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Abstract

The high and multifaceted value of forests globally provides a strong motivation to bet-

ter understand how they respond to perturbation, and the key variables that moderate

this response. However, forest-stability research lacks a unified framework for defining

and quantifying stability, and has historically focused on smaller spatial scales, resulting

in considerable uncertainty about the variables that moderate climate-forest stability at

landscape scales. Our results highlight the importance of understanding forest stability

when seeking to explain landscape scale variation in forest response to climate perturba-

tion. In all case studies when investigating climate perturbation, the magnitude of the

perturbation alone was insufficient to explain productivity patterns. Therefore, any exam-

ination of productivity response to perturbation without considering variance in stability

will be missing a crucial component. The methods presented in this thesis demonstrate

that it is possible to quantify and describe spatial patterns in stability of forests to cli-

mate perturbations at landscape scales, and to understand the mechanisms behind the

variation in stability that we observe. Investigation of which variables were important

revealed that for both tropical and temperate forests, the background climate that a for-

est has experienced was the single most important group of explanatory variables, except

when functional traits were directly included in models (which were then most important).

Background climate, we argue, ultimately acts as a measure of the selective pressure act-

ing on the community, and thus is informative of the community composition in terms

of species and functional traits present. The finding that functional traits are impor-

tant in understanding the response of forest ecosystems joins a growing body of literature

highlighting the power of a functional trait approach in understanding variation in pro-

ductivity responses, and offers a mechanistic understanding of the processes underlying

stability, and giving us valuable insights into how these forests may respond to ongoing

climate change.
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Chapter One

Introduction and Literature

Review

1.1 Seeing the forest through the trees

Viewed from space the vibrant living green of the Earth’s forests is arguably one of its most

striking features. Globally they cover nearly a third of the Earth’s surface[1] and provide

a multitude of services[2] benefiting all life on Earth. Forests are critical to the survival of

humanity, providing services including climate, nutrient and water regulation, provision

of both timber, and non-timber products, they sequester vast amounts of atmospheric

carbon helping to combat climate change and are home to a wide range of biodiversity[2].

Forests can be loosely defined as areas containing woody vegetation[3]. However, beyond

this, a range of forest definitions exist reflecting the diversity in form and function of

forests globally. Forests have been defined as economically important sources of timber

[3], as ecosystems composed of trees with myriad forms of biodiversity [4], as a home

for indigenous people[5], as repositories for carbon storage[6], as natures contributions

peoples [7]. In addition to conceptual definitions, operational definitions of forests (used to

measure and quantify the amount, or quality of forest in an area) can also vary significantly

depending on the data available for measurement. From survey data, one may delineate

forests using variables such as tree density, canopy cover, and tree height. By comparison,

if remotely sensed data is being used, forests may instead be defined using information from

passive and active remote sensing systems to create proxies of forest biomass, phenology,

canopy cover, canopy and forest structure, and reflectance signatures. Finally, for socio-

1
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ecological forest definitions, economic studies may have to be conducted to evaluate the

economic value of the services that the areas provide to determine if the areas meet the

definition of a forest, and what type of forest it is[8].

Forests definitions have historically focused on defining forest, and forest health in terms

of timber production[3]. It is only in the past fifty years that definitions looking more

holistically at forests have been developed. The definition of a forest and forest health

can have significant impacts on both predictions of global forested area, and forest status

[9]. Historically, forests assessments at the global scale were motivated by concerns of

timber shortages, and so forests were defined as being “land covered with woody growth

of economic importance”[3], and primarily focused on the capacity of these areas to yield

timber. It was only in the 1990s [10] that other aspects of forest such as biodiversity and

species loss were considered to be important in understanding forest status. The UN Food

and Agriculture Organisation Global Forest Resource Assessment 2020, the United Nations

Framework Convention on Climate Change and many other international processes and

institutions define “forest” primarily in terms of land use and the potential for forest to

be in an area (definitions shown in Table 1.1).

Table 1.1: Definitions used by the UNFAO, UNFCC and UNESCO for Delineating Forest
Areas

Organisation Definition

UN Food and Agriculture Or-
ganisation Global Forest Re-
source Assessment 2000

Lands of more than 0.5 ha with a tree canopy of more
than 10%, which are not primarily used under agricul-
tural or urban land uses[11]

The United Nations Conven-
tion on Climate Change (UN-
FCCC)

A minimum area of land of 0.05–1.0 ha with tree crown
cover (or equivalent stocking level) of more than 10–30

UNESCO Closed forest: trees = 5 m with crowns interlocking.
Woodland: trees = 5 m tall with crowns not usually
touching but with canopy cover = 40%

This focus on land use and the potential of trees to exist in an area can result in areas being

classified as forests even if currently treeless. Conversely, agricultural and urban areas with

tree cover may be considered as land uses other than forest. Even within this paradigm

of forest definitions, significant variation exists. Comparing various national reporting

thresholds, Lund (2002)[8] showed (Table 1.2) that the thresholds used to delineate forested

areas varied considerably, requiring significant work to harmonise in order to arrive at

estimates of global forest coverage.
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Table 1.2: Comparing highest and lowest thresholds used to define what a forest is, from
FAO national reporting adapted from Lund et al. 2002[8], considerable variation in the
threshold can be seen to exist between in definition, which in turn will significant impact
is defined as being forest

Threshold Lowest/Highest Value Countries

Area Lowest 0.01ha Belgium, Northern Marian Islands
Highest 100ha Malawi, Papua New Guinea

Crown Cover Lowest 1% Iran
Highest 80% Malawi, Zimbabwe

Tree Height Lowest 1.3m Estonia
Highest 15m Zimbabwe

Strip Width Lowest 9m Belgium
Highest 60m Philippines

In summary, forest definitions should be context dependent and should relate to, the

system you are studying, the tools you are using to do so, and the purpose of your study.

As this thesis studies a range of forest types, each chapter of this thesis makes use of a

contextually appropriate, albeit harmonised, definition of forest appropriate for the specific

research question.

Inherently linked to the definition being used to define what a forest is, the definition of

forest health, or status of a forest also varies widely. At the level of the individual health

is relatively simple to define as the absence of damage and disease, and that the individual

continues to grow[12]. However as the unit of measurement increases from individual trees,

to stands, entire forests, landscapes and ultimately at a global scale forest health becomes

increasingly difficult to define. In addition to definitions varying at scale, definitions can

also vary based on perception of forest value. More utilitarian definitions of forest health

tend to focus on forest productivity, the volume of timber produced, and the material

benefits that forest supply to local communities as way to monitor their health, while more

ecosystem centric definitions tend to focus on community composition, metacommunity

dynamics, soils and other such indicators[13].

Combining scale, and the utilitarian/ecosystem centric perspectives it is therefore easy to

see how a great number of definitions of forest health can exist. Table 1.3 adapted from

Trumbore et al (2015)[12] summarises a number of the most common definitions of forest

health.
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Table 1.3: Showing a range of different measures of forest health, over a range of differ-
ent units of measurements, and from both utiltarian and ecosystem-centric perspective
Adapted from Trumbore et al (2015)[12]

Utilitarian Indicators

Disease
Damage
Growth

Wood yield
Pest infestation
Leaf area

Water quality
Wood supply
Aesthetics

Carbon storage
Energy fluxes
Element fluxes

Ecosystem Indicators

Dead wood
Disease resistance
Genetic variability

Habitat quality
Community structure
Soil fertility

Seral diversity
Connectivity
Patchiness

Persistence
Invasion
Extinction

Assessment tools

Inventory cruise
Inventory plots

Inventory plots
High resolution
remote sensing

Inventory plots
Remote sensing

Remote sensing
Monitoring
networks

Tree Forest Landscape Global

Forests are not static systems, spatially or temporally, and even considering all of the

above metrics, across all of these scales will ultimately fail to accurately capture forest

health if the inherent spatial and temporal variance in forest ecosystems isn’t accounted

for[12]. Death of a forest patch can occur due to a stress or perturbation, and may affect

both healthy and unhealthy trees equally e.g. windfall, fire, or may target unhealthy trees

disproportionately e.g. drought stress. While this forest patch itself might be considered

unhealthy, can facilitate a whole suite of essential ecological process such as regeneration,

nutrient cycling, or habitat creation at broader spatial scales[12, 14] . A healthy forest

therefore might be considered one that is comprised of a mosaic of patches, in differ-

ent successional changes, that promote nutrient dynamics, a diversity of cover types and

niches.[15, 16].

1.2 What do the forests of the world look like?

Forests can be found across boreal, temperate, subtropical and tropical climatic domains.

In total, they cover 4.06 billion ha ( 40 million km²)[17] representing nearly a third of the

planet’s land surface[1]. The tropical climatic domain has the largest proportion of the

world’s forests containing around 45 per cent of global forest cover, followed by the boreal,

temperate and subtropical domains[1]. If we look at the distribution by countries then it

can be seen that over half of the world’s forests can be found in just five countries, Russia,
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Brazil, Canada, the United States of America and China.

Forests vary considerably across these climatic domains to take advantage of the envi-

ronment they find themselves in, resulting in a myriad of different forest forms globally.

These forms include but are not limited to tropical and temperate rainforests, coniferous,

deciduous, mangrove, boreal, and montane forests, as well as savanna and tundra. Fur-

ther adding to this diversity is the impact of natural and human disturbance which creates

mosaics of different aged forests, secondary regrowth forest areas which were deforested

and have recovering tree stocks, plantations, and managed forested areas.

1.3 Global Forest Status

Globally forests are experiencing a wide range of threats, from a multitude of different

sources that have changed over time primarily as a consequence of the evolving nature of

human development, in 2010 the world had 3.92 Gha of tree cover extending over 30% of

total land area [18], as of 2022 we have lost a total of 22.8 Mha of tree cover[18]. We will

focus primarily on tropical and temperate forests, as this thesis will focus on forests that

fall under these domains.

1.3.1 Tropical Forest Status

Globally tropical forests represent about half of all forested areas (∽ 20 million km²)[17].

Climatically they are defined by having year round high levels of rainfall, and stable

temperatures[19]. Their status is dominated by unprecedented levels of loss and degradation[20],

attributable to the interacting effects of a diverse set of threats. Global primary tropical

forest loss over the period 2011-2021 averaged 3.8 million ha per year [18] (for comparison

the total amount of woodland in March 2022 in the entirety of the United Kingdom (UK)

was estimated to be 3.24 million ha[21]), with the highest loss in recorded history of 6.13

million ha occurring in 2016[18]. Over the 10 year period 2011-2021 this totals over 42

million ha of primary tropical being lost[22]. The rate of loss varies amongst countries

containing tropical forest. Between 2010 and 2020 tropical forests in Africa have experi-

enced the highest annual rate of net forest loss in, at 3.9 million ha, followed by South

America, at 2.6 million ha[23].

To date approximately half of all potential tropical closed-canopy forest has already been

removed[20], this dramatic loss has largely been driven by the processes of conversion
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into non-forest systems and further compounded by degradation of existing forests[24].

The conversion of primary forest into non-forest systems for agricultural purposes[25] has

resulted in an estimated 100 million ha of tropical forests being converted between 1980

and 2012 commonly for soybean sand oil palm production[25, 26], the creation of cattle

ranches[27], and for mining activities[28].

Forest degradation can occur in a range of circumstances, with and without deforestation

subsequently occurring, for example, in the forest fragments that remain following defor-

estation [29], in areas made accessible through selective logging, or in forested areas which

are located close to human settlements. The magnitude of area exposed to degradation is

significant, in the Brazilian Amazon alone as a result of deforestation 20,000 km of new

forest edge is created each year[30], and the area of forest in fragments of 100 km² or

within 1 km of the nearest forest edge is greater than the area deforested[31].

1.3.2 Temperate Forest Status

Temperate forests are forested areas found in the temperate zones between 25° and 50°

latitude, between the boreal and tropical zones[32]. They account for 10 million km² of

global forested area[17]. The predominant climate of these forest regions is characterised by

distinct cyclic, seasonal changes involving periods of growth and dormancy[33]. Temperate

forests are often categorised into broadleaf (hardwood) dominated, conifer (softwood)

dominated, or mixed forests highlighting their importance in timber production. These

forests, more so perhaps than any other forested biome[33] are characterised by the extent

to which human actions have shaped them, and the length of time over which this has

been happening.

The extent to which human actions have shaped the current day distribution of temperate

forests is demonstrated when looking at the distribution of old-growth temperate forests in

the Eastern United States. Today it is estimated that less than 1% of the original forests

cover remains today as old-growth forests[34] highlighting the widescale deforestation, as

well as the subsequent regrowth that has occurred. In Europe, widespread anthropogenic

alteration and the resulting ecological legacies can be traced back over 2000 years to the

Roman occupation of central France[35]. Older still is the impact left on temperate forests

of China, where evidence of extensive forest alteration dates back some 6000 years ago

and indicates such a degree of disturbance that the roles of climate and anthropogenic

disturbance are essentially confounded in understanding long-term patterns of change in
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vegetation[36].

When considering the balance between forest loss and gain, temperate forest systems are

the only forested biome between 2000 and 2020 that demonstrated a net gain in forest

cover[18]. However, this balance is potentially shifting with temperate forest in both

Europe and Asia recording substantially lower rates of net gain in 2010–2020 compared

to 2000–2010, and temperate forests in Oceania demonstrating net losses of forest area in

the decades 1990–2000 and 2000–2010 [23].

Temperate forests have so far displayed a remarkable ability to recover following deforesta-

tion and degradation, with large swaths of forest that have been felled in recent centuries

continuing to regrow vigorously, absorbing significant proportions of anthropogenic car-

bon dioxide emissions[37]. While historically the major threat to temperate forests has

been anthropogenic deforestation, and land use change, there is increasing evidence the

greatest threat facing temperate forests is increasing rising global temperatures which

are contributing to increasingly severe droughts, and increased average temperatures[38].

These “hotter droughts”[39] have been shown to be the main driver of temperate forest

morality over the past few decades[39].

Hotter droughts affect trees directly by increasing the atmosphere’s evaporative demand

for water[40], increasing tree water stress, which induces detrimental physiological effects

on trees directly[41], and indirectly by reducing the amount of snow that falls and which

as a source to replenish soil moisture[42]. In addition to these direct mechanisms, hotter

droughts can indirectly make trees more vulnerable by increasing the frequency of novel

insect and pathogen outbreaks[43].

In addition to driving mortality, hotter droughts are also interacting with a number of

other stressors to alter fire regimes[44]. This is resulting in an increase in the frequency

of uncharacteristically severe and large fires, and longer fire seasons in temperate forests

globally[45].

1.4 The Importance of Temperate and Tropical Forests

Describing forest value and importance is difficult and is as much a political and philo-

sophical exercise as it is a scientific one. The value of forests depends very much on the

paradigm being employed to value them, and there are good arguments that say that given
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the critical role that forests play in sustaining life, they are by definition invaluable, and

so any valuation can only serve to underestimate their true worth[2].

One of the most commonly used frameworks through which to view forest ecosystems

more holistically is the “ecosystem services” framework. First proposed in the 1970’s[46]

and subsequently becoming mainstreamed following its incorporation into the Millennium

Ecosystem Assessment [2]. Under this paradigm forests are viewed as a collection of

services that arise from the functioning of the ecosystem. Value is attributed to these

services by the contribution that each of these services makes towards human well-being

and linking these services to markets to achieve a financial valuation.

However, while partly successful in communicating the value of ecosystems to decision

makers, a number of key criticisms of the ecosystem services paradigm exist. Many of

these criticisms[47] focus on the fact that during the conceptualisation of the ecosystem

services framework, and when it is applied to value an ecosystem, the information and

paradigms used are dominated by knowledge from the natural sciences and economics.

As the research and policies based on this framework have developed, they have tended

to focus more narrowly on natural sciences and economics, and those services which are

more easily amendable to valuation by these fields[7]. Over time this has resulted in a

failure of the paradigm to communicate the full value of ecosystems to decision makers

and to meaningfully engage perspectives from the social sciences, or those of local practi-

tioners, including indigenous peoples, who have significant knowledge, insights and tools

to understand the intricacies of human-nature relationships[48].

As an effort to address the criticisms of the ecosystem service framework, the Nature’s

Contributions to People (NCP) paradigm[49] was developed by the Intergovernmental

Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Based on the

ecosystem service framework nature’s contributions to people are all the contributions,

both positive and negative, of living nature (diversity of organisms, ecosystems, and their

associated ecological and evolutionary processes) to people’s quality of life[49].

The key differences between the NCP approach and the ecosystem services framework, is

that the NCP paradigm focuses on recognising the central and pervasive role that culture

plays in defining all links between people and nature[7]. The second key difference is that

the NCP approach aims to elevate, emphasise, and operationalise the role of indigenous

and local knowledge in understanding nature’s contribution to people[7].
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Nature’s contributions to peoples are grouped into three broad NCP groups, these being

regulating, material and non material contributions[49]. Although these categories bear

some resemblance to the ecosystem services broad groups of provisioning, regulating, sup-

port and cultural service, a key difference is that culture permeates through and across all

three broad NCP groups rather than being confined to an isolated category[7]. In addition,

the three broad groups are explicitly framed as overlapping rather than as independent

compartments, as within the ecosystem services approach. An example of this is food,

food is primarily a material NCP because calories and nutrients are essential for physical

sustenance. However, food is full of symbolic meaning well beyond physical survival and

indeed, non material and material contributions are often interlinked in most, if not all,

cultural contexts[7].

Applying this paradigm to forests we can start to understand the substantial contribution

that they make towards people. Material contributions of forests to people for instance

include food, firewood, timber, medicine, tradable goods, plant fibres for the production

of clothes, and animal fodder. The material contributions provided by forests are used

globally, and it is estimated that 1.2 to 1.5 billion people directly rely on tropical forests for

food, timber, and medicine[50]. Rural populations located geographically close to forested

areas may have an even higher dependence of forest provisioning services. Kalaba et al.

2013[51] for instance found that forest provisioning services in Africa’s Miombo woodlands

provided 44% of average household income, and that for the poorer households the income

from these provisioning services was the largest relative contribution.

Regulating contributions are often global at the scale at which they contribute towards

humanity, the value of forest regulating contributions is extremely high and are often

considered to be the most valuable set of contributions offered by forests[52]. Exam-

ples of forest regulating contributions include flood regulation, and the moderation of

disturbances[52]. In addition to these forests play a critical in regulating global climate,

via water transpiration, cloud formation, and atmospheric circulation[53, 54]. Forests also

play an important role in water and carbon cycles, exchanging more water and carbon

with the atmosphere than any other biome[53, 54], and storing upwards of 190 billion Mg

of carbon above-ground[6].

Studies have shown that forests provide a number of non-material benefits. De Groot et

al 2012[52] for instances estimated the contributions from forests in terms of aesthetics,
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recreation, inspiration for culture and art, spiritual and cognitive experience, to be twice

the value of regulating contributions globally across temperate forests, and less than half

the value of regulating contributions in tropical forests.

1.5 A Rationale to Study Forests

Forests are globally important, and are being exposed to a variety of interacting stressors

which threaten them, and the diverse set of services and benefits that they provide hu-

manity. A strong rationale exists to study these systems to better our understanding of

the threats that face them, how they respond to these threats, and to allow us to prioritise

conservation efforts.

There is considerable diversity in how forests respond to stress. Some forests when ex-

periencing drought, for instance, show relatively little change, while others for a similar

magnitude drought show dramatic responses in productivity, mortality, community com-

position or ecosystem service provision. Understanding why this difference exists, and how

mechanistically it occurs will be one of the key themes of this thesis.

In this next section we will examine the language and methods around how stability is

described, quantified, and analysed. Considerable diversity exists in the literature on the

topic of stability, and so the following section will synthetize the literature in order to

provide a single framework for use in this thesis to help understand what forest stability

in the face of change means.

1.6 Forest Stability

The field of ecosystem stability straddles conceptual and applied ecology and is extensively

discussed by both. This has resulted over time in a large amount of paradigms, concepts,

components, and definitions for understanding what ecosystem stability is. The diversity

in approaches and authors has resulted in concepts which overlap, labels and definitions

being used to mean different things by different groups, and methodologies which are only

applicable to some definitions of stability components.

From reviewing the literature, no definitive consensus exists that unifies the many defi-

nitions and paradigms into a single framework. Therefore, for this thesis the literature

has been reviewed and a conceptual framework developed based on definitions that are
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discreet and non-overlapping in scope, quantifiable using the data that are available to us,

and consistent with the broader literature on the topic.

Two key paradigms are used in this conceptual framework, the stability landscape[55],

and the posing of stability in the format of “stability of what, to what”[56].

1.6.1 The Stability Landscape

The stability landscape is a multidimensional state space that represents all possible state

variables (ecosystem descriptors e.g. percentage tree cover) for a particular ecosystem, and

the potential energy that is required to move through the landscape[55]. Figure 1.1 shows

a hypothetical stability landscape with two alternate stable states that demonstrates a

number of the key features of stability landscapes. The stability landscape likens an

ecosystem being perturbed to a ball moving through this landscape. When located in

one of the wells, the ecosystem tends to move towards the bottom of the well by gravity

(a proxy for the processes and mechanisms that an ecosystem that stabilise interactions

within a community), when the force of attraction is greater than the force of the stressors

on it. When forced by an external force the ball is moved in a certain direction, how far

the ball moves depends on the steepness of the terrain it encounters which is defined as

ecosystem resistance[57]. Steeper walls of the well mean higher resistance (when moving

up them), and in real life represent ecosystems which change little when exposed to a

stressor.

Figure 1.1: A Hypothetical landscape with two basins of attraction separated by a hill
which must be overcome if the system is to change to a new basin of attraction

Another commonly defined component is ecosystem resilience[58]. Resilience is the rate,
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or by some definitions the extent[59], to which an ecosystem recovers to steady state fol-

lowing a perturbation. Within the landscape metaphor this is related to the steepness of

the local terrain that the ecosystem finds itself following perturbation. Resilience can be

independent of resistance as explained by this metaphor, as moving towards the bottom

of the well is aided by gravity, rather than hindered by it, if the ecosystem is moving up

the well. This type of stability is commonly referred to in the literature as engineering

resilience, however, the literature also uses term “ecological resilience” to refer to another

aspect of stability. To prevent confusion between these two elements in this thesis engi-

neering resilience will be termed resilience, and ecological resilience will be termed latitude

following the naming convention of Walker et al (2004)[55].

Ecosystem latitude, commonly referred to in the literature as ecological resilience, in this

paradigm is the width of the well that each ecosystem is currently in. Higher latitude

means a wider well and thus a wider range of state space that if an ecosystem is moved

to by external stressor, will still be influenced primarily by the same attractor, and thus

will tend to the same state it was before perturbation[60, 55].

How close the ecosystem currently is to the lip of the well is defined as the ecosystems

precariousness[55], with a system that is closer to the edge needing less of a push by

external stressors to end up in the well of attraction of a different ecosystem state and

thus resulting in phase shift or state change, this element is also referred to in the literature

as a tipping, or bifurcation point[61].

The landscape itself is not constant over time, and the potential energy required to move

through the landscape at any point is only constant if all possible biotic and abiotic fea-

tures and their relationship with the potential energy required to move through landscape

remain constant, which is unlikely to happen for any length of time in reality given that

ecosystems are constantly changing, and stressors such as climate change are altering these

fundamental relationships.

In summary, the landscape stability paradigm gives us an easy way to conceptualise,

delineate and define four components of ecosystem stability, resistance, resilience, latitude,

and precariousness. Taking this discussion into consideration, the definitions for each of

these components for the purposes of this thesis will be:

• Resistance



13

– The ability of an ecosystem to withstand perturbations and remain unchanged.

• Resilience

– The ability of an ecosystem to return to pre-perturbation levels following a

perturbation.

• Latitude

– The maximum perturbation that the ecosystem can take and still remain as

the same ecosystem.

• Precariousness

– How close is the ecosystem currently to changing to a different system.

1.6.2 Stability of What, to What?

The stability landscape paradigm can provide conceptual definitions of the subcomponents

of stability, but not quantifiable metrics that we can use to actually make inferences about

the stability of a particular system. In order to do that, we need the specific context

of the system[62], and the source of perturbation[56]. Carpenter et al (2001)[56] used

the phrase “resilience of what, to what”, and this applies more generally to stability as

well. By specifically referencing the system and the source of perturbation that we are

interested in, we are able to design metrics that provide us information about the stability

of the system, and then make wider inferences about properties that in turn influence this

stability. To this end, each chapter of these thesis will investigate one of these components

of stability, and the variables that influence this stability in relation to a particular source

of perturbation.

1.6.3 Press and Pulse Perturbations

Press, and pulse perturbations are different ways in ways an external force may act upon

an ecosystem, with the key difference being the temporal span over which they act. Pulse

disturbances are discretec usually relatively short lived events, while press disturbances act

continuously over a long period of time[63]. In terms of the stability landscape paradigm,

pulse events can be considered ones that displace the ecosystem from its current location

as a one-off event, while a press event is one that acts to move the ecosystem in certain

direction continuously over time.
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1.6.4 Quantifying Stability of Forests

A range of different methodologies have been used in the literature to measure stability and

its components, this section aims to give an overview of some of the key methodologies

used in the literature in order to give context to the methods used in this thesis. The

aspect of stability that each of these methodologies measures has been harmonised with

the conceptual framework used described previously to describe stability.

