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Abstract

By 2030, the number of electric vehicles (EVs) on the road is expected to increase to

11 million in the UK, meaning that there will be an increase in electricity demand.

A potential solution to help manage this increase in demand is to use a technology

called vehicle-to-grid (V2G) which is essentially a connection post that allows a

bidirectional flow of energy, which means that EVs can charge and discharge when

connected. Through this technology, the electrical grid can make use of the energy

already stored in the battery of the EV.

This research aimed to understand the effects of EV availability on V2G technol-

ogy within a microgrid and evaluated the feasibility of providing ancillary services.

A predictive model, primarily trained on internal combustion engine vehicle (ICEV)

trips, used the UK’s historical travel data to predict the location of EVs, achiev-

ing significant understanding of travel behaviour and EV availability. Split into

two tasks—predicting start and end locations—this model utilised light gradient

boosting machine (LightGBM) due to its superior performance. After fine-tuning,

it yielded a weighted average F1 score of 0.900 and 0.902 for tasks 1 and 2, respec-

tively. The model, when informed by new, real-world EV data, derived travel start

and end locations, which was the fed into an optimisation model.

This optimisation model use a mixed integer linear programming (MILP) ap-

proach to schedule EV battery usage at the household level and study various case

studies involving V2G technology. Simulations factored in different photovoltaic

(PV) penetration rates, energy tariffs, and peer-to-peer (P2P) pricing mechanisms

withing a microgrid. First, the technical and economic benefits of home batteries,

smart charging (V1G), and Vehicle-to-home (V2H) systems in EVs were evaluated,

with an emphasis on performance and electricity bill reduction. The second case

studied the potential of EVs to provide short term operation reserve (STOR) ser-

vices. The third case explored a payment mechanism to optimise the state of charge

(SOC) for EVs under V1G and V2H technologies for a week and estimate the energy

available for restoration services.

The study reveals that both stationary home batteries and EVs, when integrated

v
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with solar power and dynamic tari�s, can e�ectively reduce electricity costs, despite

the 
uctuating availability of EVs. Notably, EVs, when combined with P2P energy

sharing and V2H systems, o�er comparable performance to stationary batteries, in

addition to their transportation bene�t. In terms of STOR provision, EVs meet

the technical requirements, with their availability signi�cantly in
uencing STOR

provision. Factors like energy tari�s, solar power penetration rates, and P2P mech-

anisms have minimal e�ect on the STOR energy amount, but they do a�ect the

overall microgrid performance. The study also highlights the need to maintain a

15% surplus of EVs within the microgrid for ensured resilience. E�ective strategies

to maintain a high SOC in EVs include higher payment rate systems, implementa-

tion of V1G and V2H strategies, and dynamic energy tari�s. The study, however,

recommends limiting users to V1G to prioritise potential energy use for restoration

services. Although EV availability a�ects the minimum SOC, it is not more signi�-

cant than other factors such as EV penetration rates, energy tari�s, and P2P price

mechanisms.

The �ndings imply that EV availability can reduce some of the bene�ts that sta-

tionary home battery have, such as surplus noon charging, while V2H might match

home batteries in certain situations. EVs can o�er STOR services as the ful�l most

of the technical requirements, but the energy amount is dependant on available EVs

during STOR events. EV availability had minimal e�ect on maintaining minimum

SOC for a week that could potentially be used for restoration services, with energy

tari�s and end-of-week incentives being more in
uential. Di�erent PV penetration

rates, energy tari�s, and P2P price mechanisms each have varied impacts on grid

performance and V2G provision depending on the scenario.

Keywords: Electric Vehicles, Smart Charging, Vehicle-to-Home, Vehicle-to-Grid,
Machine Learning, Peer-to-Peer, Solar Generation, Optimisation
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P r SOC;f inal Price for the amount of state of charge at the end of the week

(£/kWh)

STevent
t Short term operation reserve discharge event att

STthreshold;theory Theoretical maximum energy from electric vehicle for short term

operation reserve

Variables

B ch
v;t Binary variable for battery charge for v at t

B dis
v;t Binary variable for battery discharge for v at t

B exp
v;t Binary variable for energy export from the house forv at t

E charge
v;t Energy for battery charge when at home forv at t (kWh)

E charge;street
v;t Energy for battery charge from street charging forv at t (kWh)

E discharge
v;t Energy from battery discharge to satisfy household load forv at

t (kWh)

E discharge;v 2g
v;t Energy from battery discharge towards vehicle-to-grid for v at t

(kWh)

E solar;used
v;t Energy from solar generation used to satisfy household load for

v at t (kWh)

E solar;export
v;t Energy from solar generation exported to the grid for v at t

(kWh)



Nomenclature xliii

E solar;p 2p
v;t Energy from solar generation exported for peer-to-peer forv at t

(kWh)

E import
v;t Energy imported from the grid for v at t (kWh)

E import;p 2p
v;t Energy imported from peer-to-peer forv at t (kWh)

E import;total
v;t Total energy imported for household for v at t (kWh)

E export;total
v;t Total energy exported from a household forv at t (kWh)

E net
v;t Net energy 
ow for household for v at t (kWh)

E SOC
v;t Current state of charge of the battery for v at t (kWh)

C import
v Cost from energy imported from the grid for v (£)

C import;street
v Cost from energy imported from street charging forv (£)

C import;p 2p
v Cost from energy imported from peer-to-peer forv (£)

Cexport;solar
v Cost from energy exported from surplus solar generation to the

grid for v (£)

Cexport;v 2g
v Cost from energy exported to vehicle-to-grid forv (£)

Cexport;p 2p
v Cost from energy exported to peer-to-peer forv (£)

CSOC;f inal
v Cost for the amount of energy in the battery at the end of the

week for v (£)

STthreshold;max
t Maximum energy than can be provided by all vehicles for short

term operation reserve att (kWh)

STpercentage Maximum percentage of energy that can be provided by all ve-

hicles for short term operation reserve

STdemand;aggregated
t Aggregated energy provided by vehicles for short term operation

reserve att (kWh)

BSvalue Minimum state of charge that can be held for all vehicles during

a week.





Chapter 1

Introduction

At the end of 2020, the UK announced the phase out of all new petrol and diesel

automobiles and vans by 2030 [1], this was another step forward towards achieving

the net zero goal by 2050 established in 2019 [2]. All this means that di�erent

industries need to start looking for alternatives to reduce greenhouse gas emissions.

Considering that in the UK 33% of the green house emission were from the transport

sector in 2018 [3], decarbonising the transport sector will represent a signi�cant

challenge.

The electri�cation of transport has been recognised as a viable option to over-

come this challenge; however, since the number of electric vehicles (EVs) are ex-

pected to increase to 11 million by 2030, there will be an increase in electricity

demand that will require signi�cant investment to improve the electrical grid to

cope with such peak demand [4]. Therefore, understanding the nature of this in-

crease in demand is needed to maintain the security and quality of electricity supply

in the future by �nding solutions to this challenge.

A potential solution to reduce the impact of charging a large number of EVs

at the same time in the future and help the penetration of renewable energy is the

use of smart charging (V1G), which means that consumers will charge their EVs

o� peak times when electricity demand is low, helping the consumer bene�t from a

lower price on electricity, reducing the overall cost of charging and saving additional

costs that otherwise will be necessary to improve the electrical grid to handle peak

demand. This technology can also help integrate renewable energy by charging when

there is surplus generation, such as wind and solar energy [5].

1
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Although the integration of EVs comes with challenges, it can also o�er new

opportunities for consumers and the electrical grid. Considering that most vehicles

are parked 95% of the time [6], EVs can be connected to the grid and support and

provide energy already stored in the EVs' battery [7], connecting millions of EVs

and coordinating their charging and discharging would minimise the costs of EV

charging while allowing the grid to balance the integration of high levels of variable

renewable energy sources [8]. To make this possible, EVs will have to be connected

to a vehicle-to-grid (V2G) enabled charger, a system that provides a bidirectional


ow of energy whenever EVs are connected to a V2G enabled charge station, which

e�ectively turns EV into a mobile battery that can provide power back to the grid or

directly to a house (Vehicle-to-home (V2H)) or building [9]. This means that EVs

can be considered as another type of storage capable of supporting the electrical

grid; however, using EVs to support the electrical grid must be treated completely

di�erently from other energy storage systems, such as stationary batteries, due to

the availability of EVs during the day, as the main purpose is to provide travel, which

means that they will not be connected to the grid at all times. Therefore, driving

behaviour, availability of EVs and location of V2G chargers can have a signi�cant

impact on the potential economic value of V2G.

The use of V2G can support the grid by providing di�erent ancillary services to

balance the grid. Figure 1.1 shows the value streams accessible for V2G.

Figure 1.1: Identi�ed services that are accessible by V2G [8].

Ancillary services such as demand side response, frequency response services,
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reserve services, reactive power services, and system security services are among the

services that V2G have the potential to provide to support the grid [10]. However,

driving behaviour, availability of EVs and location of V2G chargers can have a sig-

ni�cant impact on the potential economic value of V2G when providing ancillary

services. In the existing literature, ancillary services, such as short term operation

reserve (STOR) and restoration services, have received little attention. These ser-

vices can be of signi�cant interest to system operators and potentially generate a

revenue stream for EV owners. The reasoning behind these two is that according

to [8], STOR is one of the most promising ancillary services for V2G, however, a

better understanding of the availability of EVs is required before looking at provid-

ing this service [11]. For restoration services, there has been an increase in interest

from the National Grid to explore nontraditional technologies that could help in the

provision of this service [12, 13], however, they found that there are two challenges

before considering EVs, the uncertainty surrounding the EVs' availability and state

of charge (SOC) during the day.

In the literature, only a handful of studies have considered the availability of EVs

when studying V2G, while studies that have considered the availability of EVs as

one of the key factors to evaluate the value of V2G, are limited by �xed availability

times and recognised the importance of further studying the impact of availability

of EVs in the delivery of ancillary services [8]. Considering that the provision of

ancillary services through V2G is based on the availability of EVs and the number

of those connected to the grid, it is important to study the impact of the availability

of EVs to connect to the grid to measure the value of V2G in the UK.

Furthermore, the penetration of renewable technologies has continuously in-

creased, particularly in small-scale solar generation, which can also a�ect the electri-

cal grid, as some studies show that a high number of exports to the grid from local

solar generation can harm the distribution network [14]. For instance, high levels of

solar generation during periods of low demand can cause voltage rise in the distri-

bution network, potentially leading to equipment damage and service interruptions

[15], can cause reverse power 
ow which creates operational challenges [16] and can

lead to overloading of distribution lines, causing accelerated ageing of infrastructure

and increasing the risk of equipment failure [17]. A recent report stated that cur-



4 Introduction

rently in the UK there are approximately one million of such installations and this

number is expected to increase in the near future [18, 19]. Therefore, it is important

to address the increasing number of solar generation, particularly at the community

level, with alternative solutions such as the formation of local energy communities

with energy traded between households, commonly known as peer-to-peer (P2P)

trading, which could help address this by allowing members of the community to

trade energy with their neighbours [20].

Taking into account the knowledge base explored in this chapter and the liter-

ature reviewed in chapter 2. The research planned in this work will focus on the

following; to assess the impact of the availability of EVs when providing energy when

connected at home through V2G and to evaluate the suitability to provide ancillary

services according to a variety of criteria. The purpose of this research is to close

the gap surrounding the value of V2G.

Therefore, this work aims to answer the following research questions:

ˆ Can machine learning models be trained to predict the start and end locations

of EVs trips for the purpose of optimising V2G services, including V1G and

V2H? Can the travel patterns learned from mostly internal combustion engine

vehicles (ICEVs) data be e�ectively used to predict the locations of EVs?

ˆ What impact does the availability of EVs have on the e�ective implementation

of V1G and V2H services services within a microgrid? How does the applica-

tion of the predictive model to real-world EV data inform and optimise V1G

and V2H services, and how does this technology compare to stationary bat-

teries in terms of leveraging the predicted EV availability and location data?

ˆ Are EVs capable of providing STOR services within a microgrid when con-

nected at home? How does the availability of EVs impact the provision of

these services and their ability to ful�l technical requirements as outlined by

the National Grid in the UK?

ˆ What strategies or mechanisms can be implemented to encourage EVs to con-

sistently increase their SOC throughout the week? What are the impacts of

V1G and V2H strategies on the minimum SOC maintained in EVs for potential
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restoration services? How does the availability of EVs in
uence the capacity

the minimum SOC that can be maintained over the course of a week?

ˆ How do varying conditions, such as di�erent photovoltaic (PV) penetration

rates and energy tari�s, impact the implementation of V1G, V2H and V2G

services within a microgrid throughout di�erent weeks of the year? How does

the P2P energy trading, and speci�cally the variation in P2P prices, impact

the provision of V2G services within a microgrid?

The work performed in and the major contributions of this thesis are described

as follows:

ˆ An innovative predictive model that uses machine learning designed to predict

the location and availability of EVs by using two separate classi�ers. This

model speci�cally predicts the start and end locations of electric vehicle EV

trips, which signi�cantly improves the understanding of EV availability and

location for optimising V2G services.

ˆ A two-dataset strategy harnessing real-world historical travel data, predomi-

nantly composed of ICEVs, for training and validation of the predictive model

by capturing general travel patterns, and the applying this validated models

to real-world EV data to study V2G services.

ˆ An optimisation model using mixed integer linear programming (MILP) was

developed, building upon a base model of stationary batteries to factor in the

variable daily availability of EVs. This model, integrating V2G and P2P en-

ergy trading, streamlines diverse energy sources to minimise electricity costs

for the participants within a microgrid. This optimisation model, signi�cantly

reduces solving times, enabling the exploration of various microgrid con�gu-

rations. It demonstrates adaptability in managing multiple EVs using V2G

technology and o�ers the potential to be modi�ed for exploring the use of

stationary batteries.

ˆ The use of real-world datasets, including household electricity demand, PV

generation, and electricity tari� prices for simulations.
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ˆ An evaluation of the technical and economic bene�ts of home batteries, V1G,

and V2H systems in EVs, focusing on their performance and capacity to min-

imise consumer electricity costs. Furthermore, it analyses the e�cacy of a

grid-connected microgrid in reducing household electric bills, o�ering valuable

insights into optimal energy management for homes equipped with a stationary

battery or an EV with a bidirectional charger.

ˆ An examination of the feasibility of EVs to provide STOR services when con-

nected at home by considering the aggregated power of available EVs at home

within a microgrid when energy is required for STOR. The feasibility is anal-

ysed based on the technical requirements and the six committed windows of

the year outlined by the National Grid in the UK.

ˆ A new payment mechanism designed to encourage EVs to increase the amount

of SOC throughout the week. Furthermore, we compare the impacts of V1G

and V2H strategies on the minimum SOC maintained in EVs for potential

restoration services.

ˆ An examination of the impact of microgrid operations under varying condi-

tions on stationary batteries and V2G services. The impact is analysed across

di�erent PV penetration rates, energy tari�s, and P2P with two di�erent price

mechanisms, determined by the volume of energy traded within the microgrid.

The remainder of this work is structured in a sequential way starting with

Chapter 2. This chapter provides a literature review on EVs and their role in pro-

viding V2G services. The aim here is to frame the context and purpose of this work,

setting the stage for the subsequent discussions.

In Chapter 3, a machine learning (ML) solution is introduced, designed to predict

the location and availability of EVs for V2G services. This predictive model is

developed and tested on real-world historical travel data, serving as a foundation

for subsequent real-world EV trip data predictions.

Chapter 4 presents an optimisation model that will be used for investigating

various case studies involving V2G technology within a microgrid, including V1G

and V2H application, and the provision of STOR services. It further introduces the
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concept of P2P energy trading within a microgrid, describes the data that will be

used for the simulations, and establishes the performance and solver metrics used in

the analysis.

Chapter 5 evaluates the technical and economic bene�ts of home batteries, V1G,

and V2H systems in EVs, with a particular focus on their performance and on

minimising consumer electricity bills. This chapter also investigates the impact of

EV availability on their capacity to provide V1G and V2H services, comparing these

services with those of stationary batteries.

In Chapter 6, the feasibility of EVs in providing STOR services when connected

at home is explored, assessing their potential to support the power grid based on

the technical requirements to provide this service. The focus here is to understand

the extent to which the availability of EVs a�ects their capacity to provide these

STOR services.

Chapter 7 introduces a payment mechanism to maximise the SOC that EVs

can maintain over a week under V1G and V2H technologies. This analysis provides

insights into the potential of EVs and these technologies to support power restoration

during outages.

The work concludes in Chapter 8, where the results of the research are discussed,

evaluated and their limitations are acknowledged. Suggestions for future work in the

�eld are also provided.





Chapter 2

Literature Review

This chapter focuses on putting the research within the framework of what has

already been published in the scienti�c literature.

2.1 Background

In 2019, the UK became the world's �rst large economy to introduce laws requiring

the reduction of greenhouse gas emissions to zero by 2050 [2]. According to 2018

data, the transportation industry accounted for 33% of UK greenhouse gas emissions

[3]. As a result, decarbonisation of transport presents a signi�cant challenge in

achieving this goal; therefore, electri�cation of transport has been suggested as one of

the most viable alternatives. Taking into account that, towards the end of 2020, the

UK government announced a plan to restrict the sale of new petrol and diesel vehicles

by 2030 and to promote the adoption of electric vehicles (EVs) throughout the

country [21, 22]. However, with the electri�cation of transport, electricity demand

is expected to increase in the future as the number of EV increases, with up to 11

million electric vehicles predicted to be registered in the UK by 2030 and 36 million

by 2040 [23]. This is expected to require substantial investment to upgrade the

electrical grid to accommodate the increased demand [24].

In the UK, the growth of integrated renewable generation at the community level,

speci�cally small-scale solar photovoltaic (PV) systems, also impacts the electrical

grid. With around one million installations already in place and an expected increase

in the near future, these systems contribute to changes in the grid's performance. [18,

9
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19]. Although the increase in PV solar generation will help in the decarbonisation of

the electrical grid, this renewable source is a variable and non-dispatchable resource,

and it is not guaranteed that the generation will correspond well with electrical

demand [25]. Moreover, multiple households exporting solar energy at the same time

represent a concern for distribution systems, possibly resulting in voltage violations

and line overload [14].

These two technologies, PV solar generation and EVs, certainly come with chal-

lenges and opportunities, which will be discussed in the following sections.

2.2 Smart charging (V1G)

Smart charging (V1G) is a safe and practical method of charging an EV in periods

when the demand for power is lower, during periods of low electricity prices or when

there is a surplus of renewable energy in the grid. In other words, it is a strategy

for managing EV charging in a smart way to avoid overloading or destabilising the

grid [26, 5]. This method of charging is considered the best way to deal with the

rapid increase in EVs, as this bene�ts both consumers by reducing charging costs

and the electrical network by avoiding further investment to reinforce the network,

where otherwise large investments would have to occur in the electrical grid in

terms of operating conditions if smart charging is not implemented [27]. Therefore,

smart charging has the potential to make the adoption of EVs a smooth transition

towards decarbonisation of transport. Dallinger et al. [28] explored the 
uctuating

generation of electricity from renewable energy sources in California and Germany,

and then analysed the potential bene�ts of connecting EVs to the grid to balance the

generation of energy from renewable energy sources. While their study illustrates

that EVs have the ability to charge during periods of surplus renewable generation

via V1G, they assumed �xed availability times for the EVs throughout the day.

This means that, despite showcasing the potential for EVs to boost the integration

of renewable energy sources into the grid, their model works on the premise of

predetermined charging periods.

Furthermore, studies of the impact on the distribution network when smart

charging is not used have shown that voltage problems on the local grid during the
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day, such an increase in demand at peak times, and recommending the use of smart

charging to avoid causing problems to the network [29, 30]. Their study was predom-

inantly focused on analysing the charging patterns of EVs during the evening, and

only considered the winter season. This could potentially limit the scope of their

research, as it does not account for variations in charging habits across di�erent

times of the day and seasons of the year. Mwasilu et al. [31] undertook a study of

previous work and emphasised the signi�cant economic investment that unregulated

charging can cause in power system networks, citing �ndings that V1G can avoid

up to 70% of the investment in power distribution systems. They concluded that

further studies should be conducted to analyse the feasibility of using EVs more

e�ciently for both system operators and consumers. Schmalfu� et al. [32] found

that a proper implementation of V1G requires having precise availability times and

the minimum required range to cover the travel needs; however, they suggested that

this might only be achieved by having this information provided directly by the EV

owners. They also found that encouraging EV users to interact with the grid will

most likely have an in
uence on their daily habits, which not all EV owners are

willing to change.

Wang et al. [33] determined that price variations based on time of day can be

advantageous for both the operator and the consumer due to the 
exibility to charge

when it is more convenient during the day. Will and Schuller [34] investigated user

acceptance of V1G in Germany, �nding that grid stability and improved integration

of renewable energy sources were the mains drivers to include these technologies

according to users. However, Tan et al. [35] raised concerns about the potential

barrier to V1G and vehicle-to-grid (V2G) deployment due to insu�cient charging

infrastructure. Therefore, while user approval is important, the expansion of charg-

ing stations remains a critical factor to consider in the future growth of V1G and

V2G systems.

Another potential advantage of using EV is the reduction of greenhouse gas

emissions, as they have zero tailpipe emissions. However, due to EVs' need for

electric energy, it is crucial that the energy generated comes from sources with

lower environmental impact, such as renewable energies [36]. Furthermore, [37]

conducted an analysis of the impact of greenhouse gas emissions from EVs and
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compared it to greenhouse gas emissions among 70 di�erent countries. They found

that greenhouse gas emissions produced by EVs have less of a negative impact on

the environment than internal combustion engine vehicle (ICEV) in the subcompact,

compact, full-size luxury and SUV vehicle categories. As a result of the correlation

between greenhouse gas emissions of EVs and the electricity generation mix of each

country, they determined that countries with a large proportion of fossil fuels in

their electricity generation mix, EVs were associated with more greenhouse emission

emissions than ICEV.

2.3 Vehicle-to-grid (V2G)

V2G is a system that allows a bidirectional 
ow of energy whenever an electric vehicle

is plugged into a V2G enabled charging station, e�ectively turning the EV into a

mobile battery that can supply power back to the grid or directly to a household

(Vehicle-to-home (V2H)) [9]. Figure 2.1 shows a diagram of the energy 
ow of V2G

and how this technology operates. This type of interaction tends to occur inside

what is called a smart grid, which includes the use of smart meters to monitor the

energy 
ow. This method also has the bene�ts of V1G, including improved grid

reliability, facilitating the integration of renewable energy sources, and providing

ancillary services. V2G technology not only enables EVs to act as temporary energy

storage but also contributes to the overall stability of the grid system. As the use of

electric vehicles increases, the potential for V2G to support energy management at

both the micro and macro levels is considerable, forming a robust solution to meet

future energy demands.

Various studies have investigated the integration of EVs and how they can sup-

port the deployment of renewable energy in the grid. This has been done by demon-

strating the bene�ts of using V2G and storing energy from renewable energy when

excess generation is produced and then returning it to the grid when needed [39]. A

2016 report by the Institution of Mechanical Engineers [40] recognised the impor-

tance of integrating energy storage technologies into the grid in the UK so it can

allow storing excess generation from renewable sources to return it at peak demand

hours. This report highlighted the importance of promoting the adoption of new
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Figure 2.1: Diagram showing how V2G operates [38]. The blue line shows the 
ow
of energy from the grid to the electric vehicle. The grey line shows the 
ow from
the electric vehicle to the grid. The dashed lines represent the communication 
ow
between the electric vehicle and the V2G charger.

technologies to support the grid, such as the use of energy storage technologies and

the encouragement of the deployment of renewable energy sources. Mwasilu et al.

[31] conducted a study of the relevant literature on the interaction of EVs with

smart grids. The authors discussed the potential of EVs to support the penetration

of renewable energy sources, concluding that surplus energy enables EVs owners to

reduce their electricity bill and added that further studies should focus on under-

standing of the dynamic behaviour of the EVs is indispensable to better understand

their integration in the electrical grid and the potential bene�ts of V2G. Moreover,

the impact of EVs and V2G technologies has in the electrical grid was investigated

by Gay et al. [41], particularly on developing small island states, and it was deter-

mined that the addition of V2G to the electrical grid can help to adopt renewable

energy sources in isolated islands and maintain a steady electricity supply. They

added that the use of �xed energy price tari�s or not implementing smart charging

technologies can potentially slow down the integration and deployment of renewable

energy sources.

Lund and Kempton [7] studied the impact of V2G on the Denmark energy sys-

tem and how it can help integrate renewable energy sources. They found that using

low-priced periods of the day and V2G can improve the electric power system by

providing ancillary services such as voltage and frequency regulation. While the

authors consider the availability of EVs, their approach appears quite conservative.

They use predetermined �xed times of the day, divided into one-hour lots, to rep-

resent the available EVs. This may overlook the granularity required for a more
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realistic assessment of EV availability. Additionally, they simplify the model by

treating the entire EV 
eet's batteries as one large unit, equivalent to the sum of all

individual batteries. In reality, total battery capacity is not consistently accessible

due to variations in vehicle usage and grid connection availability. This model also

assumes EVs are fully charged when they disconnect to drive, which is not always

the case. The model does not account for vehicles driving for more than an hour and

the associated reduction in total charge. It also presumes all cars are grid-connected

when not in use, which is impractical in some settings like workplaces or mass transit

stations.

Thomas et al. [42] proposed a mixed integer linear programming (MILP) ap-

proach to simulate an energy management system for an o�ce building to analyse

the impact of providing energy to the building through V2G and the uncertainty of

solar generation a�ects the energy management system and the sale of energy back to

the grid. They reported that the addition of V2G to o�ce buildings can increase ef-

�ciency and help integrate renewable energy sources, signi�cantly reducing building

energy consumption. The authors modelled a 
eet of 30 EVs, mentioning that their

behaviour mirrors work-related mobility patterns typically seen with conventional

vehicles. Drawing upon the statistic that 82% of Belgium's population adheres to

�xed working hours and shifts, they framed usual working hours as between 8 am

and 6 pm. This model, however, may be overly simplistic for a comprehensive un-

derstanding of EV availability. While it is bene�cial for creating a baseline scenario,

the assumption of homogeneous mobility patterns does not necessarily re
ect the

complex, diverse nature of real-world EV usage. Variations in commuting distances,

non-work-related vehicle use, and irregular travel patterns are all factors that could

signi�cantly a�ect the actual availability of EVs for grid services. This approach

might oversimplify the model, potentially leading to an over- or underestimation of

the actual availability of EVs for grid services.

Moreover, according to Cenex et al. [8], in the UK, the use of V1G to reduce

demand peaks has been reported to have the potential to save up to£200 million in

investment required to meet electricity demand from 2020 to 2030, with an additional

£90 million per year in potential savings if V2G is used compared to not using either

of these technologies. In general, the usage of V1G and V2G can help to reduce
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congestion in distributed networks, where rewards mechanisms can be introduced

for customer participation in said congestion reduction to increase the adoption of

these technologies [43]. Figure 2.2 shows the potential impact of V2G on reducing the

peak demand in future scenarios. This �gure shows how V2G even further reduces

peak demand when coupled with smart charging. V2G is expected to properly

support the grid in locations where plug-in rates are high.

Figure 2.2: Assumptions on how much EV capacity may be available for V1G and
V2G during times of peak demand [4].
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Rodrigues et al. [44] examined the implementation of V2G to provide energy

back to the grid using the energy already stored in the battery of EVs when idle

whenever local demand exceeds local generation. They proposed combining V1G and

V2G to store energy in the EVs for later used to ensure the proper operation of a

microgrid. In this study, the authors also considered the availability of EVs crucial

for estimating the available dispatchable power to adequately support microgrid

operation. In their research, the authors focused primarily on the night hours when

most EVs are typically available for charging. However, this approach might not fully

account for the broader impacts of EV availability on grid stability and renewable

integration. By only studying a few select night hours, they may have overlooked

key aspects of EV utilisation during other periods of the day, potentially limiting

the robustness of their �ndings.

Yilmaz and Krein [45] analysed di�erent case studies conducted around the

world, considering that V1G and discharging energy to the grid through V2G is

the best option to increase the bene�t and pro�t for both the grid operator and

EV owners. In their review, they found that uncoordinated charging of EVs can

potentially increase peak load issues, leading to problems such as increased power

losses, reduced grid reliability, and increased costs. However, the use of V2G strate-

gies, o�er a potential solution, enhancing the use of renewable sources and reducing

costs and emissions. Nevertheless, they concluded that the success of V2G strate-

gies largely depends on the availability of EVs. Factors like vehicle usage patterns

and charging infrastructure accessibility can signi�cantly in
uence this availability.

Therefore, understanding these patterns is crucial for maximising the potential of

V2G strategies and mitigating challenges posed by uncoordinated charging opera-

tions.

Kiaee et al. [46] proposed an algorithm to make the most pro�t from charging

and discharging EVs through V2G. This was achieved by charging the vehicle when

the price of electricity is low and discharge energy to the grid when the price of

electricity is high. Their results showed that by applying their proposed algorithm,

a 13.6% charging cost reduction can be achieved when using V2G technologies. Here,

the study acknowledges that EVs are not stationary and tend to move to di�erent

locations during the day. Particularly on weekdays, it assumes that EVs belonging
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to working individuals follow a predictable driving pattern: commuting to work in

the morning and returning home in the afternoon. This predictability potentially

o�ers a consistent framework for estimating the availability of EVs for V2G services.

