
Safety-Aware, Timing-Predictable
and Resource-Efficient Scheduling

for Autonomous Systems

Jie Zou

Doctor of Philosophy

University of York

Computer Science

March 2023

2

Abstract

Advanced driver-assistance (ADAS) and semi-autonomous systems represent
the major computing demands for road vehicles, which are complex and safety-
critical with strict real-time and resource constraints. With an awareness
of the criticality requirements of the functions, this thesis focuses on de-
signing shared resource scheduling methods to ensure that systems comply
with criticality-related timing constraints and which improve their resilience
through highly efficient resource utilisation. First, a novel graceful degrada-
tion strategy is proposed for mixed-criticality contexts based on understanding
task dependency from a functional perspective to handle uncertainties (e.g.,
timing faults) raised by conflicts for shared resources. Incorporating multiple
operational modes and causality analysis-based graceful degradation, it effec-
tively manages uncertainties and conflicts, outperforming existing methods
and maximizing system-wide functional Quality of Service (QoS). Second, a
novel consistent mixed-criticality multi-core task static scheduling method is
developed to replace the multi-system modes multi-schedules method, which
can lead to unnecessary task discarding and pose challenges during system crit-
icality mode changes. The proposed approach introduces criticality-informed
temporal isolation, enables and simplifies task-level mode changes and signifi-
cantly enhances the system’s resilience and the survivability of tasks, resulting
in remarkable improvements in overall system performance and outperforms
state-of-the-art approaches. Finally, the work is extended from the task-level
to the network-level mixed-criticality data transmission. The proposed in-
vehicle network scheduling method substantially improves system resilience by
tolerating timing faults of safety-critical traffic. In addition, the introduced
server-based method enhances bandwidth utilisation efficiency and reduces re-
source waste, further contributing to the overall system improvement.In sum-
mary, this thesis contributes to the resilient and efficient scheduling of shared
resources in mixed-criticality systems at both the task and network levels.

3

4

Contents

Abstract 3

List of Figures 10

List of Tables 11

Abbreviations 15

Acknowledgements 17

Declaration 20

1 Introduction 21

1.1 The Complexity of Autonomous Systems 23

1.2 The Complexity of Timing Requirements 25

1.3 Research Hypothesis and Objectives 29

1.4 Thesis Organisation . 31

2 Background and Literature Review 33

2.1 Complexity of Autonomous Systems 34

2.2 Timing Predictability . 39

2.3 Real-Time Scheduling . 41

2.4 Mixed Critically Systems . 49

2.5 Single Processor Analysis for MCS 50

2.6 Multicore Scheduling and Analysis for MCS 55

2.7 Survivability and Graceful Degradation 58

2.8 Network Bandwidth Scheduling 60

2.9 Summary . 65

5

3 Context- and Causality-aware Graceful Degradation for Mixed-
Criticality Scheduling 67
3.1 Introduction . 68
3.2 Method Overview . 71
3.3 Formulation of Importance Ordering 81
3.4 Formulation of Graceful Degradation 87
3.5 Evaluation . 93
3.6 Summary . 103

4 Resilience-aware Multi-core Mixed-criticality Consistent DAG
Scheduling 105
4.1 Introduction . 106
4.2 Method Overview . 108
4.3 Consistent Schedule Formulation 121
4.4 Evaluation . 137
4.5 Summary . 149

5 Resilient and Efficient Time-Sensitive Network 151
5.1 Introduction . 152
5.2 Method Overview . 155
5.3 reTSN Formulation . 164
5.4 Evaluation . 172
5.5 Summary . 186

6 Conclusions and Future Work 187
6.1 Contributions . 189
6.2 Limitations and Constraints . 191
6.3 Future Work . 193

Bibliography 197

List of Figures

1.1 The sensing system of an autonomous car [105]. 21

1.2 The hardware architecture for an autonomous vehicle based on
zone architectures and advanced processing system [60]. 24

1.3 Processing graph of an autonomous driving system with task
frequencies [66]. 26

2.1 Information flow in an autonomous vehicle [110]. 34

2.2 The overview of Cartographer LiDAR Simultaneous Localisa-
tion and Mapping SLAM algorithm [68]. 35

2.3 The Vehicle System Domain Architecture [60]. 37

2.4 Typical multi-core platform. 37

2.5 Breakdown Utilisation [47] . 48

2.6 The released jobs of task τk in the busy period of length Rs
i . . . 54

2.7 Example of streams in a typical autonomous driving system [83]. 61

2.8 The simplified architecture of in-vehicle network [113]. 62

2.9 Overview of a TSN switch [114]. 64

3.1 AAIP mobile robot end-to-end pipeline. 73

3.2 The example of a system represented by a Bayesian network. . 83

3.3 The conditional probability table of the system. 85

3.4 The updated tables of τ1, τ4 and τ5. 86

3.5 The example of τ4 sum-product based elimination. 87

3.6 The EU value and remaining LO tasks at each task dropping
point of a specific graph. (with Util = 0.7, 3 applications, 18
tasks, of which 6 are LO criticality tasks) 95

3.7 The proportion of systems with higher EU value under Util =
0.6 (10 randomized graph structures and 30 CPD tests for each
bar) . 97

7

3.8 The distribution of EU value difference of improved system . . 98
3.9 The proportion of systems with improved survivability under

Util = 0.6 (10 randomized graph structures and 30 CPD tests
for each bar) . 98

3.10 The distribution of survived percentage difference of improved
system . 99

3.11 The proportion of systems with higher EU value under Util =
0.9 (10 randomized graph structures and 30 CPD tests for each
bar) . 99

3.12 The distribution of EU value difference of improved system un-
der Util = 0.9 . 100

3.13 The proportion of systems with improved survivability under
Util = 0.9 (10 randomized graph structures and 30 CPD tests
for each bar) . 100

3.14 The distribution of survived percentage difference of improved
system under Util = 0.9 . 101

3.15 Experiment results for the proportion of systems with higher
EU value under varied Util from 0.3 to 0.9 (each bar consists of
300 trials) . 101

3.16 Experiment results for the distribution of EU value difference
of improved system under varied Util from 0.3 to 0.9 102

3.17 Experiment results for the proportion of systems with improved
survivability under varied Util from 0.3 to 0.9 102

3.18 Experiment results for the distribution of survived percentage
difference of improved system under varied Util from 0.3 to 0.9 103

4.1 The proposed system-level scheduling architecture 110
4.2 Simplified example of a dual-criticality system 111
4.3 Example of LO-criticality task segmentation in a dual-criticality

system . 113
4.4 Example of HI-mode schedule with degraded LO-criticality

task in dual-criticality system 113
4.5 Static schedules example for multi-criticality system [93] 116
4.6 An illustrative example of a mixed schedule 118
4.7 Selected task scheduling flowchart 119
4.8 Mixed-criticality DAGs example from a dual-criticality system 121
4.9 Initialisation and update of waiting queue 121

8

LIST OF FIGURES

4.10 Task allocation on mixed schedule 125

4.11 Example of task scheduling calculation in a triple-criticality sys-
tem . 129

4.12 The consistent schedule example for a dual-criticality system . 136

4.13 The consistent schedule example when all HI tasks overrun . . 136

4.14 The structure of object detection function 138

4.15 The schedulability of systems against normalised utilisation (g2,
g3, and g4 represent systems comprised of 2, 3, and 4 DAG
applications, respectively.) . 142

4.16 The normalised preemption rate of systems against normalised
utilisation . 143

4.17 The normalised migration rate of systems against normalized
utilisation . 144

4.18 The survival proportion of LO tasks in systems with Uti=0.3 . 145

4.19 The discarded proportion of LO tasks in systems with Uti=0.3 145

4.20 The survival proportion of LO tasks in systems with Uti=0.6 . 146

4.21 The discarded proportion of LO tasks in systems with Uti=0.6 146

4.22 The survival proportion of LO tasks in systems with Uti=0.9 . 147

4.23 The discarded proportion of LO tasks in systems with Uti=0.9 147

5.1 TSN-based in-vehicle network architecture 153

5.2 Temporal fault caused by a delayed traffic frame 155

5.3 Frame transmission using a credit-based shaper [25] 156

5.4 The conventional AVB TSN switch 158

5.5 The constant bandwidth server based TSN switch 160

5.6 Example of multi Class A frames transmission (Tser = 23,
Cser = 8, iSa = 0.375, sSa = −0.625) 163

5.7 Example of Delayed ST frame transmission 166

5.8 The number of delayed frames successfully handled by the pro-
posed and conventional methods 174

5.9 The finish time of event-triggered frames from Class A and Class
B with Up = 0.3 (index starts from 1) 176

5.10 The finish time of event-triggered frames from Class A and Class
B with Up = 0.5 (index starts from 1) 177

5.11 The finish time of event-triggered frames from Class A and Class
B with Up = 0.6 (index starts from 1) 179

9

5.12 The finish time of event-triggered frames from Class A and Class
B with Up = 0.8 (index starts from 1) 180

5.13 The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.3 182

5.14 The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.5 183

5.15 The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.6 184

5.16 The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.8 185

10

List of Tables

4.1 Time consumed by YOLOv5s and points nodes in different sce-
narios. 138

4.2 Time consumed by YOLOv5s node restoration from different
initial states. 140

4.3 The performance of proposed mccs-dag scheduling strategy com-
pared with the lsai-edf method. 148

5.1 The finish time variation of event-triggered frames without de-
layed ST frames . 172

5.2 The variation in the finish time of delayed ST frames 173
5.3 The finish time variation of event-triggered frames with delayed

ST frames . 181

11

12

List of Abbreviations

AI Artificial Intelligence

ML Machine Learning

ECU Electronic Control Units

AV Autonomous Vehicles

AD Autonomous Driving

ADAS Advanced Driver Assistance Systems

OTA Over-The-Air

E/E Electric/Electronic

RA Risk Assessment

SILs Safety Integrity Levels

ASILs Automotive Safety Integrity Levels

EDF Earliest Deadline First

G-EDF Global Earliest Deadline First

EDF-VD Earliest Deadline First with Virtual Deadlines

FPS Fixed-Priority Scheduling

QoS Quality-of-Service

RTA Response Time Analysis

RTS Real-Time Systems

MCS Mixed Critically System

13

WCET Worst-Case Execution Time

DAG Directed Acyclic Graph

SLAM Simultaneous Localisation And Mapping

vSLAM Visual-based Simultaneous Localisation And Mapping

VIO Visual Inertial Odometry

MIT Minimum Inter-arrival Time

ETS Execution-Time Server

TBS Total Bandwidth Server

CBS Constant Bandwidth Server

OPA Optimal Priority Assignment

FPPS Fixed-Priority Preemptive Scheduling

DMPO Deadline-Monotonic Priority Ordering

OPA-MLD Optimal Priority Assignment Minimising Lexicographical
Distance

SMC Static Mixed Criticality

AMC Adaptive Mixed Criticality

ST Safety-critical Traffic

AVB Audio-Video-Bridging

CAN Controller Area Network

TSN Time-Sensitive Network

IVN In-Vehicle Network

PCP Priority Code Point

TAS Time-Aware Shaper

GCL Gate Control List

GS Gate State

14

LIST OF TABLES

FIFO First-In-First-Out

SMT Satisfiability Modulo Theorie

BBN Bayesian Belief Network

CPT Conditional Probability Table

EU Expected Utility

NoC Network-on-Chip

SPM Scratchpad Memory

SRAM Static Random Access Memory

ROS Robot Operating System

15

16

Acknowledgements

Foremost, I would like to profoundly express my deepest gratitude to my
supervisors, Prof. John McDermid and Dr. Xiaotian Dai, for their unwavering
support, expertise, and patience throughout my PhD study. Their invaluable
guidance, constructive feedback, and enthusiasm for my research have been
instrumental in shaping this thesis and inspiring me to find the field of study
to which I want to devote my whole life. I feel incredibly fortunate to have
had the opportunity to learn from and work with such knowledgeable and
dedicated supervisors. Without their encouragement and understanding, this
accomplishment would not have been possible.

I would also like to express my appreciation to my internal assessors, Dr.
Rob Alexander and Prof. Iain Bate, for their insightful comments and sugges-
tions that greatly enhanced the quality of my work. I would like to thank my
friends and colleagues who have supported me in various ways during this jour-
ney, including but not limited to Dr. Richard Hawkins, Dr. Victoria Hodge,
Matt Osborne, Gricel Vazquez, Dr. Xinwei Fang, Mrs. Chrysle Hudson and
James Hidler.

To my amazing husband, Dr Hao Sun. Your understanding, patience, and
encouragement have been essential. Thank you for always believing in me,
even when I doubted myself, and for being my sounding board, my cheerleader,
and my best friend.

Finally, my heartfelt gratitude goes out to my parents, Ying Huang and
Yuanping Zou, for their unconditional love, support, and patience throughout
this challenging process. Your unwavering encouragement and companionship
have been the solid foundation upon which I have built my academic and
personal pursuits.

17

18

Declaration

I declare that this thesis is a presentation of original work, and I am the
sole author. Certain parts of the material presented within this thesis have
appeared in published and submitted papers, journals and reports, viz:

• Jie Zou, Xiaotian Dai, John A. McDermid, “Resilience-aware Mixed-criticality
DAG Scheduling on Multi-cores for Autonomous Systems”, in International
Conference on Reliable Software Technologies. 2022.

• Jie Zou, Xiaotian Dai, John A. McDermid, “reTSN: Resilient and Efficient
Time-Sensitive Network for Automotive In-Vehicle Communication”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems. 2022.

• Jie Zou, Xiaotian Dai, John A. McDermid, “Graceful Degradation with
Condition- and Inference-awareness for Mixed-Criticality Scheduling in Au-
tonomous Systems”, The 2nd Real-time and Intelligent Edge Computing
Workshop. 2023.

• Jie Zou, Xiaotian Dai, John A. McDermid, “Causality- and Context-aware
Graceful Degradation for Mixed-Criticality Scheduling in Autonomous Sys-
tems”, submitted to IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (R2).

• Jie Zou, Xiaotian Dai, John A. McDermid, “Resilience-aware Consistent
Mixed-Criticality DAG Scheduling on Multi-cores for Autonomous Systems”,
submitted to ACM Transactions on Cyber-Physical Systems (R1).

• Jie Zou, “AAIP Robot Object Detection Safety Case and Tasks Execution
Control”, AAIP-internal Technical Report, Department of Computer Sci-
ence, University of York, 2022.

19

This work has not previously been presented for an award at this or any other
university. All sources are acknowledged as references.

20

Chapter 1

Introduction

In the last decade, the development of sensors, computational hardware plat-
forms, and advanced algorithms such as artificial intelligence (AI) and machine
learning (ML) has significantly increased the automation level of systems.
Specifically, these advancements have enabled automated systems to operate
in complex and dynamic environments while ensuring safety and efficiency with
minimal human intervention. Figure 1.1 illustrates modern autonomous sys-
tems that connect various sensors installed in different regions. Despite these
developments, there have been several reports of fatal accidents involving au-
tonomous vehicles. The report [34] summarised the challenges of assuring the
safety of highly automated systems operating in complex environments. Evi-
dently, we are still facing significant challenges in autonomous systems before
they can provide real safety benefits to society.

Short-Range Radar

Long-Range Radar

Figure 1.1: The sensing system of an autonomous car [105].

21

Functional safety processes and procedures are used to both ensure and
assure that a system can be designed and implemented to perform safely,
minimising the risk of harm to people, the environment, and property [90].
However, solely adhering to functional requirements is inadequate to ensure
the safety of a system in terms of “correctness”. Functional requirements pri-
marily address questions such as "What should the system do?" and emphasise
the system’s behavior and capabilities. These requirements are crucial for sys-
tem design, development, and testing, they are typically specific, measurable,
and verifiable, but they are not sufficient to ensure safety. One of the main
challenges in designing autonomous systems is addressing the non-functional
requirements, which define how well a system must perform in terms of quality
attributes, such as reliability, real-time performance, scalability, and security,
to ensure safe and effective operation [62]. We take object detection as an
example. Suppose the non-functional requirement of real-time performance is
not met, caused by a delay in object detection, the functional requirement of
collision avoidance could be impacted, resulting in a life-threatening accident.
On the other hand, a failure in object detection can lead the system to per-
form extensive computation due to fault handling, which may cause a delay
in the system’s response and can impact the system’s real-time performance,
thus affecting its ability to meet the non-functional requirements. Thus, it is
clear that it is crucial to simultaneously consider functional and non-functional
requirements when designing and developing safety-critical systems.

With the exponentially increasing number of functions and system com-
plexity level, research in functional domains has received considerable atten-
tion and made notable progress. Meanwhile, with the limitation of hardware
resources, the increasing number of computationally intensive tasks and data
with higher bandwidth requirements, we are also facing challenges in efficiently
allocating system resources such as CPU time, memory, and power to ensure
that the system operates reliably and meets its non-functional requirements.
As the motivating example illustrates, autonomous systems’ functions need
temporal correctness. As P. Graydon et al emphasise in [63], the safety re-
quirements for the timing of systems, which is directly related to real-time
performance from non-functional requirements, and is a critical concern in
the Real-Time Systems (RTS) research community as RTS have stringent re-
quirements for operations to take place within specific timing constraints [33].
However, there is a gap between functional and non-functional domains. In

22

CHAPTER 1. INTRODUCTION

recent years, there has been an increasing trend of incorporating functional-
related factors into work in the non-functional domain. However, these efforts
often only consider simplistic uncertainties as metrics for scheduling design.
For example, determining the execution order of various object detection al-
gorithms to minimize latency and false positive rates [4]. Simple uncertainties
may not adequately capture the full range of factors contributing to system
performance, reliability, and safety. Therefore, it is vital to propose novel
task scheduling strategies to handle the uncertainties raised by computational
platforms with an awareness of the wider range of functional requirements.

It can be seen that scheduling is a crucial research consideration that in-
cludes scheduling algorithms, resource-sharing protocols and analytical meth-
ods [35]. This thesis is situated in the non-functional domain and focuses
on efficiently scheduling system resources to improve the system’s resilience
against timing faults and Quality of Service (QoS) while maintaining safety
and timeliness. The shared resources considered in this thesis are processing
resources for task execution and bandwidth resources for data transmission
because missing deadlines can be caused by tasks not completing their execu-
tion in a timely manner or the processing node not being able to receive the
required data on time. Therefore, scheduling strategies need to be designed
separately for task execution and traffic transmission to provide a comprehen-
sive solution to tackle timing uncertainties.

1.1 The Complexity of Autonomous Systems

In a vehicle, the software runs on embedded hardware platforms known as Elec-
tronic Control Units (ECUs). Integrating new functions such as autonomous
driving (AD) and advanced driver assistance systems (ADAS) has led to many
vehicles having more than 100 Electronic Control Units (ECUs) with increased
weight and cost [5]. As a result, the traditional domain architecture is expected
to be replaced by a new generation of zone architectures that integrate differ-
ent domains even further, which offers benefits such as new forms of vehicle
control that were difficult to implement with independent domains, vehicle
diagnosis based on combined information, and efficient Over-The-Air (OTA)
software updates.

Figure 1.2 illustrates the architecture, which includes integrated ECUs
running software for multiple domains and zone ECUs that gather information

23

Figure 1.2: The hardware architecture for an autonomous vehicle based on
zone architectures and advanced processing system [60].

24

CHAPTER 1. INTRODUCTION

from different regions of the vehicle, regardless of the domain (e.g., front or
rear, left or right). This cross-domain integration of ECUs is anticipated to
reduce the cost of the electric/electronic (E/E) architecture. However, this
brings new challenges.

• To support the execution of advanced algorithms, various state-of-the-art
computing platforms, including conventional multi-core CPU systems,
GPUs, FPGAs, and ASICs, are integrated into ECUs, which need to
simultaneously host multiple functions with varying functional and non-
functional safety requirements.

• Similarly, since the information collected by zone ECUs combines all
domains, a higher-bandwidth Ethernet backbone network with better
timing control than previous architectures is necessary.

Addressing these challenges requires careful consideration of system ar-
chitecture, resource allocation, fault detection and handling mechanisms, and
adaptability to changing conditions. Resource scheduling strategies which
recognise these considerations can improve system resilience. However, limited
resources still pose challenges, especially for complex systems with functional
dependencies and criticality requirements. Further, software in autonomous
systems must meet timing-related safety requirements in any operational con-
dition.

1.2 The Complexity of Timing Requirements

From the real-time perspective , autonomous systems are safety-critical with
strict real-time and resource constraints. The deep processing pipeline of an
autonomous driving system has end-to-end time constraints. Figure 1.3 shows
a simplified example of a processing graph for an autonomous driving system
with frequency information. In practice, more components can be included
based on the backbone shown in the figure. The system consumes raw sensing
data from mmWave radars, LiDARs, cameras, and GNSS/IMUs, with each
sensor producing raw data at a different frequency. The processing components
are invoked at different frequencies, performing computations using the latest
input data and periodically producing outputs to downstream components
[66]. The computation components (tasks) are deployed on integrated ECUs.
The problem to be solved is to develop scheduling strategies and analysis

25

techniques to ensure that the system satisfies all timing constraints. The final
control command can be executed correctly, and in a timely manner, when
each component complies with timing constraints.

Figure 1.3: Processing graph of an autonomous driving system with task
frequencies [66].

1.2.1 Complexity Introduced by Criticality Awareness

As systems with critical safety implications, their failure could have unaccept-
able consequences such as loss of life or significant financial damage [109]. It
is impossible to prove the safety of such complex systems entirely. However,
adhering to safety standards such as ISO 26262 [2] can assist in reducing the
risk and mitigating the effects of system failure. These standards introduce
Safety Integrity Levels (SILs) such as the Automotive Safety Integrity Levels
(ASILs) A-D for ISO 26262. Identifying (A)SILs are defined as a result of
conducting hazard and risk assessments. However, higher SILs can lead to
substantial increases in development costs and more pessimistic system as-
sumptions. Usually, safety-critical systems with multiple components require
verification at the highest safety assurance level, which can lead to high costs
and resource under-utilisation [31,55]. For example, the worst-case execution
time (WCET) of a task is a critical system parameter and is estimated based
on the criticality level of the task. For the same code, if the task is defined
as safety-critical, it requires a higher level of assurance, resulting in a higher
WCET than it would if it is only considered to be mission-critical or non-
critical [31]. This property significantly modifies/undermines many standard

26

CHAPTER 1. INTRODUCTION

scheduling results. Because of requirements relating to cost, space, weight,
heat generation and power consumption, a growing trend in real-time and em-
bedded systems is integrating components with different levels of criticality
within the same system, referred to as Mixed-Criticality Systems (MCSs) [31].
In this context, the fundamental research question underlying these initiatives
and standards is: how to reconcile the conflicting requirements of partitioning
for (safety) assurance and sharing for efficient resource usage.

The motivation for incorporating criticality into resource scheduling is to
improve the safety and reliability of autonomous systems. It is undeniable
that although pessimistic estimates are inevitably introduced, in the design
of scheduling strategies, considering criticality levels can prioritise allocating
resources to ensure that critical tasks obtain sufficient resources to meet their
requirements and deadlines. However, the actual execution behavior at run-
time may not follow the worst-case scenario, and this could lead to severe
resource waste because the time allocated to tasks is defined based on their
criticality-dependent worst-case estimation. Therefore, we must find methods
to reduce waste and utilise resources effectively to provide more flexibility to
the system. This, in turn, gives rise to challenges in scheduling which are the
focus of this thesis.

1.2.2 Complexity Introduced by Resilience Requirements

Resilience is essential for resource scheduling in autonomous systems. Dy-
namic and unpredictable environments can introduce uncertainties, such as
system component failures with various causes, including hardware faults,
software bugs, or external interference. Well-designed scheduling strategies
should enable the system to handle uncertainties quickly, recover from unex-
pected events or failures, and continue operating safely. ISO 26262 includes
time-related requirements, explicitly recommending monitoring execution time
to detect overruns. However, it makes no connection between the quality of
timing analysis and how overruns are handled [63].

Ensuring that the system can continue to operate safely and efficiently in
the face of timing faults is extremely important, and that requires resilience.
A resilient schedule can be achieved by allocating resources to different tasks
of the system based on their criticality level so that, in the event of a failure,
the more critical tasks are given priority over the less critical ones. For ex-
ample, consider a complex system comprising multiple CPUs responsible for

27

executing various functions. Each CPU is assigned a set of tasks, with varying
criticality levels. In the event of a CPU failure, a backup solution can employ
a resource allocation strategy to prioritize the more critical tasks over the less
critical ones. A resilient schedule may involve adjusting scheduling priorities
or task assignments. This allows for the dynamic reallocation of the remaining
available CPU resources to critical tasks, even if those resources were initially
responsible for executing non-critical tasks. By redistributing the workload,
the system can continue to operate safely even in a degraded mode, where
noncritical tasks are temporarily disabled until the fault can be resolved. How-
ever, traditional system mode change drops tasks indiscriminately, leading to
resource waste and a significant reduction in quality of service (QoS). The
wasted resources should be allocated to tasks that can maintain the system’s
QoS. Thus, the research problem can be viewed as improving the system’s
resilience while maximising the survivability of each task.

1.2.3 Complexity Introduced by Multiple Operational Modes

Driven by the need for resilience, there is a need to design a system that can
be run in different criticality modes (e.g., safety-critical, mission-critical, and
non-critical). In each mode, the tasks that must be guaranteed can be defined
in terms of assigned criticality, and the scheduling policies should ensure that
tasks meet their timing requirements. This implies that operational mode
transitions would change the schedule. It is necessary to guarantee safety
during mode change. However, lack of flexibility increases the difficulty of
preserving safety and “cost” of the system mode switch may increase. Switch-
ing between modes often necessitates the allocation or deallocation of specific
resources, such as memory, processing power, or network bandwidth. This
reallocation of resources can introduce overhead and potentially impact the
overall efficiency and utilisation of the system. These challenges motivate us
to find a more flexible scheduling strategy to ease mode changes whilst ensur-
ing safely and maximising QoS.

Additionally, the operational environment can be highly dynamic and un-
predictable, affecting resource availability and QoS. That means that the sys-
tem can exhibit multiple operational modes depending on the environment
or operational task. By incorporating environment awareness into resource
scheduling strategies, the system can adjust the allocation of resources to re-
spond to changes in the environment and ensure that critical tasks can finish

28

CHAPTER 1. INTRODUCTION

their execution on time. In that way, the system’s adaptability and resilence
can be improved. For example, for an ADAS, the system can adaptively al-
locate computing resources to different tasks based on the traffic conditions
and the complexity of the road scene. When driving in heavy traffic or a com-
plex urban environment, the system may need to allocate more computing
resources to perception and planning tasks to ensure the vehicle can navigate
safely and avoid collisions. On the other hand, in less challenging driving
conditions, the system can allocate more resources to other tasks to improve
the QoS. For instance, it can optimise the planned trajectory to improve ride
comfort and fuel economy.

1.2.4 Summary

To summarise, as a mixed-criticality, safety-critical system, the resource schedul-
ing for autonomous systems must be designed carefully to satisfy stringent
timing requirements. Resource usage should be able to guarantee the execu-
tion of safety-critical tasks. Meanwhile, the system should remain resilient to
ensure that autonomous systems can continue operating safely and effectively,
despite disruptions, environmental changes or failures. These challenges mo-
tivate our research to design time-predictable and resource-efficient adaptive
scheduling for autonomous systems to satisfy non-functional timing and safety
requirements and to improve the resilience of systems.

1.3 Research Hypothesis and Objectives

The research is focused on designing a comprehensive resource scheduling
strategy motivated by the non-functional safety requirements of autonomous
systems, especially timing requirements, from the real-time performance per-
spective. To guarantee the temporal correctness of functions, the resources,
including the processing unit and network bandwidth resource must be man-
aged. Dealing with processing units is necessary to guarantee that tasks can
finish their execution within deadlines, and handling network resources is nec-
essary to guarantee that data can be received so that related processing can
start on time.

Against this background, the hypothesis of this PhD is:

“A suitable resources scheduling strategy can dramatically improve the resilience

29

of safety-critical systems and achieve higher resource utilisation and system
utility, even in the face of timing faults and operational mode changes."

To demonstrate improvement in resilience, the evaluation needs to show
that, compared with traditional methods, the designed scheduling methods
can tolerate timing faults raised from task execution and data transmission
with higher efficiency even in a high workload situation. The methods we
develop in this thesis are sensitive to the operational mode and survivabil-
ity. As we will show, they can effectively adapt the scheduling strategy to
achieve higher resource utilisation and system utility while ensuring that all
components comply with both functional and temporal correctness.

The hypothesis is based on understanding the challenges of designing
safe, time-critical, mixed-criticality adaptive autonomous systems through the
scheduling of system resources. The main contribution of this thesis is three-
fold:

1. Enhance the system’s capability to handle timing faults of tasks with dif-
ferent criticality levels while taking into account system-wide function-
ality and employing causality analysis concepts to minimise the impact
on the system’s quality of service.

2. Enhance the system’s ability to provide a deterministic task schedule by
considering task precedence constraints and criticality-dependent timing
requirements. The elimination of system mode changes and effective
task-level degradation when facing timing faults improves the system’s
resilience and the survivability of tasks in any system mode.

3. Strengthen the resilience and efficiency of in-vehicle networks to guaran-
tee the transmission of safety-critical traffic and address timing faults,
while also considering the efficient utilisation of remaining bandwidth
resources for non-safety-critical traffic transmission.

Contributions 1 and 2 tackle mixed-criticality scheduling problems at the
task level to ensure that tasks are executed complying with criticality-dependent
timing requirements when facing overrun of safety-critical tasks. We then ex-
tend the research on resource scheduling to the network level (Contribution 3)
to enhance the resilience of data transmission while achieving highly efficient
bandwidth utilisation. In this thesis, we extensively use simulation to evaluate
our methods as:

30

CHAPTER 1. INTRODUCTION

• Using synthetic task sets allows us to test algorithms under controlled
conditions, where we can manipulate task parameters and workload to
evaluate performance across a wide range of scenarios. This is often not
feasible in a real-world environment.

• Synthetic task sets can help us to compare the performance of different
scheduling algorithms. By evaluating multiple scheduling algorithms
on the same synthetic task set, the strengths and weaknesses of each
algorithm can be identified, and the designer can choose the best one for
a particular use case.

• Using synthetic task sets to evaluate scheduling algorithms allows us to
obtain reliable and repeatable results that can be statistically analysed,
which is important to demonstrate the feasibility and generalisability of
the proposed scheduling methods.

1.4 Thesis Organisation

This chapter has presented a general introduction to the background to, and
the focus of, this thesis. The remaining contents of this thesis are organised
as follows:

• Chapter 2: Background and Literature Review. This chapter
introduces the background to the work. The complexity of autonomous
systems will be discussed from both software and hardware perspectives.
An overview of real-time scheduling methods for complex embedded
systems is provided, including timing predictability, real-time schedul-
ing principles, and mixed-criticality scheduling. Additionally, scheduling
methods for in-vehicle networks are also introduced.

• Chapter 3: Context- and Causality-aware Graceful Degrada-
tion for Mixed-Criticality Scheduling. This chapter introduces a
novel graceful degradation strategy in a mixed-criticality context that
is both causality- and context-aware. A degradation case study will be
introduced based on a robot developed by the Assuring Autonomy In-
ternational Programme (AAIP). The evaluation of the proposed method
is based on simulations.

31

• Chapter 4: Resilience-aware Multi-core Mixed-criticality Con-
sistent DAG Scheduling. This chapter introduces a novel multi-
core mixed-criticality consistent Directed Acyclic Graph (DAG) static
scheduling method denoted as (mccs-dag), enabling and simplifying task-
level mode change. The task execution control methods for the AAIP
robot based on ROS 2 will be introduced as a motivation example. The
evaluation of the proposed method is, again, based on simulations.

• Chapter 5: Resilient and Efficient Time-Sensitive Network for
Automotive In-Vehicle Communication. This chapter extends the
scheduling problem from computational to communication resources.
One novel method is introduced, which can effectively use bandwidth
resources to deal with delayed safety-critical traffic frames while improv-
ing the data transmission efficiency for frames with relatively low critical
levels. Once more, the evaluation of the proposed method is undertaken
using simulations.

• Chapter 6: Conclusions and Future Work. The last chapter of
this thesis presents conclusions. The contributions are summarised and
re-emphasised. Some possible future work, extending and refining the
work presented in this thesis, are explored and discussed.

32

Chapter 2

Background and Literature
Review

An autonomous system is a safety-critical and complex embedded platform
that integrates an increasing number of functions based on the design re-
quirement. It operates independently without direct human intervention and
performs various tasks to function effectively in dynamic environments. Fur-
thermore, the deployment of functions to hardware platforms often involves
the use of Mixed-Criticality Systems (MCS), enabling different software com-
ponents with varying levels of criticality to coexist while maintaining safety
and reliability, which depend not only on the logical and functional correctness
of the software but also on the timeliness of the output. Section 2.1 introduces
the complexity of autonomous systems from both software and hardware per-
spectives, providing an intuitive illustration of the components that need to
be considered when designing resource scheduling strategies. Section 2.2 and
2.3 then introduces works on shared resource scheduling, including timing pre-
dictability and real-time scheduling principles, followed by an overview of real-
time scheduling methods for mixed-criticality systems in Section 2.4. Then,
the research is extended from the task to the network level in Section 2.8.
Finally, a summary will be given at the end of this chapter, and the problems
with existing methods are discussed, which need to be investigated in this
work.

33

2.1 Complexity of Autonomous Systems

In this section, the challenges in autonomous systems will be thoroughly intro-
duced, starting with software and hardware complexity, followed by industrial
challenges from a real-time system perspective. These challenges motivate
the need to guarantee the temporal correctness of components through the
scheduling of system resources.

Figure 2.1: Information flow in an autonomous vehicle [110].

2.1.1 Software Complexity

As illustrated in Figure 1.1, modern autonomous systems are implemented as
distributed systems, connecting various sensors installed in different regions,
function nodes, and actuators. Based on the raw data produced by sensors, the
autonomous software system performs the necessary processing to detect the
environment and make operational decisions to guide and control the vehicle
to the expected destination. As Figure 2.1 shows, except for the sensors, the
software system consists of three main components: perception, planning, and
control. Environment perception [73, 98, 104], high-precision localization [76,
96,106], and fusion technologies [27] can help the vehicle understand its driving
environment accurately, such as recognizing and tracking critical objects, and
calculating its position at the decimeter level. Based on that, the planning
model, including mission, behavior, and motion planning, can generate the
target point and optimized path [102]. Finally, the tractable trajectory is fed

34

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

to the control module to operate the vehicle and follow the planned path [102].

Figure 2.2: The overview of Cartographer LiDAR Simultaneous Localisation
and Mapping SLAM algorithm [68].

Applications in autonomous systems have a high degree of interdepen-
dency, from perception to control. Additionally, it’s worth noting that some
applications, such as localization, comprise multiple functions (e.g., GPS-,
Vision-, and LiDAR-based Localization), which can be further segmented into
sub-functions. An example of such segmentation is the LiDAR-based simulta-
neous localization and mapping (SLAM) algorithm, Cartographer [68]. Figure
2.2 shows the algorithm’s overview, where each box represents a processing
component (sub-function). It’s apparent that Cartographer consists of several
sub-functions with dependencies. Moreover, the output of PoseExtrapolator
can provide pose estimation on its own and can be fused with the result from
visual-based SLAM and GPS-based methods to provide a more accurate pose
estimate. Unlike other computing workloads, autonomous systems have a deep
processing pipeline with strong dependencies between different stages and var-
ious localities. The term “deep processing pipeline” refers to a computational
workflow or series of stages that involve multiple complex operations. These
operations are typically interconnected and dependent on each other, where

35

the output of one stage serves as the input for the next stage. The pipeline
can be visualized as a sequential flow of data or information through different
stages or processing units. Regarding the term “various localities”, it refers
to the distributed nature of data and processing within an autonomous sys-
tem. Autonomous systems often incorporate multiple sensors and actuators
distributed across different physical locations. Each locality may have its own
set of sensors or processing units responsible for collecting and analyzing data
from their specific environment or area of interest. This thesis focuses on task
scheduling, where a task is considered a minimum execution unit that cannot
be further segmented into sub-functions. The following content will use the
terms “task” and “function” interchangeably.

2.1.2 Hardware Complexity

As introduced in Section 1.1, the software in a vehicle typically runs within
ECUs, which are embedded hardware platforms responsible for controlling dif-
ferent subsystems within a vehicle. Figure 2.3 illustrates a domain architecture
composed of functional units called domains, which is a common practice in the
automotive industry. The domains are named based on the subsystem they
control, such as the powertrain, chassis, and autonomous driving/advanced
driver assistance system (AD/ADAS) domains. For both the zoon architec-
ture illustrated in Figure 1.2 and domain architecture described in Figure 2.3,
a processing system (e.g., AD-ECU domain) exists to support the execution of
advanced algorithms. Such ECUs comprise various state-of-the-art computing
platforms, including GPUs, FPGAs, ASICs, and multi-core CPU systems. Ex-
cept for sensor data e.g., high resolution images, dense point-cloud data, etc.,
the AD and ADAS functions also require a map position unit (MPU) to provide
topographical and road information up to several kilometres ahead. This map
information must be regularly updated to maintain its accuracy [60]. There-
fore, in addition to the complexity of the execution platform, inter-domain
communication and monitoring the network for unauthorized access make the
resource management problems more complex.

Multi-Core Platforms

As one of the state-of-the-art computing platforms, multi-core CPU systems
are widely used in ECUs, which is the target platform in this thesis. In a com-
puting system, the central processing unit (CPU) and the graphics processing

36

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.3: The Vehicle System Domain Architecture [60].

Processor 0

Core 0 Core 1

L1 Cache L1 Cache

L2 Cache

Processor 1

Core 3 Core 4

L1 Cache L1 Cache

L2 Cache

System Bus

Main memory

Figure 2.4: Typical multi-core platform.

37

unit (GPU) serve different purposes. The CPU is responsible for execut-
ing general-purpose tasks and managing system resources, while the GPU is
specialized in parallel processing and handling graphics-related computations.
When it comes to accessing GPUs, it’s typically the CPU that coordinates and
schedules tasks for the GPU to execute. The CPU acts as the control unit,
managing the overall execution flow and allocating resources as needed. This
coordination between the CPU and GPU is essential for leveraging the power
of GPUs effectively. To limit the complexity of the system model, we assume
that if a task’s execution needs to be accelerated by GPUs, the estimated
execution time includes the GPU accessing delay and the time consumed by
GPUs.

Figure 2.4 shows a typical multi-core platform consisting of multiple pro-
cessing cores that share access to a hierarchical memory system [38]. The
memory hierarchy comprises multiple levels of memory components, with each
level having a different capacity and access latency. The register file is at the
top of the hierarchy, which is the fastest and smallest memory component. It
is located within each processing core and stores the data actively used by the
core. The next level of the hierarchy is the L1 cache, which stores frequently
accessed data and instructions, providing quick access to the data needed by
the cores. The L2 cache is a larger but slower memory component shared by
all cores. It stores data and instructions that are not frequently accessed and
serves as a backup for the L1 cache. Beyond the L2 cache, the platform may
have an additional cache or main memory levels that have greater capacity
but longer access latency. These memory components are shared by all cores
and store data and instructions that are less frequently accessed than those
stored in the L1 and L2 caches. As we move down the hierarchy, the capacity
of the memory components increases while the access latency increases.

In summary, advanced hardware platforms can facilitate the performance
of autonomous systems by guaranteeing the understanding of real-time circum-
stances and reacting to them fast enough. Work by Mody et al. [94] mentioned
that two factors determine the reaction time of an autonomous driving system:

1. Processing latency: Processing latency determines how fast the sys-
tem can react to the captured sensor data. In this thesis, the latency
involves the instruction execution time and the memory accessing time.

– “How to manage processing resources to guarantee the execution of
tasks that comply with timing constraints?”

38

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2. Frame rate: Frame rate determines the speed or frequency at which
new data samples are collected or made available for processing. It
includes the sampling time and the time for data transmission in the
communication network.

– “How can limited bandwidth resources be effectively allocated to en-
sure data can be transmitted to destinations, satisfying different latency
requirements?”

2.2 Timing Predictability

In real-time systems, time predictability refers to the ability to guarantee that
a task will complete within a specified time interval or deadline, which is es-
sential for ensuring that the system can meet its timing requirements and
avoid any potential hazards or malfunctions. The worst-case execution time
(WCET) estimation of each task is an essential parameter for time predictabil-
ity analysis because it provides an upper bound on the task’s execution time
(i.e., the maximum amount of time it could take to complete under any cir-
cumstances). By knowing the WCET of a task, the system can allocate enough
time for its execution and ensure that it will meet its deadline. Thereby, the
system can achieve time predictability and ensure that the system operates
safely and reliably [64].

In other words, the principal timing-related safety evidence is timing anal-
ysis. Developers determine the Worst Case Execution Time (WCET) of each
task, compute the Worst Case Response Times (WCRT) of the task set, and
then use the results to show that timing requirements will be met (barring
hardware failure). As L. Zhao et al introduced in paper [125], each task shows
some variation in execution time depending on the input and the environ-
ment’s state, which increases the difficulty of WCET estimation with sufficient
confidence. This problem gets worse as processing units grow more complex.
Approaches for WCET determination can be divided into three categories:

Static (analysis-based) approaches: involve analyzing the source code of
a program to determine its maximum execution time under all possible input
scenarios [64]. These techniques are based on analyzing the program’s con-
trol flow, data flow, and memory access patterns to derive an upper bound
on the execution time of each program segment. One of the most common
static analysis-based techniques for WCET estimation is path analysis, which

39

involves identifying all possible paths through the program and determining
the execution time of each path [54]. However, these techniques may produce
conservative estimation, as they assume worst-case conditions for all program
variables and inputs. Additionally, these techniques may not account for cer-
tain runtime behaviours, such as cache effects or hardware interrupts, which
can affect program execution time.