Resistance

The most common methodology employed to quantify resistance is through comparing

ecosystem descriptors during, or immediately following a pulse perturbation such as a short

lived drought, to the baseline value for this descriptor. Although in theory any descriptor

of an ecosystem could be used to quantify resistance, overwhelmingly productivity[64,

65, 66, 59] is used to do so. Productivity makes for an ideal metric when investigating

ecosystem stability due to it being influenced by both changes in abundance, and condition

of the individuals within the ecosystem. A significant change in productivity therefore is

a holistic indicator for the status of the ecosystem more generally. Although less common

other ecosystem properties used in the literature include canopy water content[67], daily

latent energy exchange[68], and ecosystem services[69].

In the baseline method a long-term average for the ecosystem descriptor is calculated and

the difference between this and the value of the ecosystem descriptor during, or immedi-

ately after a pulse disturbance is calculated, this value is often normalised through the

calculation of anomalies, to allow comparison between different areas. Lower differences

between baseline and during/after perturbation are inferred to mean high resistance of the

trait in question, to the perturbation being measured and vice versa for higher differences.

All the methods for measuring resistance so far have used discrete pulse events to study

resistance of the system to that perturbation. By way of contrast Keersmaecker et al.

(2015)[70] and Anderegg et al (2018)[68] used a time series approach to infer resistance.

Keersmaecker et al. (2015)[70] used a time series of Normalised Difference Vegetation

Index (NDVI) anomalies and model this time series as a function of a measure of in-

stantaneous drought, temperature anomalies and the previous time NDVI anomaly in a

autoregressive model. Resistance was then inferred from the magnitude of the beta co-

efficient with more resistant systems have a smaller beta coefficient[70]. Anderegg et al
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(2018)[68] used a time series of daily latent energy exchange as a proxy for evapotranspi-

ration, itself a proxy for productivity and modelled this against vapour pressure deficit,

and soil moisture. The beta coefficients for each of these terms was then used to infer

resistance, again through evaluation of the coefficient magnitude.

Resilience

In the literature resilience is most commonly defined as either the extent[59], or the rate[70]

at which ecosystems return to baseline conditions following perturbation. Of the papers

reviewed, the most common methodology was to compare an ecosystem metric to pre-

perturbation levels some time following the end of a pulse perturbation and calculate the

difference[65, 66, 59]. Highly resilient systems were those with a smaller difference, indi-

cating the system had recovered quickly. In some cases rather than setting an arbitrary

timescale to measure recover, the amount of time taken for a particular ecosystem descrip-

tor to return to, or close to, pre-perturbation levels was used as the metric for resilience.

More resilient systems being those that take a shorter amount of time to return to, or

close to pre-perturbation levels[69].

The final class of methodology to measure resilience from the literature were those that

used autoregressive models to model time series of ecosystem descriptors before, during

and after a pulse perturbation[70, 71]. Keersmaecker et al (2015)[70] for instance modelled

NDVI anomaly as a function of drought and temperature anomalies, as well as a past NDVI

anomalies, using an ARX model. In this framework, the coefficient of the past NDVI

anomalies within the model is a measure of resilience as it represents how similar current

NDVI anomalies are to past ones. A large absolute value of this coefficient indicates a

slow return to equilibrium with values being similar to past NDVI values for a long length

of time, and thus being associated with a low resilience.

Latitude

Latitude is studied relatively rarely compared to resilience[72] due to a combination of

confusion in the literature over what the components of stability are, and the relative ease

in which other stability metrics can be calculated. Two broad categories of methodology

exist to measure latitude, those that attempt to approximate ecological systems with a low

dimensional model parameterised so that quantitatively it matches the empirical system

and then infer latitude and other stability metrics from this model, and those that estimate
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latitude directly from the data[72].

In the first method, low dimensional models are used and parameterised to match an

empirical study system, this is usually only possible when examining one-dimensional

systems[72]. Although in some circumstances it may be possible to approximate potential

functions[73]. With an appropriately parameterised model it is then possible to quan-

tify not just latitude, but a ranger of stability metrics including the size of the basin of

attraction[74], and precariousness[75]. In the second methodology, where it is not pos-

sible to generate such a model, a probabilistic stability landscape can be reconstructed

from observations of the system, assuming that when sampling spatially the system we

are observing has “visited” most parts of the stability landscape. Hirota et al (2011)[76]

used this methodology to estimate latitude by examining how percentage tree cover varied

spatially with precipitation. They found that tropical forest, savanna, and tree-less states

existed within discrete precipitation thresholds. This allowed them to calculate probabil-

ity distributions for each of the states, and using these distributions and a space for time

substitution they were able to estimate the latitude for each of the tree systems.

Precariousness

Precariousness is more commonly quantified than latitude, but less frequently than re-

sistance and resilience. Examination of the literature showedd that a variety of methods

exist to quantify this component of stability. The most commonly employed methodology

is the use of various metrics to identify critical slowing down in the functioning of key

ecosystem processes. Critical slowing down has its caveats[77], but can be considered to

be an indicator of when an ecosystem is approaching a bifurcation between two or more

stable states. The theory behind critical slowing down postulates that as an ecosystem

approaches the point where it will be attracted to a different stable state within the sta-

bility landscape (and thus start to change into a different configuration), the interactions

and self-reinforcing processes within the system that have kept maintained it in its current

form break down. As a result of this it takes the system longer to recover from any small

perturbation that may occur[78].

This critical slowing down can be identified in a number of ways such as detecting in-

creasing amounts of autocorrelation in an ecosystem descriptor[79], or increased variance

in the ecosystem descriptor[79]. For example, Dakos et al. (2012)[79] test the hypotheses

that as a system gets closer to a critical transition, or the lip of its current basin of attrac-
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tion, as a result of the breakdown of internal processes, it may lose resilience, and may

experience increased variation. Using biomass as a measure of ecosystem state, they test

two different variables for detecting ecosystems close to critical transitions, the robustness

of variance, and critical slowing down. Robustness of variance hypothesises that close to

critical transitions ecosystems become less able to maintain themselves, and so one might

expect to see increased variability in ecosystem descriptors as you get closer. Using this

experimental setup Dakos et al. (2012)[79] find that this isn’t a good indicator of critical

transitions, with several transitions occurring without a subsequent increase in variance

occurring. However, the degree of auto-correlation was found to be a reliable indicator

of a critical transition. With systems close to a critical transition exhibiting increased

auto-correlation in ecosystem variables due to a decreased ability to recover. Thus, this

study highlights that studying auto-correlation can be used to infer information regarding

not only resilience but also proximity to the edge of the basin of attraction, here defined

as its precariousness.

A Gap Identified - Measuring Stability

Generally forest stability in the literature has been studied at small spatial scales, with

relatively few studies looking at landscape scales. While understanding what drives forest

stability locally is certainly important, it is also important to understand landscape scale

patterns, to better understand more generally what drives forest stability. Scaling up

local findings to landscape scale processes is difficult, and in many cases not reliable as

it’s likely that the factors moderating stability at a landscape scale are different to those

moderating stability at small spatial scales[80]. To this end, it was decided that in this

thesis the factors and processes that influence forest stability at landscape scales would be

explicitly examined in order to better our understanding of the large scale processes that

moderate forest stability.

1.6.5 What Controls Stability?

When studying ecological systems, we are often interested not just in quantifying an

ecosystems stability and how it is changing over time, but to also understand what pro-

cesses, and variables influence this stability. This next section will focus on summarising

the literature on this topic, and to identify gaps that this thesis will aim to contribute to

filling. Although this thesis will ultimately focus on stability in forests, this section will
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examine stability more widely across a variety of ecosystem types and settings.

The role that ecosystem complexity plays in moderating ecosystem stability, is a topic

widely and extensively discussed in the literature. Early work to develop this paradigm

was based on observations that population density patterns within cultivated land with

simplified terrestrial communities tended to exhibit more violent population density fluc-

tuations than more diverse communities as a result of drivers of change such as invasive

species which regularly, and significantly impact cultivated human systems, but which are

only rarely observed in natural diverse systems[81, 82, 83].

Seminal work by Tilmand & Downing (1994)[84] contributed to this discussion by demon-

strating in an experimental setting that primary productivity in more diverse grassland

communities was more resistant to, and recovers more fully from, a drought compared to

less diverse plots[84]. However, subsequent experimental tests[85, 86, 87, 66] have pro-

duced both confirmatory and contradictory results to this work. A review by Isbell et

al (2015)[65] of 46 different experiments came to the conclusion that higher biodiversity

increased ecosystem resistance to a broad range of climate perturbations including, wet

or dry, moderate or extreme, and brief or prolonged events[65]. However, this effect was

restricted to just the resistance of the system, as a year after the climate event, ecosystem

productivity in both low and high diversity systems had often fully recovered or overshoot

baseline productivity[65].

A wide range of mechanisms have been proposed in the literature to explain the underly-

ing processes and interactions that results in the observed relationship between diversity

and stability. These explanations generally fall into three broad groups[88] these being,

asynchrony of species intrinsic responses to perturbation, differences in the speed at which

species respond to perturbations, and a reduction in the strength of competition[88].

Asynchrony of species intrinsic responses to perturbation may arise as the more species

in the ecosystem, the more likely it is that there is a species that may respond favourably

to any perturbation that occurs, ultimately yielding more stable aggregate ecosystem

properties[89] being associated with higher diversity. Variance in the speed at which

species respond to perturbation, whereby diversity in the rate at which species respond to

perturbation means that the ecosystem aggregate for the ecosystem function in question

tends to be more buffered over time, as the ones that initially do badly, recover quicker

and maintain the average as the ones that take longer to respond are then effected[90].
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Asynchrony in species identity and responses to perturbation is more generally referred to

in the literature as the “insurance hypothesis”. The insurance hypothesis postulates that

higher biodiversity insures ecosystems against declines in their functioning because many

species provide greater guarantee that some will maintain functioning even if others fail[91].

Studies examining disturbance in forests and grasslands have found that asynchrony across

species[92], much more than species diversity alone, was the main driver of variation in

stability across sites.

Several studies have taken identified specific species and ecosystem composition more

generally as also being important when seeking to understand variance in stability at an

ecosystem level to climate events. For instance, tree size distribution, stand density and

species composition were all found to be important in explaining variation in productivity

in mixed fir-spruce forests in Germany, when exposed to moderate droughts[93]. In these

cases fir species were found to be significantly more resistant than spruce species and larger

trees were more resilient than smaller ones (although under severe drought they did the

worst). It makes sense given adaptive evolution that the presence or absence of certain

species will impact on stability of the system. What is less certain is how these species

interact with each other, and how these species will respond to a changing climate.

There is a growing consensus, that it may be functional diversity, or the value and range

of species traits, rather than the number or composition of species, which most strongly

determines ecosystem functioning and stability[94].

The study of how functional diversity influences stability is a relatively new area of re-

search comprising significantly less literature than that of species richness. Anderegg et

al. (2018)[68], investigated how functional diversity influenced ecosystem resilience during

drought. They found that resistance is controlled in part by the hydraulic diversity of

the plots, with sites with higher diversity in hydraulic traits being better able to buffer

their hydraulic fluxes when experiencing a drought. In this case, functional traits were

better able to explain observed variation in response offer compared to species diversity

alone. Experimental studies by Chillo, Anand, and Ojeda (2011)[95] and Hallett, Stein,

and Suding (2017)[96] both found in their experimental manipulation of functional diver-

sity within arid rangelands, and grasslands respectively that functional diversity was key

to understanding resilience patterns for productivity. Functional diversity has been shown

to be important in supporting not just productivity but a range of ecological functions
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in the face of perturbation. Valencia et al., 2015[97] for instance, found that the ability

of an ecosystem to sustain multiple functions in the face of increasing aridity and shrub

encroachment was positively related to a communities functional diversity and community-

weighted mean trait value.

The extent to which diversity either in terms of species, or functional trait diversity controls

the stability of ecosystems is the focus of debate (Species traits and species diversity affect

community stability in a multiple stressor framework). However, it is generally accepted

that the loss of a single species, or functional group can have a significant impact on

ecosystem functions[98]. How large the impact that the loss of any particular species or

functional group may have depends in part on the degree of redundancy present in the

ecosystem, with ecosystems with a higher level of redundancy in theory being better able

to recover from the loss of any particular species or functional group[99].

Fonseca et al (2001)[100] examined functional redundancy from a theoretical standing and

concluded that the probability of whole functional groups going extinct from a commu-

nity increases with the number of recognised functional groups (functional richness), but

decreases with species richness and functional evenness. They applied this framework to

a South American plant community which suggested that as assuming local extinction is

random, 75% of the species could be lost before the disappearance of the first functional

group occurred. Current extinction risk however is not phylogenetically random[101], and

so this result must be interpreted with caution.

Looking specifically at a tropical forest setting, Zhang and Zang (2021)[99], examined

redundancy of ecological processes, and vulnerability per se in Chinese tropical forests.

Their results indicated that species-rich tropical forest types tended to have more func-

tional redundancy than species-poor ones, suggesting that richer communities would be

less sensitive to species loss. However, when examining the evenness of how ecosystem pro-

cesses were spread across species, they found that combinations of processes were packed

into just a few functional entities (combinations of ecosystem system functions/processes

provides[102]) rather than being more evenly spread amongst species. This meant that

many ecosystem service processes relied on a small number, or even a single species, mak-

ing the ecosystem as a whole vulnerable to the potential loss of even a small number of

species. This ultimately, they concluded meant that functional redundancy due to high

species richness did not outweigh the vulnerability of ecological processes more generally
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in the tropical forests they examined.

The relationship between redundancy and ecosystem stability while theoretically sound, is

complicated in reality. For example, the relationship between plant community resilience

to an intense fire was tested experimentally in a semiarid shrubland setting by Lipoma et al

(2016)[103]. In this case variation in redundancy in terms of species, and functional group

was found to have no significant explanatory power in explaining the observed variation in

ecosystem resilience to the fire, and instead the resource use strategies, and the presence

of regeneration traits appeared to best explain the observed response to the fire.

Looking more broadly, a recent metaanalysis[104] looked across a wide range of ecosys-

tem types, and biomes to understand redundancy more generally. They found across all

biomes, and ecosystem types that a positive relationship exists between functional diver-

sity and stability, indicating that systems with higher functional diversity tended to be

more stable when undergoing perturbation, this relationship was strongest for studies in

which redundancy was measured as species richness within a functional group.

In addition to the role that functional diversity plays in moderating forest stability to

climate perturbation, recent work has shown that functional traits themselves can be

powerful explanatory variables. Functional traits are particularly powerful when used as

explanatory variables as they able to not only explain variation in stability to perturbation,

but also provide insights into the mechanism that underpins the stability through their

physiological nature.

Tree size for instance has been found to explain drought induced mortality with larger

trees generally be more at risk than smaller ones [105], the physiological explanation for

this has been suggested to be that taller trees have to lift water to a greater height against

the effects of gravity and path length-associated resistance, and therefore face greater

hydraulic challenges [105], therefore when experiencing drought with associated increases

leaf-to-air vapour pressure deficits larger trees have a higher risk of hydraulic cavitation

and subsequent damage[105].

In addition to tree height, Greenwood et al (2017)[106] found that tree species with denser

wood and lower specific leaf area, accounting for variance in drought strength and other

confounding variables showed lower mortality responses to drought. Wood density has

been found at a global scale to negatively correlate with mortality[107], with greater wood

density being associated with higher mechanical strength[108] which may confer enhanced
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xylem resistance to embolism[109].

Other functional traits that have been found in the literature to be potentially impor-

tant in understanding forest response to climate perturbation include, leaf traits and

anatomy[110], leaf chemistry[111], and life strategy[112].

Beyond mortality, hydraulic traits that describe the ability of trees to prevent embolism of

xylem vessels, and the proximity with which they operate to critical embolism thresholds

(hydraulic safety margins) have been found by Tavares et al. (2023)[113] to the only

significant explanatory variable of observed decadal-scale changes in forest biomass. Old-

growth forests with wide hydraulic safety margins were found to be gaining more biomass

than forests with smaller hydraulic safety margins. Tavares et al. postulate that that this

may be associated with a growth–mortality trade-off whereby trees in forests consisting of

fast-growing species take greater hydraulic risks and face greater mortality risk[113].

Functional traits have also been shown in the literature to be important in understanding

how forests may respond to climate change. Trugman et al. (2020) for instance found

evidence for shifts in community composition toward communities with more drought-

tolerant traits driven by tree mortality[114]. Tavares et al. (2023)[113] also found a climate

change signature with areas of Amazonia that were experiencing more pronounced climatic

change, are losing biomass, suggesting that species in these regions may be operating

beyond their hydraulic safety limits. Continued climate change is likely to further reduce

hydraulic safety margins in the Amazon, with strong implications for the Amazon carbon

sink[113].

A Gap Identified – Disentangling climate, biodiversity influences on moderat-

ing response

Reviewing the literature highlighted that the variation in response to perturbation is a

culmination of many different interacting variables including, the magnitude of the per-

turbation, climate effects, as well as community, functional trait, and biodiversity com-

position. However, the independent effect, and the relative importance, of these different

groups of variables was often not formally quantified, making interpretation of what ac-

tually explains the variation in stability difficult to understand and extrapolate to larger

scales. To this end it was decided that in developing specific research questions for this

thesis, methods would specifically be designed in order to disentangle the relative impact
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of these various groups of explanatory variables.

A Gap Identified – At Landscape Scales What Variables Moderate Long-Term

Productivity and Short Term Response to Perturbation

This literature review has highlighted that at a landscape scale considerable uncertainty

exists in understanding what moderates forest productivity, both in terms of the long term

patterns, as well as in response to short term perturbations. To contribute towards filling

gap in knowledge, this thesis has focused on understanding not just how stability varies

spatially, but also what variables explain this spatial variation.

1.7 The Data Required to Investigate Forest Stability

To investigate forest stability and understand the observed variation in forest response to

perturbation a number of different datasets are required. These datasets together need to

describe forest response to perturbation, the magnitude, duration and characteristics of

any perturbation that occurs, as well as forest biophysical and any other variables that

may help explain the observed variance in forests response when we look over time or

space.

Ground surveys are often considered the gold standard in terms of the quality of data

that they can provide, and the more direct link that they have with the target variable of

interest. However, they come with the limitation that they are time consuming, expensive

and limited in terms of their temporal and spatial coverage. A further major limitation

when looking at forest response to perturbation is the limited number of ground surveys

that can be realistically conducted, across the required gradient of forest types following a

major perturbation. This ultimately reduces the ability to generalise widely from ground

surveyed datasets when examining such perturbations. Satellite remote sensing offers a

solution to this by allowing larger spatial extents, to be monitored at much finer temporal

resolutions than could reasonably be achieved by ground surveys, but with the caveat

that forests responses are not directly being measured, but instead inferred from spectral

signatures and patterns.

A range of different satellites, and satellite products exist, and so the following section

will give a brief overview of some of the most common satellites sensors, and products

used to study forest stability, along with an assessment of their major advantages and
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disadvantages, only satellites which are active as of 2022 will be covered.

1.7.1 Passive Remote Sensing Sources

Passive remote sensing is the study of light from the Sun after it has been reflected off

Earth surface features such as forest, bare ground, water, etc. The light incident on

such Earth surface features has its characteristics changed through interaction with the

feature. Some frequencies are absorbed to varying degrees, while others are not, resulting

in different features having unique spectral signatures [115]. This reflected light is then

detected by a remote sensing platform, and the spectral reflectance intensities are examined

to infer properties about the Earth surface features viewed. For instance, a healthy forest

may strongly absorb red and blue to power photosynthesis, but when damaged by drought,

more strongly reflects these colours as the chlorophyll that normally absorbs are less able

to do so due to drought induced damage. Therefore, by examining the change in amount

of red and blue light reflected for that forest over time, one is able to infer information

regarding the level of photosynthetic activity and how drought effects those forests.

Table 1.4). compares a number of satellites commonly used in the literature in the study

of forest stability. They vary significantly in terms of their temporal, and spatial resolu-

tion as well as the number of spectral bands they provide. There is no satellite which can

demonstrated as being quantifiable the best, and the best satellite to use usually depends

on what the research question is. Sentinel 2 for instance, offers the highest spatial resolu-

tion at 20m, but only has data available since 2017 which makes it less suitable for analyses

which require enough data to calculate background averages. MODIS has a longer time

series available, and a better temporal resolution, making it better in cloudy locations

as cloud free imagery is more likely to be captured, but has a spatial resolution 250m

which may be too coarse for many studies. Landsat arguably offers the best compromise,

consisting of a series of missions that have been running since 1982 providing a long time

series for analysis, a high spatial resolution, but a lower temporal resolution, and fewer

bands for analysis, additional processing is also required to harmonise the data collected

from different sensor systems in the series due to minor changes in bands collected.
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Table 1.4: Comparing the characteristics of a number of the most commonly used passively
sensing satellites

Name Spatial/Temporal
Resolution

Bands (band cover-
age)

Data Coverage

Sentinel
2[116]

20m/ 5 days 13 2017 - ongoing

MODIS[117] 250 – 1000m/ 2
days

36 2000 - ongoing

Landsat
4,5,7,8[118]

30 – 100m/ 8 days 11 1982 – ongoing (harmoni-
sation of data from Land-
sat 4,5,7,8 required)

GOME
2[119]

40 x 80km/ 3 days 15 (atmospheric com-
position)

2007 - ongoing

OCO 2[120] 1.29 x 2.25km/ 16
days

3 (atmospheric com-
position)

2014 - ongoing

Data from sentinel 2, MODIS and the Landsat series are used in a variety of ways to mon-

itor forest extent and status, one of the most common ways is to calculate indices by com-

bining information from multiple spectral bands. Normalised Difference Vegetation Index

(NDVI) is one such example, and has been found to provide information relating to forest

extent (An assessment of commonly employed satellite-based remote sensors for mapping

mangrove species in Mexico using an NDVI-based classification scheme), deforestation and

forest vitality[121], vegetation classification[122], and canopy water content[123] to give

just a few examples.

In addition to tracking forest status, some studies have sought to model functional traits

including leaf chemical traits[124], and photosynthetic traits such as leaf area index[125,

126] although it should be noted that this difficult as the relationship between spectral

reflectance values and functional traits are highly context dependent and may not be

directly transferable between regions[127].

GOME2 and OCO2 have been included in this table, as even though they were primarily

designed to monitor atmospheric composition it has recently been reported that it is

possible to measure Solar Induced Fluorescence, a proxy of photosynthesis, and in turn

make inferences about Gross Primary Productivity (GPP) from the data collected by these

satellites ([128]).
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1.7.2 Active Remote Sensing Sources

Active remote sensing systems in contrast to passive systems actively transmit electro-

magnetic radiation at the Earths surface, and then record the portion of this energy that

returns to the satellite. A number of different types of active remote sensing exist includ-

ing radar, Lidar, laser altimetry, sounding and backscatter[129], and have a wide range

of applications in the study of forests, and forest status. One of the major advantages

of active remote sensing systems is that they typically use longer wavelengths, and these

longer wavelengths are less affected by cloud cover and other such climatic interference.

Also, because they are not dependent on light from the Sun, and therefore can make

measurements at night.

Active remote sensing differs primarily from passive remote sensing in the type of informa-

tion that it can provide. The range of wavelengths used is typically much longer than that

sensed in passive systems, these longer wavelengths tend to penetrate forest canopy cover

to varying amounts and interact with the below canopy environment by being partially

absorbed, backscattered and reflected off the ground and tree trunks. Active systems are

therefore able to provide information on the structural composition of different parts of

the subcanopy, while passive systems provide information on the canopy itself. As the

wavelength of electromagnetic radiation can be controlled in this type of remote sens-

ing, different components of forests can be targeted. Longer wavelengths for instance are

better able to penetrate forest canopy and so their use provides information on the sub

canopy structure, density and composition. One of the most common applications of ac-

tive remote sensing is biomass estimations. Synthetic Aperture Radar (SAR), LiDAR, and

optical imagery for instance were utilised by Shao et al (2017)[130] to provide information

on canopy and below canopy structure in order to improve above ground biomass esti-

mations compared to optical estimations of the same areas. The ability of active remote

sensing methods to return information on the below canopy composition allows the impact

of insect disturbance to examined[131], impacts which optical sensors may only detect at

a much later date due to tree mortality.

A number of studies have used active remote sensing to monitor forest status and to

identify deforestation, delineate forest area, and to detect deforestation events[132] taking

advantage of the higher temporal coverage that active remote sensing can offer because

of reduced interference from cloud cover. The ability to penetrate atmospheric effects has



27

provided very useful in the study and tracking the progression of wildfires whose smoke

can blind passive remote sensing[133].

The disadvantages of active remote sensing sources, is that they often require significantly

greater investment in terms of equipment, processing of the data, and interpretation rel-

ative to passive systems data. Topography for instance can have a significant impact on

reflectance values[134], and so topographic effects often have to first be accounted for be-

fore analysis. Other known limitations include, difficulties in making temporal composites

to fill gaps[134], relatively limited area coverage, and the lack of a global level coherent

datasets for many actively sensed products[134].

1.8 Aims and Research Questions

The primary aim of this thesis was to develop a deeper understanding of the underly-

ing variables and processes that influence variation in forest ecosystem services stability.

Upon reviewing the literature, and identifying gaps, this because focused specifically on

productivity, and stability of productivity, to climate, and climate perturbations. A par-

ticular focus has been put on identifying mechanistic understandings of processes, and to

specifically examine the role biodiversity and functional trait diversity play in moderating

these relationships.

