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Abstract 

Introduction: Patient-reported outcomes (PROs) that aim to measure patients’ subjective 

attitude towards their health or health-related conditions in various fields have been increasingly 

used in randomised controlled trials (RCTs). The PRO data is likely to be bounded, discrete, and 

skewed. Although various statistical methods are available for the analysis of PROs in RCT 

settings, there is no consensus on what statistical methods are the most appropriate for use.  

Research Question: What statistical methods are appropriate for the analysis of PROs in RCTs? 

Methods: Firstly, two literature reviews were performed to identify what methods have been 

developed and applied. The identified statistical methods were then filtered and applied to various 

RCTs and simulated datasets considering a range of scenarios. Finally, recommendations on what 

statistical methods are the most appropriate were proposed according to their technical details, 

and their model performances in the empirical analysis and simulation analysis.  

Results: The literature reviews found that the majority of publicly funded RCTs (251/303) 

included PROs as outcomes, and 114 used PROs as primary outcomes. A total of 29 statistical 

methods were identified in the two reviews, and they were filtered down to 10 statistical methods 

with justifications. These 10 methods were described and applied to various RCT datasets for 

empirical analysis. With the results from empirical analysis, the list of 10 methods was further 

narrowed down to six that were carried forward for simulation analysis. This study found that 

multiple linear regression (MLR) was associated with little bias of the estimated treatment effect, 

small mean squared error, and appropriate coverage of the confidence interval under most 

scenarios. Tobit regression (Tobit) performed similarly to MLR, and it performed slightly better 

for the analysis of PRO data with a large number of categorical values. Median regression and 

its extension were relatively inefficient, producing estimates that were multipliers of the 

difference between two neighbouring categorical values. Beta-binomial regression (BB) failed to 

converge for outcomes with a small number of categorical values, but it performed well for 

outcomes with 10 or more categorical values. Beta regression required the compressing process 

of dimension scores, and its estimates were more scattered than fractional logistic regression 

(Frac). Ordered logit model tended to generate numerically large bias and small coverage, 

especially when the true treatment effect was large.  

Conclusion: MLR is recommended as the universal statistical method for the analysis of 

multidimensional PROs in RCT settings if the mean is the targeted summary measure, and Frac 

is recommended as the universal statistical method if the odds ratio is the targeted population 

summary measure. Tobit and BB are recommended as alternative methods for PRO dimensions 

with 10 or more categorical values.  
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Chapter 1 Introduction 

1.1 Background 

Patient-reported outcomes (PROs) are widely used to measure patients’ subjective attitude towards their 

health or health-related conditions in various fields (Fitzpatrick et al., 1998; Weldring and Smith, 2013). 

PROs enable health researchers to measure, analyse and compare clinical outcomes from the patient 

perspective, providing clinical effectiveness outcomes and evidence to support decision making in 

health technology assessment (HTA). For example, the Oxford Hip Score (OHS) and Oxford Knee Score 

(OKS) are condition-specific PROs that are compulsory to report for hip replacement and knee 

replacement in England (NHS Digital, 2022). The EuroQol-5 Dimensions (EQ-5D) and the Short Form-

36 (SF-36) are generic PROs that allow the comparison of patients’ health status under different health 

conditions. EQ-5D and Short Form-6 Dimensions (SF-6D), a derivation of SF-36, can be converted into 

preference-based scores, which is recommended for use in economic evaluation by the National Institute 

for Health and Care Excellence (NICE). The descriptive and scoring system of PROs transform 

subjective descriptions of an individual’s health to numerical scores in a range of dimensions (Brazier 

et al., 2016). This transformation quantifies health from patient subject perspective, and allows the 

statistical analysis on patients’ health status through PROs.  

There is an increasing trend of using PROs to measure the treatment effect in clinical trials (Qian et al., 

2021). Randomised controlled trials (RCTs) are regarded as the golden standard for evaluating the 

effectiveness of interventions (Altman, 1996; Akobeng, 2005). The randomisation process in a well-

designed RCT can reduce the selection bias and allocation bias, and inform the causality of the treatment 

on responses (Moher et al., 2010). These traits of RCTs can simplify the data analysis of PROs.  

Despite these traits of RCTs, it still can be complex to analyse PROs in RCT settings considering the 

multidimensional structure, and the bounded, discrete, skewed features of PROs. First, one PRO can 

generate multiple outcomes, and these outcomes can be reported in different forms, e.g., using different 

score types such as subscales or summary score, producing dichotomised scores from continuous or 

ordinal PROs, generating quality-of-life (QoL) adjusted survivals etc. The various forms can results in 

multiple endpoints, and potentially increase the complexity of analysing PRO data (J.-F. Hamel et al., 

2017; Pe et al., 2018). Second, PRO data are likely to be discrete, skewed, and bounded (i.e. with ceiling 

effect and floor effect) (Walters, 2009). When analysing PRO data using a general linear model, 

including t-test, analysis of variance (ANOVA), and linear regression, some model assumptions such as 

the Normality assumption of residuals are likely to be violated (Lumley et al., 2002; Walters and 

Campbell, 2004). Also, the application of statistical methods may vary depending on various factors 

such as the distribution of PRO data and the aim of the statistical analysis, but the multidimensional, 
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discrete, skewed and bounded features of PROs may obscure the decision on what statistical methods 

need to be applied for the data analysis.  

An inappropriate statistical analysis of PROs can result in unreliable estimates of clinical effectiveness 

and accordingly fail to provide accurate and robust results for decision making, with wider confidence 

intervals (CIs) and larger errors. For example, patients may fail to receive an effective treatment because 

this treatment is falsely shown not to be clinically effective based on inaccurate estimates; vice-versa, 

patients can receive a treatment which may potentially harm their health when unreliable evidence 

supports the use of this treatment. Therefore, applying appropriate statistical methods for the analysis of 

PROs in trials is crucial to reduce biases of estimates, to accurately evaluate clinical effectiveness and 

to support healthcare decision-making.  

Statistical methods that are alternatives to general linear model such as bootstrapping (Walters and 

Campbell, 2004), Tobit regression (Austin, Escobar and Kopec, 2000), beta-binomial regression 

(Arostegui, Núñez-Antón and Quintana, 2007) and quantile regression (D’Silva et al., 2018) have been 

applied to PRO data to address some abovementioned issues. However, as each method has its own 

model assumptions and estimation procedures, it is still unknown which method is the most appropriate 

to analyse PROs, particularly in RCT settings.  

Guidelines have been published by government organisations such as the Food and Drug Administration 

(FDA) and academic groups such as the Standard Protocol Items: Recommendations for Interventional 

Trials-PRO extension (SPIRIT-PRO) and the Consolidated Standards of Reporting Trials Statement-

PRO extension (CONSORT-PRO) to standardise the use of PROs (Bottomley, Jones and Claassens, 

2009; FDA, 2009; Calvert et al., 2013, 2018; Kyte et al., 2016). However, these guidelines mainly 

focused on the reporting of PROs or on the process of PRO development such as what health dimensions 

to cover, what items to include, and how feasible, valid, and reliable the PROs are. In the guidance for 

the use of PROs in medical product development for labelling claims by FDA (2009), a series of 

statistical considerations for the analysis of PRO data were stated, which to some extent can guide future 

studies on constructing statistical analysis plans. The guidance for inclusion of PROs in clinical trials 

protocols by the SPIRIT-PRO Extension (Calvert et al., 2018) also stressed the importance of 

developing a data analysis plan and reporting missing data for PROs. Coens et al. (2020) compared 

different statistical methods for the analysis of PROs in cancer trials using a range of criteria, and made 

recommendations on the statistical methods that could be used for the analysis of PROs. However, this 

recommendation focuses on the analysis of PROs in cancer trials and it is purely based on experts’ 

opinions without support from empirical analysis or simulation analysis.  

Though various statistical methods have been developed and some recommendations have been made 

for the analysis of PRO data, there are no consensus or guidelines on what statistical methods should be 

used for the analysis of PROs in RCT settings.  
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1.2 Research question 

To instruct the statistical analysis of PROs considering the frequent use of PROs in RCTs and demand 

for sound and feasible statistical methods, this PhD study aims to address the following research question: 

What statistical methods are appropriate for the analysis of patient-reported outcomes in 

randomised controlled trials? 

1.3 Research aims 

The overall aim of this thesis is to identify, describe, and compare different statistical methods that can 

be used for the analysis of PROs in RCT settings and make recommendations for appropriate methods 

of analysis. The research question is split into several specific objectives.  

First, two literature reviews on what statistical methods are described in the literature for analysing 

PROs and what statistical methods are used in practice will be systematically conducted, and the key 

statistical properties or criteria for the evaluation of statistical methods, with the specific purpose on 

analysing PROs in RCTs, will be summarised and presented. 

Second, a set of desired statistical criteria for the evaluation of statistical methods will be established to 

filter the identified statistical methods from the two literature reviews.  

Third, the technical details of the filtered statistical methods will be described, together with the 

commands to run in the computational software and the possible interpretation of the estimates from 

each statistical method. An example will be used to explain the process of applying the different 

statistical methods to PRO data. The filtered statistical methods will be applied to multiple RCT datasets 

that used PROs as clinical outcomes, and the list of statistical methods will be narrowed.  

Fourth, Monte Carlo simulation methods will be carried out to evaluate the divergence of the estimates 

produced by each statistical method from the predefined ‘truth’, and these statistical methods will be 

compared and contrasted according to their model performance.  

Finally, recommendations on what statistical methods are the most appropriate for the analysis of PROs 

in RCT settings will be made according to their technical details and their model performances in the 

empirical analysis and the simulation analysis.  

1.4 Thesis structure 

The remainder of this thesis is presented in nine chapters.  

In Chapter 2, a literature review on research articles that develop and compare various statistical methods 

for the analysis of PROs is performed. Literature reviews, guidelines, and standards are also included to 
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present what statistical methods are used in practice and to summarise what statistical properties or 

criteria can be used to evaluate statistical methods for the purpose of analysing PROs. 

In Chapter 3, a review on what statistical methods have been applied in RCTs is systematically 

conducted, by reviewing reports of RCTs published in the United Kingdom (UK) National Institute for 

Health and Care Research (NIHR) HTA Journal to identify how frequently PROs are used as primary 

outcomes and what statistical methods are used for the primary analysis of PROs in RCTs.  

Alongside the two reviews, a summary of available statistical methods for the analysis of PROs and of 

the statistical properties or criteria to consider for the evaluation of statistical methods are collected and 

summarised in Chapter 4 which also describes the research gap identified from the reviews in Chapter 

2 and Chapter 3, and defines the research question and objectives. The summarised statistical methods 

for PRO analysis are filtered through a set of desired statistical properties that define an appropriate 

statistical in Chapter 5. An appropriate statistical method for the analysis of PROs in RCTs would be 

one that can compare two or more treatment arms; can adjust for confounding factors, including baseline 

PRO scores; can produce an estimate of the treatment effect and associated CIs; can handle a 

bounded/censored scale; and requires the least amount of recoding to use the statistical method. 

The technical details of the filtered statistical methods with example code and interpretation of outputs 

from computational software are explained in Chapter 6. Then, in Chapter 7, the empirical analysis is 

conducted by applying the filtered statistical method to a series of RCT datasets that used PROs as their 

clinical outcomes, and the list of statistical methods are narrowed down according to their performance 

in estimating the treatment difference of PROs in RCTs. 

Chapter 8 presents the simulation protocol that proposes Monte Carlo simulation to compare the model 

performance of the narrowed list of statistical methods, and Chapter 9 carries out the simulation analysis 

following the simulation protocol, presents and compares the performance measures of these methods. 

The performance of the statistical models in the simulations, will be compared using several summary 

statistics including bias of the estimated treatment effect from the model compared to the true treatment 

effect; mean square error and empirical standard error to describe the precision of the estimated 

treatment effect; coverage of the 95% CIs for the treatment effect estimate; Type I error under the null 

hypothesis of no treatment effect/difference; and power (also known as Type II error) under a variety of 

alternative hypothesised true (non-zero) treatment effects. 

Finally, Chapter 10 will make recommendations on what statistical methods are the most appropriate 

for the analysis of PROs under different scenarios in RCT settings. The strengths and limitations of these 

statistical methods will be discussed on the basis of their technical details and model theories, and their 

model performances in the empirical analysis and the simulation analysis. Comparison of this study to 

existing evidence will be made, and potential topics for future research will be proposed.  
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Chapter 2 Review on statistical methods for analysing 

PROs and statistical properties for method evaluation 

2.1 Introduction 

Literature review is needed to systematically identify what statistical methods are available for the 

analysis of PROs. There are various statistical methods that can be used, and a decision on what 

statistical methods are appropriate to use can result from various reasons. As statisticians, clinicians, 

policy makers, and other stakeholders conduct analyses from different perspectives, it is possible for 

them to use different criteria or to weight criteria differently for the decision on what statistical methods 

to apply for the analysis of PROs. Thus, it is important to establish criteria before making model 

comparisons and deciding which models are more appropriate than others.  

The primary aim of this method review is to identify potential statistical methods available for the 

analysis of PRO data using evidence from published literature. The secondary aim is to identify potential 

statistical criteria that could be considered to compare and contrast the statistical methods. 

2.2 Methods  

The review was systematically performed using three databases (EconLit, Embase and MEDLINE) to 

identify publications written in English with statistical methods for analysing PROs from 1 January 2000 

to 31 August 2021, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses 

statement (PRISMA) 2020 guideline (Page et al., 2021). Reference tracking was used as a second source 

to identify potentially useful records by tracking the articles cited in the bibliography of identified 

records and checking the eligibility for inclusion. This review was conducted systematically to identify 

studies that developed statistical methods for the analysis of between group differences in PROs; and 

reviews, guidelines or standards that summarised statistical methods for the analysis of PROs in RCTs. 

2.2.1 Definition of patient-reported outcomes 

A patient-reported outcome measure (PROM) is defined as a questionnaire that measures health or a 

health-related outcome as a result of health interventions reported by patients themselves without any 

interpretation by clinicians or any other proxies. A patient-reported outcome (PRO) is an umbrella term 

for outcomes used to measure patients’ perceptions of health-related quality of life (HRQoL), broadly 

QoL, health status, satisfaction with the treatment and health conditions, etc. (Fitzpatrick et al., 1998; 

Mokkink et al., 2010; Calvert et al., 2013; Brazier et al., 2016). 
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2.2.2 Search strategy  

This review focused on the statistical methods for the analysis of PRO data to compare the treatment 

difference between groups. The search strategy was developed with the support from an information 

specialist (CB). The term QoL, a domain of PRO, is more prevalently used than PRO, so in order to 

increase the sensitivity of this search strategy, the term‘quality of life’ was included in addition to the 

term ‘patient-reported outcome*’. In order to increase the specificity, the term ‘statistic*’ was used to 

constrain the number of records to those reviews that focused on statistical techniques and to those 

studies that developed methods in statistics journals. The search terms and strategy are shown below. 

1. [(quality of life OR patient-reported outcome*).tw. AND (analys* NOT meta-analys*).tw. 

AND statistic*.tw.] 

2. MEDLINE.tw. OR review.tw. OR meta-analysis.pt. 

3. [(quality of life OR patient-reported outcome*).tw. AND (analys* NOT meta-analys*).tw. 

AND statistic*.jw.] 

4. (1 AND 2) OR 3 

2.2.3 Inclusion and exclusion criteria  

Studies were included if they met one of the following criteria: 1) the studies proposed or extended 

statistical methods to analyse PRO data; or 2) reviews, guidelines and standards conducted model 

comparisons or summarised the statistical methods or made recommendations on what statistical 

methods to use for the analysis of PROs.  

