
Investigating the formation and
properties of multiple star systems

using Monte Carlo models

Rebecca J. Houghton

Department of Physics and Astronomy
The University of Sheffield

A dissertation submitted in candidature for the degree of
Doctor of Philosophy at the University of Sheffield

October 2023





“ While I’m still confused and uncertain,
it’s on a much higher plane, d’you see,

and at least I know I’m bewildered about
the really fundamental and important facts

of the universe.”

— Terry Pratchett, Equal Rites



iv



Declaration

I declare that, unless otherwise stated, the work presented in this thesis is my own.
No part of this thesis has been accepted or is currently being submitted for any other
qualification at the University of Sheffield or elsewhere.

The work presented in Chapter 4 has already been published and can be found in
Houghton & Goodwin (2022). The work in Chapter 2 has been submitted for publication.
The methods presented in Chapter 5 will be submitted for publication as part of Shenton
et al. (in prep).

v



vi



Acknowledgments

First of all, a massive thank you to Simon Goodwin for being an incredible supervisor.
I wouldn’t have made it through the chaos of the last four years without your constant
support, kindness, and scientific guidance. I’d also like to thank Richard Parker, for
telling me I was good enough to be here every time I convinced myself I wasn’t.

I’m incredibly grateful to the rest of the astro group for making my time here so
wonderful. Thank you to Vik and Pablo for encouraging me to go on the 3rd year field
trip - it helped me decide to do a PhD and allowed me to start building up my self
confidence to get where I am today. Extra thanks to Pablo for all the tech support over
the years. Thank you to Clive, for letting a theorist come on your observing run.

Thank you to all the postdocs and PhD students that have been around during my
time here. In particular, Alex, Summer, Martin, Mark, George, Luke, James W, Umar,
Emma, Joe, Adam, Dustin, James G and Thaer. Big thanks to Martin for teaching me
almost everything I know about Git and proper python coding, and to Mark for letting
me take advantage of your unhealthy knowledge of statistics. Another massive thank
you to Alex, for letting me talk through my research whenever I needed to (and always
coming up with helpful suggestions), and for all of the care and support over the past
years that I’ve been extremely lucky to have.

To my uni mates, thank you for getting me through lockdown and the difficult times
with online chats, movies, and games. To Alana and Joe, thanks for letting me be
your lockdown bubble and to Owen and Leila, thank you for several years of wonderful
Tuesday/Thursday night dinners.

Finally, and most importantly, thank you to my mum, my dad, and my brother for
supporting me every single step of the way. I could never have made it this far without
you. Thanks to my granddad, for the years of chats about space and science fiction
which led me to astronomy, and to my nana and grandma, for making sure every taxi
driver, carer, and hairdresser in all of Merseyside knew I was doing a PhD.

vii



viii



Summary

Stellar multiplicity has been extensively studied over the past few decades. It is believed
that most stars form in multiple systems, meaning that understanding multiplicity is
crucial for understanding star formation as a whole. Studying binary systems can tell
us about their formation histories and orbital properties.

In this thesis, I investigate the properties of multiple systems using three different
methods. Firstly, I tested various simple rules for ‘universal’ star formation using a toy
Monte Carlo model. These rules define how protostellar cores fragment into multiple
systems and how these systems then decay (through secular processes or encounters).
I found that the number of stars formed in each core must be a weak function of core
mass in order to produce the canonical IMF and multiplicity fractions that increase with
primary mass. However, it is difficult to match the multiplicity fractions exactly without
a more detailed model for dynamical and secular decay.

I then present a summary of FOBOS - an orbit fitting algorithm designed to estimate
the orbital parameters of binaries, triple systems, or directly imaged exoplanets from as
few as two astrometric observations. FOBOS uses a brute force Monte Carlo method to
sample parameter space using uniform priors. I tested the code on a large sample of
fake systems, as well as two real systems with brown dwarf companions, showing that it
is a reliable method of estimating the semi-major axis, inclination, and eccentricity of a
system.

Finally, I created a binary population synthesis model. I used this model to estimate
the selection effects present in samples of visual binaries, by first performing some general
tests and then applying it to a sample of binary YSOs, taken from archival data. I found
that the majority of the YSOs in the sample had a significantly larger semi-major axis
than was first expected, implying that the sample included only (a) ultrawide binaries
or (b) tertiary companions that were too close for the survey to resolve.
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Chapter 1

Introduction

1.1 Foreword

One of the first constellations that my dad pointed out to me when I was a child was the
Ursa Major (the Big Dipper). It is one of the most famous constellations in the sky and
many people in the northern hemisphere, whether they have any interest in astronomy
or not, can recognise it. Out of the seven stars in the Big Dipper asterism, one is a
quadruple system (Mizar), one is a triple system (Megrez) and several are believed to
be binaries (Dubhe, and potentially Phecda) (Shaya & Olling, 2011). Observational
surveys searching for multiple star systems show that this is typical for high-mass stars,
as ∼ 50% of Sun-like stars have companion(s) and ∼ 80 − 100% of massive stars have
companions (Offner et al., 2022, and references therein).

With the ongoing advancements in astronomical instrumentation, observations of
multiple systems are yielding a wealth of information regarding their formation histor-
ies, orbital properties, and stellar evolution. Observing binary stars can give us unique
information that single stars cannot provide, such as direct determination of the masses of
the stars. Additionally, the remarkable spatial resolution of the James Webb Space Tele-
scope (JWST) allows for unparalleled precision in observing binary protostars, granting
us fresh perspectives and invaluable insights into the earliest stages of multiple system
formation and the star formation process. The separation distributions of these pro-
tostars can tell us the fraction of systems that formed through core fragmentation vs
disc fragmentation or dynamical capture.

Alongside observations, theoretical models are invaluable when studying multiple sys-
tems, as they provide a framework to understand the observed properties and behaviours
of these systems. By comparing the results of theoretical models with multiple system

1
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Figure 1.1: The Big Dipper/Ursa Major. Credit: ESA/Hubble, A. Fujii

characteristics (such as the orbital parameters, mass estimates, and formation histories),
we can investigate complex phenomena and gain insights into the underlying physical
processes occurring within binary star systems. Simulations can predict how and why
stellar multiplicity changes depending on the environment, along with which multiplicity
properties are a result of the star formation process and which are due to occurrences
later in the system’s evolution.

1.2 Molecular clouds and star-forming regions

The term ‘star-forming region’ is a general term referring to any environment where
star formation takes place. Most stars form in dense environments and are dispersed
into lower density environments, such as the Galactic field, which has a stellar density
of ∼ 0.1 stars pc−3 (Binney & Tremaine, 2008). They are dispersed either because
they form unbound from the host environment or due to dynamical interactions and
relaxation. It is generally accepted that most stars form in associations (loosely bound
or unbound groups of stars with a density of ∼ 6 stars pc−3) rather than dense open
clusters (∼ 5000 stars pc−3) (Lada & Lada, 2003; King et al., 2012a; Wright et al., 2022).
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Figure 1.2: Young star-forming region NGC 346 in the Small Magellanic Cloud,
taken with the NIRcam instrument on JWST. NASA’s ‘Astronomy Picture Of the Day’
13/01/2023. Image credit: NASA, ESA, CSA.

1.2.1 Molecular clouds and the interstellar medium

Molecular clouds are over-dense regions of the interstellar medium (ISM), consisting
primarily of molecular hydrogen, H2. They typically have densities of nH2 ∼ 100 cm−3,
Which is significantly higher than the ISM (typically nH2 ∼ 0.1 − 1 cm−3). Supersonic
turbulence plays a crucial role in shaping the structures of molecular clouds. It occurs
when the velocity of the moving gas within a region exceeds the speed of sound, gener-
ating shock waves that cause over-densities within the medium. This can be induced by
stellar feedback, supernova shock fronts, gravitational instabilities, or passage through
dense regions of the galaxy, such as the spiral arms (McKee & Ostriker, 2007; Krumholz
et al., 2014). As such, molecular clouds are inhomogeneous and have a clumpy structure
(Ward-Thompson & Whitworth, 2011).

In recent years, radio, sub-mm, and far-infrared (IR) observations have allowed us
to build up a clear picture of the hierarchical structure of GMCs and their life cycles
in different environments (i.e. Temi et al., 2018; Chevance et al., 2020; Muraoka et al.,
2020). Observationally, they are characterised by large amounts of CO emission, and
many studies have determined that GMCs typically have masses of ∼ 104 − 106 M⊙,
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temperatures of ∼ 10K, mean densities nH2 ∼ 100 cm−3 (e.g. Solomon et al., 1987;
Scoville et al., 1987; Dame et al., 2001; Ward-Thompson & Whitworth, 2011), and sizes
of 10− 100pc. Both local and extragalactic GMCs have been observed and linked with
areas of high and low levels of star formation.

Theoretical models of star formation from GMCs initially predicted that it was a slow
and quasi-static process that occurred as a result of magnetic fields (e.g. Shu et al., 1987)
or purely gravitational free-fall collapse (e.g. Zinnecker, 1984). These models predicted a
star formation timescale of ∼ 100 Myr, which exceeds the typical observed lifetime of a
molecular cloud (∼ 10− 30 Myr, depending on the rate of accretion, McKee & Ostriker,
2007; Chevance et al., 2020). However, subsequent simulations found that turbulence
and gravitational instability contribute to cloud fragmentation, filament production, and
star formation (Bate et al., 2003; Seifried & Walch, 2015; Federrath, 2016).

1.2.2 Filaments and dense cores

Molecular clouds are threaded with a network of filaments. Large scale filaments typ-
ically have lengths of ∼1 pc and widths of ∼0.1 pc (Arzoumanian et al., 2011), but
within large filaments are smaller levels of filamentary substructure, as can be seen in
Figure 1.2. It is believed that magnetic fields, photo evaporation, stellar feedback, dif-
ferential rotation and gravitational collapse all result in filamentary structures (Hacar
et al., 2022; Pineda et al., 2022), which explains why this structure is observed in so
many different environments and on such a range of scales. Gas flows along the length
of the filament, directed by magnetic fields, and accumulates in over-dense regions that
eventually fragment to form cores (Könyves et al., 2015; Lee et al., 2017; Hacar et al.,
2018; André et al., 2019; Motte et al., 2022).

The Jeans criterion

Fragmentation occurs when internal pressure is unable to support the core against grav-
itational collapse. This is known as the Jeans instability, and was first quantified by
Jeans (1902). By considering small deviations from hydrostatic equilibrium (the scen-
ario in which pressure and gravity are balanced), Jeans derived equations for the Jeans
mass,

MJ ≃
(

5kT

GµmH

) 3
2
(

3

4πρ0

) 1
2

=
4πc3s

3G3/2ρ1/2
, (1.1)

and the Jeans length,
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RJ ≃
(

15kT

4πGµmHρ0

) 1
2

=

√
c2s
Gρ

, (1.2)

where k is the Boltzmann constant, T is the temperature, µ is the mean molecular
weight, mH is the mass of hydrogen, ρ0 is the initial density, and cs is the speed of sound
in the medium. According to the Jeans criteria, a core will collapse if it has a mass
greater than the Jeans mass or a length greater than the Jeans length.

Bonnor-Ebert mass

The stability of a core can also be quantified using the Bonnor-Ebert mass (Bonnor, 1956;
Ebert, 1955). Much like the Jeans instability, the Bonnor-Ebert mass has a critical value
(MBE,crit) above which the core will collapse. This critical value is the maximum mass
of an isothermal gas cloud can have whilst remaining in hydrostatic equilibrium. The
Bonnor-Ebert mass derivation accounts for the presence of external pressure on the gas
cloud, unlike the Jeans mass. In general, MBE is given by

MBE = 1.82
( n̄

104 cm−3

)−0.5
(

T

10 K

)1.5

M⊙, (1.3)

where n̄ is the volume density of the core and T is the temperature. The equation for
MBE can be expressed in many forms, and is often represented in terms of parameters
such as the external pressure, density, or speed of sound in the medium (the version in
Equation 1.3 is from Lada et al., 2008). Due to its dependence on the properties of the
host cloud, the critical Bonnor-Ebert mass can vary depending on the host environment.
For low-mass star-forming regions, the value is typically on the order of ∼ 1M⊙ (McKee
& Ostriker, 2007), but it can vary from ∼ 0.6M⊙ in the Aquila cloud (Könyves et al.,
2015) up to ∼ 2M⊙ in the Pipe nebula (Lada et al., 2008).

1.2.3 The core mass function

The dense cores that form from filaments are the birth environment of stars (di Francesco
et al., 2007; André et al., 2014), and typically cores are defined as the precursors of either
single stars or gravitationally bound binaries/multiple systems. Observationally, cores
without clear indicators of a protostar are classified as ‘starless’, but may also be counted
as ‘prestellar’ (i.e. go on to form cores later) if the mass is > 2MBE,crit or it appears
gravitationally bound (e.g. Könyves et al., 2010).
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Figure 1.3: Prestellar core mass function (blue histograms) in the Aquila rift cloud.
The red solid line shows a lognormal fit to the data, which peaks at ∼ 0.6 M⊙. The
solid black line shows a power-law slope of −1.5± 0.2. The Kroupa (2001) and Chabrier
(2005) IMFs are shown for reference. The region to the left of the vertical dashed line
suffers from incomplete sampling. Figure from André et al. (2010).

Filaments and cores have been extensively mapped in recent years, using two main
methods; mapping using molecular tracers (e.g Benson & Myers, 1989; Scibelli & Shirley,
2020) and dust continuum mapping (e.g. Motte et al., 1998; André et al., 2010; Könyves
et al., 2010; Massi et al., 2019; Marsh et al., 2016; Di Francesco et al., 2020).

A key program in dust continuum mapping is the Herschel Gould Belt Survey (HGBS,
André et al., 2010), which observed molecular clouds within 500pc at infrared and sub-
mm wavelengths. In the initial results released from this survey, they detected 500
prestellar and protostellar cores in the Aquila rift cloud, which were used to generate a
dense core mass spectrum. The core mass function (CMF) (shown in Figure 1.3) has an
approximately lognormal shape, with a high mass slope with an exponent of Γ = −2.35

and a peak mass of around ∼ 1M⊙. Due to incomplete sampling, the low mass end of
the CMF is not well defined, but seems to have a lognormal shape (André et al., 2010).

Similarly, Di Francesco et al. (2020) utilized the HGBS data for the Cepheus Cloud
by extracting 832 dense cores from the data to generate a CMF. Their CMF is comparable
to the CMF for the Aquila rift cloud; it peaks at ∼ 0.56M⊙ and has a power law slope
at the high mass end. It also suffers from incomplete sampling at low masses, but when
the population of ‘candidate’ cores are included rather than just ‘robust’ cores, the low
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mass slope becomes significantly shallower. This implies that there are probably many
more low mass cores than it is currently possible to confirm with current observations
and core finding algorithms.

A key feature in the majority of dense core surveys is the lognormal/power-law func-
tional form of the CMF, which appears to represent the shape of the CMF in most
regions (André et al., 2014) (i.e. it is ‘universal’). The relation between the CMF and
the stellar initial mass function (IMF) are discussed in Section 1.4.3.

1.3 Star formation

The initial phase of core formation is the fragmentation of filaments into smaller, dense
regions, which collapse gravitationally and isothermally to form a dense core. Cores can
either form individual stars or fragment to form multiple systems. In this section, I will
discuss the collapse of a prestellar core to form a single star, and move on to discussing
core fragmentation and multiple system formation in Section 1.5.

The star formation process can be described using four different classes/phases; Class
0, I, II, and III (Lada, 1987; Andre et al., 1993), which are defined by the shapes of their
spectral energy distributions (SEDs). In all phases, we refer to the newly forming star
as a young stellar object (YSO). Classes 0 and I represent the protostellar phase of
formation and classes II and III represent the pre-main sequence (pre-MS) phase.

1.3.1 Core collapse

The initial phase of star formation is the isothermal collapse of the protostellar core,
which will occur if the core mass exceeds the Bonnor-Ebert mass. In this phase, the
temperature of the core is only ∼10 K (di Francesco et al., 2007; Launhardt et al., 2013)
and the opacity is low enough that the energy released through the gravitational collapse
is radiated away from the core, maintaining the low temperature (Larson, 1969). The
collapsing core can only be observed through it’s far IR/sub-mm thermal radiation. The
isothermal collapse occurs on the free-fall timescale of the core,

tff =

(
3π

32Gρ

)1/2

, (1.4)

where ρ is the density of the core.
As the density of the core increases due to collapse, the optical depth also increases

to the point where energy can no longer be radiated away from the core. This occurs
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at ρ ∼ 10−13 g cm−3 (Larson, 1969). This causes the core to enter an adiabatic phase,
in which all thermal energy released in contraction stays within the core. As a result,
the pressure within the core builds up until it is enough to stop the contraction. When
this occurs, the core is in hydrostatic equilibrium and is classed as a protostar (Ward-
Thompson & Whitworth, 2011).

The star formation process differs depending on the mass of the star; in particular
the contraction timescales, the development of radiative/convective zones, and the time
taken to reach the hydrogen burning stage. In Section 1.3.2, the process for forming
Sun-like stars is described, with sections 1.3.3 and 1.3.4 focusing on brown dwarfs and
high-mass stars respectively.

1.3.2 Low mass star formation

The youngest protostars are classified as Class 0 objects. They are characterised ob-
servationally by a black body (BB) SED caused from radiation from the dust in the
envelope and a deeply embedded hydrostatic object. The SED peaks at far-infrared and
sub-mm wavelengths, as shown in the top left plot in Figure 1.5.

Initially, the protostar is significantly smaller than the envelope (which extends out
to ∼ 10, 000 au). The protostar accretes approximately ∼ 50% of it’s mass from the
envelope over a timescale of ∼ 0.1 − 0.3 Myr (Andre et al., 2000; André et al., 2007;
Ward-Thompson & Whitworth, 2011; Dunham et al., 2015). This accretion begins to
produce weak bipolar outflows and begins flattening some of the material in the envelope
into a disc (illustrated in panel (b) of Figure 1.4).

Many Class 0 protostars are believed to be in multiple systems, formed by fragment-
ation of the core during the isothermal phase (Ward-Thompson & Whitworth, 2011;
Tobin et al., 2022).

Class I

In the Class I phase, the SED is still dominated by mid-IR to far-IR emission, due to
dust remaining in the envelope. However, as shown in the top right panel in Figure 1.5,
there is also a significant IR excess indicating the presence of the disc. The typical
timescale of the Class I phase is ∼ 0.1−0.5 Myr (André et al., 2007; Ward-Thompson &
Whitworth, 2011; Dunham et al., 2015) and the bolometric temperature increases from
Tbol ∼ 70 K to ∼ 650 K (Chen et al., 1995).

At the start of this phase, the envelope has collapsed to a region of ∼ 300 au and
approximately half of the material in the envelope has been accreted onto the protostar.
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Figure 1.4: The stages of star formation. The top left panel shows the scale of the
prestellar core, spanning ∼30 000 au in radius. Following the arrows to the right, the
middle panel shows a class 0 protostar where the dense core is collapsing and forming
a small accreting protostar. When the object reaches class I, the surrounding envelope
has collapsed into a disc of radius ∼100 au. Image credit: Persson (2014a).
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Figure 1.5: SEDs of YSOs in Classes 0, I, II, and III. In Class 0, the protostar is embed-
ded in a dense envelope of material and is visible as a black body at far-IR wavelengths
due to dust radiation. During Class I, the protostar has IR emission due to the remaining
envelope and an IR excess indicating the presence of a disc. During the Class II phase,
the remaining envelope has dissipated enough for the pre-MS star to be visible as a BB
at optical wavelengths with a disc indicated by IR emission. Finally, in the Class III
phase, the stellar BB is observed with a small contribution to the SED from a debris
disc/planets. Image credit: Persson (2014b)
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The material at the poles falls onto the protostar from an angle close to perpendicular,
and when the infalling material collides with material in the envelope of the protostar,
it creates hot, high-density regions. This produces strong bipolar outflows, which clear
away some of the surrounding envelope (Carroll & Ostlie, 2017).

Class II

The Class II phase marks the beginning of the pre-main-sequence stage of star formation.
Class II objects have a black body SED peaking at optical wavelengths, with an IR
excess indicating the presence of a (possibly protoplanetary) disc. In this phase, the
star becomes visible at optical wavelengths because most of the gaseous envelope has
dissipated. The disc is thinner and may be more sub-structured than in the previous
phase, extending from ∼ 10s-100s au and containing ∼ 1% of the mass of the pre-MS
star (Ward-Thompson & Whitworth, 2011).

Class II stars are also known as Classical T Tauri stars (CTTS) (if they are <2 M⊙)
or Herbig Ae/Be stars (if they are >2 M⊙). T Tauri stars are defined by their variability
(Joy, 1945), which is caused by accretion from the disc onto the star (Hartmann et al.,
2016).

Also in this phase, the contraction of the pre-MS star increases the temperature to
the point where hydrogen burning can begin (T ≥ 106 K).

Class III

The Class III phase is the final pre-main sequence phase. The SED shows a similar BB
spectrum to the Class II objects, but the pre-MS star is no longer accreting and the
outflows have ceased. The star is surrounded by a much smaller, gas-free debris disc,
which appears in the SED as a much smaller millimetre contribution on top of the BB
spectrum (Hartmann et al., 2016). The pre-MS star may also be orbited by planets that
formed during the Class II phase.

Stars in this phase are classified as Weak-lined T Tauri stars (WTTS) due to the
relatively low intensity of emission lines compared with Classical T Tauri stars. They
continue to contract and increase their temperature until hydrogen burning can begin.
This is the longest of the protostellar/pre-MS phases, with the exact timescale depending
strongly on the mass of the star.

During the star formation process, ∼ 1− 10% of the material in the host molecular
cloud will be converted into star(s) (Murray, 2011; Kim et al., 2021; Chevance et al.,
2022). The amount of gas in the core that is converted into stars varies (but could be
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as low as 20% or as high as 80%), with the remainder of the material dispersed due
to accretion outbursts (Fischer et al., 2022), stellar winds, protoplanetary disc/planet
formation, etc.

1.3.3 Brown dwarf formation

Brown dwarfs are the ‘missing link’ between stars and planets and are some of the most
numerous objects in the universe (Luhman et al., 2007, and references therein). Their
masses range from ∼ 0.012M⊙ (the upper limit on planetary masses) to 0.075M⊙ (the
lower limit on stellar masses). Brown dwarfs never get massive enough to begin hydrogen
burning, but they can fuse deuterium in their core (Ward-Thompson & Whitworth,
2011).

Brown dwarfs were first proposed theoretically in the 60s and observed unambigu-
ously in the late 90s. Initially, there was significant debate as to whether they formed
like planets (through pebble accretion) or like stars (through gravitational instability).
Today, is it widely believed that most BDs form via the same mechanisms as low-mass
stars, as their multiplicities, initial mass function, velocities, and spatial distribution fol-
low the same trends as main-sequence stars at birth (Whitworth et al., 2007; Luhman,
2012).

There are many theories as to why brown dwarfs have such low masses. One theory
suggests that they form from the turbulent fragmentation from the lowest mass prestellar
cores (Padoan & Nordlund, 2004), meaning that they have a smaller gas reservoir to
accrete from. Due to incomplete sampling at the low mass end of the CMF, it is unclear
whether there are a sufficient number of low mass cores to produce the correct amount
of brown dwarfs (Stamatellos & Whitworth, 2009). Secondly, the accretion of protostars
in higher-mass cores (i.e. solar-type progenitor cores) could be reduced or interrupted
due to photo-evaporation of the envelope from nearby high mass-stars (Whitworth &
Zinnecker, 2004) or dynamical interactions with close neighbours in the star-forming
region (Reipurth & Clarke, 2001; Bate et al., 2002).

Other theories suggest that most brown dwarfs form from gravitational instabilities in
accretion discs around higher mass stars (i.e. Stamatellos et al., 2007, 2011); a mechanism
that is discussed further in Section 1.5.
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1.3.4 High-mass star formation

High-mass star formation differs from low-mass star formation in several ways. In gen-
eral, high-mass stars are defined as having masses of > 8M⊙. The most massive O type
stars (≥ 16M⊙) have some of the most drastically different star formation properties to
low-mass stars.

The core accretion model of star formation (described in Section 1.3.2) begins with
the collapse of the core and proceeds through the protostar (Class 0/I) and pre-MS (Class
II/III) stages of star formation. However, the density of the high-mass core needed to
form a high-mass star facilitates rapid gravitational collapse and accretion onto the
protostar. Due to the high rate of accretion, high mass stars reach the hydrogen burning
stage after only ∼ 105 years (Mottram et al., 2011).

At the end of the protostellar phase, the massive star will have very strong outflows
and stellar winds. These outflows/winds have a significant impact on the surrounding
environment, creating cavities in the surrounding molecular cloud (known as HII regions,
e.g. Churchwell, 2002).

Formation mechanisms

Competitive accretion (Bonnell et al., 2001; Bonnell & Bate, 2006) may also be an
important factor in the formation of massive stars. In the competitive accretion model,
the massive protostar accretes from a wider region of gas outside the dense core. This
process ‘steals’ gas from lower mass cores, which often results in high-mass stars being
surrounded by several lower mass stars. Bonnell et al. (2001, 2007) and Bate (2012)
proposed that the competitive accretion model successfully accounts for the shape of the
IMF for high masses, and can reproduce the observed multiplicity statistics of stellar
systems.

Massive stars can also form through monolithic collapse. This process involves the
direct collapse of a subvirial massive core to form a massive protostar, which evolves
to become a high-mass star (Krumholz et al., 2005; Zinnecker & Yorke, 2007; Rosen
et al., 2019). The gravitational forces within the core dominate any internal turbulence
or magnetic fields, suppressing high levels of fragmentation.

In reality, both mechanisms probably produce a fraction of high-mass stars, but there
is still debate as to which mechanism is dominant.
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1.3.5 Planet formation

Most YSOs are surrounded by a disc during the Class I & II stages of formation. These
protoplanetary discs typically extend to 10s-100s au around YSOs (Williams & Cieza,
2011). Approximately 1% of the material contained within the disc is micron-sized rocky
or icy dust (Drazkowska et al., 2022), with the rest being hydrogen-helium gas.

Planet formation begins when the YSO is still an embedded Class 0 object and the
disc has just begun to form. During the earliest stages of planet formation, the dusty
and icy grains in the disc coalesce due to turbulence and drag forces, forming pebbles
with sizes of ∼> 1 cm. These pebbles continue to grow in size through aerodynamic in-
teractions until they reach sizes of ∼ 1− 100km1. These bodies (called ‘planetesimals’)
are then massive enough to experience gravitational interactions with the surrounding
dust/pebbles (typically ∼few m to km in size, Drazkowska et al., 2022). Once grav-
itational interactions can occur, the planetesimal accretes much more rapidly and ex-
periences ‘runaway growth’ (Greenberg et al., 1978; Raymond et al., 2014; Raymond &
Morbidelli, 2022) for ∼ 105 years. This stage is followed by ‘oligarchic’ growth, where a
small number of the most massive planetesimals continue to grow, sweeping up smaller
planetesimals to form a few hundred planetary embryos in < 1 Myr. The collisions that
follow between these embryos build up rocky protoplanets.

However, there is a key issue with the planetary embryo model; in the inner disc,
the Raymond et al. (2014) model builds up protoplanets to approximately Mars masses,
and in the outer disc, Earth mass planetary embryos begin to repel small particles and
suppress growth. This led to the development of the pebble accretion model, in which
protoplanets accrete pebbles rather than colliding with other planetesimals (Raymond
& Morbidelli, 2022; Drazkowska et al., 2022).

The most massive rocky protoplanets (≥ 10 Earth masses) in the outer disc are
massive enough to attract a gaseous envelope, forming gas giants. It is also possible for
very high mass planets to occasionally form through disc instability (i.e. Helled et al.,
2014), in a similar way to low mass stars (see Section 1.5).

Direct imaging of exoplanets

Planets can be observed using a variety of different techniques, including radial velocity,
transits, microlensing, and direct imaging, each of which probe different semi-major axis

1There are still many different theories of how pebbles grow to planetesimals, summarized in
Drazkowska et al. (2022), but the details of these models and the planet formation process are out-
side the scope of this thesis.
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and mass ranges (Fischer et al., 2014). Direct imaging is the only exoplanet observation
method that is relevant to this thesis (see work in Chapter 4). In this method, a corona-
graph is used to obscure the light from the host star so that any planets can be observed
directly (Currie et al., 2022). It preferentially detects planets with large masses and
separations. Since both the planet and host star can be resolved, astrometric data can
be obtained for the planet. Multiple epochs of astrometry for directly imaged exoplanets
allow their orbital properties to be constrained.

1.4 Initial mass function

The initial mass function (IMF) describes the mass distribution of a group of stars at the
time of their formation. It has been determined for various environments such as stellar
clusters, associations, star-forming regions, the Galactic field, and other galaxies. It is
calculated using stellar evolution models and mass-age-luminosity relations to convert
between the observed luminosity function (LF) and the mass function (MF), and is
typically defined as the number of stars (N) per unit volume (V ) and per logarithmic
mass interval (d logm),

ξ(logm) =
d(N/V )

d logm
=

dn

d logm
. (1.5)

Extensive studies have shown that the IMF appears to be universal in the local
universe; i.e. it is constant across all regions of space and at all times (i.e. Bastian
et al., 2010; Offner et al., 2014; Clark & Whitworth, 2021). The universality of the IMF
suggests that star formation itself is also the same across all times and locations. As
such, it has been studied in a lot of detail and has been quantified by several empirical
relationships.

The first of such relationships was determined by Salpeter (1955), and is still often
used to represent star formation relations in the local universe (e.g Kroupa, 2001; Chab-
rier, 2003a,b). Salpeter determined that a power-law with a slope of -2.35 (-1.35 in the
logarithmic form) describes the shape of the IMF for masses ∼ 1− 10 M⊙. This power
law slope also fits the high mass slope of the CMF.

Whilst the Salpeter slope fits the IMF at high masses, more complex models are
required to reproduce the distribution at lower masses. Miller & Scalo (1979) initially
proposed a lognormal form of the IMF, but this under predicted the number of stars
>20 M⊙. Two decades later, Kroupa (2001, 2002) used a broken power-law function to
model the full range of the IMF, with different indices used in different mass ranges,
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ξ(m) ∝





m−α0 α0 = 0.3± 0.7 0.01 ≥ m/M⊙ < 0.08

m−α1 α1 = 1.3± 0.5 0.08 ≥ m/M⊙ < 0.50

m−α2 α2 = 2.3± 0.3 0.50 ≥ m/M⊙ < 1.00

m−α3 α3 = 2.3± 0.7 1.00 ≥ m/M⊙.

(1.6)

Whilst this is a good approximation of the shape of the IMF, and is often still
used to illustrate the difference in the IMF at different masses, it might imply that
there are distinct regimes in which different physical processes occur. Bonnell & Bate
(2006) proposed that a segmented IMF could be caused by the effects of competitive
accretion; if there is a common reservoir of gas from which multiple protostars can
accrete, then the stars with the highest initial mass will accrete more readily than lower
mass stars within the same reservoir. They conclude that the low mass section of the
IMF results from gravitational fragmentation, whilst the higher mass slope is modified
by competitive accretion. This is just one potential scenario - the exact mechanisms
affecting star formation at different masses, and how this translates onto the IMF, is
still highly debated.

