
You’ll Hear It
For melody instrument & live electronics

Kier Hall

Preparation
• Print this PDF and cut out the graphic score cards found on the following two pages.
• Connect microphone and footswitch to Pure Data.
• Load You’ll Hear It.pd.
• Enable audio processing (DSP on) in PD.
• Click ‘Sample Room Silence’ when the room is quiet so the patch can adjust the

microphone gain level automatically for the environment.

How to Perform You’ll Hear It

Equipment Required
• Microphone
• MIDI footswitch
• Computer with Pure Data (vanilla) installed.
• You’ll Hear It electronic resource folder. This includes the patch and supporting files.
• Pure Data will require the following extensions: list-abs, maxlib, cyclone and freeverb.

How the Patch Works

You’ll Hear It is designed to respond to any monophonic, pitched improvisation.
As you start playing, the patch will record an incredibly short and accurate
sample of the timbral properties contained within that note. This forms the basis
for the sound of the patch for when it starts to respond to the live instrument.
Many other properties such as the note’s attack and volume evolution also
contribute to the patch’s response. After around five notes are played, the patch
will begin to improvise with you. It will create a profile of the way in which you are
playing that will analyse note choices, melodic shape, phrase characteristics
and articulation. After around thirty notes, the patch will have confidently
established how you are playing and respond more creatively. If you abruptly
change characteristics of your playing, the patch will react to this and respond
accordingly. The patch will never repeat exactly what you play, but will develop
and combine its musical choices with yours appropriately. If the patch responds
to you and you respond to the patch, a convincing improvisation will be created
that neither two performers could have predicted.

Performing The Piece
• Without looking at the graphic score cards, the performer should randomly choose

three cards immediately before entering the performance. Each card represents a
movement of the piece. The performer should look at the cards immediately before
performing each movement and should interpret the cards however they wish.

• The piece will have three movements, with movement length being at the
performer’s discretion.

• The performer should use the footswitch to start and stop the performance.

The interface of this patch is designed to provide intuitive telemetry to the engineer during the setup and
performance of this piece. The three buttons to start the performance (1) are accompanied by four feedback and
control sections. The ‘Sample Room Silence’ button takes an ambient volume level that is interpreted as a ‘zero
point’ with regard to detecting when the performer is playing and automatically adjusts the microphone gain within
the patch.

The ‘Pitch Detection’ section features fine-tuning controls to accommodate different acoustics (2). For example,
the ‘Initial Delay’ (3) adjustment delays the ‘wait time’ before a new pitch is read. Raising this can instruct the
patch to ignore the attack of the note, thereby ensure a more accurate timbral profile of the instrument is
generated. However, if the ‘Initial Delay’ variable is too high the pitch may be missed completely when the
performer plays shorter notes. A larger ‘Recording Envelope’ (4) instructs the patch to take more time ‘listening’ to
the pitch and therefore develop a more robust timbral profile. This can be useful for venues with a reverberant
acoustic. The ‘Recording Envelope’ sliders (5) instruct the patch to analyse only the samples within the two
thresholds. For example, in the screenshot used here only the samples numbered 1,2,3,4,5 and 6 will be
analysed. Samples 0, 7, 8 and 9 will not be analysed in creating the timbral profile of the instrument. In practice,
only analysing a selection of the of the ten spectral samples has generated a much more accurate timbral profile,
depending on instrument and room acoustic. These controls are designed to be adjusted by the engineer prior to
the performance to ensure the patch ‘listens’ correctly throughout the piece. The ‘Pitch Detection’ controls are
sparse as the vast majority of adjustment for detecting accurate and precise pitches is automatically governed by
the patch.

The ‘Diagnostic’ section allows the engineer to understand whether the patch is ‘listening’ correctly and enable
them to make informed changes within the ‘Pitch Detection’ controls. The first process (6) highlights a small white
box from left to right that indicates which of the sixteen partials is currently being checked by the Quality Control
system (pd a3.quality-control). The following three numbers (7) display the MIDI value of the pitch that is being
played by the performer, the MIDI value of the pitch currently being checked, and the quality of the pitch that is
currently being checked. Through extensive testing, it was found that a score of just five out of the sixteen partials
passing the quality control stage created a convincing replication of the live instrument’s pitch and timbral
properties. The ‘Keep List’ (8) is a list of the MIDI values that have passed quality control and will therefore be
added to the library of sounds that constitute the virtual instrument. The ‘Live Mode’ (9) is a MIDI list of the seven
most recent pitches the performer has played. Every note the patch generates will take its pitch from the ‘Live
Mode’ list. The patch may have identified the most recent seven pitches but not have successfully recorded all of
them. The ‘L-M-Available’ (Live Mode Available) list (10) represents the ‘Live Mode’ list compared with the ‘Keep
List’ and contains the MIDI values that are present in both lists. In the screenshot the ‘L-M-Available’ list is made
of the pitches 55, 57, 60, 62 and 67 (G3, A3, C4, D4, G4) which means the patch will use these pitches for
improvisation until it manages to successfully record and therefore add the remaining pitches from the live mode.