Dynamic (measurement-based) approaches: rely on profiling the exe-
cution of a task on the target hardware to measure its actual execution time.
Dynamic WCET analysis techniques can be split into three categories: high
water mark, probabilistic, and search-based. High Water Mark (HWM) ap-
proaches involve executing the task multiple times while measuring its exe-
cution time and then selecting the maximum value as the WCET. However,
it is not generally possible to determine the likelihood or degree of underes-
timation [64]. Probabilistic approaches use statistical methods to determine
the WCET based on the collected data [46, 50]. However, high confidence is
expensive, and the lack of questioning the validity of the data used to form
the distribution makes the result uncertain [123]. Search-based approaches
involve using optimization techniques to generate input test cases that will
lead to the maximum execution time of the program [46, 78, 122]. Such ap-
proaches can provide accurate estimates of the WCET of a task. However,
they can be time-consuming and require a large number of input test cases to
be generated and executed. Dynamic WCET estimation has the advantage of
providing accurate results, as it takes into account the actual execution time
on the target hardware. However, it can be time-consuming and may only
cover some possible execution scenarios, resulting in underestimating the true
WCET.

Hybrid approaches: combine both static and dynamic methods to deter-
mine the WCET. This approach aims to leverage the advantages of both meth-
ods while minimizing their drawbacks. The key idea behind this approach is to
identify the parts of the code where static analysis is more accurate and those
parts where dynamic analysis can provide a more accurate estimate [124]. For
example, static analysis can be used to determine the worst-case execution
time of loops with a fixed number of iterations, while dynamic analysis can
be used to measure the execution time of loops with a variable number of
iterations. The results of the two methods can then be combined to obtain
a more accurate estimate of the loop’s WCET. Hybrid approaches have been

40

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

shown to be effective in reducing the overestimation of WCET estimates by
static analysis and the underestimation of WCET estimates by dynamic anal-
ysis. However, the implementation of hybrid approaches can be complex and
time-consuming. Additionally, the accuracy of the estimate heavily depends
on the accuracy of the static and dynamic analysis tools used.

2.3 Real-Time Scheduling

As emphasized in Section 1.2, the main concern of real-time systems is meeting
their timing requirements and ensuring that tasks are completed within their
deadlines. This is because real-time systems are designed to respond to events
and inputs within a specific timeframe, and missing a deadline can result in
system failure or even dangerous consequences. To satisfy timing constraints,
real-time systems must be designed, analyzed, and implemented to ensure that
tasks can always meet their deadlines reliably and safely at run-time, which is
generally achieved by real-time scheduling, including theories, algorithms, and
methodologies for scheduling tasks and resources. This means that the system
must allocate its resources, such as CPU, memory, and bandwidth, to ensure
that tasks have the necessary resources to execute within their deadlines. This
includes allocating sufficient resources to tasks, prioritizing tasks based on
their criticality, and avoiding resource contention.

2.3.1 Task Model

As introduced in Section 2.1.1, a task has specific functionality and is invoked
by an internal/external event or a timer interrupt. When extending to the
communication part, a task can be regarded as data/message, and its release
can be time-triggered (i.e., with a constant period) or event-triggered. Here,
we introduce the task with a general approach.

A task model is a representation of the behaviour of tasks in a real-time
system, which describes the tasks’ characteristics. Real-time schedulers use
the task model to decide which task to execute next and how much processing
time and resources to allocate to each task. The task model also helps analyse
the system’s performance and verify its temporal correctness. A typical model
for task τi includes the following parameters:

• Job (ji,k): is a single release of a task and is the basic unit that can be
scheduled by a task scheduler. ji,k means the kth released job of task τi.

41

• Release time (ri): is the time when a task becomes available to be
executed. If τi is a periodic task, the kth job’s release time can be
worked out as ri,k = (k − 1)Ti + ϕ(0), where ϕ(0) is the phase, i.e. the
release time of the first job.

• Worst-case execution time (WCET) (Ci): the maximum time that
a task can take to execute under any circumstance. The estimation
methods have been introduced in Section 2.2.

• Relative Deadline (Di): temporal constraints for tasks on completion
time after their releases. Hard deadlines are those that, if missed, will
jeopardize the system and may lead to disastrous consequences. Con-
versely, soft deadlines are those that, if missed, will only degrade the
performance of the system but will not cause damage to the environ-
ment or the operator. In addition to hard and soft, there is also a firm
deadline, which is defined as a deadline that can be missed, but the
utility of the result will be unusable once after the deadline.

• Period (Ti): the time between two consecutive arrivals of the same
task. In this thesis, we assume Di = Ti. In simple models, there is
an underlying assumption that tasks are released in a perfectly periodic
manner [33].

• Criticality (Li): a measure of the importance of a task, which can be
used to determine the task’s priority in the system.

Tasks in a real-time system can be categorised into three classes:

1. Periodic tasks have a fixed arrival time, execution time, and deadline,
which makes them predictable and easier to schedule. The period of a
periodic task is usually a constant value that is specified at design time.
The deadline of a periodic task is typically equal to its period, meaning
that the task must be completed before its next release.

2. Aperiodic tasks do not have a fixed or regular arrival time. They are
typically triggered by external events or interrupts, such as user input,
sensor readings, or network messages. Unpredictable arrival time makes
scheduling them more challenging compared to periodic tasks.

3. Sporadic tasks are aperiodic in nature but have minimum inter-arrival
time constraints. This means a sporadic task can occur at any time, but

42

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

there must be a certain minimum amount of time between two consecu-
tive instances of the task. In terms of task scheduling, they always have
a predefined minimum inter-arrival time (MIT).

2.3.2 Scheduling Algorithms

Scheduling algorithms are a fundamental component of real-time systems,
which determine how tasks are executed and resources are allocated to meet
timing constraints. According to the scheduling decision time, the schedulers
can be broadly classified into static and dynamic scheduling approaches.

Static scheduling

In static scheduling, the assignment of resources to tasks is determined at
system design time, and it remains unchanged during runtime [112]. This
approach is typically used for systems with relatively simple requirements and
limited variability in task demand. One example of static scheduling is Fixed-
Priority Scheduling (FPS). In FPS, each task is assigned a fixed priority level
based on its criticality, with the highest priority being assigned to the most
critical task. FPS provides a simple and efficient scheduling algorithm, as the
system knows the exact priority order of the tasks at design time. However, it
requires an accurate estimation of the worst-case execution time (WCET) of
each task to ensure that tasks meet their deadlines. In addition, if the system
experiences any changes, such as adding a new task or changing the task’s
priority, the entire system must be re-analysed and redesigned.

Dynamic scheduling

In dynamic scheduling, the resources for task allocation is determined at run-
time based on the system state and task demands. Dynamic scheduling is
typically used for systems with more complex requirements and more vari-
ability in task demand. One example of dynamic scheduling is the earliest
deadline first (EDF) scheduling algorithm [87], which assigns priorities based
on the absolute deadline of the task. The idea behind EDF is to always sched-
ule the task with the closest absolute deadline, which ensures that the task
with the shortest time remaining to its absolute deadline is executed next.
Unlike Fixed-Priority Scheduling, EDF does not require a priori knowledge
of task execution times, making it more flexible and easier to implement in

43

systems with unpredictable task behaviour. One disadvantage of EDF is that
it does not inherently provide mechanisms to address priority inversion, where
a lower-priority task holds resources required by a higher-priority task. Al-
though priority inheritance protocols can be implemented alongside EDF to
mitigate priority inversion, it may introduce the risk of task starvation. In this
scenario, a low-priority task may never be executed because higher-priority
tasks with earlier deadlines continue to arrive. Besides, EDF has a less pre-
dictable behaviour that is known as a “domino effect” [35], i.e., a cascade of
deadline misses.

For both static and dynamic scheduling, algorithms are further divided
into two categories: preemptive and non-preemptive.

• Preemptive scheduling algorithms: In preemptive scheduling, a
higher-priority task can interrupt the running task. This type of schedul-
ing is used in systems where the highest priority task must be executed
immediately. The most common preemptive scheduling algorithm is the
priority-based scheduler, where the highest priority task is scheduled
first.

• Non-preemptive scheduling algorithms: In non-preemptive schedul-
ing, once a task is started, it cannot be interrupted until it completes.
Non-preemptive scheduling is suitable for systems where it is essential
to guarantee a minimum CPU time for each task. The most common
non-preemptive scheduling algorithm is First-Come-First-Served (FCFS)
scheduling, where the first task to arrive is the first to be scheduled.

Each method has advantages and disadvantages, and the choice of schedul-
ing approach depends on the system’s specific requirements. Dynamic schedul-
ing approaches are generally more flexible and can handle more complex sys-
tems. In contrast, static scheduling approaches are more deterministic and
can provide better guarantees on the timing behaviour of the system.

Execution-Time Server

An Execution-Time Server (ETS) is a concept used in real-time systems and
scheduling algorithms. It refers to a specific type of server or task execution
mechanism that guarantees timely and deterministic execution of tasks. Peri-
odic tasks typically arise from sensory data acquisition, control loops, action

44

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

planning, and system monitoring, representing the system’s primary computa-
tional demand. Four basic algorithms, Timeline Scheduling, Rate Monotonic,
Earliest Deadline First, and Deadline Monotonic, are commonly used for han-
dling periodic tasks. However, in practice, the arrival pattern of some tasks is
not periodic. These tasks are often triggered by external events. Neither static
nor dynamic scheduling algorithms can manage periodic and non-deterministic
tasks well simultaneously. When dealing with hybrid task sets, the main ob-
jective of the kernel is to guarantee the schedulability of all critical tasks in
worst-case conditions and provide good average response times for soft and
non-real-time activities.

Suppose event-driven aperiodic tasks with critical timing constraints are
expected to be guaranteed offline. That can be done only by making proper as-
sumptions, that is, by assuming a maximum arrival rate for each critical event.
In this thesis, aperiodic tasks characterised by a minimum inter-arrival time
between consecutive instances are called sporadic tasks. The assumption can
limit the sporadic load, and they are guaranteed under peak-load situations by
assuming their maximum arrival rate. To handle sporadic and aperiodic tasks
in a predictable way considering the Quality-of-Service (QoS) [87] require-
ments, a mechanism, namely Execution-Time Server (ETS), is introduced in
paper [112], which is based on the principle of reserving a fixed amount of pro-
cessing time for each task to guarantee its execution . In an ETS, each task is
assigned a fixed time slice, which is the maximum amount of time the task can
use to execute. Server-based scheduling methods can be further categorised
into Fixed-Priority Servers and Dynamic Priority Servers.

One example of fixed-priority servers is the polling server; that is, a peri-
odic task whose purpose is to service aperiodic requests as soon as possible. A
server is characterised by a period Ts and a computation time Cs, called server
capacity or server budget. In general, the server is scheduled with the same
algorithm used for the periodic tasks, and once released, it serves the aperi-
odic requests within the limit of its budget. Once the budget is exhausted,
the polling server is suspended and has to wait for the next release. One of
the main advantages of the Polling Server for Task Execution algorithm is its
simplicity and ease of implementation. However, the capacity will be wasted
if no task is available when the server is released. To solve the limitation
of the polling server, many solutions are proposed, e.g., Priority Exchange,
Deferrable Server, and Sporadic Server [35]. These methods use principles

45

similar to the polling server but can reduce wasted capacity by preserving it if
no tasks are available. These three algorithms are differentiated in preserving
and replenishing capacity, and they use different feasibility analyses to deter-
mine the maximum capacity of the server. For example, the Sporadic Server
algorithm is used to schedule tasks with unpredictable arrival and execution
times. This algorithm can provide high predictability and efficiency in man-
aging task execution for systems with unpredictable workloads. However, as
a fixed-priority server, when the server has a long period, the execution of the
aperiodic requests can be delayed significantly because the server is always
scheduled with a far deadline. A shorter period can be allocated to a Sporadic
Server to reduce the aperiodic response times. However, the capacity has to
be reduced proportionally to keep the server utilisation constant. That causes
more frequent replenishments and increases the number of context switches
with the periodic tasks, increasing the algorithm’s run-time overhead.

To overcome the drawbacks of fixed-priority servers, dynamic priority servers
were designed for EDF, which can reduce the aperiodic response times by as-
signing an earlier deadline. The assignment must be done so that the overall
processor utilisation of the aperiodic load never exceeds a specified maximum
value Us. That is the main idea behind the Total Bandwidth Server (TBS), a
simple and efficient aperiodic service mechanism to safely schedule aperiodic
requests under EDF [35]. The server’s name comes from the fact that each
time an aperiodic recommendation enters the system, the total bandwidth
of the server is immediately assigned to it, whenever possible. One major
disadvantage of the TBS is that it relies on the knowledge of the worst-case
execution time specified by each job at its arrival. When such knowledge is
unavailable, unreliable, or too pessimistic, hard tasks are not protected from
transient overruns occurring in the soft tasks and could miss their deadlines.
To avoid any hard deadline, the deadline assignment rules adopted by the
server must be carefully designed. The Constant Bandwidth Server (CBS)
can be efficiently used because it performs comparable to that of the TBS and
provides temporal isolation. The basic idea behind the CBS mechanism can
be explained as follows: when a new job enters the system, it is assigned a
suitable scheduling deadline, which can keep its demand within the reserved
bandwidth. If the job tries to execute more than expected, its deadline is
postponed (i.e., its priority is decreased) to reduce interference with the other
tasks. By postponing the deadline, the task remains eligible for execution.

46

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The CBS behaves as a work-conserving algorithm, exploiting the available
slack efficiently (deadline-based), thus providing better responsiveness than
non-work-conserving algorithms.

2.3.3 Response-Time Analysis

Response-Time Analysis (RTA) is a formal method that provides a rigorous
and systematic approach to predict the worst-case response time of tasks based
on their timing characteristics and the scheduling policy used in the system.
The analysis assumes that tasks are scheduled according to a fixed-priority
scheduling policy, and each task’s execution time is deterministic and known
a prior [14]. If the worst-case response time of a task is less than or equal to
its deadline, then the task is guaranteed to meet its deadline. However, if the
worst-case response time of a task exceeds its deadline, then the task is said
to be infeasible, and the system is deemed unschedulable.

As introduced in [33], the standard recursive equation for response time
analysis is formed of two parts: (1) the worst-case execution time and (2) the
interference time resulting from tasks with higher priorities.

Ri = Ci + Ii

= Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
∗ Cj

(2.1)

RTA is an essential tool for designing and verifying the correctness of real-
time systems. It enables system designers to ensure that the system’s timing
constraints are met and can be used to identify performance bottlenecks and
optimize system performance.

2.3.4 Priority Assignment

For systems scheduled with fixed-priority scheduling (FPS), the task with the
highest priority can be selected for execution first. As paper [47] emphasised,
with poor priority assignment, the scheduler may run jobs in a far from opti-
mal order. That will lead to severe deadline misses, even though the system
workload/utilisation is still low, as shown in Figure 2.5. Suppose a system can
only use a small portion of its capacity before the jobs start to miss deadlines.
Then, with the requirement to add functions or an increase in jobs’ execution
time, the system’s reliability will decrease, and there will be a need to upgrade

47

to more hardware, with the possibility of hardware overprovisioning. More-
over, less headroom can be utilised for additional functionality and to handle
uncertainties when the hardware resources are limited. Obviously, priority
assignment is one of the critical steps in scheduling systems.

Figure 2.5: Breakdown Utilisation [47]

The conventional priority assignment method for fixed-priority preemp-
tive scheduling (FPPS) is Deadline-Monotonic Priority Ordering (DMPO)
proposed in paper [84]. DMPO is optimal for some simple systems; how-
ever, minor changes to the assumptions (for example, allowing offset release
times, deadlines greater than periods, non-preemptive, or deferred preemption
scheduling) break this optimality. Paper [12] proposed Audsley’s Optimal Pri-
ority Assignment (OPA) Algorithm to address the drawbacks of DMPO, which
can provide an optimal priority ordering. It is worth noting that Audsley ’s
OPA algorithm is applicable only if the schedulability test S (e.g., worst-case
response time analysis introduced in Section 2.3.3) satisfies the following con-
ditions [45]:

1. The tasks in the system are independent.

2. When the priorities of any two tasks of adjacent priority are swapped, the
task assigned the higher priority cannot become unschedulable according
to test S, if it was previously schedulable at the lower priority.

48

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Typically, Audsley’s OPA algorithm focuses on achieving schedulability for
all of the tasks in a system under regular operation assumptions and consid-
ering each task’s fairness. Optimal Priority Assignment Minimising Lexico-
graphical Distance (OPA-MLD) algorithm proposed in paper [42] is a way of
placing the most critical tasks at the highest priority levels while still main-
taining schedulability.

2.4 Mixed Critically Systems

As emphasized in Section 1.2.1, the design of real-time and embedded systems,
particularly those utilised in the implementation of autonomous systems, is
currently witnessing a trend of integrating components with varying levels of
criticality on a single hardware platform. Furthermore, these platforms are
transitioning from single-core to multi-core and many-core architectures in
the future. Criticality denotes the level of assurance necessary for a system
component to prevent failure. Mixed criticality systems (MCS) comprise two
or more levels of criticality, including safety-critical, mission-critical, and low-
critical, with up to five levels possible based on standards such as DO-178B [3]
and ISO 26262 [2]. At each level, tasks that require assurance can be defined
according to their allocated criticality. Appropriate scheduling policies should
be adopted to ensure that the tasks meet their criticality-dependent timing
requirements [31]. Worst-case execution time (WCET) is one of the vital
parameters, and its estimation is different under different system modes based
on their safety requirements and directly influences the schedulability of the
system. In this section , we introduce the most general model.

2.4.1 System Model of an MCS

As introduced in paper [120], the WCET estimate depends on the level of
certification of the application or system component. The higher the criticality
level, the more conservative the bound tends to be. Thus, the value of the
estimated execution time is more significant, with less tolerance for deadlines
being missed. Generally speaking, tasks with criticality requirements may
have a set of WCETs corresponding to different confidence levels. Paper [63]
summarised several WCET assessment approaches. The definition of one task
becomes (Ti, Di, C⃗i, L), where C⃗i is a vector of estimated WCETs, one per
criticality level. Another critical property of MCS is that the system can

49

run under different criticality modes. Theoretically, the number of modes can
be defined arbitrarily according to the requirements of the system designer,
like the model represented in paper [51]. Take dual-criticality systems as
an example; there are two system modes: low LO-criticality mode and high
HI-criticality mode. The tasks executed under the HI mode are defined as
HI-criticality tasks, otherwise regarded as LO-criticality. Each LO-criticality
task has only one estimated WCET C(LO), and each HI-criticality task has
two WCET estimates: C(LO) and C(HI) (C(LO) ≤ C(HI)). Then, the task
can be defined by the tuples (Ti, Di, Ci(HI), Ci(LO), Li), where Li is either
LO or HI. If Li is LO, Ci(HI) = 0. Note that, in a dual-criticality system,
all safety-critical tasks are regarded as HI-criticality tasks, which must be
guaranteed in any circumstance. Therefore, the LO-criticality tasks can be
sacrificed to protect the execution of HI-criticality tasks. Initially, all tasks
are executed under the LO-criticality mode. If the actual execution time of any
HI-criticality task attempts to exceed C(LO), then the system may change
to the HI-criticality mode. The utilisation of the standard mixed-criticality
system has a strict concept of critical change, such as paper [29]. After a mode
change, LO-criticality tasks are suspended or dropped (active jobs are allowed
to complete), and HI-criticality tasks are allowed to run to their maximum,
C(HI).

2.5 Single Processor Analysis for MCS

In this Section, we look at MCS schemes that are based on applying Response-
Time Analysis (RTA). Regarding fixed priority scheduling, Vestal’s approach
proved that using Audsley’s priority assignment algorithm [13] is optimal [117]

2.5.1 Static Mixed Criticality (SMC)

According to Vestal’s approach, priorities of high and low-criticality tasks are
able to be interleaved to provide flexibility in scheduling. Equation (2.2) shows
the response time analysis equation for Vestal’s approach named SMC-NO
(meaning no runtime support required), where Li represents the criticality.
Although Vestal’s approach does not require any runtime monitors, all tasks
had to be evaluated as if they were of the highest criticality, which can be quite
expensive. According to the analysis introduced in paper [19], the pessimism of
Vestal’s approach is mainly caused by the criticality inversion, which happens

50

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

when a LO-criticality task has a higher priority than a HI-criticality task. In
this case, theHI-criticality mode WCET estimated values of the LO-criticality
tasks to calculate the interferences. Such problems can be eliminated with the
help of a runtime monitor. The improved response time analysis named SMC-
run (meaning with runtime monitors) can be rewritten as Equation (2.3).
Three cases need to be considered, depending on whether the arbitrary higher
priority task τj has an equal, higher or lower criticality than τi:

1. If Li = Lj , then the tasks are at the same criticality level, and the normal
representative value Cj(Lj) shall be used.

2. If Li < Lj , then it is unnecessary to use the large value of computa-
tion time represented and Cj(Li) shall be used since the lower level of
assurance is needed for task τi.

3. If Li > Lj , then criticality inversion happens. One approach here would
be to use Cj(Li), and then the algorithm works as Vestal’s original model,
which allows τj to execute for far longer than the task is assumed to
do at its own criticality level. Moreover, all low-criticality tasks are
required to be verified to the highest levels of importance, which would
be prohibitively expensive. Instead, Cj(Lj) can be used, but the runtime
monitor must to used to ensure that τj shall not execute for more than
this value.

Ri = Ci(Li) +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
× Cj(Li) (2.2)

Ri = Ci(Li) +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
× Cj(min(Li, Lj)) (2.3)

2.5.2 Adaptive Mixed Criticality (AMC)

Adaptive Mixed Criticality (AMC) analysis is a further extension and is widely
used and recognised as the most effective approach and has become the stan-
dard approach for fixed priority-based MCS. If a HI-criticality task executes
for more than C(LO) (but no greater than C(HI)), then, under SMC, LO-
criticality tasks continue to execute but may miss their deadlines; but un-
der AMC, all LO-criticality tasks are suspended to guarantee HI-criticality

51

tasks. In this way, some unschedulable cases in SMC will be schedulable in
AMC [24]. With both analysis methods, HI-criticality tasks can continue to
meet their deadlines, which implies AMC dominates SMC in terms of schedu-
lability. For a dual-criticality system, the schedulability analysis consists of
three phases: [32]:

1. In LO-criticality system mode, the schedulability of all tasks with C(LO)

should be verified;

2. InHI-criticality system mode, the schedulability of all tasks with C(HI)
should be verified;

3. All tasks with either C(LO) or C(HI) should be schedulable during
mode change.

The original paper on AMC [24] proposes two forms of response-time anal-
ysis: AMC-rtb and AMC-max.

AMC-rtb

For the schedulability test of LO-criticality mode, the response time of anal-
ysed task τi can be calculated as:

RLO
i = Ci(LO) +

∑
j∈hp(i)

⌈
RLO

i

Tj

⌉
× Cj(LO) (2.4)

Where hp(i) denotes the set of tasks, and their priority is higher than the
analysed task. For the HI-criticality mode, only HI-criticality tasks need to
be analysed:

RHI
i = Ci(HI) +

∑
j∈hpH(i)

⌈
RHI

i

Tj

⌉
× Cj(HI) (2.5)

hpH(i) represents the set of HI-criticality tasks with a priority higher than
or equal to the analysed task. For the analysis of mode change,

R∗
i = Ci(HI) +

∑
τj∈hpH(i)

⌈
R∗

i

Tj

⌉
× Cj(HI) +

∑
τk∈hpL(i)

⌈
RLO

i

Tk

⌉
× Ck(LO) (2.6)

hpL(i) is the set of LO-critical tasks with a priority higher than or equal to the
analysed task. If the mode change event impacts task τi, then the mode change
time point should be smaller than RLO

i . Equation 2.6 provides the response

52

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

time upper-bound of the analysed task, which includes the interference from
LO-critical during mode change. However, the response time analysis could
be a pessimistic estimation and reduce the schedulability of the task set. The
reason is that jobs of LO-critical tasks may not execute for the entire busy
period of a HI-criticality task in the LO mode. After the mode change point,
there are no newly released LO jobs. Besides, for HI-critical tasks, jobs
released before the mode change point only contribute no more than C(LO)

value. AMC-rbt-based response time analysis is computationally efficient but
less accurate.

AMC-max

AMC-max can provide a more precise analysis by considering all possible mode
change points and looking for the point with the maximum response time to
reduce the pessimistic interference. The worst-case response time analysis for
each task in the LO-criticality mode is the same as AMC-rbt. Assume that the
system mode changes at time point s, which could be any point in time interval
(0, RLO

i]. Rs
i represents the response time of task τi when system criticality

mode changes at time s. And it can be calculated according to Equation 2.7.

Rs
i = Ci(HI) + IL(s) + IH(s,Rs

i) (2.7)

IL(s) indicates the interference from LO-criticality but high priority tasks.
IH(s,Rs

i) describes the interference from HI-criticality high priority tasks
within the busy period of τi. After time point s, LO-critical tasks will not
release any new jobs. Their interference can be bounded by:

IL(s) =
∑

j∈hpL(i)

(

⌊
s

Tj

⌋
+ 1)× Cj(LO) (2.8)

For HI-criticality high-priority tasks, we need to consider the jobs released
in the busy period of length Rs

i . As mentioned before, in the worst case, jobs
released before time points contribute C(LO); only jobs released after mode
change can contribute interference of C(HI).

M(k, s,Rs
i) = min{

⌈
Rs

i − s+Dk

Tk

⌉
,

⌈
Rs

i

Tk

⌉
} (2.9)

M(k, s,Rs
i) estimates the maximum number of jobs released by task τk, which

contribute C(HI) in the busy period of length Rs
i after mode change. Fig-

ure 2.6 displays the released jobs intuitively.

53

Figure 2.6: The released jobs of task τk in the busy period of length Rs
i .

The interference term IH(s,Rs
i) is bounded by:

IH(s,Rs
i) =

∑
k∈hpH(i)

⌈
Rs

i

Tk

⌉
× Ck(LO) +

∑
k∈hpH(i)

M(k, s,Rs
i)(Ck(HI)− Ck(LO))

(2.10)

The worst-case response time of task τi with mode change time point s can
be given by:

Rs
i =Ci(HI) +

∑
j∈hpL(i)

(

⌊
s

Tj

⌋
+ 1)× Cj(LO) +

∑
k∈hpH(i)

⌈
Rs

i

Tk

⌉
× Ck(LO)

+
∑

k∈hpH(i)

M(k, s,Rs
i)(Ck(HI)− Ck(LO))

(2.11)

Each possible mode change point s in the time interval (0, RLO
i] should be

checked to find the worst-case response time of the analysed task.

Ri = max{Rs
i}(∀s, s ≤ RLO

i) (2.12)

Recently, the schedulability analysis for AMC-max has been extended to
analyse the tasks that exhibit semi-clairvoyant behaviour [30] , which refers
to a state or characteristic in which an entity or system possesses partial or
limited knowledge or foresight about future events or outcomes. The notion
of semi-clairvoyance was proposed in paper [6]. A fully clairvoyant scheduler,
which refers to a scheduling algorithm or mechanism that possesses complete
knowledge or foresight about the future behavior or events in a system, is ideal
and not practicable. A semi-clairvoyant scheduler only requires information as
to which mode of operation of a task will invoke. For example, some sensors
can be used to perceive the change in the driving scenario and system mode
change would be predicted, which implies potential timing conflicts. A semi-
clairvoyant scheduler enables an earlier switch from normal to abnormal mode

54

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

and improves the system’s safety. In addition to Fixed Period Scheduling
(FPS), Baruah et al. [18] proposed the first scheduling algorithm focused on
dynamic priority scheduling in MCS called Earliest Deadline First with Vir-
tual Deadlines algorithm (EDF-VD). Then, based on EDF-VD, paper [40,88]
introduced the imprecise and flexible MC models, respectively. Besides, they
analysed the feasibility of MCS via utilisation-based methods.

2.6 Multicore Scheduling and Analysis for MCS

J. H. Anderson et al. discussed mixed-criticality in the context of multi-core
platforms in paper [8], and the extended version [95] identified Five levels of
criticality from level-A (the highest) to level-E (the lowest). Tasks of criticality
A are scheduled using a cyclic executive scheduling approach (a table-based
method). Partitioned preemptive EDF is used to schedule Level B tasks be-
cause it has relatively low overheads and has been theoretically shown to be
optimal on single-core. Levels C and D are scheduled using a Global Earli-
est Deadline First (G-EDF) scheduler. Finally, level E tasks are scheduled
whenever the processor is idle. In the rest of this section, we introduce the
multi-core mixed-criticality scheduling methods without and with the consid-
eration of task precedence constraints.

2.6.1 Mixed-Criticality Multi-Core Scheduling

Most multiprocessor mixed-criticality scheduling algorithms can be catego-
rized into global or partitioned methods. To maximize the utilisation of the
cores, Li et al. proposed a global scheduling method for mixed-criticality sys-
tems which extends the EDF-VD algorithm [23] from uniprocessors to multi-
processors using a multiprocessor global scheduling method called fpEDF [22],
which was designed for non-mixed-criticality systems. Such global scheduling
algorithms allow scheduling decisions at every time quantum, leading to in-
creased migration and preemption overheads.

Baruah et al. [20] pointed out that partitioned scheduling provides better
system schedulability than global scheduling. Considering partitioning-based
multiprocessor scheduling of mixed-criticality task sets, Kelly et al. [77] iden-
tified the problems of task allocation and priority assignment under fixed-
priority scheduling. They investigated the schedulability of various partition-
ing heuristics (first-fit, worst-fit, and best-fit) and task order policies (decreas-

55

ing criticality and decreasing utilisation).

First-fit: First-fit works by scanning the list of available resources (e.g., mem-
ory blocks or processor cores) from the beginning and allocating the first avail-
able resource that satisfies the request.

Best-fit: Best-fit allocates the smallest available free capacity of resources to
a requesting process. The algorithm searches each core for the smallest free
capacity that is big enough to accommodate the task’s requirement.

Worst-fit: After scanning the state on each core, the worst-Fit algorithm
allocates the task to the resources with the largest free capacity. It behaves
similarly to BF but goes towards the exact opposite goal.

Decreasing Utilisation: Regarding decreasing utilisation method, tasks
with high utilisation values are allocated first. However, each MCS task is
associated with multiple utilisation values. A single utilisation value is re-
quired to represent the task for sorting requires.

Decreasing-criticality: According to the decreasing-criticality method, tasks
are ordered according to criticality and tasks at the same criticality level are
further ordered by decreasing nominal utilisation.

After tasks are allocated to specific cores, priority assignment methods (e.g.
Rate Monotonic and Audsleys Optimal Priority Assignment) can be used to
assign the task priority on each processor for different task orders. According
to the principle of the partitioned method, tasks can not be migrated to an-
other core at run-time. This drawback may cause the system to suffer from
low utilisation.

Ren et al. [108] emphasized the strong isolation among the high-criticality
tasks. Each high-criticality task is associated with a subset of the low-criticality
tasks and encapsulates them in a task group. The server-based strategy en-
hanced the isolation between tasks with different criticality and among the
high-criticality tasks. In addition, the consideration of the demand for LO-
criticality tasks improved the efficiency of resource allocation. However, the
strategies mentioned above did not consider task dependency requirements,
potentially leading to conflict between tasks with precedence constraints and
severe cache misses, significantly reducing the efficiency of shared resource us-
age. This is especially critical for autonomous systems, where the functions
have different levels of dependency, and the relationships among the tasks in
each function (task group) can be complex.

56

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.6.2 Graph-based Mixed-Criticality Scheduling

An appropriate graph model is critical for designing a scheduling strategy
which needs to consider precedence constraints. Directed Acyclic Graph (DAG)
models are widely used in research on multi-core scheduling. Such models al-
low intuitive identification of the parallelizable part of tasks in the system,
which can help to improve resource usage [127]. Medina et al. [91] proposed
a novel approach based on List Scheduling (LS) to schedule a single DAG of
MC tasks for multi-core architectures. Methods have been proposed to tackle
multiple mixed-criticality DAGs using federated schedulers [17,86,103]. How-
ever, the task model used in [86,103] is very restrictive. Each DAG comprises
tasks from the same criticality level, i.e., HI or LO. In real complex systems,
task dependencies exist between HI- and LO-criticality tasks. More practical
models have been developed, i.e., LO-criticality and HI-criticality jobs may
coexist in the same DAG, but HI tasks can not depend on LO tasks [17].
Once this assumption is broken, the schedulable rate, which refers to the rate
or frequency at which tasks or processes can be successfully scheduled and
executed within a given system or scheduling algorithm, would decrease dra-
matically. Medina et al. [92] adopted the DAG model of [17] and proposed a
global scheduling-based method to calculate fixed schedules for HI-mode and
LO-mode separately, which outperforms the original [17] in terms of the num-
ber of cores required to schedule a system and gives better schedulability when
the number of cores is fixed. However, the DAG model they used also has the
same restriction, i.e., high-criticality tasks can not depend on lower-criticality
tasks, which is too restricted. Low-to-high communications often take place
in safety-critical systems [93]. Later they started to relax this restriction and
proved the generality of their method, which was the first work on scheduling
multi-core MC DAG systems with multiple criticality levels. However, the
migration and preemption costs are very high.

In summary, most existing graph-based multi-core scheduling methods for
MCS adopt static scheduling, which provides different schedules under dif-
ferent system criticality modes. Once a mode change happens, a different
schedule implies inevitable task migration costs because tasks would be ex-
ecuted on different cores in different modes. Moreover, the static schedule
calculation is typically based on the classic mixed-criticality assumption, i.e.,
once mode change happens, all tasks with lower criticality values are dropped
or suspended. The dropped task re-allocation would require more effort, and

57

the problem becomes more complex when considering precedence constraints.
Furthermore, system recovery would not be easy, and we need to wait until a
system idle time slot and unnecessarily postpone the restoration of dropped
tasks. However, lower-criticality tasks could be mission-critical and play es-
sential roles in improving the QoS of the system. Although methods have
been proposed to realise task-level mode change and provide run-time strate-
gies to minimise LO-critical task loss [28, 82], they assumed no dependency
between LO and HI tasks. Further, the proposed method is only suitable for
the dual-criticality system.

2.7 Survivability and Graceful Degradation

As Burns and Baruah emphasised in [29], run-time survivability of LO-criticality
tasks is one of the essential problems for MCS. Later work distinguished two
forms of survivability – robustness and resilience [32]. Robustness empha-
sises providing full functionality even when temporal faults occur. On the
other hand, resilience refers to the extent to which an acceptable QoS can be
achieved in the presence of timing faults. From a non-functional perspective,
the most critical components (i.e., HI-criticality tasks) must continue to meet
their timing requirements.

In [65], a system-wide total low-criticality budget is calculated offline for
all the high-criticality applications. This budget can be allocated to the high-
criticality applications according to the proposed run-time strategy based on
their actual execution requirement to postpone a system mode-switch (LO to
HI) as long as possible. This approach can provide a minimum budget for
LO criticality tasks. However, all LO criticality tasks are treated equally in
that work, and the approach only satisfies the timing requirements (it doesn’t
consider functionality or QoS). Besides, the execution time budget allocation is
a trade-off after the mode change. Without understanding the application and
differentiation of LO tasks according to their importance level, the proposed
method can not guarantee the execution of relatively important LO tasks,
which would avoid violation of functional requirements.

To mitigate such problems, an increasing number of papers advocate con-
structing systems that can provide essential services in the presence of fail-
ures (e.g., timing overruns) through graceful degradation. The authors of [70]
and [72] highlighted the importance of graceful degradation for automotive

58

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

systems and demonstrated multiple approaches to degradation depending on
the application and situation. They pointed out that designing a graceful
degradation policy should be based on understanding the system’s reaction to
adverse events, but explicit mode transitions (i.e., once any of the HI tasks
overruns, all LO tasks are discarded) are unnecessary. However, they did not
show how to do this considering non-functional requirements – and our work
fills that gap.

A finer-grained degradation strategy incorporating the notion of impor-
tance was proposed in [58]. Tasks are grouped as applications, and all LO
criticality tasks from one application share the same importance value and are
dropped simultaneously. Instead of dropping all LO tasks immediately, they
propose dropping them when they have to. With the help of offline sensitivity
analysis, the run-time policy controls the degradation of LO criticality appli-
cations based on the extent of a system overrun. However, one application can
consist of several sub-functions, and each of them could have a different im-
pact on the output and can even propagate interference to other applications
when the sub-function is shared. One typical example from a real autonomous
system is that Visual Inertial Odometry (VIO) can be regarded as one task
in the task chain of the Visual-based Simultaneous Localisation and Mapping
(vSLAM) application. It can provide pose estimation (transition and rota-
tion) on its own and also can be fused with the result from LIDAR-based
SLAM and GPS-based methods to provide a more accurate location estimate.
Ideally, the degradation policy would choose to discard the successors of VIO
in the vSLAM task chain but not the whole application for a better overall
system utility and QoS – but this requires task-level, not application-level task
dropping. In [26], the authors further emphasise that importance can provide
fine-grained run-time graceful degradation. However, the proposed method
still uses application-level task dropping, a limitation our work addresses.

Task dependency analysis can be introduced from the functional perspec-
tive to overcome this limitation. The method proposed in [52] attempts to
assess the impact of a combination of faults and determine the task replica-
tion number, which can only enhance fault tolerance by providing a backup
mechanism that helps prevent critical failures without criticality differentia-
tion to ensure a certain utility function value in a fault scenario. However,
the system utility model and task dependency analysis are based on the ex-
ecution behaviour in the hardware platforms (e.g., probability of a processor

59

failure) for fault tolerance without considering the impact on the QoS from
the holistic functional solution perspective. More recent work proposes us-
ing Bayesian Belief Networks for situation-aware dynamic risk assessment and
braking behaviour prediction to model the probabilistic relationships between
different tasks under different driving conditions [107]. The example illustrates
the feasibility of using Bayesian Belief Networks in representing autonomous
vehicles’ performance based on probability propagation between tasks. How-
ever, the authors only focused on a single function which consists of tasks with
dependencies (e.g., braking). The interference propagation between functions
is not analysed. Furthermore, there has been little work on non-functionally
degraded scheduling designs that take into account different system operating
conditions and the propagation of functional failures after dropping specific
tasks.

In summary, most research considers the functional and non-functional
domains to be independent, even though there are undoubtedly influences
between them. Therefore, in this thesis, we propose a novel inference-based
degradation order definition method which incorporates awareness of the oper-
ational environment, e.g., the driving scenario. Besides, the proposed schedul-
ing strategy can be assessed using functional criteria, thereby making our
graceful degradation procedure feasible from the non-functional domain and
also reasonable from the functional perspective.

2.8 Network Bandwidth Scheduling

As emphasised in Chapter 1 and Section 2.1.2, the research on resource schedul-
ing should be extended from the task level to the network level because, for an
autonomous system, the data transmission between different domains is vital
to guarantee the safety of the system. Same with functions, data also have
different criticality levels. For example, messages directly related to safety
are regarded as safety-critical traffic (ST), and their transmission should be
guaranteed. Non-safety-critical traffic can be classified into Class A and Class
B. Class A includes the flows from non-safety critical traffics but can provide
mission-critical services. Class B consists of the remaining traffic with even
lower importance [83]. Figure 2.7 shows examples of streams in a typical au-
tonomous driving system and AVB flows can be classified into Class A and
Class B based on their importance in different solutions designed by system

60

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

engineers.

Figure 2.7: Example of streams in a typical autonomous driving system [83].

Modern automotive systems are implemented as distributed systems, con-
necting various ECUs with sensors and actuators, all with high bandwidth
requirements. The sensors, including high-resolution camera images and high-
density LiDAR point clouds, have particularly high bandwidth requirements.
The traditional in-vehicle communication network is based on the controller
area network (CAN) bus, which only has a bandwidth of 0.5 Mbit/s. The
advantages of Ethernet-based networking are its low cost and high speed. It
has a bandwidth of 100 Mbit/s or even more, satisfying the communication
requirements of ADAS and even ADS [113]. Conventional Ethernet networks
operate by broadcasting the message from a source node to all connected nodes
in the network, with no regard for destinations. This means that only one node
can transmit messages at any given time. Switched Ethernet addresses this
issue by only sending traffic from sources to their destinations. This allows
Ethernet switches to have multiple concurrent transmissions, greatly increas-
ing the switches’ efficiency. As the Ethernet switch can control the flows on
the network, end-to-end delays throughout networks can be bounded. How-
ever, automotive communication consists of distinct services that are strictly

61

different in quality and potentially interfere with a flat common network. Stan-
dard switched Ethernet must be extended beyond simple traffic prioritization
to provide real-time guarantees. A lack of deterministic behaviour leads to
unpredictability in the communication system. Therefore, real-time Ethernet
solutions, particular transport protocols focused on delivering low latency, and
deterministic typically introduce delay guarantee.