1.8.1 Overarching Research Questions

The literature review conducted identified a number of gaps in the literature. The following

section details the overarching research questions that we developed based on the gaps

previously identified in the literature, and how they relate to the specific research questions

and case studies that we then created to answer them.

1. How can we measure forest stability across large spatial extents to un-

derstand landscape scale stability?

The first gap identified in the literature was that forest stability in the literature has gen-

erally been studied at small spatial scales, with relatively few studies looking at landscape

scales. While understanding what drives forest stability locally is certainly important, it is

also important to understand landscape scale patterns, to better understand more gener-

ally what drives forest stability as this is the foundation on which local stability will then

build on. Scaling up local findings to landscape scale processes is difficult, and in many
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cases not reliable as it’s likely that the factors moderating stability at a landscape scale

are different to those moderating stability at small spatial scales[80]. Therefore, there is

a need to develop methods to study stability directly at landscape scales.

Measuring stability in the conceptual framework laid out previously requires that we

clearly identify, and quantify, both the aspect of an ecosystem, and the perturbation of

interest[56]. As we plan to look across a range of different spatial and temporal scales, this

will necessitate that we develop a different methodology for each case study dependent

on the perturbation being studied, and the data available to describe the status of the

ecosystem.

Three different methods will be tested to see to explore how well they are able to quantify

landscape scale stability. In the first data chapter we intend to examine productivity, as

proxied by remotely sensed solar induced fluorescence, and see how it responded during

2015/16 El Nino-Southern Oscillation (ENSO). This method will be based around calcu-

lating anomalies for productivity and climate, and modelling how well the magnitude of

the ENSO explains the observed patterns in productivity anomalies.

In the second data chapter, instead of a single perturbation we will instead seek to instead

capture average productivity responses to a range of different magnitude perturbations

using UK forests as a case study, we aim to achieve this by modelling NDVI for each series

over time as a function of climate, and then extracting model parameters to summarise

the relationship and examine how it varies spatially.

Finally in the third and final data chapter we will use a pan-Amazon network of forest

inventory plots to calculate above ground woody productivity. Using this time series of

productivity data we will then calculate long term average, and trends in productivity, as

well as examining the percentage change in productivity before and after the 2015/2016

ENSO.

2. At a landscape scale can we disentangle climate, biodiversity, and func-

tional trait influences on moderating productivity?

The second gap identified was that reviewing the literature highlighted the independent

effect, and the relative importance, of the magnitude of the disturbance itself, climate

effects, as well as community, functional trait, and biodiversity composition, were often

not formally quantified, making interpretation of what actually explains the variation in
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stability difficult to understand and extrapolate to larger scales.

To explore the relative importance and independent effect of each of these different groups

of variables, we will use auxiliary dataset containing information on long term background

climate, soils, species lists, and functional traits datasets in order to see to what extent

they can explain the spatial patterns that we see in productivity stability to climate

perturbation.

In all chapters this will be done through statistical modelling, and partitioning variance

through a variety of methods. In the first and third chapters we will test an all-in-

one approach on a remote sensing, and ground collected data set. In both cases the

productivity response that we see, or the long term average/trend in productivity we

observe will be modelled as a function of magnitude of the perturbation, background

climate, functional trait and soils information to allow their relative importance, and the

direction of the relationship with productivity response to be quantified.

In the second data chapter we will trial a two stage modelling approach. In this approach,

we will first model NDVI over time as a function of temperature and precipitation for each

forested pixel. From each model, we then plan to extract the coefficients and variance ex-

plained as measures of stability. We will then model stability over space using background

climate, forest attributes, soils and other variables using a Random Forest methodology

to examine relative importance through perturbation testing, and the plotting of accumu-

lated local effects plots to aid interpretation.

3. At the landscape scale, what factors are responsible for moderating long-

term productivity, and short term response to climate anomalies?

The final gap identified was that at a landscape scale considerable uncertainty exists in

understanding what moderates forest productivity, both in terms of the long term patterns,

as well as in response to short term perturbations.

All the three data chapters, will evaluate a range of potential explanatory variables in-

cluding background climate, community biodiversity and functional trait composition,

soil, topographic variables and forest attributes. This final question will therefore be an-

swered by looking across all three cases studies to understand in each case study what the

key factors in moderating productivity are, and comparing whether the controls of long

term productivity patterns are different to those that control the response to short-term
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perturbation.

1.8.2 Chapter Outline

Three cases studies have been scoped in order to provide the required information to

answer these overarching question. Each case study will form the basis of one of the

three analytical data chapters of this thesis, and an overview of each of these chapters is

provided below:

1. In the first data chapter I will quantify the response of Amazonian rainforest pro-

ductivity to the 2015/2016 ENSO event and compare the relative explanatory power

of climate, biodiversity proxies and soils variables

2. In the second data chapter I will quantify UK forests sensitivity to drought using

climate using a time series approach, and compare the relative explanatory power

of biodiversity information on community composition, and soils information.

3. In the third data chapter I will quantify mean productivity, and trend in productivity

across Amazon forest using a database of forest plots, and compare the relative

explanatory power of functional trait, and climate information.
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Chapter Two

Background climate conditions

regulated the photosynthetic

response of Amazon forests to the

2015/2016 El Nino Southern

Oscillation event

2.1 Abstract

Amazon forests have been subjected to multiple large-scale droughts in recent decades

which have increased tree mortality and reduced carbon sequestration. However, the ex-

tent to which drought sensitivity varies across Amazonian forests and its key controls

remain poorly quantified. Here we sought to understand the response of Amazon forest

photosynthetic activity to the 2015-2016 El Nino-Southern Oscillation (ENSO) by evalu-

ating how the magnitude of ENSO-associated climate anomalies, background climate and

soil characteristics influenced basin-wide differences in Solar Induced Fluorescence (SIF)

anomalies. Our model explains 25% of SIF anomaly variation, and indicates that climate

and soil conditions are more important controls than the climatic anomalies experienced.

Our results reveal marked sensitivity differences across Amazonia, with North-Western

forests being the most sensitive to precipitation anomalies. These differences in sensitivity

likely relate to variation in community species composition, and water stress pre-adaption,
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and need to be accounted for in climate change impact simulations.

2.2 Introduction

The tropical forests of Amazonia provide extensive ecosystem services both locally and

globally[1] including unparalleled biodiversity provision[2, 3], regulation of regional climate[4]

and substantial carbon storage[5]. The high and multidimensional nature of their value

means that it is critical to better understand their ability to resist stressors and maintain

the provision of these services. Extreme climatic anomalies are a major threat to the ser-

vices provided by Amazon forests. In recent decades, Amazon forests have been exposed

to a number of large climatic anomalies including in 2005[6], 2010[7], and 2015/16[8].

These droughts have resulted in losses of aboveground biomass due to widespread tree

mortality[9, 7] and decreased Gross Primary Productivity (GPP)[10].

Previous assessments of Amazonian droughts based on forest inventory plots have sought

to quantify the impact on the basin-wide carbon sink[11, 7, 12] but have not explicitly

addressed the extent to which Amazon forests differ in their response to such climatic

anomalies at sub-basin scales. The variance in response may be substantial as plot scale

studies of plant hydraulic properties suggest that forest sensitivity to water stress can

vary greatly even at a local level[13, 14]. However, scaling up plot based responses to

climatic anomalies in order to explore the implications across larger scales in Amazonia

is difficult, because of the limited number of sampling sites that can be realistically be

measured following an extreme climate anomaly.

Remotely sensed data allows for variation in the sensitivity of forest productivity to cli-

matic anomalies to be more fully explored across space with the caveat that photosynthesis

is not directly being measured, but instead inferred from spectral signatures. Remote sens-

ing of SIF is a particularly powerful proxy of forest productivity and has been shown to

strongly track GPP at seasonal timescales, including in tropical forests[10, 15]. SIF has

been used previously to evaluate the effects of several large climatic anomalies, including

the impacts of the 2015/2016 ENSO on tropical forests[16, 10, 17]. Although these studies

have highlighted the widespread negative SIF anomalies associated with the ENSO event

across Amazonia, they involved no formal pixel-level analysis of SIF anomalies across

space.

The response of forest productivity to extreme climatic anomalies is moderated by a
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wide range of factors which can be broadly classified into three groups: (i) the inten-

sity of the climate anomaly itself, (ii) the background (long-term mean) climatology and

(iii) soil characteristics. Forest plot studies have highlighted significant relationships be-

tween drought intensity based on precipitation anomalies and biomass losses following

large drought events[9, 12]. Temperature anomalies have the potential to amplify these

effects[18]. Background climate and soil characteristics can substantially modulate the

impacts of anomalous climatic events. Forest sensitivity to water stress may be related

to background climate as forests found in drier regions have been shown to be better

adapted hydraulically to drought than those found in wetter environments[19]. Mean

annual precipitation varies widely across Amazonian forests, as does the seasonality and

interannual variability in rainfall, greatly affecting species composition[20] and forest re-

silience to drought[17]. Soil properties can further strongly modulate responses to drought

events[21]. Soil texture exerts a strong control on water holding capacity and hydraulic

conductivity[22] while water table depth can greatly influence forest access to water, with

forests on deeper water tables expected to be more at risk of water shortage during drought

events compared to shallower water table areas[14]. This relative vulnerability of deep wa-

ter table forests is despite these forests containing more drought-tolerant species[23], and

is driven by the ability of shallow water table areas to buffer the negative effects of drought

through the groundwater memory effect[23]. While it is clear that each of these variables

plays a role in determining Amazon forest response to climate, their relative importance

in regulating response to natural climatic anomalies remains unclear.

In this study, we use a multivariate regression framework to explicitly evaluate the relative

importance of ENSO associated climate anomalies, soil characteristics and background cli-

mate variables as controls of Amazon forest photosynthetic anomalies during the drought

associated with the 2015/16 ENSO. The 2015/16 ENSO event was associated with the

most extreme drought and period of warming on record[16] and thus offers an ideal case

study in terms of the strength of signal to noise ratios. Using this methodology we found

that background climate and soil conditions were more important controls on forest pho-

tosynthesis responses than the magnitude of the climate anomalies associated with the

ENSO in explaining the variance in SIF anomalies. Our results reveal marked differ-

ences in sensitivity Amazonian regions response, with North-western Amazonian forests

being the most and the South-western forests the least sensitive to precipitation anomalies.

These differences in sensitivity likely relate to community species compositional differences
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across Amazonian forests, which vary greatly in the extent to which they are pre-adapted

to water stress, and need to be accounted for in simulations of climate change impacts.

2.3 Results and Discussion

2.3.1 Solar Induced Fluorescence during the 2015/2016 ENSO

To evaluate the impact of the 2015/2016 ENSO on Amazon forest photosynthesis we

computed standardised anomalies defined as:

StandardisedAnomaly =
Xt −X

σ
(2.1)

where Xt represents the mean SIF/climatic value during the October to December 2015

period, X represents the mean and σ the standard deviation of the baseline period (Oc-

tober to December) between 2007 and 2014 (excluding 2015). In line with the findings

of previous studies[16, 10, 24], retrievals based on SIFTERv2.0 show widespread negative

SIF anomalies, across Amazonia. Indeed, 93% of forested pixels in our study domain ex-

hibited negative SIF anomalies during October-December 2015 and mean pixel-level SIF

over this time window was 1.03 standard deviations lower than baseline values. Moreover,

anomalies during this time period (delineated by the vertical dashed lines in Figure 2.1)

are the most negative on record in all Amazonian regions except the Southwestern (SW)

Amazon.



56

Figure 2.1: Spatial distribution of Solar Induced Fluorescence Anomaly during
the 2015/16 ENSO and temporal trends in SIF anomaly at a regional scale.
a Spatial distribution of mean standardised SIF anomaly for October-December 2015. b–f
Monthly Standardised Solar Induced Fluorescence (SIF) anomalies from January 2007 to
December 2017. Results are split by geographical regions established by [25] Vertical
dashed lines signify the 2015 Oct-Nov-Dec period used in this study. b SW South West,
c NW North West; d GS Guiana Shield, e EC East Central, f BS Brazilian Shield.
Analysis is restricted to natural forests as defined by the Intact Forest data product[26].
See methods for details.

2.3.2 Climate Anomalies during the 2015/2016 ENSO

Surprisingly, we find that ENSO-associated climate anomalies (anomalies in precipitation,

temperature and Maximum Cumulative Water Deficit (MCWD)) were very poor predic-

tors of the observed variation in the mean standardised SIF anomaly for Oct-Dec 2015

(hereafter referred to as the standardised SIF anomaly) during the peak of the drought

associated with the ENSO. Indeed, a linear model constructed exclusively with variables

describing ENSO-associated climate anomalies explained only 2% of the regional variation

in SIF anomalies (Table 2.1). This contrasts significantly with our final multivariate lin-

ear model, which models SIF anomaly as a function of soil characteristics and background

climate variables in addition to ENSO-associated climate anomalies and which accounted

for 25% of the variation in SIF anomaly (for full model see Supplementary Table A.1).

Given the relatively coarse scale at which this study is being conducted, and the fact that
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forest-scale ecological responses are typically noisy, the amount of variance explained by

our final model is reasonable and comparable with that found in plot scale studies. For

instance, the best model of Sullivan et al. (2020)[27] for woody productivity (based on

changes in diameter over time), explained 30% of observed variation.

Table 2.1: Proportion of variation explained by groups of predictor variables and the
impact of their removal on the explanatory power of the final model.

ENSO-
associated
climate
anomalies

Background
climate

Soil charac-
teristics

Adjusted
R2

Drop in R2

compared to
full model

Change in AIC
compared to full
model

✓ ✓ ✓ 25% - -
✓ ✓ 24% 1% +28

✓ ✓ 14% 11% +270
✓ ✓ 19% 6% +165
✓ 2% 23% +553

✓ 17% 8% +215
✓ 12% 13% +319

The relatively low importance of the ENSO-associated climate anomalies is further high-

lighted by the fact that removal of soil characteristics and background climate variables

from this final model resulted in a far greater reduction in explanatory power as observed

in change in adjusted R2, and in the increase in Aikaike Information Criteria Corrected

(AICc) than dropping variables denoting ENSO strength (Table 2.1). Of the three groups,

the background climate variables were found to be particularly important, as its removal

resulted in a substantial lowering of R2 from 0.25 to 0.14, and an increase in AICc of +270.

2.3.3 The Role of Soil Characteristics and Background Climate Vari-

ables in Explaining Photosynthetic Response

The importance of soil characteristics and background climate variables on photosyn-

thetic anomalies is further confirmed through evaluation of the standardised regression

coefficients of individual predictors in this final model which is summarised visually in

Figure 2.2. The sign and magnitude of the standardised regression coefficients in Figure

2.2 describe the relationship between SIF Anomaly and the explanatory variable as part of

the overall contribution of all variables towards the model prediction of SIF anomaly, all

other variables being held constant. Positive coefficient values, for instance, indicate a pos-

itive relationship between explanatory variables and SIF Anomaly. Hence, a unit increase

in the explanatory variable will contribute a positive amount to the SIF anomaly model
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prediction, all other variables being held constant. Applying this logic to our explanatory

variables allows understanding of which traits contribute positively and negatively to SIF

anomalies.

Figure 2.2: Scaled and centred regression coefficients for all variables found in
the final model.
Variables have been ranked by absolute magnitude of regression coefficient. Wings are
standard errors and bars represent the 95% confidence intervals estimated via a boot-
strapping analysis. Bars are coloured and numbered according to variable group: 1) yel-
low indicating ENSO associated climate anomalies variables, 2) red denotes background
climate variables and 3) blue represents soil characteristics.

The five most important variables in the final model, ranked in order of descending impor-

tance based on the magnitudes of the standardised regression coefficients were: 1) rainfall

seasonality, 2) cation exchange capacity, 3) water table depth, 4) variation in monthly max

temperature and 5) mean annual precipitation. Precipitation anomaly during the peak of

the drought emerged as only the ninth most important explanatory variable. Overall, our

results suggest that forests found in regions with high rainfall seasonality, high soil fertility,

lower water table depth, and which have a higher monthly variation in max temperature

and lower mean annual precipitation are more resistant to the drought associated with the

ENSO than wetter, more aseasonal forests and forests on lower fertility soils and deeper

water tables. However, we do not find evidence that forests exposed to higher interannual

rainfall variability were more resistant to the drought, as has been inferred in previous

studies based on examination of tree cover distributions[17] nor do we find a significant

role of soil texture in mediating photosynthetic response to this drought. (The spatial

distribution of all predictor variables are shown in Supplementary Figure A.3).

The overarching importance of background climate, water table depth and soil fertility rel-

ative to ENSO associated climate anomalies helps to explain the weak spatial structure in
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SIF anomalies observed (Figure 2.1), despite substantial spatial variation in the ENSO as-

sociated climatic anomalies (Supplementary Figure A.1). Amazonian forests vary greatly

in background climate[28], soils[29] and water table depth[30] and these system properties

translate into considerable differences across forests in sensitivity to this drought. Using

SIF anomaly and climate anomaly data, we calculated sensitivity (defined as standard-

ised SIF anomaly/climate anomaly) of Amazon forest photosynthesis to precipitation and

temperature anomalies at the pixel level (Figure 2.3). Using this approach, we identified

marked variation in sensitivity to climate in forests in different biogeographical regions.

Northwestern (NW) Amazonia is the wettest and least seasonal region in Amazonia in

terms of rainfall and temperature seasonality (Supplementary Figure A.3 for spatial varia-

tion) although variation in temperature seasonality is generally low across the entire study

domain. Forests in the NW region were found to be the most sensitive to precipitation

reduction being twice as sensitive as the Amazon-wide mean, and more than twelve times

as sensitive as the least sensitive BS region. On the other hand, the forests of the Brazilian

Shield (BS) which are the driest and most seasonal in the Basin were found to be least

sensitive to precipitation reduction and were five times less sensitive than the Amazon-

wide mean. The Guiana Shield (GS) region, simulated by many climate models to be

the region most likely to be affected by future rainfall reduction[31] was found to be the

third most sensitive to rainfall change during this drought after NW and EC Amazonia.

Whereas there is clear evidence of different sensitivity to precipitation across Amazonian

regions, differences in sensitivity to temperature are less obvious (Figure 2.3), and might

reflect the fact that spatial variation in temperature across Amazonia is much less marked

than the spatial variation in precipitation.
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Figure 2.3: Spatial Distribution and Regional Averages of SIF Sensitivity to
Temperature and Precipitation Anomalies
a-b: Show precipitation (a) and temperature (b) regionally averaged sensitives. SIF Sen-
sitivity is calculated as Log10(Standardised SIF Anomaly /Standardised PPT Anomaly)
and Log10(Standardised SIF Anomaly / Standardised Temp Anomaly) respectively. Box
plot centre line, top, and bottom line represent the median, 75th and 25th percentile
respectively. Upper and lower whiskers represent the largest and smallest value within
1.5 times the interquartile range above and below the 75th/25th percentile respectively.
Results are split by geographical regions established by Feldpausch et al. (2011)[25]

2.3.4 The Role of Community Species Composition in Determining Vari-

ance in Response

The effects of background climate, water table depth and soils on forest resistance to this

drought, and droughts more generally, are ultimately mediated via tree species composi-

tion. Seasonal water stress has been found to exert a fundamental control on the biogeo-

graphical distributions of Amazonian tree species, with many species being restricted in

range to the wetter regions of the Amazon[20]. Over more local scales, variation in water
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table depth can also strongly influence community species composition, with near com-

plete species turnover observed in closely occurring forest plots on shallow water tables

compared to those on deeper water tables[32]. Such large differences in floristic composi-

tion along water availability axes are likely associated with differences in community-level

drought tolerance. It has been shown for example that species occurrence along hydro-

topographic gradients in Central Amazonia is underpinned by differences in embolism

resistance[33], as species occurring on water-limited plateau areas are considerably more

embolism-resistant than those occurring in valley areas with more access to water[33].

Community-level differences in hydraulic traits have been found to explain why a more

seasonal Amazon forest experiencing a strong drought anomaly during the 2015/16 ENSO

presented a similar canopy conductance response to a less seasonal forest experiencing a

weaker climatic anomaly[13]. Our results raise the prospect that such a compensatory

mechanism may have been in operation at a Basin-wide scale during the drought associ-

ated with the 2015/16 ENSO as forests that experienced less severe climatic anomalies

but are less adapted to water stress experienced similar reductions in photosynthesis to

forests that experienced more severe climatic anomalies but are more adapted to seasonal

drought.

The positive relationship between cation exchange capacity and SIF anomaly may reflect

differences in life history strategies of species along fertility gradients. Amazon forests on

fertile soils are generally more dynamic and more productive than those found on infertile

soils[29]. The functional attributes of tree species occurring on fertile soils, such as low Leaf

Mass per Area (LMA) and high foliar N and P content [34] are indicative of species with

acquisitive (high resource acquisition rates and high growth that tend to do better in high

resource habitats[35]) rather than conservative life histories (geared towards high resource

conservation, high stress tolerance and high survival which tend to be more successful in

lower resource habitats[35]) and thus prioritising growth over survival. Forest communities

consisting largely of acquisitive species would be more likely to maintain photosynthesis

rates high under drought, despite increased risk of hydraulic cavitation, than communities

consisting of more conservative species[36, 37]. Although the interaction between nutrient

availability and drought impact has been largely unstudied in tropical forests, our results

are consistent with analyses on temperate systems which found that more fertile soils

enhanced resistance of tree growth to drought[38].

Our finding that Amazon forest response to ENSO associated climatic anomalies is con-
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trolled more by the sensitivity of the forests and less by the intensity of the event has

important implications. It suggests that insights derived from well-studied sites in Cen-

tral and Eastern Amazonia e.g. Barros et al. 2019[13], and Rowland et al. 2015[39], may

not be readily generalizable to other regions of the Amazon, which may be more sensitive

(e.g. NW Amazonia) or less sensitive (e.g. SW Amazonia) to reduced rainfall. Our re-

sults also highlight the pitfalls of assuming a universal sensitivity of Amazonian forests to

drought in ecosystem models. Most widely employed global vegetation models incorporate

a very limited functional diversity across Amazonian forests[40], restricting confidence in

future projections of climate change over the region. Indeed, most of the Dynamic Global

Vegetation Models (DGVM) included in the TRENDY project (e.g. Friedlingstein et al.

2020[41]) and which are used to inform our best estimates of the global carbon budget as-

sume that Amazon forests are represented by 1-2 discrete Plant Functional Types (PFT).

For example, in the LPJ model[42] and the ORCHIDEE model[43] Amazon forest vegeta-

tion is described by a tropical evergreen PFT and a tropical deciduous PFT, while other

vegetation models have an even more limited description of functional diversity (e.g. Gal-

braith et al. 2010[44]). Such architectural restrictions mean that spatial variation in forest

biomass storage and dynamics is poorly captured by many DGVM[45] and limit ability

to capture variation in forest sensitivity to drought. However, there have been notable

recent attempts to improve the description of functional diversity in DGVM which replace

prescribed trait values with more flexible trait values shaped by climate and competition

(e.g. Thonicke et al. 2020[46]). Such approaches present promising avenues for better

representation of variation in forest sensitivity to climate in global models.

While our study documents spatial patterns and large-scale controls on forest sensitivity

to drought in Amazonia, it does not allow for determination of the specific mechanisms

which underpin these differences. These may include variation across forests in ability

to withstand negative xylem tensions under drought or below-ground rooting properties.

Elucidating these mechanisms is of high importance to enable more informed predictions

of the impact of climate on this critically important biome, but is not yet possible due

to the lack of Amazon basin scale databases of relevant plant traits. Thus while our

study identifies patterns of varying climatic sensitivity across Amazon forests and the

overarching controls of climate and soils, an understanding of the specific mechanisms will

only be possible with new basin-wide products of plant functional properties.
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2.4 Methods

2.4.1 Study Area

This study focuses on forested areas with minimal human impacts within Amazonia. Ama-

zonia was delineated using the geographical boundaries described by Feldpausch et al.

(2011)[25] which is based on a combination of climate, hydrology, flora, fauna and bio-

geography criteria. These regions vary markedly in forest composition and dynamics and

have been used extensively to evaluate how forest structure and function vary across dif-

ferent biogeographical regions[25, 47, 45]. We restrict our analysis to Amazonian forests

defined using the Intact Forest data product which maps unbroken expanses of natural

ecosystems within the zone of current forest extent, having a minimum tree cover of 20%,

and with no remotely detected signs of human activity[26]. Savanna ecosystems as identi-

fied using the WWF Ecoregions[48] were excluded from the analysis to restrict our study

to forest areas. As a final step, any forested pixels that experienced a fire in 2015 were

identified using the MOD14A2 8-day fire product[49] and removed.

2.4.2 Overarching Approach

We modelled 2015/16 ENSO associated anomalies in photosynthetic activity over Ama-

zonia as a function of variables representing the ENSO associated climate anomalies, soil

characteristics, and background climatology. The relative importance of each of these

groups of variables and of the individual variables within these groups was then explored

using multivariate regression analysis with final model selection based on AICc and model

stability analysis. The full model and explanation of variables is provided in the supple-

mentary information (Supplementary Table A.6).

