be the median within the
dataset for numerical variables and themode for categorical variables. The res-
ults show that the same input had sometimes opposing effects to different types
of risk. For example, fracture and dislocation/subluxation were more common

Table 6.3.: Concordance index at 8 years follow up time for hip revision estimation with the nes-
ted PH-MNN model for individual risks and aggregated single risk.

nested PH-MNN nested PH-MNN
(standard) (transfer learning)

aseptic loosening/lysis 0.664± 0.003 0.662± 0.004
dislocation/subluxation 0.612± 0.011 0.627± 0.006

fracture 0.635± 0.010 0.649± 0.006
infection 0.633± 0.005 0.637± 0.003

pain 0.740± 0.006 0.738± 0.004
other 0.660± 0.002 0.651± 0.002

single risk 0.577± 0.002 0.575± 0.002
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for elderly patients, with slight increase also for younger patients. Infection risks
were the lowest between 60 and 70 years, having an slight increase for both
younger and older patients. Aseptic loosening/lysis, pain and other risks were
higher for younger patients. This difference in behavior for different event types
was also observed for other input variables and explains why the concordance
index was lower for single risk than for competing risks.
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Figure 6.5.: Sensitivity to each input variable for a reference patient int the hip revision model
when estimating the hazard ratio with a follow up time of 8 years.

122 Survival Modelling of Joint Replacement Surgeries



BMI

20
40 Age50

100
0.00
0.02
0.04

aseptic loosening/
lysis

BMI

20
40 Age50

100
0.00
0.02
0.04

dislocation/
subluxation

BMI

20
40 Age50

100
0.00
0.02
0.04

fracture

BMI

20
40 Age50

100
0.00
0.02
0.04

infection

BMI

20
40 Age50

100
0.00
0.02
0.04

pain

BMI

20
40 Age50

100
0.00
0.02
0.04

other

mode 1 mode 2 mode 3 Linked KM Unlinked KM

Figure 6.6.: Comparison between age and BMI modes captured by the nested PH-MNN model
with the transfer learning strategy and stratified Kaplan-Meier for the hip revision
data.
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Figure 6.7.: Comparison between age and BMI modes captured by the nested PH-MNN model
without the transfer learning strategy and stratified Kaplan-Meier for the hip revision
data.
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The nested structure in the PH-MNNmodel also allows a complete visualization
of the modes according to which the hazard ratio can vary with age and BMI.
Figure 6.7 compares the modes with the Kaplan-Meier estimation stratified by
age and BMI when using the transfer learning strategy. Figure 6.6 shows the
same comparison when the transfer learning strategy is not used. It is possible to
see that Figure 6.7 includes patterns that are not observed in the Kaplan-Meier
estimation, which are likely a result of overfit.

6.3.2 Knee revision model

Table 6.4.: Concordance index at 8 years follow up time for knee revision estimation with the
nested PH-MNN model for individual risks and aggregated single risk.

nested PH-MNN nested PH-MNN
(standard) (transfer learning)

aseptic loosening/lysis 0.695± 0.002 0.694± 0.002
dislocation/subluxation 0.633± 0.007 0.645± 0.005

fracture 0.645± 0.019 0.653± 0.011
infection 0.598± 0.007 0.612± 0.002
instability 0.698± 0.003 0.698± 0.004

pain 0.705± 0.001 0.704± 0.001
progressive arthritis 0.623± 0.007 0.634± 0.008

stiffness 0.687± 0.003 0.690± 0.003
other 0.647± 0.002 0.648± 0.002

single risk 0.638± 0.003 0.637± 0.002

The concordance index results for the knee revisionmodel are displayed in Table
6.4. Here the single risk concordance index is higher than in the hip revision
model, despite being still lower than the concordance index for most individual
competing risks. This indicates a higher concordance between risk factors for
different event types than in the hip revision model. Here, the concordance
index was either equivalent or better for the transfer learning model. As high-
lighted in the case of the hip revision model, this is not enough to guarantee a
better performance for the transfer learning model, but it is an indication that
the overfit without the transfer learning strategy prevented the correct ordering
of estimations for some of the event types.

Figure 6.8 shows the effect of each input variable to the hazard ratio when
all other variables are fixed to reference values. Similarly to the hip revision ana-
lysis, the reference values were chosen to be the median within the dataset for
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Figure 6.8.: Sensitivity to each input variable for a reference patient int the knee revision model
when estimating the hazard ratio with a follow up time of 8 years.

numerical variables and the mode for categorical variables. Despite the single
risk concordance index being higher for the knee replacement model than for
the hip replacement model, there were also opposing trends observed in the
effect of the input variables to the hazard ratio.

Figure 6.9 compares the modes with the Kaplan-Meier estimation stratified
by age and BMI when using the transfer learning strategy. Figure 6.10 shows
the same comparison when the transfer learning strategy is not used. Both the
standard and transfer learning versions of the model presented modes that dif-

6.3 Analysis of the resultant models 125



BMI

20
40 Age50

100
0.00
0.05

0.10

aseptic loosening/lysis

BMI

20
40 Age50

100
0.00
0.05

0.10

dislocation subluxation

BMI

20
40 Age50

100
0.00
0.05

0.10

fracture

BMI

20
40 Age50

100
0.00
0.05

0.10

infection

BMI

20
40 Age50

100
0.00
0.05

0.10

instability

BMI

20
40 Age50

100
0.00
0.05

0.10

pain

BMI

20
40 Age50

100
0.00
0.05

0.10

progressive arthritis

BMI

20
40 Age50

100
0.00
0.05

0.10

stiffness

BMI

20
40 Age50

100
0.00
0.05

0.10

other

mode 1 mode 2 mode 3 Linked KM Unlinked KM

Figure 6.9.: Comparison between age and BMI modes captured by the nested PH-MNN model
with the transfer learning strategy and stratified Kaplan-Meier for the knee revision
data.

fer substantially from the Kaplan-Meier estimates for the average population,
despite the difference being slightly smaller in the case of the transfer learn-
ing approach. Nonetheless, the learning curves in 6.3 indicates that this is likely
not caused by overfit. One possible explanation for the observed difference is
that the knee replacement dataset includes three types of surgery: Total, Uni-
condylar and Patello-Femoral. Therefore, there is likely a greater variety of re-
sponse patterns. Indeed, the discordance between the learned modes and
the Kaplan-Meier does not necessarily mean that the modes are wrong, since
the Kaplan-Meier plot only shows the overall trends among the entire population
and the trends can differ among subgroups.
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Figure 6.10.: Comparison between age and BMI modes captured by the nested PH-MNNmodel
without the transfer learning strategy and stratified Kaplan-Meier for the knee revi-
sion data.