Following Kroupa’s work in developing a segmented form of the IMF, Chabrier
(2003a,b, 2005) approximated the IMF by combining the lognormal distribution of Miller
& Scalo (1979) with a power-law tail above ∼> 1 M⊙.

A more recent paper by Maschberger (2013) fits the IMF using a single log-logistic
function, which is a ‘heavy tailed’ extension to a log-normal (shown in Figure 1.6). They
discuss two functional forms within the paper; the L3 IMF and the B4 IMF. The L3 IMF
is the primary result of the paper and has a probability distribution function given by

pL3(m) ∝

(
m
µ

)−α

(
1 +

(
m
µ

)1−α
)β

. (1.7)

Masses can be sampled from the Maschberger IMF very easily, using the quantile
function

Mc = µ
(
[u (G(mu)−G(ml)) +G(ml)]

1
1−β − 1

) 1
1−α

, (1.8)

where µ is the scale parameter, u ∈ [0, 1], G(ml) and G(mu) is the auxiliary function
(equation 1.9) associated with the Maschberger IMF evaluated at the lower and upper
mass limits respectively, β is the low-mass exponent and α is the high mass exponent.
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G(m) =

(
1 +

(
m

µ

)1−α
)1−β

. (1.9)

As it is so easy to draw masses randomly using the quantile function, the Maschberger
IMF is used for all simulations in Chapter 2.

1.4.1 Single-star vs. system IMF

Early work modelling the form of the IMF (such as Salpeter, 1955; Miller & Scalo, 1979;
Kroupa, 2001) does not account for the presence of multiple systems. As stated in the
introduction of this chapter, and expanded on in Section 1.7, most stars are in multiple
systems. This has major implications for the form of the IMF.

If all stars in multiple systems could be resolved perfectly, then the observed IMF
would be the single-star IMF. However, as many stars are in multiples which cannot be
resolved, there is also the system IMF (the IMF of the combined mass of all stars in a
bound stellar system).

Both the system and single star IMFs have been parameterised by Chabrier (2003a,b)
and Maschberger (2013). Figure 1.6 shows the functional forms of the system IMF (top
plot) and single-star IMF (bottom plot). In both plots, the Maschberger IMF is shown
in black and the Chabrier IMF shown in green. The bottom plot also shows the Kroupa
segmented IMF for reference. There are two clear differences between the two functions;
the single-star IMF has (a) a much shallower low-mass slope and (b) a peak value of
∼ 0.1M⊙ as opposed to ∼ 0.2M⊙ for the system IMF. This is because in the system
IMF, an unresolved binary appears as a single star, with a mass equal to the sum of
the component masses. Furthermore, low-mass stars are disproportionately missed in
multiplicity surveys due to their comparatively lower brightness, making the low mass
tail of the IMF most heavily affected.

1.4.2 Universal IMF

As mentioned previously, the IMF appears to be universal in the local universe, across
a range of environments (including most clusters, associations, and the galactic field).
The IMF in neighbouring galaxies also appears to match the shape of the IMF in the
local universe.

There is still some debate about the level of variation between IMFs in different
regions. For example, Taurus is one of the most highly studied nearby star-forming



18 Chapter 1: Introduction

mSystem [M�]

m
p S

ys
te

m
(m

)
=

d
P
(l

og
m
)

d
lo

g
m

0.01 0.1 1 10 100
10−4

10−3

0.01

0.1

1

ml

mu

µ

m
m̃ mP

m̂ mαmγ

(a) System IMF

m [M�]

m
p(

m
)
=

d
P
(l

og
m
)

d
lo

g
m

0.01 0.1 1 10 100

10−4

10−3

0.01

0.1

1 ml

mu

µ

m
m̃ mP

m̂
mα

mγ

(b) Single star IMF

Figure 1.6: Probability density function from Maschberger (2013) of the system IMF
(top plot, solid black line) and the single-star IMF (bottom plot, solid black line). The
solid red lines on the top plot represent the power law segments of the solid black line.
On both plots, the green dashed line shows the Chabrier (2003a) IMFs. In the bottom
plot, the Kroupa (2001) is shown by the blue dashed line. See (Maschberger, 2013) for
definitions of symbols.
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regions, and the IMF for Taurus shows a definite excess of pre-MS K type stars compared
to other star-forming regions (Luhman, 2012; Dib, 2014). Observations of the Orion
Nebula Cluster show that there is a significant deficit of sub-stellar objects compared
to both the Kroupa and Chabrier IMFs (Da Rio et al., 2012; Dib, 2014). Da Rio et al.
(2012) stress that this is not an observational bias, as the data has been corrected for
incompleteness. The 30 Doradus star-forming region in the Large Magellanic Cloud
(LMC) appears to contain an overabundance of high-mass stars, with the best fit power
law slope having in index of -1.90 rather than the Salpeter power law of -2.35 (Schneider
et al., 2018).

The reasons for these variations of the IMF in particular environments is still un-
known, as there is also strong evidence that the form of the IMF is mostly unaffected
by environmental factors (Damian et al., 2021; Guszejnov et al., 2022). In spite of the
variation between some star-forming regions, most environments have an IMF that is
approximated by the canonical forms of the IMF discussed in Section 1.4, and the as-
sumption that the IMF is universal is still a good approximation for most environments.

1.4.3 Mapping from the CMF to the IMF

The reason behind the relationship between the CMF and the IMF is still heavily de-
bated. The similarities between the CMF and the IMF are often taken to imply a
direct and self-similar mapping between the two functions, where the IMF is shifted to
lower masses by a factor of ∼3-5 (Motte et al., 1998; Padoan & Nordlund, 2002; Alves
et al., 2007; Nutter & Ward-Thompson, 2007; Könyves et al., 2010; Guszejnov & Hop-
kins, 2015). This implies that the average star formation efficiency (η) of dense cores
is ∼ 30%. Both observations and theoretical models usually agree on this value, with
results from Alves et al. (2007); Goodwin et al. (2008); Könyves et al. (2015); Marsh
et al. (2016) presenting values of ∼ 20− 40%.

However, several models now propose that core growth via accretion from the sur-
rounding molecular cloud is a more viable model than stars being purely fed through
the material contained in a prestellar core in virial equilibrium (i.e. Bonnell & Bate,
2006; Vázquez-Semadeni et al., 2019). A recent paper by Nony et al. (2023) showed
a overabundance of high mass cores in the Westerhout 43 (W43) star-forming region,
implying that high-mass cores may grow more efficiently than low-mass cores. Results
such as these suggest that the relation between the CMF and the IMF may not be a
simple mapping.
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1.5 Multiple formation

So far, I have discussed the star formation process for individual stars. However, a
large fraction of stars form in binaries or higher-order multiple systems. It is believed
that most binaries and higher order multiple systems form during the earliest stages
of star formation. It was initially debated whether binary formation occurred due to
core fragmentation during the star formation process or capture of main-sequence stars.
However, Tohline (2002) determined that ‘capture’ is an inefficient method of forming
binaries in large enough numbers to match observations in the field. Therefore, the
majority of binary formation must take place during the star formation process. This
theory has been supported by observations (Haisch et al., 2004; Tobin et al., 2016;
Sadavoy & Stahler, 2017).

There are three main methods of multiple system formation; core fragmentation,
disc fragmentation, and capture. All of these processes occur on timescales of <1 Myr
and produce binaries with different separation distributions. It is generally accepted
that fragmentation of cores and discs are the dominant methods of binary production
(Kroupa, 1995a; Tohline, 2002; Offner et al., 2010; Moe & Di Stefano, 2017). Capture
can also produce binaries, but nowhere near as frequently as the two fragmentation
mechanisms.

Core fragmentation

As described in Section 1.2.2, dense cores form due to over-densities within the host fila-
ment. These cores can then fragment to form multiple gravitationally bound protostars.

Various studies have been carried out to determine which mechanisms induce core
fragmentation. Both Murillo et al. (2018) and Palau et al. (2021) investigated the rela-
tionship between envelope gas temperature and multiplicity using molecular tracers in
dense cores, but find that core mass and density are more highly correlated with with
multiplicity than temperature. Palau et al. (2021) also showed that multiplicity is re-
lated to core density as part of their study using polarization data to study the effect
of magnetic fields on fragmentation. Their results indicate that magnetic fields suppress
fragmentation of both cores and discs, agreeing with simulation data (i.e. Commerçon
et al., 2011; Hennebelle et al., 2011; Mignon-Risse et al., 2021).

Simulations also show that turbulence and radiative feedback can induce fragmenta-
tion, with larger amounts of turbulence potentially leading to more fragmentation and
higher order multiple systems (Goodwin et al., 2004; Attwood et al., 2009; Bate, 2012;
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Lomax et al., 2015; Chen et al., 2020).
Due to the nature of turbulent core fragmentation, there are some characteristic

signatures that can be searched for to confirm whether a multiple system formed through
fragmentation. Models such as Guszejnov et al. (2017); Haugbølle et al. (2018), and
Guszejnov et al. (2020) combine turbulence, angular momentum, magnetic fields, and
tidal interactions within their simulations, and determine that binaries produced via
core fragmentation cannot form with separations ∼<100 au. However, it is possible for a
binary to migrate to smaller separations on timescales of ∼ 105 years (Lee et al., 2019).
Similarly, fragments separated by ∼> 0.1 pc will either form as unbound objects or very
easily become unbound due to interactions with the surrounding medium.

Disc fragmentation

In Section 1.3.2, I discussed how a natural part of the star formation process is forming a
protostellar disc during the Class I-II stages. These discs are thought to be the precursors
to protoplanetary discs and a site for planet formation, but it is also possible for the disc
to fragment due to gravitational instabilities during the early stages of star formation
and form a stellar companion (Bonnell, 1994; Stamatellos & Whitworth, 2009). Disc
fragmentation is a particularly important mechanism for the formation of brown dwarfs
(Whitworth & Stamatellos, 2006; Stamatellos et al., 2007).

There are two main conditions define whether a disc will fragment. The first depends
on whether the disc is massive enough to be gravitationally unstable. This can be
quantified using the Toomre parameter (Toomre, 1964),

Q =
csΩ

πGΣ
= f

M∗

Md

H

r
. (1.10)

Where cs is the sound speed in the disc, Ω is the epicyclic frequency (comparable
to the angular frequency for Keplerian discs), and Σ is the surface density of the disc.
The disc is likely to be gravitationally unstable if the Toomre parameter is less than
the critical value, Q ≤ Qcrit ∼ 0.7 − 1. The value of Qcrit is lower for an model of a
1-D isothermal disc, and closer to 1 for a 2-D disc (Goldreich & Lynden-Bell, 1965).
Therefore, for more massive discs, Qcrit is likely to be significantly lower than 1. All of
the variable parameters in Equation 1.10 are a function of the disc radius, meaning that
the value of Q decreases as the radius increases. As a result, fragmentation is more likely
to occur in the outer disc.

Also noted in Equation 1.10 is a different form of the Toomre stability condition. In
this version, H is the scale height of the disc (≈ cs/Ω), r is the radius, and M∗/Md is the
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ratio of stellar mass to the disk mass. There is also commonly a scale factor (f) based
on the assumed surface density profile.

The second condition is that the disc cooling time (tcool) must be comparable to, or
less than, the orbital timescale,

tcool = βΩ−1. (1.11)

This was first shown by Gammie (2001) and confirmed through additional simulations
(Johnson & Gammie, 2003; Stamatellos et al., 2007). The condition for fragmentation is
that β ∼< βcrit, with values of βcrit ranging from ∼ 3 (from 2D simulations with a specific
heat value of γ = 2 by Gammie, 2001) to ∼ 30 (determined from SPH simulations by
Meru & Bate, 2012) for different initial conditions.

Companions formed within the disc will typically experience inward migration due
to interactions with the disc. As the companion migrates through the disc, mass is
preferentially accreted onto the companion. The combined effects of migration and this
preferential accretion results in a population of close binaries with approximately equal
masses (Tokovinin & Moe, 2020).

Capture

Dynamical capture is another method of multiple system formation, occurring when
stars that were initially not bound to one another become part of a gravitationally bound
system (Parker et al., 2014). There are two main capture scenarios that can occur; N -
body capture (Fabian et al., 1975; Hills & Day, 1976) and gas-mediated capture (Clarke &
Pringle, 1991; Bate, 2012; Cournoyer-Cloutier et al., 2021). N -body encounters can occur
between stars in dense environments, and include processes such as a close encounter
of two unbound stars to form a binary, an interaction between an unbound star and a
binary, or binary-binary encounters. Gas-mediated capture occurs in the early stages of
star formation, as protostars interact dynamically with the host star-forming cloud and
circumstellar discs of neighbouring stars to form multiple systems. The orbital evolution
of multiple systems is an efficient and often chaotic process, with companions in higher-
order systems being frequently ejected from their birth system and very young protostars
often undergoing ‘companion exchange’, where they become bound and unbound several
times during formation (Offner et al., 2022, and references therein).

Two-body capture is likely to produce close and circular binaries (i.e. Moe & Kratter,
2018, and references therein) whereas three-body may be a viable method of producing
very wide binaries (i.e. Kouwenhoven et al., 2010; Moeckel & Bate, 2010; Griffiths et al.,
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2018). Therefore, observational techniques which probe different separations ranges can
also provide insight into the formation mechanisms.

In dense star-forming regions where single stars may have close encounters with one
another, they may become gravitationally bound in a multiple system (Parker & Meyer,
2014). The rate of capture in different environments is affected by the stellar density
and velocity dispersion (Parker & Meyer, 2014). N -body dynamical capture cannot
produce binaries as efficiently as core or disc fragmentation, due to the low frequency of
dynamically favourably encounters (Tohline, 2002). However, recent work by Kuruwita
& Haugbølle (2022) determined that the ratio of close young multiples formed by capture
compared to core fragmentation is 40% to 60% respectively, indicating a higher rate of
favourable gas-mediated encounters than N -body encounters.

1.6 Multiple system decay and dynamical destruction

Multiplicity fractions in young star-forming regions are typically higher than the field
(Kraus et al., 2011; King et al., 2012a,b; Duchêne et al., 2018). Furthermore, observations
of T Tauri stars show higher multiplicities than the field in the intermediate separation
range (∼ 10−300 au), field-like multiplicities in the close separation range (<10 au) (i.e.
Kounkel et al., 2019; Tokovinin & Briceño, 2020). This indicates that stars frequently
form in multiples and are then ‘processed’ to make the field population.

The two methods of processing binaries are secular decay and dynamical destruction.
Secular decay occurs in triple or higher-order multiple systems as a result of inherent
instabilities in the system. It is independent of the environment and usually results in
the lowest mass object being ejected from a triple system after several orbits (Anosova,
1986; Sterzik & Durisen, 1998; Reipurth & Mikkola, 2012). Higher-order systems can
decay through a variety of channels; for example, a quadruple system may decay into
two binaries, a triple and a single, or a binary and two singles (Sterzik & Durisen, 1998).

Dynamical destruction occurs due to close encounters between existing multiple sys-
tems and single stars (Heggie, 1975; Hills, 1975; Parker & Goodwin, 2012; Parker &
Meyer, 2014). It can affect binaries as well as triple and higher-order systems. The rate
of destruction depends on the density of the environment (Bressert et al., 2010) along
with the separations, primary masses, and mass ratios of the stars (Parker & Meyer,
2014).
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1.7 Multiplicity

Various multiplicity surveys have been carried out to study binaries and higher order
multiple systems, characterising the relative number of stars in multiples using the mul-
tiplicity fraction (Reipurth & Zinnecker, 1993), MF,

MF =
B + T +Q+ ...

S +B + T +Q+ ...
, (1.12)

where S, B, T , and Q are the number of single, binary, triple and quadruple systems of
a given spectral type. The ellipses in this equation indicate the inclusion of even higher
order systems (such as quintuples and sextuples), although these systems are rare and do
not change the multiplicity fraction significantly. The multiplicity fraction is also often
referred to as the ‘binary fraction’ in the literature.

The fraction of triple or higher-order systems is given by the triple/higher-order
fraction, THF,

THF =
T +Q+ ...

S +B + T +Q+ ...
, (1.13)

and the average number of companions per primary star is given by the companion star
fraction, CSF,

CSF =
B + 2T + 3Q+ ...

S +B + T +Q+ ...
. (1.14)

1.7.1 Multiplicity statistics

Multiplicity is a strong function of primary mass. Figure 1.7 (from Offner et al., 2022)
shows that the MF increases from a value of ∼ 20% for M-dwarfs all the way up to
∼ 100% for the highest mass O type stars. Additionally, the CSFs in the right hand
panel show that the average number of companions per primary for massive stars is ∼ 2

i.e. most massive stars are in triples or higher-order multiples.

Multiplicity surveys also often study the mass ratio distribution of binaries in the
sample. The mass ratio of a system (q), is

q =
m2

m1

, (1.15)

for a binary. For triple systems, q is given by
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Figure 1.7: Left: the multiplicity fractions (thick lines) and triple/high-order fractions
(thin lines) for different primary mass ranges. Right: The companion star fractions for
different primary mass ranges. The different colours represent different spectral types,
which are indicated on the top axis of each plot. The x error bars represent the total
mass range sampled for which the MF/THF/CSF is calculated. The figure is from Offner
et al. (2022) and the data points correspond to values from their Table 1, all of which
were corrected for incompleteness.

q =
m3

m1 +m2

, (1.16)

where m1, m2, and m3 in both equations are the masses of the primary, secondary, and
tertiary stars respectively.

As well as varying with primary mass, the multiplicity statistics also depend on the
separation range that is being sampled over. For example, the MF of solar type binaries
with close/intermediate separations is larger than for wide separations (Deacon & Kraus,
2020; Torres et al., 2021). Whilst the definitions of ‘close’, ‘intermediate’, and ‘wide’ vary
between different studies, the Offner et al. (2022) review paper uses ∼<10 AU, ∼10-300
AU, and ∼>300 AU for each category respectively, which is adopted as the convention for
this thesis.

The separation distribution for a binary sample is also dependent on the mass of
the primary. Typically, the semi-major axis/separation distribution is approximated by
either Öpik’s law (a distribution flat in log-space) or a log-normal distribution.
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Solar type stars

Solar-type stars have most often been the focus of multiplicity surveys for the past several
decades, starting with the pioneering study of Duquennoy & Mayor (1991). Duquennoy
& Mayor (1991) calculate a value of MF = 58% and find a period distribution peaking
at 180 yr. Subsequent work by Raghavan et al. (2010) studied a 25 pc volume limited
sample of FGK dwarfs (with masses in the range of 0.75-1.25M⊙), finding values of
MF = 46 ± 3% and CSF = 60 ± 4%. This result was supported by Tokovinin (2014),
who obtained MF = 44± 3% and CSF = 62± 4% 67 pc volume limited sample over the
0.85 − 1.5M⊙ range. Qualitatively, this means that slightly less than half of solar-type
stars have a companion and ∼ 12% are in triple or higher-order systems.

Solar-type binaries appear to have an approximately uniform mass-ratio distribution
throughout the entire separation range (Duquennoy & Mayor, 1991; Raghavan et al.,
2010), with a small excess of ‘twins’ (q = m2/m1 > 0.95, Tokovinin, 2000; Moe & Di
Stefano, 2017). A uniform mass-ratio distribution means that there is an equal likelihood
for the companion star to possess a mass anywhere within the ∼ 0.012 M⊙ − Mp M⊙

range.
The overall semi-major axis distribution of the sample from Raghavan et al. (2010) is

best fit with a lognormal distribution peaking at a ≈ 45 AU (Duchêne & Kraus, 2013).
The close binary fraction is consistent between measurements of the field and young open
clusters (Torres et al., 2021), but there is a deficit of solar-type wide binaries in denser
stellar environments (i.e. Scally et al., 1999; Deacon & Kraus, 2020). This is expected, as
wide binaries have a lower binding energy and can be more easily dynamically disrupted
by close encounters (Parker et al., 2011; Deacon & Kraus, 2020; Offner et al., 2022).

M-dwarfs and brown dwarfs

The multiplicity of M-dwarfs was first studied by (Fischer & Marcy, 1992). They found
a multiplicity fraction of 42 ± 9%, which is lower than the multiplicity of G-type stars
determined by Duquennoy & Mayor (1991); one of the first indicators of how multiplicity
scales with primary mass. They also found a separation distribution peaking in the range
of 3 − 30 AU. Two pivotal volume-limited surveys from Ward-Duong et al. (2015) and
Winters et al. (2019) found much lower stellar multiplicity fractions of 23.5± 3.2% and
26.8± 1.4% respectively, with the latter finding a peak separation around 4-20 AU.

The mass-ratio distribution trend of M-dwarf binaries follows the same trend as for
solar-type binaries (Ward-Duong et al., 2015). Brown dwarf binaries, however, have
a strong preference for being in equal mass systems (Burgasser et al., 2003; Fontanive
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et al., 2018).

M-dwarf surveys observe a sufficient number of targets with appropriate resolution
to have robust completeness limits on their observations. However, as the primary mass
decreases down into the brown dwarf regime, completeness becomes much harder to
estimate due to small number statistics and the close separation distribution of the
systems. However, a survey by Fontanive et al. (2018) found a value of MF = 8 ± 6%
(CSF = 8 ± 6%) in 47 objects in the mass range 0.019-0.058M⊙. Similarly, Burgasser
(2007) found MF = 15± 4% (CSF = 16± 4%) for 162 objects of 0.05-0.08M⊙. In spite
of their larger uncertainties, these two studies make it clear that the trend of increasing
MF and CSF with primary mass continues into the brown dwarf regime.

Intermediate and high mass stars

The dependence of multiplicity on primary mass becomes even more evident when we
consider the transition from solar-type stars up through intermediate masses (∼ 1.5 −
8M⊙) to high masses (≥ 8M⊙). Moe & Kratter (2021) found that moving from solar-
type masses to a mass range of 1.6 − 2.4M⊙ increases the MF to 68 ± 7%, and studies
by Moe & Di Stefano (2017) determined MFs of 81±6%, 89±5%, and 93±4% for mass
ranges of 3−5M⊙, 5−8M⊙, and 7−18M⊙ respectively. Furthermore, Sana et al. (2012,
2014) calculated that almost all very massive stars (17-50M⊙) are in multiple systems,
presenting a MF of 96± 4%.

In addition to high multiplicity fractions, there is also a lot of evidence from these
same studies that a large fraction of intermediate and high mass stars are in triples
or higher-order systems. The CSF follows the same trend as the MF, with Moe & Di
Stefano (2017) finding CSFs of 128± 17%, 155± 24%, and 180± 30 for mass ranges of
3− 5M⊙, 5− 8M⊙, and 7− 18M⊙. For stars above 17M⊙, the companion star fraction
exceeds 2 (Sana et al., 2012, 2014).

De Rosa et al. (2014) and Moe & Di Stefano (2017) find that the mass-ratio distri-
bution for A-type and B-type binaries across all separations are skewed towards unequal
mass ratios (with a peak of q ∼ 0.3). This same skew to low mass-ratios is observed for
wide O-type binaries (Sana et al., 2012), but the mass-ratio distribution is approximately
uniform (with a small twin excess) for close and intermediate O-type binaries (Moe &
Di Stefano, 2017).
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Pre-main-sequence stars

Obtaining accurate multiplicity statistics for protostars/pre-MS stars is a difficult task,
due to the high level of obscuration from the gaseous envelope or disc.

Spectroscopy of Class II and III T Tauri stars by Kounkel et al. (2019) find close
binary fractions for FGK stars that match very closely with observations of MS stars in
the field. However, imaging studies in a range of different environments show an excess
of companions to pre-MS stars. This excess is even more pronounced for studies of Class
0/I protostars across large separations (Tobin et al., 2022), showing that multiplicity
decreases with age (from protostar formation until the star reaches the main sequence).

The separation distributions determined by Tobin et al. (2016) and Tobin et al. (2022)
show bimodal distributions for both the Perseus and Orion star-forming regions, with
one peak at ∼ 75 au and the other at ∼ 3000 au. One explanation for this is that the
close binaries (around ∼ 75 au) formed through disc fragmentation, whilst the wider
binaries formed via core fragmentation.

1.7.2 Incompleteness and uncertainties

Incompleteness refers to the phenomenon where some objects of a particular character-
istic are not included in a observational survey. For multiplicity studies, the main sources
of incompleteness are detection limits meaning that faint companions are missed, the res-
olution of the telescope meaning that systems with a small separation cannot be resolved,
or the survey strategy.

Using a volume limited sample is one way of correcting for incompleteness. Volume
limited surveys mean that a set detection limit can be used for all objects in the sample,
and meaningful comparisons can be made across different regions of the sky. They
also mean that the incompleteness can be computed statistically and more accurate
corrections can be applied to the data, based on their estimates of what kind of object
might be missed in their sample. The majority of M-dwarf, Solar-type and A-type
multiplicity surveys presented in this introduction are volume limited and have been
corrected for incompleteness to the best of the author’s ability. The exact method by
which this is done is outside the scope of this thesis, but incompleteness corrected values
provide a more meaningful comparisons for simulation results.
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1.7.3 Nearby star-forming regions vs the field

Observations of nearby star-forming associations show a significantly higher number of
multiples compared to the field (Leinert et al., 1993; Duchêne, 1999; Haisch et al., 2004;
Duchêne & Kraus, 2013), whereas dense clusters typically have similar multiplicities to
the field (Patience et al., 2002; Duchêne et al., 2018; Deacon & Kraus, 2020; Torres
et al., 2021). More specifically, denser environments show a dearth of wide binaries
(Torres et al., 2021) in comparison to close binaries, across a variety of masses.

This could be explained if the majority of stars form in multiple systems (Goodwin
& Kroupa, 2005) and then undergo significant post-formation processing due to a com-
bination of both secular (from inherent instabilities and without external perturbations)
and dynamical (from encounters with other stars in dense environments and star-forming
regions) decay. This lowers the multiplicity fractions and results in the field population
(Goodwin et al., 2007).

In dense environments, dynamical interactions between stars are much more frequent,
and both observations and theory show that the binary fractions in these regions can
be lowered by up to a factor of two (Kroupa, 1995a,b; Parker et al., 2011; Duchêne &
Kraus, 2013). Dynamical destruction preferentially affects loosely gravitationally bound
stars (i.e. systems with large separations, larger number of companions, and potentially
smaller masses).

1.8 Observing binaries and multiple systems

Binary systems can be observed in a variety of different way, and are often classified
based on their detection method. These classifications include:

• Visual binaries: Both stars in the system can be independently resolved.
• Eclipsing binaries: The companion periodically passes in front of the primary

star, decreasing the system luminosity.
• Spectroscopic binaries: Detected due to doppler shifts in a star’s spectral lines

due to a companion.
• Astrometric binaries: Detected when a star appears to ‘wobble’ around a point

in space, even though no companion is visible.

The observational characteristics of a binary system affect the method of determin-
ing its orbital properties. For example, the light curves that can be obtained through
observations of eclipsing binaries can be used to determine the effective temperatures
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and radii of each star. Similarly, observations of spectra from spectroscopic binaries can
be used to determine the orbital phase of the system.

Visual binaries

Visual binaries are binary systems that can be resolved into two stars. Visual binar-
ies are typically nearby and have large physical separations, both of which make the
companions easier to resolve. The resolution limit on visual binaries is dictated by the
seeing conditions (typically on the order of ∼1 arcsecond) and diffraction limit set by the
Rayleigh criterion for resolution. The Rayleigh criterion depends on both the wavelength
of the light and the diameter of the telescope aperture,

Θ = 1.22
λ

D
. (1.17)

Individual observations of visual binaries provide the position of the stars and their
separation. The motion of the stars about their centre of mass can be observed through
long term monitoring of the system, and this motion can be used to estimate the orbital
period, semi-major axis, and the masses of the two stars.

1.9 Summary

In this chapter, I have summarised the star formation process, the initial mass function,
and current measurements of the multiplicity statistics for stars in the field.

Star formation takes place mostly in giant molecular clouds, specifically within dense
cores. Cores with masses that exceed a critical value (such as the Jeans mass, MJ , or the
Bonnor-Ebert mass, MBE) will gravitationally collapse to form stars. In Section 1.3.2, I
described how stars are formed, and outlined the differences between low and high-mass
star formation in Section 1.3.4. Dense cores may form either a single star or a multiple
system.

The multiplicity of the field population of stars has been extensively studied over the
past several decades. The multiplicity of field stars increases significantly with primary
mass, and local star-forming regions have higher multiplicities than the field. In Sec-
tion 1.7, I discussed the multiplicity fractions observed for different stellar masses in the
field. It is widely believed that the field acts as the sum of all star formation and evolu-
tion from different environments, although the exact processes responsible for producing
the field binary population are not well understood.
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I have discussed in detail the functional form of the initial mass function (IMF) in
Section 1.4. Observations show that the stellar IMF seems to be universal (the same
in all regions and at all times), particularly in local, resolved stellar populations. This
might suggest that star formation is always similar in how it distributes mass between
stars. Furthermore, the shape of the IMF is similar to that of the core mass function
(CMF), but shifted to lower masses, implying self-similar mapping between the two.

1.10 Work in this thesis

This thesis contains three chapters studying the formation and properties of multiple
systems.

Chapter 2 includes my work in developing a Monte Carlo model to test various simple
universal rules for star formation. The aim of this work was to find a model that could
produce the canonical form of the IMF as well as the multiplicity fractions, companion
star fractions, and triple/higher-order fractions of stars in the field.

In Chapter 3, I discuss the properties of elliptical orbits, and include my method for
generating a ‘fake’ observation of a binary system. Producing fake binaries in simulations
is important for the work presented in chapters 4 and 5.

In Chapter 4, I describe the orbit fitting algorithm I developed (FOBOS: the ‘Few
Observation Binary Orbit Solver’). FOBOS is a brute force Monte Carlo code that can
estimate the orbital parameters of a binary system or directly imaged brown dwarf/exo-
planet using only two or three epochs of astrometric data. This chapter includes results
of a comprehensive test of FOBOS on simulated data, along with results for two real
systems.

In Chapter 5, I describe my work estimating the selection effects on observed bin-
ary samples. The sample was provided by collaborators at the University of Leeds,
who wanted estimates on the biases present in their data, along with estimates on the
semi-major axis distribution and multiplicity fraction of the sample. I did this my cre-
ating a ‘fake’ binary population, applying their observational selection effects to it, and
comparing the simulation and observations using a binary search tree.

Finally, Chapter 6 summarises each of the previous chapters and discusses potential
future work in each area.
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Chapter 2

Multiplicity of stellar systems in the
field from simulations

2.1 Introduction

As mentioned in Chapter 1 (particularly Section 1.2.3 and 1.4), star formation is often
thought of as a universal process that is the same across all environments and at all
times. In very simple terms, this process is (a) the formation of individual stars or
multiple systems from dense cores within GMCs, then (b) the dynamical and secular
evolution of multiple systems due to interactions with nearby stars or the cloud within
which the system is embedded. The galactic field is then the sum of all star formation
across different environments (Goodwin, 2010).

The multiplicity and IMF of stars in the field has been extensively studied, but its
formation history is still not fully understood. There are two basic theories of how the
field is produced; (a) that stars form with multiplicities similar to the field, or (b) stars
form with much higher multiplicities and then decay to produce the field values (as
proposed in Kroupa, 1995a,b; Kroupa & Bouvier, 2003). A spectroscopic study of pre-
MS stars by Kounkel et al. (2019) found multiplicity fractions comparable to the field for
close separation solar-type stars, whereas studies such as Tobin et al. (2022) found an
excess of companions. Similarly to the result of Tobin et al. (2022), the high multiplicity
of nearby star-forming regions implies most stars form in multiples and are dynamically
processed to make the field. Therefore, there must be some disruption/decay of multiple
systems between birth and dispersal into the field, but it is difficult to quantify the extent
to which this occurs.

