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Abstract 
Emerging electric powertrain technology applied to motor vehicles, together with recent 

technological advances in battery technology and electric motor design, has significantly decreased 

vehicle lifetime carbon dioxide emissions. Similarly, an increase in vehicle energy efficiency is also 

expected as battery technology matures. This process, also known as motor vehicle electrification, is 

expected to lead to the decarbonisation of the automotive and transportation industry sectors, which 

will be a key step towards meeting climate accords targets. 

Privately-owned passenger electric vehicles (EVs) have been thoroughly studied in recent 

years by the scientific and industrial communities alike, demonstrating their potential to reduce 

tailpipe vehicle-produced carbon emissions. However, there appears to be a significant gap in research 

literature covering the potential carbon reduction emissions in other classes of motor vehicles, such 

as heavyweight trucks and motorbikes. The operation of these vehicle categories has been shown to 

produce a significant amount of carbon dioxide and other greenhouse gases [1]. Therefore, a 

reduction in the emissions generated by these vehicles will prove to be key in the overall 

decarbonisation of the transport sector. 

This thesis presents a novel, state-of-the-art, highly modular vehicle simulation model that 

can be configured to simulate the energy use of a wide range of electric vehicles, including electric 

refuse collection vehicles (eRCV), eBuses, eHGVs, as well as electric motorbikes. The simulation model 

features original, model-based programming techniques that utilise the Matlab/Simulink 

environment, to achieve minimal error rates in energy usage predictions. The simulation results are 

expected to provide a better understanding of the energy requirements of vehicle categories that 

have not yet been thoroughly researched. 

Additionally, this thesis also provides example energy usage investigations as model 

applications that are expected to help towards examining the feasibility of electrified alternatives to 

conventional vehicles. These investigations rely on simulation-based research for specific types of 

vehicles, such as heavyweight public service vehicles (PSVs) and electric motorbikes. The simulations 

upon which the research is built utilise real-life data, recorded as vehicle telemetry, in order to provide 

the closest possible conditions to normal vehicle operation. 

Finally, the thesis presents a potential battery pack concept as a potential solution for battery 

electric trucks. This is based on large-capacity electrical energy storage systems, packaged as pallet-

compatible cargo loads, which can serve as vehicle range extenders. This concept, if implemented 

correctly, is anticipated to ensure that the range performance of current electric trucks is capable of 

meeting the demands of the current logistics operations and business models. Furthermore, as most 

of the electrical infrastructure required for the operation of the proposed concept pre-exists, costs 

related to system implementation and maintenance are expected to be minimal. 

The research featured in this thesis is intended to kickstart further refined investigations 

towards a better understanding of the energy requirements these transportation modes will attract. 

Additionally, as the solution, concept and investigations presented in this thesis are presented in a 

technology-agnostic context, the featured research approach may be successfully extended to other 

vehicle categories and technologies not explored here. These include passenger EVs, but also vehicles 

powered by other green alternative energy sources (i.e. hydrogen fuel-cell, hydrogen ICE). Finally, the 

results and methods presented aim to fill in the identified research gap represented by energy 

prediction solutions and understanding electric energy requirements of EVs, especially focused on 

heavyweight public service vehicles (PSVs) and electric motorbikes. The research carried out, will also 

serve as a cornerstone for future technical evaluations. 
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1. Chapter 1 – Introduction 
The last decade has seen an important increase in the adoption of lightweight motor vehicles 

utilising the Electric Vehicle (EV) powertrain technology. These and other vehicles, now constitute a 

significant proportion of total vehicle Carbon dioxide emissions [2] and according to current 

predictions given by mathematical models, they may represent a bigger proportion in total emissions 

in the years to follow, as seen in figure 1.1 [3][4].  

 

 
Figure 1.1 - Global Emissions by Sector 

Whilst there is a significant amount of literature focusing on the energy consumption of 

popular, lightweight passenger EVs, there appears little understood regarding the energy usage of 

other types of electric vehicles. Therefore, applying EV technology to various drivetrains, together 

with other novel software-related technologies that benefit from the growth in computing power, 

may prove a research field with maximum impact towards overall tailpipe CO2 reduction and the 

sustainability of the transportation sector. 

 

1.1. Context & Justification 

In recent decades, a significant increase in average global temperature has been highlighted 

by many studies in the field of climatology [5]. This process, known as climate change, has been 

ongoing at an increasingly alarming rate since the Industrial Revolution, as observed in figure 1.1 [6]. 

The outcomes of this process are primarily climatological, with recent observations indicating 

significant alterations in precipitation and oceanic current patterns. This has the effect of changing 

weather-specific phenomena in relatively short amounts of time, usually insufficient for populations 

in a given area to adapt to these. Consequentially, the meteorological phenomena associated with 

climate change have led to significant human, as well as financial losses. 

The main catalyst contributing to the increasingly negative effects of climate change has been 

identified as being the increased atmospheric emissions of carbon dioxide and other gases. It has been 

demonstrated that when these substances are emitted into the atmosphere their molecules act as 

heat deflectors, effectively creating a greenhouse-like phenomenon. This has the effect of trapping 

atmospheric heat behind the ozone layer, which leads to an increase in global average temperatures 
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[7]. Although CO2 molecules do not exhibit the biggest potential in heat blocking, the substance is 

usually cited as the most influential factor leading to increased atmospheric temperatures due to the 

total emitted amount [8]. To that end, increased carbon dioxide emissions have been strongly 

correlated with an increase in global temperature averages, as presented by the data [9] displayed in 

figure 1.2. 

 

 
Figure 1.2 - Atmospheric carbon dioxide levels and increase in global temperatures [9] 

Although initially questionable, a link between man-made emissions and the general increase 

in atmospheric CO2 is increasingly established. This hypothesis is strongly supported by the rate at 

which carbon dioxide emissions have increased since the industrial revolution [10]. Therefore, in order 

to minimise the impact of man-made emissions, there has been a global push towards significant CO2 

and other greenhouse gas reduction. Carbon dioxide emissions have been experiencing significant 

growth since records began in the 1800s [9], and despite the multinational emissions reduction 

agreements that were signed to date, decreasing this trend is of primary importance [11]. This 

reduction is important as it is expected to prevent further temperature increases. 

The automotive and transportation sectors have been identified as being significant CO2 

polluters [12]. One of the main polluting components in these industries is road transport, represented 

by the motor vehicle, which has traditionally been powered by internal combustion engines. Freight 

and public transport have been recently estimated to comprise more than 30% of the emissions 

produced by the transportation sector in the UK [13]. These achieve traction by employing various 

types of fossil fuels, which generate energy through combustion or compression, emitting carbon 

dioxide and other greenhouse gases as a by-product [14]. Consequentially, the rise of adoption in 

private-owned vehicles has brought a significant rise in CO2 footprint attributed to these industry 

sectors. 

Due to the increase in the usage of motor vehicles, motor vehicle-specific applications that 

target emissions reduction are expected to have a significant impact towards CO2 minimisation and 

will likely have a beneficial impact towards minimising climate change effects. To that end, several low 

and zero-carbon alternatives to the traditional internal combustion engine (ICE) have been developed. 

One of the most popular solutions is represented by the electric motor. This enables vehicles to run 

on electrical energy, which can be provided by various energy generation sources, including 
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renewables. Moreover, research extensively shows that electric vehicles have the potential to 

ultimately enable the transport and automotive industry become zero-carbon emission sectors, if 

applied correctly [15]. Additionally, as electrical energy can be produced through various means, it 

provides additional benefits of energy security, strengthening logistics and supply chain operations in 

the process. This has led to a significant increase in the use of electric vehicles in recent years [16][17]. 

Additionally, the use of heavy commercial vehicles such as RCV’s and buses may lead to an 

advantage if converted to electric propulsion. Typically, commercial public service vehicles have fixed 

operating schedules, leaving and arriving at the depot at pre-determined hours of the day. If such 

vehicle fleets are then grid connected for charging, the use of proposed vehicle to grid (V2G) 

technology could make a large number of vehicle batteries available for grid support during the early 

afternoon, and especially during the evening peak periods for utility supply support. In addition, if an 

accurate estimate of the remaining battery capacity in the fleet of vehicles was available at the end of 

the day’s collections, extra income may be generated by the local authority by providing grid support 

services during the peak period before the fleet was fully recharged overnight with lower cost 

electricity ready for the next day’s operation. However, in order to facilitate research towards these 

applications, the energy requirements of such fleets must be better understood. 

Similarly, electric alternatives to lightweight vehicles, such as motorbikes and scooters, are 

yet to be thoroughly researched. According to the DfT, these vehicles comprise a significant part of 

the motor vehicles (up to 1.1 million in the UK at the end of 2016 [13]) on the road in several parts of 

the world, and are increasingly used as means of transportation for food and package deliveries, due 

to the increasing popularity of gig-based economy. However, the full extent of the energy 

requirements produced by such vehicle fleets remain to be fully understood, although the 

decarbonisation of this vehicle category is expected to produce significant reductions in CO2 

footprints. This is especially true for the developing world regions, where these vehicles are 

extensively used. 

Finally, due to the ever-increasing capabilities of computation power in recent computer 

systems [18], application of complex software algorithms to analogue, continuous-time mathematical 

systems is no longer a theory, but a strong possibility [19]. Continuous-time mathematical equations 

can accurately describe many systems, and the automotive industry makes no exception. Recently, 

complex software packages have been employed in this industry to simulate various engineering 

system designs, and to estimate and predict their behaviour in a virtual environment, as opposed to 

the traditional project lifecycle approach that consists of stages implying exhaustive validation and 

testing on prototype custom-spec hardware. 

 

1.2. Research Aims & Objectives 

This thesis proposes a model-based software design involving a Matlab/Simulink-based 

approach. This software solution is targeted towards simulating an electric vehicle, modelled using a 

set of technical specifications in order to understand its energy requirements. The proposed software 

simulation solution is capable of simulating a wide range of electric powertrains, including eRCVs, 

eBuses and eBikes. The developed solution presented consists of model-based programming that 

employs state-of-the-art software subsystems (toolboxes). This is a novel solution to simulating this 

type of drivetrain that aims to attenuate the errors many traditional approaches based on speed 

profiling prediction. The benefits of model-based programming are concerned with the model’s 

overall versatility and minimal training required to operate such solutions. The proposed solution 



18 
 

serves as a tool to aid the investigation concerning the energy requirements of the abovementioned 

electric vehicle alternatives, as well as a facilitating the move towards powertrain electrification. 

Additionally, the thesis will also feature investigations focused towards understanding the 

energy consumption of electric motor vehicle alternatives beyond passenger lightweight EV cars as a 

further primary focus. This includes a range of various vehicle types, including eRCV, eBuses, as well 

as eMotorbikes/eBikes. The research will take advantage of the developed software solution in order 

to provide sensible energy usage estimations. This is done through analysing real-life telemetry data 

and understanding key driving aspects, such as road characteristics and driver behaviour. The results 

will provide insight towards the energy requirements related to the abovementioned vehicle types, as 

well as proving the usability and flexibility of the proposed software model. Moreover, it will be 

demonstrated how the estimations produced by the solution can be further employed in order to 

determine or justify other ways to supply energy to EVs, including swappable batteries, which have 

the ability to be replaced quickly to maximise productivity. 

In order to achieve the proposed objectives and due to the multidisciplinary scope of the 

thesis, the thesis has been split into several chapters, each fulfilling one of the abovementioned 

targets, in order to ensure a clear outline of the achieved outcomes. Broadly, the research aims and 

objectives of the thesis are: 

 

1) Research Aim 1 – To understand the scientific context and current status of recent developments 

and identify current research gaps in the fields of automotive electrified transportation, as well as 

simulation-based experimentation and estimation. This aim is fulfilled within chapter 2. 

a) Objective 1a – To conduct a literature review on transportation and automotive-focused 

subtopics, including economic output of the automotive sector in transportation industry, 

main technological drivers of powertrain electrification and psychological factors controlling 

the public perceptions of the EV technology. 

b) Objective 1b – To conduct a literature review on recent developments in software modelling, 

simulation-based experimentation, as well as novel modelling techniques, including model-

based programming. 

 

2) Research Aim 2 – To examine the electric energy consumption of EV alternatives to various types 

of vehicles, including eRCVs, eBuses, and eBikes/eMotorbikes. 

a) Objective 2a – To develop a software model based on state-of-the-art simulation modelling 

techniques that is capable of estimating energy usage of such vehicles in given contexts, using 

speed-time value pair datasets and a technical vehicle specification. The development of this 

model is described in chapters 3 and 4. 

b) Objective 2b – To validate and test the model appropriately, using realistic telemetry data and 

compare the output energy usage with real-life recorded values. The results of these are 

presented in chapters 3 and 4. 

 

3) Research Aim 3 – To employ the developed model as a tool for more refined investigations 

focused on energy consumption. 

a) Objective 3a – To estimate fleet-level energy usage of various public service vehicles (PSV) 

through simulation-based experimentation using the proposed software solution, and provide 

recommendations concerning scheduling, driving and vehicle specification. This is further 

detailed in chapter 5. 
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b) Objective 3b – To assess the feasibility of using ePSV fleets as grid support during peak hours 

by investigating energy usage throughout the day. The analysis is presented in chapter 5. 

c) Objective 3c – To understand the impact on energy refuelling costs and carbon footprint 

reduction caused by implementing electric fleets. The findings are outlined in chapter 5. 

d) Objective 3d – To assess the limitations of the developed simulation solution through stress-

testing simulations of high performance, motorsport-spec electric motorbikes. The 

investigation is detailed in chapter 6. 

e) Objective 3e – To estimate eBike/eMotorbike energy usage and determine the difference 

between these and their ICE counterparts when considering CO2 emissions and costs. This is 

further elaborated in chapter 6. 

 

4) Research Aim 4 – To prove how energy usage investigations in electric vehicles can be further 

employed as a basis towards building and implementing concepts with higher complexity, 

including systems that act as range extenders for electric motor vehicles. This is proven in detail 

in chapter 7. 

a) Objective 4a – To produce an ferasbility analysis for eHGVs focused on energy consumption 

and introduce an eHGV battery swap concept, indicating how these may be adapted to exhibit 

similar performance to conventional Diesel HGVs. 

 

The findings of the proposed research can be easily identified as key characteristics towards 

a much more efficient process. Software simulation has been proven to significantly reduce cost and 

time spent during R&D stages of any given project because of its high degree of flexibility and 

scalability compared to a traditional approach. Additionally, the results produced as part of the 

presented energy usage investigation will aid in filling in the research gap concerning the electric 

energy consumption of various, specialist vehicle categories, including eRCVs, eBuses and 

eMotorbikes. The findings are expected to be of interest since the technical specifications used in 

energy prediction simulations have been compiled using real-life data. 

Similarly, when considering the potential of the proposed solution, the results will serve as a 

cornerstone and may provide the first steps, together with existing research, towards a more complex 

solution that is also able to include traffic management systems. These include transportation-focused 

applications, such as AI-enhanced fleet-level operation, with the final aim of simulating all aspects of 

motor vehicle energy consumption and optimise these at a city or country-level. Accurate predictions 

of these characteristics will offer companies and local authorities a much more comprehensive view 

towards energy production and consumption that can positively reflect in finding an optimum in 

future business and economic strategies, while also keeping environmental disruption at a minimum. 

 

1.3. Overview of thesis chapters 

In order to better understand the objectives and findings of the thesis, as well as where can 

they be found, a short overview of the following chapters is provided. 

In chapter 2 of this thesis, a literature review of the main findings and the current state of the 

art concerning the relevant research will be presented. This has been carried out in order to fulfil the 

objective of understanding the current developments in the automotive and transportation industries. 

It is performed by investigating similar, topic-focused literature describing recent progress in the 

topics of interest. The literature review enables better understanding of the context of the research 

presented in this thesis, as well as indicating specific research gaps and where exactly the findings 
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presented in this thesis integrated in the grander research picture. The topics of interest that have 

been investigated include economic output of the automotive field, the recent advances in powertrain 

electrification, alternatives to the EV technology, as well as current progress in the field of software-

based simulation methodologies. 

Chapters 3 and 4 of the thesis will present the development and capabilities of a novel eRCV 

vehicle model. The developed model is able to deliver accurate predictions on energy consumption 

and electrical/mechanical system losses alongside vehicle behaviour and other important parameters 

at a subsystem-level. Additionally, a software-based solution generating mathematically modelled 

routes that can be integrated with the vehicle model will also be presented. This will enable 

predictions on estimating how much energy remains at the end of a given route and provide further 

scenario-based energy predictions. These two components have been developed as a software 

simulation solution towards providing energy usage estimates for various electric powertrain 

specifications, including eRCV, eBus and eMotorbikes/eBikes. 

Chapters 5 and 6 include applications concerning the novel developed model. The applications 

include investigating the energy consumption for a wide range of various powertrain categories. These 

are then utilised in order to provide estimates concerning the potential carbon reduction and cost 

implications. This has been done through use of real and simulated driving telemetry, in order to 

reflect a wide range of driving scenarios. The results presented in these chapters constitute a 

significant step forward in understanding the energy requirements of heavyweight electric vehicles, 

as well as two-wheel, two-axle lightweight vehicles such as electric motorbikes. Furthermore, the 

presented research demonstrates the flexibility of the proposed solution, through its suitability for 

simulating vehicles with significantly different characteristics, with minimal setup changes. 

Chapter 7 presents an investigation that demonstrates how the software-based energy 

estimations can be further used towards understanding the feasibility of applying novel concepts to 

the EV technology.  

Finally, chapter 8 includes considerations towards the research limitations and suggestions 

concerning future research avenues as well as what further improvements may be brought to the 

current novel solutions and findings will be outlined. These include potential improvements that may 

be brought to the proposed software simulation solution, as well as suggestions focused on future 

work targeted on refining and improving the research. 

Having discussed the introductory aspects of this thesis and briefly explaining the justification 

behind the work included in this thesis, a literature review indicating the current state and recent 

evolutions of relevant topics will be presented in the next chapter. 
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2. Chapter 2 – Literature Review 
As outlined in the introductory chapter of this thesis, the process of motor vehicle 

electrification is expected to bring significant cuts to carbon dioxide emissions across all vehicle 

categories. However, whilst the energy consumption of lightweight powertrain electric cars is well 

documented and understood, some inconsistencies exist regarding the energy requirements of other 

EV categories. The investigations presented in this thesis aim to provide a better understanding of the 

status of these other vehicle categories and fill in the research gap related to their energy consumption 

performance in various environments. 

Additionally, due to recent advances in computation capabilities, the implementation of 

model-based solutions for providing simulation-driven energy usage estimations may prove feasible. 

The fast-paced development of simulation-purposed software tools has enabled users to create 

accurate models mimicking complex real-life systems, including powertrains and vehicles. Therefore, 

it is expected that recent simulation techniques, such as model-based programming, will provide a 

approach to generate data where real-life experimentation is difficult.   

In this chapter, an overview of the current performance metrics of the automotive industry 

will be presented, along with statistics concerning the carbon footprint emissions of related industries, 

such as transportation. Moreover, a summary regarding the current technologies, challenges, 

limitations, and a future outlook on transportation will be provided. Secondly, current state of the art 

in simulation technologies, their applications and most recent progress milestones will be outlined. 

Finally, a short summary of telemetry work will be presented. 

A system diagram-like map detailing the logic flow of the literature review carried out can be 

found in figure 2.1, below. 

 
Figure 2.1 - Literature Review Map 

 

2.1. Automotive Industry – Key Facts, Economy, and Manufacturing Output 

 Automotive ventures comprise one of the most valuable and widespread industries 

worldwide and the supply chain consists of companies and other organisations connected with the 

design, development, manufacturing, marketing, and selling of motor vehicles. It also has been 

historically one of the largest industries by revenue [20], with contributions of up 2.86 trillion USD in 

2022, which comprises approximately 3% of world’s economic GDP (gross domestic product) [21]. 
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Similarly, it is also one of the highest spending industry concerning R&D (research & development) 

operations [22]. 

 Since its emergence in the 1860s, with the invention of horseless carriages [23], the adoption 

of the motor vehicle has progressively increased, especially in recent years [24], as indicated by vehicle 

production statistics in figure 2.2. This has been further accelerated by historic technological 

innovations, country-specific policies, as well as global growth in economic output. Consequentially, 

motor vehicles have become the primary mode of transportation in many developed countries due to 

their convenience and accessibility. Furthermore, the recent drop in production due to COVID-19 is 

beginning to recover and total production output is anticipated to resume and increase as the supply 

chain issues caused by the COVID-19 pandemic are addressed. 

 

 
Figure 2.2 - Vehicle production, historical values [24] 

 

 Throughout most of the automotive industry’s history, the United States of America (USA) has 

been at the forefront of many automotive endeavours [24]. However, in recent decades many of the 

manufacturing operations have been assigned to other countries due to lower labour and production 

costs. This has been particularly aided by the globalisation process of the supply chain and 

improvements in logistic operations. Figure 2.3 shows the 2021 statistics on unit production output 

by country [24]. 
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Figure 2.3 - Vehicle production by country [24] 

 Similar trends to country-specific output may be observed in unit import-export mechanics. 

Data presented in figure 2.4 [25] underlines the significant influence posed by the automotive industry 

in global trade. 

 

 
Figure 2.4 - Valuation of automotive trade by country [25] 

 The data presented throughout this subsection demonstrates the economic importance of the 

automotive sector and its applications in the transport industry in the wider context of the global 

economy. This industry is also considered a key factor in the sustainability of economic output and 

productivity worldwide, as it enables the possibility of all global logistics operations [25]. 
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2.1.1. Transportation Sector Produced Emissions 

 As suggested by the ever-increasing manufacturing output of the automotive industry, historic 

data concerning emissions and other pollutants related to the transportation sector also suggest an 

increased trend. Whilst several worrying greenhouse gases (GHG) are produced including methane 

(CH4), nitrous oxides (N2O) and fluorinated gases (halocarbons), this review will mainly focus on 

understanding the origin of carbon dioxide (CO2) footprint, as this substance is the main GHG by-

product of the transportation industry [8]. Moreover, the transportation sector has overtaken the 

energy grid generation sources as the largest emitted of GHGs in 2019 in the UK, comprising 27% of 

the national industry emissions [26], with similar trends in growth observed in other countries [27]. 

 Sources of carbon footprint production of the automotive industry are mostly correlated with 

the product lifecycle of a motor vehicle. Broadly, this may be split into 3 major phases: manufacturing, 

usage and end-of-life/recycling [28][1]. However, the exact share of emissions produced throughout 

these stages varies largely depending on the fuel type employed by the vehicle as well as its weight 

category. 

 Recent reports put the annual average carbon footprint of a US passenger vehicle at 4.6 metric 

tonnes [29]. Comparatively, the annual average emissions of a typical US commercial truck are set at 

around 223 metric tonnes [29]. Whilst the difference in emissions is significant, the difference in the 

number of on-the-road lightweight vehicles is significantly higher than the heavy-duty ones, which 

leads to the emissions of these two vehicle categories being within the same order of magnitude. [30]. 

Regardless, recent estimates show that lightweight passenger and heavy-duty-purposed vehicles emit 

over 80% of the total emissions caused by the transportation sector worldwide [31]. This 

demonstrates the significant influence posed by road transport over the larger industry. 

 Broadly, current statistics indicate that transportation emissions represent approximately 

27% of total GHG emissions worldwide [31]. Similarly, the carbon footprint of this sector has risen 

consistently as global emissions have increased, as highlighted by the data [32][33] in figure 2.5. This 

also underlines the importance of decarbonising the transport sector as part of a general effort to 

reduce global GHG emissions in order to match climate accords’ targets, such as the Paris Agreement’s 

goal to limit global warming to below 2 degrees Celsius [11]. 

 

 
Figure 2.5 - Historical yearly GHG production [32][12]  
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2.1.2. Powertrain Electrification 

 One of the most popular mechanisms through which the decarbonisation of the transport 

sector is being undertaken is through the electrification of motor vehicle powertrains. This is the 

replacement of the conventional internal combustion engine (ICE) and its energy source with the use 

of an electric propulsion mechanism with an electrical energy storage system. Historically, early 

designs for electric vehicles date back to 1828, with Anyos Jedik’s electric motor design, that includes 

a stator, rotor, and commutator. Designs have progressively evolved and by the early 1900s the first 

mass-produced vehicle has appeared, made by the Studebacker Automotive Company [34]. 

 Whilst electrified powertrains have been present in the engineering field for many years, its 

popularity as a concept has not been significant, due to design complexity and lack of general electric 

infrastructure support. However, since the 1990s, this concept has gained interest thanks to its ability 

to minimise or eliminate vehicle tailpipe emissions. This is supported by several recent studies 

[35][36][37], that investigate the lifetime emission reduction potential of all categories of electric 

vehicles compared to their conventional, Internal Combustion Engine (ICE)-powered counterparts. 

Statistics presented in figure 2.6 as a scatter plot indicates the potential reduction of CO2 emissions in 

the transport sector for Germany [38]. Similar trends can be observed in other countries [39]. 

 

 
Figure 2.6 - Prediction in carbon dioxide emissions from the transport sector [38] 

 Electric powertrain technology is expected to have a significant impact on the carbon footprint 

reduction. However, the potential for emission reduction through the implementation of electric 

powertrain technology is variable, depending on usage, manufacturing, and recycling processes. 

 Whilst electric vehicles do not emit carbon dioxide directly during their use, studies [40][41] 

show that the carbon footprint during the manufacturing process of an EV can be significantly higher 

than the one generated during an ICE vehicle production. Similarly, end-of-life material processing and 

recycling for electric vehicles appear to be higher than conventional powertrain solutions, as indicated 

by recent research [42]. However, it is expected that as technology evolves [43] and EV uptake 

increases, the difference in generated CO2 footprint and other pollutants will significantly decrease, 
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perhaps even becoming a zero-carbon emission process [44]. Additionally, as demanded by market 

mechanics and customers, a number of electric-powered vehicle designs have been created, with 

various contributions from the electrical side to the vehicle capability [45]. These are expected to 

ensure a smooth transition towards a zero-carbon lifecycle by enabling some degree of progressive 

emission reduction [46]. 

 The potential in CO2 reduction of electric powertrains has been extensively discussed in 

various contexts. One study [47] presents a mathematical model that aims to assess the impact on 

energy usage and CO2 emissions of electrified powertrains, reduction in vehicle size and substitution 

of conventional automotive building materials with lighter ones for the Japanese market. As part of 

the scope of this paper, a scenario-based comparison between the adoption of four types of 

powertrains have been considered: BEV (Battery Electric Vehicle), HEV (Hybrid Electric Vehicle), ICEV 

(Internal Combustion Engine Vehicle) and FCHEV (Fuel-Cell Hybrid Electric Vehicle). The presented 

model uses a dynamic bottom-up accounting energy-economic model developed in LEAP (Long-range 

Alternatives Planning System)[48]. 

The results of the study [47] have been categorised in several areas of interest: CO2 reduction, 

cost implications and impact on the overall electricity consumption. When benchmarked against the 

proposed 2050 CO2 70% reduction target imposed by the Japanese regulators [49], a scenario in which 

the current trends will carry on will not generate enough reduction to meet the criteria, only being 

able to reduce CO2 tank-to-wheel emissions by 51.9%. The 2050 target is only achievable by the BEV 

and FCHEV scenarios. Moreover, the medium-term target (25% CO2 reduction by 2020 compared to 

1990 level) is not achievable by any scenario. The BEV mass-adoption scenario provides the best 

figures in terms of energy consumption and CO2 emissions reduction, with up to 61.5% energy 

reduction and 91.1% CO2 emission attenuation. Moreover, these figures are improved when mini 

lightweight BEVs are adopted, reaching up to 70.6% energy reduction and a decrease of 92.2% in CO2 

emissions. [47]  Whilst all of these figures are mostly focused on vehicles sold on the Japanese market, 

the figures outline the potential CO2 reduction capability of the EV technology. 

The same study [47] also noted  that employing lightweight materials in the build of the car 

reduces the net cash flow, due to the reduction in vehicle class which in turn affects the energy cost. 

Finally, by 2050 electricity consumption in Japan is predicted to increase by up to 240 PJ/year in the 

BEV scenarios, while hydrogen demand can increase up to 356 PJ/year in the FCHEV scenarios. These 

numbers can be further reduced by usage of lightweight materials and a higher proportion of the small 

class vehicles, down to 176 PJ/year for a light mini-BEV scenario and 226 PJ/year for a light mini FCHEV 

scenario.  

 Additionally, the previously presented research [47] has also been extended to understanding 

the impact of deploying electrified powertrains for heavier vehicles, through modelling a 5-scenario 

approach [50]. Results of this model [50] suggest that by 2050 the tank-to-wheel CO2 emissions are 

reduced by 51.9%, which is insufficient towards meeting the proposed carbon dioxide reduction 

targets.  Moreover, despite the aggressive powertrain electrification deployment trends, it is 

predicted that gasoline and diesel will still account for at least 52% of all energy demand regardless of 

the scenario employed by 2050. Finally, tank-to-wheel CO2 emissions can be reduced up to 55.8% in 

both scenarios regarding BEV and FCEV adoption, while well-to-wheel CO2 emissions see a reduction 

of 43.9 and 27.6% in this context. A scenario that employs a combined BEV/FCEV approach can reduce 

the well-to-wheel emissions down to 29.5% compared to the baseline scenario. [50] 

 Similar studies looking into simulating the economic competitiveness of EVs exist. Currently, 

data-based investigations show that initial upfront costs of an electric vehicle are higher than ICE-
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based market competitors, up to price differences of 70% for similar vehicle specs [51]. This has been 

proven to be because of the high costs in battery manufacturing [52]. However, during its lifetime, 

total EV ownership costs throughout the vehicle’s lifecycle are likely to be equal or lower due to the 

lower costs of electrical energy compared to petrol or diesel. Data gathered in 2018, presented in 

figure 2.7, suggests that this trend is consistent among all vehicle categories, ranging from small 

vehicles (5-passenger, private cars) to large powertrains, such as electric buses and trucks [53]. 

Furthermore, the data suggests that electric vehicles are cheaper overall in the long if the vehicle is 

used intensively. This is mainly attributed to lower costs related to energy refuelling.   

Additionally, the higher upfront costs of electric vehicles (including heavyweight ones) are 

partly alleviated due to government incentives, such as the UK’s Department for Transport electric car 

grant scheme [54]. Moreover, as new battery designs appear and battery recycling technology 

evolves, battery manufacturing is expected to become significantly cheaper [44], therefore driving 

down total cost of ownership. 

 

 
Figure 2.7 - EV cost of ownership prediction [53]. Small/Medium/Large indicates vehicle size and Low/Med/High relates to 

vehicle use. Total cost of ownership includes energy refuelling, maintenance and taxes. 

Consequentially, EV technology in motor vehicles has recently seen wide adoption across 

several transport subsectors including passenger vehicles and public transportation. This has been 

particularly facilitated by a large number of automotive original equipment manufacturers (OEMs) 

increasing their EV manufacturing output. This can be demonstrated by the current amount of stock 

motor vehicles that include some degree of powertrain electrification, including BEV, HEV and PHEV, 

which has recently exceeded 2 million worldwide [55]. Additionally, the automotive market has seen 

significant EV sales, recorded at 750 thousand worldwide in 2016. This represents a year-on-year 

increase of more than 30%, underlining the significant interest in this technology [56]. Furthermore, 

future trends are expected to experience an acceleration in electric vehicle adoption, as presented by 

the stock data in figure 2.8 [55]. 
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Figure 2.8 - EV stock prediction according to various economic models [55] 

 Finally, another benefit of this technology is its ability to contribute to energy security [57]. As 

opposed to their conventional, ICE-powered counterparts, which are confined to one energy source 

(i.e., petrol or diesel), vehicles based on electric powertrains have the ability to acquire their energy 

from various energy sources, such as renewables or nuclear. Currently, there are several methods to 

generate electricity in large quantities, ranging from burning various fuels to the use of renewable 

sources, such as photovoltaic generation through solar panels and harnessing wind energy through 

turbines. Having vehicles with the ability to use energy that can be produced through multiple 

processes is expected to strengthen the transportation energy supply chain resilience in the long term. 

This is achieved through two aspects: independence from petrol market mechanics and the ability to 

function purely on energy sources that work independently relative to the petrol market. The benefits 

related to energy security of electric motor vehicles have become increasingly relevant due to current 

geopolitical conflicts [58] and the ongoing energy crisis [59]. 

 

2.1.2.1. EV Technology – Overview on Current Improvements & Challenges 

Due to the high demand, financial incentives, and intense market competition in the field, EV 

technology has seen significant improvements in efficiency and accessibility, as well energy refill 

capability. These improvements have resulted in some of the inconveniencies related to electric motor 

vehicles becoming significantly minimised. 

One of the leading reasons for decreased EV charging times is the significant improvements 

[60][61] to the materials employed for building the battery cells. Many of the existing technologies 

have been significantly improved in terms of energy density, with recent battery designs featuring 

increased kWh/m3 and kWh/kg performance metrics. This allows for a higher electrical energy storage 

capacity, which in turn has a positive effect on vehicle range. Moreover, battery cell interfacing has 

been thoroughly researched and implemented, with new designs featuring tab-less cell interfacing 

becoming more prevalent in the electric automotive industry. Through eliminating the need for 

battery cells to contain a tab, more space is freed for electrical storage, increasing the battery’s energy 

capacity. [62]. 

Similarly, recent research also indicates that there are several emerging materials that have 

been considered strong candidates for replacing the current dominant battery manufacturing 
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technologies. Li-Polymer and Li-Air have been hypothesized and prototyped, indicating that battery 

cells manufactured with these element combinations are capable of holding significantly higher 

charge at similar cell weights and volumes when compared to their conventional Li-Ion counterparts 

[63]. However, some safety concerns have been raised with the use of these materials at large-scale, 

as some studies [64] suggest they may be more potent safety hazards than current technologies. 

Similarly, the electrical storage capabilities of these materials are yet to be fully realised and 

implemented in a consumer-ready device. 