6.3.3 Mortality models

The concordance index results for both hip and knee mortality models are
presented in Table 6.5. In both cases the single risk model obtained a high con-
cordance index, which is likely caused by the strong correlation between age
and mortality. In both hip and knee models, the concordance index for both

Table 6.5.: Concordance index at 1 year follow up time after hip or knee mortality estimation.
nested PH-MNN nested PH-MNN

(standard) (transfer learning)
hip 0.7638± 0.0005 0.7631± 0.0008
knee 0.7500± 0.0003 0.7497± 0.0003
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models was equal for both standard and transfer learning training approaches,
which is consistent with the fact there was enough data to train the model
without the transfer learning approach and overfit was not observed in Figure
6.4.

Themodes for themortality dependency on age and BMI after hip or knee re-
placement surgeries are shown in Figure 6.11. Here, the transfer learning model
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Figure 6.11.: Comparison of standard and transfer learning modes of dependency on age and
BMI.
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for hip mortality had one of the modes that deviates from the Kaplan-Meier ob-
servation. Figure 6.4 indicates that this is not caused by overfit. Possible causes
include the existence of a pattern that happens only for a small subset of pa-
tients that could only be captured by the model with more data available. An-
other possible cause is that the mode might only appear with a small weight so
that no patient would have a pattern similar to it but it would only case a small
alteration in the modes with larger weights.

The sensitivity plots in Figures 6.12 and 6.13 show how each input variable af-
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Figure 6.12.: Sensitivity to each input variable for a reference patient int the hip mortality model
when estimating the hazard ratio with a follow up time of 1 year.
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fects the mortality risk for a reference patient. The figures confirm that the main
predictor for mortality is age.
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Figure 6.13.: Sensitivity to each input variable for a referencepatient int the kneemortalitymodel
when estimating the hazard ratio with a follow up time of 1 year.
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7
Neural Network Classifier Approach
for Postoperative PROMs Prediction

Patient reported outcome measures (PROMs) are numeric evaluations of some
aspect of a patient’s health. This is obtained through a questionnaire that is
answered directly by patients. Examples of PROMs scores that are relevant for
hip and knee replacement surgeries include the Oxford hip score (OHS) [89]
and Oxford knee score (OKS) [90] that measure pain and functioning of the
patient’s hip or knee respectively. Also, the EQ5D index and EQ5D VAS [91]
provide measurements of the overall health of a patient, which might also be
of interest during joint replacement surgeries. The PROMs score change after a
surgery is a commonly used metric when evaluating the degree of success of
a surgery. The individualized estimation of this change allows the knowledge of
how the expected outcome is influenced by the patient’s features and other
factors that vary from one surgery to another, like prosthesis type and surgical
approach. With this information, it is possible to forecast the effect of a surgery
prior to it, helping patients to better understand the consequences of a surgery.
This facilitates shared decision making for deciding whether or not the patient
should undergo a joint replacement surgery, allowing that decision to reflect
more the patient’s priorities and avoid frustration with the surgery outcome.

Current works on postoperative PROMs estimation make use of standard re-
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gression models ranging from linear and Tobit regression [92] to machine learn-
ing models [93]. Despite the broad range of regression models that have been
applied to this estimation problem, the RMSE obtained by all of them has a sim-
ilar order of magnitude to the standard deviation of PROMs change in the entire
population. This shows that a significant part of the factors that may contribute
to the improvement or worsening of a PROMs score after a surgery are not taken
into account by these models. Indeed, joint replacement surgeries are highly
complex procedures and it would be unreasonable to presume that the demo-
graphic information available to the model can fully account for all sources of
uncertainty in the surgery outcome. Therefore, without further evidence, it must
be presumed that the estimation is inherently uncertain and it is virtually possible
that, for any given combination of input attributes, the postoperative scoremay
have any outcome. Therefore, the estimations provided by the models reflect
only central tendencies of the score but with no guarantee that the actual out-
come will be qualitatively equivalent to estimation. This does not mean that
the information provided by the models is useless. Indeed, these models show
that there are factors that significantly influence the postoperative PROMs score
[92], so the question is not if this information is useful to patients but how to best
convey it to them so that it will not lead to unrealistic expectations.

Standard regression models that have been applied to PROMs estimation do
have a probabilistic formulation. Indeed, these models use least squared error
estimation, which is based on the assumption that the outcome is given by a
function of the input plus a Gaussian noise that is independent from the inputs.
However, current works do not put noise in evidence and do not test the hypo-
thesis of input independent Gaussian noise. The only model with non-Gaussian
noise that has been applied for PROMs estimation was naïve Bayes [93]. How-
ever, it relies on strong variable independence assumptions, being not as flexible
as neural networks or gradient boosting models. Indeed, naïve Bayes was not
the best performing model in the study where it was applied. One difference
approach for dealing with uncertainty in PROMs estimation is given by [94]. In-
stead of modeling the expected value of the outcome, the target is the prob-
ability of the PROMs change exceeding a certain threshold. There, no restrictive
hypothesis is made to the data beingmodeled. This is a good alternative for giv-
ing patients some notion of the outcome uncertainty, but this probability alone
does not provide a full picture of the estimated surgery outcome and it would
be better to have a model that combines the estimation of both the expected
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postoperative PROMs and the probability of meeting any desired success cri-
terium, like not having a perceivable worsening or achieving an improvement
greater or equal to the patient’s goal.