This chapter presents the results of my work using toy Monte Carlo models to model

33
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the conversion of cores into stars and the decay/destruction of multiple systems, in an
attempt to match the observed IMF and multiplicity fractions in the field. In particular,
I investigate three methods of core fragmentation; one in which the number of stars
produced is completely random, one where it is a very strong function of mass, and
one where it is a weak function of mass. Additionally, I apply the secular decay rules
determined by (Sterzik & Durisen, 1998) to the primordial multiple system population,
to see how much this modifies the frequency of multiple systems at birth. I compare
the IMFs and mass dependent multiplicity fractions from my models to the functional
form of the (Maschberger, 2013) IMF and the observed multiplicity fractions in the field
(from several studies, collated in the review article by Offner et al., 2022).

This work has been submitted to MNRAS.

2.2 Methods

The main aim of this research was to see if I could find a simple set of rules that take
us from a population of cores with masses drawn from the CMF, to a stellar population
with the IMF and multiplicities of the field. To investigate this, I used toy Monte Carlo
simulations; a statistical technique used to approximate complex problems by random
sampling. I define a simple rule for the way cores are split into stars (representing the
fragmentation process) and assign a probability that each system decays (an approach
that builds on work such as Lada, 2006; Goodwin et al., 2008; Holman et al., 2013).

I performed several simulations using different conditions for the fragmentation of
cores and ejection of stars (outlined in Section 2.2.1).

2.2.1 Simulations

Sampling the CMF

All simulations begin by drawing masses for n cores (with mass values Mc) from the
Maschberger function (Maschberger, 2013, shown in Equation 1.8). Our CMF adopted
the characteristic parameters of the L3 system IMF, but with a scale parameter (i.e.
peak value) of 1.0 M⊙, a lower mass limit of ml = 0.1 M⊙, and an upper mass limit of
150 M⊙. All parameters used are given in Table 2.1. For all simulations presented in
Section 2.3, the number of cores sampled was set to n = 1× 106.
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Parameter Symbol Value
High-mass exponent α 2.3
Low-mass exponent β 1.4

Scale parameter µ 1.0 M⊙

Lower mass limit ml 0.1 M⊙

Upper mass limit mu 150 M⊙

Table 2.1: Parameters used to generate the core mass function for random sampling.

Splitting the core into stars

Each core is then ‘fragmented’ into N∗ stars, where N∗ varies according to the fragment-
ation conditions stated above. The total stellar mass (Msys) is calculated as

Msys =
N∗∑

i=1

mi = ηMc, (2.1)

where η is the star formation efficiency of the core (i.e. the fraction of material within
the core that is converted into stars) and mi is the mass of each star.

Msys is then divided up between the stars, in such a way that the overall mass ratio
distribution is flat for all primary masses. The total stellar mass is divided up between
the stars by randomly selecting N∗−1 mass ratio values q from a uniform distribution in
the range 0.2-1. For binary systems, I select a single value of q1 and assign masses such
that m2 = q1m1. For triple systems, m3 will have the value q2(m1+m2). This pattern is
continued for higher order systems. This gives mass ratio distributions similar to those
of the field (cf. Goodwin, 2013).

I tested two models for the star formation efficiency; one where η is assumed to be
constant and one where η varies randomly between 0 and 1 for each core. In reality,
the SFE may depend on the mass of an embedded star (Matzner & McKee, 2000).
However, it is not clear whether this would increase (due to more gas contained within
the larger potential well of the core/star), or decrease (due to stellar feedback) the SFE
with increasing core mass (Goodwin et al., 2008). Since I am aiming to find an overall
rule for explaining the origin of the field population, a constant value of the SFE should
represent an average of the SFE across all cores.
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Secular decay and dynamical destruction

The steps above produce an initial system, containing either a single or multiple stars.
However, if the system is a multiple then there is a possibility that the system won’t
enter the field in its initial state. This could be either due to the secular effects in the
system or dynamical destruction due to an encounter. Binaries can only be destroyed
by external perturbations, whereas higher order systems can also decay due to their own
inherent instabilities as a relaxation process.

As mentioned in Section 1.6, the physical properties that affect the probability of a
system decaying or being destroyed are the separations of the stars, the configuration of
the system (i.e. hierarchical vs. non-hierarchical) and the number of stars in the system.
Secular decay is environmentally independent whereas dynamical destruction is strongly
environmentally dependent.

The field represents the sum of star formation across all environments. If star form-
ation is indeed a universal process with a ‘typical outcome’ then it should be possible to
use a single probability distribution to represent the combined effects of both dynamic
and secular decay. The results presented in Section 2.3 show that a rule such as this
struggles to match observations.

For the simplest combined model, each channel of decay for a system of N∗ stars
is mass-independent and has an equal probability. This leads to a scenario where 50
per cent of binaries are destroyed to form two singles and 50 per cent remain stable.
For triples, one third of systems will eject 2 stars, one third will eject 1 star, and the
rest will remain stable. Similarly, for quadruples, one quarter of systems will eject 1
star, one third of systems will eject 2 stars, etc. This pattern continues for N∗ = 5 and
N∗ = 6. Due to the high rate of decay of binaries, these probabilities are representative
of population with a high rate of destruction due to interaction with other stars (Parker
& Goodwin, 2012), making them a good starting point for testing the effect of different
overall decay rates on multiplicity fractions.

In reality, it is extremely unlikely that all decay channels have equal probability.
Sterzik & Durisen (1998) determined probabilities for different secular decay channels,
including channels that our simple rules do not capture (such as the decay of a quadruple
to a pair of binaries, see Table 2.2). However, this only accounts for secular decay, not
dynamical destruction. This point is discussed in detail in Section 2.4.

As we expect the lowest mass objects to be preferentially lost as a result of secular
decay (Anosova, 1986; Reipurth & Mikkola, 2012) stars are removed in order of increasing
mass. Any stars that have been ejected from multiple systems are counted as single stars
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when calculating the multiplicity fractions.

Core fragmentation conditions

I tested three models for the core fragmentation:

1. N∗ is generated from a random uniform distribution, with no dependence on core
mass;

2. N∗ depends strongly on the Bonnor-Ebert mass (explained further in section 2.3.2)
and will be proportional to this value;

3. N∗ has a weak dependence on the core mass, but still shows some random variation.

Each model is described in more detail in the subsections of Section 2.3.

2.2.2 Output

I used the stellar masses outputted from the simulations to calculate the IMF of the stars.
I compared the simulated IMF with the canonical IMF, considering both the single-star
IMF (counting all stars) and the system IMF (using the total mass of each system, Msys).
It’s important to note that the goal was not to perfectly match the IMF, as observations
of the IMF have associated errors, and any functional fits tend to smooth out small
details1. Nevertheless, I considered good models to be ones that exhibited self-similar
mapping between the CMF and the IMF, peaked at ∼ 0.2 M⊙, and had an overall shape
that did not not deviate significantly from the canonical IMF.

I also calculate the multiplicity statistics of our stellar population for different primary
mass intervals. Due to the fact that all observed multiplicity values used for comparison
are corrected for incompleteness, all companions with a mass greater than 0.012M⊙

(∼minimum brown dwarf mass) are included our statistics. This is discussed further in
section 2.4.

2.3 Results

I want to show that (a) the IMF demonstrates self-similar mapping from the CMF and
(b) the multiplicity fractions are consistent with observations. As mentioned in section
2.2, I consider three cases for the fragmentation; a) a self-similar model (2.3.1), b) a

1For more detailed information about variations in the IMF, refer to Section 1.4
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Bonnor-Ebert mass dependent model (2.3.2), and c) a hybrid model with both random
and core mass dependent elements (2.3.3).

The four model simulations presented in this section are a subset of the simulations
that were performed, and are representative of a much wider range of test conditions.

2.3.1 Self-similar model

I started with a simulation in which all cores fragment into a random number of stars
between Nmin and Nmax, with no dependence on the initial core mass (as used as the
basis for simulations such as Goodwin et al., 2008; Holman et al., 2013). The reason that
this model has been used as a basis for previous simulations is because it preserves the
mapping from the CMF to the IMF, with the location of the peak being defined by the
star formation efficiency. Stars are then ‘ejected’ from the system following the simplest
(and potentially naive) conditions where 50% of binaries decay, one third of triples eject
one star, etc (as described in Section 2.2.1). Whilst this is not necessarily a realistic
model of decay, it provides a good starting point to test the model, before applying a
more realistic set of decay rules in a later model.

For this simulation, it is assumed that all stars form in multiple systems (Nmin=2)
and that the maximum possible multiplicity is Nmax=6. The number of stars has no
dependence on core mass. The minimum and maximum values for the number of stars
formed are variable parameters and their effect on our results are discussed in section
2.3.1.

The simulation is repeated with three different fixed values of the star formation
efficiency, and one scenario where η is allowed to vary randomly.

Figure 2.1 and 2.2 show the system and stellar IMFs and multiplicity properties
respectively of simulations using the self-similar model. These results are reflective of
the common problems in self-similar models, which I will explain.

Figure 2.1 shows the resulting IMFs from my simulations in comparison to the norm-
alised Salpeter (Salpeter, 1955) (in orange), Chabrier (Chabrier, 2003a, 2005) (in blue),
and Maschberger (Maschberger, 2013) (in pink) forms of the IMF. The top plot of Fig-
ure 2.1 shows the system IMF and the bottom plot shows the single star IMF (after
processing). The system IMF is expected to match the observations more closely, but
the single star IMF to be a more appropriate comparison for the results of our sim-
ulations, due to the fact that we can ‘resolve’ all multiples perfectly in a numerical
simulation. The prior distribution of core masses is shown by the solid black line and
the resulting IMFs for different values of η are shown by the grey dashed/dotted lines.
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Figure 2.1: The system (top) and single star (bottom) IMFs for the self-similar model.
On both plots, the Salpeter (orange), Chabrier (blue) and Maschberger (pink) IMFs
are shown by the solid lines. The core mass function used in our simulations is shown
by the solid black line. The IMFs are plotted for several values of the star formation
efficiency: η = 0.3 (densely dashed), η = 0.5 (dotted), η = 0.9 (dashed), and η = U [0, 1]
(dash-dotted). The grey shaded region on the left of both plots shows the brown dwarf
regime. The functional forms of the Salpeter and Chabrier IMFs were generated using
https://github.com/keflavich/imf.

https://github.com/keflavich/imf
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Figure 2.2: Top: Observed multiplicity fractions (blue squares) and triple high order
fractions (red circles) from various sources listed in table 1 of Offner et al. (2022). The
blue lines and red lines show the multiplicity fractions and triple higher order fractions
(respectively) from my model using self-similar fragmentation and ejection rules from
Section 2.2.1. The values for the MFs and THFs are plotted for several values of the star
formation efficiency: η = 0.3 (densely dashed), η = 0.5 (dotted), η = 0.9 (dashed), and
η = U [0, 1] (dash-dotted). Bottom: Companion star fractions following the same rules
as the top plot.
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The single star IMFs are a very good fit to the canonical IMFs. This is unsurprising
as this model was designed to produce this match by preserving the shape of the CMF.
The best fit value of η in this model is 0.5. The system IMFs are significantly wider than
the canonical system IMFs; while this could possibly be fixed by adjusting how masses
are distributed between stars within a core, this is not worthwhile due to the poor fit of
the multiplicity fractions.

Figure 2.2 shows the multiplicity statistics from my simulations compared to their
observed values. The blue points and red points on the top plot show the observed
multiplicity fractions and triple/high-order fractions respectively, and the green points
on the bottom plot show the observed companion star fractions (from table 1 of Offner
et al., 2022). The horizontal error bars show the primary mass interval covered by each
data point. The blue, red/orange, and green lines on each plot represent my MFs, THFs,
and CSFs respectively for the same discrete mass ranges as the Offner et al. (2022) values,
but shown as a continuous line to guide the eye.

It is immediately clear from looking at Figure 2.2 that this model is a very poor fit
to the data. The multiplicities increase with mass very slowly from low mass objects to
objects with Mp ∼ 0.5M⊙, and then plateau at ∼ 1 M⊙.

The exact characteristics of the IMF and multiplicities are due to the details of my
chosen model (in particular, the decay probabilities), but they are all indicative of using
a self-similar model. I concluded this by testing a variety of different decay rules, plus
different limits on Nmin and Nmax, all of which failed to fit the multiplicity statistics.

If all cores produce multiple systems, and N∗ is independent of core mass, then the
initial multiplicity statistics will be the same for all masses (i.e. MF = 1, THF ∼ 1,
and a CSF > 1). As higher order systems decay by ejecting the lowest mass stars,
the multiplicity fractions for low-mass bins will decrease. Therefore, using a self-similar
fragmentation model with mass/multiplicity-independent decay probabilities leads to a
roughly flat multiplicity-mass dependency, which completely fails to match the obser-
vations. This issue is present regardless of the values used for Nmin and Nmax (and
the multiplicity-mass dependence actually flattens further if cores are allowed to form a
single star).

Dynamical decay probabilities

In this model, I have applied a flat dynamical decay probability dependence with mass
to systems which survive secular decay. To try and reduce the low-mass multiplicities
to close to the observed values, this probability has to be extremely high, which in turn
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decreases the high-mass multiplicities to well below the observations (as can be seen in
Figure 2.2).

It would be possible to follow up on this model by using a dynamical decay probability
that depends on mass. There would be good reason to do this, as higher mass systems
are likely to be more resistant to dynamical decay due to their increased binding energy,
and more likely to reform binaries throughout their lifetimes due to capture (Parker
& Meyer, 2014). However, any rule would need to be a very strong function of mass;
all systems with Mp > 5M⊙ need to survive, while almost all systems Mp < 0.5M⊙

need to be destroyed, with a ‘tipping point’ at ∼ 1M⊙ where there is a 50% survival
chance. This model seems quite fined tuned, and determining whether it is a ‘realistic’
model of multiple system decay, it would require a much more in depth study including
the separation and mass ratio distributions of each system. Whilst this would be a
worthwhile study, it goes against the purpose of this work, which was to see if there
is a set of simple rules to take us from the CMF to the IMF and replicate the field
multiplicity properties.

Nmin and Nmax

As mentioned in the previous section, Nmin and Nmax are variable parameters. For the
results shown above, I assumed that all stars form in binary or higher order systems (as
was the basis for work such as Kroupa, 1995a, 2008) and the highest order multiple that
can be formed from a single bound core is N = 6. A variety of models using higher
and lower values of Nmin and Nmax were also tested, the results of which are shown in
Figure 2.3.

In all cases, the gradient of the MFs, THFs, and CSFs with respect to mass is far too
shallow to match the observations. If cores are allowed to form a single star, there is
almost no variation in MF, THF, or CSF with increasing mass. If all cores form a very
high number of stars (N∗ = 4− 8) then the multiplicity properties do start to vary as a
function of mass, but not enough to match the observations. Observations of protostars
such as Kounkel et al. (2019) and Tobin et al. (2022), along with our own intuition,
suggest that it is unlikely that this could be the case.

2.3.2 Strongly mass dependent model

I showed above that splitting all cores into a random number of stars produces multipli-
cities that are much too flat with respect to mass. Therefore, it stands to reason that
having N∗ increase with Mc should better match the multiplicity observations.
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Figure 2.3: Multiplicity fractions, triple/higher-order fractions (left) and companion
star fractions (right) for four self-similar model simulations. From top to bottom, N∗ is
selected randomly for each core from a uniform distribution in the range 1 − 6, 2 − 6,
3− 7, and 4− 8.
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Some theories suggest that the number of stars formed from a collapsing core may be
proportional to the ratio of the core mass to the critical Bonnor-Ebert mass MBE (such
as Lada, 2006), which is the maximum mass that can be contained within an isothermal
Bonnor-Ebert sphere while remaining in hydrostatic equilibrium (Bonnor, 1956; Ebert,
1955, equations and more detail described in Section 1.2.2). In these theories, each
Bonnor-Ebert sphere within a core with a mass ≥1MBE collapses to form a single star,
gravitationally bound to any other objects which form within the same core.

I consider the case in which multiplicity of the final system is a strong function of the
initial core mass, with each core fragmenting such that N∗ = Mc/MBE. For the results
presented in this section, a random value of the critical Bonnor-Ebert mass is selected
from a uniform distribution between 0.5M⊙ and 2.5M⊙. The decay/ejection conditions
are kept the same as in Section 2.3.1.

Figures 2.4 and 2.5 show the IMFs and multiplicities from this model (cf. Figures
2.1 and 2.2).

As expected, the multiplicities from this model show a strong dependence on primary
mass. The THFs show a reasonable fit to the observations, and although the MFs and
CSFs are far from a perfect fit, they fit the trend of the observations well. However, there
is a significant flaw in this model when it comes to multiplicities: due to the condition
that all cores below the Bonnor-Ebert mass do not form stars, and cores below 2MBE

form only 1 star, multiple systems with a total mass of 2ηMBE cannot form. As soon as
the core mass exceeds MBE, there is a huge jump in the multiplicity as suddenly cores
start forming two or more stars. As N∗ increases with Mc, the MF, THF and CSF all
continue to increase rapidly as the core mass exceeds a couple of Bonnor-Ebert masses.

One option for increasing the MFs for low-mass stars would be if low-mass binaries
are formed via capture. However, it is highly unlikely that binaries with Mp < 1M⊙

(particularly M dwarfs) would form via this method, especially in significant enough
numbers to increase the MFs. Multiple system decay via different channels, such as the
decay of a quadruple system to two binaries, could also increase the low mass multiplicity
fractions, but as I will explain, there is little point doing this due to the issues with the
shape of the IMF.

The IMFs shown in Figure 2.4 are vastly different from the canonical IMFs and do
not show self-similar mapping from the CMF. There is a strong overabundance of stars
around the average Bonnor-Ebert mass, appearing as a very large "bump" at the peak
of the IMF. This bump is extremely pronounced for all fixed values of the star formation
efficiency, and is only slightly less pronounced if η is allowed to vary. The shape of the



Section 2.3: Results 45

10−3

10−2

10−1

100

dN
/d

lo
g

M

System IMF

10−2 10−1 100 101 102

Stellar Mass (M�)

10−3

10−2

10−1

100

dN
/d

lo
g

M

Single star IMF

Chabrier05
Salpeter55
Masch13
CMF

IMF, η=0.3
IMF, η=0.5
IMF, η=0.9
IMF, η=U [0, 1]

Figure 2.4: IMFs from the Bonnor-Ebert mass dependent model. See caption of Fig-
ure 2.1 for more details.
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Figure 2.5: Multiplicities from the Bonnor-Ebert mass dependent model. See the
caption of Figure 2.2 for more details.
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IMF is fundamentally wrong (something that was noted briefly by Goodwin et al., 2008).
These models are for a range of BE masses chosen core by core. In a scenario for star

formation within a single star forming region, one would expect the BE to be roughly
fixed. For a fixed BE mass, the bump is even sharper and more pronounced due to the
much stronger mass dependence, and peaks at the value of the BE mass used. This
would suggest that the IMF should vary strongly from region to region depending on
the local BE mass, which is at odds with the apparent universality of the IMF.

I can conclude that if fragmentation was a strong function of the core mass, the IMF
would have a very different shape to the canonical IMF and would vary from region to
region. This implies that a much weaker relation between N∗ and Mc is needed.

2.3.3 Hybrid model

I have shown in Section 2.3.1 and Section 2.3.2 that simulations struggle to match the
observations if the core fragmentation model is either self-similar or a strong function
of core mass. The former cannot reproduce the observed multiplicity fractions and the
latter breaks self-similar mapping between the CMF and the IMF.

I next considered a hybrid with elements of both the self-similar model and the
strongly core mass dependent model, to test whether combining the two elements would
produce a reasonable fit to both the IMF and the multiplicities. I therefore consider a
model where N∗ depends loosely on the core mass. I start by splitting the masses from
the CMF uniformly in log space, resulting in a mass range corresponding to each value of
N∗. Rather than forcing cores of a given mass to only fragment into N∗ stars, a random
value is selected surrounding the corresponding value of N∗. The mass ranges and their
corresponding possible N∗ values are shown in Figure 2.6.

Slight variations to the conditions used do not change the results presented below, and
any significant variations lead to the same problems as already outlined in Section 2.3.1
and Section 2.3.2. This specific set of conditions shown in Figure 2.6 were chosen to
present here because they provide the best match to the multiplicity fractions.

For our initial test of this model, stars are ejected from systems using the simple
secular plus dynamical model as in Section 2.3.1 and Section 2.3.2.

This hybrid model provides a better fit to the observations than the previous models.
In Figure 2.7, the shape of the system and single-star IMFs matches that of the canonical
IMF, with the best fit for the system IMF occurring when η ∼ 0.5. In the case of the
single star IMF, the best fit value of η is ∼ 0.3. One could argue that an efficiency of
η ∼ 0.4 could fit both within the observational errors.
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Figure 2.6: Conditions for fragmentation in the hybrid model. The histogram shows the
core mass distribution in log space. The vertical dashed lines show the different mass
ranges with the text above each section stating the possible values of N∗ (uniformly
weighted) for a core in the corresponding mass range.

The single star IMF has a small bump at the peak, but due to the uncertainties
associated with the IMF, the chances of seeing this feature in observations (if it did
exist) are extremely slim; the real data does exhibit some variation and has error bars,
but it tends to be fitted with a smooth function. Furthermore, the high mass tail of the
IMF deviates from the Salpeter slope when Mp > 20M⊙, but here we are in the low-N
tail of our distribution and it is not at all clear if a universal model would extend to
extremely high-mass systems.

Figure 2.8 shows that the hybrid model does a good job of fitting the CSF (green)
and THF (red), but is poor at fitting the high-mass end of the MF (blue).

The balance of increasing the number of stars formed with core mass, but not frag-
menting into so many objects that high mass stars are under-produced, means that the
THFs and CSFs start to resemble the observations very closely. However, the multipli-
city fractions for primary stars with masses > 1M⊙ are far lower than their observed
counterparts; in the highest mass bin, approximately 60 per cent of stars are in multiples
and 50 per cent are in high order systems, meaning that only 10 per cent of O stars are
in binaries, meaning that there are far too many single high mass stars (compared to
the expected number of binaries) in this simulation.
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Figure 2.8: Multiplicities from the hybrid fragmentation model. See the caption of
Figure 2.1 for more details.
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This is due to the large number of binary systems which decay due to the random
ejection rules in our simulations; most cores massive enough to form stars ≥ a few solar
masses will form a larger number of stars, as in the BE mass dependent model. The
majority of these very high order systems (N∗ = 5 − 7) will eject a few stars, diluting
the multiplicity fraction whilst keeping the THF and CSF high.

Modelling secular decay only

The hybrid model for fragmentation presented above does a reasonable job in fitting
various aspects of the IMFs and multiplicities. However, there are some major issues
with the multiplicity fractions, which are likely due to the self-similar model for system
decay and dynamical destruction. Therefore, I applied a more ‘realistic’ set of decay
probabilities taken from Sterzik & Durisen (1998). These conditions were also applied to
the self-similar and Bonnor-Ebert mass dependent models, but they did not significantly
improve the fit to the observations.

Sterzik & Durisen (1998) used numerical and analytical modelling of 1000 non-
hierarchical N = 3, 4, and 5 systems to evaluate the likelihood that a system will decay
due to secular processes. Their findings are shown for various initial mass ratio distri-
butions in their table 1. Their orbit integration approach mimics the effect of secular
decay only in high order systems.

As well as considering cases where the multiple system ejects single stars, they also
include the various decay channels that produce two lower order systems (i.e. an N = 5

system may decay to a binary and a triple system). They do not include any decay
statistics for N = 6 or N = 7 systems, so I extrapolated from the data presented in their
paper to estimate the probabilities of high-order systems decaying through each channel
(shown in Table 2.2). I assume that all binaries in this model are stable, as they can
only be destroyed due to dynamical interactions, which is not included in the modelling
in Sterzik & Durisen (1998).

The IMF and multiplicity fractions determined using the Sterzik & Durisen (1998)
decay rules are shown in Figure 2.9 and Figure 2.10. The shape of the single star IMF
is the same as in Figure 2.7, and the system IMFs are extremely similar as one would
expect.

The multiplicity statistics change now that only the secular decay processes are in-
cluded. The THFs fit the observations very well and the CSFs are somewhat flatter
than the observations. The MFs match the observed values for masses ≥ 2M⊙ (which is
an improvement on the results for high mass stars from the previous model), but are a
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Figure 2.10: Multiplicities from the semi-random fragmentation model where low mass
stars are ejected from multiple systems following the Sterzik & Durisen (1998) decay
rules. See the caption of Figure 2.2 for more details.
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N BS TS QS BBS TB Other
2 1000 - - - - -
3 874 118 - - - 8
4 751 181 37 12 - 19
5 532 340 62 41 8 17
6 313 499 87 70 31 -
7 94 658 112 99 37 -

Table 2.2: The decay probabilities for N = 2− 7 systems. The column headings show
the different decay channels defined according to Sterzik & Durisen (1998), where BS:
binary system and N − 2 singles, TS: triple system and N − 3 singles, QS: quadruple
system and N−4 singles, BBS: two binary systems and N−4 singles, and TB: one triple
system and one binary system and N − 5 singles. The N = 3, 4 and 5 rows contain the
values from Sterzik & Durisen (1998) (for a clump mass spectrum), and the other rows
(in bold) contain the extrapolated values for lower/higher order systems based on these
probabilities.

factor of ∼ 1.5−2 times too high for primaries with masses ≤ 2M⊙. It is worth exploring
the reasoning for this to determine if the inclusion of dynamical destruction could solve
any of these problems.

With secular decay only, all binaries survive. At < 1M⊙ there are only singles,
binaries and triples initially (see Figure 2.6). Most triples will secularly decay to a binary
and a single, ejecting the lowest mass member. This reduces the MF, and significantly
lowers the THF and CSF as there are so many low-mass single stars and only binaries
to counter these. For primaries > 1M⊙, the initial population contains many triples,
quadruples, and even higher-order systems. These eject low-mass members (further
diluting the multiplicities at lower masses), but retain the highest mass members in
binaries and triples resulting in high THFs and CSFs.

The main failing of the secular decay only model is the over-production of binaries at
lower masses. A down turn appears in the MF at 0.5−1M⊙ (depending on the SFE). For
the best fit SFE of 0.3-0.5 the down turn occurs for primaries less massive than about
∼ 0.7M⊙. The reason for this feature is that systems that form from cores around the
peak of the CMF (∼ 1M⊙) will usually form stars of 0.1− 0.5M⊙ (1 to 3 stars of total
system mass 0.3−0.5M⊙). Therefore by far the most common triple systems around the
peak of the IMF will eject stars of typically 0.1− 0.2M⊙ which significantly dilutes the
lowest mass bins. To dilute mass bins greater than about 0.8M⊙ requires ejections of
stars of that mass from what must be initially much higher mass cores, which are much
rarer (c.f Goodwin, 2013).

Essentially, there are very few systems in which the lowest mass component is about
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0.5− 1M⊙ and so it is impossible to significantly dilute the MF above that mass. As the
system IMF drops to higher masses there are fewer and fewer increasingly high mass stars
ejected to dilute the high mass MF. Changing the fragmentation rules cannot fix this
issue without introducing discrepancies in either the shape of the IMF or the THF/CSFs.
Therefore, dynamical destruction needs to occur on top of the secular decay to alter this.

I also tested models where the secular decay probabilities were used with the self-
similar and strongly core mass dependent fragmentation models. The results of this
testing are shown in Appendix A. I do not discuss these results in detail, as they suffer
from the same issues as the models in Section 2.3.1 and Section 2.3.2.

2.3.4 Optimised decay model

The final model presented in this thesis aimed to reproduce the field multiplicities without
considering the physicality of the constraints; I force the statistics to match observations
by using arbitrary conditions. The core fragmentation conditions are the same as those
in section Section 2.3.3, so that the shape of the IMF and self-similar mapping are
maintained. The IMF is therefore the same as Figure 2.7 so an additional figure is not
included.

I implemented strict rules on the number of systems that decay, which were dependent
only on the initial multiplicity of the system. The rules were as follows:

If the system has N∗ = 6 or N∗ = 7, it ejects either two (N∗ = 6) or three (N∗ = 7)
stars to form a quadruple system. If N∗ = 5, the system ejects two stars to form a
triple system. If N∗ = 4, the system has a 70 per cent chance of ejecting one star and
forming a triple system, and a 30 per cent chance of ejecting two stars to become a
binary. If N∗ = 2 or N∗ = 3, then one star is ejected to form a single, or a binary
system (respectively). These values were chosen because their match to the observed
multiplicities, after iterative sampling of a variety of different conditions.

The multiplicity fractions, triple high-order and companion star fractions from this
simulation all match extremely closely with the observations, by design. The best fit
value of the star formation efficiency for both the multiplicities and the IMF for this
model was η = 0.6.

Whilst at a glance this appears to be a promising result, the decay conditions required
to produce these values are very unphysical and I do not consider this to be an accurate
representation of the star formation process. This is because to achieve these multiplicit-
ies, all primordial binaries and triples need to decay, but studies of local star formation
indicate that this does not occur (either through dynamical or secular processes).
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Figure 2.11: Multiplicities from the hybrid fragmentation model where there are strict
rules on system decay, which are tailored to replicate the observed MFs, THFs, and CSFs.
The densely dashed line shows the multiplicity values for various mass ranges when the
star formation efficiency is set to η = 0.6.
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The exact parameters defining the decay of higher-order systems can vary somewhat
while still giving fairly consistent results, but they all require a huge over processing of
low-order systems to strongly resemble the observations.

2.4 Discussion

Comparing the IMFs and multiplicities generated from our Monte Carlo simulations to
observations allows us to eliminate some universal star formation models.

Firstly, self-similar fragmentation cannot replicate the rapid increase of multiplicity
with primary mass. This is because if all cores fragment in the same way (independently
of mass) then the initial multiplicities will be the same at all masses. The only factors
which can then decrease the multiplicity factors are the effects of secular decay and
dynamical destruction. Secular decay only has a very slight mass dependence, in that
the lowest mass objects from a system will be preferentially ejected, decreasing the low-
mass multiplicity fractions only. The only solution to this problem would be to have
an extremely mass dependent dynamical decay that has little effect on moderate to
high-mass multiples.

Secondly, having a strict rule where the number of stars formed is directly propor-
tional to the core mass significantly changes the shape of the IMF. When splitting cores
based on a rigorous condition, the resulting IMF is a convolution of the CMF and the
function defining how N∗ depends on Mc, making self-similar mapping impossible.

Given these problems, I tried a hybrid model for fragmentation that was between the
two extremes. This model provide the best fit to the system IMF, as the gentle depend-
ence of N∗ on Mc solves the problem of initial multiplicity having no mass dependence
(from the self-similar model) without introducing harsh features in the IMF (like from
the strongly core mass dependent model).