Another aspect that has led to higher capacity batteries and consequentially better EV range 

is the use of novel materials such as gallium and silicon-based alloys, together with improved power 

conversion strategies in manufacturing power electronics. In the context of the electric drivetrain, 

these are responsible for managing the power and torque potential of the motor-battery system, as 

well as other auxiliary power consumers. Firstly, power electronic devices featuring conventional 

materials have been improved in terms of power conversion efficiency [65], as well as displacement 

and weight by employing novel power management strategies, such as resonant switching [66]. This 

allows the power switching performed within the devices to occur with no power losses, by taking 

advantage of the parasitic capacitance and inductance of the electric components. Similarly, 

components manufacturing using novel material alloys, such as Gallium-Nitride (GaN), have gained 

interest due to their ability to operate at significantly higher frequencies, allowing for better power 

conversion efficiency and enabling the electric filtering components to be much smaller relative to 

traditional silicon and silicon-carbide alternatives [67][68]. 

Charging has also improved with the use of concept technologies that have been successfully 

trialled in smaller consumer electronics, such as mobile phones. The idea of “fast-charging” has been 

intensively investigated and applied to electric vehicles, resulting in significantly decreased electric 

vehicle charging times [69]. Besides injecting a constant amount of high power in the battery, one of 

the highly used methods to achieve this employs high power electronics that are able to manage a 

specific power cycle [70]. The charging interface injects a high amount of electrical power over a 

relatively short amount of time followed by a cool-down period, which is controlled through thermal 

management. The reduced time spent for energy refill has shown to increase productivity [71]. 

However, if used incorrectly, fast charging has been shown to negatively affect battery health over 

time [72]. One study [73] shows that Li-Ion battery cells that have been recharged using excessive fast 

charging have aged much quicker than units that have been charged at lower power ratings. The 

reason behind this may lie in the material’s lack of capability to preserve its electrical storage 

properties at high temperature, which is caused by the effect of depolarisation. Therefore, fast-

charging capabilities should be used carefully in order to minimise battery health loss over time, for 

example limiting the fast-charging periods depending on battery temperature and state of charge 

(SoC). 

Additionally, the charge/discharge battery cycles have also proven to have a negative effect 

on battery health over time, when performed at a suboptimal level [74].  Studies indicate that deep 

charging (i.e. charging that refills the battery from 90+ beyond) and deep discharging (battery 

discharge below 10%) should be generally avoided [75]. In order to prevent these phenomena, battery 

and EV manufacturers employ the use of smart battery management systems (BMS) that impose 

software limited conditions on the battery’s SoC management [76][77]. The limitations prevent 

battery exhaustion by limiting vehicle performance and/or stopping vehicle operation in the case of 

severe discharge. Similarly, deep charging should generally be avoided, with little to no exceptions in 
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order to further discourage deep battery cycling. However, this does lead to a situation where the 

effective operation battery capacity is significantly lower than the realisable capacity at manufacture. 

On a more general business level, studies have also looked at how electric plug-in vehicles can 

be integrated in with the fleets of public authorities in various countries. Studies [78] have been 

looking at the impact of the pro-EV policy entrepreneur’s actions in integrating this technology in local 

communities by analysing how they have been introduced in communities in Sweden. It concludes 

that, when raising the implementation of electrified vehicles in the local politics agenda, if sufficient 

material and information is offered and an expert role is assumed by the entrepreneur, this will 

increase knowledge and awareness in the decision-making process. User feedback also plays a role in 

this process. However, the change momentum is highly dependent on the person/entity that 

introduces the community to the EV technology and a situation which implies a loss in the role of the 

entrepreneur will negatively affect the end result. [78] 

The results previously mentioned can be consistently correlated with a different study [79] 

that suggests what benefits could be adopted by local and national regulators, as well as showcase 

technical solutions that seek to hasten the adoption of electrified powertrains. Modern composite 

materials are suggested as a solution to make the vehicles lighter, that in turn brings other energy-

saving benefits, such as decreased rolling resistance and required braking power. In fact, modular 

designs for heavyweight powertrain vehicles for goods delivery already exist, with the potential to 

reduce production costs and make the EV technology more attractive to corporations. Other technical 

elements to improve EV attractiveness include the implementation of super and ultra-capacitor 

networks in the vehicle battery system to support energy delivery when high bursts are required. 

Standardisation of charging interfaces is also proposed as a cost-saving measure. Approaches 

regarding novel policies are also treated as a means to achieve mass EV deployment in Europe. Based 

on other case studies, the paper [79] points out the importance of applying certain measures, such as 

providing financial incentives and imposing restrictive rules on combustion engine-powered vehicles. 

Battery leasing is also proposed as a way to reduce the EV initial cost and ensure an efficient battery 

resource lifecycle.  

Propulsion systems in electric motor vehicles have also seen significant improvements 

recently. Whilst the most established electric motor technologies are based on Permanent Magnet 

Synchronous Machines (PMSM) and Induction Machines (IM) [80], novel technologies that do not 

require the use of rare earth elements have gained popularity. This is primarily due to the scarcity of 

these materials as well as their upfront high costs. A particular design that has seen a significant 

increase in usage in consumer ready EVs is represented by the mature squirrel cage IM [81]. 

Furthermore, novel designs based on reluctance machines, such as Permanent Magnet Assisted 

Synchronous Reluctance Machines (PM-assisted SynRM) and Switched Reluctance Machines (SRM) 

are gaining popularity in the scientific community [82][83]. This is due to their ability to exhibit similar 

system efficiency figures at significantly lower manufacturing costs, as presented in figure 2.9. Finally, 

data presented [56] under table 2.1 indicates the key differences between these types of these electric 

motors. 
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Figure 2.9 - Performance range and efficiency of various electric motor types [84] 

 

 

Features 
Motor Type 

PMSM PM-assisted SynRM IM SRM 

Fault Tolerance Yes Yes No No 

Robustness No No Yes Yes 

Reliability Medium Medium High Medium 

Average Efficiency @ Constant Torque 

(%) 93.6 90 82.5 87 

Typical Average Power Density (kW/l) 6.8 6.8 2.5 3.6 

Overall Technology Costs High Medium Medium Low 

Table 2.1 - Comparison between popular electric motor types [56] 

The mass adoption of the electric powertrain has been predicted to have a significant impact 

on the energy grid, as all of these vehicles will require relatively high-power access to it. Studies 

estimate that increases ranging from 6% to 10% in overall electric grid power demand are likely to 

occur [85]. However, whilst the overall increase is modest, the magnitude of energy demand during 

peak times is expected to be significantly higher [86]. Depending on the future market penetration of 

electric vehicles and how swift the transition to complete or near-complete electrification will occur, 

strategies concerning green electric energy production may have to be changed. Investigations aimed 

towards understanding how the renewable energy production varies depending on weather 

conditions and time of year should be carefully considered. Many countries and governmental 

institutions have plans in place for these, for example the UK’s intention to build small-scale nuclear 

fission reactors and increase offshore windfarm energy generation [87]. 
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Moreover, energy production is not the only part that is prone to significant strain as EV 

technology becomes more prevalent. The electric energy transport infrastructure will likely need to 

be revamped, starting from small scale residential power interfacing, as more EV users indicate their 

intention to buy home chargers [88]. The residential energy grid infrastructure upgrade is even more 

important in the case of rural environments, where power lines are unlikely to be capable of 

withstanding several high-power connections for EV charging [89]. In urban environments, 

unconventional power generation, such as small-scale, localised solar panels, should be considered in 

order to fulfil the increased power demand. Integrating these as an off-grid system, separate from the 

main energy grid, could prove especially beneficial to electrified public service vehicle fleets, such as 

refuse collection trucks and public transit vehicles such as buses. Work investigating these has been 

carried out in previous research, looking into how a biomass incinerator could provide electrical power 

to an electric heavyweight vehicle fleet [90]. Additionally, if these energy production systems are 

producing an energy surplus, the leftover energy could be fed into the energy grid or be extended to 

privately-owned electric vehicles. 

However, the energy grid infrastructure will likely require upgrading that goes beyond just 

investigating rising energy demand based on population density [91]. Whilst battery technology is 

likely to have significant leaps in storage performance, therefore increasing vehicle range, the current 

situation indicates that EV technology has introduced a new paradigm in human mobility, consisting 

of long layovers or stops mid-journey for battery charging [92]. Therefore, as the number of EVs on 

the road will increase, energy infrastructure will have to be upgraded even in very low-density 

population areas, such as at motorway junctions, petrol stations and other areas with dense traffic 

where EV charging facilities could be placed. 

As power demand will increase and the energy grid will be upgraded to be able to transport 

more energy throughout regions, power flow management systems will likely require rework. Higher 

power ratings in the energy infrastructure are likely to attract more potent implications if the balance 

in the network is not correctly managed. Moreover, auxiliary power generation plants that are able to 

be switched on and off with relative ease, depending on short-term grid requirements should be 

considered [93]. The ability to fulfil a temporarily increased power demand is especially important in 

world regions which are considered net energy importers. An alternative to the auxiliary power plant 

option may be represented by the ability of residential owners and other privately-owned entities to 

have power generation installations fitted within their buildings. These systems could be then used to 

satisfy the building’s energy demand temporarily or permanently or have some of their energy 

production fed back into the main energy grid, through a financial incentive scheme. Such localised, 

small-scale energy production systems are already widely available and are likely to become more 

affordable as the supply-demand market mechanics will adapt to this. Moreover, many governments 

and organisations already offer financial incentives for the installation and energy production of such 

renewable power generation devices [87]. 

 

2.1.2.2. Energy-Efficient EV Routing 

 Another important factor in the adoption of electric powertrain technology in transportation 

is represented by the ability to provide energy efficient routing tailored specifically for this propulsion 

method. GPS-based routing through tailored devices and popular software systems, such as Google 

Maps, have seen a significant uptake along with the rise in popularity of high-speed mobile internet 

access. Therefore, in order to ensure the same level of accessibility and efficiency, understanding EV-

based vehicle routing is important. However, additional constraints need to be considered due to the 
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differences in the energy requirements of electric vehicles compared to their ICE-powered 

counterparts. New custom routing algorithms have been developed both in the industrial sector, as 

well as the scientific community. These have been proven to be capable of creating routes that take 

into account EV-specific constraints, such as long stops for vehicle charging and ensuring prolonged 

running at optimum energy efficiency speeds [94]. 

Whilst most frequently routing algorithms based on Tree-based Deterministic Sampling (TDS), 

A* or Dijkstra-derived methods usually perform consistently, predominantly generating optimal 

solutions, these can be further improved for EV-specific route planning. One aspect that has been 

considered is represented by the optimal “speed zone” at which electric vehicles should be driven. 

This has been shown to be different compared to traditional ICE vehicles, primarily due to differences 

in mechanical design and capabilities, such as instant torque-to-wheel delivery and limited vehicle 

range performance which is affected by road characteristics and outside weather conditions. [95] 

Existing research on this topic indicates the development of new methods in energy-efficient 

routing tailored for EV cars based on location data points. These range from simple heuristic 

algorithms to meta-heuristic techniques. Several applied mathematical methods have been applied to 

an EV car context, with varying degrees of success depending on the degree of algorithm flexibility 

and complexity. Applied to a 1st order vehicle model, methods such as particle swarm optimisation 

(PSO), has been found to decrease energy usage by 9.2% relative to a conventional vehicle routing 

algorithm. These findings may potentially be able to open up new research strategies in the field. 

Some potential directions include improving the PSO algorithm to introducing and applying new 

algorithms to the presented problem [96]. Similarly, other optimisation approaches like the ant colony 

algorithm exhibit abilities to optimise solutions to the problem given enough calculation factors [97]. 

A Tabu Search-based solution has also been considered and due to its flexibility in problem solving it 

has been found to be a robust solution for solving similar routing problems [98].  

Additionally, Bellman-Ford algorithm approaches have been attempted and while the method 

works well with small-scale datasets, problem solving targeted towards finding the optimum problem 

solution utilising large datasets is not consistent. A potential solution may lie with data pre-

conditioning, consisting of map pre-processing, although it may be impractical depending on the size 

of the geographical data. Finally, further alterations of the metaheuristic techniques described in other 

papers written by the same authors produce better accuracy results than the original 

implementations, although they are slower in processing small datasets. [99] 

Applications recently developed by the scientific community have also been further refined in 

order to be integrated with popular routing software. These new features ensure minimal energy 

consumption and duration optimised for traveling using an electric vehicle [100]. Moreover, 

improvements have been developed on top of existing EV routing frameworks that have been shown 

to reduce energy consumption further, by up to 11% [101]. 

It must be noted that regardless of the chosen algorithm, a significant factor in the overall 

accuracy of the solution consists of the input data. As raw data geographical maps cannot be properly 

processed by these algorithms, instead these are converted to mathematical graphs, where 

intersections are represented by vertices and roads by graph edges. The conversion can be performed 

using traditional methods, but integrating other machine learning (ML)-related techniques, such as 

applied computer vision and 2D image processing algorithms is worth considering giving that 

application of such methods are still considered novel. [102] 

Additionally, studies have also examined energy efficient EV routing for heavyweight vehicles. 

One study [103] analysed novel applications of mixed integer linear programming (MILP) models 



34 
 

coded in general algebraic modelling system (GAMS) software applied to electrified refuse collection 

vehicles shows that integrating this optimisation method into a refuse collection truck fleet in the 

context of a large city (Istanbul region, Turkey) can positively impact energy consumption, and 

estimates a 31.77% reduction in overall vehicle energy consumption. 

Similarly, the previous study correlates well with findings stated in a preceding one [104]. This 

study is focused on investigating refuse truck scheduling in the city of Chicago, USA and presents the 

application of a decision model based on the Markov chain stochastic model that aims to optimise 

collection at city ward-level. This model maintains the same basic workday and work rules as the 

traditional routing approaches used then and combines route types so that some refuse collection 

points can be visited multiple times, while maintaining snake-like routes as well as monitoring vehicle 

weight as a function depending on route parameters. When applied to a test dataset describing 5 

wards, the model is able to significantly optimise the procedure as well as the resources employed. 

An up to 16% reduction in the number of routes required to pick up all the refuse, together with cost 

savings of approximately 13% compared to current maintenance and running costs have been 

observed, projecting financial savings of up to $9 million, effectively validating flexible stochastic 

models as an application for this field. [104] 

Finally, EV-specific routing algorithms may also be interfaced with adjacent, unconventional 

energy generation or energy storage systems, modelling a vehicle-to-grid (V2G) vehicle charging 

paradigm. The possibility of employing such systems in routing and charge scheduling has been 

thoroughly researched and findings suggest that such integrations can be highly beneficial from a cost 

perspective [105]. Similarly, integrating power generation elements closer to the vehicle charging 

points indicate benefits regarding overall efficiency [106]. However, such systems may also be 

disruptive to the overall energy grid and EV charging if inadequate energy management scheduling is 

applied. 

 

2.1.2.3. Range Anxiety 

 One of the major hurdles opposing adoption of electric powertrain technology from a 

consumer’s perspective is highlighted by the “range anxiety” concept. This idea has been formulated 

as being a psychological anxiety experienced by the consumer related to vehicle range [107]. Whilst 

initially, this has been thought as having a technical nature, due to the low range capability of early EV 

designs, it is increasingly thought of as a psychological barrier [108]. This is further highlighted by data 

[109] based on interviews organised in EU’s Nordic countries questioning stated reasons for EV 

disinterest, as presented in figure 2.10. 

 

 
Figure 2.10 - Consumer reasons behind lack of interest for EV technology [109] 
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 However, recent studies based on interview and case study data suggest that both the 

technical and psychological arguments towards range anxiety are incomplete. The psychological 

barrier attributed to the fear of not having the EV meet the consumer’s requirements can be 

addressed by investigating the average consumer daily driving needs. Previous studies indicated that 

an EV could fulfil up to 95% of these requirements if a change in behaviour lasting for 10 calendar days 

can be performed yearly [110]. This conclusion has been based upon an outdated assumption that 

implies an EV has a range of 100 miles per full charge. Furthermore, it has been determined that even 

after the electric vehicle’s battery has been significantly degraded, EVs are still able to meet the daily 

travel needs of more than 85% of US drivers, averaged at 96 miles [111].  

 Setting aside vehicle range capabilities, it has been demonstrated that range anxiety becomes 

even less relevant if vehicle charging infrastructure is widespread in a given area from a psychological 

standpoint. Previous statistics show that up to 98% of local driving and 88% of long-distance driving 

may be covered by electric powertrain vehicles with a small number of charging locations [112]. 

Moreover, the long-distance driving requirements may be further satisfied by employing fast charging 

technology based on high power applications [113]. 

 Additionally, it has been demonstrated that EV owners are much more comfortable with EV 

range capabilities compared to the rest of the automotive consumers, suggesting a psychological link 

which is based on biased interpretations [107]. Previous research also recommends further education 

on EV capabilities and vehicle charging infrastructure in order to increase uptake in electric-powered 

motor vehicles [114]. 

 However, studies suggesting the opposite also exist. Case studies based on consumer 

experience with EV technology over 3 months indicate that vehicle range was mentioned more often 

as a barrier to EV deployment. Moreover, a change in driving habits has also been observed, as 

consumers attempted to minimise their daily travel needs [115]. Therefore, the psychological aspect 

of range anxiety has been deemed unclear or inconsistent in a best-case scenario. Additionally, some 

papers have argued that the anxiety factor may be rhetorical, as it fits Hirschman’s Rhetoric of 

Reaction theoretical , which explains the reasoning behind reactionary narratives towards EV  [109]. 

 Similarly, the range anxiety rhetoric has also been associated with other ICE vehicle 

alternatives, particularly with alternative fuelled vehicles such as cleaner energy fuelled vehicles [116] 

[117]. These types of powertrains, which rely on alternative fuels as the energy source, such as 

ethanol, methanol or liquified petrol gas (LPG), have been considered a viable alternative propulsion 

technology to conventional ICE vehicles for some time now [118]. This is mainly due to their ability to 

use the same engine type as petrol and Diesel cars, with minimal modifications and additional costs 

[118]. Additionally, the fuels used by these types of vehicles has recently started to be manufactured 

using methods which are significantly more sustainable than sourcing conventional fuels [117]. 

However, the vehicle range of alternately fuelled vehicles has been shown to be smaller than their ICE 

counterparts, while the refuelling infrastructure for alternative fuels remains undeveloped, effectively 

creating a range anxiety-based obstacle. These issues have been observed as being consistent 

throughout vehicle categories, ranging from private passenger to freight heavy vehicles [119]. 

Additionally, other technology-related problems have been raised, such as safety concerns related to 

storing alternative fuels, such as LPG or ethanol, due to their dangerous chemical characteristics [120]. 

Moreover, whilst cleaner energy fuelled vehicles have been proven to emit less carbon dioxide 

emissions over long distances relative to conventional ICE-based powertrains, they cannot be 

considered a long-term solution if the target is zero emissions, since a CO2 footprint is still produced 

[116]. 
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 Comparatively, from a technological standpoint, electric motor vehicle range performance has 

seen a sustained increase in recent times due to advances in battery technology, packaging and lighter 

materials [94]. As recent as 2021, the US average range figure of an EV was set as 349 km per charge 

[121]. This represents an increase of 44% relative to 2017 and a 152% increase when compared to 

figures featured in 2011. Similarly, the maximum range-per-charge offered by the models available 

for purchase on the EV market has steadily increased, up to 837km in 2021 [121], as outlined in figure 

2.11. 

 

 
Figure 2.11 - Evolution of EV range capability [121] 

When considering the adoption of EVs in other, large-scale applications, such as company 

logistics, it appears that the companies tend to generally echo the decisions made by private, 

consumer-oriented passenger vehicle owners [122]. Whilst the literature looking into the reasons 

behind company disinterest in EV adoption is far less detailed, recent investigations indicate that the 

general scepticism towards adopting freight application focused EVs can be broken down into two 

categories [123].  

Firstly, companies mention cost-related issues, such as the higher pricing of electric 

heavyweight powertrains relative to their ICE counterparts [123], as a primary source of concern. The 

upfront price gap between these technologies can be explained by the relative novelty of electric 

powertrains. Although the technology has been present on the passenger vehicle market for several 

years now, heavyweight electric powertrains are still considered as being in their “early days” [124]. 

This has a negative effect on manufacturing costs, as fabricating these requires use of a different 

production process, which is costly to implement. However, recent studies [123] indicate that, if 

reasonable government financial incentives are offered, companies would be significantly more open 

towards adopting and integrating electric heavyweight powertrains within their logistic operations. 

Moreover, as battery technology evolves and electrical energy storage designs are further optimised, 

it is expected that the upfront purchase costs of electric heavyweight vehicles will ultimately converge 

with the pricing seen with their ICE conventional alternatives [125]. This is likely to result in a higher 

degree of attractiveness of heavyweight electric vehicles. 
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Additionally, operational-focused problems, are also mentioned among the main reasons 

behind the limited adoption of EV technology in company logistics. There are represented by vehicle 

range performance and lack of appropriate charging infrastructure [123], effectively creating a similar 

range anxiety phenomenon, similar to the one experienced by private passenger EV car drivers . 

However, both issues are expected to be addressed as technology evolves. Range performance will 

likely increase as battery technology evolves [126], whilst charging infrastructure for all electric 

vehicles is consistently upgraded and extended throughout the world due to government 

programmes, such as the UK’s Road-to-Zero [127] and the EU’s Green New Deal [2]. Moreover, it is 

expected that electric truck drivers will be able to learn a more economic driving style which will have 

a beneficial effect on range performance, similar to what has been observed with private passenger 

EV drivers. 

As previously presented, the literature findings and current performance of EV technology 

suggests that concerns due to vehicle range are increasingly purely psychological. Most often, it 

appears that the reasons behind inconsistent EV adoption are based on ill misconceptions about travel 

demands, driving habits, and the electric powertrain technology. 

 

2.1.2.4. Research Gap 

 Whilst the focus of analysing the benefits, challenges and opportunities of electric motor 

vehicles have been centred around lightweight powertrain, private passenger cars, little research 

examining other vehicle categories exists. Whilst literature on other types of vehicles employing 

electric powertrain exists, the scientific community appears to be in the “early days” of understanding 

the implications and advantages of employing EV technology in other automotive categories. Although 

some research looking into the energy requirements of heavyweight powertrains has been 

undertaken [128][129], the findings are insufficient to reach a unanimously valid consensus. This has 

been mainly attributed to the differences in logistics worldwide, as well as the driving characteristics 

of these vehicles[130][131]. 

 Moreover, whilst the methodology of literature-featured investigations is reasonably 

explained, the findings appear inconsistent depending on various factors influencing the usability of 

electric vehicles. Additionally, as previously stated, heavyweight powertrains and other vehicles 

comprise a significant part of carbon emissions produced by the transport sector [132]. 

 The findings presented in this thesis aim to help towards understanding energy usage, carbon 

footprint reduction and consequentially energy requirements of deploying other types of less 

common EVs, such as electric RCVs, buses and motorbikes. Having the ability to grasp the impact from 

an energy demand standpoint will serve as a cornerstone for more refined analyses on long-term 

feasibility. This will help in further understanding current literature results [133] of what a fully 

decarbonised transport sector should look like. 

 

2.1.2.5. Future Trends of EV Technology 

 As the adoption of electric powertrains in the transportation sector increases, studies predict 

that a decrease in produced CO2 emissions is imminent [134]. This will be aided significantly by 

ensuring increased green energy production through various means, such as wind, solar and nuclear. 

Additionally, from a technological perspective, electric powertrain designs are expected to feature 

increased system efficiency, through optimised electric motor designs and use of novel battery 

materials that exhibit increased energy density [126]. Further efficiency improvements may also be 

brought by usage of lighter materials in chassis builds, resulting in vehicles having increased range and 
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performance[135]. Moreover, as electric powered vehicles will become widely adopted, psychological 

concerns related to their capabilities are likely to be significantly attenuated [136]. Finally, whilst not 

limited to EV technology alone, Internet-of-Things capability (IoT) of vehicles are likely to be further 

expanded and integrated into automotive systems. This is likely to result in increased accessibility, 

optimisation of driving behaviour, as well as safer traffic [137]. 

 However, some research indicates that the decarbonisation of transportation may be a more 

prolonged process than expected and may be aided by alternative technologies [138]. Therefore, 

understanding the capabilities of EV alternatives is important. 

 

2.1.3. Alternative Technologies 

 The alternative technologies to the adoption of EVs can be broadly classified based on their 

feasibility timescale. Short-term alternatives, such as hybrid and new-generation ICE-powered 

vehicles are widely available on the market and praised for their range capabilities at a lower cost 

relative to BEVs. 

 Hybrid powertrains are based on two propulsion technologies, the conventional internal 

combustion engine (ICE) and a separate electric motor. They have been a topic of interest due to the 

higher degree of system autonomy given by the conventional petrol/diesel-based engine [139]. This 

technology is unable to provide net zero carbon emissions during the usage lifecycle phase; however, 

the overall footprint can be significantly smaller compared to a conventional ICE-only powertrain. A 

particular subcategory existing in both the hybrid powertrain and fully-electric powertrain families 

consists of the plug-in hybrid/full electric powertrains, that are able to increase the flexibility and 

versatility of the vehicle thanks to the ability to charge the battery used by the electric motor by using 

a standard-issue power interface that connects to the energy grid or various fast-charge energy 

interfaces [140] that are able to deliver higher power to the battery, resulting in faster charging times 

at the expense of some minimal additional battery wear. 

 Additionally, another important technology that has recently seen massive improvements in 

efficiency [141] are energy recovery systems, which is relevant to both battery electric vehicles (BEV) 

and hybrid electric vehicles (HEV). Energy recovery systems enable an electric vehicle to recover some 

of the wasted energy during its operation and convert that energy into electrical energy to be stored 

in the battery, resulting in a higher overall energy efficiency. Most efforts in this field have been 

concentrated into recovering the kinetic energy vehicle braking during friction. This technology has 

been present for quite some time in other fields, such as motorsport, where its applicability in the 

automotive field was first significantly investigated during the early 2010s Formula 1 series, with the 

prevalence of kinetic energy recovery systems (KERS)[142]. Today, most of the available BEV and HEV 

on the market have powertrain systems that include the ability to harvest braking energy to various 

degrees of efficiency, but nonetheless positively contributing to the powertrain’s efficiency. Similarly, 

research has also been carried out into the feasibility of harvesting the heat of the exhaust gases [143] 

and converting it into electrical energy for HEVs, but to date that research is inconclusive and has not 

been meaningfully applied at scale. 

 Similarly, new generation of ICE-based powertrains (EURO6/EURO7 certified engines) have 

been thoroughly researched and provide a strong competitor for the abovementioned propulsion 

alternatives in the short-term. These ‘new generation’ engines are highly efficient and provide a 

smaller carbon footprint when compared to older ICE technologies, usually employing multi-stage 

turbo systems to increase the base engine efficiency coupled with smaller engines with less cylinders. 

Further mechanical improvements brought to engines include electronically controlled, improved 
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ignition timing as well as multi-rail fuel injection and engine cylinder deactivation, in an effort to 

maximise engine efficiency. Some of these engines also employ gas-based fuels with lower carbon 

emissions per litre, as well as micro-hybrid systems, such as start-stop technologies, that minimise 

vehicle emissions when idling [144].  

 However, whilst the carbon dioxide footprint of these engines is significantly smaller than 

older designs, they do not eliminate carbon dioxide emissions altogether. Therefore, similar to hybrid 

powertrains, they can only be seen as short-term alternatives since the current worldwide perspective 

of governments is to eventually discard all ICE-only powertrains from use [145]. Nonetheless, both 

technologies can still be used as an intermediate step in the progressive process of transport 

decarbonisation, as presented in figure 2.12. 

 

 
Figure 2.12 - Carbon Dioxide emissions vs vehicle range for different powertrain technologies. (Source: 27th Aachen 

Colloquium Automobile and Engine Technology, 2018) 

 An emerging technology that may enable the previously discussed technologies to be 

considered as long-term alternatives to electric vehicles is the use of methanol as engine fuel [146]. 

Whilst the chemical composition of methanol still contains carbon that, when burned, binds with 

atmospheric oxygen creating carbon dioxide, the amount is smaller than what is found in conventional 

ICE fuels. Furthermore, methanol manufacturing has been proven to have the potential of harvesting 

CO2 in the atmosphere as an ingredient for its production, effectively enabling the possibility of a net-

zero carbon emission mechanism [147]. There is a significant amount of research [148] looking into 

the feasibility of employing this substance as an energy source for ICE-based vehicles and several 

findings suggest that current engine designs may be capable of burning methanol with minimal 

modifications. Trials focused on using methanol as ICE fuel are already being carried out on 

heavyweight powertrains in Iceland, with satisfactory progress [149]. Additionally, net-zero carbon 

methanol manufacturing is expected to be produced on an industrial scale if deemed economically 

and technically viable in the near future, with experimental production already in place [150]. 

 Conventional long-term alternatives to EV technology are mostly focused on use of hydrogen. 

One of the most researched hydrogen applications is fuel cell-based vehicles. These employ 

compressed hydrogen which is stored in a pressurised tank that is then fed into a fuel cell system, 

together with atmospheric oxygen. These substances are then combined and generate electricity and 

water (as a by-product) through molecule polarisation. This results in vehicle mobility through 

electricity with zero carbon emissions [151]. Most of the benefits of fuel-cell electric vehicle (FCEV) 
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over standard EVs are related to accessibility and ease of use. Energy refuelling of hydrogen fuel cell 

vehicles has been shown to be significantly quicker than current capabilities of EV recharging, with an 

average hydrogen tank refill lasting 5 minutes [151]. This benefit is consistently being raised by 

consumers participating in case studies [152]. However, whilst the performance of these vehicles is 

generally on par or slightly better than their electric counterparts, several concerns with hydrogen 

alternatives have been repeatedly raised and still exist. 

  Firstly, the energy efficiency of standard fuel cell-powered vehicles is bound to always be 

lower than electric vehicles. This is because, unlike EVs, an energy conversion step is performed 

through polarising hydrogen, which is expected to have losses [153]. The energy loss problem 

becomes even more significant if the entire fuel supply chain is considered, as indicated in figure 2.12. 

Furthermore, concerns regarding fuel storage safety have been raised, due to the potential container 

leaks that may arise and the high flammability of hydrogen as a substance [154]. Finally, costs related 

to hydrogen manufacture and its transportation are still highly variable due to variability in electrical 

energy pricing, as evidenced in recent publications [155].  

 Another hydrogen powered alternative that has recently gained interest is represented by 

ICE-based systems capable of burning hydrogen. This method has been shown to have the advantage 

of extracting energy from hydrogen without requiring additional energy conversions. Research 

indicates that such engines have the potential to have similar performance figures to conventional ICE 

vehicle with no carbon dioxide emissions [156]. Furthermore, companies have already been 

commissioned to research the feasibility of hydrogen-powered ICEs [157]. However, the apparent lack 

of consistent literature on this topic suggests that the technology has not fully matured, and its 

potential not completely understood. 

 As demonstrated in this subsection, there are several alternatives to EV technology already 

on the market or in advanced stages of research, some of them having the upper hand in terms of 

apparent performance but lack a competitive edge in other areas. Nonetheless, it is expected that EV 

technology will be the main focus for supporting the decarbonisation of the transportation sector, as 

evidenced in recent research materials [158]. 

 

2.2. Simulation 

 Having discussed the current status of electrification in the automotive industry and the 

transportation sector, the second important topic that has been investigated is related to simulation 

and its current status in the scientific and industrial communities. This has been done in order to better 

understand the picture of automotive simulation focused on energy usage, the main aim of the 

research material featured in this thesis. 

 Simulation is defined as the process of imitating real-life systems and phenomena over time. 

This process is carried out through the use of models, a representation of the most important 

characteristics or behaviours of the real-life element to be simulated [159]. The model is usually 

described with limited detail relative to the real-life element. Albeit simulation has been 

conventionally performed through real-life, controlled environment experimentation, computers are 

increasingly being employed in the process of building a model which is then simulated over time. This 

has been made possible due to recent significant advances in computational power [160]. 

 Currently, simulation is being used in many disciplines and contexts, predominantly for system 

performance tuning and optimisation, but also stress testing and training. However, as computing 

capabilities have expanded thanks to increased hardware performance, simulation has been 

extensively used in scientific modelling of natural and human systems. Depending on the discipline, 
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simulation has traditionally been used in order to determine the behaviour of systems that have a 

high degree of complexity or cannot be accessible to regular analysis methods [160]. 

 The main challenges related to system simulation are represented by data acquisition (and its 

validity), the approximations and assumptions taken when building the model, as well as the usability 

of the simulation results. In order to overcome these obstacles, procedures and protocols concerning 

model verification and validations are usually defined simultaneously with model development, to 

avoid result bias. This is currently considered standard practice in many fields, including academic 

study [160]. 

 Many types of simulation exist, which have generally been developed independently. 

However, research of systems theory in the 20th century has led to a more systematic perspective over 

this process [161]. However, the most popular distinguishes between physical and interactive 

simulations. 

 

• Physical simulation constitutes the type of simulations concerned with understanding the 

behaviour of physical entities. This type of simulation is commonly used in order to minimise 

costs relative to real-life experimentation. Examples include electronic thermal modelling, 

electromagnetic simulation, but also model-based system energy usage estimations. 

• Interactive simulations, also known as human-in-the-loop (HIL) simulations, aim to emulate 

real life environments for human operators. Examples of these include flight, driving and 

sailing simulators. 

 

 Simulations can also be classified as deterministic or non-deterministic. The former type is 

widely used for various activities, relying on results computed by deterministic algorithms. Therefore, 

repeated simulation runs with identical boundary conditions will always compute the same results 

[161]. However, non-deterministic algorithms have increasingly gained popularity due to the 

algorithms employed. These have been strongly tied with Artificial Intelligence (AI) technology and are 

represented by a wide range of procedures [162]. Whilst still considered novel, non-deterministic 

algorithms have shown capabilities that previously were unattainable through simulation, having the 

capability to demonstrate chaos-prone systems, such as weather [163]. Similarly, medical applications 

of novel simulations based on these algorithms focused on cancer screening have been trialled, 

showing high degrees of accuracy [164]. 