A further difference between the present problem and standard regression is
that the outcome is restricted not only to a specific range of values. The way in
which PROMs questionnaires are built impose that there is a limited number of
possible values for its outcome, as will be further detailed in Section 7.1.1. This
makes the problem structurally closer to a classification than to a regression
problem. We propose the application of a classifier neural network to estimate
postoperative PROMs score and show how it can be used to achieve intuitive
interpretations to the expected outcome of a joint replacement surgery. Spe-
cifically, we show that this model can not only estimate the expected value of
postoperative PROMs score with better performance than current state of the
art, but also provide the probability of the result being within some interval of in-
terest. This information is particularly useful for intuitively conveying uncertainty
information to patients. For example, it is possible to estimate the probabilities of
the postoperative score being higher, lower or equivalent to the preoperative
score. Also, if the patient or surgeon has a specific goal for the postoperative
score, it is possible to accurately estimate the personalized probability of the
score being higher or equal to this goal.

7.1 Model Formulation
7.1.1 Data properties and estimation uncertainty

The Oxford Hip Score (OHS) and theOxford Knee Score (OKS) are both obtained
from the answers to 12 independent questionsmade to patients about their joint
health. Although the questions are different for the OHS and the OKS and their
numerical values can have different interpretations, both restrict the answer to
each question as an integer value from 0 to 4, so the total score must be an
integer from 0 to 48.

The EQ5D questionnaire is composed of 5 question about different aspects of
a patient’s health with answers being an integer number from 1 to 3 and the
VAS, which is an integer from 0 to 100 that is directly reported by the patient as
their perception of their overall health. The first group of questions is used either
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as a list of all answers or as an index, which maps each possible combination
to a real number. The question can have in total 35 = 273 possible answers and
consequently the possible values for the index despite being represented by
real numbers is finite. The coefficients used in the index computation vary from
country to country depending on various factors.

Why are current models poorly suited to outcome estimation?

The estimation of these scores is traditionally performed in the domain of re-
gression models, but standard regression models are not perfectly applicable
since they assume a scenario where the outcome has an infinite range. In prin-
ciple, the pain and functioning of some joint and the broader patient health as
measured by the EQ5D could all be viewed as having an infinite range, but the
PROMs questionnaires can only measure it within a limited range of the possible
outcomes because of the “floor” and “ceiling” effects.

Current solutions to this problem include the use of Tobit [95] and tree type
[96] models, that restrict the estimated outcome to the range that is actually
possible for the metric of interest. In the Tobit model, this is achieved by clipping
the output of a standard regression model and adapting the likelihood function
to account for that change. In tree type models, the estimated outcome is the
weighted average of real output data from patients with similar characteristics
to the target patient. Since the estimated outcome will always be some type
of average of the outcomes of real patients, it will always be in the allowed
range. Both these methods successfully deal with the restrictions in the output
data range, but they allow the estimation to assume arbitrary non-integer val-
ues. This is coherent with the definitions of the PROMs scores because even with
the measurements restricted to a finite set of values, their expected value can
still assume intermediary values.

As detailed in the beginning of the present chapter, results from current state
of the art regression models are not enough to guarantee that the estimated
outcome will be qualitatively equivalent to the actual observed outcome. This
is perfectly coherent with the phenomenon being modeled since joint replace-
ment surgeries are complex procedures whose outcome cannot be completely
determined beforehand. Nonetheless, this can easily lead to false expectations
when the estimation is provided to patients as a single point value. Indeed,
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the RMSE observed in existing PROMs models has the same order of magnitude
as the standard deviation of the change score in the entire population, which
means that from all factors that influence the final outcome, the ones that are
not captured by the model have a similar influence to those captured by the
model. In principle, this could be either because the input variables used in
estimation are not enough to determine the surgery outcome or because the
measurement noise in the PROMs questionnaire makes the RMSE high despite
the underlying phenomenon being accurately measured.

This can be better understood if we qualitatively split the PROMs signal ac-
cording to two different criteria: first, between the component that is caused
by the joint pain and functioning and the one that is caused by the patient’s
perception of it; second, these two groups can be further split into low and high
frequency components. The low frequency component of the joint pain and
functioning is the actual phenomenon that we aim at studying and the high
frequency component of it can be regarded as noise. Regarding the compon-
ent that is due to the patient’s perception of pain and functioning, although
perception differences are not directly caused by a problem in the joint, the
same amount of pain might be tolerable to some patients and not to others.
Given that the joint replacement surgery aims at treating a specific patient, it is
reasonable to take the patient’s perception into account in evaluating the de-
gree of success of that surgery. The patient’s perception can also be split into
low and high frequency components and the low frequency component is the
one that is caused by the surgery, while the high frequency component can be
regarded as noise.

The models themselves are not capable of distinguishing between different
components of the signal, even between low and high frequency compon-
ents, since there is no data available about it. However, other experimental set-
tings have been used to estimate high frequency variation of OHS/OKS [97, 98].
There, multiple questionnaires answered by the same patient are used to show
how the answer varies with time despite the patient not receiving any treatment
that should alter the joint health. This measurement only takes into account the
short term variability of both the joint health and the patient’s perception of
it. If the uncertainty in the models were caused only by this factor, the RMSE
would be considerably lower than what is observed in estimation models. Since
the data available does not contain short term repetitions of the same ques-
tionnaire, which would be necessary to reduce the high frequency noise, we
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nonlinearity floor/ceiling effects uncertainty
Linear regression ✗ ✗ ✗

Tobit regression ✗ ✓ ✗

Regression NN ✓ ✗ ✗

Regression XGB ✓ ✓ ✗

Classifier NN ✓ ✓ ✓

Table 7.1.: Qualitative evaluation of postoperative PROMs estimation models according to the
capacity of representing three different aspects of the target function: nonlinearity,
floor/ceiling effects and uncertainty.

include it as part of the uncertainty of the model, which is adequate given that
the low frequency noise is substantially higher than the high frequency noise.