2.4.3 Solar Induced Fluorescence Data

Photosynthetic activity was proxied using SIF retrieved at 09:30 hrs local time using the

SIFTERv2 algorithm[50]. The SIFTER v2 algorithm retrieves SIF from GOME-2A re-

flectance spectra in the 734-758nm window, by examining the filling in of Fraunhofer lines

relative to the depth of the Fraunhofer lines observed over the non-vegetated reference re-

gion of the Sahara, while accounting for the influence of the surface albedo and atmospheric

transmission[50]. The algorithm improves on previous versions of the SIFTER algorithm

used by previous studies[10] by explicitly attempting to correct for sensor degradation ef-
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fects post-2013 (Supplementary Figure A.5) and by using narrower spectral windows that

avoid oxygen absorption and are less sensitive to water vapour. The SIFTERv2 product

corrects for sensor degradation through analysis of changes in reflectance over the sites

where reflectance is known to be stable[50]. Data from this analysis was used to calculate

degradation correction spectra for all seasons post July 2014, and these correction spectra

were subsequently applied prior to the spectral retrieval to stabilise the observed declines.

The corrected product removes any large-scale SIF trends over our study period (up to

the end of 2016) and also reveals a rebound in SIF values in 2017 (Figure 2.1). We note,

however, that caution should be applied when using the product beyond the timeframe of

this study as post-2017 SIF values appear to be associated with lower seasonal maxima

and minima than values up to that point (Supplementary Figure A.5).

Daily SIF Retrievals from 2007 to 2017 from the SIFTERv2 algorithm[51] were resampled

to a monthly mean 0.5°x 0.5°gridded resolution using an inverse distance weighting algo-

rithm implemented using the python library Pyresample[52]. Following the advice set out

in the SIFTERv2 Algorithm Theoretical Basis Document[51], pixel-level retrievals with

QA values less than 0.6 were excluded from the study to ensure that only high-quality

(low cloud fraction, small spectral residual) retrievals were used. QA values are calculated

pixel wise from cloud faction and spectral residual, pixels with high cloud faction and high

spectral residual will have a small QA value.

The monthly mean gridded data were then used to calculate a standardised SIF anomaly

(Equation 2.2):

StandardisedAnomaly =
Xt −X

σ
(2.2)

where Xt represents the mean SIF/climatic value during the October to December 2015

period, X represents the mean and σ the standard deviation of the baseline period (Octo-

ber to December) between 2007 and 2014 (excluding 2015). Information after the ENSO

period was not included in the calculation of the baseline as evidence suggests that Ama-

zonian forest dynamics following ENSO have changed significantly[53]. Wigneron et al.

2020[53] for instance show that Above Ground Biomass (AGB) had not recovered by the

end of 2017. Thus, we excluded post ENSO years in the calculation of the baseline as a

precaution. October to December was chosen as the analysis period as this corresponded

to the period of most negative SIF anomalies across all Amazon regions, as shown in pre-

vious studies that examined the SIF response to the 2015/2016 ENSO event[54, 10] and
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shown in Figure 2.1.

The interpretation of changes in SIF as changes in productivity has been used by several

studies[10, 55, 24] including this one. However, the relationship is complicated, and the

use of SIF as a proxy in this manner comes with a number sources of uncertainty and

assumptions that must be taken into consideration when interpreting the results. Porcer-

Castell et al. (2021)[56], summarised the key uncertainties surrounding interpreting SIF

as productivity and we recommend the reader to read their work for a comprehensive

summary. However, the key uncertainties relevant to this study include[56]: 1. A lack

of understanding how alternative energy sinks e.g. photorespiration may help sustain

electron transport during stress conditions when carbon assimilation and thus productivity

is impaired resulting in a potential decoupling of SIF and productivity. 2. Uncertainty

due to variation in species and leaf biochemistry, canopy architecture and the presence of

non-photosynthetic material 3. Uncertainty arising from the integration of SIF controls

across space and time that may strengthen or disrupt the SIF-GPP relationship. While it

is important to acknowledge these uncertainties when interpreting the results, we remain

confident in our findings, as many studies[57, 58, 59, 60] examining SIF-GPP relationships

to date find strong agreement in-terms of variance explained, between SIF and GPP

when using data collected from flux-towers, ground measured SIF, and remote sensing

SIF products at spatio-temporal scales both finer and coarser than used in this study.

2.4.4 Climate Anomalies Associated with the ENSO

ENSO associated climate anomalies were calculated as anomalies in mean monthly tem-

perature, precipitation and MCWD using Equation 2.2 where in this case Xt represents

the mean temperature, precipitation or MCWD value during the October to December

2015 period, X represents the mean, and σ the standard deviation of the baseline pe-

riod (October to December) between 2007 and 2014 (excluding 2015). Temperature data

was retrieved from ERA5 monthly aggregates[61], and precipitation data from TRMM

3B43 monthly precipitation product[62]. MCWD was computed monthly as the differ-

ence between precipitation and Potential Evapotranspiration (PET)[63] (i.e. vegetation

is assumed to experience stress when PET is greater than precipitation), with deficits

accumulated over all months where precipitation was inferior to PET and being reset to

zero when precipitation exceeded PET. The evapotranspiration threshold was explored

using two different methods, the first being a constant threshold set at 100 mm a month
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for this analysis, based on mean water fluxes from tower networks and remote sensing

products[64] and in line with many other studies on Amazon forests[11]. However, we

acknowledge that evapotranspiration can vary substantially across different Amazonian

forest as studies have found that some regions have a monthly evapotranspiration closer

to 150mm[65]. Thus, we also explored the implications of computing MCWD using other

absolute thresholds. The conclusions of our analysis did not change for a range of evapo-

transpiration thresholds (Supplementary Figure A.2). The second method we tested, was

using a satellite (MODIS) derived Potential Evapotranspiration[49] product. This prod-

uct allowed us to calculate estimates of PET at a monthly timescale. Each month’s PET

average was subtracted from that month’s rainfall to calculate the water deficit. This was

then accumulated over time to calculate MCWD resetting to zero if rainfall exceeded PET

as before. This methodology arguably allows for a more realistic variation and estimation

of PET than a simple threshold applied across all Amazonian forests. The results shown

in this paper are based on this methodology.

Where required, climatic data were temporally and spatially resampled to match the

resolution of the SIF data to ensure consistency of scale. After processing and applying

quality filters, standardised anomalies were calculated for each ENSO associated climate

anomalies using Equation 2.2.

2.4.5 Soil Properties

Percentage sand and cation exchange capacity for different horizons from 0 to 30 cm depth

were extracted from the SoilGrids dataset at a 1 km resolution[66]. These were averaged

over the entire 30 cm depth and resampled to match the SIF dataset spatial dimensions.

Water table depth was retrieved from the water table depth map produced by Fan et al.

(2013)[30], based on a data-model fusion approach. As with all other data layers, this

product was spatially resampled to the resolution of the SIF data.

Soils grids is produced through the interpolation from ground collected data accounting

for a range of environmental covariates using machine learning algorithms. The quality

of this product at any particular point therefore relies on number of points in the region,

the distance from those points, and the scale of the analyses. The spatial coverage of

the Amazon is good[66], especially when considering that this study is at a scale of 0.5°x

0.5°with over 8,000 soil profiles distributed across the study area. If this study was looking

at finer scales, then issues of data validity may be of much higher concern, however at this
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scale it means that each of our pixels is covered by a good number of points, and thus is

likely to be representative of the regional gradients in soil characteristics.

The Water table depth product used published by Fan et al. (2013)[30] interpolates

globally from 1,603,781 observations of water table collected from government archives

and published literature using a ground water model forced by present-day climate, terrain

and sea level[30]. Observation density over the Amazon, is relatively low compared to

other regions and this should be taken into account when interpreting water table depth.

However, while water table depth at finer scales may differ from reality due to low data

density, at the scale we are using, the data available should be sufficient to provide regional

trends allowing us to test its importance. The Fan et al. product has been used extensively

to evaluate the impacts of water availability on vegetation structure and function (e.g.

Costa et al. 2022)[67].

2.4.6 Background Climate Variables

Background climate variables considered included mean annual precipitation and temper-

ature, the interannual variability in mean annual precipitation and temperature and the

seasonality of monthly precipitation and temperature. These variables were calculated

using data from all years prior, and after ENSO, but excluding data from during the event

itself (2015/16 data excluded). Temperature data was obtained from ERA5 and precip-

itation from TRMM 3B42, the same data used for the computation of ENSO associated

climate anomalies. The interannual variability was assessed by computing the coefficient

of variation (CoV) across all years (except 2015), while the seasonality of precipitation

was expressed as a seasonality index[68] using Equation 2.3:

SI =
1

R

12∑
n=1

∣∣∣∣Xn − R

12

∣∣∣∣ (2.3)

where Xn is the mean precipitation of month n, and R is the mean annual precipitation.

Seasonality in temperature was calculated as the average annual coefficient of variation of

temperature. All data processing was performed using Google Earth Engine[69].

2.4.7 Statistical Analysis

Explanatory variables were split into three overarching groups representing ENSO associ-

ated climate anomalies, (temperature, precipitation, and CWD anomalies), soil character-
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istics (percentage sand, cation exchange capacity and water table depth) and background

climatology (mean annual precipitation/temperature, interannual variability in precipi-

tation/temperature and seasonality of precipitation/temperature). We considered both

linear and quadratic terms for temperature anomaly to better represent its non-linear

relationship with productivity, whereas all other variables were included as linear terms

only. The full model and predictor variable description is provided in Supplementary Table

A.6. Model fit was assessed using standard model diagnostics in R, including calculating

of model R2, QQ plots, leverage plots, plots for heteroscedasticity and a plot of fitted vs

observed values (Supplementary Figure A.4).

Variable selection for the final model was undertaken using a backwards elimination al-

gorithm based on AICc. During a single step variables are removed one at a time from

the model and the change in AIC calculated. The variable which resulted in the greatest

decrease in AICc was then eliminated. This process was repeated until the elimination

of any variable results in a decrease in AICc of less than 2 producing the final model for

interpretation. To remove confounding effects due to correlation between variables, Vari-

ance Inflation Factors (VIF) were calculated for all variables before backward elimination

was conducted and all variables with VIF greater than 10, indicating likely multicollinear-

ity, were removed. K-fold cross validation was performed (k=10) to check for overfitting.

Root mean squared error of the final selected model was calculated as 0.862, and the av-

erage k-fold validation was 0.866, the similarity indicating that the selected model does

not exhibit significant overfitting.

Model stability was investigated using a bootstrapping approach[70] to quantify the ex-

tent to which our final model was stable to mild to moderate perturbation, and thus to

what extent we can rely on the final model for inference. The underlying dataset was

bootstrapped (n=1000), and backward elimination used to produce a final model as out-

lined previously. Mean, standard deviation and 2.5/97.5 quantiles were then calculated

from the bootstrapped population. Variables for which the 95 quantiles crossed zero were

excluded from analysis as the direction of their relationship with SIF anomaly could not

be reliably inferred.

Variable importance was assessed at two levels: 1) at a group level by calculating the

change in final model R2 when either ENSO associated climate anomalies, soils or back-

ground climatology groups were eliminated and 2) at the level of the individual variable
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through direct comparison of scaled regression coefficients in the final model.

All statistical analysis was conducted using R version 4.0.0. Data visualisation was per-

formed in R using the ggplot2 package[71] and QGIS[72].
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[6] José A. Marengo, Carlos A. Nobre, Javier Tomasella, Marcos D. Oyama, Gilvan Sam-

paio de Oliveira, Rafael de Oliveira, Helio Camargo, Lincoln M. Alves, and I. Foster

Brown. The drought of Amazonia in 2005. Journal of Climate, 21(3):495–516, 2008.

ISSN 08948755. doi: 10.1175/2007JCLI1600.1.

[7] Simon L. Lewis, Paulo M. Brando, Oliver L. Phillips, Geertje M.F. Van Der Heijden,



70

and Daniel Nepstad. The 2010 Amazon drought. Science, 331(6017):554, 2011. ISSN

00368075. doi: 10.1126/science.1200807.
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Schrier. Record-breaking warming and extreme drought in the Amazon rainforest

during the course of El Niño 2015–2016. Scientific Reports, 6(1):33130, December

2016. ISSN 2045-2322. doi: 10.1038/srep33130.

[9] Oliver L Phillips, Luiz E O C Aragão, Simon L Lewis, Joshua B Fisher, Jon Lloyd,
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royo, Gerardo Aymard, Tim R Baker, Olaf Bánki, Lilian Blanc, Damien Bonal, Paulo
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Hart, Radim Hédl, Bruno Herault, Rafael Herrera, Niro Higuchi, Annette Hladik,
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W. F. Laurance, J. C. Lovett, Y. Malhi, B. S. Marimon, B. H. Marimon-Junior,

E. Lenza, A. R. Marshall, C. Mendoza, D. J. Metcalfe, E. T. A. Mitchard, D. A.

Neill, B. W. Nelson, R. Nilus, E. M. Nogueira, A. Parada, K. S.-H. Peh, A. Pena Cruz,
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Chapter Three

Contrasting Sensitivity of UK

Forests to Drought Explained by

Climate and Community

Composition

3.1 Abstract

Rising temperatures are predicted to have a variety of effects on temperate forests including

increasing mortality, and boosting productivity. The net balance of these different impacts

are likely to vary between regions moderated by spatial patterns in temperate forest climate

sensitivity. As a case study we investigate the climate sensitivity of temperate forests in

the United Kingdom (UK). Normalised difference vegetation index (NDVI) anomalies

were used to proxy productivity over time as a function of temperature and precipitation

anomalies at a pixel level. Extracting the standardised coefficients (climate sensitivity)

and variance explained (climate coupling) for each of these pixel level models we then

used a Random Forest framework to explore how background climate, soil, topographic

and forest attribute variables are able to explain spatial variation in climate coupling and

sensitivity. Our results show that historic productivity anomalies were best predicted by

temperature anomaly at a pixel level. Forests in the north-west, west and south-east

were found to respond in fundamentally different ways to climate extremes. Forests in

the north-west and west of the UK when experiencing drought have historically tended
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to increase productivity, while those in the south-east when experiencing drought have

tended to decrease productivity. We compared the relative importance of background

climate, soil characteristics and forest attributes in explaining the observed variation in

climate sensitivity using a random forest framework. The final model explained 72%

of the observed variation in temperature sensitivity, and highlighted the importance of

background climate, and forest attributes in explaining NDVI-temperature sensitivity,

likely explained by variation in community composition.

3.2 Introduction

Temperate forests are forested areas found in the temperate zones between 25°and 50°latitude,

between the boreal and tropical zones[1]. They account for nearly 10 million km² of global

forested area[2] and are characterised by distinct cyclic, seasonal changes in climate, in-

volving periods of growth and dormancy[3]. These forests, more so perhaps than any

other forested biome[3] have been defined by the extent to which human have shaped and

utilised them[4]. While historically the major threat to temperate forests has been an-

thropogenic deforestation, and land use change[3], there is increasing evidence that rising

global temperatures are likely to be the greatest driver of temperate forest change in the

future[5, 6]. Rising temperatures are predicted to have a variety of effects on temperate

forests including increasing mortality[5] though increasingly severe droughts[6], as well

as boosting productivity through higher average temperatures[7] with the net balance of

these effects likely varying between regions.

The sensitivity of temperate forests to temperature, and climate more generally, has been

found to be influenced by a wide range of variables including background climate[8], soil

texture[9], species composition and forest structure[10]. Although the individual contri-

bution of these variables have been investigated, the relative importance of these variables

in moderating productivity responses is an area requiring further study, as high uncer-

tainty exists[11, 12]. It is important to understand the nature of these response if we are

to improve our understanding of how temperate forests may respond to future climate

change[2].

In addition to the potential impacts on forest productivity as a result climate change,

elevated atmospheric carbon dioxide concentrations may itself directly, or via an interac-

tion with climate effects impact productivity. The fertilising effect of atmospheric carbon
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dioxide on productivity has been well documented in the literature by free-air and cham-

ber carbon dioxide enrichment experiments[13, 14], and although in the long run forest

productivity may well be limited by nutrient availability[15], in temperate forests at least

the warmer temperatures and elevated atmospheric carbon dioxide concentrations may

well stimulate productivity in the short term although considerable uncertainty exists on

the magnitude of these gains[16].

Temperate forests cover a wide area, however they are managed at national, and sub-

national scales and so need to be understood at these scales for effective management.

Reviewing the literature revealed that there are relatively few published national scale

assessments of the climate sensitivity of temperate forests, and while larger studies are

useful, relationships may differ between regions, and regional breakdowns are rarely pro-

vided. Existing national literature, has tended to focus on the response of single sites[17],

single[18] or small groups of species[19], probabilistic future projections of forest risk[20, 21]

or small scale experimental setups[22]. This lack of information at a national scale means

it is difficult for governments and national organisations to make informed decisions on

how to prioritise their efforts. Knowledge on how forests may respond to future climatic

anomalies may be particularly important as climate projections for many temperate for-

est regions, are predicting trends towards hotter, drier summers on average[7], with an

increased chance of significant climatic anomalies[7].

To address the question of what moderates the sensitivity of temperate forests we use the

temperate forests of the UK as a case study. The UK temperate forests cover approx-

imately 13%[23] of the UKs total land area, and provide a range of valuable ecosystem

services. A valuation conducted by Forest Research[24] estimated the total annual value

of woodland in 2020, to be £8.9 billion a year. Of this, provision of timber and wood

fuel accounted for just £372.9 million, with the remaining £8.6 billion attributable to car-

bon storage[25], biodiversity provision[26], and recreational services[27], with 795.8 million

recreation visits to UK woodlands in 2020 alone.

The high value of UK forest highlights the critical need to better understand their inherent

sensitivity to climate, their ability to resist stressors, and their capacity to maintain the

provision of these services. The UK experiences major climatic anomalies on average once

every ten years[28]. These anomalies usually manifest as extended periods of drier, or

hotter conditions[29], and in the UK have historically take the form of relatively short
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summer heatwaves[29] or multiyear groundwater droughts[29], with significant climatic

events in recent history occurring in 1975/1976[30], 1995[31], 2003[32], 2010-2012[33] and

2018/2019[29]. These climatic anomalies can have a wide range of impacts on forested

areas including loss of aboveground biomass due to tree mortality[34], decreased gross

primary productivity[35], and increased occurrence of wildfires[36].

Forest productivity has been proxied in this study using the NDVI MOD13Q1.061 Terra

Vegetation Indices 16-Day Global 250m product[37] averaged to a monthly timescale. We

use NDVI as it is a vegetation index commonly used in forestry research and provides

information on vegetation greenness[38] which has been found to be a strong predictor

of tree productivity[39]. Canopy damage or discoloration due to dehydration, high tem-

perature stress, insect damage or other stressors results plants absorbing less visible light

and/or absorbing more infrared light resulting in detectable decreases in NDVI[38] thus

allowing inferences regarding drought impact on productivity.

The sensitivity of forest productivity to climate anomalies is moderated by a wide range of

variables that can broadly be classified into i) the intensity of the climatic anomaly, ii) the

background (long-term mean) climatology iii) soils and topography and iv) the identity

of the community present. Studies of temperate forests have highlighted the sensitivity of

forests productivity[40] and mortality to precipitation and temperature anomalies[41, 42].

Forest sensitivity to water stress may be related to background climate as forests found in

drier regions have been shown to be better adapted hydraulically to drought than those

found in wetter environments[8]. Soil type and topography[43] have been shown to be

important with forests in areas with high soil bulk density and low soil available water

capacity being particularly vulnerable to droughts[43]. Finally, variation both within[44]

and between[45] species has been shown to influence forest climate sensitivity, with certain

species being more or less sensitive to climate than others[45].

Here we investigate the sensitivity of forest productivity to temperature and precipitation

anomalies over a 19 year period of time. We use statistical modelling to help us understand

what variables control the observed spatial patterns of productivity sensitivity. Our main

research questions are therefore, what, if any spatial patterns exist in forest productivity

sensitivity to temperature and precipitation anomalies, and what are the key variables

that control the observed patterns in sensitivity.



89

3.3 Methods

3.3.1 Study area and period

This study focuses on the subset of UK forested area covered by the National Forest

Estate Subcompartments (SCDB) 2019[46]. We restrict our analysis to mature forests that

have remained forested throughout the study period (2000 to 2020) by removing forests

identified as experiencing forest loss using the Hansen Global Forest Change v1.9[47] data

product. Forests planted after 1980 were removed, as examination of NDVI trends in

forests planted after this date showed strong growth patterns which confounded analysis

of climate sensitivity (See Supplementary Figure B.5 for analysis).

3.3.2 Overarching Approach

For each individual pixel (250 x 250m) in the study domain, NDVI between 2000 and

2019 was modelled in a linear regression framework as a function of temperature and

precipitation anomalies at a monthly time scale. Highly sensitive or coupled forest systems

are assumed here to be those that respond more strongly to climate fluctuations[48],

characteristics which would be captured by the regression. NDVI was modelled using

climate data from the same month as the month NDVI was collected. Climate data from

the same month was chosen as comparison of modelling NDVI with the same month,

the previous month, and the average of the two previous months climate data revealed

that the highest average model R² across the study area was achieved when modelling

NDVI using climate data from the same month. For each pixel, the variance explained

by the model (climate coupling), and the standardised coefficients (climate sensitivity)

for temperature, and precipitation were calculated as part of the linear regression. A

Random Forest regression was then used to explain the observed spatial distribution of

climate coupling and sensitivities using forest attributes, background climate and soils

data as explanatory variables.

3.3.3 Normalised Difference Vegetation Index Data

A range of remote sensing products were considered as proxies for forest productivity,

including solar induced fluorescence (SIF) retrieved from GOME-2, and OCO-2, and a

range of vegetation indices from Sentinel 2, and MODIS. GOME-2 SIF was deemed to

have a resolution too coarse (80 x 40 km per pixel) for the scale of the UK, where most
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forests are smaller than this. OCO-2 SIF had a much better resolution of 1.29 x 2.25km,

but was only able to provide partial coverage of the UK due to its orbital path. Sentinel-2

data had a suitable spatial resolution of 10x10m, but only has data available from 2017

which is an sufficient length of time to permit a more generally representative analysis of

forest productivity dynamics.

NDVI is a vegetation index commonly used in forestry research and provides information

on vegetation greeness[38] calculated using Equation 3.1.

NDV I =
NearInfrared−Red

NearInfrared+Red
(3.1)

NDVI data was retrieved from the MOD13Q1.061 Terra Vegetation Indices 16-Day Global

250m product[37] and restricted to forested areas as defined by the National Forest Estate

Subcompartments (SCDB) 2019[46]. Using the provided quality assurance layer, NDVI

retrievals were selected if the Vegetation Index (VI) quality was flagged as ‘good’, or ‘pro-

duced but check QA’, the VI usefulness was 10 or less, and was not flagged as containing

mixed clouds. This process resulted in the removal of low quality data, and thus different

amounts of data are available for each pixel, depending on how much data was removed.

NDVI was resampled to a monthly interval by grouping values by month and averaging.

Finally NDVI data was restricted just to the growing season of each year, defined here as

May through to September to ensure that we were looking at climate fluctuations during

growth periods, and limiting the impact of seasonal cycles of greening.

3.3.4 Climate Data for NDVI Modelling

NDVI was modelled using precipitation and temperature anomaly data. Precipitation data

was retrieved from the CEH-GEAR dataset[49] between 2000 to 2019 and temperature

data was retrieved from the ERA5 reanalysis dataset[50] covering the same 2000 to 2019

time period. Precipitation was extracted from the provided NetCDF files using the python

library Pyresample[51] before being ingested into Google Earth Engine[52] for modelling.

Climate data was resampled from its native resolution 1km x 1km resolution to match

the 250m x 250m resolution of the NDVI data by using nearest neighbour interpolation.

Temperature and precipitation anomalies were calculated for each month using equation

3.2,

StandardisedAnomaly =
Xt −X

σ
(3.2)
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where Xt represents the mean climatic value for the month t, X represents the mean and

σ the standard deviation of all occurrences of month t between 2000 and 2019.

Date was included as a variable in the per pixel model to quantify and account for long term

trends in productivity which may occur due to climate change, and CO2 fertilisation. CO2

fertilisation was not directly tested as although its effects on productivity can be significant

[53], it’s effect over the spatial and temporal period investigated here is unlikely to have

varied greatly. Date was overall the least important of the three pixel model level variables,

and has no clear spatial patterns. By including in the per pixel model however we increase

our certainty that the patterns in the other variables we see are not influenced by any long

term NDVI trends.

3.3.5 Background Climate Data

Background climate variables Mean Sum of Growing Season Precipitation (MSGSP), and

Mean Growing Season Temperature (MGST) were calculated from CEH-GEAR[49] precip-

itation data, and CHESS-met[54] temperature data respectively, covering the period from

1990 to 2019. Mean growing season variables were calculated by restricting all datasets

to the growing season of each year, creating sum or averages for each year covered as ap-

propriate and taking the average of these yearly sums or averages. Seasonality in growing

season precipitation (Precipitation Seasonality within Growing Season or Precipitation

Seasonality for short) was calculated using the CEH-GEAR precipitation data and ex-

pressed as a seasonality index[55] modified to examine seasonality across just the growing

season period of May-September Eq 3.3:

SI =
1

R

5∑
n=1

∣∣∣∣Xn − R

5

∣∣∣∣ (3.3)

where Xn is the mean precipitation of month n, and R is the mean annual precipitation.

