
Deep Neuro-Fuzzy Systems Based on Complex

Fuzzy Theory & Complex-Valued Structures with

Applications to Regression Modeling

Chuan Xue

18th October 2023
Final Version





Deep Neuro-Fuzzy Systems Based on Complex

Fuzzy Theory & Complex-Valued Structures

with Applications to Regression Modeling

BY

CHUAN XUE

A dissertation submitted to

The University of Sheffield

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

18th October 2023



Chuan Xue

Deep Neuro-Fuzzy Systems Based on Complex Fuzzy Theory & Complex-Valued Structures with Ap-

plications to Regression Modeling

PhD Dissertation, 18th October 2023

Supervisors: Prof Mahdi Mahfouf

Dr Hua-Liang Wei

The University of Sheffield

Department of Automatic Control and Systems Engineering

Amy Johnson Building

Portobello Street

Sheffield, S1 3JD



The bounds of human

possibility are not as

confining as we think

they are; they are made

to seem to be tight by

our weaknesses, our

vices, our prejudices that

confine them.

Jean-Jacques Rousseau

v





Acknowledgement

I am humbled to express my most sincere gratitude to Professor Mahdi Mahfouf,

who accepted me as his Ph.D. student during a hard time in the middle of the COVID-

19 pandemic, for the invaluable position he offered, as well as his advice, guidance,

patience, and efforts, which helped me overcome all those difficulties to make it thus

far.

Also, I wish to thank my parents for their solid financial support that allowed me

to finish the degree single-mindedly without financial worries, a rare luxury in both

the pandemic and post-pandemic era and a privilege that most of my age could barely

imagine.

vii





Declaration

I, Chuan Xue, declare that the work presented in this thesis is my own. All material in

this thesis which is not of my own work, has been properly accredited and referenced.

Sheffield, 18th October 2023

Chuan Xue

ix





Abstract

Deep neuro-fuzzy systems are a category of machine learning structures that integ-

rate the self-learning potential of neural networks as well as the transparency of fuzzy

systems, but not without flaws. Firstly, the size of the rule-base of some fuzzy systems

applying complete rule partitions often increases exponentially as the input dimension

grows. Secondly, the classic fuzzy logic commonly applied by conventional neuro-fuzzy

models can only express relatively uncomplicated semantics, which leads to limited

generalization capability and risk of overfitting of the model. Thirdly, such models are

sensitive to outliers and noises in the data. This thesis mainly focuses on constructing

novel deep neuro-fuzzy models based on complex-valued structure and the complex

fuzzy theory to enhance the algorithm performance against the above three aspects.

Given the first deficiency above, the complex-valued structure is introduced into the

classic Wang-Mendel (WM) algorithm to form a new complex-valued Wang-Mendel

(CVWM) method. Subsequently, a deep complex-valued single-iteration fuzzy system

(DCVSF) is created for high-dimensional datasets by further integrating CVWM into

hierarchical structures. DCVSF only requires one iteration to train, and its rule-base

is merely the square root scale of a counterpart architecture using the original WM

method. The second proposed model is a rapid adaptive complex neuro-fuzzy infer-

ence system (RACFIS) that adopts complex fuzzy theory as reasoning logic. Complex

fuzzy sets (CFSs) can hold more information and represent more complex semantics

than type-1 fuzzy sets, leading to better performance for regression tasks. A closed-

form solution also exists for the first-order derivatives of complex fuzzy membership

functions, which enables gradient optimization policy, making RACFIS models more ef-

ficient than type-2 models without such solutions. The third model is a robust learning

method called an exclusionary neural complex fuzzy inference system (ENCFIS). Robust

machine learning is an emerging topic for advanced artificial intelligence. As the first

robust learning attempt in the territory of fuzzy systems, ENCFIS is highly adaptable

to various real-world datasets and realizes strong noise immunity at a very low cost of

accuracy. The above models are tested on synthetic and real-world datasets, including

a Sunspot time series dataset and two metallurgical datasets. The experimental results

indicate that all models reached the expected performance.
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1.1 Introduction and Background

The seminal idea of fuzzy sets & logic came from Professor Zadeh [1]–[3]. Such pro-

found theoretical innovation did not immediately raise large-scale attention because of

its unorthodox interpretation regarding crucial principles such as certainty compared

with the prevailing crisp or probability modeling methods at the time. With the ad-

vancing of computational intelligence, the capacity of this idea to perform imprecise

reasoning as well as to provide a modeling method that is analogous to human intu-

ition gradually attracted awareness [4]. For a long time, expert systems, fuzzy systems,

and artificial neural networks have been considered the three main topics of intelligent

systems [5]. In recent years, as the traditional methodology of manual modeling in

fuzzy systems has long been unable to tackle the increasingly sophisticated application

scenarios in this new wave of machine learning fever, attention to conventional fuzzy

methods has shown a significant downward trend. Especially after Google DeepMind

successfully developed the AlphaGo [6], which impressed the world by defeating all

human players in the game of Go that once had been considered a field where human

intuition could easily outsmart the machines.

For a moment, deep learning almost becomes synonymous with AI by showing mo-

mentum to surpass human beings in many specific areas. Despite this, it is far from

perfect for the challenges posed by the complexity of the real world. A common ap-

proach in the deep learning area is simply piling up network scale and data scale to

squeeze more performance, but this strategy does not lead to endless improvements.

Excessively increasing the depth of the network may lead to degeneration problems,

which even degrades the network performance [7]. In addition, most deep networks

are black-box models with little transparency, which hinders applications that demand

an understanding of the model internals. Consequently, some new trains of thought are

gaining attention, and one of those is to combine deep networks with fuzzy systems.

Even though the primitive neuro-fuzzy system [8] emerged as early as the late 1980s,

the topic of deep neuro-fuzzy systems has only become popular in recent years [9].
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Generalized neuro-fuzzy systems can be roughly divided into two factions accord-

ing to the prime objective, i.e., prioritizing interpretability or the maximum algorithm

performance, although varying widely in design. At the theoretical research level, the

interpretability and the mechanisms behind fuzzy representations have always been a

primary concern of researchers in fuzzy systems since the transparency of the model

and a good understanding of the knowledge representation are crucial when it comes

to the manual construction of fuzzy rule-bases. This property is not always necessary for

many application scenarios of neuro-fuzzy systems. Perhaps, for purposes such as data

mining and knowledge abstraction, the models employed need to be as interpretable as

possible to facilitate the extraction of expert knowledge. However, most of the prob-

lems to be solved by neuro-fuzzy systems are no different from that of ordinary neural

networks, for which users are not concerned with whether knowledge can be obtained

from the data in a way that humans understand but acquire the best performance. Most

likely, the application of the interpretability of neuro-fuzzy systems is only meaningful

to simple tasks such as model debugging, determination of hyperparameters, or adjust-

ment of network structure, because specific knowledge interpretations are not part of

the mandate. The dimensionality of today’s datasets is often high, and the explosion

of the rule-base caused by the curse of dimensionality can also make the model inter-

pretation impracticable, even if the system has impeccable interpretability. From the

perspective of system designing, it is hard to achieve both strong interpretability and

the best algorithm accuracy for the same model, and it is often the case to sacrifice one

for the good of the other. Considering that transparency is often of less importance for

neuro-fuzzy systems, many researchers choose to put the performance and the accuracy

of the model as the priority.

The deep neuro-fuzzy system is a product following this train of thought because

the increase in network depth also dramatically reduces the transparency of the neuro-

fuzzy system, which makes neuro-fuzzy systems share more common properties with

general deep learning models. For this type of algorithm, strategies used on ordinary

deep learning algorithms are also conducive to deep neuro-fuzzy systems, including

adjusting the network structure and optimization policy, etc. What is exclusive about
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the deep neuro-fuzzy system is that the model performance is closely related to the logic

employed for fuzzy reasoning. Most of the existing neuro-fuzzy systems rely on type-1

logic for inference, but the simple semantic representation of type-1 fuzzy membership

means it may require multiple rules to fully express an intricate logic statement, which

often makes the final rule-base incredibly large. Such a massive rule-base subsequently

brings two problems. One is that the model is prone to overfitting, which may reduce

the generalization performance of the algorithm. The other is that if the number of

input variables is immense, due to the exponential relationship between the size of

the rule-base and the number of input variables, the curse of dimensionality is more

likely to occur under a large base of exponent. In addition, the shallow semantics of

type-1 logic also leads to relatively inaccurate representations for some sophisticated

objects, which further affects the model performance [10]. Hence, new kinds of fuzzy

logic are applied as a basis for fuzzy reasoning, of which the most popular is type-2

fuzzy logic [11]. Type-2 fuzzy logic has richer semantic expressions, with the ability to

represent both intra-individual uncertainty and inter-individual uncertainty, increasing

the information contained in a single rule, thereby leading to a reduced size of the rule-

base and an increase in the generalization capability of the model [10]. Type-2 logic

also allows for more accurate descriptions of some problems, which is advantageous to

the model precision. Many deep neuro-fuzzy models based on type-2 fuzzy logic have

emerged in the last decade and have shown a significant performance boost compared

to their counterparts using type-1 logic [9]. Notably, the type-2 deep fuzzy models are

also approaching the ceiling.

To further improve the accuracy and efficiency of the deep fuzzy algorithm, it is neces-

sary to investigate new theories. In addition to type-1 and type-N logic, complex fuzzy

set theory [12], [13] has also been successfully employed to build deep neuro-fuzzy

models. A complex fuzzy set is a category of fuzzy sets in which the membership grades

are represented via complex numbers, giving the fuzzy membership a two-dimensional

attribute. The idea of complex fuzzy logic mainly originates from the wave-particle du-

ality in quantum mechanics. It usually defines the fuzzy membership within the unit

circle in the complex plane, of which the modulus can be considered the embodiment
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of the particle, whereas its phase characteristic can correspond to the wave. In addi-

tion, the interaction between different complex fuzzy sets is carried out in the complex

plane, which inevitably endows the operation rules with vector properties. The work of

complex fuzzy theory is revolutionary, as it overturns the traditional understanding of

logic in the field of theoretical mathematics, indicating inference logic does not have to

be scalar but can also be vectorial [14]. This theory subverts the traditional research

perspective of fuzzy theory and makes abstract algebra represented by the group the-

ory gain importance in the study. A group is a class of algebraically closed structures

consisting of co-domains and operational relations, for instance, the group of integers

can be seen as a group composed of addition operations and the integer field. Similarly,

all types of fuzzy logic, including type-1 logic, type-2 logic, and complex fuzzy logic,

can be considered a unique group in abstract algebra. The introduction of group theory

unifies the study of fuzzy mathematics with other fields of mathematics, and it allows

research of fuzzy theory to conduct in a purely theoretical and abstract way that is away

from human intuition. The study of complex fuzzy theory is highly dependent on group

theory, and many of its characteristics are successfully proved based on the properties

of the circle group and the Abelian group [15]. From a mathematical point of view, the

complex fuzzy theory has sufficient theoretical plausibility.

Complex fuzzy theory is also meaningful from the angle of applied value. Firstly, the

complex fuzzy set is defined in the complex plane, for which the magnitude-phase at-

tribute of complex numbers gives the complex fuzzy set a natural advantage in dealing

with quasi-periodic problems, making it ideal for applications such as time series fore-

casting and streaming data processing. Secondly, the rule-base of the complex fuzzy set

has two-dimensional degrees of freedom, which brings two superiorities. One is that

a single rule can contain richer information than one-dimensional type-1 fuzzy rules,

which leads to better generalization performance [16]. The other benefit is that the two-

dimensional complex plane diffuses the effect of outliers on the training process, making

the model more robust to some data types [16]. Thirdly, complex fuzzy sets can express

sophisticated semantics beyond the reach of previous fuzzy theories. Some research

suggests that complex fuzzy logic can express meanings such as “counter" and “non" by
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a single rule, which requires multiple rules for previous fuzzy logic to describe [17].

Unfortunately, even with substantial mathematical proof, due to the counter-intuitive

nature of its formality, the semantic representation of the complex fuzzy membership

has yet to be fully deciphered. Therefore, relying on expert knowledge to construct com-

plex fuzzy inference systems is temporarily infeasible, while current research focuses on

complex neuro-fuzzy systems. Despite this, its properties can still exceedingly narrow

the size of the rule-base of a deep neuro-fuzzy model while bringing new possibilities

for function approximation and the construction of data prediction algorithms.

It is worth noting that a special kind of deep neural network structure has also

appeared in recent years, i.e., complex-valued neural networks (CVNNs) [18], and

some researchers even added fuzzy elements to this foundation to establish complex-

valued neuro-fuzzy systems (CVNFSs) [19], [20]. Although the words “complex" and

“fuzzy" exist in both definitions, the complex neuro-fuzzy system and the complex-

valued neuro-fuzzy system are two distinct concepts. The former emphasizes the ap-

plication of complex fuzzy theory as inference logic for the algorithm, while the latter

refers only to the involvement of complex values at the signal processing level [16].

CVNNs have quite limited application scenarios, and the most common one is the pres-

ence of complex-valued numeric representations in the data, to which signal processing

methods for complex numbers are inevitable [18]. There is also a situation where some

unique associations between several real-valued terms in the data and combining them

into complex-valued forms for processing may achieve better results [18]. Besides, it

has also been the case that the complex-valued structure can be used as a dimension-

ality reduction approach when the data dimensionality is high, and the model does not

require high output precision [20]. In contrast, there is no restriction over application

scenarios for most complex fuzzy neural systems. Although the complex-valued struc-

ture is essential in this type of algorithm, it only relates to the operation of the rule base,

and the complex values are fuzzy memberships, which are converted into real-valued

weights once the defuzzification of the complex fuzzy set finishes, and thus the input

and output values of the network can be completely free of complex numbers. The

complex neuro-fuzzy system is considered the most promising attempt after the type-2
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model, but the current research in this field is still in its infancy, and only a handful of

models have been proposed so far [21].

In this thesis, deep learning architectures based on both complex-valued structures

and complex fuzzy theory are developed. In total, three models are proposed, the first

with excellent capability to handle the curse of dimensionality [22], the second focusing

on computational efficiency when dealing with real-world datasets, and the third being

a robust learning model specifically for noisy data. All models are tested on specially

designed synthetic datasets and three real-world datasets to simulate the performance

under different application scenarios. The first one is a periodic time series that records

the sunspot event over the last two centuries. The other two are high-dimensional

metallurgical datasets, namely Charpy impact data and Ultimate Tensile Strength (UTS)

data. Each dataset has its own uniqueness and poses different challenges to models.

Note that the work in this thesis is limited to the study of numerical regression scenarios,

and models for pattern recognition and classification purposes are not within the scope

of discussion.

1.2 Research Aim

This study explores the potential of complex-valued structures and complex num-

ber fuzzy theory in building novel deep neuro-fuzzy systems. The focus is on mitigat-

ing several core problems, including the curse of dimensionality, model efficiency and

generalization performance, and noise resistance of the algorithm. Experimental deep

neuro-fuzzy architectures are developed to serve these purposes and are validated on

various datasets to achieve convincing conclusions. The ultimate goal of the research is

to obtain deep neuro-fuzzy systems with higher efficiency and better accuracy in soph-

isticated and tricky real-world scenarios.
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1.3 Research Objectives

The objectives of this research are partitioned into the following list of stages:

1. Stage 1. The investigation and validation of the existing algorithms.

a) Investigate the existing algorithms based on complex fuzzy sets with respect to

the architecture and the selection of fuzzy membership functions. Explore and

summarize how those algorithms and membership functions work regarding

different data types.

b) Investigate the existing neuro-fuzzy models based on complex-valued archi-

tectures. Analyze their rationale and determine whether there is potential to

continue to research in this direction.

c) Investigate the possibility of improving the existing algorithms regarding the

perspectives such as the choice of membership function, optimization method,

and network structure, for the purpose of improving the model accuracy as

well as facilitating their application on regression learning problems.

2. Stage 2. Explore the feasibility of complex-valued structures and complex fuzzy

theory in mitigating the curse of dimensionality

a) Investigate the drawbacks of the existing neuro-fuzzy algorithms in dealing

with the higher dimensional datasets (within 20 dimensions), exploring the

possibility of utilizing the properties of complex-valued structures in this area.

b) Try to develop a new algorithm combined with the concepts of complex-valued

structures and complex fuzzy theory to better model higher dimensional data-

sets and offset the curse of dimensionality.

c) Investigate the comprehensive performance of this newly proposed method,

investigate its potential from the perspectives of accuracy, computational com-

plexity, and transparency.

3. Stage 3. Investigate the potential of complex-valued structures and complex fuzzy
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theory in dealing with real-world application scenarios.

a) According to the existing knowledge and experience, introduce the concept of

complex-valued structures and complex fuzzy theory into the recursive deep

neuro-fuzzy architectures to develop a new algorithm for real-world scenarios.

b) Apply this algorithm to applications including time series prediction and func-

tion approximation. Compare it with other state-of-the-art algorithms to verify

whether it has advantages in terms of algorithm performance and efficiency.

4. Stage 4. Create robust learning methods using complex-valued structures and

complex fuzzy theory.

a) Study current robust learning solutions for regression problems and summar-

ize their strengths and weaknesses. Discuss the possibility of improving such

solutions by introducing complex-valued structures and complex fuzzy theory.

b) Develop novel deep neuro-fuzzy models utilizing complex-valued structures

and complex fuzzy theory for robust regression scenarios with significant noise

and many outliers.

c) Compare the proposed algorithm with other similar methods to demonstrate

its characteristics.

1.4 Research Contributions

The contributions of this research are as follows:

a) A new deep complex-valued single-iteration fuzzy system (DCVSF) is pro-

posed, which shows that complex-valued structures can be used to offset the

effects of the curse of dimensionality. The research has been published in

Proceedings of 2022 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), the title of the paper is “A New Deep Complex-Valued Single-Iteration

Fuzzy System for Predictive Modelling."
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b) A new rapid adaptive complex fuzzy inference system (RACFIS) which is de-

signed for real-world applications is also proposed. A manuscript named

“RACFIS: A New Rapid Adaptive Complex Fuzzy Inference System for Regres-

sion Modelling" has been submitted to a prestigious international journal with

a view to publication.

c) A robust learning method called exclusionary neural complex fuzzy inference

system (ENCFIS) is also developed, especially for regression scenarios where

statistically significant noises are presented. The manuscript “ENCFIS: An

Exclusionary Neural Complex Fuzzy Inference System for Robust Regression

Learning" has also been submitted to a prestigious international journal with

a view to publication.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2: The main task of this chapter is to perform a literature review

of the development trajectories from crisp classical logic to fuzzy logic and

from classic fuzzy logic to complex fuzzy logic. Besides, a brief introduction

is included regarding fuzzy inference systems and defuzzification methods.

The motivation for the transition from artificial neural networks to the neuro-

fuzzy system is explained, and several new neuro-fuzzy architectures based on

complex fuzzy theory are elaborated and evaluated. Considering the purely

complex-valued structure, i.e., in the absence of complex fuzzy rules, also has

unique values for ameliorating deep neuro-fuzzy systems, the potentiality of

employing such designs in deep neuro-fuzzy systems to counter the curse of

dimensionality is analyzed at the end of the chapter.

• Chapter 3: This chapter provides a detailed illustration of three real-world

datasets applied in this thesis. The first dataset is the Sunspot time series data

which contains the record of sunspot events since 1874. The rest two datasets
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are function approximation data collected from two metallurgical processes,

i.e., Charpy impact and Ultimate Tensile Strength (UTS). The performance

indices adopted for benchmark tests are also mentioned as the background

knowledge to allow the work to be better understood by non-specialist readers.

• Chapter 4: In this chapter, the concept of the complex-valued neural net-

work and the Wang-Mendel (WM) fuzzy algorithm are fused to form a novel

complex-valued Wang-Mendel (CVWM) method. This method reduces the

fuzzy rule-base of the model to its square root level compared to the ori-

ginal WM method. By constituting a hierarchical architecture, a deep complex-

valued single-iteration fuzzy system (DCVSF) is further elicited for higher di-

mensional situations. Such architecture can effectively mitigate the curse of

dimensionality and can be trained using only one iteration. Considering that

sparsity is often observed among high-dimensional datasets, which signific-

antly weakens the performance of many similar algorithms, the t-distributed

stochastic neighbor embedding (t-SNE) dimensionality reduction algorithm is

therefore employed to increase data density for the model. Simulation results

indicate that CVWM and DCVSF both exhibit competitive nonlinear approxim-

ation performance.

• Chapter 5: In this chapter, a new rapid adaptive complex fuzzy inference sys-

tem (RACFIS) is developed for real-world datasets. The optimization policy

includes a novel three-parameter quasi-hyperbolic momentum (QHM) optim-

ization method and unsupervised learning is introduced, for the first time,

to estimate the antecedent parameters for the complex neuro-fuzzy model.

RACFIS reveals outstanding performance on all experimental datasets, obtain-

ing excellent accuracies with an average of 10 times lower iteration counts

(as compared with all benchmark models) and a reduction in fuzzy rule-bases

by nearly 20%∼30% (as compared with non-complex fuzzy models). RACFIS

also presents a superior generalization performance that transcends all bench-

mark models, which is consistent with the previous analysis of the advantages

of complex fuzzy logic. Furthermore, a mean impact value (MIV) algorithm
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based on a radial basis function (RBF) network is designed to select variables

of higher relevance.

• Chapter 6: This chapter connects the notion of robust learning with complex

fuzzy theory for the first time, proposing an exclusionary neural complex fuzzy

inference system (ENCFIS) for regression problems with the presence of heavy

noises. The core of the algorithm includes pre-training the antecedent para-

meters using the convex clustering method, using the M-estimator to estimate

the linear consequent parameters, and using the Huber Loss to replace the

L2 loss function as the optimization reference. Experimental results reveal

that this novel architecture has extraordinary performance on a dataset with

massive (45%) label noises. Similar performance is also observed when test-

ing on a distorted time series dataset (25% corrupted). Simulation results on

metallurgy datasets also indicate that the approximation performance of EN-

CFIS is not compromised for the increase in robustness, making it an ideal

candidate for common industrial scenarios with weak noise but tricky data

characteristics.

• Chapter 7: This chapter discusses the conclusions of the thesis as well as the

outlook over deep neuro-fuzzy architectures utilizing complex-valued struc-

tures and complex fuzzy logic.
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This literature review begins with mathematical preliminaries of fuzzy theory, fol-

lowed by a presentation of a relatively complete development trajectory of fuzzy theory.

An overview of fuzzy inference engines and the transition track from artificial neural

networks (ANNs) to neuro-fuzzy systems is then provided. The introductions to differ-

ent types of complex fuzzy sets are also included, as well as an evaluation of currently

existing complex fuzzy systems, as theoretical foundations for the models developed in

chapters 5 and 6. The possibility of applying purely complex-valued structures to deep

neuro-fuzzy systems to ease the curse of dimensionality is also discussed at the end of

this chapter, as a theoretical preparation for the model in Chapter 4.

2.1 Mathematical Preliminaries for Fuzzy Set Theory

Fuzzy set theory, as a category of generalized set theory, is like any other mathem-

atical theory, which does not come into being out of thin air but is the achievement

from the intersection of classical set theory, classical algebra theory, and classical logic.

The study of the mathematical premises of fuzzy theory helps to build a deeper under-

standing of the theory itself as well as provides better guidance for future research in

numerous perspectives.

2.1.1 Algebraic Structures

In general algebra, the algebraic structure refers to a situation where one or more

sets are algebraically closed under an assured series of operations. According to the

explanation by Cohn [23], an algebraic structure should contain sets as well as opera-

tions or relations that conform to certain axioms. It is now accepted that if given a set

of elements U and several operations Γi ruled over the set U, in which if all the opera-

tional objects for any arbitrary Γi belong to U and the operational outcomes of that Γi

are covered by U as well, then this structure can be referred to as a closure group, i.e.,

an algebraic structure.

A vast number of different algebraic structures have emerged so far, and each pos-
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sesses a varying set of attributes that are the result of the axioms that define the struc-

ture. Three representatives of such definition are the group composed of integers under

the algebraic operation of addition; the domain that consists of rational numbers under

rational operations such as addition and multiplication; and the territory which covers

real and complex values under additions, multiplications, and non-integer exponenti-

ations.

As specified by Gratzer [24], like many other mathematical definitions, relations are

necessary for algebraic structures, among which the equivalence relation is the most

prevalent. The general illustration of this case is that two structures are considered

equivalent if an isomorphism holds between two of them. Given two sets χ and γ as

well as two binary operations ” + ” and " ⊗”, two individual groups X = {χ,+} and

γ = {γ,⊗} can be defined. In compliance with the theorem, group X and group Y

are isomorphisms if and only if a bijective mapping Λ : χ → γ in which Λ(a + b) =

Λ(a)⊗ Λ(b) holds for all a, b ∈ χ. Isomorphism is a property with several attributes

including reflexivity, symmetry, and transitivity, which makes it identical to the relation

of equivalence. The system behaviors of two isomorphic algebraic structures follow

uniform principles and cast the equivalent formation on their individual domains, even

if those respective domains might comprise of entirely different types of entities.

2.1.2 Partially Ordered Sets and Lattices

In order theory, a partial order [25] refers to a homogeneous relation " ≤ " which

applies to a set of elements U. Regarding the relation " ≤ ", note that it is a one-way

relation which does not hold the other way around, i.e., if α ≤ β, it can be described as

" α is related to β ", but this does not deservedly signify " β is related to α " on account

of the asymmetry of the relation itself. Additionally, a non-strict partial order is also an

antisymmetric preorder which indicates that it must obey the following three axioms:

a) Reflexivity: α ≤ α, i.e., each object relates to its own.

b) Antisymmetry: if α ≤ β and β ≤ α, then α = β. This implies two disparate objects
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cannot relate to one another at the same time.

c) Transitivity: if α ≤ β and β ≤ γ, then α ≤ γ. In other words, the relation is

transitive in the same direction.

Note that all elements α, β and γ belong to set U. A set with a partial order is referred

to as a partially ordered set or a poset. Within a partially ordered set, relations such as

" ≤ ”, " ≥, and ” = ” are available for only some of the elements from U. Otherwise, if

such a conclusion holds for all elements of U, then U is said to be totally ordered by "

≤ ”, ” ≥ ”, and " = ”.

A lattice is an algebraic structure composed of a set of elements U and a one-direction

relation " ≤ " which partially orders U. For the purpose of constructing a lattice, this

partial ordering is supposed to allow that within it all partially ordered subsets own a

unique least upper bound (join) and a unique greatest lower bound (meet), i.e., su-

premum and infimum. If the supremum and infimum of any finite non-empty subset

of U can be determined, then this structure is referred to as a complete lattice. There

are several important properties for complete lattices, such as idempotency, mutativ-

ity, and associativity. Furthermore, a lattice is said to be distributive if and only if

(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c) and (a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c) stands for ∀a, b, c ∈ U,

where ∧ denotes lattice meet while ∨ represents the lattice join, respectively.

Pykacz [26] provides a concise analysis of the relations between different properties

of a lattice. According to his interpretation, when given a lattice (U,≤), if both higher

bound and lower bound can be determined for a set of elements U, then this lattice is

defined as bounded. If any element of U from a bounded lattice has a complementary

counterpart in U, then this lattice is delimited as complemented. If the complemented

set happens to be distributive, it has been proved that De Morgan’s Law applies to the

lattice in this case. Moreover, some lattices that are not distributive might still possess

a weaker condition of modularity, for instance, (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ (a ∧ c)) or

if a ≤ b, then b = a ∨
(
a ∨ b⊥

)⊥
, where a, b, c belong to a lattice V, ," ⊥ " denotes the

orthocomplementation map. This property is also referred to as orthomodularity which

supersedes distributivity in quantum logic.
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2.1.3 Classical Logic, Tautologies, and Modus Ponens

Logic is a path for bits of intelligence to quantitatively trace a reasoning process

that enables replications as well as manipulations with mathematical principles. The

focus on all kinds of logic study has something in common, i.e., the study of facticity

in logical propositions. Among the logics proposed so far, classical logic [27] is the

logic understood by most people in which the truth is binary, i.e., a proposition is either

true or false. As the most widely applied deductive logic, classical logic is therefore

the basis of numerous mathematical theories. In classical logic, simple propositions

refer to linguistic statements or sentences that judge “true" or “false" in the universe

of discourse, i.e., an element or set can be judged to be completely true or utterly

false in this domain. Traditionally, we use the binary value (0, 1) to express the true

or false of the element, where the false proposition is assigned the value 0, and the

true proposition is designated the value 1. Additionally, there are five commonly used

connectives that apply to classical logic, which are disjunction “∨", conjunction “∧",

negation ”−", implication ”→" and equivalence ”↔", respectively.

In classical logic, there exists a category of compound propositions that always hold,

disregarding the truth values of the separate simple propositions, and such a combina-

tion is said to be a tautology [28]. As a result of this unique feature, a mass of proofs

and reasoning processes rely heavily on the use of tautologies. Modus ponens (MP)

is considered the most classic tautology, that is a deduction of which the effect is to

determine the truth value of a consequent when the truth value of the antecedent and

the production rule are both provided. Designate two simple propositions X, Y and a

rule X → Y, according to the definition of MP, if both the proposition X and the rule

X → Y stand, then the proposition Y must be true. Similarly, modus tollens (MT)

which is defined as the opposite of MP, indicates a logic deduction where the premise

is necessarily to be false if the consequent and the rule are both false. It is worth men-

tioning that MP and MT are not logically perfect. The most direct manifestation of this

imperfection is that some inferences conflict with human intuition. Nevertheless, this

method is still widely employed in many theories including fuzzy theory for deductive

reasoning.
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2.1.4 Multi-Valued Logic and Fuzzy Logic

The earliest systematic logic theory was developed by the ancient Greek philosopher

Aristotle, who is also considered the father of classical logic. Even as the founder of

classical logic, Aristotle did not believe that binary logic and the law of excluded middle

are absolute conditions for the formation of logic and implied the possibility of multi-

valued logic [29]. The law of excluded middle stipulates that the intersection of a set

and its complement must be an empty set. Since then, the discussion about multi-valued

logic stagnated for a long time, and it was not in the field of vision until reproposed by

Polish mathematician Lukasiewicz in the 1920s [30]. Unlike binary logic, which uses

authenticity as a criterion, multi-valued logic usually applies justification as a standard

to construct a logic system. The concept and application of multi-valued logic have

spawned entirely new fields, such as Rose logic [31] and assuredly fuzzy logic.

In fact, fuzzy logic is a further expansion of multi-valued logic theory. From this

perspective, akin to probabilistic logic, fuzzy logic is a logic system with infinitely many

values within the interval [0, 1]. Fuzziness is a phenomenon in that predicates can be

applied to objects nonabsolutely, but to a certain degree with boundary conditions. The

invention of fuzzy logic is revolutionary. As a tool for imprecise reasoning, this logic

system realizes the ability to model human semantics for the first time [32]. And as a

powerful tool for describing uncertainty in addition to probability, it has also played an

important role in mathematical theory.

2.2 Zadeh’s Fuzzy Sets & Logic Theory

As the founder of the fuzzy theory, Professor Zadeh made an immeasurable contribu-

tion to the development of this territory. Even though it has been over half a century

since he first proposed the concept of fuzzy logic, his legacies are still instructive to cur-

rent research on fuzzy systems. This section lists his profound theoretical contributions

separately to express respect for this great researcher.
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2.2.1 Type-1 Fuzzy Sets & Logic

Classic type-1 fuzzy set theory was first proposed by Professor Zadeh [1] in 1965,

followed by fuzzy algorithms [2], fuzzy reasoning [3], and other supporting theories.

Dating from the end of the 1980s, other researchers successively joined in the study of

type-1 fuzzy theory, such as Yager [33], Kandel [34], Kosko [35], etc. In the early 1990s,

the type-1 fuzzy theory matured and began to be applied in practice as an approach to

intelligent control.

Figure 2.1: Typical closed-loop fuzzy control industrial control system [36]

The principle of type-1 fuzzy sets is very concise and easy to understand. By extending

two truth values {0, 1} in binary logic into an infinite number of values between the

interval [0, 1], a notion which is called membership grade is created. A typical type-

1 fuzzy set consists of a real membership function and its supporting set, where the

support can contain any kind of element, including numbers and language variables.

Assume that X is a set consists of a collection of elements denoted by x in the universe

of discourse W and µA(x) represents its corresponding membership value. Hence, the

type-1 fuzzy set A can be defined in the form of an ordered pair as follows:

A = {(x, µA(x)) | x ∈ W} . (2.1)

Type-1 fuzzy set theory makes it possible to model vague human language expressions

and perform imprecise inferences on the mathematical level through a series of logical

operations. Analogous to crisp set theory, basic logic operations such as intersection,
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union, complement, aggregation, and implication also apply to fuzzy sets. Fuzzy sets

satisfy De Morgan’s law, but the way to implement complement operation differs from

that of crisp sets because the law of excluded middle does not hold for them. The

Cartesian product is usually deployed to establish a relation between two different type-

1 fuzzy sets, and fuzzy reasoning can be conducted by the composition of a series of

relations. Fuzzy reasoning is guided by fuzzy rules, for which a single rule is often in

the form of an "If... then..." proposition. A fuzzy system must have a rule-base that

defines the properties and functions of this system according to a series of fuzzy rules.

This form makes the model organized by type-1 fuzzy logic highly interpretable. It is

worth noting that if the rule base of a system is too large, the interpretability will be

compromised as a result.

In theory, if the size of the rule base is not limited, as a universal approximator, type-

1 fuzzy logic can model almost all types of systems [37]. Intelligent systems based on

type-1 fuzzy logic have many advantages, such as not necessarily requiring a very pre-

cise description of the object, relatively simple system design, and low computational

cost, etc. This feature is used to design intelligent controllers, for instance, fuzzy PID

controllers [38], which are widely applied to control various industrial processes and

plenty of household appliances. However, the shortcomings of type-1 fuzzy logic are

also significant. In terms of modeling, the accuracy of the type-1 fuzzy system is relat-

ively low compared to other crisp modeling methods, and once humans have a deeper

understanding of a certain object to implement accurate system modeling, this method

will be of less necessity. Another frequently criticized problem of type-1 fuzzy logic is

that its rulebase is not compact enough when describing sophisticated semantics, which

often leads to the overfitting of the model and a massive rule-base with poor inter-

pretability. The above factors limit the application of type-1 fuzzy logic, which implies

room to improve and expand in the field of fuzzy logic.
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2.2.2 Type-N Fuzzy Sets and Interval Type-2 Fuzzy Sets & Logic

The generalized type- N fuzzy set theory is also the theoretical achievement of Pro-

fessor Zadeh [3] as an expansion of type-1 fuzzy theory in 1975. According to his

description, the fuzzy membership of a type-N fuzzy set A(n) should comply with the

measurable mapping µA(n) : X → F
(
[0, 1]n−1), i.e., the primary membership mapping,

where µA(n)(x) is considered the membership mapping of a type-(N − 1) fuzzy set on

the interval [0, 1], also known as the secondary membership. Therefore, the type-N

fuzzy set can be denoted as F
(
X × [0, 1]n−1).

Nevertheless, human understanding of type-1 fuzzy theory was in its infancy at the

time, and the research on type-N fuzzy theory was in a state of no one for a long time.

Until the late 1990s, as a direct expansion of the type-1 fuzzy sets & logic, type-2 fuzzy

sets & logic have finally received attention. In the original description of a type-2 fuzzy

set, the membership function is three-dimensional, where the third dimension is the

value of the membership grade at each point on its two-dimensional domain, which

is said to be the "footprint of uncertainty" (FOU) [39]. Considering that the general

definition of the type-2 fuzzy set is complex for many application scenarios, its simplified

version, i.e., interval type-2 fuzzy set in which the third dimension is a constant, is more

popular.