Studies focusing on the following topics were excluded: 1) developing, validating or mapping PROs 

such as confirmatory factor analysis; 2) dealing with missingness, such as methods for imputation; 3) 

methods for multivariate analyses; 4) methods not able to make between or within group comparisons; 

and 5) reviews not reporting the statistical methods for analysing PROs. This is because most methods 

that deal with missing outcome data involve imputation of the missing data and then application of a 

statistical model to the augmented dataset. This review is interested in the statistical method applied to 

the augmented dataset and not the statistical method used to impute the missing data. PROs with multiple 

dimensions tend to analyse each individual dimension separately. In addition, even if a multivariate 

method is used in the first instance to compare multiple dimensions of a PRO, and if this model produces 

a statistically significant result, then a series of univariate analyses need to be carried out on each of the 

individual PRO dimensions separately to determine which dimensions have different outcomes. Studies 

conducting the data analysis of a single trial; studies looking for correlation and association; protocols; 

conference papers; and pilot studies were excluded. A detailed table summarising the inclusion and 

exclusion criteria is available in Appendix A. 
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2.2.4 Data extraction  

As data collected from identified records was in the text format, a narrative synthesis was applied to 

summarise and analyse the collected information. Results on statistical methods are presented in a table 

summarising the methods used in trials with evidence from reviews, and in another table listing 

identified methods for the statistical analysis with evidence from method studies. Results on potential 

criteria or properties of design analysis and reporting PROs are summarised using identified literature. 

2.3 Results  

The review retrieved 3,052 records published between 1 January 2000 and 31 August 2021 after 

duplicates were removed, of which 39 articles met the inclusion criteria. The PRISMAS diagram is 

presented in Figure 2.1 (Page et al., 2021). Of the included articles (N=39), reviews, standards, and 

guidelines on statistical methods provided an insight into classical and popular statistical approaches for 

analysing PROs (N=12); and studies that introduced, developed, or compared different statistical 

methods shared a mixture of classical and novel methods and various statistical properties for the 

evaluation of statistical methods for PRO analysis (N=27). The studies that passed primary screening 

but were excluded after secondary full-text screening are listed in Appendix A.  

2.3.1 Reviews on different statistical methods that are applied for the 

analysis of PROs in trials  

A total of 12 reviews, guidelines or standards were identified from the search strategy, including eight 

reviews on trials and four narrative studies discussing statistical methods for the PRO analysis. Three 

narrative studies discussed using PRO endpoints in medical research (Fairclough, 2004; Saver, 2011; 

Shields et al., 2015), and one study that was developed by the Setting International Standards in 

Analyzing Patient-Reported Outcomes and Quality of Life Endpoints Data (SISAQOL) Consortium 

made recommendations on statistical methods for the analysis of PROs. They recommended the use of 

Cox proportional-hazards model for evaluating time-to-event data and linear mixed model for evaluating 

magnitude of event at a time and a response trajectory over time, and the use of linear regression for 

evaluating magnitude of event at a specific timepoint (Coens et al., 2020).  

Although the SISAQOL Consortium (Coens et al., 2020) developed some criteria with support from 

experts and made recommendations on specific models for the data analysis, these criteria and 

recommendations are established especially for cancer studies. In addition, their recommendations are 

based on expert opinions and are not evidenced by fitting models to cancer datasets and comparing 

model performances. Therefore, further investigation is needed to extrapolate their recommendations to 

generic PROs or other disease-specific PROs with focuses on other disease areas such as depression.  
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Figure 2.1 PRISMAs flow diagram the inclusion and exclusion of retrieved studies  

Table 2.1 summarises the proportion of different statistical methods used in eight identified reviews. It 

is worth noting that some of the trials reported in the reviews used more than one method for the 

statistical analysis, and these identified reviews all focused on cancer studies. 

In general, the PRO data was analysed as a continuous outcome in both cross-sectional and longitudinal 

studies. Three studies (Turner-Bowker et al., 2016; Pe, et al., 2018; Nielsen et al., 2019) reported that 

45/110 studies used general linear models (e.g. t-test, linear regression, ANOVA or ANCOVA) and 

their non-parametric counterparts (e.g. Mann-Whitney U-test or Wilcoxon signed rank test) for the 

analysis of PROs. The model extensions such as estimation methods, e.g. generalized estimating 

equation (GEE), and mixed models were also applied as they relax the model assumptions on data 
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distribution. Linear mixed model, repeated measures ANOVA and estimation using GEE were reported 

being used in 54/185 studies by six reviews (Fiteni et al., 2016, 2019; Turner-Bowker et al., 2016; 

Hamel et al., 2017; Pe, et al., 2018; Fiero et al., 2019; Nielsen et al., 2019). In five reviews, time-to-

event data, area-under-the-curve (AUC) or survival analysis was conducted in 16/162 studies, and 

proportion of patients or responder analysis was conducted in 11/162 studies (Fiteni et al., 2016, 2019; 

Turner-Bowker et al., 2016; Hamel et al., 2017; Pe, et al., 2018). Only Nielsen et al. (2019) reported 

the studies (3/23) with ordinal data analysis using ordinal logistic regression or generalized mixed model 

for ordinal outcome.  

Four literature reviews reported the proportion of studies that did not specify the statistical methods in 

their statistical summary tables (Turner-Bowker et al., 2016; J.-F. Hamel et al., 2017; Pe et al., 2018; 

Coomans et al., 2020), and three studies reported the proportion in the text (Fiteni et al., 2016, 2019; 

Nielsen et al., 2019), with the proportion of 52%, 80% and 100% respectively. One study did not report 

the proportion of studies that did not specify the statistical methods (Fiero et al., 2019).  

Three studies summarised the statistical methods in subgroups. Fiteni et al. (2016) split the observation 

time into three periods and described the trend of different statistical methods used across time. Fiero et 

al. (2019) evaluated the statistical methods in three groups: instruments with pre-specified PRO 

concepts, instruments with dimension-level analyses and instruments with item-level analyses, as they 

believe the statistical methods for different instruments in a trial can be different. Coomans et al. (2020) 

summarised statistical methods by research objectives including comparing PRO scores between groups 

at one timepoint, at multiple timepoints (i.e. cross-sectional), and over time (i.e. longitudinal).  

Reviews by Turner-Bowker et al. (2016) and Pe et al. (2018) provided comparatively detailed statistical 

classifications. Fiero et al. (2019) provided a classification of PRO analysis with specific statistical 

models in each category, which is identical to the classification proposed by Shields et al. (2015), but 

Fiero et al. (2019) did not summarise specific methods for the analysis of PROs. When synthesising 

evidence from the identified reviews, most classifications of statistical methods in each study were kept 

as they were reported in the original reviews, but some of them were combined. For example, in the 

critical review conducted by Fiteni et al. (2016), the Fisher’s test, rates of symptom palliation and 

percentage of patients with at least two points improvement at the beginning of the cycle two were 

combined into ‘proportion of patients or responder analysis’ category, where the responder analysis 

includes statistical methods such as Fisher’s exact test and logistic regression for the analysis of 

proportional data. Three different responder analysis (Fisher's exact test, Chi-square with Bonferroni 

correction, and Blyth-Still-Casella and Mantel-Haenszel Chi-squared test) used for the analysis of PROs 

summarised by Turner-Bowker et al. (2016) were also grouped into the responder analysis category. 

The different types of sensitivity analyses listed in the review by Turner-Bowker et al. (2016) were 

combined into a broad category of sensitivity analysis, as these analyses focused on dealing with missing 



10 Chapter 2 Review on statistical methods for analysing PROs and statistical 

properties for method evaluation 

data and were not of the research interest in this literature review, and other included reviews did not 

summarise the sensitivity analysis for the PRO analysis.  

Table 2.1 A summary of reviews on the statistical methods for the analysis of PROs in trials (N = 8) 

Author (year of 
publication) 

Statistical methods N % 

Coomans et al. 
(2020) 
(Total = 139) 

Descriptive 28 20% 
Mann-Whitney U/Wilcoxon signed rank/Kruskal-Wallis 
tests 

26 19% 

Student’s t-test 19 14% 

Mixed-effect models 14 10% 

Unknown 13 9% 
ANOVA/ANCOVA 9 6% 

Survival analysis 9 6% 

Responder analysis  8 6% 

Other linear models 5 4% 

Joint model 2 1% 
Regression analysis 2 1% 

Reliable change index 2 1% 

Paired signed-rank test 1 1% 

Kolmogorov-Smirnov test 1 1% 

AUC 1 1% 
Difference-in-difference approach 1 1% 

GEEs  1 1% 

    

Fiteni et al. 
(2016) 
(Total = 27) 

Mean change from baseline 9 33% 
Linear mixed model for repeated measures 6 22% 
Time to HRQoL score deterioration 5 19% 
AUC 2 7% 
Mixed-effects growth-curve model 2 7% 
Proportion of patients or responder analysis 3 10% 
Group comparisons of scale at each time 1 3% 

    

Fiteni et al., 
(2019) 
(Total = 15) 

Mean change from baseline 8 53% 
Mean score at follow-up timepoints 2 13% 
Linear mixed model for repeated measures 1 7% 
Time to HRQoL score deterioration 1 7% 
Percentage of patient-reported symptoms 1 7% 

    

Hamel et al. 
(2017) 
(Total = 33) 

Cross-sectional comparison 12 36% 
Baseline changes comparison 9 27% 
Mixed model 4 12% 
Repeated measures ANOVA 3 9% 
Individual average scores comparison 3 9% 
AUC 2 6% 
GEEs 1 3% 
Logistic models 1 3% 
Percentage of symptoms over follow-up comparison 1 3% 
Cox proportional hazards model 1 3% 
Not clear 1 3% 
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Author (year of 
publication) 

Statistical methods N % 

Nielsen et al. 
(2019) 
(Total = 23) 

Descriptive analyses 2 9% 
Non-parametric tests  6 26% 
Parametric tests   

t-test, one-way ANOVA  8 35% 
Linear mixed model of repeated measures, GEEs 11 48% 
Ordinal logistic regression, generalized mixed model 
with ordinal outcome 

3 13% 

  

Pe et al. (2018) 
(Total = 66) 

Not report or unclear 15 23% 
Linear mixed models, incl. pattern mixture models 18 27% 
Wilcoxon rank-sums test or between subjects t-test 11 17% 
ANOVA or linear regression 9 14% 
Time-to-event 6 9% 
Repeated measures ANOVA 2 3% 
Proportion of patients or responder analysis 2 3% 
Others 3 5% 

  

Turner-Bowker et 
al. (2016) 
(Total = 21) 

Tests of between and/or within-group difference    

Unclear method but p-values reported 3 14% 
t-test 5 24% 
Repeated measures ANOVA 4 19% 
Wilcoxon  4 19% 
General linear mixed model 2 10% 
Mixed-effects repeated measures model 1 5% 
ANCOVA 2 10% 
GEE for general linear model 1 5% 
Responder analysis 3 14% 
Sensitivity analysis 5 24% 
Difference between groups in time to deterioration   

Not specified 2 10% 
Time-to-event 3 14% 

     

  
Instruments with 
pre-specified PRO 
concepts 

Instruments 
with dimension-
level analyses 

Instruments 
with item-level 
analyses 

Fiero et al. 
(2019) 
(Total = 25) 

Time-to-event 23/25 13/25 12/25 
Longitudinal analysis 10/25 21/25 17/25 
Basic inferential test or generalized linear model 
     Continuous 0/25 7/25 6/25 
     Responder analysis 7/25 13/25 12/25 
     Descriptive summaries 15/25 44/25 43/25 

ANCOVA, analysis of covariance; ANOVA, analysis of variance; AUC, area-under-the-curve; GEE, generalized 
estimating equation.   
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2.3.2 Studies that developed or compared statistical methods for the analysis 

of PROs  

Retrieved studies that developed statistical methods for the analysis fall into four categories: 1) dealing 

with data that are bounded, discrete and ordinal, 2) extending existing models to accommodate 

longitudinal data; 3) dealing with missingness; and 4) multivariate analysis. The first two topics are of 

interest in this review, and studies that focused on the last two topics were excluded.  

Table 2.2 presents a summary of studies that developed, extended or modified, and compared statistical 

methods for the analysis of PRO data. There is an obvious trend that recent developed methods are more 

complex than the classical methods that are collected from reviews in Table 2.1. Studies that are 

summarised in Table 2.2 mainly focused on improving the method capability to deal with the statistical 

features of PROs that are bounded, skewed, and discrete. Some of the method studies compared the 

classical methods such as the general linear model (linear regression, t-test, ANOVA, ANCOVA, and 

repeated measures ANOVA) with the improved methods (Austin, 2002; Pullenayegum et al., 2010; 

Arostegui, Núñez-Antón and Quintana, 2012).  

Most classical methods assume that PROs are continuous, but the model assumption such as the 

Normality of residuals and constant variance can be violated due to the bounded, discrete and skewed 

properties of PRO data. Facing the violation, the classical methods can still be feasible in some 

circumstances. Walters and Campbell (2004, 2005) found that the bootstrap technique produced similar 

results to conventional methods (t-test and linear regression) when fitting SF-36 dimensions, and it is 

explained as the conventional methods are likely to be robust to non-Normality caused by HRQoL data.  

To solve the problem caused by bounded and skewed PRO data, several models were proposed. Hutton 

and Stanghellini (2010) introduced a censored regression model assuming a censored skew-Normal 

distribution of the PRO data, assuming the skewness can be explained by the clustering at the boundary. 

Austin (2002) compared three estimation methods, maximum likelihood estimation (MLE), 

symmetrically trimmed least squares and censored least absolute deviations (CLAD) regression, for 

Tobit regression, together with ordinary least squares (OLS) and median regression fitting the Health 

Utility Index (HUI) scores. They found that CLAD and median regression produced similar results, and 

CLAD was recommended because of its low prediction error and its robustness to heteroscedasticity 

and non-Normality of errors, whereas Pullenayegum et al. (2010) recommended linear regression with 

robust standard errors (SEs) or nonparametric bootstrap as a simple and valid approach for analysing 

health utility, and found that both CLAD regression and Tobit regression are not appropriate for the 

analysis of utility decrement (Pullenayegum et al., 2011). Median regression is a special case of quantile 

regression which allows the analysis of any specified quantile of the conditional distribution (Austin and 
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Schull, 2003). Leng and Zhang (2014) proposed a new quantile regression model by combining multiple 

sets of unbiased estimating equations to accommodate longitudinal data. 

Instead of treating the PRO as continuous data, ordinal regression methods have been developed to 

accommodate the discrete nature of PRO data with few categories. Walters, Campbell and Lall (2001) 

recommended treating the HRQoL measure with less than seven categories as a discrete scale. Various 

methods have been developed to analyse the ordinal response such as ordinal regression and beta-

binomial regression. Two link functions, i.e. the logit model and probit model, respectively give the 

ordered logit (proportional-odds) model and the ordered probit model for ordinal regression. Two 

studies developed statistical methods to estimate the cut-points in the proportional-odds model, and 

evaluated the developed methods by fitting longitudinal PRO data (Manuguerra and Heller, 2010; 

Parsons, 2013). Lall et al. (2002) introduced partial proportional-odds methods as an extension of 

proportional-odds model, which are less restrictive on the assumption that each covariate share a 

constant odds ratio (OR) across the cut-points, i.e. the influence of each covariate on the response 

variable is independent of the cut-points (Arostegui, Núñez-Antón and Quintana, 2012).  