3.3.6 Forest Attributes

Primary planting year, and genus of the primary species, were derived from the SCDB

2019[46]. A Subcompartment is defined as “an area of land that has similar land use,

species, habitat composition, age, thinning and harvesting operations and needs to be

managed as a single unit”[24]. As multiple species can be present in a subcompartment,

the most prevalent species was chosen to represent the subcompartment and the genus
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of this taken. Forest attributes were provided as a polygon feature layer, to provide a

value for each pixel, the centroid of each MODIS NDVI pixel was taken, and this centroid

intersected with the forest attribute polygon layer to provide a value.

3.3.7 Soils Data

Clay[56] and sand[57] percentage content (percentage weight) were retrieved from the

OpenLandMap, as the average of each of the aforementioned variables in the top 60cm.

Although only sand was used in the final analysis due to a high correlation between the two

variables (Pearson’s correlation of -0.8). Data was resampled from its native resolution

to match the 250m x 250m resolution of the NDVI data by using nearest neighbour

interpolation.

3.3.8 Topographic Data

The topographic variables, aspect, elevation, and slope were calculated in Google Earth

Engine[52] using SRTM Digital Elevation Data Version 4[58]. Data was resampled to

250m using nearest neighbour interpolation to match the spatial resolution of the NDVI

data.

3.3.9 Statistical Analysis

Climate coupling and sensitivities were calculated for each pixel (250mx250m) within the

study domain by modelling the NDVI time series for that pixel as a function of precipi-

tation, and temperature anomalies as fixed effects, within a generalised linear framework.

Date was added as an additional fixed effect to account for any long term trends in NDVI

due to carbon fertilisation effects which have been shown to result in long term increases

in NDVI[59]. All variables were standardised by subtracting the mean and dividing by

the standard deviation prior to modelling to permit direct comparison between pixels of

coefficients in the resulting model. Using Google Earth Engine[52] the pixel level model

produced a total variance explained (climate coupling) and individual coefficients for pre-

cipitation, and temperature anomalies (climate sensitivities) which were used as the basis

for the second part of the analysis.

Spatial trends in climate coupling and sensitivity were confirmed by calculating partial

correlation coefficients with latitude and longitude, as well as visual inspection of the

spatial patterns, and trends between climate coupling and sensitivity were tested using
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ordinary least squares.

A Random Forest regression framework was used to explain the observed spatial varia-

tion in climate coupling and climate sensitivities with explanatory variable split into three

overarching groups representing background climatology (Mean Sum of Growing Season

Precipitation (MSGSP), Mean Growing Season Temperature (MGST)), soil characteris-

tics (percentage clay) and forest attributes (genus, and primary planting year). Hyper

parameter tuning was used to find the optimum number of trees, and the number of vari-

ables (mtry) to test at each tree branch and were set at 1000, and 8 respectively. Relative

feature importance was tested using the R implementation of the Boruta algorithm[60]. To

better understand the workings of the Random Forest model, Accumulated Local Effect

(ALE) plots[61] were plotted using the R package IML[61] to demonstrate the modelled

relationship between each of the explanatory variables and the dependent variable. Inter-

actions between variables were tested using the R package randomForestSRC[62, 63, 64],

no noteworthy interactions were found (see SI B.8 for table of all interactions tested).

All statistical analysis was conducted using R version 4.2.2[65]. Data visualisation was

performed in R using the ggplot2 package[66] and QGIS version 3.13.3[67].

The presence of spatial autocorrelation was observed in the residuals of the random forest

for both climate coupling and climate sensitivity using a range of spatial structures in-

cluding, 1,2,3 and 4 nearest neighbours, and distance and inverse distance methods from

the minimum distance required for all points to have a neighbour up to all pixels being

connected to each other. Statistical significance was investigated through a monto carlo

permutation approach, and the calculation of Moran’s I. Significant spatial autocorrela-

tion was identified in the residuals, a spatial random forest was attempted to account for

this spatial variation, but due to the large number of points involved and the limitation

on computation power available, it was not possible to complete this model.

Variable importance within the Random Forest model was accessed using two methodolo-

gies. First through calculation of Boruta importance score[60]. Boruta importance is a

permutation based methodology, after training the Random Forest on the full data set,

the algorithm shuffles the data in a single variable and then uses this new dataset, and

the trained model to predict for all samples. The mean squared error before and after

shuffling is then used to calculate the increase the mean squared error. Higher importance

is indicated by a variable for which shuffling its information results in a large increase in
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mean squared error. This is then repeated for all variables, and increases in mean squared

error is rescaled in order to calculate relative importance. The second method utilised was

the creation of ALE plots[61], which show visually the relationships between the depen-

dent variable, and explanatory variable. These two methods were used in tandem, as they

each identify different components of importance, first the five most important variables

as indicated by Bortua score were selected and then this ALE plots were used to refine

this list by excluding variables whose ALE value is close to, constant across most of its

range.

NDVI, and climate data were standardised before modelling to permit direct comparison

in order to assess relative importance within the climate coupling and sensitivity models.

Examining the relative importance of sensitivity of NDVI to temperature, and precipita-

tion anomalies (SI B.4) identified temperature anomalies sensitivity as having the highest

average relative importance when looking spatially. To this end we decided to focus this

study on understanding what drives the observed variation in NDVI-temperature sensi-

tivity.

3.3.10 Data and Code Availability

Please see SI B.4 for information on data availability, and details on how to access all the

base datasets used for this analysis, and SI B.7 for the code used in this chapter. Please see

SI B.7 for variance inflation factors, and correlation coefficients between all explanatory

variables.

3.4 Results

3.4.1 Climate Coupling and Sensitivities

Examining climate coupling across the study domain (Figure 3.1), significant spatial pat-

terning can be observed. With climate coupling generally becoming more positive as

latitude increases (partial correlation of r = -0.27, p < 0.05) and longitude decreases (par-

tial correlation of r = 0.11, p < 0.05). High climate coupling (defined here as coupling

greater than the nationwide average) can be observed in the northwest and west indicating

that in these regions forest productivity has historically been more strongly controlled by

climate. The mean climate coupling for all pixels was 16%, with a standard deviation of

+/-14%.
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Figure 3.1: a) Spatial distribution of classified climate coupling (red top 25% highest
climate coupling values), blue (bottom 25% of climate coupling values). b) Density dis-
tribution for each 2x2 degree square covering the UK, blue dashed line (left) indicates
bottom 25% of climate coupling values, red dashed line (right) indicates top 25% of cli-
mate coupling values. c) Histogram of climate coupling dashed vertical line represents the
mean.

While climate coupling provides a measure of how coupled forest productivity in an area

is to climate, it tells us little about the direction or magnitude of this relationship which

are reflected in the climate sensitivities, or standardised regression coefficients of the pixel

level. The relationship between climate coupling and climate sensitivity was tested and a

large significant, positive relationship found between coupling and temperature sensitivity

(β = 0.43, R2 = 0.52, p < 0.05), and a small but significant relationship between climate

coupling and precipitation sensitivity (β = 0.10, R2 = 0.007, p < 0.05). (Please see SI B.4

for maps of relative importance of temperature and precipitation sensitivity).

Figure 3.2 shows the spatial distribution of these coefficients for precipitation and temper-

ature anomalies. Examining the spatial patterns, a strong northwest to southeast gradient

can be seen in temperature sensitivity, with temperature sensitivity increasing with in-

creasing latitude (partial correlation of r = 0.14, p < 0.05) and decreasing with increasing

longitude (partial correlation of r = -0.44, p < 0.05). Precipitation sensitivity by contrast

is fairly uniform in its spatial distribution, showing no significant correlation with lati-

tude, and a small positive relationship with longitude (partial correlation of r = 0.15, p

< 0.05). Interpreting these correlations we can say that forested areas in the northwest

of the UK and Wales generally exhibit large positive temperature sensitivity. This can be

interpreted as meaning that forested areas in the northwest of the UK and Wales when

experiencing higher temperatures such as those experienced during a drought exhibit a

positive response in forest productivity. In contrast, the southeast demonstrates the op-

posite pattern with generally large negative temperature sensitivity values. This can be
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interpreted as that when these areas area are exposed to higher than usual temperatures,

these have been historically coupled with lower forest productivity values. Precipitation

sensitivity is fairly uniform across the United Kingdom, with the southeast and west of

Scotland having a slightly higher frequency of positive forest productivity-precipitation

sensitivities.

Figure 3.2: Spatial distribution of standardised regression coefficients for a) temperature
anomalies b) precipitation anomalies (standard deviation from mean). Red-solid line
represents the mean sensitivity, black-dashed line highlights 0 to be used in comparing to
the mean, larger versions of the frequency plots can be found in Supplementary Material
B.6

3.4.2 The Role of Climatology, Soil Characteristics and Forest Attributes

in Explaining Temperature Sensitivity

Temperature sensitivity was modelled within a Random Forest framework as a function

of climatology, soil characteristics, topography and forest attributes. The final model

explained 72% of the observed variation in temperature sensitivity. Within this model the

top five explanatory variables (ranked by average Boruta score, Figure 3.3 were identified

as seasonality of precipitation within the growing season, the primary planting year, the

percentage clay content, mean growing season precipitation, and mean growing season

temperature.
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Figure 3.3: Relative importance of explanatory variables within the random forest model.
Variables are ranked in decreasing average Boruta score and have been rescaled to fall
between 0 and 100. Box and whisker plots, outliers (dots), error lines the minimum and
maximum respectively, box, 25th,50th and 75th percentiles.

ALE plots were plotted to understand the shape of the relationship between climatology,

soil characteristics and forest variables and temperature sensitivity (Figure 3.4).

Figure 3.4: Accumulated Local Effect plots for Random Forest explanatory variables. To
get a measure of confidence the underlying dataset was bootstrapped with replacement
1000 times with the results for all iterations plotted. Line through points represents the
generalised additive modelled trend line. Genera in italics with ∗ represent coniferous
genera, normal font without represent broadleaf genera.
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While the Boruta score provides a measure of relative importance when the variable is

not present in the model, ALE plots provide a measure of the relative contribution each

variables makes towards the prediction of the dependent variable. Given that the average

temperature sensitivity was just over 0.25, we can see that the relative effect size of

each variables varies significantly and gives a different way to understand the relative

importance of the variables. As Boruta and ALE plots provide information on a different

aspect of variable importance, it is to be expected that they may identify different variables

as being the most important. Primary planting year for instance, although flagged as being

in the top five explanatory variables by the Boruta score, shows relatively low contribution

to the overall prediction in the ALE plots.

The ALE plots for the top five variables as identified by Boruta scores were then examined

and the variable removed if their ALE score was close to, or at zero across most of its

range indicating that the variable has little changing effect on the models predictions.

After applying this criteria we were left with precipitation seasonality within the growing

season, mean growing season precipitation, and mean growing season temperature as being

the most important in explaining spatial variance in NDVI-temperature sensitivity.

From examining these ALE plots we can see that growing season precipitation seasonality,

mean growing season precipitation, and mean growing season temperature, are the most

important in terms of their contribution to the prediction of temperature sensitivity, as

their contributions relative to the mean temperature sensitivity of 0.25 is quite large.

Taking seasonality of precipitation within the growing season as an example of how to

interpret the ALE plots, we can see from the plot that its relationship with temperature

sensitivity is non-linear, with low seasonality sites making a negative contribution towards

the temperature sensitivity prediction, and highly seasonal sites being associated with

positive contributions towards temperature sensitivity. This can be interpreted as sites

associated with high rainfall seasonality everything else equal, have more positive rela-

tionships between productivity and temperature, and thus when experiencing droughts

when it is hotter than average have had higher than average productivity. Conversely, less

seasonal forested areas have a negative ALE value, and thus everything else being equal

have a negative temperature sensitivity value. These sites when exposed to droughts are

associated with a lower productivity values.

In this study we seek to understand the variables that contribute towards making forested
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areas more or less susceptible to drought, and so it makes sense to split variables based on

what values of these variables contribute positively, negatively to the temperature sensi-

tivity. This grouping helps us explain drought response, as when experiencing higher than

average temperatures, the former responds with increased productivity, while the latter

with decreased productivity. Looking at the values of variables which have historically

contributed to positive temperature sensitivity values, they are forested areas that tend to

have high seasonality in growing season precipitation, lower mean growing season temper-

atures, high mean growing season precipitation, and contain Betula genera. These forests

we would classify as having a high resistance to short term drought.

Looking at the values of variables which have historically had a negative relationship with

temperature we can see that these forests we can see that these forests tend to have low

seasonality in growing season precipitation, a high mean growing season temperature, low

mean growing season precipitation and contain Fagus or Fraxinus genera. These forests

we would classify as having a low resistance to short term drought.

For the equivalent analysis conducted on drought coupling please see SI B.2.

3.5 Discussion

3.5.1 Climate Coupling and Sensitivity Patterns

To understand how resistant UK forests are to climate fluctuations, climate coupling was

calculated as the variance explained (model R2) of the pixel level models. Examining

climate coupling across the study domain (Figure 3.1), we find, consistent with previous

work[68, 29] high climate coupling can be observed in the northwest and west regions of

the UK. This results indicates that productivity in these regions is driven more strongly

by short term climate fluctuations compared to other regions. This variation appears to

be driven by the relationship between NDVI and temperature sensitivity as we will ex-

plain. The variation explained by our models averaged across all pixels was (16% +/-

14%), similar to studies examining climate sensitivity of growth rates in eastern North

American temperate forests (climate-precipitation relationship -2.5 to 2.5% explained,

climate-temperature 8 to 18% explained)[69] and in the response of Central-West German

forests to drought (correlation with drought of 0.18). We therefore consider the varia-

tion explained by our model sufficiently large to warrant further investigation given that

productivity-climate relationships are inherently noisy by nature, especially at high res-
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olutions, and that we focus on short duration productivity-climate variation and don’t

consider lag and legacy effects on productivity of multi-year groundwater droughts which

can be significant[29].

Our first key finding is that spatial variation in productivity is most strongly driven by spa-

tial variation in temperature anomalies, and that spatial variation in precipitation anoma-

lies plays only a minor role in understanding spatial productivity patterns. This result

aligns with the findings of Thom et al 2019[69] who found similarly a sensitivity of growth

to temperature but not precipitation change, but contrasts with studies that have looked

across larger spatial gradients such as Garbulsky et al 2010[70] who found a significant

role for precipitation, but not temperature in explain global gross primary productivity

patterns. Our second key finding is that the direction of the productivity-temperature

is not consistent across space. A clear pattern can be observed with productivity in the

north, and west of the UK having a positive relationship with temperature anomalies,

while productivity and temperature anomalies are negatively related in southeast. Our

results therefore indicate, that when considering the impact of increasing temperature on

temperate forest productivity, it cannot simply be assumed to be positive as is seen at a

global scale[71], and instead a more mixed response to higher temperatures is observed[72].

3.5.2 The Role of Climatology, Soil Characteristics and Forest Attributes

in Explaining Temperature Sensitivity Patterns

To better understand what drives the observed spatial variation in the temperature-

productivity relationships between the north, west, and the south-east a Random For-

est model was trained to explain productivity-temperature sensitivity using background

climatology, soil characteristics and forest attributes. Modelling highlighted seasonality

in growing season precipitation, mean growing season temperatures, and mean growing

season precipitation as being the most important explanatory variables. Clay content

and genus present were less important but still noteworthy in understanding the observed

distribution of thermal sensitivity.

The results of this modelling gives our third key result, as they indicate that background

climate variables were the strongest predictors of forest productivity-temperature sensitiv-

ity, stronger than either forest attribute data or soils information. Our result is consistent

with global scale studies[71], as well as with European Fluxnet[73] based assessments of

forest climate-productivity relationships, and our work builds on the literature by allow-
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ing us to first demonstrate a similar result in a UK context, and second to then directly

compare the relative importance of climate, community identity, and soils information in

explaining productivity patterns.

Forests with a lower mean growing season temperature were generally associated with

a positive productivity response to higher temperatures (Figure 3.4). This finding is

perhaps unsurprising as temperate forests often have mean growing season temperatures

(mean growing season temperature found in this study was 13°C +/- 2°C) well below

the photosynthetic optimum temperature for the majority of broadleaf (between 23°C

and 30°C)[74] and coniferous tree species (between 10°C and 20°C)[74]. Therefore, water

and nutrients permitting such forests would be expected to respond positively to higher

temperatures[71, 9, 73] associated with drought periods. This hypothesis is supported by

our finding that forests that responded positively to increased temperatures were also more

likely to have higher mean growing season precipitation thus removing one of the potential

limitations. However, this relationship is not constant across the study region, and the

ALE values for forested areas with higher mean growing season temperatures are negative

(Figure 3.4), indicating that forests with higher mean growing season temperature tended

to respond negatively to higher than average temperatures. This could be indicative

that because the mean in such forests is higher (mean growing season temperature in

the southwest was 15°C +/- 2°C), during periods of higher than average temperatures

photosynthetic thermal optima are being breached resulting in decreased productivity.

Although the absolute temperatures in temperate regions are often well below levels which

are generally considered to impair photosynthesis, studies have shown that plants optimise

photosynthetic pathways based on growth temperatures[75, 76], and so relatively high

temperatures (even if not absolutely high) may still result in decreased productivity.

Two of the three most important variables identified were linked to precipitation, these

being mean growing season precipitation, and the seasonality of precipitation within the

growing season. Our results indicate that forests with higher mean growing season precip-

itation, and higher seasonality of growing season precipitation generally responded pos-

itively to higher than average temperatures. A number of mechanisms could facilitate

this relationship as high mean rainfall could mean trees have greater water reserves to

avoid hydraulic cavitation, and sustain higher levels of productivity during short drought

periods. Higher variability of intra-annual precipitation has been shown in a number of

temperate forest settings[77] to contribute to greater resistance to drought events though
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selecting for communities or functional traits[78] better able to cope with fluctuating short

term water stress.

Ultimately the relationships that we observe between climate and temperature sensitivity

are mediated through variance in community species, and community functional trait com-

position. To this end genera was included as a variable in our models, and although it was

found to less important in explain variation than climate variables we still find a number

of genera signals. Consistent with the literature we find that Betula genera[79] exhibit

drought tolerance, and were generally associated with forests that responded positively

to drought. In contrast Fagus and Fraxinus were generally associated with forest that

responded negatively to drought. Our findings that Fagus genera are drought intolerant

is consistent with a review[80] of Fagus genera which identified the genera as being partic-

ularly drought sensitive, and that UK Fagus populations were the most drought sensitive

in Europe[81]. However, our finding that Fraxinus genera were also found to be drought

sensitive is a bit more unusual as they are usually considered drought tolerant species[82].

However, the signal we see may be attributable to ash dieback[83] associated mortality

compounded with drought.

These results have a number of implications for productivity when considering likely cli-

mate change scenarios for the UK. Under a high emissions scenario, all areas of the UK are

projected to be warmer, and more so during the summer than the winter[84]. Precipitation

during the summer is likely to be reduced significantly (-45% to +5% range across the

UK), and increased in the winter (-3% to +39% range across the UK)[84] and changes in

the seasonality of extremes in precipitation is likely to increase, with significant increase in

rainfall intensity in Autumn[84]. Given the prominent relationship that we have identified

between productivity and temperature such a change temperature patterns would likely

exacerbate the observed divide in response between the north and southeast, with forests

in the southeast experiencing productivity declines more often, and to a great magnitude

compared to the north.

In summary we demonstrate for the first time in a UK context the relative importance of

background climate, soils and forest attributes in explaining long term sensitivity patterns

of forest productivity. Our results indicate that cooler, wetter, forests which experienced

higher rainfall seasonality generally responded positively to increased temperature. Con-

versely hotter, drier forests which experienced lower levels of rainfall seasonality were
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generally associated with decreased productivity when at higher than average tempera-

tures.
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Chapter Four

Functional trait controls on

Amazon forest Productivity:

Wood Density Mediates Mean

Rates While Leaf Phosphorus

Mediates Temporal Trends

4.1 Abstract

Our ability to predict the future evolution of the Amazon sink and its responses to ongoing

changes in atmospheric composition and climate relies on a clear understanding of the

factors that control productivity and mortality of Amazon forests. A wide range of factors

have been found to moderate forest productivity including edapho-climatic factors and

intrinsic properties of the trees themselves. Recent work has highlighted that functional

traits may be a promising avenue for explaining spatial variation in productivity, and

providing mechanistic understanding. Here we use a network of long term forest inventory

plots distributed across Amazonia to explore the different ways in which functional traits

may mediate stem Above Ground Woody Productivity (AGWP) patterns, considering

three distinct modes of AGWP: long-term AGWP, the trend in AGWP over time and in

response to a significant climatic anomaly. Our results indicate that nutrient availability

and functional traits both play a role in determining long term AGWP patterns, as well as
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shorter term responses to climate perturbations. Wood density was found to be important

as a control on background AGWP and response to short-term climate perturbations.

An apparent trade-off seems to exist with communities with higher wood density having

lower growth, and greater resistance to short term climate perturbation. Leaf phosphorous

was found to be the only significant predictor of long term trend in AGWP, with more

productive forests having greater community-weighted mean leaf phosphorus content. This

result may have significant implications for the maintenance of the Amazon forest sink,

as it suggests that P availability may ultimately limit forest ability to sequester carbon in

its vegetation.

4.2 Introduction

Old-growth forests of the Amazon play a vitally important role in the global carbon cycle,

storing an estimated 68 to 80 Pg C in aboveground woody biomass[1], approximately

25% of global aboveground forest carbon[2]. While old-growth forests in the Amazon have

acted as a strong global carbon sink over recent decades[3, 4], their ability to maintain this

sink appears to be in decline[5]. The Amazon forest vegetation carbon sink fundamentally

represents an imbalance between two rates: woody productivity[6] (gains of carbon) and

tree mortality[7] (losses of carbon), both of which have increased over time. Our ability

to predict the future evolution of the Amazon sink and its responses to ongoing changes

in atmospheric composition and climate relies on a clear understanding of the factors that

control these core fluxes of carbon into and out of Amazon forests[8].

Forest productivity is controlled by both edapho-climatic factors and intrinsic properties

of the trees themselves. At a large-scale, mean productivity rates have been shown to

be affected by both climate[6] and soils[9]. The sensitivity of Amazon forest productiv-

ity to various aspects of climate including temperature[6], drought[10], and precipitation

patterns[11, 12] is well documented. However, less attention has historically been paid to

the role of vegetation properties in governing stand-scale productivity. Plant functional

traits present a promising avenue for predicting productivity patterns and response to

perturbation. Functional traits are plant attributes which directly relate to plant func-

tion and relate to the growth/survival strategies of plants and their adaptations to the

environment[13]. Functional traits thus have the capacity to provide a mechanistic under-

standing of observed biomass and productivity patterns. Moreover, they now underpin
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the development of a new generation of ecosystem models for predicting carbon balance

under global change[14]. These can include leaf morphological and chemical traits (e.g.

leaf mass per area or leaf phosphorus content), wood structural traits (e.g. wood density)

as well as physiological traits related to photosynthesis and plant water use[15].

Stand-level wood density has been shown to influence productivity in both Neotropical

montane forests[16] and in lowland Amazon forests, where its spatial variation is an impor-

tant driver of spatial variation in aboveground biomass[17, 18]. Leaf traits such as LMA

and leaf nutrient concentrations could also be expected to affect tree growth through

effects on photosynthetic capacity. These traits form the core of the leaf economic spec-

trum, whereby plant species can be classified along a fast-slow continuum characterised

by acquisitive species with low LMA, high nutrient concentrations and high photosyn-

thetic capacity occupy the ‘fast’ end of the spectrum and species with high LMA, low

leaf concentrations and low photosynthetic capacity occupy the ‘slow’ end[19]. Studies

linking leaf traits and growth rates in tropical forests have largely focused on single sites

and have yielded contrasting results to date. For example, leaf traits were found to be

important predictors of tree growth in restored forest area in Central Amazonia[20] and to

have some explanatory power in predicting productivity in a very diverse old-growth forest

in north-eastern Amazonia[21]. However, another study in Central Amazonia found that

plant functional traits generally, including leaf traits, were very poor predictors of individ-

ual growth[21]. Holistic studies investigating the relationship between multiple functional

traits and productivity at a large-scale across tropical forests have been lacking, despite

the increasing availability of plant functional trait data, especially for Amazon forests[22].

Traits may also influence the response of productivity to global change, however this is

highly uncertain as little research has been conducted to date. A recent study by Tavares

et al. (2023)[15], found that variation in tree hydraulic safety margins were the only sig-

nificant predictor of observed decadal-scale changes in forest biomass across 11 Amazon

forests, with other traits such as LMA and wood density not influencing changes in carbon

balance. However, the role of hydraulic traits on carbon balance was found to be medi-

ated largely by influence on mortality processes rather than productivity processes. Trait

controls on plant productivity trends over time across Amazon forests have never been

formally evaluated, despite these trends varying considerably across Amazon forests[5].

Analysis of controls on productivity trends may offer insights into the response of the

Amazon carbon sink to elevated concentrations of atmospheric carbon dioxide. There
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are concerns that the ability of many Amazon forests to continue gaining in biomass

will be constrained by nutrient limitation, especially phosphorus, on productivity[23, 24].

A recent fertilisation experiments conducted on a phosphorus-depleted Central Amazon

forest, for instance, found that net primary productivity increased exclusively with phos-

phorus addition[25]. While the impact of nutrient limitation on productivity has been

demonstrated in modelling studies[24], space-for-time substitution studies across nutrient

gradients[26], and in short-term fertilisation experiments[25], it has yet to be demonstrated

at larger spatial and temporal scales.