The definition of an interval type-2 fuzzy set is not complicated. Given a universe of

discourse X in which a type-2 fuzzy set Ã is defined as follows:

Ã = {⌈(x, u), µλ(x, u)] | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} , (2.2)

where Jx is the primary membership grade, µλ(x, u) ∈ [0, 1] is the membership of Jx

which is also known as secondary membership grade, and µλ(x, u) represents a type-1

fuzzy set. In fact, a type2 fuzzy set can be regarded as a collection of type-1 fuzzy

sets. Akin to any other fuzzy theory, an interval type-2 fuzzy logic also includes the

corresponding fuzzy logic system, referred to as type-2 FLS [11].
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Compared with type-1 fuzzy systems, interval type-2 fuzzy systems have several su-

periorities [10]. a) A type-2 set can model both intra-individual uncertainty and inter-

individual uncertainty at the same time, while a type-1 fuzzy set can only model the

intra-individual. b) For many problems, the number of rules required for the type-2

fuzzy system is usually less than that of a type-1 fuzzy system. c) A type-2 fuzzy model

usually has a smoother approximation process to the target, which leads to increased

robustness. d) Given the same number of rules, a type-2 fuzzy system can realize the

input and output mapping that the type-1 fuzzy system is not capable of. All charac-

teristics mentioned above allow the interval type-2 fuzzy logic to have a wider range of

applications than its traditional type-1 counterpart. In recent years, researchers have

also attempted to utilize generalized type-2 logic to build machine-learning models and

to study more advanced fuzzy logic, such as type-3 and type-4. Unfortunately, barely ap-

preciable breakthroughs have been achieved due to the abstract nature of the semantic

explanations of high-order fuzzy sets. Consequently, researchers may need to switch to

a new train of thought, such as abandoning the traditional way of relying on human

semantics to investigate fuzzy sets and seeking advancements from the perspective of

abstract mathematical theory alternatively.

Figure 2.2: A simple demonstration of a Type-2 FLS [11]
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2.2.3 Fuzzy Z-Number Theory

Z-number theory [40] is the last theoretical achievement of Professor Zadeh. Z-

number is a new fuzzy set framework that combines constraints and reliability. The

mathematical definition of Z-number is very simple that it can be represented in the

form of an ordered pair of fuzzy numbers, for instance, Ξ = (A, B), where Ξ denotes

a Z-number, A represents the fuzzy restriction and B refers to the dependability of the

first component. In general, the position of A is often held by a fuzzy set like R(x), and

B is a natural language qualifier that is used to describe the reliability of R(x).

The proposal of the Z number provides a new direction for describing the reliability

of a fuzzy proposition itself, which makes up for the deficiency of fuzzy theory in mod-

eling uncertainty to some extent. In real-life scenarios, z-number is everywhere, such as

(the expense is about one million dollars, very sure) or (the effectiveness of a Covid-19

vaccine is about 95%, sure), etc. However, natural language quantifiers are inaccur-

ate, which means a widely accepted quantitative uncertainty measure for Z-number is

required to enable applications such as decision-making. Given that the research is in

the early stage, and the nature of the Z number has yet to be fully understood, sug-

gesting a convincing and comprehensive theory is currently unavailable to support the

application. Nevertheless, the application prospect of this idea is still worth expecting.

2.3 Fuzzy Inference Systems

Fuzzy reasoning, as a realization of approximate reasoning, is a crucial foundation of

fuzzy theory. In actual implementations, this method does not focus on deduction based

on axiomatic forms as classical logic or semantic operations employing assignments. In-

stead, fuzzy reasoning relies on numerical calculations to get the answer from premises.

In 1973, Zadeh [41] first gave the most basic rule for the fuzzy inference system, i.e.,

fuzzy modus ponens (FMP). Later, through the efforts of Mamdani [42] this theory was

successfully algorithmized and formed as today’s compositional rule of inference (CRI).

Given that the method of numerical reasoning is easier to implement with a computer,

it becomes a vital branch in the field of computational intelligence.

24 Literature Review



2.3.1 Mamdani Fuzzy inference Systems

Early fuzzy inference systems are called pure fuzzy logic systems, and as the name

suggests, the input and output of such systems are all fuzzy sets, which seriously restricts

their practical value since most real-world actuators can only generate accurate outputs.

In 1975, Mamdani [43] proposed the Mamdani fuzzy inference system by incorporating

Zadeh’s ideas, aiming to find a new way to control the steam engine. This framework

consists of three main modules, i.e., fuzzification, fuzzy reasoning, and defuzzification.

Assume that there is a fuzzy system with i noninteractive inputs x1, x2, . . . , xi as ante-

cedents and an output y as the consequent, which can be signified by a series of n

IF-THEN rules in Mamdani form as:

IF x1 is Ak
1 and ... and xi is Ak

i Then y = C(x), for k = 1, 2, . . . , n,

where Ak
1, Ak

2, . . . , Ak
i are the fuzzy sets of the k th antecedent groups, and C(x) =

∑i
m=0 cmxm (x0 = 0). If cm = 0 stands when m = 1, 2, . . . , i, then the system above is

said to be a type-1 Mamdani fuzzy system. If no special restriction for cm, then it is

called a type-2 Mamdani fuzzy system. According to the definition, the antecedent and

subsequent of a fuzzy rule are both fuzzy linguistic values, which are essentially adding

fuzzy generators and fuzzy eliminators to the input and output components of the pure

fuzzy logic system. Considering that both the input and output of a Mamdani system

are crisp, they can be easily applied to realistic engineering actuators [44].

The Mamdani fuzzy inference system possesses several outstanding features of great

research value. Firstly, the fuzzy inferencing of the Mamdani fuzzy system is carried

out independently for each component, leading to concise parameter settings that can

directly correspond to the parameters in algorithms like neural networks and evolution-

ary algorithms, which is beneficial for parameter optimization. Secondly, the Mamdani

fuzzy inference system is proven to be a universal function approximator on any com-

pact space, i.e., it can approximate any continuous function in a compact space with

arbitrary precision, and such factor makes the application study of the Mamdani system

theoretically sound. Thirdly, the fuzzy rules of a Mamdani system have a transpar-
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ent and intuitive form that enables its linguistic knowledge-carrying capacity, which

brings about a powerful and interpretable tool for expressing expert knowledge in mul-

titudinous application domains. However, the inevitable deficiency of such a design of

fuzzy inference framework is that the operation for defuzzification is often cumbersome,

which results in the poor accuracy of the final product if an inappropriate defuzzification

operator is selected.

Figure 2.3: The structure demonstration of a Mamdani fuzzy inference system.

2.3.2 Takagi-Sugero-Kang (TSK) Fuzzy inference Systems

Takagi-Sugeno-Kang fuzzy (TSK) inference system [45], [46], also said to be Sugeno

fuzzy inference system, adopts fuzzy singleton as the output membership function that

is both constant and linear mapping of input values, which is an attempt for a systematic

method to generate fuzzy rules from a series of input-output data. The defuzzification

operation in Sugeno inferencing is of better computational efficiency in comparison to

that of a Mamdani one, which benefits from employing a weighted average or sum of

a spot of data points instead of deriving a centroid of a geometric plane shape. The

expression of the i th fuzzy rule of a first-order Sugeno fuzzy system is as follows:

IF x1 is A(i)
1 and x2 is A(i)

2 and ... and xn is A(i)
n then y is s(i)Tx + si

0,

where A(i)
j is a fuzzy set, s(i) =

(
s(i)1 , s(i)2 , s(i)3 , . . . , s(i)n

)T
are the parameters of linear

functions, i = 1, 2, . . . , m is the number of fuzzy rules, and j = 1, 2, . . . , n is said to be

the dimension of the input vector. Therefore, the crisp output of the system is given as
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follows:

f (x) =
∑m

i=1

(
s(i)Tx + si

0

)
µA(i)(x)

∑m
i=1 µA(i)(x)

, (2.3)

where x = (x1, x2, . . . , xn)
T is the input vector of this Sugeno system. It is also proved

that a Sugeno model is equivalent to a linear regression system in fuzzy space, which

leads to good approximation performance of this model to be widely adopted in system

identification, pattern recognition, image processing, and data mining.

The Sugeno fuzzy logic system has a wide range of application prospects in the field

of state prediction thanks to the above characteristics. Firstly, previous prediction meth-

ods are subject to fuzzy semantic representations that are not friendly to computation,

leading to a lack of adaptiveness and requiring additional manual intervention. Dissim-

ilar to earlier attempts, the Sugeno fuzzy logic system is rule-based in which data and

information, such as error and expert experience and knowledge, can all be included.

This property enables the flexibility of designing appropriate correction sub-systems in

a prediction model. Secondly, the fuzzy attribute of a Sugeno system means it does

not need to establish a precise mathematical model of the object, which is considered

a challenging task in prediction. In addition, the Sugeno fuzzy inference system is a

nonlinear architecture, which makes it very suitable for feedback error correction of

nonlinear targets. Note that the advantages of the Sugeno inference system over the

Mamdani inference system are achieved at the expense of interpretability, which limits

its application to some system design tasks that mainly rely on expert knowledge.

2.3.3 Tsukamoto Fuzzy Inference Systems

Tsukamoto [47] proposed a fuzzy inference approach in which the monotonic mem-

bership function, sometimes named a shoulder function, is deployed for the consequent

fuzzy set of every fuzzy rule. For a shoulder membership function, the output is a crisp

value determined by the membership value resulting from fuzzy antecedents. Akin

to the Sugeno system, the outcome of the entire system is generated by taking the

weighted average of the inference result for each rule. Given a fuzzy model with i non-

interactive variables x1, x2, . . . , xi as inputs and y as the output, its Tsukamoto form n
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IF-THEN rules are given as follows:

IF x1 is Ap
1 and ... and xi is Ap

i Then yp = B (xp) , for p = 1, 2, . . . , n,

where Ap
1 , Ap

2 , . . . , Ap
i are the fuzzy sets of the p th antecedent groups, and B(x) is a

monotonic function whose successive values are increasing, decreasing, or constant.

Consequently, the overall output will be calculated by the weighted average of each

output yp:

f (x) =
∑

p
i=1 wpB (xp)

∑
p
i=1 wp

, (2.4)

where wp is the weight of the p th rule that corresponds to its monotonic function.

Tsukamoto fuzzy inference systems have very distinct characteristics. Since the fir-

ing strength of each rule corresponds to a crisp output, the aggregation of the final

result for a Tsukamoto model also avoids the computation-consuming defuzzification

process. However, the special attributes of the output membership function of this

method also lead to limitations such as low transparency, which hinders its applica-

tion as a general approach. In addition, the monotonic property of the membership

functions decides it would only be employed in specific situations, which is not a uni-

versal solution. In fact, an ordinary Sugeno system is perfect enough to realize all

the functions of the Tsukamoto system and has better interpretability and applicability.

Therefore, Tsukamoto inference systems that based on monotonic functions are rarely

seen in practice.
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2.4 Neuro-Fuzzy Inference Systems

The artificial neural network (ANN) is an implementation method of artificial intel-

ligence generated by imitating the working mechanism of biological neurons. In 1958,

Rosenblatt [48] first proposed the concept of primitive perceptron, which is considered

the beginning of modern ANNs. Neural network algorithms usually consume plenty

of computation resources, but the performance of early computers was far from suf-

ficient, leading to the difficulty in providing support for it. This approach to realizing

artificial intelligence was therefore marginalized until the explosive growth of computer

performance in the 21st century. Since then, ANN and subsequent deep learning tech-

nology have finally become the research focus. In contrast, fuzzy logic methods were

once prevalent in the 1990s because their low computational requirements and intel-

ligent attributes seemed very fashionable at the time, but the craze for fuzzy systems

faded after the rise of deep learning algorithms. Subsequently, the topic of fuzzy sys-

tems continues to be in a downturn, forcing researchers to pay close attention to neural

networks and deep learning research. Under the collision of two trains of thought,

some researchers introduced the idea of feedforward networks and radial basis mod-

els into fuzzy systems design, constructing a type of hybrid system, i.e., neuro-fuzzy

systems. Objectively, introducing the data-driven characteristic of deep networks into

fuzzy systems is a promising idea, injecting new impetus into this territory. The unique

knowledge representation of fuzzy systems enables the interpretability of neuro-fuzzy

systems, which also brings new possibilities to the deep learning area dominated by

inscrutable black box models.

2.4.1 Feedforward Neural Networks and Backpropagation

Feedforward neural network [49] is the most applied ANN architecture, in which

each neuron of the network accepts the input from the previous layer and outputs it to

the following layer without any feedback during the process. In terms of architecture,

feedforward networks consist of an input layer, several hidden layers, and an output

layer. The input layer is usually not included in the total number of layers of the net-
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work, and the number of hidden layers does not have specific confines, for which the

number can be zero or many. Traditionally, neural networks with two or more hidden

layers are considered deep neural networks. From the aspect of the systems theory, the

feedforward network is a static nonlinear mapping, which obtains nonlinear processing

capability through the map composition of a series of simple nonlinear outputs from

internal units. Most feedforward architectures are learning networks with remarkable

classification and pattern recognition capabilities, but the lack of feedback keeps them

away from the good dynamic performance. Typical feedforward networks include per-

ceptron networks [50], [51], BP networks [52], radial basis function networks [53],

convolutional networks [54], etc.

Figure 2.4: An example of the feedforward neural network.

Backpropagation [55], also known as error backpropagation, is an algorithm to real-

ize parameter optimization for multi-layer ANNs by executing gradient descent. The

backpropagation algorithm includes two phases, namely signal propagation and weight

updating, where the signal propagation process consists of forward propagation and

backpropagation two steps. In the forward propagation step, the signal enters the net-

work from the input layer and gets a preliminary result at the output layer, while in the

backpropagation stage, this result is compared with the label corresponding to the input

to obtain the training error which is usually measured by the loss function. For weight

updating, the chain rule is employed to calculate the gradient of the loss function as
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well as the gradient of each layer, which is used as prior knowledge of the optimization

surface to guide the gradient descent, updating the network parameters of each neuron

to minimize the loss function. The weight updating process usually requires a learning

rate term as a hyperparameter to control the training speed in order to obtain a solution

closer to the global optimum.

For each neuron in the network, the optimization process of its weights can be con-

sidered a first-order differential approximation to the optimum of a compound function.

Assume there exists a Q layer ANN, for which the mathematical representation of the i

th neuron of the k th layer is given as follows:

yk = f k

(
nk−1

∑
p=1

yk−1
p Wk

ip

)
, (2.5)

where Wk
i is the weight vector of this neuron, f k : R → R is the activation function,

yk−1 =
[
x1, x2, . . . , xnk−1

]
denotes the input vector, and yk = [y1, y2, . . . , ynk ] refers to

the output vector. Given a loss function l, then the loss of the feedforward phase can be

represented as follows:

lQ
(

WQ, yQ−1
)
= l

[
f Q

(nQ−1

∑
p=1

yQ−1
p WQ

p

)]
. (2.6)

Similarly, the compound form of the loss regarding the i th neuron of the k th layer is

as follows:

lk
(

Wk
i , Wk+1, . . . , WQ, yk−1

)
= lQ

{
WQlQ−1

[
WQ−1 . . . f k

(
nk−1

∑
p=1

yk−1
p Wk

ip

)
. . .

]}
. (2.7)

According to the chain rule, for 1 ≤ k ≤ Q, the gradient of this neuron can be calculated

according to the following equation set:


∂lk

∂Wk
i
= ∂lQ

∂lQ−1 · WQ ◦ ∂lQ−1

∂lQ−2 · WQ−1 ◦ . . . ◦ ∂lk+1

∂ f k · Wk+1 ◦ d f k

dx · yk−1

∂lk

∂yk−1 = ∂lQ

∂lQ−1 · WQ ◦ ∂lQ−1

∂lQ−2 · WQ−1 ◦ . . . ◦ ∂lk+1

∂ f k · Wk+1 ◦ ∑nk
p=1

(
d f k

dx · Wk
ip

)
.

(2.8)

Hence, if the vanilla gradient descent method is applied, then the weight update rule
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for this neuron at the t th iteration is obtained below:

t+1Wk
i = tWk

i − η
∂lk

∂tWk
i

, (2.9)

where η is the learning rate or step size. It is worth noting that although there is a

backpropagation process, this step only changes the weight without any impact on the

input signal, for which, from the perspective of control theory, the feedforward network

is still an open-loop system regardless of the use of backpropagation.

Figure 2.5: Backpropagation in a feedforward neural network.

2.4.2 Radial Basis Function Network and Fuzzy System

Powell [56] summarized the previous studies of function interpolation methods and

pioneered the term “radial basis function (RBF)" to describe a category of functions

that are applied for multivariate interpolation purposes. Inspired by Powell’s research,

Broomhead and Lowe [57] proposed the prototype of the RBF neural network in 1988.

Subsequently, in 1989, Moody and Darken [53] developed a network structure powered

by locally tuned processing units, which is what is known today as the RBF network.

The most notable difference between the RBF network and other feedforward networks

is that most feedforward architectures are global approximation systems, while the RBF

network is a local approximation design. In a global approximation network such as
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the BP network, any individual parameter would affect the global performance, leading

to slow convergence as well as obtaining the local minimum in optimization. The local

approximation characteristic of the RBF network makes the parameters only affect its

corresponding output without influencing the rest of the network, which avoids the

problem of adjusting all weights in the model only to adapt a subtle change in the

input in the global approximation model, enabling a faster convergence and a better

approximation.

Figure 2.6: The radial basis function network.

The RBF network consists of two layers, among which the node in the hidden layer

is composed of a radial basis function, while the nodes of the output layer are usually

simple linear functions. The Gaussian function is the most popular basis function for

RBF networks. The radial basis function in a hidden layer node plays the role of a ker-

nel function, which produces a local response to the input signal. To be more specific,

if the input signal is close to the center of the radial basis function, a relatively large

output will be generated. On the contrary, if this signal is far from the kernel center,

the response will become very small. Moreover, by setting a threshold, the node can

automatically ignore the irrelevant input outside of its Mapping area. The RBF network

is based on function interpolation to achieve the approximation of an arbitrary objective

function. Interpolation is a category of statistical methods by which associated known

samples are utilized to depict an unknown regular pattern [58]. Given an input dataset
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with n known sample points X1, X2, . . . , Xn, of which each point has m dimensions. To

implement RBF interpolation, every input vector is designated a basis function which is

defined as φ (∥X − Xp∥) , 1 ≤ p ≤ n, where ∥X − Xp∥ denotes the Euclidean distance

between the m-dimensional variable X and the sample Xp(m < p). The role of the ra-

dial basis function is to map lower m-dimensional data points to a higher p-dimensional

Hilbert space for better linear separability, such that the interpolation function f (X) can

be obtained in a linear mapping form as follows:

f (X) =
n

∑
p=1

wp φp (∥X − Xp∥) + g(X), (2.10)

where g(X) is a low degree polynomial with m variables. Substitute the training la-

bels b1, b2, . . . , bp of each data point into the interpolation function, and the following

equation set is obtained:

w1φ1
(∥∥X1 − X1

∥∥)+ w2φ2
(∥∥X1 − X2

∥∥)+ · · ·+ wp φp
(∥∥X1 − Xp

∥∥) = b1

w1φ1
(∥∥X2 − X1

∥∥)+ w2φ2
(∥∥X2 − X2

∥∥)+ · · ·+ wp φp
(∥∥X2 − Xp

∥∥) = b2
...

w1φ1
(∥∥Xp − X1

∥∥)+ w2φ2
(∥∥Xp − X2

∥∥)+ · · ·+ wp φp (∥Xp − Xp∥) = bp,

(2.11)

Rewrite variables in the matrix form:

Φ=


φ1
(∥∥X1−X1

∥∥)φ2
(∥∥X1−X2

∥∥) · · · φp
(∥∥X1−Xp

∥∥)
φ1
(∥∥X2−X1

∥∥)φ2
(∥∥X2−X2

∥∥) · · · φp
(∥∥X2−Xp

∥∥)
...

... . . . ...

φ1
(∥∥Xp−X1

∥∥)φ2
(∥∥Xp−X2

∥∥) · · · φp(∥Xp−Xp∥)

, W=


w1

w2
...

wp

, b=


b1

b2
...

bp

. (2.12)

Then the equation set (2-14) can be rewritten as follows:

ΦW = b. (2.13)

For any invertible matrix Φ, the weight vector can be obtained through its inverse mat-

rix:

W = Φ−1b. (2.14)
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Note that for a generalized RBF network, the number of its basis functions is often

less than the number of input data points, for which the pseudo-inverse can be used to

calculate the weight vector:

W =
(

ΦTΦ
)−1

ΦTb. (2.15)

In practice, the generalized RBF network is more frequently used, because the number

of known samples in a dataset is often large, and it is obviously impractical to assign a

basis function to every data point in such cases.

Figure 2.7: RBF interpolation of a non-convex surface.

In the early stages of the study, some researchers noticed the similarity between RBF

networks and neuro-fuzzy systems and tried to combine the two to form new machine

learning algorithms. Jang et al. [59] proved that the fuzzy system and the RBF net-

work have functional equivalence under certain constraints, revealing the potential of

integrating RBF networks into the fuzzy system. Following this train of thought, Cho

[60] studied the several applications of RBF networks in fuzzy systems, successfully

established a neuro-fuzzy system that utilizes an RBF network as a subsection, and

further implemented three different network architectures with extended RBF compon-

ents. However, these studies did not unveil the intrinsic connection between RBF net-

works and neuro-fuzzy systems. In fact, subsequent studies have shown that the gener-

alized RBF network is mathematically equivalent to the Sugeno fuzzy inference system.

The difference between a Sugeno fuzzy system and an ordinary RBF network is that the
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parameters in the fuzzy system are given physical meanings to allow better transparency

and interpretability. This conclusion also applies to all neuro-fuzzy systems and neural

networks, of which the difference between them is simply the inconsistency in the nar-

rative caused by distinct research angles. The mathematics behind these two fields is

the same. Enlightened by this fact, many researchers have taken the RBF network as

the prototype to design their neuro-fuzzy systems.

2.4.3 Mamdani Neuro-Fuzzy System

Mamdani fuzzy inference system is the earliest fuzzy inference method that emerged.

Naturally, many early neuro-fuzzy systems are designed based on this inference engine,

i.e., Mamdani neuro-fuzzy systems [61]. The so-called neuro-fuzzy system is based on

the ordinary fuzzy engine with the addition of adaptive optimization policies so that

the fuzzy system can also have an end-to-end self-learning ability similar to neural net-

works. The input and output nodes of the neuro-fuzzy system are equivalent to the

counterparts of the neural network, while the hidden layer can play the role of mem-

bership functions, fuzzy rules, and defuzzification inference engines. The introduction

of neural network structure brings two discernible advantages. Firstly, this weakens the

influence of human errors in traditional fuzzy modeling, making the inference product

of the algorithm closer to the actual situation and obtaining a more powerful perform-

ance. Secondly, the powerful parallel processing capability of the neural network design

dramatically enhances the performance of the fuzzy inference system, thus enabling it

to resolve more intricate problems. Akin to the RBF network, the Mamdani network is

also a local approximation structure. However, each part of the Mamdani structure has

interpretable physical meanings, which enables manual intervention under the expert

knowledge of the fuzzy system. This property is also the most distinct advantage of

neuro-fuzzy systems over pure neural network models because most neural networks

are black boxes, for which users are usually unable to explore the connections between

internal parameters, causing inconvenience in adjusting the network parameters. In

contrast, the parameters of a neuro-fuzzy system can be determined per prior know-

ledge, giving them performance beyond that of ordinary neural networks in some situ-
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ations.

The mathematical expression of the Mamdani neuro-fuzzy system is analogous to the

ordinary Mamdani system but with some simplifications to accommodate the frame-

work of neural networks. Given a Mamdani neuro-fuzzy system defined by the follow-

ing IF-THEN statement:

IF x1 is A (x1) and ... and xn is A (xn) , Then y is B(y),

where x = [x1, x2, . . . , xn]
T is the input vector and for each variable xi there is a fuzzy

antecedent statement A (xi) =
{

Ai
1, Ai

2, . . . , Ai
m
}

, i = 1, 2, . . . , n, in which Ai
1, Ai

2, . . . , Ai
m

are the fuzzy sets defined in the universe of discourse Ui. The corresponding fuzzy

membership function for each set can be represented as µAi
j
(xi) , (i = 1, 2, . . . , n; j =

1, 2, . . . , p). Similarly, if y denotes the output of this system, then the fuzzy statement

for the consequent part is B(y) = {B1, B2, . . . , Bm}, where Bi is the i th set of this state-

ment, of which the membership function µBi(y) is obtained as follows:

µBi(y) =


µAi

1
(x1) ∧ µAi

2
(x2) ∧ . . . ∧ µAi

n
(xn) ∧ µBi(y)

or

µAi
1
(x1) · µAi

2
(x2) · . . . · µAi

n
(xn) · µBi(y)

, i = 1, 2, . . . , m , (2.16)

where ∧ refers to the fuzzy intersection operator, · denotes the product operator, and

µAi
1
(x1)∧ µAi

2
(x2) ∧ . . . ∧ µAi

n
(xn) or µAi

1
(x1) · µAi

2
(x2) · . . . · µAi

n
(xn) is the firing

strength of the i th rule. Both methods are popular and should be selected accord-

ing to the need of the problem. Note that in neuro-fuzzy systems, the product method

is often favored. Further, the final fuzzy inference outcome can be calculated using

fuzzy union operation, which is given as follows:

µB(y) = µB1(y) ∨ µB2(y) ∨ . . . ∨ µBm(y). (2.17)

The end-to-end feature of the neuro-fuzzy system dictates that its output must be a crisp

value instead of a fuzzy representation, which indicates that defuzzification is requisite.
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In Mamdani models, the weighted average is the most employed defuzzification method

and its discrete form is given below:

yc =
∑m

i=1 yiµBi (yi)

∑m
i=1 µBi (yi)

, (2.18)

where µBi (yi) = maxy µBi(y) is the centroid of the consequent membership function,

which also equals to the firing strength of the antecedent part. Let αi represent the firing

strength of the i th rule, the final crisp output of the system can also be expressed in the

following form:

yc =
m

∑
i=1

yiαi, (2.19)

where ᾱi =
αi

∑m
i=1 αi

.

The Mamdani neuro-fuzzy system integrates the classic fuzzy reasoning process that

applies fuzzy semantics understandable for humans, allowing it to retain the most inter-

pretability. However, the fundamental discrepancy between fuzzy semantics and crisp

mathematical logic weakens the precision of the inference model. Additionally, the se-

lection of fuzzy inference operators is excessively dependent on human experience and

subjective perception, leading to a further loss in accuracy. Another cost of retaining

interpretability is that Mamdani models often contain procedures indispensable for in-

terpretable reasoning but clumsy in terms of getting accurate results, causing decreased

efficiency if a large data volume and high data dimensionality are presented. Note that

even the interpretability of the Mamdani neuro-fuzzy system is not always guaranteed,

and it may fail under some circumstances. For example, when the rule-base is too large

to interpret. Such deficiencies determine that the Mamdani model is more suitable for

scenarios with low-dimensional, small data volume, and low accuracy requirements.

Unfortunately, the application scenarios for today’s machine learning algorithms are

generally much more complex and more challenging. Therefore, current neuro-fuzzy

algorithms rarely adopt the Mamdani method as the inference engine.
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Figure 2.8: A multi-input-single-output Mamdani neuro-fuzzy system.

2.4.4 Sugeno Neuro-Fuzzy System

The Sugeno neuro-fuzzy system is a universal approximator [62] with a local ap-

proximation structure, which is de facto equivalent to the RBF network. The property

of the Sugeno network is determined by the Sugeno fuzzy inference engine it applied.

As opposed to its Mamdani counterpart, the Sugeno fuzzy inference engine does not

consider the preservation of semantical interpretability as the top priority. Instead, it

reduces the clumsy semantic inference process to the linear combination of first-order

or zero-order fuzzy rules, thus significantly improving the accuracy and efficiency of

the inference engine. For neuro-fuzzy systems, their application scenarios are usually

not fundamentally different from that of ordinary neural networks, i.e., efficiency and

accuracy are pursued, while the interpretability requirements are limited to parameter

tuning and debugging. The Sugeno engine meets these requirements perfectly, albeit at

the expense of certain interpretability. Despite this, it is inexact to say that this design

is less interpretable than the Mamdani method. This narrative may be correct if it is

purely to understand the semantics, but the semantic interpretation is not identical to

the interpretability. The Sugeno model is closer to traditional mathematical models,

allowing it to be easily unraveled by mathematical analysis methods. For neuro-fuzzy

systems targeting sophisticated data types, the conventional semantic interpretation of-

ten fails because the rule-base is too large or intricate, whereas more information is
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available if interpreted mathematically, especially from a statistical point of view. It is

fair to say that the Sugeno model is an excellent fuzzy inference engine that success-

fully trades off the performance and the interpretability, leading to more widespread

use of Sugeno neuro-fuzzy systems than their Mamdani counterparts. Therefore, most

of the emerged neuro-fuzzy systems adopt the Sugeno inference model as the inference

engine, including the famous adaptive neuro-fuzzy inference system (ANFIS) [63].

Figure 2.9: The antecedent and consequent part of a single output Sugeno neuro-fuzzy model.
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For an n-antecedent and m-rule Sugeno neuro-fuzzy structure, the rule-base is usually

organized according to the following IF-THEN form:

Rule 1:IF x1 is A1
1 and x2 is A1

2 . . . and xn is A1
n, then f1 = p1

1x1 + p1
2x2 + · · ·+ p1

nxn + q1;

Rule 2:IF x1 is A2
1 and x2 is A2

2 . . . and xn is A2
n, then f1 = p2

1x1 + p2
2x2 + · · ·+ p2

nxn + q2;

. . . . . .

Rule m:IF x1 is Am
1 and xm is Am

2 . . . and xn is Am
n , then f1= pm

1 x1+pm
2 x2+· · ·+pm

n xn+qm,

where x = [x1, x2, . . . , xn]
T denotes the input vector, Ai

1, Ai
2, . . . , Ai

m are the fuzzy sets

defined in the universe of discourse Ui, and f1, f2, . . . , fm refer to the values of the

consequent part of the system. pi
j and qi(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are the linear

coefficients that replace the fuzzy semantic in the Sugeno engine to determine the status

of the consequent. Designate µAi
j

(
xj
)

to be the membership function for each input

variable, then the firing strength αi of the i th rule is calculated as follows:

αi =


µAi

1
(x1) ∧ µAi

2
(x2) ∧ . . . ∧ µAi

n
(xn)

or

µAi
1
(x1) · µAi

2
(x2) · . . . · µAi

n
(xn)

, i = 1, 2, . . . , m, (2.20)

where ∧ refers to the fuzzy intersection operator, for which the Max-Min approach

is often utilized, i.e., αi = min
{

µAi
1
(x1) , µAi

2
(x2) , . . . , µAi

n
(xn)

}
, and · denotes the

product operator. However, in most Sugeno neuro-fuzzy systems, the product approach

is favored because it often shows higher accuracy. Therefore, the output of the con-

sequent part of the system is obtained by calculating the weighted average of its ante-

cedent output:

y =
∑m

i=1 αi fi

∑m
i=1 αi

=
m

∑
i=1

ᾱi fi. (2.21)

In addition, for a multi-output Sugeno system with r outputs, each individual output

can also be obtained in the following form:

yh =
m

∑
i=1

ᾱi fih, h = 1, 2, . . . , r, (2.22)
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where ᾱi =
αi

∑m
i=1 αi

.

It is worth noting that although the Sugeno engine is more common in neuro-fuzzy

networks, the specific design of a neuro-fuzzy system is not set in stone in terms of

which fuzzy inference engine to choose for reasoning. One issue that can never be

avoided in fuzzy neural system construction is the trade-off between interpretability

and accuracy. In general, it is difficult to reconcile the two in the same model because

human logic is vague in its essence, while mathematical language is precise. For a high

level of semantic interpretability, the logic engine has to cater to the human way of

thinking in system design, which results in a loss of accuracy. Conversely, if the model

is designed to achieve a high degree of accuracy, it will need to move away from the

human mindset and closer to mathematical logic, which usually leads to a decrease

in interpretability. It is accepted that if a high level of interpretability is required, the

modeling will focus on the representation of linguistic logic, and the Mamdani inference

engine is recommended. If the purpose of modeling is to obtain better accuracy, there

is no doubt that the Sugeno inference engine is the most appropriate.

Figure 2.10: The architecture of a multi-input-multi-output Sugeno neuro-fuzzy model.
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2.4.5 ANFIS

Traditionally, the establishment of a fuzzy system relies heavily on the experience and

knowledge of experts, but for systems with unknown characteristics or intricate mech-

anisms, human interference seems to lack of edge. In this context, neuro-fuzzy systems

with self-learning competence are favored to meet the need for accurate modeling. Of

all the designs that have emerged, one deep model has been the most successful, i.e.,

the adaptive neuro-fuzzy inference system (ANFIS) proposed by Jang [63].

This architecture executes all three basic processes of fuzzy inferencing, i.e., fuzzific-

ation, fuzzy reasoning, and defuzzification, in the form of a neural network. It utilizes

learning mechanisms in the neural network to adaptively extract rules from input and

output data to form an adaptive neuro-fuzzy approximator, i.e., both the antecedent

and the subsequent statements are adjusted by adjusting the weights of adaptive nodes

during the training process. ANFIS also inherits the interpretability characteristic of the

fuzzy inference system, which enables the adjustment of system parameters according

to prior knowledge. To achieve better accuracy, ANFIS usually employs the Sugeno

model as the fuzzy inference engine. It is worth noting that this structure takes a hybrid

of backpropagation and the least square estimator to optimize the network parameters.

Figure 2.11: ANFIS network with two inputs and single output.
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From the perspective of a neural network, the typical ANFIS neuro-fuzzy system is a

fivelayer architecture. The first layer is the fuzzification layer, through which the input

data is converted into fuzzy membership values by fuzzy membership functions. For an

ANFIS model with n inputs and m rules, the membership value of the j th input of the i

th rule can be denoted as follows:

O1
i,j(x) = µAi

j
(x), i = 1, 2, . . . , m; j = 1, 2, . . . , n, (2.23)

where µA(x) refers to the membership function. There are many options for the mem-

bership functions, such as the Gaussian function, the Polynomial function, the triangular

function, and the Cauchy function, among which the Gaussian function is recommen-

ded in most cases. The second layer is used to calculate the firing strength of each rule,

using the product method to calculate:

O2
i (x) =

n

∏
j=1

O1
i,j(x). (2.24)

The third layer is a normalization layer, where the ratio of the firing strength of the ith

rule to the sum of the firing strength of all fuzzy rules is calculated:

O3
i (x) =

o2
i (x)

∑m
i=1 o2

i (x)
. (2.25)

The output of the third layer is also considered the result of the antecedent. By com-

bining the inference result of the consequent, the defuzzified output of each rule is

generated in the fourth layer:

O4
i (x) = O3

i (x) ∗
(

pi
0 +

n

∑
j=1

pi
jxj(x)

)
. (2.26)

The sum of all inference results is computed at the fifth layer, which is the final output

of the network:

O5(x) =
m

∑
i=1

O4
i (x). (2.27)
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Deep neuro-fuzzy models represented by ANFIS are equipped with both transparen-

cies from fuzzy systems and strong self-learning competence of the deep neural net-

work, which makes them salient subjects of computational intelligence in recent years.

Especially for complex system modeling, deep neuro-fuzzy systems have spectacular

advantages over traditional nonlinear modeling methods. Compared with the most

fashionable deep learning architectures today, deep neural-fuzzy systems still have the

potential to achieve performance that is not inferior to very sophisticated and deep

neural networks, despite more compact structures as well as lower computational per-

formance requirements. The shortcoming of ANFIS is mainly due to the harsh selection

of optimization methods and the propensity to overfit data. To address these problems,

researchers have used interval type- 2 fuzzy logic as inference logic in conjunction with

derivativefree optimization methods that significantly improve the algorithm perform-

ance.

2.5 Complex Fuzzy Sets and Theories

The evolution of fuzzy theory has never stopped during the past decades. The com-

plex fuzzy set theory is said to be the most significant theoretical breakthrough after the

interval type-2 fuzzy theory [16]. Yazdanbakhsh and Dick [16] have conducted a de-

tailed review of different variants of complex fuzzy sets and summarized five categories

according to the difference in the selection of common domains. Those common do-

mains include the unit circle, the unit square, the positive quarter of a unit circle, any

subset of the complex plane, and a subset of the cross-product within the unit circle.