Time-Sensitive Network (TSN)

The Ethernet-based in-vehicle network has been standardized in the IEEE
802.1 time-sensitive network (TSN) group since 2006 [57]. TSN standards en-
able the simultaneous transmission of different traffic classes, from best-effort
(non-critical with the lowest priority) to deterministic real-time traffic (time-
critical with the highest priority) [111], within a single network technology.
This is a significant advantage to the current state-of-the-art, where systems
frequently install independent networks for different applications [114]. Some
prior works have verified that the traffic for autonomous driving satisfies the
TSN transmission requirements in the in-vehicle network (IVN) and can be
useful to reduce the End-to-End overall delay [83]. Figure 2.8 depicts a sim-
plified example architecture of the IVN.

Figure 2.8: The simplified architecture of in-vehicle network [113].

62

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

In a TSN network, nodes will typically be switches and end stations. A
stream (or flow) is a periodic multicast data transmission from one talker
(the sender) to one or multiple listeners (the receivers). The senders and the
receivers will be end stations, while switches will operate as forwarding nodes.
While the stream defines the overall end-to-end communication between sender
and receivers, the concept of a frame (also called a frame instance) identifies a
particular message communicated between any two nodes. The period of the
frame is equal to the period of the stream, while the length of the frame is
calculated based on the data size of the stream and the link speed.

The transmission of TSN flow is based on a time schedule to guarantee
time predictability. The IEEE 802.1AS-rev standard specifies the protocol for
establishing and maintaining time synchronization between network devices.
And also ensure the time schedule is followed correctly throughout the net-
work. As mentioned before, the traffic classes of the autonomous system are
different and can be encoded in the data link frame with a three-bit priority
code point (PCP). Each TSN switch can queue up to eight distinct traffic
classes with different priorities on every port. The IEEE 802.1Qbv standard
defines scheduling mechanisms. The Time-Aware Shaper (TAS) determine
when different traffic classes should be allowed to transmit on a network. TAS
schedules consist of equal discrete time slots. Each slot specifies which gate
should be open or closed at that specific time to ensure determinism and real-
time. The schedule can be represented as a Gate Control List (GCL), which
contains the time-slot entries and the associated configuration of gate states
(GS).

Time-triggered switching provides full control of the timing of each frame
in a switch. Frame memory management in a switch would need a major re-
design as the communication schedule could require arbitrary frame reordering
when forwarding frames. Figure 2.9 depicts the queue-based model of a TSN
switch. Each queue is assigned to a gate, which has at any time two states
open or close. When the respective gate is open, frames can be selected for
transmission on the directed edge associated with the queue in first-in-first-
out (FIFO) order. If the gate of a respective queue is closed, frames from this
queue are not selected. The state of a gate may change from open to close and
vice versa from close to open. These state changes are statically scheduled
with respect to a synchronised time and defined at the design time of the
network. The scheduling problem in TSN time-triggered communication is

63

finding the points in time for the opening and closing of the gates. It realises
transmission with predictable delays [36].

Figure 2.9: Overview of a TSN switch [114].

Several works (e.g., [100], [49]) propose methods for formalizing the com-
bination of schedules for GCLs and procedures to generate the schedules for
TSN based on satisfiability modulo theories (SMT). In [44], the authors pro-
posed a fixed-priority scheduling (FPS) approach and developed a frame-level
response time analysis with arbitrary deadlines, which can be used to verify
the deterministic transmission of TSN. For ST frames, the consequences of
missing time constraints can range from the degradation of service to poten-
tially fatal system failure [33]. Therefore, it is vital to develop a fault tolerance
capability for TSN. However, most current work [7], [69], [48] focuses on spa-
tial redundancy, which is insufficient to handle temporal failures, including
faults caused by incorrect arrival times. Therefore, the main purpose of this
work is to improve the capability of TSN in terms of temporal fault tolerance.

In order to improve TSN’s efficiency, preemption mechanisms could be
utilised. Most existing systems are based on non-preemptable fixed-priority
scheduling so that any low-priority frame could block the transmission of a
high-priority frame for, at most, the length of one frame. If frame sizes are
large, as is typical in ADAS and ADS, then the emergency (event-triggered)
traffic could be blocked for a non-negligible period of time [71] in the ab-

64

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

sence of preemption. For example, the maximum valid Ethernet frame, i.e.,
1542 bytes, could lead to a 12.336µs blocking time in a network with a 1G
bit/s link rate [71]. That is unacceptable in automotive systems where the
latency requirements can be as low as 5 µs [79]. It has been verified that the
adoption of the preemption mechanism would not degrade traffic transmission
performance [25], [117]. However, the existing standard only supports one
level of preemption [111]. In [99], the authors identified this limitation and
investigated the feasibility of multiple preemption levels. They demonstrated
the necessity of multi-level preemption and introduced the technical details.
However, they did not provide any solution to further illustrate the efficiency
improvement in tackling other issues. The most recent work [10] combined
multi-level preemption support with the credit-based shaper algorithm and
proved that the maximum blocking delay caused by lower-priority traffic could
be reduced considerably. Besides, their strategy dramatically decreases the re-
sponse time of frames with higher priority. However, the drawback caused by
credit-based shaper has not been completely resolved.

2.9 Summary

This chapter comprehensively introduces essential background knowledge, in-
cluding scheduling algorithms and formal analysis methods. The software and
hardware complexity highly motivates our research to prove time-predictable
and resource-efficient scheduling methods that guarantee task execution and
data transmission to satisfy criticality-dependent timing requirements. Mixed-
criticality scheduling methods are discussed, which are fundamental steps in-
spiring us to find more efficient ways to tackle timing uncertainties. Especially
when facing timing faults of safety-critical tasks, improving system resilience,
survivability of non-safety-critical tasks, and maintaining systems’ functional
quality of service (QoS) is critical. Graceful degradation is an efficient method
that can be designed carefully to provide more fine-grained controllability
to release resources, tolerate timing faults, and maintain system operation
safely with high resource utilisation efficiency. However, considering both
functional and non-functional requirements is essential for task scheduling de-
sign, especially for autonomous system functions, because their system-wide
functionality impact levels are different and cannot be evaluated based on
metrics designed from a plain non-functional point of view. Task-dependent

65

analysis-based static scheduling methods provide temporal isolation for tasks
with varying levels of criticality. This can reduce resource waste caused by
hardware isolation, which requires more hardware resources and easily leads
to utilisation unbalances. However, when facing system mode changes, static
scheduling methods bring challenges and provide a different viewpoint about
realising task-level degradation. Finally, task-level scheduling research needs
to be extended to network bandwidth resources. List-based scheduling ap-
proach (i.e., GCL table) is involved in our work to realise temporal isolation
for safety-critical traffic transmission, which is similar to the static schedule for
task execution and has been introduced in the state-of-the-art TSN technology.
The server-based method can be involved in designing scheduling strategies to
manage remaining bandwidth, which can further provide temporal isolation
for the transmission of relatively more important non-safety-critical traffic
and with awareness of fairness for rest traffic transmission, avoiding prolonged
channel block. The contributions of this thesis are based on these ideas and
methods. In the following few chapters, details of these contributions will be
introduced and discussed in detail.

66

Chapter 3

Context- and Causality-aware
Graceful Degradation for
Mixed-Criticality Scheduling

Autonomous systems are of high complexity and often regarded as mixed-
criticality systems (MCS) in which functions are allocated criticality levels
according to risk assessment based on safety standards. Typically, tasks have
different real-time requirements across criticality levels, and the estimated
worst-case execution times (WCETs) are distinct. Further, limitations in com-
putational resources increase the difficulty of integrating tasks onto one shared
hardware platform. Conventionally, all non-safety critical tasks must be dis-
carded or suspended to guarantee the execution of safety-critical tasks when
facing a timing fault. This typically leads to a considerable decrease in the sys-
tem’s Quality-of-Service (QoS). Achieving more graceful degradation is critical
to minimizing QoS reduction.

This chapter focuses on tackling timing faults and proposes a novel grace-
ful degradation strategy for use in a mixed-criticality context. Thus, when
a system has multiple operational modes depending on the environment or
an operational task, our approach can provide an effective way of managing
degradation to maximize QoS, which is currently not sufficiently recognized
in MCS. Furthermore, the proposed causality analysis-based degradation pro-
cess “bridges the gap” so functional dependencies are considered in scheduling
design and thus leads to a graceful degradation that is both feasible and rea-
sonable in functional and non-functional terms. The evaluations show that

67

QoS can be better preserved using the proposed context-aware degradation
process when compared with more conventional MCS scheduling approaches.

3.1 Introduction

In the last decade, the development of computational platforms and the dra-
matic advances in artificial intelligence (AI) and machine learning (ML) have
enabled autonomous systems to operate without human supervision, even com-
pleting some demanding missions with the ability to adapt to the environment.
On the other hand, there have been several safety reports of fatal accidents
with autonomous vehicles (AVs) [90]. Evidently, we are still facing signifi-
cant challenges in autonomous systems before providing real safety benefits to
society.

As introduced in Chapter 1, these safety challenges can be considered from
both functional and non-functional perspectives. Functionally, safety assur-
ance processes need to be developed to assist in promoting the safety and
reliability of functions in the system. Therefore, some standards that incorpo-
rate functional safety and Risk Assessment (RA) (e.g., ISO 26262, ISO/PAS
21448, etc.) have been proposed to provide guidance on safety concepts within
the automotive industry. Further, they can be used to assign different critical-
ity values (e.g., Automotive Safety and Integrity Levels (ASIL)) to functions
in the system [41]. For non-functional issues (i.e., timing faults, as the focus of
this work), the scheduling policies should be developed in a way that ensures
the system complies with timing constraints; hence tasks can be executed cor-
rectly and at the right time [63]. However, the increasing number of functions
that are required to run on a single resource-limited hardware platform raises
the difficulty of functional integration, especially when tasks have different
criticality levels and various real-time requirements. Furthermore, the differ-
ence in worst-case execution time estimates (WCETs) under different system
criticality modes makes scheduling even more complicated.

For complex mixed-criticality systems (MCS), the underlying research prob-
lem can be interpreted as how to ameliorate the conflict of partitioning (w.r.t.
ASILs) for safety assurance and the effectiveness of shared resource usage.
Fundamentally, the task scheduling strategy should guarantee the execution
of safety-critical functions (e.g., brake control) without interference from any
non-safety-critical tasks (e.g., entertainment system) and tolerate a timing

68

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

fault (overrun) of any safety-critical function. Conventional scheduling strate-
gies change the system mode once a timing fault occurs in any safety-critical
(HI criticality) task. After that, all non-safety-critical (LO criticality) tasks
are suspended or dropped, and only safety-critical tasks are allowed to run to
their maximum estimated WCET [31]. However, as Burns et al. observed [32],
a task considered as LO criticality may still contain mission-critical functions
and be vital for correct system operation. Such tasks should be maintained as
long as possible and should not be suspended or dropped unless their execution
prevents the safety-critical tasks from completing successfully.

Therefore, improving the survivability of those LO criticality tasks is vital,
which can be realised by providing more refined graceful degradation. How-
ever, in the real-time systems community, graceful degradation methods are
usually based on a simple characterization of the functional domain, where the
degradation order is assumed to be defined according to the known importance
of each task. Besides, the importance level is also simply determined based on
the predefined criticality level by system designers, which may be insufficient
due to the limited number of levels defined by current standards (e.g., the five
ASILs QM & A-D). One attempt to mitigate Quality-of-Service (QoS) reduc-
tion is through application-level task dropping (i.e., all LO tasks in the same
application are discarded simultaneously), which is commonly used because of
the difficulty of identifying the relative importance among LO tasks from an
individual application [58]. However, that still leads to unnecessary system
QoS decreases.

The research problem becomes even more complicated when considering
multi-modal sensing. The criticality of the sensors and sensor processing can
depend on the environment, e.g., some sensors are more effective in fog and
rain, or on the situation, e.g., proximity sensors such as ultrasound are more
useful in low-speed (parking) manoeuvres. That means the system can exhibit
multiple operational modes depending on the environment or operational task.
System designers can adapt the solution to deal with such mode changes.
However, that is rarely considered by a task scheduler. Instead, it is assumed
the functional solution and the importance order of tasks are unchanged. As
a result, some LO tasks would be dropped first in the new operational mode,
although they could be more useful and important than the remaining tasks.
The unnecessary QoS reduction may be countered with adaptive changes to the
importance order. Although such scheduling strategies can guarantee system

69

safety, they can still lead to unnecessary degradation of QoS, i.e., the lack of
understanding of functional dependencies would lead to a non-optimal graceful
degradation in scheduling with respect to the functional domain.

In this chapter, we attempt to effectively deal with mode changes caused
by overrunning safety-critical (HI-criticality) tasks while maximizing QoS
through graceful degradation of LO-criticality tasks with the awareness of
system-wide functionality and operational modes (e.g., due to the change of
environmental conditions). Our approach comprises two fundamental steps.

First, we present a method to formally define the relationship between
tasks and characterize dependencies, followed by determining a metric to eval-
uate the functional QoS. Based on these fundamental steps, we propose a
novel and general strategy, Context-aware Task-level Graceful Degradation
(CTGD), for mixed-criticality scheduling to address the above issues. To illus-
trate the superiority of our proposed method, we selected the state-of-the-art
application-level task dropping proposed in paper [58] as the baseline method.
(i.e., if a LO-criticality task must be dropped, all LO-criticality tasks from
the same application should be dropped simultaneously.) The evaluation re-
sults prove that with the awareness of multiple operational modes, causality
analysis-based task-level graceful degradation can preserve more LO-criticality
tasks at each task dropping point and maximize system-wide functional Qual-
ity of Service (QoS).

The main contributions of this work are:

• We address the issues of application-level task dropping and the lack
of awareness of the task’s influence in the system during importance
order definition. Task-level importance ordering is done by introducing
a description of functional dependencies, which is utilized to determine
the importance value of each task in the system, which is more granular
than simply using ASILs.

• We consider the environmental conditions and their impacts on the sys-
tem, which is referred to as the context in this work. In different contexts,
the reliability and thus importance order of LO-criticality tasks could
be different. Instead of using one single importance order for graceful
degradation in the scheduling design, our proposed method can ensure
that the system is running with higher functional QoS for each contex-
t/scenario.

70

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

• Based on the functional dependency and failure propagation analysis, a
controlled degradation process then discards computational load at the
task level rather than simultaneously dropping all LO-criticality tasks
in an application. Thus, our method can improve survivability and keep
more LO-criticality but mission-critical tasks during overload, even un-
der high utilization situations.

• In addition to extensive experiments on synthetic tasks, we demonstrate
the importance order definition through an example that intuitively il-
lustrates its rationality and feasibility.

The rest of the chapter is organized as follows: In Section 3.2, the pro-
posed method (CTGD) is detailed, followed by the formulation of proposed
implementation strategies in Section 3.3 and Section 3.4 from functional and
non-functional perspectives, respectively. The evaluation is introduced in Sec-
tion 3.5. Finally, we conclude the work with a discussion on future work in
Section 3.6.

3.2 Method Overview

An autonomous system comprises a limited number of applications, each con-
sisting of several tasks. This Section will thoroughly introduce the system
model used by the proposed CTGD from functional and non-functional per-
spectives. For the functional model, task dependency is involved in describing
the functional relationship and used to analyse the influence propagation (i.e.,
how the state change of one node affects the failure probabilities of the rest
of the nodes in the network). Each function is a unit that can be verified
independently and also a discrete execution unit with the same meaning as
a task in the following. For the non-functional model, all tasks are released
simultaneously at run-time, and their execution can preempt or be preempted
based on predefined priority. We adopt a fixed-priority scheduler (FPS) to
manage task execution, which is used by most commercial real-time operating
systems and mandated by automotive industry standards and guidelines [1].

3.2.1 System Model from Functional Perspective

The proposed novel graceful degradation method considers system-wide in-
fluence propagation to ensure that decisions to discard tasks minimise the

71

reduction in the system’s functional QoS. To achieve this, we have three fun-
damental steps to follow to build a functional system model:

• Understand the task dependency in the system;

• Define the relationship and influence propagation;

• Determine the metric for QoS evaluation.

Step 1: Understand the task dependency in the system with the
awareness of multiple operational modes: Inevitably, autonomous func-
tions are implemented based on environmental and state perceptions. Thus,
the availability of robust sensing information and algorithms is crucial for all
robotic and autonomous platforms. Except for the complexity of task depen-
dencies, as identified by Gadd et al. [61], harsh weather and lighting condi-
tions pose non-trivial challenges to the development of autonomous systems,
especially for traditional sensing systems, forcing us to face the problem of
multi-modal sensing and multiple operational modes depending on the envi-
ronment or operational task. Current state-of-the-art sensing methods can
help to perceive the operational environment. Such functions are referred to
as context-aware tasks in this work, helping us identify the operational mode
to make the proposed method flexible when facing a dynamically changing
environment.

As an example, Figure 3.1 depicts the end-to-end pipeline of one of the
potential solutions from our delivery mobile robot (AAIP robot), which is
developing as one safety case to support the research about safety operation
concept [101]. It is not difficult to notice that data transmission exists between
different tasks, which implies failure propagation and is regarded as influence
propagation in this work. It is worth noting that, except for tasks with data
transmission (dependency), the system has many independent functions.

We have adopted the Robot Operating System (ROS) to integrate all the
algorithms illustrated in Figure 3.1. ROS provides a wide range of drivers and
state-of-the-art algorithms, along with powerful developer tools. It serves as
a set of software libraries and tools for building robot applications, making it
convenient for the development of robotics projects [89]. The lack of support
for real-time systems has been addressed in the creation of ROS2, which is
why we have chosen ROS2 as the algorithm integration tool.

In ROS2, a callback is considered the minimal schedulable entity, with
five different types (i.e., timer, subscription, service, client, and waitable call-

72

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

2D LiDARRGB Camera Infrared Senor

Feature-level Fusion

Image YOLOv5s Point Cloud Transformer

Voxel Grid Downsampler

DBSCAN Cluster Detector

Cartographer SLAM

Localisation Map generator

2D-LiDAR Local Occupancy Map

Local Occupancy Map Improvement

Global Planning

Object Collision Estimation

Mission Planner

Trajectory Planner Controller Robot interface Robot actuator

Bounding-boxes Distance
Estimation

Perception

Decision & Control

Figure 3.1: AAIP mobile robot end-to-end pipeline.

backs). Message transmission between different tasks is achieved by imple-
menting callback functions, which integrate publisher and subscriber mecha-
nisms. This means that if a ROS node cannot generate results correctly or
timely and be identified before publishing, the publisher can send a prede-
fined message (e.g., “invalid results”) to its successors, and the callbacks of its
successors can perform corresponding operations. Additionally, if a node does
not receive valid input results, its callback can also be designed to perform
corresponding operations. In this work, if HI-criticality tasks overrun (i.e.,
the execution time of the callback exceeds the predefined time budget), the
predefined LO-criticality task nodes can be skipped, or their callbacks can be
set to only keep data refreshing without further processing.

Step 2: Define the relationship and influence propagation: As an
essential step, the relationship between different system tasks needs to be for-
mally defined. Based on understanding task dependency in autonomous sys-
tems, we use a directed acyclic graph (DAG) to represent task relationships.
A DAG is a graph GAx , Ax ∈ S, which can be defined as GAx = (VAx , EAx).
In this work, we assume that there are N applications in the system S =

{A0, A1, ..., AN}. Each application is composed of tasks (nodes) with depen-
dency (VAx = {vx0 , vx1 , ..., vxm}) and is represented by a relatively small DAG
, making it easier to perform interference modeling and analysis from func-
tional perspectives. The connections among application DAGs can construct a
large-size system-level DAG that represents task dependencies between appli-

73

cations and also establishes potential interference propagation between tasks
from different applications. It is worth noting that the system has many in-
dependent functions except for tasks with data transmission (dependency).
Thus, tasks without dependency (independent tasks) are regarded as an ap-
plication comprising only one task. EAx (arrows on each link) denotes the set
of directed edges between the vertices VAx (nodes) from application Ax such
that by following a path of vertices from one node to another along the direc-
tion of each edge, no path will revisit a vertex. A system consisting of multiple
applications connected by a shared node can be represented by a larger graph,
GS = (VS , ES), where VS =

⋃
∀Ax∈S VAx and ES =

⋃
∀Ax∈S EAx

⋃
Ec. Ec

denotes the set of edges connecting nodes from different applications.
Based on the structure of the task graph, we also need to find a method to

define the functional relationship between tasks formally. Discrete Bayesian
Belief Networks (BBNs) are adopted as they can represent a set of variables
and their conditional dependencies via a DAG, which is able to support the
formulation of mathematical metrics for further evaluation [16]. In [118], an
example of the real-world application of BBN-based system representation is
provided. The BBN of a system S can be denoted as N∫ = (XS , GS , Ps).
XS represent the variables. Each node (task) v in GS corresponds one-to-
one with a discrete random variable xv ∈ XS with a finite set of mutually
exclusive states. The directed links ES ⊆ VS × VS of GS specify assumptions
of conditional dependence (and independence if no links) between random
variables according to the d-separation criterion [80]. Ps denotes a set of
conditional probability distributions P (Xv|Xpar(v)) ∈ Ps, for each variable
xv ∈ XS . Xpar(v) denotes the set of parent variables of node v ∈ VS and also
known as the conditioning variables of xv.

According to the definition of the chain rule [80], a BBN represents the joint
distribution over all the variables represented in the DAG as Equation (3.1)
shows, and the marginal and the conditional probabilities can be computed
for each node of the network.

P (XS) =
∏
v∈VS

P (xv | Xpar(v)) (3.1)

When considering context-aware nodes, they can work as prior informa-
tion for related tasks to initialise their conditional probability tables (CPTs).
Thus, as this work requires, BBN is highly compatible with supporting multi-
ple operational modes. As one essential characteristic of BBN, inference can

74

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

be used to represent the influence propagation, i.e., the state change of any
variable in the system can lead to the variation of failure probabilities of vari-
ables directly and indirectly related to the changed variable. As described
in [16], given a distribution P (x1, ..., xn), the inference is the process of com-
puting functions of the distribution. Marginal inference can be an example
concerned with the computation of the distribution of a subset of variables,
possibly conditioned on another subset. For example, given a joint distribu-
tion P (x1, x2, x3, x4, x5), a marginal inference given evidence approximation
is as Equation (3.2):

P (x5 | x1 = true) ∝
∑

x2,x3,x4

P (x1 = true, x2, x3, x4, x5) (3.2)

Independent tasks can be included in the joint distribution of one sys-
tem, and relevant terms can be eliminated during the marginal distributions’
approximation. As a result, we can use a formal way to prove that these
independent tasks have no system-wide functional influence propagation.

BBN parameters training: The system’s functions can be segmented into
discrete units for verification based on risk assessment. Therefore, we assume
that each unit’s state can be well-defined, and the structure of the system’s
BBN model is known and realised by system designers. Let’s take the mobile
delivery robot as an example. Assume we only consider two driving conditions
(context), i.e., C0 = well-lit condition, C1 = badly-lit environment. The cam-
era can work as a lighting condition-related context-aware task and highlight
the decreased confidence in camera-based functions. For the RGB-object de-
tection task (variable), we determine two states (i.e., correct and incorrect).
Correct means generating true-positive and true-negative results, while in-
correct represents generating false-positive and false-negative results. Under
different lighting conditions Ci, we can collect the rates of true-positive (cor-
rect) and false-positive (incorrect) and false-negative (incorrect). The collected
data can be used to train the conditional probability table of the RGB-object
detection variable. It is not difficult to know the required parent of each ver-
ifiable task based on task dependency analysis when extended to the system
level. Then, in a similar way, relevant data for each task can be collected
during the long-time system test under different possible conditions defined
by its parents. In this work, we assume that the data has been collected and
conditional probability tables have been trained. Then, the conditional prob-

75

ability table for each verifiable unit (task) integration can work as an initial
state and can be continuously improved during system tests (run-time obser-
vation). Some research has started to build BBN for an autonomous system,
as an example paper [107] uses data on observations of real-world (highway)
driving to construct BBNs.

Step 3: Determine the metric for QoS evaluation: The research prob-
lem is to define the decision-making procedure to determine the dropped task
at each step which results in the minimum interference with the behaviour of
the system. To solve this problem, we need to build the criteria to describe the
QoS, which should be maximised during degradation. We use utility theory
to determine the metric for QoS, and the objective of decision-making is to
identify the options that produce the highest expected utility. In probabilistic
networks, calculating each variable’s marginal distribution can reflect the in-
fluence propagation between variables. This means that a change in the state
of any one variable in the system will induce changes in the marginal distri-
bution of the variable that are directly and indirectly related to the changed
variable. To save computation, we can also assume a subset of all task nodes
as key nodes (Xkey), where their execution will significantly impact the sys-
tem’s performance. Therefore, the marginal distribution of each key node is
used to construct the expected utility function (EU) as Equation (3.3) shows.

EU =
∏

xi∈Xkey

P (xi)
∑

xi∈Xkey

u(xi) (3.3)

The decision variable, D, consists of all “undropped” (i.e., still active) LO
criticality tasks in the system, grouped into subsets according to different ap-
plications D = {[D1,1, ...,D1,n], ..., [Dm,1, ...,Dm,k]}, where Dm,n represents the
nth LO task from an application m. The decision options (which task to
drop) are mutually exclusive. Based on the trained BBN model, task discard-
ing means removing a variable, and the tables of its successors need to be
updated. Then, the system can be described using the updated conditional
probability tables. Section 3.3.2 uses a detailed example to explain the table
updating procedure.

The variable xi belongs to the set Xkey (i.e., xi ∈ Xkey ⊂ XS). The
marginal distribution P (xi) of each key node (variable) xi can be calculated
when making a decision (i.e., task removal, updating relevant tables). This
will impact the choice of alternative at D because the change in the system’s

76

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

conditional probability table can lead to differences in expected utility. u(xi)
represents a local utility function attached to the key node to reflect the de-
cision’s local impact. The definition of the local utility function may need to
consider the impact within each application. The sum of them is worked as a
coefficient to the probability term and can be used to amplify the differences
and impact the final EU value, providing a more sensitive QoS measure. In
this work, we only adopt the probability term because a more detailed design
involving such factors should be carefully discussed and verified. The defini-
tion of local utility will be discussed in future work; here, we consider it as a
constant value.

3.2.2 System Model from Non-functional Perspective

In autonomous systems, tasks have different levels of criticality, forming an
MCS. Such systems can run at different levels/modes (e.g., safety-critical,
mission-critical and non-critical). In each mode, the tasks that must be guar-
anteed can be classified according to their allocated criticality. Appropriate
scheduling policies should be adopted to guarantee that the tasks satisfy their
timing requirements. WCET is one of the vital parameters, and its estimation
may be different under different system modes based on their safety require-
ments — a higher criticality mode would typically be associated with a more
pessimistic WCET estimate — and directly influences the schedulability of the
system. For example, tasks are initially executed in the LO criticality mode in
a dual criticality system. Once a fault (overrun) occurs in any HI criticality
task, the system criticality mode changes from LO to HI, after which all LO
criticality tasks are suspended or dropped and only HI criticality tasks are
remained to run to their maximum estimated WCETs [31]. For systems with
multiple criticality modes, the system designer needs to map tasks to several
criticality-level groups according to safety requirements [74].

As the first work to bridge the gap between functional and non-functional
domains, we focus on improving the performance w.r.t. functional QoS when
tackling non-functional problems. To limit the uncertainty and complexity in-
troduced by the non-functional factors, we adopt the standard dual-criticality
model introduced in [120] and assume all tasks can be assigned with an implicit
deadline according to the predefined period. For time-triggered tasks, the rela-
tive deadline equals their period. For event-triggered tasks, the period and the
relative deadline are determined by their minimum inter-arrival time. Based on

77

this assumption, in a dual-criticality system, each task τi is defined by a tuple
τi :=

(
Ti, Di, Ci(LO), Ci(HI), Li

)
, with the period or minimum inter-arrival

time Ti, deadline Di, the execution time of low-criticality Ci(LO), and of high-
criticality Ci(HI) and an individual criticality level Li. τi is synonymous with
xi, it is a vertex in the system, and its variable is represented by xi in a BBN.
The tasks are mapped into LO and HI criticality groups. The tasks that must
be guaranteed in any circumstance are defined as HI-criticality tasks. Others
are regarded as LO-criticality, which can be sacrificed to protect the execution
of HI-criticality tasks. Moreover, we consider criticality-dependent WCETs.
Thus, each LO-criticality task has only one estimated WCET C(LO) (i.e., if
Li is LO, Ci(HI) is omitted), and each HI-criticality task has two WCET
estimates: C(LO) and C(HI) (C(LO) ≤ C(HI)).

As introduced at the beginning of Section 3.2, for the purpose of analysis,
we assume that all tasks are released simultaneously at run-time and adopt
an FPS to manage task execution. Therefore, the priority definition is vi-
tal and also plays the bridge role in introducing the functional factor to the
non-functional domain because, in this work, the importance is determined
according to the impact level on the system’s functional QoS. The importance
order guided priority definition can provide execution preference to tasks that
have a greater impact on the system. The detailed formulation will be intro-
duced in Section 3.3.

Please note that in this part of the work, we do not consider changes in
the system mode. A context-aware task can signal a change in the driving
condition, requiring an adjustment to the importance order, but it does not
signify a change in the system mode itself (e.g., LO system mode to HI sys-
tem mode). Consequently, we do not require task schedulability analysis for
this purpose. To ensure the safe operation of the system, we can identify an
available idle time slot to modify the priority of tasks (since adjusting the
importance order implies changing the priority of “Low Importance” tasks to
optimize the operation). Furthermore, in the event of an overrun, we can uti-
lize the importance order that corresponds to the current priority to mitigate
risks, such as potential deadlocks arising from priority conflicts.

3.2.3 Survivability and Graceful Degradation

The critical target of MCS is to guarantee the execution of tasks required
in different system modes to ensure the system’s safety. Conventionally, the

78

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

scheduling strategy for a dual-criticality system is dropping all LO-criticality
tasks immediately when any HI-criticality task faces a timing fault (i.e., over-
run in this work). However, as introduced in [58], when a HI task overruns its
C(LO), it is likely that it will not execute up to its C(HI). It is more likely
that the task might only overrun by a small margin, and there exists sufficient
slack time to support LO tasks execution. Moreover, some LO criticality
tasks are regarded as mission-critical functions, and simply dropping them is
unnecessary. Therefore, it is becoming increasingly evident that we need to
maintain the functions as long as possible, even though they are defined as
LO tasks, and the system is executing in a higher-criticality mode.

In this work, we introduce a graceful degradation strategy to enhance the
survivability of LO-criticality tasks and also expect to maintain the QoS to
improve the resilience of the system. That means we need to provide a higher
degree of controllability and granularity over how a system degrades. The
fundamental step for graceful degradation strategy design is to determine the
degradation order for droppable tasks. Similar to the strategy in [58], the
degradation order is defined by importance order, and task dropping starts
from the least important task according to the extent of the overrun of HI-
criticality tasks. During an overrun, it is possible that the system could move
into the HI-criticality mode while maintaining all, or at least some, of its
LO-criticality tasks if there is sufficient slack left in the system. As soon as
an overrun reaches the point at which a LO-criticality task must be dropped,
the task with the lowest importance is suspended/discarded. The fine-grained
task level discarding can delay the system-level mode change where all LO-
criticality tasks are discarded. Once the HI tasks execution is back to normal,
the fewer LO tasks need to be reinstalled. Thus, faster system performance
can be recovered — this is regarded as another advantage of the proposed
degradation. The overrun severity and relevant dropped tasks are calculated
offline and recorded in memory. The detailed procedure will be introduced in
Section 3.4. At run-time, we only have to monitor the actual execution time
of HI-criticality tasks and discard LO tasks according to the fixed rule, thus
with limited overheads.

3.2.4 The Algorithm Pseudo-code

The pseudo-code in Algorithm 1 illustrates the main pipeline of CTGD. Ini-
tially, we assume the BBN P (XS) has been well-trained for the analysed system

79

and XS is the set of all variables. The LO and HI task sets are known and
denoted by ΓLO, ΓHI , respectively. SLO is a set consisting of all applications
with droppable LO tasks (i.e. SLO =

⋃n
i=0Ai,∃v ∈ VAi

⋂
ΓLO). V LO

Ai
de-

notes the set of LO tasks from application Ai (i.e., VAi =
⋃m

j=0 vij , ∀vij ∈
VAi

⋂
ΓLO). V LO

S is the set comprising all application task sets with LO tasks
(i.e., V LO

S =
⋃

∀Ai∈SLO VAi).

Algorithm 1: The main workflow of CTGD
Input: P (XS),ΓLO,ΓHI ,XS ,SLO, V LO

S , V LO
Ai

Output: TCi , ∀Ci ∈ {C0, C1, · · · , Cn}
1 for Ci in {C0, C1, · · · , Cn} do
2 NCi ← ΓLO;
3 TCi : O 7→ ∅;
4 PCi(XS) = P (XS |C = Ci);
5 ICi = ImportanceOrder(PCi(XS),ΓLO,ΓHI ,XS , SLO, V LO

S , V LO
Ai

);
6 PCi = PriorityAssignment(ICi);
7 TCi = Offline-SensitivityAnalysis(NCi ,ΓHI ,ΓLO, O, Õ, ICi);

8 end

Based on the offline-sensitivity analysis, the discarded tasks should be
calculated offline for different system modes according to the severity of HI-
criticality tasks’ overrun (O) and the importance order of LO tasks, respec-
tively (i.e., TCi ,∀Ci ∈ {C0, C1, · · · , Cn}). The system modes serve as priors
for updating the associated conditional probability tables and updating the
initial state of the system’s BBN for importance order definition, as lines 4
and 5 of the pseudo-code show. Then the importance order-based priority al-
location (line 6) is prepared for the sensitivity analysis (line 7), and TCi can be
calculated iteratively. The while loop will be stopped either all LO tasks are
dropped, or the overrun severity is larger than the predefined threshold (Õ).
For each system mode, NCi is the set of undropped LO-criticality tasks that
need to be initialised by all LO tasks. The pseudo-codes of ImportanceOrder(),
PriorityAssignment(), and Offline-SensitivityAnalysis() are given later in Al-
gorithms 2-4.

In summary, we propose a method that considers the relationship between
different tasks and also different applications in the system to lay the founda-
tion for finer-grained degradation control. The influence of each task dropping
will be reflected in the probabilistic task graph and used to formulate the cri-

80

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

teria to determine the degradation order (the mathematical formulation will
be introduced in Section 3.3). With the awareness of the environmental situ-
ation, e.g., the driving condition, which is determined as prior information to
the probabilistic graph model, different degradation orders (i.e., importance
orders) can make the system run with relatively high functional QoS under
different driving circumstances.

3.3 Formulation of Importance Ordering

As the first step of the proposed CTGD strategy, this section details the
importance ordering, which is intended to improve the resilience of systems
based on understanding the holistic functional dependency.

3.3.1 Allocation of Importance Orders

The importance allocation defines the degradation order of LO criticality tasks
during timing overruns. The influence of discarding a task can propagate
network-widely as the tasks would have inter-dependencies. Thus, it could
also contribute to other applications. The metric defined by expected util-
ity introduced in Section 3.2.1 can be used to evaluate the impact level of
each LO-criticality task. The simplified expected utility function can be re-
formed as Equation (3.4) and is essentially the multiplication of the marginal
probabilities of key nodes.

EU =
∏

xi∈Xkey

P (xi) (3.4)

We adopt the sum-product algorithm to compute the marginals of all key
nodes as Equation (3.5) shows.

P (xi) =
∑
XS\xi

P (XS) (3.5)

The proposed method can provide different graceful degradation orders for
different driving conditions to provide more flexibility and maintain the system
QoS with the awareness of context. As introduced in Section 3.2.3, the driving
condition works as prior to initialise the BBN work, and the joint distribution
can be updated by PCj (XS) = P (XS |C = Cj), and j represent the mode
index. Based on the joint distribution of the specific mode, we can get the
corresponding importance order of LO-criticality tasks ILOCj according to

81

the proposed ImportanceOrder Algorithms. During the importance order
calculation, if one or more tasks Xd = {x1, x2, . . . , xk} from the droppable
LO-criticality task set ΓLO is/are selected to be discarded, the chosen task is
regarded as generating false output, and its state will be set as incorrect and
removed from the network, which works as prior information to its successors’
CPTs (i.e., related conditional probability tables are updated). Then, the joint
distribution of the system needs to be updated as P̂Cj (XS) = PCj (XS \ Xd).
Based on the latest joint distribution, we can calculate the utility of the system
without the dropped tasks according to Equation (3.4). The pseudo-code of
Algorithm 2 introduces the procedure of importance order definition. We
determine the application level discarding order first (from lines 1 to 12) and
then decide the task-dropping order for each application (from lines 13 to 33).
In that way, the graceful degradation can start from the task in relatively less
important applications and make our method more practical.

The selected application or task to be dropped should maintain the max-
imum expected utility value (with the lowest impact on the system’s service)
and is assigned the lowest importance. The problem can be defined as:

max

 ∏
xi∈Xkey

∑
XS\xi\Xm

d

P̂Cj (XS)

 , ∀Xm
d ∈ X̂ (3.6)

For application discarding order definition, Xm
d represents the set of LO

tasks from applicationAm (i.e., Xm
d = XVAm

, VAm =
⋃n

j=1 vmj ,∀vmj ∈ ΓAm

⋂
ΓLO,

and X̂ =
⋃

∀Am∈S Xm
d). For relative task discarding order define in one applica-

tion, Xm
d represents the selected task τm and X̂ is the set of LO tasks from the

analyzed application Ak (i.e., Xm
d = xvm , X̂ =

⋃n
m=0 xvm ,∀vm ∈ ΓAk

⋂
ΓLO).

Once the dropped application or task is selected, both it and the related edges
will be removed from the graph. The system’s joint distribution will be up-
dated, and the network will be considered as a new one with a new structure,
as lines 12 and 30 show. Then, the next test round can be launched. The
procedure will be repeated until all LO critical tasks are removed and the
importance order under driving condition Ci is defined and denoted as ILOCi

.

As aforementioned, the importance order guided priority definition can
provide execution preference to relatively important tasks. In this work, we as-
sume that all tasks fromHI-criticality task set ΓHI share the same importance
level and higher than all LO-criticality tasks. The importance order of HI
tasks is denoted by IHI

Ci
. Then, the Importance order of all tasks in the system

82

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

ICi in specific driving conditions can be obtained through ICi ← ILOCi

⋃
IHI
Ci

.
The first element from list ICi has the lowest importance level.

3.3.2 Example of BBN-based Importance Order Definition

𝜏!

𝜏"

𝜏#𝜏$

𝜏%

𝜏&

𝜏'

Application A

Application BC

Context-aware task

HI Task

LO Task

Key Node

Figure 3.2: The example of a system represented by a Bayesian network.

To help to understand, we use one example to demonstrate the BBN-based
context-aware importance ordering. Figure 3.2 illustrates a system comprising
two applications, A and B. Each application consists of several tasks with
dependencies. The edge between task τ1 and τ2 builds the connection between
the two applications. Task C denotes the context-aware node that works as
prior information of the related tasks’ CPTs (i.e., τ1 and τ4), and its state
can be either normal (C0) or abnormal (C1). Figure 3.3 shows the randomly
generated CPTs for each task (node). In each table, the condition variables
represent the predecessors of the corresponding variable (task). The state of
driving context C can be used to initialise the table of τ1 and τ4. Assuming
the current driving condition is abnormal, i.e., C = C1, the tables of τ1 and τ4
are updated as Figure 3.4 shows. Then, the element C can be eliminated, and
the initialisation of the Bayesian network under abnormal mode is finished.
Then, we start to calculate the marginal probability of τ5 and τ7, respectively,
following Equation (3.5).