However, the algorithm employed in this study allocates the same travel pattern to

each EV for all simulation days but varies the start and duration time of their

daily journey. The daily commute is modelled to occur at a random, but constant

time between 7 am and 10 am, and the return journey between 4 pm and 6 pm.

Despite these assumptions providing some degree of realism, they may still overlook

the inherent variability in real-world EV availability, impacted by factors such as

non-work-related vehicle use, such as travelling for leisure. Therefore, for a more

accurate portrayal of EV availability and its consequential impact on providing V2G

services, further research might need to consider these diverse aspects of EV usage.

While previous studies, such as Dubarry et al. [47], have demonstrated that V1G

usage has a negligible impact on battery degradation, and the intelligent use of V2G

can optimise battery conditions to minimise degradation [48], there are still concerns

about the long-term e�ects of V2G on battery life. Although demand-side manage-

ment has been shown to be bene�cial for most Li-ion batteries on the market, and

Uddin et al. [49] discussed various perspectives on battery degradation, it is impor-

tant to consider that the viability of V2G may be a�ected by factors such as battery

technology, usage patterns, and the e�ciency of smart energy trading. Consequently,

further research and advancements in battery technology and energy management

systems are needed to ensure the long-term pro�tability and sustainability of V2G.

Loisel et al. [50] studied the penetration of EVs into Germany by 2030 and how

the addition of V1G and V2G can a�ect the power system. They estimated the loads

of EVs for the year 2030 based on the 2013 driving patterns. They concluded that

incorporation of V1G will facilitate the penetration of renewable energy sources,

but implementation of V2G resulted in almost negligible pro�t for users, advising

that more incentives should be o�ered when participating in V2G to compensate

for the high cost of EVs, which will increase EV adoption. Their study analysis of

aggregated demand for electricity from potential EVs demonstrates varying driving

patterns across seasons, days, and passenger car segments. Notably, over 70% of

vehicles are not in use from 7:00 a.m. to 7:00 p.m., and above 90% are available
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from 8:00 p.m. to 6:00 a.m., suggesting potential availability for V2G services.

However, while these patterns provide a useful overview, the impact of variations in

individual behaviour, non-work-related vehicle use and its impact on EV availability

must also be considered for a comprehensive understanding of the potential of V2G

services. Therefore, more understanding of EV availability that covers di�erent

travel patterns is necessary to fully understand the potential of V2G services.

Van der Kam and Van Sark [51] investigated solar energy generation and the

usage of V2G to bene�t from surplus solar energy generation. The authors concluded

that the introduction of solar energy generation can bene�t the grid by increasing

self-consumption and reducing the demand peak when EVs are introduced. They

also found that the self-consumption rate is decreased when EVs are away due to

the availability of EV to provide or store energy while not connected; however,

they did not consider the energy consumed by EV when travelling, which can also

impact their �nal results. In this context, the EVs being utilised for car sharing

might introduce potential downsides when considering their availability for V2G

operations. Although the pseudorandom generation of trip patterns attempts to

realistically represent vehicle use in a shared mobility context, it might also increase

the inherent uncertainty in EV availability. Car sharing can result in unpredictable

and sporadic usage patterns, making it challenging to reliably estimate when vehicles

will be available for V2G operations. Furthermore, the energy consumption for

driving is also a signi�cant factor. As the EVs are consuming a certain amount

of energy during their trips, there needs to be a balance between the energy used

for mobility and the energy reserved for V2G services. Thus, extensive use of the

vehicles might limit their potential to provide V2G services. The study states that

the EVs require around 10 MWh annually for the trips, but it doesn't clarify how

this energy requirement might impact their availability for V2G operations.

Mwasilu et al. [31] found that by absorbing the surplus energy production from

wind or solar energy to later deliver power to the grid through V2G can potentially

enable EVs to support the grid by providing di�erent ancillary services. Tan et al.

[35] reported that V2G has the potential to improve and support the electrical grid

through di�erent ancillary services with appropriate management systems and at-

tractive incentive schemes, which will play an important role in the implementation
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of V2G. In their report they mentioned that V2G technology in the power system

have the potential to improve and support the electrical grid. With the implemen-

tation of appropriate management systems and attractive incentive schemes, V2G

can provide a variety of ancillary services, achieving objectives such as peak load

shaving, load levelling, voltage regulation, and pro�t maximisation, among others.

Further, V2G technology can provide frequency regulation and even contribute to

system recovery during blackouts, underscoring its potential in maintaining grid sta-

bility and resilience. However, the feasibility of these services highly depends on the

availability of EVs to connect to the power grid. This availability aspect becomes a

crucial consideration in the e�ective implementation of V2G strategies, emphasising

the need for intelligent charging infrastructure and scheduling systems to maximise

the number the amount of energy that of grid-connected EVs can provide for V2G

services.

2.4 Ancillary Services

Ancillary services are a range of operations beyond energy generation and trans-

mission that help to maintain the stability and security of the electrical grid [52].

In Great Britain, the National Grid Electricity System Operator (NGESO) is the

entity that ensures that electricity is transported from di�erent energy generators

to distribution network operator (DNO) so that they can take the electricity from

the grid to supply it to homes and businesses when they need it. NGESO is also

in charge of system balance, ensuring that energy supply and demand are always

balanced, guaranteeing the stability and security of the electrical grid. [53].

An overview of some of the ancillary services required to provide such grid bal-

ance is provided below.

ˆ Demand Side Response (DSR): that consists of a smart use of energy from

homes and businesses can turn up, turn down, or shift demand in real-time

[54].

ˆ Frequency Response Services: helps to maintain the frequency of the system at

50 hz with a range of± 1%. This ancillary service includes enhanced frequency
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response (EFR), �rm frequency response (FFR) and mandatory response ser-

vices [55].

ˆ Reserve Services: that provides di�erent sources of additional power in case

of forecast electricity mismatch in supply and demand. This ancillary service

includes balancing mechanism (BM) start up, demand turn up, fast reserve,

replacement reserve (RR), short term operation reserve (STOR) and super

stable export limit (SEL) [56].

ˆ System Security Services: that, as the name suggests, provides di�erent ser-

vices that keep the security and quality of the electricity supply. This ancillary

service includes intertrips, system operator to system operator, restoration

services (formerly known as black start), transmission constraint management

and maximum generation [57].

Several studies have examined how EVs can help balance electricity demand and

supply by altering their charging levels to ensure correct operation of the grid. The

majority of EVs, including plug-in hybrids, could provide valuable services to the

grid due to the fast response of their batteries inside, which o�er a rapid response

time. A recent report by Statnett [58], a Norwegian state-owned enterprise, further

supports this assertion. Published in 2018, the report discovered that EVs are

even capable of providing FFR as their response time was found to be under 2

seconds. However, leveraging these capabilities to provide additional services via

V2G will require the establishment of new market rules [8, 59]. Yilmaz and Krein

[45] conducted an extensive review of di�erent aspects of V2G, such as the possibility

of providing ancillary services to support the grid. They concluded that the cost

reduction bene�t that V2G can o�er compared to more traditional technologies can

be signi�cant enough to encourage the adoption of V2G to provide ancillary services

and eventually replace traditional technologies.

2.4.1 Demand side management

As it is described by the National Grid ESO [54] \demand side response (DSR) is all

about intelligent energy use. Through DSR services, businesses and consumers can

increase, decrease or shift demand in real time". DSR is one of the most important
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tools that can help guarantee the security, sustainability and a�ordability of the grid

by reducing the peaks in demand and �lling in the troughs by taking advantage at

times when there is excess in electricity generation, as well as at times when the

electricity generated is cheaper and cleaner. In this context, EVs are capable of

supporting the grid by charging and discharging when required.

A study by Octopus Energy [60] encouraged consumers to engage in a more

e�cient use of energy to avoid high demand peaks. They evaluated the use of a

time-of-use energy tari� that presented participants with price variations through-

out the day, with the goal of engaging customers with their energy use at home to

analyse how particular users, including EV owners, modi�ed their schedules to take

advantage of the drop in energy prices. The trial involved allowing participants to

check energy rates in advance for the next day using a mobile app, giving them the

ability to plan their energy use for the following day, generally o�ering low energy

pricing during o�-peak periods and high energy prices during peak times. The study

lasted 6 months and it was found that peak use was reduced by 28.19% and par-

ticipants saved up to £229.00 during the test period, Participants who owned an

EV were the ones who changed their habits of electricity consumption the most by

charging their EV at o�-peak times, which resulted in a 47% reduction in energy

consumed during peak times, concluding that, with the appropriate incentives, a

shift in demand is possible and reduce congestion on the grid. Guo and Chan [61]

studied EV charging during a period of time. They proposed that the implementa-

tion of alternative pricing tari�s may potentially drive owners to charge at speci�c

times of the day, as well as encourage the use of renewable energy sources during

periods of excess generation. The authors found that demand side response is an

important aspect that can help reduce demand peaks if incentives are o�ered to EV

owners.

Wang et al. [33] conducted a study on how to achieve peak load reduction by

scheduling EV charging behaviour, suggesting a price negotiation method that re-

quires the consumer to participate in a bid system with the operator in which both

parties compare and negotiate the pricing. This price variation is determined by

various factors, such as the time of day and the amount of power generated by

renewable energy sources. They concluded that their proposed approach can e�ec-
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tively increase pro�ts for operators, reduce costs for consumers, and balance the

load on the system. Wolinetz et al. [62] studied the long-term in
uence of consumer

behaviour on the value of vehicle-grid integration to supply backup electrical power,

support load balancing and lower peak loads. They concluded that vehicle-grid in-

tegration impacts the wholesale electricity prices by reducing them to 0.7% by 2050

in the Canadian electricity market. Despite these �ndings, the study acknowledges

several limitations. The model accounts for consumer choices a�ecting EV adoption

and utility-controlled charging participation but does not extend this to decisions

regarding home charging power or workplace charging access. The model also over-

looks potential changes in consumer behaviour in response to time-of-use electricity

pricing, as well as how participation in V2G could in
uence EV usage decisions.

These considerations might, in fact, enhance the value of V2G. Furthermore, the

study does not capture all potential bene�ts that utility-controlled charging could

o�er, such as second-to-second load balancing or deferral of distribution system

upgrades, which occur at more granular levels. It is essential to consider these lim-

itations when interpreting the study's results and applying them to demand-side

management strategies within the broader context of V2G implementation.

Coignard et al. [63] studied the adoption of EVs and the implementation of V2G

services have substantial implications for demand side management in the context

of California's energy landscape. With the mandate for 1.3 GW of stationary energy

storage by 2025 in California, the advent of V2G technology can o�er an alternative

by potentially providing up to 5.0 GW of storage. They found that this large-scale

integration of EVs could enable more e�ective demand side management through

controlled charging, smoothing out demand peaks, and improving grid stability. It

can also support valley �lling and ramping services, thus optimising the grid opera-

tions and enhancing the renewable energy integration. However, several challenges

could hamper the e�ective utilisation of EVs and V2G services for demand side

management. These include the lack of su�cient incentives for EV owners to par-

ticipate in V2G, limited availability of EVs capable of delivering V2G services, and

range anxiety, which might deter potential users. Therefore, the implementation of

well-designed policies and incentives is crucial to mitigate these issues and promote

widespread adoption of EVs and V2G services, thus maximising their potential in
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demand side management and supporting a more resilient and sustainable grid.

Lee et al. [64] studied V2G to determine the impact of peak load shaving when

di�erent levels of EV penetration. They concluded that V2G can signi�cantly lower

the peak load demand by returning the energy stored in the battery to the grid.

Schmalfu� et al. [32] studied the impact of the implementation of EVs to balance

the supply and demand of the grid. They found in their analysis that the integration

of EVs into the electrical grid can potentially prevent or greatly reduce these peak

demands. Bishop et al. [65] concluded that peak-shaving and regulation services are

two of the most pro�table ancillary services that can be provided by V2G. In these

three studies, particularly, Bishop et al. [65], employed a notably realistic method,

utilising UK data from the national travel survey (NTS) to in their model. However,

irrespective of the varied methodologies, there is a unanimous agreement across

these studies regarding the necessity of enhancing incentives to motivate EV owners'

participation in V2G services, such as peak demand management. Additionally,

despite these insights, signi�cant limitations persist. The unpredictable availability

of EVs for V2G services, owing to diverse driving habits, presents a substantial

challenge. Fluctuations in power demand also pose di�culties in maintaining an

optimal state of charge (SOC) to cover EV owners' needs, potentially degrading

the performance of EVs when providing V2G services. Moreover, while aggregators

play an integral role in monitoring SOC and managing charging and discharging

behaviours, e�cient peak shaving remains an issue, there is a need for more advanced

strategies and technologies to reliably provide control demand-side responses.

Wang and Wang [66] proposed an objective function to control V2G systems

for peak shaving and valley �lling. They concluded that V2G can be helpful for

the grid when the number of connected EVs is large enough and that it could even

replace traditional systems that provide such services. Additionally, they mention

that o�ering a variable price of charge and discharge throughout the day can be

an e�ective measure to incentive EVs to participate in balancing power demand.

However, in their study they only focus in two di�dent 1-hour time windows of the

day where it is assumed that the majority of EVs will be available. This means

that while the strategy of variable charge and discharge pricing shows potential

for demand management, their approach regarding the availability of EVs for V2G
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integration shows that further research is necessary to fully better understand the

of EVsposes a signi�cant limitation.

Aluisio et al. [67] presented a day-ahead operation for integrating EVs and V2G

to reduce the operational daily cost of a microgrid by controlling the load demand.

They concluded that the existence of an EV aggregator coupled with the microgrid

can result in a lower total operational cost for the microgrid and reduced costs for EV

owners. However, the authors assume �xed periods for the availability of EVs, which

may not fully re
ect the complexities and dynamic nature of real-world EV usage.

This �xed-time assumption may therefore limit the full cost-saving potential of the

proposed day-ahead operation. Bhandari et al. [68] suggested o�ering incentives for

providing peak-shaving via V2G can prevent wind or solar curtailment and minimise

the impact of the intermittency nature of renewable sources. The authors determined

EVs' participation in V2G activities using a randomised generation process. They


agged whether or not an EV was willing to participate in V2G during a certain

period. By relying on a random 
agging system for determining EVs' availability,

the researchers may not fully capture the intricacies of the actual decision-making

process of EV owners when participating in V2G services.

Ioakimidis et al. [69] proposed an optimisation scheduling model of EVs to min-

imise the power consumption of a non-residential building using V2G. They ap-

proached EV scheduling by combining a linear programming model with real-world

data on power use and parking lot occupancy. They discovered that when a large

number of EVs are available to supply V2G, the building can expect a power de-

crease of up to 20%. However, the availability time used was a traditional 9 to 5

o�ce hours without considering uncertainty in the availability of EVs supply V2G.

Sha'aban et al. [70] proposed an optimisation model to coordinate the charging

schedule of EVs to take advantage of the lowest energy price during the day, re-

sulting in savings of up to 63% when using V2G. However, they did not take into

account driving habits and used �xed availability times.

Jian et al. [71] proposed a stochastic EV scheduling scheme for V2G operation

to optimise charging scheduling, concluding that optimal scheduling can reduce the

variance of the total peak demand for load, enhancing the e�ciency of power grid

operation. L�opez et al. [72] analysed V2G as a solution to network congestion issues
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in microgrids with a high penetration of EVs. They concluded that V2G can help

alleviate microgrid congestion by stopping charging or supplying energy back to the

microgrid. Furthermore, these two studies proposed di�erent strategies to manage

the uncertainty of EVs availability for V2G services. The �rst study proposed a

strategy based on event-triggered scheduling, which reacts to the connection and

disconnection events of EVs to the grid. This system relies on acquiring data such

as the trigger point time, SOC, and the expected departure time of the newly con-

nected EV. The second one, simpli�es the availability problem by presuming EVs are

available at �xed times based on a typical workday. Although this approach may not

capture the full variability of real-world usage, it provides a straightforward model

for potential V2G operations. These two di�erent approaches may face challenges

with data accuracy and unexpected user behaviour in the case of the study by Jian

et al. [71], while L�opez et al. [72]'s �xed availability assumption might overlook the

variability in real-world EV usage and individual driving patterns. Both approaches,

therefore, may result in inaccuracies in predicting the true potential and e�ciency

of V2G services.

2.4.2 Frequency response

As the National Grid [55] de�nes it, \System frequency is a continuously changing

variable that is determined and controlled by the second-by-second (real-time) bal-

ance between system demand and total generation. If demand is greater than gener-

ation, the frequency falls, while if generation is greater than demand, the frequency

rises". Di�erent studies have explored the feasibility and bene�ts of providing this

ancillary service by making use of EVs via V2G.

Peng et al. [73] reviewed previous research to establish the feasibility and ef-

fectiveness of EVs participating in frequency regulation services. Due to the fast

response of batteries, the authors believe that participation in frequency regulation

services is one of the V2G uses with the most potential. They found economic

advantages for both the electrical grid and EV owners, such as reduced peak load,

minimising the impact of renewable energy intermittency and lowering the total cost

of an EVs. Despite the potential lower cost of owning an EV, they determined that

the incentive should be more attractive for EV owners to participate in the frequency



26 Chapter 2

service market and promote the adoption of this technology. The authors concluded

that the price of charging and discharging and the availability of EVs to estimate

the capacity available to provide frequency control services are critical aspects that

require more investigation.

Martinenas et al. [74] examined the deployment of a system capable of provid-

ing frequency adjustment through V2G according to Danish technical conditions.

After conducting their tests, they found that due to the quick response of EVs to

any deviation in frequency observed, EVs are a strong �t to provide this ancillary

service. In this study, the authors opted to bypass the availability factor of EVs alto-

gether, concentrating instead on establishing their capability for frequency response

through V2G. By conducting tests over di�erent time windows, these studies aimed

to determine the periods when EVs could optimally deliver this service, thereby

contributing to the broader understanding of EVs' potential in grid stability and

response.

Ota et al. [75] proposed a control scheme for V2G to provide frequency regulation

services. Their control scheme managed to respond to the frequency deviations

detected at the plug-in terminal. In this case, the total settling time of the system,

including time lags caused by frequency detection, communication, and the response

of the power conditioner, was within one second., demonstrating that V2G can

provide frequency regulation and improve microgrid operation. However, the impact

of availability was not taken into account in this study. Lund and Kempton [7]

studied the integration of renewable energy and V2G to frequency regulation. Due

to the fast response of the batteries inside EVs, V2G has the potential to replace

traditional power plants that o�er frequency control. They use predetermined �xed

times of the day, divided into one-hour lots, to represent the available EVs.

Tomi�c and Kempton [76] analysed the economic potential of V2G. They con-

centrated on the frequency response market, as they believed to have the highest

market value for V2G. They compared the net pro�ts of four di�erent energy regu-

lating market locations across the United States to estimate the economic potential

of V2G by analysing the net earnings of two separate utility 
eets. They concluded

that while V2G economic bene�ts are possible, the value of local ancillary services,

infrastructure, and total EVs capacity are critical variables to make V2G more ap-
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pealing. It is worth noting that the authors assumed that EVs are parked for the

majority of the day, following a conservative daily pattern. This assumption could

potentially oversimplify the dynamic nature of real-world EV usage, failing to ac-

count for the variability in individual driving and parking habits. Furthermore, the

researchers highlighted a key barrier in their study, the absence of vehicle aggrega-

tors to manage multiple 
eets and individual vehicles. This constraint could limit

the practical implementation and scalability of their proposed models and strategies

for integrating EVs into power grid management.

DeForest et al. [77] used a MILP model to optimise EV charging schedules and

maximise pro�ts from frequency regulation services via V2G. They used varying

hourly energy rates and set a penalty for low SOC levels to encourage maintaining

su�cient charge for frequency regulation. However, they found that this penalty had

little e�ect on the results. They tested the model using di�erent EV use patterns,

generated randomly to re
ect varied input parameters and based on observations

from a speci�c site in Los Angeles, US. Their model was sensitive to changes in

energy rates, which could be a problem given the unpredictable nature of energy

prices. Also, using data from one location might not fully represent the varied usage

patterns of EVs across di�erent places and groups of people.

Lam et al. [78] introduced a V2G smart charging method that could o�er regula-

tory services to the grid. They accounted for EVs's availability throughout the day,

with the premise that EVs could engage in V2G based on the owner's travel require-

ments. They suggested that assessing the capacity of available EVs connected via

V2G could support the design of business models to enhance V2G adoption. They

modeled EV arrivals in the system as a random Poisson process, illustrated through

a parking structure scenario where EVs arrived and departed independently. How-

ever, their research could only estimate the collective contribution from the EVs,

which operated autonomously. This points towards a need for strategies that can

e�ciently manage EV integration into power systems considering this autonomy.

Brandt et al. [79] explored the economic aspects of V2G integration by construct-

ing a business model for EVs to aid in frequency regulation in parking garages in

Germany. They factored in the availability of EVs, but utilized �xed times for all

vehicles. Their analysis led them to conclude that due to the substantial investment
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required for setting up the necessary infrastructure, the potential revenues and prof-

its for the aggregator in the 2016 German market were limited. Similarly, pro�t

expectations for EV owners were also modest. They argued that it would be more

economical to charge EVs immediately upon entering the parking garage, rather

than adjusting the charging pro�le to o�er auxiliary services.

Uddin et al. [80] studied the possibility of prolonging the battery's life by o�ering

V2G ancillary services such as frequency regulation and load balancing. They con-

cluded that EVs that provide V2G auxiliary services have a longer battery life than

EVs that do not participate in V2G. However, they considered that the availability

was �xed to a traditional o�ce time. Wang et al. [81] compared the battery degra-

dation of an EV battery pack between driving only and driving and o�ering various

V2G ancillary services, demonstrating that battery degradation is not signi�cant if

V2G ancillary services are o�ered intermittently, with periods of time that accumu-

late no more than 2 hours per day, which the authors considered a more realistic

scenario for o�ering services such as peak load reduction and frequency control.

In their research, Liu et al. [82] stressed the importance of maintaining su�cient

SOC in EVs for travel needs, particularly when these vehicles participate in grid fre-

quency regulation services. They observed that the availability of EVs signi�cantly

in
uences the capacity that can be o�ered for such services. However, their assump-

tion of EV users typically operating within a 8:00 to 17:00 timeframe could limit the

practicality of their �ndings due to variability in users' schedules. Sarabi et al. [83],

on the other hand, aimed to model the uncertainty of EV availability by considering

daily driving behaviours. They identi�ed frequency regulation as the most compet-

itive ancillary service that V2G could provide in France and asserted that o�ering

these services in workplaces is more reliable due to less variability in EV availabil-

ity, as opposed to when EVs are connected at home. However, this approach also

has limitations. Sarabi et al. [83] modelled EV availability using stochastic vari-

ables that re
ect a Gaussian distribution relating to home and o�ce scenarios. This

may not fully capture real-world variations as it assumes consistent daily driving

behaviour. Both studies underscore the need to consider the dynamic nature of EV

usage and availability for an accurate assessment of V2G's potential.

Meng et al. [84] proposed a strategy to e�ectively use EVs for frequency response
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and help integrate wind power into the electrical grid in Great Britain. They inves-

tigated the driving habits of EV drivers and their e�ect on the frequency response

capacity, indicating that the frequency response capacity is a�ected by the availabil-

ity of EVs. However, the EVs' availability times were assumed during �xed times

of the day. They found that by providing frequency regulation, EVs can achieve a

considerable reduction in frequency instability due to wind power generation inter-

mittency and potentially reduce the operating expenses of traditional power plants.

Finally, they added that the implementation of travelling behaviour and the avail-

ability of EVs need to be studied in more depth.

2.4.3 Reserve Services

The NGESO [56] de�nes reserve services as an extra power in the form of increased

generation or demand reduction that enables the National Grid to compensate in the

case of a mismatch in the forecasted electricity demand in the transmission system.

Previous studies have explored V2G that can support the delivery of this type of

ancillary service, such as Donadee and Ili�c [85] that studied the stochastic schedul-

ing of EVs participating in the energy and reserve markets. They concluded that

compared to �xed availability times, the unpredictability of EV availability reduces

pro�ts by up to 24%. Gough et al. [86] conducted an economic feasibility study

of V2G as a EV-based energy storage system. They simulated three distinct V2G

scenarios: direct power supply to a building, participation in the STOR ancillary

service market, and trading in the wholesale energy market. The availability of EVs

for these scenarios was assessed through a Monte Carlo approach, estimating the

vehicles' arrival and departure times. The study also highlighted the substantial

impact of battery degradation costs on V2G services. They concluded that engag-

ing in these markets could potentially yield pro�ts of approximately £8400 over a

decade. However, the study's limitations emerge in the context of STOR services.

The authors exclusively considered service provision when EVs are connected to

a commercial building - in this case, a museum. This strategy, while simplifying

the aggregation of power for STOR, is dependent on EVs being parked during the

building's operating hours. This may not align with the with the di�erent seasonal

requirements of the NGESO, where participants must be ready to provide energy
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during these speci�c committed windows. Furthermore, the study's consideration

of only three di�erent driving pro�les regarding travel distance may not accurately

represent a more diverse group of participants with di�ering travel needs and be-

haviours.

Bishop et al. [87] studied the e�ect of V2G on battery degradation when provid-

ing ancillary services to the grid. They found that providing energy services could

lead to EV battery packs being replaced annually when supplying �rm fast reserve,

recommending limiting the amount of time that EVs participate to a couple of hours

per week to minimise the depth of discharge when ancillary services are provided.

Bishop et al. [65] conducted a study to determine the cost related to the degrada-

tion of the battery of EVs when providing V2G ancillary services. After studying a


eet of EVs providing fast reserves, they concluded that it would be quite di�cult

to deliver this service due to the number of EVs required and the number of EVs

registered in the UK by 2015. Moreover, this suggests that energy operators would

need to pay up to £105 to EV owners to compensate for battery degradation. How-

ever, both studies make assumptions about EVs availability and travel patterns that

could potentially limit their conclusions' applicability. They split trips into morning

and afternoon segments but assumed that trip duration and distance would be the

same within these time frames. Although real-world data from the NTS informed

these assumptions, this simpli�cation could impact their results. They might not

adequately account for variations in daily travel patterns, potentially a�ecting their

estimates of battery degradation and the feasibility of providing ancillary services.

More robust models might need to consider the heterogeneous nature of EVs usage

and better assess the provision of V2G.

Morgan et al. [11] studied the various driving behaviours and their impact on

the availability of vehicles to provide STOR services, particularly in the amount

of energy required to provide this service. They highlighted the importance of ac-

knowledging the main purpose of an EV and guaranteeing enough SOC that will

be used for travel, as well as the importance of studying the e�ect of weekdays and

weekends, holidays and seasonal di�erences on driving behaviour. They believed

that V2G was best suited for STOR services due to the low frequency with which

this service is required, typically around three times a week, potentially minimising
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battery degradation by eliminating continuous cycling. In their study, the authors

concluded that during winter in the UK, none of the three availability pro�les stud-

ied by the authors matches the times of day when STOR services are required, such

as the peak demand times in the morning and evening, emphasising the importance

of understanding the availability of the EVs, which will play a crucial role given the

annual increase in the number of EVs registered in the UK.

Predicting the availability of V2G for STOR with a large population of EVs is

challenging. It depends on various factors including the number of EVs connected

to the grid, their battery charge status, and the drivers' schedules and preferences.

While some studies have created models to estimate this, exact predictions remain

uncertain. More research is needed to improve our understanding and prediction of

this availability and how could this impact the provision of STOR.

2.4.4 System Security Services

The NGESO employs a diverse range of strategies and services to ensure the secu-

rity and quality of the power supply within the UK's transmission system [88]. A

recent report highlights how NGESO is actively seeking ways to leverage renewable

generation and distributed energy resources (DER) as potential facilitators of power

system restoration. This comes in response to the decommissioning of traditional

restoration service providers, predominantly large, synchronous power stations, due

to signi�cant changes in the energy landscape over the past decade [12]. This com-

prehensive report looks into the potential of several nontraditional technologies to

provide this type of ancillary service, including EVs. Crucially, one of the most con-

siderable challenges identi�ed in qualifying EVs as viable candidates for participating

in the provision of restoration services is their availability. The unpredictability sur-

rounding the availability of SOC, along with knowing their SOC at any given time

throughout the day, are some of the main challenges to overcome.

This report highlights that having enough available resources is critical for the

successful use of EVs and other DERs for restoration or 'black start' services. As it

is expected that by 2050, nearly 80% of UK households will smart charge their EVs,

with almost 45% providing Vehicle-to-Grid (V2G) services [89], these technologies

could greatly change the energy sector, but their real-world use greatly depends on
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solving this big issue of availability.

Despite these challenges, there have been some explorations of using EVs in

restoration services, as highlighted in the report. For instance, one study investi-

gated the potential of a bi-directional EV charger for emergency power supply during

restoration procedures [90]. Another proposed an intelligent integrated station for

EVs that could provide higher start-up rates, better e�ciency, and a more secure

and economical restoration process [91]. However, neither of these studies speci�-

cally addressed the crucial aspect of EV availability and how it could impact the

successful implementation of such systems. Apart from these studies, it's worth not-

ing that there is a lack of extensive literature surrounding the use of V2G technology

for providing restoration services.

As such, future research must give top priority to devising robust strategies and

innovative solutions to overcome the availability challenge. For example, developing

advanced forecasting models to predict EV availability with greater precision based

on usage patterns could be a game-changing approach. Additionally, establishing

incentive schemes that encourage EV owners to maintain a minimum SOC, thereby

ensuring their availability for restoration services, is another promising avenue for

exploration. While these technologies hold signi�cant potential to transform the

energy sector, their practical application is largely dependent on the resolution of

key challenges, such as the aforementioned issue of availability and SOC for EVs.