Our study aims to evaluate the relationship between AGWP, climate and plant functional

traits by combining AGWP data from a pan-Amazon network of long term forest inven-

tory plots, with functional trait data collected in the same sites following standardised

protocols. Given data availability, we focus on wood density, leaf mass per unit area,

and leaf nutrients. Using this dataset, we investigate how functional traits mediate mean

AGWP and long-term trends in AGWP. In addition to this, as our time series of data

has coverage both before and after the 2015/2016 ENSO we will also investigate to what

extent the response of AGWP to the ENSO was moderated by functional traits.

4.3 Results and Discussion

4.3.1 Methodological Overview

Long term mean, trends in AGWP and response of AGWP to a significant climatic

anomaly, were calculated for a network of long term forest inventory plots distributed

across Amazonia where leaf phosphorus, branch wood density, or leaf mass per unit had

been also been collected (Figure 4.1, n = 33). Non-forest vegetation forms such as Cer-

rado were not included. To compare the relative predictive power of climate and functional

traits, we also calculated maximum cumulative water deficit (MCWD) for all plots using

remotely sensed precipitation[27]. MCWD was chosen as temperature, precipitation and

MCWD were all highly correlated and so could not be in the same model due to multi-

collinearity issue, and testing indicated that MCWD explained the most AGWP variance

of the three. The relationships between AGWP, climate, and community weighted av-

erage functional trait values were then investigated in a multivariate forward selection,

regression framework to investigate the independent effect of functional trait controls on

mean AGWP and AGWP trends, having accounted for variation in water stress. Spatial
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autocorrelation in the residuals of the best models based on AICc, were tested for and no

significant spatial autocorrelation was found.

Figure 4.1: Spatial distribution of plots with at least one functional trait of interest (hollow
circle) and plots for which all functional traits of interest have been collected (filled circle).

4.3.2 Controls on Long Term Mean and Trend in Aboveground Woody

Productivity

Mean Woody Above Ground Woody Productivity

Our best model (based on AICc) accounted for 63% of observed variation in mean AGWP

(Figure 4.2). Mean annual MCWD was the most important variable in the model and on

its own explained 45% of the variation in mean AGWP. Mean annual MCWD represents a

measure of background water stress with more negative values indicating a greater mean

maximum annual water deficit and thus greater water stress. Our analysis shows that

wetter forests with less seasonal water stress have greater mean AGWP, a result consistent

with previous analyses based on the RAINFOR dataset[28].
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Figure 4.2: Standardised regression coefficients for the best models for predicting mean
woody productivity (left) and trend in woody productivity (right) across Amazon forests.
Points show the standardised coefficient value in the best model for each, wings show the
95% confidence interval, shaded rectangle represents the 95% range when the underlying
dataset was subjected to moderate bootstrapped perturbation.

Branch wood density and leaf phosphorus content were also both in the best model, with

the removal of either resulting in a worse model as evaluated by AICc, although of the

two, only wood density was statistically significant. Plots with lower community-weighted

branch wood density were associated with higher mean AGWP. Hence, for the same degree

of water stress, plots with lower wood density tended to be associated with higher mean

AGWP. This finding was confirmed in direction and magnitude in a separate univari-

ate modelling of mean AGWP and wood density, leaf phosphorus and mean MCWD (SI

C.1,C.2,C.3). This result is also consistent with previous RAINFOR analyses showing that

wood density is generally lower in the more productive forests of western Amazonia[28],

with other studies in tropical forests[29] and tropical semi-dry climate studies[30]. This re-

sult has been proposed to be due to soil properties which vary greatly across the Basin, with

forests in Western Amazonia being characterised by fertile soils but with a poorer physical

structure, which is associated with a more disturbance-prone regime[9]. These conditions

favour lighter-wooded, more productive trees. The low wood density-high AGWP rela-

tionship has been previously attributed to a trade-off between wood strength and cost of

construction[31], as high wood density is “expensive” in terms of carbon investment, leav-

ing less for carbon for biomass accumulation and giving rise to a relatively conservative

growth strategy. Thus, communities with a high average wood density are theoretically
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associated with a lower long-term mean AGWP which we find. We note, however, that

this interpretation of the ecological role of wood density has been questioned by some

studies which have an employed an engineering perspective to suggest that high wood

density does not confer higher mechanical strength but may be associated with a lower

maintenance respiration cost[32].

We do not see a significant phosphorus signal on mean AGWP in the multivariate analysis,

despite a clear phosphorous gradient[25] that our plots sit across (Figure 4.2). However,

a significant positive relationship between mean AGWP, and leaf phosphorous was ob-

served in the univariate modelling of mean AGWP and leaf phosphorus, which makes use

of a larger sample size than the multivariate analysis. (SI C.1,C.2,C.3 for all univariate

analyses and bivariate plots). This relationship does become insignificant upon applying

Holm–Bonferroni correction[33] for multiple comparison. Together this suggests that the

weak signal we see is likely due to the relatively small sample size and may become signif-

icant with more data. The weak signal that our finding suggests, agrees with a previous

study by Cleveland et al. (2011)[34] based on soil nutrients which found a significant,

albeit weak, relationship between leaf phosphorus content and productivity across trop-

ical forest. It also agrees with previous work that found moderately strong correlations

between soil phosphorus content and productivity across RAINFOR plots[35, 36]. Our

results contrast with the findings of Turner et al. 2018[26] who found a lack of a com-

munity level relationship looking across a steep phosphorus gradient in tropical rainforest

plots in Panama. In their study they identified a pervasive species-specific phosphorus

limitation on species productivity, however this relationship was not observed at the com-

munity level[26], as some species were able to grow rapidly on low phosphorus soils due

to the evolution of multiple strategies for phosphorous acquisition and use, which enable

a tight cycling of Phosphorous between plants, microorganisms and soils[37, 9]. It would

have been interesting to investigate species-specific productivity-phosphorus relationships

to see if the finding of Turner et al. 2018[26] could observed at a species level, but data

availability with this dataset is currently insufficient to permit this.

Trends in Above Ground Woody Productivity

The longer time series of inventory data available allowed us to examine how AGWP is

changing overtime, and whether functional traits and climate play a role in explaining

the observed variation. Our final model for the trend in AGWP explained 19% of ob-
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served variation and thus accounted for a much lower amount of variation than our best

mean AGWP model. Despite being important predictors of mean AGWP, MCWD and

wood density were not found to be significant predictors of the trend in AGWP over time.

Instead, leaf phosphorus content was found to be the only significant predictor of the

trend in AGWP over time. Leaf phosphorus displayed a positive relationship with trend

in AGWP indicating that plots with higher phosphorus concentration were associated

with larger trends in AGWP over time. Our findings suggest that phosphorus availability

is a key control on forest capacity to increase AGWP under increased CO2. Forests in

phosphorus-rich regions where leaf phosphors is higher are apparently more able to exploit

the increased resource availability to boost AGWP than those in more phosphorus-deficient

regions. Phosphorus availability has recently been shown to limit total net primary pro-

ductivity (but not specifically AGWP) in an experimental fertilisation study[25] and to

influence productivity across space[38] but this is the first study to provide observational

evidence that the ability of old-growth Amazon forests to increase productivity in time is

limited by phosphorus availability. It is important to note, however, that the relationship

is not strong, as there is considerable site-to-site variability (See SI C.1,C.2,C.3 for all

bivariate plots). It is likely therefore that a range of other factors not considered in this

study therefore also play a role and need further investigation, these include traits such

as hydraulic safety margins[15], and thermal tolerance such as P50.

This relationship has a number of implications for global terrestrial models that assume

that elevated atmospheric carbon dioxide, will stimulate Amazon rainforest productiv-

ity, and the system as a whole will continue, or increase its capacity to act as a carbon

sink[24] (carbon fertilisation effect). Simulations suggest that phosphorus limitation could

reduce the Amazon sink by as much as 50% in relation to simulations where no phos-

phorus limitation is assumed[24] but there has been no observational to support these

predictions. Some caution is required, however, when making inferences based on AGWP.

Wood production accounts for less than 40% of total Net Primary Productivity (NPP)

across tropical forests[39] and changes in stem NPP cannot directly be taken to mean

changes in total NPP over time.
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4.3.3 Functional Trait Control of Response of Productivity to the 2015/2016

ENSO

During the time span which our dataset covers, a significant climatic anomaly occurred,

in the form of the 2015/16 ENSO, giving us opportunity to investigate the role functional

traits play in moderating AGWP response to pulse perturbations.

The final model modelled the productivity difference before and after the ENSO as a

function of leaf nutrients, wood density, and mean MCWD anomaly during the ENSO.

This model was able to explain 26% of observed variation and wood density was found to

be the only significant predictor identified (Figure 4.3). The relationship between branch

wood density and percentage change in AGWP due to the ENSO was positive, meaning

that plots with higher branch wood density generally had higher AGWP percentage change

following the ENSO relative to those with lower community average branch wood density.

Examination of the biplot between branch wood density and percentage change in AGWP

(Figure 4.3) revealed that above a wood density of 0.6 g/cm3 AGWP percentage change

was generally positive, but percentage changed after this point continued to result in

greater positive percentage change following the ENSO.

Figure 4.3: Productivity percentage difference before and after the ENSO plotted against
community-weighted branch wood density.

The mechanistic link in this case may be that although higher wood density is an expensive

investment, which results in lower long term average AGWP, it may confer enhanced xylem
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resistance to embolism[40] as well as greater resistance against mechanical damage[41].

Thus, species that have higher wood density may be more resistant to short term pulse

droughts.

4.3.4 Conclusions

Our results indicate that nutrient availability and functional traits both play a role in

determining long term AGWP patterns, as well as shorter term responses to climate

perturbations. Wood density was found to be important as a control on background

AGWP and response to short-term climate perturbations. An apparent trade-off seems

to exist with communities with higher wood density having lower growth, and greater

resistance to short term climate perturbation. This trade-off may be associated with

wood density conferring enhanced xylem resistance to embolism[40], and hence increased

resistance to drought but at the cost of lower AGWP. Leaf phosphorous was found to be

the only significant predictor of long term trend in AGWP, with more productive forests

having greater community-weighted mean leaf phosphorus content. This result may have

significant implications for the maintenance of the Amazon forest sink, as it suggests

that phosphorus availability may ultimately limit forest ability to sequester carbon in its

vegetation.

4.4 Methods

4.4.1 Study Area

This study focuses on long term forest inventory plots within Amazonia which are part of

the RAINFOR network[42]. Amazonia was delineated using the geographical boundaries

described by Feldpausch et al. (2011)[43] which is based on a combination of climate,

hydrology, flora, fauna and biogeography criteria. These regions vary markedly in forest

composition and dynamics and have been used extensively to evaluate how forest structure

and function vary across different biogeographical regions[1, 8]. We restrict our analysis

to old-growth tropical forests with no recent history of anthropogenic disturbance.

4.4.2 Overarching Approach

Our study aimed to explore the different ways in which functional traits may mediate stem

AGWP patterns, considering three distinct modes of AGWP: long-term AGWP, the trend
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in AGWP over time and in response to a significant climatic anomaly. To achieve this,

we calculated AGWP and basal area-weighted community mean values of functional trait

values collected in the same long-term forest inventory plots for which we had AGWP

data. We constructed linear models for each AGWP metric that included both plant

functional traits and climate drivers as predictors. Plots were excluded if they had less

than two censuses periods (three censuses), or had data which covered less than ten years

to give us confidence that these values were representative of the true average and trends.

The 2015/2016 ENSO event was associated with the most extreme drought and period of

warming on record[44] and resulted in losses of aboveground biomass due to widespread

tree mortality[45] and decreased gross primary productivity[46, 47]. Percentage productiv-

ity change between baseline AGWP, and AGWP immediately after the 2015/2016 ENSO

was calculated per plot and functional trait information (leaf nitrogen, phosphorus and

potassium, wood density, and leaf mass per unit area), as well as a measure of ENSO

magnitude (average MCWD anomaly over 2015/2016) was used to explain the observed

variation in a multiple regression framework.

4.4.3 Above Ground Woody Productivity Data

This study was carried out using inventory data provided by the ForestPlots[42, 48] net-

work of long-term forest inventory plots networks, which collates inventory, and functional

trait data from a widely distributed networks of permanent plot across the tropics and

provides a platform for cooperation and collaboration of tropical vegetation research. All

plots within Amazonia, flagged as containing old-growth forest for which plant functional

trait data were available were used for analysis.

Productivity was calculated as AGWP per hectare per year, using the R package BiomasaFP[49]

for all trees above 10 cm Diameter at Breast Height (DBH). Tree biomass was calculated

using the Chave et al. 2014 allometric equation[50], requiring tree diameter, height and

wood density to estimate AGWP. Tree height was estimated from recorded diameter using

local height-diameter models based upon a three parameter Weibull model. To parame-

terise these models, we first removed trees for which height was poorly predicted at the

biogeographic region level by fitting a three parameter Weibull model for height, and re-

moving all individuals with a residual greater than the 99th percentile. For each plot the

top ten trees with the largest recorded average diameter were then chosen, and from the

remaining individuals forty were randomly selected without replacement. Local height-
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diameter models were then parameterised using this subset, before being used to predict

height for all individuals. Wood density was obtained for all individuals from the Chave

et al. 2009 wood density database[51]. Above Ground Biomass and Above Group Woody

Productivity was then calculated for each census interval, for each plot. Code for the

calculation of productivity is available in SI C.4.

Percentage change in AGWP was calculated as the percentage difference in AGWP at

a plot level. Background AGWP was calculated for all plots that had at three or more

censuses (hence at least two census intervals of AGWP) before 2015. Post ENSO AGWP

was calculated from the first census period after 2016, including only plots that had

a census within two years after 2016. Percentage difference was the calculated using

Equation 4.1:

AGWPPercentageDifference =
AGWPPostENSO −AGWPbaseline

AGWPbaseline
(4.1)

4.4.4 Functional Trait Data

The functional trait data used in this study was also provided by the ForestPlots[42, 48]

network. Plot level values of functional traits were calculated as the basal area weighted

average of all individuals in a plot for any given functional trait, for most traits this was

around twenty individuals per plot[22]. Individuals for which diameter was missing were

therefore excluded from estimates.

For each plot, the basal area of individuals for which we had functional trait information

was assumed to representative of all individuals of the same species at that plot, and their

basal area was therefore added to the basal area for those species. The total basal area

of species for which we had functional trait information was then summed, and converted

to a percentage of the total basal area of all individuals at the plot. Any functional traits

which had less than 25% of the total basal area were then removed from the analysis,

as we cannot confidently say that they represent the community (SI C.5 for basal area

distribution by plot). The code for the calculation of plot level functional trait values is

available in SI C.4. Based on the available of functional trait data, plot level values were

calculated for leaf phosphorous (Leaf P), leaf area per unit mass (LMA), and measured

branch wood density (WD).
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4.4.5 Climate Data

Precipitation data was obtained from the Climate Hazards group Infrared Precipitation

with Stations dataset[27], covering the time period 1981 to 2021, at a spatial resolution of

0.05 °. Daily estimates were temporally resampled to monthly averages in Google Earth

Engine[52] (code available in SI C.4), and then downloaded and used to calculate monthly

precipitation and Maximum Cumulative Water Deficit (MWCD). MCWD was computed

months as the difference between precipitation and Potential Evapotranspiration, with

deficits accumulated over all months where precipitation was inferior to Potential Evapo-

transpiration and being reset to zero when precipitation exceeded Potential Evapotranspi-

ration, a monthly evapotranspiration requirement of 100mm was assumed. Precipitation

and MCWD monthly anomalies were then calculated using Equation 4.2:

StandardisedAnomaly =
Xt −X

σ
(4.2)

where Xt represents the mean precipitation/MWCD value of month t, X represents the

mean precipitation/MCWD of month t between 1981 to 2021, σ the standard deviation

of precipitation/MCWD month t between 1981 to 2021.

4.4.6 Statistical Analysis

To investigate the controls on long term mean and trend in AGWP, the mean and trend

in AGWP was calculated per plot. Plots were excluded if they had less than two censuses

periods (three censuses), or had data which covered less than ten years to give us confidence

that these values were representative of the true average and trends. Long term mean

AGWP was then modelled as a function of long term maximum cumulative water deficit,

and basal area weighted functional trait averages at the plot level. Long term trend in

AGWP was modelled as a function of the long term trend in climate variables and the

same community-weighted functional traits at the plot level.

The relationship between functional trait variables was investigated before any analysis

took place (SI C.4 for analysis) and on the basis of the correlation strength between

variables the candidate variables was reduced to Leaf Phosphorus, Leaf Mass per unit

Area, and Branch wood density, so as to not over-inflate models used to fit a relatively

small number of data points (n=33).

Statistically analysing the relationship between AGWP, functional traits and climate was
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made difficult by the relatively lower number of plots that had overlapping functional trait

data that allowed us to compare them. To this end we conducted a multiple regression

approach, and a subsequent univariate approach of mean AGWP, and trend in AGWP as

modelled by each functional trait, and MCWD to increase confidence that the results we

saw were robust, and not due to low statistical power. For each trait a univariate linear

regression was run, the total number of plots where it was greater than the number used

for the multiple regression was down sampled without replacement to the number of plots

used in the multiple regression to give the comparison approximately the same power.

This down sampling was then bootstrapped 1000 times and mean, standard deviation and

2.5/97.5 quantiles were then calculated from the bootstrapped population. Variables for

which the 95 quantiles crossed zero were excluded from analysis as the direction of their

relationship with AGWP could not be reliably inferred.

Variable selection for the multiple regression model was undertaken using a backward-

forward selection algorithm based on AICc. Starting with a model with just an intercept,

baseline AICc was calculated. For each following step each variable was added to the

model one at a time from the selection of possible variables the change in AICc calculated.

The variable which resulted in the greatest increase in AICc was then added. This process

was repeated until the addition of any variable resulted in an increase in AICc of less

than 2 producing the final model for interpretation. After each addition each variable

was also removed and the change in AICc, again calculated, to ensure that the order in

which variables enter the final model doesn’t bias their inclusion/exclusion which may

occur when relationships between variables exist.

Model stability was investigated using a bootstrapping approach[53] to quantify the extent

to which our final model was stable to mild to moderate perturbation, and thus to what ex-

tent we can rely on the final model for inference. The underlying dataset was bootstrapped

(n=1000), for each bootstrap iteration, 70% of the data used was selected at random, the

final 30% was then randomly sampled with replacement to introduce perturbation. For-

ward elimination was then used to produce a final model as outlined previously. Mean,

standard deviation and 2.5/97.5 quantiles were then calculated from the bootstrapped

population. Variables for which the 95 quantiles crossed zero were excluded from analysis

as the direction of their relationship with AGWP could not be reliably inferred.

Given the spatial nature of the response and explanatory variables, the residuals of the final
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model were investigated for spatial dependency which may violate the linear regression

assumption of independence of error. A data drive approach was used to investigate

a range of different spatial structures, including 1,2,3, and 4 nearest neighbours, and

distance and inverse distance weighted neighbours within the bounds of 100km, 200km,

500km, 1000km and assuming all sites were connected. Moran’s I was then calculated for

each spatial structure, with statistical significance being investigated using a monto carlo

permutation approach.

All statistical analysis was conducted using R version 4.2.2[54]. Data visualisation was

performed in R using the ggplot2[55] package and QGIS[56]. Sample size for univariate

and multivariate analyses can be found in C.2/
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den, P. van der Hout, I. C. Guimarães Vieira, S. A. Vieira, E. Vilanova, V. A.

Vos, and R. J. Zagt. Long-term decline of the Amazon carbon sink. Nature, 519

(7543):344–348, March 2015. ISSN 1476-4687. doi: 10.1038/nature14283. URL

https://www.nature.com/articles/nature14283. Number: 7543 Publisher: Na-

https://www.science.org/doi/abs/10.1126/science.1201609
https://www.science.org/doi/abs/10.1126/science.1201609
https://www.nature.com/articles/nature14283


132

ture Publishing Group.

[6] Martin J. P. Sullivan, Simon L. Lewis, Kofi Affum-Baffoe, Carolina Castilho, Flávia
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varez Loayza, Ana Andrade, Simone Aparecida Vieira, Luiz E. O. C. Aragão, Alejan-

dro Araujo-Murakami, Eric J. M. M. Arets, Luzmila Arroyo, Peter Ashton, Gerardo
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Euŕıdice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco,

Kathryn J. Jeffery, Eliana Jimenez-Rojas, Michelle Kalamandeen, Marie Noël Kam-
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Neill, Reuben Nilus, Percy Núñez Vargas, Walter Palacios, Nadir Pallqui Camacho,

Julie Peacock, Colin Pendry, Maria Cristina Peñuela Mora, Georgia C. Pickavance,
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talino M. Silva, Armando Torres Lezama, John Terborgh, Rodolfo Vásquez

Mart́ınez, and Barbara Vinceti. The regional variation of aboveground live

biomass in old-growth Amazonian forests. Global Change Biology, 12(7):

1107–1138, 2006. ISSN 1365-2486. doi: 10.1111/j.1365-2486.2006.01120.

x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.

2006.01120.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-

2486.2006.01120.x.

[19] Ian J Wright, Peter B Reich, Mark Westoby, David D Ackerly, Zdravko Baruch,

Frans Bongers, Jeannine Cavender-Bares, Terry Chapin, Johannes HC Cornelissen,

Matthias Diemer, and others. The worldwide leaf economics spectrum. Nature, 428

(6985):821–827, 2004. Publisher: Nature Publishing Group UK London.
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Solórzano, P. Meir, A. Monteagudo, S. Patiño, M. C. Peñuela, A. Prieto, C. A. Que-
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Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu

Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karo-

lus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester

Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dal-
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Gärtner, Lars Killaars, Maurits L. Kooreman, Bart Kruijt, Ingrid T. van der Laan-

Luijkx, Celso von Randow, Naomi E. Smith, and Wouter Peters. Widespread re-

duction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño.

Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760):

20170408, November 2018. ISSN 0962-8436, 1471-2970. doi: 10.1098/rstb.2017.0408.

[48] G Lopez-Gonzalez, S.L Lewis, T.R Baker, and O.L Philips. ForestPlots.net Database.

2009. URL www.forestplots.net.

[49] Martin Sullivan, Gabriela Lopez-Gonzalez, and Tim Baker. BiomasaFP: BiomasaFP:

Functions for analysing data downloaded from ForestPlots.net. 2023.

https://www.nature.com/articles/s43247-022-00533-3
https://www.nature.com/articles/s43247-022-00533-3
www.forestplots.net.


148
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Chapter Five

Discussion

Forests can be found across boreal, temperate, subtropical and tropical climatic domains.

In total, they cover 4.06 billion ha ( 40 million km²)[1], nearly a third of the planet’s

land surface[2]. Across these climatic domains forests vary widely in form and function,

including tropical and temperate rainforests, coniferous, deciduous, mangrove, boreal,

and montane forest, to name but a few. Despite the critical role they play in human

wellbeing[3], at a global level forests have historically[4, 5], and continue to, experience

a wide range of threats[6]. The value of forests is widely discussed in the literature,

and is ultimately as much a political and philosophical exercise as it is a scientific one.

However, no matter the methodology used, the world’s forests are consistently valued

extremely highly[7]. Ultimately, because of the role that forests play in sustaining life and

maintaining human wellbeing, we should as a global community care a great deal about

their status, and their future, as any threat to them is a threat to global human wellbeing.

A key observation when examining forests, is that there is considerable diversity in how

forests respond to stress[8]. Some forests when experiencing drought, for instance, show

relatively little change, while others for a similar magnitude drought show dramatic re-

sponses in productivity[9], mortality[10], community composition or ecosystem service

provision. Understanding why these differences exist, and what factors moderate the re-

sponse of forest to stress is one of the core research questions of this thesis, and lies in the

realm of an area of research known as ecosystem stability.

The field of ecosystem stability straddles conceptual and applied ecology and is extensively

discussed by both. In this thesis, two core paradigms from the ecosystem stability litera-

ture have been used in order to guide the development of research questions, methodolo-
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gies, and the interpretation of results to help us better understand the underlying stability

of forests. The first paradigm is the stability landscape[11], which allows us to describe

and define components of stability using a metaphor of a how a ball may move across a

landscape with varying topography. The second paradigm is the phrasing of all stability

studies in the question of “stability of what, to what?” [12] which allows us to design

research questions and methods that provide information that can easily be linked to an

aspect of ecosystem stability.

There are a number of different aspects to ecosystem stability, and so stability is often

broken down into a number of subcomponents[11]. Considerable variation exists in the

literature in how these different aspects of stability are labelled, and so for the purpose of

this thesis we define stability as having four components, resistance, resilience, latitude and

precariousness. A variety of methods, and indices exist in the literature to estimate these

different components, with resistance and resilience being the most commonly studied.

A number of seminal papers exist in the forest-stability literature, but beyond these few

papers, stability is not commonly discussed, and relevant results are often not linked back

to ecosystem stability theory, leading to there being surprisingly little literature on how

forest stability varies globally.

The role that species richness and diversity plays in moderating stability is extensively

discussed in the literature, with numerous studies finding contradictory results on the

direction and magnitude of this relationship. There is a growing consensus, that it may

be functional diversity, or the value and range of species traits, rather than number of

species, or specific species per se, which most strongly determines ecosystem functioning

and stability[13].