The application-level degradation order is first determined then the relative
discarding order is determined within each application. During application-

83

Algorithm 2: The ImportanceOrder Algorithm
Input: PCi(XS) = P (XS |C = Ci),ΓLO,ΓHI ,XS ,

SLO, V LO
S , V LO

Ai

Output: ICi

/* Decide Application-level Discarding Order: */

1 Ŝ ← SLO;
2 Dapp = ∅;
3 P̂ app

Ci
(XS)← PCi(XS);

4 while Ŝ ≠ ∅ do
5 for Ai in Ŝ do
6 P̂Ai

Ci
(XS) = P̂ app

Ci
(XS \ XVAi

); EUAi =
∏

xi∈Xkey
P̂Ai
Ci

(xi);

7 end
8 ind = max(EUAi) /* application with the lowest impact

*/

9 Dapp ← Aind;
10 Ŝ ← SLO \Aind;
11 P̂ app

Ci
(XS)← P̂ app

Ci
(XS \ XVAind

);

12 end
/* Decide Task-level Discarding Order: */

13 V̂S ← V LO
S ;

14 ILOCi
= ∅;

15 P̂ τ
Ci
(XS)← PCi(XS);

16 while V̂S ̸= ∅ do
17 for Ai in Dapp do
18 V̂A ← V LO

Ai
;

19 Dτ = ∅;
20 while V̂A ̸= ∅ do
21 for vj in V̂A do
22 P̂

vj
Ci
(XS) = P̂ τ

Ci
(XS \ xvj); EUvj =

∏
xi∈Xkey

P
vj
Ci
(xi);

23 end
24 ind = max(EUvj)/* task with the lowest impact */

25 Dτ ← τind;
26 V̂A ← V LO

S \ τind;
27 V̂S ← V LO

S \ τind;
28 P̂ τ

i (XS)← P̂ τ
Ci
(XS \ xvj);

29 end
30 ILOCi

← Dτ ;

31 end

32 end
33 ICi ← ILOCi

⋃
IHI
Ci

;

84

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

𝐶! Normal

𝐶" Abnormal

𝐶! 𝝉𝟒 = 𝟎 0.75

𝐶! 𝝉𝟒 = 𝟏 0.25

𝐶" 𝝉𝟒 = 𝟎 0.85

𝐶" 𝝉𝟒 = 𝟏 0.15

0: Correct

1: Incorrect

𝑷(𝝉𝟒|𝑪)

𝐶! 𝝉𝟏 = 𝟎 0.85

𝐶! 𝝉𝟏 = 𝟏 0.15

𝐶" 𝝉𝟏 = 𝟎 0.30

𝐶" 𝝉𝟏 = 𝟏 0.70

𝑷(𝝉𝟏| 𝑪)

𝜏" = 0 𝝉𝟐 = 0 0.85

𝜏" = 0 𝝉𝟐 = 1 0.15

𝜏" = 1 𝝉𝟐 = 0 0.01

𝜏" = 1 𝝉𝟐 = 1 0.99

𝑷(𝝉𝟐|𝝉𝟏)

𝝉𝟑 = 𝟎 0.70

𝝉𝟑 = 𝟏 0.30

𝑷(𝝉𝟑)

𝝉𝟔 = 𝟎 0.80

𝝉𝟔 = 𝟏 0.20

𝑷(𝝉𝟔)C is priori

𝜏(= 0 𝜏) = 0 𝜏* = 0 𝝉𝟓 = 𝟎 0.90

𝜏(= 0 𝜏) = 0 𝜏* = 0 𝝉𝟓 = 𝟏 0.10

𝜏(= 0 𝜏) = 0 𝜏* = 1 𝝉𝟓 = 𝟎 0.85

𝜏(= 0 𝜏) = 0 𝜏* = 1 𝝉𝟓 = 𝟏 0.15

𝜏(= 0 𝜏) = 1 𝜏* = 0 𝝉𝟓 = 𝟎 0.80

𝜏(= 0 𝜏) = 1 𝜏* = 0 𝝉𝟓 = 𝟏 0.20

𝜏(= 0 𝜏) = 1 𝜏* = 1 𝝉𝟓 = 𝟎 0.75

𝜏(= 0 𝜏) = 1 𝜏* = 1 𝝉𝟓 = 𝟏 0.25

𝜏(= 1 𝜏) = 0 𝜏* = 0 𝝉𝟓 = 𝟎 0.40

𝜏(= 1 𝜏) = 0 𝜏* = 0 𝝉𝟓 = 𝟏 0.60

𝜏(= 1 𝜏) = 0 𝜏* = 1 𝝉𝟓 = 𝟎 0.35

𝜏(= 1 𝜏) = 0 𝜏* = 1 𝝉𝟓 = 𝟏 0.65

𝜏(= 1 𝜏) = 1 𝜏* = 0 𝝉𝟓 = 𝟎 0.10

𝜏(= 1 𝜏) = 1 𝜏* = 0 𝝉𝟓 = 𝟏 0.90

𝜏(= 1 𝜏) = 1 𝜏* = 1 𝝉𝟓 = 𝟎 0.05

𝜏(= 1 𝜏) = 1 𝜏* = 1 𝝉𝟓 = 𝟏 0.95

𝑷(𝝉𝟓|𝝉𝟐, 𝝉𝟑, 𝝉𝟒)

𝜏" = 0 𝜏, = 0 𝝉𝟕 = 𝟎 0.90

𝜏" = 0 𝜏, = 0 𝝉𝟕 = 𝟏 0.10

𝜏" = 0 𝜏, = 1 𝝉𝟕 = 𝟎 0.30

𝜏" = 0 𝜏, = 1 𝝉𝟕 = 𝟏 0.70

𝜏" = 1 𝜏, = 0 𝝉𝟕 = 𝟎 0.85

𝜏" = 1 𝜏, = 0 𝝉𝟕 = 𝟏 0.15

𝜏" = 1 𝜏, = 1 𝝉𝟕 = 𝟎 0.05

𝜏" = 1 𝜏, = 1 𝝉𝟕 = 𝟏 0.95

𝑷(𝝉𝟕|𝝉𝟏, 𝝉𝟔)

Figure 3.3: The conditional probability table of the system.

level calculation, all LO tasks of the dropped application will be discarded
simultaneously. The marginal probability of each key node is calculated to
determine the utility function (i.e., QoS) of a system based on Equation (3.5).
Application-dropping possibilities can be used to find out the application-level
dropping order. In this example, we have two possibilities: (1) discarding all
LO tasks in application A first, and (2) dropping all LO tasks in application
B first. Take the first possibility as an example. τ2 and τ3 would be dropped.
Their states would be set to 1 (i.e., they cannot generate correct results).
Based on this possibility (i.e., condition), the tables (i.e P (τ5, τ4)) of their
successors τ5 can be updated as Figure 3.4 shows.

After finishing graph updating, the marginal probability of each key node
τ5 and τ7 should be found. First of all, the marginal probability should be
formulated based on the possibility. τ5 is taken as an example, and its marginal
probability based on the possibility (1) is shown in Equation (3.7).

P (τ5) ∝
∑
τ4

P (τ4)P (τ5, τ4)×

85

𝝉𝟒 = 𝟎 0.	85
𝝉𝟒 = 𝟏 0.	15

𝝉𝟏 = 𝟎 0.	30
𝝉𝟏 = 𝟏 0.	70

𝑷(𝝉𝟒) 𝑷(𝝉𝟏)

𝜏# = 0 𝝉𝟓 = 𝟎 0.75

𝜏# = 0 𝝉𝟓 = 𝟏 0.25

𝜏# = 1 𝝉𝟓 = 𝟎 0.05

𝜏# = 1 𝝉𝟓 = 𝟏 0.95

𝑷(𝝉𝟓, 𝝉𝟒) = 𝑷(𝝉𝟓|𝝉𝟒)

Figure 3.4: The updated tables of τ1, τ4 and τ5.

∑
τ1,τ6,τ7

P (τ1)P (τ6)P (τ7, τ6, τ1) (3.7)

Evidently, τ5 only has a relationship with τ4, and the equation can be
further simplified as Equation (3.8) shows. In the same way, the marginal
probability of τ7 can be simplified by Equation (3.9).

P (τ5) ∝
∑
τ4

P (τ4)P (τ5, τ4) (3.8)

P (τ7) ∝
∑
τ1,τ6

P (τ1)P (τ6)P (τ7, τ6, τ1) (3.9)

Based on the marginal probability formulation of each key node and the
tables attached to related nodes, the sum-product method is used to elimi-
nate the elements one after another in the formulation equation (e.g., Equa-
tion (3.8)) to get the final marginal probability values of each key node. For
instance, the marginal probability calculation of τ5 only needs to eliminate
one element, τ4 and is taken as an example to demonstrate the calculation
procedure. As Figure 3.5 illuminates, one intermediate factor ψ represented
by Equation (3.10) would be generated to assist in τ4 elimination following
Equation (3.11) and the marginal probability of P (τ5) is proportional to it.
Following the same procedure, the marginal probability of τ7 can be calculated
(i.e., P (τ7 = 0) ∝ 0.717 and P (τ7 = 1) ∝ 0.283).

ψ(τ4, τ5) = P (τ4)P (τ5, τ4) (3.10)

P (τ5) ∝
∑
τ4

ψ(τ4, τ5) (3.11)

Finally, the utility value of possibility (1) can be obtained by EU1 =

P (τ5 = 0) × P (τ7 = 0) = 0.645 × 0.717 ≈ 0.462 according to Equation (3.4).

86

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

𝜏! = 0 0. 85

𝜏! = 1 0. 15

𝜏! = 0 𝝉𝟓 = 𝟎 0.75

𝜏! = 0 𝝉𝟓 = 𝟏 0.25

𝜏! = 1 𝝉𝟓 = 𝟎 0.05

𝜏! = 1 𝝉𝟓 = 𝟏 0.95

𝑷(𝝉𝟓, 𝝉𝟒) = 𝑷(𝝉𝟓|𝝉𝟒)

*
𝜏! = 0 𝝉𝟓 = 𝟎 0. 85 * 0.75 = 0.6375

𝜏! = 0 𝝉𝟓 = 𝟏 0. 85 * 0.25 = 0.2125

𝜏! = 1 𝝉𝟓 = 𝟎 0. 15 * 0.05 = 0.0075

𝜏! = 1 𝝉𝟓 = 𝟏 0. 15 * 0.95 = 0.1425

𝝍(𝝉𝟓, 𝝉𝟒)

Sum-product
Eliminate 𝝉𝟒

𝜏$ = 0 0.6375 + 0.0075 = 0. 645

𝜏$ = 1 0.2125 + 0.1425 = 0. 355
∝

𝑷(𝝉𝟒)

𝑷(𝝉𝟓)

Figure 3.5: The example of τ4 sum-product based elimination.

Following the same calculation procedure, the utility value of EU2 under the
possibility (2) is approximately 0.508. Because EU2 > EU1, the LO task τ1

in application B should be discarded first. From now on, we will start to
determine the relative order within each application. In this example, there
is only one LO-criticality task in application B, and it is also the first task
in the final degradation order list with the lowest importance value. For the
LO tasks from application A, the task with the highest utility value after
discarding should be determined as the one with the lowest importance value
in the specific application. In this example, τ2 should be discarded first with
utility value 0.527, which is larger than the expected value (0.483) of dropping
τ3 first. Suppose there are more LO tasks in application B. The conditional
probability tables should be updated after fixing the first dropped task, and
the procedure would be repeated until the task order is determined. In this
example, the final degradation order is determined as: (τ1, τ2, τ3).

3.4 Formulation of Graceful Degradation

The importance order definition method introduced in the last section fo-
cuses on functional aspects. This section will introduce the non-functional
perspective formulation of the proposed CTGD method. The task dropping
points (i.e., the severity of HI tasks’ overrun) for LO-criticality tasks should
be found offline, which defines a graceful degradation procedure based on the
importance order and the severity of the timing fault (overrun) at run time.

87

3.4.1 Priority Assignment

In this work, we assume all HI criticality tasks share the same importance
value higher than all LO criticality tasks. Context-aware tasks are classified
into the HI-criticality task set, and it is not necessary to differentiate them
from other HI tasks for priority assignment. The relative importance order
of LO tasks is determined based on the method introduced in the last sub-
section. After the importance order of all tasks is confirmed (i.e., ICi). We
adopt Audsley’s priority assignment technique-based method to assign priority
to each task, which attempts to allocate lower-importance tasks with a lower
priority. The pseudo-code is illustrated in Algorithm 3.

This approach works as follows [58]: For each priority level, beginning at
the lowest. Based on the schedulability analysis, we can check the schedu-
lability of each task at this level. If more than one task is schedulable (i.e.,
Sched = True), assign priority to the task with the lowest importance value.
In the pseudo-code, pl is the range of priority in the system and equals the
number of tasks in the system (i.e., len(ICi). The priority allocated to each
task τ is denoted by PCi(τ).

Schedulability analysis is essential to verify that the execution of tasks can
satisfy their predefined deadline in the worst-case scenario. Adaptive Mixed-
Criticality (AMC) analysis is widely used and recognised as the most effec-
tive approach and has become the standard approach for fixed priority-based
MCSs, which has been thoroughly introduced in Section 2.5.2. In this work,
we adopt the AMC-rtb [24] method for schedulability analysis. However, the
response time analysis could be a pessimistic estimation and reduce the schedu-
lability of the task set. The reason is that jobs of LO-critical tasks may not
execute for the entire busy period of a HI-criticality task in the LO mode.
After the mode change point, there are no newly released LO jobs. Besides,
for HI-critical tasks, jobs released before the mode change point only con-
tribute no more than C(LO) value. AMC-rbt-based response time analysis
is pessimistic but computationally efficient. There exists a trade-off between
accuracy and computing fast, which is out of the scope of this work.

3.4.2 Sensitivity Analysis and Graceful Degradation

Once the system mode change (from LO to HI) is triggered, we do not drop
all LO-critical tasks immediately but start from the least important task ac-

88

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

Algorithm 3: The PriorityAssignment with importance
Input: ICi

Output: PCi

1 Initialise all tasks with the highest priority level;
2 pl = len(ICi);
3 PCi : τ 7→ Pl,∀τ ∈ ICi ;
4 for l in Rang(pl) do
5 Candidate = ∅;
6 for τ in ICi do
7 PCi(τ) = l;
8 Sched = SchedulabilityAnalysis(ICi ,PCi(τ));
9 if Sched = True then

10 Candidate← τ ;
11 end
12 else
13 Continue;
14 end

15 end
16 Allocate the lowest priority level to the task with the lowest

importance (I) task
17 ind = minI(Candidate);
18 PCi(τind) = l;
19 ICi ← ICi \ τind;
20 end

89

cording to the extent of the overrun of HI-criticality tasks.

Sensitivity Analysis

Offline sensitivity analysis is used to determine the extent of the overrun re-
quired to drop a task with a particular level of importance. The procedure
consists of the following steps:

1. Find out unschedulable points during increasing overrun ofHI-criticality
tasks.

2. Record the overrun extent and dropped LO-criticality task(s), then in-
crease the extent of the overrun to search for the next dropping point.

3. Repeat the process until all possible dropping points are recorded.

As the pseudo-code for Algorithm 4 shows, all HI-criticality tasks’ C(LO)

WCET values are assumed to be increased by the same percentage ∆O during
sensitivity analysis (from line 10 to 13). At each round, the response time of
each LO task under the latest schedulable state needs to be backed up (from
lines 7 to 9). With increasing the C(LO) of HI-criticality tasks until any of
the following requirements, Ri(LO) ≤ Di and R∗

i ≤ Di, are not satisfied (line
15), which can be calculated according to Equation (3.12) and (3.13). Then
the backed-up response time R̂d(LO) of dropped task τd is denoted as φτd ,
which is linked to the specific overrun (task dropping point, i.e., Ô) through
the 2D array RτdÔ. This array with be initialised as an empty set (line 3).
The dropped task τd will be recorded into a Ψdropped set.

One or more LO tasks should be discarded during sensitivity analysis at
each dropping point. That means their interference can be eliminated after the
specific time point (e.g., φτd). Therefore, the system is regarded as still work-
ing in LO mode. Then, we attempt to increase the overrun to find the next
task dropping point, and Equation (3.12) can be used to estimate the response
time. The third term of Equation (3.12) represents that after some specific
time points, the already dropped LO tasks will not impact the execution of
any tasks, even with a higher priority.

90

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

Ri(LO) = Ci(LO)

+
∑

τj∈hp(i)∧τj /∈Ψdropped

⌈
Ri(LO)

Tj

⌉
· Cj(LO)

+
∑

τj∈hp(i)∧τj∈Ψdropped

⌈
φj

Tj

⌉
· Cj(LO)

(3.12)

The response time analysis during mode change is based on Equation (3.13),
which can dominate the response time analysis in HI mode:

R∗
i = Ci(HI)

+
∑

τj∈hpL(i)∧τj /∈Ψdropped

⌈
Ri(LO)

Tj

⌉
· Cj(LO)

+
∑

τj∈hpL(i)∧τj∈Ψdropped

⌈
φj

Tj

⌉
· Cj(LO)

+
∑

τk∈hpH(i)

⌈
R∗

i

Tk

⌉
· Ck(HI)

(3.13)

where R∗
i represents the response time of analysed task τi running with the

WCET in HI mode (i.e., Ci(HI)); hpL(i) is the set of LO-critical tasks with a
priority higher than or equal to the analysed task, and hpH(i) denotes the set
of HI-critical tasks with a priority higher than or equal to the analysed task.
If the system mode change event impacts task τi, then the mode change time
point should be earlier than Ri(LO). Equation (3.13) provides the response
time upper-bound of the analysed task, which includes the interference from
LO tasks during mode change. Based on Equation (3.12), we can provide the
bound of the possible interference of non-dropped LO tasks presented by the
second term. The third term of Equation (3.13) has the same meaning as the
third term of Equation (3.12).

Graceful Degradation

The dropping points and corresponding discarded tasks (i.e., TCi(O)) consider-
ing conditions are defined for graceful degradation based on offline sensitivity
analysis and fixed. If the overrun continues to increase, the calculation pro-
cess is repeated until any stopping requirements are met. During runtime,
we only need to monitor the actual execution time of HI-criticality tasks. If

91

Algorithm 4: The Offline-SensitivityAnalysis

Input: NCi ,ΓHI ,ΓLO,O, Õ, ICi

Output: TCi ,∀Ci ∈ {C0, C1}
1 O ← 0%;
2 TCi : O ← ∅;
3 R{τ0O0%,τ1O0%,...,τnO100%} ← ∅;
4 Ψdropped ← ∅;
5 ∆O = 10%;
6 Corig

τ (LO) = Cτ (LO);
7 while NCi ̸= ∅ & O ≤ Õ do
8 for τi in ΓLO do
9 R̂i = Ri(LO);

10 end
11 O ← O +∆O;
12 for τ in ΓHI do
13 Cτ (LO)← min{Corig

τ (LO)(1 +O), Cτ (HI)};
14 end
15 for τi in ICi do
16 while Ri(LO) > Di or R∗

i > Di do
17 for τd in ICi

⋂
NCi do

18 Ô = O −∆O;
19 TCi(Ô)← τd;
20 NCi ← NCi \ τd;
21 φτd = R̂τd ;
22 RτdÔ = φτd ;

23 Ψdropped ← τd;
24 break;

25 end

26 end

27 end

28 end

92

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

any HI task overruns its LO WCET up to the recorded dropping point, the
corresponding LO tasks can be directly suspended or dropped.

3.5 Evaluation

3.5.1 Experiment Setup

The evaluation is based on results produced using a simulation implemented
in Python. Our simulator can randomly generate task dependencies based on
constraints from real-world applications (e.g., the task number limitation and
the width and depth of the task graph for each application). Each application
is regarded as a set of tasks with dependencies. The context-aware task is a
concept from a functional perspective. From a structural point of view, some
source nodes from the randomly generated graph can be regarded as context-
aware tasks. The criticality definition is determined based on the dependency
between LO andHI task in the real world, which is introduced in [93]. Besides,
the initial conditional probability tables are generated randomly according to
the method introduced in [9]. The experiment setup has the following phases:

(1) Task dependency generation: an existing directed acyclic graph (DAG)
generator [127] is used in simulating task graphs of systems in this work.
Each DAG represents one application, and the maximum depth (the number
of layers) is randomly chosen from 4 to 6. The number of generated nodes
in each layer is uniformly distributed from 2 to 8. To bound the complexity
for the following graph calculation, we assume that each system is composed
of three applications and the task number of the whole system is between 20
and 35. Furthermore, one task from each application is randomly selected to
simulate the task dependency between different applications. Under differ-
ent system utilisations, we randomly generate ten different graph structures.
Please note that the DAG is only involved in simulating the functional rela-
tionship between tasks in the system. As mentioned in Section 3.4.1, we adopt
a fixed-priority scheduler according to Audsley’s priority assignment [12] based
method. Therefore, all tasks are assumed to be released simultaneously at run-
time. The consideration of execution precedence constraints will be introduced
in our future work.

(2) Execution time generation: After fixing the system graph structure, UUni-
fast [53] is used to synthesise the execution time and period of each task under
different system utilisations. The relative deadline of each task is equal to its

93

period. Tasks from the same application are assumed to share the same pe-
riod. Each LO criticality task is allocated a single execution time C(LO). HI
criticality tasks have dual execution time assignments; C(LO) values are the
same as for LO criticality tasks. In this work, we assume C(HI) = 2 ·C(LO),
which means the overrun severity (Õ) will never exceed 100%. Schedulability
analysis is used to guarantee tasks’ schedules when the system runs under LO
mode, HI mode and during mode change.

(3) LO criticality task selection: The selection of LO tasks starts with selecting
HI criticality tasks in the system. In the generated graph, the sink node of
each application is considered as the fusion node, which should be set as HI
criticality. At least one node from the parent set of any HI criticality task
should be set as HI and is randomly selected. Following this rule, we define
all HI criticality tasks, and the remaining tasks are classified into the LO
criticality group.

(4) Conditional probability distribution generation: The previously generated
task structure is fed into a CPT generator, which is published in [9]. The
randomly generated CPTs are then attached to each task node in our system.
Each node has only two states (correct and incorrect), and the definition of
correct and incorrect can be found in Section 3.3.2. The context-aware task
works as prior information for each system, and we assume the value is known
as it will not impact the evaluation of our proposed method.

(5) Degradation order definition and sensitivity analysis: We first determine
the application discarding order, and then the task dropping order for each
application to define the degradation order. Our evaluation needs to illustrate
how our method can enable more LO criticality tasks to survive during system
overrun and maintain a relatively higher expected utility. Therefore, the ex-
pected utility (EU) and the number of remaining LO-criticality tasks should
be recorded during offline sensitivity analysis. The difference (improved per-
centage) of EU (∆EUO) and survived task values (∆SO) are calculated as
Equation (3.14) (3.15) and gathered to demonstrate the advantage of our
method.

∆EUO = [EUO
BBN − EUO

App)/EU
O
App]× 100% (3.14)

∆SO = [SO
BBN − SO

App)/DAll]× 100% (3.15)

EUO
BBN denotes the maintained EU at each task dropping pointO with our

94

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

proposed BBN-based method. UO
App represents the maintained value if we drop

all LO criticality tasks from the same application simultaneously. Suppose
the difference value ∆EUO is larger than zero. In that case, that means our
approach can maintain the system at a higher QoS at each task-dropping
point, at which one or more LO tasks should be discarded to guarantee the
execution of HI criticality tasks. SO

BBN denotes the number of remaining LO
criticality tasks at each task dropping point with our method. SO

App represents
the number if we do application-level task dropping. DAll is the set of all
droppable tasks in the analysed system.

The EU values at each dropping point

The number of remaining LO tasks at each dropping point

BBN

BBN
App

App
0.10

0.08

0.06

0.04

0.02

0.00
0.2 0.3 0.4

The system overrun

0.2 0.3 0.4
The system overrun

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

EU
 v

al
ue

Th
e

nu
m

be
r o

f r
em

ai
ni

ng
 ta

sk
s

Figure 3.6: The EU value and remaining LO tasks at each task dropping
point of a specific graph. (with Util = 0.7, 3 applications, 18 tasks, of which

6 are LO criticality tasks)

The difference value ∆S illustrates how many more tasks can survive dur-
ing the system’s overrun. During offline sensitivity analysis, different graph

95

structures with different CPTs, execution times, LO task sets will have dif-
ferent task-dropping points. As the example in Figure 3.6 shows, the task-
dropping points calculated by offline sensitivity analysis are 0.2, 0.3 and 0.4.
That means that one or more LO-criticality tasks should start to be discarded
when the severity of HI-criticality tasks achieve these three points (i.e., 20%,
30%, and 40%), respectively. With the increase of the overrun further, the sys-
tem has sufficient resources to support the execution ofHI-criticality tasks and
it is not necessary to discard more LO-criticality tasks. That means, based on
both the application-level discarding method and our proposed method, two
LO-criticality tasks will never be discarded. Compared to the application-level
discarding method at the first task-dropping point, our strategy can maintain
a higher EU. The fine-grained degradation control also results in enabling
50% more LO tasks to survive. Once the overrun reaches 20%, dropped LO

tasks are from two different applications. The standard application discarding
method dropped all LO tasks of both applications. However, the system still
has enough slack. Two tasks are unnecessarily dropped. When the overrun
increases to 0.3, our proposed method can maintain one more task, which will
be dropped with a system overrun of 0.4. Evidently, our proposed method
can keep LO tasks as long as possible. In the meanwhile, the EU value is also
maintained.

To ensure that the experiment was of sufficient scale to give credible re-
sults, we synthesised task sets under 7 different utilisation (U = 0.3, 0.4, ..., 0.9)
and randomly generated 10 different system structures (i.e., task dependency
graph) for each workload. Under each workload with a different graph struc-
ture, 30 different conditional probability distributions (CPDs) were randomly
generated. For each system with individual utilisation and conditional proba-
bility distribution, the different values of ∆EUO and ∆SO at each task drop-
ping point for the overrun test will be calculated and the mean different value
∆EU and ∆S can be calculated according to Equations (3.16) and (3.17).
T (O) is a set comprised of all task-dropping points (i.e., the severity of sys-
tem overrun O), identified by offline sensitivity analysis.

∆EU = mean(∆EUO),∀O ∈ T (O) (3.16)

∆S = mean(∆SO),∀O ∈ T (O) (3.17)

Overall, for each system utilisation, we use 300 different systems with
either different task dependencies or different probabilistic relationships to

96

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

evaluate our proposed method. In order to compare the performance of a
system based on the application level degradation and our proposed strategy,
the difference value distributions and the mean values under different graph
structures in specific system utilisation are collected. The results of systems
with the utilisation of 0.6 and 0.9 are selected to illustrate the performance
under medium and highly-loaded situations, respectively. Furthermore, the
comprehensive results of 2100 different systems are collected and presented.

3.5.2 Extensive Experiments with Synthetic Tasks

Figure 3.7: The proportion of systems with higher EU value under Util = 0.6
(10 randomized graph structures and 30 CPD tests for each bar)

Figure 3.7, 3.8, 3.9 and 3.10 illustrates the performance of systems with
utilisation 0.6. Each system structure has 30 different CPTs. Figure 3.7 il-
luminates the proportion of the system with improved performance from an
expected utility value (i.e., QoS) perspective, the blue part depicts the por-
tion of the improved systems with higher QoS during graceful degradation. In
contrast, the yellow portion illustrates the ratio of systems with the same per-
formance. Figure 3.9 illuminates the proportion of the system with improved
performance from a survivability perspective, and the grey part represents sys-
tems preserving more LO-criticality tasks, while the pink slice demonstrates
the proportion of systems with the same level of survivability. One can ob-
serve that the improved proportions have almost the same value from both
perspectives. That means the system with improved survivability would also

97

Figure 3.8: The distribution of EU value difference of improved system

Figure 3.9: The proportion of systems with improved survivability under Util
= 0.6 (10 randomized graph structures and 30 CPD tests for each bar)

maintain higher QoS during system overrun based on our proposed method.
The histograms from the result of highly loaded systems with Uti = 0.9 also
illustrate the same trend, as Figure 3.11 and 3.13 show; however, the overall
proportion of improved systems significantly increased.

As the box plots of the EU value in Figure 3.8 and 3.12 show, based on
our proposed method, the value of the improved graph can be maintained
relatively higher. That implies that the system can be executed with a higher

98

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

Figure 3.10: The distribution of survived percentage difference of improved
system

Figure 3.11: The proportion of systems with higher EU value under Util =
0.9 (10 randomized graph structures and 30 CPD tests for each bar)

QoS through graceful degradation. The green dashed lines denote the mean
value, and the orange line represents the median value. Based on our pro-
posed method, in the improved system with utilisation of 0.6 and 0.9, the
EU value can be 3.8% and 6.2% more on average than the system without
any QoS consideration, and the median value can be 2.6% and 4.9% higher,
respectively. The magnitude of the difference in the EU value is directly af-

99

Figure 3.12: The distribution of EU value difference of improved system
under Util = 0.9

Figure 3.13: The proportion of systems with improved survivability under
Util = 0.9 (10 randomized graph structures and 30 CPD tests for each bar)

fected by the value of the randomly generated probability value. If the value
difference is quite small, such as Pcorrect = 0.506, Pincorrect = 0.494, and if the
table values in the whole graph are similar, the variation of marginal value,
which is used to determine the EU value, could be small. However, in the
real world, the difference in probability value can be large enough to get a
much more significant EU difference. Besides, a remedy in this situation is

100

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

Figure 3.14: The distribution of survived percentage difference of improved
system under Util = 0.9

to work with log messages, which is out of the scope of this work. The box
plots showing survivability in Figures 3.10 and 3.14 illustrate that task-level
fine-grained degradation control can enable more LO tasks to survive during
system overrun. Under systems with utilisation 0.6 and 0.9, 12.7% and 15.0%

more LO tasks on average can be saved, and the median value can be 11.5%

and 15.0%, respectively.

Figure 3.15: Experiment results for the proportion of systems with higher
EU value under varied Util from 0.3 to 0.9 (each bar consists of 300 trials)

101

0.3 0.3

Figure 3.16: Experiment results for the distribution of EU value difference of
improved system under varied Util from 0.3 to 0.9

Figure 3.17: Experiment results for the proportion of systems with improved
survivability under varied Util from 0.3 to 0.9

Figure 3.15, 3.16, 3.17 and 3.18 demonstrate the performance of our pro-
posed method based on comprehensive results. The proportion of improved
systems increases when we increase system workload, and the trends are con-
sistent across the metrics of high EU value and survivability of LO tasks. The
EU value can be maintained relatively higher during system overrun. As the
median EU value difference in Figure 3.16 depicts, with the increase of the
system load, the advantage of our proposed method with respect to maintain-

102

CHAPTER 3. CONTEXT- AND CAUSALITY-AWARE GRACEFUL
DEGRADATION FOR MIXED-CRITICALITY SCHEDULING

Figure 3.18: Experiment results for the distribution of survived percentage
difference of improved system under varied Util from 0.3 to 0.9

ing QoS becomes significant. Furthermore, as the box plot about survived
percentage in Figure 3.18 show, the task-level discarding method can better
utilise the slack in the system because even in a highly loaded system, more
LO criticality tasks can survive. However, we can observe that median value
does not have a noticeable trend with the increase in system utilisation. That
is caused by the strategy used for graceful degradation. Suppose dropping
only one large LO task without considering QoS is enough at one task drop-
ping point, which may lead to a significant decrease in system QoS. However,
based on our proposed method, discarding the selected task with the lowest
importance level may not be sufficient to release enough space for HI task exe-
cution. More tasks in the importance order should also be dropped to provide
sufficient space. Although more tasks need to be dropped in some specific
cases and similarly, task drop points, the reduction in system QoS may be
slow, and the proposed method can still save more LO tasks throughout the
degradation process.

3.6 Summary

In this chapter, we propose a context-aware, causality-based graceful degra-
dation method with a new criterion by considering task dependency from
the functional perspective, to assist in achieving more fine-grained task-level

103

degradation under different scenarios in an MCS setup. The survivability of
LO criticality tasks in the system can be improved, thus giving more grace-
ful degradation. At the same time, the awareness of system-wide influence
propagation can ensure that the discarding decision is capable of minimis-
ing the reduction of the systems’ QoS. Furthermore, considering belief value
variation under different circumstances provides more flexibility to the fixed
degradation order. Compared with the standard application-level discarding
method, our proposed method enables over 10% more LO tasks to survive in
a highly loaded system. The expected utility value can be maintained around
5% higher.

104

Chapter 4

Resilience-aware Multi-core
Mixed-criticality Consistent
DAG Scheduling

As described in Chapter 1, advanced driver-assistance and semi-autonomous
systems are complex and safety-critical with strict real-time and resource con-
straints, as well as having a deep processing pipeline with strong dependencies
across functions. In such systems, tasks with different criticality levels are
integrated on the same hardware platform, thus forming a mixed-criticality
system. The scheduling strategy has to guarantee that higher criticality tasks
have no risks introduced by lower criticality tasks. To do so, most static
scheduling work considers a dual-criticality system and assumes that all LO-
criticality tasks can be suspended or discarded after a mode change. However,
this makes the schedules of HI and LO modes different, requiring more ef-
fort to verify the safety of schedules both during and after mode changes
and potentially raising migration costs, which is even more complicated with
the extension to multiple criticality levels. Moreover, though slack manage-
ment can allow the execution of tasks with lower criticality in relatively higher
modes, it is still a challenge for existing methods to guarantee the effectiveness
of slack utilisation and precedence constraints simultaneously. This chapter
proposes a novel, multi-core mixed-criticality consistent DAG static scheduling
(namely mccs-dag) method with limited preemption, which avoids migration.
Instead of conventional static schedules for MCS (i.e., different schedules for
different system modes), tasks with different criticality levels are maintained

105

based on a single schedule. Furthermore, task level mode change improves the
survivability of tasks with lower criticality value.

4.1 Introduction

In recent decades, the development of computational hardware has facilitated
the implementation of more advanced algorithms, enabling autonomous sys-
tems to undertake complex tasks. However, advanced computational units
such as GPUs and FPGAs are expensive and size-constrained, limiting the
hardware resources for commercial systems. This raises difficulties in func-
tional integration, as tasks in autonomous systems often have a high degree
of dependency, with some tasks only starting to run when all their predeces-
sors have completed their execution. Furthermore, tasks have different levels
of criticality defined according to safety standards such as ISO 26262 [2] and
DO-178B [3], which further increase the complexity of scheduling design, es-
pecially to guarantee the execution of tasks with certain critical levels in the
corresponding system modes and with hard real-time requirements.

To address these challenges, multi-core scheduling for mixed-criticality sys-
tems (MCS) has become an emergent trend in the real-time scheduling com-
munity. MCS integrate multiple functions of different criticality on a shared
platform, where the parallelism realised by multi-cores can significantly benefit
computation-intensive workloads. However, most work has assumed that tasks
are independent and adopted the classic MCS model introduced by Vestal [120]
in which, for dual criticality systems, all tasks are initially executed in the LO
criticality mode. Once a timing fault such as overrun happens in any HI

criticality task, the system mode changes from LO to HI, after which all LO
criticality tasks are suspended or discarded. Only HI-criticality tasks are al-
lowed to run to their maximum estimated worst-case execution time (WCET).
As emphasized in Chapter 3, Bletsas et al. observed that although some tasks
might be considered as LO criticality, in practice, they might still contain
mission-critical functions and be vital for the correct and efficient operation of
the system [26]. Consequently, Burns et al. further emphasized the importance
of the robustness and resilience of MCS task scheduling [32]. Furthermore, it
has been shown that the overrun of one specific HI criticality task does not
imply that all HI tasks simultaneously run up to their largest WCETs [28].
Therefore, it is possible and desirable to provide the system designer with more

106

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

fine-grained control over the system degradation and improve the survivability
of lower criticality tasks, such as task-level mode change involved in our work.

As well as improving the system’s resilience, the fundamental scheduling
strategy is vital to ensure the execution of tasks. The flat-structured schedul-
ing method, discussed in Chapter 3, provides an opportunity to realise task-
level degradation. However, this still results in unnecessary task discarding.
Fohler and Baruah noted that static scheduling is completely deterministic and
well-supported in the industry, as it is easy to certify [21]. For safety-critical
systems, the scheduling strategy must be predictable and certifiable. There-
fore, we adopt a static scheduling method and use Directed Acyclic Graphs
(DAGs) to model task precedence constraints. However, DAG scheduling on
multiprocessors is challenging, and the problem becomes more complex for
mixed-criticality systems [81]. Extending a timing budget may have a cascade
effect on dependent tasks. Therefore, scheduling design should take special
care to ensure the satisfaction of precedence constraints and schedulability.

In this work, we aim to address the task scheduling problem for the en-
tire system by scheduling multi-periodic Directed Acyclic Graphs (DAGs) of
mixed-criticality tasks on a multi-core platform. We propose a static schedul-
ing method based on a more practical system model. Our method considers
that tasks with higher criticality levels may depend on tasks with lower critical-
ity levels, which breaks the constraints used by most MCS static scheduling
methods. In Section 4.2, we will use a real application example from au-
tonomous systems to explain the necessity of breaking this constraint. This
means that the parents of a safety-critical task can be of low criticality, but at
least one task from its parent task group should be safety-critical to guarantee
the fundamental safety operation. Compared with the state-of-the-art static
scheduling method lsai−edf proposed in the paper [93], the proposed method
employs a unified scheduling approach to manage the execution of tasks with
diverse criticality requirements and facilitates task-level mode changes, which
are not efficiently attainable using the lsai − edf method. The higher LO
task survival rate enhances the system’s resilience and optimizes resource uti-
lization, while the increased degradation rate can further expedite system
recovery.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first work to propose a static
schedule-based task-level mode change for mixed-criticality systems with

107

multiple criticality system modes so that expensive system-level mode
changes can be eliminated and more tasks under different system modes
can be preserved. The safe execution of tasks under different system
modes is guaranteed based on our proposed start time recalculation
method during static schedule calculation.

• Instead of maintaining a mixed-criticality system with different sched-
ules, this is the first work to use a single static schedule to maintain the
execution of all tasks with different criticality levels. The safe execution
of higher-criticality tasks can be guaranteed in any system circumstance.

• As a general method, the proposed mixed-schedule can generate a safe
and consistent schedule that enables task-level mode change and can be
easily generalized to multi-criticality systems. Verification and calcula-
tion based on overrun testing can provide more opportunities to save
lower-criticality tasks when overruns occur, thus improving the system’s
resilience and quality of service.

The rest of this chapter is organised as follows: In Sec. 4.2, the proposed
scheduling method is detailed, and this is followed by the formulation of the
proposed consistent scheduling strategies in Sec. 4.3. The evaluation is intro-
duced in Sec. 4.4. Finally, in Sec. 4.5, we summarise this chapter.

4.2 Method Overview

In this work, we propose one comprehensive general mixed-criticality schedul-
ing procedure. As illustrated in Figure 4.1, the procedure can be divided
into three layers. At the top layer, the effort would focus on functional de-
pendency analysis and segmentation, followed by the middle layer task group
to core cluster mapping. The workload (utilisation) of different core clusters
should be balanced at this layer. Please note that the middle layer of Figure
4.1 shows a simple hardware structure example, and in practice, the processing
resources could consist of several core clusters and in each cluster, there could
be more than four cores. Finally, the most critical task scheduling strategy
would be carefully designed at the bottom layer. The main contribution of
this work is from the bottom layer resilience-aware consistent mixed-criticality
DAG scheduling. The methods at the top and middle layers will be briefly

108

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

introduced using simplified examples. We assume that each function can be
modelled as mixed-criticality DAGs, and functions can have different periods.

Most existing mixed-criticality scheduling methods are recognized as flat-
structured scheduling methods, where a central scheduler is used to schedule
all tasks in the entire system. However, some complex systems, such as au-
tonomous systems, consist of a set of functions with dependencies, and there
are also some functions that can work independently. For example, mission
planning is designed based on object detection, localization, and mapping,
and the hardware diagnosis module may not have any relationship with mis-
sion planning and can work independently. Furthermore, each function would
consist of tasks with dependencies and different criticalities. Taking the ob-
ject detection function of the autonomous system as an example, it may con-
sist of three redundant elements — camera-based, LiDAR-based, and radar-
based functions. This function is highly safety-critical, but solution designers
can decompose the criticality across the redundant elements and meet safety
goals [61]. Suppose the LiDAR- and radar-based sub-functions are classified
into the HI criticality task group by the system designer. The camera-based
sub-function can be discarded when the system cannot tolerate the overrun of
HI criticality tasks.

4.2.1 Top Layer: Functional Dependency Analysis and Seg-
mentation

In this subsection, we briefly introduce the method for the top layer. Figure
4.2 illustrates one simplified dual-criticality system example, which consists of
5 functions (A, B, C, D, and E) and each function is composed of a different
number of tasks with precedence constraints. All tasks in the system can be
categorized into two criticality levels, HI-criticality and LO-criticality, which
are marked by orange and blue colours, respectively. Obviously, functional
dependency exists between A and C, B and C, and B and E. Function D is
independent.

We can use joint distributions to describe functional dependencies. The
graph-segmentation algorithm, such as D-segmentation [80], can be used to
segment the system graph into the expected number of sub-graphs and de-
termine the dependency level of each function. In this example, assuming we
have two core clusters, each consisting of four cores, the system graph should
be segmented into two groups. The adoption of graph segmentation aims to

109

Bottom Layer : Multi-cores mixed-criticality DAG scheduling

Middle Layer : Functions to core cluster mapping

𝜏! 𝜏"
𝜏#

𝜏$A
𝜏!
𝜏$

Scheduling

design

Top Layer : Functional dependency analysis and segmentation

Cluster 1

Core
1

Core
2

Core
3

Core
4

L2-Cache

Core
1

Core
2

Core
3

Core
4

L2-Cache

Cluster 2

L3-Cache

Core
1

Core
2

Core
3

Core
4

L2-Cache

𝜏" 𝜏#

𝜏!
𝜏"

𝜏#
𝜏$

𝜏%
𝜏&

𝜏'

A
B

𝜏(

𝜏""

𝜏)
𝜏*

𝜏"+

D

C

Figure 4.1: The proposed system-level scheduling architecture

reduce the data transmission (failure propagation) between two core clusters.
Moreover, considering the highly efficient utilisation of shared resources, such
as cache, functions with relatively tighter dependency are better allocated to
the same core cluster. Thus, in this example, function D will initially be
mapped to group one, and functions A, B, C, and E will be clustered into
group two.

4.2.2 Middle Layer: Functions to Core Cluster Mapping

If we directly use the task groups obtained from the top layer, we may face
severe load imbalance, i.e., there is only one function in group one and four
functions in group two. Thus, some functions should be migrated from the
high-load cluster to the light-load group. We will start from the function with
the lowest dependency level, which is determined by the number of functions
that have relationships with it (i.e., the number of predecessors and succes-
sors). Among the functions with the same dependency level, the one that
can primarily ease the imbalance difference would be selected first. In this
example, functions A and E have the same dependency level with the number

110

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

2
6

4
3

5
8

7

A

B

1

1714
13 15

16

18

C

12

10
9

11

D
E

HI-criticality task LO-criticality task

Figure 4.2: Simplified example of a dual-criticality system

of predecessors and successors (i.e., one). If the migration of function E can
minimize the utilisation difference between the two task groups, all tasks in
function E will be moved to group one and scheduled with function D.