This analysis makes it clear that the postoperative PROMs score would be best
estimated as a probability distribution instead of a single point estimate as it is
usually done. The major problemwith estimating a probability distribution is that
the result is neither intuitive nor directly useful to patients, but it can be used
to achieve more intuitive measures. For example, the single point estimation
can be retrieved from it by computing the expected value or median of the
outcome probability distribution. Although modeling the outcome as real val-
ued is coherent for single point estimate models, restricting the outcome to only
the finite set of numbers that can actually be obtained in the questionnaires
is the best option when estimating the full probability distribution of the post-
operative score. Indeed, this restriction allows the probability distribution to be
modeled with standard machine learning classification models. There, each
possible value for the outcome is considered an entirely different outcome, and
themodel estimates for eachpatient theprobability of eachof these outcomes.
This set of probabilities contains the full specification of the outcome probability
distribution since all possible outcomes of the postoperative PROMs question-
naire are accounted for.

7.1.2 Model Structure and Estimation
Themodel used in this work is a classification neural network [99] with sigmoid ac-
tivation function, dropout and a softmax activation function in the visible layer.
The likelihood of this model is given by the categorical cross entropy. Estimation
of the parameters is performed through likelihood maximization with the Adam
optimizer [100].
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7.1.3 Interpretability of the Outcome of the Model

The probabilities of each possible score as estimated by the model might not
provide by themselves an intuitive estimation of the surgery outcome. However,
this set of probabilities is the full probabilistic description of the target score out-
come and if accurately estimated, it will contain all the information that can be
obtained about the postoperative outcome given the available input variables.
Consequently, all other meaningful information that can be obtained by other
models can also be extracted from this estimated probability distribution:

• Minimum Squared Error Estimation: The output of most models for individu-
alized postoperative PROMs score estimation corresponds to the minimum
squared error estimation. The reason why regression models are trained
with this metric is that in the case of Gaussian noise the model will con-
verge to the expected value of the outcome if enough data is provided.
Given the probability distribution of the score, the expected value of the
outcome can also be obtained. Indeed, it is preferable to estimate the
expected value using the outcome probability distribution than to rely on
minimum squared error estimation as the later will not be adequate for all
types of noise.

• Minimum Absolute Error Estimation: Although less common, the minimum
absolute error estimate is also a useful outcome for regression models. The
reason why regression models are trained with this metric is that in the
case of Gaussian noise the model will converge to the median of the out-
come probability distribution. Since in our model, the entire probability
distribution is estimated, the median of it can also be obtained from it.
Once again, estimation directly from the probability distribution is prefer-
able since the minimum absolute error estimate will not converge to the
median if the error is unbalanced.

• Variance: The variance of the estimated probability distribution is com-
monly used as an indicator of the accuracy of the estimation. It can
be retrieved from the categorical probability distribution as the expected
value of the squaredoutcomeminus the square of the expectedoutcome.
Therefore, it can also be extracted from the outcome probability distribu-
tion.

• Confidence Intervals: A confidence interval is also used as an indicator
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of uncertainty. It is defined as an interval within which the measurement
will be with some desired confidence probability, usually 95%. In the case
of non Gaussian distributions, it describes the uncertainty more accurately
than the variance, since the distributionmight not be symmetric. This value
can also be extracted from the outcome probability distribution, which is
done by determining the outcome value for which the cumulative distri-
bution will reach the values of 2.5% and 97.5%.

• Probability of Specific Intervals: A particularly useful information that can
be obtained from a categorical model is the probability of the outcome
being within some specified interval of interest. The probability of the out-
come assuming exactly some value might not be of a great practical in-
terest. However, if the range of possible outcomes is divided into intervals
with practical interpretation, the probability of the outcome being in each
of these intervals will be of great interest. As an example, the range of out-
comes can be divided into (i) smaller than the preoperative score and (ii)
greater or equal to the preoperative score. The probability of the outcome
being in each of these ranges can be easily determined by summing the
probabilities of all outcomes in the desired interval.

The possibility of making probabilistic estimations is an important addition to
the estimation of the expected outcome. Indeed, the uncertainty in the es-
timation of the expected outcome cannot be neglected in current models, so
it is crucial that the estimation is accompanied by some measurement of un-
certainty. This is especially true when the uncertainty depends on the patient
attributes, so that the estimation will be more precise for some patients than for
others. With this information, it is possible to convey the uncertainty to patients
in a manner that is both intuitive and precise. This is achieved through the risk of
the postoperative score being lower than the preoperative score.

7.2 Missing Data Imputation
The missing data in the National Joint Registry PROMs dataset can be divided

into two groups: patients with no information on the postoperative PROMs score;
and patients with missing data in some of the input variables. In the first group,
it is not possible to compensate for the missing data and it is necessary to restrict
themodeling to patients who have completed the PROMs quaestionaire. In the
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second group, there are three possible ways in which the datamight bemissing:
missing completely at random (MCAR); missing at random (MAR); or missing not
at random (MNAR) [101]. In either case, the safest approach for modeling is
to apply a data imputation technique assuming a MAR scenario. If the data
turns out to be MCAR, this approach will be redundant but not harmful. On the
other hand, if the data turns out to be MNAR, this approach will not be enough
for retrieving all the missing information, but it is the most sensible option with
the available data. Indeed, an MNAR hypothesis would mean that there is a
bias in the unobserved variables so they tend to be either smaller or larger than
the observed ones. To verify this hypothesis, it would be necessary to design a
particular experimental setting that would allow measuring some of the missing
data. Without additional data the only two possibilities are to assume that there
is no bias or to assume a particular bias that is not based on data. Since there is
no particular reason to believe that there is a bias, the most sensible assumption
is that there is no bias, which is equivalent to saying that the data is MAR.

When only patients with complete postoperative PROMs data are taken into
account, most patients with missing data had only data missing for BMI. In the
dataset used, the BMI is restricted to integer numbers, which allows the use a
classifier neural network with integer BMI values as outputs as the imputation
model. Restricting the imputation to only BMI allows the multiple imputations to
be performed into one single step as follows. Then, the estimated probability dis-
tribution for the imputed model will be given by the average of the estimations
for the models trained with each different sample.