Dick [14] also classified the existing complex fuzzy sets into two factions, i.e., complex

fuzzy sets with rotational invariance and complex fuzzy sets without rotational invari-

ance, in which the former only represents the degree of membership by the modulus

information, while the latter one is more like the vector logic.
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2.5.1 Ramot’s Complex Fuzzy Sets

Although similar concepts are mentioned in the work of Kaufman [64], Moses [65],

and Nguyen [66] years ago, Ramot [12], [13] first proposed the concept of complex

fuzzy sets in the true sense. The core idea is that the range of the fuzzy membership

value is extended from the interval [0, 1] of the type-1 fuzzy set to the unit circle in

the complex plane. Further, the magnitude component of the complex membership

function is specified to indicate the degree of membership, and the phase component is

defined to be a supplement to membership or contextual information. The definition of

the membership degree is as below:

µS(x) = rS(x)ejωS(x). (2.28)

Ramot et al. also defined some basic operators for this new fuzzy set, such as comple-

ment, union, intersection, and aggregation, as well as the generation and composition

of fuzzy relations. However, the unique nature of this novel fuzzy set caused it to

encounter obstacles when defining operators. The first one is how to determine the

interactions for phase components. According to the definition, the phase quantity is

unambiguous, which means it does not participate in the fuzzy operations. Their solu-

tion is to propose two new operators specifically for phase, rotation, and reflection,

while suggesting that researchers find operators suitable for specific solutions accord-

ing to actual problems. Although it is common in the territory of fuzzy systems to select

different operators for fuzzy sets accordingly, such an explanation of logic operators for

complex fuzzy sets is confusing since there is no theoretical proof to verify the rational-

ity of these operators.

The related fuzzy inference system is also mentioned by Ramot et al. in the pa-

per [13], in which the author uses the Cartesian product to generate fuzzy rules by

imitating the classical fuzzy theory, applying the conventional fuzzy composition and

implication operators to perform reasoning. It is worth mentioning that when it comes

to the aggregation of fuzzy rules, the author emphasizes the use of vector addition so

that both the modulus and phase can have a say in the overall result. The introduction
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of the vector operation is also considered the most important property of complex fuzzy

logic because it is conducive to representing intricate semantics that conventional fuzzy

logic cannot tackle. Ramot’s definition of complex fuzzy sets has many flaws. It not only

lacks rigorous theoretical proof but also does not have a convincing explanation for the

phase component in membership, not to mention that the definition of many vital prop-

erties relies on intuitive examples rather than mathematical arguments. Such problems

have caused disputes for future investigations. Despite this, it is fair to say that as the

beginning of complex fuzzy theory, its contribution to later research is immeasurable.

Figure 2.12: The simple illustration of a complex fuzzy logic system. [13]

2.5.2 Pure Complex Fuzzy Sets

Inspired by Ramot’s complex fuzzy sets, Tamir [67], [68] also proposed his version of

the complex fuzzy theory, called the pure complex fuzzy set. Dissimilar to Ramot’s path

to define complex fuzzy logic, Tamir’s concept is derived from the mathematical axioms

of multi-valued logic. This pure complex fuzzy set is defined in the Cartesian form of

complex representation:

µ(V, z) = µr(V) + jµi(z), (2.29)

where both µr(V) and µi(z) are the real fuzzy membership grade within the interval

[0,1], which also indicates that the common domain of this fuzzy set is a unit square

located in the first quartile of the complex plane. Specifically, Tamir has also proposed

the notion of complex fuzzy classes for this version of complex fuzzy logic. For this

reason, µ(V, z) back in (2.29) represents a fuzzy class which can also be considered as

the fuzzy set of a lower order fuzzy set, while µr(V) signifies the membership of V in this
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inferior order fuzzy class and µi(z) denotes the membership grade z in V. Compared

with Ramot’s attempt, this fuzzy theory discusses the definition from the perspective of

mathematical axioms, which leads to higher theoretical completeness. However, this

idea has not been adopted by any fuzzy inference system at the current stage because

the definition of fuzzy classes complicates the semantic interpretation.

2.5.3 Complex Atanassov’s Intuitionistic Fuzzy Sets

Alkouri et al. [69] developed the notion of complex Atanassov’s intuitionistic fuzzy

set (CAIFS) inspired by Atanassov’s definition of the intuitionistic fuzzy set (IFS) [70].

The difference between IFS and conventional fuzzy sets is that the concept of non-

membership is added. Assume there is a fuzzy set of elements I of the universe of

discourse A which is designated by membership function µI(x) valued between 0 and

1. The non-membership function vI(x) that takes values within the interval [0, 1] is

defined as well. Then an intuitionistic fuzzy set I is represented in the form below:

I = {[x, µI(x), vI(x)] : x ∈ A} , (2.30)

where both the membership and non-membership grade µI(x), vI(x) ∈ [0, 1] stands for

any arbitrary x ∈ A to the set I. Most importantly, an inequality is specified in the

definition of the set, which is 0 ≤ µI(x) + vI(x) ≤ 1. IFS also brings a very special com-

plement operator, which makes the complement operation a direct value swap between

the degree of membership and nonmembership, i.e., Ī = {[x, vI(x), µI(x)] : x ∈ A}.

And this also leads to a very interesting set of intersection and union operations. To

realize a union of IFS, one only needs to find out the maximum membership value as

well as the minimum non-membership value among sets, while for the intersection op-

eration the outcome is composed of a minimum membership value and a maximum

non-membership value over sets.

The core idea of CAIFS is essentially just the replacement of the real membership and

nonmembership functions of IFS with complex values. In this situation, the inequality

condition that needs to be satisfied becomes |µI(x) + vI(x)| ≤ 1 which is virtually a

48 Literature Review



modulus inequality. Though the operation principles are basically the same as the ori-

ginal IFS, the use of complex values increases the dimensionality of the membership

function, which will undoubtedly help express and process richer information. Not-

ably, this CAIFS has been employed for individualobjective or group-objective decision-

making [71], [72] and cellular network [73].

2.5.4 Pythagorean Fuzzy Sets

Yager [74], [75] developed the idea of Pythagoras fuzzy set (PFS) inspired by Atanas-

sov’s IFS and interval-valued type-2 fuzzy set, which seems to be a splendid multivariate

decision-making algorithm in the case of uncertainty. Assume P is a PFS of the support

A, then this PFS can be expressed in the following form:

P = {[x, µY(x), µN(x)] : x ∈ A} , (2.31)

where µY(x) is said to be the membership value of x in P and µN(x) is the non-

membership value, which is very much like the case in IFS. PFS is very similar to IFS,

and their complement, union, and intersection operators are exactly the same. The

main difference between the two definitions is that the common domain of PFS is in the

quarter of the unit circle sector located in the first quadrant, i.e., µ2
Y(x) + µ2

N(x) ≤ 1

and µY(x), µN(x) ∈ [0, 1]. This divergence in PFS enlarges the area that IFS can cover,

leading to better performance in solving practical decision-making problems.

Based on PFS, Dick et al. [17] combined the definition with the existing complex

fuzzy theory, then extended the co-domain of PFS from the unit sector in the first

quadrant to the entire unit circle. Furthermore, Dick also defined the concepts of anti-

membership and anti-non-membership for PFS, proving that negation and complement-

ation are different operations in the case of PFS. This attempt makes PFS another logical

operator that can be deployed to perform complex fuzzy logic operations and enables

the representation of the semantics of negation and antonyms, which is impossible for

conventional type-1 fuzzy logic. Therefore, PFS logic deserves further investigation in

the future as the most potential version of complex fuzzy theory.
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2.5.5 Other Complex Fuzzy Sets

Many other researchers also made valuable explorations in this direction and demon-

strated their understanding of CFS. Kumar et al. [76] put forward a complex intuition-

istic fuzzy soft set (CIFSS) as an attempt to extend the original intuitionistic fuzzy soft

set (IFSS) mentioned by Maji [77]. Thirunavukaras et al. [78] proposed a paramet-

erized complex fuzzy soft set which is an upgrade of its real number counterpart. Li

et al. [79], [80] have been investigating the property of sphere complex fuzzy sets,

in which the truth-valuation domain is a high-dimensional hypersphere, enabling the

modeling of multiple paralleling variables at a time. Ali et al. [81], [82] further ex-

panded the concept of PFS by developing a 3-element membership function composed

of membership, non-membership, and indeterminacy, which leads to a neutron-sophic

set for decision-making. Liu et al. [83] developed a complex q-rung orthopair fuzzy set

for multivariate and multiple-feature group decision-making. Singh [84] created the

bipolar δ-equal complex fuzzy set to describe the inconsistency and the completeness

of real-world data. Greenfield [85] defined an interval-valued complex fuzzy set by

combining the concept of type-2 fuzzy sets. The above definitions of complex fuzzy sets

have not been widely discussed and verified and will not be illustrated in detail.

2.6 Fuzzy Inference Systems for Complex Fuzzy Sets

For any fuzzy set theory, the key to application lies in the successful establishment

of corresponding fuzzy logic and reasoning system. At present, inference systems for

complex fuzzy theory are all neuro-fuzzy systems. There are two main reasons held

responsible for this fact. First, although nearly 20 years have passed since the first com-

plex fuzzy theory was proposed, this field is still in the early exploratory stage, and the

research in all aspects is far from mature, especially when the semantic representations

of complex fuzzy logic are yet to unravel. Such theoretical incompleteness prevents re-

searchers from acquiring a comprehensive understanding of the properties of complex

fuzzy logic systems, which hinders attempts to build such a system. Another signific-

ant reason is that the two-dimensional attribute of the complex membership function
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of CFS causes intricate semantic interpretations. Even if the semantic representation

of CFS is fully deciphered, manually building a fuzzy rule base for CFS logic systems

through expert knowledge is still seriously counterintuitive. Therefore, it is not difficult

to understand why the neuro-fuzzy system turned out to be such an attractive solution

here. In the current stage, several neuro-fuzzy systems based on CFS have emerged.

It is worth noting that existing complex neuro-fuzzy systems are all established based

on Ramot’s definition of complex-fuzzy sets, and there have been no attempts so far to

construct neuro-fuzzy systems using other CFSs.

2.6.1 ANCFIS

In 2007, Man et al. [86] replaced type-1 fuzzy logic with complex fuzzy logic in a

single input ANFIS architecture and created a six-layer neuro-fuzzy system, known as

the earliest complex fuzzy inference architecture, which sparked the discussion over ad-

aptive neuro complex fuzzy inference system (ANCFIS). Later, Chen et al. [87] further

improved this concept based on the previous network model in [86], leading to a rel-

atively complete ANCFIS framework. This network is relatively simple compared with

various deep network structures commonly applied, in which the whole design is very

similar to the traditional ANFIS, as the same TSK method is used for fuzzy inference.

Since the architecture is defined to solve the prediction of quasi-periodic problems, a

sinusoidal fuzzy membership function is deployed for this purpose, as shown below:

r(θ) = d sin(aθ + b) + c, (2.32)

where the parameters a, b, c, d are said to be premise parameters.

The first layer of the ANCFIS is to measure the difference between the membership

function and the input vector. For this purpose, three measurement operations are

recommended, including Euclidean distance calculated through the L-2 norm, convolu-

tion, and Elliot function. Among the three alternatives, the Elliot function is considered
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the best option, which is given as follows:

z
1 + |z| , (2.33)

where z = ∑n
k=1 xk ∗ [ri (θk) cos (θk) + jri (θk) sin (θk)] , θk = k 2π

n and n represents

the number of elements inside the input vector x. The second layer is designed to

determine the firing strength by multiplying the signals from the preceding, then output

the resulting product to the next layer. The third layer is a procedure to normalize the

outcomes of the previous step to prevent the potential exceeding of tolerance. The

purpose of the fourth layer is to reflect the contribution of the phase component in the

membership function for the CFS. Consequent parameters are generated in the fifth

layer through the least square method. Finally, all the fuzzy inference outputs from

different rules are aggregated via the weighted sum in the sixth layer, which is also

the overall output of this network. The original network employs the vanilla gradient

descent method for backpropagation to train the parameters.

Figure 2.13: The architecture of a single-input two-rule ANCFIS [21].

Yazdanbakhsh et al. further investigated this architecture and introduced it into sev-

eral application scenarios, including solar power prediction [88] and time-series pre-

diction [89]. They also implemented modifications such as combining ANCFIS with an

extreme learning machine [90]; altering ANCFIS for multi-input-multi-output (MIMO)

tasks [91] and creating a fast adaptive version of ANCFIS which is named FANCFIS

[21]. Yeganejou et al. even developed a classifier based on ANCFIS for condition mon-

itoring [92]. However, because of the limitation of the sinusoidal membership function,

such an algorithm is not suited to general function approximation problems. Therefore,

there are not many options for application scenarios that ANCFIS can employ, which
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hinders its application for diverse intents and purposes. At this stage, the main applica-

tion for this algorithm is to model and forecast objects with regularity, such as the trend

of the stock market or the activity of sunspots, while another scenario is streaming data

processing, such as data mining.

2.6.2 CNFS

Analogous to ANCFIS, Chen et al. [93], [94] also developed a neuro-fuzzy system

using complex fuzzy logic inspired by ANFIS and CFS, which is named complex neuro-

fuzzy self-learning (CNFS) approach. In terms of the reasoning method, such an al-

gorithm still employs the TSK fuzzy inference system due to its relatively better accuracy

against its Mamdani counterpart and lower computational complexity. The network is

a five-layer structure, but unlike ANCFIS, this architecture utilizes a complex Gaussian

membership function instead of a sinusoidal one, which is shown below:

µ Gaussian(x, m, σ)=exp

[
−0.5

(
x−m

σ

)2
]
− j
(

x−m
σ2

)
exp

[
−0.5

(
x−m

σ

)2
]

, (2.34)

where x is said to be the base variable, m is the mean of a gaussian function while σ

is the spread. Thus, the parameter set for this membership function is {m, σ}, which is

also the premise parameter set for a node. Assume the objective network has k inputs

and one output, then the i th fuzzy rule can be represented as follows:

Rule i : IF l1 is Ai
1 (x1) and l2 is Ai

2 (x2) ... and lk is Ai
k (xk) .

According to the defuzzification strategy of the Sugeno fuzzy system, the output zi of

this rule is:

zi = ai
0 +

k

∑
j=1

ai
jxj, (2.35)

where Ai
j
(

xj
)

is the j th antecedent of the i th fuzzy rule, ai
j is the corresponding con-

sequent parameter for i = 1, 2, . . . , n. For the objective CNFS, the complex fuzzy infer-

ence system is cast into a five-layered network. A sketch demonstration of the structure

of the entire CNFS network is shown in the figure below:
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Layer 0 is employed as the input layer, of which the function is to receive the input

signals and further transmit them to the following layer without any operation. Layer

1 is said to be the fuzzification layer, in which the inputs are fuzzified via the Gaussian

membership function mentioned above. Layer 2 is designed to determine the firing

strengths for each fuzzy rule, and in this case, complex fuzzy intersection operators,

also called t-norms, are applied. Layer 3 is a conventional normalization step where the

outcome of the preceding step is mapped into the interval [0, 1]. Inside Layer 4, the nor-

malized firing strength is multiplied by the consequent obtained via (2.35) to generate

a normalized consequent. Ultimately all the results are aggregated in Layer 5 by oper-

ating algebraic sum. Note that the final output at this stage is complex-valued, which

is erroneous for real-valued function approximation problems. Therefore, according to

the properties of the complex Gaussian membership function in polynomial form, the

real part of the output, i.e., the projection of the complex fuzzy set on the real axis, is

output as the final defuzzification result.

With the help of the PSO-RLSE hybrid optimization algorithm that applies the PSO

algorithm to optimize the antecedent parameters and the RLSE algorithm to optim-

ize subsequent parameters, the network can achieve excellent nonlinear approximation

performance. It has been confirmed that the CNFS architecture has greater effectiveness

in adaptive capability than its type-1 fuzzy logic counterpart [95]. Owing to the two-

dimensional rule-base of complex fuzzy sets that allows a single rule to involve more

information, though only very few fuzzy rules are employed in the network, CNFS still

shows better regression performance than most similar architectures that only apply

type-1 fuzzy logic. At present, this design has been successfully used in several applica-

tion scenarios, such as image restoration [96], image noise canceling [97], knowledge

discovery [98], time series forecasting [95], ARIMA forecasting [99], and multi-class

prediction [100]. The main problem with this algorithm is that the derivative-free op-

timization method employed often increases the computational complexity by at least

one order of magnitude compared to the gradient method, making its training process

less efficient.
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2.6.3 ACNFIS

Shoorangiz et al. [101] also proposed an adaptive complex neuro-fuzzy inference

system (ACNFIS) to target function approximation purposes. They introduced a polar

form complex Gaussian membership directly inspired by the intersection operator from

Ramot’s complex fuzzy theory. This function is given as follows:

µ(θ) = exp

[
−
(

θ − cA

aA

)2
]
∠

{
2π exp

[
−
(

θ − cP

aP

)2
]}

, (2.36)

where {cA, aA} and {cP, aP} are parameter sets for amplitude term and phase term

respectively. Unfortunately, this study has not been tested in practice, likely due to the

lack of simplicity as well as effective defuzzification methods for this polar form function

compared to the previous two cases. Therefore, a detailed discussion is not provided

here.

2.7 Complex-Valued Structures for Real-Valued Approximation

Apart from the above three algorithms, some researchers have also proposed neuro-

fuzzy systems using complex-valued fuzzy membership functions by introducing the

notion of CVNN [18] (Complex-valued neural networks) to the fuzzy inference system.

CVNN is a kind of deep network architecture in which both the input and output values

are complex numbers. Traditionally, such network structures are used to handle prob-

lems that involve complex-valued elements in the data to facilitate signal processing of

the network. In recent years, however, some researchers have proposed that similar

designs are also conducive to tackling pure real-valued problems [18]. One situation is

that some connections are presented between the real-valued variables of the data and

combining them into the form of complex numbers for input to the network can im-

prove the performance. Alternatively, it can achieve a certain degree of dimensionality

reduction by combining real-valued variables into complex numbers when dealing with

high-dimensional datasets.

The first of the preceding cases is easier to explain since the independent real-valued
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variables in some datasets may actually have an underlying complex-number-defined

connection, such as the relationship between resistance and capacitance in a circuit,

both of which can affect the voltage and current of the circuit and thus determine the

operating power. However, the impact of the two on electrical energy is very different.

Resistance converts electrical energy into internal energy, while capacitive reactance

only stores electrical energy, which means that their effects on output power are not

in the same dimension. In this case, it is more advantageous to combine both into a

complex-valued form, i.e., impedance, as the input of the machine learning algorithm

than simply using two real-valued variables. There are many similar examples, and as

a matter of fact, real number physics describes linear motions while complex number

physics describes periodic behaviors, suggesting all physical quantities in the periodicity

pattern are subject to a potential complex-number form. Using the CVNN architecture

on such problems is more reflective of their nature, resulting in better performance.

In the second case, complex numbers are applied for dimensionality reduction and

it may be necessary to combine two unrelated real-valued variables into a complex-

valued input, which seems to lack plausibility. Despite this, some scholars investigated

this idea and pointed out that for machine learning algorithms, the ramification of

combining real-valued variables into complex-valued ones only means a reduction of

the degree of freedom to a certain extent [18]. Based on this conclusion, it is feasible to

approximate real-valued inputs with fewer complex-valued inputs, except that accuracy

may suffer from a trade-off due to the loss of the degrees of freedom [18]. However,

for scenarios with high dimensionality, as the curse of dimensionality itself significantly

reduces model performance and weakens the nonlinear correlation between variables,

the trade-off of taking such a design may be shifted. This design makes sense if the

loss caused by the curse of dimensionality is greater than the performance loss caused

by using complex values to approximate the real-valued problem. This narrative is

especially true for the neuro-fuzzy system, because the scale of its rule-base is often

exponential to the input dimension, and the use of CVNN structures can reduce the

rule-base to the square root size of its original counterpart, which may lead to a very

significant efficiency gain.
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Therefore, from the perspective of dimensionality reduction and combating the curse

of dimensionality, the introduction of complex numbers in neural network structures

can significantly reduce the size of the network, making it a more streamlined struc-

ture. On the basis of CVNN, if operation laws of fuzzy logic are added to the network,

it becomes a complex-valued neuro-fuzzy system. Currently, two network structures

using this concept have emerged, which are CNFIS [19] by Subramanian et al., and

CVNF [20] by Ryusuke et al. It is worth mentioning that although such architectures

contain terms like "complex" and "fuzzy" in the name, of the essence they cannot be

considered veritable neuro-fuzzy inference systems that apply complex fuzzy logic. The

trick is that in CVNN-like neuro-fuzzy architectures, the complex-valued structure is

just the form to help build a more compact network, whereas the fuzzy logic applied is

still subject to type-1 fuzzy theory. The real component and the imaginary component

of complex-valued inputs only have interactions at the signal processing level without

involving deeper logic, which is very different from the cases involving authentic com-

plex fuzzy logic. Consequently, this category of networks cannot take full advantage of

the complex-valued membership over some applications with periodicity, which brings

about a relatively limited performance improvement. However, when it comes to applic-

ations that are not very demanding in terms of accuracy but have huge dimensionality,

two real-valued inputs can be approximated by one complex-valued input to reduce the

system dimensionality and dramatically increase the efficiency of the algorithm.
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2.8 Chapter Summary

Fuzzy inference logic overturns the traditional way of analyzing problems in crisp

mathematical logic, creating a new type of infinite-valued logic in addition to probab-

ilistic methods, which enables the mathematical modeling of imprecise objects. Fuzzy

algorithms can be designed along the lines of conventional mathematical methodolo-

gies to obtain the best performance, or they can perform in the way humans understand

the world to establish a model that human semantics can interpret, which corresponds

to two differentiated fuzzy inference engines, i.e., the Sugeno engine and the Mam-

dani engine. The former handles fuzzy inference in a way similar to the weighted

method in crisp mathematics, obtaining models with high accuracy but weak semantic

interpretability. The latter retains the complete fuzzy semantic inference process and

therefore possesses better interpretability, but its accuracy is relatively inferior with a

higher model complexity due to the intrinsic dissimilarity between human semantics

and exact mathematical language.

The neuro-fuzzy system is a fuzzy system with self-learning capability constructed by

combining the fuzzy inference engine with the architecture of a feed-forward neural

network. Functionally, neuro-fuzzy systems are similar to RBF interpolation networks,

both of which are local approximation networks. In recent years, neuro-fuzzy systems

have become the mainstream method because traditional manual modeling methods are

increasingly unable to deal with the growing complexity of applications. Deep neuro-

fuzzy systems, represented by ANFIS, are favored today when deep learning methods

are prevalent. The advantage of such models is that it is more transparent than tradi-

tional deep learning models because fuzzy logic endows physical meaning to each part

of the architecture. Increasing model depth improves performance but also weakens

interpretability, and application scenarios for deep neuro-fuzzy systems are not that dif-

ferent compared to general deep learning models, which determines that the priority

to improve performance potentiality in this area outweighs the interpretability. Even

the interpretability is mainly utilized to serve the model performance, such as para-

meter tuning and model adjustment, rather than extracting expert knowledge from the

model.
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The practice of deep neuro-fuzzy systems has also increasingly exposed the short-

comings of the traditional type-1 fuzzy logic and stimulated the research of new types

of fuzzy logic, for which the two most mentioned fuzzy logic theories are type-2 fuzzy

logic and complex fuzzy logic. The type-2 logic system enables both the intra-individual

uncertainty and the inter-individual uncertainty in a single rule. Currently, the inter-

val type-2 fuzzy logic is commonly applied to avoid the unnecessary complexity of the

generalized type-2 logic. However, the gradient optimization policy is not available for

an interval type-2 model due to the lack of a closed-form solution for the first-order

derivative of its membership function, which poses a challenge to the optimization of

the model. The complex fuzzy set theory extends the co-domain of type-1 logic from

the unit interval to the entire unit circle of the complex plane. Complex fuzzy theory

is a profound breakthrough from a mathematical point of view. It extends the reas-

oning logically from one dimension to two dimensions and introduces abstract algebra

into the discussion of fuzzy logic. Unfortunately, due to the counterintuitive nature of

two-dimensional logic, the semantic interpretation of the complex fuzzy theory is not

yet clear, and there is no academic consensus even though many scholars have offered

various insights. This issue hinders the use of this logic for manual modeling but does

not prevent its design as an adaptive neuro-fuzzy system. Considering that complex

fuzzy membership functions generally have closed-form first-order derivatives, the op-

timization designs for such models are more convenient than their type-2 counterparts,

which is also an advantage of applying complex fuzzy theory to neuro-fuzzy systems.

Three deep neuro-fuzzy systems using such logic have emerged, namely ANCFIS,

CNFS, and ACNFIS, corresponding to three different complex fuzzy membership func-

tions, i.e., the sinusoidal function, the polynomial complex Gaussian function, and the

polar complex Gaussian function. Nevertheless, current approaches suffer from multi-

faceted imperfections and do not fully exploit the potential of complex fuzzy logic,

leaving room for subsequent research. It is worth noting that another class of deep

neuro-fuzzy models convert real-valued inputs into fewer complex-valued inputs to ap-

proximate real-valued problems, but they are not consistent with complex neuro-fuzzy

models. The key is whether complex fuzzy logic plays the role of inference logic in the
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model. In a purely complex-valued neuro-fuzzy system, the complex-valued structure is

applied only at the signal processing aspect, without any involvement of complex fuzzy

logic. Although having no access to the benefits of complex fuzzy theory, such sys-

tems can still show advantages for problems where complex-number-defined relations

are presented between some real-valued variables. Further, such designs also have the

potential for dimensionality reduction to counter the curse of dimensionality in neuro-

fuzzy systems, which is extremely meaningful for high-dimension scenarios. All the

above arguments will be discussed and analyzed in later chapters. Novel algorithms

based on such ideas will also be illustrated and tested to validate the conclusions.
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Three real-world numerical regression datasets are expounded in this chapter, in-

cluding a Sunspot time series dataset and two high-dimensional metallurgy datasets for

function approximation tests. All these datasets are adopted in subsequent sections of

this thesis to validate the proposed model.

3.1 Sunspot Time Series Data

Starspot activities are the most patently visible events of stellar magnetic field con-

centrations and their interaction with the energetic plasma, usually observed as struc-

tures that appear dark on the stellar surface [102]. Although the detailed mechanism

of the starspot occurrence is still a matter of underway research, it is widely accepted

that they are the reflections of magnetic flux tubes in the convective zone of the star

casting through the photosphere within active regions. Such a strong magnetic field

inhibits convection in the photosphere leading to the weakening of its characteristics.

Consequently, the energy flux from the stellar body interior diminishes, which lowers

the surface temperature, causing the exterior area through which the magnetic field

covers to look darker against the bright surroundings of photospheric granules. The

entire process can take weeks or even months, with the spots shrinking and expanding

as they move across the stellar surface. Starspots normally do not appear in an isolated

manner, but in groups. Such activities are very common during the lifetime of most

stars and vary widely in scale, in some cases up to 30% of their surface area [103].

Starspot occurrence in stars is as frequent as seismicity on terrestrial planets, but unlike

quakes, which are highly unpredictable, Starspots are mostly regular with a relatively

stable cyclicality. Because of these properties, the starspot phenomenon can be easily

observed by humans. Even for star systems far away from the solar system, although

the current technology is not advanced enough to monitor the condition of their orbit-

ing planets, there is no barrier to detecting their starspots. An example of the starspot

observed on the star HD 12545 is shown in Figure 3.1.
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Figure 3.1: Starspot observed on the star HD 12545 (https://apod.nasa.gov/apod/ap000712.
html).

Figure 3.2: Sunspot observed under the ultraviolet spectrum (https://earthobservatory
.nasa.gov/images/38380/sunspots-on-april-29-2009).
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Similar events on the Sun are called sunspots, for which the earliest record can date

back to 800 BC in ancient China [104]. The incipient mention of this phenomenon in

Western literature is around 300 BC, by the ancient Greek philosopher Theophrastus, a

student of Plato and Aristotle and successor to the latter [105]. It is generally believed

that the cycle of sunspot activity is about 11.2 years, and its occurrence is not uniform,

with distinct peaks and valleys. Sunspots and the accompanying corona activity also

have certain irregularities. For instance, from 1900 to 1960, the number of sunspots

observed during the peaks was on the rise, but after the 1960s it became a downturn, of

which the pattern is quite similar to the situation 8000 years ago [106]. Some research-

ers believe that some factors may be hidden behind these irregularities, leading to the

difficulty in accurately predicting the intensity of the next peak. However, such a fea-

ture also makes the phenomenon a perfect subject for machine learning algorithms, not

the least of which the rich historical record also provides ample training and validation

data samples. Figure 3.2 displays the sunspot activity under the ultraviolet spectrum.

The Sunspot time-series dataset [107] is introduced to validate the performances of

various machine learning models. It includes sunspot activity since 1700 and is avail-

able from the website of Sunspot Index and Long-term Solar Observations (SILSO). It

is fair to say that the dataset is of very high quality in terms of accuracy of observations

and amount of data. The daily, monthly, and monthly smoothed sunspot numbers for

the last 13 years are given in Figure 3.3, from which it is evident that despite its overall

periodicity, the motion of sunspots has a significant fluctuation within a period meas-

ured in days. If observed on a monthly basis, a more cyclical nature is presented, which

can be reflected in Figure 3.4, where the historical situation of the monthly mean and

13-month smoothed sunspot activities over the recent several decades are compared.

If observed on an annual basis, the fluctuations are almost negligible, and the whole

process shows a strong regularity which is displayed in Figure 3.5, in which the yearly

mean and 13-month smoothed sunspot records since the year 1700 are provided.

For regression prediction tasks of time-series data, it is necessary to use several pre-

vious data points as input quantities to predict current or future states. In this paper,

sunspot observations of the three-day basis are used in experiments in the form of dual-
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input single-output data pair, i.e., {x(τ − 2), x(τ − 1); x(τ)}, where x(τ) denotes the

current observation, and x(τ − 2), x(τ − 1) represent historical observations two inter-

vals and one interval before, respectively. It is worth noting that the sunspot time series

is subject to strict causality, which means that the traditional training set and test set

validation method should be applied in the test. The cross-validation approach com-

monly used in some literature is not considered, given that it may destroy the causality

of the time series, resulting in a preposterous situation by using future data to pre-

dict the past. Additionally, due to the chaotic nature of sunspot activity in a relatively

short period of time, the data used for testing has been smoothed to reduce the inter-

ference of these unnecessary uncertainties on the model. The smoothed Sunspot time

series is a perfect benchmark dataset for validating the performance of machine learn-

ing algorithms. First, it is not too difficult for most of these algorithms, which ensures

that the algorithm used for testing converges successfully on this dataset. Secondly, al-

gorithms with different performances can easily show differences in this dataset, mainly

in prediction errors, which is very beneficial for benchmarking. Finally, the data have a

sufficient sample size to meet the requirements of deep models that often require large

amounts of data.

Figure 3.3: Daily and monthly sunspot number (last 13 years) [107]

3.1 Sunspot Time Series Data 65



Figure 3.4: Monthly and smoothed sunspot number [107]

Figure 3.5: Yearly mean and monthly smoothed sunspot number [107].
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3.2 Charpy Impact Data for High Strength Steel

Metallurgy is a traditional but vital industrial sector in manufacturing, of which the

most crucial product is alloy steel. Metal materials are crystalline substances, where

physical and chemical properties depend on the structure and type of atoms that con-

stitute their crystal lattice [108]. Since all this happens on the level of atomic size, even

subtle changes in alloy composition may dramatically impact its attributes, indicating

that the influence of the formula and processes on characteristics is highly non-linear.

The production of alloy steel usually requires the involvement of a variety of chem-

ical elements and a remarkable amount of heat/cold treatment processes. Sometimes

it may also require complex procedures such as repeated pressing. These characterist-

ics determine that the material properties of alloy steel are often subject to numerous

variables, and the interaction between variables is highly unpredictable. In addition,

all these aspects of data rely on massive experiments to obtain, which are costly and

time-consuming and often lead to limited and incomplete data in the industry. The

above factors make it a tricky assignment to model such processes using traditional

mathematical methods.

The Charpy impact test [109], also known as the Charpy V-notch test, is one of the

most widely used traditional mechanical property tests to evaluate the impact tough-

ness of metal materials. Metal materials require sufficient toughness in addition to

strength and plasticity to serve the purpose. The so-called toughness is the ability of a

material to absorb energy during elastic deformation, plastic deformation, and fracture

[110]. The Charpy impact test measures the material toughness under impact load-

ing and multiaxial stress. The test places a sample with a specified shape, size, and

notch type on the support of an impact tester and then delivers a one-time impact to

the material with a pendulum of a specified height, measuring the work absorbed when

the material breaks under this impact [109]. The impact on material generally leads

to two kinds of fractures, i.e., the ductile fracture and the brittle fracture, where the

ductile fracture suggests higher absorption of impact energy. For materials with various

levels of strength, inconsistencies in standards when implementing the test are com-

mon. For instance, low-strength materials generally have good toughness and ductility,
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such materials have high Charpy impact energy, and there is no excessive requirement

for the temperature during testing, which can be controlled within the range of 10-35

degrees Celsius. However, some materials require stringent testing conditions, such as

materials whose toughness is sensitive to temperature changes or high-strength materi-

als with low Charpy impact energy. In these cases, the temperature should be controlled

at around 20 degrees Celsius, i.e., the standard room temperature. For some special-

purpose materials, performance at low temperatures is vital, and the Charpy test of

such materials is often carried out at a very low temperature, such as below -20 degrees

Celsius [111]. It is worth noting that the results of Charpy impact tests are often discrete

and random, which often requires at least three repeated experiments on a material to

obtain the typical value that can reflect the toughness.

The Charpy impact dataset applied in this thesis records information on the Charpy

impact energy of 830 groups of high-strength alloy steels, each of which differs in the

formulation and cold/heat treatment conditions. It is a high-dimensional dataset with

16 input variables and a single output, where the input variables include common alloy

compositions such as carbon, silicon, and manganese, as well as heat treatment con-

ditions such as tempering temperature. The basics of the data is given in Table 3.1.

Among these input factors, 14 are numerical variables, including the content of chem-

ical elements in the material, the heat treatment parameters, and the set conditions for

the Charpy impact test, such as test depth and sample size. The remaining two are

categorical variables, where the cooling medium variable contains five categories, and

the coded site variable includes three types. Note that such variables do not cover all

factors that may affect the Charpy impact energy of the high-strength steel, and even the

variables included are not necessarily related to the Charpy impact energy, either. For

example, Aluminum content is included in the data, but this element is mainly used in

steel to enhance corrosion resistance and has little effect on its ductility and toughness.

Instead, some relevant indicators do not appear in the data because they are difficult

to measure. All of this makes the dataset very different from the carefully selected

ones and very close to the situations in real-world scenarios, where relevant factors are

missing or overlooked, but irrelevant factors are mistakenly taken.
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Table 3.1: The basics of the Charpy impact data

Numerical Variable Mean Median Range

C 0.3942 0.42 0.13-0.52
Si 0.2548 0.25 0.11-0.38
Mn 0.8409 0.82 0.41-1.75
S 0.0167 0.019 0.0008-0.052
Cr 1.0752 1.08 0.11-3.25
Mo 0.2394 0.23 0.02-0.98
Ni 0.3683 0.2 0.03-4.21
Al 0.027 0.026 0.003-0.047
V 0.0077 0.005 0.001-0.26
Hardening Temp 864.02 864.02 810-980
Tempering Temp 647.19 650 190-730
Impact Temp -5.7869 -10 -53-23
Test Depth 20.8 12.7 5.5-146.05
Sample Size 172.49 155 11-381
Charpy Energy 89.642 89.333 3.46-245.33
Category symbol Categories
Cooling Medium 5
Coded Site 3

Such data poses significant difficulties for modeling. Apart from the reason men-

tioned above, the difficulty for modeling is even further due to the sparsity caused by

the scatter in measurements and inconsistencies related to samples with similar fea-

ture variables but different outputs. The inconsistency comes from missed features,

such as grain size and other microscopic indicators, for which the measurement de-

mands expensive high-technical equipment and facilities, and thus it is common for

these variables to be ignored in industrial datasets. Moreover, the effect of formulation

and treatment processes on alloy steels is highly nonlinear, for example, the influence

of carbon element on steel, where increasing the carbon content within a certain range

helps increase ductility, but if the content is too high, it turns the steel into pig iron that

lacks ductility. Similarly, tempering, a heat treatment procedure that heats the mater-

ial to a set temperature and then rapidly cools it at a controlled temperature, plays an

irreplaceable role in the ductility of steel. However, the effect of different tempering

temperatures is also highly nonlinear. The nonlinearity and high dimensionality of the

data further complicate accurate modeling, not to mention the presence of human error

in the measurement, such as recording errors, or variances caused by differed experi-

mental equipment and procedures, suggesting the presence of outliers and weak noise
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in the data. Therefore, current attempts to model such a process manually using math-

ematical methods have not yet resulted in a high degree of accuracy. Even for machine

learning algorithms, the sparsity, curse of dimensionality, and noise brought about by

the data characteristics also lead to great difficulty for the method to implement. The

data density plot between some variables for the Charpy impact data of high-strength

steel is given in Figure 3.6. The data density plot between Charpy energy and some

input variables are given in Figure 3.7.