 Finally, another significant novelty in the field of simulation is represented by model-based 

programming. These rely on models comprised of building blocks that have a given set of properties 

and constraints, effectively having the capability to emulate any real-life system [165]. The main 

advantages brought by this type of modelling are represented by its ease of use and accessibility. Due 

to the existence of predefined blocks with defined properties as well as access to a graphical interface, 

the development process of these models is swift. Similarly, the required knowledge to run and 

interpret the results of the simulations is minimal, as understanding the high-level system diagram of 

the model is the only mandatory element [165]. Additionally, the validation and testing of the 

simulation is quicker than with a conventional solution, as potential software bugs can be identified 

and isolated based on the behaviour of each building block in the model. Applications of model-based 

programming exist in many fields of expertise, ranging from understanding protein behaviour [166] in 

biology to identifying patterns in trade economy [167]. 
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2.2.1. Modelling & Simulation in Automotive & Transportation Industries 

 Like other fields of expertise, simulation has been widely used in the automotive industry due 

to its ability to emulate complex phenomena as well as minimising research & development costs, as 

suggested by recent literature. Applications have been conventionally focused on investigating 

physical phenomena happening during vehicle manufacturing, use and recycling. Research focused on 

numerical analysis, such as computational fluid dynamics (CFD) has been consistently a key area fit for 

simulation work, albeit considered computationally expensive. This has led to significant advances in 

understanding automotive aerodynamics, both in road-legal vehicle designs as well as high-

performance motorsport applications [168].  

 There is a significant amount of evidence in literature of work performed towards 

understanding vehicle dynamics related to suspension and braking, which utilises models and 

simulation environments. The findings have aided in implementing novel suspension designs that 

minimise energy consumption and maximise passenger comfort and vehicle handling [169]. Similarly, 

simulation-based research work focused on optimising power efficiency of ICE-based powertrains has 

been consistently featured in literature, giving way to innovative concepts such as enhanced cooling 

for turbocharged engines [170]. 

 The transportation sector has also benefitted from experimentation through the use of 

simulation. Traffic management has been an increasingly relevant topic for some time now due to 

increasing numbers of vehicles on the road. However, many active traffic management elements (such 

as traffic lights) are currently unfit for handling traffic during peak activity hours, especially in urban 

areas [171]. Moreover, traffic management systems are largely independent and thus not integrated 

into city-wide traffic systems that are capable of handling traffic based on real time analysis decision-

making. Studies employing simulation-based work demonstrate how traffic modelling can successfully 

emulate real-life conditions and help with optimising traffic management [172]. Furthermore, 

research employing non-deterministic algorithms that model traffic based on the chaos theory 

hypothesis have proven that city-wide traffic systems are feasible and can minimise traffic congestion 

in urban areas [173]. 

 Finally, software modelling and simulation has also been used towards estimating vehicle 

energy consumption. There is a significant amount of literature investigating individual vehicle energy 

usage as well as fleet-level utilisation through software applications [174]. Additionally, simulation 

results can provide a better understanding of incurring costs related to energy refuelling, as well as 

estimating the carbon footprint at both vehicle and fleet-level. Furthermore, the accuracy of recent 

models and simulations developed for vehicle energy usage computation have high degrees of 

accuracy, as evidenced by recent research [175]. 

 

2.2.1.1. Research Gap in modelling and simulation 

 Whilst the use of simulation in estimating energy consumption in vehicle fleets is widely used, 

literature currently focuses on conventional simulation methods, such as pure mathematical 

modelling [176]. The results presented in this thesis are computed by a novel modelling and simulation 

method, formulated using the model-based programming paradigm. A further novelty can be found 

in the simulation environment in which the modelling is performed. This has been custom tuned to 

balance error tolerance with execution times in order to maximise the time spent computing 

meaningful data. The developed solution ensures a high degree of accessibility, due to its system 

diagram-like structure. Moreover, the block components are highly modular, and can be reused 
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through interfacing with other models, ensuring versatility, as opposed to having fixed-constraint 

modelling. 

 Similarly, although some research describing modular models for energy consumption do 

exist, the simulation solution presented in this thesis aims to offer an alternative and further 

contribute towards understanding of the energy requirements of EV alternatives [177].  

 

2.2.2. Telemetry 

 As previously mentioned, one of the main challenges when utilising simulation in order to 

emulate real-life phenomena is represented by the accuracy and validity of reference data. In the case 

of time and distance-dependent vehicle energy estimation, input data is generally constituted by 

speed-time or speed-distance value pairs, also known as telemetry data. In order to better understand 

the limitations of this concept, the key facts and its evolution must be discussed. 

 The concept of telemetry is represented by the ability to record and automatically 

communicate accurate measurements of physical parameters of entities in an in-situ fashion [178]. 

The first use of telemetry has been recorded in the steam age, represented by James Watt’s steam 

engine (1776) with add-ons employed for monitoring engine parameters [179]. The concept has since 

been successfully applied to many fields of expertise, ranging from meteorology and medicine to the 

telecommunication industry, where it gained significant popularity due to its extensive use in space 

science and military defence [180]. 

 Recently, telemetry systems have seen increases in usability in the automotive and transport 

sectors, with a range of applications proving their effectiveness. For example, they have been 

extensively used to better understand potential improvements of logistic fleet usage, such as 

improved mileage through better vehicle routing and decreased carbon dioxide emissions [181]. 

Similarly, telemetry data has been proven useful for creating semantic, high-resolution data for maps 

of urban areas [182]. The accuracy of artificial intelligence (AI) based driving assistants has also been 

proven to be positively affected by integrating vehicle telemetry in prediction operations, indicated in 

previous research work [183]. 

 Since the 1980s, the concept has been extensively used in high-performance subsectors of 

transport, such as motorsport. It has been employed as data-driven feedback for the design of key 

elements, such as aerodynamics and powertrain sizing [184]. Additionally, telemetry principles have 

been successfully employed to develop optimised controllers for torque split and velocity scheduling 

in hybrid vehicles [185]. Evidence represented by improved aerodynamic efficiency as well as 

increased power-to-weight ratio of motorsport vehicles [178] indicate that telemetry has positively 

contributed to the vehicle design process, together with other sources of feedback, such as driver 

comments and computational simulation. This demonstrates that similar ideas have been successfully 

applied in previous studies, therefore validating the aims of the presented material. 

 Finally, video acquisition of data using dashboard-mounted video cameras (dashcams) has 

been widely used and has recently gained popularity in vehicles, especially in PSVs [186]. However, 

the videos captured from these dashcams are primarily used to provide witness and testimony during 

traffic violations and accidents [187]. This includes collecting evidentiary journey and real-time vehicle 

data, such as speed and geographic coordinates, which are overlaid onto the video feed together with 

a time stamp.  
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2.2.2.1. Research Gap in telemetry 

 In order to better understand the purposes of the featured research, traditional telemetry 

data application limitations must be considered. Conventionally, this data may be extracted for energy 

usage estimation from driving data obtained from an in-service conventionally fuelled vehicle. Since 

the electrified vehicles will operate the same routes under the same or similar road restrictions, such 

as speed limits and time constraints, the on-road EV driving data is the equivalent to that from an 

available ICE vehicle. Traditionally, this data could be collected by using an on-board GPS logging 

device installed on the in-service vehicle. However, most logging devices are primarily installed for 

anti-theft and trip detection purposes hence cannot achieve the essential resolution and logging 

frequency required to collect data for simulation, such as accurate location, or high resolution logs 

[188]. 

 The research featured in this thesis includes a section presented in chapter 6 which describes 

a video format agnostic procedure, able to harvest telemetry data from publicly available vehicle 

dashcam videos. This is performed by employing image processing techniques on a selection of frame 

groups extracted from the original video data. Currently, there is no published research describing 

methods that extract vehicle driving telemetry data from video sources, therefore the presented 

solution represents a novel application of image processing in the automotive field. It is expected that 

the solution will provide the scientific community with significant amounts of telemetry data for 

analysis. 

 

2.3. Chapter 2 Summary 
 As previously presented, it can be observed that the literature around the EV technology is 

rich in detail and has analysed many aspects within the technicalities of the electric vehicle, as well as 

what implications mass electrification could bring. Similarly, concerns regarding EV performance have 

been discussed. It is generally concluded that the decarbonisation of the transport sector though 

powertrain electrification can be performed progressively for privately-owned vehicles, although the 

climate targets imposed concerning carbon footprint reduction means the economic sustainability 

factor is up for discussion. Moreover, several gaps in understanding the energy requirements of 

heavyweight electric powertrains remain and will require solutions in order to determine the 

sustainability of transport decarbonisation. Alternative technologies may also be considered as they 

have been shown to aid the transition to a zero-emission transportation sector whilst easing the 

associated costs. 

 Simulation has also been shown to be consistently used in the automotive field, although 

many opportunities towards enabling more data to be used remain. Similarly, new software paradigms 

and non-deterministic simulation algorithms are unexplored. However, novel applications employing 

these new concepts may prove game-changing in the long term. 

 Having discussed the background of the research that is presented in this thesis, the next two 

chapters are concerned with discussing the development of a novel software model that has been 

employed for estimating energy consumption of various unconventional electric vehicles including 

eRCVs, eBuses and eBikes. 
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3. Chapter 3 – EV Model Methodology 
3.1. Recent Progress in Automotive Simulation 
 In the previous chapter the general approach to, and reasoning behind, EV modelling was 

examined, and relevant literature reviewed. This chapter will expand on this and present the 

mathematical methods utilised by similar work to achieve robust vehicle simulations.  

 Firstly, the general, physical and mechanical constraints related to driving have to be 

considered. Additionally, the vehicles employing an electric powertrain pose several simulation 

modelling challenges that are unique to this type of technology. Understanding energy-saving 

mechanisms, such as regenerative braking, is especially important since there is no strict technical 

specification set to adhere to. This has resulted in various vehicle manufacturers choose to follow 

different development paths. Similarly, battery modelling is another key element that needs to be 

understood, both in system-wide possibilities and modelling limitations in order to maximise 

prediction accuracy and large-scale reliability.  

 Finally, this chapter also contains the chosen approach employed for developing a two-stage 

model, together with showcasing all its subsystems and how they interact with each other. 

Additionally, results concerning the validation and testing stages of the solution are presented, in 

order to better understand the accuracy and limitations of the model. 

 

3.1.1. Mathematical Approaches 
Whilst there is little research regarding the application of EV technology to heavyweight 

powertrains, many research papers describe models aimed at predicting the behaviour of popular 

alternative solution powertrains for passenger cars, ranging from full EV/BEV technology to series 

and/or parallel HEV/PHEV vehicles. Many of the described models ensure a high level of accuracy or 

simulation of flexibility. Most models [98][96][189] employ a purely mathematical model-based 

approach, in which only the most important force-based equations around the powertrain system are 

described, shown in equation 3.1. 

 

{
 
 

 
 

𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 ∝ 𝑃𝑀𝑜𝑡𝑜𝑟
𝐹𝑟 = 𝐹𝑟𝑟 + 𝐹𝛼 + 𝐹𝑎𝑒𝑟𝑜

𝐹𝛼 = 𝑚𝑔 sin𝛼

𝐹𝑎𝑒𝑟𝑜 =
𝜌𝑎𝑖𝑟 + 𝐴𝑓 + 𝐶𝑑(𝑣 − 𝑣𝑤)

2

2

 

Equation 3.1 - Basic vehicle modelling equations 

where 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 represents the traction force proportional to the instantaneous power delivered by 

the electric motor, 𝐹𝑟 is the sum of all resistive forces, with 𝐹𝑟𝑟  representing the resistive force due to 

tyre rolling resistance, 𝐹𝛼 the resistive force resulted from the slope inclination effect and 𝐹𝑎𝑒𝑟𝑜 the 

resistive force resulting from the aerodynamic drag effect. Furthermore, 𝐹𝛼 is typically modelled as 

the classical 1st order Newtonian equation, while 𝐹𝑎𝑒𝑟𝑜 is modelled after Betz’s Law, with 𝜌𝑎𝑖𝑟 as air 

density, 𝐴𝑓 as the frontal vehicle area and 𝐶𝑑 a linear resistive coefficient related to speed. [190] 

The simple equation-based model is the basis of other concepts in this field. It can serve as a 

“testbench” for implementing a routing algorithm but can also be the basis of a modular subsystem-

based vehicle model. However, while this is usually an effective method to save computational 

resources and make the simulation process faster, it may not always comprehensively analyse the 

system behaviour. Moreover, while under normal circumstances these simplified mathematical 
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models may output reasonably accurate results for passenger cars, the simulation precision may 

worsen for different variations of heavyweight powertrains. This is because the equation set 

presented above does not account for lateral dynamics when steering or driving at high speed. 

Many of the models presented in previous research have been implemented in the 

Matlab/Simulink environment, most likely due to its user-friendly and versatile characteristics. 

Although some researchers have been using a blend of SysML/Modelica to employ novel simulation 

methods such as different neural network techniques, results of this latter approach suggest that 

although the proposed neural network surrogate modelling is not best-suited for control modelling 

compared to the traditional continuous PID control, the expectations during the concept phase have 

been met in the implementation and validation phase. [176] 

 

3.1.2. Modelling EV-specific vehicle characteristics 

3.1.2.1. Regenerative Braking 
An important technical component of most EV systems is represented by the concept of 

regenerative braking. This allows the use of the vehicles inertia to harvest energy that otherwise would 

be lost as friction/heat while braking. However, the intensity of this braking is usually controlled by a 

dynamic factor that changes depending on vehicle and road characteristics, and the charge 

acceptance of the battery. Normally, under simulation conditions, approximating the dynamic factor 

to a constant fixed value gives reasonable results, but ongoing research has applied fuzzy logic models 

to more accurately account for regenerative braking behaviour. One paper [191] states  that mean 

square errors of such an application can be very low. The results suggest that the proposed model can 

accurately predict energy usage, and can be used for energy management, powertrain design and to 

simulate fleet-level vehicle systems if the proposed fuzzy logic algorithm is successfully implemented 

into traffic simulators such as SUMO [192]. Moreover, other papers show significant energy reductions 

that reflect in increased vehicle range. [191][193] 

The impact of the regenerative braking effect in one’s driving style has also been researched 

under multi-study frameworks. These studies suggest that adaptability to this new driving 

characteristic is usually quick, in most cases the test subjects being able to adapt to an average 

intensity regenerative braking effect in less than a day, with trust in the system evolving at similar 

rates, although some outliers have been found. [194] 

 

3.1.2.2. Software Battery Modelling 
Other research forming part of the scope of the literature review in this project includes 

software battery models. Software battery modelling can vary from simple singular cell, perfect 

voltage source-internal resistance components, to complex equation system that can also account for 

charging tolerance and performance with respect to several factors, such as material aging due to 

continuous battery cycling, temperature, pressure and charge/discharge stress testing. For more 

complex approaches, usually the model takes advantage of most specifications related to the battery 

in order to achieve increased accuracy performance. Some papers describe matlab-based multi-cell 

custom-spec Li-Ion battery models specifically designed for implementation in simulated EV systems, 

with low-rate error in SoC prediction [195][196]. Similarly, there are several methods for monitoring 

battery charge and relative percentage SoC, the most widespread one being the coulomb count 

method [197], also known as current integration, which takes advantage of the time-dependency of 

charge with respect to current, given by equation 3.2 below. 
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𝑄 = ∫𝐼 𝑑𝑡 

Equation 3.2 - Electrical charge relationship with current 

The main drawback of this method is that due to the continuous nature of the integration 

operation, which implies that the recorded charge value cannot be reinitialised whilst the simulation 

is running. Other more complex methods exist, however for the purpose of this simulation project, 

the coulomb counting method has been deemed sufficient. 

Furthermore, some papers have examined the possibility of developing user-friendly 

interfaces for existing system simulation solutions, to increase end-user productivity. Previous 

research [189]  showcases a GUI developed using Matlab capabilities for a previously developed 

simple force-based vehicle model. Input data consists of a set of coordinates entered by the user 

through a PHP page. Google Maps is then employed to compute and load a map with information 

about the route (presumably XYZ data), which is then exported to a file. Relative slope delta (%) is 

computed from the altitude (z-data) entries. A driving cycle (speed profile) recorded for the given 

route is then correlated with the map data and then fed into the algorithm, which models the speed 

delta as being proportional to the difference between the traction force and resistive force, divided 

by the product between the mass of the vehicle and a linear loss factor (which models inertia and 

other rotational mechanics losses), as shown in equation 3.3.  

 

𝑣 ∝  
𝐹𝑡 − 𝐹𝑟
𝑚 ∗ 𝑘

 

Equation 3.3 - Linear force loss factor proportionality 

Tractive force, which is effectively the script’s output calculation, is then transmitted to the 

tyre model (ground friction). Although there are no absolute figures in terms of productivity boost, 

the developed interface is easy to use even for someone with no training in Matlab or knowledge 

regarding the complex principles of a given EV powertrain. [189] 

 

3.2. Development Process 
The proposed vehicle model solution has been developed utilising the MATLAB R2019a 

release environment, coupled with the related Simulink version. Several model approaches have been 

considered in order to understand the simulation capabilities of various simulation blocks within 

Simulink. All of the modelling approaches have then been evaluated and the most promising design in 

terms of accuracy, versatility and ease of use has been chosen. 

Firstly, a purely basic Simulink block approach has been considered. The philosophy behind 

this consists of a model described by pure mathematical simulation blocks. While this approach 

ensures a high degree of versatility due to the ability to develop the model equations “from scratch”, 

simulating complex vehicle subsystems in their entirety is almost impossible to achieve in a reasonable 

period due to the number of mathematical terms and factors, and their intrinsic correlations that need 

to be taken into account. 

Additionally, an approach based on the Matlab motorsport toolbox has been deemed worth 

investigating. In this scenario, the model has been developed from a base template for a HEV Formula 

car available in the Simulink example library, as shown in Figure 3.1. The example has then been 

significantly changed to match the provided eRCV custom specification. However, the template itself 

has a very complex layout to begin with and understanding the principles behind this approach 
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became too complex. This approach was therefore put on hold whilst alternative methods were 

investigated. 

 
Figure 3.1 - Matlab motorsport toolbox example 

 

Finally, a SimScape-based model has been developed. Two versions of SimScape models have 

been built, one being based on the MATLAB Formula Student competition courses (v1.x.x), as seen in 

Figure 3.2, and the other one developed on top of a parallel hybrid vehicle topology example present 

in the SimScape Driveline Examples library (v2.x.x), present in Figure 3.3. While both approaches 

present significant advantages compared to the initial models, thanks to SimScape’s general flexibility 

and ability to manipulate multi-domain models in the same simulation, v1.x.x had a higher degree of 

complexity in terms of the control theory behind the model, therefore it has been dropped.  

 
 

Figure 3.2 - Modelling approach employed by the first vehicle model iteration 

 Besides bearing significant changes compared to the model of a passenger HEV in order to 

better reflect an eRCV, v2 (shown in figure 3.3 below) also has a revamped control method, based on 

an evolution of the control method initially developed for the first simulation version. This “best-of-

all-worlds” model that also maintains a high degree of adaptability to accommodate future changes 

has been selected as the main vehicle model development framework for this project. 
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Figure 3.3 - Vehicle model, version 2 

As opposed to standard Simulink model blocks, where the output may be observed only if 

special blocks are attached to the signal line, SimScape-developed blocks are compatible with 

complete real-time parameter observation through the Solver Explorer application. This allows the 

user to observe graphs outlining the time-based evolution of all system and subsystem parameters, 

down to a library-defined block level. This ensures a quick and thorough understanding of the 

proposed model. 

 

3.3. Subsystem Presentation 
The chosen approach consists of a simple unidirectional model that feeds inputs to outputs 

iteratively, with respect to the time step choice, as indicated in figure 3.4. The input signal conversion 

block adapts input data which is then fed into the vehicle modelling engine, into the DC motor and 

transmission blocks as reference speeds for the vehicle motor and ground speed respectively. The DC 

Motor block uses the reference motor speed in order to compute the required power demand, which 

is then sent to the battery module through the power conversion module. The power demand is then 

recorded and monitored in order to generate energy draw. Similarly, the reference ground vehicle 

speed is used as a benchmark for the speed control capabilities of the engine, together with the vehicle 

parameter information that is fed into the aerodynamic module. This block contains key parameters 

for vehicle simulation, such as braking capabilities, tyre modelling, and aerodynamic drag-related 

mechanics.  

Additionally, the vehicle model is also able to display real-time vehicle speed, at a second-by-

second resolution. Other recorded parameters of interest include more power-related information, 

such as instantaneous power, and motor RPM, in order to validate any potential inconsistencies. These 

are displayed by employing the scope block. 
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Figure 3.4 - Vehicle model, system block diagram 

The battery model shown in figure 3.5 consists of a simple ideal voltage source and a series 

resistor with its value set according to the target vehicle battery specifications. In parallel to the power 

source, the main auxiliary energy consumers, for example lights and heating etc., have been defined. 

Their resistance values are defined in such a way that they reflect the chosen power rating values, 

effectively acting as current sinks. The compressor power rating has been chosen as an average value 

over a batch of the input data, while the others have been considered and reasonable approximation 

figures have been chosen for each. 

Charge monitoring is also implemented here using the coulomb counting method. Current 

demand is integrated to give charge, which is then compared and considered as a fraction of the stated 

full battery charge to output battery state of charge level (SoC) in a relative percentage figure, as 

presented in the battery monitoring module, figure 3.6. 

A datasheet-based battery model has also been considered; however, this has been dropped 

due to lack of specification clarity and ability to map characteristics to model specifications. 

Nonetheless, comparisons between datasheet-based battery models and the simple model approach 

adopted have been carried out, but no significant advantages in terms of accuracy have been found.  

 
Figure 3.5 - Electrical subsystem model 
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Figure 3.6 - Battery charge monitoring subsystem 

 

The DC motor model is shown under figure 3.7. It consists of two subsystems, the motor 

control module and the DC motor itself, which consists of a set of equations that also perform logical 

decisions (regenerating/using energy) depending on the input coming from the control module.  

 
Figure 3.7 - DC motor + motor control subsystems 

The control module consists of an ideal PID (proportional, integral, derivative) controller [198] 

with its output saturated. This takes the input recorded RPM real speed and compares it to the model’s 

current RPM speed. Based on this comparison, it outputs the required torque and conventional 

braking power in order for the model to reach the set point real speed. The PID output is then further 

conditioned by saturation blocks to limit the output to real values that reflect the vehicle 

specifications. Regenerative braking is also accounted for here, as the lower limit of saturation has 

been set to a negative value. In addition to the saturation process, the braking output also has a linear 

compensation factor that controls the regenerative braking intensity. Higher values mean less 

regenerative braking but enables the model to “follow” the real data quicker by not relying on 
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vehicle/motor inertia for braking. The P, I and D values have been initially chosen using the built-in 

tuner, then adjusted by trial and error in order to ensure reliable vehicle control when matching the 

input speed set points. The exact control architecture is presented in figure 3.8. 

 

 
Figure 3.8 - Control module subsystem 

Although the control solution for this model is quick and easy to implement and predict its 

behaviour, there is one main drawback based on the concept of algebraic loops. This mathematical 

exception occurs when the controller cannot determine causality between its input and output. This 

can be accounted for implementing a sample hold block at the controller input that will save the 

system state at input for one simulation time unit. However, this is a naïve and inefficient solution to 

the given problem, as the simulation speed is effectively bottlenecked by this time constraint, and 

while this is not a major problem for small data simulations, it can dramatically increase simulation 

time for big data models. Fortunately, the Simulink solver is able to efficiently solve algebraic loop-

related problems by assuming reasonable system-wide parameters at the start of the simulation. 

The DC motor subsystem block is presented in figure 3.9. This consists of a set of equations 

that have as an input, the torque output set by the control module, the vehicle model speed and the 

battery model voltage, and outputs the required current from the battery. Torque and motor RPM at 

propulsion level are multiplied to generate power that can vary between specified negative 

(regenerative braking effect) and positive. The other factor in these equations consists of a torque-

dependent linear factor that aims to model inertia and winding losses related to the DC motor. It must 

be noted that winding losses are ignored for model simplicity. The two factors are added, and their 

sum is limit-saturated to ensure correlation with the required specification. The saturated power is 

then divided to the nominal battery voltage to calculate the current drawn from, or pushed into, the 

battery model. During the first development stages of the base model, the other losses due to the 

auxiliary electrical systems were modelled here as a fraction of the power output. However, this 

approach has been deemed unsuitable due to the inconsistency in the ability to control these losses.  

 
Figure 3.9 - DC motor subsystem 
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 The transmission block shown in figure 3.10 contains the modelling of two subsystems, the 

gearbox and the differential. Both have been modelled using simple gear ratio models, which transmit 

speed from their base to the followers proportional to the specified gear ratio, with a similar behaviour 

for torque. The gearbox consists of a single gear as this is the specified topology. 

An improvement in the structure of this modelling block is planned that requires integration 

of a multi-speed gearbox that is able to react efficiently to speed and mechanical load changes in the 

simulation. This can be achieved with various approaches. Firstly, multiple SimScape variable gear 

ratio blocks can be used. Alternatively, a barebones approach can also be employed. Finally, SimScape 

contains a gearbox library with different gearbox topologies. However, these cannot be changed to 

suit different vehicle styles. All approaches were under consideration, currently the variable gear ratio 

block approach has the upper hand in the current model thanks to the environment flexibility. 

 

 
Figure 3.10 - Gearbox & differential models. Input - RPM/torque @ motor shaft, output - RPM/torque @ vehicle wheels 

The aerodynamic model block consists of two subsystems. The brakes are modelled here as 

double-shoed brakes with their braking force applied directly to both front and rear axles. The double-

shoed brake model has been chosen because of its ease to integrate within the model and simplicity 

in applying the PID control signal at its input. This may be changed if required to better reflect a 

conventional multi brake-type system.  

The vehicle tyres are also modelled here using the magic formula coefficient approach. This 

ensures consistent grip and vehicle traction behaviour regardless of the instantaneous slope value. 

Coefficients for dry tarmac have been chosen.[199] 

Finally, the aerodynamics of the vehicle body have been integrated into the model. This 

consists of a base library block that had its intrinsic attributes modified to reflect the aerodynamics of 

an eRCV. This model building block is highly versatile being able to account for different mechanical 

dynamics at a vehicle axle-level, while also having the ability to specify physical constraints that are 

directly linked to the tractive and aerodynamic properties of the modelled vehicle, such as external 

defined mass or angle of inclination (slope). The vehicle model speed is also extracted here and 

converted into kph and mph measurements for user-end data visualisation. 

The full aero model employed can be observed in figure 3.11 below. 
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Figure 3.11 - Aerodynamic & brake subsystem models 

All information regarding mechanical and electrical power of the vehicle is extracted in a 

separate monitoring block using goto/from stateful control flow blocks shown in figure 3.11. Although 

not the most efficient approach in terms of code execution, the routing itself only needs to be carried 

out once at the start of the simulation. The final stages of SoC monitoring are also performed here.  

 
Figure 3.12 - Power information processing subsystem 

 

 A separate GUI model block has also been implemented in order to actively monitor the 

parameters the eRCV user would have access to, in the form of a rudimentary automotive dashboard. 

Battery level, speed and motor RPM signals are routed to this block. Additionally, this block also 

contains a Simulink Real-Time Synchronisation block that is able to map simulation times to real-time 

seconds in order to simulate real-life system behaviour. This is achieved using a special MATLAB C++ 

based kernel module that is able to keep track of the mapping using the machine’s local time. 

 Output data is processed and saved using scope blocks and classified as either speed 

monitoring or power related data. An example of the output for one simulated cycle can be seen in 

the appendix 1. 

 

3.4. Vehicle Model Limitations 
In order to ensure the vehicle model has a high degree of functionality, some general 

assumptions around the physical constraints and the real-life input data had to be taken. 
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Firstly, a lack of resolution in different monitored variables has been observed in the data 

provided. While battery level monitoring exists, the related values are only recorded as integers, 

without any decimal places. From a statistical point of view, it can be derived that the recorded real 

data may have an error in a worst-case scenario of +/- 1% compared to the actual real data. This has 

a snowball effect on the accuracy of the data generated by the presented vehicle model and its results 

have to be adjusted to account for this lack of resolution in input data. 

Similarly, the provided specifications point out that the vehicle mass can vary between the 

base vehicle weight and the maximum rated weight, depending on the amount of refuse collected per 

driving cycle. For ease of understanding the results, all runs have been simulated with a vehicle weight 

set as the midpoint of the weight boundaries. While this approach may exhibit large variations in 

results over small datasets, the provided data creates a big simulation dataset which significantly 

attenuates any potential data outliers. The aerodynamic subsystem part of the model allows for 

externally defined mass in various ways, including as step and ramp functions. If deemed necessary, 

variable vehicle weight may be implemented using this feature. 

Finally, vehicle subsystems for which any form of efficiency factor was not specified were assumed to 

be 100% efficient. This will definitely have an impact on the model prediction accuracy and upon 

conclusion of testing will be averaged as a linear loss factor that will approximate system losses. 

 

3.5. Choice of Simulation Values 
The presented vehicle simulation solution consists of model-based programming that 

encompasses a blend of basic Simulink and complex SimScape model blocks. Since the SimScape 

environment is effectively a separate entity that only communicates with Simulink using defined 

information pipelines, a custom-spec equation solver is necessary. Furthermore, SimScape is able to 

simulate various physical media, ranging from thermal to mechanical and electrical. Each of these 

need to have their own solver attached unless specific cross-environment blocks are employed for 

interfacing, as they are considered different software environments. 

Considering the abovementioned, the proposed solution requires two solvers, the predefined 

default basic Simulink solver and a special SimScape solver. These two communicate with each other 

using the submask Matlab environment. While setting the SimScape solver is a straightforward 

process as it only controls the physical model constraints and its related tolerances, tailoring the 

Simulink model to the SimScape one is more complicated, as this is the main element in solving the 

modelled mathematical equation system. Fortunately, the Simulink equation solver can be set from 

an extensive mathematical solver library. 

The starting point in choosing and setting the right solver has been the default suggested 

method for SimScape variable step models and was defined with the commonly used ode23t. This 

solver is based on the trapezoidal rule and uses a free interpolant that handles solutions with no 

numerical damping. It is specified for solving moderately stiff mathematical problems that consist of 

ordinary differential or differential algebraic equations. [200] While this solver showed promising 

results in the initial stages of model implementation, showing robustness and little to no variance in 

results over repeated tests on the same input dataset, it started to struggle with large dataset 

simulation handling once more complexity was added to the model. 

The solver was therefore changed to the ode15s method. This is based on the numerical 

differentiation formula set [201], a more efficient variation of the backward differentiation formulae 

[200]. This method is recommended for mathematical problems with a higher degree of stiffness. 
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While the same degree of accuracy is not inherently guaranteed with this solver, comparison tests 

were carried out, and result accuracy has not been affected. 

Finally, in some particularly large datasets describing lengthy driving cycles with lots of 

variation in operational characteristics, the ode15s solver was not capable of maintaining robustness, 

crashing in most test iterations of the given dataset. For those models, the daessc method was 

employed. This solver is an evolution of the baseline differential algebraic solver tailored for SimScape 

applications. The devised methodology for new datasets consists of an initial solving attempt with the 

ode15s that, if failed, will be changed to the daessc method. 

Finally, after extensive solver fine-tuning, major solution convergence errors were not detected under 

a level of 10e-5 in relative and absolute tolerances. 

 

3.6. Data Manipulation & Pipelines 
In order to make the provided data compatible with the input format required by the vehicle 

model, a multi-step data conditioning process was undertaken. The first two stages have been entirely 

performed using Microsoft Excel capabilities and are predominantly concerned with data clean-up 

procedures, such as column and row restructuring, while the last step is performed by a custom-spec 

code script developed in Matlab. The script ensures correct input data load into the Matlab 

environment and clean data organisation employing environment variables. These steps are 

important because they have streamlined the validation and testing processes for this vehicle model 

version. 

The raw provided data contains several columns of information not directly relevant to the 

simulation process, therefore they were dropped. Additionally, column re-ordering has been 

necessary, as well as populating a new column with incremented integers. This will help with offering 

an iterative measurement during simulation, so that the simulation solvers can “keep track”. 

 

3.7. Model Validation & Testing Performance 

3.7.1. Methodology outline and other considerations 
 In order to effectively validate and test the model, a methodology has been defined as a multi-

step process with increasing complexity. Initially, basic model functionality has been assessed. This 

phase was achieved through the actual validation of the model against a real-life dataset gathered 

from an eRCV operating under nominal real-life conditions. The simulation results based on the real-

life dataset are complemented by results that employ industry-standard emission testing driving 

cycles. The second part of the testing process consisted of comparing different route setups so that 

secondary factors that influence energy usage can be determined. 

 Due to a lack of detailed data regarding the technical specifications of the actual eRCV used in 

the validation tests, some approximations and assumptions have been taken. In addition to some 

approximations regarding the power demand generated by the auxiliary systems, some design 

decisions were taken in the system operation.   

 Although vehicle mass has been specified in the form of a min-max payload, simulations have 

been carried out with a vehicle weight set as the midpoint in the specified range as the way in which 

the vehicle mass changed throughout a refuse collection run will change for each individual run. 

Similarly, the vehicle tyre parameters have been approximated using the magic formula coefficients 

[199] and tuned for dry asphalt conditions. The drag coefficient has also been approximated to reflect 

a general heavyweight vehicle, modelled based on Betz’s Law.  These will not necessarily reflect real-
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life conditions on a 1:1 basis, but it will ensure consistency with reasonable constraints, which is 

important for a rigid mathematical system. Additionally, given the need to model a fleet of vehicles 

for the research objectives, the vehicles within the fleet are likely to have differing tyre parameters 

across the fleet due to varied wear patterns and replacement tyres at various points in the fleet 

operation.  

Similarly, another important factor in simulating this type of powertrain is consisted by the 

emulation of regenerative braking, a key element that feeds positive battery values back into the 

battery module. The intensity of the braking must be carefully chosen, as inadequate values may result 

in highly inaccurate simulations, especially for predictions based on bigger input datasets. 