Algorithm 4 Multiple imputations procedure for training PROMs with incomplete
BMI data.
Require: Nsteps > 0
Require: xc (set of all input variables except BMI)
Train the classifier NN imputation model: pBMI(xc)
n← 0
while n < Nsteps do

sample xBMI from pBMI(xc) for each patient with missing BMI
train the nth PROMs model with the imputed BMI data

end while
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7.3 Model Implementation and Validation
7.3.1 Data description

In the present section, we use the neural network classification model to estim-
ate the postoperative Oxford and EQ5D scores after hip and knee replacement
surgeries with data from the National Joint Registry of hip and knee replace-
ment surgeries performed in England from 2009 to 2018 linked with PROMs data
with a total of 278.655 knee replacements and 249.634 hip replacements. Fig-
ures 7.1, 7.2, 7.3 and 7.4 show the distribution of preoperative, postoperative and
change PROMs after hip/knee replacement surgeries. Age was restricted from
30 to 100 (14 knee replacements ignored and 170 hip replacements ignored).
BMI was restricted from 15 to 55 (358 knee replacements ignored and 239 hip
replacements ignored). Hip replacements with bearing types MoM, CoM and
MoCwere not included in themodel since these types of implants are no longer
used (5402 hip replacements ignored). Head size in hip replacement surgeries
were grouped into <32, 32 and >32, since 32 is the standard size. BMI was miss-
ing for 70693 knee replacements and 62907 hip replacements. In total, less than
754 patients had variables other than BMI missing in knee replacements and less
than 9.127 patients in hip replacements. Since the majority of missing data has
only BMI missing, it was decided to only impute BMI data since it will handlemost
of missing data while avoiding the need of recursion in the multiple imputation
steps as discussed in Section 7.2.
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Figure 7.1.: Histogram of the OKS before and after knee replacement surgeries. Panel (a) shows
the preoperative OKS; panel (b) shows the postoperative OKS; and panel (c) shows
the OKS change score.
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Figure 7.2.: Histogram of the OHS before and after hip replacement surgeries. Panel (a) shows
the preoperative OHS; panel (b) shows the postoperative OHS; and panel (c) shows
the OHS change score.
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Figure 7.3.: Histogram of the EQ5D index before and after hip replacement surgeries. Panel (a)
shows the preoperative Eq5D index; panel (b) shows the postoperative EQ5D index;
and panel (c) shows the EQ5D index change score.

7.3.2 Model validation
The estimation was divided into separate models for each combination of joint
and target outcome, making a total of 6 models. For knee replacements the
targets were OKS, EQ5D index and VAS score. For hip replacements the target
were OHS, EQ5D index and VAS score. The input variables that were used were:
sex, BMI, age, surgery date, ASA, chemical prophylaxis, mechanical prophylaxis,
comorbidities, approach, lead surgeon grade, implant reason, head size (only
for hip), procedure type (only for knee), and the individual answers to questions
in the preoperative PROMs quaetionnaire. In the case of OHS/OKS target, the
input preoperative score was the set of answers (integers from 0 to 4) to each of
the question that make the target score. In the case of EQ5D index or VAS score
targets, the input preoperative score was composed by both the VAS score (in-
teger from 0 to 100) and the individual answers to the 5 questions on the EQ5D
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Figure 7.4.: Histogram of the VAS score before and after hip replacement surgeries. Panel (a)
shows the preoperative VAS; panel (b) shows the postoperative VAS; and panel (c)
shows the VAS change score.

index (integers from 0 to 2). This maximizes the use of the available input inform-
ation for the model when compared to using only aggregated scores as input.
Since each question accounts for a different aspect of either the joint pain and
functioning or patient overall health, this allows the evaluation of how each of
these aspects influence these postoperative outcomes. Estimations were per-
formedwith both the complete data and the imputed BMI versions of the neural
network classification model.

Figure 7.5.: Illustration and measurements of the postoperative OHS after hip replacement di-
vided by clusters in the estimated probability distribution.

The calibration of the model was assessed by grouping the patients into
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Figure 7.6.: Illustration and measurements of the postoperative OKS after knee replacement di-
vided by clusters in the estimated probability distribution.

clusters using the K-means algorithm with the estimated probability distribution
as input. Within each cluster, the expected probability distribution was com-
puted and the results compared to observation. Figures 7.5 and 7.6 show the
results from the cluster analysis. The results show that the frequency of each
outcome in each cluster was compatible with its estimated probability, which
means the probabilities estimated by the model are consistent with the data.

Although the outcome probability distribution refers to the time after surgery,
its estimation is performed only with information available previously to surgery.
Therefore, the clustering is entirely based on input variables. The results from
this calibration analysis shows clearly that the postoperative outcome is always
spread throughout a wide range of values. This confirms the argument given in
the Introduction for the estimation being highly uncertain and requiring a prob-
abilistic component to provide a realistic estimation of the outcome.

7.4 Model Comparison
The performance of the proposed model was compared with current state of

the art models by estimating all of them with the same data cohort and input
variables and comparing the resulting evaluation performance. The models
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included in the comparison were:

• linear regression [92];

• Tobit regression [92];

• regression neural network [93];

• regression XGB [93];

• classification neural network as proposed in the present work.

Both the regression neural network and the classification neural network has two
hidden layers, with 100 units and 0.5 Gaussian dropout in the first hidden layer
and with 30 units and 0.2 dropout in the second. The regression XGB model had
learning rate 0.3, max depth 4, sub sample 1.0 and 100 estimators. Evaluation
was performed both in the data subset with complete data and in the subset
where only patients with missing BMI are taken into account. Since imputed
data versions of the reference models are not used in the literature, they were
trained with only complete data and their estimates for patients with missing
BMI are given by the weighted average of their estimation for each possible
value of BMI. There, the weights are given by the output of the neural network
classification imputationmodel of the BMI. The evaluation criteria used were the
root mean square error (RMSE), the mean absolute error (MAE) and the AUC for
the probability of meeting specific score thresholds for both the postoperative
PROMs and their change relative to the preoperative PROMs. The RMSE and
MAE results are given in Table 7.2 for complete data cohorts and Table 7.3 for
imputed BMI cohorts. The AUC for the estimation of PROMs change score is
given in Figure 7.7 for hip and in Figure 7.8 for knee replacement surgeries.