Alternative regression models such as beta regression and beta-binomial regression were also proposed 

to analyse PRO data. Beta regression is proposed by Ferrari and Cribari-Neto (2004) to analyse 

responses which are beta distributed. The beta distribution is a continuous probability distribution with 

two positive parameters alpha and beta (both > 0) defined on the interval [0, 1]. It is later applied to 

PRO data to deal with the bounded nature (Hunger, Baumert and Holle, 2011; Kharroubi, 2020). Zou, 

Carlsson and Quinn (2010) proposed a beta-mapping and beta-regression method for the change of 

ordinal QoL by mapping the change of Likert scale to a beta distribution within [0,1] and using the 

mapped data to fit the beta regression under the generalized linear mixed model framework. Fractional 

logistic regression (as known as fractional logit model) has similar features to beta regression, except 

that it can account for responses at boundaries i.e. 0 and 1 (Meaney and Moineddin, 2014). Arostegui, 

Núñez-Antón and Quintana (2007) analysed the SF-36 dimensions assuming a beta-binomial 

distribution where the probability of success in the logit link follows a beta distribution. The other way 

to estimate the beta-binomial regression is by using ‘the hierarchical generalized linear model as a 

generic method of performing generalized linear mixed models with non-Normal random effects’ 

(Najera-Zuloaga, Lee and Arostegui, 2018). The binomial-logit-Normal regression was proposed based 

on the beta-binomial regression by assuming that the random effects follow a standard Normal 

distribution, and the probability therefore follows a logit-Normal distribution (Arostegui, Núñez-Antón 

and Quintana, 2012; Liang et al., 2014). Based on those methods, further statistical methods were 

proposed to extend the developed methods by introducing new parameter estimation processes to 

accommodate to longitudinal data (Gheorghe et al., 2017; Najera-Zuloaga, Lee and Arostegui, 2019). 
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Table 2.2 A summary of statistical methods developed and compared in identified studies (N = 27) 

Author (year of 
publication) 

Summary of contents 

Methods for continuous data (with bounded or censored feature) 

Austin (2002) Compared three estimation methods for Tobit model (MLE, symmetrically 
trimmed least squares and CLAD regression), MLR and median regression.  

Walters and 
Campbell (2004) 

Compared bootstrap with standard methods (t-tests, linear regression, 
summary measures, and general linear models fitted with GEE). 

Walters and 
Campbell (2005) 

Compared t-test and bootstrap (Bca) estimates of CIs of eight dimensions in 
SF-36, and did not recommend MLR with bootstrapping as the results 
generated by both methods are similar. 

Hutton and 
Stanghellini (2010) 

Developed a censored regression model assuming a skew-Normal 
distribution, and compared with a censored Normal model and an 
uncensored skew-Normal model. 

Pullenayegum et al. 
(2010) 

Compared MLR, Tobit, and CLAD regression for the analysis of EQ-5D utility 
score in terms of their bias and estimated CIs, and recommended MLR with 
robust SEs or the non-parametric boostrap as a simple and valid approach. 

Pullenayegum et al. 
(2011) 

Compared marginal Tobit regression and CLAD regression when facing utility 
decrement, and concluded that these two methods should not be used under 
this circumstance.  

Leng and Zhang 
(2014) 

Constructed a new quantile regression model by combining multiple sets of 
unbiased estimating equations to accommodate longitudinal data.  

  

Methods for response data scatter between 0 and 1 

Ferrari and Cribari-
Neto (2004) 

Proposed the beta regression for analysing response that is beta distributed 
using a parameterisation of the beta law that is indexed by mean and 
dispersion parameters.  

Zou, Carlsson and 
Quinn (2010) 

Mapped the score change in Likert scale to a beta distribution and conducted 
beta regression using the mapped data under the generalized linear mixed 
model, which benefits from using the flexibility of beta distribution. 

Hunger, Baumert 
and Holle (2011) 

Compared MLR and beta regression for analysing SF-6D, and suggested that 
the beta regression, especially with prevision covariates, is a possible 
supplement to methods currently used in the analysis of health utility data.  

Meaney and 
Moineddin (2014) 

Compared MLR, beta regression, and fractional logit regression to estimate 
covariate effects on (0,1) response data, and found these three methods all 
performed well.  

Gheorghe et al. 
(2017) 

Proposed Bayesian mixed beta regression by using Markov chain Monte Carlo 
methods to model longitudinal HRQoL data. 

Kharroubi (2020) Compared beta regression with MLR for analysing SF-6D, and found that beta 
regression performed better than MLR in predictive ability using mean 
prediction error, root mean squared error and deviance information criterion.  

 

Methods for Ordinal data 

Qian et al. (2000) Compared summary measures (worst score, worst score minus pre-treatment 
score, and AUC) analysed by stratum-adjusted Mann-Whitney test in the form 
of Cochran-Mantel-Haenszel statistic, and ordinal (or cumulative) logistic 
regression mixed models for repeated measures using GEE. 

Walters, Campbell 
and Lall (2001) 

Compared conventional statistical methods (i.e. t-tests and multiple 
regression), ordinal regression models (proportional-odds, continuation ratio, 
polytomous, and stereotype) and the bootstrap method.  



2.3 Results 15 

Author (year of 
publication) 

Summary of contents 

Methods for Ordinal data 

Lall et al. (2002) Reviewed ordinal regression models, including proportional-odds model, 
partial proportional-odds model, and the stereotype model with bootstrap 
techniques to obtain standard errors.  

Arostegui, Núñez-
Antón and 
Quintana (2012) 

Compared MLR, with least square and bootstrap estimates, Tobit regression, 
ordinal logit and probit regressions, beta-binomial regression, binomial-logit-
Normal regression, and coarsening. 

Lee and Daniels 
(2008)  

Extended the marginalized random effects model to accommodate 
longitudinal ordinal data, using Quasi-Newton algorithms with Monte Carlo 
integration of the random effects to calculate the maximum marginal 
likelihood estimation.  

Manuguerra and 
Heller (2010) 

Modelled cut-point parameters using generalized logistic and non-parametric 
functions in proportional-odds models for continuous ordinal scores derived 
from visual analogue scales in a Bayesian setting. 

Parsons (2013) Introduced a repeated measures proportional-odds logistic regression model 
that estimated the cut- point by using an orthogonal polynomial 
decomposition of the ordered but unstructured cut-points, with model 
parameters estimated by GEE.  

  

Methods for multinomial data 

Arostegui, Núñez-
Antón and 
Quintana (2008) 

Introduced a beta-binomial distribution approach for the analysis of HRQoL 
data, and compared the model with MLR. 

Liang et al. (2014) Proposed the use of binomial-logit-Normal regression as an alternative model 
for the bounded PRO which can be considered as a candidate model. 

Najera-Zuloaga, Lee 
and Arostegui 
(2018) 

Compared two models for beta-binomial regression: beta-binomial 
distribution with a logistic link and hierarchical generalized linear models. 

Najera-Zuloaga, Lee 
and Arostegui 
(2019) 

Developed an estimation procedure for the analysis of longitudinal discrete 
and bounded outcomes using a beta-binomial mixed-effects model, and 
compared the developed model with generalized additive models for 
location, scale, and shape.  

 

Semi-parametric methods 

Moerkerke et al. 
(2005) 

Adopted a permutation-based approach to evaluate the null distribution of 
the maximum of many correlated test statistics and used the statistics to build 
a regression model that explains QoL differences between treatment arms. 

Zheng, Qin and Tu 
(2017) 

Developed a semi-parametric generalized partially linear mean-covariance 
regression, using a Cholesky decomposition for the covariance matrix of the 
longitudinal responses with parameters estimated by modified GEE.  

Wang and Tu 
(2020) 

Developed a three-component mixture model for the proportional data and 
a density ratio model for the distributions of continuous observations in (0,1), 
and derived a bootstrap semiparametric homogeneity test for the 
homogeneity of distributions of multi-group proportional data, and 
compared it with likelihood ratio tests under parametric distribution 
assumptions (beta distribution and logit-Normal distribution), rank-based 
Kruskal-Wallis test, and Wald-type test.  

BCa, bias-corrected and accelerated; CLAD, censored least absolute deviations; GEE, generalized estimating 
equation; HRQoL, health-related quality-of-life; MLR, multiple linear regression; SE, standard error; SF-6D, Short 
Form-36.  



16 Chapter 2 Review on statistical methods for analysing PROs and statistical 

properties for method evaluation 

Two semi-parametric models were proposed for the analysis of longitudinal proportional data. One 

constructed a flexible semiparametric covariance model (Zheng, Qin and Tu, 2017), and the other 

assumed the distribution of the proportional data follows a semiparametric density ratio model and 

applied bootstrap to improve the model performance (Wang and Tu, 2020). Moerkerke et al. (2005) 

adopted a permutation-based approach by using a permutation test to construct a non-parametric null 

distribution for the Wald statistic, conditional on the observed data, and used the statistic to build a 

regression model that explains QoL differences between treatment arms. 

2.3.3 Criteria to assess statistical issues for PRO analysis from the identified 

reviews 

Table 2.3 summarises the assessment criteria to evaluate the PRO analysis listed in three identified 

reviews (Fiteni et al., 2016; Hamel et al., 2017; Pe et al., 2018). Though the criteria vary in these three 

reviews, they can be summarised into four categories - data structure, statistical methods of analysis, 

baseline assessment and missing data management. The report of targeted dimensions and repeated 

measurements are desired in three reviews. In terms of statistical methods, the clinical relevance and 

statistical techniques are desired in all three reviews, and other features such as specific hypothesis and 

multiple comparison management are of interest in some studies. Compared to the other two studies, 

Hamel et al. (2017) did not summarise specific information about baseline assessment. Missing data 

management is also a highlighted topic in the three reviews on cancer trials.  

The criteria presented in these three reviews are in line with the recommended components to report for 

the statistical analysis of PROs in protocols proposed by the CONSORT-PRO Extension (Calvert et al., 

2013) and SPIRIT-PRO Extension (Calvert et al., 2018). However, these abovementioned criteria in the 

identified reviews did not concentrate on the specific evaluation of statistical methods, but focused on 

other components in statistical analysis including targeted dimensions, descriptive analysis, compliance 

rate etc. Recognising the lack of standardised criteria for the methodological issues in PRO analysis, the 

SISAQOL Consortium (Coens et al., 2020) listed a range of statistical features for PRO analysis and 

gathered opinions from multiple stakeholders on what features are essential and highly desired. The 

desired features include whether the method can compare two treatment arms, adjust for baseline score, 

be clinically relevant, allow for confounding factors, handle missing data, and handle clustered data.  
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Table 2.3 A summary of criteria to assess statistical issues for PRO analysis 

 
Fiteni et al. (2016)  Hamel et al. (2017)  Pe et al. (2018) 

Data structure  
 

 
 

 
Targeted dimensions; 
Number of HRQoL data at 
baseline and at subsequent 
timepoints; 

 
Multidimentionality; 
Longitudinality 

 
Multiple dimensions; 
Repeated assessments; 
Reporting of descriptive 
data 

      
Statistical methods of analysis 

    
 

HRQoL hypothesis; 
Statistical approach for HRQoL 
analysis; 
MCID considered in the 
statistical analysis; 
Multivariate analysis; 
Procedure to control the Type I 
error; 

 
HRQoL data analysis; 
MCID report; 
Multiple comparisons 
management; 

 
Specific hypothesis; 
Primary statistical 
technique; 
Reporting of clinical 
relevance; 
Included baseline as a 
covariate; 

      
Baseline assessment 

    
 

HRQoL scores at baseline for 
each group and each 
dimension; 

 
NA 

 
Assessed baseline; 
Compared baseline scores 
between treatment arms; 

      
Missing data management 

    
 

Profile of missing data at 
baseline; 
Statistical approaches for 
dealing with missing data; 
Study population. 

 
Patient characteristics 
comparison depending on 
compliance status; 
Survival and compliance rate 
at the end of follow-up; 
Protocol specified non-
attrition. 

 
Strategy to handle missing 
data; 
ITT population; 
Compliance rates. 

MCID, minimum clinically important difference; NA, not available; HRQoL, health-related quality of life; ITT, 
intention-to-treat.  
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2.4 Discussion  

This review provides an insight in what statistical methods have been developed, applied, and extended 

for the analysis of PROs, and extracts a list of criteria to assess statistical issues for PRO analysis from 

identified reviews. In general, reviews on statistical methods provided an insight into classical and 

popular statistical approaches for the analysis of PROs; and studies that introduced, developed or 

extended statistical methods provided novel and advanced methods for the analysis.  

This review has the following findings: 

First, there is no consensus on which statistical method is the most appropriate for the analysis of PROs 

in RCTs. For example, Walters and Campbell (2005) compared the estimations of SF-36 outcome by 

bootstrapping and t-test, and did not recommend bootstrapping over the general linear model as the 

results generated by both methods are similar. In comparison, Arostegui, Núñez-Antón and Quintana 

(2012) compared OLS with bootstrapping and OLS of two dimensions from SF-36. Their results showed 

that bootstrapping is able to detect statistical significance of an estimation whereas OLS cannot, 

indicating that the OLS estimates might not be reliable when the Normality assumptions are violated 

and therefore they recommended to use OLS with bootstrapping. This might be because these 

recommendations were made based on different datasets according to different criteria. As different 

stakeholders might be interested in different statistical features, they could hold different opinions when 

selecting the method for the analysis considering their desired criteria.  

In addition, the identified reviews showed that the statistical methods for ordered data were not popular 

for the analysis of PROs in cancer studies (Fiteni et al., 2016, 2019; Turner-Bowker et al., 2016; Hamel 

et al., 2017; Pe et al., 2018; Fiero et al., 2019; Nielsen et al., 2019; Coomans et al., 2020). There is only 

one identified review that summarised trials that conducted statistical analysis with ordered logistic 

regression or generalized mixed model with ordinal outcome (Nielsen et al., 2019). The international 

standards for the analysis of PROs in cancer trials by the SISAQOL Consortium neither recommended 

the use of ordinal regression nor compared ordinal regression with other statistical methods (Coens et 

al., 2020). This might be because the identified reviews focused on the analysis of PROs in cancer trials 

and typical PROs used in cancer trials are less likely to have the ordinal feature. But meanwhile, ordered 

logistic regression and other methods for PRO data with ordinal features have been developed and 

recommended for use (Arostegui, Núñez-Antón and Quintana, 2007, 2012; Zou, Carlsson and Quinn, 

2010; Najera-Zuloaga, Lee and Arostegui, 2019). This indicates that there are some disagreements on 

what statistical methods should be applied for analysing PROs, and these disagreements may be due to 

different factors such as the nature of the outcome data, the proposal of the analysis, the adherence of 

the data to the method assumptions, and the criteria set for method evaluation. 
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Second, it is doubtful when studies applied different methods using a single dataset and drew the 

conclusion on which method is better than others. Since each dataset has different characteristics (e.g. 

data distribution, different degree of information loss and unbalanced data), it would be crude to reach 

a conclusion when fitting models to a single dataset. And even though in a single dataset, various 

methods might be suitable for the analysis of PROs, especially in the case of multidimensional PROs 

which may have more than one endpoint of interest. For instance, it could be more meaningful to fit the 

role functioning - emotional dimension in SF-36 with four possible categorical values using ordinal 

regression than linear regression, and to fit physical functioning dimension with 21 possible categorical 

values using linear regression than ordinal regression, although pragmatically one common statistical 

method to analyse multidimensional PROs such as SF-36 which has eight dimensions may be preferred. 

Therefore, a specific target dimension of a PRO for analysis is recommended before proposing a 

statistical method (Fiteni et al., 2016; J.-F. Hamel et al., 2017; Pe et al., 2018). 

Furthermore, the way the PROs have been generated is particularly important for the data analysis and 

assumptions made for the underlying latent variable could lead to different statistical methods (Lall et 

al., 2002). For example, Tobit regression assumes the response variable is censored, meaning that the 

latent response variable can exceed the boundaries but cannot be observed (Pullenayegum et al., 2011), 

but the scores exceeding the boundaries are meaningful. 