In the presented model, the regenerative braking process is modelled as a constant that is associated 

with the electric motor inertia and the slope recorded in the dataset. The constant has been chosen 

by performing a parameter sweep analysis on several development datasets and observing what 

values would match the logged energy consumption at the end. 

 

3.7.2. Basic Model Functionality 
 This initial project phase aimed to test and understand the model’s limitations and the solver 

capability to find consistent instantaneous solutions to the system for the duration of the simulation. 

In order to do this the model has been assessed on publicly available data, used by environmental 

agencies worldwide for emissions regulations and standards adherence. While the model does not 

currently support any functionality regarding emissions measurement, these datasets have a high 

resolution and describe several different driving styles, environments with various simulation lengths. 

The model has been tested on several of the greenhouse gases emission testing cycles in the EPA 

library, focusing on the ones that describe highway driving as well as those containing large parameter 

variations, for example stop-and-go cycles, such as the NYCC, HWFET and HDUDDS cycles, as described 

in Figures 3.13, 3.14 and 3.15 using speed(mph)-time(s) graphs. Throughout testing the basic 

functionality of the model, stable response with minimal output speed disturbances has been 

observed. Similarly, SoC decrease has been consistent, indicating a well-balanced system response. 

 

 
Figure 3.13 - NYCC driving cycle 
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Figure 3.14 - HDUDDS driving cycle 

 

 
Figure 3.15 - HWFET driving cycle 

 

3.7.3. Model Validation 
 Validation of the EV matlab model has been carried out by selecting a driving schedule at 

random from the provided datasets available to the project. Some fine-tuning of the overall relative 

simulation tolerance was required in order to avoid simulation crashes due to solution convergence 

errors. The chosen driving cycle has a mix of stop-and-go driving, as well as cruising segments, making 

a good test benchmark for model functionality and consistency in behaviour, together with parameter 

prediction over longer simulation periods. Figure 3.16 shows the input data as well as the model’s 

controlled reaction to the input via the control module. Data is shown as a speed-time graph, with 

speed as kph.  
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Figure 3.16 - Speed analysis plot example 

 During this simulation, some problems regarding the controlled system response (as seen in 

Figure 3.17) have been identified. It has been observed that at the end of sustained periods of 

acceleration, the control reaction sometimes temporarily appears to lose track of the input data, and 

therefore the system response drops control reactivity and becomes unstable. However, this is quickly 

corrected, and the reaction goes back to normal and the overall SoC estimation does not seem to be 

significantly affected, based on the duration of this behaviour and the energy demand change.  

 

 
Figure 3.17 - Control module fail (control response overshoot) 

 This behaviour could be attributed to one or several factors. One of the suspected causes of 

this is a lack of proper fine-tuning of the integral component in the PID module that controls the 
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reactivity of the response to the input data. Another potential cause could be the solver employed in 

the simulation that may temporarily run out of cache memory, hence dropping all the variables until 

more memory is cleared for the simulation thread in the OS.  

 Besides the minor temporary control loss, no other problems have been identified in 

prediction or system behaviour. The average relative error rate in SoC estimation compared to real-

life data has been observed to be around 7-8%. 

 

3.7.4. Real-Life Dataset Testing 
 Following the EV model validation, the testing procedure has been initiated. This entailed 

running all the cycles in the provided dataset and compare the absolute error rate with the recorded 

ones at the end of the simulation. 

 Temporary control losses similar to the one identified during the validation phase have been 

observed, but none seemed to majorly affect the simulation end result. Some minor adjustments 

regarding simulation solution tolerances were carried out on a case-by-case basis to avoid crashes due 

to convergence. 

 The average absolute error rate in battery charge prediction is 6.08%, with some outliers in 

data that can be explained by looking at the characteristics of their related datasets. Adjusted for 

outlier marker attenuation this drops to 5.8%, as observed under figure 3.18. 

 
Figure 3.18 - Validation results for proposed vehicle model 

3.8. Chapter 3 Summary 
 As observed, the presented model takes into consideration many factors from both the 

physical emulation side and the mathematical calculation. Whilst several aspects could definitely be 

improved, the model is highly modular, offering a high degree of versatility. The subsystems are not 

interdependent and may be configured as standalone simulations with minimal changes to the original 

concept. 
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 Furthermore, the model has exhibited strong control dependencies, ensuring reliable and 

stable simulations. This is also shown by its relatively small degree of error, as well as the minimal 

changes in it, observed over a high number of testing datasets. 

 Having considered the heavyweight electric vehicle software model in this chapter, validating 

the models as appropriate, the next chapter is concerned with the development of a novel data 

processing script that aims to prepare raw GPS values as input data for the presented software. 
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4. Chapter 4 – Route Generation Method 
4.1. Overview & Development 
 This thesis chapter outlines the development and methodology of a software script that aids 

in preparing raw geographical data into model-ready usable telemetry values.  

 A further aim of this research consists of implementing several functionalities in the 

information pipeline that will allow the system to process and predict energy behaviour without the 

need for real-life recorded datasets. Once achieved, this will set the basis for complete automated 

functionality, including continuous data processing and input data streaming. However, the approach 

employed by the EV model in processing data has some limitations in this regard. The presented 

solution has been created as a two-stage data processing system that will always require an input, an 

instantaneous speed value associated with a progressive incrementing measurement that allows the 

system to keep track of the elapsed time and previous states. 
 The Route Builder emulation system therefore consists of a set of Python-coded programs 

developed to generate input data that is usable by the EV model. By collecting map-based distance 

and slope data organised in a set structure, as can be seen in Table 4.1, and apply a mathematical 

approximation to this, the scripts are able to generate speed-time or speed-distance data. For coding 

this software system Python and some of the common scientific computing libraries, namely 

matplotlib, tkinter, num.py and pandas have been used. 

  

Item Format  

Round Integer A number used to mark each collection runs, i.e. 00000001 

Address String Address in natural language, i.e. Number 10, ABC Road, London 

Postcode String Exact postcode of the address showing above, i.e. AB1 2CD 

Roundgroup String Indication which day of the week this round will operate, unused 

Latitude Float  Latitude of the address 

Longitude Float Longitude of the address 

Table 4.1 - Input data structure 

 The emulation system consists of a dual-stage information pipeline organised into several 

code files. The first stage harvests Google Maps Places API data regarding geographical properties 

(such as distance and slope) between a specified set of map address points using Natural Language 

Processing (NLP) technology. While processing each address, key indications such as house number 

and street of are captured by the software and processed in an alphabetical order, to ensure all of the 

collection points are grouped by their respective street location. This data is then processed and 

written in a loosely structured pattern. Some novelty in the data processing approach exists in the way 

the data is being processed and handled, which is different from a conventional genetic 6-step NLP 

engine. One should note that only the content determination, text structuring and referring 

expression generation are being processed, whilst a conventional approach would also consider the 

sentence aggregation, lexicalisation and linguistic realisation[202].  

 During this process, a limited number of addresses will be spread out due to difficulties in 

finding its house number and/or street name, due to ambiguity in address description. In order to 

minimise the ambiguity in the route description generated by these addresses, a geo-location decoder 

is implemented to further extract information. By querying the addresses’ latitude and longitude data 

from a Geographic Information System (GIS) information provider, such as Google Maps GPS data, 

these uncertain addresses can be located and integrated with the rest of the route points using GPS 
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coordinates. Although a query may sometimes only return its nearby house number, the effect over 

the accuracy of the route description is minimal, since an RCV will stop for a cluster of refuse bins, 

instead of at each bin location.  Finally, the processed data is then written in a table as a set of speed-

time value pairs in a way that is usable by the next stage in the pipeline. 

 An example of script-generated routing is presented under figure 4.1. 

 

 

Sample Dataset 
 

Script-Generated Refuse Collection Route 

 

Figure 4.1 - Example of script-generated refuse collection route 

 The second stage of the system consists of the actual processing that results in the emulated 

speed-time or speed-distance data that is usable by the EV Matlab model. The emulation is based on 

the trapezoidal approximation method, by approximating acceleration slopes based on a set target 

speed. The trapezoidal rule is a well-known method in numerical analysis that derives from Heun’s 

method [203] that aims to approximate the definite integral. It can be interpreted as a method to 

average the left and right Riemann sums and has the form as specified in figure 4.1 below: 

 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≈ (𝑏 − 𝑎)
𝑓(𝑎) + 𝑓(𝑏)

2
 

Equation 4.1 - Heun's method (integral form) 

 During the route period where refuse collection is performed, the script based on trapezoidal 

approximation assumes that the vehicle is operating on a pre-defined start-stop interval (i.e. it will 

stop after a given distance to empty a cluster of bins). Firstly, the algorithm simulates vehicle 

acceleration, with a pre-set positive derivative slope coefficient applied to vehicle speed from 

standing, until the speed reaches a pre-defined maximum value. The coefficient used in calculations 

has been derived by observing vehicle driving capabilities during normal operation. Simultaneously, 

simulated vehicle speed and travel distance are being recorded at a data resolution of 1 second. Then, 

the algorithm assumes constant vehicle cruising speed driving up until the point where the remaining 

distance to the next collection point is just enough to complete deceleration. Finally, the algorithm 

simulates the deceleration stage, with a pre-set negative slope, from its max speed to 0. Similar to the 

acceleration stage, this has been derived from actual vehicle observation. Then, a zero-speed time 
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interval with a set duration is added, which is meant to emulate the driver emptying the bins before 

repeating the same pattern until the end of a given refuse collection phase. 

  It must be noted that during the cruise section from one refuse collection area to another, the 

script assumes cruising at average speeds observed under normal operation circumstances. Therefore, 

the process is similar to the collection stage but with different speed and distance factor.  

 The outcome from the proposed algorithm is a dataset similar to a recorded dataset from an 

on board satellite positioning-logging GPS device. Consequentially, it can be used as the input of the 

energy consumption model and calculate the energy required to collect this group of addresses. 

 Finally, the route builder system also has a user interface (UI) that allows quick changes in 

emulation variables and correction factors, effectively improving the usability of the final system. This 

was created as a mask that encompasses the entire data processing stages. 

 An example of a code-generated, “emulated” driving route telemetry can be observed in 

Figure 4.2. Additionally, a zoomed-in version of the script-generated telemetry can be examined in 

figure 4.3, featuring the trapezoidal-like shapes generated by the trapezoidal approximation 

mathematical method. 

 
Figure 4.2 - Real driving data vs simulated cycle generated by emulation code 
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Figure 4.3 - Zoomed-in section of simulated telemetry 

4.2. Validation & Testing 
In order to validate the effectiveness of the chosen approach, the system was trialled in 

validation during the late development stages. Simulated cycles for each bin-collection sector in every 

dataset have been generated and fed into the model. An example of such a cycle is shown in figure 

4.4., displayed as a mapped dataset, benchmarked against GPS data of a real refuse collection route, 

in order to better understand the route approximation script’s efficacy. 

 
 

  
                                        

Figure 4.4 - Comparison between real (left) and simulated (right) driving route (section) 

The data samples have been chosen as the “validation grounds” as it is during these simulation 

intervals when the EV uses most of the available energy, thanks to its stop-and-go features that 
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require deep acceleration and braking usage with minimal room for energy regeneration through 

motor inertia braking. Again, the simulation performed consistently, with minimal changes to the 

simulation setups. It has been found that the average additional error rate in SoC prediction is 2.64%, 

with similar outliers compared to the 2nd testing cycle of the vehicle model. 

 A comparative graph showcasing the results is shown below, in figure 4.5. 

 

 
Figure 4.5 - EV model testing results - SoC estimation 

 However, testing the route builder system was a more complex process, with various stress 

tests performed in different contexts to better assess limitations and real-life performance, by 

benchmarking the error in absolute SoC discharge rate. Therefore, the testing process includes stress 

testing the model when changing extrinsic factors, such as road / route slope. Understanding the 

influence of such geographical factors over energy usage and prediction error is key to ensuring a low-

error model performance. 

 

4.2.1. Importance of geographical factors 

4.2.1.1. Slope Effect on Energy Usage Prediction 
 The first stage of this testing phase included a comparison between a no-slope simulation run 

and a slope-enabled simulation run of the same batch of routes in order to assess the direct impact of 

slope on energy use. The routes in the testing batch exhibit different features, with varying degrees 

of slope change and length. The slope-enabled simulations have been based on a dataset with less 

data points implying a lower result precision, however this does not appear to significantly affect the 

control of the vehicle while describing a near-identical speed-distance curve. 

 It has been derived that the average effect of slope over the entire testing route batch on 

relative SoC is 3.22%, with one significant data outlier. Disregarding this, the effect drops to 1.68%. 

 A detailed histogram is shown below, in Figure 4.6. 
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Figure 4.6 - Slope simulation testing results 

4.3. Chapter 4 Summary 
 The featured results indicate that the route generation method performs consistently and 

reliably. Whilst some limitations exist concerning the slope effect on energy usage prediction exist, 

these are minimal, consistent, and predictable in nature, therefore easy to account for when 

interpreting the simulation results. Together with the EV model previously described, the system is 

capable of predicting energy usage robustly with minimal degrees of error. A simplified diagram 

outlining the functionality of the proposed model-based prediction solution is indicated in figure 4.7. 

for further reference. 
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Figure 4.7 - Concept system diagram 
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 A simpler diagram outlining the concept of the presented solution can be observed under 

figure 4.8.  

 

 
Figure 4.8 - Simplified idea of proposed solution [204] 

 Finally, it must be mentioned that the work carried out towards the development of the route 

generation algorithm has been performed in collaboration with other researchers. Consequentially, 

the work presented in this thesis only concerns the research phases that have been performed 

collaboratively with significant input from myself.  

 Following the extensive validation and testing considerations presented in this section, the 

developed software solution has been considered to be suitable to be employed in real-life-based data 

applications, which will feature an in-depth analysis in chapter 5 of this work. 
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5. Chapter 5 – PSV Energy Usage Investigation through proposed 
simulation solution 

  

Following the development, validation and testing of the basic functionalities of the proposed 

software model, presented in the previous chapter, the model has been considered a viable approach 

for electric vehicle simulation. When simulating an EV travelling over a particular route, one parameter 

of interest is the predicted energy use. This, in turn, is able to serve as a cornerstone for more general 

investigations, such as various electric vehicle fleet feasibility studies. 

 This section of the thesis presents the first application of the proposed model and is concerned 

with understanding the energy usage of public service vehicles, both at an individual vehicle level, and 

overall, as a fleet. Furthermore, the chapter will also demonstrate how understanding the energy 

usage of vehicle fleets can be a key factor in providing a carbon footprint and energy refuelling analysis 

for fleet feasibility studies. Examples of where this is important may be found from a study of waste 

management trucks (refuse collection vehicles RCV’s), and buses. Additionally, an overview of the 

expected operating costs and CO2 emissions produced by these vehicles will be presented. Finally, 

further considerations as to how energy consumption can be optimised at a low-level will be 

described. 

 

5.1. Assessing eRCV fleet energy usage 

5.1.1. Aims 
 The initial investigation employing the proposed simulation approach described earlier is 

based around understanding energy requirements, and other key performance characteristics of the 

refuse collection routes covering the areas under the administrative jurisdiction of Sheffield City 

Council. To achieve this study, certain information is required. Not only the eRCV parameters for the 

vehicles of interest, but also the bin collection routes over which the vehicles operate. The parameters 

in question have been obtained from the contracted company responsible for refuse collection in 

Sheffield (Veolia). 

 The aims of analysing the dataset are based around understanding energy usage if eRCVs with 

a given custom specification were to be deployed in order to perform refuse collection, over the same 

routes the contracting company is currently deploying its diesel RCV fleet. The predicted energy usage 

then informs recommendations as to whether routes should be managed differently based on a 

selection of criteria (such as collection area type, or day of week). Understanding energy usage can 

also provide an insight towards the feasibility of deploying a fully electric RCV fleet for refuse 

collection. The environmental and financial impacts of such a fleet may be further reduced through 

the use of other renewable sources to charge the fleet. Secondly, an analysis of the fleet’s energy 

requirements will also give some insight into whether the vehicle batteries could be integrated into 

the energy grid and be used as “extra energy storage” in the form of a managed Battery Energy Storage 

System (BESS), that would help ease electricity grid stress during peak times. Such systems may also 

be used to provide long-term investment advantages, by integrating them with the energy grid so that 

they may be able to supply energy to the system during peak demand hours. 

 Finally, to efficiently simulate the entire received bin and route data, a custom-specification 

simulation routine parallelisation procedure has been developed.  
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5.1.2. Methodology 
Firstly, the technical specification of the vehicle has been compiled for reference in a table 

(Appendix 3). Whilst most of the important vehicle specifications have been provided by Veolia, 

additional data related to aerodynamic and braking performance was required. This is in order to 

ensure robust prediction accuracy. These parameters have been obtained through publicly available 

technical data of similar vehicles to those deployed on the routes.  

Secondly, the route information provided consists of 229 datasets of GPS coordinate logs, 

recorded in real-life conditions, during bin collection runs. An example of a provided GPS dataset can 

be seen in figure 5.1. The points represent refuse collection areas. 

 

 
Figure 5.1 - GPS dataset log example 

Each dataset has been processed employing the route builder script described in chapter 4 to 

emulate vehicle telemetry consisting of speed-time value pairs. This data may then be used by the 

proposed electric vehicle model for simulations. Therefore, the processed telemetry serving as input 

reference for simulation in the vehicle model consists of 229 different routes and it can be classified 

as a large-scale dataset. In order perform simulations over the entire dataset in a timely manner and 

increase overall productivity, a process parallelisation procedure that aims to significantly cut the time 

spent computing simulation data has been developed. This procedure consists of a runtime script 

which takes advantage of the Matlab environment’s parallel computing capabilities and is further 

described in the following subsection. The bin location data was obtained through private 

communication with Veolia, the local company servicing refuse collection operations. 
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5.1.2.1. Process Parallelisation 
 By observing the model mechanics previously described in chapter 3, it can be seen that the 

developed EV Matlab model has a low-level “hard iterative” nature, meaning that during any 

simulation, a given state and its related values in the process is entirely dependent on the past states 

and their values (that have already been determined). Therefore, a given simulation will intrinsically 

be bottlenecked by how quickly simulation states can be calculated in an incremental manner. 

 The application of the presented model was arranged such a way as to answer energy usage 

questions for multiple complex systems in a relatively short time, and when simulating complex 

systems, it is common that many simulation factors and physical constraints must be considered. 

Hence, the iterative low-level design of the simulation is a slow-performing factor in determining the 

desired simulation outputs. However, from a high-level system perspective, simulations can be run 

independently from one another as long as they are relying on different input datasets from different 

complex systems.  Therefore, the system can benefit from the application of parallel computing 

principles. 

 Parallel computing refers to the principle of simultaneous execution of many calculations or 

processes that are not inter-dependent, in order to achieve much higher processing speeds than a 

normal iterative process would output [205]. Several different forms of parallel computing exist, 

ranging from low-level hardware approaches such as bit or instruction level parallelism to system level 

concepts such as task parallelism, which is an idea of interest to be employed with the software EV 

model. 

 From a theoretical standpoint, the speed benefit offered by task parallelisation is nonlinear, 

and dependent on how many simulation environments are running simultaneously, in-situ on one 

computing machine. The theoretical potential speedup compared to the iterative, one-process-at-a-

time methodology is given by Amdahl’s law[206]: 

 

Sspeedup=
1

1-p+
p
s

 

Equation 5.1 - Amdahl's law 

 

where 𝑆𝑠𝑝𝑒𝑒𝑑𝑢𝑝 is the potential speedup in execution time of the whole task, s is the potential speedup 

of the parallelisable part of the process and p is the percentage of execution time of the whole task 

concerning the parallelisable part of the process before parallelisation. 

 By understanding the high-level system diagram of the EV model and the principle of task 

parallelisation, it can be noted that the simulation process can be effectively adapted to suit a parallel 

computing methodology. This is due to the input data of the simulations being independent from one 

another, hence the I/O information pipelines for each simulation can be run independently. In order 

to do this, the parallel computing capabilities of the simulation machine and Matlab environment have 

been employed, through the Matlab parallel programming toolbox.[207] This add-on consists of a 

suite of software functions that are able to create separate simulation environments. This is possible 

by taking advantage of a machine’s multi-thread capability. 

 Having the ability to run simulations in parallel, separate environments effectively eliminates 

simulation speed limitations related to software process single-thread capabilities. This means that 

the only remaining limitations on simulation speed are purely related to hardware capability. An 

example of this is reflected by the maximum supported number of simulation environments, 
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determined by the CPU specifications. Other limitations include hardware operating frequencies, 

which are determined by rated specifications of RAM, but also data storage read-write speeds. 

 Thanks to the parallel programming toolbox, implementing parallelisation for computing 

results for a big dataset has been fairly straightforward, as the development process requires two 

steps, organising I/O information pipelines for every simulation individually by using simulation input 

and simulation output object variables, and effectively starting the parallelised simulation 

environments for simulating every input dataset throughout the EV model using the parsim [208] 

function. 

 Results of process parallelisation have been promising, with even small examples with only 10 

input datasets (requiring 10 simulations) seeing a significant decrease in execution time, in relation 

with what was expected from the theoretical perspective, as seen in figure 5.2. 

 

 
Figure 5.2 - Time execution performance 

 From a theoretical standpoint, 10 threads (parallel simulation environments), which is the 

default parallel simulation setting, should be able to simulate a given dataset 10 times quicker relative 

to an iterative approach. However, it can be seen that whilst the parallelised approach is by far much 

quicker than the conventional iterative approach, it is not in perfectly aligned with the theoretical 

speedup expectations. This can be attributed to a number of factors: read/write speed of the 

workstation storage media, the start-up procedure of the parsim function – loading the EV model, 

distributing this model in every simulation environment that has been created etc.).  

 Nevertheless, the parallelisation of the simulation process was successful, demonstrating the 

potential to bring significant decreases in time execution for other big data inputs, increased 

productivity and increasing the efficacy of the developed vehicle model when dealing with particularly 

large-scale datasets. 
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5.1.3. Simulated energy usage results & discussion 
 Once the parallel approach to the simulations had been decided upon, in order to provide 

some insight into the simulation results and provide some conclusions based on the observed energy 

usage, some data classification has been carried out. Firstly, routes have been grouped by the 

collection area type they represent (Clinical – collection of medical waste from hospitals and other 

care centres, Domestic – urban residential house neighbourhoods, Domestic Rural – a blend of urban 

and rural residential house neighbourhoods and Weekly Flats – a selection of routes that collect 

rubbish from a group of blocks of flats on a weekly basis).  

 Similarly, the routes have also been classified by the day of week on which they are performed. 

This has been done in order to determine an average energy usage figure throughout every day of the 

week independent of collection area type and should give insight related to the current route 

management scheduling efficiency. For every classification type, besides energy usage in absolute use 

(kWh), the total and average timing of every route grouping has been calculated. 

 Additionally, energy usage throughout the entire output dataset has been interpreted 

regardless of any classification factors so that a baseline energy use per bin collection route can be 

determined. When considering all of the 229 driving routes, the average driving cycle was 11824 

seconds, and used 24.6% of a full 300 kWh battery charge (standard battery capacity supplied with 

the vehicle). This translates into an average energy usage of 74.38 kWh. The total energy used 

throughout the cycles, recorded throughout a 2-week period, is 32140 kWh and a total of 7884km was 

travelled. This equates to an average energy consumption figure of 2.16kWh/km, which is 

approximately 10 times the energy consumption expected from a regular electric passenger car. 

However, this correlates well with the relative difference in mileage for ICE technology (i.e. the 

mileage of a regular passenger car compared to the mileage of an eRCV-like vehicle – 40+ MPG vs 3-5 

MPG) [29]. 

 Finally, the complete received information consisting of 752 hours, 9 minutes and 23 seconds 

of effective bin collection runs was processed and simulated by the parallelised environments loaded 

with the Matlab EV model in 7482 seconds (a little over 2 hours). 

Figure 5.3 classifies the input data with respect to what type of zone the bin is collected from, 

it can be seen that the share of driving routes in general is overwhelmingly represented by the urban 

residential cycles, accounting for over 75% of total.  

 

 
Figure 5.3 - Classification of input data by zone collection type 
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However, from the average energy usage figures for this classification type, shown in figure 

5.4, it can be concluded that these cycles are not the most energy-hungry, the most energy demanding 

ones being the urban-rural residential mix driving routes, which also take the longest on average to 

complete, almost twice as long as the 2nd longest. Hence, if a new weekly driving schedule is to be 

considered, the urban-rural residential routes should be considered key routes on a daily basis 

throughout the week. 

 

 
Figure 5.4 - Average energy usage - zone collection type classification 

 

Another observation is related to the Weekly Flats and Domestic routes which appear to take 

longer amounts of time, especially when considering the average duration, presented in figure 5.5. 

This could be due to the route characteristics (plenty collection points therefore many start-stop 

cycles) or a general inefficient approximation of the driving style generated by the Route Builder part 

of the script suite. 
 

 
Figure 5.5 - Average driving cycle duration – zone collection type classification 

58

71

128

69

0

20

40

60

80

100

120

140

Clinical Urban Residential Urban-Rural
Residential

Weekly Flats

En
er

gy
 U

sa
ge

 (
kW

h
)

Average Energy Usage – Zone Collection Type

8147

11710

18901

10840

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Clinical Urban Residential Urban-Rural
Residential

Weekly Flats

D
u

ra
ti

o
n

 (
s)

Average driving cycle duration - Zone Collection Type



75 
 

Additionally, the figures related to the classification of input data by day of week, presented 

in figure 5.6 suggest a reasonably well distributed energy usage on average across the week, albeit 

this could still be further improved. Driving route durations on average vary by almost an hour of 

effective route collection, running between the busiest day (Wednesday) and the slackest day 

(Thursday), as seen in figure 5.7. This trend has a direct consequence on average energy usage, which 

can be observed under figure 5.8. 

 

 
Figure 5.6 - Classification of input data by day of week. Note that input data describes a 2-week route schedule. 

 

 
Figure 5.7 - Average driving cycle duration – day of week classification 

 
Figure 5.8 - Average energy usage – day of week classification 
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In order to further improve the distribution of energy usage throughout the week, driving 

routes could be re-organised by splitting some of the longer driving cycles into smaller sections so that 

the average daily usage can be more consistent regardless of the day of week.  

Similarly, optimising the energy usage distribution across the entire week is a desirable 

concept as this simplifies the design choices (by only needing to consider one reliable energy usage 

figure) that may arise when conceptualising renewable energy generation options at the depot, which 

in turn would help reduce the charging costs of a 100% deployed eRCV fleet. 

Similarly, it can be seen from the presented data that the average number of refuse collection 

vehicles deployed on any given day ranges from 24-26, assuming one eRCV performs one refuse 

collection driving cycle daily. Assuming the minimum value of 24, a summarised analysis can be 

performed in order to understand the daily energy use regarding a fleet of eRCVs. Assuming that every 

vehicle has the battery size provided by the eRCV manufacturer (300kWh), and using average energy 

usage and average driving cycle duration on a daily basis, together with a set start time for rubbish 

collection at 8AM and only one route shift, it can be shown that the rubbish collection shifts will end 

on average at 11:50. At this point the total, fleet-level, energy available to provide grid services would 

be 7000 kWh, allowing for other losses and refuse collection vehicles that fail to make it back to the 

depot by the average end shift time, implying an approximate total figure of 2800 kWh of energy used 

by all vehicles for one day. A detailed day-by-day analysis is presented in the table below, 5.1. 

 

Day of 

week 

Average shift end 

time 

Available grid energy 

(kWh) Number of RCVs deployed 

Mon 11:26 8471 24 

Tue 11:21 8394 25 

Wed 11:44 7752 24 

Thu 10:56 8489 24 

Fri 10:57 8502 26 

Table 5.1 - Energy remaining in eRCV fleet - daily results 

This opens up significant opportunities in employing the vehicle battery as grid support, and 

other energy generators the contracted refuse collection company may have, in order to charge the 

eRCV fleet during low-demand hours and allow the batteries to provide grid support operations during 

peak energy demand hours, effectively using the vehicle batteries as a modular energy storage system 

that can adapt its needs and capabilities in a versatile manner. 

 Finally, some difficulties during the simulation process have been encountered, particularly 

limitations concerning the amount of simulation output data the RAM of the workstation was able to 

hold at one time. The parsim function is pre-programmed in such a way so that the main Matlab 

environment is required to hold all the processed data of all the simulations running at a given time 

in every generated parallel simulation environment. It has been noted that the default, 10 worker 

option (one simulation environment variable per CPU core) causes the data stored in the RAM memory 

to overflow. To avoid an OS crash due to lack of RAM memory, the Matlab environment resets the 

space allocated for holding the simulation data, effectively deleting the data that was stored in RAM 

at that time and causing data corruption on some of the collection route simulations. In order to avoid 

this, the number of simulation environments running in parallel has been reduced from 10 to 5, 

leading to a decreased speedup improvement, but nonetheless keeping a significant advantage in time 
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execution when compared to a one-by-one simulation procedure. In order to fully utilise the CPU 

potential (i.e. using 10 workers at once) more RAM needs to be installed in the simulation workstation. 

 

5.1.4. Potential Reduction in CO2 Emissions and Fleet Costs 
The contracting company that performs refuse collection currently operates a conventional, 

diesel-powered vehicle fleet. By utilising the simulated energy usage prediction figures, and noting 

the gross thermal calorific value of diesel, estimates concerning the reduction of CO2 emission if a full-

electric fleet replaces the diesel-powered vehicles may be obtained. 

 From the energy usage previously presented, it is noted that as an estimate, the energy usage 

average for all-classifications-considered is 74 kWh. Based on this figure and the estimated number of 

driving cycles performed daily (or number of RCVs deployed, if a 1:1 factor is attributed), it can be 

seen that the average energy used on a weekly basis is approximately 9200 kWh. This value can then 

be multiplied with the gross calorific value of Diesel [209] to calculate an estimated weekly carbon 

dioxide footprint. This has been found to be about 1500 Kgs of carbon dioxide emissions every week, 

which, if extrapolated, results in approximately 78 metric tonnes of carbon dioxide gas emitted yearly.  

 In reality, the carbon dioxide footprint is likely to be larger than expected, since diesel-

powered powertrains have a significantly lower system efficiency, so the real energy requirement will 

likely be higher than that of a full-electric RCV. Furthermore, the emission estimate precision can be 

further improved if actual fuel consumption figures for the diesel RCVs in use are provided. However, 

publicly available mileage data for these types of vehicles is vague or scarce. Similarly, the 

methodology explained above can also provide calculation estimates for other harmful greenhouse 

gases (GHGs), such as NOx. Finally, a different methodology employing refuelling data for this type of 

estimation has been carried out later in section 5.4. 

 Having discussed the energy fleet requirements, in order to fully understand the potential 

reduction in carbon emissions as well as the refuelling costs an electric vehicle fleet may incur, the 

aspect of electric vehicle fleet charging needs to be considered. To do this, 2 scenarios have been 

considered. 

 Scenario 1: Off-grid vehicle charging system. The first scenario implies an off grid charging 

system that works independently of the national energy grid. The contracted local waste management 

company currently operates a biomass refuse incinerator with a rated power output of 1MW. When 

comparing this figure with expected energy usage, it can be deduced that the entire fleet is realistically 

able to be charged from the power output of the incinerator, offering the opportunity for creating an 

off-grid charging system which also provides the benefit of having to consider less electric grid 

regulations, therefore more flexibility in terms of charging performance and lowered costs in system 

design and maintenance.  

 Finally, since the incinerator is required to operate constantly independently of the eRCV fleet, 

all the system energy output is “free” from the charging fleet’s perspective. Therefore, if the eRCVs 

were to be charged off-grid employing the incinerator-sourced electrical energy, a theoretical 100% 

decrease in tailpipe CO2 emissions generated by the fleet operations may be achieved, given that the 

incinerator is producing the emissions anyway from the act of incinerating the waste. However, this 

scenario will be more prone to failure from a system design perspective since there is only one energy 

source for the chargers. In addition, if the fleet is not grid connected, the benefit of using the fleet 

batteries for grid support cannot be realised, and the additional income stream cannot be utilised. 

 Scenario 2: Grid connected charging system. The second possible scenario for charging the 

electric fleet in question is represented by having the charging energy supplied by a grid-connected 



78 
 

system, which takes the energy from the national distribution grid. In this context, the carbon dioxide 

emissions can be determined by looking at the CO2 emissions produced per kWh of energy generated 

across the energy grid as a whole. As of September 2022, this is currently set at 0.233 kg of CO2 per 

kWh [210].  Whilst in this scenario the importance of other factors become more prevalent, such as 

vehicle charging efficiency, an average of at least 50% in CO2 emission reduction is expected, relative 

to a Diesel-powered fleet.[211] 

 One benefit of this scenario is that the user can profit from energy price mechanics, such as 

peak/off-peak energy price variations. Therefore, a strategy involving buying energy (charging) at low 

price and selling vehicle leftover battery energy (supporting the grid) at high price, may be possible to 

produce income and support the costs of charging the fleet. This should therefore aid in quickly 

attenuating the higher upfront costs of switching to an electric fleet, which have been previously 

documented in literature[212]. Due to the fact that after every day there is a significant amount of 

energy left in the vehicle batteries, once the RCVs end their respective shifts, they can be connected 

to the grid and have the leftover capacity used as grid support BESS. This can effectively provide grid 

support during peak energy demand periods, thus reducing the net cost of system implementation 

and maintenance on the long-term, through having the ability to “sell” the available energy to the 

national grid during peak demand.  

 Similar to computing the carbon dioxide footprint reduction, charging patterns need to be 

considered again for indicating the incurring costs for an electric fleet. Given that one driving cycle on 

average depletes only 24% of the vehicle battery capacity and the shift times are reasonably 

predictable, with all shifts occurring during the day, it can be safely suggested that vehicles be charged 

overnight to benefit from the significantly lower off-peak energy costs. A full vehicle battery charge 

during off-peak times is predicted to cost approximately 60-70 GBP as of January 2021, accounting for 

a 90% charging efficiency, and can be achieved with reasonable margin during a time when there are 

off-peak tariffs available, and by employing 50-60 kW-rated charging stations. 