4.2.3 Bottom Layer: Multi-core Mixed-criticality DAG Schedul-
ing for System with Multiple Criticality Levels

As the most important contribution of this chapter, this section introduces
the task model and the proposed resilience-aware mixed-criticality consistent
static DAG scheduling method. We adopt a dual-criticality system for a
motivating example, which intuitively and understandably demonstrate the
shortcomings of existing methods and the benefits brought by our proposed
strategy. However, our method is generalisable to systems with more than two
criticality levels.

Mixed-Criticality System Model:

We adopt criticality-dependent WCET estimations. A task τi can be de-
fined by a tuple τi := (Ti, Di, C

Li
i , Li), where Ti and Di represent the period

and deadline, respectively (Di = Ti). Li is the task criticality level. For
an M -criticality system, the system can run in M different criticality modes
S = {1, . . . ,M − 1,M}. S1 = 1 represents the lowest system criticality mode
and is regarded as a normal mode, in which all tasks can be executed ide-

111

ally with their C(S1). In each system criticality mode, the tasks that must be
guaranteed are predefined according to the task’s criticality level. Take a dual-
criticality system (i.e., S = {LO,HI}) as an example: in HI system mode,
all tasks with HI-criticality level (i.e., Li = HI) should satisfy their timing
constraints. For each task, CLi

i denotes the set of execution times under differ-
ent system criticality modes (i.e., CLi

i = CLi
i (S1), . . . , C

Li
i (SM−1), C

Li
i (SM)).

Conventionally, for a dual-criticality system in HI mode, all tasks with HI-
criticality level must be guaranteed with their estimated WCETs in HI mode
(i.e., CHI

i (HI)), and all LO-criticality tasks are suspended or discarded. Thus,
we don’t have WCET estimation for LO-criticality tasks in HI mode. In
LO mode, both HI and LO-criticality tasks should finish their execution be-
fore deadlines with estimated WCETs in LO mode (i.e., CLi

i (LO)). There-
fore, for each HI-criticality task, there are two different WCET estimations,
i.e., CHI

i (LO) and CHI
i (HI), with CLi

i (LO) < CLi
i (HI). When extending

to multi-criticality systems, CLi
i (S1) < · · · < CLi

i (SM−1) < CLi
i (SM), where

Li ≥ SM . There is no WCET estimation if Li < SM .

In this work, lower-criticality tasks should survive as long as possible. If not
possible, they will always try to keep a simple data refresh operation before be-
ing discarded to avoid interfering with the execution of higher-criticality tasks.
Data refresh is seen as a minimum operation and recognized as the degraded
operation of a droppable task to ensure the timeliness of data. For example,
when the LO-criticality camera-based lane detection task transitions to the
degraded state, it only needs to update the received image data without addi-
tional processing and simply publish a flag message to its successors. The time
taken by the degraded task is significantly shorter than the estimated WCET
C(LO). If the task can be recovered, the time consumed to recover from the
degraded state is also much faster than from the discarded state. The exper-
iment presented in Section 4.4 provides evidence for this claim. We use δi to
represent the minimum operation of a droppable task. Thus, for a task τi with
criticality level N (i.e., Li = N) in SM system criticality mode, CN

i (SM) = δi,
if SM > N . For example, in a dual-criticality system, CLO

i (HI) = δi. Besides,
we assume that in each specific criticality system mode (e.g., the system is run-
ning in M -criticality system modes), all tasks with criticality higher or equal
to the system mode (i.e., Li ≥ SM) must be guaranteed, while tasks with
criticality lower than SM can be degraded with CN

i (SM) = δi or discarded
with CN

i (SM) = 0.

112

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Figure 4.3: Example of LO-criticality task segmentation in a dual-criticality
system

Figure 4.4: Example of HI-mode schedule with degraded LO-criticality task
in dual-criticality system

Additionally, system designers may adopt the multi-input single-output
concept to increase the confidence measures in deployed algorithms. Multiple
frames would be cached and fed into the same type of function to enhance
the confidence in the output by fusing multiple outputs. To accelerate the
computation, the function can be executed in parallel. The absence of an
output from a single function may only imply performance degradation, and
the functionality can be regarded as having survived. Figure 4.3 demonstrates
an example.

Example: Figure 4.4 illustrates an example schedule including the kinds of
tasks described in Figure 4.3. LO-criticality function LO1 can be segmented
into two sub-tasks (i.e., LO1.1, LO1.2) and deployed to two different cores. Task
LO3 cannot start its execution before receiving outputs from LO1.1 and LO1.2.

113

As Figure 4.4 shows, the overrun of HI1 task only impacts LO1.1. According
to the strategy adopted in our method, LO1.1 will maintain a minimum data
refresh operation, recognised as a degraded task, because after HI1 finishes its
execution with C(HI), the free time slot before LO3 is sufficient to support
the minimum operation of LO1.1. Additionally, the overrun of HI3 is not
severe enough to impact the execution of LO1.2. Therefore, LO1.2 can start
its execution as expected and be recognised as survived. Based on this, task
LO1 is considered as surviving with degraded performance. This example
highlights the importance of preserving all LO criticality tasks as long as
possible, because at runtime, it is impossible for the execution schedule to
differentiate tasks’ functionality. Moreover, it is worth noting that if the end
time of HI3 and HI1 never exceeds the predefined start time of LO2 and
LO3, even with C(HI), then LO2 and LO3 will never be discarded, as their
execution will never be affected. An appropriate static schedule can facilitate
the task-level mode change because, for each HI task, the LO tasks that could
be impacted by its overrun can easily be identified once the schedule is known.

System structure model:

Based on an understanding of task dependencies in autonomous systems, we
employ directed acyclic graphs (DAGs) to depict these task relationships. In
this study, we consider a system S comprising N applications, denoted as
S = {A0, A1, ..., AN}. Each application is composed of tasks (nodes) with
dependencies (GAx = τ0, τ1, ..., τm), represented by relatively small DAGs.
The interconnections among these application DAGs collectively form a larger
system-level DAG GS .

System mode change v.s. Task-level mode change

In mixed-criticality systems, a system mode change refers to the transition
between different operational states. This thesis specifically means the transi-
tion between different criticality system modes. In multi-criticality systems, if
the actual execution time of any task with a criticality value higher than SM
(L ≥ SM) exceeds C(SM−1), the system needs to change to the M -criticality
mode. In this mode, all tasks with criticality levels equal to or higher than
SM are allowed to run up to their maximum estimated WCET C(SM), while
tasks with criticality values lower than SM need to be suspended or dropped.
For example, in a dual-criticality system, if the actual execution time of any

114

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

HI-criticality task attempts to exceed C(LO), then the system should transi-
tion to the HI-criticality mode. In this mode, all LO-criticality tasks should
be suspended or dropped.

To enhance the survivability of droppable tasks in various system modes,
some research works, such as those reviewed in Section 2.7, aim to employ
free budget allocation methods to maintain more fully executed droppable
tasks or reduce QoS to prevent a complete loss of functionality. However,
none of these approaches is based on a static schedule with task predecessor
constraints. This is because budget allocation cannot assign a specific time
slot to a dropped task to ensure its execution after the completion of its
predecessors and before the initiation of its successors. This is the first work
aimed at proposing a static schedule calculation method that considers task
dependency and survivability simultaneously.

As previously introduced, for static schedule-based MCS, we require dif-
ferent schedules to manage task execution. Figure 4.5 illustrates example
static schedules for a triple-criticality system proposed in paper [93], where χ1

represents the lowest criticality system mode. Tasks from the same applica-
tion are marked with the same color, and this example illustrates the static
schedule of a system consisting of two applications. It is evident that the
schedules differ. In each criticality system mode, only tasks with higher or
equal criticality levels are scheduled using their corresponding WCET. Based
on such schedules, the only way to guarantee the safety of tasks is through a
system mode change. If tasks with higher criticality do not overrun to their
worst case, we can examine the free slot for the dropped tasks between their
predecessors and successors to find an opportunity for their execution. For
different schedules in different system modes, this is not easy, especially when
all tasks are executed as late as possible. Although free time slots exist at the
beginning of one hyper period, they cannot be used due to task precedence
constraints. Another disadvantage of the method proposed in paper [93] is the
extremely high preemption rate and migration rate. Therefore, the authors
only pointed them out and clarified that their evaluation did not consider the
overhead brought by preemption and migration; however, in practice, this will
significantly reduce schedulability. For example, based on their method, tasks
can be preempted every single time unit. Thus, the actual schedulability rate
should be lower than their evaluation results. To provide a more practical
solution, we introduce a limited preemption method and avoid migration at

115

! Umax: maximum utilization rate defined for each crit-
icality level.

! jGj: number of MC-DAGs in the system.
! jV j: number of vertices for each MC-DAG in total.
! p: vertices per layer.
! f : reduction factor for tasks executing in more than

one criticality level.
! e: probability to have an edge between two vertices.
Because the parameters taken into account are numerous,

we have opted to create a large number of test files (at least
1,000 for each combination of parameters) to cover as much
as possible the space of potential MCS configurations. Once
the listed parameters are set, the generator proceeds to gen-
erate the MCS in five different phases:

Initialization Phase. This first phase draws values for three
parameters: utilization, deadline and task distribution per
criticality level for each MC-DAG. The tool draws UG, the
maximal utilization of all MC-DAG by using UUniform. Each
MC-DAG will have its own deadline. This deadline is drawn

from a uniform distribution betweenDmin ¼ djV j#1 TUUG
e (mini-

mum possible deadline vertices having 1 Time Unit) and

Dmax ¼ 10 # djV j#1 TUUG
e. The final random distribution deter-

mines the number of tasks that will belong to a given critical-
ity level for eachMC-DAG.

Generation Loop. The generator loops through criticality
levels starting at the highest level generating vertices and
edges. Vertices are created by assigning them a layer level
and a utilization rate. The layer level is used to ensure that
edges will not create cycles and the utilization rate is used
to assign the timing budget Ciðx‘Þ to the vertex in the criti-
cality level x‘.

Vertex Generation. During the generation loop vertices are
created for each criticality level following the distribution of
the initialization phase. This vertex generation phase is
affected by parameter p which gives an upper bound on the
number of vertices to create for each layer level.

Incorporation of Edges. After all vertices are created for a
given criticality level, edges are added. The incorporation of
a new edge follows the probability e. Vertices can only
receive data from lower layer vertices. This procedure
avoids the creation of cycles.

Reduction Phase. Once vertices and edges are created and
we are not in the lowest criticality level, the reduction phase
takes place. This reduction is the last phase of the generation
loop. The reduction factor f is used to compute the utiliza-
tion (UG=f) that vertices will use in the next criticality level
treated in the generation loop. Once this utilization is com-
puted, we loop through vertices and drawn a timing budget
Ciðx‘&1Þ from a uniform distribution. We follow Vestal’s
model where Ciðx‘&1Þ ' Ciðx‘Þ.

6.2 Acceptance Rate
We will now present our experimental results in terms of
acceptance rate for randomly generated systems. We have
evaluated three different implementations of our general-
ized meta-heuristic called G-ALAP-LLF, G-ALAP-EDF and
G-ALAP-EDZL. We showed in [10], that G-ALAP-LLF deliv-
ered the best results in terms of acceptance rate compared
to existing works [11] and G-ALAP-EDF. Another important
observation from [10] is the influence that certain genera-
tion parameters have on the scheduling problem: increas-
ing the number of edges and vertices decreases the
acceptance rate of the heuristics. Since this analysis was
already performed, we will rather focus only on the influ-
ence that the number of criticality levels has for the differ-
ent implementations (providing a first answer to Problem 2
of Section 2).

Therefore we have chosen to generate a large number of
systems (1000 for each configuration) with settings that are
likely to be seen in the safety-critical industry: !m ¼ 8 cores,
since embedded devices rarely go beyond 8 cores. ! jV j ¼ 30
vertices communicating on each MC-DAG. ! e ¼ 20% this
percentage produces realistic data-dependencies between
vertices. ! n ¼ f2; 4; 5g, the railroad industry uses 4 assur-
ance levels while airborne systems use 5.

Fig. 4 shows the results we have obtained in terms of
acceptance rate for the generated systems with the three
implementations we have developed. We have also
included results produced by the generalization of the fed-
erated scheduling presented in [11]. For each implementa-
tion of our GMH-MCDAG, we have developed its federated
counter-part, the same priority orderings are used but clus-
ters of cores for MC-DAGs that have a utilization higher
than 1 are created, and tasks that are executed in more than
one criticality level are scheduled ASAP.

6.2.1 Single MC-DAG Results

In Fig. 4a we present the results obtained by G-ALAP-LLF
and the adaptation of the federated approach. When the
system has 2 criticality levels the results are good for
G-ALAP-LLF since more than 70 percent of systems are
schedulable when the utilization is lower than 0.7. This is
also true for the federated approach. Nevertheless, when
the utilization of the system goes beyond 0.7, the federated
approach tends to perform worse than G-ALAP-LLF. This dif-
ference is due to the fact that we adopt an ALAP strategy for
the tasks that are high-criticality and execute in both critical-
ity modes. When the number of criticality levels increases to

Fig. 3. Scheduling tables for the system of Fig. 2.

466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 3, MARCH 2021

Authorized licensed use limited to: University of York. Downloaded on March 22,2023 at 12:00:43 UTC from IEEE Xplore. Restrictions apply.

Figure 4.5: Static schedules example for multi-criticality system [93]

runtime to considerably reduce the overhead.

In this thesis, task-level mode change can be described as follows: even
when the system has transitioned to a higher criticality system mode, tasks
with a criticality level lower than the system criticality level can continue
their full execution. Only the impacted droppable tasks need to be degraded
or discarded. For example, in a triple-criticality system (i.e., LO, MI, HI),
initially, all tasks operate with their C(LO). If any MI or HI-criticality task
attempts to exceed C(LO), the system could transition to the MI-criticality
mode. Then, all MI and HI-criticality tasks are allowed to run up to their
maximum estimated WCET C(MI). The LO-criticality task impacted by the
specific overrun MI or HI tasks can be degraded or discarded, while all other
unaffected tasks can be executed as normal. When any HI-criticality task
attempts to exceed C(MI), the system starts working under HI-criticality
mode. All MI and LO-criticality tasks become droppable, and the impacted
ones can be degraded or discarded. This is exemplified by the motivational

116

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

example for a dual-criticality system in Figure 4.4. To further ensure that
tasks from lower criticality levels do not impact tasks with higher criticality
levels, priorities can be assigned such that tasks from higher criticality levels
receive a higher priority value than tasks from lower criticality levels within
each core. Based on this, droppable tasks from higher criticality levels can
preempt the execution of lower-criticality tasks.

Based on task-level mode change, more droppable tasks can be preserved in
any criticality system mode. To achieve this, a consistent schedule is required.
This means that we need to use a single schedule to maintain task execution
in any system mode, as the impacted tasks analysis should be based on a
fixed schedule that cannot be changed during system mode transitions. In the
rest of this section, the methods for calculating a consistent schedule will be
detailed and described.

Consistent Mixed-Criticality Static DAGs Scheduling:

We hereby propose a new Consistent Mixed-Criticality DAGs static scheduling
(mccs-dag) method. The main procedure is illustrated by Algorithm 5. Unlike
state-of-the-art static scheduling methods, we relax the criticality dependency
constraints, i.e., a higher criticality task is allowed to depend on lower criti-
cality tasks, but at least one predecessor must have the same criticality level
as the analysed task. The relaxed constraints make the DAG model more
practical. When facing an overrun of a specific higher criticality task, a task-
level mode change is adopted, i.e., only affected lower criticality tasks would
be degraded or discarded rather than simply discarding all lower criticality
tasks simultaneously. Once the execution of the higher criticality task is re-
stored, the impacted task can immediately return to normal mode without the
need for costly system restoration. This is one of the claimed benefits of the
task-level mode change strategy. If the task returns from a degraded state, the
recovery time can be even shorter, which can be proved by the real experiment
described in Chapter 4.4.

For DAG scheduling, the execution of one task can only be started after
all its predecessors are finished. When calculating schedules with backward
propagation, a task can only be treated after the time slots for all its successors
have been allocated. Therefore, the definition of each task should be extended
to τi := (Ti, Di, C

Li
i , Li, Suc(τi), P red(τi)), where Suc(τi) and Pred(τi) repre-

sent the set of successors and predecessors of τi, respectively. Please note that

117

Figure 4.6: An illustrative example of a mixed schedule

tasks from the same DAG have the same period and deadline.

Example: Instead of calculating schedules for different system criticality
modes separately, in this work, we introduce a mixed-schedule that provides
a safe schedule and enables task-level mode change. For a dual-criticality sys-
tem, as illustrated in Figure 4.6, the mixed schedule has an overlapping region
between HI and LO tasks, which equals the execution time difference of HI-
criticality tasks under different system modes. Shrinking the HI tasks can
help us obtain a consistent schedule that guarantees the execution of tasks in
low-criticality mode.

Based on the consistent schedule, once an overrun of any HI task happens,
the impacted LO task can be easily identified. In the example of Figure 4.6,
there is sufficient slack time to support its minimum operation during overrun.
Importantly, this consistent schedule enables task-level mode change. The
start time of HI tasks remains the same in any system mode. Once the
execution of any HI task returns to normal mode, the impacted LO tasks can
be directly restarted without any effort and overhead raised by conventional
system mode change. Furthermore, with the elimination of a system mode
change operation, we do not need to check the schedule’s safety during mode
change.

Figure 4.7 illustrates the schedule allocation procedure for a mixed sched-
ule. Like others, e.g., [26], we schedule tasks in a backward direction (i.e.,
starting from the sink node of the DAG towards the source node). The task is
selected according to its priority from a waiting queue, and Sec. 4.3 will detail
the method for waiting queue generation and priority allocation. Suppose the
selected task is LO-criticality; it will be allocated with C(LO) after passing

118

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Figure 4.7: Selected task scheduling flowchart

the slack time analysis-based schedulability test, which requires the sum of
valid slack time intervals to be larger than C(LO) (line 9 - 10 of Algorithm
8). Otherwise, the system is deemed unschedulable. To limit the preemption
overhead, we adopt a limited preemption strategy. The minimum execution
fragment should be larger than a specific value, which can be determined ac-
cording to the execution time estimates or using empirical values. Therefore,
an individual slack time interval will be invalidated if it is shorter than the
minimum execution fragment length (Algorithm 9). The time interval for slack
time analysis can be constrained between the earliest allowed start time of the
selected task (i.e., the earliest release time of the DAG to which the selected
task belongs) and the earliest start time of its successors. For HI-criticality
tasks, in addition to the similar slack analysis as for LO tasks, the execu-
tion time slots should be further calculated based on the overlapping region
analysis during the overrun test.

119

Algorithm 5: Consistent Mixed-Criticality DAGs Static Scheduling

/* Initialise global system parameters */

1 Initialisation();
2 WaitingQueue← UpdateWaitingQueue();
/* Try to schedule each task in the waiting queue */

3 while WaitingQueue ̸= ∅ do
4 τ ← pop(WaitingQueue);
5 Dry run task schedule on each core;
6 ζmτ ← ScheduleOnCore(t, m, true) ∀m ∈ 1 : N ;
7 ι← argmaxm(ζmτ); /* Select the core to schedule */

8 if ζιτ =∞ then
9 return Unschedulable; /* Check schedulability */

10 end
11 else
12 ScheduleOnCore(t, ι, false); /* Schedule update */

13 end
14 WaitingQueue← UpdateWaitingQueue();

15 end
16 return E /* consistent schedule generation */

PseudoCode

Algorithm 5 illustrates the main pipeline of the proposed method. Unsched-
uled tasks from each DAG are fed into the Waiting Queue (i.e., Algorithm
6) when all of their predecessors have been scheduled and removed. The task
with the highest priority from the Waiting Queue is selected and scheduled
according to the proposed schedule calculation method (i.e., Algorithm 7 and
Algorithm 8). After allocating an appropriate core and time for the selected
task, the system’s parameters, including the Waiting Queue, utilization of
each core, and mixed schedule, are updated before starting the next task
scheduling calculation round. The loop will continue until all tasks in the
Waiting Queue are scheduled, or an unschedulable task is encountered.

It is worth noting that our proposed method does not allow tasks to migrate
to another core during schedule calculation, which will be fixed at runtime.
Therefore, it does not incur any migration costs. This makes it easy to allocate
higher criticality tasks with higher priority on each core, which can further

120

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

A.1

A.2 A.3

A.5A.4

DAG A: Deadline = 20
B.1

B.2

B.4

B.5 B.6

B.3

DAG B: Deadline = 10

B.7

HI taskLO task

Core Cluster A Hyper-period = 20

Figure 4.8: Mixed-criticality DAGs example from a dual-criticality system

Figure 4.9: Initialisation and update of waiting queue

provide a preference for tasks with higher criticality levels.

4.3 Consistent Schedule Formulation

In this section, the proposed strategy is formulated and detailed in four steps:
(a) waiting queue initialisation and dynamic updating, (b) priority definition
and task selection, (c) mixed schedule-based consistent schedule calculation,
and (d) parameters and consistent schedule update.

4.3.1 Waiting Queue Generation

To provide the most flexibility for schedule allocation, we adopt the idea pro-
posed in [91]: the schedule calculation starts from the last time point, i.e.,
the last task of the DAG back to the source node. This approach allows all
tasks to be executed as late as possible. In DAG scheduling, tasks can only
be scheduled when all their successors have been scheduled. In our work, a
system consists of more than one DAG with different periods, and each DAG
could be released several times within their hyper-period. Figure 4.8 depicts

121

1 Function Initialisation():
2 Initialise all tasks for all DAGs and make available for all

functions;
3 Γ; /* All task IDs, Γ represents a task set that

includes all tasks τ in the system. */

4 for τ in Γ do
5 Tτ ; /* Task period */

6 Dτ ; /* Task deadline, in this work Dτ = Tτ */

7 Lτ ; /* Task criticality level */

8 S; /* System criticality mode */

9 CLτ
τ (S); /* Task execution time in S criticality

system mode */

10 Pτ ; /* Task priority */

11 SDτ ← false; /* SD represents the state of each

task and initialised as not scheduled */

12 Suc(τ); /* Successors */

13 Pred(τ); /* Predecessors */

14 ζτ ←∞; /* Start time */

15 T τ
st; /* Period start time of τ */

16 P τ
ed; /* Period end time τ */

17 end
18 Initialise schedule and Mixed schedule E for all cores;
19 ι is the core ID and N represents the number of cores;
20 for ι← 1 : N do
21 ts represents each time stamp in the hyper period;
22 for ts← 1 : hyperperiod do
23 E ιts ← ∅;
24 E ιts(S)← ∅; /* Mixed schedule on system mode S */

25 end

26 end
27 Construct waiting queue;
28 WaitingQueue← ∅;

122

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

a dual-criticality system consisting of two functions deployed on one specific
core cluster A. The period of functions is 10 and 20 time units, respectively.
As shown in Figure 4.9, the hyper-period of the system is 20. Thus, each
release of DAG A and DAG B will be regarded as an independent DAG in the
system with a different release time.

For the convenience of task selection, we use a waiting queue for all ready
tasks, and the definition of ready is only based on the satisfaction of task
dependency. To start with, the sink node of each DAG will be fed into the
waiting queue. In this example, A.4, A.5, and the first and second released B.7
are enqueued. (Please note that within a single hyper period, a DAG could be
released multiple times. Each instance is recognized as an independent DAG
with a distinct earliest start time. In such cases, the sink nodes from all dupli-
cated DAGs can be simultaneously fed into the waiting queue, and which one
from them will be selected first is based on the calculated priority introduced
in the following subsection.) Then, one task will be selected according to its
priority. If the first released task B.7 is selected and scheduled, its predeces-
sors B.5 and B.6 can be fed into the waiting queue because all their successors
have been scheduled. Suppose the currently selected task is A.4, A.2 cannot
be enqueued before the schedule of A.5 is completed.

Algorithm 6 illustrates pseudocode for the generalized waiting queue up-
date process.

4.3.2 Priority Assignment and Task Selection

As mentioned in the previous section, tasks in the waiting queue will be se-
lected based on their priority. Any priority assignment policy can be employed
according to the proposed architecture. This work uses a widely used criti-
cal path and deadline-based priority assignment policy similar to the one in
paper [85].

The critical path of a vertex τi is the longest path, considering the execution
time of vertices in the highest system mode (e.g., CLi

i (HI) in dual criticality
systems), to reach an exit vertex (i.e., a vertex with no successors). Suppose
each DAG can be scheduled independently, and the finishing time f(τi) of
each node can be calculated using Equation (4.1), where CP (τi) denotes the
critical path of task τi; Gi represents DAG i; and NGi represents how many
times the DAG is released within the hyper-period.

123

Algorithm 6: Waiting Queue Update

1 Function UpdateWaitingQueue():
2 for τ in Γ do
3 if SDτ = false then

/* τ is unscheduled task */

4 if Suc(τ) = ∅ ∨ SDτ ′ = true ∀τ ′ ∈ Suc(τ) then
/* All successors have been scheduled or leaf

node. */

5 WaitingQueue←WaitingQueue ∪ {τ};
6 end

7 end

8 end
9 WaitingQueue← SortPτ (WaitingQueue); /* Sort the waiting

queue according to task’s priority. */

10 return WaitingQueue;

f(τi) = (NGi − 1)× T (Gi) + CP (τi) (4.1)

If there are multiple tasks with the same priority, the task with the longest
execution time will be selected. In the waiting queue, the priority value P (τi)
of each task will be calculated according to Equation (4.2), where di represents
the absolute deadline of the released task. Please note that τi here represents a
task from DAG i (Gi). Within a single hyper period, a DAG could be released
multiple times, and τi denotes a task from one of these releases. Additionally,
NGi is computed for each release.

P (τi) = di − f(τi) (4.2)

Then the waiting queue will be sorted in increasing order, and the task at the
head of the queue will be selected and scheduled.

4.3.3 Mixed Schedule Calculation and Consistent Schedule Gen-
eration

In this subsection, the detailed procedure for mixed schedule calculation will be
introduced, and the consistent schedule generated by “shrinking” the higher

124

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Mixed Schedule Step 1:

Hyper-periodTime bound in LO mode

Slack interval

current handled HI task with 𝐶!"#(𝐿𝑂)

HI task overrun test

Hyper-period

Time bound in LO mode

The time needed to eliminate the interfere with the execution of other

already scheduled HI task (HI m)

Start time recalculation

Hyper-period

The updated start time of HI

HI 1

Target allocate slot

Already scheduled task

=

HI n

𝐶!"#(𝐿𝑂)

The push forward time to guarantee the execution of HI task

Mixed Schedule Step 2:

Mixed Schedule Step 3:

LOHI n HI m

LO HI m

LOHI n HI mHI 1

HI 1

HI 1

Overrun of HI n

𝐶!"# 𝐻𝐼 − 𝐶!"# (𝐿𝑂)=

Already scheduled tasks

Figure 4.10: Task allocation on mixed schedule

criticality tasks will be proven safe. As Figure 4.10 illustrates, the mixed
schedule calculation consists of three main steps.

Step 1. Task selection and slack interval analysis

The task with the highest priority in the waiting queue will be selected, for
example, HIn in the first graph of Figure 4.10 for a dual-criticality system.
Based on the current status of the mixed schedule, as illustrated in step 1
of Figure 4.10, each available slack slot of the tested core (marked by green
stripes) should be identified, and only slots larger than the minimum execution
fragment length can be recognized as valid. Only if the sum of all valid slack
slots is larger than the expected execution time can the latest slack interval
be selected first (i.e., the time slot before LO in this example) to allocate the
execution of the selected task. The end time of the selected time slot is also
the expected end time of the task’s execution.

125

The expected execution time of the selected task is determined by the
criticality level of the task immediately following the latest allocated slack
time slot. In this example, the task is LO marked by a blue box, working as
a reference task, and the criticality of the selected task is HI, which is higher
than LO. Therefore, the expected execution time is the one estimated in the
system mode with criticality the same as the reference task, i.e., C(LO). If the
selected task has an equal or lower criticality level than the reference task, the
expected execution time is the one estimated in the system criticality mode
with the same value as the selected task itself. For example, if the criticality
of the reference task is MI in a triple-criticality system, and the selected task
is LO, then the expected execution time of the selected task is C(LO).

Valid slack intervals of each core are determined based on the previously
mentioned slack interval analysis. Assume τc is the reference task of the cur-
rently handled task τi on a specific core, based on the existing schedule, slack
intervals can be analysed in the time duration [0, ζτc], where ζτc represents
the start time of τc. Suppose there are k valid slack intervals, and the sum
of them I is larger than the expected execution time of τi according to Equa-
tion (4.3), we can start to calculate the start time ζτi of τi. Cmin represents
the minimum execution fragment time, and LX should be selected according
to Equation (4.4) to define the expected execution time CLi

τi (LX) of task τi.

I =
∑
k

Ik ≥ CLi
τi (LX), ∀Ik ≥ Cmin (4.3)

LX =

Lc if Li > Lc

Li if Li ≤ Lc

(4.4)

Step 2. Start time initialisation and overrun test

The start time calculation follows Equation (4.6), which is iteration-based be-
cause there could be time slots in the time interval [ζτi , ζτc) occupied by already
scheduled tasks with criticality levels equal to or higher than the handled task,
and their execution with C(Li) should be guaranteed. ητk represents the end
time of task τk. Additionally, slack intervals If with a size smaller than Cmin

also force the start time to move earlier.

If =
∑
k

Ik,∀Ik < Cmin (4.5)

126

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

ζτi = ζτc − CLi
τi (LX)−

∑
∀τk∈(ζτi≤ζτk<ζτc∨

ζτk≤ζτi<ητk∧
Lk≥Li)

CLk
τk

(Li)− If (4.6)

In the multi-criticality systems example in Figure 4.10, the current handled
task can be allocated to the target time slot with LO mode behaviour C(LO).
As the second graph of Figure 4.10 demonstrates, after finishing start time
initialisation, the overrun test is vital to guarantee the schedule’s safety. It can
check whether, once an overrun happens, the already scheduled HI criticality
task (i.e., HIm in this example) will be impacted. To guarantee the safety
of the task schedule calculation, once the execution of HI task HIn exceeds
its LO execution time, we assume that it will reach its worst-case estimate
C(HI) and execution time difference C(HI)−C(LO) is marked by red stripes.
Then, the overlap between two HI criticality tasks can be calculated, which is
marked by the red box. (Note that the impacted HI task could be the already
scheduled HI task from the same core or the successors of the current handled
task deployed on another core from the same DAG.) The impacted LO task
can also be identified simultaneously.

For multi-criticality systems, overlap checking between tasks during the
overrun in each system mode is required. For example, in a triple-criticality
system (S = HI,M,LO), if the system is running with M criticality mode,
all tasks with criticality levels equal to or larger than M should be guaranteed
with their C(M). Suppose the currently handled task is HI; we need to check
whether, when it is executed with C(M), there is any overlap between other
already scheduled tasks also executed with their C(M) in the same core or
its successors with criticality level of M or HI. When the system moves to
HI criticality mode, we must guarantee that there is no overlap between any
two HI-criticality tasks. Generally, we need to avoid the execution of τi from
affecting the already scheduled tasks with the same or higher criticality level
(i.e., Lh ≥ Li), which are τi’s successors or scheduled to be executed after τc
on the same core and grouped into a task set Ψhec. If the start time ζτh of τh,
where τh ∈ Ψhec, is earlier than the end time ητi of the current handled task
τi iteratively calculated according to Equation (4.7), then the overall overlap
detected for τi can be calculated following Equation (4.8), and the start time
should be recalculated following the methods described in the next subsection.
Please note that, in contrast to Equation (4.6), the current handled task τi is

127

executed with its WCET in the system mode, which has the same criticality
level as the task itself CLi

τi (Li).

ητi = ζτi + CLi
τi (Li) +

∑
∀τk∈(ζτi≤ζτk<ητi∨

ζτk≤ητi<ητk∧
Lk≥Li)

CLk
τk

(Li) + If (4.7)

Vτi =
∑

∀τh∈Ψhec

α× (ητi − ζτh) (4.8)

α =

1 if ητi − ζτh > 0

0 if ητi − ζτh ≤ 0
(4.9)

Step 3. Start time recalculation

Based on the time required to avoid conflict between two HI tasks (i.e., the
overlap time), the overall needed time can be obtained and recognised as
“push forward” time. In the dual-criticality system’s example illustrated in
Figure 4.10, before allocating the LO task, if there exists sufficient overall valid
slack interval greater than the sum of the LO execution time of the handled
HI task and the “push forward” time, the final start time can be updated in
the mixed schedule. If not, that implies the system is unschedulable.

When extending to a multi-criticality system, the overlap time can be
analysed according to Equation (4.8), and the start time update should be
discussed under two different conditions.
Condition 1: If Vτi ≥ 0, the start time of the selected task should be updated
by Equation (4.10). Once the start time is updated, we need to analyse the
time duration from the updated start time to the old start time [ζ̂τi , ζτi] and
identify if there are any scheduled tasks with the same or higher criticality
with execution time CLk

τk
(Li) under the system mode with the same criticality

level as the selected task τi. These tasks need to be involved in start time
recalculation, as the third term of Equation (4.10) shows. The final start time
of τi can be calculated and stay unchanged.

ζ̂τi = ζτi − Vτi −
∑

∀k∈(ζ̂τi≤ζτk<ζτi∨
ζτk≤ζ̂τi<ητk∧

Lk≥Li)

CLk
τk

(Li) + If (4.10)

128

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Triple-criticality System

𝑪𝝉𝟏
𝒍𝒐(𝑳𝑶)

𝑪𝝉𝟐
𝒎 (𝑴) − 𝑪𝝉𝟐

𝒎 𝑳𝑶

𝑪𝝉𝟐
𝒎 (𝑳𝑶)

𝑪𝝉𝟑
𝒉𝒊 𝑴

𝑪𝝉𝟑
𝒉𝒊 𝑳𝑶

𝑪𝝉𝟐
𝒎 𝑴

𝑪𝝉𝟑
𝒉𝒊 𝑯𝑰

𝑪𝝉𝟑
𝒉𝒊(𝑯𝑰) − 𝑪𝝉𝟑

𝒉𝒊 𝑴

𝑪𝝉𝟎
𝒉𝒊 𝑳𝑶

𝑽𝝉𝟎
𝝉𝟑

𝜻𝝉𝟑
𝑪𝝉𝟎
𝒉𝒊 𝑴

𝑪𝝉𝟎
𝒉𝒊 𝑯𝑰

𝑽𝝉𝟎
𝝉𝟑

𝜻𝝉𝟑
"

Task with Middle Criticality LevelTask with Low Criticality Level

Task with High Criticality Level

Figure 4.11: Example of task scheduling calculation in a triple-criticality
system

After the start time is obtained, we can identify the tasks that may be
impacted by τi in case of an overrun. The potentially impacted tasks are the
ones that are scheduled in the time interval [ζ̂τi , ητi], which are from the same
core and with criticality values lower than τi. They are grouped into Γτi

lc and
Γτi
lc = {τ0, . . . , τn−1, τn}, Lτ < Li, ∀τ ∈ Γτi

lc . Once the selected task overruns,
the tasks with lower criticality need to be discarded but are expected to keep
minimum execution time denoted by δj , where j ∈ Γlc.

Condition 2: If Vτi < 0, the selected task τi will not jeopardize the execu-
tion of the already scheduled task with the same or higher criticality level, and
all impacted tasks when facing τi overrun are with lower criticality levels. We
don’t need to update the start time and keep the results obtained according to
Equation (4.6). Then, the effort should focus on analyzing the tasks scheduled
in the time interval [ζτi , ητi], where ητi represents the end time of τi working
with CLi

τi (Li) and can be iteratively calculated according to Equation (4.7).
Similar to condition 1, Γτi

lc represents a set of impacted tasks with lower crit-
icality values than τi, which can be affected when τi overruns. The analysis
time interval is updated by [ζτi , ητi].

For both conditions 1 and 2, if task τi only overruns a small margin, the
free time slot after the end time of τi and the start time of other tasks with
equal or higher criticality values can be allocated to the task from task set Γτi

lc .
The task selection can start from the one with a higher criticality level.

129

Example: Figure 4.11 illustrates an example of task schedule calculation in
a triple-criticality system (i.e., low mode (LO), middle mode (M), and high
mode (HI)). Four tasks need to be scheduled on the same core: τ0 and τ3

are HI-criticality tasks with three estimated execution times under different
system modes: Chi

τ0 (LO) and Chi
τ3 (LO) for the system with LO mode, Chi

τ0 (M)

and Chi
τ3 (M) for the M system mode, and Chi

τ0 (HI) and Chi
τ3 (HI) for the system

running in the HI criticality level. As the highest criticality tasks in the task
set, their execution cannot be impacted by any other tasks. τ2 is a task with
M criticality with two execution time estimates: Cm

τ2 (LO) and Cm
τ2 (M). Its

execution should be guaranteed in a system running with M mode. However,
if the execution of any HI task will be affected by it, τ2 must be discarded.
If sufficient slack time exists, it is expected to execute δτ2 for data refreshing.
τ1 is a task with the lowest criticality level. Its execution only needs to be
guaranteed under the LO system mode, and the estimated execution time is
denoted by C lo

τ1(LO).

Assuming the scheduling order is τ0, τ1, τ2, τ3, which is determined based
on the method introduced in Section 4.3.1 and Section 4.3.2, assuming τ0 is
the sink node from a DAG and there isn’t any scheduled task in the tested
core, then τ0 can be directly allocated to the core as the first scheduled task.
To guarantee its execution in HI system mode, the start time is calculated
following ζτ0 = Thyper − Chi

τ0 (HI) without any further update, where Thyper
represents the hyper-period of all tasks.

After that, τ0 works as the reference task for τ1 and the available slack time
interval for τ1 is [0, ζτ0]. The expected end time is the end point of the latest
valid slack time interval. τ0 has a higher criticality level than τ1. Therefore,
C lo
τ1(LO) is used to calculate the start time ζτ1 = ζτ0 − C lo

τ1(LO) following
Equation (4.6). No scheduled task is located between ζτ1 and ζτ0 or ζτ1 is
between the start and end time of any scheduled task so that the start time
can be fixed.

Then, the slack time interval for τ2 allocation is set with [0, ζτ1]. τ2 with
m criticality, which is higher than τ1 (i.e., Lτ1 = lo). Therefore, Cm

τ2 (LO) is
used for schedule calculation and analysing overlap between τ2 and τ0 when
facing overrun is required because τ0 is the task with a higher criticality level
than τ2 and scheduled after τ1 from the same core. Without tasks with equals
or higher criticality levels located between the start and end time of τ2, the
overall overlap for τ2 can be obtained following Equation (4.8), i.e., Vτ2 =

130

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

ζτ2 + Cm
τ2 (M)− ζτ0 . As Figure 4.11 shows, there is no overlap and Vτ2 < 0 so

that the start time of τ2 can be fixed and working as the reference task for τ3.

Finally, according to Equation (4.8), we can find Vτ3 > 0 and the method
proposed for condition 1 should be followed. The affected task with the same or
higher criticality is τ0. Though τ2, τ1 are also impacted, with lower criticality
levels, only the overlap time between τ3 and τ1 needs to be analysed for τ3’s
start time updating and, as Figure 4.11 intuitively illustrates, the updated
start time on the test core ζ̂τ3 can be fixed.

Algorithm 7 illustrates the detailed pipeline to realise time stamp level
schedule allocation. To satisfy criticality-dependent timing requirements, we
use the schedule in the corresponding criticality system mode to identify the
free time stamp and allocate it to the task working with its worst-case execu-
tion time in its highest criticality level. In the system mode with a criticality
value equal to the highest criticality level of the handled task, all tasks are
working with their worst-case execution time (WCET) in the same mode.
Therefore, once the conflicts between tasks have been eliminated, the safe
execution of the handled task can be guaranteed.