Table 7.2.: Complete data results and 95% CI of the root mean square error (RMSE) and mean
absolute error (MAE) for the postoperative PROMs score estimation for each model
after hip or knee replacement surgeries. Evaluationwas performedwith the complete
data cohort.

Knee Hip

RMSE MAE MID AUC RMSE MAE MID AUC

Classifier NN 8.5896± 0.0008 6.7356± 0.0007 68.73%± 0.01% 7.8594± 0.0006 5.7067± 0.0008 73.96%± 0.02%
Tobit 8.6497± 0.0012 6.8252± 0.0011 66.83%± 0.00% 8.1406± 0.0028 5.7974± 0.0015 70.98%± 0.00%

Regression NN 8.5883± 0.0005 6.8688± 0.0091 67.13%± 0.03% 7.8583± 0.0001 5.9867± 0.0080 70.96%± 0.03%
Linear 8.6243± 0.0000 6.8860± 0.0000 66.66%± 0.00% 7.9015± 0.0003 6.0035± 0.0005 70.53%± 0.00%

Regression XGB 8.6116± 0.0022 6.8652± 0.0018 67.06%± 0.01% 7.8880± 0.0014 5.9808± 0.0015 70.87%± 0.01%
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Table 7.3.: Imputed data results and 95% CI of the root mean square error (RMSE) and mean
absolute error (MAE) for the postoperative PROMs score estimation for each model
after hip or knee replacement surgeries. Evaluation used only data from patients with
missing BMI.

Knee Hip

RMSE MAE MID AUC RMSE MAE MID AUC

Classifier NN 8.6404± 0.0003 6.7872± 0.0008 68.55%± 0.01% 7.8896± 0.0005 5.7435± 0.0004 73.87%± 0.01%
Tobit 8.7009± 0.0008 6.8769± 0.0006 66.61%± 0.01% 8.1663± 0.0004 5.8313± 0.0005 70.69%± 0.00%

Regression NN 8.6403± 0.0007 6.9102± 0.0035 66.93%± 0.02% 7.8875± 0.0003 6.0196± 0.0021 70.75%± 0.01%
Linear 8.6791± 0.0001 6.9378± 0.0002 66.42%± 0.00% 7.9347± 0.0001 6.0403± 0.0003 70.25%± 0.00%

Regression XGB 8.6531± 0.0002 6.9081± 0.0002 66.93%± 0.00% 7.9043± 0.0009 6.0066± 0.0012 70.65%± 0.02%
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Figure 7.7.: AUC for the capability of the model to measure the probability of the change in
PROMs score after a hip replacement surgery to be above a certain value. For each
value in the x axis, it is possible to define a threshold and estimate the probability of
the OHS variation to exceed this value. The figure gives the resulting AUC (y axis) for
the probability of the OHS change to exceed each possible threshold (x axis). Panel
(a) shows the results for the complete data cohort and panel (b) shows the results for
the missing BMI cohort.

Results in Table 7.2 show that the proposed classifier neural network outper-
forms all other reference models according to both the RMSE and the MAE.
Conversely, the imputed version of the model performs worse and its perform-
ance is equivalent to the best reference models. It must be noted that this does
not mean its performance is equivalent to other models since it was trained for
a different data cohort. Therefore, its is expected that the imputed data model
will have a slight performance drop when tested in a slightly different cohort.
Table 7.3 shows that when only patients with missing BMI are taken into account
the imputed version of the classifier neural network outperforms all models ex-
cept the regression XBG, which is known to have high robustness to missing data
[102]. Sincewewish themodel to reflect the entire cohort of patients, regardless
of the availability of BMI data, the single point estimates suggest that the best
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Figure 7.8.: AUC for the capability of the model to measure the probability of the change in
PROMs score after a knee replacement surgery to be above a certain value. For
each value in the x axis, it is possible to definea threshold andestimate theprobability
of theOKS variation to exceed this value. The figure gives the resulting AUC (y axis) for
the probability of the OKS change to exceed each possible threshold (x axis). Panel
(a) shows the results for the complete data cohort and panel (b) shows the results for
the missing BMI cohort.

performing models are the imputed classifier neural network and the regression
XGB.

The evaluation of the entire probability distribution is performed through Fig-
ures 7.7 and 7.8. Panel (a) of Figures 7.7 and 7.8 show significantly better results
for both versions of the proposed model than other models. Panel (b) for the
same figures show a further improvement for the imputed version of the model,
which is consistent with the model including the missing BMI cohort in its training
set.

The better performance in Figures 7.7 and 7.8 for the proposed model is a
clear confirmation that the uncertainty of the outcome depends on the input
variables as hypothesized in the beginning of this chapter. Additionally, the im-
proved performance of the imputed version of the model in the missing BMI
cohort confirms that the data is not missing completely at random (MCAR) and
the imputed version of the model is the most appropriate, since restricting the
training data to the complete data cohort would introduce estimation biases.

7.5 Relationship between input attributes and outcome
With the model validation complete, it is possible to apply the model to im-

prove the understanding on how the specific attributes present in each surgery
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affect the expected surgery outcome. For that purpose, we choose reference
values for these attributes based on the frequency with which they appear in
the dataset and then show how the expected outcome would vary for that ref-
erence patient if only one attributes changed. The reference value was chosen
to be the median for numerical inputs and the mode for unordered categorical
inputs. The reference surgery date was assumed to be the most recent date
present in the dataset (28 March 2018). Figures 7.9, 7.10, 7.11,7.12 show the results
for the OHS after hip replacement, the OKS after knee replacement, the EQ5D
index after hip replacement and the VAS after hip replacement respectively.
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Figure 7.9.: Summary of the effect of each input variable to the postoperative OHS after a hip replacement. In each panel, one variable is
changed and the others are kept at the reference value indicated.
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Figure 7.10.: Summary of the effect of each input variable to the postoperative OKS after a knee replacement. In each panel, one variable
is changed and the others are kept at the reference value indicated.
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Figure 7.11.: Summary of the effect of each input variable to the postoperative EQ5D index after a hip replacement. In each panel, one
variable is changed and the others are kept at the reference value indicated.
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Figure 7.12.: Summary of the effect of each input variable to the postoperative VAS after a hip replacement. In each panel, one variable is
changed and the others are kept at the reference value indicated.
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8
Conclusions and future work