Finally, the classification of statistical methods may not be appropriate in some identified studies. For 

example, within and between group differences, such as the mean change from baseline in the 

classification developed by Fiteni et al. (2016, 2019), are the target estimates of the statistical analyses, 

but not the statistical methods that can be applied for analysing PROs. This classification could be 

generated under the situation that statistical analyses in some trials were not conducted or were not 

clearly reported, and thus it was not clear what exact approaches were applied. Instead of summarising 

the statistical methods with statistical estimates, it would be helpful to report the proportion of studies 

that clearly reported the statistical approaches, and to summarise the statistical methods and estimates 

separately. It is understandable that reviewers are interested in different traits of the statistical analysis, 

and these statistical methods are sometimes hybrid with each other, and accordingly those combined or 

extended methods own different desired traits. However, a unified classification of statistical methods 

in reviews that summarise different statistical methods applied in the trials is needed to help researcher 

have a clearer picture.  

This review has the following limitations: first, this study only used ‘patient-reported outcome*’ or 

‘quality-of-life’ in the search strategy in order to retrieve a manageable number of results given the time 

constraints for the research. As this might result in omitting studies summarised or developed methods 

for bounded and discrete data but not specially designed for PRO or QoL data, reference tracking was 

used to supplement the database search. Second, this study excluded several conference abstracts, some 
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of which were of research interest. As the full texts of the excluded conference abstracts could not be 

retrieved, some valuable information could be omitted. Third, the eight identified reviews on the 

methodology for the analysis of PROs in trials all focused on the cancer studies. This might bias the 

popular methods that have been used for analysis, as cancer data which usually summarise survival data 

might have different features from other diseases. Last, only one reviewer (YQ) was involved in the 

screening and data extraction, but this ensures consistency in the entire process of this review. 

This literature review provides an insight in what statistical methods have been developed for the 

analysis of PROs, and what statistical methods have been applied through identified reviews. However, 

the identified reviews in this chapter all focused on cancer trials, and they neither share consistent 

terminology or classification of statistical methods, nor disclose details in the strategy for statistical 

analysis. Therefore, the next chapter will report a further review investigating what statistical methods 

are used for the analysis of PROs in publicly funded RCTs to see what methods are used in practice for 

other disease areas. Additionally, limited information on the criteria for the evaluation of statistical 

methods was identified from this review. Other criteria and characteristics under this topic will be 

collected in the next chapter, and will then be presented in Chapter 4. 
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Chapter 3 Review on statistical methods for the analysis 

of PROs used as primary outcomes in published RCTs  

3.1 Introduction 

This chapter aims to review the statistical methods for the analysis of PROs that are used as primary 

outcomes in RCTs published by the UK’s NIHR HTA Journal. This review helps the understanding of 

statistical analysis of PRO in RCTs, the identification of different statistical methods used for the 

analysis of PROs in published clinical trials and potential statistical issues in analysing PROs, and the 

summary of necessary components or criteria for reporting statistical analysis of the PROs in RCTs. 

3.2 Methods 

This review aims to firstly identify how frequently PROs have been used as primary or secondary 

clinical outcomes in reports of RCTs published in the UK’s NIHR HTA Journal; and secondly, when 

the PRO is used as the primary outcome for a trial, to summarise what statistical methods have been 

used to analyse the PRO.  

3.2.1 Trial identification 

Reports of RCTs published in the UK’s NIHR HTA Journal between 1 January 1997 and 31 December 

2020 that defined and reported a PRO as clinical endpoints or outcomes for the trial were systematically 

identified and reviewed. The definition of PRO in this review is adapted from the definition from 

Chapter 2 Section 2.2.1. The HTA Journal was chosen because the information related to the trial and 

the PROs are reported in more detail in comparison to major medical journals.  

Information related to the use of PROs include the frequency of using PROs as clinical outcomes, 

whether the PROs were used as primary and/or secondary outcomes, and when the PRO was the primary 

outcome, the characteristics of the PROs and the statistical methods used for the analysis of PROs. The 

identification of HTA reports of RCTs used the same search strategy as previous work (Walters et al., 

2017). The selection of trials with PROs was conducted by one reviewer (YQ). Three reviewers (SW, 

RJ, and LF) conducted quality assurance checks on 30% of the included papers after the data extraction 

was completed, and disagreements were discussed to achieve consensus.  
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3.2.2 Inclusion and exclusion criteria  

The studies included in this review satisfied the following criteria: 1) individually randomised controlled 

trials; 2) trials with at least one PRO as the primary outcome; and 3) trials with the statistical analysis 

conducted for the PRO. Studies excluded from this review are cluster RCTs as these have specific 

statistical issues; influenza trials as these rarely use PROs as clinical outcomes; adaptive or group 

sequential trials as these have different statistical issues that may influence the choice of analysis; 

follow-on studies and pilot studies. 

PROs identified in this review can be well-established measures from previous studies with feasibility, 

reliability and validity tested, or self-developed measures by researchers alongside trials. For studies 

with measures which were not clearly defined as a PRO in the trial, various methods were taken to 

identify whether the measure was categorised as a PRO, including retrieving the cited paper that 

developed the measure, identifying signal words such as ‘carers’ and ‘physicians’ for rating or assessing 

patients’ outcomes in the measure description, and referring to other papers that developed or applied 

the outcome measure. According to our definition of PROs, trials that only recruited patients, or trials 

that recruited both patients and proxies when patients were unable to complete PROs were included; 

trials that only used proxies as informants to complete the PROs were excluded in order to avoid the 

cases where clinicians respond to health outcome measures on the patients’ behalf. 

Trials using the product of PROs, such as a dichotomised outcome and quality-adjusted survivals, were 

included. Trials that used PROs only as primary cost-effectiveness outcomes, but not as clinical primary 

outcomes were excluded. Trials that did not actually conduct the statistical analysis were excluded, even 

if the statistical methods were proposed. 

3.2.3 Data extraction 

The following information was extracted from the included trials.  

1. Characteristics of the trials with PROs as primary outcomes, including the number of 

participants randomised and analysed, the baseline and post-randomisation assessment, the most 

frequently used PROs, and special types of PROs (including patient satisfaction, preference-

based and proxy-reported).  

2. Statistical methods conducted for the primary analysis of the PROs, including the study 

population, the specific statistical methods, the adjustment for baseline score or other covariates, 

involvement of random effects, robust SEs and bootstrapping techniques, repeated measures 

analysis, and strategies for missing data.  

3. The quality of reporting PROs, including whether there is a clear definition or justification of 

the primary outcomes or primary endpoints, statistical methods, and covariates.  
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3.2.3.1 Characteristics of PROs that are used as primary outcomes  

We classified a unidimensional PRO as one that focuses on one dimension, but it can have more than 

one item used to measure that dimension; and a multidimensional PRO focuses on more than one 

dimension and should have more than one item. There is at least one item in each dimension. 

In this review, we defined four score types of PROs - overall summary score, subscale score, single item 

score and unidimensional summary score. The former three types can be generated from 

multidimensional PROs, and unidimensional PROs are able to generate unidimensional summary scores 

and single item scores. The overall summary score covers more than one dimension, and it is composed 

of all dimensions covered by the PRO; the subscale score is composed of more than one item and it 

covers one or more than one dimensions; the single item score is composed of only one item, usually 

resulting from a global question and in the format of Likert scale or visual analogue scale (VAS).  

3.2.3.2 Statistical analysis of PROs that are used as primary outcomes 

All statistical methods used for the analysis of PROs that were defined as primary outcomes in the 

identified trials were extracted. This included different analysing stages (including primary, secondary, 

longitudinal, and sensitivity analyses) for the analysis of different data types of PROs as primary 

outcomes (including continuous, ordinal, binary, and others). These data types were defined according 

to the statistical methods used for the analysis of PROs. 

For the purpose of this review, the statistical methods were broadly classified into two categories: 

univariable methods that do not adjust for any other covariates except the randomised group, e.g. t-test, 

Chi-squared test, and simple linear regression, and multivariable methods that have one or more 

explanatory variables (e.g. baseline score) in addition to the randomised group, e.g. multiple linear 

regression (MLR). The multivariable methods were further classified according to the categories of 

generalized linear model (GLM), including MLR, analysis of covariance (ANCOVA), binary logistic 

regression, ordinal logistic regression, and their extensions for correlated responses such as models with 

coefficients estimated by GEEs and mixed effect models with coefficients estimated by MLE or 

restricted maximum likelihood (REML). Repeated measures analysis for PROs with more than one post-

randomisation assessments were classified into four categories: response feature analysis (i.e. using 

summary measures, such as AUC or post-randomisation mean score), generalized linear mixed models 

(GLMM) with parameters estimated by MLE or REML, GLM with parameters estimated by GEE, and 

repeated measures ANOVA (Walters, 2009; Schober and Vetter, 2018). 

The information about missing data was also collected in this review, including whether the proportion 

of missing data was reported and whether a strategy for dealing with missing data was developed.  
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3.3 Results 

In total, 1356 reports were published by the HTA Journal between 1 January 1997 and 31 December 

2020, and 928 reports were excluded after screening the titles and abstracts. In the remaining 416 reports, 

125 were excluded for various reasons (Figure 3.1). In the 303 published individually randomised 

controlled trials, 37.6% (114/303) of trials used PROs as primary outcomes and 82.8% (251/303) of 

trials used PROs as secondary outcomes. Two trials with PROs as primary outcomes were excluded as 

they were closed without conducting a statistical analysis of the data using the statistical methods that 

were proposed in the report (Mihaylov et al., 2008; Williams et al., 2017). It should be noted that the 

first RCT with a PRO as a clinical outcome was published in the HTA Journal in 1999 (Simpson et al., 

1999), and the earlier reports published in the HTA Journal were mainly systematic reviews.  

 

Figure 3.1 Flow diagram for the inclusion and exclusion of trials published in the UK’s NIHR HTA Journal 
from 1997 to 2020 
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Table 3.1 shows the number and percentage of trials that used PROs as primary and/or secondary 

outcomes. The number of HTA trials that used PROs as primary outcomes was around 60% of the 

number of HTAs that used PROs as secondary outcomes. All identified HTA studies that reported PRO 

as primary outcomes also employed PROs as secondary outcomes. Of 303 HTA reports, 52 (17.2%) did 

not use PROs as clinical effectiveness outcomes.  

Table 3.1 Number (percentage) of HTAs reporting PROs as primary and/or secondary outcomes  

  PROs as primary outcome? 
Total   Yes No 

PROs as secondary outcome? 
Yes 114 (37.6%) 137 (45.2%) 251 (82.8%) 
No 0 (0.0%) 52 (17.2%) 52 (17.2%) 

 Total 114 (37.6%) 189 (62.4%)  303 (100.0%) 
 

All included trials that used PROs as primary outcomes also used PROs as secondary outcomes. The 

trend of using PROs as clinical outcomes in trials between 1999 to 2020 is shown in Figure 3.2. Overall, 

PROs were more frequently used as secondary clinical effectiveness outcomes than as primary outcomes. 

Except for the earlier years (1999-2003) with a small number of studies, the average proportion of trials 

with PROs used as secondary outcomes (represented by the red curve) fluctuates around 87%, which is 

approximately two times higher than the average proportion of the trials with PROs as primary outcomes 

(represented by the blue curve). Generally, there is an increase in using PROs as clinical outcomes in 

HTA trials.  

 

Figure 3.2 Number and proportion of trials using PROs as primary and/or secondary outcomes from 
1999 to 2020 
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3.3.1 Trial characteristics 

In total, 83.1% (61,715/74,298) of the participants randomised in the 114 trials were included in the 

primary analysis (Table 3.2). The characteristics of these trials are summarised in Table 3.3. The most 

common design was a two-arm parallel group trial. More than half of the trials were in either mental 

health (30/114) or musculoskeletal conditions (28/114). Most trials collected baseline assessments 

(101/114) and more than one post-randomisation assessments (107/114). The maximum number of post-

randomisation assessment was 24 in a trial on eczema management for children (Santer et al., 2018). 

3.3.2 Characteristics of PROs that are used as primary outcomes  

Most trials (107/114) clearly defined the primary outcomes. The sample size calculation implied the 

primary outcomes for the trial was a PRO in six trials that did not explicitly specify the primary outcome, 

and one trial defined PROs as main outcome measures but used an alternative outcome for the sample 

size calculation (Kerry et al., 2000). Table 3.4 summarises the PROs used as primary outcomes in four 

or more included trials. The most popular PROs were mainly generic, i.e. SF-36/SF-6D and EQ-5D, and 

depression-specific, i.e. Beck Depression Inventory (BDI), Hospital Anxiety and Depression Scale 

(HADS), and Patient Health Questionnaire (PHQ). Eight trials used more than one PRO as the primary 

outcomes, and 14 trials used non-PRO clinical outcomes as co-primary outcomes.  

Preference-based PROs were used as primary outcomes in six trials, including five that used the EQ-5D 

(Russell et al., 2013; Brittenden et al., 2015; Watson et al., 2017; Sharples et al., 2018; Gazzard et al., 

2019) and one that used the SF-6D (Michaels et al., 2006). Seven trials used quality-adjusted survivals, 

including three that used EQ-5D (Russell et al., 2013; Watson et al., 2017; Sharples et al., 2018) and 

four that used specific PROs for estimation (Hewison et al., 2006; Bedson et al., 2014; Williams et al., 

2016; Pickard et al., 2020). Patient satisfaction was used as primary outcome in two trials (Townsend 

et al., 2004; Cooper et al., 2019). Proxies were recruited in six trials that primarily aimed to collect 

PROs, and only recruited proxies for patients who were unable to complete the PROs (Dennis et al., 

2006, 2020; Weindling et al., 2007; Banerjee et al., 2013; Francis et al., 2016; Santer et al., 2018). Seven 

included trials used self-developed PROs as primary or co-primary outcomes. Most of these PROs had 

one item based on a Likert scale or visual analogue scale (VAS), except for one trial that specially 

developed a REFLUX questionnaire with 31 items to generate the QoL of patients with gastro-

oesophageal reflux disease (Grant et al., 2008). Health outcomes assessed by investigators were not 

included as primary outcomes, e.g. four trials using Quality of Life Scale or Rankin Scale that were 

completely assessed by investigators were excluded (Lewis et al., 2006; Langhorne et al., 2017; Bath et 

al., 2018; Sprigg et al., 2019).  
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Table 3.2 Recruitment and retention of trial participants included from the 114 reports 

Items Mean Median SD Min Max Total 

Number of participants randomised  652 480 928 85 8,003 74,298 

Number of participants analysed* 541 388 847 65 7,677 61,715 
*Number of participants analysed in the primary analysis of PROs; if multiple post-baseline assessments were 

used for primary outcome, the number of participants analysed at the longest primary endpoint was taken.  

 

Table 3.3 Trial design and assessments characteristics of the 114 trials included in the review 

Items   No % Total 

Trial design       114 

 Parallel group 102 87.2   

 Factorial 3 2.6   

 Crossover 0 0.0   

 Other* 9 7.7   

Number of arms        114 

 2 83 70.9   

 3 21 17.9   

 4 5 4.3   

 >4 5 4.3   

Clinical area      114 

 Mental Health 30 25.6   

 Musculoskeletal 28 23.9   

 Obstetrics and gynaecology 9 7.7   

 Gastrointestinal 7 6.0   

 Respiratory 5 4.3   

 Stroke 5 4.3   

 Primary Care 4 3.4   

 Cardiovascular  4 3.4   

 Dermatology 4 3.4   

 Cancer/Oncology 3 2.6   

 Other  ̂ 15 12.8   

Number of trials with a baseline assessment of the PRO  114 

   101 86.3   

Timing of primary outcome post-baseline assessments  114 

 <1 month 7 6.0   

 1-6 months 28 23.9   

 6-18 months 50 42.7   

 >18 months 27 23.1   

 Missing$ 2 1.7   
Number of post-baseline assessments  114 

 1 5 4.3   

 2 41 35.0   

 3 29 24.8   

 4 19 16.2   

 >4 18 15.4   

 Missing$ 2 1.7   
*patient preference/Zelen’s. ^chronic fatigue, minor surgery, multiple sclerosis, neurosurgery, paediatric, sleep 
disorders, urology, vascular. $Two trials did not specify the timing and number of post-baseline assessments.   
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Different score types were used to summarise the primary clinical effectiveness measured by PROs. Of 

the 114 included trials, 99/114 used one score type to report the primary outcome, and 15 of the included 

trials used more than one score type. Summary scores were the most popular way to measure PROs, and 

it was widely used in identified trials (83/114), followed by subscales (30/114) and single items (16/114), 

including Likert scale (11/114) and VAS (5/114). Among 15 trials that used over one score type for 

summary, 11 studies with one PRO as primary outcome reported subscales and overall summary scores 

to measure the primary clinical effectiveness, and the remaining four studies had more than one PRO as 

primary outcomes (Lamb et al., 2010; Brittenden et al., 2015; Orgeta et al., 2015; Glazener et al., 2016). 