Figure 3.6: The data density plots between “Ni and C”, “Mn and Si”, “Mo and Cr”, and “T-temp
and Size” for Charpy impact data.

Figure 3.7: The data density plot between Charpy energy and “C”, “Mn”, “V”, and “Imp-temp”.
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3.3 Ultimate Tensile Strength (UTS) Data for Steel

In materials science, one of the most popular methods used to determine the tensile

strength of a material is the tensile test [112], during which a cylindrical specimen

is grasped at one end while applying axial tension at the other. The sample is then

stretched slowly and continuously at a standard rate until it fails. Three different

tensile strength values can be recorded by conducting the above procedure, namely

yield strength, ultimate tensile strength, and fracture strength. Yield strength is defined

as the maximum stress a material can withstand without permanent deformation [113].

The first phase of material stretching is the elastic deformation phase, which follows

Hooke’s law, i.e., the stretching length has a linear and positive correlation to the ap-

plied force. Plastic deformation occurs when the applied force exceeds a threshold such

that the material loses the ability to regain its original shape. The strength measured at

this critical point is the yield strength, but it is not the maximum tension that such ma-

terial can withstand before it fails. By further increasing the stress on the material, the

degree of stretching of the test object will show a non-linear relationship with the force

applied until it reaches the limit that the material can withstand. The value measured

at this point is the ultimate tensile strength (UTS) [114]. For most ductile materials, the

ultimate tensile strength is usually 1.5 - 2.0 times higher than the yield strength. Once

the threshold of ultimate tensile strength is breached, the material will rapidly lose its

integrity, and the stress level also decreases until it finally fractures, at which point the

measured value is called the fracture strength [115]. The stresses recorded in the test

can be used to plot the stress-strain curve. It is worth noting that the above behavior

is only applicable to the ductile material because the brittle material does not have a

significant yield point, and its ultimate tensile strength is essentially equivalent to the

fracture strength.
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Figure 3.8: The stress-strain curve for low carbon steel. (Figure inspired by [116])

Most metals are ductile materials since the bonds between metal atoms are metallic

bonds that can be re-established even after a change of position, which ensures good

ductility [116]. Compared with elemental metals, alloy materials have more diverse

properties. In general, alloys are less ductile than the pure elementary substance of their

constituent metals, and some types of alloys are even brittle materials [117]. However,

it is the composition and production process that ultimately determine the properties of

the alloy. Steel is an alloy of carbon and iron, which has better ductility in comparison

with brittle pig iron. In the presence of an applied external force, the intermolecular

forces within the steel first maintain the structural integrity of the material, which cor-

responds to the elastic deformation phase mentioned above, except that this ability is

limited. After the steel yields to a certain point, it is no longer able to maintain the

absolute integrity of the material, and the internal grains will regroup themselves to in-

crease the resistance to tensile stress again to stop the structure from fracturing, which

leads to a limited but irreversible deformation of the material, i.e., plastic deformation

of the steel. The increase in tensile strength caused by internal grain regrouping is also

not infinite. After reaching its peak, the weakest point undergoes rapid deformation,

and the cross-sectional area shrinks rapidly until fracture. Such process is also known

as “necking". The stress-strain curve reflecting the tensile performance of low-carbon
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steel is given in Figure 3.8. The maximum tensile strength recorded during this entire

process is the ultimate tensile strength of the steel, which is one of the most crucial

indicators of tensile strength for steel materials. In most engineering applications, the

ultimate tensile strength of steel materials is considered an indispensable factor in the

design and analysis of structural reliability. The ultimate tensile strength is an intensive

property for which its value does not depend on the size of the test specimen. It can be

calculated by the following equation:

σmax =
fmax

s
, (3.1)

where fmax denotes the maximum force that the structure bears after entering the plastic

deformation stage, S is the original cross-sectional area of the specimen, and σmax refers

to the ultimate tensile strength.

Table 3.2: The basics of the ultimate tensile strength data.

Numerical Variable Mean Median Range

C 0.3942 0.41 0.12-0.62
Si 0.2546 0.25 0.11-0.35
Mn 0.7524 0.73 0.35-1.72
S 0.021 0.023 0.0005-0.21
Cr 1.053 1.07 0.05-3.46
Mo 0.2631 0.23 0.01-1
Ni 0.8039 0.25 0.02-4.16
Al 0.036 0.027 0.005-1.08
V 0.0075 0.005 0.001-0.27
Hardening Temp 856.81 850 820-980
Tempering Temp 604.18 610 170-730
Sample Size 156.93 150 8-381
Test Depth 16.08 12.7 4-140
UTS 932.09 912.9 516.2-1842
Category symbol Categories
Site 6
Cooling Medium 3
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The UTS dataset utilized in this thesis contains the ultimate tensile strength of 3760

groups of high-strength steels, each of which differs in the formulation and heat treat-

ment settings. This dataset has 15 input variables, where 13 of which are numerical

and 2 are categorical. The basics of this dataset are provided in Table 3.2. Akin to the

Charpy impact dataset, the relationship between inputs and outputs in the UTS dataset

is highly nonlinear, and its modeling process also suffers from missing key variables

and interference from uncorrelated variables. Owing to the relatively high certainty in

the UTS test, this dataset is less chaotic than the Charpy impact data. However, the

sparsity of the data increases and the missing variables seem to play a more significant

role in test results, which makes modeling even more difficult. For machine learning

algorithms, high dimensionality and sparsity are immense challenges. Not only too

many input variables itself can bring about the problem of the curse of dimensional-

ity, but the interference of irrelevant variables can also affect the modeling outcome.

Sparsity often leads to the incomplete training of machine learning models and reduces

the accuracy of the trained model. Besides, the absence of variables leads to further

difficulty in modeling, which can only be compensated by the generalization ability of

the algorithm to a limited extent. As per experience, many machine learning algorithms

perform poorly on this dataset, requiring pre-processing of the data such as filtering

variables or dimensionality reduction to reduce the data difficulty to obtain results of

practical significance. The above characteristics make the data very challenging but

also make it an ideal candidate for testing the extreme performance of the proposed

algorithm. The data density plot between several input variables for the UTS data of

high-strength steel is given in Figure 3.9. The data density plot between the UTS value

and some input variables is also shown in Figure 3.10.
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Figure 3.9: The data density plot between “Cr and Site”, “Ni and C”, “Mo and Mn”, and “Test-
Depth and S” for the UTS data.

Figure 3.10: The data density plot between UTS and “Al”, “C”, “Mn”, and “Test-Depth”.
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3.4 Performance Indices for Benchmark Tests

Establishing the benchmark for regression models requires, in addition to an appro-

priate validation dataset, reliable performance metrics that objectively and compre-

hensively reflect how the model performs. For regression applications, most of the

commonly used performance indicators compare the statistical difference between the

model outputs and their corresponding labels as the approach to evaluate the approx-

imation efficacy. The most widely used performance index is the mean square error

(MSE), which describes the performance of an algorithm based on the quadratic of the

residuals between model predictions and label values. Considering that the value of

MSE is often very large in practice, the square root form of MSE is introduced, i.e.,

root-mean-square error (RMSE) [118], which can be calculated as follows:

RMSE =

(
1
N

N

∑
i=1

(yi − wi)
2

)1/2

, (3.2)

where N is the number of samples, wi represents the actual value or the label of each

sample, and yi denotes the observed value. RMSE is a measure of overall residuals to

compare forecasting deviations of different algorithms for a specific dataset, for which

the lower the RMSE, the better the model accuracy. It is important to note that this met-

ric cannot score the performance of a particular algorithm across different datasets, as

it is scale-dependent and differentiated datasets are unlikely to share an identical scale.

The other drawback of RMSE is that its method of calculating the residual quadratic is

too sensitive to errors or outliers in the data, resulting in decoupling from the actual

performance of the algorithm in such cases.

The mean absolute error (MAE) [119] is another residual-based performance indic-

ator, which uses the average sum of the absolute values of the residuals instead of the

square to describe the difference between two sets of values, of which the mathematical

expression of is given as follows:

MAE =
1
N

N

∑
i=1

|yi − wi| . (3.3)
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Akin to MSE and RMSE, the MAE is a scale-dependent accuracy measure subject to the

scale as presented by the data and cannot be used to provide well-founded comparis-

ons between objects with diverse scales. But using the absolute residual approach to

describe the error brings added benefits. Firstly, the metric is less sensitive to outliers in

the data, making it a perfect substitute for RMSE in the presence of high noise levels.

Secondly, the relationship between MAE and residuals is linear, and its statistical im-

plications are easier to understand compared to RMSE, thus facilitating some analytical

tasks. However, the MAE calculated by the absolute value method has difficulty reflect-

ing subtle differences when the residuals between values are relatively small, which

causes it less popular than the RMSE in most cases.

Considering that the above residual-based performance metrics depend on the data

scale and cannot evaluate the performance of a single algorithm on different datasets,

the symmetric mean absolute percentage error (SMAPE) [120] is introduced into the

benchmark test. SMAPE is an improved version of the mean absolute percentage error

(MAPE) [121]. The proposal of MAPE does address the limitations of previous perform-

ance metrics governed by data scales, but it also has many shortcomings. Firstly, MAPE

uses the residuals divided by the absolute value of the label to eliminate the effect of

scale, leading to its inability to handle the case when the label value is zero. Secondly,

despite MAPE being measured by the percentage, its value can be greater than 100%

without an upper bound, which may easily lead to misunderstanding of the informa-

tion it conveys. Thirdly, MAPE is asymmetric due to a more pronounced penalty for

situations where the observed value is larger than the label, causing it to favor underfit-

ting models. SMAPE overcomes the above problems and thus becomes a popular model

performance indicator, which is obtained according to the following formula:

SMAPE =
100%

N

N

∑
i=1

2 ∗ |yi − wi|
|yi|+ |wi|

. (3.4)

SMAPE can tackle the case where the actual value is zero by replacing the absolute

actual value on the denominator with the sum of the absolute value of the label and

the observation. This modification also limits the SMAPE between 0% and 200%, sig-
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nificantly reducing the potential for confusion and misunderstanding. The addition of

the upper bound also alleviates the problem of an unbalanced penalty against negative

errors in the original MAPE, allowing SMAPE to be a more reliable option in evaluating

the model. However, this indicator is also deficient because its solution to mitigate the

MAPE asymmetry introduces another asymmetry, i.e., the denominator is influenced by

the scale of the observed value and the actual value, which partially offsets the previous

effort to eliminate the impact of data scale on metrics. Additionally, given that SMAPE

values defined between 0% and 200% may still cause inconvenience, researchers prefer

to remove the "2" item from the equation when using it as a benchmark test metric so

that the interval lies perfectly between 0% and 100%.

In addition to residual-based statistics, a statistic based on the degree of discreteness

of a numerical sequence itself, i.e., the standard deviation (SD/STD) [122], is also in-

troduced in this thesis to assess the statistical differences that exist between the model

outputs and the label values. In mathematical statistics, the standard deviation, defined

as the square root of the variance, quantifies the variation or dispersion of a series of

values. A low standard deviation suggests that the values are distributed closely around

the mean, while a high standard deviation indicates that the values scatter over a rel-

atively broad range. Ideally, the standard deviation can be acquired if every member of

the entire population is known. However, it is rarely the case in the real world because

it may only be possible to access a subset of the statistical population, which makes it

unfeasible to obtain the actual sample mean to calculate the exact variance when only a

portion of the population is available. In such cases, only estimated standard deviations

can be obtained based on the estimated mean and variance of the population, and the

estimates of such statistics can be determined according to a finite random sample, for

which the formula is given as follows:

STD =

(
1

N − 1

N

∑
i=1

(yi − u)2

)1/2

, (3.5)

where N indicates the size of a random sample, u represents the mean of this sample,

and yi denotes a single value in the sample. For the assessment of model regression
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effectiveness, the significance of introducing standard deviation is that residual-based

metrics focus on the difference between the predicted values and the actual ones, but

ignore the distribution of both themselves, resulting in an incomplete reflection of the

model’s prediction confidence. There exists a situation where the prediction model can

obtain good residual performance, but the statistical distribution of the prediction res-

ults differs significantly from the labels. Such problems are more common in machine

learning-based algorithms since the optimizers of these algorithms are designed based

on residuals, and their goal is to obtain minimized residual statistics rather than max-

imum authenticity. Even for simple classification problems, it occurs that models with

high accuracy in the sense of performance indices output completely wrong classifica-

tion results. Thus, the introduction of standard deviations in benchmark tests can help

detect the presence of such problems to ensure that flawed models do not "get away

with it". Moreover, the standard deviation can also help to identify the better one if two

models share a similar residual performance.

According to the above perspectives, it is believed that jointly utilizing performance

metrics RMSE, MAE, SMAPE, and STD in the benchmark test can largely compensate

for the shortcomings caused by merely applying a single index, thus providing a more

reliable assessment of the actual performance of the model. However, given that the

Sunspot time series dataset is relatively simple and the RMSE index alone is enough

to evaluate the predictive performance of the model on it, this four-index-strategy will

only be applied in the evaluation of the two complex metallurgical datasets.
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3.5 Chapter Summary

This chapter provides a brief overview of the real-world datasets applied in the thesis.

Three independent subchapters are created to present the Sunspot time series dataset,

the Charpy impact dataset for high-strength steels, and the ultimate tension dataset for

steel materials, respectively. Related background knowledge is demonstrated at the be-

ginning of each subsection; information such as data dimensionality, variable details,

and data density distribution are also included; at the end of each subsection, descrip-

tions of the characteristics and difficulties of each dataset are pointed out and discussed.

For sunspot time series data, the overall periodic regularity is present along with lim-

ited chaotic properties, making it an ideal dataset for machine learning benchmark

tests. Given that the time series prediction cannot violate causality, the cross-validation

method is not available for this dataset. The Charpy impact dataset is high-dimensional,

highly nonlinear, sparse, and mildly noisy. As a rough dataset obtained directly from

the industrial sector, some relevant quantities are missing because they are difficult to

measure, and irrelevant variables are also falsely included. These features cover com-

mon problems that machine learning algorithms are likely to encounter in real-world

scenarios, which provides a better simulation of real-world situations than carefully re-

fined ideal datasets. The ultimate tensile strength dataset is also an industrial dataset,

of which the characteristics are close to the Charpy impact dataset but with a signific-

antly higher sparsity. Sparsity immensely increases the difficulty of modeling, causing

many machine learning models to perform poorly on this data. Therefore, the ultimate

tensile strength dataset will serve as the ultimate challenge for the proposed algorithms

in future chapters. For the convenience of readers unfamiliar with the field, statistical

performance indicators involved in evaluating model performance regarding regression

tasks are also clarified at the end of this section.
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4
DCVSF: A Deep Complex-Valued Single

Iteration Fuzzy System for Predictive

Modelling

„ I cannot help fearing that men may reach a
point where they look on every new theory
as a danger, every innovation as a toilsome
trouble, every social advance as a first step
toward revolution, and that they may
absolutely refuse to move at all.

– Alexis de Tocqueville –
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4.1 Introduction

Numerical prediction is a traditional application of regression analysis and a class of

the functional regression problem, i.e., using a model to fit the abstractive mapping

relationships between input and output data sets to predict numerical outputs with

given input vectors [123]. Classic predictive models are usually built manually and

often with poor performance when significant nonlinearity is presented in the data.

Not to mention that applying such methods requires considerable expert knowledge of

users, which further narrows its already limited applicability. The emergence of machine

learning brings a solution with self-learning and adaptive modeling capabilities, but the

shortcomings of the current machine learning methods are also evident. Firstly, the

human brain only requires inputting a small number of samples once or a few times

to complete the learning of a concept, but it usually takes a machine learning method

hundreds of iterations to train on a much larger sample set to achieve similar outcomes

or worse [124]. Secondly, many learning algorithms are troubled by the so-called curse

of dimensionality [22], which usually leads to the rocketing computational resources

requirement as well as a steady drop in the model accuracy as the data dimension

expands [125]. Thirdly, interpretability is also one of the most challenging problems

of machine learning algorithms, given that many models with excellent performance

are “hard to explain” black boxes [126]. The most significant impact of the black-box

property on model training is that it is difficult to determine the initial parameters, and

it is not convenient to quickly identify the problem when the exception occurs.

The deep neural network is currently the most popular machine learning technology.

On the one hand, to increase the training speed and reduce the number of iterations,

concepts such as transfer learning [127]–[129], meta-learning [130]–[132], and rein-

forcement learning [133] have been successively introduced to improve the training

efficiency and enhance the performance of the network model. These attempts lead to

more flexible models but fail to tackle the problems associated with the high computa-

tional demand of deep network algorithms. On the other hand, some numerical pre-

diction algorithms based on deep neural networks can indeed achieve relatively good

accuracy when it comes to data with higher dimensionality but also at the cost of sig-
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nificantly increased computational complexity [134]. In fact, the fundamental logic be-

hind deep learning algorithms is to solve the problem by massively piling up computing

resources, which means advances in hardware performance play a more vital role than

algorithm improvement regarding performance enhancement. Therefore, approaches

from the deep neural network perspective are mostly “the expensive solutions,” which

are suitable for cases where accuracy is paramount and sufficient hardware performance

is guaranteed.

Fuzzy systems possess very different characteristics, of which the architectures are

often much more compact and require lower computational performance than deep

networks. Fuzzy models with self-learning capabilities merely demand a small amount

of data points to train and can converge quickly. Interpretability is also an advantage

of fuzzy systems compared to deep neural architectures [135]. Such distinguishing

features make adaptive fuzzy systems potentially a class of "affordable solutions" for

fast machine learning scenarios where the demand for accuracy is not extreme, but the

computational resource is rather limited. However, fuzzy systems also suffer from the

curse of dimensionality, similar to other machine learning technologies. The increase

in dimensionality causes the fuzzy system with complete rule partitions to expand its

rule-base exponentially, which may significantly increase its memory usage and hinder

its potential, especially for incremental learning in memory-constrained systems. There-

fore, mitigating this problem should become a research vector.

In this chapter, a complex-valued Wang-Mendel (CVWM) method is proposed by com-

bining the core ideas of complex-valued neural networks (CVNNs) [18] and Wang-

Mendel (WM) algorithm [136], [137]. On the one hand, this new model inherits the

most significant advantage of the classic WM method, i.e., enabling the algorithm to

complete training in only one iteration, which leads to a faster training process over tra-

ditional adaptive fuzzy systems based on neural networks or evolutionary algorithms.

On the other hand, the introduction of the new idea that applying complex-valued

structures to deal with the purely real-valued function mapping problem dramatically

alleviates the explosive growth of the WM method’s rule-base as the input dimension in-

creases, reducing its rule base to the square root size of the original method. For higher
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dimensional scenarios, the concept of hierarchical deep fuzzy systems [138] is also in-

troduced to form a deep complex-valued single-iteration fuzzy system (DCVSF), which

can mitigate the impact of higher dimensionality even further. This hierarchical system

utilizes CVWM as the basic unit. By piling up multiple CVWM units in a way similar to a

convolutional neural network, such architecture reduces the dimensionality of the input

layer by layer and finally obtains a one-dimensional output. In addition, to overcome

the problems caused by the sparsity of the data, the t-distributed stochastic neighbor

embedding (t-SNE) [139] is included to mitigate the sparsity by dimensionality reduc-

tion. DCVSF also requires only a single iteration to obtain the results, and its rule-base

grows with the input dimension at a rate of only the square root level compared to

the conventional fuzzy algorithms. The above characteristics make the algorithm an

"affordable solution" particularly suitable for some higher-dimensional scenarios where

achieving real-time performance with limited memory and computational performance

is required, such as streaming data processing and incremental learning. For prediction

accuracy, despite the slight performance loss caused by the complex-valued structure,

CVWM and DCVSF still exhibit competitive nonlinear modeling capabilities in exper-

iments. Finally, as a fuzzy system, DCVSF has better interpretability than most con-

ventional deep learning models. Although the complex-valued structure destroys the

natural connections between variables and makes knowledge extraction infeasible, its

interpretability is still meaningful for debugging and parameter tuning.

4.2 Methodological Premises

4.2.1 CVNNs and CVNF

Complex-valued neural networks (CVNNs) are a category of artificial neural networks

in which an operation object is a complex number. According to Hirose et al [140]–

[142], the similarity shared by the multiplication operator of complex numbers and

vector operations can bring statistical correlation between the real and imaginary parts,

which limits the degree of freedom of numerical changes in the operation process. Due

to the loss of degrees of freedom, a complex-valued input is not equivalent to two real-
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valued inputs. But if the two real-valued variables are related in phase or frequency

domain or share some correlations, operating the two as united as a complex num-

ber may lead to better performance [143]. Such a performance improvement is often

reflected in the aspect of generalization capability. It is well-known that the more para-

meters the network model has, the easier it is for the network to fall into overfitting. For

traditional real-valued models, operations between real numbers are utilized to approx-

imate the complex connections between variables, which may lead to the introduction

of redundant variables. Not to mention that each variable also has redundant degrees

of freedom, consequently overfitting the data and reducing generalization performance

even further. Therefore, CVNNs are theoretically practical and meaningful.

For fuzzy systems, complex arithmetic logic even brings a more valuable feature, i.e.,

alleviating the effects of the curse of dimensionality. Ryusuke et al [20] combined the

concept of CVNN with the basic structure of the Mamdani fuzzy neural network, intro-

ducing the idea of CVNN into the construction of a fuzzy system for the first time, and

named the product as the complex-valued neural fuzzy (CVNF) system. In the CVNF

model, two real-valued inputs go through the network in the form of a single complex

number, which significantly narrows the size of the fuzzy rule-base when computing

[20]. Although a complex-valued input item is not equivalent to two real-valued in-

puts, thanks to the unique fault tolerance of the fuzzy intersection operation, the fuzzy

rule-base generated by complex inputs can still largely reflect the whole picture even if

there is no connection between the two variables [20]. In fact, the network achieves

rather good nonlinear mapping capabilities when tested on cases of two inputs and

four inputs. Unfortunately, such design requires backpropagation for optimization, and

backpropagation of complex-valued networks is exceptionally intricate, which basically

neutralizes its practical value. It should be clarified that the complex-valued architec-

ture mentioned here is not the same as the concept called complex fuzzy theory (CFT)

[16]. The CFT utilizes a complex-valued structure only for its complex-valued fuzzy

rule-base to obtain the information implied by real-valued variables, for which the com-

plex numbers only involve rule-base-related operations. The notion of CVNF is to com-

bine two real-valued variables into a complex number for dimensionality reduction, and
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it still belongs to the realm of type-1 fuzzy logic.

4.2.2 The Wang-Mendel (WM) Method

The seminal WM method was proposed by Wang et al [136] in 1992, and its final form

was subsequently determined in 2003 by Wang [137]. This algorithm first measures the

scales of input and output values as the reference to evenly generate fuzzy divisions for

all variables. Once all divisions are determined, a membership function will be assigned

to match every division in a way that the endpoint of the division coincides with the

vertex of a membership function. The above step is said to be the initialization of

the rule space. The next step is the training process, during which each membership

function is assigned a firing strength according to each input-output pair. After finishing

the entry of all training data points, one IF-THEN statement, i.e., one fuzzy rule, can be

obtained by applying an intersection operation for all firing strengths generated using

this membership function. Similarly, the algorithm can achieve all the other rules by

performing the above procedure on all membership functions. The collection of such

rules forms the trained rule base. For a single-output dataset with d input variables and

n sample points, the set of the kth input-output data pair is given as follows:

(
αk

1, αk
2, . . . , αk

d; γk
)

, k = 1, 2, . . . , n, (4.1)

where αk
1, αk

2, . . . , αk
d ∈ R, γk ∈ R. Assume that the space of each input variable is

divided into m fuzzy sets and the rule set for the ith variable is {Ã1
i , Ã2

i , . . . , Ãmd

d }, i =

1, 2, . . . , d. Then, the fuzzy IF-THEN rule-base can be generated as follows:

Rule 1: IF α1 is Ã1
1 and α2 is Ã1

2 . . . and αd is Ã1
d, then γ is µ(γ; γ1

a , σ1);

Rule 2: IF α1 is Ã2
1 and α2 is Ã2

2 . . . and αd is Ã2
d, then γ is µ(γ; γ2

a , σ2);

. . . . . .

Rule m: IF α1 is Ãm
1 and α2 is Ãm

2 . . . and αd is Ãm
d , then γ is µ(γ; γm

a , σm);
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. . . . . .

Rule md: IF α1 is Ãmd

d and α2 is Ãmd

d−1 . . . and αd is Ãmd

1 , then γ is µ(γ; γmd

a , σmd
).

where γ1
a , γ2

a , . . . , γm
a , . . . , γmd

a and σ1, σ2, . . . , σm, . . . , σmd
are constant values to be de-

termined by training. µ (γ; γa, σ) = σ−|γ−γa|
σ , γ ∈ [γa − σ, γa + σ] or µ (γ; γa, σ) = 0, if

γ /∈ [γa − σ, γa + σ] denotes a triangular membership function.

The WM algorithm only requires one full iteration of training set to complete the

training, which comes with the cost. It possess three inherent flaws that cannot be

ignored:

1. As a result of the necessity to initialize a considerable number of fuzzy sets for each

variable, the WM algorithm can be easily plagued by the curse of dimensionality.

2. The completeness of the rule-base of this algorithm depends heavily on the distri-

bution of the data set, which significantly limits its performance against sparsity.

3. The excessive rules of the WM method often give the algorithm a propensity to

overfit the data.

4.2.3 Hierarchical Deep Fuzzy Systems

In simple terms, the core idea of a hierarchical network is to divide a multi-dimensional

input into several smaller input vectors and assign them to different units for processing

so that the information from each vector is aggregated to obtain a new output vector

with a lower dimension than the original input [138]. Then the output vector of the

previous level is used as the input for the next level to generate an even lower dimen-

sional vector. The above steps should be repeated until the final output vector only has

one dimension. Sometimes, the input variables from previous levels can be added to the

input vector for the later levels to improve the accuracy. This process is similar to the

realization process of the convolutional neural network, i.e., the information from the

raw data is abstracted level-by-level through a multi-layer network to obtain the final

result. The difference is that convolutional neural networks process image information,
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while hierarchical fuzzy systems process high-dimensional vectors. The mathematics

of each level is equivalent to using m separate subfunctions with q input variables to

mimic an n input m output multivariable function G(x1, x2, . . . , xn), which is expressed

as follows:

{g1, g2, . . . , gm} → G(x1, x2, . . . , xn), (4.2)

where m, n, q ∈ N+ and g1, g2, . . . , gm are the functions of each unit in this level.

Raju et al [138] first introduced the concept of the hierarchical deep fuzzy system in

1991 as an attempt to mitigate the curse of dimensionality for fuzzy control models.

Hereafter, Wang proved that the hierarchical structure is strictly a universal nonlinear

approximator through the mathematical derivation in [144] and demonstrated a gen-

eral approach to designing hierarchical systems in [145]. Subsequently, other new hier-

archical fuzzy systems were proposed despite a large proportion of these architectures

being based on ANFIS [63]. For obvious reasons, researchers tend to use a level-by-level

training policy for hierarchical algorithms rather than the traditional end-to-end train-

ing applied by most deep networks. This strategy leads to a new problem, given that

the models used to construct the basic operation unit for the deep architecture, such

as ANFIS, usually require repeated iterations to complete the training. If each layer

demands dozens or hundreds of iterations to converge, the efficiency of the objective

hierarchical architecture will be significantly degraded. Hence, Wang integrated the

idea of hierarchy with his earlier proposed WM algorithm to create a DCFS (deep con-

volutional fuzzy system) [135]. Given that the basic unit of this model is the WM model,

each level can finish training in only one iteration and avoids the trouble of repeated

iterations, thus dramatically increasing the algorithm efficiency. However, despite the

adoption of the hierarchical architecture, the training speed and memory usage of this

DCFS model is still unsatisfactory in many scenarios due to the initialized rule-base of

the original WM algorithm being huge, which leaves room for further improvements.
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4.3 Methodology

4.3.1 Complex-Valued Wang-Mendel (CVWM)

The process of the CVWM algorithm generating a rule-base can be divided into five

steps. To increase the robustness as well as the performance of the nonlinear mapping of

the algorithm, CVWM uses the Gaussian membership function to replace the triangular

membership function used by the original WM method. Given the kth input vector

a(k) = [a1(k), a2(k), . . . , a2n(k)]T and output y(k), where k = 1, 2, . . . , L. Note that all

the data points must be normalized between 0 and 1 first before further steps.

Step 1: Measure the maximum and minimum values of a given input variable and

equally split the value range of each input into m fuzzy sets.

min a1 = min{a1(k)|k = 1, 2, . . . , L}

max a1 = max{a1(k)|k = 1, 2, . . . , L}

. . . . . .

min a2n = min{a2n(k)|k = 1, 2, . . . , L}

max a2n = max{a2n(k)|k = 1, 2, . . . , L}

(4.3)

Hence, the membership function of the initialized rule-base can be presented as follows:

Op
j (k) = exp

(
−
(x(k)− µ

p
j )

2

2σ2
j

)
, (4.4)

where µ
p
j = j max ap−min ap

m−1 , σj =
√

max ap−min ap
m−1

1
8log2 , p = 1, 2, . . . , 2n and j = 1, 2, . . . , m.

Step 2: Encapsulate membership functions into complex numbers, we have:

Ocpq
j (k) = exp

(
−

(x(k)−µ
2q−1
j )2

2σ2
j

)
+ i exp

(
−

(x(k)−µ
2q
j )2

2σ2
j

)
, (4.5)

where q = 1, 2, . . . , n, Ocpq
j (k) is the operation object to be used to generate the rule-

base in Step 3.
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Step 3: First, calculate the weight using complex multiplication:

ω(k) =
n

∏
q=1

Ocpq
j (k), (4.6)

Then, substitute y(k) to calculate the weighted average:

av =


∑L

k=1 y(k)∗ω(k)
∑L

k=1 ω(k)
, ∑L

k=1 ω(k) ̸= 0

0, ∑L
k=1 ω(k) = 0,

(4.7)

where avj denotes the weighted average of the firing strength of the jth rule and avj = 0

means the corresponding rule is not triggered. Given that avj is a complex value not

usable for a real-valued operation, a real-valued term that represents the information

from its corresponding rule should be generated to proceed with the following step,

which is defined as the support and can be obtained as follows:

sup = ∥ av ∥2. (4.8)

Step 4: The support values of some rules can be 0 because those rules are not

triggered, which leads to the incomplete generation of the fuzzy rule base. Such an

issue is common when dealing with sparse and non-uniformly distributed real-world

datasets. Therefore, a strategy is necessary to estimate the support value for an un-

triggered rule according to its adjacent rules. A rule-base can be considered a high-

dimensional tensor, where each rule is one of the elements. If the dimension of the

input vector is 2n, and each variable is assigned m fuzzy divisions, then the rule-base

of CVWM can be represented as an n-dimensional tensor with m elements for each di-

mension, i.e., mn elements in total. A method is employed here, i.e., the zero items

are replaced with the mean of all non-zero support directly adjacent to this element to

generate an estimated but complete rule-base.

sups =


sups, sups ̸= 0

sum(sups±1,sups±m,...,sups±mn−1 )

∥sups±1,sups±m,...,sups±mn−1∥0
, sups = 0

(4.9)

4.3 Methodology 91



where s = 1, 2, . . . , m, . . . , mn; sups±1, sups±m, . . .,sups±mn−1 are the support values of

adjacent elements of sth grid from different dimensions. Note that if any expected

adjacent element of the target element in equation (4.9) does not exist or exceeds

the scope of the rule-base, then the support value of such adjacent rule is set to be

zero. In the above steps, since the original input vector with 2n real-valued variables is

substituted by a vector with n complex variables, the size of the expected rule-base is

reduced from m2n to mn.

Step 5: This step generates the output of the trained model, which is shown as fol-

lows:

yc = ∥⟨ω⃗c, ⃗sup⟩
∑ ω⃗c

∥2, (4.10)

where ω⃗c is the vector of the firing strength generated by input xc according to equation

(4.6), ⃗sup is the vector of support values, ⟨ω⃗c, ⃗sup⟩ means the inner product of two

vectors, and yc denotes the model output.

4.3.2 Deep Complex-Valued Single-Iteration Fuzzy (DCVSF) System

For deep convolutional networks, a coverage area needs to be specified for each con-

volution kernel, i.e., the receptive field [146]. A similar concept also applies to each

unit of the hierarchical fuzzy system, named the receptive window in this work. The

receptive window is not for pixels but to cover a part of the variables from the input

vector. Considering that the application of complex multiplication in CFWM limits the

degree of freedom of the rule-base, which leads to the loss of precision, the receptive

window should be as small as possible to reduce further performance loss. But if the

window is too small, it may demand too many units for the final hierarchical system

to have full coverage of data, which decreases the efficiency. Also, for obvious reasons,

the window size should be even valued. Hence, it is recommended that the size of the

receptive window for a single unit should not exceed six, and four is the ideal size in

most cases. In addition, to improve the accuracy, overlapping is necessary between dif-

ferent receptive windows, and the number of variables to overlap for each window can

be freely selected according to actual needs.
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If given the input vector x = [x1, x2, . . . , xn]T and output y. To establish a DCVFS

architecture to solve the nonlinear mapping problem for this dataset, the receptive win-

dow, and the overlap are assigned 4 and 2, respectively. Then, the mapping relationship

of the first level of the system can be expressed as follows:

x1
1 = f 1

1

(
x0

1, x0
2, . . . , x0

4

)
x1

2 = f 1
2

(
x0

3, x0
4, . . . , x0

6

)
. . . . . .

x1
n−2

2
= f 1

n−2
2

(
x0

n−3, x0
n−2, . . . , x0

n

)
,

(4.11)

where {x1
1, x1

2, . . ., x1
n−2

2
} is the output vector of the first level, which is used to play the

input vector for the second level. f 1
1 , f 1

2 , . . . , f 1
n−2

2
represent predictive models obtained

by approximating training data using CVWM algorithm. According to the level-by-level

training strategy, the dependent variable, i.e., y, is used as the label for the consequent

part of each unit. The visualization of the first level of the architecture is given in

Figure 4.1.

Figure 4.1: The first level of the DCVSF architecture.

The construction and training of every subsequent level are the same as those of the

first level until the output becomes one-dimensional. If this deep architecture ends with

L levels in total, then the entire mapping process can be expressed as follows:

f L
1 ◦ { f L−1

1 . . . ◦[ f 2
1 ◦ ( f 1

1 , f 1
2 , . . .), . . . ], . . .} → f (x1, x2, . . . , xn) , (4.12)

where ◦ denotes the operator for function composition, { f 1
1 , . . . , f 2

1 , . . . , f L−1
1 , . . . , f L

1 }
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is the set of all predictive models generated in this DCVSF structure, f (x1, x2, . . . , xn)

denotes the actual functional relation between input and output of the data set. A

demonstration for output level is shown in Figure 4.2.

Figure 4.2: The final level of the DCVSF architecture.

It is worth mentioning that both CVWM and DCVSF are transparent. Although com-

plex arithmetic makes the rule-base infeasible to interpret, such a property is still valu-

able for debugging and problem identification. The user can quickly locate the prob-

lematic units or variables based on this feature and correct them.