Further, comprehensive studies on incorporating EVs and DERs within the cur-

rent power system to provide restoration services are crucial. These studies should

focus mainly on understanding the potential impacts of the availability of EVs on

the power system. In this context, the importance of providing incentives to EV

owners becomes evident, as it can signi�cantly in
uence the availability of these

vehicles for restoration services.

2.5 Peer-to-peer (P2P) energy trading

Peer-to-peer (P2P) energy trading describes 
exible energy transactions in which

any surplus energy from small-scale DER is traded between local customers [92].

In practice, P2P energy trading works by using advanced metering infrastructure
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(smart meters), digital platforms, and automated systems to monitor energy gener-

ation and consumption in real time. Participants with excess energy (from a solar

panel or battery storage, for example) can sell that energy directly to another par-

ticipant who needs it. Pricing mechanisms can be designed to incentivize this kind

of energy sharing, making it more economically attractive to trade energy locally

rather than buying from or selling back to the grid. These systems (like solar panels

or energy storage) can be used to supply power for P2P trading. Even with in-

dependent connections to the DNO, energy can be traded behind-the-meter within

the microgrid, as long as the necessary metering and management systems are in

place [93, 94]. In recent years, interest in participating P2P has increased as they

represent an alternative way to use surplus energy and allow consumers to choose

who they buy power from and to whom they sell it to and increase the use and

implementation of distributed renewable energy. This energy trading can also help

on the decarbonisation of the energy sector; however, the adoption of this type of

energy trading business model, selling and buying energy must be attractive to both

prosumers (who produce as well as consume) and consumers [20, 95].

Di�erent works have explored the integration of P2P energy trading by studying

pricing mechanisms that aim to encourage participants in a microgrid to share energy

with their neighbours. Long et al. [96] proposed a game theory to simulate P2P

energy exchange by using an energy exchange platform. They concluded that P2P

energy trading has the potential to improve the local balance of energy generation

and consumption within a microgrid. However, their simulation was limited to only

one energy tari� to buy energy from the grid, which might not su�ciently capture

the complexities of diverse electricity demand behaviours in larger populations with

participants with a diverse type of energy tari�s. With energy prices calculated

based on this single tari� 's loads and solar generation, their model may overlook

certain dynamics present in a more varied user base. Vangulick et al. [97] proposed

a localised P2P electricity trading model for local buying and selling of electricity

among plug-in hybrid electric vehicles (PHEVs) in microgrid. They explored the

idea of using a blockchain approach set P2P prices. They concluded that their

approach can achieve social welfare maximisation while protecting the privacy of the

participants in the microgrid. However, they authors recognised that this approach
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needs more testing and validation as some of the characteristics that they mentioned

in their system are not compatible with the main existing blockchain technologies.

Morstyn and McCulloch [98] proposed a P2P energy market platform based

on multiclass energy management that coordinates the trade between subscribed

prosumers and the wholesale electricity market. They concluded that this strategy

allows prosumers to change their scheduled power 
ows according to the wholesale

energy price, reducing the expenses associated with network losses. However, their

method di�erentiates trading prices across prosumer classes, which may not always

be bene�cial for all users. This can potentially discourage participation in P2P

trading, indicating a need for a more balanced trading mechanism that is consistently

pro�table for all participants. The current approach may limit the broader adoption

of P2P energy trading due to these pro�tability concerns.

Guo et al. [99] introduced an iterative settled market pricing mechanism in which

the feedback of each round of bidding is used by the participants to update their new

bids, and the market is settled if and when it converges, otherwise requiring an exit

mechanism of some kind. However, the market pricing mechanism they introduced

can potentially result in the market agent setting bids that may not be favourable to

the participants. This could discourage their continued participation in P2P energy

sharing.

Wang et al. [100] proposed a P2P multi-energy market mechanism. In this study,

participants have the opportunity to join one of two coalitions based on their poten-

tial bene�ts. The energy markets are cleared separately per coalition and per energy

provider and hence, multi-energy markets are modelled. They concluded that com-

pared to scenarios where there is no P2P trading, the proposed mechanism bene�ts

most peers, especially small ones. An et al. [101] proposed a pricing mechanism that

calculates P2P prices based on the prosumers and consumer market participation.

They concluded that this pricing mechanism can match the bene�ts for both pro-

sumers and consumers and encourages trading energy with their peers within the

microgrid.

Long et al. [92] proposed an auction-based pricing that aimed to emulate tra-

ditional energy markets to set P2P prices within a microgrid based on the total

energy demand and generation. This resulted in reduced energy costs by increasing
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self-consumption within the microgrid. Liu et al. [102] designed a dynamic internal

pricing mode based on the supply and demand ratio (SDR) of the shared local PV

generation. They considered the economic costs and willingness of users to partic-

ipate in the trading of energy with their peers, as this would involve sharing data

regarding their demand and generation. Their approach resulted in cost savings for

prosumers and improved sharing of surplus PV energy within the microgrid.

Tushar et al. [103] proposed a game-theoretic approach in which P2P trading

prices are set through the use of mid-market rate (MMR). This approach consists in

o�ering prices depending on the supply and demand of the microgrid, where having

oversupply resulted in prices close to the export price and having undersupply results

in prices equal to the average of the buying from the grid and export prices to the

grid. This is a similar approach to what Long et al. [96] did in their research, but

with the introduction of stationary batteries among participants which provides a

better perspective of how energy storage can be used to boos the potential of P2P.

Englberger et al. [104] proposed a simple pricing mechanism based on o�ering �xed

P2P prices based on the average of the buy price from the grid and the export to

the grid. The authors suggested that implementing this simple pricing mechanism

signi�cantly reduces computational times and o�ers a fairer price for energy sellers

and energy buyers. They also consider the use of stationary batteries and EVs as

part of their model. However, it is worth noting that the authors' approach o�ered

a simple P2P pricing mechanism centred on the German energy market. To ensure

broader applicability, future research should aim to extend their model, o�ering the

potential for its implementation in various energy markets without complications.

Hutty et al. [105] used a pricing calculation mechanism based on SDR which

is an iterative bidding process o�ering buy and sell prices for each bidding round.

They also considered di�erent penetration rates of EV and PV to model the impact

of having P2P to increase the adoption of these technologies. They concluded that

the combination of V2H and P2P brings more bene�ts than having each technology

individually, also savings in the electricity cost can exceed£200 in some situations.

It is worth noting that the authors incorporated EV energy load optimisation in their

pricing calculation for P2P, leading to variable prices depending on the optimised

energy load. However, their approach rounds trip durations to 30-minute slots. This
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may not adequately represent the granularity of diverse travel patterns with higher

time resolution. This lack of granularity could a�ect the calculation of P2P prices, as

microgrid management in real-world scenarios often requires consideration of shorter

term 
uctuations.

2.6 Machine learning approaches

Machine learning (ML) is a sub �eld of arti�cial intelligence (AI) and computer

science that focuses on the use of data and algorithms to emulate how humans learn

while gradually enhancing its accuracy [106]. It is worth noting that deep learning

is actually a sub �eld of machine learning, and neural networks are a sub �eld of

deep learning that di�er from each other on how the algorithm learns from the data.

Reports suggests that utilising ML to understand driving patterns can be instru-

mental in optimising charging behaviours of electric vehicles. This predictive ability

not only ensures that vehicles always have su�cient power for regular usage but

also accommodate unforeseen travel needs. This optimisation not only supports the

seamless integration of vehicles into the V2G system but also increases the system's

reliability and consumer trust [107].

In general, di�erent studies have explored the use of ML, EVs, V1G and V2G

using di�erent techniques and objectives. Shipman et al. [108] used a convolutional

neural network - long short-term memory (CNN-LSTM) neural network and real-

world data collected from a 
eet of vehicles at the University of Nottingham to

predict the aggregate available capacity for the next 24-hour period. They showed

that their approach was capable of adapting to provide an accurate prediction of

the amount of energy available for V2G service using historical data, highlighting

the importance of availability of EVs in the delivery of V2G. Shipman et al. [109]

studied machine learning algorithms to predict the potential times when an EV will

connect and be ready for V2G by using travel data collected from a 
eet of EVs.

They found that, according to their data used for model training, using automated

machine learning libraries achieved the best performance with an accuracy greater

than 85%. While these studies provided valuable insight into how machine learning

can aid in predicting near-term aggregate capacity forecasts for a 
eet, its primary
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focus was a commercial 
eet of EVs used in a university setting. In both studies, their

model may not directly apply to domestic usage due to di�ering driving patterns.

Private owners may exhibit more unpredictable driving behaviours compared to a

commercial 
eet, potentially limiting the study's applicability in a domestic context.

Furthermore, their use of 30-minute time steps might not capture detailed travel

information as real-life management requires attention to shorter-term 
uctuations.

Nogay [110] developed a long short term memory (LSTM) to predict the aggre-

gated available capacity of a small 
eet of 7 electric vehicles using historical data

collected from 72 real drivers. They concluded that knowing the availability of EVs is

critical when considering participation in ancillary service markets using V2G. While

their model provides valuable insights for generating accurate near-term aggregated

available capacity forecasts for small 
eets, and provided valuable knowledge in mar-

ket activity and V2G service export decisions, it is based only on a simulation of

seven vehicles travelling for ten days. The real dataset used a one-second sampling

time, whereas a 30-minute timestep was used in the simulation. This could result in

potential downsides like the omission of driving variations throughout the year, and

the loss of detailed travel data due to rounding drives into 30-minute timesteps.

Scott et al. [111] proposed a ML algorithm to predict the energy consumption

and energy costs of a building and then reduce them using V2G to reduce car-

bon emissions from the building. They found that their approach results in energy

savings between 35% and 65%. Although they successfully modelled a full year of

usage, inconsistencies in the data led to substantial errors in some months. This sit-

uation emphasises the importance of data quality in modelling and when developing

machine learning models. Frendo et al. [112] used historical data to train a regres-

sion model to address uncertain EV availability by predicting their departure times.

They found that their proposed learning model resulted in accurate predictions of

the availability of EVs. Jones et al. [113] developed a regression model aimed at

reducing charging time and extending battery life by predicting charging behaviours

a�ecting battery performance. However, their study mainly focused on predicting

charge and discharge behaviour, without exploring applications of storage systems

such as stationary batteries or EVs. This could be seen as a limitation, as it may

miss potential optimisations and bene�ts from these systems.
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Chung et al. [114] developed an ensemble predictive model using various machine

learning algorithms to predict the charging behaviour of a 
eet using historical

data from real world EV travel information collected in the UK in combination

with data from charging stations at UCLA University. The prediction results were

then applied to an optimal EV charging scheduling algorithm to minimise the EV

charging cost while providing energy to a building. They concluded that charging

costs can reduce peak load by up to 27% and 4% costs compared to only using

V1G. However, the limitation of this study is its lack of consideration for V2G

technology, potentially missing out on the bene�ts and implications associated with

bidirectional energy 
ow. Additionally, rounding travel data to 30-minute intervals

may have its downsides. It could oversimplify the travel patterns, potentially missing

out on crucial short-term 
uctuations that might impact the predictive accuracy of

the charging model. Shang et al. [115] developed a predictive model using k-nearest

neighbors (k-NN) and LSTM to reduce the energy demand of a commercial building

using V2G by scheduling the charge and discharge cycles of EVs, concluding that

their proposed algorithm successfully reduces the energy load of the building with

an accuracy of 94% compared to traditional optimisation algorithms. Like previous

studies, they also rounded the travel information to 15-minute intervals, which may

overlook the detailed demands of shorter-term 
uctuations. Despite the smaller time

step of 15 minutes, the model might still miss out on capturing some of the more

granular information within these intervals.

2.7 Summary

V2G technology, which can supply energy back to the electrical grid when needed,

can potentially bring higher economic value than V1G alone. However, the integra-

tion of EVs into the energy system as another type of storage must be approached

di�erently. This is because EVs are mobile, not always grid-connected, and their

available storage capacity is not �xed. Furthermore, EVs have the potential to pro-

vide similar value as stationary home batteries, both in terms of energy storage and

grid support. Yet, they o�er the added advantage of mobility, serving as a vehicle

for travel in addition to their role in the energy system. This dual functionality
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could enable EV owners to o�set some costs of ownership and charging by partici-

pating in V2G schemes while enjoying the bene�ts of an electric vehicle for personal

transportation.

A variety of factors can in
uence the economic value of V2G, including driving

behaviour, the location of the V2G charger, and the plug-in rate, which has been

shown to be about 30% of the time on average [8]. However, only a handful of studies

have examined the availability of EVs, even though it is essential for V2G to rely

on the capacity of EVs to be available and connected to a charger. In the studies

that have considered EV availability, most have used �xed times, which do not

re
ect real-world scenarios, or sometimes, they use hourly or half-hourly resolution.

This approach may overlook the importance of shorter-term 
uctuations inherent

in real-life management. This reveals the importance of studying the impact of EV

availability on the value of V2G in the UK.

Most studies have shown that frequency response and demand side response are

the most pro�table ancillary services that V2G can provide. However, other poten-

tial ancillary services, like the delivery of reserve services or system security services,

haven't been thoroughly considered. STOR, a reserve service, could potentially pro-

vide a revenue stream for EVs. Figure 2.3, shows some of the ancillary services that

can be provided with V2G with potentially positive revenues. According to this

�gure, the income might seem modest initially, but �nancial incentives can o�set

some costs of EV ownership and charging. Plus, participating in STOR services

contributes to the stability and reliability of the grid, as the energy sector transi-

tions towards more renewable and distributed resources. As a result, demand for

services like STOR is expected to grow, o�ering potentially greater returns for early

EV adopters.

Despite the critical role STOR plays in grid stability, it has received limited at-

tention, partly due to the unpredictability of EV availability. Given the signi�cance

of recent blackouts in the UK, discussion about leveraging new technologies, such as

V2G, to support the grid and provide crucial ancillary services like STOR has in-

creased. Studying the potential of EVs in delivering STOR services could be highly

bene�cial for grid stability and reliability in the future.

Even though STOR is essential to the electric grid, it has received limited at-
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Figure 2.3: Comparison of the suitability of V2G revenue streams [8].

tention. Restoration services have also been understudied, as EVs cannot yet be

considered a reliable provider due to the uncertainty of their availability. Given the

current outlook for the energy sector in the UK, with di�erent plans to ensuring

security of electricity supplies for winter [116], discussion around harnessing new

technologies like V2G to support the grid and o�er vital ancillary services, such as

STOR, has increased. As such, exploring the potential of EVs in delivering STOR

services, and consequently generating pro�t for EV owners, could be incredibly ben-

e�cial for future grid stability and reliability.

The blackout event in early August 2019 [117, 118], which a�ected hundreds of

thousands of UK users, coupled with the decommissioning of traditional black start

providers, has increased discussions on the role of emerging technologies, like V2G, in

grid support [12]. V2G, in particular, could help avert grid disruption by providing

essential ancillary services, such as restoration services. These services demand the

ability to supply power without external dependence, a requirement that V2G can

partially ful�l, given that EVs only need to be connected when such an event occurs

[119]. If some of the highlighted weaknesses like the uncertainty of EV availability

and SOC during the day are addressed, V2G could meet some of the National Grid's

criteria for this service [12].

The role of P2P transactions in the energy sector has also been studied, covering

areas like pricing mechanisms, user willingness, integration of stationary storage, and
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incorporation of renewable energy. Additionally, only a few studies have considered

EVs and their availability, and these often opt to model EV behavior rather than

use real-world EV travel data. Additionally, such work typically employs hourly or

half-hourly resolution, potentially missing important details in the travel patterns.

Machine learning has signi�cantly in
uenced various industries, including V2G

technology, particularly in predicting EV availability [120]. However, most studies

are based on data from commercial EV 
eets in a workplace setting, which may not

represent private vehicle use. Furthermore, these models often round travel data

to 30-minute or hourly intervals, which could lose essential granular information,

thereby a�ecting the accuracy of vehicle availability predictions and V2G e�cacy.

Despite this, few studies simulate the delivery of ancillary services beyond potential

energy capacity or building energy demand reduction. Therefore, the importance of

machine learning in predicting EV availability, the potential for EVs in providing

STOR and restoration services, and the value of P2P transactions involving EVs

all underscore the need for more comprehensive and real-world-focused studies. By

exploring these areas, we can deepen our understanding of V2G's potential and

address the current limitations more e�ectively.

In the literature we have reviewed, most studies examining V2G applications

often focus on a limited time frame within a year and typically use a single energy

tari� for energy drawn from the grid. This highlights the need to consider various

factors that potentially impact V2G delivery, beyond EV availability. Therefore,

studying a grid-connected microgrid inclusive of these considerations could provide

comprehensive insights into diverse EV behaviours.

In summary, the role of EVs in energy systems is multifaceted. They not only

serve as transport vehicles but also have the potential to provide signi�cant ancillary

services like STOR and restoration services. However, the real-world behaviour

and availability of EVs need better consideration to harness their full potential.

Machine learning has the potential to enhance our understanding of EV availability,

thereby improving their utility in grid services. A comparison that needs to be

explored is between EVs and stationary home batteries to understand their relative

cost-e�ectiveness and e�ciency. Moreover, the integration of EVs in P2P energy

transactions within a microgrid environment can open new avenues for research.
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A broader, more in-depth approach is needed to study V2G applications and the

potential impact of the availability of EVs and di�erent factors that could also

impact their potential to provide V2G services should be explored.
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A Data-Driven Approach to

Predict Electric Vehicle (EV)

Availability for Vehicle-to-Grid

(V2G) Services

In this chapter, we introduce a machine learning (ML) solution designed to pre-

dict the location and availability of electric vehicles (EVs) for vehicle-to-grid (V2G)

services. Our predictive model consists of two separate classi�cation models: one

model predicts the start location and the other predicts the end location of EV trips.

Each classi�cation model was trained and validated using three di�erent algorithms,

all applied to historical travel data from the UK. This dataset includes start and

end locations, start and end times, daily journey count, and trip distance. Based

on their performance, one algorithm was selected for each model to best predict

the start and end locations of EVs. These models o�er precise insights into EV

availability throughout the day, which results important for implementing V2G ser-

vices. The selected models are then used to predict the start and end locations of

real-world EV trip data from the UK. These predictions serve as the input for the

optimisation model, which will be introduced in Chapter 4. This model will use the

predicted data to optimise and schedule EV charging and discharging for di�erent

V2G services that will be introduced in Chapters 5{7.

In this project, we employ a two-dataset approach for the development and ap-

43
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plication of our machine learning models. The historical travel data, according to

the Department for Transport [121], predominantly composed of internal combus-

tion engine vehicle (ICEV) travel data, serves as the foundation for training and

validation of the two classi�cation models. Despite the technological di�erences be-

tween ICEVs and EVs, many travel behaviours are universal, making ICEV data an

invaluable resource for capturing general travel patterns. The validation of our mod-

els using the same ICEV data ensures they are robust and capable of generalisation,

a crucial aspect of ML model development [122].

The second dataset, consisting of real-world EV travel data, becomes essential

during the application phase of our models. In this phase, we are not just evaluating

how well the models perform, but more importantly, we are testing their applicability

to new situations. In other words, we are examining if the models can e�ectively use

the patterns they learned from ICEV data to accurately predict the locations of EVs.

While the EV dataset doesn't participate in the training and validation phase, its

importance cannot be understated. It allows us to align our models with the primary

objective of the study | optimising EV usage for V2G services. Therefore, our two-

dataset strategy lays the foundation for the development of universally applicable

models using ICEV data and validates their relevance to our V2G goals using real-

world EV data.

Figure 3.1 provides an overview of the process we undertake in this chapter for

each of the two classi�cation models. It begins with the transformation of raw his-

torical data through feature engineering, followed by splitting it into training and

validation sets. These sets are used to develop predictive models using machine

learning algorithms. The resulting predictive models are then applied to real-world

EV data, referred as "new data", to predict their locations. These predictions, in-

dicative of potential EV locations based on the patterns learned from historical data,

become the input for our optimisation model which will be introduced in Chapter 4.

Therefore, �gure 3.1 e�ectively illustrates our methodology for developing and ap-

plying machine learning models to predict EV locations for optimising V2G services.
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Figure 3.1: Overview of the process of training a predictive model, testing it, and
then getting predictions from new data.

3.1 Historic Travel Data

This section is devoted to describing the data used to train the predictive classi�ca-

tion model.

3.1.1 Data processing

For the purpose of training the predictive model, the national travel survey (NTS)

data that contains information about personal travel patterns, such as how, why,

when and where residents of England travel within the UK was used. The NTS

is a household survey designed to track long-term travel trends and help in policy

formulation [123]. These data include information based on hundreds of questions

such as people's point of view on the quality of the road, whether they are satis�ed

with the public transport in their communities, household income, month that a

trip took place, day of the week that a trip took place, etc.

As we further explore the historical data that will be used, it is important

to acknowledge its strenghths and limitations based on information provided by

the Department for Transport [124] in their website. The NTS, running annually

since 1988, o�ers a wealth of detailed, long-term travel data, making it valuable for

monitoring trends. Its large, representative sample allows for diverse demographic

analyses. Despite 
uctuating response rates, measures to boost inclusivity and ac-

cessibility have been implemented, including language accommodations and remote

completion methods. An upcoming digital diary promises further advancements in

data collection. The NTS enjoys a strong reputation as the gold standard of travel

surveys in the UK, informing numerous transport policies and research studies. Its

dataset is openly accessible, encouraging user engagement and self-directed explo-
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ration. Regular consultations ensure the statistics continue to meet user needs and

re
ect current transport considerations.

However, while the NTS boasts comprehensive travel data, its reliance on self-

reported data may not always accurately re
ect actual travel behaviours due to

inaccurate recall or estimation errors. Whilst there are extensive validation checks

in place to minimise this type of errors, it is not possible to eliminate them entirely.

Additionally, the survey's geographical coverage has been limited to England since

2013.

At the time of this work, the data, containing information from 2002 to 2019,

are spread over 10 di�erent �les, each of which contains identi�cation numbers that

help identify the household or individual who answered the survey. For the data

used to train the model, we had to combine two of the �les, one called the main

data (�lename = "trip eul 2002-2019"), which contains most of the data that will

be used to train the predictive model, including data relevant to identifying the start

and end locations of each trip, and another called the supplementary data (�lename

= "household eul 2002-2019"), which contain information that includes the day of

the week and the month of the year in which the trip took place.

In this work, we used data collected from 2002 to 2019 that contained 4,866,698

records of people who reported di�erent travels, such as using their own car, public

transport (bus, train, etc.), cycling or simply walking to their destination. As we

seek to provide Vehicle-to-home (V2H) or V2G services, we are only interested in

privately owned vehicles; therefore, we restrict the data to entries that were reported

as the main driver of a privately owned car and that the car was the main mode of

transport, leaving a total of 2,236,036 records. We then removed outliers based on

the distance travelled, resulting in a �nal total of 2,120,058 records. It should be

noted that to our knowledge, the survey did not report the type of vehicle (internal

combustion engine (ICE) or electric) until the survey conducted in 2019, where

according to an online report released in 2020 by the Department for Transport

[121], in 2019, 63% of the cars owned by the people were petrol, 34% were diesel and

2% were other fuel types such as plug-in hybrid or electric. Therefore, we assume

that a similar driving behaviour will apply to both EVs and ICE vehicle drivers.

Table 3.1 shows the amount of data for each year that the survey was conducted.
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All data was processed using the Python 3.8.13 [125] programming language and

data manipulation and analysis libraries, such as Pandas 1.1.3 [126] and Numpy

1.18.5 [127].

Table 3.1: The number of records reported as the main driver of a privately owned
vehicle per survey year.

Survey year Number Percentage Survey year Number Percentage
of records (%) of records (%)

2002 122,413 5.77 2011 119,068 5.62
2003 135,705 6.40 2012 128,375 6.06
2004 133,341 6.29 2013 102,302 4.83
2005 141,207 6.66 2014 105,329 4.97
2006 137,444 6.48 2015 98,220 4.63
2007 130,424 6.15 2016 102,807 4.85
2008 126,008 5.94 2017 92,857 4.38
2009 131,214 6.19 2018 94,477 4.46
2010 127,525 6.02 2019 91,342 4.31

As presented in table 3.1, the participation rates in the NTS from 2002 to 2019

show a diverse pattern. There was an initial rise in participation, peaking in 2005,

followed by a period of 
uctuation between 2005 and 2012. Post-2012, a more con-

sistent decline is evident. The reasons behind these shifts could be multi-layered,

potentially tied to societal trends such as survey fatigue, economic reasons or par-

ticipants choosing alternative types of transports instead of using their private car,

however, these are speculative hypotheses. Although the investigation of yearly 
uc-

tuations in participant numbers is indeed interesting, it falls outside the scope of

this work.

The 
uctuation in participation rates from 2002 to 2019 in the UK National

Travel Survey, although intriguing, is beyond the primary focus of our current work.

From an initial increase, peaking in 2005, to a subsequent gradual decrease, espe-

cially noticeable from 2012 onwards, the reasons behind these shifts could range from

survey fatigue and societal trends towards digital communication to the impacts of

the late-2000s economic recession. However, these hypotheses remain speculative

and exploring them further would deviate from our central goal: the development

of a predictive model and its application to optimise Vehicle-to-Grid services.
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3.1.2 Feature engineering

The main objective is to predict the start and end locations of the vehicle during

the day based on historical travel data reported in NTS. Moreover, the trained

model will only be able to make predictions if and only if the same features are

found in the new data from which we want to make predictions. This means that,

for example, if we use data containing"trip distance travelled in kilometres" when

training the model, the new data that will be fed into the model must have the

same information "trip distance travelled in kilometres" . To this end, we only kept

features that contain information about the start and end date and time of the trip,

data that contain the number of journeys per day, and data that contain information

about the distance travelled. For date and time data, this was collected from various

separate columns containing the start and end information of the trip; in this case,

the information used was hour, minute, days of the week, year, month and day of the

month. This information was formatted as YYYY-MM-DD hh:mm:ss . Furthermore,

data containing information on the start and end locations of the trip were preserved,

as this will be used as labels or targets to predict. This information includes up to

23 di�erent categories. To simplify the training of the model and obtain the best

results, we reduced the 23 categories to only two categories,Home and Other. Here,

the vehicle is at home if the reported location is "Home" and away if the reported

location is otherwise. Table 3.2 shows the �nal distribution of the data on the start

and end locations of the trips.

Table 3.2: Number of records for each of the two location categories used in this
work.

Status Location Total values Percentage (%)

Start Home 905,528 42.71
Other 1,214,530 57.29

End Home 891,789 42.06
Other 1,228,269 57.94

Table 3.3 shows an example of the main data information that was kept and

later used to extract features to train the model, as well as the data columns for

the starting and ending location that will be used as labels. Finally, table 3.4 and
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table 3.5 show an example of the �nal data used to train the predictive model and a

brief description of the data contained in each column, respectively. For simplicity,

features are indicated asx and targets or labels asy.

Table 3.3: Example of the data extracted from the national travel survey records
that will later be used to obtain features and labels to train the machine learning
model.

start end daily trip location
timestamp timestamp journey distance start end

number in km

2002-01-28 12:18:00 2002-01-28 12:32:00 1 4.83 Home Other
2002-01-28 12:35:00 2002-01-28 12:41:00 2 0.80 Other Other
2002-01-28 17:30:00 2002-01-28 17:56:00 3 4.83 Other Home
2002-01-28 20:20:00 2002-01-28 20:23:00 4 0.48 Home Other
2002-01-28 21:10:00 2002-01-28 21:15:00 5 0.48 Other Home

Table 3.4: Example of the data used in this work that was used to train the predictive
model.

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2

12 18 0 0 1 4.83 14 0 3 Home Other
12 35 0 0 2 0.80 6 3 289 Other Other
17 30 0 0 3 4.83 26 289 144 Other Home
20 20 0 0 4 0.48 3 144 47 Home Other
21 10 0 0 5 0.48 5 47 910 Other Home

Table 3.5: Description of the parameters used to train the predictive model.

Parameters Description

x1 Start travel hour
x2 Start travel minute
x3 Start travel day of the week
x4 Start travel weekend or not
x5 Journey number on a given travel day
x6 Trip distance in kilometres
x7 Trip total time in minutes
x8 Time since last trip in minutes
x9 Time for next trip in minutes

y1 Start location
y2 End location
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3.1.3 Data statistics

After processing the data, the remaining features contain information on the time

and day of the week during which the trip took place. Figure 3.2 and �gure 3.3

show the starting location and percentage of trips according to their departure time

between Monday and Friday and between Saturday and Sunday, respectively. Here,

both �gures show that most trips start after 05:00 am during the week. For trips

on weekdays, most trips between 07:00 and 10:00 start atHome, and trips between

15:00 and 18:00 start at the locationOther. On weekends, most trips before 11:00

start at Home, after this time, most trips start at Other.

Figure 3.2: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. Start location and percentage of travels made between Monday and Friday,
according to the start time of the trip.

Similarly, �gure 3.4 and �gure 3.5 show the destination and percentage of trips

according to their departure time between Monday and Friday and between Saturday

and Sunday, respectively. For trips on weekdays, most trips that end atOther take

place between 07:00 and 10:00, and most trips that end atHome take place between

15:00 and 17:00. On weekends, most trips before 15:00 head toOther and after this

time most trips go to Home.
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Figure 3.3: NTS data taken from surveys from 2002 to 2019 reported as private ve-
hicles. Start location and percentage of travels made between Saturday and Sunday,
according to the start time of the trip.