The universal IMF

Throughout, I have assumed that the IMF is universal, and have judged the quality of
fit of the simulations similarities to IMF models. Whilst this is widely accepted (and
therefore a reasonable assumption), there is still some debate about the level of variation
between IMFs in different regions. Observations of young clusters by Dib (2014) suggest
that the IMF may not be universal, but there is also strong evidence that the form of
the IMF is mostly unaffected by environmental factors (Damian et al., 2021; Guszejnov
et al., 2022). Interestingly, the strongly peaked IMF as seen in our mass dependent model
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shows some similarities to the unusual IMF in Taurus (Luhman et al., 2003; Dib, 2014),
which has a strong peak at ∼0.8M⊙. A detailed comparison between our simulated IMF
and the observed IMF in Taurus is outside the scope of this paper, but similarities are
intriguing (cf. Goodwin et al., 2004).

Secular vs. dynamical decay

The Sterzik & Durisen (1998) decay probabilities were used to test the effects of a more
‘realistic’ model of secular decay. The results fit the multiplicity properties for primaries
greater than 2M⊙ quite well, but results in too many binaries for primaries of 0.1 to
2M⊙. The MF does decline with primary mass in this range, but is consistently roughly
double the field values for all primary masses.

There are two interesting things to say about this result.
Firstly, as mentioned above, in order to fit the field multiplicities, some of these

binaries would need to be dynamically processed into two singles. In order to reduce the
MF by a factor of two, we need to dynamically destroy about a third of the systems. For
example, for an MF of 0.6, ie. 60/100, to become an MF of 0.3 if 20 of the 60 binaries are
processed into 40 singles the MF is now 40/120 (lowering the number of binaries from
60 to 40, and in the process producing 20 new single systems). This would only need
to be weakly mass-dependent: not effective for systems with primaries over a few M⊙,
and equally effective for all low mass systems. This seems rather more physical than a
strongly mass-dependent dynamical process which would seem to require a fine tuning
of encounter energies.

However, it is still quite a significant level of processing that requires one third of
systems to spend enough time in an environment with high enough density and encounter
energy to have an unbinding encounter. But, one third of systems spending time in such
an environment (e.g. a fairly dense cluster) is not implausible, and such environments
are effective at processing binaries (e.g. Parker et al., 2009).

Secondly, an overabundance of binaries by a factor of about two is what is observed
in local star forming regions. King et al. (2012a,b) found that local low density star
forming regions all show a similar over abundance of multiples by a factor of roughly two
when compared to the field, and Duchêne et al. (2018) find the same over abundance
in the Orion Nebula Cluster. Therefore, for at least roughly 1M⊙ primaries local star
forming regions possibly match the too high MFs only found with secular decay in the
hybrid model. This suggests that the hybrid model is an acceptable model of how cores
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produce stellar systems, and then how those systems secularly decay.
A problem here is that the observed local over abundance contains too many hard

binaries below 100 au separation to be dynamically processed by any of the environments
in which they are found (King et al., 2012a,b; Duchêne et al., 2018).

Therefore, only around one third of stars need to be formed at much higher densities
than are observe locally in order to process them. This could cause problems to the
universal model I are trying to make work in this model, as then it is arguable that they
do not form in the same way as stars locally. In particular, at high densities cores will
not be isolated while forming stars and they will interact (Goodwin et al., 2007), and I
have implicitly assumed cores are isolated objects so that there can be a mapping from
the CMF to IMF. Since locally we observe cores to be quite separate, isolated objects,
this could suggest a different ‘mode’ of forming stars in much denser environments.

Inclusion of brown dwarf companions

As mentioned in section 2.2, I include all companions with a mass >0.012M⊙(the min-
imum brown dwarf mass) in our multiplicity statistics. The observed values from Offner
et al. (2022) have been corrected for incompleteness. The solar type MFs are calcu-
lated by counting all stellar and brown dwarf companions (Raghavan et al., 2010), but
the original M dwarf statistics from Winters et al. (2019) do not include brown dwarf
companions; in a discussion of results, however, they state that the inclusion of BD
companions only increases the multiplicity fractions by ∼1 per cent.

For intermediate/higher mass stars, the surveys by De Rosa et al. (2014) (1.6-
2.4 M⊙), Moe & Kratter (2021) (1.6-2.4 M⊙), and Moe & Di Stefano (2017) (3-17 M⊙)
identified companions down to 0.08 M⊙, and only corrected for completeness down to this
limit. I account for this in my simulations by not including any brown dwarf companions
in the multiplicity statistics for intermediate and high-mass stars.

Since my simulations include all companions, they should never be lower than the
observations.

Separation distributions

There are several additional factors which could be taken into account in order to make
this model more detailed. Applying a mask of different separations to the multiple sys-
tems would allow me to study the variability of the MFs with separation. The separation
distribution could also be used to estimate which systems would be detected in obser-
vational surveys, which would then allow us to introduce a new model for the dynamic
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and secular decay of systems depending on the separations. Incorporating these para-
meters into our model is outside the scope of this paper but would provide interesting
opportunities for follow up research.

2.5 Conclusions

I have tested several simple scenarios which attempt to replicate both the initial mass
function and the multiplicity/companion fractions of stars in the field using toy statistical
models. Neither a self-similar model for core fragmentation or a strongly core mass
dependent model can reproduce the observations in their entirety. In our simulations
with parameters tailored specifically to demonstrate both self-similar mapping of the
IMF and multiplicity fractions, binary systems need to decay at a rate much higher than
is expected in reality.

The number of stars formed in a molecular core must be some function of core mass
in order for the multiplicity fractions to increase with mass, but if the dependence on
mass is too strong then self-similar mapping from the CMF to the IMF is compromised.

As is the case for many toy models, there is a vast number of additional parameters
that could be included in the simulations to model the effects of more complex physics.
However, the purpose of this work was to determine if a set of simple rules could explain
the universality of the IMF and the multiplicity statistics in the field.



Chapter 3

Celestial mechanics and binary
modelling

3.1 A brief history of celestial mechanics

Celestial mechanics is the branch of astronomy that mathematically explains the orbital
motion of objects due to their gravitational interactions. Whilst the key developments in
the field were initial made to explain the orbits of the planets in our own solar system, the
same mathematical principles can be applied to binary stars and higher order multiple
systems, to understand their orbits. The history included in this section can be found
in Gribbin (2002).

The development of the modern field of celestial mechanics began with the observa-
tions of Tycho Brahe in the late 1500s. Brahe made meticulous measurements of the
positions of the ‘wandering stars’ (now known to be planets) in an attempt to disprove
the Copernican heliocentric model of the Solar System. Whilst his conclusions (that the
Earth shows no detectable motion throughout the heavens) were ultimately false, the
measurements he made were at the highest level of precision possible at the time, an
achievement for which he is often credited as one of the greatest astronomers who ever
lived.

Brahe invited German mathematician Johannes Kepler to work on his observational
data with him. After Brahe’s death in 1601, Kepler meticulously studied the data,
hoping it would support the heliocentric model of the Solar System. His truly revolu-
tionary scientific achievement came when he disregarded one of the key assumptions of
the Ptolometic/geocentric model - that orbits are circular - and instead considered the
possibility that they may be elliptical. This finally reconciled Brahe’s observations with
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the heliocentric model and allowed Kepler to develop his three pivotal laws of planetary
motion.

Since these laws are based on the mathematical properties of an ellipse and the
gravitational forces acting between any two bodies, they hold true for binary systems as
well as a planet orbiting a star.

Kepler’s First Law: Elliptical orbits

‘A planet orbits the Sun in an ellipse, with the Sun at one of the foci of the
ellipse.’

A diagram of an elliptical orbit is shown in Figure 3.1. The two most important quantities
in characterising an elliptical orbit are the semi-major axis and the eccentricity. The
semi-major axis (a) is the distance from the centre of the ellipse to the furthest part of
the orbit. The semi-major axis is constant for a given orbit and is a key quantity in the
definition of an ellipse; something can only be classified as ‘elliptical’ if at every point in
the orbit (Prussing & Conway, 1993).

, r + r′ = 2a (3.1)

where r and r′ represent the distances from each focal point to any point around the
edge of the ellipse.

The eccentricity (e) is a measure of how elliptical the orbit is, ranging from 0 if the
orbit is perfectly circular to close to 1 if the orbit is extremely elliptical. If e = 1 then the
companion object is unbound and on a parabolic orbit and if e > 1 then the companion
is on an unbound, hyperbolic orbit.

Marked on the diagram are the two foci (F1 and F2) which are equidistant from
the centre of the ellipse and located at a distance of ae, which is the semi-major axis
multiplied by the eccentricity. The primary star is located at F1 and the planet (or
secondary star, in the case of a binary) orbits in an ellipse.

Kepler’s Second Law:

‘The imaginary line which joins a planet and the Sun sweeps out equal areas
of space in equal time intervals.’

This means that the velocity of the planet changes throughout its orbit based on the
distance from the star, reaching it’s fastest velocity at periastron (closest approach to
the star) and slowest at apastron (furthest distance from the star).
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Figure 3.1: Diagram of an elliptical orbit.

Kepler also proposed an equation which relates the position of a planet within its
orbit to the time elapsed since a reference point within its orbit. Today, this is simply
referred to as ‘Kepler’s equation’, and is given by

M = E − e sin(E), (3.2)

where M is the mean anomaly, E is the eccentric anomaly, and e is the eccentricity of
the orbit (Prussing & Conway, 1993). All of these quantities, plus an explanation of how
to solve Kepler’s equation, is given in section Section 3.2.2.

Kepler’s Third Law

‘The square of the orbital period of the planet is directly proportional to the
cube of the planet’s semi-major axis, i.e. P 2 ∝ a3.’

The original version of Kepler’s third law for planets orbiting the Sun was P 2 = a3,
which is only true for planets orbiting the Sun (or a star of 1 M⊙) when the period P is
measured in years and the semi-major axis a is measured in astronomical units (au). The
full version of Kepler’s third law, applicable to any two gravitationally bound objects
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(Prussing & Conway, 1993), is

P 2 =
4π2

G(m1 +m2)
a3. (3.3)

3.2 Generating a binary

For the work presented in Chapter 4 and Chapter 5, I had to produce fake "observations"
of binary systems by creating a fake binary system, assigning some instantaneous orbital
parameters to it, and making a projection of the two stars on a 2D plane. The method
for doing this, using the theory described in Section 3.1, is described below.

3.2.1 Orbital properties

An orbit is characterised by three physical parameters: the semi-major axis a, eccentri-
city e, and the inclination of the system relative to the observer i. There are also two
‘instantaneous’ orbital properties: the orientation of the system ϕ and the phase at the
orbit (the true anomaly) ν. The orientation of the system will be subject to preces-
sion over long timescales (∼10s-100s of Myrs, depending on the period of the orbit) and
as shown in figure 4.1, ϕ = 0◦ is defined such that the semi-major axis of the system
coincides with the line of sight from Earth.

The true anomaly (also known as the flight path angle in both orbital mechanics and
aeronautics) is a function of time ν(t), and is an angular representation of the position
of the companion within it’s orbit at time t (Prussing & Conway, 1993). It is defined
such that when ν = 0◦, the companion star is at periastron (i.e. at closest approach
to the primary). For circular orbits, ν is uniformly distributed in time. However, in an
elliptical orbit, it is not. This is because while the orbiting body is nearer apastron than
periastron, it’s velocity is lower (in accordance with Kepler’s second law).

3.2.2 Solving Kepler’s equation

The true anomaly is calculated using a random variable called the mean anomaly, M ,
which is uniformly distributed in time, by definition (such that M(t) = U [0, 2π]). To
calculate the true anomaly from the mean anomaly, we need to numerically solve Kepler’s
equation (Equation 3.2).

Due to the form of Kepler’s equation (specifically the fact that the eccentric anomaly
(E) appears both on its own and in the sin function) it is not possible to solve analytically.
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Figure 3.2: Diagram of an elliptical orbit inclined and rotated relative to an observer.
The orbit of the companion is inclined at an angle i from the x − y plane and rotated
through an angle ϕ around the z-axis. The true anomaly (ν) of the companion is shown
measured relative to periastron.

The most common way of doing this is using the Newton-Raphson method; an iterative
process which gradually finds the root of the function by trying different values in place
of the eccentric anomaly. This numerical approach was used throughout this work.

Once a value for E has been found, it can be used to calculate the true anomaly
using

tan
(ν
2

)
=

√
1 + e

1− e
tan

(
E

2

)
. (3.4)

The true distance between the stars as a function of the true anomaly is given by

r =
a(1− e2)

1 + e cos ν
, (3.5)

(see Prussing & Conway, 1993).
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Orientation

When we initialise the binary system, the semi-major axis is along the x-axis (perpen-
dicular to our line of sight). There is no reason that this would be favoured over any
other orientation when we observe a binary, so we need to spin the system around the
z-axis to randomise the orientation. We call the orientation angle ϕ and it is uniformly
distributed between 0 and 2π.

x′ = x cosϕ− y sinϕ,

y′ = x sinϕ+ y cosϕ,

v′x = vx cosϕ− vy sinϕ,

v′y = vx sinϕ+ vy cosϕ.

(3.6)

Inclination

After applying the transformations in Equation 3.6, we have a binary system orbiting
in the x− y plane, with the semi-major axis at a random orientation within that plane.
We now need to incline the system in the z-direction by an inclination angle i.

x′′ = x′,

y′′ = y′ cos i,

z′′ = y′ sin i,

v′′x = v′x,

v′′y = v′y cos i,

v′′z = v′y sin i.

(3.7)

For initial conditions in a simulation, the inclination angle should be randomly selec-
ted from a distribution that is uniform in sin i, between 0 and 2π (i.e.U [sin i]), because
there is no preferred inclination from the reference frame of the binary. However, as we
are generating fake observations of a binary, it needs to be done a little differently. This
is because it is more likely that a system will be observed closer to edge-on than face-on,
due to the fraction of solid angle that will result in an edge on system rather than a
face-on one.
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On sky separation

The results of Equation 3.7 are the 3D spatial coordinates of the companion (x,y, and
z) and the 3D velocity components (vx,vy, and vz). Astrometric observations of a visual
binary will give the coordinates of the companion in the image, which correspond to
(x,z) from Equation 3.7. The separation can be calculated very simply as

s =
√

(x2 + z2). (3.8)

The ‘observed’ separation can also be calculated in a single step using the true dis-
tance and the angles θ, ϕ, and i,

s =
√

r(1− sin2(ϕ+ θ) sin2 i). (3.9)

3.3 Triples

In Chapter 4, I also need to generate fake triple systems. The majority of triple sys-
tems are in a hierarchical configuration, meaning that the primary and secondary star
orbit closely while the tertiary orbits at a much larger distance. This is a much more
stable configuration of stars than a non-hierarchical orbit. Due to the distance between
the primary/secondary orbit and the tertiary, we can consider a triple system as being
composed of two independent orbits: the secondary star around the primary (the inner
orbit) and the tertiary around the primary (outer orbit).

For a hierarchical triple to be stable, the tertiary needs to be orbiting at a much larger
distance than the secondary, so that the stars do not pass closely enough to perturb one
another’s orbits. There are many different methods of quantifying the stability of triple
systems, which are outlined below.

3.3.1 Stability

Many triple and higher-order systems are not stable over long timescales. Triple systems
typically decay with a half life of

tdecay = 14

(
R

au

)3/2(
Mstars

M⊙

)−1/2

years, (3.10)

where R is the separation of the stars and Mstars is the combined mass of the components
(Anosova, 1986). This form of Equation 3.10 is from Goodwin & Whitworth (2007).
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Using typical values of R = 250 AU and Mstars = 1M⊙, this gives a timescale of ∼ 55

kyr, which is well within the Class 0 stage of the object.
The stability of a triple system is determined by the semi-major axes, eccentricities,

and the relative inclinations of the secondary and tertiary.
There is no single empirical stability equation for hierarchical triple systems, al-

though there are several widely used models including Harrington (1972); Eggleton &
Kiseleva (1995); Valtonen et al. (2008); Reipurth & Mikkola (2012). One of the most
commonly used stability equations is the criteria of Mardling & Aarseth (1999), shown in
Equation 3.11, derived based on the chaotic energy and angular momentum interactions
between the orbits of the two stars.

aout
ain

|crit =
2.8

1− eout

(
1− 0.3irel

π

)(
(1.0 + qout)(1 + eout)√

1− eout

) 2
5

, (3.11)

where eout is the eccentricity of the outer star, and irel, is the relative inclination between
the inner and outer orbits, and

qout =
m3

m1 +m2

, (3.12)

where m1, m2 and m3 are the masses of the primary, secondary, and tertiary stars
respectively. A system is unstable if

aout
ain

>
aout
ain

∣∣∣∣
crit

, (3.13)

i.e. the ratio of the outer semi-major axis to the inner semi-major axis must be greater
than the critical value given by Equation 3.11.

This stability condition is valid for stellar mass objects, and for prograde orbits. It
also ignores a small dependence on the inner mass ratio and inner eccentricity. However,
it provides a conservative estimate of the stability of an orbit, occasionally rejecting
stable orbits in order to ensure no unstable orbits are accepted.

Valtonen et al. (2008) also developed a stability condition for triple systems, using
the energy change in an encounter between a binary and a single star to determine that

Qst = 3

(
1 +

m3

M12

) 1
3

(1− e)−
1
6

(
7

4
+

1

2
cos i− cos2 i

) 1
3

, (3.14)

where Qst is the stability limit of a single encounter, and the stability parameter Q = q/ai

(where ai is the semi-major axis of the inner binary and q is the pericentre distance of a
third body orbiting relative to the barycentre of the binary). M12 is the combined mass
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of the primary and secondary, m3 is the mass of the tertiary, and e is the eccentricity of
the tertiary.
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Chapter 4

Orbit fitting with FOBOS

4.1 Introduction

As discussed in chapters 1 and 2, most stars appear to form in multiple systems (Duchêne
& Kraus, 2013; Reipurth et al., 2014), and over half of all solar-type and high-mass stars
remain in multiple systems when they reach the main sequence. In Chapter 2, I presented
the results of my Monte Carlo simulations that model simple rules of star formation
from dense cores to bound systems. As well as understanding the formation mechanisms
behind multiple system formation, it is also important to be able to determine the orbital
properties of main-sequence multiple systems (such as the semi-major axis distribution
of binaries or the relative inclinations of triple systems).

Binary orbital parameters can be estimated in different ways depending on the
method of observation. Several orbital fitting tools have been developed recently, includ-
ing BATMAN (Kreidberg, 2015) (which uses transit light curves), RadVel (Fulton et al.,
2018) and The Joker (Price-Whelan et al., 2017) (radial velocity measurements), as well
as orbitize! (Blunt et al., 2020), ExoSOFT (Mede & Brandt, 2017), and orvara (Brandt
et al., 2021) (which use radial velocity measurements and/or astrometry). The majority
of these tools have been developed with the intent of fitting the orbits of exoplanets
rather than stellar systems, and obtain better fits when there are 10s of epochs of orbital
data available. Only The Joker is designed to use sparse observations, providing fits to
as few as three epochs of data, using radial velocity measurements only.

Unfortunately, the majority of data on multiple systems (obtained for multiplicity
surveys, such as those referenced in Section 1.7) only contains a single epoch of relative
astrometry. In some cases, there is a second or third epoch available from follow-up
observations.
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I have developed a new orbital parameter finder - FOBOS (Few Observation Binary
Orbit Solver). FOBOS is designed to find confidence limits for orbital parameters with
only two epochs of observation. This chapter describes the development of the FOBOS

algorithm and shows the results of testing on a large sample of fake binary and triple
systems. In Section 4.7, I show the results of using the FOBOS algorithm on some observed
systems with brown dwarf companions, and compare my results to orbital fits from the
literature.

FOBOS was developed to constrain the orbital parameters of binary or triple systems
with only two or three epochs of relative astrometry. As such, it may act as an incentive
to obtain a second epoch on what are currently single-epoch observations. During the
development of this algorithm, I realised that it has applications to directly imaged
exoplanets that have been very recently discovered, as a way to determine priors on the
orbital parameters that can inform follow-up observations.

4.2 Methods

FOBOS is a flat-prior brute force Monte Carlo method. A Monte Carlo method is a math-
ematical technique in which parameter space is randomly sampled to find the probability
of certain outcomes. In practice, the algorithm works by producing a very large number
of fake systems with a random set of orbital parameters, projecting them into 2D, and
comparing the positions of the companion star(s) at the different epochs to establish
whether the orbital parameters of the fake system match the observations (to within the
observational errors).

For any two epochs of observations at times t1 and t2, the companion star is separ-
ated by a distance s1 and s2 from the primary, with (arbitrary) position angles θ1 and
θ2, differing by an angle ∆θ. Note that s1, s2, and ∆θ will have some observational
uncertainty associated with them, and s1 and s2 in au depend on the distance and the
uncertainty associated with it.

The steps outlined in Section 3.2 are followed to make a fake observation of a system.
It starts by generating a fake observation for the first epoch of observation (t1), with
random values of the semi-major axis (a), eccentricity (e), inclination (i), orientation
(ϕ), and mean anomaly (M). The limits on these parameters are discussed in section
Section 4.2.1. The ability of FOBOS to fit the orbit of a system requires at least one more
observation at a time t2.

Assuming that the precession of an orbit can be ignored, so the only parameter which
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is a function of time is the true anomaly, ν(t). The true 3D separation at a time t, r(t),
for a system with parameters a, e, and ν(t) is given by

r(t) =
a(1− e2)

1 + e cos ν(t)
. (4.1)

The on-sky separation at a given time, s(t), is related to the true 3D separation, r(t),
and instantaneous angles ν(t), ϕ, and i via

s(t) = r(t) (1− sin2(ϕ+ ν(t)) sin2 i)1/2. (4.2)

The orbital period (P ) is also needed, to calculate the fraction of the orbit through
which the companion will have moved between the two epochs of observation,

P =

√
a3

m1 +m2

, (4.3)

where m1 and m2 are the masses of the primary star and the companion respectively.
Note that to calculate the orbital period of the system, we also need to know the masses,
which may have significant observational uncertainties, particularly for lower mass com-
panions. The masses of the stars can be determined through the Monte Carlo method,
but this significantly increases the computational overheads of the fit.

In the simplest case of two epochs of observations, there is a known time difference
∆t = t2 − t1, a change of on-sky angle ∆θ, and two separations, s1 and s2. These are
related to the change in ν and s between observations which depend on P , a, e, ϕ, and
i.

Triple systems

If the orbit of a triple is being fitted, then it is treated as two separate binaries; one con-
sisting of the primary and secondary, and the other the primary/secondary (pretending
they act as a single star) and tertiary. In both cases, the primary star is located at (0,0)
in the frame of our coordinates. This is a valid way of treating hierarchical triples, in
which the tertiary is orbiting sufficiently far from the primary and secondary for them
to act as a point source.
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Figure 4.1: Diagram of a triple system. The diagram depicts the orbit of secondary
and tertiary stars around a primary star. Each orbit is inclined with an inclination i
relative to an observer and rotated through an angle ϕ about an axis perpendicular to
the line of sight. The true anomaly of each star is measured from periastron, assuming
periastron is coincident with the line of sight for ϕ = 0◦.
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4.2.1 Parameter constraints

FOBOS samples from uniform distributions of parameters without any other prior as-
sumptions on the form of the semi-major axis or eccentricity distributions.

An absolute lower limit on the semi-major axis amin is given by half of the projected
on sky separation of the primary and companion star. This is because the true distance
of the star has a maximum in a highly eccentric (e ∼ 1) system, such that rmax ∼ 2a.
If the system is inclined, the observed projected separation s is almost always smaller
than the true distance. Therefore, amin = s/2. As this method requires at least two
observations that will usually have different separations, amin is calculated using the
largest value.

Another highly constraining feature of this method involves the on-sky velocity of the
star, vobs. This is how fast the secondary star has moved with respect to the primary. It
contains a large contribution from the tangential velocity of the star but no contribution
from the radial velocity. The on-sky velocity is therefore a lower limit on the star’s true
orbital velocity.

The companion star reaches it’s maximum orbital velocity, vmax, at periastron, so for
an orbit with parameters a and e

vmax =

√
G(m1 +m2)

a

(1 + e)

(1− e)
. (4.4)

Due to the fact that vobs is a lower limit on the speed of the companion star, it is
only possible for it to have orbital parameters that satisfy

a <
G(m1 +m2)

v2obs

(1 + e)

(1− e)
. (4.5)

By assuming that it is extremely unlikely for the observed system to have an ec-
centricity of e ∼> 0.98, Equation 4.5 can be used to give a probable upper limit on the
semi-major axis of the companion

amax = 100× G(m1 +m2)

v2obs
for e < 0.98. (4.6)

For systems with very large on sky velocities, this can be highly constraining. This
gives a useful upper limit on the semi-major axis, by reducing the possible range of
parameter space to be sampled. In the event that the simulation manages to find no
solutions, the limit on the semi-major axis can be removed to allow sampling of extremely
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Parameter Symbol Range Units
Semi-major axis a amin - amax au

Eccentricity e 0 - 1 -
Inclination i 0 - 90 deg
Orientation ϕ 0 - 360 deg

Mean anomaly M 0 - 360 deg

Table 4.1: Definitions of the physical and instantaneous orbital parameters along with
their allowed ranges.

high eccentricities at larger-a than previously allowed.
Note that Equation 4.5 also contains the masses of the stars. I used the upper limit

on the masses to determine amax, as these give the largest possible value of amax.

4.2.2 Orbital Parameter Generation

At the beginning of each iteration of the Monte Carlo simulation, random values for each
of the orbital parameters are selected from within the ranges shown in Table 4.1.

In order to avoid any biases in the posterior PDFs, this method assumes flat uniform
priors when selecting the semi-major axis, eccentricity, orientation, and mean anomaly
values, and inclination uniform in sin i.

The true anomaly is generated from a distribution that is uniform in time. ν is
calculated by first selecting a random value between 0 and 2π for the mean anomaly M

of the companion. This is then converted to the true anomaly, ν, by solving Kepler’s
equation using the Newton-Raphson method (as in Section 3.2.2).

Once all 5 parameters have been selected/calculated for our test system, a ‘fake’
observation can be produced and s(t1) can be calculated. If the test separation s(t1)

does not match the observed first separation to within the observational errors, the
parameters are rejected as a possible match and the process is restarted.

If the test separation is a possible match to the observed system, we can then proceed
to advance the system forward in time. This is done by calculating the period P of the
orbit, then dividing the time between the epochs of observation by P to calculate the
fraction of an orbit through which the secondary star will move in time ∆t. Since M is
uniformly distributed in time we can calculate M2 at time t2 from

M2 = M1 ±
2π∆t

P
. (4.7)

The companion could be moving in either direction around it’s orbit, hence the ±,
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and in elliptical orbits an equal change in ±M will almost certainly not correspond to
an equal change in ±ν. The companion is allowed to have multiple orbits in time ∆t

(which will occur if ∆t > P ).
The two new values of the mean anomaly are converted to true anomalies using

the same process as outlined in Section 3.2.2. These two new sets of parameters are
projected onto the sky to see if either of the sets of s(t1), s(t2), and ∆θ match their
observed counterparts within the observational errors.

This process is repeated n times, randomly sampling different orbital parameters
from the whole of the parameter space given in Table 4.1. The final probability density
function is calculated from all matches found for a particular set of observations (ideally
at least 1 000 matches, and never less than 300 - this is discussed further in Section 4.4.1).

4.2.3 A note on degeneracies

As our observations are a projection onto the sky, the orientation and inclination are
‘degenerate’. The inclination may be such that the secondary is either in front of or
behind the primary and we would have no way of knowing which. Therefore, an inclin-
ation of 20◦ could correspond to either plus 20◦, or minus 20◦. Similarly, the orientation
could be such that e.g. periastron was on the near side of the primary, or on the far side,
and we would not be able to distinguish this. These degeneracies mean that it is often
impossible to tell the direction of motion (e.g. clockwise vs. anticlockwise) of the orbit
from only a two epochs (the exception would be an almost face-on orbit).

For binaries, the fact that orientation, inclination, and direction are degenerate does
not matter at all. However, in triple systems the degeneracy in inclination and the
direction of the orbit can be important and will be discussed in Section 4.4.1.

4.2.4 Errors on observed quantities

The code compares the separations and position angles of the fake system to an observa-
tion. When running the code, a match will be triggered if both separations and the angle
match within the observational errors. For the example systems tested in this paper, I
apply a blanket error of 5 per cent to each separation and angle. This value was chosen
as it represents an upper limit of typical observational errors. Unsurprisingly, smaller
errors in the observation tend to tighten the constraints on a system while increasing
the time to find solutions.

I assume that the possible true values of the observations fall uniformly within the
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the assigned observational errors. The observational errors could be incorporated more
cleverly into the PDFs by weighting ‘hits’ by their closeness to the observed values -
however, while the confidence ranges found for some systems can be really quite small,
they are too large to justify the extra complexity of doing this.

I have assumed in these tests that observed systems will have a good Gaia distance
available, or be within a cluster/star forming region with a good distance estimate. The
distance can be included as an extra parameter to find the best fit for this as well.
Whether this is worth doing depends on how large the uncertainty in the distance is
compared to the uncertainty in the angular separations and angular shift.

In my tests, I also assume that the masses are known to a much greater accuracy
than the uncertainty in the angular separations and angular shift, and so any error can
be neglected. This will often not be the case and the masses of the primary and compan-
ion(s) can be included as extra parameters to be sampled. This will add computational
expense as there are now two or three new parameters to include.

The impact of real observational errors (including the astrometric errors and errors
on masses/distances) is discussed further in Section 4.7.

4.2.5 Selection effects

In order to estimate orbital parameters FOBOS requires an on-sky motion to be observed.
Rather obviously, this means that if a system’s orbital parameters are such that the
companion’s motion is too small to be observed, then it’s orbital parameters cannot
be estimated (other than extremely weak constraints based on it not being observed to
move).

This means FOBOS is only able to estimate the orbital parameters of a biased subset
of systems with the ‘right’ orbital parameters. On a system-by-system basis this is not
important - if a companion is observed to move we can obtain confidence limits on its
orbital parameters. However, over a population of binary or triple systems, particular
configurations of parameters will be missed. This is addressed in Chapter 5, in which I
examine populations and biases.

4.3 Testing on binary systems

I tested FOBOS on 60 fake observations of binary stellar systems. I show that the correct
values are found for parameters within the 68 per cent and 95 per cent confidence intervals
as often as one would expect. I also show that sometimes FOBOS is surprisingly good at
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constraining orbital parameters (and when it cannot, it is statistically reliable in telling
us so).

The orbital parameters, masses, and time between epochs for each of the synthetic
binaries used to test our code are available online. The semi-major axis values are
randomly distributed in the range 4-450 au and the other orbital parameters within the
ranges shown in Table 4.1 for each system. The time between epochs for each of the
systems is ∼2-12 yrs, and the masses of the primaries are m1 = 0.2 − 1.4 M⊙ and of
secondaries m2 = 0.016− 0.7 M⊙.

The only constraint that is applied on selecting binary systems to test is that the
companion star must have moved a distance greater than 1 per cent of the initial separ-
ation s1 between observations such that it’s motion on the sky is clearly visible. While
it is possible to constrain orbital parameters from an observation of no apparent motion,
these constraints are extremely weak (the main constraint is that the on-sky velocity is
too small to have been observed which rules-out some, usually close, orbital configura-
tions).

Each of the test systems ran on a 6 core / 12 thread CPU and the simulation ended
when the number of possible matches exceeded 50 000. The performance of the code is
discussed in Section 4.5, but often solution PDFs can be found in minutes.