4.3.3 t-Distributed Stochastic Neighbor Embedding

The most applied dimensionality reduction (DR) algorithm is principal component

analysis (PCA) [147], but as a linear method, it does not work well when encountering

highly nonlinear datasets. The t-distributed stochastic neighbor embedding (t-SNE) is

an effective DR algorithms for nonlinearity. Compared with vanilla SNE [148], t-SNE

introduces t-distribution to reduce the crowding problem [149], which dramatically

enhances the performance. The principle of the algorithm is as follows:
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Assume there exists an m dimensional dataset λ1, λ2, . . . , λn ∈ Rm. The goal is to

reduce the dimensionality and convert it into a low-dimensional dataset µ1, µ2, . . . , µn ∈

Rd, where d < m. Randomly select a point λi, use the Gaussian distribution to estimate

its conditional probability Pj|i with respect to its neighbor λj:

Pj|i =

exp
(
− ∥λi−λj∥2

2σ2
i

)
∑k ̸=i exp

(
− ∥λi−λk∥2

2σ2
i

) . (4.13)

The probability density function for Student’s t-distribution is usually given as:

ft(τ) =
Γ
(

v+1
2

)
√

vπΓ
( v

2

)(1 +
τ2

v

)− v+1
2

, (4.14)

where v denotes the degree of freedom and Γ(τ) =
∫ ∞

0 xτ−1e−xdx is the gamma func-

tion. Assign the value of v to 1, the t-distribution reduces to Cauchy distribution:

fc(τ) =
1

π (1 + τ2)
. (4.15)

Hence, the conditional probability of a low-dimensional data point µi against its neigh-

bor µj is obtained as:

Qj|i =
(1 + ∥ µi − µj ∥2)

−1

∑k ̸=i (1 + ∥ µk − µj ∥2)
−1 . (4.16)

The difference between the two distributions is measured with Kullback-Leibler diver-

gence:

KL = ∑
i

∑
j

Pj|i log
Pj|i
Qj|i

. (4.17)

The expected low-dimensional vector can be obtained by minimizing the difference in

distribution between high-dimensional and low-dimensional data.
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4.4 Experimental Results and Analyses

4.4.1 Input-to-Output Numerical Example for CVWM

The numerical demonstration of the CVWM model employs a sample selected from

the non-linear function data generated according to the following equation,

f (x1, x2) = sin (10x1) + cos (4x2)− cos (3x1x2) , 0 ≤ x1 ≤ 0.5, 0.5 ≤ x2 ≤ 1, (4.18)

for which x1 = 0.0275, x2 = 0.775 and its label y = 1.5801. A CVWM model with two

inputs, one output, and nine divisions is trained on a training set with 125 data samples

to implement this test. The parameter information of the objective model is provided

as follows:

⃗sup =[1.70944818652361, 1.95047589647353, 2.14906806456774, . . .

2.07884862080738, 1.75120532034107, 1.30816708116708, . . .

0.968113546202332, 0.939498876617390, 1.149415117164901],

µ⃗1 =[0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5], b1 = 0.0265,

µ⃗2 =[0.5, 0.5625, 0.625, 0.6875, 0.75, 0.8125, 0.875, 0.9375, 1], b2 = 0.0265.

First, the value of all complex-valued membership functions can be calculated according

to equation (4.5).

O⃗cp =



(4.87794765690766 + 4.87794765690766j)× 10−24

(1.20329746147621 + 1.20329746147621j)× 10−14

(1.15949505259070 + 1.15949505259070j)× 10−7

0.00436440288309460 + 0.00436440288309460j

0.641712948781452 + 0.641712948781452j

0.368567304322776 + 0.368567304322776j

(8.26899719104033 + 8.26899719104033j)× 10−4

(7.24684407869198 + 7.24684407869198j)× 10−9

(2.48087581161067 + 2.48087581161067j)× 10−16



,
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The numerator for Mamdani defuzzification is then available by computing the inner

product of the vector O⃗cp (values of the membership functions) and the vector ⃗sup

(supports):

numerator = O⃗cp · ⃗sup = 1.61579246647277 + 1.61579246647277j.

The denominator of the defuzzification formula can also be obtained by summing over

all elements of the vector O⃗cp:

denominator =
9

∑
i=1

O⃗cp = 1.01547167890279 + 1.01547167890279j.

Hence, one can acquire the final prediction result by calculate the L2 norm of the fol-

lowing expression:

y = ∥ numerator
denominator

∥2 = 1.59117432818867 ≈ 1.5912.

The difference between the predicted result y = 1.5912 and the ground truth y = 1.5801

is not significant, which is acceptable considering that the function is non-convex and

the number of rules assigned for this test is low according to the standard of WM or

CVWM method. It is worth noting that if the traditional WM approach is used to solve

this problem, the number of rules generated for the same setting should be 92 = 81 due

to the presence of two variables, which implies a significant increase in memory usage

compared to CVWM.

4.4.2 CVWM on Synthetic Function Modelling

The 2-input synthetic dataset is generated by the “Sawtooth” function as follows:

f (x1, x2) = x2
1 + 4 sin (2πx1)− x4

2 − 6 cos (2πx2) ,−2 ≤ x1, x2 ≤ 2, (4.19)

in which 1000 training data points are uniformly sampled between [-2,2] and 800 test

data points are also taken from the same range but sparser. More details about this test
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are provided in Table 4.1 , and the visualization of the forecasting outcome is given in

Figure 4.3. As it can be seen from Figure 4.3, despite the target function being highly

nonlinear and non-convex, both algorithms achieve high prediction accuracy. The ap-

proximation results of the two algorithms are so close that only a minor difference to

discern from the given plot. The RMSE of the two in the table also shows that the er-

rors of the two algorithms are in the same order of magnitude, while the WM method

has only a negligible lead. Given that WM initializes up to 2500 rules to achieve this

performance and CVWM uses only 50, it is sufficient to demonstrate that the proposed

CVWM algorithm can obtain similar accuracy as the original WM algorithm in a data-

dense function approximation task with an immensely reduced rule-base.

Table 4.1: The settings and testing RMSE of WM and CVWM over the “Sawtooth” function test.

Testing RMSE Divisions Rules Iterations

WM 1.965 × 10−1 50 2500 1
CVWM 2.640 × 10−1 50 50 1

Figure 4.3: The comparison between WM and CVWM outputs on the “Sawtooth” function test.

4.4.3 CVWM on Sunspot Prediction

The Sunspot time series data used in this chapter contains sunspot activity sampled

from 1984 to 2000, which is free to access from the World Data Center for the Sunspot

Index (SIDC) [107]. The dataset consists of 2000 data samples in total. For the exper-

iment, each input vector is constructed in the form of {y(τ − 2), y(τ − 1); y(τ)} , τ =

3, 4, . . . , 2000, in which the current sunspot value is forecast according to the earlier two

moments. Note that time series forecasting cannot violate its intrinsic causality, i.e., one

cannot use future values to predict the past, so the first half of the 2000 data points are
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employed to construct the training set, while the second half is utilized as the test set, to

ensure that all data points in the training set precede the data points in the test set. The

detailed information and the comparison of the result between benchmark models are

shown in Table 4.2, and Figure 4.4 shows the visualized prediction outcome of CVWM

on the test set.

Table 4.2: A comparison between benchmark algorithms over the Sunspot test.

MSE (Normalized) Divisions Rules Iterations

SARIMA [150] 6.5733 × 10−3 – – –
BP [52] 1.4264 × 10−4 – – 200
LSTM [151] 3.4530 × 10−4 – – 200
Elman-NARX [152] 1.4078 × 10−4 – – 200
NFS [95] 8.5112 × 10−5 5 25 100
WM [137] 2.5775 × 10−5 20 400 1
CVWM 6.6587 × 10−5 20 20 1

Figure 4.4: The CVWM prediction result on the Sunspot dataset.

Table 4.2 shows that the prediction accuracy of CVWM outperforms that of the re-

current Elman network [152] and NFS (ANFIS with PSO-RLSE optimization) [95] and

is only inferior to the original WM algorithm. Considering that the complex arithmetic

involved in CVWM reduces precision, this is in line with reality. However, when com-

paring the size of the generated rule-base, it is not surprising that the WM algorithm

performs the best as it initialized 400 rules to achieve such a performance. In contrast,

CVWM achieves a prediction accuracy close to that of WM using only 20 rules, even
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fewer than the 25 rules used by the NFS. Such a result suggests that CVWM has the

potential in time series forecasting, not to mention that it only needs to be trained once,

which makes it more advantageous than algorithms that require repeated iterations.

4.4.4 DCVSF on Charpy Impact Data Modelling

The Charpy impact dataset is a 16-dimensional metallurgical dataset with high non-

linearity, sparsity, and stochasticity, which is challenging even for many powerful deep

neural network models. Given that directly substituting such data into the model may

prove unwise, the t-SNE algorithm is employed to reduce it to 10 dimensions to al-

leviate the sparsity (only for DCFS and DCVSF). This time the DCVSF model designed

for high-dimensional scenarios is applied to generate the predictive model for this tricky

dataset. Table 4.3 gives the values of performance indicators obtained during the exper-

imental process for all benchmark models. To fully access the performance of involved

algorithms on this dataset, standard deviation (STD), mean absolute error (MAE), sym-

metric mean absolute percentage error (SMAPE), and root mean square error (RMSE)

are employed as performance indicators. Additionally, Figure 4.5 displays the regression

plot between model prediction and the actual Charpy impact energy.

According to Table 4.3, DCVFS still achieves a competitive outcome on this tricky

dataset. It is worth noting that this algorithm was initially designed as an "affordable

solution" to provide near-mainstream model performance with limited computational

resources. Although the regression accuracy is inferior to other deep network models,

this result is acceptable considering DCVSF’s single-iteration training and lower com-

putational demand. Concomitantly, the introduction of t-SNE does improve the ability

of DCVSF when dealing with sparsity. Even when compared with DCFS, i.e., the coun-

terpart using WM as the basic unit, DCVSF constructed by CVWM does not show a

significant loss of accuracy on the Charpy impact test. All these results suggest the feas-

ibility of using a complex-valued input to approximate two real-valued inputs, even if it

may lead to a loss of accuracy to some degree compared with pure real-valued methods.

In addition, the Charpy impact dataset used in the experiments is designed for testing
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high-performance deep neural network models, which have high requirements on the

nonlinear mapping ability, generalization ability, and noise immunity of the models.

Therefore, it is reasonable to believe that the DCVSF algorithm may perform better on

less challenging cases, which this algorithm more often encounters.

Table 4.3: Performance regarding several benchmark models over the Charpy impact data test.

STD MAE SMAPE RMSE Divisions Iterations

BP [52] 25.2233 16.9010 21.2874 20.8389 – 200
RBF [53] 30.9238 14.7211 19.5694 20.1443 – 100
GRNN [153] 22.7647 16.0598 19.0444 22.0339 – 100
LSTM [151] 24.9117 17.0228 21.5417 21.2242 – 200
DBN [154] 27.2085 16.2536 20.2341 20.1211 – 50
DCFS [135] 29.4341 17.4645 21.8562 23.7818 30 1
DCVSF 25.3238 17.3158 21.6963 23.1534 30 1

Figure 4.5: The result regression plot for Charpy impact energy prediction by DCVSF.

4.4.5 DCVSF on Ultimate Tensile Strength Data Regression

The ultimate tensile strength (UTS) dataset is another metallurgical dataset with 15

input variables and a single output. As mentioned in Chapter 3, the biggest obstacle

to modeling this dataset is its high-level sparsity, which poses more challenges to the

algorithm than the Charpy impact dataset. Given that the size of the dataset is slightly

larger than the algorithm requires, 1500 data points, i.e., 40% of the entire dataset, are

randomly selected for this experiment, of which 1000 are to form the training set, while
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the remaining 500 are as samples for the test set. Similar to the case in the Charpy

impact data test, the t-SNE algorithm is applied to reduce the dimensionality of the

input vectors from 15 dimensions to 10 dimensions to ease its sparsity. Although it is

theoretically possible to shrink the data dimensionality to an under 10 level to obtain a

denser data matrix, the final dimensionality of the t-SNE output is set to be consistent

with the case in the Charpy impact data test to investigate the effect of sparsity on the

DCVSF algorithm. Table 4.4 shows the performance metrics obtained during the test,

and Figure 4.5 gives the regression plot.

Table 4.4: Performance regarding several benchmark models over the UTS data test.

STD MAE SMAPE RMSE Divisions Iterations

BP [52] 150.9674 32.1335 3.4460 44.4965 – 200
RBF [53] 149.2079 41.2173 4.4341 54.1319 – 100
GRNN [153] 153.8146 39.2092 4.1841 56.5168 – 100
LSTM [151] 137.5868 42.4865 4.5160 56.5765 – 200
DBN [154] 142.1892 36.1535 3.9260 47.7999 – 50
DCFS [135] 150.8623 35.8515 3.8851 47.3721 30 1
DCVSF 135.9964 53.7214 5.7822 78.7232 60 1

A significant weakness of the original WM approach and its hierarchical structure ver-

sion DCFS is that they are highly susceptible to sparsity, which is inevitable considering

the way the WM method generates its rule-base. Most machine learning algorithms

approximate the data by relying on optimization algorithms to tune their parameters.

The WM approach, however, achieves self-learning by initializing a large rule-base that

covers all possibilities regardless of relevance and then using the data to trigger the

rules within it and assign them firing strength. During training, the rules with high

firing strength acquire higher weights, while rules with low relevance are assigned low

weights. Such an approach enables the model to complete training in a single iteration,

but at the cost that the pre-initialized rule-base may not match the data well. Meta-

phorically, the rule-base is like a net, and the training data is the prey. The more the

number of fuzzy divisions, the smaller the holes in the net. The higher the sparsity of

the data, the smaller the size of the prey. Sparse data can easily pass through the “net”

of weaved by the WM algorithm and make it unable to capture the “prey.” Thus, in

order to obtain as much information as possible from the sparse data, it is necessary to

increase the fuzzy intervals assigned to each variable, but considering that the size of
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the rule-base of such a model grows exponentially and the fuzzy intervals are the base

of this exponential, doing so would quickly lead to an immensely large rule-base and

seriously affect efficiency. A huge rule-base can also cause serious overfitting problems.

Even if the algorithm succeeds in matching sparse data by increasing the number of

fuzzy partitions to achieve good results on the training set, it may still perform poorly

on the test set. Theoretically, once the sparsity of the data reaches a critical point, all

WM-like algorithms will fail. For CVWM and DCVSF, although a complex-valued struc-

ture reduces the size of its rule-base, the consequent decrease in the degrees of freedom

leads to a further reduction in its ability to handle sparsity compared to DCFS. Such

an improvement to counter the curse of dimensionality even reduces the threshold at

which the algorithm fails on sparsity, which is clearly exposed in the ultimate tensile

strength data test.

Figure 4.6: The result regression plot for the UTS prediction by DCVSF.

According to Table 4.4, despite the dimensionality reduction algorithm, DCVSF still

performs poorly on the UTS dataset. Not only far worse than other neural network

models but also inferior to DCFS. The difference between the performance of the test

and training sets can also be seen in Figure 4.6 Even if the fuzzy division increased to

60 in the experiment, which is a very high number for any fuzzy model, its accuracy

on the test set is still not ideal, despite a relatively good result on the training set.

The experimental results are highly consistent with the conclusions of the theoretical

analysis, i.e., the DCVSF algorithm is not a feasible option for data with high sparsity.
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4.5 Chapter Summary

In this chapter, CVWM and DCVSF are proposed for the purpose of numerical predic-

tion. The CVWM algorithm aims to alleviate the problem that the rule base of traditional

WM methods grows too fast with increasing input dimensions by introducing the idea

of converting two real-valued signals into one complex-valued signal for processing,

thus slowing down the increase of the rule base as the input dimensions grow. For

general low-dimensional dense datasets, CVWM reduces the generated rule base to the

square root scale of the original WM method with only a minor loss of prediction ac-

curacy, which enormously improves the efficiency of the algorithm. On this basis, by

introducing the concept of a hierarchical fuzzy system, CVWM is further developed as

the new algorithm DCVSF to process higher-dimensional data. Both CVWM and DCVSF

inherit the feature of completing training in only a single iteration from the traditional

WM algorithm. Both approaches are valuable for memory-constrained systems owing

to the significant reduction of the size of the rule-base, thus reducing the memory de-

mand of the system. In particular, its ability to complete training in a single iteration

makes it well-suited for some online machine learning scenarios, such as streaming data

processing, time series forecasting, and even incremental learning.

However, such algorithms are relatively weak in dealing with sparse data. Attempts

to mitigate the sparsity of the data using the t-SNE dimensionality reduction algorithm

in this chapter have yielded positive results on high-dimensional data with relatively

low sparsity. Unfortunately, on datasets with extremely high sparsity, even dimension-

ality reduction cannot compensate for the inherent deficiencies of CVWM and DCVSF

algorithms in dealing with sparsity. Considering that all algorithms have their strengths

and weaknesses and there is no one-size-fits-all solution for all problems, the attempt

to use the complex-valued structure to alleviate the curse of dimensionality of fuzzy

algorithms, especially for the WM method, can be considered a success. In addition, the

inefficiency of tackling the data type with significant sparsity is an inherent drawback of

WM-like algorithms and cannot be solved by simply improving the WM algorithm itself.

Thus, a new algorithm with a very different way of training will be proposed in the next

chapter to cover the field of sparsity.
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5
RACFIS: A New Rapid Adaptive Complex

Fuzzy Inference System

„ Reality is created by the mind, we can
change our reality by changing our mind.

– Plato –
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5.1 Introduction

The modeling of real-world data has always been a challenging problem. Unlike

those popular datasets that are purposefully selected as examples to test the perform-

ance of specific algorithms, datasets that users are more likely to encounter in scientific

research or industry are often not so ideally presented. Real-world datasets may lead

to processing difficulties, including redundancy, imbalance, incompleteness of the data,

unrelated variables, missing dimensions, human entry errors or measurement errors,

and so on, which hinder the efficient implementation of machine learning algorithms.

In such scenarios, it is often impossible for users to know where the missing parts or

the problems are for manual correction. Consequently, the generalization capability

of an algorithm is the crucial element to be relied upon to overcome such obstacles.

Moreover, regression tasks, such as data analysis and prediction in various application

areas, lead to some real-time requirements. A heavy and sophisticated algorithm that

usually indicates a dramatic increase in hardware costs is less likely to be the ideal solu-

tion that can be widely accepted. Occasionally, researchers may also hope their models

have a certain degree of interpretability to adjust the errors more easily or even extract

expert knowledge from the model. Fuzzy systems have clear advantages in this respect.

Traditionally, fuzzy systems rely on manually constructed rule-bases using expert

knowledge or hypothetical mathematical models to deal with regression problems, but

this train of thought has long been unable to meet the demand nowadays. Naturally,

self-learning fuzzy models represented by neuro-fuzzy inference systems (NFIS) have

become mainstream for current research, especially NFISs with deep network architec-

tures. Apart from the depth, the most relevant factors determining the NFIS perform-

ance include its fuzzy logic and optimization algorithm. On the one hand, as the logic

engine driving NFIS, the inference logic used in the model contributes fundamentally

to the model’s performance. Type-1 NFIS models that are first to emerge have obvi-

ous drawbacks because of the limited expressive ability of type-1 rules, i.e., a relatively

large rule-base is often required to describe a complex problem, making it extremely

inefficient and vulnerable to the curse of dimensionality when dealing with real-world

situations with many variables. Furthermore, since type-1 logic can only represent re-
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latively superficial information, this often leads to overfitting and poor generalization

capability of the model. Subsequently, type-2 fuzzy logic [11], [39], especially interval

type-2 logic [155], has been introduced to build NFIS, which significantly improves the

accuracy, rule-base size, and generalization capability of NFIS models. Nevertheless, in

recent years, the related architectures of type-2 fuzzy logic are also close to optimum.

It is necessary to introduce a more powerful fuzzy logic if further improvements in the

performance are required. Type-N fuzzy logic [3] and complex fuzzy logic [12], [13]

are two promising options that follow this train of thought. However, neuro-fuzzy mod-

els based on type-N logic rarely mentioned in the literature. In contrast, more progress

has been made for complex neuro-fuzzy systems [16].

On the other hand, appropriate optimization policies are also crucial for NFISs. There

are two main categories [156] of solutions in general: backpropagation and hybrid op-

timization. Currently, the strategy of merely applying backpropagation is considered

suboptimal [63], while most newly proposed NFIS models adopt the hybrid optimiza-

tion tactic. The “rationale” behind the hybrid method is to optimize the antecedent and

consequent parameters separately. Given that the antecedent part of the network in-

cludes nonlinear fuzzy membership functions, whereas the consequent part only exists

linear mappings, the use of different methods can help facilitate faster training and ob-

taining the global optimum. The consequent part is relatively simple to train, for which

the solutions include RLS [157], extended Kalman filter [158], ELM [159] or SVM (for

classification purposes) [160]. For the training of the antecedent part, the gradient

methods were popular in the early years, but recently researchers prefer meta-heuristic

solutions, such as particle swarm [161], evolutionary algorithms [162], or artificial bee

colonies [163]. Blindly opting for a derivative-free method may not be wise because the

gradient is actually the prior knowledge of the optimization surface. The implementa-

tion of population methods ignores this vital information, which often leads to increased

training complexity and decreased efficiency. Such a train of thought is unfavorable to

real-world application scenarios that pursue concomitantly accuracy and efficiency.

In recent years, breakthroughs such as multi-parameter gradient-momentum meth-

ods have been made in the practices of gradient optimization [164]. In the meantime,
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the theory of complex fuzzy sets [16] has also received increasing attention, which

brings new possibilities to the NFIS. Complex fuzzy theory is considered a breakthrough

after type-2 fuzzy theory. It extends the common domain of fuzzy membership to the

entire unit circle in the complex plane, allowing a single rule to accommodate more

information over previous fuzzy logic. Such a property is conducive to enhancing the

generalization performance of the system and managing the size of the rule-base. Also,

complex fuzzy logic can describe semantics that the previous fuzzy logic cannot repres-

ent, which helps to expand the application scenarios of fuzzy systems. The frequency-

domain nature of complex numbers also makes CFT more effective in dealing with

periodicity.

This chapter proposes a new rapid adaptive complex neural-fuzzy system (RACFIS)

by redesigning the optimization framework of the CNFS [94], leading to a faster con-

vergence and more accurate model that far exceeds its original counterpart. Note that

the word “adaptive” in this definition means self-learning. Such an algorithm utilizes

the two-dimensional character of the complex fuzzy rule-base, which allows a single

rule to contain more information, enabling better generalization capability in scenarios

of periodicity and stochasticity. Although the semantics of the complex fuzzy set is yet

to reveal, this network model is still as transparent as other neural-fuzzy architectures,

which may be meaningful in some specific situations. In terms of the optimization

strategy, bisecting K-Means clustering (unsupervised learning) [165], Quasi-hyperbolic

momentum [166], and RLS estimation together as a joint optimization strategy, assur-

ing that the network can quickly converge to a better global minimum. Given that

the so-called “curse of dimensionality” often leads to a sharp increase in computational

complexity, the sparseness of information, and the weakening of non-linear connections

between data points, a mechanism capable of accurately excluding insignificant vari-

ables is necessary for higher dimensional tasks. Thus, the mean impact value (MIV)

[167] algorithm based on the RBF network is applied. Finally, the algorithm is tested

on a synthetic dataset, a Sunspot time series dataset, and two metallurgical datasets.

Experimental results show that RACFIS shows superior performance over other well-

known benchmark algorithms.
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5.2 Methodological Premises

5.2.1 Complex Fuzzy Set

Ramot et al. [12] created the original complex fuzzy theory by extrapolating the

concept of fuzzy membership into the complex plane, for which the membership grade

is defined as follows:

ϕs(x) = φs(x) · ejωs(x), j =
√
−1, (5.1)

where φs(x) and ωs(x) are respectively the modulus and the phase of the membership

function. According to the definition, the degree of membership is restricted in the unit

circle of the complex plane, which delimits φs(x) ∈ [0, 1], whereas ωs(x) can be an

arbitrary value. This theory also indicates that the ordinary type-1 fuzzy set is a case

where the phase component of the complex fuzzy set is zero. As for the fuzzy inference

logic of the above complex fuzzy sets, Ramot et al. explained it in the subsequent article

[13] and clarified some basic operators for complex fuzzy reasoning.

Assume that there are two complex fuzzy sets A and B within the universe of dis-

course U, where set A is the aggregation of a series of sets A1, A2, A3, · · · , An. The

operators for complement, union, intersection, and aggregation operations can be given

respectively as equations (5.2) (5.3) (5.4) (5.5) as follows:

ϕĀ(x) = C[φA(x)] · e(jωĀ(x)), (5.2)

ϕA
⋃

B(x) = [φA(x)
⊕

φB(x)] · e(jωA
⋃

B(x)), (5.3)

ϕA
⋂

B(x) = [φA(x) ⋆ φB(x)] · e(jωA
⋂

B(x)), (5.4)

ϕA(x) = aggregate[ϕA1(x), ϕA2(x), . . . , ϕAn(x)] =
n

∑
i=1

ωi φAi(x), (5.5)

where
⊕

is said to be t-conorm, ⋆ is the representation of t-norm. In abstract math-

ematics, a t-norm denotes intersection in a lattice and conjunction in logic, whereas a

t-conorm behaves as a disjunction logic or a union operator. ωA
⋃

B(x) and ωA
⋂

B(x)

can be calculated in numerous ways, such as the sum of ωA(x) and ωB(x), the max-

imum or the minimum between these two. The aggregation operator is identical to
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the inner product of a vector, which suggests that Ramot’s complex fuzzy membership

degree shares a vector property.

Dick [14] introduced the notion of lattice [24] into the definition of the theory of

complex fuzzy sets. According to Dick’s interpretation, complex fuzzy sets can be di-

vided into two categories, i.e., the ones with rotational invariance and without rota-

tional invariance. A complex fuzzy set is considered as rotationally invariant if and only

if function L : Γ× Γ → Γ, L(pejα · ejk, qejβ · ejk) = ejk · L(pejα, qejβ) stands for all elements

pejα, qejβ ∈ Γ , in which Γ is the lattice where this CFS belongs to. Dick also noticed that

possible candidates for implication operators, including conjunction, disjunction, and

negation, are conspicuously restricted if a CFS is rotationally invariant. For instance,

the algebraic product should not be used as the conjunction operator for a CFS with

rotational invariance since the algebraic product does not satisfy the definition of rota-

tional invariance. Instead, when it comes to a CFS without the rotational invariance,

the algebraic product may well apply to conjunction operations.

5.2.2 Bisecting K-Means

The primeval k-means algorithm was first proposed by Lloyd [168] and Kanungo

et al, respectively. [169]. To divide a dataset into k clusters, the basic k-means first

initializes k centroids ξ1, ξ2, . . . , ξk, then computes the distance between each point xi

and the centroid ξ j. Every point is assigned to the nearest cluster according to the

point-to-center distance. Therefore, the updated centroids are as follows:

ξ j =
1∣∣cj
∣∣ ∑

x∈cj

x (5.6)

where cj denotes the jth cluster and j = 1, 2, . . . , k. The algorithm can realize the optim-

ized clusters by repeating the above process when the stopping condition is satisfied.

The traditional k-means algorithm has a manifest flaw in that manual determination

of the cluster centers is required, but manually selected centroid is not often precise

enough, which offsets the accuracy. Therefore, the k-means++ algorithm [170] is

developed with the capability of autonomously positioning the centers. This method
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randomly selects cluster centers, then refines the centroids through multiple iterations

to obtain the optimal clustering scheme. However, this solution causes randomness as

well as local optima.

Steinbach et al. [165] introduced the idea of hierarchical clustering into the modifica-

tion of basic k-means, leading to a new top-down clustering algorithm named bisecting

k-means. Akin to k-means++, this algorithm also stochastically chooses clustering cen-

ters, but it effectively avoids local optima with the help of a binary decision tree. This

algorithm first regards all data as a big cluster and dichotomizes it into two smaller

ones using ordinary k-means. Then the cluster with the larger SSE (sum of the squared

errors) is split again according to the maximum SSE principle. Finally, the above pro-

cedure is repeated until the kth independent cluster emerges. Although the result still

has a certain degree of randomness, it can ensure that the outcome is closer to the true

global optimum. Bisecting k-means is a fast and efficient method. The computational

speed is faster than traditional k-means or k-means++, especially when k is large. A

complete demonstration of the bisecting k-means is as follows:

Algorithm 5.1 Bisecting K-Means.

Step 1. Manually set up the number of clusters k. (In this chapter, k must be
identical to the number of fuzzy rules.)
Step 2. Initialize the objective data set, and generalize a cluster that contains
all data points.
Step 3. Bisect the cluster using basic k-means (k = 2) by randomly opting
for two centroids.
Step 4. Estimate the SSE of two clusters, and pick up the one with the larger
SSE as the next target to split.
Step 5. Go back to Step 3 and carry out such steps repeatedly until the
overall cluster number equals k.

5.2.3 Quasi-Hyperbolic Momentum (QHM) Optimization

Currently, there are two types of popular gradient optimization methods. One is

the stochastic gradient methods such as SGD [171] and Adam [172]. The other is

the gradient-momentum method, such as heavy-ball [173] and Nesterov [174]. The

above approaches usually have two hyperparameters to determine, one is the learning
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rate, and the other is related to the momentum. Hu et al. [175] compared the first-

order optimization method with the classic control theory, confirming that the gradient

optimization process is essentially a PID controller. A PID controller has three linear in-

dependent parameters, namely proportional (P), integral (I), and derivative (D) terms.

The essence of the momentum is the influence of historical gradients on the current

process, which is analogous to the function of a lead-lag compensator in a PID control

problem. This finding reveals that first-order gradient methods can possess additional

degrees of freedom for parameters, leading to a new train of thought regarding the

design of such algorithms. Subsequently, the multi-parameter gradient-momentum op-

timization methods are receiving attention since they may be better adapted to the op-

timization surface, especially when it is non-convex, thereby improving the algorithm’s

performance.

The quasi-hyperbolic momentum [166] algorithm is one of them, where the learning

rate α, the immediate discount factor v, and the momentum discount factor β constitute

the hyperparameter space of the algorithm. Note that one can rewrite the QHM as a PID

controller by considering β as a free variable. The idea of quasi-hyperbolic momentum

originates from an informal and conjectural variance reduction analysis, for which a

plain explication is an average of the momentum and regular gradient drop weighted by

v. The ordinary definition of the heavy-ball momentum firmly relates the exponential

discount factor β to the contribution of the immediate gradient. But the role played

by the QHM directly comes from decoupling the momentum from the impact of the

current gradient value (with deterministic setting), as well as decoupling the gradient

square mean from the current gradient square (with stochastic settings) when updating

the weights. This method is believed to converge faster than the traditional heavy ball

gradient-momentum method with a smoother process, while the sensitivity to individual

parameters diminished, reducing the difficulty of parameter tuning. The update rule for

the QHM optimization using the deterministic setting is as follows:

g(k + 1) = βg(k) + (1 − β)∇ f (x(k)) (5.7)

x(k + 1) = x(k)− α[(1 − ν)∇ f (x(k)) + νg(k + 1)], (5.8)
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where α, β, v ∈ R,∇ f (x(k)) represent the first-order derivative of the optimization

object,(1 − ν)∇ f (x(k)) + νg(k + 1) denotes the modulo initialization bias which is a

gradient estimator in short, and g(k) can be viewed as the momentum buffer. Under

normal circumstances, the value of ν is 0.7 and the value of β is 0.999, which means

that in most cases such algorithm can be applied like a single parameter method by only

adjusting the learning rate.

5.2.4 Recursive Least Square (RLS) Estimation

Traditionally, the consequent part of a Sugeno fuzzy system is updated utilizing the

offline least square (LS) method, which is less effective than the online method. Al-

though the Kalman filter can also be a solution to update the parameters, in the absence

of any additional knowledge of the target, this only increases the computational com-

plexity without leading to any significant benefits. Therefore, the RLS that satisfies the

requirement for online learning, as well as computational efficiency, is employed here

as the updating method for the consequent part of the RACFIS network. If given the

following model equation:

YL = ϕLθ̂ + ωL, (5.9)

where ϕL is the system matrix, θ̂ is the input vector, YL is the output vector, and ωL is

the vector of system error or noise. To estimate θ̂ at the kth recursion, according to the

principle of the least square estimation, the following equation set is obtained:
θ̂(k) = (ϕT

k ϕk)
−1ϕT

k Yk

ϕk = [ϕT
k−1, φ(k)]T

Yk = [YT
k−1, y(k)]T,

(5.10)

where φ(k) and y(k) are the system vector and output vector for the kth input-output

pair, respectively. Here, it is specified that the equation starts from φ(0), i.e., k =

0, 1, . . . , n− 1. Further, the following equation can be easily obtained by defining P(k) =

(ϕT
k ϕk)

−1:

P(k) = [P−1(k − 1) + φ(k)φT(k)]−1. (5.11)
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Substitute equations (5.10) and (5.11) into the matrix inverse formula (A+ BCD)−1 =

A−1 − A−1B(C−1 + DA−1B)−1DA−1, where A = P−1(k − 1), C = I, B = φ(k), and

D = φT(k). Then, the following equation can be achieved:

P(k) =
[

I − P(k − 1)φ(k)φT(k)
1 + φT(k)P(k − 1)φ(k)

]
P(k − 1), (5.12)

Given that θ̂(k) = (ϕT
k ϕk)

−1ϕT
k Yk and P−1(k)θ̂(k) = ϕT

k Yk, therefore the ultimate form

of θ̂ at the kth recursion is:

θ̂(k) = θ̂(k − 1) + P(k)φ(k)[y(k)− φT(k)θ̂(k − 1)], (5.13)

For the implementation of RLS estimation, equations (5.12) and (5.13) constitute the

update rule. Regarding the initialization of the algorithm, φ(0) is set to be zero vector

while the start of P is given as P(0) = αI, where α usually takes a large positive number,

I is the identity matrix.

5.3 Methodology

5.3.1 RACFIS Overview

The RACFIS network uses complex fuzzy logic for fuzzy inference and uses the Sug-

eno method as the inference engine for defuzzification. It is worth noting that although

the algorithmic process of RACFIS involves complex signals, it is limited to the ante-

cedent part of the fuzzy inference system. Once the defuzzification is completed, the

network signals become real-valued before the consequent operation is performed to

determine the final output of the architecture. The input of the RACFIS network is com-

pletely real-valued and the same as the network output. The complex-valued terms are

fuzzy membership values that contain the information of the data but do not directly

react with the network input or output. Therefore, from the function mapping point

of view, RACFIS still belongs to the category of real-valued function mapping, which

is fundamentally different from the models designed for complex-valued inputs or out-
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puts. Assume the objective network has k inputs and one output, then the ith fuzzy rule

can be represented as follows:

Rule i : IF l1 is Ai
1(x1) and l2 is Ai

2(x2), . . . , and lk is Ai
k(xk).

According to the defuzzification strategy of the Sugeno method, the output zi of this

rule is as follows:

zi = ai
0 +

k

∑
j=1

ai
jxj, i = 1, 2, . . . , n, (5.14)

whereAi
j(xj) is the jth antecedent of the ith fuzzy rule, ai

j is the corresponding con-

sequent parameter. The three-parameter gradient momentum method, i.e., Quasi-

hyperbolic momentum, is used to optimize the antecedent parameters, while the recurs-

ive least square is the optimization policy for the consequent part. Moreover, Bisecting

K-Means as an unsupervised learning method is applied to pre-train the antecedent

parameters. The RBFN-based MIV algorithm is also utilized to select the variables to

mitigate the curse of dimensionality. A general schematic diagram of the RACFIS is

given in Figure 5.1.

Figure 5.1: RACFIS algorithm flow.
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5.3.2 Network Structure of RACFIS

The RACFIS network is a five-layer structure as shown in Figure 5.2. The operation

of each layer of the network with the input vector x(t) = [x1(t), x2(t), . . . , xn(t)]T and

output y(t) at time t is presented as follows:

Figure 5.2: The illustration of the main structure of RACFIS. Xi in the figure represents input
variable, Ri denotes a complex fuzzy rule, Ni is the normalization of the product of
each rule, Di is the outcome of Sugeno defuzzification, and S denotes the sum of all
results which is identical to the output of the network, i.e., y.