Bar a few exceptions forest ecosystem stability is often studied at small spatial scales, often

single plots, or over small areas. In many papers once an element of stability is measured,

there is no further investigation as to what variable influences this stability, and even more

rarely is the relative importance of multiple potential controls on stability investigated.

The primary aim of this thesis was therefore to develop a deeper understanding of the

underlying variables and processes that influence variation in forest productivity, and

stability of productivity to climate, and climate perturbations. A particular focus has

been put on exploring the role biodiversity and functional trait diversity play in mediating

these relationships.
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This thesis will focus on exploring the general principles that govern these relationships at

landscape scales, rather than site specific, or local scaled examples. To this end, remotely

sensed data will be relied on throughout in a variety of forms to allow larger spatial extents

and time series to be studied, than realistically could be collected at a plot level.

5.1 Overview of findings

5.1.1 Chapter summaries

In chapter two we examined the photosynthetic response of Amazon forests to the 2015/16

El Nino-Southern Oscillation (ENSO) event. Productivity was proxied using remotely

sensed solar induced fluorescence (SIF). We compared the relative importance of ENSO-

associated climate anomalies, background climate, and soil characteristics in explaining

the observed variation in basin-wide forest photosynthetic anomalies during the ENSO.

Our final model explained 25% of forest photosynthetic response, and highlighted that

the background climate that a forest has experienced, and its soil conditions are more

important in determining the productivity response to the ENSO, than the magnitude of

the ENSO that that forest experienced. We found marked sensitivity differences across

Amazonia, with North-Western forests being the most sensitive (least resistant) to precip-

itation anomalies, likely relating to variation in forest species composition and background

water stress.

In chapter two we focused on stability to a single short term press event, to build on

this in chapter three, we focused on exploring longer term climate resistance in temperate

forests using the United Kingdom (UK) as a case study. Remotely sensed normalised

difference vegetation index (NDVI) was retrieved for all pixels identified as forest in For-

est Research’s subcompartment database[14]. For each forest pixel the NDVI time-series

was modelled as a function of precipitation and temperature anomalies in a generalised

linear framework. The climate coupling (variance explained by the model) and climate

sensitivity (standardised regression coefficients for temperature and precipitation anoma-

lies) were then extracted from each pixel model as measures of forest stability to climate.

Our result indicate a marked differences in climate-sensitivity and coupling across the

UK, with significant spatial patterns in both climate coupling and sensitivity being found.

We show that forests in the north-west, west and south-east respond in fundamentally

different ways to climate extremes. Forests in the north-west and west of the UK when
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experiencing drought have historically tended to increase productivity, while those in the

south-east when experiencing drought have tended to decrease productivity. We compared

the relative importance of background climate, soil characteristics and forest attributes

in explaining the observed variation in climate sensitivity using a random forest frame-

work. The final model explained 72% of the observed variation in temperature sensitivity,

and highlighted the importance of background climate, and forest attributes in explaining

NDVI-temperature sensitivity, again likely explained by variation in community composi-

tion.

In the first two chapters, forest productivity was proxied using remotely sensed data in

order to assess the drivers influencing stability patterns at a landscape scale. Remote

sensing while a powerful tool that allows for large spatial and temporal extents to be

analysed, comes at the cost that productivity is never directly being measured, but instead

inferred from satellite imagery. To this end, in chapter four, we used a long term, pan-

Amazon network of forest inventory plots to directly observe productivity, to explore the

role that functional traits and climate play in moderating both long term productivity

patterns, and short term productivity response to climate anomalies. Modelling revealed

that functional traits played a key role in moderating all aspects of productivity measured.

For long term mean productivity, wood density and average maximum cumulative water

deficit (MCWD) were the only significant variables in the final model, for long term trend

in productivity just leaf Phosphorous was found to be significant, and just wood density

was found to be significant in the final model for productivity response to the 2015/16

ENSO. Our results highlight the importance of functional traits in moderating productivity

responses both in the long term, and in response to climate anomalies. They also support

an increasing body of literature that suggests that the Amazon forests ability to maintain,

or increase its carbon sink ability may be limited by nutrient availability, with significant

implications for the global carbon balance in face of the ongoing trend in atmospheric

carbon emissions.

5.2 Appraisal of Thesis Aims

In this section I will review the overarching questions developed at the start of this PhD,

and listed in the introduction to this thesis, in light of the research and insights obtained

during the course of this PhD.



153

5.2.1 How can we measure forest stability across large spatial extents

to understand landscape scale stability?

One of the findings of the literature review conducted at the start of this PhD was that

of the existing literature, only a handful of studies had explicitly studied the stability of

forests at larger spatial scales. Although more examples could be found for smaller spatial

scales, single sites, or within site variation, scaling up these findings to landscape scale

processes is difficult, and in many cases not reliable as it’s likely that the factors moderating

stability at a landscape scale are different to those moderating stability at small spatial

scales[15]. To this end we decided that in this thesis we would explicitly examine the

factors and processes that influence forest stability at landscape scales in order to better

our understanding of the large scale processes that moderate forest stability.

Four different methods were developed over the course of the PhD to quantify the stability

of forests to climate, and climate perturbation. This next section will review each of the

different methods that were developed, the underlying logic of how each conceptually links

to stability, and any limitations of the methodology that were realised during, or after, its

development.

Modelling of productivity anomalies to a large press disturbance using climate

anomalies and other variables

The first method that we trialled was to examine the response of forest productivity to a

single large pulse perturbation. We chose the 2015/16 ENSO, and the impact that it had

on Amazon forest productivity during the peak of the event. The 2015/16 ENSO event

was chosen as it was associated with the most extreme drought and period of warming

on record[16] for the Amazon, and thus offered an ideal first case study in terms of the

strength of signal to noise ratio.

In this case, stability was assessed using an anomaly methodology. We computed stan-

dardised anomalies for productivity, temperature and precipitation, defined as:

StandardisedAnomaly =
Xt −X

σ
(5.1)

where Xt represents the mean SIF/climatic value during the October to December 2015 pe-

riod, X represents the mean and σ the standard deviation of the baseline period (October

to December) between 2007 and 2014 (excluding 2015).
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This productivity anomaly was modelled as a function of climatic anomalies, background

climate and soil characteristics. Stability was quantified by examining the relationship

between productivity anomaly and precipitation/temperature anomaly. A strong rela-

tionship, as indicated by large standardised coefficients, or high model R2 (in a model of

just productivity and climate anomalies) indicates a low overall resistance of productivity

to climate anomalies. Conversely, a weak relationship between productivity and climate,

indicated by a small standardised coefficient, or low model R² (in a model of just produc-

tivity and climate anomalies) would indicate higher resistance, as the variation in climate

anomalies do not explain the observed variation in productivity anomaly.

This methodology was designed to quantify the resistance of Amazon forests to short-

term climate anomalies, and was inspired by the definition of resistance, “The ability of

an ecosystem to withstand perturbations and remain unchanged”, and existing literature

that had looked at forest resistance at large spatial scales[17].

One of the key challenges that was faced designing a methodology to look across large

spatial scales is that productivity changes at a pixel level cannot be directly compared

to each other, as sites will vary in their baseline productivity, so what would constitute

a significant decline in productivity in one area, may be trivial for another area that has

a much larger natural variation in productivity. To overcome this problem an anomaly

approach was utilised in which the productivity change during the ENSO was standardised

by subtracting the long term productivity mean, and dividing by the long term standard

deviation of productivity for that pixel. This transformed the units of change into standard

deviation units relative to the mean and variance of that pixels history. This therefore

made it possible to directly, and fairly, compare forested pixels across the Amazon and to

use a single model to investigate spatial variance in resistance.

A potential limitation of this methodology is the assumption of linearity between pro-

ductivity anomaly, and climate anomalies, implicit in the use of the generalised linear

framework that we used for statistically inference. Linear models were chosen as they are

simple to interpret, and generally considered to be robust to minor violation of their as-

sumptions, where sample size is sufficiently large[18]. To address potential non-linearity in

the relationship between productivity and climate anomalies we considered both linear and

quadratic terms for temperature anomaly to better represent its non-linear relationship

with productivity as suggested by the literature[19].
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Modelling of productivity over a long time period using a time series of climate

data

In the first method we focused on describing stability in terms of the response of forest to a

single large perturbation, however, these large perturbations are relatively rare (although

with climate change they are predicted to increase both in frequency and intensity[20]).

It is also possible that the resistance quantified by looking at the response to such large

events is not representative of the resistance that forest has to smaller magnitude climate

perturbations. To explore this, the second method we developed to quantify stability used

a 20 year long time series of productivity (proxied by NDVI) and climate data. For each

pixel, the NDVI time series was modelled as a function of precipitation and temperature

anomalies in a linear regression framework. All variables were standardised by subtracting

the long term mean, and dividing by the long term standard deviation for that pixel,

to facilitate fair comparisons with other pixels. Stability was then quantified for each

forested pixel by extracting the variance explained by its model (climate coupling), and the

standardised coefficients (climate sensitivity/resistance) for temperature, and precipitation

anomalies as measures of how resistant the forest in that pixel is to climate perturbations

of varying magnitudes over longer times periods. The interpretation of these variables

was similar to the first method, with larger climate coupling/sensitivity indicating that

variation in climate more strongly controlled variability in productivity, and thus the forest

in that pixel is less resistant to climate fluctuations.

Using this methodology we aimed to capture forest productivity resistance to climate

variability more generally by including a range of different strength climate perturbations.

This type of methodology is often referred to in the literature as forest productivity-

sensitivity[21, 22] to climate, rather than being referred to as resistance, however for

consistency with the terminology of this thesis it will referred to as resistance.

A number of issues arose during the development of this methodology. As a time series of

productivity data was used, we found that in young forests productivity-climate relation-

ships were hard to disentangle from growth patterns as growth appeared to more strongly

influence NDVI patterns than any observable climate effect. We therefore restricted our

analysis to mature forests by using the planting age detailed in the National Forest Estate

Subcompartments (SCDB) 2019[14], and restricted the analysis to subcompartments that

have been planted for at least 30 years. This threshold was determined by grouping pixels
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by age classes and examining NDVI time series for each group, selecting the age for which

the NDVI no longer showed growth curves (SIB.5 for details).

A further issue that arose during the development of this methodology was spatial auto-

correlation. Autocorrelation in the model residuals in all chapters was tested by creating

a wide range of spatial weight matrices including, 1,2,3,4 nearest neighbours, distance and

inverse distance matrices ranging from the smallest distance required for all points to have

at least one neighbour, and increasing in increments of 100km. Moran’s I was then calcu-

lated using each of these matrices, and the most significant, in terms of p-value, chosen to

best represent the spatial structure of the residual information. In the second and third,

but not the fourth chapter, statistically significant spatial autocorrelation was detected in

the residuals. Accounting for this residual spatial autocorrelation using a spatial lag, or

spatial error model would certainly be an interesting way to further investigation in both

of these studies.

Another potential limitation of this study is that it produced noisy results, which compli-

cated statistical analysis, and restricts the power of this methodology. From examining

the NDVI-climate responses in detail, at least part of this noise is attributable to low

signal to noise ratios for low magnitude climate perturbations. For these small magnitude

climate perturbations, it appears that the impact that it has on productivity is harder to

quantify, as other unmeasured processes have larger impacts on the productivity signal.

A final limitation that was realised during the analysis of the NDVI time series was the

impact that cloud cover can have on the amount of remote sensing data available for

analysis. The UK over the course of a year can experience significant cloud cover, as we

employed cloud masking to remove cloudy pixels as they can adversely impact calculation

of NDVI, some pixels were left with relatively little data for regression over the 20 year

period. This means that the quality of the linear regression is lower in some areas, com-

pared to others. To quantity the impact that this may be having on our results, we reran

the analysis removing all pixels for which the model R2 (climate coupling) was below the

mean nationwide average, therefore leaving us just with models in which we could have

greater confidence. Rerunning the Random Forest with just this subset showed similar

results for all key findings, thus giving us greater confidence in the full dataset. (SI B.3

for details).
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Modelling of average productivity, and trend in productivity using climate and

other variables

The first two methods used remotely sensed productivity as the dependent variable, as it is

a relatively easy method to obtain data over a large spatial scale. However, as mentioned

previously this comes at the cost that productivity is never directly being measured, but

instead is being inferred from satellite imagery.

The third methodology we developed therefore aimed to investigate how stability can be

measured using ground sourced productivity data. To this end we made use of a pan-

Amazon network of long term inventory plots[23, 24, 25] in order to investigate climate-

productivity relationships. For each plot, above ground woody productivity was calculated

for each census interval, and these time series used to calculate long term mean produc-

tivity, and the long term trend in productivity. Controls on the spatial patterns in both

these variables were explored using long term climate trends/averages, and community

weighted functional trait values. Within the conceptual framework used, this doesn’t

neatly fall into any specific aspect of stability, and instead allows us to explore more

generally the productivity-sensitivity of Amazonian forests.

Modelling the percentage change in productivity to a large press disturbance

using climate anomalies and other variables

The final method that we developed as part of this thesis was based on the same data[23,

24, 25] as the previous method, and took advantage of the fact that during the time series

for which we had forest inventory data, the 2015/16 ENSO occurred allowing us to in-

vestigate productivity response to a short term press perturbation using plot productivity

data.

Percentage change in above ground productivity change was calculated between before,

and immediately after the 2015/16 ENSO at a plot level, to account for variance in plot

baseline productivity. Stability was inferred through modelling the percentage change as

a function of average MCWD over 2015/16. A strong relationship, as indicated by large

standardised coefficient, or high model R2 (in a model of just productivity and MCWD)

indicates a low overall resistance of productivity to drought (as proxied by MCWD).

Given the experience gained developing the previous two methods, the third method for

quantifying stability is relatively straightforward and no significant issues were encoun-
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tered. Most of the difficulties of this method arose from the use of plot data, which requires

a significant amount of pre-processing and site specific data knowledge, in order to assure

that the data used for statistical inference is of high quality. This required a significant

amount of time, as the metadata for this screening of site level data is not easily accessi-

ble, and often lies with individuals rather than being recorded in a database. Additional

quality screening involved selecting sites that had sufficient data, to ensure that long term

means, and trends could be reliably estimated.

The main limitation of this method, is how representative the network of sites that we

used is of the Amazon more widely. Although we had plots from each of the biogeographic

zones delimited by Feldpausch et al (2011)[26] of the Amazon (Figure 5.1), we can see

that there is a clear lack of plots from the central Amazon, meaning that our results are

less representative of this region.

Figure 5.1: Spatial distribution of plots with at least one functional trait of interest (hollow
circle) and plots for which all functional traits of interest have been collected (filled circle).

Another limitation of this methodology was sample size for the purpose of statistical analy-

sis. With the remote sensing methods that we used sample sizes were very large, allowing

for robust statistical analysis. However, with plot based studies in the Amazon, data

collection is time consuming, difficult and expensive. Furthermore, as we wished to inves-

tigate the role of functional traits, intersecting the plots for which we had both inventory

data and functional trait information reduced the number of sites further. The end result

of this was a relatively small total sample size that had to be analysed with caution to
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avoid statistical problems, and prevented the use of more sophisticated statistical tools. In

the previous methods, backward elimination methods were used for variable selection, as

the large sample size meant that we could be confident in this process producing reliable

results. However, with the sample size for this analysis being just 33 plots, statistically

it would have unreliable to perform backward selection starting with four variables as the

estimation of coefficients would be untrustworthy with such small sample sizes. To account

for this we instead used a forward selection methodology, which because of its iterative

nature starting with just a single variable, accounts for the problem of too few data points

per variable, by using the AICc to access whether the trade off of adding a variable and

its effect on prediction error, is penalised as a function of the number of variables in the

model. This variable selection method is relatively under-powered compared to backwards

elimination, but removed the risk of going beyond what was statistically supportable by

the sample size available.

In addition to these challenges, the irregularity of when data was collected also presented

a problem. As this was not a bespoke dataset collected for the purposes of analysing the

impact, therefore although we wished to compare productivity before and immediately

after the ENSO, very few plots happened to be sampled during the exact dates required.

Therefore, a window of two years after the ENSO was used to increase the sample size for

collection with the acknowledgement that the percentage change for such plots will be a

combination of the impact of drought, and subsequent recovery.

In terms of implications, for stability research the methods developed during the course

of this PhD represent a significant contribution towards developing and testing methods

to analyse forest stability over large spatial, scales. As there are relatively few methods

published in the literature this represents a sizeable increase in the number of methods

available. In terms of ecological research, the implications are significant. By providing

methods to measure stability at large spatial scales, the base data to investigate what

moderates the stability of forest, and other ecosystems to a wide range of stressors, and

perturbations can now be generated, and investigated using any variable that for which

data is available.



160

5.2.2 At a landscape scale can we disentangle climate, biodiversity, and

functional trait influences on moderating productivity?

When examining the response of forest to perturbation, conceptually the response that we

see is a combination of the magnitude of the perturbation, modified by the community and

functional trait composition, biodiversity effects, and all other variables that contribute

to the systems stability to that particular perturbation.

To understand what variables influence stability, we therefore want to examine the ex-

planatory power of candidate stability variables having accounted for spatial variation in

perturbation strength. In this thesis we made use of two different methods to achieve this

separation, one for single short term pulse perturbations, and the other when examining

perturbations of varying magnitude, over a longer length of time.

In the first method, the ecosystem productivity change, or the productivity at the peak

of the perturbation, is modelled in a regression framework using both measures of the

perturbation strength, and the candidate stability explaining variables themselves. Both

dependent and independent variables are standardised before regression so that their rela-

tive importance can be evaluated by directly comparing the magnitude of the coefficients.

The regression framework means that the coefficient of any variable should be interpreted

as the change in the dependent that occurs for a unit increase in that variable, all other

variables in the model held constant. This choice of statistical tool therefore allows us

to examine the independent effects of both magnitude of the perturbation, and candi-

date stability variables in order to explore what variables are important in understanding

stability to perturbation.

The second method that we developed in this thesis was designed to look across a time se-

ries of productivity for a forested area, in order to summarise how the ecosystem responded

to a range of different magnitude perturbations. This was achieved through modelling pro-

ductivity for each area as a function of climatic variables in a regression framework. The

total variance explained by the model, and the standardised coefficients of each of the

climatic variables were then extracted. These values were assigned to that forested area

to characterise the magnitude and direction of the relationship between productivity and

climate anomalies. This was repeated for all forested areas in the target domain. The

spatial variation in these measures of productivity-climate stability were then modelled

themselves as a function of the candidate stability variables in order to explore what vari-
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ables were important in explaining the spatial variation in stability. In the third chapter

this was conducted using a Random Forest framework, while in the fourth chapter a linear

regression framework was used.

Both of these methods were successful in allowing us to explore what variables moderate

response of productivity to short term climate perturbations and average response over

a range of different magnitude perturbations. Their primary limitations arise from the

various statistical assumptions that the modelling processes relies on. In the second,

fourth and the first half of the third chapter methodology linear regression frameworks

are used. Linear regression frameworks make a number of assumptions, however perhaps

the most pertinent is the assumption of linearity between dependent and independent

variables. This assumption restricts the relationship between productivity and both the

climate perturbation, and the candidate stability variables to a linear one. While many

systems in nature demonstrate linear characteristics[27], and a linear approximation of a

more complicated relationship may be sufficient to understand if any relationship exists,

given the complexity of ecosystems the exact relationship could well be non-linear and so

this approach would miss such details.

The implications of these results for ecological and stability research are significant, as

these methodologies give us a framework to rigorously assess the independent contribution

of candidate variables in moderating ecosystem responses to perturbation. Further to this,

because the framework is generic, this can easily be applied to a wide range of ecosystem

descriptors, and candidate variables with the only real limits being enforced by the sample

size required to have confidence in the findings of these statistical models.

5.2.3 At the landscape scale, what factors are responsible for moder-

ating long-term productivity, and short term response to climate

anomalies?

This third question represents the core question of this PhD, and to which all three data

chapters of this thesis were developed primarily to answer. In order to make our results

more widely applicable we developed studies examining ecosystem responses to different

types of perturbation, across a range of temporal scales, and in tropical and temperate

forests. This section will draw from all data chapters in order to explain our key findings

and conclusions from this work.



162

A.Stability needs to be accounted for When Examining Productivity Variabil-

ity

Our first key finding is that accounting for ecosystem stability is crucial in order to be able

understand the variability we see in the response of forests to perturbation. In the second

chapter for instance, modelling of SIF anomalies in response to the 2015/16 ENSO showed

that a model containing only measures of the magnitude of the ENSO, had very little

explanatory power. Examining the spatial patterns in SIF anomalies it became clear that

despite significant spatial variation in the magnitude of the drought associated with the

ENSO, the photosynthetic response was fairly uniform across the region. This suggested

that some form of compensatory response at a landscape scale was occurring. In this case

it was only by including metrics of the long term climatic conditions that different forested

areas had historically experienced, that we were able to explain a significant portion of

the observed variation. These historic variables, as I will go into more detail later, likely

act as a proxy for the historic selection pressure that has acted in that area. With areas

with historically lower rainfall for instance, selecting for species and traits over time that

are better able to cope with water stress.

All three data chapters showed a similar pattern, whereby models of productivity responses

to perturbation that did not include some measure of either, historic climate, functional

traits, or biodiversity which act as a proxy for community resistance to perturbation,

had relatively little explanatory power. This is not to say that the magnitude of the

perturbation is unimportant, indeed both temperature and precipitation anomalies were

significant in the final model explaining SIF response to the ENSO in the first data chapter,

just that they are relatively of lower importance compared to the variability seen in forest

resistance.

B.Forest Resistance Varies Considerably Spatially

Our next key finding, is that considerable variation exists in forest resistance to climate

perturbations, which may be explained by resistance, however it is achieved, being costly

in terms of the resource investment required. This high investment cost may result in lower

growth, and subsequently a lower competitive ability (when there is no drought) compared

to species, or communities that do not invest in traits that confer resistance. This trade-off

between growth and resistance is most clearly shown in the results of the fourth chapter

(Figure 5.2), where we were able examine the role of functional traits on productivity on
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both long term productivity, and the productivity response to perturbation. Our results

indicate that plots with higher average community wood density had lower long term

mean productivity, but generally had a more positive percentage productivity change in

response to the ENSO. The mechanistic link in this case may be that although higher

wood density is often considered an expensive investment, which results in lower long

term average productivity, it conferrers enhanced xylem resistance to embolism[28] as well

as greater resistance against mechanical damage[29]. Therefore, communities with higher

wood density grow slower, but have an enhanced ability to short term pulse drought

perturbation.

Figure 5.2: Standardised regression coefficients for the best models for predicting mean
woody productivity (left) and trend in woody productivity (right) across Amazon forests.
Points show the standardised coefficient value in the best model for each, wings show the
95% confidence interval, shaded rectangle represents the 95% range when the underlying
dataset was subjected to moderate bootstrapped perturbation.

This result is consistent with the core concept of the leaf economic spectrum[30] which

has previously found that species with more conservative growth tend to be associated

with more “expensive” functional traits such as high wood density. Species with these

conservative strategies tend to be slower growing, because resources are finite and investing

in high cost strategies, leaves less for biomass accumulation, therefore resulting in slower

growth[30]. The economic spectrum appears to link through to stability as many of these

high cost strategies, including high wood density as found in this thesis, or high leaf mass

per unit area[31], have been found to confer increased resistance to perturbation. Higher

wood density for instance has been found to confer resistance to drought by decreasing the
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chance of embolism[28] due to water stress, and higher LMA has been found to increases

resistance to mechanical damage[29]. The extremes of the leaf economic spectrum may

therefore provide a link through to understanding stability with the two extremes being

species that invest heavily in order to survive perturbation, but consequently have lower

growth, and species that do not invest in such expensive traits, prioritising instead high

growth and who risk mortality during perturbation by lacking these adaptations.

It should be noted that while the low wood density-high above ground woody productivity

relationship has been previously attributed to a trade-off between wood strength and cost

of construction[32], this interpretation of the ecological role of wood density has been

questioned by some studies which have an employed an engineering perspective to suggest

that high wood density does not confer higher mechanical strength but may be associated

with a lower maintenance respiration cost[33].

Spatial variation in forest resistance to climate perturbation can therefore be seen to

represent an evolutionary equilibrium based on the probability of climate perturbation.

In low probability areas it is the “better” strategy to grow fast, outcompete slower more

conservatively growing communities, as the risk of mortality due to perturbation, is low

and vice versa in high perturbation probability areas. With climatic anomalies predicted to

become more frequent in the near future[20], the distribution of these historic probability

areas are likely to change rapidly as the areas at risk of climate perturbation change,

meaning that the community level strategies we see may well predict how forest will

respond.

C.Variation in Community Species and Functional Trait Composition is Key

That community composition, either in terms of species or functional trait composition

is important in understanding stability to climate perturbation is well supported by pub-

lished literature. Seasonal water stress for instance has been found to exert a fundamental

control on the biogeographical distributions of Amazonian tree species, with many species

being restricted in range to the wetter regions of the Amazon[34]. Over more local scales,

variation in water table depth can also strongly influence community species composition,

with near complete species turnover observed in closely occurring forest plots on shal-

low water tables compared to those on deeper water tables[35]. Such large differences in

floristic composition along water availability axes are likely associated with differences in

community-level drought tolerance. It has been shown for example that species occurrence
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along hydro-topographic gradients in Central Amazonia is underpinned by differences in

embolism resistance[36], as species occurring on water-limited plateau areas are consid-

erably more embolism-resistant than those occurring in valley areas with more access to

water([36]. Community-level differences in hydraulic traits have been found to explain

why a more seasonal Amazon forest experiencing a strong drought anomaly during the

2015/16 ENSO presented a similar canopy conductance response to a less seasonal forest

experiencing a weaker climatic anomaly[37].