Algorithm 7: Schedule On Core Calculation

1 Function ScheduleOnCore(τ , m, D):
2 if D = true then
3 Dry run: Only calculate and return result, schedule E and

E(S) remain unchanged;
4 Ebackup ← E ;
5 E(S)backup ← E(S);
6 ζbackup ← ζ;

7 end
8 ζmτ ←ScheduleOnCoreInModeS(τ , m, Lτ);
9 if D = true then

10 Dry run: revert changes;
11 E ← Ebackup;
12 E(S)← E(S)backup;
13 ζ ← ζbackup;

14 end
15 SDt ← true;
16 return ζmτ ;

131

Algorithm 8: Schedule On Core In S criticality system mode

1 Function ScheduleOnCoreInModeS(τ , m, Lτ):
2 S = Lτ ; /* Use the schedule in accordance with the

criticality system mode that aligns with the task

that needs to be scheduled. */

3 ηsed ← P τ
ed; /* The latest end time of task τ, determined

by task dependency and is initialized with τ’s

period end time. */

4 ζsst ← T τ
st; /* The earliest start time of task τ,

determined by task dependency and is initialized

with τ’s Period start time. */

5 if Suc(τ) ̸= ∅ then
6 ηsed ← min ζτ ′ , {∀τ ′ ∈ Suc(τ)} ∧ {Lτ ′ ≥ Lτ};
7 end
8 I = InValidIntervalIdentification(E(S));

/* Mark time stamps from invalid free time slots as

occupied. */

9 if I ≥ CLτ
τ (Lτ) then

10 exe← CLτ
τ (Lτ); /* execution time of task in the

system mode with the same criticality level */

11 ζmτ ← TimeStampAllocation(τ , m, Lτ , η
s
ed, exe, ηsed, ζ

s
st);

12 return ζmτ ;

13 end
14 else
15 return Unschedulable;
16 end

Step 4: Core selection and schedule update

For a multi-core platform, the core selection process is based on testing. Fol-
lowing the same procedure from the start time calculation steps (step 1 to step
3), the start time of the handled task τi on different cores can be calculated
as ζιτi ,∀ι ∈ N , where N represents the number of cores. The core providing
the latest start time will be selected according to Equation (4.11) to offer
more flexibility to the unscheduled task. On an N -core platform, the core
with the lowest workload (i.e., the core with the least amount of scheduled

132

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Algorithm 9: InValid Interval Identification

1 Function InValidIntervalIdentification(E(S)):
2 for ts = hyperperiod : 1 do

/* Start from the last time point of hyperperiod */

3 if Emts ̸= ∅ ∧ Emts−1 = ∅ then
4 ζtemp = ts - 1;
5 end
6 if Emts = ∅ ∧ Emts−1¬∅ then
7 ηtemp = ts - 1;
8 end
9 if ζtemp − ηtemp ≤ Cmin then

/* If the interval is smaller than the minimum

execution fragment, all timestamps within that

interval will be marked as occupied. */

10 for ts = ζtemp : ηtemp do
11 Ets(S)← Occupied;
12 end

13 end
14 else
15 I+ = ζtemp − ηtemp;
16 end

17 end
18 return I;

133

Algorithm 10: Time Stamp Allocation

1 Function TimeStampAllocation(τ , m, Lτ , exe, ηsed, ζ
s
st):

2 for ts = ηsed : ζsst do
/* Allocate time stamp to the selected task τ in a

backwards direction. */

3 if Emts−1 ̸= ∅ ∧ Emts = ∅ then
4 τc ← Emts−1;
5 end
6 if exe > CLτ

τ (Lτc) then
7 Scheduling overrun execution timestamp;
8 if Emts = ∅ then
9 exe← exe− 1;

10 Emts (Lτ) = τ ;

11 end

12 end
13 else
14 Scheduling CLτ

τ (Lτc) execution timestamp;
15 if Emts (Lτ) = ∅ ∧ Emts = ∅ then
16 exe← exe− 1;
17 Emts (Lτ) = τ ;

18 end

19 end
20 tslast ← ts; /* The last scheduled time stamp is the

start time of the currently handled task τ. */

21 if exe = 0 then
22 break;
23 end

24 end
25 if exe > 0 then
26 return Error; /* Unschedulable on this core */

27 end
28 else
29 ζmτ ← tslast;
30 return ζmτ ;

31 end

134

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

tasks) will be selected when faced with the same start time, as indicated by
Equation (4.12). Finally, the selected core number ι and the start time of τi
on it can be determined. Simultaneously, the schedule is updated, and task τi
can be removed from the waiting queue (i.e., the queue of unscheduled tasks
waiting for execution), which is then updated by adding the successors of τi.

ζιτi = max(ζmτi),∀m ∈ N (4.11)

ι = ind(min(Um)), ∀m ∈ N (4.12)

The utilisation value of the selected core should be updated according to
Uι ← Uι−

Cτi
Thyper

. Here, Cτi represents the execution time of the allocated task,
and Thyper is the hyper-period of the system. For bothHI and LO tasks, Cτi =

Cτi(LO) because the final consistent schedule used for system maintenance in
normal mode is C(LO)-based. When extending a multi-criticality system, the
utilisation value updating of the selected core is based on its execution time
under the lowest criticality system mode CLiτi(S0) following Equation (4.13),
where S0 represents the lowest system mode. Uι represents the remaining
utilisation of the selected core ι.

Uι ← Uι −
CLi
τi (S0)

Thyper
(4.13)

After that, the main pipeline is repeated to select the next unscheduled
task with the highest priority from the updated waiting queue, and the process
is continued until either the waiting queue is empty or an unschedulable error
occurs.

4.3.4 Consistent Schedule based Task Management At Run
Time

Based on the proposed method in the previous section, the start times of tasks
with different criticality levels can be fixed in a consistent schedule. In this
section, we use a consistent schedule example to explain how to maintain the
execution of tasks at runtime and achieve task-level mode changes.

Assume that, according to our proposed method, a consistent schedule
for a dual-criticality system can be obtained, and Figure 4.12 illustrates one
hyperperiod schedule. All tasks are working ideally with their C(LO). Fig-
ure 4.13 illustrates the worst-case scenario, in which all HI criticality tasks
overrun. Based on the consistent schedule, it is not difficult to find that the

135

Core 1

Core 2

Core 3

2010

2010

2010

A2.8A2.6

A1.3

A1.4

A1.5

A2.3A2.2.1

A2.1

A1.4

A1.5A1.2A2.7.2

A2.7.1(2)A1.3

A2.2.2(2)A1.2

A2.7.1(1)

A2.5.2

A2.5.1

A1.1 A1.1

A2.2.2(1)

Figure 4.12: The consistent schedule example for a dual-criticality system

Core 1

Core 2

Core 3

2010

2010

2010

A2.8A2.6

A2.7.1

A2.5.1

A1.4

A2.3

A2.2.1

A2.1

A1.1 A1.4

A1.2

AC A2.7.2

A1.1

AC A2.2.2

A2.5.2

A1.2

A1.3

A2.7.1

A1.3

A1.5

A2.2.2

A1.5

A2.2.2

Figure 4.13: The consistent schedule example when all HI tasks overrun

overrun of each HI task can only interfere with the execution of specific LO
tasks, which have been clustered into LO task groups corresponding to the
specific HI tasks during schedule calculation. Furthermore, there exist LO
tasks that will never be discarded, such as A1.5 and A1.3.

If only A1.1 overruns, it leads to the performance degradation of A2.2,
which consists of two sub-functions, A2.2.1 and A2.2.2. Only A2.2.1 is im-
pacted, while A2.2.2, deployed on core three, can still function normally. Sup-
pose that before the start of A1.3, there is sufficient time to support minimum
operation. In this case, A2.2.1 will not be fully discarded and can continue
working in a degraded mode. The system can then transition to the HI mode.
However, this only means that all tasks with the same or higher criticality level
as the system mode (i.e., HI) are allowed to run at their maximum estimated
WCET (C(HI)), while tasks with lower criticality values can be discarded
or degraded to free up resources and guarantee the execution of tasks with

136

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

higher criticality when necessary. Unaffected tasks can continue their normal
execution. In this case, we only need to monitor the actual execution time of
each HI task and discard or degrade the affected LO tasks as needed.

It is worth noting the execution of A2.2.2. Its start time is earlier than that
of the HI task A1.2. According to the static schedule, its execution would
be preempted by A1.2. Let us assume A1.2 overruns (i.e., it cannot finish its
execution within the estimated execution time), C(LO)), which implies that
A2.2.2 cannot resume in time. For instance, in a ROS2 node, A2.2.2 might
not provide valid results before the start of A1.5. However, A2.2.2 has been
partially executed, and the minimum operation (such as data refreshing) can
be considered finished. As a result, it can be classified as a degraded node.

4.4 Evaluation

The evaluation of this work consists of two parts. First, we use a real-world
application deployed on a robot to prove the necessity of the minimum ex-
ecution concept involved in our proposed scheduling method. We use ROS
2, a robot operating system, and Python to implement all related functions.
Although the code in our work is not optimized, the observed performance
can prove the necessity of the minimum execution concept involved in our
proposed scheduling method (i.e., keeping LO criticality tasks in degraded
mode). The second part of the evaluation uses synthetic task sets to assess
the feasibility and efficiency of our proposed static scheduling method. The
advantage of using synthetic tasks, compared to using a single example, is that
we can explore system behaviour under various different conditions.

4.4.1 Experiment on a Real-world Application

A Camera-LiDAR fusion-based object detection algorithm was deployed on a
mobile delivery robot to verify the necessity of keeping minimum execution
for data refreshing. We used Robot Operating System (ROS2) and Python
to integrate the algorithms because the start and stop time of each node can
be controlled individually, which can be considered as restart and discard
in this work. Based on ROS2, if a task node is discarded, it is essentially
terminated and requires restarting. If a task node is degraded, it implies
that the node only maintains data refreshing and bypasses the processing
operations. Additionally, the executor tool was used to assist us in determining

137

the predecessor constraints between different nodes. The Nvidia Jetson AGX
Xavier serves as the computational platform for our experiments. To assist in
realising object detection, we use one depth camera (Intel RealSense Depth
Camera D435i) and one single-line scanning laser rangefinder (Hokuyo UST-
10LX) to provide sensor data.

LiDAR
(Hokuyo)

LiDAR Object
detection

RGB
image

YOLOv5s object
detection

Points Points object
detection

Realsense Camera

Object detection
fusion

Execution time Monitor (EM) EMLO Criticality HI Criticality Sensor

EM

EM

EM

Figure 4.14: The structure of object detection function

Table 4.1: Time consumed by YOLOv5s and points nodes in different
scenarios.

Node Scenario Max(s) Min(s) Mean(s) Median(s) Standard Deviation

YOLOv5s
Lab 0.057 0.032 0.046 0.045 0.004

Living room 0.064 0.037 0.045 0.045 0.004

Points
Lab 0.468 0.147 0.239 0.235 0.036

Living room 1.367 0.279 0.412 0.447 0.094

Figure 4.14 illustrates the object detection deployed on a mobile robot.
Compared with cameras and infrared sensors, single-line LiDAR can provide
stable data at longer distances and a wider field of view. It is used to ensure the
safety of the robot, and the object detection function based on it is recognized
as a HI criticality task. YOLOv5s [75] is utilised to realise RGB-image-based
object detection. It is easily impacted by illumination conditions, and the
accuracy highly depends on the selected dataset for model training. Because
of its relatively lower reliability level, the YOLOv5s node is regarded as an
LO criticality task. The points data provided by the camera is based on the

138

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

fusion of the camera and infrared sensors. We assume it can provide relatively
stable sensor data and use a clustering-based method (i.e., DBSCAN [116]) for
short-range object detection to reduce the risk caused by objects that cannot
be detected by the single-line scanner. Therefore, the points detection node is
also determined as a HI criticality task.

In any driving scenario, the execution of HI criticality tasks should be
guaranteed. Table 4.1 summarizes the recorded execution times of the YOLOv5s
and Points object detection nodes in 1000 frames in different scenarios with
diverse complexity levels. In the lab environment, the obstacles are predefined
with a simple and clean background. On the contrary, the living room envi-
ronment is much more complex, with objects distributed in different locations.
Furthermore, the number, shape, and size of objects are not fully certain. As
a state-of-the-art algorithm designed for real-time detection, the execution
time of the YOLOv5s node does not face significant execution time variation.
However, the execution time of the clustering algorithm varies significantly
because the density of raw data released by the RealSense camera in different
scenarios changes considerably. Some parameters need to be adapted to bal-
ance the accuracy and execution time (e.g., down-sampling rate, minsamples,
and eps for DBSCAN).

To guarantee the execution of Points and LiDAR detection, which are de-
termined as HI criticality tasks in our solution, the YOLOv5s node can be
discarded. Runtime monitors can monitor the execution time of each node. If
the execution time of the Points or LiDAR detection node exceeds the prede-
fined threshold, this is regarded as an overrun, and the YOLOv5s node needs
to be discarded. However, in our work, minimum execution for data refreshing
is expected. The cost of restoring the YOLOv5s node from a discarded state
and a degraded state is recorded in Table 4.2, which is created based on 100
trials. We can observe that the restoration time from the discarded state is
around 40 times slower than the time consumed from the degraded state. This
is caused by the overhead of PyTorch module reloading after re-initialization.
In practice, the delay of restarting a task would delay the whole reaction time
of the system from recovering from the HI-mode back to the LO-mode. Al-
though for other applications, the restoration time would be much shorter,
we note that this can still be 2-10 times higher compared to resuming from a
degraded state due to, for example, cache.

139

Table 4.2: Time consumed by YOLOv5s node restoration from different
initial states.

Initial State Max(s) Min(s) Mean(s) Median(s) Standard Deviation

Discarded 32.417 30.901 31.4741 31.4745 0.405

Degraded 0.930 0.655 0.740 0.742 0.047

4.4.2 Simulation-based Experiment

We present results produced using a simulation implemented in Python. To
limit complexity, we use a dual-criticality system to evaluate our proposed
method, as it is sufficient to evaluate the efficiency and feasibility of our
method. The experiment setup has the following phases:

DAG generation: We use an existing DAG generator [43] to simulate
DAGs, where the maximum depth (the number of layers) is randomly selected
from 4 to 6, and the number of nodes in each layer is uniformly distributed
from 2 to 8. The scheduling calculation duration is set to one hyper-period
and repeated at runtime. Each DAG may have different periods, and during
scheduling calculation, DAGs may be released multiple times. To limit the
complexity, we assume that the number of DAGs in each system is no more
than 4.

Execution time generation: After fixing the DAG structure, we use
UUnifast [53] to synthesize the execution time and period of each task under
different system utilisations. To limit complexity, we assume that there are
only three cores in the system, and thus the sum of the utilisation of each task
Usystem =

∑
Ci(LO)/Ti cannot be greater than 3. The normalized utilisation

(i.e., Usystem/m, where m is the number of cores) variation of large-scale gen-
erated systems is from 0.3 to 1.0. For period selection, tasks from the identical
group (DAG) inherit the DAG’s period, which is randomly selected from a pre-
defined set [100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000], reflecting the
empirical values widely used in the real-time system community for complex
(e.g., autonomous) systems. For the execution time generation, we assume
that LO tasks have a single worst-case execution time estimate Cl(LO), but
with a one-time unit minimum operation. Cl(HI) = 1. HI-criticality tasks
have dual execution time assignments, and Ch(HI) = CF × Ch(LO), where
CF (Criticality Factor) is uniformly randomly selected between 1.5 and 2. It

140

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

is worth noting that the system utilisation after a mode change cannot exceed
3 (i.e.,

∑
Ci(HI)/Ti ≤ m).

HI criticality task selection: In the generated graph, the sink node
of each application is regarded as a fusion node, which should be set as HI
criticality. At least one node from the parent set of any HI criticality task
should also be set as HI and randomly selected. Following this rule, we can
find at least one end-to-end HI path to guarantee basic safe operation. In
our work, the criticality proportion Cp is set to the default value of 0.5. If the
number of tasks in the HI path is no larger than Cp×N , where N represents
the total number of tasks in the system, we will start from the source node
and randomly select one of its LO-criticality successors to convert it to a HI
task. The procedure will stop when Nhi/N ≥ 0.5, where Nhi denotes the
number of HI tasks in the system, and the remaining tasks are classified as
LO criticality.

Large-scale system generation: after generation rules are decided,
three system types consisting of 2, 3 and 4 DAGs were generated at scale. For
each category, 5,000 systems were generated under each normalised utilisation.
We have eight different workloads, and for each workload, 5,000 systems were
generated, and each system comprises two different DAGs. Thus, 40,000 sys-
tems with 80,000 DAGs were generated for the 2-DAG system type. Overall,
120,000 systems with 360,000 DAGs were generated for evaluation.

4.4.3 Evaluation of Schedulability

We evaluate our method against two state-of-the-art methods referred to as
fed [17] and lsai [92]. With fed, in high mode, tasks are scheduled with a
non-preemptive strategy and the LO schedule is calculated based on fixed
priority preemption. Because HI tasks always have higher priority than any
LO tasks, their execution in LO mode can be guaranteed by preempting LO
tasks. However, according to their strategy, more than one core would be
occupied by a heavy load DAG and cannot be used by any other tasks from
any other DAGs, which may lead to severe resource waste and reduce the
schedulability of the systems. For example, if the utilisation of one heavy
DAG equals 1.01, two cores will be occupied (as ceil(1.01) = 2), making it
more likely that the system is unschedulable.

Another issue raised by the fed method is that HI tasks are not allowed
to be dependent on LO tasks. However, a more practical system model is that

141

a HI task can depend on a LO task if there is at least one HI task in its
predecessor set. Unfortunately, the fed method does not support this. In low
mode, aHI task cannot be executed before the LO predecessor task finishes its
execution, and that may lead to an unsafe mode change because the start time
of the HI task in the HI schedule would be earlier than its start time in the
LO schedule. Therefore, once an overrun happens, the remaining budget in the
HI schedule cannot guarantee the execution of the HI task. In our approach,
a system with an unsafe schedule will be regarded as unschedulable. As Figure
4.15 shows, under our system model assumption and safe operation check, even
for a lightly loaded system consisting of two DAGs, the schedulability of fed
is only 20%.

Figure 4.15: The schedulability of systems against normalised utilisation (g2,
g3, and g4 represent systems comprised of 2, 3, and 4 DAG applications,

respectively.)

To reduce the unschedulable rate, lsai-edf proposes a fully preemptive
scheduling method and schedules HI tasks as late as possible (i.e., starting
from the sink node of each DAG and allocating the execution time from the
last time point of the hyper-period). In LO mode, all tasks are scheduled as
early as possible from the source node and zero time instant of each hyper-
period. This method can provide a much higher schedulable rate. However,
time unit level calculation (i.e., after allocating one time unit, the priority
of each ready task should be recalculated) may lead to a severe preemption
rate. Moreover, tasks can be migrated to any core to get higher resource
utilisation. In the worst case, two tasks can be preempted by each other every
time unit, triggering frequent migration. During their schedule calculation,

142

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

the Safe Trans. Prop. strategy can guarantee the safety of the schedules
for HI, LO mode, and during a mode change. Therefore, their method is
compatible with our system model. As expected, a fully preemptive method
can get better schedulability, especially under high loads.

In our work, we adopt the idea of a limited preemption strategy to get bet-
ter schedulability, and limiting minimum execution fragments can significantly
decrease the preemption overhead. Besides, we do not allow task migration
at run-time. Inevitably, the schedulable rate is smaller than lsai-edf , as Fig-
ure 4.15 demonstrates.

4.4.4 Evaluation of Preemption and Migration Overhead

Figure 4.16: The normalised preemption rate of systems against normalised
utilisation

Preemption and migration analysis use normalized preemption Pn and
normalized migration Mn as metrics, calculated using Pn = ϕp/||S|| and
Mn = ϕm/||S||. Here, ϕp and ϕm represent the number of preemptions and
migrations within one hyper-period based on LO schedules , and ||S|| denotes
the number of tasks in the system. ϕp and ϕm can be obtained during the
static schedule calculation.

Although the schedulability of fed is low and direct comparison is unfair,
the preemption and migration analysis based on successfully scheduled sys-
tems shows their advantage from a preemption and migration perspective.
They have different schedules for HI and LO modes; in HI mode, tasks are
scheduled non-preemptively. The source of their preemption and migration

143

Figure 4.17: The normalised migration rate of systems against normalized
utilisation

costs is the LO schedule. As Figure 4.16 shows, the normalized preemption
value is close to zero in the scheduled system. In a lightly loaded system, all
tasks can be scheduled in any system mode even with no preemption.

As noted in Sec.4.4.3, lsai-edf inevitably gives a high preemption and mi-
gration rate. The limited preemption and prohibition on migration in our work
help to get normalized preemption values which are about 50% smaller than
lsai-edf in systems with low utilisation (see Figure4.16). In a highly loaded
system, although the schedulable rate of our proposed method becomes rela-
tively lower, the normalized preemption value can be 60% smaller on average.
For migration evaluation, as illustrated in Figure 4.17, the normalized migra-
tion value of lsai-edf increases linearly with the normalized utilisation.

4.4.5 Evaluation of Survivability

One of our key contributions is the ability to maintain a consistent schedule
that ensures the safe execution of tasks in any system mode. In addition, we
consider the survivability of LO criticality tasks during the schedule calcula-
tion process. This approach can save more LO tasks or at least degrade them,
thus improving the system’s resilience and QoS, even under the worst-case op-
eration scenario (i.e., when all HI tasks are overrunning with their Ci(HI)).
Task-level mode change eliminates the cost caused by the system mode change
and provides more opportunities to preserve LO tasks.

To evaluate survivability, we use the average percentage of rescued and

144

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Figure 4.18: The survival proportion of LO tasks in systems with Uti=0.3

Figure 4.19: The discarded proportion of LO tasks in systems with Uti=0.3

discarded LO tasks of different system types under different system loads
with the increasing number of overrun HI tasks. For each round, we randomly
selected a specific percentage of the HI tasks to overrun (e.g., on the x-axis
of Figure 4.18, 0.1 means that we randomly selected 10% of the HI tasks to
overrun). We only use the HI schedule of lsai-edf for the comparison because
the fed based method can not provide sufficient valid schedules to support a
fair comparison. Based on the HI schedule, we attempt to insert LO tasks
into the free time slots based on the actual execution time of each HI task.
According to the system mode change rule, even though the execution time of
a single HI task exceeds 0.1% of its Ci(LO), the schedule should be changed

145

Figure 4.20: The survival proportion of LO tasks in systems with Uti=0.6

Figure 4.21: The discarded proportion of LO tasks in systems with Uti=0.6

to HI mode. Therefore, it is possible to find some time slots to insert LO
tasks and satisfy the precedence requirement. For LO task insertion into the
HI schedule of lsai-edf , we keep their fully preemptive strategy inserting LO
task wherever possible. If LO tasks can not be fully inserted into the HI
schedule, we also seek to find one time unit to provide minimum operation
before the execution of its successors.

The evaluation results of systems with normalised utilisation of 0.3, 0.6,
and 0.9 are selected to intuitively demonstrate the proposed method’s per-
formance in systems with low, medium, and high workloads. As shown in
Figure 4.18, 4.20, 4.22, 4.19, 4.21 and 4.23, in all cases, our proposed method

146

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Figure 4.22: The survival proportion of LO tasks in systems with Uti=0.9

Figure 4.23: The discarded proportion of LO tasks in systems with Uti=0.9

always has a higher survival rate and lower discarded percentage than lsai-edf .
In the best case, if only one HI task exceeds one time unit of its C(LO), no
mode change will happen based on our proposed consistent schedule, and no
LO task will be discarded. However, almost 20% of LO tasks in the lsai-edf
schedule-based system will be discarded because of the schedule update, even
in systems with low workload (i.e., uti = 0.3). The percentage of survived
tasks decreases with an increase in the number of overrunning HI tasks. In
the worst case (i.e., the most complex system with four DAGs and a high
workload with Uti = 0.9), we can still save 34% of LO tasks. It is worth not-
ing that, based on the minimum operation strategy, the number of degraded

147

Table 4.3: The performance of proposed mccs-dag scheduling strategy
compared with the lsai-edf method.

utilisation Survival Rate Difference (%) Discarded Rate Difference (%) Degraded Rate Difference (%)

Overrun Tasks (%) 2-Graphs 3-Graphs 4-Graphs 2-Graphs 3-Graphs 4-Graphs 2-Graphs 3-Graphs 4-Graphs

0.3

10 19.65 20.72 22.08 -17.62 -18.17 -18.93 26.51 17.85 15.32

50 14.5 15.97 17.96 -15.7 -16.43 -17.8 22.01 16.38 13.81

90 10.12 13.05 15.59 -15.13 -17.34 -20.54 21.35 17.48 17.43

0.4

10 21.7 22.33 24.02 -18.91 -19.19 -20.41 29.82 17.99 18.54

50 16.4 17.95 19.61 -17.81 -18.37 -19.46 24.51 18.0 14.88

90 11.67 14.74 17.87 -17.97 -19.98 -23.57 24.13 19.6 18.81

0.5

10 23.83 24.62 25.78 -20.04 -20.91 -21.5 30.58 23.3 16.39

50 17.71 19.77 21.56 -19.58 -20.35 -21.42 27.57 19.67 16.48

90 13.69 17.73 19.72 -20.7 -23.66 -26.17 25.27 21.03 19.89

0.6

10 27.52 26.73 27.72 -22.69 -22.24 -22.92 37.27 25.64 20.04

50 22.12 21.85 23.59 -24.36 -22.86 -23.92 32.08 23.12 19.5

90 17.99 19.62 21.86 -27.5 -27.21 -29.7 30.7 23.81 22.2

0.7

10 31.19 30.34 30.15 -24.89 -24.86 -24.81 41.0 30.67 27.98

50 24.85 25.25 25.68 -28.63 -27.44 -27.01 37.5 29.02 23.97

90 21.75 23.09 23.96 -33.36 -33.24 -33.72 34.29 28.59 25.35

0.8

10 35.47 33.57 33.21 -27.76 -27.3 -27.39 44.54 41.24 34.34

50 28.78 26.47 27.89 -34.87 -31.68 -31.59 45.71 36.77 32.11

90 25.44 25.18 26.24 -41.31 -39.96 -39.51 41.12 36.11 31.12

0.9

10 41.8 40.28 35.81 -34.07 -32.55 -29.28 63.96 43.39 23.62

50 34.55 33.7 29.58 -45.78 -40.68 -38.73 63.11 47.13 46.92

90 30.64 29.65 23.34 -55.08 -49.47 -43.82 58.36 45.85 39.2

tasks also increases with the number of overrun tasks. Even in the worst case,
the strategy can help us keep the discarded percentage relatively low, at 37%.
Furthermore, once the system is back to normal mode, only 37% of LO tasks
need to be reloaded, compared to 84% with lsai-edf . That means the system
would take much less time to recover to normal mode.

In order to provide a more comprehensive evaluation result, Table 4.3 sum-
marizes the overall performance of systems with different levels of structural
complexity and workload. As emphasised before, except for the survival task
rate, the degradation in this work means minimum execution for data refresh
and less restoration than restoring a discarded task. The survival and dis-
carded rate difference values are obtained as follows: Dsur = Rmccs

sur − Rlsai
sur

and Ddis = Rmccs
dis − Rlsai

dis , where Dsur and Ddis represent survival and dis-
carded rate difference, respectively. Rmccs

sur and Rmccs
dis denote the survival rate

and discarded rate of our proposed mccs − dag method. Rlsai
sur and Rlsai

dis rep-
resent the performance of lsai. The standardized degraded rate difference

148

CHAPTER 4. RESILIENCE-AWARE MULTI-CORE
MIXED-CRITICALITY CONSISTENT DAG SCHEDULING

Ddeg is calculated using Equation (4.14), which represents the difference of
degraded rates among non-survived rates of each method. Please note that
survival refers to a task being executed normally without any impact in any
system operational mode. If a task is degraded, it is not considered as having
survived but rather is running in a degraded mode to minimize data-refresh-
related operations. Consequently, we utilize the proportion of degraded tasks
among the non-survived tasks to assess the effectiveness of system recovery.

Ddeg = (Rmccs
deg /(1−Rmccs

sur))− (Rlsai
deg /(1−Rlsai

sur)) (4.14)

We can observe that with the increase in system utilisation, the survival
rate difference also grew, which means that our proposed method has better
resilience than lsai. Besides, in any condition, discarded rate difference val-
ues are always smaller than zero, meaning fewer tasks need to be restored
from the discarded state, and the system recovery time can be reduced. Fur-
thermore, the higher standardised degraded rate difference means that our
proposed method can provide much higher system recovery efficiency. More
tasks restored from a degraded state suggest shorter time shall be consumed
for system recovery.

In summary, our proposed method slightly sacrifices schedulability to re-
duce the preemption and migration cost. However, the schedulable rates are
still acceptable under different workloads. Furthermore, a consistent schedule
can ease the maintenance of mixed-criticality systems by eliminating system
mode change. With the consideration of LO tasks’ survivability during sched-
ule calculation, a consistent schedule can enable task-level mode change and
keep the execution of LO tasks longer. The minimum operation works as the
degraded operation and assists in speeding up system recovery.

4.5 Summary

In this work, we proposed a novel mixed-criticality multi-core DAG scheduling
strategy. Existing static scheduling methods generate two different schedules
for different system modes and discard all LO criticality tasks in HI mode.
In comparison, our strategy generates one consistent schedule considering the
survivability of tasks with lower criticality levels to realise task-level mode
change and significantly improve system resilience. Different schedules require
more analysis effort to guarantee safety during mode change, and system re-

149

covery is non-trivial, potentially delaying the restoration of dropped tasks
unnecessarily. Additionally, lower critical task allocation in the higher-level
mode schedule becomes more complex due to precedence constraints between
tasks with different criticality levels. As demonstrated in the evaluation, our
method reduces complexity. Task-level mode change can accelerate the recov-
ery of specific impacted tasks, and the existence of lower critical tasks also
improves the efficiency of computational resource utilisation. The proposed
methods can be extended to support event-triggered tasks, which can be ex-
ecuted using server-based methods to contain its timing behaviour. In this
context, a server is recognized as a periodically released task and can be stat-
ically scheduled, with a reserved time slot for the execution of event-triggered
tasks.

150

Chapter 5

Resilient and Efficient
Time-Sensitive Network

This chapter extends the design of scheduling strategies from the task-level
to the network-level. Time-Sensitive Networking (TSN) is being widely inves-
tigated to provide Ethernet capabilities for in-vehicle backbone communica-
tion. However, the gate control list (GCL), which is a simple mechanism for
achieving timing determinism for safety-critical traffic (ST) frames with hard
deadlines, is too rigid to handle the intrinsic timing uncertainty of automated
driving systems (ADS). Due to the complexity and unpredictable operating
environment, delayed ST frames can disrupt the solidly fixed timing behaviour.
This chapter presents a novel approach to effectively use bandwidth resources
to deal with delayed ST frames that a traditional fixed GCL cannot handle.
Discarding such frames should be reduced to improve the system’s integrity.
An acceptance test is implemented to report to the application layer when an
ST frame will miss its deadline and hence be rejected, i.e. prevented from
entering the switch. To further improve the efficiency of bandwidth usage, we
investigate how to improve the performance of the more important Class A
frames in an audio-video-bridging (AVB) switch, which adopts a credit-based
shaper mechanism. We propose a constant bandwidth server to replace the
credit-based shaper while taking fairness into consideration. Evaluation with
extensive experiments shows that both the resilience and efficiency of the TSN
are significantly enhanced. For the delayed ST frames and event-triggered traf-
fic, our approach can schedule more than the solution using the AVB switch,
even with a high network load.

151

5.1 Introduction

Advances in the automotive industry in recent decades have led to a dra-
matic increase in the number of sensors and electronic control units (ECUs)
in vehicles to support new functions, including advanced driving assistance
systems (ADAS) and automated driving systems (ADS). As a consequence,
there is more time- and safety-critical communication within the vehicle for
which guarantees of bounded latency and low jitter are required. This in-
evitable trend has forced the industry to research next-generation in-vehicle
networks (IVNs), as conventional IVNs do not have the bandwidth capability
to support such a large amount of data traffic.

The traffic in such systems, especially safety-critical data, should be trans-
mitted with hard real-time guarantees and with no or minimal interference.
Therefore, broadband IVNs with high reliability, deterministic behaviour and
stringent traffic isolation have become necessary — indeed, vital — for guaran-
teeing the system’s performance and safety. Time-Sensitive Networks (TSNs)
enable the use of standard Ethernet as a real-time communication network
and allow network sharing among multiple time-critical applications, and non-
time-critical applications [111], [57]. The IVN structure we consider in this
work comprises a central TSN switch that is connected to multiple zones or
domains (e.g., for handling LiDARs) in the vehicle and acts as a backbone.
Each domain connects to the TSN backbone through a domain control unit
(DCU) for cross-domain data exchange [128], [59], [121], [113]. Figure 5.1
illustrates this network architecture.

The traffic in the IVN can be divided into three classes reflecting their im-
portance. Messages directly related to safety are recognised as safety-critical
traffic (ST), whereas the flows carrying information with lower importance but
which can provide mission-critical services are generally classified as Class A.
Other traffic with even lower importance can be regarded as Class B. The gate
control list (GCL) is recognised as the schedule, calculated offline under the
assumption that all safety-critical traffic frames can be released and treated
“safely”, ideally as predefined. The schedule is fixed in the switch at run-time
to guarantee the deterministic transmission of safety-critical periodic traffic
and realise time isolation to avoid interference among different frames [36]. In
practice, the unexpected delay of safety-critical frames, which is inevitable due
to system complexity and the unpredictable operating environment, injects
uncertainty into the network. Several factors contribute to this phenomenon.

152

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Figure 5.1: TSN-based in-vehicle network architecture

As introduced in the previous paragraph, various domains are interconnected
through the TSN backbone. Jitter originating from any of these domains can
result in varying arrival times during the runtime of ST frames released from
specific domains. Such variation can be attributed to disparities in routing
paths within each domain, differing processing times at devices, and other
relevant factors. Additionally, within each domain, the occurrence of packet
drops due to network errors or congestion can disrupt the expected periodic
arrival pattern. The need to retransmit lost packets can introduce extra de-
lays and irregularities. Moreover, dynamic alterations in the domain network
topology, such as link failures or route recalculations, can impact packet deliv-
ery, consequently leading to fluctuations in arrival times [11]. In this work, our
focus is on the TSN backbone rather than addressing issues specific to each
individual domain. Without any further measures, once the frame misses its
transmission time slot allocated by the GCL, the timing behaviour of the ST
queue (FIFO) is undermined, and the delayed frame may disturb the order of
other messages and cause a severe knock-on effect. In addition to the unex-
pected arrival of ST frames, some event-triggered traffic may have relatively
high priority. With a standard AVB switch, such traffic is fed into the Class
A queue. We need to transmit this traffic quickly and raise the throughput
to improve the quality of service (QoS). Although the use of event-triggered
traffic is intended to improve system safety and reliability, a fixed schedule
cannot handle the uncertainties, dramatically reducing the flexibility of the
TSN-based system.

According to common practice, frames with incorrect arrival times are
dropped directly to prevent the adverse effect from propagating. Most current

153

work focuses on dealing with permanent faults caused by physical link failure
or temporary faults caused by packet loss. The lack of research on mechanisms
to deal with temporal faults caused by incorrect frame arrival impedes the
application of TSN-enabled systems.

In this work, we propose a new scheduling strategy, namely Resilient and
Efficient Time-Sensitive Networking (reTSN) to address the aforementioned
issues. To illustrate the superiority of our proposed method, we chose the
state-of-the-art credit-based shaper mechanism-based AVB TSN as the base-
line approach. The evaluation results demonstrate that our proposed method
can substantially decrease the drop-outs of safety frames across various work-
loads. Furthermore, our method prioritizes the transmission of more crucial
Class A frames while maintaining fairness for less significant Class B frames.

The main contributions can be summarised as follows:

• reTSN is a novel strategy adopting a fully multi-level preemption con-
cept to realise dynamic priority allocation, which can reduce the waste
of bandwidth and dramatically improve the scheduling effectiveness of
TSN.

• reTSN introduces the notion of an emergency queue technique, which
integrates acceptance-test and run-time priority allocation strategy to
deal with the delayed ST frames and can schedule up to four times
as many delayed ST frames than the AVB-based solution, even in a
relatively highly loaded network (e.g., with 80% utilisation).

• For unanticipated traffic, we propose a constant bandwidth server-based
strategy to replace the conventional credit-based shaper mechanism to
reduce the latency of more important Class A frames. This strategy
also takes the fairness of Class B frame transmission into consideration.
Under a relatively highly loaded network, the benefit is more noticeable.

The rest of the chapter is organised as follows: In Section 5.2, the proposed
reTSN method is detailed, followed by the formulation of proposed strategies
for delayed ST and event-triggered traffic in Section 5.3. The evaluation is
introduced in Section 5.4. Finally, in Section 5.5, we conclude this work with
a discussion of future work.

154

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

t

GCL

1 2 3

132

Expected

Actual

d1

Gate closed Gate opened Invalid

Figure 5.2: Temporal fault caused by a delayed traffic frame

5.2 Method Overview

A network’s resilience and efficiency determine its capability to handle un-
certain traffic conditions. In this work, countermeasures to uncertainty are
presented from two perspectives:

1. The delayed ST frame is recognised as a temporal fault. The proposed
method adopts a slack-stealing algorithm, emergency queue and multi-
level preemption mechanism to reduce the likelihood that a frame is
discarded and improve the capability for temporal fault tolerance; and

2. The event-triggered traffic with unknown release time, which should be
transmitted as quickly as possible. Cooperating with a multi-level pre-
emption mechanism and constant bandwidth server, the virtual deadline
for event-triggered frames with higher priority (Class A) can be allocated
dynamically to reduce transmission latency.

In the subsequent subsections, motivational examples are given, and the
reTSN design is described comprehensively.

5.2.1 Motivational examples

Motivational example 1

Figure 5.2 depicts the fault caused by a delayed ST frame. Assume all frames
arrive at the switch sequentially and are scheduled according to the predefined
time slots (via GCL). Ideally, frame 1 should arrive before frame 2. If frame 1
is delayed and arrives at the switch after frame 3, the order will be disturbed.
If frame 2 is inserted into the ST queue before the closing time point of the
frame 1 slot, it will be transmitted immediately. If the remaining frame 1
time slot is too short to complete frame 2 transmission, that may result in one

155

Figure 5.3: Frame transmission using a credit-based shaper [25]

frame becoming invalid. Frame 3 can be invalidated the same way. For the
delayed frame 1, though it can be transmitted within the time slot belonging to
frame 3, it is inevitable that it will miss its deadline. According to the current
mechanism, it will be discarded if a frame is invalid or doesn’t arrive at the
correct time point. However, dropping a safety-critical frame (and potentially
a sequence of safety-critical frames) could affect system safety and cannot
eliminate the effect caused by the timing fault. Therefore, instead of dropping
the frame directly, further effort should be made to finish transmitting delayed
frames before their deadlines to reduce drop-outs with the potential to impact
safety. This also suggests that the GCL must be dynamically modified to avoid
incorrect time slot occupation. The method proposed in this work can improve
the fault tolerance capability of the TSN switch from these two perspectives.

Motivational example 2

To deal with unpredictable event-triggered traffic, existing reservation mech-
anisms can prevent bursts in transmission based on the credit-based shaper
algorithm introduced in [25]. The pending frames can be transmitted if and
only if the associated credit is non-negative. During its transmission, the
credit is reduced at a constant rate called sendSlope but frozen during the
transmission of ST frames. When the frames are pending in the queue, the
credit increases at a constant rate known as idleSlope. The credits are ini-
tialised to zero, and the parameter definition of sendSlope and idleSlope can
be considered as a fine-tuned procedure for obtaining optimal traffic trans-
mission performance. In different scenarios, the adjustment procedure can
be time-consuming. Figure 5.3 illustrates one of the representative cases of

156

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

credit-based shaper strategy-based frame transmission with non-preemption.
Assume frame Fm is being analysed, and the line is its credit. According to
the aforementioned rule, its transmission can be blocked by safety-critical traf-
fic FST . Moreover, the frames F (sp) with the same priority (sp), which are
pending before it in the same queue, and even F1(lp), with a lower priority
(lp) but with an earlier release time, can prevent the frame’s transmission.
Furthermore, if the credit is not larger than zero, the frame is not allowed to
be transmitted, even when the channel is idle. Before the credit is reset to
zero, suppose that a second frame with lower priority F2(lp) is released. In
that case, the actual start time of Fm must be postponed. The red dash box
outlines the postponed time of Fm, which cannot be eliminated by fine-tuning
the parameters [25].

5.2.2 System model

The design of the model is based on the assumption that safety-critical periodic
traffic is scheduled by GCLs and that the buffer size for the queues is not
unlimited but sufficient (this can be determined statically, off-line).

Network model

ST traffic is released periodically and put into the ST queue. We assume the
off-line calculated schedule (GCL) is frame-level and repeated cyclically. The
event-triggered traffic is divided into two classes according to their minimum
inter-arrival time (highest release frequency) at a pre-specified threshold; this
can be determined a priori. In this work, the priority of each frame is de-
termined according to its deadline, and the class A queue is used for frames
with an inter-arrival time less than the threshold, which also implies queuing
the frame with higher priority. The Class B queue is used for traffic with an
inter-arrival time greater than the threshold. For example, frames with an
inter-arrival time less than 100 are fed into the high-priority Class A queue.
In contrast, those with inter-arrival times greater than 100 are inserted into
the Class B queue. Although there is no hard real-time requirement for Class
A and Class B frames, we must provide faster transmission to increase the
throughput, especially for Class A frames.

157

Figure 5.4: The conventional AVB TSN switch

Traffic model

In this work, each flow consists of a sequence of frames. The routes for all
flows are predefined at design time and are deterministic at run-time. The ith
frame of flow Fj can be characterized as:

f ji := {Cj
i , Tj , D

j
i , r

j
i } (5.1)

where Cj
i represents the frame size, and Tj and Dj

i denote the frame period
and relative deadline, respectively. For event-triggered frames, Tj and Dj

i are
defined by the minimum inter-arrival time. rji represents the release time of
the ith frame of the jth flow. Moreover, we assume that Tj = Dj

i .