Figure 3.4: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. End location and percentage of travels made between Monday and Friday,
according to the start time of the trip.



52 Chapter 3

Figure 3.5: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. End location and percentage of travels made between Saturday and Sunday,
according to the start time of the trip.

According to the data, most drivers make between 1 and 5 trips per day and

most of these trips are between 1 and 10 km long. Furthermore, most trips take less

than 15 minutes to complete. This information is true regardless of the day of the

week on which the trip takes place. Figure 3.6 gives a more detailed look at how the

data is distributed with respect to the number of trips per day, the total distance

travelled and the total time it takes to complete a trip.

3.1.4 Classi�cation tasks

For the predictive model, three di�erent classi�cation algorithms were trained and

compared: Logistic regression (LR), Random forest (RF) and Light gradient boost-

ing machine (LightGBM). In the case of the �rst two techniques, the implementa-

tion by the Python library, Scikit-learn 0.24.1 [128], was used for this work. For

LightGBM, the Python library, LightGBM 3.1.1 [129], which is the Python imple-

mentation of this technique, was used. These three algorithms were chosen due to

their diverse approaches to classi�cation problems. LR o�ers simplicity and inter-

pretability, while RF provides robustness and handles complex feature interactions.
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Figure 3.6: National travel survey data taken from surveys from 2002 to 2019 re-
ported as private vehicles.a. Number of trips per day for each day of the week.b.
Total distance travelled per trip for each day of the week. c. Total time per trip for
each day of the week.

LightGBM is e�cient and scalable, making it suitable for large datasets. These

algorithms cover a range of complexities, from linear models to ensemble meth-

ods, allowing for a robust comparison to determine the best-suited algorithm for

the given dataset and problem. This comparison also aids in understanding the

predictive power of the selected features.

LR is a statistical model that calculates the probability that a label belongs to

a speci�c class; it does so by computing a weighted sum of the input features and

outputs a number between 0 and 1 using a sigmoid function [130]. RF is an ensemble

learning method for classi�cation that operates by building multiple decision trees

when training a model. When using RF for classi�cation, the random forest output

is the class that receives the most votes [130]. LightGBM is a gradient boosting

framework that uses tree-based learning algorithms. Similarly to RF, this algorithm

is based on decision tree algorithms [129, 131]. What distinguishes LightGBM from

other tree-based algorithms, is that LightGBM does not grow a tree level-wise {

row by row { as most other implementations do; instead, it grows trees leaf-wise {
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vertically { which makes the process dramatically faster and, in many cases, results

in a more e�ective model while consuming less memory [132].

In this work, we establish two di�erent classi�cation tasks. These are explained

below:

ˆ A classi�cation model was used to predict only the starting location of the

trip.

This model included all featuresx1 � x9 and was responsible for predicting

y1, the start location. This means that this model was not considery2, which

is the end location of the trip. This model was calledtask 1.

ˆ A second classi�cation model was used to predict the end location of the trip.

For this second model, similar to the previous one, all features were included

x1 � x9 and, in this case, y1 | start location | was also considered as

a feature. Therefore, this model was responsible for predictingy2, the end

location. This model was calledtask 2.

To this end, the processed data was divided equally into two halves, resulting

in two data sets containing 1,060,029 rows each. The split was performed using a

strati�ed sample based on the parameterx1 | start travel hour | this makes a

split so that the proportion of values in the sample produced will be the same as

the proportion of values provided to the parameter. Therefore, this will ensure that

each data set gets 50% of each unique value withinx1. This was done using the

Scikit-Learn function train test split as shown in listing 3.1 below:

1 # split in two datasets

2 from sklearn.model_selection import train_test_split

3

4 model_1, model_2 = train_test_split(

5 nts_data, # data to split

6 test_size=0.5, # divide equally, 50\% each data set

7 stratify=nts_data[
start_travel_hour
],

8 random_state=42) # set random seed to get consistent results

Listing 3.1: Code used to split NTS into two data sets
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The division of the historical data into two distinct subsets for the purpose of

training two individual models follows key principles of model robustness and inde-

pendence. As mentioned, this partition is strati�ed based onx1 (start travel hour),

which ensures that both subsets retain a similar distribution, thereby maintaining

a balanced representation of the original data. This strategy enhances model relia-

bility and mitigates the risk of over�tting, a phenomenon where models over-adjust

to their training data, resulting in sub optimal performance on unseen data [133].

Moreover, employing separate datasets facilitates independent validation of each

model, allowing for an accurate estimation of each model's predictive performance

without the risk of data leakage [134]. This is particularly pertinent considering

each model is designed to predict a di�erent target variable.

As explained before, for the in the second model (task 2), y1 (start location) is

used as a feature. Importantly, this is not they1 predicted by the �rst model ( task 1),

but the actual y1 values from the dataset used to train this second model. In other

words, by not using the y1 predicted by the �rst model as a feature for the second

model, we avoid to potentially introduce bias or errors into the predictions produced

by the second model, as any inaccuracies in the prediction ofy1 would directly a�ect

the prediction of y2 (end location). By training each model on a separate, strati�ed

subset of the data, the independence of the second model's predictions from the �rst

model is assured, improving the overall reliability of the models.

3.1.5 Data preparation for training

To obtain the best results and ensure that the �nal models generalise to new

data, both data sets for each of the two models were split into a training set

and a test set. The training set includes 70% of the data and the test set in-

cludes 30% of the data. This resulted in that each data settask 1 and task 2

had 742,020 records in the training set and 318,009 in the test set. For this, once

again, the Scikit-Learn function train test split which is inside a custom func-

tion preprocess data 02 train model that processes all training data from start

to �nish and gets it ready for the predictive model, as shown in listing 3.2 below.

Here, X on line 21 contains the features andy in line 22 contains the labels. Then,

on line 28 the data is split into X train , X test , y train and y test .
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1 import pandas as pd

2

3 def preprocess_data_02_train_model(

4 dataframe: pd.Dataframe = None, # data to process

5 predict_from_or_to: str = "start", # select which "task" to process

6 stratify_col: str = "start_travel_hour",

7 test_size_number: float = 0.3): # test set size -> 30%

8

9 # prepare data for "model_1"

10 if predict_from_or_to == "start":

11 # target column

12 target = "start"

13 # prepare data for "model_2"

14 elif predict_from_or_to == "end":

15 # target column

16 target = "end"

17 # assign features and labels accordingly

18 X = dataframe.drop(target, axis=1).copy() # keep relevant features only

19 y = dataframe[target].copy() # keep relevant target/label only

20

21 # import relevant function

22 from sklearn.model_selection import train_test_split

23

24 # split train and test data

25 X_train, X_test, y_train, y_test = train_test_split(

26 X, # features

27 y, # labels

28 test_size=test_size_number, # test set size

29 stratify=X[stratify_col],

30 random_state=42 # random seed to obtain consistent results)

31 ...

Listing 3.2: Custom function to pre-process the data before training models. Here,
the training and test set are split inside the custom function.

The data in each training and test sets was prepared before passing them onto

each of the three machine learning classi�cation algorithms. This includes processing

columns containing numeric values, featuresx1 � x9, and string or text values of

the target or label, y1 � y2.

For the numeric values, the Scikit learn function MinMaxScaler was used. This

function "scales and translates each feature individually such that it is in the given

range on the training set" [135], in this case, each column was scaled between 0
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and 1. This is shown in listing 3.3 which is part of the same custom function

preprocess data 02 train model. In this case, scaler is �tted as shown in line 8

using the X train data set, which contains the features that will be used to train

the predictive model, and then transform the same data set as seen in line 9. Then

we use the �tted scaler to simply transform the features in X test as shown in line

19.

1 ...

2 from sklearn.preprocessing import MinMaxScaler

3

4 # Initiate scaler

5 scaler = MinMaxScaler()

6 # ---

7 # fit and transform features inside "X_train"

8 scaler.fit(X_train[cols_to_scale])

9 scaled_df = scaler.transform(X_train[cols_to_scale])

10 # Assign scaled data into a Dataframe

11 scaled_df = pd.DataFrame(scaled_df,

12 columns=cols_to_scale,

13 index=X_train.index)

14 # Replace original columns in "X_train" with the scaled ones

15 for col in scaled_df:

16 X_train[col] = scaled_df[col]

17 # ---

18 # transform data inside "X_test" using the scaler

19 scaled_df = scaler.transform(X_test[cols_to_scale])

20 # assign the same index as the dataframe in question

21 scaled_df = pd.DataFrame(

22 scaled_df, columns=cols_to_scale, index=X_test.index)

23 # Replace original columns with scaled ones

24 for col in scaled_df:

25 X_test[col] = scaled_df[col]

26 ...

Listing 3.3: Scaling each feature with numeric values to be in the range between 0
and 1.

For columns containing text or string values, in this casey1 � y2, the values were

transformed into binary values whereHome = 0 and Other = 1 . This was done using

the Scikit-learn function LabelEncoder . This process is shown in listing 3.4 below,

which is the �nal part of the custom function preprocess data 02 train model.



58 Chapter 3

Here, the encoder is �tted to the data in y train , which contain the labels that

will be used to train the predictive models, and then transform the same data set

as shown in lines 8 and 9, respectively. The encoder was then used to transform

the labels in y test as shown in line 11. Finally, the custom function returns the

pre-processed training and test sets, as well as the scaler and encoder for later use.

1 ...

2 from sklearn.preprocessing import LabelEncoder

3

4 # initiate encoder

5 encoder = LabelEncoder()

6 # ---

7 # fit and transform "y_train"

8 encoder.fit(y_train)

9 y_train = encoder.transform(y_train)

10 # ---

11 # transform "y_test" dataset

12 y_test = encoder.transform(y_test)

13

14 # return data, scaler and encoder ready for training and testing

15 return X_train, X_test, y_train, y_test, scaler, encoder

Listing 3.4: Labels encoded withHome = 0 and Other = 1 before training the ML
models.

Table 3.6 shows the data distribution for the training and test data sets for task

1 which contains the label y1 | start location. Here, both training and test sets

have similar ratios of Home = 0 and Other = 1 similar to the ratio in table 3.2 that

belongs to theStart data set.

Table 3.6: A summary of the label ratio of the training set and the test set for the
task 1 | start location. Here, the label Home = 0 and the label Other = 1 .

Data set Label Total values Percentage (%)

Training 0 317,031 42.73
1 424,989 57.27

Test 0 135,920 42.74
1 182,089 57.26

Similarly to task 1, table 3.7 shows the data distribution for the training and



3.1 Historic Travel Data 59

test data sets for task 2 that contain the label y2 | end location. Here, for both

data sets, their ratios are similar to Home = 0 and Other = 1 to those that belong

to End data set as shown in table 3.2.

Table 3.7: A summary of the label ratio of the training set and the test set for the
task 2 | end location. Here, the label Home = 0 and the label Other = 1 .

Data set Label Total values Percentage (%)

Training 0 317,031 42.11
1 424,989 57.89

Test 0 135,920 42.07
1 184,223 57.93

Finally, �gure 3.7 summarises the data process before training the predictive

models as well as the label distribution in each training and test set for both tasks.

Figure 3.7: Diagram summarising the data pre-processing before training the ML
models. It also shows the number of records in each data set for each task.



60 Chapter 3

After pre-processing the data, both the training and the test sets are ready to

pass them into the three ML algorithms, which will be discussed in the following

section.

3.2 Results

3.2.1 Metrics

Three di�erent ML classi�cation algorithms were compared. The performance of

these three models was evaluated using three di�erent performance metrics widely

used for classi�cation tasks. The performance metrics considered in this work are

Precision, Recall, and F1-Score. These performance metrics were chosen due to the

imbalanced nature of the labels, as shown in tables 3.2, 3.6 and 3.7 where theHome

label has around 42.00% and theOther has around 58.00% of the total data set for

each task. These metrics provide a more comprehensive view of performance than

just accuracy, which can be misleading in imbalanced scenarios.

Classi�er performance metrics are de�ned using the confusion matrix that re-

sults from each predictive model, which has four fundamental quadrants shown in

table 3.8. The main goal is to determine how frequently examples from classHome

= 0 are labelled as classOther = 1 and the other way around.

Table 3.8: Confusion matrix layout.

Predicted label
Home Other

Tr
ue

la
b

el H
om

e

True Positive (TP) False Negative(FN)

O
th

er

False Positive (FP) True Negative (TN)

ˆ True Positive (TP) : True Positive represents the number of values that were

classi�ed in the relevant class. For example, values that were predicted as

Home that have been properly classi�ed asHome.

ˆ False Positive (FP) : False Positive represents the number of values that were

classi�ed in the relevant class but actually belong to the opposite class. For
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example, values that were predicted asHome but their true label was Other,

therefore, the values were incorrectly classi�ed.

ˆ False Negative (FN) : False Negative represents the number of values that

were predicted in the opposite class that should be in the relevant class. For

example, values that were predicted asOther but their true label belongs to

Home, therefore, the values were incorrectly classi�ed.

ˆ True Negative (TN) : True Negative represents the number of values that were

classi�ed in the opposite class and actually belong to that class. For example,

values that were predicted asOther that have been properly classi�ed asOther.

As stated above, the performance metrics are calculated accordingly based on

the confusion matrix. In addition, Scikit-learn o�ers multiple functions that can

compute each of these metrics. Each of these metrics are de�ned below.

ˆ Precision is the proportion of positive predictions that were correctly classi-

�ed. This metric shows the classi�er's exactness by measuring the ratio of true

positives to predicted positives, helping minimise false positives [136]. This is

de�ned by equation (3.1). To calculate this metric, the Scikit learn function

precision score is commonly used.

P recision =
TP

TP + FP
(3.1)

ˆ Recall is the proportion of actual positives that were correctly classi�ed. This

metric measures the classi�er's ability to identify all positive instances, crucial

in imbalanced datasets where missing a positive instance (false negative) can

be costly [136]. This is de�ned by equation (3.2). To calculate this metric, the

Scikit learn function recall score was used.

Recall =
TP

TP + FN
(3.2)

ˆ F1-Score is the harmonic mean of precision and recall. This metric balances
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Precision and Recall, providing a single metric that seeks to optimise both

[130]. This is de�ned by equation (3.3). To calculate this metric, the Scikit

learn function f1 score is commonly used.

F1 =
2

1
P recision + 1

Recall

= 2 �
P recision � Recall
P recision + Recall

=
TP

TP + F N + F P
2

(3.3)

3.2.2 Model Training

In this work, each predictive model was trained using the training set and validated

using the test set. To determine which model is most robust, we obtain the score

for each model by using the Scikit-learn functioncross validate which evaluates

a score by cross-validation, in this case Precision, Recall and F1-Score. This is done

to avoid over�tting the training data and to improve the overall �nal performance

of each model.

Cross-validation randomly divides the training set into K distinct folds | sub-

sets, whereK is the number of folds in which the data will be split, then trains and

evaluates the predictive modelK times [130]. Then 1 fold will be used for validation,

while the remaining K-1 will be used to train the data. This will be repeated until

every fold has been used as a validation set. For this work, we usedK = 5 as widely

used. Listing 3.5 shows the process for the LR algorithm which is the same for the

other two ML algorithms and also for both tasks. In this case, the performance met-

rics were calculated using thescoring parameter of the Scikit-learn cross validate

function. For this work, the training process was conducted using a Mac mini 2018

with a 3.2 GHz 6-Core Intel Core i7 processor and 32 GB of RAM.

Tables 3.9 and 3.10 shows the weighted averages that resulted from training

task 1 and 2, respectively, using the three predictive models. The best results were

obtained by LightGBM which is slightly better than the results from RF.

Here, using a single run for each of the three machine learning algorithm used

with a set random seed (42), was a straightforward and e�ective approach for the

initial model training, also, the use of a random seed ensured that the results

were reproducible. Moreover, the application of a 5-fold cross-validation, as seen

in listing 3.5 in line 17, signi�cantly enhanced the reliability of the model evalua-
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1 from sklearn.linear_model import LogisticRegression

2 from sklearn.model_selection import cross_validate

3

4 # initiate 
Logistic Rregression


5 lr = LogisticRegression(random_state=42)

6 # fit data

7 clf_lr = lr.fit(X_train, y_train)

8

9 # cross-validation

10 scores = cross_validate(

11 clf_lr,

12 X_train,

13 y_train,

14 scoring=[
precision_weighted
,

15 
recall_weighted
,

16 
f1_weighted
],

17 cv=5) # number of folds

Listing 3.5: Training process and cross-validation usingK=5 for task 1 using logistic
regression.

Table 3.9: Resulting training data metrics for the task 1. Here, the weighted averages
are reported.

Task 1 | start location

Precision Recall F1-Score
Logistic

Regression 0:759� 0:002 0:755� 0:002 0:748� 0:002

Random
Forest 0:897� 0:001 0:897� 0:001 0:897� 0:001

LightGBM 0 :899� 0:002 0:899� 0:002 0:899� 0:002

tion, giving us a more accurate and generalised measure of model performance than

a simple train and test split would. Although the decision of training the models

using a set random seed was successful, for an even more robust analysis, we can

execute multiple runs of each algorithm multiple times with di�erent random seeds.

This would provide a more comprehensive view of the potential range of models

performance and their ability to handle new data.

In this case, after training the data set, all three returned adequate results, but

to choose one model, we still need to validate these results against the test set, which
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Table 3.10: Resulting training data metrics for the task 2. Here, the weighted
averages are reported.

Task 2 | end location

Precision Recall F1-Score
Logistic

Regression 0:866� 0:001 0:852� 0:002 0:853� 0:002

Random
Forest 0:898� 0:001 0:898� 0:001 0:898� 0:001

LightGBM 0 :901� 0:001 0:901� 0:001 0:901� 0:001

is the next step.

Each trained model was used to obtain predictions on the test set to compute

the relevant metrics and to gauge their performance with data that the models

had not seen. For this, the variable y pred that contains the predictions and the

variable y test that contains the true labels are used in the Scikit-learn function

classification report that returns Precision, Recall and F1-Score at the same

time for each model as seen in listing 3.6. Here in the example below, the LR model

is used fortask 1.

1 from sklearn.metrics import classification_report

2

3 # get predictions

4 y_pred = clf_lr.predict(X_test)

5

6 # get relevant metrics

7 classification_report(y_test, y_pred)

Listing 3.6: Get predictions and relevant metrics for the logistic regression model
and task 1.

Table 3.11 shows the weighted averages that resulted from using the trained

models to obtain predictions using the test set. Here, we can see that the results

are quite similar to those obtained in tables 3.9 and 3.10, which means that the

models are able to generalise well to new previously unseen data [137]. Furthermore,

LightGBM produces slightly better results than RF and signi�cantly better than LR

in task 1. For task 2, the results of all three models are not too far from each other,
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and then again LightGBM shows slightly better results for all three models.

Table 3.11: Resulting metrics from the predictions on the test set for both tasks.
Here, the weighted averages are reported.

Task 1 | start location Task 2 | end location

Precision Recall F1-Score Precision Recall F1-Score
Logistic

Regression 0.759 0.755 0.748 0.866 0.851 0.852

Random
Forest 0.898 0.898 0.898 0.898 0.898 0.898

LightGBM 0.899 0.899 0.899 0.900 0.900 0.900

When we consider LR, it can be observed that its performance, as indicated by

precision, recall, and F1-Score values, is generally lower compared to the RF and

LightGBM models. As a linear model, LR may not capture the complex relationships

within the data as e�ectively as ensemble models, thus resulting in relatively lower

performance scores. Nevertheless, its decent performance underscores the utility of

simpler models, especially when computational resources are limited or when the

relationships in the data are not overly complex. In some instances, such straight-

forward methods may o�er an adequate balance between prediction accuracy and

computational e�ciency.

Additionally, it can be seen that the performance of RF and LightGBM al-

gorithms are remarkably similar across both tasks, indicated by nearly identical

precision, recall, and F1-Score values.

This similarity can be attributed to the fact that both RF and LightGBM are

ensemble methods, meaning they combine multiple decision trees to generate their

output. RF operates by creating numerous decision trees and aggregating their

results, while LightGBM uses gradient boosting to construct a sequence of trees,

each correcting the errors of its predecessor.

Despite their di�erent approaches, both methods are known for their ability to

model complex relationships and reduce the risk of over�tting, leading to reliable

and robust predictions. This could explain the comparability of their performance in

the tasks. However, slight variations in the scores, such as the marginally higher F1-

Score of LightGBM in task 2, might be due to the di�erences in how these algorithms
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handle certain aspects of the data, like outliers or missing values.

In summary, the close performance of the two models may speak to the strength

of ensemble methods in handling this particular dataset and predictive tasks, yet

further analysis would be necessary to understand the minute di�erences observed.

3.2.3 Fine-tuning

As LightGBM was the model that performed the best of the three compared, this

model was used for each task to increase its performance by choosing the best hyper-

parameters for each model. For this, the Scikit-learn functionRandomizedSearchCV

performs a randomised search of a set of hyperparameters that are passed into the

function, which means that it will explore random combinations of the range of hy-

perparameters values that are passed into the function | in this case, 10 di�erent

combinations, which is the default value | and will train each model 5 times us-

ing cross-validation [130, 138]. The training process is shown in listing 3.7, where

the Scikit-learn function KFold is used to divide each fold that will be used in the

cross-validation process.

Similarly to the process in listing 3.6, the test set is used to obtain predictions

using the �ne-tuned models for both tasks and to evaluate the performance of the

model by obtaining the relevant metrics using theclassification report function.

Table 3.12 shows the metrics resulting from both tasks. In this case, the results are

slightly better than the original LightGBM models in table 3.11. Therefore, the

�ne-tuned models for both tasks will be used to predict the location of new data

will be introduced in the next section.

As shown, the initial LightGBM model was already quite e�ective, which is ev-

ident from the modest improvement of 0.002 after applyingRandomizedSearchCV

for hyperparameter tuning. The decision to test 10 di�erent hyperparameter com-

binations and employ a 5-fold cross-validation provides a smart balance between

computational e�ciency and exploration of the hyperparameters space. While ex-

ploring a larger set of hyperparameters or increasing the number of combinations

tested could potentially improve the chosen LightGBM model, we must consider

the computational cost related to his. Each additional combination tested adds

to the computational workload, meaning that a broad hyperparameter search can
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1 from sklearn.model_selection import KFold

2 from sklearn.model_selection import RandomizedSearchCV

3 from lightgbm import LGBMClassifier

4

5 # split in folds

6 kf = KFold(n_splits=5, # number of folds

7 shuffle=True,

8 random_state=42).split(X_train, y_train)

9

10 # initiate "LGBMCLassifier"

11 lgb_estimator = LGBMClassifier(boosting_type=
gbdt
,

12 objective="binary",

13 n_jobs=-1, # use all processors available

14 random_state=42)

15

16 # parameter grid with the hyper parameters to evaluate

17 param_grid = {
learning_rate
: [0.05, 0.1],

18 
max_depth
: [7, 10, 13],

19 
num_leaves
: [31, 71, 81],

20 
min_data_in_leaf
: [100, 300, 400, 900, 1500]

21 }

22

23 # initiate "RandomizedSearchCV"

24 r_search = RandomizedSearchCV(estimator=lgb_estimator,

25 param_distributions=param_grid,

26 cv=kf,

27 random_state=42)

28

29 # fit the model ---> "task 1" - start location

30 lgbm_model_1= r_search.fit(X_train, y_train)

31 # Choose the model with the combination of hyperparameters that performed the best

32 classifier_model_1 = lgbm_model_1.best_estimator_

Listing 3.7: Training of the model with RandomizedSearchCVusing LightGBM for
task 1.

become computationally expensive, requiring more time and resources. Balancing

model performance improvement with computational e�ciency is a crucial aspect of

e�ective machine learning modelling [130].

Finally, for simplicity, for the remainder of this work, the �ne-tuned Light-

GBM model for task 1 { start location { will be referred as classifier model 1

and the �ne-tuned LightGBM model for task 2 { end location { will be called
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Table 3.12: Resulting metrics from the predictions on the test set for both �ne-tuned
LightGBM models using RandomizedSearchCVfor each task. Here, the weighted
averages are reported.

Task 1 | start location

Precision Recall F1-Score
Fine-tuned
LightGBM 0.900 0.900 0.900

Task 2 | end location

Precision Recall F1-Score
Fine-tuned
LightGBM 0.902 0.902 0.902

classifier model 2. In the next section, the process to get the predictions and the

new travel data will be discussed.

3.3 New travel data

This section is devoted to describing the data used as new data that will be fed into

the predictive model to obtain their starting and end locations.

3.3.1 Data processing

Data used to predict start and end locations contain real world EV travel data

collected by EA technology (EA) [139] as part of a trial project called "My Electric

Avenue" that was carried out for 18 months between 2014 and 2015 in England.

This data will now be referred to as EA data.

The EA data contains 383,051 records from 215 unique users, which includes

information on the start and end date and time of the trip, the distance travelled

per trip, the power consumption of each trip, and the odometer information at the

start of each trip. The EVs' telematics systems were used to record the driving

behaviour of the trial participants. The telematics systems recorded the distance,

times, power consumption, and odometer reading for each EV journey. As with all

trial data, there are samples missing. Communication issues between the monitor

controllers and the intelligent control box (ICB), as well as insu�cient general packet

radio service (GPRS) signal for the EVs to transmit data to the telematics system,
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led to some missing samples in the data. In instances where there's an increase in

the odometer reading without a corresponding recorded journey, this signi�es a gap

in the data [139]. Table 3.13 shows an overview of the data from the EA data set

with the features the original features recorded during the trial.

Table 3.13: Example of the data included in the EA technology data set that was
used to obtain predictions of start and end location for each trip.

start end journey trip odometer power
timestamp timestamp number distance at the start consumption

in km in km in kWh

2014-08-02 2014-08-02
16:45:00 17:04:00 1 6.914 846 0.857

2014-08-02 2014-08-02
18:11:00 18:13:00 2 0.354 854 0.059

2014-08-02 2014-08-02
18:18:00 18:32:00 3 4.531 854 0.582

2014-08-03 2014-08-03
06:14:00 06:18:00 1 1.320 859 0.204

2014-08-03 2014-08-03
06:20:00 06:24:00 2 1.198 860 0.185

After cleaning the data and removing data from participants with fewer than

500 records in the entire data set as they only cover a few weeks of the year, 342,784

records were left from 205 unique users. For this work, only unique users with

enough information to �ll a year's worth of data were included, from 2014-August-

01 00:00:00 to 2015-July-01 23:59:00, these dates returned the highest number of

pro�les that ful�l the requirement of having 365 days reported entries, which, in

turn, left a diverse selection of 170 participants with di�erent total number of trips

ranging from participants with a total of 339 trips to participants with a total of

2,290 trips during those 365 days chosen. The selection criterion used in this work,

which requires users to have 365 days of reported trips, is not necessarily indicative

of selection bias. This criterion was chosen to ensure a consistent data quantity

across all user pro�les, thereby providing a more reliable base for analysis in our

work. The intention here was to avoid incomplete data, which could potentially

skew the results or make them less reliable.

Another critical aspect to consider is the temporal variation in the data. By
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selecting pro�les with a full year of data, this study ensures a balanced representa-

tion of the four di�erent seasons of the year and their potential impact on driving

behaviour. This is important because travel patterns can signi�cantly vary depend-

ing on the season due to di�erent factors such as weather condition, holidays and

daylight hours. The requirement of 365 days of data allows to capture this seasonal

variability across the participants. As a result, the selected pro�les can be compared

across di�erent weeks of the year, maintaining consistency while accounting for po-

tential seasonal 
uctuations. Additionally, the �nal selection of participants showed

a diverse range of total trips, as already mentioned, from 339 to 2,290 trips. This

wide range of trip numbers indicates that both high and low usage participants were

included in the dataset, which results in a comprehensive exploration of user be-

haviours avoiding a potential bias towards only high-frequency users. Therefore, the

data provides the diversity necessary for a robust analysis, covering both frequent

and less frequent users.

A �nal sample of 50 vehicles is then taken as a strati�ed sample by the total

number of trips during the 365 days chosen as just explained; this is to help en-

sure that the optimisation models used in this work capture the diversity of having

di�erent vehicle schedules when providing V2H and V2G services.

The strati�ed sample was accomplished using Scikit-learns'strain test split

function, employing strati�ed sampling based on the total number of trips the par-

ticipants made during the selected 365-day period. Strati�ed sampling is a statistical

technique that involves splitting the population into homogeneous subgroups (also

called strata) and drawing a random sample from each stratum. In this case, the

total number of trips was used for that, ensuring the sample included vehicles across

the diverse trip frequencies. Furthermore, each of these 50 vehicles was allocated

to a single household, resulting in a total of 50 households with that own an EV in

the sample. This method of allocating one vehicle per household will be explored

further in Chapter 4 were the optimisation model will be introduced and how was

designed to optimise each household inside of a microgrid.

Finally, the remaining 50 pro�les of the EA data were processed to contain the

same information as that used to train the predictive models, as otherwise it would

be impossible to feed the data into the �nal predictive models and predict the start
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and end locations. For this, data was processed and organised to include the same

featuresx1 � x9 the same way as the data shown in table 3.4. The original EA data

does not contain any information on its location, which means that labelsy1 � y2

are not included, as this will be predicted using the �nal predictive model as will be

explained in the following sections.