I found that 45/60 (75 per cent) simulations correctly identified the semi-major axis
of the binary within the 68 per cent confidence range, and 58/60 (97 per cent) within the
95 per cent confidence range. Similarly, the true inclination of the system is within the
68 per cent range for 41/60 (68 per cent) of test systems and 95 per cent confidence range
for 57/60 (95 per cent) of systems. The eccentricity has 35/60 (58 per cent) and 59/60
(98 per cent) within the 68 per cent and 95 per cent confidence intervals respectively.

The key point here is that FOBOS gets the ‘wrong’ answer as often as one would
expect.

4.3.1 General performance

I find that FOBOS is often good at constraining orbital parameters, with the eccentricity
being the most difficult parameter to constrain. Typically, FOBOS is able to indicate if
the eccentricity is likely to be ‘low’, ‘intermediate’, or ‘high’. This can be seen from
the full table of 68 and 95 per cent confidence intervals (for all 60 test systems) that is
available in Appendix B.

The 68 per cent confidence limits on the semi-major axis are often within a factor of
< 3 (21/60 systems), mostly within a factor of 5 (40/60 systems), and in only 2 cases a
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Figure 4.2: On sky projection of system B17 at two epochs. The position of the
companion star at the first and second epochs of observation are marked as 1 and 2
respectively, with the direction of the star’s on sky motion shown by the arrow. The
primary star is located at (0,0) in both observations. The axes are in au.

factor of 10 or more. Given the difficulty in constraining eccentricity there is usually a
‘floor’ of a factor of 2 on constraining the semi-major axis.

FOBOS is often very good at constraining the inclination of the system - in 26/60
systems the 68 per cent confidence limits are less than 20◦, and only 1/60 is beyond 40◦.

System B17

An example of the ability of FOBOS to find tight constraints on orbital parameters is
system B17. Figure 4.2 shows the on sky projection of system B17 at the two epochs.
Note that the position angles are completely arbitrary - only the change in position
angle, ∆θ, is important.

This binary system has a maximum projected separation of s = 57.3 au, meaning
that the lower limit on the semi-major axis is amin = 28.6 au. The time between
observations was 7.43 years, during which the star moved a distance of 5.45 au on
the sky. Therefore, the observed on sky velocity of the star was 0.73 au yr−1, or vobs =

3.49 km s−1. The velocity gives an upper limit of amax = 7930 au to the semi-major axis
using Equation 4.6. This upper limit is for the extreme case of the system being observed
face-on while the companion is at periastron in a very highly eccentric orbit. (Note that
the result is usually quoted to three significant figures, for real data this should obviously
depend on the relative size of the errors on various quantities.)

Figure 4.3 shows the resulting probability density functions for semi-major axis (left),
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Figure 4.3: The final probability density functions for system B17 show as a histogram
(top) and a cumulative distribution function (bottom) for the semi-major axis (left),
eccentricity (middle), and inclination (right). The true parameters for the semi-major
axis, eccentricity, and inclination are shown as the magenta dashed lines on each plot,
and the minimum projected separation of the two stars (in au) is shown by the black
dotted lines on the semi-major axis plots. The shaded regions represent the 68 per cent
confidence intervals on each of the orbital parameters.



82 Chapter 4: Orbit fitting with FOBOS

eccentricity (middle), and inclination (right) - as a histogram (top), and CDF (bottom).
The 68 per cent confidence ranges are shown by the grey shaded regions and the true
value of the semi-major axis, eccentricity, and inclination are shown by the purple dashed-
lines in each panel. For the semi-major axis the black dotted line shows the maximum
observed separation.

In this case, FOBOS has performed extremely well. The 68 per cent confidence limits
for a are 47.0− 95.6 au (true value 63.2 au), for e, 0.00− 0.37 (true value 0.12), and for
i, 35.4− 60.2◦ (true value 53.0◦).

Corner plots are useful to examine the connection between different parameters. In
Figure 4.4 I show the corner plot for system B17 - note that as well as a, e, and i,
FOBOS can also estimate the instantaneous orbital parameters ϕ (orientation), and ν or
M (phase).

Figure 4.4 shows slightly more subtle information than the individual PDFs in Fig-
ure 4.3. Semi-major axis and eccentricity are (unsurprisingly) related, and we can see
that if a is high, then e must be high (far left, second panel down). The orientation
(ϕ, fourth row) of the orbit shows a slight preference for being close to either ϕ = 0◦

or ϕ = 180◦, but could take any value in the 0 − 360◦ range. The phase (M , bottom
row), however, is well constrained to be probably very close to periastron (M ∼ 0◦).
Depending on what one is interested in in a particular system the instantaneous orbital
parameters may be extremely interesting or of little use.

The information in the corner plot can allows us to rule-out particular combinations
of parameters in a way that is not obvious from the individual PDFs. For example, if
we were to have extra information that made us suspect that a was high (say, > 200 au)
then that would constrain e to being high (> 0.4), and i to be quite low (< 50◦).

System B4

A much less well constrained system is system B4 whose observation is shown in Fig-
ure 4.5. It is worth comparing the observations of systems B17 and B4 in Figure 4.2 and
Figure 4.5. System B4 has moved slightly further than system B17 and the two observa-
tions appear to the eye as if they are very similar and contain very similar information.
However, as we will see, the data for system B4 is not particularly constraining. Addi-
tional corner plots for this system are shown in Appendix B.

System B4 has true values of a = 190 au, e = 0.51, and i = 10.4◦. The minimum
semi-major axis was calculated as amin = 12.1 au from an on-sky separation of sproj =
24.2 au. The distance moved by the star in 10.6 yrs corresponds to an on sky velocity of
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Figure 4.4: Corner plot of parameters a, e, i, ϕ, and M for system B17, with solid blue
lines representing the true values and the shaded blue regions showing the FOBOS 68 per
cent confidence intervals. The panels at the top of each column show the probability
density functions for each orbital parameter individually and all other panels show two
dimensional covariance of each combination of parameters.
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Figure 4.5: On sky projection of system B4 at two epochs. Annotations and axis units
are as in Figure 4.2.

vobs = 2.39 km s−1. These values do not appear to be dissimilar to other test systems.
The confidence limits for system B4 are shown in Figure 4.6. Starting with the

middle and bottom panels: the eccentricity and inclination are almost in the 68 per cent
confidence limits. The inclination is fairly well-constrained as probably 10 − 30◦. The
eccentricity is probably less than 0.8, but the exact value would be difficult to estimate1.

However, FOBOS fails to correctly find the true semi-major axis of 190 au with a 68
per cent confidence range of 14 − 56 au. The true value is just outside the 95 per cent
confidence range of 14− 174 au.

It should be noted that the code has not ‘failed’ - it is just that of all the orbital
parameters that could have produced the observed movement on the sky within the
assumed errors, there were many with much smaller semi-major axes than what we know
to be the actual answer. The results are purely probabilistic and need to be treated as
such: there is a higher probability that this particular projection of the motion of the
binary on the sky corresponds to a system with a low eccentricity and small semi-
major axis, rather than a relatively eccentric e ∼ 0.5 system with instantaneous orbital
parameters that cause the projected separation of the stars to be eight times lower than
the semi-major axis.

1The confidence limits are found by finding the smallest range of parameter values containing 68
and 95 per cent of the PDFs. This fits peaks well, but in the case of the eccentricity distribution here, it
doesn’t quite map onto the almost flat PDF from 0 to 0.8. This illustrates the usefulness of ‘eyeballing’
PDFs.
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Figure 4.6: Probability density functions for system B4. Legend as in Figure 4.3.
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4.4 Triples

The method outlined above can also be applied to hierarchical triple systems. Hierarch-
ical triples are composed of an inner binary and a significantly more distant outer tertiary
companion. Therefore, we can consider a system as being composed of two independent
orbits - the secondary star around the primary (referred to as the inner orbit) and the
tertiary around the primary (outer orbit). In hierarchical triples, there needs to be a
significant separation between the inner and outer orbits for the system to be stable,
which is a very useful constraint.

For triple systems, I first assume that the star closest to the primary on the sky is
the secondary star and the star furthest from the primary on the sky is the tertiary star.
This is true for the majority of observations, but in some cases the tertiary star may
appear closer to the primary than the secondary2. In cases where no fits can be found
assuming the most probable alignment, it is possible to relax this assumption.

Each orbit will have it’s own set of parameters, defined in the same way as for a
binary. I use ain, ein, iin, ϕin, and Min to denote the parameters of the inner orbit and
aout, eout, iout, ϕout, and Mout for the outer orbit. These orbital elements are shown on
the diagram in Figure 4.1.

For systems with two companions, the inclination can vary from −90◦ to +90◦ as one
orbit may be inclined above the plane on the side of the observer, and the other below.

Attempting to fit five additional orbital parameters means that simulations of triple
systems are significantly more computationally expensive. However, parameter space
can be significantly reduced by excluding all unstable systems.

Generating fake triples

The code treats a triple system as two individual orbits. In both cases, the primary
star is at the centre of our co-ordinate system. Each orbit is modelled through the same
process that is described in detail in Section 4.2, the first stage of which is generating
and projecting the inner orbit for both epochs.

If both separations and the difference in position angle match the observation of the
secondary star, then the simulation moves on to the outer orbit. I calculate a lower limit
on aout by evaluating Equation 3.11 for the selected values of ain and eout, this ensures

2Only in close-to edge-on systems for a small fraction of its orbit does the tertiary have the chance
to be closer in the sky to the primary than the secondary. One interesting case where this may become
moderately likely is a system with a close-to face-on secondary and a close-to edge-on tertiary near the
stability limit.
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that all fake systems would be (hypothetically) stable.
The vast majority of iterations end without finding a match for the inner orbit (full

details of the rejection rate for various test systems are explored in Section 4.5). When
a match is found for the inner orbit, 1 000 orbital configurations for the outer orbit are
sampled to look for possible matches.

4.4.1 Results

The code was tested on 60 fake triple systems. Each simulation ran until 1 000 matches
had been found or the wall-clock time of the simulation exceeded 24 hours. The cutoff
of 24 hours per simulation was an arbitrary time limit to ensure all simulations ran in a
reasonable time frame, and should not be used for real systems.

Out of these 60 simulations, 4 of them (T14, T35, T44, T47) found between 300 and
1 000 matches, and a further 6 simulations (T5, T18, T42, T46, T50, T56) produced
fewer than 300 matches. These last 6 systems are excluded from the following statistics,
as there were too few solutions to generate reliable probability density functions.

In tests it was found that 300 is an absolute lower limit on the number of matches
required to have a statistically reliable probability density function, and when analysing
real systems we would ideally want 1 000 (or more) matches.

The true parameters for all of our triple systems are available in Appendix B. Note
that the secondary and tertiary inclinations are both given relative to the plane of the sky
- in triple systems a much more useful and interesting measure is the relative inclination
of the two orbits.

The semi-major axis, eccentricity, and inclination of the inner orbit were all within
the 68 per cent confidence interval for 44/54 (81 per cent), 35/54 (65 per cent) and 38/54
(70 per cent) of systems respectively. For the outer orbit these values are 36/50 (67 per
cent), 32/54 (59 per cent) and 46/54 (85 per cent) respectively.

FOBOS is usually more effective at constraining the orbital parameters in triples com-
pared to binaries due to the stability condition ruling-out many possible configurations
which could otherwise fit the observations.

System T19

System T19 is an example of a well constrained triple system. The true parameters
are ain = 24.5 au, ein = 0.77, and iin = −23.5◦, and aout = 504 au, eout = 0.10, and
iout = −11.0◦. The relative inclination of the two orbits is 13.5◦. The system was
observed at two epochs which were 8.67 yrs apart.
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Figure 4.7: Histograms and cumulative distribution functions for semi-major axis,
eccentricity, and inclination for the inner orbit in the system T19. The grey shaded
regions show the 68 per cent confidence interval for each parameter. The magenta
dashed lines represent the true value of each orbital parameter and the black dotted line
shows the maximum projected separation of the primary and secondary star out of the
two observations.
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Figure 4.8: Histograms and cumulative distribution functions for semi-major axis,
eccentricity, and inclination for the outer orbit in the system T19. The grey shaded
regions show the 68 per cent confidence interval for each parameter. The magenta
dashed lines represent the true value of each orbital parameter and the black dotted line
shows the maximum projected separation of the primary and secondary star out of the
two observations.
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The maximum projected separations of the secondary and tertiary stars were 31.2 au

and 99.0 au respectively, and they moved with on-sky velocities of 1.69 km s−1 and
1.73 km s−1.

Figure 4.7 and Figure 4.8 shows the PDFs of the secondary and tertiary for the
semi-major axis (left), eccentricity (middle), and inclination (right). Again, the shaded
regions are the 68 per cent confidence ranges, the purple dashed lines give the true value,
and the green dotted line in the top panels the maximum observed separation. Note that
the scales for semi-major axis and inclination are different for the secondary and tertiary.

The true semi-major axes of both the secondary and tertiary are within the 68 per
cent confidence limits (left panels). Interestingly, the semi-major axis of the secondary
is found to be almost certainly significantly smaller than its projected separation; and
the semi-major axis of the tertiary as almost certainly much larger than its projected
separation. Here the stability criterion is extremely powerful - if both the inner and
outer semi-major axes of the components were close to their projected values the system
would not be stable, hence the code has to move them in and out respectively to find
mutually agreeable fits.

The eccentricities are fairly well constrained (middle panels). The secondary eccent-
ricity must usually be high to see the observed velocity shift for a low semi-major axis.
The tertiary eccentricity cannot be too high to fit the stability criteria (roughly speaking,
the tertiary periastron needs to be at least about four times the secondary apastron),
but is relatively weakly constrained as being probably less than 0.4.

Note that the inclinations in the right panels are different to those used for binary
orbits. In binary orbits the inclination is given as a PDF between 0◦ and 90◦ as the
degeneracy between e.g. +45◦ and −45◦ is unimportant. However, in triple systems
this degeneracy can be extremely important as it reflects the relative inclination of the
companion stars.

The inclination distributions (the right panels of Figure 4.7 and Figure 4.8) both
show two peaks which are roughly symmetric around zero degrees. This is because
it is roughly equally likely to find solutions at plus or minus a particular inclination
(the only difference being if the companion is in front of or behind the primary). The
slight discrepancy between the confidence intervals at positive and negative inclinations
is due to Poisson noise. There is a relative inclination term in the stability condition
(Equation 3.11) which makes a slight difference to the symmetry, but this term is only
important if a system is very close to the stability limit.

In the right panels of Figure 4.7 and Figure 4.8 we can see that for the tertiary
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the inclination is well constrained at ±8− 18◦, whilst the secondary is slightly less well
constrained at ±11−42◦ (68 per cent confidence limits). The quoted confidence intervals
are calculated assuming the inclinations are symmetric about zero (which is usually the
case).

It is worth mentioning that the relative directions (prograde or retrograde) of the orbit
could provide extra information if they were available. If the inclination is constrained
to be close-to face-on then the direction of the orbit can be determined. However, in
the much more common case of close-to edge-on orbits relative directions cannot be
determined3.

There are two possible relative inclinations: one in which the relative inclination is
small (0− 20◦ if both are positive or both negative), or quite large (20− 60◦ if they have
opposite signs). It is impossible to know which of these is true for an observed system
(in system T19 we know that the correct answer is that the relative inclination is small).

There is potentially a prior expectation in real systems that the formation mechanism
(e.g. disc fragmentation) should produce triples which have similar inclinations. With
a population of real systems in which many have one possible configuration which is
closely aligned in inclination, one could make statistical/physical arguments for one
configuration being more likely than the other. However, in any single system considered
in isolation it is impossible to distinguish.

I show the corner plot for system T19 in Figure 4.9. This is a much ‘busier’ plot
than for a binary system as there are many more parameters all of which are related to
each-other. Depending on what exactly one is interested in about a particular system,
different parts of this plot will be more or less useful. For example, the orientation, ϕin,
of the inner orbit is very well constrained to be around 70 or 290◦ (these are symmetric,
the difference being if periastron is in front or behind the primary).

System T25

For system T25, the semi-major axis, eccentricity, and inclination PDFs for the second-
ary and tertiary are shown in Figure 4.10 and Figure 4.11. System T25 shows some
interesting features. The semi-major axis histogram shows a sharp peak centred on the
projected separation of the secondary, whilst the true value lies outside the 68 per cent

3If both stars move in the same direction on the sky (e.g. left to right) they may have prograde
orbits if they are both on the same side of the primary relative to us, or retrograde orbits if they are on
opposite sides. Unfortunately, from purely astrometric data we have no way of determining which side
of the primary each companion is. Additional radial velocity data could break this degeneracy, but I
assume all we have is astrometric data.
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Figure 4.9: Corner plot for triple system 19, with solid blue lines representing the true
orbital parameters (available in online data) and the blue shaded regions showing the
FOBOS 68 per cent confidence intervals. Sample size of 1000 matches.



Section 4.4: Triples 93

Figure 4.10: Histograms and cumulative distribution functions for semi-major axis,
eccentricity, and inclination for the inner orbit of system T25. Legend as in previous
figure.
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Figure 4.11: Histograms and cumulative distribution functions for semi-major axis,
eccentricity, and inclination for the outer orbit of system T25. Legend as in previous
figure.
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Figure 4.12: Zoom in of corner plot of the semi-major axis vs eccentricity solutions for
system T25. The blue points on the bottom left plot represent all systems for which the
mean anomaly is M < 90◦ or M > 270◦ (i.e. the star is closer to periastron) and the
red points for 90◦ < M < 270◦ (the star is closer to apastron).

confidence interval and barely within the 95 per cent confidence interval. Also, the PDF
for the inclination of the system does not show the same bimodality as the vast majority
of the other systems, as we cannot constrain the values at all well, and the 68 per cent
confidence interval is very large (essentially, the code cannot fit close-to face-on orbits,
but anything less than about ±45◦ has a roughly equal probability). However, it does a
remarkably good job of constraining the tertiary orbit.

Some of the more subtle interesting features of this system become apparent when
the corner plot is examined. The PDF of ain and ein is shown in Figure 4.12 and has
an unusual structure. There are many possible solutions for ain ∼ 20 − 50au and low
eccentricity, and then the possible solutions diverge into two distinct branches when
ein ∼> 0.2 - with fits found at low-a and high-e, or high-a and intermediate-e. The
possible fits have been coloured red when the system is close to apastron (M ∼ 180◦),
and blue if the system is close to periastron (M ∼ 0/360◦). Which ‘branch’ is followed
clearly depends on where in its orbit the system is placed.

This shows that despite the true value of the semi-major axis falling in the tail of the
PDF of possible semi-major axes, it is still in a well-populated region of a-e parameter



96 Chapter 4: Orbit fitting with FOBOS

space. Again this shows the value of examining the corner plots rather than just relying
on parameters reduced to a single dimension.

4.5 Timing

Our code uses a brute-force Monte Carlo method to randomly generate fake binary
or triple systems, with parameters drawn from uniform distributions (for inclination
this is uniform in sin i). This method samples the total available parameter space as
comprehensively as possible, but due to the vastness of this parameter space, a huge
number of iterations is required. Therefore, the code written is in fortran90 and OMP
parallelised to run on multiple cores.

The average CPU time per iteration over multiple simulations is ∼34 ns, and is very
similar when testing on both binary and triple systems (a typical triple system is usually
rejected after only modelling the inner binary making the time per iteration very similar).

The number of iterations required to find an appropriate number of matches varies
significantly from system to system. For example, the simulation for system B38 ran
for 11.2 min and found one match for every 42 000 fake systems tested (a match being
found every 13 ms), but system B8 ran for 35.7 s and found one match every 4.47× 106

iterations (a match was found every 0.12 ms).
The majority of binary simulations have a wall-time of ∼1-12 min, and run for ∼

10− 160 CPU min. The simulation that produced the results in Figure 4.3 took 8 min
53 s to run, sampling a total of 1.9 × 1012 fake systems. From these, 51 293 matches
were found with separations and position angles within the errors. This corresponds to
a rejection rate of over 99.99999 per cent.

Due to the 5 additional orbital parameters that must be found to fit a triple system,
the time taken to produce a sufficient number of matches for each triple simulation was
significantly longer on average than for binaries. It also varied significantly from system
to system, from a minimum of ∼2.22 minutes wall-time, to less than 300 matches being
found in 24 hrs of wall-time.

4.6 Multi-Epoch Observations

I have concentrated above on estimating the orbital parameters from a bare minimum of
data in just two epochs of observation. However, extra information from a third epoch
can sometimes (unsurprisingly) significantly improve our estimates. With more than two
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Figure 4.13: On sky projection of a binary system with three epochs of observation.
The position of the star at the first, second and third epoch is marked by the numbers
1, 2 and 3 respectively. The primary star is centred on (0,0) for all observations and the
axes given in au.

epochs of data, I go through the procedure outlined above to fit the first two epochs,
and then repeat to fit any further epochs.

I tested the code on 20 additional fake systems with three epochs of observations
each. This showed that an additional data point can sometimes be very constraining
(not always, sometimes a third epoch makes very little difference). The observation of
one such system is shown in Figure 4.13. The secondary has moved a significant distance
between each observation suggesting we are seeing a reasonable fraction of its orbit (and
that its period is not too many times greater than the time between epochs).

This system had a maximum projected separation of 13.8 au, from which the lower
limit on the semi-major axis was calculated as amin = 6.9 au. The three epochs of
observation were separated by 7.31 and 11.45 yrs (so it was observed over an 18.76 yr
timescale), giving the companion star an observed on sky velocity of vobs =1.20 au yr−1

(5.72 km s−1) between the first and second epochs and vobs =1.27 au yr−1 (6.03 km s−1)
between the second and third epochs. The upper limit on the semi-major axis for this
system was therefore amax = 3 764 au.

In Figure 4.14, I show the PDFs (as CDFs) for the semi-major axis, eccentricity, and
inclinations of the system using all three epochs (top row), and using each pair of epochs
(bottom row). The true values are given by the red dashed lines, and the 68 per cent
confidence limits by the greyed regions. The projected separation is shown by the green
dotted line for the semi-major axis.
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Figure 4.14: Cumulative distribution for a binary system with 3 epochs of observation.
The top three plots show the PDFs using all three epochs together. The bottom plots
show the PDFs from each possible pair of observations (blue: epochs 1 and 2, orange:
epochs 2 and 3, and red: epochs 1 and 3). The grey shaded regions represent the 68 per
cent confidence interval for each CDF.

The most striking feature of Figure 4.14 is how much a third epoch is able to constrain
all three orbital parameters in this case. Figure 4.15 shows the corner plot of semi-major
axis, eccentricity and inclination, with histograms featured in the top plot of each column
and parameter covariances shown in the other panels. This highlights how tightly each
parameter is constrained using the three epoch method when one sees how small the
ranges of a, e, and i are.

The 68 per cent confidence limits on the semi-major axis have fallen from about
8 − 20 au to 12.3 − 14.3 au. The true value of the semi-major axis for this system is
15.8 au, falling outside the 68 per cent confidence interval but within the 95 per cent
confidence interval of 12.1− 18.6 au.

Similarly, the inclination true inclination of 23.5◦ falls at the lower end of the 68 per
cent confidence interval (23.5− 26.8◦) and comfortably within the 95 per cent limits of
21.0− 28.3◦. The true eccentricity value of 0.49 falls within both the 68 per cent (0.44 -
0.50) and 95 per cent (0.41 - 0.54) confidence intervals.

The reason an extra epoch is so much more constraining for this system is that we
have three epochs spanning ∼ 19 yrs of a ∼ 50 yr total period. Hence the third epoch
requires a large on-sky motion in a very particular direction from any fits to the first two
epochs which ‘pins down’ the orbit extremely well. When I test on systems where three
epochs only cover a small fraction of an orbit and have large observational errors, I find
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Figure 4.15: Corner plot of the semi-major axis, eccentricity and inclination for the
system shown in Figure 4.13. The true value of each parameter is indicated by the solid
vertical blue line.

that the third epoch can sometimes add very little to the constraints from just two.

4.7 Comparisons

It is worth comparing FOBOS to some other orbit-fitting codes. Note that FOBOS is
deliberately designed to be used in situations where there is minimal astrometric data
only. Other codes are often designed to use many more epochs with extra (e.g. velocity)
information gained from a sustained and detailed observing program.

I used FOBOS to constrain the orbits of several observed binary systems and compared
our results to various Bayesian Markov Chain Monte Carlo fitting methods. In this sec-
tion, I present the results for the binary systems 2MASS J01033563-5515561 (Blunt et al.
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(2017)) and HD 206893 B (Ward-Duong et al. (2021)), using two epochs of astrometric
observations for the 2MASS binary and four epochs of astrometric observations for HD
206893 B.

The true observational errors on the separations, position angles, and distances were
used to determine whether a particular set of orbital parameters is a match to the
observations. The impact of the size of the observational errors is discussed later in this
section.

2M 0103-55 (AB) b

2MASS J01033563-5515561 (AB) b (hereafter 2M 0103-55 (AB) b) is a 12-14 Jupiter mass
companion orbiting the low mass binary system 2M 0103-55 (AB). The astrometric data
for this system was acquired by Delorme et al. (2013) and analysed using the Orbits for
the Impatient (OFTI) method (Blunt et al., 2017). Blunt et al. (2017) used two epoch
of relative astrometry taken ∼10 years apart (see their Table 10) to generate the orbital
parameter posteriors for 2M 0103-55 (AB) b. The same two astrometric data points
were used as the input for FOBOS.

The separations quoted in this table are measured relative to the barycentre of the
system 2M 0103-55 (AB). The errors on the position angles (PA) corresponds to the
relative error on the observations between the two epochs, and both PA measurements
have an additional error of ±0.4 milli arcseconds, dominated by systematic uncertainties.
A distance of d = 47.2±3.1 pc (obtained using the parallax quoted in Blunt et al. (2017)
Table 2) was used to convert the separations from milliarcseconds to au. The masses of
the host binary system (treated as a single object) and the low mass companion were
taken to be MAB = 0.36± 0.04 M⊙ and Mb = 0.012± 0.001 M⊙ respectively.

Using the Orbits for the Impatient algorithm, Blunt et al. (2017) find median values
for the semi-major axis, eccentricity, and inclination to be a = 104.92 au, e = 0.1233,
and i = 123.6◦, and 68 per cent confidence intervals of 79 − 149 au, 0.09 − 0.59, and
119− 144◦, measured relative to the system being edge-on at 90◦. As mentioned earlier,
FOBOS defines edge-on as 0◦, so this corresponds to an inclination range of 29−54◦ using
the FOBOS frame of reference. These results are shown in Figure 4.16 by the green vertical
lines and green shaded regions respectively.

FOBOS calculates the 68 per cent confidence intervals for the semi-major axis, eccent-
ricity, inclination as 59.1 − 173.8 au, 0.01 − 0.52, and 19.9 − 44.7◦ respectively; these
ranges are indicated on Figure 4.16 by the grey shaded regions. The median values for
all three orbital parameters fall within the FOBOS 68 per cent confidence intervals and
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Figure 4.16: Corner plot for the orbit of 2M 0103-55 (AB) b with respect to 2M 0103-55
(AB). The top panels of each column show the FOBOS probability distribution functions
for semi-major axis (left), eccentricity (middle), and inclination (right). The green solid
lines on these panels show the OFTI median values and the green shades regions show
their 68 per cent confidence intervals (Blunt et al., 2017, Table 20). The grey shaded
regions are the FOBOS 68 per cent confidence intervals.
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there is a significant overlap between all of the FOBOS and OFTI 68 per cent confidence
intervals.

The widths of the confidence intervals for eccentricity (∼ 0.5) and inclination (∼ 25◦)
calculated using FOBOS match those quoted by Blunt et al. (2017), but the FOBOS semi-
major axis range is ∼ 1.6 times larger than the OFTI range. For the inclination, the 68
per cent C. I. is a comparable width to that calculated by OFTI, but shifted to slightly
lower values.

The FOBOS simulation of 2M 0103-55 produces over 50,000 solutions within the 1σ
observational errors calculated by Delorme et al. (2013) in a wall-time of ∼30 seconds.
(Blunt et al., 2017) do not quote their wall or CPU time.

HD 206893 B

Further tests were carried out on HD 206893 B - a 12-40 Jupiter mass companion orbiting
in the debris disk of its FV5 type host star. A detailed analysis of the physical and orbital
properties of HD 206893 B was presented in Ward-Duong et al. (2021), using a total of
nine astrometric observations from previous VLT/SPHERE, VLT/NaCo studies of the
system (Milli et al., 2017; Delorme et al., 2017; Grandjean et al., 2019) and new Gemini
Planet Imager (Macintosh et al., 2008) observations. These data points are given in
Table 9 of Ward-Duong et al. (2021).

HD 206893 B has a Gaia distance of d = 40.77 ± 0.059 pc and the host star and
companion star have masses of MA = 1.31 ± 0.01 M⊙ and MB = 0.11 ± 0.01 M⊙

respectively.
Using a Bayesian MCMC method, Ward-Duong et al. (2021) find the semi-major axis

of the system to be 10.4+1.8
−1.7 au and an eccentricity of 0.23+0.13

−0.16.
They also find a inclination of 145.6◦+13.8◦

−6.6◦ , corresponding to 55.6◦+13.8◦

−6.6◦ using our
definition. Their most probable values and 1σ ranges are shown on Figure 4.17 by the
green vertical lines and shaded regions, with the inclination values being shifted down
by 90◦ to match our definition of inclination. The corner plot showing their posterior
distributions and covariances is shown in their Table 10.

I tested the FOBOS Multi-Epoch code on the four SPHERE/IRDIS observations. Us-
ing a 6 core/12 thread processor, ∼1,000 matches to the observations for this system are
found in a wall-time of ∼ 60 minutes. These results were used to generate the probability
distribution functions (top panels) and covariances (other panels) shown in Figure 4.17.

I calculated the 68 per cent confidence intervals for semi-major axis, eccentricity, and
inclination as 8.8−11.9 au, 0.02−0.34, and 45.0−58.1◦. These ranges are represented by
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Figure 4.17: Corner plot showing the probability density functions for semi-major axis
(top left), eccentricity (top middle), and inclination (right) for the low mass companion
HD 206893 B. The other panels in the figure show the covariances of each of these para-
meters. The solid green lines show the most probable values for each orbital parameter
obtained by Ward-Duong et al. (2021) and the green shaded regions represent their 1σ
error ranges. The grey shaded regions are the FOBOS 68 per cent confidence intervals.
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Figure 4.18: Subsample of 200 randomly selected orbital fits for HD 206893 B using the
four epochs of VLT/SPHERE astrometric observations (black circles). The observational
errors on the measurements are plotted as error bars on the black points, but are too
small to be noticeable on this scale. The lighter/yellower orbits correspond to systems
with inclinations closer to face-on (90◦) and the darker/bluer orbits closer to edge-on
(0◦). The primary star is located at (0,0).
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the grey shaded regions on the top panels of Figure 4.17. The top left panel of the plot
shows that our confidence interval for a overlaps with the range from Ward-Duong et al.
(2021) almost exactly. The FOBOS confidence interval extends to slightly lower values
than the Ward-Duong CI and the PDF shows the same minimum at ∼0.2 followed by
a peak at ∼0.3, before tailing off almost completely for values ∼>0.5. The FOBOS 68 per
cent CI for inclination is 1.5 times smaller than the Ward-Duong et al. (2021) value and
shifted to a slightly smaller inclination range, with the median value falling in the region
where the two ranges overlap.