Except for seven trials with only one post-randomisation follow-up, 107 trials assessed PROs with more 

than one post-randomisation follow-up (Table 3.5). Of the 114 identified studies, 41 (36%) studies used 

unidimensional PROs, and 72 (63%) studies used multidimensional PROs as primary outcome. There 

was one study employing both multi- and unidimensional PROs as more than one primary outcome was 

used in this study (Lamb et al., 2010). 

The PRO scores can be transformed into dichotomised outcomes or quality-adjusted survivals. Five 

trials used the AUC estimated by overall summary scores from PROs as the primary outcome. Three 

trials (Russell et al., 2013; Watson et al., 2017; Sharples et al., 2018) used EQ-5D for AUC estimation, 

and two trials (Hewison et al., 2006; Bedson et al., 2014) used condition-specific PROs for estimation. 

A number of 10 trials used dichotomised PRO scores as primary outcomes. In 11 trials, the PRO as 

primary outcomes were also used to generate secondary outcomes using a different score type. Four 

trials used a dichotomised PRO as primary outcome, and the original PRO as secondary outcome, while 

six studies employed the original PRO as primary outcome, and the dichotomised PRO as secondary 

outcome. One study used the AUC derived from PRO as primary outcome, and the original PRO score 

as secondary outcome (Russell et al., 2013).  

3.3.3 Statistical analysis of PROs that are used as primary outcomes 

Intention-to-treat (ITT) analysis (i.e. analysis based on the treatment assignment of all participants but 

not the actual treatment received) (Montedori et al., 2011), including ITT with and without missing data 

imputation, was used in 111/114 trials. A number of 46 trials used other study populations such as per 

protocol analysis (i.e. analysis based on the patients who completed the originally treatment assigned), 

as treated, or complier average causal effect analysis (i.e. analysis of the treatment effect based on the 

subgroup that completed the originally treatment assigned) for the secondary or sensitivity analysis.  
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Table 3.4 The most frequently used PROs as primary outcomes in the included trials 

PROs Abbr. No % Reference to the PRO 

Short Form-36 
Short Form- 6 Dimensions 

SF-36 
SF-6D 

8 7.0 
(Ware and Sherbourne, 1992; Brazier, 
Roberts and Deverill, 2002) 

Beck Depression Inventory BDI 7 6.1 (Beck, Steer and Carbin, 1988) 

Hospital Anxiety and 
Depression Scale 

HADS 5 4.4 (Zigmond and Snaith, 1983) 

EuroQol-5 Dimensions EQ-5D 5 4.4 
(The EuroQol Group, 1990; Dolan, 
1997; Herdman et al., 2011) 

Patient Health 
Questionnaire 

PHQ 5 4.4 (Spitzer, Kroenke and Williams, 1999) 

Oxford Shoulder Score OSS 4 3.5 (Dawson, Fitzpatrick and Carr, 1996) 

Other*  90 78.9  

Total  ̂  124 108.8  
*Only PROs that were used in four or more trials are listed separately.  

^The total number of included trials is 114. Eight trials used more than one PRO as primary outcomes, including 
two trials that used three PROs, and six trials that used two PROs as primary outcomes.  

 

Table 3.5 Characteristics of PROs that are used as primary outcomes in the 114 included trials 

Subjects N % Total 
primary outcome clearly reported 107 93.9 114 
primary outcome over one PRO 8 7.0 114 
co-primary outcome non-PRO 14 12.3 114 
primary preference-based PROs 6 5.3 114 
primary outcome satisfaction  2 1.8 114 
primary outcome proxy-reported  6 5.3 114 
primary endpoint       114 
  single timepoint 71 62.3   
  series of timepoints 41 36.0   
  missing   2 1.8   
baseline & follow-up timepoints       

 baseline collected? 101 88.6 114 

  over one follow-up? 107 93.9 114 
score type (studies with one score type)    99 
  summary score 68 68.7   
  subscale   19 19.2   
  single item   12 12.1   
score type (studies with over one score type)    15 

  summary & subscales 11 73.3   

  summary & single 4 26.7   
Note that overall summary score, subscale score, and single item score can be generated from multidimensional 
PROs, and unidimensional PROs are able to generate unidimensional summary scores and single item scores. The 
overall summary score covers more than one dimension, and it is composed of all dimensions covered by the 
PRO; the subscale score is composed of more than one item and it covers one or more than one dimensions; the 
single item score is composed of only one item, usually resulting from a global question and in the format of 
Likert scale or visual analogue scale (VAS). 
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The majority of trials stated the proportion of missing PRO data (109/114), developed strategies to deal 

with missing data (99/114), and imputed missing data using various methods such as mean imputation 

(89/114). In 40/114 studies, missing data were imputed as part of a sensitivity analysis to check the 

robustness of the primary analysis strategy that did not consider missing data.  

The statistical methods applied for primary analyses were clearly defined in 79/114 trials, and the use 

of univariable or multivariable methods for primary analyses were justified in 92/114 trials. Except for 

two trials that did not specify the timing and number of post-randomisation assessments,(Little et al., 

2009, 2014) 72/114 clearly defined the single timepoint used for the primary analysis (e.g. x-months 

post-baseline), and 40/114 used the repeated post-baseline outcomes for the primary analysis.  

The statistical methods for the primary analysis of PROs that were used as primary clinical effectiveness 

outcomes are shown in Table 3.6. Seven of the 27/114 trials reporting the use of univariable methods 

for primary analysis employed unadjusted regression methods to estimate treatment effects. These seven 

trials did not adjust for other covariates in the model besides randomised group, including three trials 

used linear regression, one used linear mixed model, two used ordinal logistic regression and one used 

binary logistic regression. The linear mixed model (45/114), linear regression (29/114) and ANCOVA 

(13/114) were the most popular methods among multivariable methods. Of the 45 trials using linear 

mixed models for the primary analysis, 23 trials conducted a repeated measures analysis, and the 

remaining trials did not consider the repeated post-randomisation outcomes in the primary analysis.  

Longitudinal data was analysed in 100/114 trials. The repeated measures analysis was conducted as 

primary analysis in 39/114 trials, including seven used response features analysis with quality-adjusted 

survivals, and 27 used modelling methods. In seven trials using response feature analysis in primary 

analysis, four used linear regression or ANCOVA, two used linear mixed models, and one used survival 

analysis. Repeated measures ANOVA were used in six trials for longitudinal analysis. Around 70% of 

trials (23/33) conducting repeated measures analysis in primary analysis used linear mixed models. 

Three trials used GLM with coefficients estimated by GEE for the longitudinal primary analysis, 

including one as an extension to ordinal logistic regression (Kennedy et al., 2006) and two as an 

extension to linear regression (Lewis et al., 2006; Molassiotis et al., 2013). Only one trial with quality-

adjusted survivals used Cox regression for the primary analysis (Russell et al., 2013). 

Bootstrapped CIs were calculated after using a general linear model (including t-test, ANCOVA, linear 

regression) or linear mixed model in six trials due to the skewness of PRO scores (Kerry et al., 2000; 

Morrell et al., 2000; Symmons et al., 2005; Weindling et al., 2007; Sharples et al., 2018; Shawo et al., 

2020). One trial did not conduct any other statistical analysis except for calculating the bootstrapped CIs 

for the treatment estimate (Wiggins et al., 2004). Robust SEs can be used to estimate CIs and the 

calculation of test statistics (and associated P-values). Six trials reported the use of robust SEs based on 

regression methods for the primary analysis (Kennedy et al., 2003, 2006; Weindling et al., 2007; Beard 
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et al., 2020; Francis et al., 2020), and three trials reported the use of robust SEs for the longitudinal 

analysis in the non-primary analysis (Chalder et al., 2012; Molassiotis et al., 2013; Goodyer et al., 2017). 

Of 106 trials that used multivariable methods, 98 trials clearly reported the covariates adjusted in the 

primary analysis. Among them, 85 trials adjusted for baseline score of the PRO, and three trials modelled 

the change of PRO from baseline in the primary analysis (Goodacre et al., 2014; Williams et al., 2015; 

Clarke et al., 2016). The use of random effects for the primary analysis of PROs were clearly specified 

in 47 trials: 44 used linear mixed models, and the remaining three used repeated measures ANOVA 

(Peveler et al., 2005), binary logistic mixed model (Pickard et al., 2020), and ordinal logistic mixed 

model (Cooper et al., 2019). The most common random factors applied in the multivariable methods 

were therapists, centres (i.e. hospital sites), and individual patients.  

Table 3.6 Statistical methods for the primary analysis of PROs that are used as primary outcomes 

Statistical methods N % Total 

Univariable methods     27 

  t-test 11 40.7   

  unadjusted regression methods 7 25.9   

  Wilcoxon rank-sum test (Mann-Whitney U test) 4 14.8   

  Chi-squared test 3 11.1   

  Kruskal-Wallis test 1 3.7   

  log-rank test 1 3.7   

          

Multivariable methods^     106 

  linear mixed model 45 42.5   

  linear regression 28 27.4   

  ANCOVA 13 12.3   

  linear regression with GEE 2 1.9   

  binary logistic regression 8 7.5   

  binary logistic mixed model 1 0.9   

  ordinal logistic regression 4 3.8   

 ordinal logistic mixed model 1 0.9   

  repeated measures ANOVA 6 5.7   

  survival analysis 1 0.9   

          

Repeated measures analysis    39 

  linear mixed model 23 59.0   

  response feature analysis 7 17.9   

  repeated measures ANOVA 6 15.4  
  GLM with GEE 3 7.7   

^106 trials used multivariable methods for the analysis of PROs, including four trials that used two different 
methods for the primary analysis of PROs. ANCOVA, analysis of covariance; ANOVA, analysis of variance; GLM, 
generalized linear model; GEE, generalized estimating equation. Note that the three categories (i.e. univariable 
methods, multivariable methods, and repeated measures analysis) are not mutually exclusive, and more than 
one method can be used to analyse the primary endpoint.   
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3.3.4 Trend of using statistical methods for the primary analysis of PROs 

The change of statistical multivariable methods applied for the primary analysis of PROs that are used 

as primary clinical effectiveness outcomes from 1999 to 2020 is shown in Figure 3.3. In general, there 

is an increasing trend for using complex/advanced models in most recent years for the analysis of PROs. 

The linear regression, ANCOVA and repeated measures ANOVA were the most popular regression 

methods used from 1999 to 2010, used in around 63% of trials averagely, but this popularity dropped to 

28.6% during 2011-2015 and 30.0% during 2016-2020. In contrast, the proportion of trials using the 

linear mixed model and linear regression with GEE for correlated outcomes as primary analysis methods 

generally increased across the observation period, from 11.1% to 54.0%, which witnessed the linear 

mixed model becoming the most popular regression methods in recent years. Meanwhile, the use of 

logistic regression across years remained comparatively stable from 1999 to 2020. The trend of using 

binary logistic regression for primary PROs slightly decreased from 11.1% to 4.0% over time, and the 

proportion of trials using ordinal logistic regression for the primary analysis remained small. 
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Figure 3.3 Percentage of trials using multivariable methods for the primary analysis of PROs from 1999 to 2020 

(N=xx) denotes the number of trials published in the specified period. As the survival analysis was used only in one trial, it is not shown in this graph. As this graph only 
summarised multivariable methods and one trial could use two or more multivariable methods for the primary analysis, the number of trials summarised in this graph may 

not equal the total number of included trials. ANCOVA, analysis of covariance; ANOVA, analysis of variance; GEE, generalized estimating equation.   
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3.4 Discussion 

This chapter has systematically conducted a comprehensive review that summarised how frequently 

PROs have been used and what statistical methods have been applied for the primary analysis of PROs 

in RCTs published by the UK NIHR HTA Journal between 1997 and 2020.  

This review found that 82.8% (251/303) of the included published trials used PROs as clinical outcomes, 

and 37.6% (114/303) of the trials used PROs as primary outcomes. Multivariable methods that adjusted 

for additional covariates besides the randomised group were conducted in 106 (93%) of the 114 trials. 

The linear mixed model was the most used regression method for the primary analysis, and t-test or 

Wilcoxon rank-sum test were the most popular univariable methods for the primary analysis of PROs. 

This result is consistent with the review conducted by Pe et al. (2018) which summarised the statistical 

methods applied for PROs in oncology. A decrease in the use of binary logistic regression was found in 

this review, possibly because the dichotomised outcome retains less information from the PROs 

compared to other score types (Shields et al., 2015). 

Ordinal regression, binomial regression and beta regression that were identified from the identified 

reviews in Chapter 2 were rarely seen applied for the analysis of PROs in this HTA review. Arostegui, 

Núñez-Antón and Quintana (2007, 2012) recommended using ordinal logistic regression with random 

effects model, beta-binomial regression or binomial-logit-Normal regression for continuous or ordinal 

PRO data after testing distributional assumptions. However, only one of the five included trials that used 

ordinal logistic regression for the primary analysis considered random effects (Cooper et al., 2019). 

Neither beta-binomial regression nor binomial-logit-Normal regression were used by the 114 trials.  

Compared to this HTA review that summarised statistical methods for the analysis of PROs in different 

disease areas, the identified reviews in Chapter 2 reported a high proportion of cancer studies using 

time-to-event data. A large proportion of HTA trials used linear mixed models compared to the cancer 

studies, and the statistical methods for ordered data were barely reported in use in cancer studies. None 

of the two identified cancer trials from this HTA review conducted ordered logistic regression. One trial 

used primary survival analysis for quality-adjusted life years estimated by EQ-5D (Russell et al., 2013), 

and the other used a linear mixed model for the analysis of the European Organization for Research and 

Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) (Prescott et al., 2007).  

The multivariable methods for the analysis of PROs that were used as primary outcomes changed over 

time. The general linear model (including t-test, ANOVA, ANCOVA and MLR) and linear mixed model 

were widely used over the past two decades, which could possibly result from the frequent use of 

continuous data type of response variables. This is consistent with the findings from the identified 

reviews, which summarised statistical methods for analysing PROs in clinical trials in Chapter 2. 

Repeated measures analysis was popular for trials with more than one follow-up timepoint. The trend 
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of using repeated measures ANOVA in early years was replaced by using linear mixed models in recent 

years, which can be explained by the increasing complexity of trial designs and from recommendations 

on using linear mixed models over repeated measures ANOVA for the longitudinal analysis of PROs 

(Walters, 2009; Arostegui, Núñez-Antón and Quintana, 2012).  