 Furthermore, if grid support is not required, perhaps the supplied vehicle battery capacity 

could be reduced, making the cost of an eRCV lower and slightly more efficient, due to the overall 

vehicle being lighter. 

 

5.1.5. Summary 
The presented findings suggest that both energy usage and carbon dioxide emissions can be 

significantly reduced by implementing an eRCV fleet for refuse collection in an urban environment. 

Furthermore, the financial and environmental impacts of the fleet can be further enhanced by 

implementing vehicle charging systems that take advantage of local energy production. 

 The analysis and calculations performed in this study can be further extended for larger, more 

complex fleets, such as bus routes. Similarly, other urban areas can also benefit from these 

conclusions, by using a reasonable degree of result extrapolation depending on the topography of the 

area in question. Such vehicle fleets may bring bigger savings in terms of maintenance and operation 

costs, as well as more meaningful reductions in the carbon footprint of the public logistics sector 

around Sheffield and beyond. 

 The following section is concerned with a similar analysis that has been performed on a 

different heavyweight vehicle fleet, buses for public transport. 

 

 



79 
 

5.2. Understanding eBus fleet energy usage through simulated telemetry 
5.2.1. Aims 
 Similar to the public refuse collection vehicle fleets, understanding the emissions produced by 

public transport fleets is also a key factor that needs to be considered towards partial or complete 

transport decarbonisation. This is due to public transport comprising a significant share of the overall 

emissions in urban areas [213]. This section outlines the potential in carbon dioxide reduction by 

employing electric bus fleets by comparing the footprint of the energy required by an electric bus fleet 

to that generated by a conventional, diesel-powered one. Additionally, a cost analysis between these 

two fleets is provided. The results and suggestions generated by this study can prove to be useful 

insights and estimations in order to investigate the feasibility of implementing electric bus fleets on 

different types of public transit routes. 

 The investigation considers various route types as well as two different bus types. The results 

employ energy consumption figures generated by the software model described in chapter 3 of this 

thesis, tuned to emulate standard specification electric buses available on the market. This has been 

produced in a similar fashion to the one described in section 5.6. The technical specifications of the 

used vehicles may be observed in appendices 4 and 5. 

 The bus routes that have been chosen for the analysis are real routes that are currently being 

served by both conventional diesel-powered and hybrid buses. Their distances are relatively short, 

although their operating profiles are different, in order to accommodate a high degree of relevancy. 

After defining the route dataset, speed-distance value pairs that comprise artificial telemetry has been 

generated based on the distance between bus stops along the routes. The telemetry describes 

trapeziums (i.e. speed increase – constant speed cruise – speed decrease) between each stop. The 

increases and decreases are equivalent to the bus driver employing up to 50-75% of vehicle 

acceleration and deceleration performance, a behaviour that has been deemed realistic through 

observation. The constant speed cruise value has been set to be the bus average speed observed in 

urban areas. 

 An example of such a route, along with its simulated telemetry can be observed in figure 5.9 

below. Maps of the chosen routes can be viewed in the appendix 6 for reference. 
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Figure 5.9 - Example of bus route and its simulated telemetry 

 

5.2.2. Discussion & Simulation Findings  
 Figure 5.10 shows the energy usage prediction results benchmarked against estimated results 

calculated using energy consumption estimates found in literature [214]. The increased consumption 

in the model prediction may be attributed to higher acceleration/deceleration cycles, which are 

uncommon under normal circumstances. Similarly, the presence of power draw from vehicle auxiliary 

systems and higher drag coefficient than normally expected may also negatively affect energy usage. 

An important aspect that needs to be considered is represented by the energy use difference between 

single-deck buses, and double-deck buses. Although the kWh/km energy consumption of double-deck 

buses is significantly higher, they are also capable of accommodating more passengers. Moreover, if 

the energy consumption figure is divided by the maximum number of passengers to generate an 

energy consumption per passenger figure, it can be determined that a double-deck bus is more 

efficient than a conventional simple single-decker vehicle. Whilst this is highly dependent on the time 
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of day (as this usually dictates how many passengers are on the bus), understanding a power to 

passenger weight ratio is especially important for further investigations into optimising per-route 

energy usage. This enables the authority that schedules the timetables flexibility over what vehicle 

type runs at any given time of day. 

 

 
Figure 5.10 - Energy consumption results - simulated telemetry 

 When extrapolating the previously presented energy usage predictions to generate route 

service-level or fleet-level estimates, such as carbon footprint estimation and cost analysis, route 

scheduling must be considered. Energy demand for two of the featured route examples is relatively 

low, due to the small number of daily runs served by the fleet. This suggests a low passenger demand 

for these routes and can therefore be served by simple, single-deck buses to minimise energy 

requirements. The third route, which is provided in an urban area, has a schedule comprising many 

runs per day, indicating a high passenger demand, as observed in table 5.2. Thus, energy requirements 

of the bus fleet serving this route may be further minimised by employing high-capacity, double-deck 

buses during rush hours and single-deck buses during off-peak periods. Similarly, the same strategy 

may be applied when considering special route scheduling due to ongoing popular public events. 

 

Route Type 

No. of daily 

route runs 

(round trip) 

Daily Energy Demand (kWh) 

Single 

decker Bus 
Double Decker 

Urban, low passenger demand (4.28km) 8 57 80 

Semi-urban, low passenger demand (7.48km) 7 89 122 

Urban, high passenger demand (6.42km) 94 1024 1429 

Table 5.2 - Daily energy requirements 

 Figure 5.11 displays estimates concerning the total carbon emissions produced daily. 

Estimates for a diesel-powered fleet have been computed using CO2/km threshold standards provided 

by the EU’s EURO certification regulations [215] for heavyweight vehicles. Whilst the difference in 

carbon footprint appears low on a daily basis, this adds up quickly, with monthly reductions of up to 

50%. This suggests that a fully electrified fleet is able to save the average emissions equivalent to those 
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produced by up to 30 regular passenger cars per route on a monthly basis, depending on energy 

requirements. 

 

 
Figure 5.11 - Carbon footprint estimation 

 

 Complementing the carbon footprint estimations, a comparison between energy refuelling 

costs is displayed under figure 5.12. The diesel estimate has been computed employing mileage figures 

for currently operational Diesel buses [216]. Numbers suggest that an electric fleet is also competitive 

on an energy replenishment basis, although at higher upfront acquisition (capital) costs. However, 

with the increasing interest and technical development of renewable and nuclear energy sourcing, 

energy prices will likely decrease in the future, as these types of energy generation will be cheaper to 

run [217]. This will likely have the effect of opening up a “cost gap” that may be able to accommodate 

the difference in high purchase costs of electric buses, significantly reducing the period until the break-

even point. This is also aided by the lower maintenance costs of electric powertrains relative to their 

conventional, internal combustion engine-powered counterparts. Furthermore, electric charging 

costs may be further reduced if the eBus fleet has access to bespoke charging systems similar to the 

one described the following section of this chapter. 
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Figure 5.12 - Refuelling costs estimation 

 

 After running the initial energy use simulations with the specified parameters, the results 

were compared against literature in order to ensure consistency and provide some degree of 

validation. Whilst energy usage figures initially appear over exaggerated, this could be attributed to 

multiple factors. 

 Firstly, it has been observed that electric bus specifications are not consistent both in 

literature, and manufacturing companies’ press releases. Consequentially, getting an accurate 

estimate of used energy based purely on linear energy consumption figures, such as kWh/km and 

kWh/mi is difficult. Literature suggests a large variation of consumption figures for models with similar 

technical specifications [218]. 

 Additionally, another aspect that has to be considered is represented by the aspects extrinsic 

to the electric vehicle performance. In addition to the electrical energy employed for vehicle 

movement, there are other auxiliary systems that draw energy from the electric vehicle battery. Whilst 

some of these have a negligible energy demand, such as radio systems, in-vehicle lighting and other 

electronic monitoring systems, others may have a significant impact on energy consumption and 

consequentially vehicle range. One of the most energy-taxing systems is represented by electrical heat 

pumps, which are commonly used in all electric vehicle designs. Previous studies [219] indicate 

electrical heat pumps have a negative impact on vehicle range of up to 50%. Moreover, many studies 

and technical specifications present in press releases do not normally specify whether their energy 

usage estimations account for such factors [214][220] . 

 Another aspect that can lead to a high degree of variability in energy consumption is 

represented by variable environment conditions, such as traffic and the large changes in vehicle mass 

due to passengers boarding and alighting. As stated in the previous section, and supported by recent 

studies [221], traffic is highly unpredictable and difficult to emulate in a virtual environment. This 

negatively affects the precision of energy usage simulations disproportionately, with higher error rates 

present in simulations predicting higher intervals of time or distance [222]. 

 In order to address the uncertainty factors presented above and alleviate the possibility of 

various inconsistencies in error, the software model has been adjusted such that it reflects a 
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“barebones” model, with the sole add-on represented by small-scale vehicle energy consumers. 

Therefore, the presented results may slightly underestimate the real-life requirements. Nonetheless, 

the predictions generated by the model are consistent relative to estimations computed employing 

literature figures for average energy consumption. This confirms that the predictions are usable for 

further investigations.  

 

5.2.3. Simulated Telemetry Energy Usage Outcomes 
 The electric bus investigation presented previously suggests that conventional bus fleet 

replacement with zero carbon emission electric alternatives is feasible, especially for short-length 

routes. Additionally, it offers another application that validates the flexibility of the vehicle model 

presented in this thesis, indicating its ability to accommodate any type of vehicle. 

 The next section is concerned with extending the findings presented in the past section with 

employing real-life telemetry in order to provide a better energy consumption estimate of eBuses. 

 

5.3. Assessing Energy Use of Electric Buses through real-life telemetry data 
Following the results and findings outlined in the previous section (5.2) concerned with 

estimating electric bus energy usage through employing simulated telemetry, the research has also 

been extended to utilising real-life telemetry data. Although the research featured in this section is 

strongly related to the previously presented results, having similar objectives and aims, it can 

successfully be presented as a separate, standalone investigation. This is particularly due to the 

significant differences in the complexity of the methodology employed. 

 

5.3.1. Investigation Objectives 
As previously stated, the research that will be presented in this section serves as an extension 

to previous energy usage simulation utilising simulated telemetry data. As such, the results presented 

in this section aim to complement previous findings related to understanding energy usage of various 

types of electric buses. Similarly, the data employed in this section should also give a better 

understanding as to how simulated telemetry datasets can be further refined to better reflect realistic 

driving conditions. However, the energy usage estimations presented in this section are likely to better 

reflect realistic consumption. This is because the input speed telemetry features various driving 

manoeuvres, such as prolonged, intensive acceleration and pseudo-random start-stop cycles, that 

should better reflect real-life conditions. 

In order to facilitate a comparison process with previously presented results, the telemetry of 

buses driving on four bus routes with similar passenger demand and urban/rural profile have been 

recorded. Each of the chosen routes feature telemetry for full, return journeys. An example of 

recorded telemetry, as well as the mapped routed upon which it was recorded can be observed under 

figure 5.13. 
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Figure 5.13 - Example of recorded bus telemetry 

5.3.2. Acquiring and processing the real-life telemetry data 
The telemetry data employed as input datasets for this investigation consists of speed-time 

key value pairs, which are then manipulated by the vehicle model described in chapter 3 and utilised 

as reference data for the model control system. In order to ensure input dataset reliability, two 

methods of obtaining the final input telemetry data have been used.  

Firstly, the speed-time value pairs may be obtained through time-based recordings of global 

positioning system (GPS) datasets [223]. These conventionally consist of entries of value sets 

comprised by recording time, altitude, latitude, and longitude. The data resolution, which is usually 

linked with the frequency at which GPS data is being recorded, is usually bounded to time. For the 

purposes of this investigation, a data resolution of 1s has been utilised. 

In order to record time-based GPS data, two different devices have been used. Firstly, GPS 

data has been recorded using a Garmin eTrex 10 GPS logger [224], configured for registering data 

every second. Secondly, in order to ensure data acquisition reliability, the telemetry has also been 

recorded through the mobile-supported Strava app [225]. This software, which is popular in the fields 

of running and cycling, thanks to its ability to record high-resolution detailed data with relative ease, 

utilises the mobile phone’s GPS sensor upon which it was installed. Finally, both the solutions used for 

recording time-based GPS data are able to export the logs as GPX files, which have then been 

processed as raw CSV files using the Garmin BaseCamp [226] software. 

Following the GPX to CSV file conversion process, in order to obtain speed-time value pairs, 

the distance between the coordinates of the log entries must be calculated. However, in this scenario, 

0

10

20

30

40

50

60

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

Sp
ee

d
 (

km
/h

)

Time Elapsed (s)

120 Crystal Peaks



86 
 

conventional mathematical systems cannot be used straightforwardly, as the latitude/longitude 

values are referenced against a sphere (the Earth surface). Consequentially, in order to determine the 

linear (i.e., as the crow flies) distance between the entry logs, a mathematical conversion of distance 

from spherical to flat spaces must be employed. Several conventional solutions exist, however, the 

Haversine formula [227] has been used due to its high conversion accuracy, as described in equation 

set 5.2 below, with ϕ values being the latitudes and λ values the longitudes of the entries in radians 

(1,2 denoting which is the origin and destination point), 𝑅 is the Earth’s radius in metres, d is the final 

linear distance in metres and a and c being annotations to simplify the displayed equation set. 

 

𝑎 = 𝑠𝑖𝑛2
∆𝜑

2
+ cos𝜑1 ∗ cos𝜑2 ∗ 𝑠𝑖𝑛

2
∆𝜆

2
 

 

𝑐 = 2 ∗ 𝑎𝑟𝑐𝑡𝑎𝑛(√𝑎, √1 − 𝑎) 

 

𝑑 = 𝑅 ∗ 𝑐 

 
Equation 5.2 (set) - Spherical (Great Circle) to linear distance conversion using the Haversine formula 

Following the distance conversion, the speed is then effectively the distance (now expressed 

in metres) between the point entries. This is because these distances are recorded every second, 

meaning that the distance is also the speed (expressed in m/s) between two points. Finally, a 

conversion from m/s to km/h is carried out by applying the 3.6 constant to all values (1 m/s = 3.6 

km/h). An example of telemetry section generated employing this method can be viewed under figure 

5.14, in blue. 

The second method used for recording real-life telemetry data is also based on information 

logged by the mobile-supported Strava app. Besides recording time-based GPS data, this software also 

uses in-app computation to calculate its own speed metrics, recorded as enhanced speed. The 

advantage of this recording method is that it convolutes location-based information with readings 

logged by the mobile phone’s integrated accelerometer. This has a beneficial effect on the recorded 

telemetry accuracy, as it eliminates positional inaccuracies in the GPS readings due to bad signal. This 

is especially important when the vehicle is stationary, as low satellite signal has been observed to have 

a significant effect on the time-based GPS entry logs, frequently recording false, small changes in 

vehicle position and generating false speed telemetry readings produced using the first method. 

In order to acquire the Strava app enhanced speed data readings, the information is exported 

as Strava’s proprietary format, FIT files. These are then parsed using the FitParse Python library [228], 

which decodes the format. The speed-related information is then extracted using Python-based basic 

control flow statements and written in a CSV file. The code concerned with data extraction has been 

attached in appendix 7 of this document. An example of a telemetry portion generated using this 

method can be observed under figure 5.14, in red. 
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Figure 5.14 - Example of telemetry produced using Strava’s proprietary enhanced speed calculation method and the 

conventional time-based GPS approach. Note the vehicle idling periods set to zero and the “cleaner” telemetry aspect of 
the Strava solution (red) relative to the GPS-only information (blue) 

Finally, during the telemetry recording process, it has been observed that the time-based GPS 

data logged using the Garmin GPS logger has occasionally missed logs. Whilst this does not have a 

significant effect on small portions, the impact of these missing entries may add up, resulting in 

significantly incorrect telemetry data. Due to this, but also the improved accuracy of the enhanced 

speed calculations computed by Strava, the telemetries generated using the second method have 

been chosen for simulation work. 

 

5.3.3. Simulation Findings 
As previously stated, in order to ensure a consistent comparison to the previous simulated 

telemetry research, bus routes having similar features were chosen for telemetry recording. Figure 

5.15 shows the energy usage prediction of 3 of the recorded routes. The estimated consumption using 

literature figures [214] is also displayed, for reference. 

 

 

0

10

20

30

40

50

60

70

80

0 250 500 750 1000 1250

Sp
ee

d
 (

km
/h

)

Time Elapsed (s)

Telemetry Data

Time-based GPS data Strava-enhanced telemetry



88 
 

 
Figure 5.15 – Simulation results – real-life telemetry 

Whilst the distance of the routes is somewhat different to the ones analysed by the simulated 

telemetry approach in 5.3, the energy usage can be normalised, computing a kWh/km figure, which is 

a standard performance metric that can be understood with relative ease. These can be viewed in 

figure 5.16, along with kWh/km figures produced by the simulation of the artificial telemetries and 

estimations using literature figures [214] previously presented. 
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Figure 5.16 - Comparison between energy consumption rates 

 

It can be observed that whilst the energy consumption is predicted to be somewhat smaller 

than the initial simulations based on artificial telemetry, the variation appears consistent throughout 

the routes and bus types. Additionally, the decreased consumption may be attributed to several 

factors, for example the driving style. The artificial telemetry data describe frequent, aggressive 

accelerations and decelerations, whereas the real-life data has portions of slow-steady deceleration, 

allowing the bus to recover some energy through regeneration.  

Additionally, it can be shown that, if the simulated telemetry speed values are scaled down 

by 33%, as presented in figure 5.17, the energy usage of simulated telemetry drops significantly, 

shown in figure 5.18, bringing the values closer to those stated in the literature [214] and real-life 

energy figures. This is due to lower target speeds and most importantly, smoother 

acceleration/deceleration. 
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Figure 5.17 - Scaled-down simulated telemetry example 

 
Figure 5.18 - Energy usage (normalised) comparison between normal simulated telemetry and downscaled version 

Moreover, the frequency of stops in real-life circumstances appears to be lower relative to 

simulated telemetry, which also leads to less start-stop cycles, effectively ensuring steady driving for 

longer periods of time, which is less wasteful in terms of energy consumption. To that end, the 

recorded routes have been predominantly logged during off-peak traffic hours (before 9am and past 

6pm). Therefore, energy consumption during peak times will likely be significantly higher. 

Finally, vehicle mass variation also must be considered. The logged routes were recorded 

during off peak times due to inconsistencies in route availability and timetabling, thus it has been 

observed that the vehicle was mostly empty during the route runs. This suggests a lower-than-normal 

energy consumption due to the vehicle being lighter, which is consistent with figures seen previously  

in literature [214]. Consequentially, a proportional increase of energy consumption with higher 

passenger traffic is expected. 
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5.3.4. Analysis Outcomes & Future Work 
The conclusions suggested by the recorded data, based on real-life bus telemetry, further 

backs up the argument made in section 5.3 regarding the feasibility of electric bus fleets in urban, 

semi-urban and inter-urban environments. eBus technology has the potential to be significantly 

greener than conventional ICE solutions, whilst also being more economical [42] in the long run. 

The presented results further validate the idea that the carbon dioxide footprint and energy 

refuelling costs of an electric vehicle bus fleet are still expected to be lower than a diesel-based 

transportation solution. An effort to estimate a daily energy demand has been attempted – however, 

the timetables have large periods of time throughout the day that do not specify the exact schedule, 

making it difficult to estimate how many runs are carried out during that period. 

Future work related to this investigation may be focused on several areas. Firstly, acquisition 

of more telemetry data may be beneficial, especially if it is focused on recording routes with similar 

telemetry characteristics in different contexts (e.g., many passengers onboard, telemetry logged 

during peak hours etc.). The additional telemetry data will reflect different vehicle weight values, 

which will affect energy consumption and driving attitude (which will also affect energy consumption). 

Additionally, the research may benefit from developing a more detailed model, through more refined 

vehicle technical specifications, to be used in the simulation workflow. Finally, the original time-based 

GPS data may benefit from some data clean-up in order to minimise the effect of inaccurate positional 

recordings due to erroneous telemetry recordings. 

 

5.4. Comparing CO2 emissions and costs of heavyweight fleets in urban areas 
 Having examined the energy usage of multiple types of electric heavyweight vehicle fleets, in 

order to better understand the benefits of electric alternatives to public service vehicle fleets, a high-

level examination of the current carbon footprint and energy refuelling costs of these vehicles is 

necessary. A robust insight into this may be offered when considering the monthly energy 

requirements of a typical council within the UK. 

 To this end, an analysis into several aspects of the vehicle fleet managed by Ashfield Council, 

UK has been carried out. This data has been obtained through private communication with the council 

in question. By inspecting the refuelling logbooks, which contain information concerned with the 

amount of fuel put into the vehicle tank and the price of this, it can be observed that the council 

currently operates fleets of vehicles to service many of its public operations, ranging from refuse 

collection to housing support, many of which are predominantly traditional, ICE-powered vehicles. 

However, the operating fleet size varies significantly between the categories, consequentially the 

carbon footprint share of each category has some variation attached to it.  

 Figure 5.19 shows a pie chart indicating the relative share of the emissions grouped by fleet 

category in Ashfield Council for the month of April 2022. By cumulating the total amount of purchased 

fuel and multiplying it by the amount of emitted CO2 of diesel fuel per litre, it can be determined that 

the total carbon footprint during that period of time has been calculated to be 92.7 tonnes of CO2. 

This equates, on average, to the emissions produced by approximately 240 ICE-powered private 

passenger cars on a monthly basis [229]. 
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Figure 5.19 - Share of Carbon Footprint – Monthly 

Fleet Vehicle Composition 

Environment 
1 gator, 5 sweepers, 1 excavator, 1 JCB, 10 mowers, 2 quad bike, 2 tractors, 22 

vans  

Depot 1 unidentified small vehicle 

Transport 1 4x4 vehicle, 1 van 

Waste 19 refuse collection vehicles, 2 vans 

Housing 34 vans 

Pest Control 2 vans 

Markets 1 van 

Community 

Protection 3 vans 

Highway 

Maintenance 10 vans 

Table 5.3 - Fleet composition 

 As can be seen, the relative share in total carbon footprint (92.7 metric tonnes) indicates that 

fleets incorporating a majority of heavyweight powertrain vehicles have significantly larger emissions 

than fleets comprised of lighter vehicles, such as electric vans and regular passenger vehicles. Whilst 

vehicle fleet sizing plays a significant role in this, the major carbon emitters, except the “Waste” fleet, 
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have similarly sized fleets in terms of vehicle numbers. This effectively proves the previous remark 

related to larger vehicles having higher emissions. Furthermore, the idea is backed by other studies, 

predictions and experiments described in literature [230]. The full vehicle composition of each of the 

fleets is stated in table 5.3 above for reference. 

 Having determined the fleet types that are the largest pollution and cost source, an 

investigation concerned with estimating the amount of emissions and required costs for energy 

refuelling has been carried out. The findings have then been correlated with the results of the 

investigation concerning eRCV energy usage in section 5.2. 

 In order to compare the current emissions of these vehicle fleets to those which may be 

generated by an alternative, electric-powered fleet, electric charging of the vehicles needs to be 

considered. In order to showcase the potential in carbon footprint reduction of electric fleets, two 

types of scenarios may be considered. Firstly, assuming the electric fleets were to be charged from a 

grid connected system, carbon footprint estimations have to consider the current average emission 

per kWh present in the energy grid, currently set at 0.233 kg CO2/kWh [210]. Additionally, the diesel-

related estimations from the Sheffield fleet of eRCV’s have been estimated by utilising and linking to 

the fuel logs and distances covered of the Ashfield fleet. 

 When observing the computed estimations, it has been seen that an eRCV heavyweight 

electric vehicle fleet operating in the Ashfield area, coupled with on-grid charging would lead to a 

carbon footprint reduction of 65-66%. This figure has been observed to be consistent with the eRCV 

fleet operating in Sheffield area, as shown in figure 5.20. 

 

 
Figure 5.20 - Carbon dioxide footprint comparison 

 Furthermore, if the operating fleets were to have access to biowaste burning systems that are 

coupled to heat-extracting energy generators, the tailpipe carbon dioxide emissions of the vehicles 
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would be reduced by 100% as such incinerators produce emissions whether or not the energy 

produced supplies a vehicle fleet. The capabilities of such a system have been previously described 

further under section 5.2.  

 When considering costs related to energy refuelling, similar trends relative to the carbon 

footprint estimations appear. It must be noted that in this scenario, the costs of an electric fleet that 

is being charged via an on-grid system are more difficult to estimate, since such an installation can 

profit from selling surplus energy back to the grid at times of high grid demand, earning revenue from 

grid services. However, this is likely to have a significant beneficial impact on overall cost reduction. 

For the purposes of comparison, the estimation calculation takes into account a more simplistic 

scenario, where energy is being bought from the grid at the average business tariff pricing. The results 

can be seen in figure 5.21.  

 

 
Figure 5.21 - Energy refuelling cost comparison 

 Furthermore, the overall savings offered by deploying an electric fleet will likely be pushed 

significantly lower. This is due to maintenance costs being smaller for electric vehicles relative to 

conventional ones [231], due to the smaller number of moving parts in the powertrain. 

 It must be observed that whilst the reduction is consistent, there appears to be a big 

difference in the CO2 footprint and refuelling costs of the analysed fleets. This is mainly due to the 

difference in the distance that these fleets cover on a monthly basis, as shown in table 5.4. 
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Parameter 
Location 

Sheffield Ashfield 

Distance Travelled (mi) 9796 23000 

Est. Energy Consumption (kWh/mi) 3.48 

Required Energy (kWh) 32140 80040 

Table 5.4 - Fleet energy requirements 

 There are a number of factors that may explain the reason behind the difference in covered 

distance. Firstly, the surface area and population density of the areas served by the refuse collection 

fleets. It can be observed that the population density of the Sheffield area (figure 5.22a) is significantly 

higher than the one calculated for Ashfield (figure 5.22b), as indicated by table 5.5. Areas with higher, 

more dense population have been shown to generate more refuse per a given surface area [232][233]. 

This, in turn, has a significant influence on the number of collection points and the distance between 

them.  

 

  
a b 

Figure 5.22 - Districts of interest 

Parameter 
Location 

Sheffield Ashfield 

Population 557039 127900 

Surface Area (km2) 122.5 109.6 

Population Density (persons/km2) 4547 1166 

Normalised CO2 Footprint (kg CO2/km2) - Diesel 236.2 474.3 
Table 5.5 - Population/area-related information 

 Moreover, another important factor to consider is represented by the data employed for this 

analysis. Whilst data concerning the Sheffield eRCV fleet precisely describes telemetry of vehicles 

performing scheduled refuse collection, the data in Ashfield is based on refuelling logs. Therefore, the 
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odometer readings present in the logs of the latter fleet may also include mileage that has not 

contributed to refuse collection, for example testing runs, vehicle refuse unloading etc. A more 

detailed analysis of the consumption figures of the fleet servicing the Sheffield area has been 

presented in section 5.2. 

 Additionally, the analysis presented above has also been performed for the other fleets that 

service the Ashfield council. Reduction trends are even higher in relative terms for the other fleets, 

although they are smaller in absolute values, due to the significantly shorter distances covered. 

Moreover, the energy consumption figures used in these investigations have been taken from press 

releases of electric alternatives to the vehicles currently being used [234]. These are likely to be 

optimistic, with higher energy consumption figures likely in real-life scenarios. Therefore, the 

estimated reduction in emissions and costs when deploying an electric fleet may have a significant 

degree of error. 

 Example analyses of CO2 emissions for two other major fleets can be observed under figure 

5.23. Similar trends have been observed with energy refuelling estimations. 

 

 
Figure 5.23 - CO2 emission estimation for other fleets 

 Finally, the previously presented analysis of carbon footprint and refuelling costs indicates 

that electric alternatives to heavyweight public service vehicle fleets may be a significant step forward 

towards local and place-based decarbonisation. Moreover, the cost calculations suggest that this may 

also be performed in a financially sustainable way, with the lower operating costs of electric 

powertrains capable of shortening the period to the break-even point. 

 Having discussed the capabilities of heavyweight PSV vehicles, at both low-level and high-level 

perspectives, the following section is concerned with presenting findings related to energy 

consumption of such vehicles over short distances with varying numbers of start-stop cycles. 

 

 

5.5. Understanding Energy Usage at Street-level for heavyweight powertrains 
 The findings of the investigations performed on various heavyweight public service vehicles 

presented previously has generated further interest into investigating the effect of start-stop speed 

variations on energy usage in a more localised, small-scale environment. 
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5.5.1. Objectives 
 This chapter section presents another application of the software prediction model, which is 

concerned with understanding the energy usage of heavyweight powertrains undergoing frequent 

stops at a street-level. Whilst the simulations in this section have been set up to predict the energy 

usage of an eRCV, a similar argument may be made for other similar vehicles, such as electric buses, 

although the suitability of such a model to integration into traffic is yet to be explored.  

 In addition to assessing the predicted energy use depending on geographical features and 

number of stops, key aspects related to finding an optimum number of stops per street for refuse 

collection are also studied. The purpose of optimisation in this case is to minimise vehicle energy use 

during normal collection operations. Finally, conclusions arising from the application of the model will 

be provided, in addition to some key recommendations regarding operation optimisation of such eRCV 

fleets that complement existing findings in waste management research. It is expected that, if applied 

correctly, these recommendations will significantly impact electric vehicle energy use in a positive 

way. 

 

5.5.2. Methodology 
In order to allow the presented software model to simulate the scenarios of interest in this 

investigation, a specific style of input data had to be produced in the format supported by the 

simulation environment. The modelled input data has been created to reflect normal refuse collection 

operations covering a set street length. After observing real-life operation of traditional ICE-powered 

RCV fleets when collecting refuse bins in the Sheffield City Region, UK, several approaches were 

considered that generated different modelling datasets, which are discussed below. 

After considering the requirements of the simulation environment and correlating these with 

the aims of the simulation results (i.e. energy usage prediction), two input data modelling approaches 

have been identified. 

 The first modelling approach considered is one based on an input dataset that consists of 

speed-time value pairs. The main advantage of this approach is that it represents the intuitiveness of 

reading the energy usage predictions, which will be generated as a time-based prediction. However, 

the main problem of this approach arises when attempting to model the input dataset. Since, as in 

this context, there is no direct causality link between distance and time, it is very hard to estimate the 

amount of distance travelled using solely the speed-time value pairs and first-order approximation 

principles. Therefore, maintaining control over elapsed distance and ensuring equal distance values 

over many datasets can prove difficult. 

 The second modelling approach employs an input dataset that is composed of speed-distance 

value pairs. The advantage of this technique is that it allows for complete control over the amount of 

distance travelled by the vehicle during the simulation, which in turn signifcantly simplifies the process 

of creating the input dataset. The main drawback of this method can be traced back to the lack of 

causality issue described previously. A speed-distance set of value pairs do not contain any 

information related to time, therefore the energy usage predictions would not be able to account for 

any time-dependent energy use during potential periods when the vehicle was stationary, such as 

heating, radio etc.  

 While this may pose a significant accuracy-related problem in a driving contexts with a high 

degree of randomness, where the energy usage predictions may be affected due to traffic and high, 

inconsistent speed variations, the lack of causality is not a significant issue on refuse collection 
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sections, as traffic is rarely a problem in a single street during bin collection. It has been observed that 

under normal refuse bin collection operation, the vehicle usually operates in a continuous fashion and 

the vehicle speed is usually maintained at a low level. This low speed has been determined to be, on 

average, similar to a human walking speed in order to facilitate the actual bin collection by the 

workers. Therefore, it can be assumed that the lack of correlation between the two approaches 

presented above and a real-life context is expected to be minimal. Consequentially, the speed versus 

distance approach has been deemed suitable for the purposes of this case study, because of its degree 

of intuitiveness when modelling. 

 Two different methods of input data generation have been developed employing the speed 

versus distance approach, with the second one being an evolved iteration of the first. 

 

5.5.2.1. Modelling Approach 1: “Ideal Cycle” – Simple approximation, speed vs distance 
The first method developed, using the speed versus distance approach, employs a triangular 

approximation method to “emulate” a given driving pattern. This involves creating triangle-like vehicle 

driving patterns (for acceleration/deceleration) between an assumed number of evenly-spaced 

collection stops, over a fixed and predefined distance. This method produces driving patterns that 

strike a good compromise between refuse collection efficiency and vehicle energy usage. 

 Each triangle pattern in the final output aims to describe a period of acceleration, followed 

immediately by a period of deceleration, from one cluster of bins to the next. It is worth noting that 

the acceleration and deceleration points on the final driving cycle are predetermined by the assumed 

number of stops, the only variable factor being the acceleration and deceleration slopes that connect 

these points. 

 The method is a 4-step process that can be described as presented below. The justification 

behind employing powers of two in the chosen values and calculations is that an exponential trend 

can be assumed when creating the number of start stop cycles (i.e. a 4-stop cycle may be generated 

from a 2-stop cycle and so on). 

 

1. Set the desired street length (set at 512m, for ease of calculation, and successive division 
allows a wide variation in number of stops within the street) 

2. Set the number of stops required (used multiples of 2n+1, sole exception being 2 stop)  
3. Divide to discover distance between each stop 
4. Assume acceleration until mid-point of each start-stop cycle such that at the mid-point the 

vehicle will have a set speed, then decelerate untill the end of the cycle, such that the vehicle 
will have 0kph at the ‘stop’ position. 

 

A driving pattern example generated by this approach can be seen in figure 5.24. Acceleration 

and deceleration slopes are assumed identical for ease of calculation and pattern smoothing. 
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Figure 5.24 - Ideal cycle driving patterns, example 

 From the process described above, it can be seen that the shapes of the driving patterns will 

not change regardless of the maximum set speed, the only change being the rates subject to various 

acceleration/deceleration slopes. 