3.3.2 Data statistics

Similarly to the NTS data, the EA data contains trip information on the time and

date when a trip took place. As discussed in the previous section, start and end

locations are not included and will be predicted using the predictive model, hence the

need of the predictive model which can predict the missing information; however,

relevant statistics can still be extracted from date and time information. In this

context, �gure 3.8 shows information from the 50 pro�le samples about the total

number of trips per day, the total distance travelled per trip and the total time to

complete each trip.

Figure 3.8: Electric vehicle trip information found inside the 50 pro�le sample ex-
tracted from the EA technology data. a. Number of trips per day for each day of
the week. b. Total distance travelled per trip for each day of the week. c. Total
time per trip for each day of the week.
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According to this data, most users make between 1 and 5 trips per day. Most

of these trips are between 1 and 10 km long and take between 1 and 15 minutes to

complete. This information is true regardless of the day of the week on which the

trip takes place, which is similar to the information found in the NTS data.

3.4 Predict start and end locations

As stated in this chapter, a predictive model was be used to predict the start and

end location of a real world EV from EA to determine the availability to provide

V2H or V2G services as this is only possible when EVs are connected at home. In

this work, the prediction process was divided into two steps:

ˆ First step : Data containing features x1 � x9 will be fed into the task 1 �nal

predictive model to predict the starting location, y1.

ˆ Second step : Data containing x1 � x9 and the newly predicted start location,

y1, which in this step will be treated as a feature, will be fed into the task 2

�nal predictive model to predict the end location, y2.

The �rst step can be seen in listing 3.8 which is part of a custom function that

handles the predictions. As seen in this code snippet, the variableea profile in line

3 contains a copy of the preprocessed EV data of one pro�le of the strati�ed sam-

ple containing 50 pro�les which was stored in the variableprofile preprocessed .

Then, the variable ea start data only retains the relevant features to predict

the start location, as seen in line 8. Furthermore, the features are scaled using

the scaler model 1 produced during the training process as seen on line 11 and

then reassigned to the variableea start data before making predictions as seen

on line 14. Then, the variable predicted start contains the predicted labels,y1,

using classifier model 1.

The second step can be seen in listing 3.9. Similarly to the process for the �rst

step shown in listing 3.8, here the variableea end data in line 6 contains a copy of

the preprocessed EV data but this time it contains the relevant features to predict

the end location, which means that the content of the variablepredicted start will

be used as a feature. Moreover, the numeric data is scaled usingscaler model 2
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1 ...

2 # pass preprocessed data of each EV profile

3 ea_profile = profile_preprocessed

4

5 # ---

6 # 1st step

7 # keep columns relevant to make predictions for "step 1"

8 ea___start_data = ea_profile[features___step_1]

9

10 # scale numeric columns

11 data_scaled = scaler_model_1.transform(ea___start_data[cols_to_scale])

12

13 # assign scaled data back to "ea___start_data"

14 ea___start_data[cols_to_scale] = data_scaled

15

16 # predict "Start" --> task 1

17 predicted_start = classifier_model_1.predict(ea___start_data)

18 ...

Listing 3.8: Process to predict start location using theclassifier model 1 for one
electric vehicle pro�le.

and reassigned toea end data . Then, the variable predicted end contains the

predicted labels,y2, using classifier model 2.

After getting both labels y1 � y2 that contain the start and end locations for

each EV pro�le of the 50 pro�le sample, the data is processed as a time series from

2014-08-01 00:00:00 to 2015-07-31 23:59:00 with 1 minute time steps to be fed into

the optimisation model introduced in Chapter 4. The decision to keep the data with

1 minute time steps is due to the random nature of the trips, which according to

the NTS and EA data sets, trips can start and end at any minute of the day.

3.4.1 Resulting pro�les

Figure 3.9 shows the dates that will be used in each results chapter | chapters 5{7.

Here, six di�erent dates are reported that are representative of di�erent seasons of

the year.

Each plot consists of the total of EVs that are available at home throughout

the day during the week, where, as seen, follows a trend of EVs mostly unavailable

during typical working hours of the week from 9 am to 5 pm, showing that most EVs
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1 ...

2 # ---

3 # 2nd step

4 # keep columns relevant to make predictions for "step 2"

5 # which contains the "start" label as a feature

6 ea___end_data = ea_profile[features___step_2]

7

8 # scale numeric columns

9 data_scaled = scaler_model_2.transform(ea___end_data[cols_to_scale])

10

11 # assign scaled data back to "ea_profile"

12 ea___end_data[cols_to_scale] = data_scaled

13

14 # predict "End" --> task 2

15 predicted_end = classifier_model_2.predict(ea___end_data)

16 ...

Listing 3.9: Process to predict the end location using theclassifier model 2 for
one electric vehicle pro�le.

are at home after 7 pm. The plots also show that during Monday to Friday, it can

be expected that fewer EVs are at home compared to the weekend. Furthermore,

it should be noted that not all EVs are at home overnight during the week and

depending on their electricity tari�, some participants may reduce the chances of

saving money by not being able to charge their EV during the night, when electricity

prices are usually cheap in some tari�s. All this holds true for the six di�erent dates

in the �gure. As mentioned, only six weeks will be considered for the remainder of

this work. These weeks are described below.

ˆ Week 1 : For spring, weekSpring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

ˆ Week 2 : For summer, weekSummer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

ˆ Week 3 : For summer, weekSummer - S3 from 2014-09-08 00:00:00 to 2014-

09-14 23:59:00.

ˆ Week 4 : For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.
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Figure 3.9: Predictions on the EA technology data set showing the number of electric
vehicles that are available during a week for the six dates representative of the
di�erent seasons of the year that will be used in the following chapters. A comparison
of the resulting pro�les is made by highlighting the relevant data for each week with
the other �ve weeks. Here, the black X-axis labels denote data from Monday to
Friday and the red ones, data from Saturday to Sunday.
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ˆ Week 5 : For autumn, week Autumn - S5 from 2014-12-08 00:00:00 to 2014-

12-14 23:59:00.

ˆ Week 6 : For winter, week Winter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.

3.5 Conclusions

In this chapter, a predictive model was developed using historical data that contain

travel information from the UK to predict the start and end location of new data

that contain data from real EV residential users from the UK. The model was de-

veloped to study the impact of the availability of EVs when using real world EV

travel data. Although the model was trained with historical data containing mainly

information on ICEV vehicle trips, this approach can be bene�cial when predict-

ing travel behaviours irrespective of vehicle type. Despite the potential limitations

in re
ecting unique EV travel patterns, the predictive model in this chapter, this

model, that was validated on mainly ICEV data, represents a crucial step in under-

standing and generalising travel behaviour. This provided a valuable starting point

for studying the impact of EV availability. For this, the historical data was divided

into two tasks, tasks 1 which will predict the start location and task 2 which will

predict the end location.

Three ML algorithms are used and compared using a training and test set for each

task. The results suggested that LightGBM outperforms the other two models with

a weighted average f1 score of 0.899 and 0.900 fortasks 1 and task 2, respectively.

The predictive model was then �ne-tuned to improve the chosen model, obtaining a

weighted average f1 score of 0.900 and 0.902 fortasks 1 and task 2, respectively.

After processing the new data, this was fed into the predictive model to obtain

the start and end location of this new data, which will be used along with the data

and the optimisation model which will be explained in the following section.
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Optimising Household Energy

Management: A Mixed Integer

Linear Programming Model

(MILP) for Vehicle-to-grid

(V2G) Technology with

Peer-to-Peer (P2P) Trading in a

Microgrid Context

This chapter introduces an optimisation model that will serve as a tool for studying

various case studies involving vehicle-to-grid (V2G) technology. Initially adopted

from previous work conducted by Barbour and Gonz�alez [140]. While it was �rst

designed for stationary batteries, we made various modi�cations to better re
ect

the behaviour of electric vehicles (EVs), such as their availability during the day.

Despite early computational ine�ciencies, iterative modi�cations and testing led to

signi�cant improvement. The current model used in this work will be discussed in

detail in section 4.2

The model uses mixed integer linear programming (MILP) to schedule EV bat-

tery usage at the household level, incorporating V2G technologies to leverage their

potential for enhancing energy management and operates within the framework of a

77
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microgrid, which is a localised energy network. The model additionally incorporates

peer-to-peer (P2P) energy trading between households within the microgrid. This

feature is introduced with the aim of enhancing the performance and value of V2G

services. The direct energy exchanges enabled by P2P trading may not only enhance

grid stability but also optimise the use of renewable energy. P2P energy transactions

are facilitated through the power grid infrastructure within the microgrid, and costs

are calculated based on two di�erent price mechanisms, determined by the volume

of energy traded.

The optimisation model functions to minimise the total cost of electricity for each

household inside the microgrid. It does this by managing di�erent energy sources

and storage devices. Depending on the available resources for each case study, the

model allocates energy usage e�ciently, drawing from solar panels, battery storage,

grid import, or P2P transactions. In addition, the model is designed to smartly

utilise surplus solar energy, either by storing it in batteries for later use or selling

it to the grid or to other households via P2P. The presence of a storage device

enables the model to shift energy demand to o�-peak hours, reducing the electricity

bill further. The main objective of the system is to reduce grid dependency and

optimise renewable energy use, all while aiming to minimise the household's total

cost of electricity.

The real-world datasets utilised for our simulations, including household elec-

tricity demand, photovoltaic (PV) generation, and electricity tari� prices are also

introduced in this chapter. Additionally, the di�erent microgrid con�gurations, each

representing a unique case study that will be explored in Chapters 5{7 will be dis-

cussed. Finally, we introduce a set of performance and solver metrics, essential for

evaluating the microgrid and the optimisation model, respectively. This chapter sets

the stage for a deeper investigation into the potential of V2G, P2P energy trading

and more e�cient energy usage within microgrids. Figure 4.1 shows an overview of

the optimisation model used in this work.
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Figure 4.1: Overview of the model showing the 
ow of data through the optimisation
model and the output of the relevant metrics.

4.1 Data processing

This section presents the source and processing of the data used in this research.

The purpose of this section is to provide an overview of where the data came from

and how it was prepared for use in this thesis. The data was used in Chapter 5,

Chapter 6 and were also used to update previously published work described in this

chapter.

4.1.1 Electricity house demand

Data collected between 2012 and 2014 by UK Power Networks [141] that contain

readings of energy consumption were used for 5,567 London households. The data

in question contained readings that were originally recorded at 30-minute intervals.

In order to increase the time resolution of the data and make it more suitable for the

analysis in this work, the data was processed using the 'interpolate' function from the

Pandas library [126]. Speci�cally, the 'linear' method was applied. As a result, the
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data was transformed to have a 1-minute interval resolution. For this work, we used a

strati�ed sample of 50 households by their total annual electricity consumption only

considering households with a total annual consumption between 3,000 and 5,000

kWh per year. This range is based on the average household electricity consumption

in the UK of 3,731 kWh per year [142, 143]. Figure 4.2 shows an overview of the

house demand data used in this work.

Figure 4.2: Household daily electricity consumption mean, minimum and maximum
aggregated values in kWh/day for a year from Jan 01 00:00:00 2013 to Dec 31
23:59:00 2013.

4.1.2 Solar generation

Each modelled household had the same 3.5 kWp PV system. We use data collected

by UK Power Networks [144] between 2013 and 2014 in London. These data contain

readings that were taken at 1-hour resolution intervals and then interpolated into

a 1-minute time resolution for this work. We only considered data collected from

late August 2013 to late August 2014. We consider the same data for all households

used in this work. Figure 4.3 shows an overview of the PV data used in this work.

The impact of using this uniform dataset, is considerable in this study. As every

modelled household had the same 3.5 kWp PV system, this consistency in data
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Figure 4.3: Averaged PV daily solar energy generation for a year from Jan 01 00:00
2014 to Aug 29 23:59 2014 and from Aug 30 00:00 to Dec 31 23:59 2013.

allows for a fair comparison of results across di�erent households. This eliminates

any potential variability that could arise due to di�erences in PV system capacity.

The 1-minute time resolution, obtained by interpolating from the original 1-hour

interval readings, provides a detailed insight into the PV systems' performance.

This granularity helps in understanding subtle 
uctuations and trends in the energy

output that might have been overlooked in a lower resolution dataset.

However, it is important to note that the data is speci�c to one geographical

location and one-year period. Consequently, the �ndings might be less applicable to

other locations or periods with di�erent weather patterns, as solar power generation

is highly dependent on such conditions. Furthermore, the universal use of the same

data for all households may not account for unique household characteristics that

could impact energy consumption and production patterns.

Overall, the high-resolution, consistent dataset allows for detailed and controlled

analysis but may limit the study's wider applicability.



82 Chapter 4

4.1.3 Electricity tari�s

The following section will describe various electricity tari�s and their prices used

in this work. This information will be essential in assessing the impact of di�erent

energy tari�s in the following chapters.

4.1.3.1 Agile tari�

A dynamic tari� introduced by Octopus Energy in the UK was used, where the user

has access to half-hourly energy prices tied to wholesale prices and updated daily

[145]. Octopus Energy calls this tari� Agile. This energy price varies depending on

the region in the UK. In this case, we used data for the London area. Figure 4.4

shows an overview of the prices of this tari� for 2019.

Figure 4.4: Agile energy tari� with mean, minimum and maximum values of daily
prices for a year from Jan 01 00:00 2019 to Dec 31 23:59 2019.

4.1.3.2 Agile outgoing tari�

Figure 4.5 shows an overview of the prices that were used when selling surplus

solar generation, taken from mid-May 2019 to mid-May 2020. These prices were

introduced by Octopus Energy in the UK and they call this tari� Agile Outgoing
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[146]. As in section 4.1.3.1, these sales prices vary depending on the region in the

UK. Again, in this case, we used data for the London area.

Figure 4.5: Agile outgoing energy tari� with mean, minimum and maximum values
of daily prices for a year from Jan 01 00:00 2020 to May 15 23:59 2020 and from
May 16 00:00 2019 to Dec 31 23:59 2019.

4.1.3.3 Fixed tari�s

For this work, we also used data that contain electricity tari�s for the price of

electricity for a Flat tari�, which has the same price regardless of the time of the

day [147]. A tari� called economy seven (E7) tari� that o�ers two di�erent prices

depending on the time of day with a lower price for seven hours at night [147]. A

recently introduced tari� called Agile Go with a low rate for four hours every night

and a competitive price rate for the rest of the day [148]. All these tari�s are o�ered

by Octopus Energy for the London WC1E 6BT area. Finally, we also consider the

price of changing an EV using rapid charging on the street [149, 150]. Table 4.1

shows a summary of the electricity price data for these tari�s.
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Table 4.1: Summary of the �xed tari�s used in this work with prices for each time
of day.

Tari� time price time price
(£ / kWh) ( £ / kWh)

Agile Go 00:30 - 04:29 0.05 04:30 - 00:29 0.2376
Economy 7 00:00 - 06:59 0.1766 07:00 - 23:59 0.2893

Flat 00:00 - 23:59 0.1835 - -
Street Charging 00:00 - 23:59 0.30 - -

4.2 Electric vehicle dispatch optimisation for a house-

hold

The optimisation model used in this research to schedule the battery charge and

discharge cycles of EVs was initially adapted from previous work conducted by

Barbour and Gonz�alez [140]. We then modi�ed their model, which involved a sta-

tionary battery, to incorporate parameters indicating the availability and battery

discharge in an EV during travel. This �rst model, despite e�ectively re
ecting the

behaviour of EVs, it was notably slow due to its design which consumed substantial

computational resources when solving it. This adaptation, nonetheless, marked the

beginning of a series of iterative developments, each aiming to improve e�ciency and

reduce resource use. The process culminated in the current study's model, which

signi�cantly improves its capabilities and e�cacy.

E�cient model design is important in linear programming, as it directly in
u-

ences the performance of the solver used. It is worth noting, however, that the

model construction itself is also a time-consuming process, often taking up a signif-

icant portion of the overall solution process. Therefore, a thoughtful and e�cient

model design not only bene�ts the optimisation process but also reduces the time

spent on constructing the model itself. The optimisation process heavily relies on

the design of the model, which, if developed e�ectively, can signi�cantly reduce

computational load and improve solving times, as well as expedite the construction

process [151, 152].

Furthermore, the �rst signi�cant improvement to the model was described in

Aguilar-Dominguez et al. [153]. The focus of this paper was on analysing EVs util-
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ising Vehicle-to-home (V2H) technology versus traditional home batteries. Here,

the model represented the behaviour of an EV, introducing constraints, parameters,

and variables as necessary. The work published in Aguilar-Dominguez et al. [154]

marked another substantial re�nement, where we improved the model to address

the availability of EVs more e�ectively. This led to further reduction in solving

time, making the model a more e�cient tool for analysis and optimisation. In

Aguilar-Dominguez et al. [155], we made additional adjustments to the model to

further improve solving times.

In between and alongside these published works, numerous smaller adjustments

and re�nements were made based on extensive testing. These continuous re�ne-

ments have gradually improved the model's capabilities and e�cacy, leading up to

its current form in this study. Notably, the present model operates much more ef-

�ciently, taking approximately between 7 to 20 minutes per model - a signi�cant

reduction from the previous 6 hours, or in some rare cases more than that, it used

to take to solve each microgrid scenario. This model can also handle multiple EVs

simultaneously within a microgrid, a feature not available in the previous versions of

the model. In addition, we have introduced P2P energy trading into the model in the

current study, a new feature that allows us to explore the impact of implementing

P2P within a microgrid.

Therefore, while the initial model was based on the previous work conducted by

Barbour and Gonz�alez [140], the current model re
ects a series of developments and

re�nements that we have made over the years. Through this iterative process, the

model has evolved to be a more e�cient and practical tool for assessing real-world

scenarios.

The optimisation model described in this section uses a MILP approach and will

be used in chapters 5{7. Any updates or modi�cations made to the model presented

in this chapter will be discussed further in each respective chapter. Previous versions

of this model can be found in publications [153, 154, 155].

The optimisation model will be solved using the Gurobi 9.5.2 [156] solver and

was built using the Python 3.8.8 [125] programming language and the Pyomo 6.3.0

library [157]. This optimisation model is explained below.
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4.2.1 Constraints on the electric vehicle battery

The model is constrained by the physical limits of EV's state of charge (SOC), given

by equation (4.1). For this work, we considerSOCmin = 0 :05 and SOCmax = 0 :95.

These values are used to mimic real-world conditions and preserve the longevity of

the EV's battery [105].

Fully charging or discharging a battery, especially a lithium-ion battery com-

monly found in EVs, can be detrimental to its health over time, reducing its lifespan.

Therefore, it's common to set a bu�er on both ends to prevent these extremes.

The lower limit, SOCmin = 0 :05, ensures that the battery never fully discharges,

which can cause irreversible damage to the battery cells. On the other hand, the

upper limit, SOCmax = 0 :95 prevents the battery from being fully charged, which

can also harm the battery due to excessive voltage.

SOCmin � E SOC
v;t � SOCmax ; 8v; t (4.1)

Equations (4.2){(4.4) describe the energy stored inside the battery for each vehi-

cle, including initial and �nal values, where � refers to the e�ciency of the charger.

E SOC
v;t refers to the state of charge of the electric vehicle at timet. SOCinit and

SOCf inal are the initial and �nal SOC values for each electric vehicle, 50% of the

original battery capacity in both cases. The SOCf inal is the expected minimum

SOC at the end of each week for each household, while theSOCinit is the initial

SOC already in the battery system. This means that each household is expected to

have at least 50% of its battery's original capacity at the end of each week, and that

it will start each week with 50% of its battery's original capacity. E charge
v;t refers to

the energy charged to the EV at time t when at Home. E charge;street
v;t refers to the

energy charged to the EV from the use of street charging at timet when the EV is

away from Home and is not used for travel purposes.E discharge
v;t refers to the energy

discharged to the house at timet. E discharge;v 2g
v;t refers to the energy discharged to

the grid for V2G at time t. E demand;vehicle
v;t refers to the energy required for the EV's

travel demand at time t. It is assumed that the same e�ciency � applies for both

charge and discharge cycles.
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E SOC
v;init = SOCinit � SOC; 8v (4.2)

E SOC
v;f inal � SOCf inal � SOC; 8v (4.3)

E SOC
v;t = E SOC

v;t � 1 +

" 

E charge
v;t + E charge;street

v;t

!

� �

#

�

" 

E discharge
v;t + E discharge;v 2g

v;t

!

�
1
�

#

� E demand;vehicle
v;t ; 8v; t > 0

(4.4)

Equation (4.4) is the result of extensive testing aimed at improving the e�ciency

and accuracy of our EV energy model In this model,E SOC
v;t � 1 plays a crucial role as

it represents the prior state of charge of the EV. It updates the SOC based on any

relevant changes such as energy charged at home or on the street, discharged to the

home or grid, or energy used for travel.

Equations (4.5) and (4.6) describe the maximum charge and discharge power

of the bidirectional charger. In this case, Pmax;ch and Pmax;dis are 7.4 kW [158].

Equation (4.7) re
ects the maximum charge power of the EV when using rapid

charging on the street, where the maximum power in this case is 50 kW [149, 150].

dt refers to the time step, in this casedt = 1 min = 1
60 hr .

E charge
v;t � Pmax;ch � dt; 8v; t (4.5)

E discharge
v;t + E discharge;v 2g

v;t � Pmax;dis � dt; 8v; t (4.6)

E charge;street
v;t � Pmax;street � dt; 8v; t (4.7)

Equations (4.8) and (4.9) control the charge / discharge cycles of the EV. Here,

B charge
v;t and B discharge

v;t are binary variables. Equation (4.10) manages street charging

when the EV is not at Home and not driving. Equation (4.11) restricts charge and

discharge at the same time when the EV is available at home.� avail;home
v;t describes
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the availability at home of each electric vehicle to charge or discharge at timet.

� avail;street
v;t describes the availability to charge with a street charger at timet. In both

cases, 1 means that it is available and 0 means that it is not available. For� avail;street
v;t ,

the EV is available to be charged with a street charger, i.e.� avail;street
v;t = 1, when

it is not at Home and also not in motion. This means that the EV is likely parked

at a di�erent location, which in this work is referred to as Other, and assumed to

be parked with access to a public charging station available for street charging.

E charge
v;t � B charge

v;t � M; 8v; t (4.8)

E discharge
v;t + E discharge;v 2g

v;t � B discharge
v;t � M; 8v; t (4.9)

E charge;street
v;t � � avail;street

v;t � M; 8v; t (4.10)

B charge
v;t + B discharge

v;t � � avail;home
v;t ; 8v; t (4.11)

In our study, as mentioned, we e�ectively managed the charge and discharge

cycles of EVs based on their availability using equation (4.11). Here,� avail;home
v;t in

this equation is sourced from a dataset we produced in Chapter 3. This dataset

is in the form of a time series containing the availability information of the EVs.

� avail;street
v;t is also sourced from the same dataset. This speci�cally focuses on setting

the availability of vehicles for street charging when they are away and not actively

driving.

Despite some prior studies using availability data directly in the equations that

describe the EV's SOC, as seen in references [105, 159], we took a di�erent approach.

Instead of directly using � avail;home
v;t into our SOC in equation (4.4), we incorporated

it into equation (4.11). During our testing, equation (4.11) has proven to be more

e�cient, improving the solution-�nding of our model.
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4.2.2 Solar generation

Equation (4.12) indicates the total power generated by the PV system of each house-

hold, where E solar
v;t is the solar generation at timet. E solar;used

v;t the solar power used

by the home to its domestic loads, to charge the EV's battery or both. E solar;export
v;t

is the surplus solar power sold to the grid.E solar;p 2p
v;t is the solar power surplus sold

towards P2P.

E solar
v;t = E solar;used

v;t + E solar;export
v;t + E solar;p 2p

v;t ; 8v; t (4.12)

In equation (4.12), we propose to split the solar energy generated into three

parts. This is di�erent from our earlier work. With this equation, we can better

keep track of solar energy use. It allows us to see how much of the solar energy

goes directly to the house, how much is exported to the grid, and how much is used

for P2P sharing. This P2P part is a new addition, and it helps us understand how

much energy is shared with others within a microgrid, as it will be described in

section 4.4.6.

4.2.3 Power Balance

Equations (4.13) and (4.14) describe the power balance and net power of each house-

hold, respectively, whereE import;total
v;t and E export;total

v;t are the total energy imported

and exported from and to the grid at time t. E net
v;t is the net power required for the

house or exported from the household at timet. E demand;house
v;t is the energy required

from the house at time t. Equation (4.15) describes thatE import;total
v;t is the sum of

E import;grid
v;t and E import;p 2p

v;t , which is the energy imported from the grid and from

P2P at time t. Equation (4.16) describes thatE export;total
v;t is the sum of all energy

exported from the household to the grid or P2P.

E solar;used
v;t + E import;total

v;t + E discharge
v;t = E demand;house

v;t + E charge
v;t ; 8v; t (4.13)

E net
v;t = E import;total

v;t � E export;total
v;t ; 8v; t (4.14)



90 Chapter 4

E import;total
v;t = E import;grid

v;t + E import;p 2p
v;t ; 8v; t (4.15)

E export;total
v;t = E solar;export

v;t + E solar;p 2p
v;t + E discharge;v 2g

v;t ; 8v; t (4.16)

Here, we also updated the equation (4.13) from our previous work. In this new

version, we proposed to no longer include any reference to the energy exported, in

this case,E export;total
v;t . Instead, this equation consists of energy inputs to satisfy the

demands on the right side of the equation.

It is important to note that now E import;total
v;t include two variables, one referring

to the energy drawn from the grid and another include the energy that is imported

from P2P energy sharing. Similarly, E export;total
v;t includes three variables, energy

exported from the grid, energy exported to P2P within the microgrid, in this case

both from solar surplus, and energy exported from the EV for V2G services.

We found that these changes improve the solution times, making the whole

process more e�cient.

Equations (4.17) and (4.18) prevent energy import when energy is exported from

the household at timet. B export
v;t is a binary variable. M is a su�ciently large positive

number.

E import;total
v;t �

 

1 � B export
v;t

!

� M; 8v; t (4.17)

E export;total
v;t � B export

v;t � M; 8v; t (4.18)

4.2.4 Peer-to-peer electricity exchange

Equation (4.19) shows that the power transferred into and out of the system by

domestic users who participate in the P2P market should be equal over each period

of time by domestic users who participate in P2P. For this work, only solar surplus

generation will be used for P2P energy trading

X

v

 

E import;p 2p
v;t

!

=
X

v

 

E solar;p 2p
v;t

!

; 8t (4.19)
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Furthermore, while we were exploring the implementation of P2P dynamics

within a microgrid,, we implemented equation (4.19). We found that the inclusion

of this equation signi�cantly reduced solving times, enhancing both computational

speed and overall model e�ciency.

This approach was taken to deepen our understanding of the impact of P2P

energy sharing within a microgrid, particularly in terms of EVs and V2G systems

such as the provision of short term operation reserve (STOR) services, which will

be detailed in Chapter 6. Our tests consistently demonstrated that the addition of

equation (4.19) led to faster solving times and improved result quality.

Interestingly, we found out near the end of our study that similar methodology

had been implemented in earlier research, particularly by Yald�z et al. [160], with a

primary focus on stationary batteries. While it was initially thought to be a novel

contribution, our independent convergence on this method and e�ective application

of equation (4.19) rea�rms the robustness of our methodology.

Even with prior applications, our study makes a signi�cant contribution by suc-

cessfully applying P2P in a microgrid context involving multiple EVs and V2G

applications. It o�ers new insights and extends the current understanding of P2P

interactions within microgrids.

4.2.5 Import and export costs

Equations (4.20){(4.25) describe the di�erent electricity costs involved in the ex-

change of energy in and out of the home. Here,P r buy;grid
v;t is the price of the energy

tari� for importing energy from the grid, and this price will vary depending on the

energy tari� of each user. P r buy;street
v;t is the price of charging with a street charger.

For this work, this price is £0.30/kWh [149, 150]. P r buy;p2p
v;t is de�ned as the price

that will be charged for the import of energy from P2P. The price to sell surplus

solar energy to the grid isP r sell;grid
t . In this case, it is assumed that all households

are under the same selling tari� when selling energy to the grid. P r sell;p2p
t is the

price of selling energy to P2P. The calculation of P2P prices will be explained later.

Finally, P r sell;v 2g
v;t is the price of selling energy to V2G. This price will be introduced

in the relevant chapter.
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C import
v =

X

t

 

P r buy;grid
v;t � E import

v;t

!

; 8v (4.20)

C import;street
v =

X

t

 

P r buy;street
t � E charge;street

v;t

!

; 8v (4.21)

C import;p 2p
v =

X

t

 

P r buy;p2p
v;t � E import;p 2p

v;t

!

; 8v (4.22)

Cexport
v =

X

t

 

P r sell;grid
t � E solar;export

v;t

!

; 8v (4.23)

Cexport;p 2p
v =

X

t

 

P r sell;p2p
v;t � E solar;p 2p

v;t

!

; 8v (4.24)

Cexport;v 2g
v =

X

t

 

P r sell;v 2g
t � E discharge;v 2g

v;t

!

; 8v (4.25)

4.2.6 Objective function

From the end user's point of view, the cost of operation represents a fundamental

target that needs to be minimised.

Here, the objective function represents the total cost of electricity for each house-

hold by choosing the most e�cient way to meet its energy needs. This can include

using solar panels, storing energy in a battery, importing electricity from the grid

or from P2P, or selling solar surplus to the grid or for P2P. When solar generation

is present, optimising the total cost of electricity can reduce the amount of energy

that is imported from the grid, store it in the battery for later used, or also sell solar

surplus energy to the grid. Additionally, if P2P energy trading is allowed, house-

holds can sell their excess electricity to other households, which can further reduce

the amount of energy that is imported from the grid. This can bene�t both buyers

and sellers, as buyers can get cheaper electricity and sellers can make a pro�t. The

presence of a battery can also help to shift the energy demand at certain times of
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the day when prices tend to be high, which mostly happens during peak times. This

can help to reduce the household's energy bill and its impact on the grid.