A sample of 200 orbits which fit the four VLT/SPHERE observations are shown in
Figure 4.18. The colour of the orbit represents whether the inclination of HD 206893 B
is closer to edge-on (0◦, bluer orbits) or face-on (90◦).

Observational errors

HD 206893 B is much more highly constrained than 2M 0103-55 (AB) b, due to the
additional epochs of data available for HD 206893 B. However, I also found a differ-
ence in results depending on whether the four GPI observations or the four SPHERE
observations were used. Fitting the GPI observations resulted in a semi-major axis con-
fidence interval that was ∼2.5 times larger than the equivalent results using the SPHERE
observations, and a ∼1.7 times increase in the inclination range.

There are two reasons why the VLT/SPHERE observations are much better at con-
straining the orbital parameters than the GPI observations. Firstly, two of the GPI
observations were obtained within one month of each other and their 1σ error ranges
overlap for both separation and position angle. Secondly, the fourth data point has 1σ
errors that are ∼2 times larger than the errors for all other data points. This emphas-
ises the importance of obtaining data points with small observational errors over a long
enough timescale that the companion exhibits significant on sky motion.

4.8 Summary

I developed an orbit fitting algorithm (FOBOS) which can estimate the orbital parameters
of binary and triple systems using as few as two epochs of relative astrometry. Originally,
this was developed to fit the orbits of binary/triple systems that have been observed a
couple of times during multiplicity surveys but have never had their individual properties
studied. However, as the project developed, it became clear that FOBOS could be used
on observations of directly imaged brown dwarfs and exoplanets.



106 Chapter 4: Orbit fitting with FOBOS

To estimate the reliability of FOBOS, I tested the algorithm on 60 fake binary systems
and 60 fake triples, each with two epochs of ‘observation’. The results of this testing
are shown in Section 4.3. I found that the 68 and 95 per cent confidence limits are
statistically reliable (and so tight constraints can be trusted). Smaller error bars on the
observations and an extra epoch of data can be very constraining. Some fits contain very
little information about the orbital parameters of the system, depending on the distance
moved by the companion between observations, but others are highly constraining.

As well as testing FOBOS on fake data, I also applied it to two systems with low-mass
brown-dwarf companions; HD 206893 B and 2M 0103-55 (AB) b. My fits agree well with
published results from other sources, which use well-established orbital fitting codes.



Chapter 5

A binary population synthesis model
and its applications

5.1 Summary

Introduction

The semi-major axis and eccentricity distributions of binary systems have been determ-
ined through various methods over the past decades (see Section 1.7 and Section 1.8
for more details). In particular, I showed in Chapter 4 that astrometry can be a use-
ful tool, especially if there are enough epochs of observation to get a reliable fit to the
orbit. However, many multiplicity surveys have single observations of binaries, and the
observed separation distribution in au is often assumed to be the true distance between
the two stars or the semi-major axis of the system.

Also in Chapter 4, I showed that the on-sky separation of two stars is affected by the
eccentricity, inclination, orientation of the orbit, and the phase of the companion at the
time of observation. The combination of these factors mean that the observed separation
of the objects is always smaller than the true separation. When we only have data from
a catalog of binaries, it can be difficult to work backwards to estimate how much the
orbital properties impact the separation distribution of the stars. This is where binary
population simulation are particularly useful.

The code written for the FOBOS algorithm produces projected separations of binary
stars at a random point in it’s orbit, the full details of which are explained in Chapter 3.
For the work presented this chapter, I used this code as a basis to produce a binary
population synthesis model; a program which generates a vast number of fake binary
projections.

107
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I will discuss the results of two applications of this model. Firstly, I quantify the dif-
ference between the observed separation and the true separation for a binary population,
discussing how each of the orbital elements of a system affect its projection. Secondly,
I use my binary population synthesis code to estimate the true semi-major axis distri-
bution and multiplicity fraction of an observed sample of YSOs from the Leeds RMS
catalog, provided by our collaborators Robert Shenton and René Oudmaijer at the Uni-
veristy of Leeds. This work constitutes a subsection of their paper which in preparation
for submission to MNRAS.

5.2 Orbital selection effects

The distribution of on-sky separations of binary systems does not necessarily reflect their
semi-major axis distribution, because the inclination, system orientation and the orbital
phase of the companion will also affect the instantaneous projection of a binary system
on the sky. The projected separation of stars in a binary will always be smaller than
their true separation.

I tested how varying the orbital parameters of a sample of binary systems affects their
projected separation. For the initial test, I wanted to replicate the separation distribution
of binaries on the sky without any observational selection effects (such as the stars being
too close to resolve, or the companion too distant and faint to be attributed to it’s
primary star).

I created a sample of 2, 000 binaries, with semi-major axes a randomly selected from a
uniform distribution between 700− 100, 000 au. These values were chosen to correspond
to the semi-major axis estimates for YSOs from the Shenton et al. sample, which forms
the basis on this work and is discussed in detail in Section 5.3 and thereafter. The initial
conditions for the eccentricity, inclination, orientation, phase, and distance are given in
Table 5.1.

Parameter Symbol Range Units
Semi-major axis a 700 - 100, 000 au

Eccentricity e 0 - 1 -
Inclination i 0 - 90 ◦

Orientation ϕ 0 - 360 ◦

Mean anomaly M 0 - 360 ◦

Distance d 1.4 - 11.2 kpc

Table 5.1: Ranges for each of the orbital parameters (and distances).
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Figure 5.1 shows the frequency of systems with different semi-major axis values (red)
and the separation of this same sample of binaries (grey) when the orbital properties or
distances are varied. The variable parameter is stated in the top right corner of each of
the sub-figures.

The orbital parameters of a system are not independent. For example, to examine
how the eccentricity affects the separation (as shown in Figure 5.1), the mean anomaly
is fixed at π radians (i.e. the companion is at apastron). If the mean anomaly was
fixed at another value, then the eccentricity distribution would be different. Therefore
the results in Figure 5.1 represent only a few finely tuned cases to help visualise how
different orbital configurations can affect the separation.

In Figure 5.1(a), the eccentricity varied randomly in the range 0-1. The distance
was fixed at 2,000 pc and the phase at π rad so that the only parameter impacting the
separation was eccentricity. The separation distribution appears flat until a value of
∼ 100, 000 au and then falls off sharply. The tail of the separation values up to 200,000
au correspond to the highest eccentricity systems, which are more likely to be observed
at very high separations due to their significantly slower velocity at this point in their
orbit.
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Figure 5.1: The effects of different physical/orbital parameters of binary systems on
the observed separation distribution. The red histogram shows the semi-major axis
distribution of the sample and the grey histogram shows the separation distribution in
au. All binaries in the sample have a semi-major axes drawn from a uniform distribution
in the range 700-100 000 au. Each subplot shows results for when all orbital conditions
are fixed except from one (the variable parameter is stated in the top right corner of
each panel).

Figure 5.1(b)-(d) all show very similar distributions to one another; they are approx-
imately flat up to ∼60,000 au and then drop off steeply. Whilst the eccentricity of the
orbit can make the separation appear either larger or smaller than the semi-major axis,
depending on the phase of the orbit, the inclination and orientation can only make the
projection smaller.
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Figure 5.2: Histogram showing the projected separation of binaries with semi-major
axes drawn from a uniform distribution in the range 0-100 000 au. The plot shows the
effects of the orbital parameters only, with the distance being fixed at 1kpc.
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Eccentricity range Mean s Median s

0.0 - 0.2 0.81 0.79
0.2 - 0.4 0.82 0.77
0.4 - 0.6 0.92 0.94
0.6 - 0.8 1.11 1.18
0.8 - 1.0 1.34 1.45

0.0 - 1.0 1.01 0.96

Table 5.2: The average separation of binary stars as a fraction of their semi-major axis,
for different eccentricity ranges.

The average impact of orbital parameters on separations

In the previous section, I discussed how individual orbital parameters affect the projected
separation of a binary. Also as part of this work, I quantified the average difference
between the separation and the semi-major axis of a system. I did this by sampling
uniformly over the entire range of inclinations, orientations, and mean anomalies that a
system can have, and taking the average overall separation. The semi-major axis was
fixed at a = 100 au throughout.

Table 5.2 shows the results of these tests for various eccentricities. For example, for
50 systems with eccentricities in the range 0.0−0.2, the separation will typically be ∼80%
of the semi-major axis, whereas for the most highly eccentric systems, it will be ∼134%
of a. Over the entire eccentricity range, we see that the two parameters (on average)
will be approximately the same. Raghavan et al. (2010) found a uniform eccentricity
distribution for solar-type stars, so this distribution is expected.

Summary

Population synthesis modes are an effective way of estimating the selection effects on an
observed sample, and all of the factors evaluated in the section above will contribute to
the ways in which observations differ from reality. For a sample of binaries with a uniform
eccentricity distribution between 0 and 1, the separation will typically be comparable to
the semi-major axis. However, for each individual observation, the separation can vary
significantly depending on its instantaneous parameters.
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5.3 Estimating the binary fraction of YSOs

This section focuses on the statistical analysis on the binary YSO/MYSO sample from
Shenton et al. (in prep).

The term ‘young stellar object’ (YSO) refers to a star in the very early stages of
formation. These objects are still embedded in their host clouds and often possess large
accretion discs, making them bright primarily in the mid-IR. A full description of YSO
formation is given in Section 1.3.2.

Shenton et al. (in prep) compiled a large sample of YSOs from ‘The Red MSX Source
survey’ (RMS, Lumsden et al., 2013). This catalog contains sources from the UKIRT
Infrared Deep Sky Survey Galactic Plane Survey (UKIDSS GPS, Lucas et al., 2008) and
Vista Variables in the Via Lactea (VVV, Saito et al., 2012). UKIDSS focuses on targets
in the Northern sky, whereas VVV is used for the Southern sky. The data was provided
by Shenton and Oudmaijer in the format shown in Table 5.3.

The goal of their work was to calculate the multiplicity fraction of massive young
stellar objects (MYSOs), which have M ∼> 8M⊙. Part of calculating the multiplicity
fractions involves estimating the incompleteness of the sample, to extrapolate from the
observed number of multiple systems to the total value including those missed due to
observational selection effects.

5.3.1 Sample characteristics

The master sample with which I was provided contains 842 ‘binary’ YSOs, 513 of which
are MYSOs (i.e. have a primary mass of > 8M⊙). The most important characteristics
of each binary are the separation (s, in arcseconds), the distance (d), and the magnitude
difference of the two stars (δmag). All YSOs in the sample have separations in the range
0.5− 10 arcseconds, a distance between 1.4− 11.2 kpc, and δmag values between ∼ −6

and ∼ 8. Note that a negative δmag value can occur when the primary star suffers from
a high level of extinction due to its debris disc, reducing its magnitude below that of the
companion. The median separation of stars in this sample is 13 665 au (as determined
by Shenton et al. in prep.).

Companions were selected from the sample by drawing a 1.5 arcminute radius sur-
rounding the YSO, and evaluating all objects within this radius for the possibility of
being a visual binary companion. In all cases, there is a probability that any star within
the 1.5 arcmin radius is a chance alignment rather than a physically associated compan-
ion (Correia et al., 2006). This probability is quantified by
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SOURCEID CENTREID d (pc) Mp s (arcsec) BSD Pchance δmag

438306049182 G010.5067+02.2285 2900.0 6.960310 3.670980 0.001218 0.050268 -1.759306
438306049183 G010.5067+02.2285 2900.0 6.960310 4.687290 0.002161 0.138589 -0.939817
438466784310 G010.8856+00.1221 2700.0 8.807115 8.847030 0.000589 0.134930 1.160772
438466784296 G010.8856+00.1221 2700.0 8.807115 7.726310 0.000668 0.117757 1.244640
438466784158 G010.8856+00.1221 2700.0 8.807115 3.215360 0.004283 0.129880 3.180242
438402984624 G011.4201-01.6815 1500.0 10.957821 5.281270 0.000393 0.033848 0.935403
438144312770 G011.5001-01.4857 1700.0 10.633375 3.857130 0.000196 0.009142 0.832326
438144312771 G011.5001-01.4857 1700.0 10.633375 3.945420 0.001179 0.056023 2.114921
438635465594 G011.9019+00.7265 2900.0 7.181298 2.054140 0.005620 0.071786 2.299565
438635497754 G011.9019+00.7265 2900.0 7.181298 2.374360 0.011436 0.183343 3.168586

... ... ... ... ... ... ... ...

Table 5.3: The first 10 rows of YSO data from the Shenton et al. sample. SOURCEID:
ID of companion star, CENTREID: ID of the primary star, d: distance, Mp: primary
mass, s: separation, BSD: background star density, Pchance: probability that the com-
panion is a chance alignment, δmag: magnitude difference between the primary and the
companion. Note that a single primary can have multiple companions attributed to it,
and each companion has no impact on any other companions detected around the same
primary. Omitted from this table are the RA and dec of each star. The full data set has
842 rows.

Pchance = 1− exp (−πs2ρ), (5.1)

where s is the distance between the primary and the potential companion in arcseconds
and ρ is the background star density in that cell (also referred to as BSD). ρ is calculated
using the full stellar catalogue data. If the value of Pchance was < 20% then the object
was selected as a companion.

Due to the nature of the companion selection, there are some YSOs that appear to
have a large number companions, as each potential companion is evaluated independently
of whether any other companions have already been found. There are some YSOs with
6-10 companions noted in the sample. I will discuss how these systems are dealt with in
Section 5.4.

They calculate multiplicity fractions of 64± 4% for the UKIDSS sample, 53± 4% for
the VVV sample, and 49± 8% for the RMS imaging sample.

5.3.2 My contribution

My contribution to this work was to use a binary population synthesis model to (a)
estimate the incompleteness of their sample, (b) calculate the completeness corrected
MYSO multiplicity fraction, and (c) estimate the true semi-major axis distribution of
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the binaries in their sample.
This was done using a Monte Carlo method of sampling. The code generates 1× 106

binary systems and calculates their projected separations (see Chapter 3) in arcseconds.
Each binary is also assigned a magnitude difference δmag. A binary search tree algorithm
(described in Section 5.3.5) is used to compare the 2-D separation vs δmag distribution
of my population of binaries to the Shenton et al. sample.

5.3.3 The model

The simulation begins by drawing the orbital parameters for our test sample of binaries,
using the same method as is described and used in Chapters 3 and 4. The semi-major
axis distribution is one of the key variable parameters, as this is what we are hoping to
obtain using this method. The code is set up to allow either a lognormal, log-flat (Öpik
distribution), or flat distribution as defaults, but can take any distribution as an input.

The model also generates a value of δmag for each binary from a Gaussian distribution
(which we are attempting to fit alongside the separation distribution in this model). The
standard deviation of the δmag distribution is allowed to vary up to very high values,
such that the distribution becomes approximately flat.

The binary projection code from Chapter 4 gives the separation values in au. This
is converted to a value in arcseconds using Equation 5.2. The distance of each binary is
selected from the same distance distribution as the objects in the Shenton et al. master
sample (which contains all objects from the UKIDSS, VVV, and RMS catalogs, not just
binaries).

s(arcsec) =
s(au)

d(pc)
. (5.2)

At this point, the selection effects are applied to the separation and δmag distribu-
tions. These are described in detail in Section 5.3.4.

5.3.4 Selection effects

Not every binary in the population synthesis model would be observed given the con-
straints on the Shenton et al. sample. To calculate the incompleteness of their sample, I
apply the same selection effects that are present for their data to my fake binary popu-
lation. Only the fake binaries that would be observed after these conditions are applied
are included in the fit to the observed data, and the rest of the systems are rejected from
the sample.
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Firstly, their sample contains binaries with separations between ∼ 0.8 and ∼ 10

arcseconds. Any fake binaries with separations outside these ranges are disregarded.
Similarly, they conclude that the probability of detecting a binary increases up to ∼ 2

arcseconds, above which companions are reliably detected. I mimic this effect by applying
a ‘probability of detection’ value to binaries below 2 arcseconds; the closer the separation
is to the minimum value of ∼ 0.8, the more likely the binary is to be rejected.

The observed separation vs. δmag distribution in the Shenton et al. sample data has
two distinct regions at low separations and each end of the δmag scale (which can be
seen in Figure 5.7), in which no binaries are detected. Any fake binaries in these regions
are also rejected from my sample.

Finally, each fake binary has a value of Pchance which depends on the separation and
the background star density (ρ). I was also supplied with the full YSO catalog from
which the binaries where selected, and I used the ρ distribution of all YSOs to select
values for each of the fake binaries. Any fake systems with Pchance > 20% were also
rejected, to match with the selection criteria applied by Shenton & Oudmaijer to their
observed sample.

The fraction of binaries which would still be observed after all of these selection
effects had been applied was taken to be the multiplicity fraction.

5.3.5 Comparing data sets using a Binary Search Tree

After the selection effects have been applied to the fake binary population, we are left
with simulated separation vs δmag distribution. The code cycles through a variety
of parameters characterising the a and δmag distributions as part of the Monte Carlo
method, so a statistically robust method of comparing the simulation results to the
observations is required to find the best match. This was done using a binary search
tree.

Binary search tree structures

A binary search tree (BST) is a tree-like data structure, like the one shown in the lower
panel of Figure 5.4. The tree itself is made up of nodes (shown by circles), and each
node has a maximum of two children; one to the left and one to right (in an ordered data
set). The ‘root’ is the top node of the tree and the ‘leaves’ are nodes with no children.

Binary search trees offer a hierarchical data storage system, and are typically used
as a data science technique for searching and sorting one-dimensional data. The tree
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Figure 5.4: Diagram depicting the structure of a binary search tree of height h = 3
for a 1-D data set. The example data is shown by the values in boxes at the top of the
diagram. The root node (level 1) bisects the data. Two child nodes are added on either
side of the root node in the second level, bisecting each data subset. On the final level,
there are four ‘leaf’ nodes added, one to the left and one to the right of each of the nodes
from level 2.

starts with a root node, which bisects the data.1 We consider this to be the first level
of the tree. On the second level, two additional nodes are added; if the child node has
a lower value than the root note then it is added as a left node, and if it is higher then
it’s added on the right. We then move to level 3, where four additional nodes are added.
Each further level adds 2n−1 child nodes. This is illustrated by the tree diagram in 5.4,
representing the binary tree nodes in a simple 1-D data set.

Two dimensional binary search trees

Our aim was to use a binary search tree to define the parameter space in our two dimen-
sional data structure. Using a binary tree to map 2-D data is slightly more complex.
The process begins in the same way; by adding a root node to bisect the data along the
x-axis. On the second level, the additional nodes are added by splitting the two cells
along the y-axis (as shown by the purple lines in Figure 5.5) so that each cell contains
the same number of data points. For level 3, we then switch back to the x-axis to add 4
nodes (orange lines). This pattern of flipping the axis and adding 2n+1 nodes continues.
The end result is a 2D grid of unequally sized cells, each of which contains approximately
the same number of data points2. The idea for an k-dimensional binary search tree was
first developed in Akter (2022) and has been refined for this work.

1For the cases mentioned in this work, we assume that the position of each node aims to split the
data into two groups of equal size.

2If n is divisible by 2n+1, then the cells will all contain exactly the same number of points.
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Figure 5.5: Graphical representation of the binary tree algorithm. The 64 black circles
are randomly generated data points from uniform distributions. The points are first
divided into two groups along the x-axis (1, pink) by adding a node. Each of these
subsets is split again on the y-axis (2, purple) and two additional nodes added. The
pattern continues, with 4 nodes added along the x-axis in the next level (3, orange)
followed by 8 on the y-axis (4, blue). This represents a binary tree with a height (h) of
4.
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5.3.6 Binary search trees in this work

I used a 2-D binary search tree to map the parameter space of the separation against
δmag distribution, so that the simulation results and observations could be compared.
This simulated data set is used to create a binary tree grid with 32 cells, mapping the s

against δmag parameter space.

The root node is calculated by finding the median of the separation data. The data
set is then split into two new data sets; one with separations less than the median value,
and the other with separations greater than the median. At the second level, the nodes
are the median δmag values of the two data subsets. The process continues, switching
axis each time and adding 2n−1 nodes at each level, until the tree reaches the desired
height (h). The height of binary tree is equivalent to the number of levels.

The nodes of the binary tree are used to determine the boundaries of each cell. The
code cycles through each cell in turn and counts the number of observed points contained
within that area. For a perfect match, all cells will have an equal number of points in all
cells, but the majority of tests will produce binary trees with a highly uneven number of
points in each cell. The distribution of data points and the quality of the fit is assessed
using the ‘Goodness of fit’ measure, outlined in Section 5.3.7.

Creating an invariant grid

If the binary tree grid is generated for a small number of data points, then small random
variations in the data points could have a significant effect on the positions of the nodes.
This is illustrated in Figure 5.6, which shows binary trees produced for multivariate
Gaussian distributions, for a variety of heights and containing different numbers of points
(N). On each plot, there is a set of red points and a set of orange points, both drawn
from the same distributions but with a different random number seed.

After conducting thorough testing, I determined that a minimum of 5000 data points
for a binary tree with h = 5 (32 cells) is necessary to create an invariant binary tree
grid, regardless of the random variation in a sample. For h = 6 (64 cells), more points
are required to create a more consistent grid. For N > 5, 000, the stability of the binary
tree improves slightly, but not enough to justify the computational overheads of using a
larger sample.
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Figure 5.6: Grid of binary tree tests on randomly generated datasets from a multivari-
ate Gaussian distribution. On each plot there are two datasets; red points and orange
points. The black dashed lines show the binary tree cells for the red points, and the
blue dashed lines show the cells for the orange points. Each dataset in the left column is
divided into 32 cells and the right column is divided into 64 cells. The number of points
in each data set is N = 1000 (top row), N = 5000 (middle row), and N = 9000 (bottom
row).
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5.3.7 Measuring Goodness of Fit

Once the binary tree has been generated, a statistical goodness of fit measure can be
used to compare the results of various models to the observed data. Initially, I estimated
the goodness of fit by calculating the variance of the number of points in each cell of
the grid. Whilst this acted as a good preliminary test of the binary tree, a statistically
robust goodness of fit measure is a better way of comparing the results of Monte Carlo
simulation. This was done using a multinomial distribution.

The binary tree produces 2h cells in a 2-D grid. As the binary tree uses the simulated
data to find the nodes, we know that there will be an approximately equal number of
fake data points in each of these cells. To compare the models, I superimpose this binary
tree grid on top of the observed points. The number of observed data points in each cell
is counted.

For a model to be a good fit to the data, it will also have an approximately equal
number of data points in each of the cells. Furthermore, for each observation, there are
2h defined outcomes (i.e. the point can fall within one of the 2h cells).

The probability mass function of a multinomial distribution is

PMF =
n!

k1!...kn!
pk11 ...pknn , (5.3)

where k is an integer corresponding to one value in a discrete set of possible outcomes,
and p is the probability of each outcome. In this case, pi corresponds to the number
of fake data points in cell i and ki is the fraction of observed data points in cell i. To
obtain the log-likelihood, we take the natural logarithm of this equation to obtain

lnL = lnn!− ln k1!... ln kn! + k1 ln p1...kn ln pn

= lnn! +
n∑

i

{ki ln pi − ln(ki!)}.

The binary tree is set up such that there is an equal number of fake data points in
each cell, meaning that the probabilities for each cell pi can also be approximated to
being a constant P . This simplifies the equation further;

lnL = lnn! + n lnP −
∑

i

{ln ki! (5.4)
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lnL ∝ ln(n!)−
∑

i

{ln(ki!)} (5.5)

lnL is calculated for each of our different Monte Carlo models. If the number of fake
data points in each cell are equal, this shows that they have the same distribution as the
observations and we will get the maximum possible value of lnL. Therefore, I select the
model with the maximum log-likelihood parameter as the best fit model.

If a model is a particularly bad fit, then a single cell might have an extremely large
number of fake data points within it. This can be an issue, as we can only take a factorial
of a value ≤ 170 without the value becoming too large for the computer. To counteract
this, I use the natural logarithm of the gamma function,

Γ(k) = (k − 1)! (5.6)

as the in-built Python loggamma function can compute the factorials of very high num-
bers.

5.4 Results

This section contains the preliminary results of my analysis. At the time of writing this
thesis, the results are incomplete and there are several issues with how the simulations
fit the observations, outlined in Section 5.4.3.

5.4.1 Model parameters and assumptions

I tested two functional forms for the semi-major axis distribution (a lognormal and an
Öpik distribution), and used a Gaussian distribution for the δmag distribution (truncated
such that it cannot generate values ≥ 8 and ≤ −6). I started with the lognormal model,
which meant there were four parameters to fit; the mean and standard deviation of the
semi-major axis distribution (µa and σa) and the mean and semi-major axis of the δmag

distribution (µδmag and σδmag).
The parameters here are for the semi-major axis and δmag distribution before the

selection effects have been applied (i.e. the true distribution rather than what is ob-
served). It is for this reason that the δmag cannot simply be modelled by calculating
the mean and standard deviation of the observed distribution.

As mentioned in Section 5.3.1, several of the YSOs in the sample have a large number
of potential companions. I removed any YSOs with more than 6 companions from the
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Symbol Range

µa 0-30
σa 0-5

µδmag 0-4
σδmag 0-8

Table 5.4: Parameter ranges sampled using the Monte Carlo method to find the best
fit values. Note that these values are not for the semi-major axis parameters because of
the use of a lognormal distribution.

data set before running my simulations, because it is unlikely that these are gravita-
tionally bound multiple systems, and instead may be indicators of small clusters. This
leaves 724 systems in the sample out of the original 842.

5.4.2 Monte Carlo modelling

The brute force Monte Carlo method varied the parameters for µa, σa, µδmag and σδmag

uniformly and did a random search of parameter space to find the best fit values. The
parameter ranges used for the parameter space search are given in Table 5.4. The best
fit results of this search are shown in Figure 5.7 and Figure 5.8.

These results are for the full sample of YSOs. The same method as described above
was applied to the sub sample of MYSOs, and the results were extremely similar to the
full sample. Therefore, results for the MYSOs only are not discussed here, but should
be assumed to be more or less the same as the YSOs.

Figure 5.7 shows the separations against δmag for the best fit result of my simulations
(grey circles) and the observations (red pluses). Above the scatter plot is a histogram
of the separations and to the left is a histogram of δmags (grey for simulated data and
red for observations). The black dashed lines on the scatter plot show the boundaries of
the 64 binary search tree cells for the simulated data.

Figure 5.8 shows the semi-major axis distribution underlying the population of bin-
aries for the best fit model (grey), compared with the separation distribution in au
calculated by Shenton et al. (red). Note that the x-axis is slightly misleading, as the red
data does not show the semi-major axis, but is a useful comparison for the simulation
results.

As we can see from Figure 5.8, the fit required to match both the separation and
δmag distributions of the observed sample comes from a model in which the semi-major
axis distribution (Figure 5.8) is unphysical; all the binaries in this model have a semi-
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Figure 5.7: Best fit simulation for a binary population with a lognormal semi-major
axis distribution, with parameters µa = 10.99, σa = 0.19, µδmag = 2.76 and σδmag = 2.65.
The fraction of cases detected from an initial binary sample of 1×106 objects was 3.45%.
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Figure 5.8: Semi-major axis distribution for the fit above.

major axis in the range 35,000−100,000 au, which corresponds to 0.17 − 0.48 pc. This
is more comparable to the distances between stars in a relatively dense cluster than in
binary systems. This is not simply an effect of projecting the true separations onto in
image, because in Table 5.2 of Section 5.2, I showed that the typical on-sky separation
of a binary is comparable to the semi-major axis of the system. The mean semi-major
axis from my simulation results is 3.5 times higher than the projected separations in au
from the Shenton et al. data.

Further issues with this result arise when we look at the multiplicity fraction and
the distance distribution. In the simulation for Figure 5.7, only 3.45% of the binary
population would be ‘observed’ after the selection effects are applied. This contradicts
the multiplicity fractions of 64± 4% (UKIDSS only), 53± 4% (VVV only), and 49± 8%
(RMS imaging sample) determined from observations only.

The most significant issue at this stage is how the selection effects impact the dis-
tance distribution at the end of the simulation. Initially, distances for each binary in
the simulation are selected from the distances of all objects (not just binaries) in the
UKIDSS, VVV, and RMS samples used for this work. We expected that the final dis-
tance distribution, after the selection effects are applied, to match the distribution for
the binary sample. However, there is a huge disparity between the two distributions.
Currently, the reason for this is not understood, but will be one of the first matters to
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Figure 5.9: Distance distribution for the best fitting model after the selection effects
have been applied (grey) compared to the true distances distribution of the observed
binaries (red).

be addressed in the future work on this project.

Results using an Öpik distribution

The results of my model using an Öpik distribution are shown in Figure 5.10 and Fig-
ure 5.11. The shape of the Öpik semi-major axis distribution more closely matches the
high separation tail of the observations than the lognormal shape. This fit also shows
a semi-major axis distribution that peaks at much higher values than we would expect
from a typical binary separation distribution.

5.4.3 Discussion

I have run several Monte Carlo simulations as part of this work, and all of them suffer
from the same issues; (a) the semi-major axis distribution is extremely large, (b) the
fraction of binaries ‘observed’ given the selection effects is extremely low, and (c) the
distance distribution changes significantly after the selection effects are applied to the
data. I will attempt to address the physical mechanisms that can explain each of these
discrepancies, as well as considering any issues with the simulated/observed data that
could affect my results.

The reason that a fit could not be found using a smaller semi-major axis distribution
is the dearth of companions in the 1-2 arcsecond range; a binary population with a semi-
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Figure 5.10: Best fit model, with parameters µa = 2.12× 104, σa = 2.85, µdmag = 2.89
and σdmag = 3.19. The number of systems detected from an initial binary sample of
50 000 objects was 2.05% and the Goodness of fit was -1243.61 (compared to the ’best
fit’ value of -1170.54).
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Figure 5.11: Semi-major axis distribution for the fit above.
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major axis distribution only slightly higher than the separation distribution would be
much more heavily weighted towards small separations than the observed sample. Whilst
there are some selection effects meaning that companions in this separation might be
missed, they should not impact the sample so heavily. Therefore, only a semi-major axis
distribution peaking ∼> 3 times higher than the separation distribution can result in the
observed separation distribution.

As companions are regularly found at 10-100s of au around YSOs, this result implies
two things; firstly, it could be that this method is actually observing the extremely
high separation tail of the binary distribution, because the limits on angular resolution
mean that the majority of companions cannot be detected. If this is the extremely
high separation tail of a typical separation distribution, then it will likely be better fit
with an Öpik distribution than a lognormal. However, as we can see in Figure 5.10 and
Figure 5.11, the simulation using the Öpik distribution suffers from all the same issues
as the lognormal distribution.

Alternatively, this ‘binary’ sample could actually contain a large number of triple
companions in systems where the secondary star is too close to the primary to be resolved.
In this case, it’s possible that my ‘binary only’ population model is not the best way of
fitting the observed data (see Chapter 6 for more details on how this could be corrected
in the future).

Small number statistics

The models imply that only ∼ 1− 3 per cent of all binaries would be observed given the
observational biases and selection effects present in this sample, providing further evid-
ence that we may be observing the large separation tail of the binary/triple distribution;
if ∼99 per cent of companions are much closer than our mean separation of 17900 au,
which is likely, then they would not be detected through our methods.