 However, whilst this triangular approximation-based method provides a good statistical 

starting point, it does have several drawbacks. Firstly, it can be observed that the driving patterns 

require a high degree of precision and driving predictability to accurately follow. This can cause 

inconsistencies in accurate energy usage prediction, since it has been concluded that the driving styles 

of eRCV operators have a high degree of variability. Furthermore, in the case of generated driving 

patterns that feature a high number of start-stop cycles, the method may assume acceleration and 

deceleration deltas that may be unachievable by the vehicle under normal operation in real-life, 

effectively presuming performance capabilities beyond the vehicle’s technical specifications. This is 

bound to significantly reduce the relevancy of such simulations. 

 

5.5.2.2. Modelling Approach 2 “Realistic Cycle” – Custom-conditional approximation, speed vs 
distance 

Following careful consideration, it was determined that the first method is unsuitable to give 

a realistic energy usage estimation. This is mainly due to drawbacks related to being unable to 

accommodate a wide range of driving styles and lack of correlation with the vehicle’s technical 

specification. An improved method has been developed that adds a layer of conditional complexity on 

top of the first approach described in the previous subsection. The added complexity will generate 

different driving shapes depending on the imposed speed limit set for a given set of generated driving 

patterns, and should better reflect various driving styles, increasing the relevancy of energy usage 

prediction to real-life applications. 
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 As previously, the acceleration and deceleration slopes are equal for ease of pattern 

generation. The approach is presented below. The assumptions taken when setting the analysis values 

are similar to the approach described in the previous subsection.  

 

1. Set the desired street length (set at 512m, for ease of calculation) 
2. Set the number of stops required (used multiples of 2n+1) 
3. Divide the desired street length by a set number of stops to find out length of each start-

stop cycle 
4. At the start of every start-stop cycle, the driver will begin to accelerate at a maximum 

specified rate. The acceleration/deceleration rates have been directly derived from actual 
vehicle physical performance specifications. 

5. If a maximum set speed is reached before the midpoint, the driver will stop accelerating 
and maintain that set speed for several meters before the end of the cycle, then will 
decelerate. 

6. If the maximum speed is not reached before midpoint, the driver will decelerate from 
midpoint to 0. 

 

 It can be observed that by adding this conditional complexity layer that takes into account an 

imposed speed limit, the driving pattern shapes on a speed versus distance graph can vary from a 

triangle to a trapezoid shape. Consequentially, this technique features a more refined approach in 

terms of acceleration control. Therefore, this method has been successfully applied to a wide range 

of driving cycle patterns with various conditions (variable acceleration intensity, variable road slope, 

various set limit speeds etc.). 

 Examples of generated driving patterns using this method can be seen in figures 5.25 and 5.26. 

 
a) 

 
b) 

Figure 5.25 - Realistic cycle driving patterns. a) 3 stops, 512m street, 20kph limited, b) 5 stops, 512m street, 20kph limited 
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Figure 5.26 - Realistic cycle driving patterns. 33 & 17 stops, 512m street, 20kph limited 

5.5.3. Results 
Following the methodological development phase, different test cycles have been created by 

employing the mathematical construction approaches presented previously. The aims of these tests 

are particularly concerned with understanding vehicle energy usage related to various vehicle driving 

styles. Another important aim is related to quantifying the potential improvements in energy saving 

by using lower vehicle operation speeds and taking advantage of the energy re-harvesting capabilities 

of the vehicle, such as through regenerative braking. 

 

5.5.3.1. Ideal Cycles – Triangle approximations for each start-stop cycle 
The “ideal cycle” approach described previously has been deemed restrictive in its ability to 

emulate real-life driving behaviours because of its large acceleration-braking invervals. However, the 

results of the simulations related to this approach are nontheless useful for determining a reference 

set of baseline energy figures. This is meant to serve as a guideline for comparison relative to other 

simulations and provide understanding of the energy-saving potential in driving pattern scenarios that 

strike a good balance between time efficiency and energy usage. 

 The simulation sets, based on the “ideal cycle”, compare energy usage at different target 

maximum speeds and number of stops. It has been found that regardless of the set target maximum 

speed, an inverse exponential correlation exisits between enegy usage and different numbers of start-

stop cycles. This happens because cycles with a high number of start-stop cycles prevent the vehicle 

from reaching higher speeds at which energy consumption is more significant. Additionally, simulation 

results suggest that intense acceleration up to low speeds is more economical than steady 

acceleration up to higher speeds. One of the potential reasons behind this behaviour may lie with use 

of a single gear, which may have an unsuitable gear ratio for higher speeds, effectively pushing the 

motor into a low-efficiency, high-RPM performance zone. This is highlighted by the energy usage 

comparisons present in figure 5.27. This evolution is expected since energy usage is tightly correlated 

with vehicle acceleration. This correlation is further amplified in heavyweight powertrains. 
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Figure 5.27 - Energy usage – ideal cycle comparison 

5.5.3.2. Realistic Cycles – Triangle/Trapezoidal approximation for each start-stop cycle 
Since the “realistic cycle” driving cycle mathematical construction approach has been deemed 

more representative of real-life eRCV driving styles, and should therefore maintain a higher degree of 

relevancy, the analysis of the simulations carried out is more comprehensive. Comparisons focusing 

on energy use have been made by changing several of the primary factors that affect the energy 

demand, including various set limit speeds, acceleration intensities and road inclination. 

 It was determined that for an imposed speed limit, energy usage decreases with respect to an 

increase in the number of start-stop cycles in a test-driving pattern, as seen in figure 5.29. This 

correlates well with the conclusions presented by the analysis of the “ideal cycle” related simulations 

presented previously, regarding the acceleration effect on energy usage. On a similar note, the 

increased energy usage for the driving patterns featuring small numbers of start-stop cycles (2-9) may 

be attributed to the higher average speed, and a vehicle cruising at a high speed can consume 

significantly more energy when compared to accelerating up to a certain much lower speed. 

 The energy usage figures and the inverse exponential trendlines regarding energy usage can 

be seen under figure 5.28. 
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Figure 5.28 - Realistic cycle driving pattern comparison 

 Similarly, simulations have been carried out with a fixed set speed limit, with various 

acceleration levels, focusing on values between 50% and 100% of the maximum acceleration available. 

The justification behind these simulation comparisons is related to the remarks regarding eRCV driving 

styles. It has been observed that drivers rarely use the full capability of the vehicle’s acceleration, the 

exact level being highly variable and related to road conditions and other external factors. Therefore, 

understanding the correlation between vehicle energy use and acceleration applied during 

acceleration phases is critical towards determining reliable energy figures for further analysis. 

 Simulation results show that although decreased acceleration will generate slower collection 

times, they can significantly reduce overall energy demand, as seen in figure 5.29. It can be observed 

that the energy saving is further accentuated by the higher the number of start-stop cycles in an 

emulated driving pattern. In these specific contexts, a potential energy saving of almost 30% can be 

observed, relative to 100% acceleration intensity used during acceleration phases. 

 This interpretation relies on data gathered from different ‘set’ speed limits that show similar 

trends, confirming the conclusion, and are presented in figure 5.29. 

 

 
Figure 5.29 - Realistic cycle driving pattern comparison, various acceleration intensities 
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5.5.3.3. Road slope effect on street-level energy usage 
Previous work on energy usage simulation of such heavyweight powertrains suggest that road 

slope / incline together with acceleration generally have the biggest impacts on energy consumption 

[235]. Furthermore, analysing the slope effect on energy usage is especially important for cities with 

mixed topographical features, such as is the case of the City of Sheffield in the UK and its surrounding 

area.  

 Since it is expected that eRCV drivers will only collect refuse while facing downhill in the UK, 

due to standard health and safety procedures, and given that uphill refuse collection is guaranteed to 

significantly affect energy consumption in a negative manner, simulations with various degrees of 

negative relative slopes have been carried out using the generated realistic cycle patterns. By 

analysing the simulation results, it is noted that a negative road slope has a  significant contribution to 

energy savings, given that the vehicle is able to use its own gravitatonal pull for propulsion, as seen in 

figure 5.31. For simulations with a positive road slope, energy usage is significantly increased when 

compared to the neutral road slope simulation sets, presented under figure 5.30, blue bars. This 

indicates that road slope has a significant effect on average energy usage and should be carefully 

considered when estimating vehicle energy requirements, especially at fleet-level. 

 In order to further increase the precision of energy usage predictions, the set road slope used 

in the simulation should be correlated with real topographical data for a given refuse collection 

operating area.  

 

 
Figure 5.30 - Realistic cycle driving pattern comparison, various number of stops and slope variations 
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realistic data, which has been previously used in section 5.2. The aims behind these simulations are to 

further increase the relevancy of the energy usage predictions for a real-life scenario.  

In order to create a more realistic dataset, real-life refuse collection routes have been 

observed. The route characteristics that were of particular interest are related to the route length and 

road slope (point-by-point and averaged). 

Refuse collection telemetry from two separate cities have been acquired. The collected data 

consists of several tens of collection routes that cover the entire refuse collection scheduling for a 2-

week period. In order to prevent a bias in simulation analysis and accuracy, a set of 5 routes have been 

chosen at random from both cities refuse collection datasets. An example of such mapped route can 

be observed in figure 5.31, along with the route telemetry data. The dataset of each of the 5 routes 

has been inspected to determine the simulation timestamp intervals in which the refuse collection 

operation is being performed. This can be determined by observing the maximum speeds achieved on 

a given period, which are smaller relative to when the vehicle is being driven between collection zones 

or back to the depot. 

 

 

 
Figure 5.31 - Route Example 1. Telemetry route of interest highlighted with red rectangle 

After creating the 5-route randomised dataset and inspecting the relevant telemetry periods, 

emulated speed profiles have been created for each of the routes. Although the methodology of 

creating these has remained unchanged relative to the one described previously in chapter 4, the way 

the start-stop features are employed has been changed, due to the variability in route length. 

Therefore, the stops have been placed relative to a set interval length, regardless of the overall route 

length. This may slightly affect the overall prediction accuracy, particularly due to the lack of 

correlation that may happen at the end of the routes, where the emulated speed profile may not be 

reflective of the driver’s behaviour in a real-life scenario. 

Figure 5.32 shows the energy usage variation between the emulated speed profiles for the 

refuse collection routes presented in figure 5.31. The results show a similar trend line to the one that 
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has been observed in the previous set-length street analysis described in the previous section. This 

further confirms that the simulation approach is robust and exhibits a low degree of uncertainty 

regardless of the input data. The absolute energy usage values appear to be in line with the energy 

consumption (kWh/mi or kWh/km) expectations for this type of vehicle mass [236]. Additionally, the 

energy usage results vary in a linear fashion relative to the route length, which is to be expected on 

average. A change in energy usage at different speed limits is also observed, which is more potent in 

estimations concerning a bigger distance interval between the number of stops. This correlates well 

with the findings observed in the set-length street simulations and indicates that vehicle energy usage 

is significantly affected by higher speeds. 

  

 
Figure 5.32 - Estimated energy usage results 

5.5.5. Produced estimation interpretation & applied discussion 
The presented results show that the process of picking a meaningful energy use baseline 

figure may not be as straightforward as initially thought. The decision should not only be dependent 

on several technical parameters, such as vehicle performance features and vehicle mass, but also on 

environmental factors, such as the local topography.  Moreover, some factors that may influence 

energy use go beyond the scope of the factors considered in this thesis, for example events having a 

high degree of randomness from a simulation perspective, such as street crowdedness. This opens up 

potential improvement avenues to the conclusions of this case study, particularly in the field of traffic 

congestion modelling related to time of day and other social influences.  

 When choosing an energy use baseline, it is important to maintain a good compromise 

between realism and practicality, as for example 33-stops on a 512m street would imply the eRCV is 

constrained to stop for bin collection every 15m, which has rarely been observed under normal 

conditions. Similar choices should be considered for the other classifications presented in this paper, 

such as road slope and level of acceleration.  
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However, the more realistic analysis presented in section 5 of this paper shows an apparent 

“knee point” between energy usage and the distance interval between stops. This appears to be 

consistent regardless the input data and happens around a distance interval between 8 and 16 metres. 

This may be an important indication for vehicle manufacturers as well as public services administrators 

in order to maximise energy saving, productivity and overall refuse collection efficiency. 

While the number of stops or distance interval between stops on a given route is highly 

situational and largely at the liberty of the driver, the presented case study is still able to offer a set of 

reliable baseline energy figures. These could prove useful to be considered when starting the 

engineering and operation design process of an eRCV fleet. A specific scenario that can be valid for a 

given collection area can be chosen if situational approximations are carefully considered. 

 Additionally, the presented research findings may aid the design process of routing algorithms 

that aim to create optimised routes for energy-efficient, low-emissions travelling for a wide range of 

vehicle types. The field, which is related to the theory of combinatorial optimisation [237], has seen a 

significant increase in research communities worldwide. The theoretical approach has been 

successfully applied to products, some of them being in the final development stages before launching 

as consumer-ready products [238]. The energy usage figures presented in this research should prove 

useful to further optimise the algorithms designed to minimise energy use. The findings may prove 

particularly useful for conventional graph colouring based algorithms [239] that are specifically 

tailored for electric heavyweight powertrain vehicles.  

 Similarly, the presented figures and discussion may help heavyweight powertrain 

manufacturers and users better understand how to further optimise operation scheduling of these 

vehicles to prevent or minimise the adverse psychological aspects of driving such vehicles, for example 

range anxiety. Whilst the range anxiety concept has been extensively researched for electric passenger 

cars [240] [113], there is little progress into investigating how this idea applies to public service 

purposed heavier vehicles such as eRCVs.  

When extending the realistic approach to a dataset that emulates an entire route rather than 

just a simple linear street, it must be noted that some additional limitations exist. Firstly, considering 

multi-street routes involves a higher degree of uncertainty, due to the multiple complex factors that 

may appear in traffic. Some of them are predictable, such as traffic lights and their scheduling, whilst 

others are harder to account for, for example road accidents and unexpected traffic due to road 

conditions. These are bound to somewhat increase the error in energy usage prediction relative to 

real-life conditions. Moreover, the unpredictability factors are even more important in the case of 

simulations with a high distance interval between stops, as one unexpected stop in such simulations 

due to random factors has a higher importance due to the low number of stops. However, the 

uncertainty component of the simulation is likely to represent a relatively small proportion of the error 

relative to real-life results over many route iterations. It should be expected that most of the error 

rate present in the predictions is due other factors, such as inconsistent technical specifications or 

unsuitable simulation solver configurations. 

 Public service vehicles have been observed to be driven differently when compared to 

consumer / passenger cars. Telemetry data indicates that PSVs tend to have a much higher number of 

start-stop cycles compared to the more lightweight powertrain vehicles. Moreover, they are being 

driven at significantly lower average speeds than smaller electric vehicles. Another factor that has a 

different impact on range, and consequentially on range anxiety, is represented by the vehicle mass. 

While passenger cars tend to carry a stable average mass throughout their journey, PSVs have 

significant vehicle mass variations during operation.  
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 For example, the vehicle mass of an eRCV increases in an almost linear way throughout the 

duration of a collection route. Similarly, electric buses exhibit a fluctuating increase and decreases in 

mass, subject to the numbers of passengers embarking and disembarking along the route. However, 

in the case of eBuses the trend is dependent on a wide suite of factors, ranging from time of day 

(peak/off-peak) to location relative to bus stops. Central bus stations are associated with higher 

variations of passenger numbers and vehicle mass compared to bus stations closer to the ends of the 

routes [241][242], but this is situational and varies depending on whether the route ties 

residential/outer city zones to city centres. 

 Finally, the presented energy performance indicators show that in general, PSV drivers and 

route planners should  aim to optimise vehicle energy usage by maximising the number of stops, and 

minimise the maximum speed reached between route stops, while also ensuring smooth acceleration 

and deceleration. This should help with maximising energy regeneration, if such vehicle capabilities 

exist. 

 

5.5.6. Investigation Summary 
The results and interpretations presented in this section aim to provide meaningful insight 

that should assist engineering, public administration and other service provider entities in designing 

eRCV fleets that operate in an energy-efficient fashion.  

Furthermore, the findings related to the relationship between speed and energy consumption 

integrate well with existing research [243] and may serve as a cornerstone for future, more advanced 

investigation concerning the topic of energy usage optimisation. The results should also prove to be 

useful guidance for meaningful implementation of public policies concerning the complete 

electrification of the automotive sector, such as the UK’s Road to Zero [145]. 

 

5.6. Chapter 5 Summary 
 Having discussed the capabilities of the proposed software solution regarding electric vehicle 

energy prediction for public service vehicles, it can be concluded that the findings offered by the  

simulations may provide robust and accurate information for feasibility analyses. Similarly, it has been 

observed that the developed model is able to successfully accommodate these types of vehicles. 

Moreover, replacement of traditional, ICE-powered public service vehicle fleets with electric 

alternatives have been shown to offer significant benefits in terms of gas emissions reduction, as well 

as costs related to energy refuelling [218]. 

 The following chapter presents similar investigations applied to a different category of 

vehicles, namely lightweight powertrains, such as motorbikes. This aims to complete the picture 

concerning the requirements and benefits of transport sector decarbonisation through 

comprehensive vehicle electrification. 
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6. Chapter 6 – Second Application of Model – Understanding Energy 
Usage of electric two-wheel, two-axle vehicles 

  

Following the assessment of energy usage in heavyweight vehicles purposed for transport in 

urban areas, a new study is now proposed for observing the energy requirements of a different vehicle 

category. This chapter examines the estimation of energy requirements of electric motorbikes in 

various contexts.  

As it is difficult to acquire relevant telemetry data for analysis, an unconventional procedure 

to gather the required data from video information is described. Whilst this has only been employed 

for obtaining a dataset limited to motorbike telemetry, the methodology described can successfully 

be applied in a multitude of circumstances, for example gathering data for prediction of use in 

commercial vehicles where in-cab video recordings are commonplace. 

 Two wheeled vehicles, such as scooters, motorbikes and mopeds, on average make up over 

10% of urban traffic worldwide [244]. This share rises to 74% in certain regions of the world [245], 

predominantly south-east Asia. Moreover, these types of vehicles have increasingly grown in 

popularity for short-distance commutes as well as being a favoured means of transport for certain 

types of services brought about by the gig-based economy, such as food delivery [246]. This is mainly 

due to the vehicles’ sizing, having the ability to flow through traffic much easier than heavier and 

bigger powertrains. It is therefore important to grasp the capabilities of the electric alternatives to 

these vehicles in order to complete the picture of a fully decarbonised transport sector. 

 Finally, some of the research material presented in this chapter has been presented in a 

number of publications [247][248]. 

 

6.1. Acquiring Telemetry Data through Dashcam Video Imaging 
When simulating vehicle behaviour in a software environment emulating real-life conditions, 

one of the hardest challenges to overcome is acquiring relevant data that can be employed as a 

reference input for the simulation. A similar situation may be considered in the context of the 

investigations presented in this thesis, which can only be undertaken with reliable speed-related 

telemetry values. 

This subsection presents a novel approach to acquiring vehicle telemetry that aims to provide 

speed/time-based simulations with a much larger and more accessible data pool. This is made possible 

by applying optical character recognition (OCR) technology to video graphical overlays that display 

instantaneous speed at a reasonably high data resolution. OCR engines for text recognition have been 

studied using several approaches and have gained significant interest in recent years, thanks to 

advances in computational science [6][7][8][9]. In the proposed solution described below, a state-of-

the-art OCR engine, Tesseract [253], is employed as the OCR agent that identifies the digits in the 

extracted and enhanced images. This serves as a novel application of this technology in the 

transportation field, having the ability to provide significant amounts of telemetry data for bespoke 

simulations, including the proposed solution in chapter 3. 

To date, this procedure has only been employed in order to acquire telemetry data from 

unconventional sources for the purposes of assessing energy usage of high-performance motorbikes. 

The results of this investigation will be presented in subsection 6.2. However, because the process is 

independent of vehicle specifications, the principles may be successfully applied to an extensive range 

of simulations and investigations, beyond the purposes covered in this thesis. 
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6.1.1. Dashcam Video Telemetry Extraction Process 
 The script applying the proposed procedure has been developed in order to extract telemetry 

from Phase Alternating Line (PAL) encoded videos. For the purposes of demonstrating the capability 

of the proposed solution, a video publicly available on the Youtube platform has been chosen. This 

shows dashcam footage of a motorbike performing qualifying laps around the Isle of Man Racecourse. 

The analysed video has a resolution of 1280*720 pixels, captured at 25 frames per second. The start 

of the telemetry extraction process begins with harvesting the video frames numbered as multiples 

of 25 to generate datapoints on a second-by-second interval, along with 6 adjacent frames. The 

adjacent frames will aid in increasing the confidence in digit prediction of the OCR system in the case 

of excessive image blurring on the sampled data point. This phenomenon often happens due to inter-

frame compression or bitrate limitation. The target frames are detected using a model function as 

described by equation set 6.1.  

 

 𝑓(0)∗ = 0 

𝑓(𝑡)∗ = [25𝑡 − 3, 25𝑡 + 3], 1 < 𝑡 < 𝜏 − 1                        

 𝑓(𝜏)∗ = [25𝜏, ], 
Equation 6.1 (set) - Image data mathematical modelling 

 Where t is time in seconds and τ is the length of the target video (in seconds) until the last 

whole second. An important remark is that the dashcam video typically starts and ends with the 

vehicle stationary and at a fixed location, therefore the first and last frame group contain only one 

single frame. Finally, the frames are then cropped using a pre-defined area mask that targets the area 

of interest (i.e. the graphical speed overlay). A trimmed frame group example is shown in figure 6.1. 

 

 
Figure 6.1 - An example of trimmed frame group 

 Additionally, figure 6.1 above illustrates the two issues that need to be addressed before an 

OCR algorithm can be utilised to identify the desired numerical values. Firstly, the information is 

overlaid onto the video with a semi-transparent background, which changes the quality of the image 

edges. This in turn affects the quality of foreground characters and reduces contrast. Secondly, the 

foreground characters can be heavily distorted due to inter-frame video compression. 

Consequentially, the recognition rate for these original frames has been evaluated at less than 15 per 

cent, which confirms the necessity to perform image enhancements in advance of the OCR progress.  
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Figure 6.2 - Proposed image processing procedure. Example shows a typical input frame group and its related OCR results 

with the level of prediction confidence coloured in Green (high), Lime Green (average) and Red (low) 

 In order to address the above-mentioned issues, a multi-progress frame enhancement 

algorithm with inter-frame approximation is employed. This will help with improving the 

recognisability and reducing the instability of the produced telemetry. As shown in figure 6.2, data is 

processed as frame groups. Firstly, pre-defined cropping masks are applied to the input frames where 

each frame are separated into individual primitives containing a single character or number. However, 

as observed in figure 6.3, the significance of the desired foreground object (in this case the digit ‘4’) 

could be affected by the erratic background. In order to alleviate this effect, an adaptive background 

cancellation image filter is employed. 

 

 
Figure 6.3 - Background noise cancellation employing a virtual background with its colour established from corner pixels 

 As observed in figure 6.3 above, the corner pixels of every image are targeted in order to 

obtain the colour properties encoded using the Red-Green-Blue (RGB) format. Colour gradients are 

then established such that the computed interpolations will fill the image background with 

intermediate pixels. This has the effect of replacing the original background with a mono-coloured 

one. Finally, a filter is applied with the purpose of saturating the bright pixels and further reducing the 

shadows. The enhanced images are then filtered and reversed in order to be passed through OCR 

engine identification. 
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 Following that, both the OCR result and its corresponding confidence metric are recorded. A 

variable polynomial approximation algorithm is then deployed depending on the original confidence 

metric on OCR frames labelled as ‘average’ or ‘low’. Finally, using the example shown in Figure 6.2, 

four out of the seven OCR frames are obtained with high confidence and will be used in computing 

the polynomial equation of the approximation. The result for the reference frame can then be 

calculated, as presented in figure 6.4. 

 

 
Figure 6.4 -  A plot of the polynomial approximation for OCR results of the frame group presented in figure 6.5. The 

mathematical equation described by the curve is shown on the top-left side of the image 

 Following the procedure presented previously, each frame group is processed, and its OCR 

result obtained. If the OCR engine is unable to generate a robust result for an entire frame-group, the 

polynomial approximation will be employed in order to increase the accuracy prediction. Finally, the 

results are then linked together in order to obtain a speed profile that can be utilised as vehicle 

telemetry. 

 

6.1.2. Accuracy of Findings & Discussion 
 In order to test the accuracy capability of the proposed procedure, a publicly available 

dashcam video containing motorbike dashcam footage was used. The chosen video is publicly 

available in order to avoid issues related to commercially sensitive data and is shown in figure 6.5. This 

evaluation aims to verify the methodology of the proposed dashcam video-based information 

extraction approach. Therefore, the specific video chosen and the difference in vehicle type should 

have a negligible effect on the evaluation result. Further information concerned with the chosen 

dashcam footage video is outlined in table 6.1. 
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Figure 6.5 - An example snapshot of the dashcam video used for acquiring telemetry 

 Based on the bitrate and file size values under table 6.1, it can be determined that the video 

is significantly compressed. A further pixelation effect can be observed in figure 6.5. This has been 

done in order to accelerate the OCR processing phase and avoid identifying digits in other areas of the 

video. 

 

Parameter Value 

Resolution  1280x720 

Frame rate 25 

Data of interest Vehicle speed in Miles Per Hour (MPH) 

Total frames of the original file 115382 

Video codec H.264 

Average bitrate of the original file 481 kb/s 

File size of the original file 266MB 

Table 6.1 - Information about the proposed dashcam video used in the evaluation 

 As previously stated in the methodology section, seven frames are extracted as a frame group. 

The middle frame, which is also the reference frame is extracted as the last frame captured every 

second. Following the harvesting, a manually defined cropping mask of 112*60 pixels is applied to the 

image, as suggested by the dotted area in figure 6.5. The cropped result is then further broken down 

into three 34*60-pixel areas where the digit values will be displayed. These primitives are then further 

enhanced using the process shown in figure 6.2. The resulting images are then fed into the Tesseract 

engine, which analyses the information and performs OCR computation on it. Figure 6.6 shows the 

overall confidence prediction classified as digit type (hundreds, tens, ones). 
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Figure 6.6 - Distribution of OCR confidence metrics. High confidence range: 70-100% accuracy, Medium: 50-70%, Low: 0-

50% 

 Using these OCR results, a speed-time profile can be produced through data concatenation, 

as shown in figure 6.7. The readings have been converted from the original dashcam video values 

displayed as miles per hour (mph), as presented under table 6.1, to kilometres per hour (km/h) to 

ensure consistency with the metric measurement system. 

 

 
Figure 6.7 - Speed profile generated from sample dashcam video 

 However, some limitations in terms of raw data-driven results must be noted. The dataset 

upon which the methodology was built does not have a direct comparison based on conventional 

telemetry recorded via standard vehicle data loggers. This is due to data loggers having a much better 

accuracy in reflecting telemetry data relative to OCR readings. Consequentially, at this stage, the 

dataset featured in the presented methodology does not have a clear benchmark in order to measure 

the efficacy and other key performance indicators of the solution. Similarly, the potential sources of 

error that may have an effect on the overall accuracy of the presented concept have been identified 

within the image processing stages of the methodology. These are represented by the signal-to-noise 

(SNR) ratio of the captured image and the accuracy percentage of the trained OCR algorithm. 
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6.1.3. Result Implications and Next Steps 
 The first section of this chapter has presented a novel approach to harvesting video data to 

produce vehicle telemetry. The proposed methodology for creating vehicle telemetry is based solely 

on using data gathered from publicly available dashcam videos. The produced telemetry has been 

achieved using an improved OCR algorithm and other image enhancement methods. Utilising the 

proposed image processing and OCR technology, textual information is retrieved and re-organised to 

create speed-time profiles.  

The proposed solution demonstrates that vehicle telemetry data can successfully be extracted 

from a dashcam video captured from a given vehicle on a given route through modern OCR 

technology. This data may then be fed into a purpose-built model in order to predict various 

parameters, such as energy usage for electric vehicles. The presented results have successfully 

demonstrated the consistency and accuracy of the proposed methodology. Finally, the presented 

methodology adds a significant amount of data (previously unsuitable for simulation work) to the 

already existing telemetry data that is employed for analysing various vehicle performance 

characteristics. This is likely to become a key supporting factor for feasibility investigations, such as 

urban planning and logistics management decisions. This will be even more important for situations 

where vehicle telemetry is difficult to acquire. 

The presented methodological approach may be expanded to other areas of interest that rely 

on telemetry data, such as assessing the impact of replacing an entire conventional ICE-engine vehicle 

fleet with an electric vehicle fleet. Therefore, to further improve the accuracy of the produced 

telemetry, future work may be directed to implementing enhancements to the method that increase 

the identification prediction. Moreover, the telemetry acquisition through OCR may be improved by 

employing better trained algorithms, as well as applying other unconventional algorithms, such as AI-

based neural networks [254]. Some work in this regard already exists and potential applications can 

be built on top of existing research [255][256]. 

  

6.2. Applying OCR-generated Telemetry to Assess Energy Usage of a high-
performance eBike 

 The first proposed investigation in understanding energy usage of electric motorbikes is 

concerned with the energy usage of a high-performance, electric motorbike undertaking high-speed 

laps around the Isle of Man TT racecourse [257], shown in figure 6.8. This example is used to highlight 

the adaptability of the Matlab-based vehicle software model described in chapter 3 to adapt to various 

diverse powertrains. The input telemetry data used for energy usage simulation is produced using the 

solution proposed under section 6.1. 
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Figure 6.8 - Isle of Man TT racecourse 

 The aims of the investigation presented in this chapter are concerned with estimating energy 

usage of an electric motorbike under high-speed driving around the Isle of Man TT Racecourse. 

However, due to the limited availability of motorsport-purposed vehicle telemetry data, the objective 

of this research is to provide a ballpark figure rather than a precise estimate. This is because lack of 

technical data makes the simulation results difficult to fully correlate with a real-life scenario. Similarly, 

validating the results of this investigation may prove difficult. This is due to the lack of availability of 

relevant validation data, whilst currently existing data is uncorrelatable due to large differences in 

vehicle specification and driving styles. However, this investigation will also help in understanding the 

limitations of the vehicle model through stress testing the simulation environment capabilities. 

 This research builds up on the telemetry extraction solution previously presented under 

section 6.1, through employing the OCR-produced video dashcam telemetry. 

 

6.2.1. Simulation Requirements and Limitations 
 Given that the initial aim of the model in its development stages was to accurately simulate 

an electric heavyweight vehicle, some structural changes had to be made to the model topology in 

order to adapt to the new technical specification. The aerodynamic model has been changed in order 

to reflect the characteristics of a high-performance motorbike, but also the mechanical structure of 

the vehicle. As such, only one wheel per axle has been employed, as well as separate brake sources of 

each axle since the braking force of this vehicle is higher than the one used by other, heavier vehicles 

relative to its mass. Additionally, aerodynamic values for the motorbike chassis are based on similar 

and representative values from conventional motorbikes. Similarly, powertrain performance values 

have been updated in order to reflect the real-life characteristics of such a vehicle. These have been 

based on one of the 2019 Isle of Man TT vehicle competitors, the Mugen Shinden Hachi [258] (the 
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vehicle specification is provided in appendix 8). Finally, the simulation’s mathematical solver values 

have also been changed to allow for a higher flexibility in solving the simulation states by setting a 

higher relative tolerance, while decreasing the minimum iteration step size and increasing the number 

of such consecutive steps. This will ensure minimised ambiguity in results through increasing the 

number of computation iterations performed per step, albeit at a higher computation cost. 

Similar to the investigations performed in chapter 4, in order for the model to perform a 

simulation, an input dataset consisting of speed-time value pairs are required. However, the route 

emulation solution previously presented is unsuitable, since motorsport-purposed vehicle telemetry 

data is difficult to obtain, due to the confidentiality aspects of this competitive field. 

A robust source for acquiring this data has been found in publicly available videos that show 

replays of different competitors lapping around the Isle of Man racecourse. Some of these videos also 

feature a graphical video overlay that indicates the live vehicle speed. Through employing OCR (optical 

character recognition) technology and other filtering techniques a speed-time telemetry dataset can 

be obtained. This has been carried out by employing a novel image processing algorithm and has been 

previously described in detail under section 6.1.  

 Unfortunately, no on-board data recordings of electric powertrain motorbikes were found, 

therefore the only candidate selection criterion was the OCR algorithm confidence accuracy. While a 

robust ICE-powered motorbike recording candidate was found and high-accuracy speed-time 

telemetry has been harvested from the recording, the speeds achieved in the video were significantly 

higher than the performance capabilities of the EV motorbike described in the previous section. This 

has led to the inability of the control system in the model to adapt to the required speeds, leading to 

simulation crashes. In order to address this, but also establish some degree of relevancy, the speed 

values in the speed-time telemetry have been scaled down with a constant scaling factor. This 

constant has been determined by dividing the maximum speed achieved in the telemetry data 

harvested from the recording to the maximum approximate speed observed in telemetries of previous 

research materials.  

 However, the downscaling of the speed figures implies that the travelled distance will also be 

scaled down, hence the final energy usage figures will have to be scaled back by multiplying the values 

with the inverse of the scaling factor used. The main drawback of this approach is the under-

estimation of air resistance at the higher speeds. 

 Finally, the acquired telemetry data used as input information for the electric motorbike 

model consists of approximately 4 laps of the course. There is no clear delimitation between all the 

laps that can be derived from the speed-time information alone, but a clear one-lap telemetry has 

been identified by visual inspection of the video. 

 

6.2.2. Energy Usage Results 
 The telemetry of one lap may be determined by observing similar patterns of zero-speed idling 

in the telemetry graph. Based on this observation, the telemetry of one lap can be clearly identified 

between simulation time 2277s and 3388s (equating to approximately 18m 31s). By extrapolating this 

difference to the energy usage graph in figure 6.10, bottom right of the power information figure, it 

can be determined that throughout the small-scale lap approximately 11.1 kWh were used. When this 

value is scaled back up by multiplying by the inverse of the scaling factor to account for the distance 

travelled, it can be estimated that the real energy usage throughout a 1:1 lap is estimated at 

approximately 20.8 kWh. Although the extrapolation method may not be consistently precise in 

estimating energy usage, applying a more refined estimation method is currently unsuitable, as it 
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requires an accurate vehicle specification. This is difficult to obtain, given the limited availability of 

data due to the confidential nature of motorsport. 