Therefore, a function that represents the total energy cost of a household is given

by equation (4.26).

min
X

v

 

C import
v + C import;street

v + C import;p 2p
v

� Cexport
v � Cexport;p 2p

v � Cexport;v 2g
v

! (4.26)

4.3 Peer-to-peer (P2P) price calculation

To calculate the prices for buying and selling energy from P2P, two di�erent settings

are explored. It is worth noting that in this work we considered that users may have

di�erent buying energy tari�s from each other, and, as was mentioned before, users

have the same selling energy tari�. This means that participants will have buy and

sell P2P prices according to the energy tari� they have. In addition, two di�erent

settings will be considered as seen Table 4.2.

Table 4.2: Overview of the di�erent settings in which the microgrid can operate.

Name Setting Description

Setting one P2P Sett One Prices for buying and selling energy between
peers will be calculated according to the
local energy demand and the generation

of the microgrid

Setting two P2P Sett Two Prices for buying and selling energy between
peers will be calculated as the average price

of the retail buying and selling prices
of each participant

4.3.1 Setting one

In this setting, we use the mid-market rate (MMR) to set the trading price for both

buying and selling energy through P2P [161, 103]. This setting applies only when

P2P setting = S1. This trading setting consists of three di�erent scenarios. MMR
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price calculation requires to calculateP r mid;p 2p
v;t as in equation (4.27), which is the

mean price of the purchase of the energy tari� for each user of the microgrid and

the sale of the energy tari� to sell the surplus of their solar energy to the grid.

Furthermore, we need to obtain E delta;p2p
t , which is the energy imbalance between

generation and demand of the entire community system, as given by equation (4.28).

P r mid;p 2p
v;t =

Pr buy;grid
v;t + Pr sell;grid

v;t

2
; 8v; t (4.27)

E delta;p2p
t =

X

v

E solar
v;t �

X

v

E demand;house
v;t ; 8t (4.28)

ˆ if E delta;p2p
t = 0 ; 8t

This scenario refers to the case where the total energy generation of the users

is equal to their total energy demand. This means that users who participate

in P2P energy trading will get the same P2P buying and selling prices as given

by equation (4.29).

P r buy;p2p
v;t = Pr sell;p2p

v;t = Pr mid;p 2p
v;t ; 8v; t (4.29)

ˆ if E delta;p2p
t > 0; 8t

The total energy generation of users is greater than the total energy demand.

This means that the P2P purchase price is equal toP r mid;p 2p
v;t and the P2P

sale price may be lower than the agile outgoing price given by equation (4.30).

P r buy;p2p
v;t = Pr mid;p 2p

v;t ; 8v; t

P r sell;p2p
v;t =

Pr mid;p 2p
v;t �

P

v
E demand;house

v;t + E delta;p2p
t � P r sell;grid

v;t

P

v
E solar

v;t

; 8v; t

(4.30)

ˆ if E delta;p2p
t < 0; 8t
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In this case, the total energy generation of the users is less than the total

energy demand. This means that the P2P sale price is equal toP r mid;p 2p
v;t and

the purchase price may be equal to the user's buying price tari� from the grid

or close toP r mid;p 2p
v;t as in equation (4.31)

P r buy;p2p
v;t =

Pr mid;p 2p
v;t �

P

v
E solar

v;t � E delta;p2p
t � P r buy

v;t

P

v
E demand;house

v;t

; 8v; t

P r sell;p2p
v;t = Pr mid;p 2p

v;t ; 8v; t

(4.31)

4.3.2 Setting two

Similarly to section 4.3.1, MMR is used to calculate the trading price for both buying

and selling energy through P2P. However, in this setting, theP r mid;p 2p
v;t described in

equation (4.27) is used to set the buying and selling prices to trade energy between

peers in the microgrid. This setting applies whenP2P setting = S2. This

approach has been used successfully by Englberger et al. [104] to assess the impact

of P2P when using energy storage systems. With this approach, the incentive for

participants to trade energy with their peers is the same for buying and selling for

all participants in the microgrid. Therefore, for this setting, the prices are calculated

as described in equation (4.32).

P r buy;p2p
v;t = Pr sell;p2p

v;t = Pr mid;p 2p
v;t =

Pr buy;grid
v;t + Pr sell;grid

v;t

2
; 8v; t (4.32)

4.4 Microgrid system con�guration

In this work, we consider di�erent con�gurations that a�ect the interaction of par-

ticipants in a microgrid. These con�gurations a�ect the way households participate

in smart charging (V1G), V2H, V2G and P2P trading. Table 4.3 shows an overview

of the di�erent modes that will change the way the microgrid will operate, three

control how EVs will interact when connected to the home using a bidirectional

charger, and two control whether or not to allow P2P energy trading. These modes
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are discussed further in the following subsections.

Table 4.3: Overview of the di�erent settings in which the microgrid can operate.

Name Mode P2P Status Description

Smart charging V1G No P2P
EVs only allowed to use

smart charging

Smart charging V1G P2P
EVs only allowed to use

smart charging, P2P trading
allowed

Vehicle-to-home V2H No P2P
EVs allowed to give energy to

the house, includes the
bene�ts of V1G mode

Vehicle-to-home V2H P 2P

EVs allowed to give energy to
the house, includes the

bene�ts of V1G mode, P2P
trading allowed

Vehicle-to-grid V2G No P2P
EVs allowed to give energy to
the grid, includes the bene�ts

of V1G and V2H mode

Vehicle-to-grid V2G P2P

EVs allowed to give energy to
the grid, includes the bene�ts
of V1G and V2H mode, P2P

trading allowed

4.4.1 Smart charging (V1G) mode

V1G is a safe and practical method of charging an EV in periods when the demand

for power is lower, including at night or when there is a surplus of renewable energy

in the grid. Therefore, to achieve this mode and only allow EVs to participate in

V1G, equation (4.33) applies only whenV2G mode = V1G. This mode will be

considered as the baseline setup, which means that households will take energy from

the grid to cover their energy demand needs and EVs cannot participate in V2H.

In this mode, households with solar energy generation will also be able to use it to

charge the EV battery.

E discharge
v;t + E discharge;v 2g

v;t � 0; 8v; t (4.33)
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Applying equation (4.33), the ability of EVs to discharge energy back to the

home or to the grid is e�ectively deactivated and only allows the 
ow of energy

from the home to the battery, which means that EVs will only be able to charge the

necessary energy to provide transport.

4.4.2 Vehicle-to-home (V2H) mode

V2H and V2G are similar to each other, since both involve bidirectional power 
ows

to and from the EVs' battery. What makes V2H di�erent is that it uses the energy

already stored in the EV' battery to power the participant's household.

In this mode, EVs are allowed to discharge energy back to the house whenever

they are connected using the bidirectional charger at home. This will enable EVs to

schedule the charging and discharge behaviour of the energy storage system when

it is more convenient during the day, for example, when electricity prices are high

or low, or if there is a surplus of solar energy and then used it later only to meet

the energy needs of the household. This mode also enables the use of V1G and

its bene�ts. Therefore, to achieve this mode, equation (4.34) applies only when

V2G mode = V2H .

E discharge;v 2g
v;t � 0; 8v; t (4.34)

With equation (4.34), the ability to provide energy for V2G is completely re-

stricted.

4.4.3 Vehicle-to-grid (V2G) mode

V2G enables EVs to sell energy in the EV's battery back to the power grid. In

this mode, EVs are allowed to discharge energy back to the grid whenever they are

connected using the bidirectional charger at home. This will allow EVs to sell energy

and will allow the owners to make a pro�t. This mode also enables the use of V1G

and V2H and its bene�ts. Therefore, this mode does not apply any restrictions to

the model and allows the energy discharge from the EVs' battery toward both the

household and the grid. This mode occurs whenV2G mode = V2G.
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4.4.4 No Peer-to-peer (P2P) mode

For this work, we explore the impact of energy trading through P2P within a micro-

grid. This con�guration controls the energy sources allowed to participate in P2P

or not participate in P2P at all. This mode does not a�ect the self-consumption of

solar generation and its use of EVs subject toV2G mode.

To assess this impact, we need to establish a baseline system in which households

are not allowed to trade energy to P2P. Therefore, equation (4.35) only applies when

P2P mode = No P2P.

E import;p 2p
v;t � 0; 8v; t (4.35)

When this P2P mode is applied to the microgrid, households are not allowed

to trade surplus solar generation between peers and are only allowed to use that

surplus energy for self-consumption or sell it to the grid.

4.4.5 Peer-to-peer (P2P) mode

This mode will allow participants to trade energy with their peers in the microgrid.

This mode is in place only if P2P mode = P2P. To properly operate this mode,

one of the two settings described in section 4.3 must be selected.

4.4.6 Performance Metrics

To compare the performance of the di�erent scenarios that will be explored in this

work, di�erent performance metrics are considered. These metrics are described in

the following.

ˆ Self-su�ency ratio (SSR): This metric is responsible for measuring the

independence of the microgrid and is de�ned as the percentage of the demand

of the microgrid that is directly met by solar generation or battery discharge on

site, rather than being met by the electrical grid [162, 163]. This is calculated

by equation (4.36).
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SSR =
X

v

X

t

" �
E demand;house

v;t + E charge
v;t

�
� E import;grid

v;t
�

E demand;house
v;t + E charge

v;t

�

#

� 100 (4.36)

ˆ Energy balance index (EBI): This metric is a grid independence metric

similar to SSR, but penalises both imports and exports from and to the grid

[105, 164]. The EBI is a measure of the net power exchange between microgrid

and the electrical grid, speci�cally the imports and exports between the two.

This can be used to identify areas where there may be a need for network

reinforcement as large power 
ows in either direction may require costly net-

work reinforcement. It can also be helpful in identifying microgrids that are

exporting a lot of energy or that are importing a lot of energy. This metric is

de�ned by equation (4.37).

EBI =

(

1 �
X

v

X

t

"
E import;grid

v;t + E solar;export
v;t�

E demand;house
v;t + E charge

v;t

�
+ E solar

v;t

#)

� 100 (4.37)

ˆ Total energy imported between peers: This is the total energy imported

from the energy shared between peers when P2P is allowed in the microgrid.

This is described in equation (4.38).

Total energy imported P2P =
X

v

X

t

�
E import;p 2p

v;t

�
(4.38)

ˆ Maximum power load: This is the maximum power load of the microgrid

registered when energy is imported from the grid.

ˆ Weekly mean electricity cost: This is the mean electricity cost per week

of the pro�les in the microgrid.

ˆ Annual electricity cost: This is an estimate of the annual electricity cost

of the pro�les in the microgrid. This estimation of annual electricity costs is

done assuming 52 weeks to a year. Each chapter will include details of how
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the dates used will contribute towards the annual electricity cost. Here, the

mean annual electricity costs will be considered.

4.4.7 Solver Metrics

In this work, Gurobi 9.5.2 [156] is used as a solver for the models presented in the

following chapters. Gurobi is a mathematical optimisation solver that can solve a

wide variety of optimisation problems, including linear programming (LP), MILP,

quadratic programming (QP), and mixed integer quadratic programming (MIQP).

In the case of solving MILP problems using Gurobi, these are generally solved

using a LP based branch-and-bound algorithm. This algorithm is based on recur-

sively dividing the problem into smaller subproblems and solving them to �nd an

optimal solution. The branch-and-bound algorithm relies on the concepts of upper

and lower bounds to �nd the optimal solution. The upper bound represents the best

known solution, while the lower bound is the minimum possible value that can be

obtained. The di�erence between these bounds, called the gap, indicates the opti-

mality of the solution. When the gap reaches zero, the optimal solution has been

found [165].

For a MILP minimisation problem, to determine the lower bound, a relaxation of

the subproblem is solved at each surviving node of the search tree and subsequently

selecting the minimal objective value among these nodes. As a result, during the

solving process, at any given point the upper bound is known to be feasible since it

comes from the incumbent solution | the best integer solution identi�ed thus far

during the algorithm's search process. While it is unclear if further improvements

can be achieved, it is assumed that the optimal objective value cannot exceed the

lower bound. Moreover, the upper bound is improved as new incumbents are found,

and the lower bound is re�ned as nodes are removed from the search tree [166].

To improve the e�ciency of the branch-and-bound algorithm on getting an op-

timal solution as fast as possible, Gurobi implements various techniques, such as

presolve, cutting planes, heuristics, and parallelism. Presolve is a technique that can

be used to reduce the size of the problem before the branch-and-bound algorithm is

applied, making it easier to solve. Cutting Planes are mathematical constraints that

can be used to eliminate parts of the search space, further simplifying the search pro-
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cess. Heuristics generate good starting points for the branch-and-bound algorithm,

which can lead to faster convergence. Parallelism is a technique that can be used to

speed up the solution of the problem by dividing it into multiple subproblems that

can be solved concurrently [165].

In order to evaluate the quality of the solutions produced by Gurobi, and by

extension, the results presented through this work, the optimality gap will be used

as a metric. This metric is described below.

ˆ Optimality gap: As already introduced, the optimality gap, which is the

di�erence between the upper and lower bounds, shows how good the solution

is. In other words, it provides a clear indication of how far we are from the

optimal solution and how e�ective the solver is in locating it [167]. This value

was obtained from the log �le that Gurobi provides after solving each model.

Moreover, the computer speci�cations that were used to solve each model will

be described in each chapter. This will include the computer memory size and the

processor used to solve the models.

4.4.8 Assumptions Guiding the Energy Management Model in a
Microgrid Context

In this research, we use a MILP model to schedule household-level EV battery usage,

integrated with V2G technologies, to optimise energy management. This model is

deployed within a microgrid, a localised energy network. The model's assumptions

are as follows:

ˆ All households own either an EV (same model for all participants), or a sta-

tionary battery, as discussed in Chapter 5.

ˆ Households with solar PV systems all possess 3.5 kWp systems, each household

owns their own system.

ˆ All participants can sell surplus solar energy to the grid at a uniform rate.

ˆ All households are located within close proximity, sharing the same distribution

transformer, thereby forming a suburban neighbourhood-like grid-connected

microgrid.
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ˆ When P2P energy sharing is enabled, any participant producing surplus solar

energy can sell it to peers within the microgrid.

ˆ Participants have a single energy tari� price for energy drawn from the grid.

ˆ Each household has distinct electricity demand and driving patterns.

ˆ The optimisation model applies to all 50 households within the microgrid.

These assumptions underpin the proposed model, guiding the scheduling of en-

ergy resources and transactions within the microgrid for enhanced energy manage-

ment.

4.5 Conclusions

In this section, we provided an in-depth overview of the data and methodologies

used in this study. The electricity household demand, solar generation, and di�erent

electricity tari�s data that we used our research.

We also introduced the optimisation model, a tool crucial for scheduling the

charge and discharge cycles of the EV batteries. We the how this model works in-

cluding including the P2P aspect and its objective function. Then, a detailed expla-

nation of the P2P price mechanisms used, in this case two di�erent price mechanism,

was also provided.

Further, we explored the microgrid's functionality and explained the di�erent

con�gurations on how the microgrid will behave. Notably, whether V1G, V2H or

V2G was allowed, and the di�erent ways that P2P will work inside the miocrogrid.

The section further introduced the performance metrics, explaining how they

help evaluate the microgrid's performance and its di�erent aspects. Additionally,

the metric that will help to evaluate the quality of the solutions produced by the

solver. The �nal part of this section outlined the assumptions that framed the

research, enabling us to study and analyse various aspects e�ectively.

Overall, this section has provided a comprehensive insight into the work's frame-

work, bringing together the various elements that contribute to our understanding of

the availability of EVs within a grid-connected microgrid. This underpinning frame-
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work sets the stage for the subsequent in-depth exploration of EVs in the following

chapters.





Chapter 5

Comparison of Smart Charging

(V1G) and Vehicle-to-Home

(V2H) Systems against

Stationary Batteries for

Minimising Consumer

Electricity Costs

In the following chapter, the e�ectiveness of using a microgrid connected to the grid

to reduce the electric bill of households that own a stationary battery or an electric

vehicle (EV) with a bidirectional charger. We will describe the data used to simulate

the microgrid, an overview of the di�erent scenarios that will be explored, and gauge

the performance of stationary home batteries and EVs using the data and the model

described in previous chapters in di�erent scenarios that will be introduced later in

the chapter.

5.1 Model overview

The optimisation model introduced in chapter 4 is used to simulate the EVs and

data is taken from the resulting pro�les in chapter 3. For stationary home batteries,

an adjusted version of the optimisation model from chapter 4 is used to simulate

105
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their behaviour. The objective of the optimisation model is to minimise household

electricity costs. This is achieved through several strategies. If a house has a pho-

tovoltaic (PV) system installed, the model aims to maximise the self-consumption

of solar energy produced. The model also considers the possibility of peer-to-peer

(P2P) energy trading among households. Additionally, it manages the scheduling

of energy storage systems' charge and discharge cycles to provide Vehicle-to-home

(V2H) and further minimise the electricity bill. This scheduling considers various

factors, such as times of high or low electricity prices, as well as periods with a

surplus of solar energy, to determine the most cost-e�ective operation. For EVs, a

bidirectional charger is used to allow EVs to discharge energy already stored in the

battery toward the house. The impact of di�erent electricity tari�s is compared,

as well as di�erent PV penetration rates and possible advantages of P2P energy

trading between households within the microgrid is compared. Furthermore, in the

case of EVs, a comparison of smart charging (V1G) and V2H is also explored. The

full list of scenarios explored in this chapter will be described in greater detail in

section 5.1.4.

5.1.1 Data

A grid-connected microgrid consisting of a sample of 50 households located in Lon-

don, previously described in section 4.1.1 is used. All households have a stationary

home battery or an EV. Table 5.1 shows the speci�cations of the two batteries, EV

and the bidirectional charger that are considered in this work. Here, a Nissan/Eaton

[168] and a Tesla Powerwall [169] are used, as well as a Nissan Leaf 2018 [170]. In

addition, a 7.4 kW bidirectional charger { V1G and V2H enabled { was considered

for the EV simulations [158]. For EVs, a comparison of V1G and V2H is also ex-

plored. Data that resulted from chapter 3 is used to simulate the travel behaviour

of the EVs.

Four di�erent electricity tari�s are used as described in section 4.1.3.1 and ta-

ble 4.1. These four electricity tari�s are the Agile tari�, the Agile Go tari�, the

economy seven (E7) tari� and the Flat tari�.

To assess the impact of local solar generation, di�erent PV penetration rates are

used; in this case, 0%, 10%, 25%, 50%. 75%, 90% and 100%. These PV penetration
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Table 5.1: Overview of stationary home batteries, electric vehicle and the bidirec-
tional charger considered in this work.

Name Type Capacity Power E�ciency
(kWh) (kW) (%)

Nissan/Eaton Stationary battery 6 3.6 90
Tesla Powerwall Stationary battery 13.5 5 90

Nissan Leaf 2018 Electric Vehicle 37 - -
Wallbox Quasar Bidirectional charger - 7.4 93

(charge / discharge)

rates mean the percentage of the 50 houses with solar panels installed, for instance,

a PV penetration rate of 10% will only have 5 houses with solar panels. To simulate

solar generation, the data introduced in section 4.1.2 and the sell tari�, the Agile

Outgoing tari�, from section 4.1.3.2 is used.

In this work, three di�erent P2P scenarios are explored, one without P2P energy

trading, one with P2P energy trading using the setting introduced in section 4.3.1

and one with P2P energy trading using the setting introduced in section 4.3.2.

5.1.2 Representative weeks of the year

The simulations were conducted using four di�erent weeks that are representative

of the four seasons of the year to study any seasonal variation. This information has

already been introduced in �gure 3.9 where it is provided for six di�erent weeks of

the year. In this chapter, only four dates are considered, as explained below.

ˆ Week 1 : For spring, weekSpring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

ˆ Week 2 : For summer, weekSummer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

ˆ Week 3 : For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.

ˆ Week 4 : For winter, week Winter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.
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A total of 28 days are simulated overall, these weeks will contribute equally to

the calculation of the estimate annual electricity cost, which will be discussed later

in the chapter. This means that each week's weighting is 0.25.

5.1.3 Energy storage system dispatch optimisation for a household

The optimisation model used to schedule the charging and discharge behaviour of

EVs was introduced in section 4.2.

In the case of the stationary home battery, the model in section 4.2 was appropri-

ately modi�ed to re
ect availability throughout the day and that there is no energy

discharge for travel purposes. These changes are described in equations (5.1){(5.3),

where � avail;home
v;t , � avail;street

v;t and E demand;vehicle
v;t are modi�ed to re
ect the be-

haviour of a stationary home battery that is available at all times and does not

need to consume energy for travel purposes.

� avail;street
v;t = 0 ; 8v; t (5.1)

� avail;home
v;t = 1 ; 8v; t (5.2)

E demand;vehicle
v;t = 0 ; 8v; t (5.3)

5.1.4 Microgrid system con�guration overview

A comparison of di�erent microgrid con�gurations or microgrid scenarios of the

system is considered. These scenarios are summarised in table 5.2. Since the main

purpose of having a stationary home battery is to store energy that can be used later

at home, as opposed to EVs which can be operated in three di�erent modes according

to section 4.4, for stationary home batteries, there is only one con�guration, which

will be called Batt . Each battery used here will be calledEaton for the Nissan/Eaton

battery and Tesla for the Tesla Powerwall battery. When EVs are used, the case

studies will be identi�ed using EV and only two modes will be considered, the V1G

mode and the V2H mode.

The di�erent microgrid scenarios described in table 5.2 will be simulated using
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Table 5.2: Overview of the di�erent microgrid con�gurations explored in this chapter
with a description of the microgrid con�guration.

Microgrid Description
con�guration or scenario

Nissan/Eaton battery

Batt Eaton No P2P Case Study one; No P2P.
Batt Eaton P2P S1 Case Study one; P2P Setting one.
Batt Eaton P2P S2 Case Study one; P2P Setting two.

Tesla battery

Batt Tesla No P2P Case Study two; No P2P.
Batt Tesla P2P S1 Case Study two; P2P Setting one.
Batt Tesla P2P S2 Case Study two; P2P Setting two.

EVs

EV V1G No P2P Case Study three; V1G; No P2P.
EV V1G P2P S1 Case Study three; V1G; P2P Setting one.
EV V1G P2P S2 Case Study three; V1G; P2P Setting two.

EV V2H No P2P Case Study four; V2H; No P2P.
EV V2H P2P S1 Case Study four; V2H; P2P Setting one.
EV V2H P2P S2 Case Study four; V2H; P2P Setting two.

the four weeks described in section 5.1.2 and the di�erent PV rates and energy

tari�s, both described in section 5.1.1. However, for energy tari�s, �ve di�erent

energy tari� con�gurations or tari� scenarios will be explored. These �ve scenarios

are described in table 5.3 where it shows the number of pro�les that each energy

tari� will use for each tari� scenario.

Table 5.3: Overview of the di�erent energy tari� con�gurations explored.

Tari� Description
con�guration

Agile 100% of pro�les using the Agile tari�
Agile Go 100% of pro�les using the Agile Go tari�

E7 100% of pro�les using the Economy seven tari�
Flat 100% of pro�les using the Flat tari�

All tari�s 25% of pro�les using each of the four energy tari�s
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Finally, the number of simulations considered for each microgrid con�guration {

described in table 5.2 { is 140 in total, which considers seven di�erent PV penetration

rates { described in section 5.1.1 { and �ve di�erent tari� con�gurations { described

in table 5.3. Therefore, in this chapter, a grand total of 1,680 simulations are

explored.

5.1.5 Metrics

The performance metrics already introduced in section 4.4.6 will be used to eval-

uate the performance of each scenario described in this chapter. Furthermore, to

assess the quality of the results presented, the optimality gap metric described in

section 4.4.7 will be used.

5.2 Results

In this section, we present our �ndings from a week-long summer microgrid study

{ referred to as 'Summer - S2'. Speci�cally, we focus on the results when using the

Agile Go tari�. We compare the usage and performance of stationary home batteries

and EVs based on the metrics introduced in section 4.4.6. Then, we assess the

impact of various representative weeks on the microgrid's performance under each

tari�. We also analyse the estimated annual total electricity cost for each scenario

and tari� combination. Finally, we brie
y discuss the validity and quality of the

results obtained from our study based on the metrics introduced in section 4.4.7.

For this chapter, as stated in section 4.2, each simulation was built using the

Python 3.8.8 [125] programming language and the Pyomo 6.3.0 library [157] and

then solved using Gurobi 9.5.2 [156].

5.2.1 Results comparison between stationary home batteries and
electric vehicles for a week in summer using the agile go tari�

The simulation results presented in �gures 5.1 and 5.2 outline the dynamic be-

haviour of EVs (in this case, EV V2H P2P S1 ) and stationary home batteries

(in this case, Batt Tesla P2P S1 ) in a microgrid environment with a PV pen-

etration rate of 90% and using the Agile Go tari� during a summer week - in this

case the Summer - S2 week. As observed in both �gures, these energy resources
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exhibit a clear preference for charging during periods when the price of electricity

is at its lowest, particularly when solar generation is high. This behaviour signi�-

cantly reduce the energy drawn from the grid. The energy draw from the grid peaks

at night, with EVs reaching up to 205 kW and home batteries up to 180 kW. In

contrast, charging during the day takes advantage of local solar generation, which

signi�cantly reduces the energy drawn from the grid.

EVs and home batteries also display a tendency to discharge during the evening

hours. This coincides with a period of lower solar generation. In the context of

these two scenarios, surplus solar generation is predominantly sold to the grid as it

provides a more bene�cial �nancial return than self-consumption or P2P trading,

as seen in(b) of �gures 5.1 and 5.2. The comparatively lower P2P selling prices, a

consequence of solar generation saturation, make selling to the grid a more pro�table

option under Setting one (S1), as explained in section 4.3.1.

Over the course of the week, the total energy shared via P2P when using EVs

was observed to be 222 kWh, while home batteries were noted to share 128 kWh

of energy. Interestingly, despite the di�ering amounts of energy shared, the self-

su�ency ratio (SSR) of both setups was closely matched, with EVs achieving 83.33%

and home batteries 83.26%. This underlines the e�ective utilisation of predicted

availability and location data, suggesting that both stationary batteries and EVs

can be e�ciently integrated into the energy management strategies of a microgrid.

5.2.2 Performance of Microgrid Con�gurations for a week in sum-
mer using the agile go tari�

Figures 5.3a and 5.3b summarise the performance metrics for scenarios using EVs

and stationary home batteries in di�erent microgrid con�gurations during the sum-

mer week with the Agile Go tari�. In both �gures, each row contains �ve di�erent

metrics, which are described below.

ˆ Row A: Contains results for SSR.

ˆ Row B: Contains results for energy balance index (EBI).

ˆ Row C: Contains results for the energy imported from the exchange via P2P

in kWh.



112 Chapter 5

Figure 5.1: Simulation results for the Summer - S2 week showing the microgrid
operation using EVs with a PV penetration rate of 90% and using the Agile Go tari�.
In this case, this date belongs to the microgrid con�guration EV V2H P2P S1
. The tick labels on X-axis in black denote data from Monday to Friday, and the
red labels, data from Saturday and Sunday. a. Power import from the grid. b.
Household demand and energy consumed, shared and sold from solar generation
within the microgrid. c. Buy and sell prices from the grid and from P2P energy
trading. d. Number of EVs available at home charging and discharging and the
total number of numbers available at home.
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Figure 5.2: Simulation results for the Summer - S2 week showing the operation of
the microgrid operation using EVs with a PV penetration rate of 90% and using
the Agile Go tari�. In this case, this date belongs to the microgrid con�guration
Batt Tesla P2P S1 . The tick labels on X-axis in black denote data from Mon-
day to Friday, and the red labels, data from Saturday and Sunday.a. Power import
from the grid. b. Household demand and energy consumed, shared and sold from
solar generation within the microgrid. c. Buy and sell prices from the grid and from
P2P energy trading. d. Number of home batteries that are charged and discharged.
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ˆ Row D: Contains results for the maximum power load from the energy im-

ported from the grid in kW.

ˆ Row E: Contains results for the mean electricity cost per week in British

pounds (£).

These results generally show a strong correlation between PV penetration rates,

P2P settings, and SSR. For home batteries, SSR with a PV penetration rate of 100%

increases from 30.71% to 84.16% for Eaton batteries and 41.13% to 88.37% for Tesla

batteries. For EVs with the same PV penetration rate, SSR increases from 0.00%

to 71.81% when only V1G is allowed and 27.70% to 79.85% with V2H. However,

di�erent metrics peak under varying PV penetration rates, such as EBI, maximum

power load, and energy imported from P2P.

In scenarios where P2P is not allowed, SSR results for both Eaton and Tesla

batteries 
uctuate according to PV penetration rates, with ranges between 30.71%

to 56.39% and 41.14% to 61.14% respectively at rates of 0% to 50%. These values

increase to between 70.05% to 82.65% for Eaton and 73.87% to 86.54% for Tesla

batteries at rates from 75% to 100%.

In scenarios where only V1G is enabled, SSR ranges from 0% to 28.60% with PV

penetration rates of 0% to 50%. The scenario which allows EVs to discharge energy

via V2H increases SSR from 27.70% to 43.33% with PV penetration rates of 0% to

50%, still lower than the batteries. The import of power from the grid ranges from

91 to 120 kW with V1G and 253 to 299 kW with V2H. Electricity costs are nearly

halved across all PV penetration rates when V2H is enabled compared to V1G.