Layer 1: It is the fuzzification layer in which the real-valued inputs are transferred

into fuzzy membership grades with the simplified complex Gaussian membership func-

tion as follows:

Oi
1,j(t) = exp

(
−
(x(t)− µi

j)
2

2bi
j

)
− j exp

(
−
(x(t)− µi

j)
2

2bi
j

)
x(t)− µi

j

bi
j

δi
j, (5.15)

where Oi
1,j(t) denotes the membership of the ith rule of the jth input, and {µi

j, bi
j, δi

j} is

the antecedent parameter set for each rule.

Layer 2: This layer is for calculating the firing strength of the inference system, in

which a complex multiplication is applied as follows:

Oi
2(t) =

n

∏
j=1

Oi
1,j(t) =: αi

j(t) + jβi
j(t), (5.16)
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αi
j(t) = exp

(
−

n

∑
j=1

(xj(t)− µi
j)

2

2bi
j

)[
1 −

n

∏
j=1

(xj(t)− µi
j)

bi
j

δi
j

]
, (5.17)

βi
j(t) = − exp

(
−

n

∑
j=1

(xj(t)− µi
j)

2

2bi
j

)
n

∑
j=1

xj(t)− µi
j

bi
j

δi
j, (5.18)

where Oi
2(t) is the strength of the ith firing rule. αi

j(t) and βi
j(t) represent the value of

real part and imaginary part of the fuzzy membership grade, respectively.

Layer 3: As the normalization layer for relevant firing strengths, the complex division

performs the normalization operation so that the two dimensions of information can

fully interact. For simplicity, equations (5.17) and (5.18) are used here to simplify the

expression:

Oi
3(t) =

Oi
2(t)

∑K
r=1 Or

2(t)
=

αi(t) + jβi(t)

∑K
r=1 αr(t) + j ∑K

r=1 βr(t)
, (5.19)

where Oi
3(t) is the normalized value of the ith node in this layer.

Layer 4: Each node in layer 4 is an adaptive node, which utilizes the Sugeno method

to calculate the output of each fuzzy reasoning with the consequent parameters:

Oi
4(t) = Oi

3(t) · (pi
0 +

n

∑
j=1

pi
jxj(t)), (5.20)

where Oi
4(t) is the output of each node and {pi

0, pi
1, pi

2, . . . , pi
n} is the set of consequent

parameters.

Layer 5: Only one single node is in this layer, of which the function is to obtain

the real-valued overall output of the network. Here, only the real part of the complex

output is utilized.

O5(t) = Re
K

∑
i=1

Oi
4(t), (5.21)

where “Re” means the real part of the complex number, O5(t) is the overall output of

the neuro-fuzzy system and K is the number of fuzzy rules assigned for each input. To

perform a real value regression task, it would be incorrect if the output result is a com-

plex number. Thus, an operation to convert the complex-valued inference result defined

in the complex plane into the real-valued output is necessary, and it is also essentially a
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step of CFS defuzzification. Some methods have emerged to achieve this goal, includ-

ing the dot product (ANCFIS), the projection on the real axis (CNFS), or the modulo

operation. For a complex fuzzy membership function defined in a polynomial form, its

real axis projection equals the value of the real component, making it the best candidate

to be the final defuzzified output. Additionally, employing the real component as a net-

work result does not change the natural mapping relation between the antecedent and

the outcome, which enables the possibility of using the unsupervised convex clustering

method to pre-train the antecedent parameters.

Similarly to many other neural networks based on Gaussian functions, the mean

square error (MSE) function is used as the cost function for network optimization. There

are three reasons for this choice. First, the use of the MSE function is convenient since

we can easily find its derivative. Second, assuming that the error between the predicted

output and the real output complies with a Gaussian distribution, the minimum MSE

error is essentially consistent with their maximum likelihood estimation [176], which

makes the MSE the ideal candidate for measuring the loss of a regression process. Fi-

nally, the MSE cost function generally leads to faster convergence. Assume that there

are N input-output pairs {x1(t), x2(t), . . . , xn(t), y(t)}N
t=1, the corresponding MSE func-

tion is as follows:

MSE =
1

2N

N

∑
t=1

(O5(t)− y(t))2, (5.22)

It is worth mentioning that from the control theory point of view, RACFIS is an open-

loop system. Although a back-propagation algorithm is applied to optimize the paramet-

ers, it does not cause any impact on the input signal and therefore does not constitute

closed-loop feedback.

5.3.3 Network Propagation and Gradient of RACFIS

The training process of RACFIS has two phases akin to all backpropagation networks,

i.e., forward propagation and backpropagation. For the forward propagation stage,

assume the network applies the complex Gaussian membership function, and the input-
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output set {x1(t), x2(t), . . . , xn(t), y(t)}N
t=1, the following equation can be obtained:

gi
1,j(t) = exp

(
−
(x(t)− µi

j)
2

2bi
j

)
− j exp

(
−
(x(t)− µi

j)
2

2bi
j

)
x(t)− µi

j

bi
j

δi
j, (5.23)

where gi
j(t) denotes the membership of the ith rule of the jth input, and

{
µi

j, bi
j, δi

j

}
are the antecedent parameters for each rule. One can calculate the firing strength of

the inference system using complex multiplication, which is obtained in the form of the

following equation set:

βi(t) = ∏n
j=1 gi

j(t) =: ui
j(t) + jvi

j(t)

ui
j(t) = wi(t)

[
1 − ∏n

j=1

(
xj(t)−µi

j

)
bi

j
δi

j

]
vi

j(t) = −wi(t)∑n
j=1

xj(t)−µi
j

bi
j

δi
j

wi(t) = exp

(
−∑n

j=1

(
xj(t)−µi

j

)2

2bi
j

)
,

(5.24)

where βi(t) is the strength of the ith firing. ui
j(t) and vi

j(t) represent the value of

real part and imaginary part of the fuzzy membership grade, respectively. Thus, the

normalized firing strength γi(t) can be further derived as follows:

γi(t) =
βi(t)

∑K
r=1 βr(t)

=
ui(t) + jvi(t)

∑K
r=1 µr(t) + j ∑K

r=1 vr(t)
=

ui(t)∑K
r=1 µr(t) + vi(t)∑K

r=1 vr(t)(
∑K

r=1 µr(t)
)2

+
(

∑K
r=1 vr(t)

)2 + j
vi(t)∑K

r=1 µr(t)− ui(t)∑K
r=1 vr(t)(

∑K
r=1 µr(t)

)2
+
(

∑K
r=1 vr(t)

)2

(5.25)

Then, the complex-valued inference outcome is obtained as follows:

ξ(t) = ∑K
i=1 ξi(t) = ∑K

i=1 γi(t)
(

ai
0 + ∑n

j=1 ai
jxj(t)

)
= ∑K

i=1 γi
R(t)

(
ai

0 + ∑n
j=1 ai

jxj(t)
)
+ j ∑K

i=1 γi
I(t)

(
ai

0 + ∑n
j=1 ai

jxj(t)
) (5.26)

Finally, the cost function of the network is obtained at the end of the feedforward phase:

Loss =
1

2N

N

∑
t=1

(Re ξ(t)− y(t))2 =:
1

2N

N

∑
t=1

e(t)2 (5.27)
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Regarding the backpropagation phase, the partial derivatives of ui(t) and vi(t) are

firstly derived. For i = 1, . . . , K, j = 1, 2, . . . , n, one can acquire the following first-order

partial derivatives:

∂ui(t)
∂µi

j
= ui(t)

xj(t)− µi
j

bi
j

δi
j +

wi(t)(
xj(t)− µi

j

) n

∏
j=1

(
xj(t)− µi

j

)
bi

j
δi

j,

∂vi(t)
∂µi

j
= vi(t)

xj(t)− µi
j

bi
j

δi
j +

wi(t)
bi

j
δi

j,

∂ui(t)
∂bi

j
= ui(t)

(
xj(t)− µi

j

)2

2
(

bi
j

)2 δi
j +

wi(t)
bi

j

n

∏
j=1

(
xj(t)− µi

j

)
bi
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(5.28)

Then, the partial derivative ∂e(k)
∂µi

j
can be written in the following form:

∂e(t)
∂µi

j
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j
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j
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n

∑
j=1

ai
jxj(t)

)
,

(5.29)
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∂e(t)
∂bi

j
can be obtained by replacing ∂µi(t)

∂µi
j

and ∂vi(t)
∂µi

j
in ∂e(t)

∂µi
j

with ∂ui(t)
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j
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(5.30)

Similarly, one can also obtain partial derivative ∂e(k)
∂δi

j
:
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(5.31)

The above equations (5.29), (5.30), and (5.31) are partial derivatives of the net-

work output error regarding the antecedent parameters, which are also the directional

derivatives of the optimization surface for the RACFIS network, i.e., the gradient:

∇ f =


∂e(t)

∂µ

∂e(t)
∂b

∂e(t)
∂δ

 . (5.32)
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5.3.4 Joint Optimization Strategy for RACFIS

The optimization policy for the RACFIS model is a joint method utilizing bisecting

k-means, QHM, and RLS. A key premise for this method to work is that all data should

be normalized within the interval [0, 1] before feeding into the model because different

scales between data variables can cause problems in the deep architecture backpropaga-

tion, such as gradient explosion or gradient vanishing. It is worth noting that one should

determine the training and test sets before the normalization and normalize the two in-

dividually. If the training and test sets are determined after the normalization, the train-

ing set may carry some data distribution information from the test set, resulting in a less

rigorous evaluation of the model. After the normalization process, bisecting k-means

clustering is used to pre-train the antecedent part of the network to have a faster conver-

gence and a better result closer to the true global optimum. {µi, bi, δi}, i = 1, 2, . . . , N

is the set of the antecedent parameters, where µi is the center and bi is the width of

each complex Gaussian membership function. One can obtain a set of cluster centroids

C = {c1, c2, . . . , ci, . . . , cN} by applying bisecting k-means to the entire training set.

Such centroids can be further utilized to calculate the sum of the distances from all

points in each cluster to the centroid denoted as D = {d1, d2, . . . , di, . . . , dN}, where

di = ∑n
k=1(xk

i − ci). Thus, the pre-train process of antecedent parameters {µi, bi, δi} is

over, and the values can be determined as follows:

µi = ci, bi = ρ
n

∑
k=1

(xk
i − ci), δi = 1, (5.33)

where xk
i is the coordinate of each individual data point in the ith cluster. ρ denotes

the expansion coefficient, which is default to be 0.95. n is the number of points in this

cluster.

As a result of clustering, the network is initialized at a position closer to the global

minimum than using a random initialization, but a gap between the current status and

the optimal still exists. Hence, an error backpropagation solution is required to refine

the parameters, and here the QHM gradient optimization is employed. To implement

QHM, combine the equations (5.7) and (5.8), and the following expression of the up-
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date rule is achieved as follows:

x(k + 1) = x(k)− α[(1 − νβ)∇ f (x(k)) + νβg(k)], (5.34)

where α is the initial learning rate, β is the exponential discount factor, v is the imme-

diate discount factor, g(k) = βg(k − 1) + (1 − β)∇ f (x(k − 1)) is the momentum buffer

of each parameter, and e(k) = Output(k) − y(k) is the error of the kth iteration. As

mentioned above, each rule has three different antecedent parameters{µi
j, bi

j, δi
j}. For

each step of the iteration, the updated parameters can be calculated according to the

equation (5.34). The expression for the parameter set at iteration k + 1 is as follows:
µi(k + 1) = µi(k)− α[(1 − vβ)e(k) ∂e(k)

∂µi

∣∣∣
µi=µi(k)

+ vβgi
µ(k)]

bi(k + 1) = bi(k)− α[(1 − vβ)e(k) ∂e(k)
∂bi

∣∣∣
bi=bi(k)

+ vβgi
b(k)]

δi(k + 1) = δi(k)− α[(1 − vβ)e(k) ∂e(k)
∂δi

∣∣∣
δi=δi(k)

+ vβgi
δ(k)].

(5.35)

After updating the non-linear antecedent parameters by QHM, the linear consequent

part also requires a refresh using RLS. For i = 1, 2, . . . , q, to update the consequent part

at kth iteration, the following two variables are derived: θ̂ = [(θ1)T, (θ2)T, . . . , (θq)T]

φ(k) = [(φ1(k))T, (φ2(k))T, . . . , (φq(k))T],
(5.36)

where θi = [ai
0, ai

1, . . . , ai
q]

T and

φi(k) = [λi
R, χ1(k)λi

R, . . . , χq−1(k)λi
R]

T. (5.37)

λi
R is the real part output of the corresponding normalization node. By substituting θ̂

and φ(k) into equations (5.12) and (5.13), the updated parameters can be determined.

Such parameters constitute the new weights of the consequent part of the network

for the next iteration. To obtain the minimum error measured by the MSE objective

function (5.22), the clustering process only needs to be implemented once, whereas the

QHM-RLS refining process is supposed to be repeated iterations until the model satisfies
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the error requirement or reaches the maximum epoch setting. The entire parameter

adapting operation is shown as Algorithm 5.2.

Algorithm 5.2 Bisecting K-Means, QHM and RLS joint optimization.

Step 1. Split the data set into a training set and a testing set.
Step 2. Normalize the data set to the interval [0, 1]. Note that one should
normalize the training set and the testing set separately.
Step. 3 Initialize the antecedent part of the parameter set {µi, bi, δi} using
the information obtained by clustering.
Step. 4 Calculate the output of the architecture with the original settings,
and derive the error by e(k) = Output(k)− y(k).
Step. 5 Refine the antecedent part (non-linear) for the network by the QHM
optimization method.
Step. 6 Estimate the consequent part (linear) with RLS estimation.
Step. 7 Calculate the output of the architecture, derive the error bye(k) =
Output(k)− y(k).
Step. 8 Repeat Step. 5 Step. 7, until the stopping criterion is satisfied.

5.3.5 MIV-RBFN Algorithm for Variable Analysis

Traditionally, the principal component analysis (PCA) [177]–[179] method is applied

to select variables. However, as a linear method, it does not perform well on highly

non-linear data sets. Kernel PCA [180] is an extension of the conventional PCA, which

can linearize non-linear features by mapping them into the Hilbert space via the kernel

functions. Although this method is more effective with non-linear data, difficulties still

exist when determining the suitable parameter configurations, in the absence of prior

knowledge of the data set, due to the need to manually adjust the settings.

For RACFIS, a MIV [167] algorithm integrated with the RBF network is employed to

evaluate the variables for RACFIS when it comes to real-world data. The RBF network

has an intuitive structure, easy training, and fast convergence. It can approximate ar-

bitrary non-linear functions and shares inherent similarities with neuro-fuzzy systems,

making it a suitable candidate as a referee network for the variable selection algorithm

of the RACFIS network. The MIV algorithm here is not a dimensionality reduction al-

gorithm, as it does not change the manifold of the data itself. Instead, it outputs a

score for each variable to measure the relevance of this dimension in a specific case,
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which generally relies on a pre-trained neural network as a supervisor. The algorithm

judges the importance of variables by comparing the difference between the two net-

work output vectors. One of the two vectors is achieved by an input vector that is a

certain percentage larger in value than the original input, and the other is obtained by

an input vector that is the same proportion smaller. The formula for calculating MIV is

as follows:

MIV =
abs |re fincrease − re fdecrease |

N
(5.38)

where re fincrease and re fdecrease denote referee network output under the two input vec-

tors mentioned above, and N is the number of input vectors. When implementing the

algorithm, one only needs to train the referee network without the involvement of prior

knowledge of the data. The mean impact value is considered one of the most effective

indicators for evaluating variable importance. The complete implementation process is

given by Algorithm 5.3.

Algorithm 5.3 MIV-RBFN Algorithm.

Step 1. Initialize an RBF network, train the network with original input set
χT = {X1, X2, . . . , Xq}, q ∈ N+, where XT

k = {xk
1, xk

2, . . . , xk
i , . . . , xk

n}, k =
1, 2, . . . , q, i = 1, 2, . . . , n; n is the dimension of an input vector.
Step 2. Gradually increase the number of RBF kernels until the network
accuracy reaches the setting value, denote the optimized network structure
as a function Gop(X, a), where x is the input set, and a is the parameter
vector.
Step 3. Generate two new input sets, where χT

increase = χT · (1 + η) and
χT

decrease = χT · (1 − η) and η is the adjustment rate.
Step 4. Run the network Gop(X, a) with inputs χT

increase and χT
decrease respect-

ively, obtain the output vectors Gop(χT
increase, a) and Gop(χT

decrease, a).
Step 5. Calculate the MIV of each variable: MIV(xi) = abs[Gop(χT

increase, a)−
Gop(χT

decrease, a))]/q.
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5.4 Experimental Results and Analyses

5.4.1 Input-to-Output Numerical Example for RACFIS

The numerical demonstration of the RACFIS network uses a sample selected from the

normalized Sunspot time series data, i.e., x1 = 0.0497, x2 = 0.0476 along with its label

y = 0.0461. A RACFIS model with two inputs, one output, and three divisions is trained

on the normalized Sunspot training set to solve this problem, for which the detailed

parameter information is available as follows:

µ1
1 = 0.424551458642240, µ1

2 = 0.150213429327331, µ1
3 = 0.720083762391771,

µ2
1 = 0.423668503213857, µ2

2 = 0.149835747936988, µ2
3 = 0.720079920080232,

b1 = 1.46094548410898, b2 = 11.8157142115210, b3 = 1.46653839221557,

δ1
1 = 0.999999999999999, δ1

2 = 0.9999999999999991, δ1
3 = 0.999999999999977,

δ2
1 = 0.999999999999999, δ2

2 = 0.999999999999995, δ2
3 = 1.0000000000000,

p0
1 = 14.2524658415543, p0

2 = −1.51117410860539, p0
3 = −15.4775533604290,

p1
1 = 8.25080133537064, p1

2 = −16.5236682853100, p1
3 = 8.18123993194625,

p2
1 = −1.51918200681092, p2

2 = 13.8658045141122, p2
3 = −4.67938399579610.

According to equation (5.15), one can calculate the output of the neurons in the first

layer of the network, i.e., Oi
1,j. For instance,

O1
1,1 = exp

(
−
(x1 − µ1

1)
2

2b1

)
− j exp

(
−
(x1 − µ1

1)
2

2b1

)
x1 − µ1

1
b1

δ1
1

= 0.953035906292485 + 0.244563689791652j,

Similarly, the outputs of the other neurons in this layer can be obtained as follows:

O1
1,2 = 0.999572147343944 + 0.00850731929503057j,

O1
1,3 = 0.857919035126373 + 0.392200838129195j,

O2
1,1 = 0.952738339457055 + 0.245279642677795j,

O2
1,2 = 0.999557387818326 + 0.00865271677357599j,

O2
1,3 = 0.857096854711326 + 0.393048817862650j.
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Substituting the above results into equation (5.16), the output of the second layer neur-

ons can be obtained as follows:

O1
2 = 0.848007352359992 + 0.466765510258118j,

O2
2 = 0.857919035126373 + 0.392200838129195j,

O3
2 = 0.952738339457055 + 0.245279642677795j.

Therefore, the neuron outputs of the third layer can be calculated by further substituting

the above values into equation (5.19):

O1
3 = 0.359242938460111 + 0.0210120993358160j,

O2
3 = 0.338022071771127 − 0.154035031690365j,

O3
3 = 0.302734989768762 + 0.133022932354549j.

Combining the output of the third layer, the input data x1 and x2, and the linear para-

meter p, one can further find the output values of neurons of the fourth layer of the

network according to equation (5.20), i.e., the consequent output:

O1
4 = 5.24131143125436 + 0.306564011850975j,

O2
4 = −0.565249660210355 + 0.257581550421428j,

O3
4 = −4.62998900255801 − 2.03443518160890j.

Consequently, The final output of the network is available by applying the sum of the

real component of the previous layer:

O5 = Re
3

∑
i=1

Oi
4(t) = 0.0460727684860016 ≈ 0.0461

Hence, the predicted Sunspot time series result at this moment is 0.0461. Note that the

ground truth is also 0.0461, indicating the high accuracy of the RACFIS network on this

data point prediction.
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5.4.2 Synthetic Data Test

The synthetic data is produced by the "tooth" function,

f (x) = 0.08 × {1.2 × [(x − 1)× (cos(3x))]

+[(x − (x − 1)× (cos(3x)))× sin(x))]}, 3 ≤ x ≤ 7, (5.39)

in which 200 training data points were sampled from [3,7] with an interval of 0.02,

and 50 test data points were sampled with an interval of 0.08 within the same scale. In

this test, the CNFS [94] model is used as a control because it applies the same Gaussian

complex affiliation function as RACFIS but uses a very different PSO derivative-free

optimization strategy based on random initialization to optimize the network. Although

the PSO method is easy to implement, the computational complexity is much higher

than that of the gradient method, and the random initialization often causes the model

to fall into a local optimum and makes the final result quite uncertain. It is also harder to

achieve the global optimum for PSO due to the lack of information the gradient provides

as a priori knowledge for the optimization surface. By comparison, the advantages of

the RACFIS model over the previous CNFS can be intuitively demonstrated.

More details of the test are available in TABLE 5.1, and the visualized outcome is

shown in Figure 5.3. Both models have achieved good results. However, RACFIS is

superior to CNFS in nearly all aspects under the premise of the same number of rules.

RACFIS performs better in areas with steeper changes, and the testing error and the

number of epochs required are tenfold smaller than its CNFS counterpart. In addition,

given that the optimization methods of RACFIS and CNFS both have a certain degree

of randomness, 20 random tests are conducted to record the MSE values. The Kruskal-

Wallis [181] test was employed to compare the obtained MSEs of those two models

from the statistical aspect. In this test, we assume that two objects have no statistical

difference, and a p-value less than 0.05 suggests a statistically significant difference

between the two models. Finally, it achieves a p-value of 0.0138, which is enough to

reject the null hypothesis, i.e., it is conclusive that the performance of RACFIS is better

than that of CNFS, statistically.
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Table 5.1: Comparison between CNFS and RACFIS over the synthetic data test.

Testing MSE Rules/Clusters Learning settings Max epoch

CNFS [94] 1.8691×10−4 9 650 (population size) 200
RACFIS 1.3445×10−5 9 10−6 (step size) 10

Figure 5.3: Comparison between CNFS and RACFIS on the "Tooth" function test for x ∈ [3, 7].

5.4.3 Sunspot Time Series Test

Sunspot data [107] adopted in this test include sunspot activity recorded between

1976 to 1992. This dataset contains a total of 2000 single-value samples, and each

input-output data pair is in the form of {y(τ − 1), y(τ); y(τ + 1)}, τ = 2, 3, . . . , 2000},

in which the next sunspot state is predicted by the value of the current moment as

well as the previous one. As always required, to avoid the failure of the gradient back-

propagation of the network, one should normalize these data points between 0 and 1,

then equally divide them to get the training set and test set. The experimental res-

ults of RACFIS and other benchmark models are available in Table 5.2. The visualized

prediction outcome is given in Figure 5.4.

According to Table 5.2, the accuracy of RACFIS is far beyond SARIMA [150] (an

ARIMA variant for periodic time series forecast). Elman-NARX [152] (a branch of re-

current neural network) and NFS [95] (ANFIS with PSO-RLSE optimization) are also

significantly inferior to RACFIS regarding sunspot forecasting, which is in line with the
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excellence that complex fuzzy models show when dealing with periodicity. Compared

with CNFS, which is also a complex fuzzy model, the performance between the two

is very close. However, RACFIS only applies 3 rules and 30 iterations of training to

achieve the time series prediction accuracy that takes the CNFS model 300 iterations

and 5 rules to realize. Given that the difference between CNFS and RACFIS is only the

optimization strategy, it is fair to say that the proposed hybrid optimization algorithm

is paramount for improving the model performance in time series forecasting tasks.

Table 5.2: Comparisons between the benchmark algorithms over the Sunspot test.

Testing MSE Rules/Clusters Iterations

SARIMA [150] 6.5733 × 10−3 – –
BP [52] 1.4264 × 10−4 – 200
LSTM [151] 3.4530 × 10−4 – 200
Elman-NARX [152] 1.4078 × 10−4 – 200
NFS [95] 8.5112 × 10−5 5 300
CNFS 4.1490 × 10−5 5 300
RACFIS 4.1045 × 10−5 3 30

Figure 5.4: RACFIS performance on Sunspot test. The left side of the black dividing line in the
figure is the prediction effect on the training set, and the right side is the performance
on the test set.
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5.4.4 Charpy Impact Data Test

Metals are crystalline substances whose physical and chemical properties depend on

the structure and type of atoms that constitute their crystal lattice. Since all phenom-

ena happen on the level of atomic size, even subtle changes in alloy composition may

significantly affect its attributes, indicating that the influence of the components on the

metal characteristic is highly non-linear. The Charpy impact energy measures the ma-

terial capacity to assimilate the fracture energy. A Charpy impact test dataset with 16

input dimensions, single output, and 830 data points is applied for this data regression

experiment. Such a data set is tricky for traditional modeling methods due to its dis-

continuity, scatter in measurements, and nonlinearity. In addition, the MIV algorithm

is utilized to rank the contribution of each variable so that the less related ones can be

opted out. The MIV of each variable under the adjustment rate of 10%, 20%, and 30%

are given in Table 5.3.

Table 5.3: MIV of each variable for the Charpy Impact Test.

Input Variable Adjustment Rate
10% 20% 30%

C 0.9866 1.9678 2.9380
Si 0.2548 -2.5154 -3.7635
Mn 1.6863 3.3569 4.9896
S 0.0565 0.1129 0.1694
Cr 3.5733 6.9862 10.0912
Mo 1.4240 2.8452 4.2610
Ni 0.6321 1.2629 1.8956
Al -0.0041 -0.0082 -0.0123
V -0.2822 -0.5644 -0.8465
Hardening Temp 0 0 0
Tempering Temp 148.9641 -45.7167 1.5452×10−6

Impact Temp 12.6622 29.7544 -46.9750
Sample Size -2.0193 -1.8219 0.0686
Test Depth 0.6174 0.0207 0.0207
Category symbol Categories
Cooling Medium -0.7666 -1.2536 -1.3499
Coded Site -0.2611 -0.4680 -0.5806
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Table 5.4: The parameter setting of RACFIS for the Charpy impact data test.

Bisecting k-means clustering for antecedence initialization

Number of clusters
for each variable k 6

Expansion coefficient
ρ

0.95

QHM RLS estimator

Learning rate α 10−5
Initial consequent
parameter ai, for
i = 1, 2, . . . , q

0.3

Immediate discount
factor v 0.7 P0 α ∗ I

Momentum discount
factor β

0.999 α 106

Max epoch 10 I 60*60 Identity
matrix

Initial momentum
buffer g(0) 0 θ0

60-dimension
zero vector

Figure 5.5: The curve of the MSE cost function over the learning process for Charpy data test.

According to the absolute value of MIV, the following 9 variables are more signi-

ficantly influencing factors, including C, Si, Mn, Cr, Mo, Ni, Sample Size, Tempering

Temperature, and Impact Temperature. The remaining variables are excluded due to

their introduction into the model only bringing insignificant positive effects in predic-

tion accuracy but significantly increasing the computational burden. After completing

the variable analysis for the dataset, the first 600 sample points of the dataset are used

as the training set, while the rest 230 are as the test set. In addition, the network setting

for this experiment is given in Table 5.4.
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As it can be seen from Figure 5.5, after pre-training of the antecedent parameters

by the bisecting k-means clustering, plus the proposed QHM-RLS hybrid algorithm for

refining, the network converged to a small MSE value after 10 iterations. Note that

the QHM-RLS algorithm is an online optimization method, which is different from the

traditional batch optimization method. The former updates the network parameters

based on each input data point, while the latter renews the network only after a batch of

data inputs or even after searching the entire dataset. There are three important reasons

why RACFIS was able to converge so quickly. Firstly, the convex clustering method

determines the network parameters to a position close to the global optimum, avoiding

the possibility of large deviations due to random initialization. Secondly, the QHM-

RLS online optimization strategy avoids the lag of the batch renewal approach, which

significantly improves the training efficiency. Thirdly, the QHM gradient optimization

solution can better adapt to the optimization surface, reducing the situation of getting

trapped in the local optimum in repeated iterations.

The comparison between the network prediction and the target output value is avail-

able in Figure 5.6, and the result regression plot under 90% confidence is given in

Figure 5.7. Table 5.5 reveals the overall performance of the proposed RACFIS regarding

performance indices in the experiment compared with the other benchmark algorithms.

RACFIS outperforms all benchmark algorithms listed in the table from the perspective of

RMSE, MAE, and SMAPE using only 10 iterations. STD indicator reflects the degree of

dispersion of the output data itself. The outputs from The prediction results of RACFIS

have a lower error with a broader distribution scale, which indicates a remarkable gen-

eralization capability. In terms of the comparisons with other fuzzy systems, the per-

formance of RACFIS also surpasses GrC-NF [182] (granular modeling); Q-ANFIS [183]

(fuzzy C-Means clustering and quantum membership functions); interval type-2 model

[184] (Sugeno defuzzification); and CNFS which has the similar complex fuzzy logic.

Except for the same number of rules as Q-ANFIS, the number of fuzzy rules required by

RACFIS is less than that of all non-complex fuzzy inference systems.
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Figure 5.6: Performance of RACFIS in Charpy energy prediction. The part on the left of the
black line is the comparison between the predicted results of the training set and
the actual value. The right side is the same but for the performance on the test set.
Approximation error is also given in the figure.

Figure 5.7: Result regression plot for Charpy energy prediction.
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Table 5.5: Comparison of the performance (Charpy data test).

STD MAE SMAPE RMSE Rules Iterations

BP [52] 25.2233 16.9010 21.2874 20.8389 – 200
RBF [53] 30.9238 14.7211 19.5694 20.1443 – 100
GRNN [153] 22.7647 16.0598 19.0444 22.0339 – 100
LSTM [151] 24.9117 17.0228 21.5417 21.2242 – 200
DBN [154] 27.2085 16.2536 20.2341 20.1211 – 50
GrC-NF [182] – – – 20.4200 9 200
Q-ANFIS [183] – – – 18.1700 6 100
IT2Sugeno [184] – – – 19.6500 8 100
CNFS 25.7738 16.3243 22.4266 20.5506 6 100
RACFIS 27.2434 13.5313 17.8632 17.1872 6 10

The excellent performance of RACFIS on prediction accuracy can also be attributed

to three aspects. First, the QHM-RLS online optimization strategy improves the net-

work performance on the test set, as batch optimization tends to overfit the training

set. The non-fuzzy deep network models in the benchmark test are almost all batch-

based, which is a crucial reason for their inferior performance on this data compared

to RACFIS. Secondly, the introduction of complex fuzzy sets also contributes to its per-

formance. On the one hand, complex fuzzy sets can accommodate more information,

and it not only improves the generalization capability but also reduces the number of

fuzzy rules required, which is quite evident compared with other fuzzy models. On

the other hand, another advantage of the complex fuzzy model over most type-2 mod-

els is that its membership function has closed-form solutions for gradient optimization.

The first-order derivatives of the type-2 membership function do not have algebraically

closed first-order derivatives. Consequently, such models often use non-gradient optim-

ization methods with higher computational complexity, which significantly affects the

efficiency. Online learning strategy of RACFIS is also conducive to convergence speed.

Finally, the use of convex clustering methods and QHM pushes the training result closer

to the global optimum, which explains why RACFIS uses a similar complex fuzzy mem-

bership function as the CNFS model, but the performance is much better. Moreover,

the above results also indicate that RACFIS can deal with the challenges posed by the

Charpy impact dataset. Given that many real-world datasets are below the difficulty of

this dataset, it is reasonable to conclude that RACFIS is suitable for the most practical

application scenarios.
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5.4.5 Ultimate Tensile Strength (UTS) Data Test

The ultimate tensile strength is defined as the peak of engineering stress in a stress-

strain curve. Within the data set, 15 input variables correspond to an output dimension,

with 3760 data points. This high dimensional data is tricky for its non-linearity, intric-

ate interaction between input variables, measurement error of industrial process, and

data sparsity. Additionally, extra 12 data points with similar input values but different

outputs are employed as the validation set to measure the generalization capacity of

the model. Regarding these 12 abnormal points, there are three reasons for them to

exist, including human errors in data entry, missing dimensions, and measurement er-

rors, which are also inevitable in other real-world datasets. This validation process can

further test the performance from a higher level of universal applicability. The result of

the MIV analysis for the UTS dataset is available in Table 5.6.

Table 5.6: MIV of each variable for the Ultimate Tensile Strength Test.

Input Variable Adjustment Rate
10% 20% 30%

C 8.1864 16.3605 24.5097
Si 0.0794 0.1594 0.2404
Mn -10.3150 -20.4747 -30.3276
S -0.0723 -0.1445 -0.2168
Cr -15.0656 -29.7948 -43.8615
Mo -3.0059 -6.0067 -8.9937
Ni -37.5670 -74.1685 -108.8752
Al -0.3721 -0.7443 -1.1164
V -0.1084 -0.2169 -0.3253
Hardening Temp -0.0017 0 0
Tempering Temp 224.3830 274.6474 -482.3313
Sample Size -830.1928 -624.7182 1321.7
Test Depth -25.7766 -35.7784 -64.4520
Category symbol Categories
Site -242.2889 -454.9862 -609.9973
Cooling Medium -179.3221 -344.4547 -482.3313
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According to the MIV value, one can separate 10 variables with the highest relevance

to the UTS as the model input variables, i.e., C, Mn, Cr, Mo, Ni, Site, Tempering Temper-

ature, Cooling Medium, Sample Size, and Test Depth, respectively. Given the excessive

number of data points in this dataset, which far exceeds the number needed to train

the model, 1000 random data points selected from the original dataset are used as the

training set, while another 500 as the test set. The network parameter settings of the

experiment are shown in Table 5.7.

Table 5.7: The parameter setting of RACFIS for the UTS test.

Bisecting k-means clustering for antecedence initialization

Number of clusters
for each variable k 5

Expansion coefficient
ρ

0.95

QHM RLS estimator

Learning rate α 10−6
Initial consequent
parameter ai, for
i = 1, 2, . . . , q

0.3

Immediate discount
factor v 0.7 P0 α ∗ I

Momentum discount
factor β

0.995 α 106

Max epoch 10 I 55*55 Identity
matrix

Initial momentum
buffer g(0) 0 θ0

55-dimension
zero vector

Figure 5.8: The curve of the MSE cost function over the learning process for UTS data test.
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Figure 5.9: RACFIS network output for the UTS data test. The left side of the black line is
the comparison between the network outputs of the 1000 training samples and the
target values. The right side is with the same narrative for 500 testing data points.
Approximation error is shown in the figure as well.

According to Figure 5.8, the RACFIS model only requires 20 iterations to converge

in this dataset, which is only one-tenth of the level of most other network models.

Table 5.8 compares the performance of RACFIS with several benchmark algorithms,

from which RACFIS reveals a competitive performance, surpassing all the non-fuzzy

algorithms mentioned in the list. Even in comparison with fuzzy algorithms, RACFIS

only uses 5 rules to obtain a comparable prediction accuracy that is achieved by IMOFM

[185] (Mamdani type-1), MOIT2FM [186] (Mamdani type-2) and IT2-Sugeno with 6

rules. Although CNFS adopts a similar complex fuzzy logic as RACFIS, it is not as

comparable to RACFIS, owing to the limitations of its optimization policy. RACFIS has

proven to achieve excellent performance with the smallest number of iterations com-

pared with other algorithms listed in the case of the UTS test. The prediction result of

the network is available in Figure 5.9, and the result regression plot with 90% confid-

ence bands is given in Figure 5.10.
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Table 5.8: Comparison of the performance (UTS data test).

STD MAE SMAPE RMSE Rules Iterations

BP 150.9674 32.1335 3.4460 44.4965 – 200
RBF 149.2079 41.2173 4.4341 54.1319 – 100
GRNN 153.8146 39.2092 4.1841 56.5168 – 100
LSTM 137.5868 42.4865 4.5160 56.5765 – 200
DBN 142.1892 36.1535 3.9260 47.7999 – 50
IMOFM [185] – – – 45.5200 6 200
MOIT2FM [186] – – – 40.5200 6 100
IT2Sugeno – – – 38.7600 6 100
CNFS 142.8011 37.6474 4.0346 51.3500 5 100
RACFIS 151.4953 30.4602 3.3001 39.4170 5 20

Figure 5.10: Result regression plot for UTS prediction.