Speed analysis and power information are presented in the figures 6.9 and 6.10 below. 

Figure 6.9 - Speed Analysis – Isle of Man TT eBike 

Figure 6.10 - Power Info – Isle of Man TT eBike 

 The simulation of the harvested telemetry data had a runtime of 278.4 seconds. Some minor 

control issues have been observed, similar to the ones exhibited by the model when simulating an 

eRCV, where the control module fails to adjust the system response so that the model can accurately 

match the speed in the input data. This could be due to a lack of finer tuning of the model’s controller 

response, namely the proportional and integral values of the PID controller. However, the speed delta 

between the input and the system response is small, hence it does not make a significant difference 

in energy usage. 

 Similarly, it has been noted that energy regeneration through braking cannot achieve a 

sufficient energy saving that would decrease overall net energy usage.  Whilst some regeneration is 
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observed, it is small and within the simulation tolerance, therefore cannot be considered as 

meaningful. One possible reason for this could be the aggressive acceleration-braking scheduling 

described by the telemetry, which is not conducive to braking through motor inertia. This factor is 

intrinsic to the performance of the vehicle producing the input telemetry, therefore cannot be 

changed. Indeed, if race operation is required, there is little opportunity for slow, regenerative 

‘engine’ braking.  Another potential reason may lie with the technical parameters of the vehicle and 

the approximations considered for the missing parameters, as these might describe a vehicle 

incapable of performing energy generation through motor braking. 

 When comparing the energy use with other figures present in literature [259], the simulation 

results appear robust in nature. Additionally, it is expected that the observed error is likely to be close 

to the percentage errors observed when testing the model adapted for an eRCV, where input data 

and technical specs were of a much better quality and clear correlation exists. Another factor that 

influences the increased energy usage lies with the lap times – the telemetry data pointing a 

significantly lower lap time than those achieved in literature [259]. 

However, system control-related observations indicate that the model simulation is robust 

and did not fail or exhibit major errors in simulation. This validates the presented approach, showing 

its flexibility and that it can be successfully employed to simulate multiple powertrains. Additionally, 

the accuracy is expected to be significantly increased if highly representative technical parameters 

and input data are available. 

 

6.2.3. Limitations of proposed solution and results 
Due to the lack of correlation in data, there are many limitations to this model accuracy 

related to both real-life and simulation results accuracy. Similar research [260] presents detailed sets 

of physical constraints to serve as a reference for building a vehicle model, however these may prove 

unfit for describing an electric powered motorbike, as they are focused on describing dual-axle, 4-

wheel vehicles. This leads to the inability to consistently match the specifications of the ICE vehicle on 

which the telemetry was logged with the capabilities of the electric motorbike model. 

Given that technical parameters and input data aren’t strongly correlated between each 

other, many sources of error arise from these. In addition to the technical parameter inconsistencies, 

another major potential source of error is the telemetry data and the harvesting process itself – it has 

been observed that in the harvested telemetry data from the video several sudden spikes in speed 

maps appear, with very steep deltas between the immediate past value and the next value. 

Additionally, previous research [259] employs more detailed vehicle models, which allow 

greater accuracy in simulating aerodynamic parameters. This is especially important as, in a 

motorsport context, the vehicle will be driven aggressively in an effort to minimise the lap time. The 

model presented in this material does not include such an accurate representation of aerodynamic 

constraints and as such the results accuracy is expected to be lower.  

 

6.2.4. Investigation Summary 
Whilst a meaningful conclusion is yet to be reached regarding the usability of the presented 

model in a motorsport context, the robustness of the simulations in the presented investigation 

validates the model’s flexibility. Furthermore, the proposed solution has the potential to present itself 

as a viable, cheap, and productive alternative for designing optimised high-performance motorsport 

eBike vehicles through understanding energy usage and system component sizing, but also in offering 



120 
 

predictions concerning the expected lifetime of certain powertrain components, such as the battery 

and the electric motor. 

 

 

6.3. Understanding energy usage of road-legal electric motorbikes in urban areas 
 Following the success in validating the flexibility of the proposed software solution applied to 

high-performance motorbikes, an investigation has been launched into assessing the energy 

requirements of electric motorbikes in urban settings. This section presents the aims, methodology 

and findings of the energy usage simulations for road-legal electric motorbikes in urban areas. 

 The target findings of this investigation are mainly concerned with understanding the energy 

usage of road-spec electric motorbikes and comparing them against their traditional, ICE-powered 

counterparts. Furthermore, estimations regarding carbon emission footprint reduction, as well as cost 

implications will be presented. The presented findings are expected to complete the picture when 

considering the decarbonisation of the transport sector for motorbikes. 

 

6.3.1. Acquiring energy usage estimations - Method 
 The methodology the investigation has adhered to is very similar to the ones presented in the 

investigations on energy usage of heavyweight powertrains, featured in the previous chapter 5. 

However, some changes concerning the vehicle technical specification exist. 

 Firstly, data concerning the technical vehicle specification has been obtained from a privately-

owned enterprise through private communications. To this end, the data obtained includes 

aerodynamic specifications, as well as a detailed torque-speed curve of the proposed electric motor 

design. This should greatly increase the prediction accuracy, as the motor data exhibits a high 

resolution, therefore offering the ability to map power requirements with minimal estimation. 

However, it has been observed that the original motor spec implied that the design is able to develop 

more than 14kW of power at peak capacity. This has been considered over exaggerated and will lead 

to thermal issues in practice; therefore, the motor power has been limited at 10kW, which appears to 

be in line with the power capabilities shown by existing vehicle designs. In the context of the 

mechanical side of a motor, power is described as seen in equation 6.2. 

 

𝑃 =  𝜔 ∗ 𝑇 
Equation 6.2 - Power in angular mechanics 

where 𝑃 is power expressed in W, 𝜔 is the motor angular speed expressed in rad/s and 𝑇 is the motor 

torque in Nm. 

 Therefore, some power limitation has been carried out by observing the maximum torque-

speed product point, then proportionally downscaling the rest of the torque values in the torque-

speed set values, as observed in figure 6.11.  
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Figure 6.11 - Torque-speed map of presented motor spec 

 

 Secondly, the input telemetry data used for this study consists of publicly available emission-

testing driving cycles, referenced under table 6.2. The rest of the employed vehicle specification can 

be found under appendix 9 for reference. Whilst the purpose of this data is different to that of this 

investigation, the information describes normal urban driving through speed-time value pairs. 

Therefore, the obtained data is highly relevant to the aims of the investigation. In order to ensure 

prediction consistency in the simulation estimations, five driving cycles purposed for urban emission 

testing of lightweight powertrains have been chosen. Additionally, the chosen data has been 

generated from studies carried out across the world, looking at urban driving in various geographical 

locations, therefore exhibiting significantly different driving styles. This will ensure minimised data 

bias in the simulation results. 

 The telemetry of one driving cycle included in the dataset is displayed in figure 6.12 for 

reference. Additionally, the regulating agency source as well as the purpose for each driving cycle is 

shown in table 6.2. 
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Figure 6.12 - WMTC telemetry 

Cycle Name Source Purpose/Observations 

WMTC Part 1 [261] 
UNECE Transport 

Division 

UN-regulated driving cycle. Used as reference for 

emission testing worldwide. Part 1 has been chosen 

as it reflects urban driving. 

Artemis Urban [262] 
European Statistical 

Study 

Study has examined a large number of typical driving 

styles within Europe, generating driving cycles that 

accurately reflect real-life situations. The Urban cycle 

has been chosen for analysis. 

NEDC ECE [263] European Union 
Old emission testing reference cycle for 

homologating EURO6 certification. 

WLTP Class 3 Low 

[264] 

Worldwide Convention 

(EU + Japan + India) 

Standard emission testing driving cycle. Class 3 has 

been chosen as the vehicle spec describes a vehicle 

with a power-to-mass ratio higher than 34. 

FTP Motorcycle 

[265] 
US EPA 

Emission testing driving cycle created for assessing 

motorbike emission performance. 

Table 6.2 - Input dataset description 

 

6.3.2. Estimated Energy Consumption for urban eBike use & Discussion 
 The simulation process carried out with the previously presented dataset detailed under table 

6.2 has shown no inconsistencies over several iterations. The simulated energy usage results may be 

observed under figure 6.13. 
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Figure 6.13 - Energy usage results 

 It can be seen that there is a high variation in used energy throughout the driving cycle 

components in the dataset. This is to be expected, as the distance covered by each of the testing cycles 

varies largely, as observed in figure 6.14. 

 

 
Figure 6.14 - Covered distance for every driving cycle in the input dataset 

 This distance has been computed by observing the speed-time set values in kph. Finally, the 

per-second distance covered has been calculated using the distance equation in its standard, non-

differential form, as observed in equation 6.3. In reality, due to the telemetry data having a second-

by-second resolution, employing the distance equation effectively means a multiplication by 1. Finally, 

in order to compute the total covered distance, every per-second distance has been added. 

𝑑 = 𝑣 ∗ 𝑡 
Equation 6.3 - Distance equation, non-differential form 

 Additionally, the previously presented energy results have been normalised by distance. This 

has been done in order to have a consistent energy usage benchmark under the form of a 
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power/distance figure (in this case, Wh/km) has been used. The normalised energy consumption for 

all of the driving cycles can be observed in figure 6.15. 

 

 
Figure 6.15 - Normalised energy consumption from simulation results 

 It can be observed that whilst the driving cycle results originate from different regions of the 

world and consequentially describe different driving styles, the variation in energy consumption 

figures is minimal. The similarity in these values may suggest that road-legal electric motorbikes have 

similar energy requirements regardless of environmental conditions, urban area and, to some extent, 

driving style. Moreover, the average energy consumption of the analysed driving cycles, which is set 

at 29.83 Wh/km integrates well with findings in similar literature [266]. This further validates the 

efficacy of the model when simulating lightweight powertrains. 

 Firstly, in order to put the resulting energy consumption figure into context, the energy 

storage system must be considered, which in this case is the vehicle battery. Previous experiments 

with publicly available findings have concluded that the average passenger car EV has an energy 

consumption figure set at 166Wh/km, with a battery size of 40kWh [267]. This suggests an average 

range of 235 km per a full charge, assuming a 2% energy buffer, in order to avoid battery operation 

close to maximum or minimum electrical storage capacity. The energy buffer is important as it has 

been observed that avoiding using the battery near minimum or maximum state of charge minimises 

battery degradation and in turn maximises battery life [268]. 

 Having considered the high-level energy consumption performance of a regular passenger EV, 

in order for an electric motorbike to have similar range capability, a battery capable of storing 

approximately 8 kWh would be required. Depending on the chosen battery cell material specification, 

a battery holding 8 kWh would have a payload of approximately 27 kg [269]. A further 0.25kg may be 

added to the initial weight of the battery cells that represents the weight of the battery pack casing, 

totalling 27.25 kg for a complete battery pack. The casing weight has been computed assuming a cube-

like packaging shape, with an aluminium casing thickness of 5mm [270].  

 This total battery pack weight value is comparable with the weight of a full fuel tank of an ICE-

based motorbike and therefore should be able to be easily accommodated within the specified weight 

in the technical vehicle specification. Moreover, if range requirements were to be decreased, the 
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required battery pack may be smaller and lighter, effectively freeing up space for more cargo capacity 

and resulting in the vehicle having a smaller energy consumption figure than the initial estimation. 

 Secondly, the benefits of an electric eBike may be observed when comparing emissions and 

costs due to energy refuelling. This analysis may be performed in a methodically similar way relative 

to presented estimations in the previous chapter 5, albeit the comparison metrics should be different. 

Given that this investigation does not rely on a real-life telemetry-based dataset, relying solely on 

emission cycle telemetry, the performance has been outlined in terms of kg CO2/km and GBP/km.  

 Current ICE-powered motorbike models that are similar in total weight and rated power with 

the analysed electric motorbike specification set the advertised fuel consumption at 2.85 l/km [271]. 

This figure may then be further used to estimate the amount of produced carbon dioxide emissions 

by noting the amount of CO2 produced when burning 1 litre of petrol [272]. Similarly, in order to 

estimate the amount of carbon dioxide produced by the electric motorbike prototype, the amount of 

CO2 produced per kWh of generated electricity in the national electricity grid must be considered 

[210]. 

 A comparison between the estimated values can be observed under figure 6.16. 

 

 
Figure 6.16 - Estimated carbon dioxide emissions 

 Similarly, a cost due to energy spending analysis may be carried out by considering the price 

of petrol and electricity. This comparison is outlined in figure 6.17. 

 

 
Figure 6.17 - Estimated energy costs (pence/km) 
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 Preliminary estimated results indicate that whilst an ICE-powered comparative motorbike is 

relatively low in running costs and emits low emissions, the proposed electric alternative is able to 

reduce these numbers significantly. Additionally, similar to the heavyweight powertrains and 

passenger EVs, maintenance costs are likely to be smaller for the electric motorbike compared to the 

petrol-powered counterpart. 

 The results and findings presented in the previous thesis subsection (section 6.3) suggest that 

electric alternatives to currently available conventional, ICE-powered motorbikes are feasible from a 

design perspective in urban areas. Moreover, the presented comparison in CO2 emissions and costs 

due to energy refuelling further highlights that electric motorbikes can have a positive influence 

towards the decarbonisation of the transport sector, and in a financially sustainable way.  

 Although it is likely that electric motorbikes will initially be more expensive than their 

traditional counterparts, government-funded decarbonisation subsidies and reduced refuelling and 

maintenance costs should alleviate the cost difference in time. 

 

6.4. Chapter 6 Summary 
 This thesis chapter has outlined investigations looking into key aspects of simulating electric 

motorbike-based powertrains in different contexts. The aims of these investigations have ranged from 

validating the proposed software solution’s flexibility, as well as understanding the estimated energy 

requirements of electric alternatives to current ICE-powered motorbikes. Additionally, this chapter 

has also outlined a novel methodology that applies OCR technology to acquiring telemetry from 

unconventional data sources. Whilst this methodology has been applied towards an investigation that 

looks into high-performance motorbikes, the procedure may be successfully applied to acquiring data 

for other types of vehicles as well, as the speed-time value pairs are powertrain-agnostic. 

 The findings presented in this chapter further demonstrates the software model’s usability as 

well as providing key findings and figures that help with understanding whether current fossil fuel-

powered motorbikes may be successfully replaced with electrified alternatives.  

The next chapter outlines a further application of the proposed software, looking into 

understanding the challenges and energy consumption of electric trucks purposed for long distance 

trips. 
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7. Chapter 7 – Implementing electric powertrain technology in road 
freight transportation 

7.1. Introduction 
 Having previously discussed the benefits and limitations concerning energy usage and harmful 

emissions of integrating electric powertrain technology in various vehicle categories, this chapter is 

concerned with assessing the impact of electric-powered powertrains to heavyweight, transport-

purposed vehicles. The heavy-goods transport category constitutes over 62% of the total carbon 

emissions produced by freight worldwide [132]. Similarly, if road transport emissions alone are 

considered, heavyweight transport vehicles represent over 25% of emissions in the EU [273]. This 

figure appears consistent in other parts of the world, with reported shares of 20% in the UK [39] and 

24% in the US [274]. Consequentially, it is expected that any reduction in energy usage brought by 

electrifying this section of the transport sector will have significant reduction on the total amount of 

emissions produced. 

 However, a significant difference in this vehicle category relative to the previously analysed 

vehicles is their day-to-day usage. Heavyweight transport vehicles, such as HGVs, are consistently 

being driven for long periods of time, predominantly at high motorway speeds [275]. Additionally, due 

to their high weight and low aerodynamic coefficient, the energy consumption of these vehicles is 

significantly higher than other vehicles [276]. In order to accommodate the high energy use, as well 

as the operational time, electrical storage systems for electric alternatives to conventional, ICE-

powered trucks will also require a high capacity. This comes at the cost of increased energy storage 

volume and increased weight, which negatively affects the vehicle’s useable payload.  

Additionally, a high-capacity energy storage system will require significant amounts of time to 

be recharged, even with recent fast-charge vehicle charging technologies. Current eHGV designs 

feature batteries of significantly higher capacities relative private passenger small EVs of up to 1MWh. 

Considering a 350 kW DC charger, it would still take more than three hours to fill the electrical battery 

capacity completely from empty, before considering charging efficiency and battery charging 

dynamics. Although HGV drivers are required by law to observe regular breaks from driving, a 

significant charging time is unsuitable to the current business logistics model, which relies on speedy 

deliveries. 

For these reasons, fleet managers may view the concept of an electrified HGV (eHGV) as 

unattractive. However, if a slightly different approach is applied to that taken in passenger cars, the 

electrification of the heavyweight transport sector could be financially sustainable, with minimal 

disruption to the supply chain, at the benefit of complete decarbonisation. 

Furthermore, the electrification of road freight may be considered a key ingredient towards 

energy security. As opposed to their ICE counterparts, electric vehicles use electricity which can be 

sourced using several methods (fossil fuels, nuclear, wind, solar, hydro etc.), instead of relying solely 

on one type of energy production (i.e., burning petrol and/or diesel). 

 This chapter showcases a feasibility investigation into the potential benefits that may be 

brought about by electric alternatives to the current ICE vehicles in use. Additionally, a potential 

concept solution to address the problems related to the modest vehicle performance of current 

electric truck designs is presented, employing currently available battery technologies.  

 The research builds on previous literature in this field, as well as a blend of the most popular 

electric vehicle energy refill paradigms: vehicle charging and battery swapping. The originality of this 

research lies in its innovative analysis that takes advantage of both schools of thought concerning 
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energy refill and combining these philosophies in a “pit stop” (like battery swapping and fast charging). 

This gives rise to an approach that aims to optimise vehicle range, downtime due to charging, and 

decreased useable payload. 

 

7.2. Concept Objectives 
 The approach consists of employing modular, loadable, pallet-sized battery packs to 

temporarily act as a “power pack” for the electric trucks. The battery pallets are conceptualised such 

that they can act as independent energy storage systems, each having its own power connection 

interface adapted to current EV charging standards. However, minimal, software-related changes to 

the charging protocols may need to be considered, as currently vehicle charging capabilities are 

difficult during movement due to safety reasons. 

Additionally, the concept takes advantage of the current energy delivery infrastructure, more 

predictable driving and operation styles (i.e. regular loading and unloading of cargo)  of HGVs to ensure 

optimal weight loading relative to trip length [277] and minimise the effective payload decrease. 

Similarly, by taking advantage of the concept’s modularity, the battery packs can also be repurposed 

as grid support energy storage systems when not in use and not fully depleted or being charged. 

 The presented concept aims to maximise transport efficiency while enabling electric trucks to 

be adapted to the current existing logistics models at minimal additional expense, energy grid stress, 

and productivity disruption. The system modularity, together with the real-life application model will 

ensure maximised exploitation of battery packs before end-of-life redundancy. Similarly, the modular 

nature of the concept will aid in creating eHGV designs purposed for pallet-sized battery swapping. 

The concept of pallet handling is well developed in the transportation and logistics industry, and most 

of the infrastructure required to apply this concept to real-world scenarios already exists, with minimal 

additional power connections needed (such as connecting the battery pack to the eHGV internal 

power system). This will shift the thinking behind considering the vehicle battery as the main “energy 

tank” towards relying more on the energy storage capabilities of the power packs. This allows the 

possibility to equip electric vehicles with smaller integrated batteries, which will result in better base 

energy consumption figures, that have a better weight-to-energy ratio than a conventional standalone 

BEV. This is due to the lighter vehicle weight, whilst maintaining similar powertrain capabilities. 

 The primary aim of the concept is to serve as an intermediate step towards a fully electrified 

freight transport sector. Additionally, as battery technology evolves and improved electric trucks 

appear on the market, it will enable current eHGV designs to match the range performance of their 

ICE counterparts, whilst remaining sustainable from a cost standpoint. Consequentially, as the power 

pack system will upgrade to benefit from new technologies, it will provide a cheaper way for system 

users to upgrade the range performance of their electric truck fleets without the need for fleet 

renewal, maximising the lifetime of their fleets and long-term sustainability. 

 The findings presented in this section are more conceptualised and intended to prompt 

further investigations towards assessing the feasibility of this concept in more specific contexts, since 

transport logistic models can have significant variations depending on the expected trip distance. 

Similarly, the battery pack shape and sizing could be tailored depending on the type of required 

transport, enabling feasible concept variations for a wide range of electric vehicles with predictable 

routing, such as LGVs. Another potential research avenue is represented by the versatility of the 

system design, for example allowing the charging time to be altered by changing the input charging 

power, optimising for performance or long-term battery health. Depending on the design 

requirements, the battery packs may be developed such that higher charging power can be employed. 
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Similarly, due to the somewhat relaxed shape of the load put on the pallets, the battery pack packaging 

may be adapted in order to minimise the impact on the usable load capacity. 

 

7.3. Understanding Energy Consumption of Electrified Powertrain HGVs 
 In order to put the advantages offered by the presented concept into context, vehicle range 

performance of current electric HGVs must be considered. The capabilities of these vehicles have 

evolved significantly over the last few years due to the leaps in capacity of new battery technologies.  

Whilst there are many designs available on the market, the investigation will focus on the most 

popular eHGV models. 

 For heavy electric trucks, the most widely expected vehicle is the Tesla Semi [278], due to be 

launched for production in 2023. Although the manufacturer indicates a reasonable amount of 

information concerning vehicle range and energy consumption metrics, as well as maximum usable 

payload, there is not much publicly available data regarding the speeds at which these are achieved. 

In order to get a better understanding about the energy consumption performance of the vehicle at 

various speeds, an extrapolation involving passenger EV cars may be made. An electric lorry (eLGV)-

based extrapolation has also been considered; however, this was deemed unsuitable due to lack of 

available speed-energy usage data in the publically accessible technical vehicle specifications. 

 Previous experimental data indicates that the optimal speeds at which maximum vehicle 

range is achieved for electric cars ranges around 20-25 mph [279]. This can be observed by 

determining at what range of speeds the vehicle energy consumption is minimal. By considering the 

stated energy consumption (and assuming this is the minimal energy consumption throughout the 

rated vehicle speed range) and the relative energy consumption delta at different speeds for a 

passenger EV car (figure 7.1), a similar energy consumption curve can be postulated for an eHGV. This 

is achieved by observing the stated energy consumption of the Tesla Semi eHGV and assuming this is 

measured at the same speed at which other Tesla vehicles achieve this. Following that, a consumption 

offset constant between the consumption of the eHGV and a reference Tesla EV can be established. 

The extrapolated energy consumption curve is then determined by applying this constant to every 

speed-data entry.  

The extrapolation results can be observed seen in figure 7.2. The estimation performed 

through curve extrapolation has then been correlated with an estimation provided from a simulation 

based on the previously presented vehicle software model (see Chapter 3). The full eHGV vehicle 

specification used for this simulation can be found in the appendix 10. 

 

 
Figure 7.1 - Energy consumption curve for Tesla EV models. Source: Tesla Inc. 
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Figure 7.2 - Estimated energy consumption curve for eHGV 

 It must be noted that whilst the curve extrapolation method may be robust for most of the 

electric trucks, some inconsistencies may arise. Whilst there are plenty of delivery trucks operating in 

urban environments (i.e. last mile delivery), ensuring good transportation between depots in the same 

city or region; electric trucks are predominantly designed to be mostly driven on high-speed roads, 

such as motorways. This is because most electric passenger cars are purposed to be driven in urban 

environments, therefore the gearbox ratios are short, and designed for quick acceleration and limited 

top speed. This results in increased energy consumption figures at constant speeds beyond the urban 

threshold. In order to design a vehicle that is fully optimised for both city and motorway speeds, a 

two-speed (low gear for urban environment, high gear for motorway) gearbox should be considered. 

This can also allow vehicle acceleration performance to be somewhat increased by taking advantage 

of the low gearing. However, a multi-speed vehicle is likely to have some weight penalty, due to a 

heavier transmission system and gearbox. 

 However, in the dataset comprising the passenger cars considered for finding the optimal 

energy consumption speed, there are several EVs not advertised as “city cars”. These cars exhibit 

similar energy consumption figures when compared to the urban-focused designed passenger EVs. 

Furthermore, the estimated eHGV energy consumption figures produced by the curve extrapolation 

method are similar to the ones generated by simulation around a heavyweight powertrain EV model, 

described in previous research. [204] 

 Based on the estimated energy consumption figures, an argument concerning costs and 

carbon dioxide estimations of electric alternatives may be created. This can then be compared to 

conventional, diesel-powered trucks. The estimations for diesel-vehicles may be calculated employing 

an analysis that is similar to the previously presented investigations on other types of vehicles. By 

observing the declared fuel consumption of a comparative ICE-powered HGV [280], the carbon dioxide 

emissions generated by burning 1 litre of diesel [272], the energy consumption of a standard eHGV 
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[278] and the CO2 per kWh generated in the energy grid [281], a kg CO2/km comparison may be 

produced, as shown in figure 7.3. 

 

 
Figure 7.3 - Estimated eHGV normalised carbon footprint 

 Initial carbon footprint estimations suggest a significant portion of carbon dioxide emissions 

may be reduced by implementing electrified HGVs, a similar trend to the ones previously presented in 

this thesis. Estimations suggest a reduction of over 50% may be achievable. Whilst the emission 

reduction achieved over 1km may not be impressive in absolute terms, the theoretical lifetime 

(currently set at an average of 300,000 kms [282]) carbon footprint of an electric alternative HGV is 

almost 400 metric tonnes smaller than a diesel-based solution. This is equivalent to the emissions 

produced by nearly 100 passenger cars yearly [229]. 

 Similarly, a normalised cost analysis directly concerned with energy spending may be 

calculated by integrating average pricing for diesel [283] (1.90 GBP/l) and electricity [281] (0.13 

GBP/kWh) in the original calculation (Oct 2022). Figure 7.4. indicates that a significant reduction in 

energy spending may be expected when employing an electric HGV relative to a conventional, diesel-

powered one. This may be further enhanced by the lower maintenance costs of electric vehicles. 

 

 
Figure 7.4 - Estimated eHGV costs due to energy refuelling 
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 Finally, both the carbon footprint and costs of an electric HGV alternative may be further 

decreased by optimising vehicle mass. Statistics show that the battery weight represents a significant 

portion of a given EV’s total vehicle mass [277]. Therefore, it is expected that the versatility offered 

by a concept pallet-battery system to adjust the battery sizing according to the expected distance for 

any given trip is likely to have a beneficial impact over energy consumption. 

 

7.4. Basic energy consumption example 
In order to extend the findings provided by the normalised carbon footprint and cost analysis, 

a further test has been examined. Considering the estimated range performance, a realistic, emulated 

example of telemetry has been assessed. The telemetry considered is representative of 15 minutes of 

pre-motorway driving, averaging an assumed 60 km/h, followed by 1 hour of motorway driving at 100 

km/h, and finally a last 15-minute period of post-motorway driving at 60km/h. An improvement of up 

to 10% in energy usage can be observed if motorway speed is limited to 90 km/h, as seen in figure 7.5. 

Expected ranges assuming a full battery charge and presuming similar operations can be observed 

under table 7.1. Additionally, the expected full charge range figures are dependent on set average 

speeds and can be observed in figure 7.6. 

 

 
Figure 7.5 - Estimated eHGV energy usage for example telemetry 

 
Figure 7.6 - eHGV range curve based on constant energy consumption at various speeds 
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Speed Limit 

(km/h) 

Energy Usage (kWh) Full Charge Est. Range (km) 

Pre-motorway Motorway Post-motorway Total 300 kWh battery 500 kWh battery 

100 km/h 

Speed 

Limit 22.5 250 22.5 295 136 227 

90 km/h 

Speed 

Limit 22.5 198 22.5 243 157 263 

Table 7.1 - Expected eHGV vehicle range for presented telemetry scenario 

 By observing the results presented in the previous table, it must be noted that energy 

consumption is decreased at lower speeds, which has a positive effect on vehicle range. However, 

based on previously presented eHGV expected range values, it can be seen that current eHGV designs 

are unsuitable for the present freight haulage business model, which expects vehicle usage times to 

be significantly higher than the current eHGV capabilities [277]. While it is expected that eHGV range 

performance will significantly increase as new battery technologies are brought to market, there is 

still some degree of uncertainty concerning the actual vehicle range improvements.  

 Furthermore, fleet upgrade costs are expected to be higher, since EV technology is still 

significantly more expensive than conventional ICE-based alternatives [53]. While the extra cost may 

decrease in time due to lower maintenance costs for electric powertrains, the integrated battery 

approach will still bind the consumers to some degree of inflexibility. 

 

7.5. Concept presentation 
The proposed pallet sized battery pack concept aims to address some of the issues presented 

in the previous section, as well as offer an alternative to the single-battery vehicles. The concept aims 

to minimise the amount of fleet downtime due to energy replenishment as well as presenting itself as 

a sustainable alternative to bringing electric HGV/LGV vehicles towards competitiveness relative to 

conventional diesel technology. Moreover, the battery pallets themselves should be designed such 

that they may have the ability to utilise current EV charging infrastructure, whether the device is 

mounted on a vehicle or not. Finally, the system needs to be cost effective as a business operating 

model, through for example employing an optimised tier-based subscription system. 

 In order to achieve the stated aims and also ensure long-term reliability, the engineering 

design challenges have to be discussed. Firstly, limitations concerning sizing must be considered. EU-

standard pallets are certified for having a maximum payload of 1250kg [284], therefore this figure has 

been considered as the maximum limit for the system weight in the analysis. The EU-certified pallets 

have been considered in order to ensure concept transferability between the EU and the UK. However, 

a parallel system that is purposed for national freight only could be considered, which would be limited 

by UK pallet regulations. Many popular battery materials have volumetric efficiency and weight 

efficiency constants (measured as kWh/kg and kWh/m3 respectively) that help with determining the 

rest of the sizing parameters, as well as the electrical storage capacity of the device. 

 Several battery manufacturing materials can be considered as candidates. The ideal battery 

material would exhibit the following two properties; a high volumetric constant and a high weight 

efficiency constant, for this would create a high energy density battery. However, concessions can be 

made for lower volumetric and weight efficiency coefficients to achieve a lower cost. In order to fully 

maximise the usability of the system as well as offer more accessibility and choice to the end user, the 
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system may employ a range of different battery pallet sizes, with different capacities and 

consequentially added vehicle range. Figures 7.7 and 7.8 show the volumetric (kWh/m3) and weight 

(kWh/kg) performance of some of currently available battery technologies [285]. 

 

 
Figure 7.7 - Electrical storage capability with respect to displacement [285] 

 
Figure 7.8 - Electrical storage capability with respect to weight [285] 

 It must be noted that in order to ensure system modularity, every battery pack has to be 

designed to work as a standalone device. Therefore, besides the material employed for energy 

storage, the previous sizing calculations also have to account for the electronics managing the charges 

of the multiple cells in the battery pallet. Similarly, the estimation also has to account for any space 

that may be taken for the device interfacing. Whilst the occupied space will have an impact over the 

electrical capacity of the device, the modular nature offered by this approach will have significant 

benefits in system usability. The auxiliary power electronics will enable the battery pallets to be 

interfaced with existing electric infrastructure, as well as the integrated batteries in the host electric 

vehicle. Battery management systems as well as power electronics have recently seen a significant 

reduction in size and weight due to new emerging technologies that are able to operate at higher 
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frequencies [66]. For the purposes of the presented specification list, the electronics and electronic 

interfacing (charging terminal, information terminal) have been considered to account for 5% of the 

maximum payload, in line with recent trends in battery pack designs [126]. 

 Similarly, device packaging must be considered. This is especially important in the case of Li-

Ion battery cells, as they are prone to catching fire when the battery cell structure is exposed to air. 

Whilst these circumstances are uncommon, a device casing that is able to create an airtight, shock and 

puncture resistant container must be considered for safety purposes. Given that the volume of the 

case will not significantly affect the overall device sizing, weight is the parameter that should be 

targeted when considering casing material. Traditionally, the case for such devices has been 

manufactured using steel with an appropriate thickness to withstand knocks and other mechanical 

shocks. However, recent leaps in alloy composition technology have enabled custom-spec alloys to be 

suitable for these applications, being lighter and more resistant than the conventional solutions. [286] 

 Further optimisation to the battery pallet concepts may also be discussed. For example, 

altered device volume and mass distribution can be considered, such that the overall device would be 

shaped as a rectangular cuboid rather than a standard cube, with minimal height. This will ensure a 

low centre of gravity for the cargo load that will aid with overall vehicle stability. The overall volume 

of the device may be further minimised by integrating some of the electronics within the battery cells 

themselves – this will aid ensuring a high level of energy density [60]. Similarly, custom-shaped battery 

packs may be considered for special types of payloads. 

 Table 7.2 presents a potential specification list of battery packs fit for different haulage trips, 

with the strongest battery technology candidate found on the market. Battery weight includes a 5mm-

thick aluminium battery cell casing, as well as a 10kg overhead for additional electronics and system 

interfacing. 

 

Spec Battery Tech Total Weight (kg) Est. Range (km) 

Max, weight-limited only 

Li-Ion, Panasonic 

4680 

1024 240 

Super, 1m3 volume 855 200 

Regular, 0.75m3 volume 637 150 

Mini, 0.5m3 volume 443 100 

Table 7.2 - Possible battery pallet spec range 

7.6. Potential Benefits 
The potential benefits brought by such a system implemented at large scale are situational 

and may only be discussed whilst considering a series of extrinsic factors, ranging from the type of 

range and haulage requirements normally fulfilled by the companies to the extensiveness of the 

system, charging times and downtime due to battery swapping. Table 7.2 above shows figures 

concerning the expected range for each of the battery specs presented in the previous section. 