Allowing P2P trades in Setting two yields optimal results for both technologies,

owing to its more attractive prices for both buying and selling energy. This is

particularly useful for home batteries, whose primary role is storing energy for later

use, and for EVs using V2H, which essentially function as intermittent household

batteries.

Setting two also signi�cantly increases the energy exchanged, with the largest

di�erence being over 1 MWh in the Batt Tesla P2P S2 microgrid con�guration.

In general, the implementation of P2P under this price setting results in reduced

grid energy imports, particularly at higher PV penetration rates, due to the ability
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to sell surplus local solar generation to peers at a mid-market rate price.

Speci�cally, for home batteries, grid energy imports are signi�cantly reduced

across all PV penetration rates, with the greatest reductions seen at 100% PV pen-

etration: Eaton battery imports decrease from 3,466 kWh to 851 kWh, and Tesla

from 3,714 kWh to 701 kWh. With P2P allowed in both settings, there is a small

further reduction in grid imports at high PV penetration rates.

Similarly, for EVs, grid energy imports decrease proportionally with increasing

PV penetration rates. Without P2P, imports drop from 4,645 kWh at 0% PV

penetration to 1,991 kWh at 100% penetration for V1G, and from 4,940 kWh to

2,389 kWh for V2H. These higher import levels for V2H may be attributed to EVs

charging during periods of low energy prices. With P2P enabled,Setting one yields

minor reductions in grid imports at 100% PV penetration, while Setting two results

in substantial reductions, from 1,991 kWh to 1,309 kWh for V1G, and from 2,389

kWh to 1,246 kWh for V2H. These reductions occur at all PV penetration rates,

with Setting two consistently resulting in less grid energy importation.

Compared to home batteries, EVs yield a less signi�cant reduction in grid energy

imports due to the need to charge extra energy for users' driving needs. The highest

max power loads are found with EVs using V2H (201-358 kW), possibly as most EVs

charge simultaneously at times of low electricity prices to meet future travel energy

requirements, as well as for later use in the house. Tesla batteries show the second

highest values, followed by Eaton batteries at a lower range (121-260 kW) due to

their smaller charge/discharge power. The lowest maximum power loads occur with

EVs using V1G, suggesting households only charge their EVs to meet any energy

required for trips during the day.

Given all microgrid con�gurations can sell surplus solar generation to the grid, in

some cases this may be more pro�table, reducing SSR, EBI, energy shared to P2P,

and the max power load from the grid, thereby increasing grid energy dependency.

However, it may also reduce weekly electricity bills by earning pro�ts from energy

sold to the grid. A possible solution to balance these factors with �nancial bene�ts

for EV owners could be to incorporate incentives into the objective function to

promote self-su�ciency, energy balance, and P2P sharing, while still pro�ting from

selling surplus energy.
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The lowest mean electricity prices per week are found when using the Tesla

battery in all microgrid con�gurations or scenarios. Eaton batteries and EVs with

V2H yield similar results for most PV penetration rates, whether P2P is enabled or

not. The highest prices occur when EVs are used with V1G, and in all cases, the

highest PV penetration rates return the lowest mean weekly electricity prices.

The following summary provides a review of this section's �ndings, comparing

the impacts of home batteries (Eaton and Tesla) and EVs with V1G and V2H

capabilities under di�erent PV penetration rates and P2P energy sharing.

ˆ SSR increases with higher PV penetration rates across all technologies. Home

batteries (Eaton and Tesla) show an SSR range from 30.71% to 88.37% at 100%

PV penetration, while EVs with V1G and V2H functionalities demonstrate

SSR between 0.00% to 71.81% and 27.70% to 79.85% respectively. The V2H

scenario displays a signi�cant improvement over V1G.

ˆ P2P energy sharing settings (Setting one and Setting two) greatly in
uence

SSR and grid energy imports.Setting two, providing more advantageous P2P

energy prices, consistently delivers higher SSR and larger reductions in grid

imports across all PV penetration rates compared toSetting one. This leads

to Setting twogenerally resulting in lower weekly electricity costs.

ˆ The import of grid energy decreases across all PV penetration rates with the

most substantial reductions observed at 100% PV penetration for both home

batteries and EVs, and further reductions when P2P is enabled. However,

EVs result in less reduction in grid energy imports due to additional charging

needs for driving.

ˆ The highest maximum power loads, indicating peak energy demands, are ob-

served with EVs with V2H due to combined home and vehicle charging needs.

Tesla batteries show the second-highest values, while Eaton batteries show

lower values due to their smaller charge/discharge power.

ˆ All microgrid con�gurations tend to sell surplus solar generation to the grid

rather than using it for self-consumption or sell it via P2P, potentially reducing

SSR, increasing grid dependency, but also lowering electricity bills.
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ˆ In terms of mean weekly electricity costs, Tesla batteries consistently result

in the lowest prices across all scenarios, while the highest prices are associ-

ated with EVs with V1G. The lowest prices are achieved at the highest PV

penetration rates.

5.2.3 Results of all microgrid con�gurations and tari�s over the
di�erent representative weeks in a year

The �gures presented in this section include values in all microgrid con�gurations

or scenarios. The values are divided into two sections, the column on the left {

column 1 { contains the average values from 0% to 50% PV penetration rates and

the right column { column 2 { contains the average values from 51% to 100% PV

penetration rates. Moreover, each row includes each of the �ve tari� scenarios {

rows 1 to 5 { that were explored, di�erent colours are used to di�erentiate between

the four representative weeks of the year and di�erent marker shapes are used to

help distinguish them between each microgrid con�guration. X-axis tick labels also

include information about each microgrid con�guration.

In this section, our focus will primarily be on a select set of performance metrics:

SSR, energy shared from P2P, and the average weekly electricity cost. Additional

metrics, such as EBI, the maximum power load from the grid, and total energy im-

ported from the grid, are detailed in Appendix B, speci�cally under appendix B.1.1.

Figure 5.4 shows a comparison of the SSR, the di�erent weeks of the year have a

noticeable di�erence between each other for all scenarios and tari�s. It can be seen

that the Summer - S2 week returns the highest SSR value in most columns and rows

followed by the Spring - S1 week, with the exception of 51-100% PV penetration

rate and the Agile Go tari� during the Spring - S1 week (column 2, row 2) using the

Tesla battery and EVs with V2H. The Winter - S6 week tends to return the lowest

SSR values in most cases in column 1 when using EVs with V1G. Column 1 returns

results close to each other regardless of tari�; there is no major gap between values

in the di�erent weeks. Column 2 shows a larger gap between the di�erent weeks,

depending on the tari� scenario used. In this case, the P2P scenarios return the

highest SSR values for both settings; however,Setting two seems to perform better

than Setting one.
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Figure 5.4: Self-su�ency ratio values for the four representative weeks of the year,
the �ve tari� scenarios and all microgrid con�gurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Figure 5.5 shows a comparison of the total energy imported from P2P. In this

case, only relevant scenarios with P2P and PV penetration rates are considered

from 10% to 100%. Here, a higher PV penetration rates result in more energy

being imported from P2P. With lower PV penetration rates , shown in column

1, Summer - S2 has the highest energy values for all microgrid con�gurations and

tari�s. In column 2 di�erent weeks return the highest energy imported from P2P,

for example, depending on the microgrid con�guration and tari�, Winter - S6 is

the one that returns more energy being imported from P2P with Setting one. This

could be because the way the prices of each of the settings P2P prices are calculated

as explained in section 4.3.1, where having more solar generation could result in

lower P2P sell prices, which will result in less motivation to trade energy within the

microgrid and instead sell it to the grid or use it locally as self-consumption. In the

case ofSetting two, scenarios in this setting import more energy from P2P during

Summer - S2 week, since the way prices are calculated can in
uence users to trade

instead of selling to the grid or use it locally, since both buy and sell prices are an

average of the buy and sell prices from the grid, as explained in section 4.3.2.

Figure 5.6 shows a comparison of the mean electricity price per week. Here, the

lowest prices can be met during the Summer - S2 week in all scenarios and tari�s,

opposite to the Winter - S6 week, which results in the highest prices of all weeks.

Overall, mean prices per week are between 30.0 and -7.0 British pounds (£) for

all scenarios, weeks and tari�s, with negative prices found where PV penetration

rates are high, that is, households get paid instead of paying for their bill. Home

batteries returned low electricity costs when using P2P andSetting two, and the

Tesla battery had slightly lower energy costs per week than the Eaton battery. For

EVs, having V1G and no P2P had the highest electricity price with the E7 tari�

and with V2H with P2P and Setting two electricity prices are close to those when

using home batteries.

5.2.4 Annual electricity costs

In this section, the estimated annual electricity costs will be presented. The results

were calculated as explained in section 5.1.2. The �gures contain the average esti-

mated annual electricity cost for the four main tari�s, Agile tari�, Agile Go tari�,
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Figure 5.5: Energy shared from P2P for the four representative weeks of the year,
the �ve tari� scenarios and all microgrid con�gurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Figure 5.6: Mean electricity cost per week for the four representative weeks of the
year, the �ve tari� scenarios and all microgrid con�gurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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E7 tari� and Flat tari� in �gures 5.7a and 5.7b for home batteries and EVs, respec-

tively. Similarly, in the case of the All tari�s scenario, where 25% of pro�les use

each of the four energy tari�s, as described in table 5.3, these results are the average

estimated annual electricity costs according to the number of households that are

under each di�erent tari�, as described in table 5.4. Figures 5.7c and 5.7d show the

results for the All tari�s scenario for home batteries and EVs, respectively.

Table 5.4: Number of users under each di�erent tari� for the All tari�s scenario.

Tari� name Number of households

Agile 13
Agile Go 13

E7 12
Flat 12

In the data represented in �gures 5.7a{5.7d, it's evident that higher PV penetra-

tion rates lead to reduced average annual prices across all microgrid con�gurations

and tari�s. For both home batteries and EVs, lowest prices are achievable with

100% PV penetration rate in particular settings, such as Agile and Agile Go tari�s

and P2P settings.

Home batteries, particularly the Tesla battery, generate negative prices, implying

users can earn rather than pay for their electricity usage. The Agile tari� consistently

returns the lowest electricity cost, for both home batteries and EVs.

For EVs, the lowest price can be achieved with Agile tari� and 100% PV penetra-

tion rate in the EV V2H P2P S2 scenario, yet no negative prices are recorded

here. Importantly, EVs with V2H services show signi�cantly lower prices (£28) com-

pared to those with only V1G services (£121), demonstrating the economic bene�t

of V2H.

In all con�gurations, the E7 tari� results in the highest average annual costs. EVs

with V1G services also generate the highest annual electricity costs, but these costs

are substantially reduced when V2H services are implemented. Similarly, allowing

P2P further reduces costs.

Under the All tari�s scenario, the Agile Go tari� bene�ciaries are primarily home

battery users and EVs with V2H. Negative prices are observed with the Eaton and
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Tesla batteries, -£45 and -£66 respectively, under speci�c tari�s and settings. For

EVs, the lowest average annual costs are reported when V2H is allowed and Setting

two is used, resulting in an average annual cost of -£268. Higher PV penetra-

tion rates, appropriate tari� selection, and P2P settings all contribute to reducing

electricity costs, with V2H services o�ering particular cost advantages over V1G

services.

5.2.5 Solution quality

In this section, the optimality gap explained in section 4.4.7 will be shown. This

metric will measure the quality of the results presented so far in this chapter, which

means that it will give a clearer picture of how far the results are from the opti-

mal solution according to the solver, in this case Gurobi 9.5.2 [166]. Additionally,

the computer speci�cations that were used to solve each microgrid con�guration or

scenario.

Table 5.5 shows the optimality gap value ratio of the 1,680 models in his chapter

obtained after solving each model. Here, the majority of models are under a gap

of 0.50% and only a handful are above this threshold. To put things into context,

a model with a 0.50% gap implies that the feasible solution identi�ed by Gurobi

is quite close to the optimal solution. This small gap is considered satisfactory in

many cases, as it demonstrates its e�ectiveness in solving the optimisation problem

with reasonable accuracy. The closer the gap to 0.00%, the higher the con�dence in

the quality of the solution, which makes it suitable for decision-making or further

analysis [166].

Table 5.5: Optimality gap value ratio of the resulting models.

Gap Number of models

� 0:50 1,668
0:50 < 12

Table 5.6 shows the total number of models that were solved on each PC. Ac-

cording to the Gurobi documentation, the results can vary when solved on di�erent

hardware, which means that although optimal results are found, the path to them

might be di�erent, which may yield di�erent data [171].
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Table 5.6: Number of models solved using each computer and their speci�cations.

Number Processor Processor Cores RAM
of models name speed (GHz) (GB)

631 12th Gen Intel (R) 3.20 16 128
Core (TM) i9-12900K

769 11th Gen Intel (R) 2.30 4 64
Core (TM) i5-1135G7

280 Intel (R) Xeon (R) 2.10 16 128
E5-2620 v4

5.3 Discussion

This work has used an optimisation model to investigate the performance of station-

ary batteries and EVs using V1G and V2H through four di�erent weeks representa-

tive of the seasons of the year, di�erent PV penetration rates, in combination with

four di�erent tari�s and two di�erent mechanisms of P2P price calculation based on

mid-market rate (MMR). This was achieved through the use of real-world data from

home energy demand, local solar generation, and EV travel that included predicted

data on their ability to be connected at home. The simulation results show that

when P2P trading is allowed, the use of home batteries and EVs can produce signif-

icant technical and economic bene�ts with di�erent energy tari�s. In some cases, the

use of V2H, which allows EVs to provide energy to the household when connected

at home, can provide further bene�ts for EVs than V1G. For home batteries, the

Agile tari� and the Agile Go tari� can achieve average electricity costs per week

of around £2.00 with 0-50% PV penetration rates during the summer with P2P,

especially the Tesla battery, which has more capacity and power than the Eaton

battery, and with 51-100% PV penetration rates the average electricity cost can be

around -£5.00 for all tari� scenarios explored with P2P allowed, which means that

the household will be paid instead of paying for their electricity bill. EVs with V2H,

P2P with 0-50% PV penetration rates can match the mean electricity cost per week

during the summer that resulted from the same week for home batteries when there

is no P2P. In all scenarios, tari�s and PV penetration rates, the introduction of V2H

and P2P further reduces the weekly cost of electricity compared to the use of V1G
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alone with electricity costs ranging from -£5.00 to £15.00.

PV penetration rates of 51-100% can also increase SSR in all microgrid con�g-

urations during summer with most tari�s, reducing the need for energy from the

grid, with SSR values from 55% to close to 100% in the case of home batteries with

P2P, for EVs with P2P from 25% to close to 75% for EVs with V1G and from 40%

to close to 100% with V2H. In most cases,Setting two is the one that leads to the

best results with high PV penetration rates. With lower PV penetration rates, Set-

ting one tends to improve the results due to the way the P2P prices are calculated,

where having less solar generation within the grid may result in the best P2P prices.

Furthermore, P2P can bene�t PV owners by sharing surplus energy within the mi-

crogrid for users to charge their EVs at a lower cost than buying energy from the

grid regardless of whether they have PV installed at home. This is because unlike

home batteries, EVs are not available at di�erent times of the day because they are

used for travel.

Estimated annual electricity costs show that users with home batteries bene�t

more with the Agile tari� and have P2P using Setting oneand 100% PV penetration

rate with costs as low as -£64 for the Eaton battery and -£82 for the Tesla battery.

EVs also bene�t the most when using the Agile tari� with P2P and having 100%

PV penetration rate, but in this case using Setting two results in a cost of£121 with

V1G and £28 with V2H.

In addition, P2P energy trading, when allowed, notably impacts the cost dy-

namics within the microgrid system. P2P energy sharing allows more 
exibility and

potential for cost reduction across all options - V1G, V2H and stationary batteries.

Additionally, the lowest annual costs are observed when P2P is allowed. This high-

lights the importance of incorporating P2P mechanisms into the energy management

strategies of microgrid systems, along with the appropriate selection of EV services

and stationary batteries.

As pointed out in di�erent previous work [105, 172, 173], energy buyers bene�t

more from P2P price mechanisms than sellers. In this study, we compared two

di�erent price mechanisms, both based on MMR, based on simulation results, the

�rst price mechanism, Setting one, tends to favour buyers more than sellers, as the

way this price is calculated penalises the selling prices the higher the solar generation
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is within the microgrid and with selling prices often below the price that the grid

would pay for any surplus energy.

The way in which the optimisation model was designed guarantees that all energy

traded via P2P is used among other participants inside the microgrid, which in some

cases leads some users to be "forced" to sell energy to their peers even if it is not

pro�table for the seller as long as the total cost, the objective function, is minimised.

This results in some microgrid con�gurations where having a lower PV penetration

rates increases the performance metrics of the model, as selling prices via P2P results

in more pro�t for the PV owners. To reduce this e�ect, a second pricing mechanism

Setting two, was introduced in which buyers and sellers buy and sell at the same

price, in this case the price is the average of their energy tari� and the export tari�.

This resulted in a more fair mechanism for participants in the microgrid, which in

most cases resulted in higher performance metrics such as SSR and the amount of

energy shared within the grid.

Finally, when evaluating the economic viability of EVs versus stationary batter-

ies, several factors come into play. The capital expenditure (CapEx) of a Nissan

Leaf 2018 (£26,995) and bidirectional charger (Wallbox Quasar -£5,999) stands at

£32,994. The operating expenditure (OpEx), based on the Agile tari� with P2P

energy sharing usingSetting two and assuming a 100% PV penetration rate, as

mentioned, vary between£121 and £28 annually for V1G and V2H, respectively.

These values result in total costs over a �ve-year period of£33,599 for V1G and

£33,134 for V2H.

Stationary batteries present lower CapEx at £3,500 for the Nissan/Eaton and

£5,700 for the Tesla Powerwall 2. The OpEx, based on using the Agile tari� with

P2P energy sharing usingSetting one and assuming a 100% PV penetration rate,

these batteries generate annual income rather than cost, leading to costs as low

as -£64 for the Nissan/Eaton battery and -£82 for the Tesla battery. Over �ve

years, this translates to total costs of£3,180 for Nissan/Eaton and£5,290 for Tesla

Powerwall.

When comparing these two technologies, the consideration is whether to opt for

the added transportation utility of EVs, despite their higher initial investment, or

to choose the income-generating stationary batteries, which, although lower in cost,
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lack transport utility.

5.4 Conclusions

In this chapter, the potential technical and economic bene�ts of using home batteries

and EVs with di�erent PV penetration rates, P2P using di�erent price calculation

systems, and �ve di�erent tari� scenarios were investigated in four di�erent weeks

representing the seasons of the year.

In general, having an energy storage system and PV at home can lower electricity

costs by charging during periods of low energy prices or by charging when during the

day when solar power is readily available and then supplying power to the household

when prices increase. This not only reduces reliance on the grid but also leads to

savings on household electricity bills. In this case, the availability of EVs throughout

the day reduces some of the bene�ts, and more so when PV generation exists, as this

happens during the time of day when EVs are most likely away. The introduction

of P2P mitigates this by allowing participants with PV to sell energy to their peers

on the microgrid while their vehicle is away and still make a pro�t. Depending on

the P2P price mechanism, having a higher or lower PV penetration rates within

the microgrid can increase the technical and economic bene�ts of the microgrid.

Moreover, dynamic tari�s, such as Agile tari�, that follows the wholesale electricity

price, or Agile Go tari�, designed specially for owners with EVs further increases

these bene�ts, compared to more traditional tari�s such as E7 and Flat Tari�. For

EVs, combining P2P and V2H shows that, in some cases, the performance of EVs

can match the performance of a stationary battery with the added value of providing

travel, which could be of interest for potential EV owners.

Our analysis has shown a marked di�erence between the costs of EVs and sta-

tionary batteries over a �ve-year period when using the Agile tari� with P2P energy

sharing and assuming a 100% PV penetration rate. The combined CapEx and OpEx

for the EV options, speci�cally the Nissan Leaf 2018 with a bidirectional charger,

amounted to £33,599 for V1G and£33,134 for V2H. In comparison, stationary bat-

teries such as the Nissan/Eaton and Tesla Powerwall presented lower overall costs,

£3,180 and£5,290 respectively, over the same period thanks to their ability to gen-
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erate income rather than costs and low initial investment.

While EVs require a larger initial investment, they o�er the additional bene�t

of personal transportation. On the other hand, stationary batteries, though lacking

in mobility, provide a �nancially attractive option due to their income generation

capability. Future considerations and policy decisions should carefully evaluate these

trade-o�s.
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Provision of short term

operating reserve (STOR) via

vehicle-to-grid (V2G)

This chapter investigates the potential e�ectiveness of reducing electric bills for

households with electric vehicles (EVs) connected to a microgrid that also provides

vehicle-to-grid (V2G) services for short term operation reserve (STOR). The anal-

ysis involves simulating the microgrid, exploring various scenarios, and evaluating

the performance of EVs when delivering STOR services in di�erent microgrid con-

�gurations. Furthermore, the chapter provides an overview of the model and the

data used to simulate the microgrid, and outlines the di�erent scenarios that will be

investigated.

6.1 Model overview

Similarly to chapter 5, the optimisation model introduced in chapter 4 is used to

simulate EVs and travel data is taken from the resulting pro�les in chapter 3. The

optimisation model aims to minimise the electrical bill of homes by maximising self-

consumption if a photovoltaic (PV) system is installed in the house, a bidirectional

charger is used to allow EVs to schedule charging and discharging behaviour when it

is more convenient during the day when connected at home, exploring the possibility

of energy trading through P2P, and simultaneously maximising energy supplied for

STOR via V2G. Here, the provision of STOR by the EVs inside the microgrid is

131
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done my considering the aggregated power of the EVs available at home at the

time when energy is required for STOR. The impact of di�erent electricity tari�s is

compared, as well as di�erent PV penetration rates and the possible advantages of

peer-to-peer (P2P) energy trading between households within the microgrid using

two di�erent price calculation settings.

6.1.1 Data

As previously described in section 4.1.1, a grid-connected microgrid is used compris-

ing a sample of 50 London-based households. Every household has an electric vehicle.

The Nissan Leaf 2018 [170] speci�cations are shown in table 6.1. Furthermore, a 7.4

kW bidirectional V2G and Vehicle-to-home (V2H) charger was considered for EV

simulations [158]. The data from chapter 3 is used to simulate the travel behaviour

of EVs.

Table 6.1: Overview of stationary home batteries, electric vehicle and the bidirec-
tional charger considered in this work.

Name Type Capacity Power E�ciency
(kWh) (kW) (%)

Nissan Leaf 2018 Electric Vehicle 37 - -
Wallbox Quasar Bidirectional charger - 7.4 93

As described in section 4.1.3.1 and table 4.1, four di�erent electricity tari�s are

used. The Agile tari�, the Agile Go tari�, the economy seven (E7) tari�, and the

Flat tari� are the four electricity tari�s.

Di�erent penetration rates are used to assess the impact of local solar generation;

in this case, 0%, 10%, 25%, 50%, 75%, 90% and 100%. Similar to section 5.1.1,

these PV penetration rates mean the percentage of the 50 houses with solar panels

installed, for instance, a PV penetration rate of 10% will only have 5 houses with

solar panels. The data described in section 4.1.2 used to simulate solar generation

and the Agile Outgoing tari� data, introduced in section 4.1.3.2, is used as a feed-in

tari�.

Finally, three di�erent P2P scenarios are explored: one without P2P energy

trading, one with P2P energy trading using theSetting onedescribed in section 4.3.1,

and one with P2P energy trading using theSetting two described in section 4.3.2.
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6.1.2 STOR seasons and committed windows

According to the National Grid [174], STOR runs from April to April and is divided

by seasons, these seasons de�ne the committed windows for each STOR service

day where STOR is required. The need for STOR varies depending on the season,

weekday and time of day, as dictated by the system demand pro�le at that time;

which is why the National Grid Electricity System Operator splits each running

year into six di�erent seasons accounting for working days, Monday to Saturday,

and non-working days, Sundays and bank holidays, and sets the periods of time for

each STOR service day when STOR might be required. These times are considered

from 05:00 to 05:00 the next day. These service days are called committed windows.

To model these committed windows, in this work the year referred to by the

National Grid as "Year 15 STOR Seasons { 1 April 2021 to 1 April 2022" was used

[174]. These seasons and committed windows are described in table 6.2 where two

di�erent start and end times can be seen, which belong to the morning and evening

of each day. Here, Mr denotes the morning and andEe the evening.

Table 6.2: Description of the STOR seasons and committed windows used in this
work. Mr denotes the morning andEe the evening.

Seasons Dates Time Working days Non-working days

(MM-DD) start time end time start time end time

1 April 01 to Mr 06:00 13:00 10:00 14:00
May 03 Ee 19:00 22:00 17:30 22:00

2 May 03 to Mr 06:30 14:00 10:30 13:30
August 23 Ee 16:00 22:00 17:30 22:00

3 August 23 to Mr 06:30 13:00 10:30 12:30
September 27 Ee 16:00 22:00 17:30 22:00

4 September 27 to Mr 06:00 13:00 10:30 13:00
October 25 Ee 17:00 22:00 17:30 22:00

5 October 25 to Mr 06:00 13:00 10:30 13:30
January 24 Ee 16:00 20:30 16:00 19:30

6 January 24 to Mr 06:00 13:00 10:30 13:00
April 01 Ee 16:30 20:30 16:30 20:00
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6.1.3 STOR technical requirements and case studies

The National Grid requires participants to meet certain technical requirements be-

fore providing STOR services. These technical requirements are described below as

stated by the National Grid [174].

ˆ Participants must provide a minimum of 3 MW of generation or consistent

demand reduction. This can be compiled from multiple sites.

ˆ Respond to an instruction in no more than 20 minutes.

ˆ Sustain the response for a minimum of two hours.

ˆ Respond again after a recuperation period of not more than 1,200 minutes.

Although the microgrid explored in this work may not meet some of the technical

requirements, especially the one that sets the minimum power supply of 3 MW, we

are interested in exploring the impact of the availability of EVs when providing this

service.

It is worth noting that the National Grid states that "It is not possible to provide

other services at the same time as providing STOR", this unless the provision of

other balance services is outside the contracted availability windows, i.e. committed

windows. Given that V2H is sometimes regarded as o�ering balancing services

[39, 175], providing STOR at the same time could represent an issue. With respect

to this, we assume that EVs can participate in V2H and V2G as this can open new

markets for EV owners.

Moreover, since participants are paid in two ways, one for being available during

committed windows and two, for the energy provided for STOR, mostly known as

utilisation payments, a report from National Grid ESO [176] shows that there is an

increase in users willing to participate in a 
exible STOR service, that is, they have

the ability to withdraw from STOR and participate in other markets in real time. In

other words, participants are only paid for the energy provided for STOR and have

more 
exibility, which could be of interest for EVs owners. Therefore, in this work,

only the utilisation payment is considered. Table 6.3 shows the utilisation payments

for providing energy for STOR taken from Gough et al. [86].
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Table 6.3: STOR utilisation payments for each of the six seasons.

Season Payment (£ / kW h� 1)

1 0.1710748

2 0.1704394

3 0.1673483

4 0.1672806

5 0.1711733

6 0.1713413

Furthermore, four di�erent case studies were explored. These case studies were

designed to explore the impact of the availability of EV has when providing STOR

of the EVs predicted in chapter 3. It should be noted that according to Gough et al.

[86], National Grid ESO [176] there are only three STOR events per week during

the year or 155 days per year. Here, random simulated STOR events were generated

for each of the four case studies covering the six STOR seasons and are within each

committed window. These STOR events are unique to each STOR season for the

�rst two case studies, and for the other two, �xed times and days of the week were

passed into the model. The four case studies are introduced in table 6.4.

Table 6.4: Summary of the representative dates used in this work, the STOR seasons
that each of these weeks will cover, and the weighting considered to estimate the
annual electricity cost.

Case study Description

ST 1 Three events per week per STOR season.
The events were distributed across the 7 days of the week.

ST 2 Six events per week per STOR season.
The events were distributed across the 7 days of the week.

ST 3 Three events per week during weekdays per STOR season.
Two events in the same day, one in the morning,

one in the evening. Followed by one event the next morning.

ST 4 Three events per week during weekends per STOR season.
Two events in the same day, one in the morning,

one in the evening. Followed by one event the next morning.

Case studyST 1 is meant to explore the amount of energy of all EVs within the

microgrid that can be used for STOR when three events occur during the week -
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as mentioned above, the expected amount of events to occur per week during the

year. For this case study, each event will be assigned at random through the week

and time of the day. The latter means that the event can take place either in the

morning or evening. The purpose of this case study is to see the performance of the

microgrid and the amount of energy that can be provided for STOR. Case study

ST 2, explores the amount of energy of all EVs within the microgrid that can be

used for STOR when six events occur during the week. Similar to the case study

ST 1, each STOR event is assigned at random during the week and time of the

day. The purpose of this case study is to test the performance of the EVs when

providing STOR, it would be interesting to observe how they perform under an

increased frequency of STOR events per week, and determine whether this results

in any changes to the e�ciency or e�ectiveness of the EVs. To this end, six events

per week were explored.