8.1 Conclusions
The major aim of this work was the development of machine learning meth-

ods to allow the prediction of joint replacement outcomes. That aim has been
successfully achieved for the two different types of output that were studied,
the first type being the prediction of the risks of death and revision, and the
second the prediction of the patient perception of their health outcomes after
the surgery. In the first type of prediction, the outcome is clearly defined and
consists in the occurrence or not of some particular events as a function of the
time passed after the surgery. This type of outcome is in the domain of survival
analysis. In the second type of prediction, there exists nomethod for obtaining a
fully comprehensive numerical description of the target outcome. Nonetheless,
there are questionnaires that capture important aspects of it in a standardized
manner which are known as patient reported outcome measures (PROMs) and
were adopted as the outcome of the models. The method proposed for the
solution of both tasks have the following important properties:

1. does not make any restrictive “a priori” assumptions about the patterns to
be detected;

2. allows interpretability of the results.
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In the survival analysis task, the finalmethodproposedwas the nested PH-MNN
model with the use of transfer learning to avoid overfit. This method is the res-
ult of a sequence of novel developments that started with the development of
the MNN framework, which has a hierarchical structure that enables analytical
operations to be performed over its inputs and enhances interpretability of the
model results. Theorem 1 shows the universal approximation property for MNN
models, which means that this class of models can represent any continuous
function with arbitrarily good accuracy provided that enough parameters are
used. In Chapter 4, theMNN framework was used for survival modeling, showing
better results than any previous models specially in its proportional hazards ver-
sions (PH-MNN and nested PH-MNN). In Chapter 5, a novel maximum likelihood
approach was used to non-parametrically derive a class of models where the
supremum of the likelihood is greater or equal to the supremum of the likelihood
among all possible models. This result was proven in Theorem 2. The PH-MNN
and nested PH-MNN models are within this class of models and their universal
approximation property guarantees that with enough parameters they can ap-
proximate arbitrarily well any continuous function within this class of models. Ad-
ditionally, Theorem 3 shows that thesemodels can be estimated using the partial
likelihood instead of the profile likelihood without change to the asymptotic be-
havior. Finally, in Chapter 6 a transfer learning strategy was proposed, allowing
training to be performed in two steps where in the first there is data from a large
number of patients but with fewer input variables and in the second all input
variables are available but for a smaller number of patients. With the proposed
transfer learning strategy, both datasets are combined in the estimation of the
nested PH-MNNmodel, allowing overfit to be significantly reduced in the model
with larger number of input variables. The nested PH-MNN model allows bet-
ter interpretability when compared to other models. This is illustrated in Sections
4.5.2 and 6.3.

In the PROMs estimation task, the contribution was the reformulation of the
modeling task as a classification problem instead of a regression problem as it
is usually treated. There, the particular structure of the questionnaires used to
obtain the PROMs scores impose a limited number of possible outcomes. Con-
sequently, the estimation problem can be perfectly cast as a classification task
where each possible outcome class corresponds to a possible PROMs score. This
formulation as a classification task is more comprehensive than other formula-
tion that have previously been used in the literature, including regression [93]
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and binary classification [94]. Indeed, the classifier neural network proposed
can account for all possible outcomes of the PROMs scores being modeled
and thus allows any other representation of the outcome to be derived from
it as shown in Section 7.1.3. Despite the classifier neural network employed in
this task not allowing a comprehensive visualization of the model outcome as
in Section 4.5.2, a display strategy was proposed that allows visualization of the
main trends in the model as show in Figures 4.11 and 4.12. This strategy consists
in defining a reference value for all input attributes in the model and displaying
the model outcomes as a function of the variation of each input attribute one
at a time.
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8.2 Future work
There are several possibilities for future works is the extension of the PH-MNN

model (in both the standard and the nested versions) to other types of estima-
tion problems.

One example is the use of multimodal data as input of survival models, includ-
ing medical imaging, electrocardiograms and others. The high computational
efficiency for both training and testing in the PH-MNN model allows the use of
deep neural networks for image feature extraction as part of survival models.
Additionally, the extension of the nested PH-MNN model could provide an al-
ternative for mixing data from different modalities.

The PH-MNN model would also be valuable for performing multi-task learn-
ing with time-to-event as one of the outputs. The profile likelihood proposed in
Chapter 5 allows direct integration with the maximum likelihood estimation of
additional outcomes. Form example, the survival estimates and PROMs estim-
ates in the present work could be combined into a single neural network as an
alternative or complement to the transfer learning strategy for avoiding overfit.

Another possible extension of the PH-MNNmodel would be in themodeling of
electronic health records or other types of data that is distributed longitudinally
in time, where the time between records can be modeled in the form of time-
to-event and the records can be estimated jointly though maximum likelihood
estimation.

Finally, the MNN framework is not restricted to survival modeling and could
be applied to other machine learning tasks. One scenario were this could be
beneficial is in other types of medical application were it is important to obtain
an explicit interpretation of how the input variables affect the outcome. For
example, in the postoperative PROMs estimation, anMNNmodel could be used
in the form of a hierarchical model where a limited number of modes would
describe the influence of age and BMI to the outcome and the other variables
would provide the weights of each mode.

Another example is in multimodal learning, where the mixture model MNN
structure could be used combine features coming from different data modal-
ities outside the realm of survival analysis. This could be achieved by adapting
the structure in Figure 3.3 by making x and y represent different modalities of
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data where each modality could have their features extracted using a different
neural network structure.
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A
Survival model pseudo code

In this appendix we provide the pseudo-codes for the survival models imple-
mented in this thesis.