However, as indicated by recent research [110], range has a high degree of variability in electric 

vehicles.  

 The investigation shows that whilst deliveries achievable with a single battery charge may be 

highly competitive relative to diesel vehicles in terms of duration, longer trips are bound to take longer 

because of the need to swap batteries and/or recharge them. However, freight companies may find 

the shipment delays acceptable due to lower overall energy costs compared to diesel, as indicated by 

recent statistics [130]. Moreover, whilst a battery swapping mechanism will bring additional costs due 

to personnel and system maintenance, it is likely that these will still be comparable to diesel vehicles. 
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 To illustrate the concept, a UK-based route example from Sheffield to Newcastle upon Tyne 

of 214 km (266kWh required, assuming 1.24 kWh/km consumption) with potential different route 

options is presented below. The chosen route may be viewed in figure 7.9. 

 

 
Figure 7.9 - Sheffield-Newcastle Route 

 

- Option #1: 
o Start with 100% charge Mini Battery 
o Stop #1 – Swapping battery at station near Leeds (63 km away) 

▪ Battery remaining in Mini pack: approx. 50% 
▪ Quick stop, no charging needed. Battery swap performed as a pallet 

offload-onload operation. 
▪ Swap Mini Battery with 100% Super Battery 

o Arriving in Newcastle upon Tyne, trip duration estimate: 2h50m 
- Option #2: 

o Start with 80% charge Super Battery 
o Stop #1 – Swapping battery at station near Darlington (156 km away) 

▪ Battery remaining in Super pack: approx.  2% 
▪ Quick stop, no charging needed. Battery swap performed as a pallet 

offload-onload operation. 
▪ Swap Super Battery with 75% new Mini Battery 

o Arriving in Newcastle upon Tyne, trip duration estimate: 2h50m 
 

 The fleet downtime may then be further decreased by employing GPS data algorithms that 

create smart routes that consider a multi-factor analysis. Such algorithms have already been 

researched and implemented [100] for charging-only stops by big automotive companies, therefore 
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validated as a robust solution to the downtime issue. The generated routes often feature charging 

stops that do not imply waiting for the vehicle battery to fully charge, as this may not be the fastest 

way to reach the destination. This is because battery charging is not linear, with charging times 

becoming longer as the battery reaches its full charge capability [106]. The algorithms generating 

these routes are able to compute time comparisons between time spent charging and effective driving 

time. Finally, because the route creation solutions are flexible and can already calculate several trade-

offs, integrating another batch of factors related to battery swapping scenarios should be relatively 

straightforward. 

 In order to maximise battery lifetime, calculations involving trips must also consider battery-

cell factors. Studies indicate that batteries that have been extensively charged and discharged to 

extreme high and low levels of state of charge tend to lose their health quicker than battery units 

which have their charge managed under lower deltas of battery levels. Similarly, fast charging should 

be avoided wherever possible, as it has been shown that this charging technique can negatively affect 

battery health over time [268]. 

 Finally, a number of factors that are extrinsic to the battery packs should also be considered. 

One example of this is represented by the availability of energy grid infrastructure in the designated 

places in which battery swapping stations are proposed. This must be considered as it will serve as a 

major factor in the placement of battery swap stations. Whilst in urban areas this will likely not cause 

any problems, rural areas need to be carefully considered. Some of these areas may not have suitable 

energy delivery capabilities, therefore the energy grid performance may need to be expanded such 

that it can accommodate high power demand battery swapping stations. Finally, station placement as 

well as battery storage should also be optimised relative to the traffic in the area. 

  

7.7. Financial Implications 
When analysing the costs incurred by the proposed system, there are several categories that 

must be analysed. The initial implementation costs are expected to be high, as these will include the 

station building costs, as well as the battery pack acquisition, but also other machinery required for 

the battery swap operation and maintenance. Installation costs may also include “adaptation” costs 

on a case-by-case basis, such as the funds required to extend energy grid capabilities.  

Additionally, the system will be sustained by maintenance costs, which include personnel, 

battery pack replacement and recycling at critical end-of-life state, and other wear and tear processes 

that may happen. Finally, an incentive scheme that encourages freight companies to adopt the system 

may be considered. Whilst initial upfront investment costs are likely to be around 7-14 billion GBP in 

battery units alone (assuming the number of battery packs would be equal to the number of trucks on 

the road in the UK in 2022 [276], and the number would be equally split between specs), the zero-

carbon emission benefits of the system will likely correlate well with the strategies and funding of 

many governing bodies around the world, for example the UK Government’s Department for 

Transport policies [127]. Similarly, it will have a significant impact, effectively ensuring a net-zero 

carbon emission cargo logistic system mode. 

The projected pallet-sized battery pack system cost has been calculated to support 415,000 

packs (i.e., the number of average daily HGVs [277]) operating in the UK, split evenly between the 

proposed spec sizing. An estimated unit cost analysis based on the Li-Ion Tesla 18650 battery cell can 

be viewed under table 7.3. The 18650 Tesla cell has been chosen as the previously mentioned 

Panasonic 4680 is still under review and not present on the market yet. 
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Battery Pack 

Spec 

Battery Cell 

Technology 

(GBP) 

Battery Cell 

Costs [285] 

(GBP) 

Casing Costs - 

Aluminium 

[287] (GBP) 

Connection 

Costs [288] 

(GBP) 

Total Estimated 

Costs (GBP) 

Super (200 km 

range) 

Li-Ion Tesla 

18650 

34500 16 

500 

35016 

Regular (150 

km range) 
25700 13 25713 

Mini (100 km 

range) 
17700 10 17710 

Table 7.3 - Unit cost breakdown analysis 

 Comparison of the presented electric battery system with the current diesel technology must 

be carefully done. Whilst range performance of eHGV is unlikely to achieve the levels shown by diesel 

trucks, the difference may be less important when considering mandatory HGV driver downtime, 

which may be used for charging or swapping the onboard battery system. Additionally, kWh/km costs 

are likely to be significantly smaller for an electric HGV relative to a conventional ICE-based truck, as 

indicated by the cost breakdown below, see table 7.4. A further comparison with other alternative 

solutions (e.g., hydrogen or bio-methane HGVs) has not been carried out as the focus of the feasibility 

is to compare costs with traditional fuel vehicles. Furthermore, electric HGV maintenance costs are 

likely overestimated since most electric vehicle powertrains are significantly cheaper to maintain 

relative to their ICE-powered counterparts. 

 

Cost description HGV Type 

Diesel 

[280]  

500kWh eHGV 

[236] 

100kWh eHGV 

[236] 

Initial Cost (GBP) 85000 138000 90000 

  

Running Costs 

Proposed pallet-sized battery packs system cost 

(GBP/km) 

0 0.1 0.1 

Fuel Costs + AdBlue/ Vehicle Charging (GBP/km) – Dec 

2021 

0.47 0.3 0.3 

Vehicle Maintenance [277] (GBP/km) 0.05 0.05 0.05 

Total Running Costs (GBP/km) 0.52 0.45 0.45 

Table 7.4 - Estimated kWh/km cost breakdown, diesel vs electric HGV 

Considering these maintenance costs presented above, the break-even point relative to diesel 

for an eHGV vehicle can be as low as 40,000 kms, indicating a potential strong alternative while also 

sustaining the costs of the entire battery pallet system. System costs may be further decreased by 

ensuring prolonged battery usage for older cells that do not hold a similar capacity to their design 

parameters anymore. These could be made available for users paying for a lower subscription tier, to 

account for smaller range at higher battery pallet weight. 

Infrastructure costs should also be considered. Recent trends in land costs [289] indicate that 

renting space and building temporary battery swap and high-power charging facilities may attract 

significant increases in overall system costs. Moreover, such infrastructure that partially and, in some 

cases, fully meet the requirements of the battery swap stations already exist, represented by petrol 
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stations and their adjacent auxiliary EV charging spaces, or even warehouses with pallet handling 

facilities. Such service spaces may be successfully converted to serving as battery hot-swapping 

stations in a progressive fashion, as the proposed concept gains industry-wide adoption. Additionally, 

many petrol stations have already been built in a given location based on feasibility studies based on 

traffic intensity, partially eliminating the need to carry out further analyses of logistic movement. 

Finally, in order to facilitate ease of access, a higher proportion of batteries capable to store large 

amounts of electrical energy should initially be assigned to stations close to major roadways and 

interchanges. This should guarantee maximum system attractiveness, as it has been shown that these 

roads have generally higher proportions of traffic. 

Lastly, further system maintenance operations will have a financial impact. These include 

vehicle fleets purposed for optimising battery pack placement in a given area. Additionally, battery 

pack long range transportation may be handled by HGV operators that are currently contracted for 

petrol-related distribution. Transportation regulations will also need to be considered as battery cells 

are predominantly classified as dangerous goods, although petrol tankers are labelled in a similar 

fashion, which may alleviate any associated additional costs. Moreover, battery cell transportation 

handled by private haulage companies may be incentivised through various means depending on the 

chosen payment model. Such incentives may include one-off discounts to monthly or annual 

subscriptions, or consistent per-mile cost cuts if a distance-based concept use taxation is chosen. 

Additionally, a subscription-based service may also offer a tier-based system that discriminates 

between lower and upper tiers through allowing access to battery packs with higher state of health 

(SoH) percentages. This would ensure prolonged battery pack utilisation before phasing out battery 

packs with older cell technology. Similarly, a tier-based system may also consider access limitations to 

higher-capacity battery packs, but additionally provide access to auxiliary services, such as road-side 

assistance and on-the-spot battery swap replacement. In order to accurately determine the best 

business model, further research including a market review and cost analysis may be required.  

 

7.8. Chapter 7 Summary 
The material featured in this chapter has presented a concept system employing battery-sized 

loading pallets to extend the intrinsic capabilities of eHGVs or be employed as standalone energy 

modules. Whilst the initial estimations concerning technical performance and costs indicate that the 

system may be feasible as an alternative to the conventional freight transportation, significantly more 

work is needed in order to better understand its relevancy. Nonetheless, a battery pack system may 

significantly increase the attractiveness of electric powertrains in road freight heavyweight 

transportation, due to the ability to optimise vehicle mass depending on route length. 

Future research may be directed to investigating system implementation more concretely, 

such as optimal battery swap station placement and optimising the number of battery units the system 

should use. Similarly, analysing the upfront and maintenance costs at a low-level will also help with 

better understanding the system capabilities in terms of financial performance. Finally, research could 

also be directed to whether the concept could be extended to other vehicle types that are employed 

with local deliveries, such as eLGV. 

Having discussed energy usage of many of the important vehicle categories, the following 

chapter will focus on highlighting the main findings of the presented investigations, as well as 

suggesting several future research avenues. 
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8. Chapter 8 – Final Discussion & Conclusions 
This thesis has presented several aspects that are key to a better understanding of the 

feasibility, sustainability and energy requirements posed by several categories of electric motor 

vehicles, including eBuses, eRCVs and eMotorbikes. The originality of the research outlined in the 

chapters is comprised several components. Firstly, a novel simulation method focused on estimating 

EV energy consumption has been developed. The proposed solution uses a model-based programming 

development approach, whilst also employing state-of-the-art programming software, and represents 

an original application of simulation engineering in the electrified automotive field. Additionally, the 

developed simulation model is then further combined with novel methodologies in order to 

investigate the energy usage of several types of electric powertrains, ranging from ePSVs to electric 

motorbikes. The results produced by these analyses represent an original contribution to the fields of 

automotive electrification and applied simulation engineering, further enhancing the novelty 

component present in this thesis. Finally, the findings and approaches demonstrated in the previous 

chapters form a significant addition to the current knowledge of EV performance, whilst also opening 

up new research opportunities in the field of electrified powertrains. 

Although the scope of the presented work covers a broad range of components, ranging from 

the development of a novel vehicle software simulation solution to introducing an EV range extender 

battery-based concept, these can be presented in a simplified fashion.  

The first chapter outlined an introduction covering the high-level justifications behind the 

presented work. The main reason advocating for mass adoption of EV technology in motor vehicles 

revolves around the ever-increasing, industry-produced CO2 emissions. Through their higher energy 

efficiency and zero tailpipe emissions, it has been demonstrated that electric powertrains are able to 

significantly reduce the carbon dioxide footprint of the automotive and transportation sectors. 

In chapter 2, a state-of-the-art literature review including historical evolution as well as the 

most recent developments in topics of interest to the research has been presented. Researched topics 

include the economic output of the automotive and transportation fields and predicted future CO2 

emissions as a result of implementing alternative green powertrain technologies, including EV. 

Additionally, technical aspects related to EV motor vehicles and psychological aspects preventing mass 

adoption of EV technology have been looked at, along future trends in powertrain electrification. 

Moreover, a review examining the most recent developments in simulation-based experimentation 

and telemetry-like data has been produced. The reviews outlined in this chapter have satisfied the 

objectives related to research aim 1, concerning the understanding of the relevant current scientific 

context. 

The third and fourth chapters have presented a proposed software simulation solution aiming 

to provide accurate energy usage estimates for a wide range of electric vehicles, such as eBikes, eRCVs 

and eMotorbikes. Novel techniques have been used, such as model-based programming and state-of-

the-art software components, such as SimScape, within the Matlab/Simulink environment. Similarly, 

a telemetry-producing Python script suite is also presented. The efficacy of the proposed solution is 

demonstrated through the presentation of accuracy results during the validation and testing phases 

of development. The work presented in these sections aim to fulfil research aim 2, targeting the 

development of a novel software simulation solution, tailored for energy consumption in electric 

vehicles. 

Chapters 5 and 6 present how the developed software solution can be applied to real-life 

energy usage investigations. The findings and results presented in these chapters further detail the 

answer to questions concerning the feasibility of electric vehicles in contexts which have not been 
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thoroughly investigated. The outlined conclusions targeting energy requirements may be of particular 

interest to local authorities and vehicle manufacturers, since understanding this concept is key to 

implementing sustainable electric vehicle fleets. Additionally, the investigation summaries also further 

clarified the challenges posed by the decarbonisation of the transport and automotive industry 

sectors. Furthermore, the model developed and utilised for the purposes of simulating vehicle energy 

consumption employed by the investigations represents a novel application of model-based 

programming through usage of commonly used software tools. Similarly, investigations looking at the 

energy consumption of eRCVs, eBuses and eMotorbikes, based on simulated estimates have been 

presented. These include comparing the produced carbon footprint and incurred costs of conventional 

ICE fleets to electric alternatives. Finally, the limitations of the proposed software simulation model 

have also been assessed through stress-testing simulations that aim to predict the energy usage of a 

high-performance, motorsport-spec electric motorbike performing high-speed laps around a 

racetrack. The research presented in these chapters demonstrate how research aim 3 and its 

objectives, related to energy usage estimation through software modelling, has been achieved. 

In chapter 7, an example of how the energy usage investigations can be further employed to 

create more complex systems, such as a range extension method for eHGVs. This relies on usage of 

battery cells modelled as pallet loads in order to facilitate loading and unloading. Similarly, practical 

considerations regarding system implementation and costs have been presented. The findings 

presented in chapter 7 fulfil research aim 4 and the related objectives concerning how energy usage 

investigations can be further used as a basis towards building more complex battery-based, EV range 

extender systems. 

Broadly, the findings presented in this thesis suggest that, if implemented correctly, albeit 

highly dependent on the energy source production, urban areas can successfully benefit from the 

deployment of electric alternatives to public service vehicles. A similar conclusion is also reached when 

considering lightweight vehicles. The reduction of localised CO2 footprints proven by the carried-out 

analyses will not only help in minimising the total emitted carbon dioxide, but also improve local air 

quality, as demonstrated by previous studies [42]. This is also likely to have beneficial effects on the 

population’s overall health, consequentially minimising public funds directed towards curing 

respiratory conditions [290]. From a cost-driven perspective, upfront vehicle costs for electric motor 

vehicles will be higher than ICE solutions across every vehicle category. This is mostly due to the costs 

incurred by the battery systems, as battery technology is still relatively expensive. However, due to 

significantly lower running and maintenance costs of EVs, it is expected that the overall lifetime vehicle 

costs will be lower for the electric vehicle alternatives. Furthermore, as battery technology evolves, 

battery material pricing will likely decrease, therefore lowering the upfront costs of electric vehicles. 

Although the findings outlined in this thesis will add more consistency to answering questions 

concerning electric vehicle energy requirements, plenty of opportunities for future work exist. These 

may be focused on optimising the presented toolkit and expanding on the outlined investigations, but 

also implementing novel ideas on top of the presented results and benchmarking other vehicle 

technologies, adding more complexity in the analyses. 

 

8.1. Vehicle Model & Route Builder – Future Improvement Opportunities 

The presented solution model described in chapters 3 and 4 of this thesis consists of two 

elements. The first one is a model-based programming electric vehicle model developed in the Matlab 

environment, whilst the second element is represented by a suite of Python-coded scripts that build 

vehicle driving routes using Application Programming Interface (API) data and mathematical 
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approximations. Whilst both parts of the solution have been developed using modern, state-of-the-

art tooling, the capabilities of the employed toolkit have evolved significantly since the model 

development process. 

There are several potential improvements that could be made to the vehicle model through 

implementing newer software design components. Firstly, the current PID-based control module that 

handles the vehicle model’s system response to the telemetry input data may be swapped with a 

metaheuristic control module, such as a neural network-based one. Whilst the control error exhibited 

by the original PID control module has been considered acceptable, a non-deterministic algorithm 

approach may bring further accuracy improvements to the system response. However, it must be 

ensured that the algorithm is trained employing a significant amount of data beforehand, which may 

prove difficult to acquire. Nonetheless, use of a non-deterministic algorithm for controlling the vehicle 

model’s response also implies the possibility of having simulation results with some variability 

between iterations. These may then be compared in order to determine how the vehicle technical 

specification may be further optimised. 

Other potential improvement areas may lie in the vehicle aerodynamic and transmission 

modelling. Further complexity may be added to the gearbox and braking systems that should lead to 

a decrease in overall prediction error. Additionally, the tyre modelling within the presented software 

model can be improved by changing the modelling approach to a fixed, specification-based one, as 

opposed to utilising the Magic Tyre Formula coefficients. Finally, model usage can be simplified by 

implementing an automatic data import script that streamlines the simulation process. 

 Similarly, further improvements may be brought to the route builder script suite as well. Time 

execution can be further optimised by investigating the code and eliminating any redundant control 

flow elements, such as “for” loops. Additionally, both time and space constraints of the computation 

can be reduced by ensuring data is computed or acquired only once. Further accuracy benefits may 

be brought by implementing more refined mathematical approximations to the calculations, such as 

Simpson’s rule. Finally, a potential research opportunity may lie in implementing machine learning-

based route algorithms, as these may be able to provide better routing solutions than traditional 

numerical methods applied to point-to-point distances. A good starting point is represented by 

algorithms commonly used in solving travelling salesman problem (TSP)-like situations, such as 

Dijkstra’s algorithm or A* [239]. 

 

8.2. Energy Usage Investigations – Limitations and Opportunities 

The featured energy investigations presented in this thesis cover a wide range of vehicle 

categories and explore several driving contexts for some of them, such as urban and motorway driving. 

However, the current findings may be expanded by performing more refined, low-level investigations. 

While this thesis describes the expected energy usage of an eRCV when performing refuse collection, 

understanding energy consumption during normal driving is also key to having a better estimation of 

the energy requirements of this type of vehicle. Additionally, similar investigations could be performed 

for other types of vehicles with similar daily driving route patters, such as delivery vans. Due to the 

COVID-19 pandemic and the governmental measures taken, home deliveries with just-in-time 

characteristics have gained significant popularity. Consequentially, the delivery fleets of large 

corporations have expanded, therefore understanding the amount of energy utilised by electric 

alternatives to these vehicles would help to further answer energy requirement questions. 

Additionally, these fleets may also be utilised as grid support systems during peak demand hours for 

the energy grid, in a similar fashion to the system hypothesised employing eRCV fleets, effectively 
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integrating a vehicle-to-grid (V2G) concept within the urban transportation. In order to facilitate this 

integration, studies concerning urban energy requirements and how these relate to the energy grid 

capacity should be undertaken. 

Similarly, although the telemetry data employed for analysing energy consumption of road-

legal eBikes (presented in chapter 6) relies on emission testing driving cycles throughout the world, 

real-life telemetry should further aid in clarifying inconsistencies. Harvesting telemetry data is 

relatively straightforward from a technological standpoint, as telemetry collection code modules can 

be easily integrated as software background service workers in mobile apps. These are already 

extensively used by eBike drivers who perform on-demand delivery services in the gig economy, as 

they are sometimes required to be connected to the delivery schedule handling app. Additionally, 

such a data collection feature is already likely in place in some GPS/Navigation mobile apps used 

worldwide, therefore large corporations may already have access to large amounts of telemetry data 

produced by eBikes that are currently in operation. This data may also prove to be useful for further 

refining potential analyses concerned with estimating energy usage of delivery vehicles. The 

investigations revolving around this may be targeted to fleet energy consumption usage and 

integrating these with localised power generation, such as depot-installed solar panels [291]. 

Besides performing investigations of different driving scenarios for various electric vehicle 

categories and comparing them against their conventional ICE counterparts, other alternative 

powertrain solutions may also be considered. The literature review presented in chapter 2 suggests 

that some of the current solutions currently under development, such as hydrogen combustion-

powered vehicles may prove feasible alternatives in the long run as well, with the appropriate 

adjustments. As technology evolves, it is likely that hydrogen-based solutions may prove serious 

competitors to electric powertrains in specific application driving scenarios, once the technology has 

matured to the level of electric powertrains. Similarly, ICE powertrains may be considered as a viable 

option if net-zero methanol-based fuels and other synthetic fuel options advance beyond initial 

research and development investigations and go into production. These still have the advantage of 

having the ability to employ current refuelling infrastructure with minimal adaptations. However, a 

full comparison is yet to be determined by the scientific community and goes beyond the scope of this 

thesis. 

 

8.3. EHGV Battery Swapping Concept – Limitations & Opportunities 

Whilst the battery swap concept presented in this thesis under chapter 7 may show promise, 

further research is required in order to determine its full potential. The limitations of the presented 

research include a lack of concrete technical vehicle specification data. This has affected the accuracy 

of the energy usage predictions. Moreover, the current telemetry that has been analysed is limited to 

one driving cycle. Furthermore, the research only considers present battery technology without 

having a projection for new-gen battery technologies, which are expected to have higher volumetric 

and weight capacities. 

Future research into this topic may be directed towards several aspects. Firstly, in order to 

refine the cost analysis and fully determine the total upfront costs of the installations, an investigation 

looking into determining the number of battery packs that should be in use simultaneously should be 

considered. This will likely depend on key logistic performance metrics, such as the total amount of 

cargo transported by road during a set time interval and the number of HGVs presently in use in the 

UK (or the geographical area in question) [277]. Similarly, in order to determine what a final battery 

pack specification should look like, statistics concerning the transportation trip lengths and a distance-
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based classification of these should be considered. Finally, in order to determine the optimal share 

between battery pack sizes at a given location, consideration towards the distance from that point to 

the cargo’s final destination should be given. Although organising the data required for this type of 

investigation may prove a challenge in itself, modern data clean-up and classification software tools 

should simplify the process significantly. Moreover, plenty of the data indicators previously mentioned 

are likely to already be known through statistics gathered by transportation-focused organisations 

such as existing freight transport operators. 

Secondly, the initial feasibility analysis may benefit from including more data in the energy 

consumption analysis. These should include telemetry data originating from HGV-specific emission 

testing driving cycles, as well as real-life transportation. This should help in fully understanding how 

eHGV energy consumption varies in different road or cargo load conditions. Furthermore, some 

vehicle technical specifications may then be further optimised for battery swapping concepts based 

on simulation findings. For example, the sizing of the vehicle integrated battery could be minimised, 

as it may be determined that excess electrical capacity is not required. This will in turn decrease the 

base vehicle energy consumption due to the base vehicle mass being smaller. 

Additionally, research looking into the business models required for implementing the 

concept should be considered. There are several options for this – originating from the private and 

the public sector. The concept may be integrated as part of government schemes targeting transport 

sector decarbonisation. Similarly, a tier-based subscription service fee may be applied based on a time 

interval or a battery pack unit basis. This will also aid in attenuating some costs attributed to system 

maintenance. 

The charging aspect of the concept should also be considered. Understanding whether current 

EV charging interfaces and standards are feasible for the purposes of charging the battery packs should 

be investigated. Alternatively, slow, grid-compatible charging using regular power outlets may be 

implemented depending on the usage of a given battery swapping station. This will have a beneficial 

long-term effect on battery health, extending the life of battery units.  

Finally, the concept’s logistic aspects will have to be investigated. These include a system that 

transports battery packs between locations, effectively re-balancing the geographical supply of 

battery packs. This may be implemented using a separate vehicle fleet or as an incentive-based system 

for freight companies willing to deliver packs to a given set of locations. However, a more refined 

feasibility analysis is required in order to determine the optimal solution. 

 

8.4. Final Summary 

The findings presented in this thesis indicate key observations related to the energy 

consumption of various electric vehicle categories. Moreover, it is demonstrated that electric vehicle 

fleet alternatives to commonly used ICE vehicles have the capability of being more economical and 

environmentally friendly, from a tailpipe emission perspective. Finally, the presented analyses open 

significant research opportunities that will further refine the picture of decarbonisation in the 

transport sector through powertrain electrification and clarify the role of EV technology in the 

transportation industry, along with other eco-friendly alternatives. 
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Appendices 
Appendix 1a – Further example of processed speed data 
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Appendix 1b – Further example of processed power data 
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Appendix 2 – Link to GitHub repository containing the telemetry emulation route builder script. 
 
https://github.com/EVLogisticsResearch/RoadSimCode/blob/3cff4121d3f1350edbd6cb3d6efb791c5
b30857e/RoadSim.py 
 
 
 
Appendix 3 – eRCV technical vehicle specification 

Vehicle 

Front/Back drive  Rear wheel 

drive 

Empty weight kg 15500 

Maximum vehicle weight with payload kg 26000 

Front area mm2 6163200 

Wheel radius (315/80 R22.5) m 0.5218 

Rolling resistance coefficient % 1.2 

Vehicle aerodynamic drag coefficient  0.633 

Drivetrain 

Drivetrain efficiency % 90 % 

Number of gears (if applicable)  1 

Drivetrain drive ratio  6.83 (axle 

ratio) 

Drive ratio on gear (if applicable)  3.405 

 Motor 

Motor power kW 150 

Maximum torque N·m 1055 

Motor rated speed rpm 7500 

Motor maximum speed rpm 10000 

Motor system efficiency  % 94% 

Regeneration 
Regeneration power kW 50 

Regeneration system efficiency  % 94% 

Battery 

Working voltage V 
526V 

nominal 

Battery capacity kWh 300 

Type of battery  Lithium-ion 

Minimum discharge voltage V 403 

Maximum charging voltage V 605 

Battery temperature controller target (if any) °C -10 - 45 

Weight of battery system kg 1870 

Battery system efficiency % 90 

Other 
Compress system power kW 4 

Compress system efficiency % 85.8 

 
 
 
 
 
 
 
 
 
 

https://github.com/EVLogisticsResearch/RoadSimCode/blob/3cff4121d3f1350edbd6cb3d6efb791c5b30857e/RoadSim.py
https://github.com/EVLogisticsResearch/RoadSimCode/blob/3cff4121d3f1350edbd6cb3d6efb791c5b30857e/RoadSim.py
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Appendix 4 – eBus, single deck technical vehicle specification 

Vehicle 

Front/Back drive  Rear wheel 

drive 

Empty weight kg 12850 

Maximum vehicle weight with payload kg 19000 

Front area mm2 8466000 

Wheel radius   m 0.5218 

Rolling resistance coefficient % 1.2 

Vehicle aerodynamic drag coefficient  0.633 

Drivetrain 

Drivetrain efficiency % 90 % 

Number of gears   1 

Drivetrain drive ratio  6.83 

Drive ratio on gear   3.405 

 Motor 

Motor power kW 250 

Maximum torque N·m 1730 

Motor rated speed rpm 7500 

Motor maximum speed rpm 10000 

Motor system efficiency  % 94% 

Regeneration 
Regeneration power kW 50 

Regeneration system efficiency  % 94% 

Battery 

Working voltage V 
500V 

nominal 

Battery capacity kWh 400 

Type of battery  Lithium-ion 

Minimum discharge voltage V 403 

Maximum charging voltage V 605 

Battery temperature controller target (if any) °C -10 - 45 

Weight of battery system kg 1870 

Battery system efficiency % 90 
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Appendix 5 – eBus, double deck technical vehicle specification 

Vehicle 

Front/Back drive  Rear wheel 

drive 

Empty weight kg 19000 

Maximum vehicle weight with payload kg 26000 

Front area mm2 10965000 

Wheel radius (275/70 R22.5)  m 0.5 

Rolling resistance coefficient % 1.15 

Vehicle aerodynamic drag coefficient  0.6 

Drivetrain 

Drivetrain efficiency % 90 % 

Number of gears   1 

Drivetrain drive ratio  6.83 

Drive ratio on gear   3.405 

 Motor 

Motor power kW 250 

Maximum torque N·m 2200 

Motor rated speed rpm 7500 

Motor maximum speed rpm 10000 

Motor system efficiency  % 94% 

Regeneration 
Regeneration power kW 50 

Regeneration system efficiency  % 94% 

Battery 

Working voltage V 
500V 

nominal 

Battery capacity kWh 382 

Type of battery  Lithium-ion 

Minimum discharge voltage V 403 

Maximum charging voltage V 605 

Battery temperature controller target (if any) °C -10 - 45 

Weight of battery system kg 1870 

Battery system efficiency % 90 
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Appendix 6 – Further mapped examples of bus routes 
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Appendix 7 – Code for extracting Strava-proprietary enhanced telemetry data 

from fitparse import FitFile 
import os 
import csv 
 
# the overall max speed in meter p/s 
max_speed = 0.0 
speed_data = [] 
altitude_data = [] 
timestamp_data = [] 
x = {} 
 
# loop through all fit files in directory 
for filename in os.listdir(os.path.abspath(os.getcwd())): 
 
    if filename.endswith(".fit"): 
         
        # open fitfile  
        fitfile = FitFile(filename) 
         
        # Get all data messages that are of type record 
        for record in fitfile.get_messages('record'): 
 
            # Go through all the data entries in this record 
            for record_data in record: 
                #print(record_data) 
                x = record_data.name 
                if record_data.name == "enhanced_speed": 
                     
                    # save new max speed if higher than previous 
value 
                    if record_data.value > max_speed: 
                        max_speed = record_data.value 
                    speed_data.append(record_data.value * 3.6) 
 
                if record_data.name == "enhanced_altitude": 
                    altitude_data.append(record_data.value) 
 
                if record_data.name == "timestamp": 
                    timestamp_data.append(record_data.value) 
 
        #write data to output csv 
        with open('output.csv', 'w', newline='') as csvfile: 
            writer = csv.writer(csvfile) 
 
            # write each value in the array to a separate row 
            for x in range(len(speed_data)): 
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                writer.writerow([speed_data[x], altitude_data[x], 
timestamp_data[x]]) 
 
    # continue if not a fit file 
    else: 
        continue 
         
 
print (str(max_speed * 3.6)) 
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Appendix 8 – High-performance eBike technical vehicle specification 

Vehicle 

Front/Back drive  AWD 

Empty weight kg 248 

Maximum vehicle weight with payload kg 328 

Front area mm2 942430 

Wheel radius (275/70 R22.5)  m 0.32 

Rolling resistance coefficient % 0.022 

Vehicle aerodynamic drag coefficient  0.55 

Drivetrain 

Drivetrain efficiency % 90 % 

Number of gears  1 

Drivetrain drive ratio  N/A 

Drive ratio on gear   2.5-3.8 

 Motor 

Motor power kW 120 

Maximum torque N·m 210 

Motor rated speed rpm 7500 

Motor maximum speed rpm 10000 

Motor system efficiency  % 100% 

Regeneration 
Regeneration power kW 50 

Regeneration system efficiency  % 94% 

Battery 

Working voltage V 370 

Battery capacity kWh N/A 

Type of battery  Lithium-ion 

Battery system efficiency % 90 
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Appendix 9 - Road-legal spec eBike technical vehicle specification 

Vehicle 

Front/Back drive  FWD 

Empty weight kg 125 

Maximum vehicle weight with payload kg 205 

Front area mm2 663000 

Wheel radius (190/55 R17)  m 0.32 

Rolling resistance coefficient % 0.022 

Vehicle aerodynamic drag coefficient  0.63 

Drivetrain 

Drivetrain efficiency % 95 % 

Number of gears  1 

Drivetrain drive ratio  N/A  

Drive ratio on gear   2-7 

 Motor 

Motor power kW 10 

Maximum torque N·m 65 

Motor rated speed rpm 5000 

Motor maximum speed rpm 7500 

Motor system efficiency  % 98% 

Regeneration 
Regeneration power kW 2 

Regeneration system efficiency  % 100%* 

Battery 

Working voltage V 150 

Battery capacity kWh N/A 

Type of battery  Lithium-ion 

Battery system efficiency % 90 
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Appendix 10 – eHGV technical vehicle specification 

Vehicle 

Front/Back drive  FWD 

Maximum vehicle weight with payload Kg 37000 

Front area mm2 7000000 

Wheel radius (315/80 R22.5)  m 0.5218 

Rolling resistance coefficient % 1.2 

Vehicle aerodynamic drag coefficient  0.35 

Drivetrain 

Drivetrain efficiency % 95 % 

Number of gears  1 

Drivetrain drive ratio  6  

Drive ratio on gear   2-7 

 Motor 

Motor power kW 250 

Maximum torque N·m 2200 

Motor rated speed rpm 7500 

Motor maximum speed rpm 10000 

Motor system efficiency  % 94% 

Regeneration 
Regeneration power kW 25 

Regeneration system efficiency  % 100%* 

Battery 

Working voltage V 526 

Battery capacity kWh 500 (?) 

Vehicle Energy Consumption kWh/km 1.26 

Type of battery  Lithium-ion 

Battery system efficiency % 90 

 