Various statistical methods could be applied for the analysis of a PRO. In the HTA review, 4/106 studies 

conducted more than one multivariable analysis for the primary analysis of PROs. Similarly, the review 

of cancer trials by Pe et al. (2018) found that more than one statistical method were used for the primary 

analysis of PROs in cancer trials. In addition, there is an obvious growing trend of using complex models 

such as linear mixed models (with both fixed and random effects) for the primary analysis of PROs over 

the observed period, while conventional methods (such as the t-test, MLR and ANCOVA) have been 

widely used. However, there is a delay in applying newly developed methods. An example is the linear 

mixed model that has been applied for the analysis of PROs since 2000 (Pinheiro and Bates, 2000), but 

becomes a popular method for statistical analysis among the identified trials from around 2014.  

Even if methods that can be used to deal with the bounded, skewed, ordinal and multidimensional 

features of PRO data have been developed, these methods have not been widely applied to PRO data, 

especially in clinical trials settings where the commonly used methods are still conventional methods 

such as ANOVA and Chi-squared test. This might be due to the following reasons. When assumptions 

hold in conventional methods, it is unnecessary to apply complex statistical methods over simple ones 

if similar and reliable estimates can be produced by both simple and advanced methods. Although the 

violation exists, such as the violation of Normality assumptions of residuals caused by PRO data, it is 

less likely to challenge the robustness of general linear models (Walters and Campbell, 2004). This fact 

might explain why the obvious violation of Normality assumptions did not stop researchers from using 

linear regression or t-test. In addition, some statistical methods are difficult to apply in statistical 

software and the estimations of some complex methods are difficult to interpret, researchers are 

therefore reluctant in using newly developed methods when conducting statistical analysis.  

PROs tend to generate data with discrete, skewed, and bounded distributions that are not Normally 

distributed, and the assumptions for statistical methods such as the t-test, linear regression and 

ANCOVA may not be valid. However, Heeren and D’Agostino (1987) have demonstrated the 

robustness of the two independent samples t-test when applied to three-, four-, and five-point ordinal 

scaled data using assigned scores, in sample sizes as small as twenty subjects per group. Sullivan and 

D’Agostino (2003) have expanded this work to account for a covariate when the outcome is ordinal in 

nature. They again assign numeric scores to the distinct response categories and compare means between 

treatment groups adjusting for a covariate reflecting a baseline assessment measured on the same scale. 

Their simulation study shows that in the presence of three-, four- and five-point ordinal data and small 

sample sizes (as low as twenty per group) that both ANCOVA and the two independent sample t-test on 



36 Chapter 3 Review on statistical methods for the analysis of PROs used as primary 

outcomes in published RCTs  

difference scores are robust and produce actual significance levels close to the nominal significance 

levels. Furthermore, statistical theory says that if the distribution of an outcome variable is Normal, so 

will be the distribution of the sample mean for that outcome variable. Much more importantly, even if 

the distribution of the outcome is not Normal, that of the sample mean will become closer to the Normal 

distribution as the sample size gets larger. This is a consequence of the Central Limit Theorem (CLT). 

The Normal distribution is strictly only the limiting form of the sampling distribution as the sample size 

increases to infinity, but it provides a remarkably good approximation to the sampling distribution even 

when the sample size is small, and the distribution of the outcome variable is far from Normal (Armitage, 

Berry and Matthews, 2002). Thus, conventional statistical methods such as the t-test, MLR and 

ANCOVA for analysing PROs are robust to the violation of assumptions for moderate to large sample 

sizes (Walters, 2009). 

A clear classification of the terminology of the statistical methods is desired. It is a historical problem 

that the names of statistical methods are confusing (e.g. general linear model vs. generalized linear 

model), and multiple terms can be used to describe the same method, for example, the proportional-odds 

model, ordered logit model and ordinal logistic regression refer to the same regression technique. In 

addition, there are various ways to group statistical methods, depending on the study aim. For instance, 

the linear mixed model is categorised as a method for between-group difference considering the 

classification of within or between group difference, and it can also be categorised as a model for 

repeated measures analysis when accounting for time. Thus, researchers should be clear and cautious 

when describing the exact statistical method for the analysis.  

To the best of our knowledge, this study is by far the largest review of trials (with 114 studies) published 

by the HTA Journal which analysed the frequency of using PROs and the statistical methods for the 

analysis of PROs. The reviews by Pe et al. (2018) (breast cancer); Hamel et al. (2017) (lung cancer), 

and Fiteni et al. (2016) (lung cancer) had sample sizes of 66, 33, and 27 articles respectively. Compared 

to reviews that only concentrate on oncology (Fiteni et al., 2016, 2019; Turner-Bowker et al., 2016; J.-

F. Hamel et al., 2017; Pe et al., 2018; Nielsen et al., 2019), this review summarised details in the use 

and analysis of PROs in RCTs with a range of clinical areas.  

It is noteworthy that the proportions of trials using PROs reported in this review represents the average 

rate of HTA trials focusing on different clinical areas, and when considering specific disease(s) or 

selecting different database(s), the proportions may vary. For example, Pe et al. (2018) identified 3/66 

(5%) and 46/66 (70%) randomised controlled trials of locally advanced and metastatic breast cancer 

using PROs as primary and secondary endpoints respectively. Marandino et al. (2018) reviewed 446 

cancer trials published in major journals between 2012 and 2016, and found that PRO or QoL was a 

primary end point in five trials (1.1%), a secondary end point in 195 trials (43.7%), an exploratory 

endpoint in 36 trials (8.1%), while in the remaining 210 (47.1%) QoL was not listed at all among study 
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end points. Our review found that three of 18 cancer trials (17%) used PROs as primary outcomes, and 

13/18 (72%) used PROs as secondary outcomes. Our results showed that PROs were more frequently 

used for health problems such as mental and musculoskeletal disease.  

This study has the following limitations.  

First, this review only looked at UK trials funded by the NIHR HTA Programme, which may represent 

a limitation in terms of the generalisability of the findings. It is possible that statistical methods are used 

differently in industrial funded trials or in trials in other countries. However, as the NIHR HTA Journal 

intends to publish all NIHR funded projects, it has less publication bias compared to journals that only 

publish positive outcomes, and the information related to PROs in other journals are not reported in as 

much detail. The extracted statistical methods for the analysis of PROs from this review are consistent 

with those included from other similar reviews (Fiteni et al., 2016, 2019; Turner-Bowker et al., 2016; 

J.-F. Hamel et al., 2017; Pe et al., 2018; Nielsen et al., 2019).  

Second, there might be other appropriate methods for the analysis of PROs that were not included in 

this review. This review mainly analysed RCTs with PROs that were used as primary outcomes because 

the primary outcomes and the corresponding statistical methods were more explicitly reported. Methods 

such as probit model that were identified from the secondary analyses or sensitivity analyses in the 114 

trials are not presented. Other potentially appropriate methods that might be available for the analysis 

of PROs cannot be identified from this literature review. 

Third, trials with PROs only used as cost-effectiveness outcomes were excluded. This is because the 

statistical strategies for clinical effectiveness and cost-effectiveness outcomes may vary, and cost-

effectiveness analysis (CEA) produces both cost and clinical effectiveness outcomes. If PROs for CEA 

were included in this review, the proportion of included trials would increase, as there were some studies 

using EQ-5D for the primary CEA. It could be argued that the analysis of effectiveness estimated by 

PROs in CEA also requires appropriate statistical methods, but estimands for a health economic analysis 

could be different from those for a clinical analysis as they hold different purposes to conduct these 

analyses. Therefore, we believe it is justified to make this exclusion.  

Fourth, we used a broad definition for a PRO and a small number of trials (seven) used PROs that were 

specifically developed for the trial and were not validated in another external study. The inclusion of 

such non-validated instruments as primary outcomes should be discouraged, and may have affected the 

results, although the characteristics of these PROs (Likert or VAS) are similar to those of the PROs that 

have been formally validated. We believe that it is not unreasonable to assume that the statistical analysis 

of such outcomes would be similar to the analysis of validated PROs. Another potential limitation is the 

large time window, 1997-2020, chosen for the review. This may introduce some variability and potential 

heterogeneity in the trials included in the review, but on the positive side, it allows to test time trends in 

the type of statistical methods used in the trials.  
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Last, the information related to PROs and statistical methods were not clearly reported in some trials. 

Although assumptions have been made based on the context where some required information was not 

explicitly stated, it is possible that the data extracted was inconsistent with researchers’ intention. 

However, as the data have been extracted for all reports by one reviewer there is consistency in the 

interpretation and assumptions made.  

Insufficient reporting exists in some parameters for the statistical analysis of PROs, such as the pre-

specified PRO definition, specific hypothesis and the statistical methods. To produce explicit reports, it 

is recommended that researchers follow specific guidelines that can instruct the reporting of using PROs 

in RCT papers and protocols such as the CONSORT-PRO (Calvert et al., 2013), SPIRIT-PRO (Calvert 

et al., 2018), and the standards for the analysis of PROs in cancer RCTs (Coens et al., 2020). In addition 

to these guidelines, the following information is recommended to consider for explicit reporting of the 

PROs and the statistical methods for analysing PROs. 

For specifying primary outcomes: What PRO is used as the primary outcome? Who is the informant of 

the PRO? What outcome is derived from the PRO as the primary outcome, including the score directly 

generated from the PRO and other outcomes generated from the PRO? What is the specific timepoint 

for the primary endpoint? 

For specifying statistical methods: Are a specific timepoint or time series used for analysis? What are 

the statistical methods used for the analysis? Are there any extensions such as random effects applied 

for the analysis? If so, what is it? What covariates are adjusted? Are there any add-on techniques such 

as bootstrapped CIs or robust SEs applied for the analysis? What is the strategy to deal with missing 

data? Is there any assumption made for missing data? 

In conclusion, the majority of trials funded by the NIHR HTA Programme used PROs as clinical 

outcomes. Although there is an increasing trend of using complex models (e.g. mixed effects), 

conventional methods such as linear regression remain widely used for the analysis of PROs, despite 

the potential violation of their assumptions. Statistical methods developed to address these violations 

when analysing PROs, such as beta-binomial regression, are not routinely used in practice. Various 

methods for the analysis of PROs have been identified from this review, but it is still unknown which 

methods are the most appropriate for the analysis of PRO data in RCT settings.  

The next chapter will establish specific research aims and objectives given the evidence extracted from 

the two literature reviews in Chapter 2 and Chapter 3. As the recommendations by different groups may 

vary, it is necessary to establish criteria for the evaluation of statistical methods in order to validate the 

appropriateness of recommended methods. Summary tables of available statistical methods and 

statistical properties to evaluate statistical methods for the analysis of PROs in RCTs will also be 

presented in the next chapter.  
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Chapter 4 Research aims and objectives 

4.1 Summary of previous work 

The previous chapters introduced the PROs as a widely used measurement to evaluate the clinical 

effectiveness from the patient perspective; and explained the data features of PROs that are likely to be 

bounded, discrete, skewed, and multidimensional, which increases the complexity to analyse PRO data 

in RCT settings. Various statistical methods for the analysis of PROs that have been proposed in theory 

and have been applied in publicly funded RCTs in the UK as well as potential statistical properties that 

can be considered for the evaluation of statistical methods are identified and summarised.  

The method review in Chapter 2 provides an insight into what statistical methods have been proposed, 

developed, and adopted in recent years, and what statistical properties can be considered to compare and 

contrast models. The identified reviews reported the widely use of general linear models (e.g. t-test, 

ANOVA, ANCOVA and linear regression), and their non-parametric counterparts (e.g. Mann-Whitney 

U-test or Wilcoxon signed rank test), whereas the identified method studies proposed more complex and 

advanced statistical methods for the analysis of PROs, such as beta-binomial regression. 

The HTA review in Chapter 3 summarises statistical methods used in RCTs that are published in the 

NIHR HTA Journal. It shows that PROs are widely used to measure the clinical effectiveness in publicly 

funded trials in the UK. Over 80% of RCTs used PROs as clinical outcomes, and around half of them 

used PROs as primary outcomes. The majority of included trials applied general linear models (e.g. t-

test, ANOVA, ANCOVA and linear regression) and repeated measures analysis (e.g. repeated measures 

ANOVA, linear mixed model and GLM with coefficients estimated by GEE) for the primary analysis 

of PROs. An increasing trend of using linear mixed model over repeated measures ANOVA is seen to 

analyse repeated measurements (i.e. longitudinal analysis).  

An overview of available statistical methods for the analysis of PROs and statistical criteria from 

different perspectives for the evaluation of statistical methods are extracted from the two reviews and 

summarised in Table 4.1 and Table 4.2.  

Both reviews show that the general linear models, their extension for longitudinal analysis, and their 

non-parametric counterparts are popularly applied for the primary analysis of PROs in published RCTs. 

This indicates that researchers tend to analyse PROs as continuous outcome regardless of the likely 

discrete and skewed nature of PRO data. Although various statistical methods that have been developed 

to deal with the bounded, skewed, or ordinal features of PRO data are identified in the method review, 

these methods are not seen applied for the analysis of PROs in the published RCTs. 
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4.2 Research gap  

In the light of the two comprehensive reviews, a research gap between the statistical methods that have 

been developed by methodologists and statistical methods that have been used for the analysis of PROs 

in RCTs is identified. Statistical methods such as beta-binomial regression, beta regression, and CLAD 

regression that are proposed or recommended for the analysis of PROs, are found to be rarely used in 

practice. Therefore, there is a need to evaluate whether these recommended methods can fit RCT 

datasets better than classical methods such as MLR.  

A set of criteria is to be established and clearly stated before the evaluation of statistical methods, since 

it is found that studies comparing different statistical methods do not share the same set of criteria for 

the evaluation of statistical methods. These studies vary from the study design, the study population, the 

set of statistical methods to compare, and especially the criteria to evaluate these statistical methods. It 

is unlikely to have different studies using different sets of criteria to reach the same conclusion.  

Furthermore, most studies developed and compared statistical methods with evidence from a single 

dataset, which potentially eliminates the robustness of the conclusion when being extrapolated to other 

datasets with different types of PROs. Such that multiple RCT datasets that focus on a range of disease 

areas shall be used to apply different statistical methods for the analysis of PROs.  

This research proposes to focus on the SF-36 PRO, i.e. apply different statistical methods to RCTs with 

SF-36 in the empirical analysis and use the typical distribution of SF-36 dimension scores to instruct 

simulation analysis, since the SF-36 or SF-6D was found the most used PRO in use with the evidence 

from the published 114 RCTs in the HTA review. 

4.3 Research objectives 

Regarding the identified research gap, the following specific aims and objectives are established: 

First, in Chapter 5, a set of desired criteria for the evaluation of statistical methods presented in Table 

4.2 will be established to filter the statistical methods for the analysis of PROs in RCTs that are identified 

from previous chapters as shown in Table 4.1. The statistical methods that passed the filtration will be 

carried forward to the empirical analysis. 

Second, the technical details of the filtered statistical methods will be described in Chapter 6, together 

with the commands to run in the computational software and the possible interpretation of the estimates 

from each statistical method. An example RCT dataset with SF-36 as its primary outcome will be used 

to explain the process of fitting different statistical methods to PRO data. The filtered statistical methods 

will be applied to multiple RCT datasets with SF-36 as clinical outcomes in Chapter 7. The list of 

statistical methods will then be narrowed down to carry forward to the simulation analysis. 
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Third, the simulation protocol to compare model performance of the narrowed list of statistical methods 

that are carried forward from the empirical analysis will be proposed in Chapter 8. The simulation 

analysis will be conducted using Monte Carlo methods in Chapter 9, to compare the performance 

measures of these statistical methods in terms of estimating the predefined treatment effect of PROs 

under a range of scenarios in RCT settings.  