Case study ST 3 is meant to explore the possibility of providing energy for

STOR in less than 1,200 minutes during the weekdays. This can be accomplished by

selecting speci�c days of the week and times of day that remain constant, regardless

of the STOR season. In this way, there will be one event in the morning and another

in the evening on the same day - both on Wednesday, followed by an additional event

the following morning - Thursday. The purpose of this case study was to see the

impact on the performance on the delivery of energy for STOR and if the EVs are

capable to respond to STOR events in less than the required time of 1,200 minutes

during weekdays. Case studyST 4, similarly to case studyST 3, is meant to explore

the possibility of providing energy for STOR in less than 1,200 minutes, but in this

case during the weekends. Here, speci�c days of the week and times of day that

remain constant, regardless of the STOR season, were selected. This way, there will

be one event in the morning and one event in the evening on the same day - both

on Saturday, followed by another event the next morning - Sunday. The purpose of

this case study was to see the impact on the performance on the delivery of energy

for STOR and if the EVs are capable to respond to STOR events in less than the

required time of 1,200 minutes during weekends.

It is worth noting that all STOR events across the four case studies were gen-

erated by simulating an instruction to provide STOR 20 minutes prior to actually
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providing energy. For case studyST 1 and ST 2, the events were generated ran-

domly, and as already mentioned for case studyST 3, the STOR events take place

at �xed times of the day regardless of the STOR season. For all four cases, the

STOR events were generated taking into account the start and end times of each

committed window for every STOR season, which are listed in table 6.2.

6.1.4 Representative weeks of the year

To comprehensively represent the six STOR seasons of the year, as introduced in

table 6.2, six distinct weeks were selected. Coincidentally, each of these weeks also

corresponds to one of the four seasons of the year, with one week for spring, two

di�erent weeks for summer, two di�erent weeks for autumn, and one week for winter.

Furthermore, each of these weeks represents the six seasons in which the provision

of STOR is divided, as explained in section 6.1.2 as well as being used to study

any seasonal variation. A total of 42 days are simulated overall. These weeks are

described in the following.

ˆ Week 1 : For spring, weekSpring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

ˆ Week 2 : For summer, weekSummer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

ˆ Week 3 : For summer, weekSummer - S3 from 2014-09-08 00:00:00 to 2014-

09-14 23:59:00.

ˆ Week 4 : For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.

ˆ Week 5 : For autumn, week Autumn - S5 from 2014-12-08 00:00:00 to 2014-

12-14 23:59:00.

ˆ Week 6 : For winter, week Winter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.

Table 6.5 shows a summary of these dates and how each will contribute to the

estimated annual electricity cost metric. These weights are based on the number of

days that each STOR season lasts, as described in table 6.2.
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Table 6.5: Summary of the representative dates used in this work, the STOR seasons
that each of these weeks will cover, and the weighting considered to estimate the
annual electricity cost based on the number of days in each STOR season.

Week - STOR season From To Weighting

Spring - S1 2015-04-20 00:00:00 2015-04-26 23:59:00 32 / 365

Summer - S2 2015-06-22 00:00:00 2015-06-28 23:59:00 112 / 365

Summer - S3 2014-09-08 00:00:00 2014-09-14 23:59:00 35 / 365

Autumn - S4 2014-10-06 00:00:00 2014-10-12 23:59:00 28 / 365

Autumn - S5 2014-12-08 00:00:00 2014-12-14 23:59:00 91 / 365

Winter - S6 2015-02-23 00:00:00 2015-03-01 23:59:00 67 / 365

6.1.5 Electric vehicle dispatch optimisation for a household

As previously stated in this chapter, the optimisation model presented in chapter 4

was employed for the analysis. However, in order to adequately account for the

provision of STOR, additional variables were were taken into consideration. These

additional variables are explained below

Equation (6.1) guarantees that the EVs will only provide energy for STOR when

there is a STOR event in progress.STevent
t is de�ned as a situation where energy

is required for STOR and is represented bySTevent
t = 1, otherwise STevent

t = 0. As

already mentioned, each STOR event has a duration of 120 minutes. Therefore, if

the EVs are requested to respond to an instruction at 09:20, the value ofSTevent
t

will remain 0 until 09:40, after which it will be set to 1 for the next 120 minutes.

E discharge;v 2g
v;t � STevent

t � M; 8v; t (6.1)

Equation (6.2) describes the theoretical maximum energy expected if all EVs

inside the microgrid were connected and provide energy for STOR. Here, the variable

STthreshold;theory , as mentioned, is the theoretical maximum energy from the EVs

for STOR. Pmax;dis is the discharge power of the bidirectional charger.dt refers to

the time step in this casedt = 1 min = 1
60 hr . P rof iles is the number of pro�les

inside the microgrid, in this caseProf iles = 50.
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STthreshold;theory =
�

Pmax;dis � dt
�

� P rof iles (6.2)

Equation (6.3) determines the actual maximum energy threshold that EVs can

provide throughout the week for 120 minutes.STthreshold;max
t refers to the maximum

amount of energy that can be sustained for 120 min for all STOR events.STpercentage

is the value that will determine the actual maximum energy provided throughout

the week considering the availability of EVs.

STthreshold;max
t = STthreshold;theory �

� STpercentage

100

�
; 8t (6.3)

Equation (6.4) describes the aggregated energy of EVs that is provided for STOR.

STdemand;aggregated
t =

X

v

E discharge;v 2g
v;t ; 8t (6.4)

Equation (6.5) makes sure that the aggregated demand is not higher than the

actual maximum energy that EVs can provide for STOR.

STdemand;aggregated
t � STthreshold;max

t ; 8t (6.5)

Equation (6.6) outlines a Min-Max approach that guarantees that the model

yields the highest amount of energy for STOR in each simulation.

X

t

"
�

STthreshold;max
t � STevent

t

�
� STdemand;aggregated

t

#

� 0; 8t (6.6)

In this chapter, the objective function in equation (4.26) is modi�ed to accom-

modate the newly introduced variables. The objective is to minimise the total cost

of operating the microgrid and, at the same time, maximise the energy that can

be provided for STOR. We found that adding STpercentage helps the solver �nd an

optimal solution faster.
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min

"
X

v

 

C import
v + C import;street

v + C import;p 2p
v

� Cexport
v � Cexport;p 2p

v � Cexport;v 2g
v

!

�
X

t

 

STdemand;aggregated
t

!

� STpercentage

#

(6.7)

In the case of the percentage of energy sustained when providing STOR for all

events of the week, these values are a percentage of the theoretical maximum energy

expected if all EVs within the microgrid were connected and provide energy for

STOR, as described in equation (6.2), this isSTthreshold;theory = 6 :1667 kWh =

370 kW , as calculated in equation (6.8).

STthreshold;theory =
�

7:4 kW �
1
60

hr
�

� 50 = 6:1667 kWh (6.8)

For example, in the case where the solver returns aSTpercentage = 40, the maxi-

mum amount of energy that can be provided during the week for each STOR event,

STthreshold;max , and that can be sustained for 120 minutes { the minimum technical

requirement, as explained in section 6.1.3 { is calculated as shown in equation (6.9)

below, as introduced in equation (6.4).

STthreshold;max
t = 6 :1667 kWh �

 
40
100

!

= 2 :4667 kWh; 8t (6.9)

In this example, the resultant STthreshold;max = 2 :4667 kWh = 148 kW is the

maximum amount of energy that can be provided and sustained in all STOR events

of the week.

6.1.6 Microgrid system con�guration overview

A comparison of di�erent microgrid con�gurations or microgrid scenarios of the

system is considered. EVs can be operated in three di�erent modes according to

section 4.4, however, in this case only the V2G mode is considered, which also

includes the bene�ts of using smart charging (V1G) and V2H. Here, each case study
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will be identi�ed in the same way as described in table 6.4. Similarly, to chapter 5,

microgrid con�gurations will be referred to as the combination of the di�erent modes

in which the microgrid operates and the type of P2P pricing calculation to be used,

if applicable. These microgrid con�gurations are explained in table 6.6.

Table 6.6: Overview of the di�erent microgrid con�gurations explored in this chapter
with a description of the microgrid con�guration.

Microgrid Description
con�guration or scenario

ST 1 V2G No P2P Case Study one; V2G; No P2P.
ST 1 V2G P2P S1 Case Study one; V2G; P2P Setting one.
ST 1 V2G P2P S2 Case Study one; V2G; P2P Setting two.

ST 2 V2G No P2P Case Study two; V2G; No P2P.
ST 2 V2G P2P S1 Case Study two; V2G; P2P Setting one.
ST 2 V2G P2P S2 Case Study two; V2G; P2P Setting two.

ST 3 V2G No P2P Case Study three; V2G; No P2P.
ST 3 V2G P2P S1 Case Study three; V2G; P2P Setting one.
ST 3 V2G P2P S2 Case Study three; V2G; P2P Setting two.

ST 4 V2G No P2P Case Study four; V2G; No P2P.
ST 4 V2G P2P S1 Case Study four; V2G; P2P Setting one.
ST 4 V2G P2P S2 Case Study four; V2G; P2P Setting two.

The various microgrid scenarios stated in table 6.6 will be simulated using the

six weeks described in section 6.1.4, as well as the various PV penetration rates and

energy tari�s described in section 6.1.1. However, for energy tari�s, �ve potential

energy tari� con�gurations or tari� scenarios will be investigated. These �ve sce-

narios are the same as in chapter 5 as summarised in table 5.3, which also provides

the percentage of pro�les that use each energy tari� in each tari� scenario.

For this chapter, the number of simulations considered for each microgrid con-

�guration { described in table 6.6 { is 210 in total each, which considers the seven

di�erent PV penetration rates and the �ve tari� scenarios { described in table 5.3

and the six di�erent weeks described in section 6.1.4. Therefore, for this chapter, a

grand total of 2,520 simulations will be explored.
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6.1.7 Metrics

The performance metrics already introduced in section 4.4.6 will be used to evaluate

the performance of each microgrid con�guration or scenario described in this chapter.

To assess the quality of the results presented, the metric described in section 4.4.7

will be used.

Furthermore, two new metrics are introduced to measure the impact of the avail-

ability of the EVs has when providing energy for STOR. These are described below.

ˆ Highest number of EVs providing energy for STOR: This is the highest

number of EVs registered that discharged energy for STOR of all the STOR

events of the week.

ˆ Percentage of energy sustained when providing STOR: This is the

percentage of energy provided for all STOR events of the week. This is the

variable STpercentage introduced in equation (6.3).

6.2 Results

In this section, we introduce the results of the microgrid for the case studies during

the summer, speci�cally Summer - S2, using the Agile Go tari�. A description

of its performance according to the established metrics explained in section 6.1.7.

The impact of the di�erent representative weeks, the performance of the microgrid

for each tari� and the provision of STOR is then evaluated before calculating the

estimated annual total electricity cost for each scenario and tari�. Finally, a brief

evaluation of the quality of the results is provided.

For this chapter, as stated in section 4.2, each simulation was built using the

Python 3.8.8 [125] programming language and the Pyomo 6.3.0 library [157] and

then solved using Gurobi 9.5.2 [156].

6.2.1 Results comparison between two case studies for a week in
summer using the agile go tari�

In this section, the plots for ST 1 V2G P2P S2 and ST 2 V2G P2P S2 will

be presented �rst to give a general idea of how the microgrid operates. These two
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scenarios were selected randomly using a simple Python script to choose two out of

the 2,520 resulting simulations.

Figure 6.1 shows the simulation results of the scenarioST 1 V2G P2P S2

with 90% PV penetration rate PV and using the Agile Go tari� during a week

in summer { Summer - S2. This �gure shows the energy imported from the grid,

the house demand and solar generation showing the energy that is locally used,

the energy that is sold to the grid and the energy shared to other members of

the microgrid, the internal microgrid buy and sell prices for importing energy and

selling energy from the grid and from the energy shared via P2P withSetting two

and the total number of EVs available during the day and how many are charging

and discharging. It also shows STOR events for the same case study with a total of

EVs available at home and a total of EVs providing energy for STOR highlighting

the highest number of EVs providing energy of all STOR events and the lowest

number of EVs available at home during the week.

Similarly to �gure 6.1, �gure 6.2 shows the simulation results of the scenarios

ST 2 V2G P2P S2, with PV penetration rate of 90% and using the Agile Go

tari� during the summer week { Summer - S2 and the simulated STOR events for

this case study.

In both �gures 6.1 and 6.2, row (a) and (b) show an increase in the demand for

energy from the grid during periods when the price of electricity is low, mainly

due to the EVs charging at night. This results in a maximum energy drawn

from the grid of up to 165 kW for ST 1 V2G P2P S2and up to 235 kW for

ST 2 V2G P2P S2. Here, the increase in peak demand can be attributed to

EVs charging energy in advance for later use to provide energy for STOR, as in

ST 2 V2G P2P S2has six STOR events during the week. Moreover, EVs also

tend to charge when local solar generation is available, particularly around 12:00

with a few exceptions where it might make more �nancial sense to sell surplus en-

ergy to the grid. It could also be the case that EVs are required to provide energy

for STOR when charging is not possible, as EVs can charge or discharge at each

time step.

In these two scenarios, row(b) shows that solar energy is sold to both the grid

and P2P on most days, as in some cases, selling to one or the other will be more
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Figure 6.1: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tari�. This date belongs
to the ST 1 V2G P2P S2 microgrid con�guration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid.c. Buy and
sell prices from the grid and from P2P energy trading.d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
e. Simulated STOR events showing the total number of EVs available at home
and the number of EVs providing energy for STOR. The brown dashed line is the
highest number of EVs that provide energy at the same time of all STOR events of
the week.
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Figure 6.2: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tari�. This date belongs
to the ST 2 V2G P2P S2 microgrid con�guration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid.c. Buy and
sell prices from the grid and from P2P energy trading.d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
e. Simulated STOR events showing the total number of EVs available at home
and the number of EVs providing energy for STOR. The brown dashed line is the
highest number of EVs that provide energy at the same time of all STOR events of
the week.
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pro�table for households with PV generation. It is worth noting that when EVs

discharge energy for STOR, the home is not allowed to import energy from the

grid and if there is a solar surplus, this surplus energy has to be sold to either the

grid or P2P as prices onSetting two can o�er better value for PV owners. This is

because the model functions in a way that allows households to either draw energy

from the grid or export energy to it, but not both simultaneously, as explained

in equations (4.17) and (4.18). In essence, the model only allows a one-way 
ow

of energy between the house and the grid. This could be seen as a limitation, as

it restricts the 
exibility of energy exchange between the household and the grid.

This can be seen in both �gures 6.1 and 6.2 on some days of the week EVs that the

energy is discharged for STOR when they are connected at home and the solar energy

is exported instead of being used locally. This results in a total energy shared for

ST 1 V2G P2P S2of 1,678 kWh and self-su�ency ratio (SSR) results of 64.98%,

for the case studyST 2 V2G P2P S2a total energy shared of 1,610 kWh and

SSR results of 57.26%.

6.2.2 Performance of Microgrid Con�gurations for a week in sum-
mer using the agile go tari�

In this section, we will present and compare the four case studies, focusing on their

performance metrics. Here, only the metrics outlined in the section 4.4.6 will be

discussed. The two new metrics introduced to evaluate the e�ect of EV availability

on the provision of energy for STOR, as mentioned in the section 6.1.7, will be

explored in the following section.

Figures 6.3a and 6.3b displays a summary of the resulting performance metrics

of the case studiesST 1, ST 2 and ST 3, ST 4, respectively, for all microgrid con-

�gurations or scenarios for the Summer - S2 week using the Agile Go tari�. Each

row in both �gures comprises �ve separate metrics as described in section 6.1.7,

which are detailed in the following.

ˆ Row A: Contains results for SSR.

ˆ Row B: Contains results for energy balance index (EBI).

ˆ Row C: Contains results for the energy imported from the exchange via P2P
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in kWh.

ˆ Row D: Contains results for the maximum power load of the energy imported

from the grid in kW.

ˆ Row E: Contains results for the mean electricity cost per week in British

pounds (£).

Similarly to the results in chapter 5, in general, these �ndings indicate a consid-

erable link between PV penetration rates and whether P2P is allowed and which of

the two P2P settings is used. As expected, SSR tends to increase at the same time as

the PV penetration rates increase for all microgrid con�gurations or scenarios. This

metric reaches its highest value in both cases when PV penetration rate is 100%,

P2P is allowed andSetting two is used.

Here, the SSR inST 1 is between 24.44% and 68.75%, forST 2, it is between

21.87% and 60.91%, forST 3, it's between 24.85% and 70.25% and forST 4, it falls

between 21.30% and 63.63%. Across the di�erent case studies,ST 1 to ST 4, the

introduction of P2P under Setting one results in only a marginal increase in SSR,

but this growth is signi�cant when PV penetration rates are over 50% under Setting

two. EBI follows the same trend, where higher PV penetration rates increase this

metric value in all case studies and microgrid con�gurations andSetting two shows

the highest values when compared to not using P2P or using P2P andSetting one.

Concerning energy sharing through P2P, there's a noticeable di�erence between

Setting one and Setting two. The shared energy underSetting one is considerably

less due to less advantageous pricing in high PV penetration rates, making self-

consumption of local solar generation or selling to the grid more sensible. However,

Setting two bene�ts from more bene�cial prices for both buyers and sellers, which

in turn increases energy sharing among peers.

For instance, with a 25% PV penetration rate under Setting one, energy sharing

within the microgrid varies from 728 kWh ( ST 1) to 782 kWh (ST 4). Under Setting

two, the shared energy peaks at a 100% PV penetration rate forST 1 and ST 3

(1,681 kWh and 1,673 kWh respectively), and at a 75% PV penetration rate for

ST 2 and ST 4 (1,629 kWh and 1,652 kWh respectively).
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However, it's important to note that these results across the four studies are

quite similar. This is because the only variable that changes between each case

study is the number and timing of the STOR events, which can in
uence the EV

charging and discharging behaviours, as they can't occur at the same time. This is

evident, for example, in the four cases with a 25% PV penetration rate and P2P

allowed underSetting two, where the energy shared between peers ranges from 1,022

to 1,032 kWh.

The maximum power load from the grid varies with the PV penetration rates

across all four studies, generally decreasing as the PV penetration rates increase.

For instance, ST 1 V2G No P2P ranges from 246 kW (100% PV penetration

rate) to 351 kW (0% PV penetration rate). For ST 1 V2G P2P S1, the range

is between 351 kW (0% PV penetration) and 270 kW (90% PV penetration). For

ST 1 V2G P2P S2, the range is from 179 kW (75% and 100% PV penetration

rates) to 351 kW (0% PV penetration rate). In ST 2, the lowest maximum power

from the grid is observed with a 90% PV penetration rate, with respective values

of 290 kW (No P2P), 282 kW (P2P and Setting one), and 231 kW (Setting two).

In ST 3 and ST 4, both with 100% PV penetration and P2P trading under Setting

two, the values are 174 kW and 247 kW respectively.

Across all case studies, energy import from the grid decreases signi�cantly as

PV penetration rates increase. ForST 1 V2G No P2P, import decreases from

5,850 kWh to 3,386 kWh; for ST 2 V2G No P2P, from 6,759 kWh to 4,334

kWh; for ST 3 V2G No P2P, from 5,724 kWh to 3,206 kWh; and �nally, for

ST 4 V2G No P2P, from 6,224 kWh to 3,854 kWh. The introduction of P2P

reduces energy import further. UnderSetting one, the decrease is slight, as observed

in ST 2 V2G P2P S1 with a reduction to 3,758 kWh. However, under Setting

two, the reduction is signi�cant, nearly 900 kWh less compared to not using P2P or

using P2P with Setting one.

High import energy values could be due to EVs charging more energy when

electricity prices are low to participate in STOR provision. The number of STOR

events also impacts energy import. ST 2, with six STOR events during the week,

displays some of the highest values in all its microgrid con�gurations compared to

other studies.
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Mean electricity costs per week generally decrease with higher PV penetration

rates, ranging from £6.93 to -£7.54, with negative costs implying earnings instead

of payments. Not using P2P tends to return the highest costs, while usingP2P,

particularly with Setting two, results in the lowest costs across all case studies.

Furthermore, the number of STOR events in a week in
uences the mean electricity

cost, with more events o�ering more opportunities to supply STOR energy and

increase pro�ts. For instance, ST 2 exhibits the lowest weekly mean electricity

costs compared to the other three studies, which have similar costs to each other.

As in Chapter 5, all microgrid con�gurations enable participants to sell solar

energy to the grid. However, opting to do so decreases SSR, EBI, and microgrid

P2P energy sharing, while increasing the maximum power load from the grid, thus

making the microgrid more grid-dependent. Nevertheless, selling energy to the grid

can reduce weekly mean electricity costs, depending on whether P2P is allowed

and the selected setting. Overall, allowing P2P underSetting two delivers the best

outcomes for the �ve performance metrics compared to other scenarios.

The following summary provides a review of this section's �ndings when using

the Agile Go tari� during a week in summer:

ˆ In all four case studies (ST 1 to ST 4), both the SSR and the EBI saw increases

with higher PV penetration rates and the inclusion of P2P energy sharing.

The SSR ranged between 21.30% and 70.25%. Both metrics experienced a

minor increase when comparing scenarios where P2P is allowed against the

ones where P2P is allowed underSetting one, while a considerable rise was

seen with Setting two for PV penetration rates over 50%.

ˆ The amount of energy shared via P2P in the case studies di�ered notably

betweenSetting oneand Setting two. Under Setting one, energy shared within

the microgrid at a 25% PV penetration rate ranged from 728 kWh (ST 1) to

782 kWh (ST 4). In contrast, Setting two, recorded peaks in energy shared at

the highest PV penetration rates (75%-100%), with values between 1,629 and

1,681 kWh.

ˆ The maximum power load drawn from the grid and energy imported from the

grid were inversely related to PV penetration rates across all studies. Higher
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PV penetration rates resulted in lower maximum power load, with the lowest

values seen between 174 kW (ST 3 V2G P2P S2, 100% PV penetration

rate) and 351 kW (ST 1 V2G No P2P, 0% PV penetration rate). Addi-

tionally, energy import saw a signi�cant decrease with increasing PV pene-

tration rates and further reduction with P2P trading, especially under Setting

two.

ˆ Mean weekly electricity costs also tended to decrease with higher PV pene-

tration rates, with the lowest costs (even reaching negative values, implying

earnings for the households rather than costs) associated with P2P underSet-

ting two. ST 2, the case study with the most number of STOR events (6

events during the week), consistently exhibited the lowest mean costs.

ˆ The option to sell solar energy to the grid across all case studies resulted in

decreased SSR, EBI, and energy shared within the microgrid, and an increased

maximum power load from the grid. However, it also had the potential to

reduce the mean weekly electricity cost, depending on whether or not P2P

energy sharing was allowed and which price mechanism was used.

ˆ While all studies followed similar trends in terms of PV penetration rates, P2P

settings, and STOR events' impacts on SSR, EBI, energy sharing, power load,

energy import, and electricity costs, speci�c values varied. This variance was

primarily due to di�erences in the number and timing of the STOR events

in each case study, in
uencing EV charging and discharging behaviours and

overall energy dynamics.

6.2.3 Results of all microgrid con�gurations and tari�s over the
di�erent representative weeks in a year

This section presents an analysis of the metrics introduced in Section 4.4.6 and

Section 6.1.7. The �rst part will focus on three performance metrics: SSR, P2P en-

ergy sharing, and the mean weekly electricity cost. These three performance metrics

help assess the practicality and economic viability of the microgrid con�gurations

and case studies in this work. In the second part, the speci�c metrics to measure

the role of EVs in providing energy for STOR are analysed. This section covers the
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four di�erent case studies across the di�erent microgrid con�gurations.

The division of these topics into two distinct subsections was deemed necessary

to ensure clarity. It allows for an in-depth, separate analysis of each aspect of the

research, resulting in a more precise understanding of the outcomes and implications

of each set of metrics in our study.

6.2.3.1 Performance metrics

Similarly to section 5.2.3, the �gures presented include values in all microgrid con-

�gurations or scenarios. The values are divided into two sections; the column on

the left, column 1 contains the average values from 0% to 50% PV penetration rates

and the right column, column 2 contains the average values from 51% to 100% PV

penetration rates. Moreover, each row includes each of the �ve tari� scenarios, rows

1 to 5, that were explored, di�erent colours are used to di�erentiate between the six

representative weeks of the year, and di�erent marker shapes are used to help dis-

tinguish them between each microgrid con�guration. X-axis tick labels also include

information about each microgrid con�guration.

In this section, as in section 5.2.3, the focus will primarily be on a select set

of performance metrics: SSR, energy shared from P2P, and the average weekly

electricity cost. Additional metrics, such as EBI, the maximum power load from

the grid, and total energy imported from the grid, can all be found in Appendix B,

speci�cally in appendix B.1.2.

Figure 6.4 presents a detailed comparison of the SSR, across di�erent tari� sce-

narios and di�erent weeks of the year.

The �rst column shows slight di�erences between each week for the �rst three

tari�s and the All Tari�s scenario, ranging from 20% to about 40%. The Flat

tari�, in contrast, shows more noticeable di�erences, with values ranging from 0%

to approximately 30%. In certain situations, the Summer - S2 tari� outperforms

other weeks in the �rst column, yet there are instances where the Agile Go, E7

tari�s, or All Tari�s scenario perform comparably.

In the second column, the Summer - S2 tari� again generally performs the best,

except for with the Agile Go tari�, where the Spring - S1 tari� demonstrates superior

performance. This column shows performance values ranging from 15% to nearly
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Figure 6.4: Self-su�ency ratio values for the six representative weeks of the year,
the �ve tari� scenarios and all microgrid con�gurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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100% for the E7 and Flat tari�. A signi�cant di�erence in performance across

the weeks of the year is observed, likely due to the variations in solar generation

throughout the year. Autumn - S5 often has the lowest performance values, which

corresponds with the decrease in sunlight during this season.

An important observation is that microgrid con�gurations that allow P2P en-

ergy sharing, especially under theSetting two, consistently have the highest per-

formance values compared to those microgrid con�gurations where P2P is allowed

under Setting one or those microgrid con�gurations without P2P allowed. This

�nding suggests that enabling P2P energy sharing w could signi�cantly enhance the

e�ectiveness of microgrid con�gurations under a price mechanism that bene�ts both

sellers and buyers such asSetting two.

Figure 6.5 provides a comparison of the total energy imported via P2P energy

sharing within a microgrid. For this analysis, only scenarios with P2P, both Setting

one and Setting two, and PV penetration rates ranging from 10% to 100% are con-

sidered, focusing on how these two systems a�ect the performance of the microgrid.

These elements are signi�cant within the context of energy import and trade within

a microgrid, and both directly in
uencing the performance of the microgrid.

In �gure 6.5, microgrid con�gurations in column 1 operating under Setting one,

are observed to trade less energy in comparison to those underSetting two. This

behaviour is primarily attributed to the di�erences in P2P prices that are o�ered to

energy buyers and sellers within the microgrid, as explained in section 4.3. Here, the

overall energy shared within the microgrid under Setting one , particularly during

Spring - S1 and Summer - S2, can be around half of the amount of energy traded

under Setting two.

Column 2, compared to column 1, contains the results of higher PV penetration

rates, which in this case shows a substantial increase in the amount of energy traded

within the microgrid, reaching up to 3,700 kWh. This pattern suggests that a higher

degree of solar energy availability potentially facilitates more energy transactions.

Consistent with our previous observation, con�gurations operating under Setting

two continue to show higher results. Overall, as shown in both columns 1 and 2, the

total energy traded under Setting one shows small increments from week to week.

In contrast, Setting two presents a more dynamic scenario, showing considerable
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Figure 6.5: Energy shared from P2P for the six representative weeks of the year,
the �ve tari� scenarios and all microgrid con�gurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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uctuations in the weekly energy exchanges.

It is important to note that the amount of energy exchanged within the microgrid

is not solely in
uenced by settings or PV penetration rates. Seasonal variations in

sunlight also play a crucial role. For instance, during Summer - S2, more energy is

traded, mainly due to the greater availability of solar surplus. In contrast, during

Autumn - S5, energy trading reduces due to lesser sunlight during this time of the

year.

Additionally, the impact of di�erent tari� scenarios on energy trading becomes

apparent. As tari� data is quite important to calculating P2P prices, the choice

of tari� can have signi�cant implications. For instance, when the Agile Go tari� is

used exclusively within the microgrid alongside high PV penetration rates, the total

energy exchanged within the microgrid is less than in the other four tari� scenarios.

In this case, the average energy traded is less than 2,500 kWh, with the highest

results observed during Spring - S1 rather than the sunnier Summer - S2 week.

Figure 6.6 presents a comparative analysis of the mean weekly electricity prices

within di�erent microgrid con�gurations. One observable trend is that con�gura-

tions with P2P under Setting two consistently show lower prices compared to other

con�gurations. The prices span from -£9 to £27 across all the weeks of the year,

both columns (lower and higher PV penetration rates) and all rows (di�erent energy

tari� scenarios).

A closer look shows that the Summer - S2 week typically corresponds to the

lowest costs. There's an exception when the Agile tari� with PV penetration rates of

0-50% is employed; here, the lowest costs are observed during the Autumn - S4 week.

Moreover, the highest prices generally occur during Autumn - S5 or Winter - S6,

depending on the tari� and PV penetration rates. Additionally, as PV penetration

rates increase, the di�erence in weekly results also increases. As expected, during

periods of the year with abundant sunlight, there are some instances where electricity

cost are of negative, meaning that the user gets paid instead of paying their electricity

bill.

It is worth noting that these prices are in
uenced by the frequency of STOR

events each week. Participation in STOR provision can generate pro�t for house-

holds. However, the timing of these events is crucial. Which means that, during a
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