The ‘Phrase Generation’ section provides graphical representation of the patch’s improvisation of volume and
pitch over a phrase. Both of these variables are based on what the performer has played but it would be incredibly
unlikely to hear a phrase the performer has played repeated back by the patch. The videos of the interface in
action that accompany this commentary provide an insight into how the data displayed on this screen is
communicated to the engineer.

Appendix A: Patch Notes
Interface (overleaf)

You’ll Hear It - Interface

(1)

(5)
(3) (4)

(6)

(7)

(10)

(8)

(9)

pd a3
This subpatch forms a storage area for all of the interconnected systems within You’ll Hear It. The signal chain starts with the microphone input (1) which is immediately
analysed (2) and stored (3). The partial analyser is responsible for creating the sound of the live electronics based on the timbre of the performer’s instrument. The amplitude
(4), rhythm (5) and pitch (6) of the performer’s improvisation are then tracked and analysed. Modal (7) and phrase-focused (8) analysis is carried out, within which the patch
looks for trends to inform its own improvisation (9). Finally, the patch’s improvisation is rendered using the timbral information generated from the start of the signal chain (10).

(1)

(2)

(4) (5)
(6) (3)

(7)

(8)

(9)

(10)

pd a3.partial-analyser
(1)

(2)

(3)

(4)

The first stage in the signal chain is the partial analyser.
This subpatch uses a pitch tracking system to separate
the incoming signal into sixteen partials; each with their
corresponding frequencies and amplitudes (1). The
MIDI value of the incoming pitch is compared with a list
of pitches that have already been analysed and only
processed if it has not yet been ‘heard’ and successfully
sampled by the patch (2). Every MIDI value has its own
blank set of tables into which the lowest sixteen partial
frequencies and their respective amplitudes are written
when the performer plays a note. These tables, stored
within pd a3.tables1, pd a3.tables2 and pd a3.tables3,
are written at this stage and analysed afterwards (3).
Through experimentation, it was discovered that a
single snapshot of the spectral characteristics within
any given pitch created a flat sounding tone when
reproduced by the patch. I decided the patch would
instead take ten samples within a time envelope (4)
that would generate a more natural sounding tone
when reproduced. A single note played by the performer
generates sixteen partial frequencies and sixteen
amplitudes for those partials all recorded ten times over
the specified time envelope. This generates three
hundred and twenty points of data used to reproduce a
single sustained pitch that mimics the performer’s
instrument. Table memory is able to accommodate
every pitch on a regular-sized piano.

a3.tables1-3
The following four pages contain the partial
data required to reconstruct the pitches
recorded in a3.partial-analyser. Each table
contains ten numbers; each from a snapshot
taken over a short time interval. At the start of
the piece these tables will be empty
containers. As the performer plays, these
tables will be populated with information
required for the patch to respond.

All the information
required for the
patch to produce a
high E.

This table holds the amplitude
information for the lowest partial (the
fundamental).

MIDI
value

This table holds the
frequency information for
the fourth-strongest
partial recorded for this
pitch.

a3.tables1-3 cont.

a3.tables1-3 cont.

a3.tables1-3 cont.

pd a3.quality-control
After a pitch has been split into sixteen partials and stored in the appropriate tables, a quality check is carried out to ensure the pitch was recorded accurately and will sound like
the original note when recreated by the patch. This subpatch checks the quality of the recorded note by checking the consistency of the frequency values for each partial and the
strength of their corresponding amplitudes. While ten samples of each partial’s frequency and amplitude are taken, it was discovered in testing that if the first three samples of a
partial’s frequency (1) were ‘good’ then the remaining seven always followed suit. For a single partial, the standard deviation is calculated for the first three sampled frequencies
(2). If the standard deviation is below 10 the partial being checked is assigned a ‘good’ value of 1. If the standard deviation is 10 or above it is assigned a ‘bad’ value of 0 (3). The
sum of the ‘good’ and ‘bad’ values is labelled the ‘Pitch Quality Value’ (4). This value has to be 5 or higher for the pitch to pass and be used by the patch (5). While the pitch
quality is being checked, the mean amplitude of each partial is calculated and filtered in the same fashion as the frequencies. If the mean of the amplitude set is higher than 10 it
is labelled ‘good’ (6). At this stage, should the frequency and amplitude both pass the quality control checks, the MIDI value being checked is added to the ‘Keep List’ which
ensures the pitch is not checked again for the duration of the piece (7). Each partial takes 100ms (8) to check, resulting in a complete check of the sixteen partials within a MIDI
value being carried out in 1.6 seconds. Should the pitch fail the quality check the tables containing the frequency and amplitude data are overwritten the next time the performer
plays that pitch. The patch will only play pitches that have passed the quality check. A video of this subpatch has been included within the media folder for this piece.