Observational issues

The observed sample contains 842 YSOs, and my simulations used only 724 of these due
to the presence of multiple companions for some objects. In Section 5.3.6, I showed that
random noise could significantly alter the boundaries of cells in the binary tree for small
sample sizes. I attempted to mitigate the effects of this by generating the binary tree
grid for the much larger sample of fake data points. However, the small number of YSOs
might be impacting the quality of the results using the binary tree method.

More issues might arise when we consider the way binaries are selected from the main
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observed sample. The observed separations of some of the binaries are comparable to
distances between stars in a cluster rather than in binaries. This indicates that there
could be a large number of ‘companions’ in the sample which are physically associated,
but not in bound multiple systems. Since my model only includes binaries, it would be
very difficult for it to fit the observations if this was the case, and might provide another
explanation for the very large semi-major axis distributions.

Distance distribution after selection effects

The reason that the distance distribution appears so different after the selection effects
have been applied to the binary sample is still not understood, but indicates that the
results of this fit may be unreliable. This could be due to the issues listed above (about
small number statistics, the presence of triple companions, etc.) meaning that this
binary population model is not a good way of fitting these observations. This will be
investigated very soon in future work.

5.5 Summary

I have presented the results of my study into the selection effects that impact the ob-
servations of binary stars. Orbital parameters such as the inclination, orientation, and
phase of a system mean that the projected separation of a binary is not always the
same as the semi-major axis or the true distance, even though on average the values are
similar.

I also used my binary population model to attempt to find the true properties of an
observed sample of YSO binaries. The aim was to estimate the number of binaries that
would be missed due to observational biases, find the true semi-major axis distribution,
and calculate the incompleteness corrected multiplicity fraction. This was done by gen-
erating a fake binary population, applying the observational selection effects (such as
the minimum resolution of ∼1 arcsec and cutoff at ∼10 arcsecs) to this sample, and then
comparing the results to the observational data through the use of a binary search tree.

The results of my preliminary testing indicate that this sample must be an extremely
wide population of binaries (or perhaps dominated by the tertiary companions in hier-
archical triple systems). The mean of the semi-major axis must be ∼> 3 times higher
than the mean separation to fit the observations. If the semi-major axis distribution
were lower, then we would expect an overabundance of binaries with small separations,
which is not observed. This could be due to observational biases in the data that has
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not been accounted for, but at this point we have no evidence that any additional biases
are present.

The results of this testing are by no means conclusive at this stage, and further work
is needed to understand whether the simulations provide a good fit for the observations.



Chapter 6

Conclusions and future work

In this thesis, I have investigated whether a simple universal rule for star formation can be
used to represent how multiplicity in prestellar cores evolves to produce the multiplicity
fractions and initial mass function of the galactic field. I have also developed an orbit
fitting algorithm for binary and triple stars with a small number of observations, which
has applications to directly imaged brown dwarf and exoplanet systems. Finally, I have
developed a binary population synthesis code that can be used to estimate the selection
effects and biases on visual binary studies, through use of a binary search tree method.
This method has been tested on a sample of YSO binaries. This work in this thesis has led
to one publication (Houghton & Goodwin, 2022) and one submitted paper (Chapter 2).

6.1 Multiplicity of stellar systems in the field from sim-

ulations

Understanding the multiplicity properties of stars is essential for better models of stellar
evolution, mass determination, orbital parameter estimates, and even galactic dynamics.
Theoretical models that predict how multiple systems form are invaluable to the field of
astronomy.

Many complex simulations (such as Bate, 2012) have aimed to incorporate magnetic
fields, turbulence, and stellar feedback (amongst other microphysical mechanisms) into
their models to determine how cores fragment and how multiple systems are formed.
The method presented in this thesis used a toy Monte Carlo model to simulate the
macrophysics of multiple system formation, in a effort to complement these existing
models.

I considered three different scenarios for multiple system formation via fragmentation;

131
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the self-similar model, the strongly mass-dependent model, and a hybrid fragmentation
model (which depends on the core mass, but still has some random variance to the
number of stars formed). Additionally, I considered one scenario in which stars are
very frequently ejected from multiple systems, and another in which secular decay is the
only form of post formation processing (using the probabilities determined by Sterzik &
Durisen, 1998).

Using the stellar populations at the end of the simulation, I have compared the results
to the observed initial mass function and multiplicity fractions of the field. This has not
led to a model which perfectly fits both the IMFs and multiplicities, but some models
have more success than others.

The key issue with self-similar fragmentation, in which all cores form a random
number of stars irrespective of the initial core mass, is that it produces multiplicity
fractions that do not have the strong primary mass dependence seen in the observations.
If cores fragment with a strong dependence on their mass this breaks the self-similar
mapping between the CMF and the IMF, and produce significant features in the IMF
around the peak.

A hybrid model with a weak core mass-fragmentation dependence finds a good fit
to the IMF, and a somewhat reasonable fit to the multiplicities. When the systems
produced from this model are processed using the secular decay model only, the results
seem to match the IMFs and multiplicities of loosely bound star-forming associations.
This implies that a model in which the decay/dynamical destruction probabilities include
contributions from both secular decay and dynamical destruction could reproduce the
multiplicities of the field.

6.1.1 Future work

Developing a combined model of both secular decay and dynamical destruction is not
trivial. The rate of dynamical destruction depends strongly on the properties of the
star-forming regions, such as the velocity dispersions and density profile (e.g. Sollima,
2008; Parker & Goodwin, 2012; Parker & Meyer, 2014; Griffiths et al., 2018). As these
properties differ significantly from region to region, an N -body model to determine an
overall probability of dynamical destruction would need to include contributions from
clusters of various environments. This work, whilst complex, would follow on nicely from
the conclusions presented in Chapter 2.
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A more complex toy model

The toy model that I developed considers a simple set of rules for star formation, without
going into detail about different star formation mechanisms or the separation distribu-
tions. There are several ways to develop the complexity of my model now that we have
established that it is difficult to produce the IMF and multiplicity properties of the field
using a universal rule for star formation.

The first approach would be to consider how the star formation process differs for
stars of different masses. In Section 1.3.4, I described how high-mass stars may form
through ‘competitive accretion’, meaning that they accrete from the well of gas and dust
outside the prestellar core to increase their mass at a very high rate. This often leads to
lower mass companions being formed near the massive star. In my current model, the
mass ratio distribution of systems has no dependence on the primary mass, but adding
different mass ratio distributions that depend on primary mass into the initial conditions
may produce interesting results.

Furthermore, since high mass stars are able to accrete additional material from the
local gas reservoir, their star formation efficiency will be higher than for low mass stars
(and in some cases, may be greater than 1). It is not clear whether the more powerful
outflows and stellar winds would decrease the star formation efficiency of massive stars,
which is why I have not included a mass dependence in the star formation efficiency
so far. With more time, I would explore a variety of SFE distributions with different
dependences on mass.

Previous work from Parker & Meyer (2014) shows that the multiplicity fraction over
time depends on the primary mass. Current, more up to date work (Richard Parker,
private communication) would provide robust limits on how the primary mass affects
the multiplicity fraction and could be incorporated into my model.

The number of stars formed from each core in my simulations only depends on the
mass of the core. (Murillo et al., 2018) used molecular tracers in star forming cores to
calculate the cold gas mass present in each core, and determined that core mass is a
primary factor in determining multiplicity (i.e. the mass affected fragmentation more
than the temperature). It is therefore intuitive that the mass available for star formation
combined with the critical mass for fragmentation (i.e. MBE) affects the number of stars
formed. The rules used in my simulations are all-encompassing of core fragmentation,
disc fragmentation, and capture to create one overall universal rule. However, if one
wanted to make these simulations more complex, it would be possible to include the
individual contributions from each star formation mechanism in this simulation in detail.
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This would allow more accurate separation distributions to be produced as a byproduct
of the star formation process, which could in turn be used to construct a realistic model
of how companions at different separations are disrupted due to encounters or decay
through secular processes.

6.2 FOBOS

I developed an algorithm to estimate the orbital properties of visual binaries, triple
systems, and directly imaged brown dwarfs/exoplanets. The algorithm (FOBOS) uses a
brute force Monte Carlo method to randomly sample the full parameter space of orbital
elements. This is a very computationally expensive method, but by writing the code in
Fortran and parallelising it, I have managed to make it efficient enough to provide reliable
confidence limits on the semi-major axis, eccentricity, and inclination of binary/triple
systems within a few CPU minutes (binaries) or hours (triples).

FOBOS was tested on a large sample of fake binary and triple systems to test its
reliability. I found that some pairs of observations can be very constraining whereas
others are less constraining; for systems that can’t be well constrained, the uncertainties
are large rather than it narrowing in on the wrong area of parameter space, so it is simple
to discount poorly fitting results.

By adding a third or fourth epoch of observation for a binary system, the uncertain-
ties on the results are significantly decreased (as we would expect). If there are more
observations available, a MCMC code such as orbitize! (Blunt et al., 2020) or orvara
(Brandt et al., 2021) becomes much more efficient.

I tested FOBOS on two observed systems (2M 0103-55 (AB) b and HD 206893) both of
which have low mass companions. The results I obtained matched very well with results
in the literature by (Blunt et al., 2017) and (Ward-Duong et al., 2021).

6.2.1 Future work

As mentioned previously, FOBOS can be used to estimate orbital parameters for directly
imaged exoplanets. Only a small number of exoplanets have been detected via direct
imaging so far (∼ 20 − 25 out of > 5000, Currie et al., 2022). However, direct imaging
allows exoplanet atmospheres to be studied, and there are many instruments dedicated
to exoplanet imaging studies (not to mention the capabilities of JWST). There are likely
to be many more directly imaged exoplanet discoveries over the coming years, and FOBOS
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provides a way of adding constraints to the orbital properties very soon after the initial
detection.

6.3 Binarity of YSOs

Using the binary system projection code developed for the FOBOS algorithm, I developed
a binary population synthesis code to estimate the selection effects present in surveys
of visual binary systems. I determined that on average, a binary system will have a
projected separation that comparable to its semi-major axis.

The inclination and orientation of the system both cause the projected separation of
the two stars to appear smaller than the true distance between them. The eccentricity
of a system means that the true distance between the two stars varies significantly over
the course of the orbit, and as the companion star spends more time closer to apastron
(where it is travelling more slowly), the projected separation often appears larger than
the semi-major axis. These effects have been understood for decades, but in my work
I have quantified the impact of these parameters and used it to estimate the selection
effects on visual binary studies.

I have used a binary search tree algorithm based on the work of Akter (2022) to
compare my binary population synthesis model to the separation and δmag distribution
of a sample of binary stars collated by Shenton et al. (in preparation). Assuming that
their sample is complete in the separation range of 1.5− 10 arcseconds, I found a semi-
major axis distribution that was significantly larger than the separation distribution
implied (if the separations were converted to au using the distances only) This indicates
that either (a) they are looking at the tail end of a distribution of very wide binaries
or (b) the majority of the ‘binary’ companions in their sample are actually the tertiary
component of a hierarchical triple system.

6.3.1 Future work

This project has the most potential for future work. In the time following the submission
of this thesis, I plan to make my code for producing a binary tree and comparing two
data sets publicly available and pip installable.

The difference between the distance distribution of the YSOs before and after the
selection effects have been applied is still a major issue with this model. Understanding
the reasons behind this, and the extent to which it affects the reliability of my results,
is the most important next step in this project.
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Including triple companions

The results of my YSO analysis in Chapter 5 indicate that the separation range of the
‘binaries’ detected by Shenton et al. (in preparation) is extremely large, implying that
they may be looking at a population of tertiary companions in triple systems rather
than binaries. This is an interesting result, and could be followed up by including triple
systems in my population synthesis model, to see if this better reproduces the separation
and δmag distributions.

Inclination, debris disc extinction levels, and completeness

YSOs are surrounded by a debris disc. This disc obscures the host star, and in binary
surveys this can often result in a primary that appears less bright than its companion.
If there had been more time during then project, my intention was to study how the
inclination of a debris disc affects the possibility of detecting a YSO, and how this would
affect the Shenton et al. sample of YSOs.

The binary population synthesis code already generates the inclination of a binary
system when forming a fake observation. Assuming that the companion is orbiting in
the plane of the debris disc (which is more likely to be true for massive stars, where the
companion may have formed through disc fragmentation), then systems with inclinations
closer to edge on are more likely to have companions suffering from a higher level of debris
disc extinction.

My plan was to use the inclination distribution of the fake binaries and the obscur-
ation properties of the debris disc (provided by Shenton and Oudmaijer) to study how
the inclination affects the δmag distribution. It could be that the YSO primaries are
still consistently detected in the infrared, or it is possible that this work would show that
edge on inclination YSOs are not often observed. I could use these results to estimate the
total number of YSOs missed in observations due to disc extinction, allowing corrections
to be applied to their results for an additional level of incompleteness.
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Figure A.1: The system (top) and single star (bottom) IMFs for the self-similar model.
On both plots, the Salpeter (orange), Chabrier (blue) and Maschberger (pink) IMFs are
shown by the solid lines. The core mass function used in our simulations is shown by the
solid black line. The IMFs are plotted for several values of the star formation efficiency:
η = 0.3 (densely dashed), η = 0.5 (dotted), η = 0.9 (dashed), and η = U [0, 1] (dash-
dotted). The grey shaded region on the left of both plots shows the brown dwarf regime.
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Figure A.2: Top: Observed multiplicity fractions (blue squares) and triple high order
fractions (red circles) from various sources listed in table 1 of Offner et al. (2022). The
blue lines and red lines show the multiplicity fractions and triple higher order fractions
(respectively) from my model using random fragmentation and Sterzik & Durisen (1998)
secular decay rules. The values for the MFs and THFs are plotted for several values
of the star formation efficiency: η = 0.3 (densely dashed), η = 0.5 (dotted), η = 0.9
(dashed), and η = U [0, 1] (dash-dotted). Bottom: Companion star fractions following
the same rules as the top plot.
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Figure A.3: IMFs from the Bonnor-Ebert mass dependent model. These results are
from a model that uses the Sterzik & Durisen (1998) secular decay rules for dynamical
processing. See caption of Figure A.1 for more details.
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Figure A.4: Multiplicities from the Bonnor-Ebert mass dependent model. These res-
ults are from a model that uses the Sterzik & Durisen (1998) secular decay rules for
dynamical processing. See the caption of Figure A.2 for more details.
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Appendix B

Additional FOBOS corner plots and
simulation data tables

Figure B.1 shows the probability distribution functions (top panels of each column) and
parameter covariances for test system B4, and Figure B.2 shows these properties for
system T25.
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Figure B.1: Corner plot showing orbital parameter covariances for test system B4. See
Fig. 4.4.
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Figure B.2: Corner plot for triple system 25. Sample size of 1011 matches. See Fig.
4.9.



158 Appendix B: Additional FOBOS corner plots and simulation data tables

B.1 Simulation data tables

No. a e i ϕ M m1 m2 ∆t

(au) (◦) (◦) (◦) (M⊙) (M⊙) (years)

B1 54.72 0.388 20.45 -0.0 -0.0 0.66 0.19 8.7
B2 54.19 0.623 41.78 95.22 213.95 0.47 0.06 9.51
B3 18.83 0.864 27.77 191.37 340.05 0.6 0.24 10.07
B4 189.79 0.513 10.42 42.19 15.67 0.31 0.12 10.58
B5 107.06 0.442 64.59 223.1 236.32 0.27 0.13 11.3
B6 82.76 0.558 33.82 245.29 98.2 0.89 0.54 8.35
B7 87.46 0.02 38.93 116.94 249.37 0.65 0.22 2.39
B8 68.73 0.955 24.3 332.93 351.39 0.75 0.08 4.64
B9 64.6 0.235 43.6 317.48 294.6 0.59 0.07 9.21
B10 91.27 0.771 25.75 294.24 193.06 1.05 0.65 6.46
B11 68.21 0.316 82.61 140.72 343.86 0.9 0.28 7.25
B12 117.45 0.642 46.65 194.26 228.14 0.34 0.13 11.41
B13 183.5 0.682 6.7 345.97 36.91 0.42 0.38 3.94
B14 144.64 0.091 68.92 210.68 59.33 0.65 0.39 9.48
B15 150.02 0.04 8.9 100.34 168.31 0.68 0.39 6.65
B16 192.23 0.738 44.48 207.09 298.1 0.28 0.02 11.59
B17 63.17 0.115 52.99 226.07 326.87 0.8 0.29 7.43
B18 94.69 0.001 9.35 170.83 228.19 0.78 0.46 3.3
B19 70.63 0.171 26.09 147.25 71.14 0.74 0.1 2.02
B20 74.34 0.693 24.38 127.26 140.15 0.86 0.51 3.35
B21 249.98 0.014 39.47 46.63 206.75 0.83 0.15 11.7
B22 233.21 0.207 32.1 355.09 329.9 1.01 0.38 7.78
B23 256.99 0.44 45.75 346.35 334.58 1.01 0.66 9.57
B24 232.85 0.636 1.19 45.19 271.43 0.73 0.49 11.44
B25 322.94 0.833 20.52 63.08 358.55 0.7 0.27 11.77
B26 319.42 0.56 45.68 56.08 38.34 0.61 0.11 10.36
B27 206.5 0.067 26.47 210.47 210.5 0.6 0.02 11.15
B28 315.18 0.377 0.04 293.77 145.93 1.08 0.64 8.36
B29 383.72 0.355 9.86 95.3 148.65 0.67 0.52 7.63
B30 370.29 0.015 21.91 353.97 269.24 0.59 0.35 9.51
B31 415.98 0.863 83.22 88.04 10.19 0.91 0.5 11.19
B32 443.58 0.669 12.18 338.89 351.87 0.49 0.16 10.95
B33 423.87 0.192 27.53 287.32 340.78 1.33 0.68 9.26



Section B.1: Simulation data tables 159

B34 340.84 0.042 22.83 309.8 129.21 1.1 0.5 10.53
B35 286.1 0.196 35.24 209.36 190.37 0.95 0.66 10.37
B36 392.06 0.92 31.35 12.49 354.86 0.66 0.36 9.88
B37 403.19 0.757 26.51 164.66 359.88 0.71 0.36 10.97
B38 368.78 0.822 38.0 98.02 24.04 0.5 0.08 9.06
B39 438.22 0.402 5.45 184.7 14.41 0.91 0.61 11.71
B40 370.4 0.089 40.27 31.0 268.92 1.12 0.54 7.45
B41 8.97 0.623 41.78 95.22 213.95 0.47 0.06 9.51
B42 13.37 0.26 4.73 265.51 287.48 0.89 0.22 9.69
B43 16.31 0.823 47.49 81.4 80.77 0.63 0.35 5.63
B44 4.19 0.864 27.77 191.37 340.05 0.6 0.24 10.07
B45 29.17 0.651 31.89 348.54 218.22 0.8 0.17 6.54
B46 27.27 0.513 10.42 42.19 15.67 0.31 0.12 10.58
B47 18.81 0.786 52.99 22.58 51.18 0.33 0.16 3.8
B48 16.1 0.442 64.59 223.1 236.32 0.27 0.13 11.3
B49 12.82 0.558 33.82 245.29 98.2 0.89 0.54 8.35
B50 9.63 0.934 25.31 58.19 128.5 0.2 0.12 10.65
B51 138.6 0.808 16.2 151.06 282.75 1.12 0.49 11.91
B52 139.54 0.063 13.69 187.33 50.48 0.79 0.67 9.35
B53 142.07 0.137 40.22 1.59 319.33 0.87 0.58 4.88
B54 81.52 0.343 11.28 77.13 311.25 0.70 0.54 6.82
B55 76.91 0.283 14.58 39.34 321.31 0.80 0.48 7.68
B56 78.5 0.066 9.09 63.02 311.94 1.14 0.51 3.61
B57 169.27 0.573 57.83 256.31 346.48 0.75 0.48 3.96
B58 182.87 0.2 2.66 67.84 347.09 0.68 0.02 4.55
B59 156.81 0.313 20.62 340.37 355.22 0.55 0.26 10.86
B60 110.93 0.182 20.29 196.58 40.96 1.08 0.63 3.45

Table B.1: The orbital parameters, masses, and the time between observations for each
of the test binary systems. The leftmost column shows the index used to refer to each
system in the text. From left to right, the columns contain the semi-major axes (in
au), eccentricities, inclinations (in degrees), orientations (in degrees), mean anomalies
(in degrees), the masses of the primary and secondary stars (in solar masses), and the
time between observations (in years). All values quoted to 2 d.p. (excluding eccentricity,
which is quoted to 3 d.p.). Any values with fewer significant figures are followed by a 0.
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No. a (au) 68% CI 95% CI e 68% CI 95% CI i (◦) 68% CI 95% CI

B1 54.72 18.41 - 110.44 17.86 - 387.85 0.388 0.279 - 0.79 0.004 - 0.807 20.45 7.14 - 28.04 4.99 - 53.57
B2 54.19 35.59 - 143.36 31.3 - 486.3 0.623 0.13 - 0.665 0.0 - 0.78 41.78 12.17 - 32.55 7.63 - 57.42
B3 18.83 14.27 - 54.34 13.76 - 154.77 0.864 0.692 - 0.905 0.567 - 0.944 27.77 18.37 - 42.44 11.6 - 67.14
B4 189.79 14.49 - 55.86 13.63 - 174.38 0.513 0.0 - 0.509 0.0 - 0.761 10.42 12.16 - 31.19 7.77 - 56.63
B5 107.06 97.92 - 244.75 88.01 - 803.74 0.442 0.0 - 0.465 0.0 - 0.816 64.59 27.15 - 51.46 18.02 - 70.31
B6 82.76 53.86 - 270.19 50.17 - 1068.16 0.558 0.187 - 0.774 0.0 - 0.838 33.82 7.29 - 24.88 4.22 - 51.97
B7 87.46 58.43 - 181.58 44.94 - 593.78 0.02 0.042 - 0.55 0.0 - 0.824 38.93 19.86 - 42.64 12.46 - 64.95
B8 68.73 55.27 - 77.95 39.97 - 77.95 0.955 0.662 - 0.99 0.138 - 0.99 24.3 12.57 - 36.6 6.7 - 50.68
B9 64.6 40.5 - 95.07 36.54 - 296.85 0.235 0.0 - 0.451 0.0 - 0.78 43.6 28.16 - 51.2 18.93 - 68.84
B10 91.27 51.32 - 308.37 50.33 - 1535.83 0.771 0.279 - 0.892 0.007 - 0.896 25.75 3.57 - 17.78 1.85 - 46.86
B11 68.21 58.73 - 151.85 53.15 - 408.13 0.316 0.377 - 0.77 0.264 - 0.919 82.61 48.46 - 72.0 34.37 - 83.74
B12 117.45 99.6 - 429.1 88.07 - 1499.03 0.642 0.165 - 0.73 0.0 - 0.824 46.65 10.87 - 30.31 6.45 - 56.31
B13 183.5 45.91 - 262.92 45.28 - 1213.58 0.682 0.359 - 0.97 0.049 - 0.97 6.7 2.05 - 11.76 1.78 - 42.59
B14 144.64 121.58 - 267.09 110.46 - 843.28 0.091 0.0 - 0.543 0.0 - 0.852 68.92 43.05 - 71.25 30.75 - 83.48
B15 150.02 13.47 - 92.21 13.28 - 340.13 0.04 0.345 - 0.825 0.013 - 0.831 8.9 6.12 - 27.89 4.01 - 52.14
B16 192.23 104.29 - 434.93 90.81 - 1425.94 0.738 0.164 - 0.727 0.0 - 0.82 44.48 11.13 - 30.75 7.08 - 56.82
B17 63.17 47.05 - 95.63 42.29 - 298.44 0.115 0.0 - 0.37 0.0 - 0.757 52.99 35.39 - 60.21 23.84 - 73.85
B18 94.69 38.76 - 246.12 37.96 - 1548.63 0.001 0.331 - 0.962 0.04 - 0.962 9.35 1.76 - 12.36 1.37 - 42.94
B19 70.63 27.86 - 99.2 23.01 - 320.21 0.171 0.096 - 0.628 0.0 - 0.805 26.09 15.27 - 36.27 9.7 - 60.6
B20 74.34 38.48 - 222.93 37.47 - 1025.11 0.693 0.272 - 0.885 0.01 - 0.896 24.38 4.06 - 18.52 2.42 - 47.54
B21 249.98 132.66 - 311.32 117.51 - 1011.47 0.014 0.0 - 0.453 0.0 - 0.815 39.47 29.83 - 54.54 19.73 - 71.76
B22 233.21 101.79 - 299.23 92.34 - 973.81 0.207 0.038 - 0.534 0.0 - 0.809 32.1 21.24 - 44.11 14.07 - 66.06
B23 256.99 112.08 - 229.03 102.85 - 736.41 0.44 0.0 - 0.461 0.0 - 0.819 45.75 40.39 - 68.02 28.26 - 80.66
B24 232.85 38.95 - 324.14 38.95 - 3456.16 0.636 0.456 - 0.99 0.073 - 0.99 1.19 0.14 - 2.79 0.11 - 22.1
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B25 322.94 34.44 - 107.23 26.01 - 356.75 0.833 0.366 - 0.828 0.094 - 0.912 20.52 15.9 - 31.86 10.29 - 56.48
B26 319.42 205.54 - 483.57 183.02 - 1464.71 0.56 0.0 - 0.459 0.0 - 0.817 45.68 29.15 - 53.65 19.7 - 71.39
B27 206.5 88.61 - 324.35 75.0 - 1051.73 0.067 0.107 - 0.645 0.0 - 0.81 26.47 14.69 - 35.4 9.37 - 60.1
B28 315.18 27.36 - 264.81 27.36 - 3981.99 0.377 0.602 - 0.99 0.109 - 0.99 0.04 0.0 - 0.39 0.0 - 17.4
B29 383.72 68.28 - 401.46 66.51 - 1945.18 0.355 0.279 - 0.894 0.005 - 0.895 9.86 3.79 - 18.08 2.14 - 46.98
B30 370.29 96.52 - 315.17 76.73 - 1029.02 0.015 0.076 - 0.594 0.0 - 0.811 21.91 17.79 - 39.76 11.33 - 62.85
B31 415.98 260.8 - 440.11 174.47 - 441.15 0.863 0.867 - 0.925 0.861 - 0.968 83.22 36.69 - 69.76 21.22 - 80.85
B32 443.58 38.45 - 177.84 35.33 - 622.26 0.669 0.177 - 0.753 0.0 - 0.821 12.18 8.49 - 26.11 4.85 - 52.47
B33 423.87 126.99 - 325.19 111.93 - 1050.03 0.192 0.001 - 0.469 0.0 - 0.806 27.53 25.42 - 49.2 17.08 - 68.84
B34 340.84 94.35 - 300.42 73.09 - 957.03 0.042 0.079 - 0.585 0.0 - 0.794 22.83 18.52 - 40.49 11.72 - 62.87
B35 286.1 186.68 - 665.76 154.59 - 2179.56 0.196 0.102 - 0.637 0.0 - 0.823 35.24 15.66 - 37.15 10.0 - 61.44
B36 392.06 69.12 - 226.32 45.4 - 382.37 0.92 0.729 - 0.909 0.593 - 0.942 31.35 31.63 - 60.06 20.52 - 73.38
B37 403.19 62.25 - 200.98 57.37 - 645.64 0.757 0.071 - 0.569 0.0 - 0.774 26.51 18.14 - 39.93 11.4 - 62.08
B38 368.78 278.58 - 639.32 235.18 - 1874.93 0.822 0.018 - 0.614 0.0 - 0.874 38.0 43.67 - 72.06 30.1 - 83.86
B39 438.22 108.82 - 724.94 107.38 - 5667.3 0.402 0.375 - 0.989 0.059 - 0.99 5.45 0.93 - 9.28 0.76 - 41.21
B40 370.4 199.03 - 471.56 178.33 - 1565.63 0.089 0.0 - 0.458 0.0 - 0.83 40.27 29.2 - 54.17 19.63 - 72.11
B41 8.97 6.26 - 29.66 6.22 - 97.28 0.623 0.222 - 0.693 0.0 - 0.812 41.78 8.63 - 33.2 5.7 - 58.4
B42 13.37 6.77 - 13.25 6.66 - 40.27 0.26 0.611 - 0.99 0.238 - 0.99 4.73 2.81 - 17.95 2.27 - 47.94
B43 16.31 10.88 - 121.86 10.87 - 662.37 0.823 0.457 - 0.948 0.051 - 0.952 47.49 1.65 - 17.91 1.18 - 46.41
B44 4.19 1.58 - 3.09 1.57 - 8.2 0.864 0.266 - 0.849 0.003 - 0.89 27.77 14.16 - 47.24 0.04 - 67.38
B45 29.17 27.91 - 58.1 23.78 - 153.88 0.651 0.001 - 0.47 0.0 - 0.822 31.89 0.0 - 41.85 0.0 - 71.1
B46 27.27 8.84 - 26.52 8.4 - 87.43 0.513 0.569 - 0.899 0.469 - 0.99 10.42 7.48 - 23.7 3.93 - 56.07
B47 18.81 14.26 - 92.66 14.07 - 466.29 0.786 0.292 - 0.906 0.025 - 0.922 52.99 3.05 - 17.03 1.91 - 46.7
B48 16.1 14.77 - 31.78 13.53 - 98.58 0.442 0.0 - 0.398 0.0 - 0.739 64.59 27.96 - 50.09 18.41 - 67.67
B49 12.82 8.86 - 57.45 8.72 - 201.9 0.558 0.32 - 0.793 0.0 - 0.813 33.82 6.02 - 28.11 4.2 - 54.97
B50 9.63 6.32 - 138.17 6.32 - 1018.66 0.934 0.632 - 0.99 0.119 - 0.99 25.31 0.48 - 14.46 0.26 - 47.43
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B51 138.6 98.04 - 662.54 96.76 - 5161.96 0.808 0.372 - 0.989 0.056 - 0.989 16.2 0.95 - 9.46 0.81 - 41.14
B52 139.54 36.22 - 176.82 33.93 - 657.05 0.063 0.144 - 0.74 0.0 - 0.845 13.69 6.52 - 21.88 4.12 - 49.47
B53 142.07 78.1 - 191.61 69.92 - 627.94 0.137 0.0 - 0.459 0.0 - 0.812 40.22 27.62 - 52.0 18.1 - 70.25
B54 81.52 36.02 - 254.92 35.74 - 1600.2 0.343 0.327 - 0.953 0.032 - 0.953 11.28 1.75 - 13.65 1.16 - 44.72
B55 76.91 30.9 - 204.96 30.34 - 955.39 0.283 0.293 - 0.897 0.017 - 0.9 14.58 3.56 - 18.87 2.13 - 48.15
B56 78.5 38.76 - 268.75 37.91 - 2144.28 0.066 0.355 - 0.976 0.059 - 0.99 9.09 1.18 - 11.46 0.76 - 43.9
B57 169.27 80.17 - 183.36 74.2 - 562.16 0.573 0.053 - 0.641 0.0 - 0.863 57.83 43.51 - 71.41 30.63 - 83.32
B58 182.87 51.39 - 319.19 49.95 - 1984.48 0.2 0.43 - 0.99 0.07 - 0.99 2.66 0.59 - 5.48 0.43 - 32.1
B59 156.81 56.55 - 253.14 50.75 - 881.2 0.313 0.165 - 0.737 0.0 - 0.816 20.62 9.0 - 27.26 5.76 - 54.18
B60 110.93 26.66 - 92.04 24.66 - 296.5 0.182 0.0 - 0.506 0.0 - 0.767 20.29 16.25 - 37.18 10.23 - 59.96