In both the second and third chapters’ historic climate variables were the single most

important group of variables, with seasonality of rainfall actually featuring in both as the

most important variable. Rainfall seasonality has been found in studies looking at intra-

species trait variation to be important in explaining spatial patterns of trait adaptation[38],

and our findings demonstrate a similar effect at the community level. This results com-

bined with the fourth chapter where we explicitly test functional traits and find them

important, indicates that in all of our studies the functional trait makeup of the com-

munity likely played an important role in determining its stability to perturbation. It is

interesting to note that this holds true across both the temperate and tropical forests we

examined, which are very different ecological systems, and for both resistance to short term

extreme perturbation as well looking across a range of different perturbation strengths.

In the third chapter we had the opportunity to test the relative explanatory power of com-

munity functional trait composition (as proxied by historic climate), and species identity

directly to see which matters more in their contribution to resistance. In this chapter

remotely sensed NDVI was retrieved for all forests identified in Forest Research’s sub-

compartment database[14]. For each forest pixel the NDVI time-series was modelled as a

function of precipitation and climate in a generalised linear framework. For each of these

pixel level models, the climate coupling (variance explained by the model) and climate

sensitivity (standardised regression coefficient for temperature and precipitation) were ex-

tracted as measures of forest stability to climate. Climate coupling and climate sensitivity

were then modelled as a function of historic climate and biodiversity information from the

subcompartment database, including the most common genus in the subcompartment.

Modelling both background climate variables, acting as a proxy for functional trait com-

position, as previously described, and genus in the same framework allowed us to directly

compare their relative explanatory power. We found that genus was significant, and had

some clear and consistent patterns. Betula genera were associated more often with high
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resistance forests, and Fagus and Fraxinus genera were more often associated with lower

resistance, however in terms of relative importance the historic climate variables were far

more important, indicating for the subset of UK forests that we tested, that community

trait composition is more important than the genera present per say.

The comparison we make in this chapter should we viewed with the caveat that the

forests in the UK forests have low species richness, and are highly managed systems which

may weaken the relationship between perturbation and response through compensatory

management options which may act to lessen the impact of climate perturbation on forests.

Furthermore, due to evolutionary relationships, genus and functional trait composition are

likely correlated, and thus disentangling them statistically may be difficult.

D.Other Controls on Resistance

The final finding that I wish to highlight is related to what other major factors we identify

as important. In the third chapter, we find a significant role of a number of background

climate variables most of which fit into the narrative of the community composition re-

flecting historic climatic selection pressure. However, long term mean growing season

temperature in the third chapter, was found to have a relationship with temperature sen-

sitivity opposite to expectation. Forests with higher mean growing season temperatures

were more commonly associated with more negative productivity values during droughts

compared to forests located in areas with lower mean growing season temperatures. This

finding is perhaps unsurprising given the climate context of the UK, as temperate forests

often have mean growing season temperatures (mean growing season temperature found

in this study was 13°C +/- 2°C) well below the photosynthetic optimum temperature for

the majority of broadleaf (between 23°C and 30°C)[39] and coniferous tree species (be-

tween 10°C and 20°C)[39]. Therefore, water and nutrients permitting such forests may be

expected to respond positively to higher temperatures[40, 41, 42] associated with drought

periods.

Evidence of further controls on productivity responses were also found in the fourth chap-

ter. In this chapter we found that the only significant control on the long term trend in

productivity was leaf phosphorus. The relationship between the two was positive indicat-

ing that plots with larger mean community leaf phosphorous concentrations, were more

often associated with larger productivity trends. This finding identifies phosphorus avail-

ability as a control on productivity. The ramifications of this may be that while elevated
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carbon dioxide levels may act to stimulate productivity, we may not see any further pro-

ductivity increases in many areas, especially in the eastern Amazon, due to phosphorous

limiting the capacity of these systems to increase productivity. The key role that phos-

phorous, and other such limited nutrients plays in moderating changes in productivity has

been found now from a number of different types of study examining the question from a

variety of angles including experimental fertilisation[43], ecosystem modelling[44, 45] and

examination across phosphorous gradients[46].

5.3 Suggestions for Future Research

In order to further advance our understanding and address knowledge gaps, this section

delves into key recommendations and potential avenues for future research in the field.

In the conception of this thesis we explored and defined stability as being resistance, re-

silience, latitude and precariousness to draw clear distinction between components which

are often confused and conflated in the literature. In the end, we focused primarily on

exploring forest resistance, and what variables moderate resistance to short term climate

perturbations, as at a landscape scale there is still a great deal of uncertainty in under-

standing this relationship. Building on this work, it would be interesting to examine dif-

ferent components of stability, develop methodologies for measuring them consistent with

the conceptual framework outlined in this thesis, and to examine whether the controls we

have identified in this study are also important for other moderating other components of

stability.

By measuring different components of stability it would then be possible to examine re-

lationships, between the different stability components. Trade-offs, for instance between

forest resistance and resilience to extreme climate perturbation have been identified by a

global study examining gymnnosperms[47]. It would therefore be interesting to examine

why these trade-offs exist, and what variables moderate such trade-offs, as they would

provide a fascinating insight into the underlying mechanics of the stability landscape and

the constraints it works within.

Continuing with the topic of stability, the case studies used in this thesis provided snap-

shots in time, or long term averages in the case of the case study of the UK. It is an

interesting question to ask if these values are stable over time, and if a forest that is

considered stable in response to one perturbation, is also considered stable to a subse-
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quent one accounting for any difference in the magnitude of the perturbation itself. This

result would be an important one, as if found to be stable then it would lend weight to

the argument that we can use modern, or historic evaluations of stability to inform, or

at least better quantify the uncertainty, of how those same forests will respond to future

perturbation.

In this thesis we argue that the background climate variables we use act as proxies for

community composition both in terms of species present, and functional trait composition,

mediated through the idea that long term climate patterns would select for certain species

or functional trait compositions. However, it would be interesting to explicitly investigate

this assumption through examining gradients of background climate and ground collected

inventory and functional trait databases to see to what extent species and functional trait

composition correlates to background climate.

Continuing with functional traits, the Forest Plots functional trait dataset that we used

in the final chapter has a great deal more potential for investigating how functional traits

moderate the response of Amazonian forests to climate perturbation. It has a great deal

more functional traits available beyond those tested in this thesis, and it would certainly

be interesting to see to what extent other traits explain observed variance in productivity

average, trends, and in response to perturbation. It would also be interesting to further

investigate the correlation observed between the leaf economic spectrum paradigm, and the

response of stability to ascertain if this was a study specific response or a more generally

applicable finding.

5.4 Conclusions

The primary aim of this thesis was to develop a deeper understanding of the underlying

variables and processes that influence variation in forest productivity, and stability of

productivity to climate, and climate perturbations. Given the evidence presented in this

thesis, I believe it is fair to say that this aim has been achieved.

The methods presented here demonstrate that it is possible to quantify and describe

spatial patterns in stability of forests to climate perturbations at landscape scales, and

to understand the mechanisms behind the variation in stability that we observe. The

flexibility of the conceptual framework we utilised allowed us to examine forest stability

in a range of different circumstances including, single large perturbations, a time series of
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climate perturbations, as well as long term mean and trends in productivity. The methods

developed are equally applicable to remotely sensed data, geospatial databases, as well as

ground sourced data, and provide a means to statistically disentangle the effects of climate,

biodiversity, and functional trait covariates.

Our results highlight the importance of understanding forest stability when seeking to

explain landscape scale variation in forest response to climate perturbation. In all chapters

when investigating climate perturbation, the magnitude of the perturbation alone was

insufficient to explain productivity patterns. Therefore, any examination of productivity

response to perturbation without considering variance in stability will be missing a crucial

component.

Investigation of which variables were important in explaining variation in response to

perturbation revealed that for both tropical and temperate forests, the background climate

that a forest has experienced was the single most important group of explanatory variables

in all cases, except when functional traits were directly included in models. Background

climate, I argue, ultimately acts as a measure of the selective pressure acting on the

community, and thus is informative of the community composition in terms of species

and functional traits present. This finding is given further support by the final data

chapter of this thesis in which we have direct measurements of both background climate

and functional traits, and find that in understanding the response to perturbation only

functional traits were in the final model explaining the variation in productivity response.

The finding that functional traits are important in understanding the response of forest

ecosystems joins a growing body of literature highlighting the power of a functional trait

approach to understanding variation in productivity responses, and offers a mechanistic

understanding of the processes underlying stability, and giving us valuable insights into

how these forests may respond to ongoing climate change.

Overall these results represent an important advance in our knowledge of the stability of

forest productivity to climatic perturbation, and hopefully will pave the way for further

forest stability research that will continue to improve our understanding of our planets

forests.
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Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime

Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie
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los Reynel Rodriguez, Marcos Antonio Ŕıos Paredes, Lily Rodriguez Bayona, Rocio

del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Car-

los Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez

Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko,

Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine
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Appendix One

Chapter Two Supplementary

Materials

A.1 Supplementary Figure 1

Figure A.1: The spatial distribution of solar induced fluorescence, precipitation, temper-
ature and Maximum Cumulative Water Deficit anomalies for October to December 2015,
compared to a baseline of October to December 2007 to 2014.
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A.2 Supplementary Figure 2

Figure A.2: Maximum Cumulative Water Deficit (MCWD) calculated using a range of
assumed evapotranspiration requirements.

A.3 Supplementary Figure 3

Figure A.3: Spatial distribution of all variables in the final model.
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A.4 Supplementary Figure 4

Figure A.4: Modelled SIF values from the final selected model against observed SIF values,
blue line represents the trend line, and shaded area around this line representing the
standard error.

A.5 Supplementary Figure 5

Figure A.5: Mean SIF for the SIFTVERv2 product for the Amazon Region (0-15°S, 70-
55°W) with (blue), and without (red) the correction for sensor degradation, reproduced
from van Shaik et al. 2020[1]. Vertical lines denote the study period (October 2015 –
December 2016).The vertical lines depict the study period.
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A.6 Supplementary Figure 6

Figure A.6: Selected model full equation, variables and explanation



Appendix Two

Chapter Three Supplementary

Materials

B.1 Supplementary Figure 1

Figure B.1: Spatial distribution of the explanatory variables used in the Random Forest
modelling.
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B.2 Supplementary Figure 2

Figure B.2: Modelling of drought coupling, relative importance of variables as deteremined
by Boruta score (left) and accumulated local effects plots (right)

B.3 Supplementary Figure 3

Figure B.3: Modelling of temperature drought sensitivity, only using pixels who have a R2

greater than the average R2 calculated in the main analysis (16%), relative importance of
variables as determined by Boruta score (left) and accumulated local effects plots (right)

B.4 Supplementary Table 1

All data made available through Google Earth Engine require the creation of a Google

Earth Engine account https://earthengine.google.com/

NDVI data - MOD13Q1.061 Terra Vegetation Indices 16-Day Global 250m https://

lpdaac.usgs.gov/products/mod13q1v061/

Precipitation data – Gridded estimates of daily and monthly areal rainfall for the United

Kingdom (1890-2019) [CEH-GEAR]

https://catalogue.ceh.ac.uk/documents/dbf13dd5-90cd-457a-a986-f2f9dd97e93c

Temperature data - Climate hydrology and ecology research support system meteorology

https://earthengine.google.com/
https://lpdaac.usgs.gov/products/mod13q1v061/
https://lpdaac.usgs.gov/products/mod13q1v061/
https://catalogue.ceh.ac.uk/documents/dbf13dd5-90cd-457a-a986-f2f9dd97e93c
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dataset for Great Britain (1961-2017) [CHESS-met]

https://catalogue.ceh.ac.uk/documents/2ab15bf0-ad08-415c-ba64-831168be7293

Long term climate temperature - ERA5 Monthly Aggregates - Latest Climate Reanalysis

Produced by ECMWF / Copernicus Climate Change Service

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=

overview

Hansen Global Forest Change v1.9.

https://earthenginepartners.appspot.com/science-2013-global-forest/download_

v1.7.html

SRTM Digital Elevation Data Version 4.1

https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/

B.5 Supplementary Figure 4

As the data at the pixel level has been standardised (mean centred and divided by the

standard deviation) model coefficients for temperature, and precipitation, can be directly

compared to assess their relative importance with a larger variable coefficient being inter-

preted as that variable being of relatively higher importance. To aid in the understanding

the percentage contribution of each coefficient to the absolute sum of the three coefficients

was calculated using equation B.1 at a pixel level. This allows us to understand the impor-

tance of each sensitivity component relative to each other, as well as to assess the spatial

patterns in this relative importance.

Componentpercentagecontribution =
abs(βtemp/ppt/date)

abs(βtemp) + abs(βppt) + abs(βdate)
× 100 (B.1)

https://catalogue.ceh.ac.uk/documents/2ab15bf0-ad08-415c-ba64-831168be7293
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.f17050d7?tab=overview
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
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Figure B.4: Relative importance of sensitivity components shown spatially for temperature
top left, and precipitation top right. Precipitation shows relatively low importance across
the UK, with a few localised areas of higher importance. Temperature by contrast shows
itself to be highly important nearly everywhere, with a slight East-West gradient across
the UK. This figure was produced by dividing the absolute temperature or precipitation
coefficient by the absolute sum of the temperature, precipitation and date coefficient. As
all data are standardised prior to calculation, this produces an easy to interpret mea-
sure of relative importance. For instance an area with a temperature importance of near
100% would indicate that all of the climate sensitivity is explained by the temperature
component rather than the precipitation or date coefficient. Bottom plots show the same
information, but summarised for each 2x2 degree square, by frequency distribution for
temperature (bottom left) and precipitation (bottom right), the blue and red lines repre-
sent the 25% and 75% for visual reference

Figure B.4 displays the spatial and frequency pattern of this relative importance, from ex-

amining these distributions several interesting features can be observed. First, sensitivity

to temperature is the single most important contributor to overall sensitivity with average

temperature sensitivity being approximately ten times that of the average contributions

of precipitation, and long-term trends (0.28, vs 0.03 respectively numbers). Second, there

is significant spatial variation in which component is most important. The relative impor-

tance of temperature for instance has very high percentage contributions in the northwest



193

and north Wales with the percentage contribution dropping towards the northeast and

southeast. Finally, precipitation sensitivity shows a more even distribution, being of rela-

tively low importance everywhere, with slightly higher importance in the southeast.

B.6 Supplementary Figure 5

Figure B.5: NDVI averaged for each age cohort labelled over time, restricted just to the
growing season of each year.

B.7 Code Availability

All code for this chapter is freely available for download from https://github.com/

maxfancourt42/uk_ndvi_forest_stability_paper.git.

https://github.com/maxfancourt42/uk_ndvi_forest_stability_paper.git
https://github.com/maxfancourt42/uk_ndvi_forest_stability_paper.git
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B.8 Supplementary Table 2

Table B.1: Table showing the results of considering all pairwise interactions within the
random forest model, variable importance is calculated for each pair of variables (paired
column), for each variable separately (Var 1 and Var 2) and then finally also the summed
importance of the two variables together (summed column). A large positive or negative
difference between ”paired” and ”additive” indicates an association that is worth consider-
ing, if the univariate variable importance for each of the paired-variables is also reasonable
large.

Variable Pair Var 1 Var 2 Paired Additive Difference

mat:map 0.0193 0.018 0.0353 0.0373 -0.002
mat:clay 0.0193 0.0103 0.0279 0.0296 -0.0017
mat:pptseasonality 0.0193 0.013 0.0263 0.0323 -0.006
mat:PRI PLYEAR 0.0193 0.0054 0.0219 0.0247 -0.0027
mat:genus 0.0193 0.0047 0.0217 0.0239 -0.0022
mat:slope 0.0193 0.0023 0.0201 0.0215 -0.0014
mat:elevation 0.0193 0.0012 0.0198 0.0204 -0.0007
map:clay 0.018 0.0104 0.0262 0.0284 -0.0022
map:pptseasonality 0.018 0.013 0.0251 0.031 -0.0059
map:PRI PLYEAR 0.018 0.0054 0.0204 0.0234 -0.003
map:genus 0.018 0.0046 0.0202 0.0226 -0.0025
map:slope 0.018 0.0023 0.0187 0.0203 -0.0016
map:elevation 0.018 0.0012 0.0185 0.0192 -0.0007
clay:pptseasonality 0.0103 0.013 0.0191 0.0233 -0.0042
clay:PRI PLYEAR 0.0103 0.0054 0.0139 0.0158 -0.0019
clay:genus 0.0103 0.0046 0.0143 0.015 -0.0007
clay:slope 0.0103 0.0023 0.012 0.0126 -0.0006
clay:elevation 0.0103 0.0012 0.0111 0.0115 -0.0004
pptseasonality:PRI PLYEAR 0.013 0.0054 0.016 0.0184 -0.0024
pptseasonality:genus 0.013 0.0046 0.0158 0.0176 -0.0019
pptseasonality:slope 0.013 0.0023 0.0141 0.0153 -0.0012
pptseasonality:elevation 0.013 0.0012 0.0135 0.0142 -0.0007
PRI PLYEAR:genus 0.0054 0.0046 0.0087 0.0101 -0.0014
PRI PLYEAR:slope 0.0054 0.0023 0.0073 0.0077 -0.0004
PRI PLYEAR:elevation 0.0054 0.0012 0.0063 0.0066 -0.0003
genus:slope 0.0046 0.0023 0.0066 0.0069 -0.0004
genus:elevation 0.0046 0.0012 0.0056 0.0058 -0.0002
slope:elevation 0.0023 0.0012 0.0033 0.0035 -0.0002
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B.9 Supplementary Figure 6

Figure B.6: Frequency distribution of standardised regression coefficients for a) tempera-
ture anomalies b) precipitation anomalies. Red-solid line represents the mean sensitivity,
black-dashed line highlights 0 to be used in comparing to the mean.

B.10 Supplementary Figure 7

Figure B.7: Variance inflation factors, and correlation matrix for all variables used in the
final random forest model, correlation between variables was investigated using Peason’s
correlation coefficient, and a rule of thumb of 4 was used to filter variables by VIF (with
variables more than 4 being excluded.



Appendix Three

Chapter Four Supplementary

Material

C.1 Supplementary Figure 1a

Figure C.1: Standardised univariate regression coefficients for the best models for pre-
dicting mean woody productivity (left) and trend in woody productivity (right) across
Amazon forests. Points show the standardised coefficient value in the best model for each,
wings show the 95% confidence interval, shaded rectangle represents the 95% range when
the underlying dataset was subjected to moderate bootstrapped perturbation.
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Figure C.2: Biplots for Leaf mass per unit area, and leaf phosphorus, for AGWP mean,
and AGWP trends. Basal area weighted functional trait averages were calculated using
the closest available census date to the date the functional trait data was collected. As
functional traits are only collected once per plot in our dataset, the average calculated for
each plot are assumed to be constant.

Figure C.3: Biplots for MCWD, and wood density, for AGWP mean, and AGWP trends,
note for MCWD vs AGWP trends. . Basal area weighted functional trait averages were
calculated using the closest available census date to the date the functional trait data was
collected. As functional traits are only collected once per plot in our dataset, the average
calculated for each plot are assumed to be constant
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C.2 Supplementary Figure 2

Figure C.4: Correlation matrix for functional traits, high correlation can be observed be-
tween leaf N, leaf P and leaf K, this high correlation would likely result in multicollearinty
issues during stastitical modelling. To this end leaf P was chosen as it had the lowest
correlation with LMA and wood density out of the the tree leaf nutrient variables making
it most suitable for modelling
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C.3 Supplementary Figure 3

Figure C.5: Historgrams showing the frequency distribution of basal area for all function
traits, a 25% threshold was chosen on the basis that sites with less than this basal area
would be unlikely to fully represent the community, and a higher threshold would remove
too many sites making statistical analysis unreliable.

C.4 Code Availability

All code for this chapter is freely available for download from https://github.com/

maxfancourt42/amazon_AGWP_functional_traits.git.

C.5 Supplementary Table 1

Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

AGP-01 1 1 1 1 1

AGP-02 1 1 1 1 1

ALC-01 1 1 1 1

ALC-02 1 1 1 1

ALF-01 1 1 1 1

https://github.com/maxfancourt42/amazon_AGWP_functional_traits.git
https://github.com/maxfancourt42/amazon_AGWP_functional_traits.git
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

ALP-01 1 1 1 1 1

ALP-02 1 1 1 1 1

ALP-30 1 1 1 1 1

BNT-04 1 1 1 1

BOG-01 1 1 1 1 1

BOG-02 1 1 1 1 1

CAX-01 1 1 1 1 1

CAX-02 1 1 1 1 1

CHO-01 1 1 1 1 1

CPP-01 1 1 1 1 1

CUZ-03 1 1 1 1 1

DEC-06 1

DOI-01 1 1 1 1 1

DOI-02 1 1 1 1 1

ELD-01 1 1 1 1 1

ELD-02 1 1 1 1 1

ELD-03 1 1 1 1 1

ELD-04 1 1 1 1 1

ETA-01 1

ETA-02 1

ETA-03 1

ETA-04 1

ETA-05 1

ETA-06 1

ETA-07 1

ETA-08 1

ETA-09 1

ETA-10 1

ETA-11 1

ETA-12 1

ETA-13 1

ETA-14 1
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

ETA-15 1

ETA-16 1

ETA-17 1

ETA-18 1

ETB-01 1

ETB-02 1

ETB-03 1

ETB-04 1

ETB-05 1

ETB-06 1

ETB-07 1

ETB-08 1

ETB-09 1

ETB-10 1

ETB-11 1

ETB-12 1

ETB-13 1

ETB-14 1

ETB-15 1

ETB-16 1

ETB-17 1

ETB-18 1

ETB-19 1

ETC-01 1

ETC-02 1

ETC-03 1

ETC-04 1

ETC-05 1

ETC-06 1

ETC-07 1

ETC-08 1

ETC-09 1
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

ETC-10 1

ETC-11 1

ETC-12 1

ETC-13 1

ETC-14 1

ETC-15 1

ETC-16 1

ETC-17 1

ETC-18 1

ETC-19 1

ETD-01 1

ETD-02 1

ETD-03 1

ETD-04 1

ETD-05 1

ETD-06 1

ETD-07 1

ETD-08 1

ETD-09 1

ETD-10 1

ETD-11 1

ETD-12 1

ETD-13 1

ETD-14 1

ETD-15 1

ETD-16 1

ETD-17 1

ETD-18 1

ETD-19 1

ETD-20 1

ETD-21 1

ETD-22 1
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

ETD-23 1

ETE-01 1

ETE-02 1

ETE-03 1

ETE-04 1

ETE-05 1

ETE-06 1

ETE-07 1

ETE-08 1

ETE-09 1

ETE-10 1

ETE-11 1

ETE-12 1

ETE-13 1

ETE-14 1

ETE-15 1

ETE-16 1

ETE-17 1

ETE-18 1

ETE-19 1

ETE-20 1

ETE-21 1

ETE-22 1

ETE-23 1

ETE-24 1

ETE-25 1

ETE-26 1

ETE-27 1

ETE-28 1

ETE-29 1

ETF-01 1

ETF-02 1
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

ETF-03 1

ETF-04 1

ETF-05 1

ETF-06 1

ETF-07 1

ETF-08 1

ETF-09 1

ETF-10 1

ETF-11 1

ETF-12 1

ETF-13 1

ETF-14 1

ETF-15 1

ETF-16 1

ETF-17 1

ETF-18 1

ETF-19 1

ETF-20 1

ETF-21 1

HCC-21 1 1 1 1 1

HCC-22 1 1 1 1 1

JAS-02 1 1 1 1 1

JAS-03 1 1 1 1 1

JAS-04 1 1 1 1 1

JAS-05 1 1 1 1 1

JEN-11 1

JEN-12 1

JRI-01 1 1 1 1 1

LFB-01 1 1 1 1 1

LFB-02 1 1 1 1 1

LOR-01 1 1 1 1 1

LSL-01 1 1 1 1 1
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Plot Leaf N Leaf P Leaf K Leaf Mass Per Unit Area Wood density

LSL-02 1 1 1 1 1

MON-01 1

POR-02 1 1 1

RIO-01 1 1 1 1 1

RIO-02 1 1 1 1 1

SCR-04 1 1 1 1 1

SCR-05 1 1 1 1 1

SIP-01 1 1 1 1

SUC-01 1 1 1 1 1

SUC-02 1 1 1 1 1

SUC-03 1 1 1 1 1

SUM-01 1 1 1 1 1

TAM-01 1 1 1 1 1

TAM-02 1 1 1 1 1

TAM-03 1 1 1 1 1

TAM-04 1 1 1 1 1

TAM-05 1 1 1 1 1

TAM-06 1 1 1 1 1

TAM-07 1 1 1 1 1

TIP-03 1 1 1 1 1

TIP-05 1 1 1 1 1

C.6 Supplementary Table 2

Table C.2: Sample size for univariate and multivariate analyses.

Univariate Sample size

LMA 40
Leaf N 40
Leaf K 39
Leak P 39
Wood density 35

Multivariate 33
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