Finally, recommendations on what statistical methods are the most appropriate for the analysis of PROs 

in RCT settings will be made and discussed in Chapter 10, according to the technical details and model 

theories of included statistical methods, and their model performances in the empirical analysis and the 

simulation analysis.  
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Table 4.1 A list of potential statistical methods for the analysis of PROs 

Statistical methods classification Reference 
Multivariable methods (that allow or adjust for covariates besides randomised group) 

Methods for correlated responses  
   Survival analysis (Coens et al., 2020) 
   Generalized linear mixed model (Qian et al., 2000; Lee and Daniels, 2008; Zou, Carlsson and Quinn, 2010; Najera-Zuloaga, 

Lee and Arostegui, 2019)    GLM with parameters estimated by GEE 
   Repeated measures ANOVA (Qian et al., 2000; Walters and Campbell, 2004; Parsons, 2013; Zheng, Qin and Tu, 2017) 
     
Methods for uncorrelated responses  

 Continuous   

  Normal 
MLR  
(ANOVA / ANCOVA) 

(Walters, Campbell and Lall, 2001; Walters and Campbell, 2004, 2005; Arostegui, Núñez-
Antón and Quintana, 2007, 2012) 

  Normal but 
censored 

Tobit regression (Austin, Escobar and Kopec, 2000; Pullenayegum et al., 2010) 
  CLAD regression (Austin, 2002; Pullenayegum et al., 2010) 
  Skewed Quantile regression (Leng and Zhang, 2014) 
  

Bounded 
Beta regression (Zou, Carlsson and Quinn, 2010; Hunger, Baumert and Holle, 2011) 

  Fractional logistic regression (Meaney and Moineddin, 2014) 

 Categorical   

  
Binary 

Binary logistic regression (J.-F. Hamel et al., 2017) 
  Binary probit regression  

  

Ordered 

Ordered logit  (Qian et al., 2000; Lall et al., 2002; Lee and Daniels, 2008; Manuguerra and Heller, 2010; 
Arostegui, Núñez-Antón and Quintana, 2012; Parsons, 2013)   Ordered probit 

  Beta-binomial regression (Arostegui, Núñez-Antón and Quintana, 2007, 2012; Najera-Zuloaga, Lee and Arostegui, 
2018, 2019)   Binomial-logit Normal regression 

  
Unordered 

Multinomial logit  
  Multinomial probit  

 Count   
   Negative binomial regression  
   Poisson regression  
     
    Continued on the next page 
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Statistical methods classification Reference 

Univariable methods (that do not adjust for covariates) 
  Log-rank test (Kaplan Meier) (Coens et al., 2020) 
  t-test  
  Sign test (Coens et al., 2020) 
  Wilcoxon signed rank test (Pe et al., 2018) 
  Mann-Whitney U test (Qian et al., 2000) 
  Chi-squared test for independence (Fiero et al., 2019) 
  Fisher’s exact test (Fiero et al., 2019) 
  Mantel-Haenszel test (Coens et al., 2020) 
  McNemar’s test (Coens et al., 2020) 
Add-ons   
  Robust standard errors (Pullenayegum et al., 2010) 

 Resampling 
methods 

Bootstrapping (Walters, Campbell and Lall, 2001; Walters and Campbell, 2004; Moerkerke et al., 2005; 
Arostegui, Núñez-Antón and Quintana, 2012; Wang and Tu, 2020) Permutation 

ANOVA, analysis of variance; ANCOVA, analysis of covariance; CLAD, censored least absolute deviations; GEE, generalized estimating equation; MLR, multiple linear regression.  
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Table 4.2 A summary of potential characteristics to be considered for the statistical analysis and reporting of PROs 

Characteristics domains Further details Reference 
PRO information    

Specific the PRO concepts (Pe et al., 2018)  
Primary or secondary 
endpoint? 

Strategy for sample size calculation if primary outcome (Calvert et al., 2013, 2018) 

  
Specific timepoint(s) of the primary endpoint (Qian et al., 2021)   
Co-primary PROs? (Qian et al., 2021) 

 Describe the PRO  (Calvert et al., 2018)  
Specific dimensions of interest (Calvert et al., 2013, 2018; Fiteni et al., 2016)  
Proxy-reported PRO? If yes, who is the proxy? (Qian et al., 2021)  
Specific research question and hypothesis on PROs (Calvert et al., 2013; Fiteni et al., 2016; Pe et al., 2018; 

Coens et al., 2020) 
Data structure 

 
  

PRO at baseline 
 

(Calvert et al., 2013; Pe et al., 2018; Fiteni et al., 2019)  
PRO at follow-up timepoints  
(for multidimensional PRO results from each dimension and each timepoint) 

(Calvert et al., 2013; Fiteni et al., 2016; J. F. Hamel et al., 
2017; Pe et al., 2018)  

Multiple dimensions 
 

(J. F. Hamel et al., 2017; Pe et al., 2018)  
PRO data type (summary score, subscale, single item) (Qian et al., 2021) 

Statistical analysis  
 

  
Comparison Compare between treatment arms (Coens et al., 2020)   

Within group difference or between group difference  (Nielsen et al., 2019)  
Assumptions Data distribution assumption (Austin, 2002; Arostegui, Núñez-Antón and Quintana, 

2007; Hutton and Stanghellini, 2011)   
Missing data assumption (Fairclough, 2004)  

Ability to adjust … Confounding factors (Walters, Campbell and Lall, 2001; Coens et al., 2020)   
Baseline score (Coens et al., 2020)   
Random effect (Qian et al., 2021)  

Interpretation Statement of MCID (Fiteni et al., 2016; J.-F. Hamel et al., 2017)   
Clinically relevant statistical estimates (Saver, 2011; Arostegui, Núñez-Antón and Quintana, 

2012; Calvert et al., 2013; Fiteni et al., 2016; Pe et al., 
2018; Coens et al., 2020) 
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Characteristics domains Further details Reference 

Statistical analysis  
 

 
 Efficiency Ability to detect group differences when truly exist (Hutton and Stanghellini, 2011; Saver, 2011)  

Dealing with different data 
characteristics 

Bounded data (Hutton and Stanghellini, 2011)  
Ordinal data (Lall et al., 2002; Arostegui, Núñez-Antón and Quintana, 

2007, 2012; Najera-Zuloaga, Lee and Arostegui, 2018, 
2019)   

Clustered data (Coens et al., 2020)  
Model fit Goodness-of-fit (Arostegui, Núñez-Antón and Quintana, 2007)   

Account for overdispersion (Arostegui, Núñez-Antón and Quintana, 2012)   
Procedure to control the Type I error (Fairclough, 2004; Calvert et al., 2018; Fiteni et al., 

2019; Nielsen et al., 2019)  
Making prediction 

 
(Austin, 2002)  

Multivariate analysis 
 

(Fiteni et al., 2016)  
Longitudinal analysis 

 
(Qian et al., 2000)  

Robustness / sensitivity 
analysis 

Heteroscedasticity, non-normality of errors, missingness (Austin, 2002; Shields et al., 2015) 

 Loss of information (Shields et al., 2015) 
 Statistical power (Shields et al., 2015) 
 Statistical significance (Shields et al., 2015) 
Missing data management  

 
  

Profile of missing data at baseline (Fiteni et al., 2016; Calvert et al., 2018)  
Strategy to handle missing data (Calvert et al., 2013; Fiteni et al., 2016; Pe et al., 2018; 

Coens et al., 2020)  
Compliance rates 

 
(J. F. Hamel et al., 2017; Pe et al., 2018)  

Study population 
 

(J. F. Hamel et al., 2017; Pe et al., 2018) 
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Chapter 5 Filtration of the identified statistical methods 

with justifications 

5.1 Introduction 

A list of statistical methods has been identified from two literature reviews in Chapter 2 and Chapter 3. 

These two reviews identified 29 statistical methods that can potentially be used for the analysis of PROs 

in RCT settings. Pragmatically, this list of 29 statistical methods is long with too many methods to 

compare and evaluate. Therefore, a process of screening and filtering the identified statistical methods 

is required to reduce the number of methods to a manageable size.  

In practice, there are disagreements on what statistical methods should be applied for analysing PROs. 

For example, Austin (2002) recommended CLAD regression for analysing health utility because of its 

low prediction error and its robustness to heteroscedasticity and non-Normality of error; whereas 

Pullenayegum et al. (2010) recommended linear regression with robust SEs or nonparametric bootstrap 

as a simple and valid approach for analysing health utility. As each method has its own strengths and 

weaknesses in analysing PROs, it may not be straightforward to decide which method is more 

appropriate than others without clarifying the criteria for assessment, and what is meant by ‘an 

appropriate statistical method’. 

This chapter establishes statistical properties that are appropriate or desired in terms of the statistical 

methods for the analysis of PROs, and reduces the number of statistical methods to carry forward with 

a series of justifications.  

5.2 Statistical properties that are desired for PRO analysis 

The identified statistical properties for PRO analysis in Table 5.1, incorporating the assessment criteria 

for the evaluation of PRO analysis that were listed in the identified review papers, methodological 

articles and guidelines, are summarised in Table 4.2. The ability to estimate a treatment effect with its 

associated CIs is regarded as a key feature that a statistical method should have for analysing PROs in 

clinical trials (Moher et al., 2010). This is also associated with the ability to adjust for other confounding 

variables such as baseline scores.  

Different statistical methods assume different data distribution assumptions for the outcome, and 

correspondingly have the ability to deal with different data features such as skewed, ordered, and 

bounded/censored data. Skewness implies that the PRO data is asymmetrically distributed. The ordered 

distribution means that the PRO scores only take specific values with natural ranking. Censoring or 
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boundedness from above takes place when subjects with a value at or above some threshold, all take on 

the value of that threshold, so that the true value might be equal to the threshold, but it might also be 

higher. In the case of censoring from below, values that fall at or below some threshold can only take 

on the value of that threshold, so that the true value might be equal to the threshold or below. For 

example a PRO with scores bounded at 0 and 100, then subjects may have true underlying or latent PRO 

scores of below 0 or above 100, but the PRO is unable to measure these true values, so true underlying 

PRO scores of below 0 or above 100 are censored at 0 and 100 respectively.  

Some methods account for other levels of complexity such as clustering of outcomes and time effects. 

Some statistical methods can still be robust regarding the violation of model assumptions. For example, 

MLR theoretically should be applied for Normally distributed outcome data, but it may also be used 

when applying to skewed, ordinal or bounded data after relaxing the model assumptions due to the CLT, 

and it can still produce valid estimates of the population mean (Lumley et al., 2002; Walters and 

Campbell, 2004, 2005).  

Postestimation techniques can be applied after fitting statistical methods to a dataset for making 

predictions, testing model assumptions, and comparing model fit. For example, residual plots can be 

produced to test whether the model assumptions are violated. However in some occasions, assumptions 

of missing data and data distributions may be untestable (Arostegui, Núñez-Antón and Quintana, 2012; 

Smuk, Carpenter and Morris, 2017). Simulation analysis can be conducted to test the efficiency of the 

method i.e. whether the estimators (i.e. the statistical methods) can estimate the predefined ‘truth’ (i.e. 

the accuracy of the estimations) and whether a method is robust in various scenarios (Morris, White and 

Crowther, 2019; Boulesteix et al., 2020). 

Other properties of statistical methods that may be adapted include whether the statistical method can 

result in a loss of information, whether the statistical method can handle missing data, what missing data 

management is conducted by the method, and whether the method is able to handle unbalanced design 

and maintain the intention-to-treat (ITT) population (Altman and Royston, 2006; Fiteni et al., 2016; J. 

F. Hamel et al., 2017; Pe et al., 2018; Coens et al., 2020).  

With the pool of criteria that we identified from the method review (Table 5.1), we selected statistical 

properties that are desired in terms of an appropriate statistical methods for PRO analysis in RCTs, and 

can be evaluated before carrying out empirical analysis and simulation analysis. The criteria includes:  

1. whether the method can compare two or more treatment arms; 

2. whether the method can adjust for confounding factors, including baseline PRO score; 

3. whether the estimated treatment effect from the method is of clinical relevance (i.e. the method 

can produce an estimate of treatment effect and associated CIs);  

4. whether a method can handle a bounded/censored scale; and  

5. whether recoding the PRO is required to use the statistical method.   
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Table 5.1 Identified statistical properties for the evaluation of statistical methods 

Identified statistical properties Further explanation  

Comparison Compare between two or more treatment arms 

 Within group difference or between group difference  
Assumptions Data distribution assumption 

 Missing data assumption 
Ability to adjust … Confounding factors 

 Baseline score 

 Random effect 
Interpretation Statement of minimum clinically important difference  

 Clinically relevant statistical estimates 
Efficiency Ability to detect group differences when truly exist 
Ability to handle …  Bounded data 

Censored data 
Ordinal data 
Clustered data 
Missing data 
Repeated measurements 
Multiplicity 

Model fit Goodness-of-fit 

 Account for overdispersion 

 Procedure to control the Type I error 
Making prediction Ability to make prediction 

Precision of the prediction 
Robustness / sensitivity analysis Heteroscedasticity, non-Normality of errors, missingness 
Loss of information  
Uncertainty Statistical significance 

Statistical power 
Confidence intervals 

Handle unbalanced designs  
Calculate sample size  
Allow for time-varying covariates  
Ability to maintain intention-to-treat population 

Multiplicity is the potential inflation of the Type I error rate due to multiple testing, and Type I error is the 
probability that one falsely rejects the true null hypothesis. Loss of information occurs when discretising or 
dichotomising a variable into ordinal or binary data.  
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5.3 An MCDA framework for the filtration of statistical methods  

A multi-criteria decision analysis (MCDA) framework is experimented for the filtration of these 

statistical methods. MCDA is a popular technique for decision making when it involves the comparison 

of various options with a range of criteria from different stakeholders with multiple judgements 

(Velasquez and Hester, 2013). The MCDA allows trade-offs among different options regarding various 

criteria which can facilitate the decision making process with transparency and comprehensiveness 

(Dodgson et al., 2009; Diaby and Goeree, 2014). It can help clearly explain rationales for the decision 

on which statistical method to apply in different scenarios, and further bring consistency and 

transparency for decision-making.  

A quantitative MCDA of statistical methods for PRO analysis is presented in the Appendix B using 

scoring and weighting systems elicited from the SISAQOL Consortium (Coens et al., 2020). However, 

as a standard process of establishing expert panel, eliciting scores and weights, and deliberating on the 

ordering rank was not carried out, this quantitative MCDA is merely presented as a supplement to 

support the filtration process in this chapter.  

5.4 Filtration of statistical methods  

The filtration starts from the summary of available statistical methods for the analysis of PROs as shown 

in Table 4.1. The statistical methods for analysing PROs are classified into univariable methods and 

multivariable methods according to whether the method is able to adjust for both treatment group and 

other covariates such as baseline scores. Under the multivariable methods, the GLM which assumes a 

linear relationship between the dependent variable and explanatory variable through a link function is 

further categorised into methods for correlated responses, e.g. health utilities at 3, 6 and 12 months post-

randomisation, and uncorrelated responses. Techniques for uncorrelated responses are further classified 

according to the data type i.e. time-to-event, continuous, categorical/ordinal, censored, and bounded that 

the statistical methods are initially designed to analyse is shown alongside the methods.  

The rest of this section justifies the exclusion of univariable methods, statistical methods for correlated 

responses, multivariable methods that account for count data, unordered data, and binary data. The 

filtration process is presented by a flow diagram in Figure 5.1, where the methods highlighted in light 

green are included carried forward for the empirical analysis. 
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Figure 5.1 Flow diagram for the selection of statistical methods for the analysis of PRO data  

Identified statistical methods 
for the analysis of PROs 

Multivariable 
methods 

Univariable 
methods 

Yes No 

Log-rank test (Kaplan Meier) 

Chi-squared test 
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McNemar’s test 

Fisher’s exact test 

Kruskal-Wallis test 

Mann-Whitney U test 

Wilcoxon signed rank test 

Sign test 

t-test 

Survival analysis  

GLMM 

GLM with GEE 

Repeated 
measures ANOVA 

Repeated 
measurements? 