The UTS data test is the most challenging dataset in this thesis, mainly because of its

sparsity, which significantly increases the modeling difficulty. In the previous chapter,

the proposed DCVSF performed disappointedly on sparse data due to its design, but

the sparsity does not seem to be a trouble for RACFIS. The principle of RACFIS differs

from DCVSF because it only initializes a relatively small rule base for each variable

and adjusts the parameters and weights of each rule by an optimization algorithm to

complete the training. This design can be better adapted to different data distributions,

not to mention that there is a clustering algorithm to pre-train the antecedents, which

further reduces the effect of sparsity. It is fair to conclude that RACFIS has advantages

in terms of prediction accuracy, convergence speed, and adaptability to data, making it

a machine learning modeling approach suitable for most real-world scenarios.
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As already stated, the UTS data set also has a validation set consisting of 12 abnormal

data points to test the generalization capacity of the network. Figure 5.11 displays the

linear regression between the target output and the prediction with the 90% confidence

band. The experimental results of all benchmark algorithms and RACFIS are available

in Table 5.9, in which STD is an important indicator. According to the table, deep

learning models GRNN, LSTM, and DBN have almost no processing capabilities for this

validation set since the STDs of the model output of those models are close to 0. The

STD indicator measures the degree of dispersion of the model output sequence against

its mean. An STD close to 0 indicates that the algorithm can hardly respond to the subtle

changes of variables in the validation set as it fails to distinguish the difference between

each input data point. However, the other four algorithms can process these data more

effectively, where RACFIS has the lowest prediction error, which is surprisingly good for

this tricky test.

The advantage of this generalization ability may come from three aspects. Firstly,

the use of complex fuzzy logic enables each rule of the network to express richer in-

formation and thus reduces the tendency of overfitting. Secondly, the introduction of

online learning also significantly improves the algorithm performance on the validation

set, especially in this extreme scenario. Online learning adjusts the network parameters

after each data point is fed in, allowing it to learn more subtle information about the

data, which also explains why deep learning algorithms such as GRNN, LSTM, and DBN

have almost no processing power for this validation set, as all three algorithms rely

on batch optimization. Thirdly, the clustering method pre-trains the antecedent para-

meters, effectively mitigating the local optimum caused by random initialization and

ensuring that the algorithm is closer to the theoretical global optimum, which is evident

in the comparison of RACFIS and CNFS. Although RACFIS and CNFS use similar com-

plex Gaussian membership functions, the generalization performance of RACFIS still

has a significant ascendancy, which is entirely owing to the difference in optimization

strategies.
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Table 5.9: Comparison of the performance (12 abnormal data points test).

STD MAE SMAPE RMSE

BP 227.1069 40.5753 4.4768 53.0111
RBF 165.6330 44.7274 4.4971 55.8941
GRNN 5.9167 250.5156 28.0084 316.9053
LSTM 9.1936 276.9733 26.4932 400.6833
DBN 0.8827 244.8736 27.2302 312.2535
CNFS 184.4885 46.9601 4.8166 59.3112
RACFIS 202.1760 33.0322 3.6206 39.0780

Figure 5.11: Results regression plot for UTS prediction (12 abnormal data points).

Notably, the UTS data set does have missing variables because some physical quant-

ities are difficult to measure in industrial processes and are therefore not included in

the data set used for testing, which may prohibit accurate prediction for many machine

learning models. RACFIS exhibits excellent generalization capabilities, which not only

learn information about the data but also make predictions as close as possible to the

ground truth with key variables missing. Such an algorithm has the potential to meet

the most demanding situations in everyday applications, enabling it to be a competitive

solution for real-world data modeling tasks.
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5.5 Chapter Summary

The RACFIS network is proposed for real-world regression modeling scenarios in this

chapter. On the one hand, it adopts a newly designed joint optimization method, lead-

ing to surprising algorithm efficiency. The optimization method includes the use of con-

vex clustering to pre-train the antecedent parameters of the network so that it locates

at a position close to the global optimum before the start of the iteration, thus speeding

up the training and effectively reducing the possibility that the model falls into local

optima. In the iterative training step, a newly designed QHM-RLS online optimization

strategy is applied to refine the network parameters, where the QHM method is a novel

three-parameter gradient optimization method characterized by faster convergence and

smoother training, and RLS is a traditional linear parameter estimator for optimizing

the linear part of the network. This new joint optimization approach allows the RACFIS

model to converge with only one-tenth of the number of iterations compared to other

benchmark algorithms and also leads to a result closer to the global optimum.

On the other hand, the combination of complex fuzzy logic and gradient-based online

learning methods also contributes to the good performance of RACFIS. The rule-base of

complex fuzzy sets is defined in the unit circle of the complex plane, which has a better

information capacity than the traditional type-1 fuzzy sets, making it possible to achieve

better generalization capability with fewer rules. The rule-base of RACFIS can be even

smaller than most type-2 fuzzy models when solving the same problem, owing to the

application of complex fuzzy sets. Also, one can optimize a complex fuzzy model using

gradient methods because the closed-form solutions exist for the first-order derivatives

of membership functions, which is an advantage over type-2 fuzzy models since it is

well-known that there are no such solutions for most interval type-2 membership func-

tions. The essence of the gradient is the prior knowledge of the optimization surface,

which is conducive to speeding up the convergence and reducing computational con-

sumption. The gradient-based online learning strategy is more flexible than traditional

batch optimization, alleviating the model’s tendency to overfit the training set and im-

proving its generalization capability on the testing set. Combining these advantages,

the RACFIS model outperformed all benchmark models in almost all tests regarding
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prediction accuracy, convergence speed, and generalization performance.

Moreover, given that real-world datasets often contain variables with little relevance,

the RACFIS algorithm also includes an RBF network-based MIV algorithm for variable

analysis. This method differs from the dimensionality reduction method in that it does

not change the manifold of the data since the result is simply a "score" for the variable,

and the user can determine whether the variable has value based on this. Irrelevant

variables can be identified and excluded by ranking the scores that relate their contri-

bution to the model output. MIV is considered the best of such methods, and its ac-

curacy is 100% in the experiments of this chapter. With this algorithm, one can reduce

the data dimensionality to mitigate the problems caused by the curse of dimensionality,

and it also helps to eliminate interference from irrelevant factors to improve prediction

accuracy.

The RACFIS algorithm is highly adaptable to tricky data types, including datasets

with high sparsity, a significant advantage over the DCVSF algorithm presented in the

previous chapter. RACFIS only needs to initialize a relatively mini rule-base to achieve

high-accuracy nonlinear approximation with a small number of iterations, which makes

it a promising solution for real-world application scenarios that require better prediction

accuracy, faster convergence, and a smaller computational resource footprint at the

same time. However, the RACFIS architecture and its online optimization approach do

not fit the purpose for data types with significant outliers and noises, for which it may

fail to learn data information or even be unable to converge. Considering that noise is

inevitable in many application scenarios, it is necessary to design an algorithm that is

more robust against such abnormality in the data. Therefore, a robust machine learning

architecture will be presented to neutralize this issue in the next chapter.
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6
ENCFIS: An Exclusionary Neural Complex

Fuzzy Inference System for Robust learning

„ My goal is simple. It is a complete
understanding of the universe, why it is as
it is and why it exists at all.

– Stephen Hawking –
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6.1 Introduction

For a long time, numerical modeling overridingly relied on primitive statistical mod-

els such as ordinary least squares (OLS) [187] or hypothetical models based on tenable

assumptions, expert knowledge, and deductive reasoning. However, the reliability of

these methods is often inadequate, and, in many cases, they can only be employed to

describe certain phenomena qualitatively, which hinders any future attempts to perform

regression tasks based on the information obtained. With the rise of machine learning,

inductive statistical models represented by artificial neural networks (ANN) are rapidly

replacing traditional methods as the dominant approach in the field. As technology

continues to permeate this quickly digitizing world where the internet of things (IoT),

deep learning, and big data technologies are massively and increasingly applied, ma-

chine learning-based numerical modeling is now indispensable among the incalculable

amount of research and industrial sectors.

Nevertheless, conventional machine learning methods, including fuzzy logic-based

ones, rely highly on the tidiness of the dataset. As such algorithms are all designed

under the hypothetical premise that the data distribution is clean, even the most preem-

inent algorithms can be confused if there are statistically existential noises or outliers in

the data. Unfortunately, real-world data is rarely ideal. Indeed, in many cases, one can

remove the noise and outliers with pre-processing methods, such as filtering, smooth-

ing, or anomaly detection [188]. However, these techniques are hardly 100% effective,

and anomalous data points will inevitably be fed into the model, leading to a reduc-

tion in performance. Some designs with good generalization capability may be resistant

to such perturbations to a certain degree, but as long as such disturbances play a role

in the final result, the regression accuracy of the model will more or less be affected.

Even worse, if undetectable but ruinous adversarial perturbation [189] is planted in

the data, it will lead to a calamitous impact on model performance. In fact, practical

attack methods [190] have already been developed by creating malicious data samples

with specially designed adversarial perturbations for the purpose of sabotaging machine

learning models. Conventional machine learning models are utterly defenseless against

this type of attack. Naturally, the performance and adaptability in real-world scenarios
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are likely to be enhanced if a machine learning regression model can initiatively counter

outliers. This category of approaches is also referred to as “robust machine learning"

[191].

Support vector regressions (SVRs) [192] can be considered a paradigm following this

line of thought. From the perspective of statistics, the ultimate objective of all machine

learning algorithms is to achieve the minimized expected risk. However, considering

that the expected risk is difficult to measure, most algorithms seek to minimize the

empirical risk, i.e., minimizing the mean loss over all samples in the training set. It

also poses a problem that pure empirical risk minimization is likely to contribute to

the overfitting of the model and causes it to be sensitive to noise. Hence, structural

risk minimization is introduced in SVR as a compromise between empirical risk and

expected risk, which can be captured by adding an L2 regularization in its loss function.

Subsequently, by introducing a slack variable to this regularization term, a “hard/soft

margin" is created to pardon the errors arising from incorrect data points and thus

significantly avoid the effects of noises [193]. Despite the fact that SVR has been ex-

tensively popular in dealing with noise, such a method is not perfect. Firstly, although

SVR can avoid the noise in many cases by setting a “margin", it does not recognize the

differences between the noise and the data from the statistical aspect, which may cause

the false adoption of noisy data points while some genuine data points are mistakenly

excluded. Secondly, even a sparse representation is available for the SVR model, the

complexity of training such a model can be excessive especially for nonlinear problems

with a significant number of training samples, as it requires initializing a remarkable

number of support vectors to obtain linearly separable results on the Hilbert space and

calculate kernel functions for each support vector, which results in its exceptional in-

efficiency under such circumstances. In the worst case, if sparse representations are

difficult to obtain, the number of support vectors for the SVR model may even approach

the number of training samples, which is unacceptable.

Other attempts to improve the noise immunity of machine learning algorithms are

also notable. The simplest way is to replace the objective function with a robust loss

function, such as Huber loss [194], log-cosh loss, or quantile loss [195]. Barron [196]
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proposed a generalized adaptive robust loss function that is considered superior to tra-

ditional robust loss functions. This approach has the advantage of simplicity but with

negligible improvements in algorithm robustness. Further, some researchers enhanced

robustness by introducing a noise adaptation mechanism into the model, i.e., label-

noise representation learning (LNRL) [197]. Goldberger et al. [198] increased the

algorithmic robustness against outliers by adding a noise adaptation layer to the deep

network. Patrini et al. [199] introduced loss correction methods in deep learning mod-

els to form a more robust model. Wang et al. [200] and Ren et al. [201] applied data

reweighting techniques to facilitate the noise tolerance of network structures. Jiang et

al. [202] employed a small-loss technique to suppress noise but resulted in cumulative

errors. Han et al. [203] ameliorated the small-loss trick by training two neural networks

synchronously to create a difference channel structure, which successfully cancels out

cumulative noise. However, although LNRL methods can enhance the robustness of

models, such a train of thought also leads to a dramatic increase in training difficulty.

Subsequently, Wang et al. [204] compensated for the shortcomings of previous LNRL

methods by employing a meta-learning approach to estimate the noise transition mat-

rix, which significantly ameliorates the efficiency of robust learning systems. This at-

tempt also created a brand-new class of meta-learning-based robust learning methods.

Carmon et al. [205] proposed a semi-supervised learning strategy to allow networks

to increase robustness by simply adding more unlabeled data samples. Nevertheless,

semi-supervised learning and meta-learning require pure validation sets to pre-train the

model, whereas clean data may not be available for some scenarios.

In addition, some non-architectural level techniques can also improve the robustness

of the training process, including regularization, loss designing, or even manually ex-

cluding some corrupted parts of data. Such methods are not strictly enhancements to

the model robustness but merely improve the robustness of the model for specific prob-

lems. Although many exploratory attempts have been made, conspicuous shortcomings

exist in the present robust machine learning methods: a) The robustness comes at the

expense of significantly offsetting the algorithm’s accuracy. b) The training process is

often sophisticated and unfriendly to applications requiring real-time adjustments. c)
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Mostly tailor-made to classification and pattern recognition tasks with uncertain ef-

fectiveness over numerical regression application scenarios. Notably, robust learning

frameworks for fuzzy models have not yet emerged to our best knowledge.

Driven by the above motivations, an exclusionary neural complex fuzzy inference

system (ENCFIS) that learns from both clean and contaminated datasets with a robust,

accurate, and expeditious regression performance has been proposed in this chapter.

Note that the word “exclusionary" in this context characterizes the model’s capability

of ruling out the obfuscation caused by outliers during training. Complex fuzzy sets

and logic (CFS&T) [16] is also introduced in this work to replace the traditional type-

1 or type-2 fuzzy logic for constructing the fuzzy inference system. The membership

degree of a complex fuzzy set is defined in a unit circle on the complex plane, with

two-dimensional properties that enable less sensitivity to the disturbance than the one-

dimensional type-1 logic, contributing to improved robustness. Additionally, complex

numbers are algebraically closed structures, and the first-order derivatives of the mem-

bership functions of complex fuzzy sets can guarantee a closed-form solution, which

makes gradient optimization possible. It is an overt advantage in contrast to the inter-

val type-2 fuzzy logic because an algebraic solution does not exist for the derivatives

of most interval type-2 membership functions. Considering that derivatives are actu-

ally the prior knowledge of the optimization surface, by applying gradient optimization

policy, the complex fuzzy model can be potentially more efficient and precise than a

typical interval type-2 model.

Regarding robust learning, the partition-based fuzzy c-means clustering method [206]

is employed to pre-train the antecedent parameters of membership functions, which not

only ensures that the model is placed close to its optimum before the iterative optim-

ization process but also helps to avoid the interference from label noises as clustering

is performed only on input variables. For robustly optimizing the consequent part, a

Welsch function-based M-estimator [207] is applied to exclude the impact of outliers on

linear parameters. Given that the residuals are often decoupled from the actual target

under strong noise conditions, compromising the reliability of ordinary loss functions.

Therefore, the ENCFIS network adopts a Huber loss function that can generate pseudo-
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residuals as the loss function. Finally, such a robust design is validated on a highly

contaminated synthetic dataset, a severely corrupted Sunspot time series dataset, and

a metallurgical dataset that simulates the real-world scenario. Experimental results in-

dicate that the ENCFIS model is robust to extremely noisy datasets and adaptable and

competitive to real-world datasets.
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6.2 Methodological Premises

6.2.1 Fuzzy C-Means Clustering

The k-means clustering is the best-known convex clustering method, simple but ef-

fective, and is massively applied in many fields. However, it must assign data samples

to crisp clusters, which often leads to unreasonable partitioning at the boundary of each

one. Principally, fuzzy c-means clustering [206] as a convex clustering method can play

a similar role, but with the help of the fuzzy theory, it can provide a more flexible solu-

tion, i.e., soft-clusters, compared to hard-clusters generated by the traditional k-means

algorithm. The soft clustering solution does not force the data into a particular cluster

but provides the membership vector of that sample against all partitions. Subsequently,

the fuzzy partition matrix, as the clustering outcome, is formed by integrating all mem-

bership vectors. Suppose that a dataset with n samples needs to be divided into c

clusters, and ξ1, ξ2, . . . , ξc are the pre-determined centroids. The normalized member-

ship value uij that reflects the degree of association between the ith data point and the

jth cluster can be calculated as follows:

uij =
1

∑c
k=1

(
∥xi−ξ j∥
∥xi−ξk∥

) 2
c−1

, (6.1)

where uij is an element of the fuzzy partition matrix U, and notably, ∑c
j=1 uij = 1. Then,

the updated centroid ξ j can be obtained under the new membership values:

ξ j =
∑n

i=1 uij · xi

∑n
i=1 uij

, (6.2)

The algorithm repeats the above steps several times until the objective function reaches

the global minimum or satisfies the stopping condition. The sum of the squared error

(SSE) is often the option as the objective function, which can be computed according to

the following equation:

SSE =
n

∑
i=1

c

∑
j=1

uij
∥∥xi − ξ j

∥∥2 , (6.3)
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In practice, however, it is customary to use the following stop condition:

∥U(k + 1)− U(k)∥ < ϵ (6.4)

where k denotes the iteration count, and ϵ represents the threshold to stop the iteration,

which is usually a small number. Although the centroids are pre-determined as the

information to initialize the clustering process in this section, one can also use the pre-

determined fuzzy partition matrix to start the algorithm. A complete demonstration of

the fuzzy c-means is as follows:

Algorithm 6.1 Fuzzy C-Means.

Step 1. Manually determine the number of clusters c.
Step 2. Initialize the fuzzy partition matrix U(0) or the centroid vector ξ(0).
Step 3. Calculate the renewed fuzzy partition matrix U(k).
Step 4. Compute the updated centroid vector ξ(k).
Step 5. Go back to Step 3 and repeat the above processes several times until
the stopping condition ∥U(k + 1)− U(k)∥ < ϵ is satisfied.

6.2.2 DEMON Momentum Decaying Optimization

The gradient-momentum method [208] is widely adopted amongst the brigade of

gradient descent schemes. The idea of momentum is introduced to facilitate optimiz-

ation in directions of low curvature while avoiding fluctuations in directions of high

curvature. Compared with the vanilla gradient solution, the involvement of momentum

can smooth the optimization process and help to avert some possible local optima. As-

sume x(k) ∈ Rd is the parameter vector of the kth iteration for a network, then the

iterative expression for the classical gradient-momentum optimization is as follows: x(k + 1) = x(k) + αv(k)

v(k) = ηv(k − 1)−∇ f (x(k)),
(6.5)

where α ∈ R represents the learning rate, ∇ f (x(k)) refers to the vector of the gradient,

η denotes the momentum coefficient and the item v(k) ∈ Rd accumulates momentum

over the iterations. However, such a technique is unduly sensitive to the initial para-
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meter setting, and even subtle changes can make an appreciable difference in the final

optimization outcomes. In addition, unchanged momentum also causes it easy for the

model to miss the optimum over the last few iterations. Consequently, methods of

gradually reducing the momentum item during training have emerged, in which DE-

MON [209] is currently considered state-of-the-art.

It is well-known that the momentum is essentially the impact of historical gradients

on the present learning process. For a constant momentum training process, the com-

mon iterative expression is as follows:

x(k + 1) = x(k)− α∇ f (x(k))− αη∇ f (x(k − 1))− · · · − αηk−1∇ f (x(1))

= x(k)− α∇ f (x(k))− α
k

∑
i=1

η(i)∇ f (x(k − i)) (6.6)

where η(i) signifies the momentum of the i th iteration and in this case η(i) = ηi. It

should be noted that if k → ∞, then η(k) → 0. According to the sum of geometric

series, we have:

lim
k→∞

k

∑
i=1

η(i) = η lim
k→∞

k

∑
i=0

η(i) =
η

1 − η
. (6.7)

The DEMON momentum decaying is enlightened by the above expression such that

the momentum item can reduce to zero within finite T steps. Following this idea, the

decayed momentum at the kth step is given as:

η(k) = ηinit
1 − k

T

(1 − ηinit ) + ηinit

(
1 − k

T

) , (6.8)

where ηinit is the initial momentum. Thus, the renewed gradient-momentum update

equation applying DEMON momentum decay is as follows: x(k + 1) = x(k)− α∇ f (x(k)) + η(k)v(k)

v(k) = η(k − 1)v(k − 1)− α∇ f (x(k − 1))
, (6.9)

As the momentum decays to zero after finite iterations, the network sensitivity to the

initial value of the momentum parameter sharply decreases, which is an evident advant-
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age for models seeking more robustness during training, especially when it is hyperpara-

meter sensitive. This approach also enables a better optimization process around the

optimal point.

6.2.3 Robust Estimators

In the field of parameter estimation, many simple yet excellent methods are available

if the actual problem is consistent with the assumed parametric model and no statistic-

ally significant outliers exist in the observed values, such as the least squares estimation,

method of moments, and maximum likelihood estimation [187]. However, in practice,

idealized parametric models are rarely identical to real problems, and observations are

often inaccurate, noisy, or distorted. In this context, the concept of “robust statistics"

[210] came into being, characterized by its tolerance to imprecision in hypothetical

models and the interference of abnormal observations. Robust estimators, designed

based on robust statistics, strive to approach traditional statistical methods but are more

resistant to misleading outliers or deviations from the reference distribution.

A variety of robust estimators have emerged during the past few decades, which be-

long to three main categories, i.e., L-estimators, R-estimators, and M-estimators. Spe-

cifically, L-estimation is a linear combination of the observation statistics, for example,

the sample median and α-trimmed mean, which is extraordinarily straightforward but

statistically robust. The most famous practice of L-estimation is the Theil-Sen estimator

[211], in which the mean of a least square estimator is replaced by the multivariate

median, significantly increasing the robustness. Such a method has no additional para-

meters, and its performance is almost comparable to OLS, with a high breakdown point

of 29.3%. However, due to the sharp escalation in the difficulty of determining the

median value as the dimension increases, the efficiency and accuracy of the L-estimator

represented by the Theil-Sen estimator plummet under high-dimensional conditions.

Therefore, L-estimators are rarely taken into practice since high-dimensional scenarios

are often involved in linear estimations. L-estimators based on α-trimmed mean are

also not preferred because of their dependence on prior knowledge. Other than L-
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estimation, R-estimation is realized by compartmentalizing the residuals into several

classes, and each class is assigned a unique weight, therefore achieving a robust stat-

istic. However, the R-estimator is even less popular than the L-estimator because its

construction relies more on prior knowledge of the problem than the L-estimator, which

vastly increases the arduousness of its applications.

Currently, the most mainstream robust estimation method is the M-estimation. The

difference between this method and the previous two is that it simulates the possible

distribution of the data by formulating an influence function, thus avoiding the require-

ment for prior knowledge. Such a solution, as a generalization of the maximum likeli-

hood estimator, is susceptible to the data distributed near the mean while insensitive to

the disturbance of anomalous points (usually situated far from the mean). Thereupon,

one can accomplish a reliable and robust estimation even if the priority of the data is

unavailable. Two types of M-estimators have emerged so far, i.e., ρ-estimator and ψ-

estimator. For ρ-type, assume an n-dimensional measure space Λ ∈ Rn, and λ ∈ Λ is

the parameter vector of the model. Thus, the representation of this Mestimator Ξ(G) in

accordance with the mapping ρ : χ × Λ → Rn is given as follows:

Ξ(G) := argminλ∈Λ

∫
χ

ρ(x, λ)dG(x), (6.10)

where ρ(x, λ) is the influence function, G denotes the distribution of observed values

and χ refers to the distribution of estimation. Note that if ρ(x, λ) = − ln
(

∂G(x,λ)
∂x

)
,

then the M-estimator will reduce to the ordinary maximum likelihood estimator. For a

differentiable and continuous influence function ρ, the M-estimator can be simplified

to a more computationally convenient form, i.e., the ψ-type. In this case, the estimator

ξ(G) is defined by equation:

∫
χ

ψ(x, ξ(G))dG(x) = 0, (6.11)

and the estimation λ̃ can be obtained by solving the following equation:

∫
χ

ψ(x, λ)dG(x) = 0 (6.12)
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where ψ(x, λ) = ∂ρ(x,λ)
∂λ . In addition, M-estimators with bounded ψ are typically robust,

which suggests the importance of selecting appropriate influence functions. Dozens of

influence functions have hitherto been proposed, but only five of them are most ap-

plied, i.e., the Huber function, the Hampel function, the Cauchy function, the Bisquare

function, and the Welsch function [207].

6.2.4 M-Estimator with Welsch Influence

One can implement most linear estimation tasks utilizing the ordinary LS. However,

the OLS is susceptible to abnormality among the training samples, which is inappropri-

ate for a robust learning scenario. An M-estimator with the Welsch influence can be an

effective solution under such circumstances. The Welsch influence function is defined

as follows:

fW(ε) =
γ2

2

[
1 − exp

(
− ε2

γ2

)]
, |ε| ≤ ∞ (6.13)

Given the following system model:

yL = SLθ + ωL, (6.14)

where SL is the sample matrix, θ denotes the parameter vector, yL is the vector for

output labels, and ωL is the vector of the system noise independent of the input. The

discrete M-estimator can be obtained by minimizing the following objective function:

n

∑
i=1

fW

(
yi − si θ̂

σ̂

)
=

n

∑
i=1

fW (εi) , (6.15)

where si ∈ SL denotes the ith data sample, σ̂ represents the scale parameter, εi is ith

the residual, fW refers to Welsch influence. For continuously differentiable function fW ,

designate ψ = ∂ fW
∂θ , then one can further simplify the minimization process by solving

the following equation:

n

∑
i=1

ψ

(
yi − si θ̂

σ̂

)
si =

n

∑
i=1

ψ (εi) si = 0, (6.16)
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Define weight function w(ε) under the Welsch influence:

w(ε) =
ψ(ε)

ε
= exp

(
− (ε/γ)2

2

)
, (6.17)

and substitute it into the equation (6.16) to obtain the following representation:

n

∑
i=1

w (εi) εisi = 0 (6.18)

To estimate θ̂, the equation below is derived by substituting εL = SLθ̂ − yL into equation

(6.18):

ST
LWSLθ̂ − ST

LWyL = 0, (6.19)

where W is the weight matrix determined by the weight function w(ε). Thus, the final

estimation of the parameter vector θ is as follows:

θ̂ =
(

ST
LWSL

)−1
ST

LWyL (6.20)

Regarding the tuning constant γ in the weight function, this is related to the estimation

efficiency. Usually, the efficiency of ordinary LS is considered the reference. The higher

the constant tunes, the closer its performance is to LS, but the robustness against outliers

decreases. The most encountered relative efficiencies of the Welsch M-estimator against

ordinary LS under different γ settings are available in Table 6.1. In most cases, the

M-estimator is recommended to run at the efficiency level of 95%.

Table 6.1: The efficiency level under different γ for the Welsch M-Estimator.

γ 2.3831 2.9850 3.9104 4.7407

Efficiency level 90% 95% 98% 99%
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6.3 Methodology

6.3.1 ENCFIS Overview

ENCFIS is a robust learning architecture for the nonlinear regression of highly noisy

data. Unlike most previous attempts that use filters to eliminate noise before sending

the data into the model, this algorithm uses the difference in statistical distribution

between the noise samples and the authentic samples to offset the effect of noise. It

first maps the nonlinear raw data to a high-dimensional Hilbert space using a kernel

function to make the object linearly separable. Then it applies a linear M-estimator

in the Hilbert space to obtain robust regression results according to the hypothetical

distribution of the data, which is given in the form of an influence function. Specifically,

in ENCFIS, the above process is driven by a uniquely designed Sugeno fuzzy inference

system based on complex fuzzy logic that perfectly integrates robust learning.

Assume the objective system has m inputs and one output, then the ith fuzzy rule can

be represented as follows:

Rule i : IF l1 is Ai
1(x1) and l2 is Ai

2(x2) ,. . . , and lm is Ai
m(xm).

By applying the Sugeno defuzzification, the output ζ i of this rule is obtained:

ζ i = ai
0 +

m

∑
j=1

ai
jxj, i = 1, 2, . . . , n, (6.21)

where Ai
j
(
xj
)

denotes the jth antecedent of the ith complex fuzzy rule, ai
j signifies its

corresponding consequent parameter. In terms of the optimization of the antecedent

parameters, the fuzzy c-means algorithm is utilized first to pre-train the Gaussian ker-

nel parameters to approximate the actual global optimum. Subsequently, the DEMON

momentum decaying optimization is taken to fine-tune the parameters. Regarding the

consequent part, a ψ-type M-estimator based on the Welsch influence function is applied

to conduct a robust linear estimation to determine the weights. Moreover, the Huber

loss is selected as the cost function to counteract the disturbance caused by outliers. An

overall schematic diagram of the ENCFIS is available in Figure 6.1.
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Figure 6.1: ENCFIS algorithm flow.

Figure 6.2: The main network structure of ENCFIS. (Xi denotes the input variable, Ri represents
the firing strength of each rule, Ni is the normalization layer, Di is the outcome
of Sugeno defuzzification, and S signifies the sum of the previous layer, which is
identical to the output of the network, i.e., y.)
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6.3.2 Network Structure of ENCFIS

ENCFIS has a five-layer network architecture displayed in Figure 6.2. The operation

of each layer under the n-dimensional input vector x(τ) = [x1(τ), x2(τ), . . . , xn(τ)]
T at

time τ is presented as follows:

Layer 1: The fuzzification is carried out in this layer, where the real-valued inputs

are mapped into the complex common domain via the following complex Gaussian

membership function:

Oi
1,j(τ) = exp

−

(
x(τ)− µi

j

)2

2bi
j

− jexp

−

(
x(τ)− µi

j

)2

2bi
j

 x(τ)− µi
j

bi
j

λi
j, (6.22)

where Oi
1,j(τ) refers to the complex membership of the ith rule by the jth input variable,

and
{

µi
j, bi

j, λi
j

}
denotes the antecedent parameters for each node.

Layer 2: This layer computes the firing strength of each rule, in which a complex

multiplication is applied:

Oi
2(τ) =

n

∏
j=1

Oi
1,j(τ) =: αi

j(τ) + jβi
j(τ), (6.23)

αi
j(τ)=

1−
n

∏
j=1

(
xj(τ)−µi

j

)
bi

j
λi

j

exp

− n

∑
j=1

(
xj(τ)−µi

j

)2

2bi
j

 , (6.24)

βi
j(τ)=−

n

∑
j=1

λi
j

xj(τ)−µi
j

bi
j

exp

− n

∑
j=1

(
xj(τ)−µi

j

)2

2bi
j

 , (6.25)

where Oi
2(τ) is the strength of the ith firing and αi

j(τ), βi
j(τ) represent the values of real

component and imaginary component, respectively.

6.3 Methodology 161



Layer 3: All firing strengths are normalized in this layer via complex division so that

the information of two dimensions can thoroughly interact. For brevity, formulas (6.24)

and (6.25) are used here to simplify the expression:

Oi
3(τ)=

Oi
2(τ)

∑m
r=1 or

2(τ)
=

αi(τ) + jβi(τ)

∑m
r=1 αr(τ) + j ∑m

r=1 βr(τ)
, (6.26)

where Oi
3(τ) denotes the normalized output of ith node in this layer.

Layer 4: This layer consists of adaptive nodes, in which the Sugeno defuzzification is

implemented to derive the output of fuzzy reasoning in accordance with corresponding

consequent parameters:

Oi
4(τ) = Oi

3(τ) ∗
(

pi
0 +

n

∑
j=1

pi
jxj(τ)

)
, (6.27)

where Oi
4(τ) is the result of each reasoning and

{
pi

0, pi
1, pi

2, . . . , pi
n
}

are consequent

parameters.

Layer 5: The overall output of the network is determined in this layer by a simple

sum of node outputs from layer 4. Note that only the real component of the complex

number is utilized.

O5(τ) = Re
m

∑
i=1

Oi
4(τ), (6.28)

where “Re” denotes the real component of the complex number, O5(τ) is the network

output, and m equals the number of fuzzy rules for this system. This step maps the

complex reasoning result into real numbers as an indispensable defuzzification step for

the complex fuzzy sets. For a complex membership function defined in the polynomial

form, the complex plane projection on the real axis equals its real component, making it

the best candidate to be the defuzzified output. This strategy maintains the nature map-

ping relation between the antecedent and the network output, enabling the antecedent

parameters to pre-train by a partition-based convex clustering method. Given that the

feed-forward structure of ENCFIS is consistent with the RACFIS model of the previous

section, for the input-to-output numerical demonstration, please see section 5.4.1.
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Regarding the selection of objective function, the mean square error (MSE) loss is

often preferred owing to its good performance in regression tasks. But the MSE loss

is sensitive to outliers, causing a vulnerability against noisy data. Although the mean

absolute error (MAE) is considered more robust against disturbances, it is less popular

in neural network optimizations due to the poor performance of the constant gradient

near the minimum. Hence, Huber loss [194], combining the merits of the two, is taken

as the objective function for ENCFIS, which is shown as follows:

Ĥ(τ)=

 1
2 (y(τ)−O5(τ))

2 , |y(τ)−O5(τ)| ≤ δ

δ |y(τ)−O5(τ)|− 1
2 δ2, otherwise

(6.29)

where Ĥ(τ) represents the Huber loss, |y(τ)− O5(τ)| is the residual at the τth input,

δ denotes the tuning coefficient. By setting a δ, the Huber function diverts a part of

abnormal data points to the MAE loss, which enhances the robustness of the traditional

MSE loss. The user should choose the parameter δ cautiously because a too-large δ may

lead to reduced robustness against the noise, whereas a too-small one will slow down

the algorithm convergence. After deploying the Huber loss, the optimization process no

longer relies on the residual, but the pseudo-residual defined as follows:

ĥ(τ)=

 y(τ)−O5(τ), |y(τ)−O5(τ)| ≤ δ

δsign (y(τ)−O5(τ)) , otherwise
(6.30)

where ĥ(τ) represents the pseudo-residual generated by the τth data point, sign() is

the signum operator that extracts the sign from a real number. Since the noise tends to

keep the actual residuals away from the optimization target, the use of pseudo residuals

certainly smooths the training process. The merit of the Huber function is its simplicity

and the fact that it has only one adjustable parameter. One can tune it easily according

to the noise level of the data, or it can also be optimized in an iterative training process

with means like the evolutionary algorithm. Note that Huber loss does not have second-

order derivatives and therefore is not accessible for algorithms that apply a second-order

optimization policy. Fortunately, it is not an issue for ENCFIS as it adopts first-order

gradient optimization.
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6.3.3 Robust Learning Process for ENCFIS

The robust learning strategy for ENCFIS includes several steps. First, a fuzzy c-means

clustering procedure is applied to pre-train antecedent parameters with only input vari-

ables to minimize the influence of potential label noise; then, the algorithm undergoes

forward propagation to determine the current Huber loss; the DEMON momentum de-

caying and the Welsch M-estimator are utilized to iteratively optimize the nonlinear

antecedent parameters and the consequent parameters, respectively, until reaching the

minimum Huber loss. Note that if the variables are too different in scale, it may negat-

ively affect the learning algorithms. Thus, it is crucial to normalize the data according to

the Z-score [212] method so that this strategy gets the best performance. The formula

for the Z-score normalization is as follows:

xz =
x − µz

σz
(6.31)

where µz is the mean of the samples, σz is the standard deviation, and xz is the nor-

malized value. After the standardization, clustering is employed to pre-train the ante-

cedent part of the network using only input variables. By operating the fuzzy c-means

on all training samples, the vector of r cluster centroids C = {c1, c2, . . . , ci, . . . , cr} is

obtained. Here, r must be identical to the number of fuzzy rules assigned to each

input variable. Subsequently, the sum of the distances between samples and their

corresponding centroid in every cluster is calculated, i.e., D = {d1, d2, . . . , di, . . . , dr},

where di = ∑n
k=1
(
xk

i − ci
)

, n denotes the number of samples in this cluster. Given that

the fuzzy c-means clustering results in the fuzzy partition matrix rather than explicit

clusters, the centers used here come from the clusters with the highest membership

values in the matrix. Then, the antecedent parameter set
{

µi, bi, λi} is determined as

follows:

µi = ci, bi = ρ
n

∑
k=1

(
xk

i − ci

)
, λi = 1 (6.32)

where µi denotes the center of each kernel, bi refers to the width and λi represents the

scale factor for the complex component. ρ is said to be the expansion factor, which is

defaulted to be 1.
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For the type-1 Gaussian fuzzy kernels, after the previous step, the antecedent para-

meters should be very close to the global optimum. But for the complex fuzzy kernels,

there is still a non-ignorable difference. At this time, the DEMON gradient optimization

strategy can further refine the parameters. Combine the equations (6.8) and (6.9), the

expression of the update rule for parameter µi at the recursion k + 1 is given as follows:
η(k)=ηinit

1− k
T

(1−ηinit )+ηinit (1− k
T )

µi(k+1)=µi(k)−αh(k) ∂ f (k)
∂µi

∣∣∣
µi=µi(k)

+η(k)v(k)

v(k+1)=η(k)v(k)−αh(k) ∂ f (k)
∂µi

∣∣∣
µi=µi(k)

(6.33)

where h(k) is the pseudo-residual under the Huber loss defined by equation (6.30).
∂ f (k)

∂µi is the partial derivative with respect to µi. Further, one can obtain the update rules

for parameters bi and δi by replacing ∂ f (k)
∂µi

∣∣∣
µi=µi(k)

with ∂ f (k)
∂bi

∣∣∣
bi=bi(k)

and ∂ f (k)
∂λi

∣∣∣
λi=λi(k)

,

respectively.