5.2.3 Conventional AVB model and credit definition method

Figure 5.4 demonstrates the conventional AVB switch. The priority of an
individual frame is defined according to the most recent credit of the cor-
responding queue. According to the definition of the credit-based shaping
mechanism [126], the pending frames can be transmitted only if the associ-
ated credit is non-negative. Additionally, during the transmission, the credit
is reduced at a constant rate called sendSlope. When the frames are pending
in the queue and waiting for transmission, the credit increases at a constant
rate known as idleSlope. Moreover, if there is no pending frame and the credit
of the corresponding class is negative, the credit also accumulates at the idleS-
lope rate until it reaches zero. The credits are initiated at zero. Equations
5.2 and 5.3 illustrate how the sendSlope and idleSlope can be calculated [67].
portTransmitRate refers to the maximum data transfer rate that a specific

158

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

network port can support. It uses the same units as bandwidth. The idleS-
lope represents the bandwidth reserved for the queue by the bridge, while the
sendSlope corresponds to the transmission rate of the port MAC service.

sendSlope = idleSlope− portTransmitRate (5.2)

idleSlope = reservedBytes/FrameIntervalT ime (5.3)

Although the credit-based shaper based method prevents traffic bursts,
the buffering delay caused by the increasing credit cannot be neglected. We
denote the idleSlope as iSa for Class A and iSb for Class B. The values are
defined according to the remaining bandwidth after allowing for ST periodic
traffic (i.e. UAV B = 1 − UST). The sendSlope for Class A and Class B are
denoted by sSa and sSb respectively. In this work, the values of idleSlope and
sendSlope for Class A and Class B are assumed to be the same thus no bias
is introduced and once a frame from any class gets the transmission oppor-
tunity, all the remaining bandwidth, after accounting for ST periodic traffic,
can be used to support its transmission. Fine-tuning of these parameters sub-
ject to the application could potentially further improve the performance but
analysing this is beyond the scope of this work. As the motivational example
demonstrates, tuning the parameters does not solve the underlying fundamen-
tal problem. Based on Equations 5.2 and 5.3, the slopes used in this work
can be calculated as follows: iSa = iSb = UAV B

sSa = sSb = UAV B − 1
(5.4)

The conventional AVB model adopts a one-level preemption mechanism. Only
ST frames can preempt the transmission of non-ST frames (Class A and Class
B). Class A and Class B frames are transmitted based on strict priority, which
is defined by the credit-based shaper; Class A and Class B frames cannot
preempt each other.

5.2.4 reTSN model

Figure 5.5 illustrates our proposed reTSN switch. Compared to the AVB
switch, we adopt dynamic GCL modification. If the current ready frame is not
the expected frame, the gate to the ST queue will be closed, and the gates to
other queues will be opened. The necessity of multi-level preemption began

159

Figure 5.5: The constant bandwidth server based TSN switch

to be emphasised in recent studies such as [99] and [10]. However, the existing
work only enables the preemption of Class B by Class A (Class A can not be
preempted by Class B) while still adopting the credit-based mechanism. The
unpromising results caused by credit recharging (increasing credit at idleS-
lope) remain unsolved. Thus, this work relaxes the limitation of the one-level
preemption mechanism and adopts a multi-level preemption mechanism, which
enables all frames to preempt or be preempted according to their latest allo-
cated priorities. This operational mechanism bears resemblance to execution
preemption, which is commonly applied in task scheduling on computational
platforms. In recent years, the authors of the paper [99] were the first to pro-
vide an in-depth explanation of how to implement a multi-level preemption
scheme in TSN. In our work, we leverage the concept of multi-level preemption
to address the limitations observed in existing methods. Frame preemption
involves two MAC services for an egress port: preemptable MAC (pMAC)
and express MAC (eMAC). Express frames can interrupt preemptable frame
transmission. Upon resuming, the MAC merge sublayer reassembles frame
fragments at the next bridge. Preemption incurs computational overhead in
the link interface due to transitioning to express frames. A frame transmis-
sion pauses, and the incomplete frame gets a cyclic redundancy check (CRC).
When high-priority traffic has been sent, interrupted transmission resumes in
the next time slice.

For safety-critical periodic traffic, the schedule is calculated offline based
on the earliest deadline (absolute-deadline) first (EDF) algorithm and repeats
according to the hyperperiod Thp of all safety-critical flows. We assume that
the ST frames are ideally released according to predefined period. To limit

160

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

the complexity of this work, each frame’s actual release time can be regarded
as the arrival time at the switch, which can be measured; thus, the absolute
deadline can be calculated following Equation (5.5), where ϕj represents the
release time of the first frame instance (ϕj = rj1) of traffic flow Fj and Dj

i

denotes the relative deadline. However, this assumption is potentially invalid
for some traffics at run-time because of the inevitable jitter. In that case,
the unexpected arriving frames can be treated as delayed frames by following
introduced emergency queue-related operations.

dji = ϕj + (i− 1)Tj +Dj
i (5.5)

Suppose an ST frame is delayed. Instead of dropping it directly, the pro-
posed acceptance test will be invoked to identify whether the slack is sufficient
for the frame’s transmission. If so, the delayed ST frame will be fed into the
emergency queue and assigned with a small virtual absolute deadline (e.g.
zero). In that case, it is guaranteed to have the smallest value compared with
the absolute deadlines of other non-ST frames and is allowed to preempt all
non-safety-critical traffic with the highest priority. The detailed formulation
of the acceptance test is further detailed in Section 5.3.1. Different to the ur-
gency queue introduced in paper [97], which follows a token bucket algorithm
to regulate the traffic and is similar to the CBS-based strategy, queuing delay
and the postponed time caused by token recharging can not be eliminated. In
our work, the acceptance test based enqueue and highest priority allocation
operation can guarantee the immediate transmission of delayed ST frames.
Furthermore, the waste of bandwidth consumed by some delayed ST frames,
whose deadline missing cannot be avoided, can be reduced.

For event-triggered traffic, we assume that the physical transmission time
from the source to the switch can be neglected. The actual release time of
each frame ri can be regarded as the arrival time at the switch, and the
absolute deadline di can be calculated by di = ri + Di, where Di denotes
the predefined relative deadline. For Class A-frames, the constant bandwidth
server is utilised to determine the virtual relative deadline dynamically. The
method of server definition is defined in Section 5.3.2. For Class B frames,
the absolute deadlines are calculated based on their release time and relative
deadlines (minimum inter-arrival time). Once the absolute deadlines of all
ready frames are defined, they are scheduled following strict priority order.
With the adoption of the multi-level preemption mechanism, Class A frames
are able to preempt Class B frames.

161

As shown in Figure 5.6, the time-aware scheduler plays a crucial role in pre-
venting interference or overlap between frames carrying safety-critical traffic.
Its objective is to ensure that these frames remain undisturbed, upholding data
integrity. To achieve this, the time-aware scheduler introduces a guard band
(purple box) before each time slice dedicated to ST traffic (blue-grey box).
During this guard band period, new Ethernet frame transmissions are pro-
hibited, allowing only ongoing transmissions to conclude [115]. Despite their
effectiveness in safeguarding high-priority critical traffic, guard bands entail a
significant drawback. The time allocated to a guard band is essentially lost;
it cannot be harnessed for new data transmission. Consequently, the time
sacrificed to guard bands directly translates into reduced bandwidth available
for background traffic on the specific Ethernet link. Without a preemption
mechanism, the duration of this guard band must match the time it takes to
safely transmit the maximum frame size. For an Ethernet frame compliant
with IEEE 802.3, including a single IEEE 802.1Q VLAN tag and accounting
for inter-frame spacing, the total length is calculated as follows: 1500 bytes
(frame payload) + 18 bytes (Ethernet addresses, EtherType, and CRC) + 4
bytes (VLAN Tag) + 12 bytes (Interframe spacing) + 8 bytes (preamble and
SFD) = 1542 bytes. The total time required to send this frame varies accord-
ing to the link speed of the Ethernet network. In the case of Fast Ethernet
with a transmission rate of 100 Mbit/s, the guard band needs to be at least
123.36 µs long. Frame preemption minimizes guard band size, determined by
the preemption mechanism’s precision. This is the reason why we introduce a
preemption strategy in this work – to reduce the bandwidth waste caused by
guard bands.

In this work, a minimum valid transmission time Cvef is assumed to be
one time unit. The minimum preemptable frame size is set to 128 bytes
with a two time unit transmission time Cminp. The guard band size is set to
128 bytes, and once a preemption from an ST frame occurs, the remaining
transmission time of the current transmitted non-ST frame is checked. With
the adoption of a without hold and release preemption mechanism [25] if the
remaining time Cremain is more than Cminp, the frame is allowed to continue
transmitting for one time unit to reduce the wasted bandwidth caused by the
guard band. After that, the preemption overhead (including a header and
cyclic redundancy check (CRC)) is appended to the remaining part to create
a new frame. If the remaining time is less than or equal to Cminp, the frame

162

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Figure 5.6: Example of multi Class A frames transmission (Tser = 23,
Cser = 8, iSa = 0.375, sSa = −0.625)

actively undergoing transmission can finish its transmission. Equation (5.6)
describes the continuous transmission time Cconti of the current transmitted
frame after preemption takes place.

Cconti =

Cvef if Cremain > Cminp

Cremain if Cremain ≤ Cminp

(5.6)

5.2.5 Transmission performance comparison

In order to intuitively demonstrate the difference in frame transmission be-
tween the server-based method and the AV B-based method, Figure 5.6 illus-
trates the case of Class A traffic transmission. Purple boxes represent guard
bands, and blue boxes depict the time slots for frame transmission. This case
study compares the transmission performance based on credit-based shaper
mechanisms and the proposed constant bandwidth server-based strategy. In
this figure, ri represents the ready time of the Class A frame instance, di de-
notes the server-allocated deadlines, and dinew is the updated server deadline
in light of capacity exhaustion or the remaining capacity available to satisfy
the requirement described in Section 5.3.2. In the server-based method, the
transmission can start immediately when the channel is idle. Therefore, the re-
sponse time of event-triggered frames is decreased, and within the observation
time duration, more frames can be transmitted using the proposed method.
For frame f2, the guard band allows it to continue to transmit for one time
unit without being preempted. Frame f5 in this example can finish its trans-
mission before the corresponding server deadline. However, the credit-based

163

shaper strategy cannot transmit this frame within the time duration. Although
the credit-based shaper method can prevent traffic bursts, the buffering delay
caused by credit recharging cannot be neglected, as explained by motivational
example 2. Please note that the primary focus of this figure is to intuitively
highlight the advantages of employing a server. These advantages include the
ability for the capacity budget to immediately return to its maximum value
upon frame release and the dynamic adjustment of frame priorities based on
dynamically allocated deadlines. This is achieved without encountering de-
lays due to the credit recharging rule. Therefore, specific values for the server
budget and credit values at each time point are not necessarily included in the
figure.

5.3 reTSN Formulation

In this section, the proposed strategy is formulated separately for (a) resilience
in terms of the improvement of temporal fault tolerance and (b) efficiency of
event-based traffic.

5.3.1 Delayed Safety-critical Traffic

As mentioned in Section 5.2.4, an emergency queue is adopted to handle de-
layed traffic. The acceptance test must analyse the idle time according to the
offline calculated schedule (GCL) and the current ongoing transmitted frame
to decide whether a delayed ST frame can still be accepted or whether it must
be discarded directly.

For the acceptance test, the slack-stealing algorithm is adopted, which
enables the delayed frame to be transmitted before its deadline by utilising all
possible idle time from ST periodic traffic without causing other frames to miss
deadlines. For example, suppose the ith ST frame of the jth flow is delayed
with the actual arrival time r′ji . Only if it passes the slack analysis-based
acceptance test can its transmission be guaranteed, meaning it will arrive at
the destination within its deadline denoted by d′ji . The slack in the time
duration from the actual arrival time of the delayed ST frame to its deadline
can be analysed following Equation (5.7).

slack(t) = d′
j
i − r′

j
i − IST (5.7)

According to the GCL, the start time tkhS and end time tkhE of each frame

164

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

instance are known (h and k represent the frame and flow indices, respectively),
and the interference IST caused by ST scheduled traffic arises from three
aspects:

IST = Iact + Ifut1 + Ifut2 (5.8)

1. Iact: interference from the active scheduled ST time slot with tkhS ≤ r′ji

and r′ji < tkhE < d′ji (Please note that we don’t need to consider tkhS ≤ r′ij

and tkhE ≥ d′
j
i because that would indicate the absence of any slack time

within the time duration from the actual arrival time of the delayed ST
frame to its deadline.):

Iact =
∑

∀i∈(tkhS≤r′ji
∧

r′ji<tkhE<d′ji)

(tkhE − r′
j
i) (5.9)

2. Ifut1 : interference from the future scheduled ST time slot with tkhS ≥ r′
j
i

and tkhE ≤ d′
j
i :

Ifut1 =
∑

∀i∈(tkhS≥r′ji
∧

tkhE≤d′ji)

(tkhE − tkhS) (5.10)

3. Ifut2 : interference from the future scheduled ST time slot, but with
r′ji ≤ tkhS ≤ d′

j
i and tkhE > d′ji :

Ifut2 =
∑

∀i∈(r′ji≤tkhS≤d′ji
∧

tkhE>d′ji

(d′
j
i − tkhS) (5.11)

It is worth noting that the time slot allocated to the transmission of the
ST frame Cj

i consists of the transmission time of ST frame and guard band
Cgb. If the frame is delayed, the actual transmission time excludes the guard
band part and is denoted as C ′j

i . (i.e., Cj
i = C ′j

i + Cgb)
Based on Equation (5.12), the maximum preemption times and the re-

lated maximum preemption overhead ξi can be calculated where ω denotes
the overhead per preemption. As introduced earlier, we assume a minimum
valid transmission time of one time unit. The minimum preemptable frame
size is set to 128 bytes with a two time unit transmission time. To ensure
successful preemption, the minimum remaining frame size must allow either
preemption at the start of the guard band (where the remaining frame can still
be valid) or completion of its transmission within the guard band. Consider-
ing these conditions, we can determine the maximum number of times a frame

165

Figure 5.7: Example of Delayed ST frame transmission

can be preempted, given by ⌈C ′j
i/2⌉, where 2 represents the minimum pre-

emptable frame size indicated by the time it consumes. Subsequently, we can
calculate the overhead and update the transmission time while accounting for
the additional overhead. The updated transmission time, which includes its
preemption overhead, can be estimated using Equation (5.13). The maximum
blocking time from the frame with lower priority is set to Cvef .

ξi = ⌈C ′j
i/2⌉ ∗ ω (5.12)

C ′j
i ← C ′j

i + ξi (5.13)

slack(t) ≥ C ′j
i + Cvef (5.14)

The delayed ST frame can be accepted and fed into the emergency queue
if the slack time fulfils in-equation (5.14). Otherwise, the deadline missing
warning and rejection operation will be reported to the application layer to
trigger safety-related activities. The time complexity of the acceptance test
is O(N), where N is the number of GCL scheduled ST frames within one
hyperperiod.

Figure 5.7 illustrates an example of delayed frame transmission. Frame
F31 is the analysed frame which did not arrive at the switch as expected.
However, based on the slack time calculation following Equation (5.7), under
the current circumstances, there are sufficient spare time slots (marked by
green prismatic grids) to guarantee the transmission of the delayed ST frame
before its deadlineD31 . That means the delayed frame can pass the acceptance
test and be fed into the emergency queue. Once the gate of the ST queue is

166

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

closed, the delayed frame can be transmitted immediately with the highest
priority.

5.3.2 Event-triggered Traffic

The release time of event-triggered traffic is unpredictable and is a source of
uncertainty for the system. Event-triggered traffic is divided into two: Class
A and Class B, according to their minimum inter-arrival times. A constant
bandwidth server is used to determine the virtual relative deadlines of the
Class A frames. The relative deadlines of the Class B frames are defined by
their minimum inter-arrival times. Their absolute deadlines, used to determine
their priorities, can be calculated according to their actual release time and
the virtual relative deadline, as shown in Section III-D.

Constant bandwidth server-based deadline allocation for Class A
frames: The server-based deadline allocation can be understood as follows:
when a frame is ready to be transmitted, an appropriate deadline is allocated,
then the priority of the frame is determined, and it may preempt or be pre-
empted according to the deadline. If the transmission time of the ongoing
transmitted frame would exceed the expected time defined by the server, its
deadline is postponed, meaning its priority is decreased, and another frame
could receive the opportunity to be transmitted. This property prevents chan-
nel occupation by frames from the same class. Because of the postponed dead-
line, the priority of the frame with a closer deadline from another queue may
be increased. The detailed procedure of a constant-bandwidth server-based
deadline allocation for Class A frames can be described as follows [35]:

• The utilisation allocated to the server User is Cser/Tser. The deadline
assigned by the server dser is initialised to zero. Cser represents the max-
imum expected transmission time and Tser denotes the server’s period;

• A virtual deadline di is dynamically allocated to the frame located at
the head of the Class A queue following di = dser, and whenever the
frame is transmitted, the capacity is decreased by the same amount as
the transmission time;

• When the maximum expected transmission time (capacity) is exhausted,
the capacity is replenished to the maximum value and the server deadline
is updated as dser = dser + Tser;

167

• When a frame is ready at time point ri, and the remaining capacity
Cremain ≥ (dser− ri) ∗User, a new deadline is generated dser = ri+Tser,
and the capacity is recharged to the maximum value. Otherwise, the
frame is transmitted with the last server deadline and consumes the
remaining capacity.

Constant bandwidth server parameters definition: The constant band-
width server can be considered as a source of virtual periodic traffic which can
be scheduled with other periodic traffic, using the EDF strategy.

According to the definition of the EDF algorithm, Equation (5.15) must be
fulfilled to guarantee the schedulability of the network. The upper bound of
utilisation allocated to a constant bandwidth server can be defined by Equa-
tion (5.16), and the utilisation allocated to a constant bandwidth server equals
the upper bound. Up represents the utilisation of all periodically released ST
traffic. Please note that in this work, the deadlines for non-safety-critical tasks
are not necessarily guaranteed. The function of the server is to enable these
tasks to begin transmission without any delay caused by credit recharging.
The bandwidth upper bound for the server User, is utilized to establish server
parameters and provide dynamic deadlines for Class A. This approach prevents
prolonged channel occupancy, which could otherwise hinder the transmission
of Class B frames.

User + Up ≤ 1 (5.15)

User = Usup = 1− Up (5.16)

Under the worst-case scenario, the frames belonging to other categories
can interfere with the transmission. If the transmission time of the hth Class
A frame Ch is not a multiple of the server capacity Cser, the remaining portion
of the virtual frame will end at most ∆h time units before the reassigned server
deadline.

∆h =

⌈
Ch

Cser

⌉
Cser − Ch (5.17)

The response time can be calculated as follows:

Rh =
Ch

Cser
Tser −∆h = Ch+

⌈
Ch

Cser

⌉
(Tser − Cser) (5.18)

Once the capacity is exhausted, the server’s deadline is postponed, and
other frames can preempt the served frame because of their smaller deadlines.

168

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

The preemption overhead can be taken into account by subtracting it from the
capacity, and the equation for the response time calculation is updated using
Equation (5.19). According to Equation (5.30), the maximum preemption
overhead of the server is denoted as Ωser.

Rh = Ch+

⌈
Ch

Cser − Ωser

⌉
(Tser − Cser +Ωser)

= Ch+

⌈
Ch

TserUser − Ωser

⌉
(Tser − TserUser +Ωser)

(5.19)

The definition of server parameters (Cser and Tser) can be formulated as a
minimization of the upper bound of response time Rh. The upper bound of
the response time can be determined by the following function, which is proven
in [35].

Rup
h = Tser − Cser +Ωser +

Tser
Cser − Ωser

Ch (5.20)

Based on Equation (5.20) and Equation (5.16), the average response time
Rh can be defined by Equation (5.21), where Ch denotes the average trans-
mission time of frames from Class A.

Rh = Tser(1− User) + Ωser +
Tser

TserUser − Ωser
Ch (5.21)

Equation (5.22) is the partial derivative of the average response time Rh with
respect to the server period Tser. The minimization of the average response
time can be simplified by functional analysis.

dRh

dTser
= 1− User −

Ωser

(TserUser − Ωser)2
Ch (5.22)

By setting (the value of) Equation (5.22) to zero, the appropriate server period
can be defined using Equation (5.23) and, based on Equation (5.16), the server
capacity can be calculated using Equation (5.24).

Tser =

⌊
1

User
(Ωser +

√
ΩserCh

1− User
)

⌋
(5.23)

Cser =

⌊
TserUser

⌋
(5.24)

After determining the parameters of the constant-bandwidth server, the prior-
ity of the frame at the head of the Class A queue can be allocated dynamically

169

according to the virtual relative deadline defined by server Di = Tserver. As
aforementioned, the absolute deadline of the ready Class A frame can be cal-
culated as di = ri + Di. According to the EDF strategy, the priorities of
event-triggered traffic can be defined and then scheduled based on strict pri-
ority.

5.3.3 Response Time Analysis

In this work, we adopt a cooperative scheduling strategy. The worst-case
response time of accepted delayed ST frames and event-triggered traffic frames
can be analysed following the same method and is denoted Ri. The response
time can be calculated according to Equation (5.25).

Ri = Ci − Cconti + L(ri, Ri) + Ω +Bi (5.25)

where Ci is the transmission time of the analysed frame. Please note that the
guard band time is included in the transmission time of the ST frame dur-
ing the interference calculation. Without subtracting Cconti, there would be
redundant calculations for the time overlapping with the guard band. ri rep-
resents its release time and di denotes its absolute deadline. The transmission
of the analysed frame can suffer interference from all the GCL-controlled ST
frames during time interval [ri, Ri), and be blocked by an ongoing transmitted
frame with lower priority Bi. As noted above, Bi is assumed as the minimum
valid transmission time which equals one time unit. All activation times for
ST frames can be regarded as critical instants, leading to worst-case interfer-
ence to a lower priority frame. [25] and assume the ready time of the analysed
frame is at a critical instant. Ω represents the overall preemption overhead.
The iteration of Equation (5.25) terminates when the response time converges.

L(ri, Ri) depicts the interference in the time interval [ri, Ri). It can be
divided into two terms, Ra(ri, Ri) and Rf (ri, Ri), where Ra(ri, Ri) is the in-
terference caused by the currently active periodic ST frame fact and event-
triggered frames with deadline smaller than di, active time earlier than ri and
end time tE after ri; Rf (ri, Ri) is interference from the periodic ST frame
instances coming in the future (activated after ri) and event-triggered frames
with deadline smaller than di.

L(ri, Ri) = Ra(ri, Ri) +Rf (ri, Ri) (5.26)

170

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Ra(ri, Ri) =
∑

∀k∈rk≤ri<tkE &
∀k∈ST & ∀k∈hpi(di)

Ck (5.27)

Rf (ri, Ri) =
∑

∀k∈ST
max(0,

⌈
Ri − ζk(ri)

Tk

⌉
) ∗ Ck

+
∑

∀k∈ri≤rk<Ri
& ∀k∈hpi(di)

Ck
(5.28)

As above, Fk represents the kth safety-critical flow and Tk is the corresponding
period. ζk(ri) describes the time instant greater than ri at which the next
periodic instance of ST flow Fk will be released and ϕk is the offset of ST flow
Fk.

ζk(ri) =

⌈
(ri − ϕk)/Tk

⌉
Tk + ϕk (5.29)

The maximum preemption overhead can be calculated by Equation (5.30).
The overall preemption overhead depends on the number of ST frames and
event-triggered frames with higher priority released during the time interval
[ri, Ri). ω denotes the overhead per preemption. N represents the number of
event-triggered frames with deadline smaller than di and released during time
interval [ri, Ri). Equation 5.32 can be utilized to ensure that the iteration can
be stopped. If the calculation of Ri does not converge, the maximum number
of preemptions and the maximum overhead term can still be used to determine
the converged response time.

ξmax = ⌈Ci/2⌉ ∗ ω (5.30)

ξi =

(∑
∀k∈ST

max(0,

⌈
Ri − ζk(ri)

Tk

⌉
) +N

)
∗ ω (5.31)

Ω = min(ξmax, ξi) (5.32)

This formulation of the proposed reTSN enables its effectiveness to be
evaluated by analysing the behaviour of differently loaded networks.

171

5.4 Evaluation

The evaluation is based on results produced using a simulation implemented in
Python1. Existing simulation tools for the TSN network, e.g., NeSTINg [56],
which are based on OMNeT++, are not used as they do not support multi-level
preemption. UUnifast [53] is utilised to synthetically generate safety-critical
periodic traffic (ST) to investigate the feasibility of the proposed method.
The frames’ relative deadlines are equal to their periods. Furthermore, EDF
is adopted to calculate the schedule of ST frames offline; the schedule is then
integrated into the switch as the GCL. The minimum valid frame size is chosen
to be 64 bytes, and its transmission time is normalized as 1 time unit. We
consider scenarios with different network loads. Within each scenario, there
are ten safety-critical periodic and two event-triggered flows with randomly
selected release times. The periods of ST frames are randomly selected from a
pre-defined set [50, 100, 200, 500, 1000], and the frame transmission time is de-
rived from UUnifast-generated utilisation and related period. For Class A traf-
fic, the minimum interval is set to 100 time units, and 200 time units is the min-
imum interval for Class B traffic. The transmission time is randomly selected
between one and the mean value of periodic frames [1,mean(

∑n
i=1CSTi)]. The

release time is randomly chosen between time instance [0, 100]. Moreover, the
observation window (during which the frames’ performance can represent the
overall behaviour) is set to two hyperperiods which is enough to observe the
main properties of traffic transmission with different strategies.

Table 5.1: The finish time variation of event-triggered frames without
delayed ST frames

utilisation Class Improved (%) Degraded (%) Unchanged (%)
Mean reduced (%)
(excluding zeros)

Median reduced (%)
(excluding zeros)

0.3
A 17.89 0.04 82.07 -5.04 -1.39

B 6.82 19.11 74.06 +0.88 +0.87

0.5
A 41.66 0.64 57.70 -5.86 -2.79

B 11.85 42.52 45.63 +3.36 +1.49

0.6
A 62.23 1.55 36.22 -9.69 -5.63

B 16.89 56.49 26.61 +4.61 +1.63

0.8
A 83.27 6.15 10.58 -23.14 -18.22

B 48.07 44.39 7.54 -1.47 -0.27

1The code can be accessed at: https://github.com/JIeSchnee/reTSN

172

https://github.com/JIeSchnee/reTSN

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Table 5.2: The variation in the finish time of delayed ST frames

utilisation Improved (%) Degraded (%) Unchanged (%)
Mean reduced (%)
(excluding zeros)

Median reduced (%)
(excluding zeros)

Up=0.3 33.86 0.10 66.04 -2.73 -0.47

Up=0.5 58.14 0.30 41.56 -3.70 -1.04

Up=0.6 69.88 0.66 29.46 -6.06 -2.07

Up=0.8 85.77 1.86 12.36 -10.77 -5.11

5.4.1 Performance without any delayed frame

As the first experiment, the performance of our proposed method is evaluated
without any delayed frames. We synthesise task sets to simulate traffic un-
der four different workloads (Up = 0.3, Up = 0.5, Up = 0.6 and Up = 0.8).
The periodic flows regarded as safety-critical were generated randomly by a
UUnifast-based traffic generator and the event-triggered traffic was generated
as mentioned before. The simulation was used to run 10,000 trials for the four
scenarios. Overall, there were around 300,000 event-triggered critical frames
released within the observation window under each network load.

Consistent with the state-of-the-art approach proposed in [10], the result
in Table 5.1 shows that our strategy can provide preference to Class A frames
compared to the conventional methods, especially in a highly loaded network,
where the response time of Class A frames is reduced by 23.14% on average.
The transmission of class B frames was also guaranteed, though with per-
formance degradation, which is acceptable because the values were less than
5% for the different workloads. Moreover, our approach can improve Class
B frames’ performance in a highly loaded network with Up = 0.8. The sim-
ulation results showed that eliminating the credit-recharging procedure can
undoubtedly benefit the non-ST frame transmission, which is consistent with
the example of Figure 5.6.

5.4.2 Delayed ST frame

We assume that there is only one delayed ST frame during the observation
time, and the frame instance is randomly selected from the offline schedule.
The actual release time is randomly selected between its predefined release
time and its deadline. Based on the understanding of the conventional AV B
switch introduced in Section 5.2.3, the delayed ST frame can be considered

173

Figure 5.8: The number of delayed frames successfully handled by the
proposed and conventional methods

the most important frame when compared to other non-ST frames. To avoid
discarding it directly, the appropriate method is to insert it into the Class A
queue. Moreover, according to the proposed method, once the delayed frame
passes the acceptance test, it is inserted into the emergency queue. To compare
the switch’s capability to handle delay faults, we ran the simulation 10,000
times independently under four different network loads (Up = 0.8, Up = 0.6,
Up = 0.5 and Up = 0.3). For each experiment trial, ST frames, event-triggered
frames, and delayed ST frames were re-generated.

The number of schedulable delayed ST frames was collected under different
network loads. Additionally, the actual finish time of the frames that were suc-
cessfully handled by the two different methods were collected and recognized as
comparable frames. As can be seen from Figure 5.8, the proposed switch can
handle more delayed ST frames, especially when the network is heavily loaded.
With Up = 0.8, our approach can schedule four times more delayed ST frames
than the AV B switch. By adopting an emergency queue, and allocating the
highest priority to it, the probability that delayed ST frames will be treated
immediately with minor interference is increased. Even in the lightly loaded
network, the proposed strategy is advantageous and has a higher success rate.

The finish times of the proportion of delayed ST frames handled correctly
by the proposed method and the AVB method were collected. The differences
in the finish times were also recorded to evaluate the proposed method. The
frames with the absolute difference of zero were ignored. DR denotes the finish

174

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

time difference and is defined by Equation (5.33), where RAV B represents the
finish time based on the conventional AV B method, and RreTSN denotes the
finish time following the proposed constant-bandwidth server-based method.
Furthermore, the ratio of the reduction in finish time to the finish time using
the conventional method for each comparable frame was calculated according
to Equation (5.34). A negative reduced value indicates an improved perfor-
mance with a earlier finish time, and vice versa. These equations are as follows:

DR = RreTSN −RAV B (5.33)

PR = [(RreTSN −RAV B)/RAV B]× 100% (5.34)

Table 5.2 displays the finish time differences under four different network loads
using two different methods. In a lightly loaded network, although the number
of treated delayed ST frames was almost the same, 33.86% of the frames
had earlier finish times, and they were reduced by 2.73% on average. When
the network was under medium load, the number of delayed ST frames that
can be handled by the conventional method dropped significantly. For the
comparable frames, the proportion of improved cases increased considerably
to 69.88%, when Up = 0.6. In the highly loaded network with Up = 0.8,
over 60% of delayed ST frames were still able to successfully arrive at their
destinations before deadlines using the proposed method. Further, 85.77%

of the comparable frames had earlier finish times, and they were reduced by
10.77% on average, with the median reduction being 5.11%.

To summarize, the combined use of the emergency queue and the accep-
tance test enhances the switch’s ability to tolerate temporal faults. Greater
amounts of delayed ST traffic can be handled with a smaller finish time, es-
pecially under a highly loaded situation.

5.4.3 Event-triggered traffic

Before large-scale evaluation, we used randomly generated specific cases under
four different workloads to illustrate the effect of the proposed method for each
frame of the event-triggered traffic within the observation window. The frame-
level comparison can intuitively demonstrate the source of the performance
difference between our proposed method and the AVB approach. The traffic
was generated using the same method as in subsection A.

175

(A)

The finish time of Class A frames, Up 0.3

The finish time of Class B frames, Up 0.3

x reTSN_Class A
AVB_Class A

x reTSN_Class B
AVB_Class B

Figure 5.9: The finish time of event-triggered frames from Class A and Class
B with Up = 0.3 (index starts from 1)

First of all, the scenario with a low network load was observed, and the
utilisation consumed by periodic safety-critical traffic was set to 0.3. The pe-
riods of randomly generated ST frames were [1000, 1000, 500, 1000, 200, 500,
500, 500, 200, 200], and the corresponding transmission times of the frame
instances were set to [25, 9, 5, 33, 8, 6, 13, 3, 8, 17]. Thus, the exact utili-
sation consumed by periodic flows was Up = 0.286. Further, the 29th frame
instance in the GCL was selected as the delayed ST frame with an expected
release time 1120, actual release time 1210 and deadline 1500. The delayed
frame satisfies the requirement defined by the acceptance test. That means
it can complete its transmission before the deadline and can be inserted into
the emergency queue. For the event-triggered frames belonging to Class A,
the release time of the first frame was 100 and the transmission time of each
frame instance was 9 time units. The release time of the first frame belonging
to Class B was 80 with a transmission time of 11 time units. As mentioned

176

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

above, the observation window was 2 hyperperiods which was set to 2000.
Therefore, during the observation time, there were 20 Class A frame instances
and 10 frames belonging to Class B. Following the method described in Sec-
tion 5.3.2, the parameters of the constant bandwidth server can be defined
as: Cser = 17 and Tser = 24. The parameters for the compared credit-based
shaper were: iSa = iSb = 0.714 and sSa = sSb = −0.286. The finish time of
each event-triggered frame instance is depicted in Figure 5.9. The release time
of the last Class A frame was 2000; therefore, there were only 19 frames that
could be observed during the window. Results indicate that all event-triggered
frames from different classes had similar finish times with both methods. The
proposed method neither improved performance nor degraded it. When con-
sidering the transmission of delayed ST frames, although the conventional
method also treats it successfully, the delayed frame treated by the proposed
switch arrived at its destination with an earlier finish time with DR = −9.70.

(B)

The finish time of Class A frames, Up 0.5

The finish time of Class B frames, Up 0.5

x reTSN_Class A
AVB_Class A

x reTSN_Class B
AVB_Class B

Figure 5.10: The finish time of event-triggered frames from Class A and
Class B with Up = 0.5 (index starts from 1)

177

Subsequently, we increased the network load and set the utilisation con-
sumed by periodic traffic to approximately 0.5. The UUnifast-based generator
randomly generated another specific case. We also considered 10 periodic flows
with various periods [50, 200, 500, 500, 500, 50, 1000, 200, 200, 1000]. The
hyperperiod was also 1000, and the transmission time of frame instances from
relevant flows were [3, 10, 6, 52, 24, 3, 23, 3, 15, 12]. The precise utilisation
of ST frames was 0.47. In this case, the randomly selected delayed ST frame
was the 33rd frame instance in the GCL, with an actual release time 419 and
a deadline 600, and it passed the acceptance test. The frame was also success-
fully transmitted by the AVB-based method. The first frame instance from
Class A was released at 96, with 11 units transmission time, and the release
time of the first Class B frame was 72, with a transmission time 10. The release
time of the last Class A frame was 1996, and the finish time was definitely
greater than 2000. Therefore, it could not be observed within the observation
window. The parameters of the constant bandwidth server were Ccbs = 17

and Tcbs = 32. The parameters for the compared credit-based shaper were:
iSa = iSb = 0.53 and sSa = sSb = −0.47. Figure 5.10 illustrates the finish
time of each frame. Compared with the conventional AV B mechanism, the
finish time of the five Class A frames was reduced slightly. Regarding the
critical frames from Class B, although the performance of the two frames was
slightly degraded, the finish time for the other frames was almost the same.

Figure 5.11 demonstrates the finish times of event-triggered frames when
the utilisation consumed by periodic safety-critical traffic was set to 0.6. Their
periods were [100, 1000, 200, 1000, 500, 200, 1000, 1000, 500, 100] with trans-
mission time [3, 7, 20, 91, 5, 27, 24, 31, 12, 13]. The delayed ST frame
was released at 740, and its deadline was 1000. It passed the acceptance
test, and the proposed method can guarantee its transmission. However, the
delayed frame could not have arrived at its destination within its deadline
using the conventional method. During the observation time, the first Class
A frame was ready to be transmitted at 55, and the first Class B frame ar-
rived at 76. The transmission times of the frames from these two classes were
15 and 22, respectively. The parameters of constant bandwidth server were
Cser = 23, Tser = 58. The parameters for the compared credit-based shaper
were: iSa = iSb = 0.412 and sSa = sSb = −0.588. As Figure 5.11 shows,
the finish times of most event-triggered frames from Class A were reduced.
Although the portion of Class B frames that were degraded increased, the

178

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

The finish time of class A frames, Up 0.6

The finish time of Class B frames, Up 0.6

x reTSN_Class A
AVB_Class A

x reTSN_Class B
AVB_Class B

Figure 5.11: The finish time of event-triggered frames from Class A and
Class B with Up = 0.6 (index starts from 1)

increased time was not significant. Thus, the improvement of Class A frames
was achieved with a minor impact on Class B frames.

In the highly loaded network with Up = 0.8, the periods of 10 safety-critical
flows were as follows: [100, 500, 200, 500, 500, 500, 500, 100, 500, 500] and
the corresponding ST frames transmission time were [7, 45, 43, 18, 83, 23, 22,
6, 18, 9]. Neither method can guarantee the randomly selected delayed ST
frame. The absolute release time of the first event-triggered frame in Class A
was at 27, with a transmission time of 14. For the Class B frames, the first
frame was released at 99 with 12 units of transmission time. The capacity of
the constant bandwidth server Cser was 24, and the period Tser was 121. The
parameters for the compared credit-based shaper were: iSa = iSb = 0.219 and
sSa = sSb = −0.781. Only 7 event-triggered frames could be compared during
the observation window. Frames are comparable if and only if a given frame’s
finish times in both methods are within the observation window. Figure 5.12

179

The finish time of class A frames, Up 0.8

The finish time of Class B frames, Up 0.8

x reTSN_Class A
AVB_Class A

x reTSN_Class B
AVB_Class B

Figure 5.12: The finish time of event-triggered frames from Class A and
Class B with Up = 0.8 (index starts from 1)

shows that the constant server-based method dramatically reduced the finish
time of the event-triggered frames in Class A and Class B; their performances
improved simultaneously. The approach benefits from eliminating the post-
poned time caused by the credit replenishment procedure of the conventional
method. Under a highly loaded network, the time to recharge the credit back
to zero is increased by GCL-scheduled ST frames with a much higher probabil-
ity. Although frames from Class A or B are already pending in the queue and
the channel is idle, they cannot be transmitted because of their negative cred-
its. However, in the proposed method, they could be dispatched immediately.
Figure 5.6 illustrates the benefits of the proposed method intuitively.

In summary, under highly loaded network scenarios, the conventional credit-
based-sharper-based switch cannot efficiently utilise the remaining bandwidth
for event-triggered traffic transmission. In contrast, the proposed constant

180

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

bandwidth server-based switch could improve the utilisation of the remaining
bandwidth and increase efficiency. At the same time, it could also improve the
capability for temporal fault tolerance by reducing the likelihood of discarding
delayed ST frames; thus, it enhances the safety of the system.

5.4.4 Larger-scale evaluation

In this experiment, using the same evaluation method as above, the simulation
was used to run 10,000 trials under four scenarios. Overall, there were 300,000
critical frames and 10,000 delayed ST frames released within the observation
window under each network load. The evaluation in the previous subsection
demonstrated the differences in finish times for each observed frame. In the
larger-scale evaluation, we focus on the overall performance improvements
instead of analyzing each specific event-triggered traffic as done in the previous
subsection. In each round of evaluation, the exact period of ST frames varies,
while the parameter allocation rules for both the CBS and credit-based shapers
remain consistent. Consequently, we will no longer illustrate the parameters
for each round.

Table 5.3: The finish time variation of event-triggered frames with delayed
ST frames

utilisation Class Improved (%) Degraded (%) Unchanged (%)
Mean reduced (%)
(excluding zeros)

Median reduced (%)
(excluding zeros)

Extra frames
(by reTSN)

0.3
A 18.81 0.73 80.46 -4.77 -1.30 9

B 6.91 19.94 73.15 +1.09 +0.89 0

0.5
A 43.08 1.66 55.26 -5.68 -2.74 795

B 11.71 43.24 45.05 +3.61 +1.53 1

0.6
A 63.60 2.37 34.03 -9.73 -5.76 11063

B 17.09 57.35 25.56 +4.77 +1.70 55

0.8
A 84.68 6.08 9.24 -23.49 -19.03 63518

B 47.94 44.82 7.24 -2.15 -2.21 14764

Table 5.3 demonstrates the results of our large-scale experiment. With
Up = 0.3, the portions of unchanged frames from Class A and B were relatively
high, at 80.46% and 73.15% respectively. The finish times of Class A frames
were reduced by 4.77% on average. In contrast, for Class B frames, the finish
time was increased by 1.09% on average, and the median value was 0.89%.
In the network, with Up = 0.5, the performance of 55.26% of the Class A
frames and 45.05% Class B frames were unaffected. For the Class A frames,

181

Figure 5.13: The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.3

43.08% were improved with a smaller finish time, the values were reduced by
5.68% on average and the median reduced proportion was 2.74%. In contrast,
43.24% of the Class B frames had degraded performances with increased finish
times, with an average increase of 3.61% and a median increase of 1.53%.
Furthermore, within the observation window, 795 extra Class A frames finished
their transmission, while the throughput of Class B traffic remains almost
the same. In the medium-loaded network with Up = 0.6, 63.60% of frames
from Class A had a smaller finish time, and the average and median reduced
proportions were 9.73% and 5.76%, respectively. However, only 17.09% of the
frames from Class B were improved and the finish times were increased by
4.77% on average because 57.35% of the frames were degraded. This trend
aligns with the results obtained from the specific case study. In lightly and
moderately loaded networks the improvement of Class A performance was
based on the sacrifice of Class B. However, it is worth noting that, 11,063
more Class A frames and 55 more Class B frames can finish their transmission

182

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Figure 5.14: The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.5

within the observation time when using the proposed method. The accepted
delayed ST frames can postpone the transmission of event-triggered frames.
In the highly loaded network, the proportions of the improved frames from
both classes significantly increased to 84.68% and 47.94%, respectively. The
finish time of comparable Class A frames decreased by 23.49% on average. For
Class B, the finish times were also reduced by 2.15%. Further, 14,764 more
Class B frames and 63,518 more Class A frames finished their transmission
within the observation window. The throughput was increased by 31.76% and
14.76% for Class A and Class B traffic, respectively.