Algorithm 5 Computation of the hazard ratio (ωj) and log-likelihood (ℓ) in the
PH-MNN model.
Require: dataset D
Require: nb, ne > 0

N ← number of subjects in D
for j in event types do

Nj ← number of instances of event j in D
for xn in D do

ωn,j ← ∑k exp(ψk,j(xn))νk(t)
end for
ωb,j, Tb ← nb random samples from D
ωe,j, Te,j ← ne random samples from D so that En = 1 and jn = j
ℓe,j ← log ωe,j − log ∑b|tb≥te ωb,j − log N/nb
ℓj ← sum of ℓe,j for all event samples of type j.

end for
ℓ← ∑j[ℓjNj/ne]
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Algorithm 6 Computation of the cause specific cummulative hazard function
for a given subject n (Λn,j) and log-likelihood (ℓn) in the QR-MNN model.
Require: dataset D
Require: quantile knots exp(−Λk) with Λk ∈ {Λ1, . . . , ΛK}
for j in event types do

Λ0 ← 0
Tn,j,0 ← 0
for Λk in {Λ1, . . . , ΛK} do

Tn,j,k ← Tn,j,k−1 + exp(ψk,j(xn))
end for
Λn,j(t)← linear interpolation of Λk with x-axis knots given by Tn,j,k.
λn,j(t)← time derivative of Λn,j(t)

end for
ℓn = En log(λn,jn(Tn))−∑j Λn,j(Tn)

Algorithm 7 Computation of the cause specific cummulative hazard function
for a given subject n (Λn,j) and log-likelihood (ℓn) in the DR-MNN model.
Require: dataset D
Require: time knots tk ∈ {t1, . . . , tK}

for j in event types do
T0 ← 0
Λn,j,0 ← 0
for tk in {t1, . . . , tK} do

Λn,j,k ← Λn,j,k−1 + exp(ψk,j(xn))
end for
Λn,j(t)← linear interpolation of Λn,j,k with x-axis knots given by tk.
λn,j(t)← time derivative of Λn,j(t)

end for
ℓn = En log(λn,jn(Tn))−∑j Λn,j(Tn)
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Algorithm 8 Computation of the hazard ratio (ωj) and log-likelihood (ℓ) in the
Cox model.
Require: dataset D
Require: nb, ne > 0

N ← number of subjects in D
for j in event types do

Nj ← number of instances of event j in D
for xn in D do

ωn,j ← exp(βT
j xn)

end for
ωb,j, Tb ← nb random samples from D
ωe,j, Te,j ← ne random samples from D so that En = 1 and jn = j
ℓe,j ← log ωe,j − log ∑b|tb≥te ωb,j − log N/nb
ℓj ← sum of ℓe,j for all event samples of type j.

end for
ℓ← ∑j[ℓjNj/ne]

Algorithm 9 Computation of the cause specific cummulative hazard function
for a given subject n (Λn,j) and training cost (ϵ) in the quantile regression model.
Require: dataset D
Require: quantile knots τk ∈ {τ1, . . . , τK}

G(t)← Kaplan-Meier estimation of the probability of censoring not happening
until t
for j in event types do

for k in {1, . . . , K} do
Qn,j,k ← exp(βT

j,kxn)

end for
Λn,j(t)← linear interpolation of − log τk with x-axis knots given by Qn,j,k
xb,j, Te,j ← nb random samples from D
xe,j, Te,j ← ne random samples from D so that En = 1 and jn = j

e(1)j ← ∑k,e | log Te − log Qe,j,k|Nj/(KneG(Te)N)

e(2)j ← |500 + ∑k,e(log Qe,j,k)Nj/(KneG(Te)N)|
bj ← |500−∑k,b(2 log Qb,j,kτk)/(Knb)|

end for
ϵ = ∑j(e

(1)
j + e(2)j + bj)
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Algorithm 10 Computation of the hazard ratio (ωj) and log-likelihood (ℓ) in the
DeepSurv model.
Require: dataset D
Require: nb, ne > 0

N ← number of subjects in D
for j in event types do

Nj ← number of instances of event j in D
for xn in D do

ωn,j ← exp(ψj(xn))
end for
ωb,j, Tb ← nb random samples from D
ωe,j, Te,j ← ne random samples from D so that En = 1 and jn = j
ℓe,j ← log ωe,j − log ∑b|tb≥te ωb,j − log N/nb
ℓj ← sum of ℓe,j for all event samples of type j.

end for
ℓ← ∑j[ℓjNj/ne]

Algorithm 11 Computation of the hazard ratio (ωj) and log-likelihood (ℓ) in the
Cox-Time model.
Require: dataset D
Require: nb, ne > 0

N ← number of subjects in D
for j in event types do

Nj ← number of instances of event j in D
for xn in D do

ωn,j(Tn)← exp(ψj(xn, Tn))
end for
ωb,j, Tb ← nb random samples from D
ωe,j, Te,j ← ne random samples from D so that En = 1 and jn = j
for b in samples ωb,j, Tb do

for e in event samples ωe,j, Te,j do
ωb,j(Te)← exp(ψj(xb, Te))

end for
end for
ℓe,j ← log ωe,j(Te)− log ∑b|tb≥te ωb,j(Te)− log N/nb
ℓj ← sum of ℓe,j for all event samples of type j.

end for
ℓ← ∑j[ℓjNj/ne]
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Algorithm 12 Computation of cummulative incidence function (Fj) and training
loss (ϵ) in the DeepHit model.
Require: dataset D
Require: time knots tk ∈ {t1, . . . , tK}
Require: nb, ne > 0

N ← number of subjects in D
for j in event types do

Nj ← number of instances of event j in D
T0 ← 0
Fn,j ← 0
for tk in {t1, . . . , tK} do

fn,j,k ← exp(ψk,j(xn))/ ∑k,j exp(ψk,j(xn))
if Tn ≥ tk then

Fn,j ← Fn,j + fn,j,k
end if

end for
ωb,j, Tb ← nb random samples from D
ωe,j, Te,j ← ne random samples from D so that En = 1 and jn = j
L2,e ← 0
for e in event samples ωe,j, Te,j do

for b in samples ωb,j, Tb do
L2,e ← L2,e + exp(−10( fe,j,k − fb,j,k))ne/N

end for
kn ← n|tn ≥ Tn; tn−1 < Tn
ϵ← − log[(Nj/N) fn,j,kn /(1− Fn,j)] + 0.1L2,e

end for
end for
ϵ← ∑e ϵ + ∑b log(1− Fb,j)/nb
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