The linear consequent parameters are estimated using the Welsch M-estimator, which

is a vital step to robust learning. Assume there is a set of N data samples involved, then

define the equation coefficient matrix Si, weight matrix W i, data label vector y and the

parameter vector θi as follows:

Si =


f i
0 (x1) f i

1 (x1) · · · f i
q (x1)

f i
0 (x2) f i

1 (x2) · · · f i
q (x2)

...
... . . . ...

f i
0 (xN) f i

1 (xN) · · · f i
q (xN)

 ,

W i =


wi

1 · · · 0 0

0 wi
2 · · · 0

...
... . . . ...

0 0 · · · wi
N

 ,

y = [y1, y2, . . . , yN]
T ,

θi =
[

ai
0, ai

1, . . . , ai
a

]T
,
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where q equals to the number of fuzzy rules, wi
0, wi

1, . . . , wi
q are determined in accord-

ance with formula (6.17). Hence, the estimated consequent parameter at the kth recur-

sion can be calculated using the following equation:

θ̂k =

[(
Sk
)T

WkSk
]−1 (

Sk
)T

Wky. (6.34)

The clustering step only needs to be used once, while the DEMON optimizer and

M-estimator joint learning approach is supposed to repeat several recursions until the

error requirement is satisfied or it reaches the maximum epoch setting. Such a learning

process is extremely robust against label noise for the following reasons. Firstly, the

clustering process does not involve labels, thereby more accurately estimating the ante-

cedent parameters. Secondly, the genuine residuals are replaced with pseudo residuals

to conduct gradient optimization, which offsets the influences of noise in training ob-

jectives. Thirdly, the noise-insensitive M estimator is adopted to obtain the consequent

parameters, which avoids the noise sensitivity problems caused by ordinary LS. The

simplified algorithm procedures are as follows:

Algorithm 6.2 Robust Learning for ENCFIS.

Step 1. Normalize the dataset according to the Z-score standardization for-
mula.
Step. 2 Pre-determine the antecedent parameter set

{
µi, bi, λi} using inform-

ation obtained from fuzzy c-means.
Step. 3 Compute outputs with the initial setting, then generate the pseudo-
residual ĥ(τ) under the Huber loss.
Step. 4 Refine the antecedent part (non-linear) of the network by the DE-
MON momentum decaying method.
Step. 5 Estimate the consequent part (linear) with Welsch M-estimator.
Step. 6 Calculate the output of the network, and obtain the renewed pseudo-
residual ĥ(τ).
Step. 7 Repeat Step.4-Step.6 until the stopping condition is satisfied.
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6.4 Experimental Results and Analyses

6.4.1 Corrupted Synthetic Data Test

The single-input-single-output synthetic dataset is produced using the following si-

nusoidal function:

f (x) = sin(x − 3), 0 ≤ x ≤ 10, (6.35)

where 201 original data points are generated by isometric sampling from the range

[0,10] with an interval of 0.05. Corruption is then added by replacing part of the initial

data with random values ranging from [-3, 2]. A total of 45% of the data points were

“corrupted" during this process, which poses an enormous challenge to any machine

learning model. It is worth noting that there is no testing or validation set for this

experiment. The algorithm performance is evaluated based on its ability to “restore" the

original data. However, given that the RMSE computed using corrupted data makes no

sense, the RMSE value is evaluated according to the original data. The hyperparameter

setting for this test is available in Table 6.2, and the comparison between the proposed

ENCFIS model and other models is in Table 6.3. The actual MSE and the Pseudo-MSE

during the training process are side by side displayed in Figure 6.3. The visualization of

the data restored by different models is shown in Figure 6.4.

Table 6.2: ENCFIS hyperparameter setting for the corrupted synthetic data test.

Bisecting k-means clustering for antecedence pre-training

Cluster number k 9 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−6 Tuning constant γ 2.9850
Initial momentum
factor β

0.1 α-cut factor δ 0.15

Table 6.3: RMSE of the models over the corrupted synthetic data test.

BP RBF GRNN EA-SVR Type-1 Type-2 ENCFIS

RMSE 0.639 0.419 0.380 0.126 0.0271 0.0219 0.0082
Iterations 100 100 100 30 100 – 60
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Figure 6.3: MSE and Pseudo-MSE in training.

Figure 6.4: Restored sinusoidal curves.
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As it can be easily seen from Figure 6.3 that the variation trends of MSE and pseudo-

MSE values during training, computed in accordance with residuals and pseudo re-

siduals, respectively, show a remarkable difference. The genuine residuals from the

training process lost their authenticity as a measure of the empirical error due to the

extensive noisy data points in the dataset. Instead, pseudo-residuals generated by the

Huber loss function play a crucial role in measuring the training progress. Regarding

the “restoration” performance, seven models, including BP [52], RBF [53], GRNN [54],

EA-SVR [193], Type-1, Type-2, and ENCFIS are tested, where Type-1 is a counterpart

of ENCFIS that uses exactly the same robust learning strategy but takes the traditional

type-1 fuzzy logic instead of the complex fuzzy logic. The Type-2 model is obtained by

expanding the membership function on top of the trained type-1 counterpart, where

the Lower membership function delay factor is set to 0.1. Both Type-1 and Type-2 mod-

els are specially introduced as a control group to validate if the complex fuzzy logic is

conducive to the performance and robustness of the model. Furthermore, EA-SVR is an

SVR model that applies an evolutionary algorithm [213] to tune the hyperparameters

for obtaining the best performance from the SVR model.

As shown in Figure 6.4, the most used but non-robust regression models, such as BP,

RBF, and GRNN, are inefficacious under the presence of such a high level of noise. Even

the noise-resistant SVR model is influenced, despite the adoption of EA, which also con-

firms that the SVR strategy of offsetting noises via setting a “margin” has limitations.

However, the proposed ENCFIS, Type-1 and Type-2 models obtained the best outcome

in this data recovery challenge. Further investigation of the RMSEs in Table 6.3 reveals

that ENCFIS not only far outperforms all models, including SVR, but also significantly

outperforms Type-1 and Type-2, which are the type-1 and type-2 fuzzy logic counter-

parts of ENCFIS as mentioned above. Note that the RMSE values were calculated by

comparing the restored data with the uncorrupted original data. This test shows a

positive result for the effectiveness of the proposed robust learning method, and the

introduction of complex fuzzy logic is also immensely conducive to the accuracy and

robustness. Thus, it is sufficient to conclude that the ENCFIS model is robust when only

high-level label noise is presented.
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6.4.2 Corrupted Sunspot Time Series Test

In this experiment, 602 Sunspot observations from 1976 to 1980 are used to create

the contaminated training set, while another 602 records from 1984 to 1989 are taken

to form the clean validation set. The form of each data point used for the test is as

{χ(τ − 2), χ(τ − 1); χ(τ)}, in which two previous observations are utilized to create

the input vector while the current observation χ(τ) is considered the output label. For

the training set, around 150 out of the 602 observed values are replaced with random

values, which means 25% of the time series is compromised. It also suggests that if the

training data is constructed using the above form, 50% of the data points will contain

one incorrect input variable, 25% of the data points will have a misleading training la-

bel, and only 25% of the data points are intact. This experiment is far more challenging

than the previous one because only the label noise exists in that case while the inputs

are unaffected. But time series forecasting requires applying the earlier observations to

predict the future ones, which gives rise to the inescapable perturbation inside input

vectors, bringing daunting challenges to the prediction algorithm. In other words, all

benchmark models suffer from together intense label noises and faulty inputs in this

test. The hyperparameter setting of ENCFIS is available in Table 6.4, the RMSEs of all

benchmark models are given in Table 6.5, and the visualization of model outputs on

both the contaminated training set and pure validation set are displayed in Figure 6.5

and Figure 6.6.

Table 6.4: ENCFIS hyperparameter setting for the corrupted Sunspot data test.

Bisecting k-means clustering for antecedence pre-training

Cluster number k 6 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−5 Tuning constant γ 2.9850
Initial momentum
factor β

0.3 α-cut factor δ 0.1

Table 6.5: RMSE of the models over the corrupted Sunspot data test.

BP RBF GRNN EA-SVR Type-1 Type-2 ENCFIS

RMSE 23.9236 37.5726 75.1519 17.2526 14.1203 17.0519 6.4720
Iterations 100 50 100 30 50 – 30
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Figure 6.5: Corrupted Sunspot time series prediction on both the training set and validation set.
(Conventional models)
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Figure 6.6: Corrupted Sunspot time series prediction on both the training set and validation set.
(Noise robust models)
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As expected, three non-robust algorithms, such as BP, RBF, and GRNN, perform poorly

in this test. Traditional machine learning models have difficulty handling such data

types with heavy noise in both the input and the label. These models cannot identify

noisy data points and remove their interference but give noises the same credit as the

genuine data samples, making the training process deviate from the correct direction.

EA-SVR outperforms non-robust models but with evident deviations in the prediction of

peak points due to the false exclusion of some valid data points near the peak. Given

that the solution of tackling noisy data by the SVR algorithm does not include a mech-

anism that distinguishes noise and data according to their statistical distributions, the

occurrence of such problems is difficult to avoid. Additionally, even the “Type-1” and

"Type-2" models that uses the same robust learning strategy as the ENCFIS model failed

to accurately predict the Sunspot peaks, making ENCFIS the only winner in this chal-

lenge.

In fact, the Sunspot time series is not difficult to forecast, and many models can

achieve good performance on this dataset. The only reason for the poor performance

is the heavy noise and massive outliers. Thus, it is fair to say that model robustness

against disturbances is the key to excelling in this case. From this perspective, the

ENCFIS model exhibits spectacular robustness, as it barely gets affected by the outliers,

which is not only reflected in Figure 6.5 but also verified from the RMSE values on

Table 6.5. The ENCFIS model applies the Welsch influence as a reasonable hypothesis on

the probability distribution of valid data points, which designates low weights to noises

or outliers that do not conform to this distribution during the training process while

assigning high weights to data points that comply to this hypothetic distribution, thus

achieving good noise robustness. It also confirms that using the difference in probability

distribution to identify noises is more reliable than the SVR solution of simply setting

"soft boundaries" for outliers. Moreover, given that ENCFIS’ type-1 and type-2 fuzzy

logic counterparts, i.e., the “Type-1” and "Type-2" models, also interfered by the noise,

it leads to the conclusion that the two-dimensional properties of complex fuzzy logic

and the disturbance insensitivity it brings are vital to the success of ENCFIS as well.
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6.4.3 ENCFIS on Ultimate Tensile Strength (UTS) Modeling

The ultimate tensile strength refers to the peak of engineering stress in a stress-strain

curve, which is highly nonlinear and sparse. This experiment tests 1,500 data samples

from actual industrial processes, of which 1,000 consists of the training set and the other

500 forms the test set. This dataset has 15 input variables, of which 13 are numerical,

whereas the rest 2 are categorical. Given the high dimensionality of the data and the

presence of data that are not strongly correlated with predicted values, only the 10 most

relevant influencing variables are selected to construct input vectors, i.e., C, Mn, Cr, Mo,

Ni, Site, Tempering Temperature, Cooling Medium, Sample Size, and Test Depth. In ad-

dition, since the data comes directly from industrial processes, it contains an unknown

number of outliers caused by measurement errors or incorrect human entry, which, al-

beit in limited numbers, may still offset model performance. It is believed that such a

test is representative of most real-world scenarios to validate the model’s potential in

applications. The hyperparameter setting of the network is available in Table 6.6, and

the performance of all benchmark models is given in Table 6.7.

Table 6.6: ENCFIS hyperparameter setting for the UTS data test.

Bisecting k-means clustering for antecedence pre-training

Cluster number k 6 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 10−6 Tuning constant γ 3.9104
Initial momentum
factor β

0.3 α-cut factor δ 0.2

From the perspective of RMSE values, the performance of different models on this

dataset varies widely. As a result of the high dimensionality, data sparsity, and per-

turbation caused by outliers, traditional non-robust neural network models such as BP,

RBF, GRNN, LSTM citeref43, and DBN [66] have underwhelming performance on this

dataset. The classical ANFIS neuro-fuzzy model does not achieve the best prediction

performance as well due to the limited expressive ability of the type-1 fuzzy logic. Only

three models achieved MSE values that are less than 40, namely EA-SVR, IT2-Sugeno

[12], and ENCFIS and those are close in performance. The first-rate performance of

the SVR model is attributed to its unique vector representation of the input data, which
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makes it immune to high dimensionality and sparsity. SVR is also robust to noise ow-

ing to its unique design, which further contributes to its advantages. IT2-Sugeno is a

type-2 fuzzy model that benefits from the richer semantic representation of the inter-

val type-2 fuzzy logic. The enhanced generalization capability of the interval type-2

rule-base also increases the robustness, as its parameters are less prone to fluctuations

due to occasional outliers. However, both methods have conspicuous disadvantages.

SVR is inefficient when dealing with large samples because it needs to generate a sup-

port vector for almost each data point, whereas the traditional type-2 fuzzy model is

not robust enough for heavy noises. Furthermore, both methods require the evolution-

ary algorithm as the optimization policy, which brings the computational complexity a

magnitude higher than gradient optimization.

Regarding ENCFIS, it obtained the best performance thanks to the proposed robust

learning strategy and the improved generalization capability brought by complex fuzzy

logic. The algorithm efficiency is also much higher than other benchmark algorithms

owing to the proposed learning strategy. It is reflected by the training epochs, as EN-

CFIS achieves the lowest RMSE value with only 20 iterations. It is fair to say that the

proposed ENCFIS is an extraordinary model that integrates performance, efficiency, and

robustness, making it highly adaptable to intricate numerical regression tasks and real-

world application scenarios. It is commendable that, unlike most robust models, ENCFIS

does not sacrifice its accuracy for the exchange of extra robustness, which proves that

excellent robustness and good model performance can co-exist in the same architecture.

Table 6.7: Comparison of the performance (UTS data test).

STD MAE SMAPE RMSE Rules Epoch

BP 150.9674 32.1335 3.4460 44.4965 - 200
RBF 149.2079 41.2173 4.4341 54.1319 - 100
GRNN 153.8146 39.2092 4.1841 56.5168 - 100
LSTM 137.5868 42.4865 4.5160 56.5765 - 200
DBN 142.1892 36.1535 3.9260 47.7999 - 50
EA-SVR 153.1510 29.5739 3.1759 39.5723 - 30
IT2-Sugeno - - - 38.7600 6 100
ANFIS 148.6884 36.4036 3.9672 45.4163 6 50
ENCFIS 153.6219 28.8886 3.1456 38.0137 6 20
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6.4.4 ENCFIS on Charpy Impact Energy Modeling

The Charpy impact energy dataset is also an industrial dataset with 16 input vari-

ables and one dependent variable, including 14 numerical and 2 categorical inputs.

Although this dataset is less sparse than the UTS dataset, it has slight stochasticity. The

Charpy test suffers from a certain degree of uncertainty, and inconsistent results can

occur even with the same initial conditions. Inevitably, the measured impact energy is

only a typical value obtained after performing at least three trials instead of the exact

value. Rough modeling is relatively easy in such cases, whereas accurate modeling is

significantly more challenging. Besides, the data is even trickier in the presence of a

small number of outliers in this data due to human error. As a result, many models can

exhibit acceptable performance on this dataset but struggle to improve the accuracy

further. In this experiment, only the 9 most correlated variables are considered, i.e., C,

Si, Mn, Cr, Mo, Ni, Sample Size, Tempering Temperature, and Impact Temperature, to

alleviate the problems caused by the curse of dimensionality. The initial hyperparameter

settings of the ENCFIS network are shown in Table 6.8, and the experimental result and

its comparison with other benchmark models are available in Table 6.9.

Table 6.8: ENCFIS hyperparameter setting for the Charpy impact data test.

Bisecting k-means clustering for antecedence pre-training

Cluster number k 6 Expansion factor ρ 1

DEMON M-estimator and Huber Loss

Learning rate α 1.5 × 10−6 Tuning constant γ 4.7407
Initial momentum
factor β

0.3 α-cut factor δ 0.15

Table 6.9: Comparison of the performance (Charpy impact data test).

STD MAE SMAPE RMSE Rules Epoch

BP 25.2233 16.9010 21.2874 20.8389 - 200
RBF 30.9238 14.7211 19.5694 20.1443 - 100
GRNN 22.7647 16.0598 19.0444 22.0339 - 100
LSTM 24.9117 17.0228 21.5417 21.2242 - 200
DBN 27.2085 16.2536 20.2341 20.1211 - 50
EA-SVR 25.7636 14.1185 18.0370 19.4008 - 30
IT2-Sugeno - - - 19.6500 8 100
ANFIS 25.2724 16.1874 21.5623 20.1235 6 50
ENCFIS 26.6696 13.0726 17.1354 16.8880 6 30
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According to Table 6.9, the RMSE performance of most benchmark models is very

close, with only three models having RMSEs less than 20, i.e., EA-SVR, IT2-Sugeno,

and ENCFIS, of which ENCFIS performs much better than the previous two and be-

comes the best in the test. It is worth noting that the RACFIS model presented in the

chapter before also achieved good prediction accuracy on this dataset, but the mechan-

ism is not the same as ENCFIS. The excellent performance of RACFIS is attributed to

three factors: complex fuzzy logic, online learning, and a hybrid gradient-based optim-

ization algorithm. ENCFIS does not apply an online learning strategy due to the fact

that the robust estimator requires a sufficient number of samples to differentiate the

difference in distribution between data and noise, for which only batch learning is pos-

sible. However, the robust learning strategy of ENCFIS gives the model an additional

advantage, as it not only improves the noise tolerance of the model but also enhances

its capability to handle "coarse" datasets.

The correlation between the input variables and the label of the Charpy impact data-

set is not very strong compared with many other application scenarios due to the in-

fluence of the stochasticity of the Charpy impact test. Such a situation is actually the

purpose that the robust estimator was initially designed for, i.e., handling data with

relatively poor quality. ENCFIS is an advanced extension of the robust estimator in

the field of nonlinear regression, which inherits all the properties of the robust estim-

ator. The model applies a weight to each data point to reflect its correlation based on

the influence function, which not only can eliminate irrelevant noises but also makes

full use of the less correlated data, maximizing the information learned from the data

and thus improving the model performance. This mechanism explains why ENCFIS can

achieve the lowest regression error compared to all the benchmark algorithms as well

as the other models presented in previous chapters on the Charpy impact data test. The

above features are proof of the incredible adaptability of ENCFIS to real-world datasets,

making it the most successful and promising algorithm presented in this thesis.
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6.5 Chapter Summary

In this chapter, the first robust machine learning architecture based on complex fuzzy

theory for numerical regression purposes is presented. This algorithm has a specially

designed learning strategy to neutralize the effect of noises and outliers. First, it utilizes

clustering of input variables to pre-train kernel parameters to avoid the influence of

label noises. Then, the momentum decay gradient method, Huber loss, and Welsch

M-estimator are applied to form an iterative hybrid robust learning method, in which

the M-estimator assigns weights to data samples based on the hypothetical premises

provided by the Welsch influence function to reflect their relevance. Not only does

this effectively neutralize the effects of massive noise, but it also maximizes the use of

less correlated data samples, improving the algorithm’s performance on rough datasets.

Huber loss combines the advantages of both the MSE and MAE loss functions to generate

"pseudo-residuals" during training to replace the genuine residuals that are invalidated

by a large amount of noise, thus improving the robustness of the model.

In addition, the existence of closed-form solutions for the first derivatives of com-

plex fuzzy membership functions enables gradient optimization, thereby increasing al-

gorithm efficiency, which is a significant advantage over the type-2 architecture for

which gradient solutions are unavailable. The gradient-based momentum decay op-

timization also effectively avoids the hyperparameter sensitivity of the constant mo-

mentum method, reducing the difficulty of parameter tuning and enhancing the con-

venience of practical scenarios. The two-dimensional attribute and richer information

capacity of the complex fuzzy rule-base also increase the generalization capability and

anti-disturbance performance. Experimental results also confirm that the proposed EN-

CFIS algorithm exhibits incredible adaptability for a problem with only label noise and

when both input variables and labels are noisy. It also has astonishing performance for

some coarse real-world datasets, and its superb noise robustness does not come at the

expense of accuracy, which is rare for models with similar purposes. Therefore, it is

reasonable to believe that ENCFIS is very successful as a robust learning architecture

with the potential to enable machine learning under harsher data conditions.
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7
Conclusions and future work

„ There isn’t always an explanation for
everything.

– Ernest Hemingway, A Farewell to Arms –
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7.1 Conclusions

Data modeling algorithms can be divided into three categories, i.e., process-driven,

algorithm-driven, and data-driven. Process-driven approaches are rule-based and suit-

able for static and repeatable scenarios but are less flexible and require customization

for each specific application. Algorithm-driven designs rely on abstract mathematical

models, which can offer better flexibility than process-driven tools on static data con-

ditions, but are often less accurate, especially when data features are intricate. Both

approaches have the advantage of being well-interpretable and the disadvantage of be-

ing dependent on expert knowledge. Data-driven algorithms are virtually end-to-end

inductive statistical models that only require raw data samples and labels to generate

the mapping relations and are considered the most convenient, flexible, and accurate,

which can also be applied even when concrete mathematical expression is unavailable

but at the expense of reduced interpretability. In recent years, rising end-to-end ad-

aptive learning algorithms are replacing traditional process-driven or algorithm-driven

modeling methods in many areas.

Fuzzy algorithms are also moving in a data-driven direction, the importance of in-

terpretability decreases, and model design is biased towards better learning from the

data rather than explaining the physical meaning of the rules. Following this trend,

self-learning deep neuro-fuzzy models are favored, for which the research points of

interest are similar to those for ordinary deep network architectures, i.e., efficiency, ac-

curacy, and data applicability. Such models are expected to have faster convergence,

use smaller training sets and achieve better prediction accuracy. However, accomplish-

ing these goals is not easy, and the main challenge comes from the properties of the

raw data itself, such as high dimensionality, sparsity, non-linearity, and noises, where

high dimensionality triggers the curse of dimensionality, leading to a drop in accuracy

of the fuzzy algorithm and an increase in computational complexity. Sparsity and non-

linearity can seriously affect the model regression performance, which may even cause

convergence failure in extreme cases. Noisy nature of the real world also interferes

with the model’s ability to acquire information from the data and invalidates the learn-

ing model. This thesis explored the outlook of using complex-valued structures and
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complex fuzzy theory to enhance the performance of deep neuro-fuzzy data modeling

algorithms regarding the above perspectives.

In Chapter 4, a complex-valued Wang-Mendel (CVWM) method and a deep complex-

valued single-iteration fuzzy system (DCVSF) were proposed to mitigate the curse of di-

mensionality of the traditional Wang-Mendel (WM) method. The WM method is known

for its single-iteration training feature, which differs from many neuro-fuzzy systems

that rely on optimization algorithms to adjust the network parameters to realize a non-

linear mapping iteratively. However, such a training process involves assigning different

firing strengths to the rules according to their relevance to the problem, which requires

the initialization of a remarkable number of rules for each variable to cover all possib-

ilities. Unfortunately, the rule-base of the WM model suffers an exponential dilemma,

for which the size is determined by the number of rules for a single variable as the

base and the number of input variables as the power, meaning it is highly susceptible

to the curse of dimensionality. The CVWM design is innovative in that it introduces a

complex-valued structure to the original WM method, using complex-valued arithmetic

logic to deal with real-valued problems and successfully bringing its rule base down to

the square root size of the original version. The DCVSF architecture handles very high

dimensional data types by incorporating CVWM units into a hierarchical fuzzy system

while only generating a relatively controllable size of rule-base. Also, both algorithms

retain the WM method’s property to finish training in a single iteration and are even

more efficient due to the reduced rule base. The smaller rule-base coupled with the

one-pass training property makes the above models ideal for memory-constrained scen-

arios.

Experimental results in Chapter 4 indicated that the newly proposed algorithms are

successful, as they significantly reduce the size of the rule-base while the performance

loss is almost negligible for dense data problems. Notably, both algorithms also in-

herit the shortcoming of the original WM algorithm, i.e., the inability to tackle the

sparsity, which is even exacerbated by the introduction of the complex-valued struc-

ture. Attempts to alleviate this problem using dimensionality reduction methods have

had limited success and remain ineffective for highly sparse datasets. It is an intrinsic
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flaw of the WM-like algorithm that is impossible to resolve by improvement because

the sparsity often leads to many untriggered rules in the rule-base, preventing it from

reflecting the whole picture of the data. Therefore, it is better to seek other solutions

for sparse data types.

In Chapter 5, a rapid adaptive complex neuro-fuzzy system (RACFIS) was developed

to target real-world application situations, which uses a new complex fuzzy theory as

the inference logic, leading to significant advantages over the traditional type-1 model

and a competitive performance compared with the type-2 model as well. The mem-

bership for complex fuzzy sets is a two-dimensional complex-valued notion defined in

the unit circle in the complex plane, allowing them to accommodate more information

and enabling better generalization capabilities of the algorithm on regression model-

ing. Such a property can also help reduce the number of rules required for the model,

improving efficiency and mitigating over-fitting. At the same time, the periodic nature

of complex numbers increases the algorithm’s performance against quasi-periodic prob-

lems, which is conducive to tasks such as time series forecasting and stream data pro-

cessing. Furthermore, another advantage of complex fuzzy membership functions over

their interval type-2 counterparts is that they have algebraically closed-form first-order

derivatives, making first-order gradient optimization possible. The gradient is a priori

knowledge of the optimization surface and has positive implications for the efficiency of

the optimization algorithm. Interval type-2 networks are forced to apply derivative-free

optimization schemes because their membership functions do not exist in representable

first-order derivative form, which increases the computational complexity and weakens

the efficiency of the optimizer.

The proposed RACFIS utilizes a hybrid gradient-based optimization policy and in-

corporates unsupervised learning as a pre-train method. It first uses convex clustering

methods to pre-train the antecedent parameters of the network so that they are closer to

the global optimum than the randomly initialized ones. The model then applies quasi-

hyperbolic momentum (QHM) and regression least squares methods (RLS) to iteratively

optimize the network’s antecedent and consequent parameters to obtain the final global

optimum. QHM is a new multi-parameter gradient optimization solution, faster and
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smoother than traditional gradient-momentum solutions, and its combination with RLS

results in a very efficient hybrid online optimization strategy. The meaning of introdu-

cing online learning into the RACFIS model is that it provides better test set prediction

accuracy than traditional batch learning and further accelerates network convergence.

Experimental results in Chapter 5 showed that the RACFIS model is highly efficient

and can converge using only a fraction of the number of iterations required by other

benchmark algorithms. The size of the rule-base is also competitive due to the use of

complex fuzzy sets. RACFIS exhibits impressive accuracy and generalization capability

on tricky real-world datasets, putting it well ahead of all benchmark models employed

for comparison. RACFIS can accommodate most data types in real-world application

scenarios, including sparse data. However, there are also cases where massive noises

and outliers exist in the data for real-world situations, demanding a more robust and

specialized architecture.

In Chapter 6, an exclusionary neural complex fuzzy inference system (ENCFIS) was

presented as a robust machine learning solution. Robust learning is a promising area of

advanced machine learning, primarily for scenarios in which massive noises and outliers

are existential. Traditionally, one can remove noise from data through means such as

filtering, but in many cases, it is impossible to completely prevent noise-containing data

from feeding into the model. The learning process of conventional machine learning

algorithms relies on the hypothetical premise that the target data is clean, whereas the

presence of statistically significant noises or outliers can cause performance degradation

or even model failure. Robust learning models have unusual mechanisms that lead to

less susceptibility to outliers, thus maximizing the valid information obtained from the

data.

The proposed ENCFIS is the first robust neuro-fuzzy system, and the attempt is unpre-

cedented. Firstly, it utilizes clustering methods to pre-train the antecedent parameters

of the network, which increases robustness in the presence of label noise, as clustering

is an unsupervised learning method and does not require the involvement of data la-

bels. Secondly, the linear parameters are optimized using an M-estimator based on the

Welsch influence, which assigns weights to each data sample according to the difference
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between it and the assumed statistical distribution, thus marginalizing outliers. Thirdly,

ENCFIS employs the Huber robust loss function as the objective function instead of the

traditional MSE loss function. The pseudo-residuals generated by the Huber function

replace the genuine residuals, which lose credibility to reflect the training error due to

high noise conditions. This design significantly neutralizes the interference of the label

noise on the optimization target and ensures that the optimization proceeds in the right

direction. In addition, complex fuzzy logic also has a positive effect on the robustness

of the model, as the complex operations lead to an increased generalization capability,

reducing its sensitivity to outliers to a certain extent. Also, given that robust models

are often sensitive to hyperparameters, a gradient-based momentum decay algorithm is

employed to refine the antecedent parameters. The decaying momentum algorithm is

considerably less susceptible to the initial parameter settings than its constant gradient

counterpart, thus enhancing the convenience of the ENCFIS architecture under real-

world conditions.

Experimental results in Chapter 6 confirmed that ENCFIS is surprisingly resilient to

high-noise environments. For data with only label noise, it can complete modeling

almost unaffected on a synthetic dataset with 45% data corruption. It also exhibits

excellent performance for tricky datasets where the label and input noises are present

at the same time. The performance of ENCFIS on the tests involved even exceeds that of

support vector machines that are considered highly robust to noise, demonstrating the

superiority of the algorithm. It is also remarkable that the performance of ENCFIS for

regular clean data does not diminish despite its high robustness, which is rare even for

robust models. It is reasonable to believe that ENCFIS is a successful attempt at robust

machine learning with promising research and application value.

Nevertheless, not much work on the interpretability of the proposed models in this

thesis, and several reasons hinder the discussion in this direction. For CVWM and

DCVSF models, the complex-valued structure destroys the physics of the fuzzy mem-

bership functions, making the rule-base uninterpretable. The RACFIS and ENCFIS mod-

els are also not feasible for interpretation at the current stage because the research of

complex fuzzy logic is still in its infancy, with no mature and widely accepted theory to
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decipher its semantic representations. In addition, the increased network depth and di-

mensionality may also undermine the model’s interpretability. Despite this, the models

presented in this thesis are still transparent, with apparent advantages over black-box

models in debugging and parameter tuning, which is good enough for most data-driven

scenarios.

7.2 Future work

The application of complex-valued structures and complex fuzzy theory is successful

in this thesis. For future research, there is little room for complex-valued architectures

solely for mitigating the curse of dimensionality due to obvious reasons, whereas the

complex fuzzy theory holds vast promise. Currently, two key issues need to be resolved

urgently to make complex fuzzy theory better serve the neuro-fuzzy systems. The first

is that it is necessary to develop a complex membership function superior to existing

solutions, as the three emerged versions are rather primitive and cannot maximize the

benefits of complex fuzzy logic. Also, the first-order derivatives of these functions are

too sophisticated, which causes inconvenience in network design and development.

Second, although interpretability can be weak for many deep neuro-fuzzy systems, it

is still necessary to unravel the semantic interpretation of complex fuzzy logic, which

could extend the theory for applications such as data mining and knowledge extraction.

More knowledge of the mechanism by which its rules work may also help design new

neuro-fuzzy systems based on such theory.

For network architecture, several promising research directions are also available for

exploration. Firstly, many studies show that increasing the network depth can enhance

the information capacity of the learning system, thus boosting its non-linear mapping

performance, which means it is possible to further improve the accuracy following this

route. Secondly, popular concepts in machine learning, such as meta-learning, rein-

forcement learning, and semi-supervised learning, may lead to unexpected effects and

discoveries in the model. The successful attempt at robust machine learning in Chapter

6 can be considered an example of this case. Thirdly, some fundamental elements of
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networks, such as objective functions and optimization algorithms, are always worth

investigating. The gradient optimization policy is recommended in this thesis, but it

does not mean this is the only solution, and better performance may be possible by

trying other optimization algorithms or objective functions. Finally, it is necessary to

note that although the algorithms proposed in this thesis are general-purpose designs

targeting most situations, they can also be customized according to the characteristics

of application scenarios, thereby improving the performance in specific fields.
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List of Abbreviations

ACNFIS adaptive complex neuro-fuzzy inference system

AI artificial intelligence

ANCFIS adaptive neuro complex fuzzy inference system

ANFIS adaptive neuro-fuzzy inference system

ANN artificial neural network

ARIMA autoregressive integrated moving average

BP backpropagation

CAIFS complex Atanassov’s intuitionistic fuzzy set

CFS&T Complex fuzzy sets and logic

CFS complex fuzzy set

CFT complex fuzzy theory

CIFSS complex intuitionistic fuzzy soft set

CNFIS complex-valued neuro-fuzzy inference system

CNFS complex neuro-fuzzy self-learning system

CRI compositional rule of inference

CVNF complex-valued neuro-fuzzy system

CVNN complex-valued neural network
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CVWM complex-valued Wang-Mendel

DBN deep belief network

DCFS deep convolutional fuzzy system

DCVSF deep complex-valued single-iteration fuzzy system

DEMON decaying momentum hyperparameter rule

DR dimensionality reduction

EA-SVR support vector regression using evolutionary algorithms

Elman-NARX Elman-Narx neural network

ELM extreme learning machine

ENCFIS exclusionary neural complex fuzzy inference system

FLS fuzzy logic system

FMP fuzzy modus ponens

FOU footprint of uncertaint

GrC-NF granular computing and neural-fuzzy modelling

GRNN generalized regression neural network

IFSS intuitionistic fuzzy soft set

IFS intuitionistic fuzzy set

IMOFM immune inspired multi-objective fuzzy modeling

IOT internet of thing

IT2Sugeno interval type-2 sugeno fuzzy inference system

LNRL label-noise representation learning

LS/OLS ordinary least square

LSTM long short-term memory
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MAE mean absolute error

MAPE mean absolute percentage error

MIV mean impact value

MOIT2FM multi-objective interval type-2 fuzzy modelling

MP modus ponens

MSE mean square error

MT modus tollens

NFIS neuro-fuzzy inference system

NFS neuro-fuzzy system

PCA principal component analysis

PFS Pythagorean fuzzy set

PID proportional-integral-derivative

Pseudo-MSE pseudo mean square error

PSO particle swarm optimization

Q-ANFIS quantum adaptive neuro complex fuzzy inference system

QHM quasi-hyperbolic momentum

RACFIS rapid adaptive complex neuro-fuzzy inference system

RBF radial basis function

RLSE recursive least square estimation

RLS recursive least square

RMSE root-mean-square error

SARIMA seasonal autoregressive integrated moving average

SD/STD standard deviation
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SILSO sunspot index and long-term solar observation

SMAPE symmetric mean absolute percentage error

SVM support vector machine

SVR support vector regression

t-conorm triangular conorm

t-norm triangular norm

t-SNE t-distributed stochastic neighbor embedding

TSK Takagi-Sugeno-Kang

UTS ultimate tensile strength

WM Wang-Mendel method
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