(2)

(8)

(3)

(1)

(4)
(5)

(6)

(7)

pd a3.note-duration-analyser
This subpatch is used to analyse rhythmic
features of the performer’s improvisation. The
patch initially uses the first five notes upon which
to generate its response. This means the patch
can start responding to the performer near the
very start of the piece. After thirty notes have
been played the patch will use a combination of
the most recent thirty and most recent five notes
for its response, making it possible for it to
reference rhythmic features that are either very
recent or as far back as thirty notes ago in the
piece (1). For analysis purposes, phrases are
defined as notes that are consecutively played
without a break of more than a handful of
milliseconds. A probability distribution table is
generated for phrase length within pd a3.n-d-a.3
(2). Note lengths are first identified within a wide
tolerance (100ms), then the exact value is stored
within a container for that range within pd a3.n-d-
a.durations (3). The way in which different note
durations are used is analysed and more
probability distribution tables are generated in pd
a3.n-d-a.1 and pd a3.n-d-a.2 (4).

(1)

(2)

(3)

(4)

a3.n-d-a.1

a3.n-d-a.2

The two subpatches on this page analyse the distribution of note durations from a list of the thirty most recent and
five most recent notes played by the performer, respectively.

pd a3.n-d-a.3
This subpatch creates a probability distribution table for the number of notes in each phrase. In the screenshot below there have been four phrases with one note in each (1).
This value is analysed along with the other notes-per-phrase to create the distribution table beneath (2).

(1)

(2)

pd a3.n-d-a.durations
This subpatch is where note lengths are recorded. Note lengths are labelled 1-
15 according to their duration in milliseconds (1). This is described as a
‘coarse’ filter throughout the patch and is useful for calling rhythms that are
similar but not exactly the same as the input. For example, if the note lasts
between 450-549ms it is stored in the fifth container (2). The most recent
seven values are stored in a list within this container, ready to be called by the
patch should it require a note of a similar length (3). This system of storing
similar note durations and looking for trends in their usage gives the patch
more freedom in creating its own rhythms.

(1)

(2)

(3)

a3.amplitude-analyser
This subpatch tracks the amplitude evolution over the
duration of each note that the performer plays. It records the
amplitude every 100ms and converts it into an integer
between 0 and 100 (1). This value is then plotted on a list (2).
In the example screenshot the values 47,51,52,59,64 and 71
reveal the performer played a crescendo throughout this
length note. When the patch plays a note of a similar length,
it will interpret the amplitude evolution data analysed in this
section of the patch to inform its response (3). This system
helps the patch mimic the unique characteristics of the
performer and their instrument. For example, a note played
on a piano will always get quieter after the initial attack. The
patch will model this precisely and, used in combination with
the other systems within the patch, the response will start to
sound like a piano.

(2)

(1)

(3)

a3.melody-analyser
The melody analyser compares the most recent phrase (1) against the live mode (the seven most recent pitches) (2) to
generate a number sequence that matches the intervals within the most recent phrase (3). The first number in the
sequence points the string of values to one of nine containers for analysis (4). A Markov chain analysis is applied to the
most recent fifteen pitches (5) and a first order matrix generated (6). This allows the patch to create phrases that are
similar to the performer’s improvisation but not exactly the same (7). Even if the exact phrase pattern is generated
twice, the constantly-evolving live mode means the pitches would be transposed to the new mode.

(2)

(1)

(3)

(4)

(6)

(5)

(7)

pd a3.phrase-recorder
The phrases that are played by the performer are directly transcribed and
analysed by this subpatch. The analysed phrases are automatically
plotted to a graph within the parent subpatch, pd a3.

a3.mode-analyser

a3.mode-creator

a3.phrase-reader

a3.phrase-creator

a3.sample.silence

a3.loadbang

a3.cpu

a3.play
This subpatch is responsible for rendering the timbre of the live
electronics. The sixteen partials and their corresponding amplitude
strengths sampled in pd a3.partial-analyser and stored within pd
a3.tables1-3 are recalled at this stage to recreate the sound of the
live instrument. The MIDI value (and therefore the set tables) to be
called connects to the right inlet (1). The position within each
individual table advances one point every 150ms, generating a
natural, fluctuating timbre similar to that of the live instrument (2).

(1)

(2)

a3.fx

A small amount of reverb is applied to the output signal. It was discovered in testing that the patch generated a high-
pitched ‘click’ when changing note so a lowpass filter that removes frequencies above 8kHz is also applied to the signal
at this stage.