Table B.2: The true orbital parameters a, e, and i for each system compared to the 68% and 95% confidence
intervals obtained from simulations.
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No. ain ein iin ϕin Min aout eout iout ϕout Mout m1 m2 m3 ∆t

(au) (◦) (◦) (◦) (au) (◦) (◦) (◦) (M⊙) (M⊙) (M⊙) (years)

T1 24.38 0.261 -44.15 316.26 110.34 307.43 0.191 3.48 118.24 9.97 0.98 0.97 0.87 8.26
T2 26.42 0.137 36.2 214.41 262.68 449.44 0.685 -31.34 22.32 23.92 0.65 0.63 0.18 7.07
T3 20.03 0.4 -31.15 138.89 307.4 281.55 0.233 31.07 233.68 352.78 0.99 0.53 0.4 7.45
T4 67.7 0.384 40.36 307.77 155.0 2810.28 0.427 -1.75 349.58 50.2 0.96 0.57 0.34 9.82
T5 24.98 0.503 11.41 271.61 33.09 966.47 0.407 -4.38 354.19 318.89 0.51 0.27 0.09 7.9
T6 92.0 0.022 54.8 88.12 40.19 775.23 0.475 33.16 302.95 353.34 0.92 0.56 0.45 7.22
T7 10.07 0.706 40.65 316.69 251.8 160.68 0.089 -7.93 87.49 241.04 0.99 0.39 0.36 6.25
T8 19.82 0.054 -18.22 164.13 8.32 152.88 0.143 84.31 346.12 255.04 0.63 0.46 0.16 4.96
T9 36.77 0.373 17.16 66.25 71.5 1214.18 0.764 -48.65 300.12 356.45 0.73 0.6 0.31 9.06
T10 22.2 0.857 -60.12 183.17 27.69 739.0 0.295 13.09 44.16 32.93 0.7 0.6 0.47 9.13
T11 13.01 0.223 -20.61 166.92 166.62 184.35 0.144 4.31 275.84 188.02 0.63 0.26 0.18 2.2
T12 47.34 0.301 56.21 1.69 242.18 564.54 0.534 16.24 270.65 344.68 0.75 0.73 0.56 8.02
T13 28.6 0.26 31.7 157.36 226.27 312.79 0.51 -10.43 206.55 0.89 0.66 0.24 0.19 9.43
T14 49.18 0.62 -22.34 98.02 107.9 1340.77 0.551 2.29 338.7 341.47 0.89 0.72 0.62 9.25
T15 105.45 0.535 -37.73 225.74 234.36 2954.16 0.781 14.34 72.77 3.14 0.83 0.74 0.7 9.4
T16 28.33 0.308 -47.24 280.13 16.39 447.56 0.569 27.34 348.93 25.3 0.17 0.1 0.08 9.76
T17 15.39 0.813 26.97 89.04 41.08 326.03 0.022 29.7 215.56 225.04 0.72 0.68 0.24 6.68
T18 98.83 0.831 -34.75 299.51 8.52 3261.11 0.827 10.58 305.59 358.86 0.81 0.36 0.21 8.98
T19 24.51 0.772 -23.51 310.43 277.93 503.89 0.101 -11.0 6.71 272.47 0.68 0.56 0.47 8.67
T20 12.92 0.218 28.93 202.69 77.95 323.87 0.722 -56.96 170.22 21.36 0.6 0.33 0.22 6.54
T21 13.91 0.644 32.63 8.51 146.55 999.72 0.423 -0.52 166.84 331.29 0.75 0.72 0.62 9.9
T22 44.71 0.237 -14.11 46.08 87.49 731.07 0.111 -2.55 190.52 62.5 0.75 0.73 0.16 9.29
T23 28.37 0.16 78.93 113.45 157.48 542.3 0.592 0.06 10.73 320.17 0.82 0.56 0.5 2.89
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T24 36.69 0.571 -56.81 163.55 313.1 650.33 0.167 -3.32 209.34 30.31 1.0 0.72 0.62 8.58
T25 52.7 0.388 22.11 192.65 355.45 631.34 0.506 66.86 343.6 2.28 0.95 0.66 0.18 8.9
T26 26.07 0.08 69.43 199.15 40.75 259.49 0.169 37.23 222.24 264.53 0.64 0.61 0.1 8.64
T27 34.14 0.056 39.95 219.98 219.64 198.49 0.153 14.42 20.63 310.22 0.9 0.74 0.29 9.54
T28 96.69 0.493 51.29 120.81 49.63 1410.64 0.552 4.53 275.38 2.37 0.57 0.45 0.24 7.7
T29 19.17 0.215 -48.28 293.0 340.14 210.73 0.406 4.69 307.17 332.14 0.84 0.6 0.36 6.48
T30 10.13 0.604 18.0 351.78 358.7 221.79 0.067 4.66 126.59 125.9 0.87 0.71 0.67 8.91
T31 90.06 0.108 74.23 134.82 311.44 2631.42 0.8 2.72 17.22 7.16 0.98 0.6 0.29 7.76
T32 66.58 0.01 22.88 47.4 48.93 330.66 0.055 -9.77 284.7 333.59 0.36 0.22 0.12 6.47
T33 132.59 0.586 2.17 285.14 334.01 2393.09 0.387 -2.75 268.41 1.46 0.69 0.48 0.25 8.4
T34 14.29 0.336 -20.06 250.5 58.57 323.11 0.291 51.55 73.83 15.08 0.8 0.72 0.24 8.04
T35 45.56 0.554 7.24 256.91 50.28 401.5 0.089 1.99 257.27 27.69 0.59 0.52 0.38 5.15
T36 15.96 0.509 -18.37 108.5 221.76 441.57 0.148 -26.47 328.26 94.9 0.99 0.93 0.13 8.74
T37 13.97 0.827 53.89 329.87 102.3 446.54 0.669 -43.66 241.19 339.11 0.94 0.73 0.63 7.81
T38 73.75 0.253 55.0 331.89 137.14 1883.76 0.091 2.7 78.97 7.94 0.67 0.63 0.3 8.03
T39 20.16 0.891 -42.62 316.58 208.35 2928.27 0.936 -25.89 118.81 359.64 0.31 0.24 0.1 3.19
T40 10.88 0.418 -14.37 99.55 40.17 163.31 0.175 41.63 88.37 10.76 0.79 0.59 0.11 6.3
T41 39.65 0.685 74.94 124.07 183.93 561.59 0.43 23.09 176.49 323.86 0.93 0.62 0.4 6.48
T42 36.82 0.623 -15.53 185.8 44.45 931.13 0.278 -0.88 148.66 94.07 0.67 0.56 0.12 8.52
T43 19.26 0.336 9.46 132.98 270.94 978.81 0.849 54.94 50.65 358.87 0.92 0.78 0.5 3.9
T44 11.32 0.653 38.27 276.45 153.46 386.32 0.62 -4.3 345.3 337.74 0.79 0.77 0.36 5.6
T45 30.31 0.239 -16.32 34.1 201.73 346.54 0.295 -49.61 47.26 45.4 0.79 0.72 0.69 6.54
T46 22.15 0.057 -2.21 274.78 203.93 342.55 0.616 -0.54 307.7 52.53 0.96 0.7 0.69 4.53
T47 49.73 0.619 34.73 183.81 42.48 889.1 0.164 -1.05 276.49 0.21 0.57 0.43 0.33 9.5
T48 32.56 0.908 -42.38 176.07 192.78 1246.48 0.732 54.01 226.4 3.07 0.55 0.4 0.31 8.84
T49 37.76 0.505 -58.6 36.32 286.51 1208.03 0.662 -20.34 234.18 3.85 0.66 0.51 0.24 7.0
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T50 26.4 0.693 6.68 299.17 187.38 371.46 0.028 3.97 164.84 299.95 0.71 0.66 0.21 5.76
T51 12.48 0.204 -22.53 212.42 116.67 175.11 0.157 8.32 234.22 273.28 0.56 0.56 0.24 6.92
T52 19.43 0.591 6.14 61.88 15.68 369.72 0.495 -57.52 311.08 348.71 0.86 0.27 0.18 7.45
T53 60.63 0.04 56.34 312.1 234.65 1064.8 0.126 -4.71 197.76 264.48 0.68 0.34 0.23 7.52
T54 15.38 0.338 30.47 14.96 318.97 228.55 0.496 -14.4 164.42 38.89 0.99 0.18 0.18 3.29
T55 16.06 0.402 5.51 68.71 218.03 137.27 0.115 -39.08 99.35 179.8 0.83 0.56 0.11 5.55
T56 55.82 0.52 -0.02 73.79 22.61 2146.54 0.794 -11.52 126.66 356.46 0.65 0.43 0.25 9.88
T57 16.55 0.576 64.88 199.55 278.99 160.44 0.192 -56.37 48.81 9.62 0.81 0.23 0.2 9.17
T58 10.28 0.029 -48.93 262.12 336.51 124.99 0.59 -41.87 249.79 328.44 0.75 0.37 0.25 7.26
T59 49.0 0.009 5.84 49.43 241.16 218.63 0.074 -0.83 206.48 46.51 0.82 0.78 0.3 2.0
T60 24.84 0.628 40.37 218.7 4.92 369.97 0.488 -28.85 84.67 23.49 0.9 0.58 0.54 6.21

Table B.3: The orbital parameters, masses, and the time between observations for each of the test triple systems.
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No. a (au) 68% CI 95% CI e 68% CI 95% CI i (◦) 68% CI 95% CI

T1 24.38 18.07 - 38.07 15.39 - 65.83 0.261 0.003 - 0.258 0.0 - 0.463 -44.15 26.66 - 43.34 20.72 - 61.72
T2 26.42 14.85 - 29.49 13.43 - 51.17 0.137 0.0 - 0.243 0.0 - 0.471 36.2 30.2 - 47.4 22.95 - 60.7
T3 20.03 15.47 - 30.25 12.78 - 46.17 0.4 0.018 - 0.48 0.004 - 0.805 -31.15 18.34 - 30.68 14.89 - 57.22
T4 67.7 42.38 - 123.27 40.68 - 247.44 0.384 0.147 - 0.586 0.001 - 0.643 40.36 19.37 - 40.79 15.38 - 63.73
T5 24.98 N/A N/A 0.503 N/A N/A 11.41 N/A N/A
T6 92.0 73.94 - 97.99 66.92 - 110.56 0.022 0.005 - 0.236 0.002 - 0.418 54.8 49.28 - 67.74 44.83 - 78.61
T7 10.07 8.62 - 19.98 8.36 - 107.73 0.706 0.48 - 0.802 0.056 - 0.819 40.65 16.71 - 39.85 5.36 - 53.93
T8 19.82 10.19 - 29.72 10.19 - 55.16 0.054 0.368 - 0.835 0.084 - 0.88 -18.22 10.22 - 25.39 10.08 - 55.93
T9 36.77 21.77 - 38.34 21.12 - 56.34 0.373 0.634 - 0.92 0.322 - 0.932 17.16 13.06 - 37.87 11.76 - 62.07
T10 22.2 21.28 - 44.13 19.88 - 74.25 0.857 0.784 - 0.885 0.78 - 0.947 -60.12 31.56 - 62.2 19.94 - 79.69
T11 13.01 9.2 - 18.66 8.12 - 37.81 0.223 0.015 - 0.578 0.0 - 0.828 -20.61 13.13 - 26.3 6.63 - 50.92
T12 47.34 40.23 - 77.35 37.84 - 139.0 0.301 0.027 - 0.364 0.0 - 0.593 56.21 31.67 - 53.36 25.3 - 69.07
T13 28.6 20.35 - 52.17 20.12 - 183.56 0.26 0.262 - 0.719 0.041 - 0.776 31.7 11.94 - 36.07 8.34 - 55.11
T14 49.18 17.86 - 105.23 17.86 - 299.16 0.62 0.517 - 0.876 0.094 - 0.886 -22.34 5.32 - 27.96 4.89 - 56.41
T15 105.45 64.35 - 137.64 62.97 - 256.4 0.535 0.329 - 0.734 0.009 - 0.745 -37.73 22.05 - 48.16 17.51 - 67.07
T16 28.33 15.92 - 26.99 15.19 - 49.89 0.308 0.167 - 0.461 0.1 - 0.655 -47.24 42.64 - 65.41 33.59 - 77.07
T17 15.39 8.96 - 15.93 8.66 - 34.13 0.813 0.437 - 0.733 0.316 - 0.829 26.97 7.67 - 40.58 7.13 - 68.59
T18 98.83 N/A N/A 0.831 N/A N/A -34.75 N/A N/A
T19 24.51 17.47 - 30.07 17.11 - 51.48 0.772 0.741 - 0.952 0.422 - 0.987 -23.51 10.89 - 42.26 10.33 - 68.17
T20 12.92 7.49 - 13.12 7.4 - 28.93 0.218 0.007 - 0.321 0.002 - 0.68 28.93 20.87 - 47.0 16.05 - 65.05
T21 13.91 16.0 - 25.96 11.82 - 35.55 0.644 0.0 - 0.315 0.0 - 0.715 32.63 0.04 - 29.13 0.04 - 48.49
T22 44.71 27.75 - 60.9 24.82 - 111.69 0.237 0.001 - 0.467 0.003 - 0.802 -14.11 9.15 - 16.36 7.22 - 31.69
T23 28.37 27.98 - 46.65 26.95 - 106.05 0.16 0.001 - 0.256 0.001 - 0.595 78.93 41.92 - 66.89 30.2 - 79.1
T24 36.69 25.58 - 53.74 25.09 - 106.56 0.571 0.434 - 0.65 0.324 - 0.786 -56.81 29.74 - 54.44 26.7 - 74.62
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T25 52.7 26.39 - 38.22 17.91 - 54.26 0.388 0.0 - 0.218 0.0 - 0.59 22.11 0.13 - 38.98 0.13 - 69.38
T26 26.07 22.47 - 31.81 21.81 - 57.79 0.08 0.002 - 0.189 0.0 - 0.503 69.43 50.92 - 73.4 41.82 - 83.71
T27 34.14 19.19 - 35.06 17.78 - 54.61 0.056 0.058 - 0.318 0.0 - 0.485 39.95 33.84 - 56.03 29.38 - 73.32
T28 96.69 62.96 - 104.18 59.41 - 212.95 0.493 0.0 - 0.309 0.0 - 0.639 51.29 40.99 - 64.57 31.82 - 76.57
T29 19.17 13.58 - 21.82 13.0 - 41.53 0.215 0.172 - 0.354 0.09 - 0.599 -48.28 37.8 - 58.45 30.0 - 73.15
T30 10.13 9.98 - 15.55 9.95 - 28.86 0.604 0.466 - 0.748 0.278 - 0.798 18.0 0.01 - 9.04 0.01 - 32.42
T31 90.06 79.78 - 132.75 74.98 - 278.94 0.108 0.009 - 0.383 0.0 - 0.71 74.23 50.34 - 72.96 38.12 - 81.06
T32 66.58 17.97 - 42.95 17.16 - 82.37 0.01 0.24 - 0.644 0.011 - 0.632 22.88 22.55 - 48.18 17.47 - 68.97
T33 132.59 47.85 - 135.85 42.44 - 271.96 0.586 0.341 - 0.989 0.062 - 0.986 2.17 1.12 - 3.65 0.88 - 18.49
T34 14.29 8.37 - 17.98 8.16 - 39.21 0.336 0.572 - 0.911 0.081 - 0.922 -20.06 12.67 - 31.7 10.25 - 56.45
T35 45.56 22.51 - 59.12 22.04 - 263.74 0.554 0.285 - 0.951 0.034 - 0.949 7.24 2.56 - 12.34 1.56 - 32.4
T36 15.96 9.12 - 21.82 9.12 - 49.9 0.509 0.661 - 0.919 0.131 - 0.947 -18.37 11.17 - 32.32 8.06 - 57.22
T37 13.97 13.66 - 30.25 13.3 - 56.49 0.827 0.363 - 0.808 0.057 - 0.851 53.89 12.03 - 23.78 9.37 - 47.06
T38 73.75 63.78 - 115.17 56.49 - 213.81 0.253 0.016 - 0.359 0.001 - 0.626 55.0 34.65 - 55.68 27.14 - 70.68
T39 20.16 18.3 - 29.47 17.46 - 36.6 0.891 0.582 - 0.953 0.114 - 0.946 -42.62 12.9 - 36.68 12.4 - 65.16
T40 10.88 4.97 - 13.32 4.97 - 31.76 0.418 0.628 - 0.9 0.209 - 0.953 -14.37 6.08 - 26.5 5.06 - 56.68
T41 39.65 40.66 - 71.54 38.72 - 113.16 0.685 0.343 - 0.681 0.063 - 0.738 74.94 26.84 - 52.26 22.22 - 71.16
T42 36.81 N/A N/A 0.623 N/A N/A -15.53 N/A N/A
T43 19.26 12.27 - 25.82 11.78 - 38.1 0.336 0.648 - 0.981 0.154 - 0.983 9.46 6.76 - 26.36 6.1 - 56.15
T44 11.32 7.02 - 15.01 6.82 - 28.09 0.653 0.622 - 0.772 0.445 - 0.931 38.27 19.59 - 42.79 15.4 - 66.83
T45 30.31 20.85 - 48.21 18.99 - 73.78 0.239 0.003 - 0.461 0.002 - 0.799 -16.32 10.05 - 17.71 8.95 - 36.92
T46 22.15 N/A N/A 0.057 N/A N/A -2.21 N/A N/A
T47 49.73 33.39 - 78.23 25.5 - 161.98 0.619 0.286 - 0.728 0.036 - 0.832 34.73 19.75 - 35.71 14.86 - 54.98
T48 32.56 38.26 - 62.26 32.61 - 72.95 0.908 0.488 - 0.962 0.064 - 0.957 -42.38 10.58 - 26.54 9.8 - 53.86
T49 37.76 29.36 - 48.48 26.55 - 66.57 0.505 0.072 - 0.462 0.0 - 0.643 -58.6 36.25 - 57.22 30.54 - 72.33
T50 26.40 N/A N/A 0.693 N/A N/A 6.68 N/A N/A
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T51 12.48 8.31 - 18.27 7.89 - 29.89 0.204 0.0 - 0.369 0.0 - 0.755 -22.53 13.43 - 22.89 10.87 - 43.74
T52 19.43 9.71 - 15.56 9.71 - 31.5 0.591 0.375 - 0.62 0.312 - 0.788 6.14 0.05 - 17.91 0.0 - 54.55
T53 60.63 40.29 - 72.33 32.82 - 136.07 0.04 0.0 - 0.377 0.0 - 0.739 56.34 1.77 - 43.33 0.1 - 70.62
T54 15.38 6.48 - 15.95 6.33 - 29.37 0.338 0.03 - 0.437 0.007 - 0.609 30.47 20.26 - 42.52 16.67 - 62.93
T55 16.06 4.35 - 9.36 4.35 - 34.7 0.402 0.315 - 0.76 0.0 - 0.778 5.51 2.85 - 25.81 2.49 - 50.4
T56 55.82 N/A N/A 0.52 N/A N/A -0.02 N/A N/A
T57 16.55 18.0 - 30.66 16.35 - 38.44 0.576 0.0 - 0.382 0.0 - 0.616 64.88 27.99 - 43.8 26.02 - 64.16
T58 10.28 8.99 - 12.13 8.61 - 18.75 0.029 0.001 - 0.16 0.0 - 0.529 -48.93 31.26 - 56.95 24.25 - 72.84
T59 49.0 10.63 - 35.15 10.21 - 100.03 0.009 0.17 - 0.773 0.016 - 0.914 5.84 4.12 - 13.0 2.68 - 31.42
T60 24.84 13.08 - 32.63 12.56 - 61.05 0.628 0.6 - 0.803 0.58 - 0.891 40.37 32.0 - 62.49 23.26 - 78.19

Table B.4: Confidence intervals for all secondary stars obtained from each of the 60 test simulations. The
leftmost column shows the index used to refer to each system in the text. Column 2 shows the true values of
the semi-major axis for each system, followed by the 68% and 95% confidence intervals for a in columns 3 and
4 respectively. The eccentricity values and confidence intervals are stated in columns 5, 6, and 7, and this is
repeated for inclination in the final three columns. The inclination confidence ranges quoted in columns 9 and 10
represent the positive component of the bimodal inclination PDF, which is mirrored for negative values.
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No. a (au) 68% CI 95% CI e 68% CI 95% CI i (◦) 68% CI 95% CI

T1 307.43 142.53 - 1134.27 130.05 - 4428.81 0.191 0.037 - 0.518 0.0 - 0.786 3.48 1.13 - 3.63 0.69 - 4.67
T2 449.44 212.02 - 454.11 196.06 - 1223.45 0.685 0.017 - 0.441 0.001 - 0.768 -31.34 32.03 - 52.84 23.17 - 65.7
T3 281.55 142.53 - 270.5 126.41 - 833.42 0.233 0.003 - 0.38 0.001 - 0.787 31.07 29.5 - 42.73 21.52 - 49.26
T4 2810.28 144.5 - 3172.07 144.5 - 11482.51 0.427 0.012 - 0.466 0.001 - 0.775 -1.75 1.03 - 2.87 0.67 - 4.68
T5 966.47 N/A N/A 0.407 N/A N/A -4.38 N/A N/A
T6 775.23 241.97 - 501.88 221.61 - 2206.3 0.475 0.0 - 0.3 0.0 - 0.77 33.16 31.88 - 54.61 21.56 - 64.02
T7 160.68 94.93 - 1128.88 94.93 - 5380.13 0.089 0.052 - 0.549 0.001 - 0.772 -7.93 1.28 - 6.73 1.2 - 10.2
T8 152.88 144.01 - 330.86 137.41 - 1256.25 0.143 0.001 - 0.452 0.001 - 0.83 84.31 41.67 - 71.16 27.77 - 81.33
T9 1214.18 254.31 - 677.14 254.31 - 2329.24 0.764 0.281 - 0.728 0.201 - 0.918 -48.65 44.28 - 70.29 33.05 - 83.96
T10 739.0 180.62 - 871.68 146.34 - 3321.5 0.295 0.003 - 0.424 0.0 - 0.753 13.09 8.39 - 19.55 5.37 - 26.77
T11 184.35 41.88 - 279.1 41.39 - 1290.86 0.144 0.002 - 0.378 0.0 - 0.739 4.31 2.46 - 6.11 1.49 - 8.15
T12 564.54 233.94 - 1205.7 210.22 - 3627.63 0.534 0.003 - 0.407 0.0 - 0.7 16.24 7.87 - 17.34 5.25 - 21.07
T13 312.79 121.98 - 1221.88 121.98 - 3719.88 0.51 0.0 - 0.407 0.0 - 0.707 -10.43 2.5 - 9.33 2.41 - 13.57
T14 1340.77 89.0 - 1490.46 56.9 - 5597.44 0.551 0.006 - 0.397 0.006 - 0.719 2.29 1.4 - 3.37 0.92 - 5.79
T15 2954.16 325.75 - 1234.34 283.81 - 4280.81 0.781 0.0 - 0.331 0.001 - 0.716 14.34 12.67 - 23.9 8.82 - 29.76
T16 447.56 127.25 - 295.76 113.27 - 1175.51 0.569 0.001 - 0.378 0.0 - 0.781 27.34 29.63 - 52.07 17.08 - 65.5
T17 326.03 129.6 - 304.96 115.35 - 975.94 0.022 0.0 - 0.438 0.0 - 0.762 29.7 25.66 - 45.54 18.95 - 62.4
T18 3261.11 N/A N/A 0.827 N/A N/A 10.58 N/A N/A
T19 503.89 100.86 - 533.75 87.2 - 1769.81 0.101 0.001 - 0.406 0.001 - 0.734 -11.0 8.42 - 17.93 6.6 - 25.15
T20 323.87 319.23 - 842.11 300.95 - 1239.58 0.722 0.652 - 0.826 0.568 - 0.931 -56.96 49.62 - 76.24 27.74 - 84.17
T21 999.72 95.38 - 916.59 85.3 - 4839.42 0.423 0.0 - 0.491 0.0 - 0.777 -0.52 0.28 - 1.1 0.19 - 1.47
T22 731.07 157.46 - 810.67 114.5 - 2614.53 0.111 0.003 - 0.391 0.0 - 0.764 -2.55 2.02 - 4.08 1.28 - 5.41
T23 542.3 99.26 - 2012.21 88.87 - 7019.95 0.592 0.004 - 0.515 0.001 - 0.873 0.06 0.02 - 0.06 0.01 - 0.1
T24 650.33 161.22 - 1078.57 151.06 - 5853.04 0.167 0.0 - 0.405 0.0 - 0.786 -3.32 1.78 - 5.18 1.1 - 6.33
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T25 631.34 436.9 - 1036.83 384.34 - 3142.22 0.506 0.445 - 0.806 0.36 - 0.94 66.86 58.69 - 79.21 46.9 - 87.57
T26 259.49 151.28 - 375.38 134.46 - 1180.14 0.169 0.006 - 0.398 0.001 - 0.755 37.23 26.06 - 44.87 17.28 - 58.03
T27 198.49 123.98 - 604.1 113.34 - 2207.16 0.153 0.001 - 0.429 0.0 - 0.776 14.42 6.34 - 15.04 4.23 - 17.84
T28 1410.64 218.05 - 2034.61 218.05 - 5914.73 0.552 0.002 - 0.398 0.001 - 0.694 4.53 2.11 - 5.67 1.7 - 8.1
T29 210.73 67.89 - 326.67 67.89 - 1056.93 0.406 0.018 - 0.404 0.002 - 0.737 4.69 3.19 - 6.56 1.96 - 7.42
T30 221.79 68.53 - 306.61 50.78 - 1040.14 0.067 0.007 - 0.413 0.0 - 0.716 4.66 3.21 - 6.66 2.25 - 8.86
T31 2631.42 294.05 - 2242.33 261.58 - 4322.39 0.8 0.004 - 0.418 0.001 - 0.73 2.72 2.18 - 4.93 1.78 - 7.02
T32 330.66 95.92 - 542.26 85.25 - 1627.94 0.055 0.0 - 0.382 0.0 - 0.713 -9.77 5.31 - 13.23 4.23 - 18.05
T33 2393.09 497.59 - 1677.71 349.87 - 7181.45 0.387 0.001 - 0.408 0.001 - 0.792 -2.75 2.43 - 4.45 1.48 - 5.78
T34 323.11 180.63 - 380.3 176.68 - 1316.13 0.291 0.001 - 0.506 0.0 - 0.856 51.55 44.04 - 73.0 33.73 - 84.96
T35 401.5 142.55 - 2174.11 142.55 - 6032.9 0.089 0.092 - 0.543 0.003 - 0.731 1.99 0.54 - 1.77 0.47 - 2.85
T36 441.57 154.28 - 470.27 140.23 - 1509.59 0.148 0.011 - 0.476 0.007 - 0.778 -26.47 20.49 - 41.84 12.37 - 58.55
T37 446.54 170.49 - 370.64 170.49 - 1433.89 0.669 0.003 - 0.412 0.0 - 0.808 -43.66 29.89 - 50.26 22.69 - 67.8
T38 1883.76 334.21 - 1834.25 145.04 - 6874.01 0.091 0.014 - 0.418 0.001 - 0.763 2.7 2.09 - 4.41 1.5 - 6.36
T39 2928.27 82.27 - 167.68 76.78 - 614.99 0.936 0.0 - 0.31 0.0 - 0.748 -25.89 35.6 - 60.61 25.23 - 71.25
T40 163.31 84.56 - 181.41 74.61 - 592.51 0.175 0.002 - 0.382 0.0 - 0.776 41.63 33.47 - 60.1 23.12 - 73.12
T41 561.59 173.21 - 493.29 156.18 - 1840.18 0.43 0.0 - 0.307 0.0 - 0.716 23.09 19.41 - 34.16 13.83 - 42.32
T42 931.13 N/A N/A 0.278 N/A N/A -0.88 N/A N/A
T43 978.81 175.17 - 468.35 162.16 - 1422.4 0.849 0.347 - 0.758 0.252 - 0.925 54.94 46.35 - 70.27 37.11 - 80.91
T44 386.32 44.11 - 340.02 43.37 - 1603.0 0.62 0.009 - 0.44 0.005 - 0.769 -4.3 2.81 - 7.83 1.57 - 9.49
T45 346.54 220.41 - 430.02 200.53 - 1645.86 0.295 0.001 - 0.39 0.001 - 0.82 -49.61 37.76 - 63.05 27.53 - 74.89
T46 342.54 N/A N/A 0.616 N/A N/A -0.54 N/A N/A
T47 889.1 185.94 - 1646.33 123.53 - 6180.94 0.164 0.0 - 0.415 0.0 - 0.733 -1.05 0.45 - 1.37 0.34 - 1.99
T48 1246.48 405.77 - 1138.46 375.42 - 3208.68 0.732 0.504 - 0.839 0.384 - 0.93 54.01 49.69 - 73.07 35.96 - 81.97
T49 1208.03 160.76 - 317.1 141.8 - 955.48 0.662 0.002 - 0.307 0.001 - 0.673 -20.34 30.38 - 46.88 20.91 - 52.71
T50 371.46 N/A N/A 0.028 N/A N/A 3.97 N/A N/A
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T51 175.11 91.58 - 247.73 85.02 - 1057.65 0.157 0.004 - 0.414 0.0 - 0.781 8.32 6.29 - 10.49 3.36 - 12.19
T52 369.72 170.34 - 502.27 169.49 - 1501.13 0.495 0.275 - 0.753 0.121 - 0.91 -57.52 42.71 - 70.78 29.27 - 80.62
T53 1064.8 455.03 - 1435.2 345.38 - 4432.84 0.126 0.027 - 0.445 0.0 - 0.748 -4.71 3.44 - 6.33 2.48 - 8.28
T54 228.55 47.14 - 219.22 43.49 - 838.89 0.496 0.012 - 0.417 0.003 - 0.781 -14.4 10.88 - 22.44 8.28 - 31.92
T55 137.27 73.3 - 206.6 68.28 - 737.78 0.115 0.033 - 0.427 0.001 - 0.746 -39.08 25.2 - 46.64 16.54 - 66.7
T56 2146.54 N/A N/A 0.794 N/A N/A -11.52 N/A N/A
T57 160.44 108.47 - 210.06 97.8 - 760.71 0.192 0.001 - 0.383 0.0 - 0.79 -56.37 45.07 - 74.28 31.16 - 82.06
T58 124.99 63.02 - 127.16 57.63 - 342.54 0.59 0.004 - 0.381 0.001 - 0.737 -41.87 28.26 - 43.92 21.57 - 55.59
T59 218.63 53.42 - 654.95 39.34 - 2568.54 0.074 0.0 - 0.428 0.0 - 0.726 -0.83 0.27 - 0.95 0.2 - 1.46
T60 369.97 166.72 - 411.59 149.71 - 1279.84 0.488 0.001 - 0.42 0.0 - 0.765 -28.85 23.38 - 38.84 13.19 - 47.25

Table B.5: Confidence intervals for all tertiary stars obtained from each of the 60 test simulations. See table
B.4.





“ It’s a weird feeling, scientific breakthroughs.
There’s no Eureka moment. Just a slow, steady
progression towards a goal. But man, when you

get to that goal, it feels good.”
— Andy Weir, Project Hail Mary
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