The histograms in Figure 5.13 illustrate the distribution of finish time
differences of comparable event-triggered Class A and Class B frames in the
network with Up = 0.3. If the difference is negative, that means the perfor-
mance improved and had an earlier finish time. Obviously, in Class A, the
portion of improved frames is greater than the portion of degraded ones. In
contrast, in Class B, the portion of degraded frames is larger than the portion

183

Figure 5.15: The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.6

of improved ones.

Figure 5.14 and 5.15 illustrate the distribution of finish time differences
when the utilisation of periodic frames was increased to Up = 0.5 and Up = 0.6.
Compared with Figure 5.13, the distribution of both classes does not vary sig-
nificantly. However, in the network with Up = 0.6, the number of frames with
earlier finish time from Class A increased significantly and matches the sta-
tistical results described in Table 5.3. Evidently, in the low and moderately
loaded network, the promotion of the frames’ performance (with shorter total
transmission times) from Class A depends on the sacrifice of Class B. Addi-
tionally, delayed ST frames can interfere with the transmission of the frames
from both classes. That is another reason why the finish time increased in
some cases.

In the highly loaded network, the utilisation consumed by an ST periodic
frame was 0.8. The benefit brought by the proposed method can be observed
more clearly. Figure 5.16 illustrates the finish time difference distribution.

184

CHAPTER 5. RESILIENT AND EFFICIENT TIME-SENSITIVE
NETWORK

Figure 5.16: The finish time difference of event-triggered frames from Class
A and Class B with network load Up = 0.8

When compared with the histograms of low and moderately-loaded networks,
the portion of improved Class B frames increased dramatically. The peak
around −1000 can be explained by Figure 5.12 and Figure 5.6. Based on the
AVB-based method, the last few frames were not allowed to be transmitted
because of negative credit, and the credit increase was blocked by the trans-
mission of ST frames.

According to the simulation results, the proposed method eliminates the
time wasted by the credit replenishment procedure. The server-based dead-
line allocation method also prevents the channel from being occupied for a
long-time by frames from the same class, and it improves the utilisation of
the remaining bandwidth; it is more efficient, especially in a highly loaded
network. At the same time, it also improves the capability of the ST frame’s
temporal fault tolerance by reducing the likelihood that delayed ST frames
will be discarded.

185

5.5 Summary

In this chapter, we show that the proposed Resilient and Efficient Time-
Sensitive Networking (reTSN) can efficiently utilise the bandwidth resources
by eliminating the credit-recharging procedure. Furthermore, it can handle
network uncertainties in two ways: (a) it can deal with more delayed safety-
critical frames than the AV B switch to reduce drop-outs and associated poten-
tial safety-related problems. Compared to the conventional approach, our ap-
proach can schedule considerably more delayed ST frames even in a relatively
highly loaded network; (b) For event-triggered traffic due to a dynamically
changing environment and with unknown release times, reTSN can utilise the
remaining bandwidth with higher efficiency, thus improving the performance
of Class A frames with relatively higher priority. Especially in a highly loaded
network, Class A frames’ finish times (latency) were reduced by over 20%

on average when compared to the AV B-based method. Furthermore, the
throughput of event-triggered Class A frames was increased by 31.76%. In
low and moderately loaded networks, the performance of Class B frames was
degraded; however, the degradation was small and acceptable. Therefore, the
proposed method can improve the resilience and efficiency of the network.

186

Chapter 6

Conclusions and Future Work

This final chapter’s primary aim is to assess the work presented in the light of
the primary research objectives, provide a summary of the thesis and highlight
its contributions. This assessment is followed by a discussion of potential
directions for future research.

The increasing number of computationally intensive functions, limitations
of computational resources, dynamically changing driving scenarios, and het-
erogeneous hardware platforms are some key features of current autonomous
systems. All of these factors can be barriers to the development and as-
surance of the system from both functional and non-functional perspectives,
especially the uncertainties arising from them can threaten the safety of the
system. This thesis contributes towards safe, time-critical, mixed-criticality
adaptive autonomous systems through scheduling system resources, addressing
the non-functional perspective, focusing on tackling timing faults and improv-
ing the system’s resilience with highly efficient resource utilisation and aware-
ness of multiple operational modes and system-wide functionality. To satisfy
criticality-dependent timing requirements through scheduling resources, the
research question can be summarised as: How to integrate functions with dif-
ferent criticalities on a constrained hardware platform whilst ensuring that all
components comply with both functional and temporal requirements? And
the non-functional safety challenges can be further summarised as follows:

• Execution/transmission of safety-critical tasks/data cannot be impacted
by any non-safety-critical tasks/data;

• The execution/transmission of safety-critical tasks/data should be time
predictable or deterministic;

187

• Timing faults of any safety-critical function should be tolerated;

• Shared resources for non-safety-critical tasks/data should be effectively
managed to improve systems’ quality of Service (QoS).

The hypothesis introduced earlier is based on understanding the challenges
and is restated below:

“A suitable resources scheduling strategy can dramatically improve the resilience
of safety-critical systems and achieve higher resource utilisation and system
utility, even in the face of timing faults and operational mode changes."

The proposed timing-predictable and resource-efficient scheduling methods
in this thesis can be understood from two main perspectives:

• Timing-predictable: The worst-case execution time estimates for each
task are criticality-dependent, providing upper bounds that guarantee
the system’s safety at runtime. The proposed scheduling methods in
this thesis ensure determinism for safety-critical tasks and data, offering
predictability and certifiability to meet the timing requirements arising
from non-functional safety requirements.

• Resource-efficient: The proposed methods in this thesis significantly
improve the execution and transmission efficiency of non-safety-critical
but mission-critical tasks and data, which is essential for maintaining
the system’s quality of service.

Overall, the proposed methods effectively schedule shared resources. In-
creasing the tolerance for timing faults in safety-critical tasks improves the sys-
tem’s resilience, while enhancing the performance of non-safety-critical tasks
and data contributes to the system’s survivability.

In this thesis, the research starts with designing task-level scheduling meth-
ods, which are then extended to the network level. This implies that our
proposed methods can be applied to a wider range of shared resources, and
the scenarios can be expanded beyond autonomous systems to other complex,
large-scale environments. The next section summarises all of the contributions
that provide evidence to support the above hypothesis.

188

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Contributions

In this section, we re-emphasise the research contributions. Our proposed
scheduling strategies are designed as a comprehensive solution to enhance
time predictability and efficiency of hardware resource utilization, with a pri-
mary focus on autonomous systems. They are criticality-aware and aimed
at addressing the timing faults arising from (1) task execution and (2) data
transmission. These methods significantly enhance the resilience and resource
efficiency of autonomous systems.

In Chapter 3, we proposed a context-aware graceful degradation strategy
for mixed-criticality scheduling to improve the system’s resilience in handling
the uncertainties arising from conflicts for shared resources, based on causal-
ity analysis with awareness of multiple operational modes. Bayesian networks
are adopted to introduce metrics from the functional domain into scheduling
design in the non-functional domain. The proposed causality analysis-based
degradation process “bridges the gap”, so functional dependencies are consid-
ered in scheduling design and thus leads to a graceful degradation that is both
feasible and reasonable in functional and non-functional terms. The system
is able to continue to run with relatively high QoS during the degradation
process in different operational modes while preserving more droppable tasks.

In Chapter 4, we describe a novel consistent static scheduling method that
considers task precedence constraints and the survivability of low-criticality
tasks. Unlike using different schedules to manage task execution in different
system criticality modes and simply discarding droppable tasks to guaran-
tee the execution of tasks with higher criticality levels, our proposed mixed-
criticality DAG-based multi-core static scheduling method uses only one con-
sistent schedule to safely manage the system in any mode when facing timing
fault (i.e., overrun). This approach avoids the simultaneous discarding of a
large number of droppable tasks, which would significantly reduce the sys-
tem’s QoS. Furthermore, having different schedules may potentially increase
migration costs, as tasks may need to be executed on different cores after a
mode change. Our approach eliminates migration costs and the need to check
the safety of schedules during mode changes as there is no schedule change.

Both methods can guarantee the execution of safety-critical tasks, ensur-
ing that tasks with higher criticality levels are executed without interference
from lower criticality tasks when facing timing faults such as overruns. This
improves the system’s resilience. Additionally, the proposed mixed-criticality

189

scheduling methods take the practical execution behaviour into account, mean-
ing that if a high-criticality task overruns its estimated execution time in nor-
mal mode C(LO), it is likely that it will not execute up to its worst estimated
execution in higher mode C(HI) and the overrun may only be a small margin,
which means that there may be sufficient slack time to support lower-criticality
task execution. Both methods reduce the waste of slack time to preserve more
droppable tasks, thereby significantly improving the system’s survivability.

In Chapter 5, the scheduling problem is extended from computational to
communication resources. This chapter highlights the challenges posed by lim-
ited bandwidth resources and the large amount of traffic with high bandwidth
requirements in autonomous systems. To address these challenges, we adopt
Time-Sensitive Networks (TSNs) as the foundation of our work, which al-
lows the use of standard Ethernet as a real-time communication network and
enables network sharing among multiple time-critical and non-time-critical
applications. We propose a scheduling strategy (i.e., Resilient and efficient
scheduling for Time-Sensitive Networking (reTSN)) that incorporates multi-
level preemption, emergency queue techniques, acceptance tests, and constant
bandwidth server-based run-time priority allocation to enhance the probability
of temporal fault tolerance in the transmission of safety-critical traffic. This
also improves bandwidth utilisation efficiency by reducing bandwidth waste
for the transition of non-safety-critical traffic.

Summary

Overall, the scheduling problems of task execution and data transmission can
be well addressed based on the strategies proposed in this thesis. An of-
fline calculated fixed schedule (static task execution schedule for multi-core
and gate-control list for scheduling network bandwidth) can provide deter-
minism for safety-critical tasks/data and achieve temporal isolation to avoid
interference from tasks/data with lower-criticality levels. Additionally, the
graceful degradation strategy and server-based run-time priority allocation
can efficiently use slack time to improve the survivability and QoS of non-
safety critical tasks/data while achieving the primary goal of improving the
system’s resilience by tolerating timing faults. Thus the methods presented
in this thesis meet the hypothesis, as evidenced in chapters 3-5. We have
also demonstrated that these novel methods outperform established schedul-
ing methods, in many situations, e.g. under heavy load, thus they contribute

190

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

to the state of the art of scheduling critical systems with shared resources.

6.2 Limitations and Constraints

Although the proposed methods meet the stated hypothesis, there are some
limitations to each contribution. These are discussed in the rest of this section,
leading to a discussion of future research.

The approach to Context-aware Graceful Degradation for Mixed-Criticality
Scheduling uses fairly simple models of task criticality, etc. Considering more
system factors would improve the definition of expected utility, e.g. modelling
the interference from the dependency of task partitioning and allocation to
the hardware platforms, to make the degradation order optimal from both
functional and non-functional perspectives. Besides, this work is based on
flat-structured scheduling methods, which means that a central scheduler is
used to schedule all tasks in the entire system according to their fixed priority.
The offline sensitivity analysis-based degradation is based on a too-pessimistic
assumption that all HI criticality tasks overrun the same proportion at each
test iteration because, based on a central scheduler, it is difficult to identify the
tasks that can be affected by the overrun of a specific HI task. This leads to
unnecessarily discarding some droppable tasks. Thus, although our approach
is more effective than previously published methods, it could be refined fur-
ther to improve system utilisation and QoS. To apply our methods in practice,
constructing high-level Bayesian Belief Network (BBN) conditional probabil-
ity tables in the automotive and aerospace industries can pose numerous chal-
lenges. This is attributed to the intricate and ever-changing characteristics
of these domains, necessitating a meticulous selection of relevant conditions
and constraints on complexity for effective data collection and training, ensur-
ing sustainable development. For instance, challenges may arise in managing
scenarios with a combination of adverse conditions and in determining the
appropriate granularity of each variable’s state. Although biases originating
from a functional perspective might not directly result in timing faults, they
can still lead to unmet expectations in terms of the expected Quality of Service
(QoS).

For Resilience-aware Consistent Mixed-Criticality DAG Scheduling on Multi-
cores, the time spent on GPU access and task execution is assumed to be
included in the overall estimated execution time of tasks deployed on the

191

CPU cores. The dependencies between tasks with GPU requirements are
represented by their access order and integrated into the system task graph.
This simplifies the hardware model for scheduling design to a homogeneous
multi-core architecture, enabling the scheduling of multi-periodic DAGs of
mixed-criticality tasks on a multi-core platform. However, in this approach,
task precedence constraints are only considered for offline schedule calculation,
and system-wide functionality impact is not taken into account when facing
timing faults. However, functional task-dependent factors and migration tech-
nology could be used to provide preference for dropping tasks with relatively
lower system-wide functionality impact, thus maintaining higher functional
QoS for the system. To apply our methods in practical scenarios, tasks must be
amenable to modelling using Directed Acyclic Graphs (DAGs), and accurate
estimation of Worst-Case Execution Time (WCET) across different critical-
ity system modes is crucial. However, when dealing with advanced hardware
platforms, particularly multi-core heterogeneous computational platforms, em-
ploying traditional static WCET analysis on real industrial programs poses nu-
merous challenges for several reasons: (1) the intricate nature of real industrial
programs, with a multitude of potential execution paths, presents a formidable
challenge; (2) developing precise hardware models for novel architectures re-
quires significant effort and a comprehensive hardware representation, which
might not always be readily available. (3) the potential interference of shared
hardware resources among concurrent tasks operating on multi-core heteroge-
neous architectures substantially escalates the complexity of timing analysis.
Addressing these issues remains an ongoing research challenge.

reTSN is based on a simple centralised network structure, and verifying
its effectiveness on a more complex network topology level would be neces-
sary to fully validate the approach. When introducing more traffic categories,
challenges may arise from the segmentation of server capacity based on the
importance of different traffic types. Additionally, the efficiency of the pro-
posed method in handling ST frames that arrive early needs to be validated.
In future work, the implementation of reTSN on physical platforms (such as
a mobile robot) could help to demonstrate its capability on real-world sen-
sory data, including cameras and LiDARs. This would enable us to validate
the simulation results and demonstrate the usefulness of reTSN in real-world
applications. To implement our methods in practical scenarios, hardware sup-
port is required. For instance, a TSN-based switch capable of accommodating

192

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

multi-level preemption is essential. While the feasibility of this concept has
been demonstrated, locating a suitable Commercial Off-The-Shelf (COTS)
product remains challenging. Additionally, the current simulation tools avail-
able for TSN networks lack support for multi-level preemption. This implies
that, given the significance of system safety, particularly in safety-critical con-
texts, prior to validating the proposed methods on actual hardware platforms,
it might be necessary to develop a more comprehensive simulator or enhance
existing tools for thorough validation. This process would involve covering as
many scenarios as possible to ensure accurate evaluation.

6.3 Future Work

Despite the results presented here, there is still considerable potential to im-
prove the presented scheduling strategies further. To be more specific, future
work is discussed in the following subsections. Some of this work has already
been studied but not thoroughly investigated due to time limitations.

6.3.1 Memory-aware Scheduling and Allocation

In this PhD project, the design of scheduling strategies is limited to the task-
level, thus neglecting specific potential influencing factors. For instance, fac-
tors like memory, which can significantly impact the execution time of a task,
are not taken into account explicitly. We believe that incorporating memory-
related components could further enhance the performance of our proposed
methods, and make it more practical.

In many automotive systems, the code for different applications is stored in
inexpensive flash memory. Before a particular application is executed, its code
is fetched from the flash to the on-chip memory located on the processor. The
smaller the on-chip memory is, the more cost-effective the ECU is [39]. If the
processor or memory access is not fast enough, the execution time might be
too long to meet the desired sampling periods and sensor-to-actuator delays.
In future work, minimising multi-level memory accesses, including on-chip and
off-chip memory accesses, will be critical in reducing the execution time.

In recent years, integration trends, increased complexity in the memory
system and the more sophisticated correlation between the execution of in-
structions and memory access have exacerbated the challenge of ensuring tim-
ing predictability for autonomous driving systems. Furthermore, integrating

193

heterogeneous software applications makes the issue more complicated. For
instance, typical multi-core architectures consist of homogeneous or heteroge-
neous cores with multiple levels of coherent data and instruction caches con-
nected using Network-on-Chip (NoC) for fast communication [119]. Scratch-
pad Memory (SPM) has been used as an alternative to caches in embedded
systems due to energy efficiency, timing predictability, and scalability [15].

An SPM consists of an array of Static Random Access Memory (SRAM)
cells. The SPM utilises a part of the memory address space. If the address
falls within this specific address space, the corresponding data can be directly
indexed into the SPM to access. They do not need tag arrays and compara-
tors, which are essential to caches. Therefore, SPM is power-efficient. Multiple
SPMs can maintain coherency among each other at the software level. Thus,
for hardware area/power, the requirement for cache coherence can be elimi-
nated. The disadvantage is that either the compiler or the programmer has
to pay explicit attention to data allocation to the SPM to ensure efficiency.
The programmer should know the latency for each memory access. Though
SPM-based architectures can be used for timing predictability [119], data man-
agement will be the most challenging aspect of systems equipped with SPMs.

For future research on memory-aware scheduling and allocation, a formal
definition of the data allocation problem for autonomous driving applications
on SPM- and cache-based computational platforms should be proposed. Fur-
thermore, the optimal scheduling and allocation strategies, which can improve
application performance, reduce the WCET to some extent, and guarantee
the time predictability of systems, will be critical contributions.

6.3.2 Real-world Case Study

In this thesis, the proposed scheduling methods have been evaluated using
synthetic tasks. A real-world case study would provide additional support
for the usability of the framework. Simulation can be more thorough and
challenging than using a single physical system – but using a real-world case
study helps both validate the methods and the simulation-based approach to
evaluation. As introduced in Chapter 3, we have already set up a mobile
robot using the Robot Operating System (ROS), which is used to integrate
perception and control algorithms with a publisher-subscriber model. With
the awareness of the importance of low latency in robot control, ROS 2 now
supports real-time systems. The new Executors concept in ROS 2 can help

194

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the system manage the execution flows of tasks [37]. The proposed mixed-
schedule-based consistent schedule generation method can be used on top of
ROS 2 executor to generate a static schedule for a mobile robot and guarantee
the safety of the robot from a timing perspective. Such a system would provide
a good basis for validating the methods developed in this thesis as it would
be rich enough to reflect the challenges of autonomous driving systems whilst
being simple enough to be feasible as a test and evaluation platform.

195

196

References

[1] AUTOSAR specification of operating system. v4.10.AUTOSAR. http:
//www.autosar.org/,AUTOSAR,2010.

[2] ISO 26262 road vehicles – functional safety. Nov 2011. International
Organization for Standardization, Geneva, CH, Standard,.

[3] RTCA/DO-178B - Software Considerations in Airborne Systems and
Equipment Certification. 1993. U.S. Dept. of Transportation, Federal
Aviation Administration.

[4] T. Abdelzaher, S. Baruah, I. Bate, A. Burns, R. I. Davis, and Y. Hu.
Scheduling classifiers for real-time hazard perception considering func-
tional uncertainty. In Proceedings of the 31st International Conference
on Real-Time Networks and Systems, pages 143–154, 2023.

[5] U. Abelein, H. Lochner, D. Hahn, and S. Straube. Complexity, quality
and robustness-the challenges of tomorrow’s automotive electronics. In
2012 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 870–871. IEEE, 2012.

[6] K. Agrawal, S. Baruah, and A. Burns. Semi-clairvoyance in mixed-
criticality scheduling. In 2019 IEEE Real-Time Systems Symposium
(RTSS), pages 458–468. IEEE, 2019.

[7] I. Álvarez, I. Furió, J. Proenza, and M. Barranco. Design and exper-
imental evaluation of the proactive transmission of replicated frames
mechanism over time-sensitive networking. Sensors, 21(3):756, 2021.

[8] J. H. Anderson, S. Baruah, and B. B. Brandenburg. Multicore operating-
system support for mixed criticality. In Proceedings of the Workshop on
Mixed Criticality: Roadmap to Evolving UAV Certification, volume 4,
page 7. Citeseer, 2009.

197

http://www.autosar.org/, AUTOSAR, 2010.
http://www.autosar.org/, AUTOSAR, 2010.

[9] A. Ankan and A. Panda. pgmpy: Probabilistic graphical models using
python. In Proceedings of the 14th Python in Science Conference (SCIPY
2015). Citeseer, 2015.

[10] M. Ashjaei, M. Sjödin, and S. Mubeen. A novel frame preemption model
in TSN networks. Journal of Systems Architecture, page 102037, 2021.

[11] M. K. Atiq, R. Muzaffar, Ó. Seijo, I. Val, and H.-P. Bernhard. When
ieee 802.11 and 5g meet time-sensitive networking. IEEE Open Journal
of the Industrial Electronics Society, 3:14–36, 2021.

[12] N. C. Audsley. Optimal priority assignment and feasibility of static pri-
ority tasks with arbitrary start times. Citeseer, 1991.

[13] N. C. Audsley. On priority assignment in fixed priority scheduling. In-
formation Processing Letters, 79(1):39–44, 2001.

[14] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard
real-time scheduling: The deadline-monotonic approach. IFAC Proceed-
ings Volumes, 24(2):127–132, 1991.

[15] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: A design alternative for cache on-chip memory in
embedded systems. In Proceedings of the Tenth International Sympo-
sium on Hardware/Software Codesign. CODES 2002 (IEEE Cat. No.
02TH8627), pages 73–78. IEEE, 2002.

[16] D. Barber. Bayesian reasoning and machine learning. Cambridge Uni-
versity Press, 2012.

[17] S. Baruah. The federated scheduling of systems of mixed-criticality spo-
radic dag tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 227–236. IEEE, 2016.

[18] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In 2012 24th
Euromicro Conference on Real-Time Systems, pages 145–154. IEEE,
2012.

[19] S. Baruah and A. Burns. Implementing mixed criticality systems in ada.
In Reliable Software Technologies-Ada-Europe 2011: 16th Ada-Europe

198

REFERENCES

International Conference on Reliable Software Technologies, Edinburgh,
UK, June 20-24, 2011. Proceedings 16, pages 174–188. Springer, 2011.

[20] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

[21] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In 2011 IEEE 32nd Real-Time Systems
Symposium, pages 3–12. IEEE, 2011.

[22] S. K. Baruah. Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors. IEEE Trans-
actions on Computers, 53(6):781–784, 2004.

[23] S. K. Baruah, V. Bonifaci, G. d’Angelo, A. Marchetti-Spaccamela,
S. v. d. Ster, and L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In European symposium on algorithms, pages 555–566.
Springer, 2011.

[24] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for
mixed criticality systems. In 2011 IEEE 32nd Real-Time Systems Sym-
posium, pages 34–43. IEEE, 2011.

[25] L. L. Bello, M. Ashjaei, G. Patti, and M. Behnam. Schedulability anal-
ysis of time-sensitive networks with scheduled traffic and preemption
support. Journal of Parallel and Distributed Computing, 144:153–171,
2020.

[26] K. Bletsas, M. A. Awan, P. F. Souto, B. Akesson, A. Burns, and E. Tovar.
Decoupling criticality and importance in mixed-criticality scheduling. In
Workshop on Mixed Criticality, pages 25–32. York, 2018.

[27] M. Bouain, K. M. Ali, D. Berdjag, N. Fakhfakh, and R. B. Atitallah. An
embedded multi-sensor data fusion design for vehicle perception tasks.
J. Commun., 13(1):8–14, 2018.

[28] J. Boudjadar, S. Ramanathan, A. Easwaran, and U. Nyman. Combin-
ing task-level and system-level scheduling modes for mixed criticality
systems. In 2019 IEEE/ACM 23rd International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT), pages 1–10.
IEEE, 2019.

199

[29] A. Burns and S. Baruah. Timing faults and mixed criticality systems.
In Dependable and Historic Computing, pages 147–166. Springer, 2011.

[30] A. Burns and R. I. Davis. Schedulability analysis for adaptive mixed
criticality systems with arbitrary deadlines and semi-clairvoyance. In
2020 IEEE Real-Time Systems Symposium (RTSS), pages 12–24. IEEE,
2020.

[31] A. Burns and R. I. Davis. Mixed criticality systems-a review:(february
2022). 2022.

[32] A. Burns, R. I. Davis, S. Baruah, and I. Bate. Robust mixed-criticality
systems. IEEE Transactions on Computers, 67(10):1478–1491, 2018.

[33] A. Burns and A. J. Wellings. Real-time systems and programming lan-
guages: Ada 95, real-time Java, and real-time POSIX. Pearson Educa-
tion, 2001.

[34] S. Burton and J. A. McDermid. Closing the gaps: Complexity and
uncertainty in the safety assurance and regulation of automated driving,
2023.

[35] G. C. Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications, volume 24. Springer Science & Business
Media, 2011.

[36] M. Çakır, T. Häckel, S. Reider, P. Meyer, F. Korf, and T. C. Schmidt.
A QoS aware approach to service-oriented communication in future au-
tomotive networks. In 2019 IEEE Vehicular Networking Conference
(VNC), pages 1–8. IEEE, 2019.

[37] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg. Response-time
analysis of ros 2 processing chains under reservation-based scheduling. In
31st Euromicro Conference on Real-Time Systems, pages 1–23. Schloss
Dagstuhl, 2019.

[38] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of multi-
core architecture in cluster computing: A case study with intel dual-core
system. In Seventh IEEE international symposium on cluster computing
and the grid (CCGrid’07), pages 471–478. IEEE, 2007.

200

REFERENCES

[39] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf,
and Q. Zhu. Automotive cyber–physical systems: A tutorial introduc-
tion. IEEE Design & Test, 33(4):92–108, 2016.

[40] G. Chen, N. Guan, D. Liu, Q. He, K. Huang, T. Stefanov, and W. Yi.
Utilization-based scheduling of flexible mixed-criticality real-time tasks.
IEEE Transactions on Computers, 67(4):543–558, 2017.

[41] W. M. D. Chia, S. L. Keoh, C. Goh, and C. Johnson. Risk assessment
methodologies for autonomous driving: A survey. IEEE Transactions
on Intelligent Transportation Systems, 2022.

[42] Y. Chu and A. Burns. Flexible hard real-time scheduling for deliberative
AI systems. Real-Time Systems, 40(3):241–263, 2008.

[43] X. Dai. dag-gen-rnd: A randomized multi-DAG task generator for
scheduling and allocation research, Mar. 2022.

[44] X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. S. Hu, and W. Chang. Fixed-
priority scheduling and controller co-design for time-sensitive networks.
In Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1–9, 2020.

[45] R. I. Davis and A. Burns. Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time sys-
tems. Real-Time Systems, 47(1):1–40, 2011.

[46] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic timing
analysis techniques for real-time systems. LITES: Leibniz Transactions
on Embedded Systems, pages 1–60, 2019.

[47] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. A review of
priority assignment in real-time systems. Journal of systems architecture,
65:64–82, 2016.

[48] R. Dobrin, N. Desai, and S. Punnekkat. On fault-tolerant scheduling of
time sensitive networks. In 4th International Workshop on Security and
Dependability of Critical Embedded Real-Time Systems (CERTS 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

201

[49] A. C. T. dos Santos, B. Schneider, and V. Nigam. TSNSCHED: Auto-
mated schedule generation for time sensitive networking. In 2019 For-
mal Methods in Computer Aided Design (FMCAD), pages 69–77. IEEE,
2019.

[50] S. Edgar and A. Burns. Statistical analysis of wcet for scheduling. In Pro-
ceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)(Cat.
No. 01PR1420), pages 215–224. IEEE, 2001.

[51] P. Ekberg and W. Yi. Schedulability analysis of a graph-based task
model for mixed-criticality systems. Real-time systems, 52(1):1–37, 2016.

[52] P. Emberson and I. Bate. Extending a task allocation algorithm for
graceful degradation of real-time distributed embedded systems. In 2008
Real-Time Systems Symposium, pages 270–279. IEEE, 2008.

[53] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis
of multiprocessor tasksets. In proceedings 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2010), pages 6–11, 2010.

[54] A. Ermedahl. A modular tool architecture for worst-case execution time
analysis. PhD thesis, Acta Universitatis Upsaliensis, 2003.

[55] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is the
mixed-criticality real-time system model? In Proceedings of the 23rd
International Conference on Real Time and Networks Systems, pages
139–148, 2015.

[56] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel. NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++. In 2019 International Conference on Networked
Systems (NetSys), pages 1–8. IEEE, 2019.

[57] N. Finn. Introduction to time-sensitive networking. IEEE Communica-
tions Standards Magazine, 2(2):22–28, 2018.

[58] T. Fleming and A. Burns. Incorporating the notion of importance into
mixed criticality systems. In Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 33–38, 2014.

202

REFERENCES

[59] A. Frigerio, B. Vermeulen, and K. Goossens. Automotive architecture
topologies: Analysis for safety-critical autonomous vehicle applications.
IEEE Access, 2021.

[60] N. Fumio, Y. Asada, T. Sobue, M. Yano, O. Sakanoue, K. Maeda, and
M. Saito. Vehicle electronic control units for autonomous driving in
safety and comfort. Hitachi Review, 71(1), 2022.

[61] M. Gadd, D. De Martini, L. Marchegiani, P. Newman, and L. Kunze.
Sense–assess–explain (SAX): Building trust in autonomous vehicles in
challenging real-world driving scenarios. In 2020 IEEE Intelligent Vehi-
cles Symposium (IV), pages 150–155. IEEE, 2020.

[62] M. Glinz. On non-functional requirements. In 15th IEEE international
requirements engineering conference (RE 2007), pages 21–26. IEEE,
2007.

[63] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. Proc. WMC, RTSS, pages 19–24, 2013.

[64] P. Graydon and I. Bate. Realistic safety cases for the timing of systems.
The Computer Journal, 57(5):759–774, 2014.

[65] X. Gu and A. Easwaran. Dynamic budget management with service
guarantees for mixed-criticality systems. In 2016 IEEE Real-Time Sys-
tems Symposium (RTSS), pages 47–56. IEEE, 2016.

[66] N. Guan and Z. Dong. Industry challenge.

[67] F. He, L. Zhao, and E. Li. Impact analysis of flow shaping in ethernet-
avb/tsn and afdx from network calculus and simulation perspective. Sen-
sors, 17(5):1181, 2017.

[68] W. Hess, D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in
2d lidar slam. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 1271–1278. IEEE, 2016.

[69] R. Hofmann, B. Nikolić, and R. Ernst. Challenges and limitations of
IEEE 802.1 CB-2017. IEEE Embedded Systems Letters, 12(4):105–108,
2019.

203

[70] S. Holzknecht, E. Biebl, and H.-U. Michel. Graceful degradation for
driver assistance systems. In Advanced Microsystems for Automotive
Applications 2009, pages 255–265. Springer, 2009.

[71] Y. Hotta, A. Inoue, H. Bessho, C. Mangin, and R. Kawate. Experimental
study of a low-delay Ethernet switch for real time networks. In 16th
IEEE Int. Conf. on High Performance Switching and Routing, 2015.

[72] T. Ishigooka, S. Otsuka, K. Serizawa, R. Tsuchiya, and F. Narisawa.
Graceful degradation design process for autonomous driving system. In
International Conference on Computer Safety, Reliability, and Security,
pages 19–34. Springer, 2019.

[73] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma. A review of yolo algorithm
developments. Procedia Computer Science, 199:1066–1073, 2022.

[74] Z. Jiang, S. Zhao, R. Wei, D. Yang, R. Paterson, N. Guan, Y. Zhuang,
and N. Audsly. Bridging the pragmatic gaps for mixed-criticality sys-
tems in the automotive industry. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2021.

[75] G. Jocher. YOLOv5. accessed 2022-10-04.

[76] A. V. Kanhere and G. X. Gao. Lidar slam utilizing normal distribution
transform and measurement consensus.

[77] O. R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-
priority mixed-criticality task sets. In 2011IEEE 10th International Con-
ference on Trust, Security and Privacy in Computing and Communica-
tions, pages 1051–1059. IEEE, 2011.

[78] U. Khan and I. Bate. Wcet analysis of modern processors using multi-
criteria optimisation. In 2009 1st International Symposium on Search
Based Software Engineering, pages 103–112. IEEE, 2009.

[79] Y. Kim. Very low latency packet delivery requirements and problem
statements. In IEEE 802.1 AVB Task Group Interim Meeting. Atlanta,
GA USA, Nov 2011, 2011.

[80] U. B. Kjærulff and A. L. Madsen. Probabilistic networks-an introduction
to bayesian networks and influence diagrams. Aalborg University, pages
10–31, 2005.

204

REFERENCES

[81] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR), 31(4):406–471, 1999.

[82] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee. Mc-adapt: Adaptive
task dropping in mixed-criticality scheduling. ACM Transactions on
Embedded Computing Systems (TECS), 16(5s):1–21, 2017.

[83] J. Lee and S. Park. Time-sensitive network (tsn) experiment in
sensor-based integrated environment for autonomous driving. Sensors,
19(5):1111, 2019.

[84] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance evaluation,
2(4):237–250, 1982.

[85] J. Li, K. Agrawal, C. Lu, and C. Gill. Outstanding paper award: Anal-
ysis of global edf for parallel tasks. In 2013 25th Euromicro Conference
on Real-Time Systems, pages 3–13. IEEE, 2013.

[86] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-
criticality federated scheduling for parallel real-time tasks. Real-time
systems, 53(5):760–811, 2017.

[87] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[88] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi.
Scheduling analysis of imprecise mixed-criticality real-time tasks. IEEE
Transactions on Computers, 67(7):975–991, 2018.

[89] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall. Robot
operating system 2: Design, architecture, and uses in the wild. Science
Robotics, 7(66):eabm6074, 2022.

[90] J. A. McDermid, Y. Jia, and I. Habli. Towards a framework for safety
assurance of autonomous systems. In Artificial Intelligence Safety 2019,
pages 1–7. CEUR Workshop Proceedings, 2019.

205

[91] R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling
for mixed-criticality systems. In Ada-Europe International Conference
on Reliable Software Technologies, pages 217–232. Springer, 2017.

[92] R. Medina, E. Borde, and L. Pautet. Scheduling multi-periodic mixed-
criticality dags on multi-core architectures. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 254–264. IEEE, 2018.

[93] R. Medina, E. Borde, and L. Pautet. Generalized mixed-criticality static
scheduling for periodic directed acyclic graphs on multi-core processors.
IEEE Transactions on Computers, 70(3):457–470, 2020.

[94] M. Mody. Adas front camera: Demystifying resolution and frame-rate.
EE News, 2016.

[95] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos. Mixed-criticality real-time scheduling for multicore systems. In
2010 10th IEEE international conference on computer and information
technology, pages 1864–1871. IEEE, 2010.

[96] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE transactions on robotics,
31(5):1147–1163, 2015.

[97] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury. Performance comparison of ieee 802.1
tsn time aware shaper (tas) and asynchronous traffic shaper (ats). IEEE
Access, 7:44165–44181, 2019.

[98] A. Nguyen and B. Le. 3d point cloud segmentation: A survey. In 2013
6th IEEE conference on robotics, automation and mechatronics (RAM),
pages 225–230. IEEE, 2013.

[99] M. A. Ojewale, P. M. Yomsi, and B. Nikolić. Multi-level preemption in
TSN: Feasibility and requirements analysis. In 2020 IEEE 23rd Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), pages
47–55. IEEE, 2020.

[100] R. S. Oliver, S. S. Craciunas, and W. Steiner. IEEE 802.1 Qbv gate
control list synthesis using array theory encoding. In 2018 IEEE Real-

206

REFERENCES

Time and Embedded Technology and Applications Symposium (RTAS),
pages 13–24. IEEE, 2018.

[101] M. Osborne, R. D. Hawkins, and J. A. McDermid. Analysing the safety
of decision-making in autonomous systems. In SAFECOMP 2022 (41st
International Conference on Computer Safety, Reliability and Security).
York, 2022.

[102] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[103] R. M. Pathan. Improving the schedulability and quality of service for
federated scheduling of parallel mixed-criticality tasks on multiproces-
sors. In 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[104] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng,
D. Rus, and M. H. Ang. Perception, planning, control, and coordination
for autonomous vehicles. Machines, 5(1):6, 2017.

[105] J. Pisarov and G. Mester. The future of autonomous vehicles. FME
Transactions, 49(1):29–35, 2021.

[106] K. Rehrl and S. Gröchenig. Evaluating localization accuracy of auto-
mated driving systems. Sensors, 21(17):5855, 2021.

[107] J. Reich, M. Wellstein, I. Sorokos, F. Oboril, and K.-U. Scholl. To-
wards a software component to perform situation-aware dynamic risk
assessment for autonomous vehicles. In European Dependable Comput-
ing Conference, pages 3–11. Springer, 2021.

[108] J. Ren and L. T. X. Phan. Mixed-criticality scheduling on multipro-
cessors using task grouping. In 2015 27th Euromicro Conference on
Real-Time Systems, pages 25–34. IEEE, 2015.

[109] L. Rierson. Developing safety-critical software: a practical guide for
aviation software and DO-178C compliance. CRC Press, 2017.

[110] D. Rose. The four pillars of self-driving cars, 2018.

207

[111] S. Samii and H. Zinner. Level 5 by layer 2: Time-sensitive networking
for autonomous vehicles. IEEE Communications Standards Magazine,
2(2):62–68, 2018.

[112] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-time systems, 28:101–
155, 2004.

[113] T. Steinbach, K. Müller, F. Korf, and R. Röllig. Real-time Ethernet
in-car backbones: First insights into an automotive prototype. In 2014
IEEE Vehicular Networking Conference (VNC), pages 133–134. IEEE,
2014.

[114] W. Steiner, S. S. Craciunas, and R. S. Oliver. Traffic planning for time-
sensitive communication. IEEE Communications Standards Magazine,
2(2):42–47, 2018.

[115] T. Stüber, L. Osswald, S. Lindner, and M. Menth. A survey of scheduling
algorithms for the time-aware shaper in time-sensitive networking (tsn).
IEEE Access, 2023.

[116] N. Suthar, P. Indr, and P. Vinit. A technical survey on dbscan clustering
algorithm. Int. J. Sci. Eng. Res, 4:1775–1781, 2013.

[117] D. Thiele and R. Ernst. Formal worst-case performance analysis of time-
sensitive Ethernet with frame preemption. In 2016 IEEE 21st Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1–9. IEEE, 2016.

[118] P. Trucco, E. Cagno, F. Ruggeri, and O. Grande. A bayesian belief
network modelling of organisational factors in risk analysis: A case study
in maritime transportation. Reliability Engineering & System Safety,
93(6):845–856, 2008.

[119] V. Venkataramani, M. C. Chan, and T. Mitra. Scratchpad-memory
management for multi-threaded applications on many-core architectures.
ACM Transactions on Embedded Computing Systems (TECS), 18(1):1–
28, 2019.

208

REFERENCES

[120] S. Vestal. Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), pages 239–243. IEEE,
2007.

[121] J. Wang, J. Liu, and N. Kato. Networking and communications in au-
tonomous driving: A survey. IEEE Communications Surveys & Tutori-
als, 21(2):1243–1274, 2018.

[122] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing real-time
systems using genetic algorithms. Software Quality Journal, 6:127–135,
1997.

[123] S. Wheeler, I. Bate, and M. Bartlett. Video subset selection for mea-
surement based worst case execution time analysis. In 2011 6th IEEE
International Symposium on Industrial and Embedded Systems, pages
213–222. IEEE, 2011.

[124] J. Wiedmann. Implementation and evaluation of trace-based timing
analysis. 2019.

[125] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al. The worst-
case execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (TECS), 7(3):1–
53, 2008.

[126] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer. Latency analy-
sis of multiple classes of AVB traffic in TSN with standard credit behav-
ior using network calculus. IEEE Transactions on Industrial Electronics,
2020.

[127] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang. DAG scheduling and
analysis on multiprocessor systems: Exploitation of parallelism and de-
pendency. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages
128–140. IEEE, 2020.

[128] D. Ziegenbein, S. Saidi, X. S. Hu, and S. Steinhorst. Future Automotive
HW/SW Platform Design (Dagstuhl Seminar 19502). Dagstuhl Reports,
9(12):28–66, 2020.

209

	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Acknowledgements
	Declaration
	1 Introduction
	1.1 The Complexity of Autonomous Systems
	1.2 The Complexity of Timing Requirements
	1.3 Research Hypothesis and Objectives
	1.4 Thesis Organisation

	2 Background and Literature Review
	2.1 Complexity of Autonomous Systems
	2.2 Timing Predictability
	2.3 Real-Time Scheduling
	2.4 Mixed Critically Systems
	2.5 Single Processor Analysis for MCS
	2.6 Multicore Scheduling and Analysis for MCS
	2.7 Survivability and Graceful Degradation
	2.8 Network Bandwidth Scheduling
	2.9 Summary

	3 Context- and Causality-aware Graceful Degradation for Mixed-Criticality Scheduling
	3.1 Introduction
	3.2 Method Overview
	3.3 Formulation of Importance Ordering
	3.4 Formulation of Graceful Degradation
	3.5 Evaluation
	3.6 Summary

	4 Resilience-aware Multi-core Mixed-criticality Consistent DAG Scheduling
	4.1 Introduction
	4.2 Method Overview
	4.3 Consistent Schedule Formulation
	4.4 Evaluation
	4.5 Summary

	5 Resilient and Efficient Time-Sensitive Network
	5.1 Introduction
	5.2 Method Overview
	5.3 reTSN Formulation
	5.4 Evaluation
	5.5 Summary

	6 Conclusions and Future Work
	6.1 Contributions
	6.2 Limitations and Constraints
	6.3 Future Work

	Bibliography