Adjust for 
randomised group 

& other factors? 

Correlated 
responses 

Yes 

Uncorrelated 
responses 

Multiple linear regression 

Median regression 

Tobit regression 

CLAD regression 

Ordered logit & probit 

Multinomial logit & probit 

Beta-binomial & binomial-logit Normal 

Binary logit & probit 

Fractional logistic & beta regression 

No 

time-to-event 

categorical 

continuous 

continuous 
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bounded 
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binary 

time-to-event 

others 

unordered 

ordered 
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5.4.1 Justification for omitting univariable statistical methods 

The clinical relevance of the statistical method, i.e. the ability of the method to estimate a treatment 

effect with its associated CIs, is regarded as a key feature that a statistical method should have for 

analysing PROs in RCTs. The CONSORT guidelines (Item number 17a) for reporting RCTs says ‘For 

each primary and secondary outcomes, results for each group, and the estimated effect and its precision 

(as a 95% CIs) should be reported’ (Moher et al., 2010). Therefore, we excluded univariable methods 

such as Kruskal-Wallis test, Mann-Whitney U test, Wilcoxon signed rank test, and sign test that can 

only provide p-values but not an effect size. 

We excluded the two independent sample t-test that produces the effect size and associated CIs because 

it is analogous to a simple linear regression model with a binary predictor variable (i.e. randomised 

group). Also, the t-test can only compare two treatment groups simultaneously and does not have the 

ability to adjust for potential confounding factors such as baseline PRO score which the MLR does. 

5.4.2 Justification for omitting some multivariable statistical methods 

ANOVA and ANCOVA are also analogous to a multiple linear regression model with a binary 

predictor/explanatory variable (i.e. randomised group). ANOVA and ANCOVA are not included, 

because though they are similar to linear models, in their purest form, they just provide ratios of sums 

of squares and F-statistics and p-values, and cannot provide the value of between-group difference 

(treatment effect) which is considered as one of the key results in data analysis of RCTs.  

Statistical methods for count data and unordered categorical data are excluded because they do not 

reflect the nature of PRO data and they are rarely used in publicly funded RCTs. Therefore, multinomial 

logit model and multinomial probit model for unordered categorical data, and Poisson regression and 

negative binomial regression for count data are not included.  

Statistical methods for binary data (i.e. proportion of responders) including binary logistic regression 

and binary probit regression are excluded because it requires a cut-point or threshold for the PRO score 

to categorise participants as responders or not. In reality, this threshold or cut-point in score is not readily 

available for most PROs and may vary from trial to trial even with the same PRO, and furthermore the 

dichotomised outcome gathers less information from the PROs compared to other score types (Altman 

and Royston, 2006; Shields et al., 2015).  
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5.4.3 Justification for omitting statistical models for correlated responses 

This research proposes to concentrate on the simpler situation where there is a single baseline and a 

single post-randomisation assessment of outcome, and compare the statistical methods that are suitable 

for such an analysis. 

All RCTs are longitudinal and involve collection of outcome data post randomisation. Participants are 

randomised to different interventions and then their outcomes are assessed post-randomisation. The 

simplest RCT design has outcomes and data collected at baseline and one post-randomisation 

assessment or timepoint, e.g. 6-month post-randomisation, sometimes called a pre-test post-test design. 

However, in many randomised controlled trials the primary and secondary outcomes are often measured 

at multiple timepoints, for example, 3, 6, 9 and 12 months post randomisation. Our review of 114 RCTs 

published in the HTA Journal with a PRO as the primary outcome found that only 4.3% (5/114) of the 

RCTs had a single post-baseline assessment of the outcome with the majority having two or more 

assessments and 86.3% (101/114) had a baseline assessment of the PRO (Qian et al 2021). These 

repeated outcome measurements, on the same individual subject, are likely to be related or correlated. 

This means that the usual statistical methods for analysing such data that assume independent outcomes 

may not be appropriate. 

There are a number of ways to analyses such repeated measures data. Three broad approaches are 

(Walters, 2009): 

1. Time by time analysis; 

2. Response feature analysis, with the use of summary measures (Matthews et al., 1990); 

3. Modelling of longitudinal data GLMMs or GLMs with parameters estimated by GEEs (Liang 

and Zeger, 1986). 

In the literature, GLMMs or GLM with parameters estimated by GEEs are sometimes referred to as 

mixed/random-effects or marginal models respectively. 

The analysis of correlated outcomes/responses with a longitudinal model raises a number of issues.  

1. How should we treat time (of assessment) in the longitudinal model? Should we treat the time 

the PRO assessment was completed post-randomisation as a continuous predictor/explanatory 

variable in the model i.e. time from randomisation (in days or weeks), or a discrete variable (i.e., 

protocol stipulated follow-up timepoint) e.g. 6, 12, 26, 52 weeks, or as a factor e.g. 1, 2, 3, 4 

corresponding to 1st post-randomisation follow-up, 2nd, 3rd, 4th etc. 

2. What sort of trend in PRO scores over time should we assume? Should this be monotonic and 

linear or non-monotonic and non-linear?  
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3. What sort of correlation between the repeated outcomes/responses should we assume? Should 

this be a relatively simple correlation structure e.g. random intercept, or a more complex 

correlation structure e.g. random intercept and slope? If the latter model, should we assume the 

two random effects are uncorrelated or correlated? And if they are assumed to be correlated, 

then what covariance structure should we assume for the two random effects (unstructured, 

identity, or exchangeable)? 

The CONSORT statement for RCTs also recommends specifying a primary timepoint for the analysis 

(Boutron et al., 2008; Moher et al., 2010). ‘When outcomes are assessed at several timepoints after 

randomisation, authors should also indicate the pre-specified timepoint of primary interest’. Again this 

potentially suggests a simpler analysis, that does not involve another level of complexity and multiple 

assumptions regarding the time effects, the pattern of PRO scores over multiple time assessments, the 

correlation structures between the repeated assessments. i.e. use a specific timepoint without accounting 

for the correlated responses. Our HTA review found that of the RCTs, only 28.1% (32/114) used the 

statistical modelling for correlated responses in primary analysis despite 95.6% (109/114) collected two 

or more post-randomisation assessments of the outcome. In addition, although linear mixed model is 

reported for the primary analysis in 39.4% (45/114) trials, only 23 trials conducted a repeated measures 

analysis, and the rest of trials only analysed a baseline and follow-up outcome assessment for primary 

analysis and applied mixed effects to adjust for other random factors such as clustering by site or centre. 

We believe that the analysis of repeated and correlated PROs is very interesting and raises a number of 

issues that are briefly outlined above but it is beyond the scope of this PhD. As this project only considers 

the analysis of PROs under the simple scenario i.e. baseline scores with a post-randomisation timepoint, 

statistical methods that account for correlated responses (i.e. survival analysis, GLM with parameters 

estimated by GEE, GLMM, and repeated measures ANOVA) are excluded. For similar reasons, log-

rank test (Kaplan Meier), the univariable method for analysing time-to-event data, is excluded.  
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5.4.4 List of statistical methods to carry forward 

Statistical methods to carry forward that are highlighted in light green in Figure 5.1 are listed below. 

1. Multiple linear regression (MLR) 

2. Median regression (Median) 

3. Tobit regression (Tobit)) 

4. Censored absolute least square deviation regression (CLAD) 

5. Ordered logit model (OL) 

6. Ordered probit model (OP) 

7. Beta-binomial regression (BB) 

8. Binomial-logit-Normal regression (BLN) 

9. Fractional logistic regression (Frac) 

10. Beta regression (BR) 

MLR is the classical regression method to use. It is widely applied for the analysis of PROs in trials 

despite the potential violation of model assumptions such as the Normality of residuals and 

homoscedasticity. Tobit, a type of censored regression model, is designed to estimate linear relationships 

between the outcome variable and predictor variables when there is censoring in the outcome variable. 

In comparison, CLAD which holds similar assumptions on latent variable and estimates coefficients by 

minimising the sum of absolute value of deviations from the regression line is reported to be more robust 

to the violation of model assumptions than Tobit regression (Austin, 2002). As a derivation of Median, 

CLAD models the median but not the mean. 

Ordinal regression assumes that a continuous latent variable of the ordinal PRO has a linear relationship 

with independent variables. The classic link functions for ordinal regression are the logit and probit links, 

corresponding to OL (i.e. proportional-odds model) and OP. The key assumption of ordinal regression 

is the proportional-odds assumption which assumes each covariate share a constant OR across the cut-

points i.e. the influence of each covariate on the response variable is independent of the cut-points 

(Arostegui, Núñez-Antón and Quintana, 2012).  

Binomial regression (including BB and BLN) assumes the discrete PRO is an aggregation of multiple 

Bernoulli processes on a number of dichotomous items (i.e. possible score values of a PRO) (Liang et 

al., 2014). The probability of success for each PRO score value is assumed to have a linear relationship 

with dependent variables through a logit link, and to follow a beta distribution in BB and a logit-Nomal 

distribution in BLN (Arostegui, Núñez-Antón and Quintana, 2007, 2012; Najera-Zuloaga, Lee and 

Arostegui, 2018, 2019).  
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Fractional regression (including BR and Frac) can also account for boundedness by fitting responses 

scattering between 0 and 1. BR is proposed because of its flexibility to skewed and bounded data, in 

which case the PROs is assumed to have a beta distribution with predefined boundaries and the logit 

link function is often used (Ferrari and Cribari-Neto, 2004). Frac shares similar traits as BR, but it does 

not require data distribution of the responses (Papke, 1996) except for scattering between 0 and 1.  

The evaluation of the statistical methods for PRO analysis to carry forward is presented in Table 5.3, 

using the established set of desired statistical properties.  

MLR and Tobit are similar in most domains except that Tobit is able to account for censored data while 

MLR cannot. This is also the case for Median and CLAD, where both methods produce estimates in 

medians but CLAD can account for the censored data while Median cannot.  

Two ordinal regressions, i.e. OL and OP, have identical performances in set of criteria domains, as they 

are very similar except that they have different link functions, i.e. the estimates from the OP cannot be 

explained as ORs as the OL does. They are regarded as partially clinically relevant, because these models 

can generate estimated effect sizes and associated CIs, but they are not in the original scale (i.e. in mean 

or median scores of the treatment effect of PROs) as the MLR or Tobit does. Similarly, fractional 

regression (i.e. Frac and BR) and binomial regression (BB and BLN) all adapted a logit link function, 

which means their estimates can be explained in ORs but not in means or medians of the treatment 

difference between treatment arms, and therefore they are assessed as partially clinically relevant.  

The outcome responses (i.e. the PRO scores) are required to be ordinal for the application of ordinal 

regression (OL and OP) and binomial regression (BB and BLN), so the recoding of the PRO scores to a 

finite sequence of integers is needed to be performed. Similarly fractional regression (Frac and BR) 

requires the recoding of PRO scores to an interval between 0 and 1, but BR needs the transformation to 

an open interval i.e. the PRO scores are not allowed to scatter at 0 and 1, whereas Frac allows closed 

interval where the values of 0 and 1 are permitted. Details of the recoding techniques for these methods 

will be explained in Chapter 6. 

Similar patterns can be seen for two models of binomial regression, BB and BLN, the difference between 

which lies in the assumptions of probability of success. Both ordinal regression and binomial regression 

are considered to have the ability to adjust for bounded or censored scale, as these models are developed 

for ordinal data with finite number of values, the minimum and maximum of which can be regarded as 

boundaries. Adapting the logistic regression model, ordinal regression and binomial regression 

necessarily requires recoding the observed response to a binomial form, from 0 to 𝑘 − 1, where 𝑘 

represents the number of the ordinal categorical values (Arostegui, Núñez-Antón and Quintana, 2013).  
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Table 5.2 Evaluation of filtered statistical methods for PRO analysis using the established set of desired 
statistical properties 

Statistical 
methods 

Compare ≥2 
treatment 
arms 

Adjust for 
confounding 
factors 

Be 
clinically 
relevant 

Handle a 
bounded/censored 
scale 

Require 
recoding of 
PRO 

MLR Y Y Y N N 
Tobit Y Y Y Y, assume the observed 

outcome variable is 
censored 

N 

CLAD  Y Y Y Y, assume the observed 
outcome variable is 
censored 

N 

Median  Y Y Y N N 
OL Y Y Partially  Y Y (to [0, 𝑘-1] 

⊆ ℕ) 
OP Y Y Partially  Y Y (to [0, 𝑘-1] 

⊆ ℕ) 
BB Y Y Partially  Y Y (to [0, 𝑘-1] 

⊆ ℕ) 
BLN Y Y Partially  Y Y (to [0, 𝑘-1] 

⊆ ℕ) 
Frac  Y Y Partially  Y, assume the observed 

outcome variable is 
bounded in a closed 
interval 

Y (to [0, 1] 
scale) 

BR  Y Y Partially Y, assume the observed 
outcome variable is 
bounded in an open 
interval 

Y (to (0, 1) 
scale) 

Partially, provide effect size and CI, but not in original scale. BB, Beta-binomial regression; BLN, binomial-logit-

Normal regression; CI, confidence interval; CLAD, censored least absolute deviations; Frac, fractional logistic 
regression; Median, median regression; MLR, multiple linear regression; N, no; Tobit, Tobit regression; OL, 
ordered logit model; OP, ordered probit model; Y, yes. 𝑘, represents the number of possible categorical values 
in a domain; ℕ, denotes the non-zero positive natural numbers i.e. 1,2,3… 𝑘-1. 

  



58 Chapter 5 Filtration of the identified statistical methods with justifications  

5.5 Discussion 

In this chapter, the number of statistical methods is reduced to a more manageable number for evaluation 

using explicit justification and the process is presented in a flow diagram.  

An MCDA framework was adapted for the filtration process. Though MCDA has been applied in 

healthcare settings to support decision making in trading-off various conflicting criteria for the 

evaluation of health technologies (Marsh et al., 2016; Thokala et al., 2016), this is the first MCDA 

applied to filter and select statistical methods considering various statistical properties to the best of our 

knowledge. We need to be aware that outcomes of the filtration are subjective to the evaluation 

conducted by stakeholders, and different sets of criteria, scoring and weighting systems may generate 

different scores and ranks of various statistical methods. Another point worth noting is that a method 

with the ability to do more does not necessarily mean the method is the best. The specific scenarios need 

to be considered (Thokala et al., 2016).  

The decision process of selecting a statistical method to analyse any type of data is based on the objective 

of the analysis, the nature of the data, the proposal of the analysis and the adherence of the data to the 

method’s assumptions. The filtration in this chapter is purely based on the statistical theory of the 

identified statistical methods regarding our selected set of statistical properties for evaluation. It can 

provide an overview of which method may perform better and cut down the number of methods for 

empirical analysis and simulation, but it cannot guarantee the final choice. For example, we did not 

select the robustness of violation of model assumptions as one criterion because it cannot be tested 

before the empirical analysis, however, if we took it into account, univariable methods that do not rely 

on data assumptions could have better performances.  

To make the final decision, other criteria such as the consistency of estimates among different statistical 

methods and the accuracy and robustness of these estimates also need to be considered to provide a 

thorough evaluation. In addition, computational difficulties, which may exist in performing complex 

and novel statistical methods in data analysing software, and interpretability of the estimates, which is 

important for understanding or explanation to non-statisticians, can also be included.  

The next step is to explicitly describe the statistical methods filtered from this chapter, and to conduct 

empirical analysis and simulation analysis to evaluate how similar estimates from different statistical 

methods are, how accurate their estimates are from the predefined ‘truth’, and how robust these 

estimators are under different scenarios. 
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Chapter 6 Description of the filtered statistical methods 

with an example of application to PROs in RCTs 

6.1 Introduction 

Our previous work in Chapter 5 has filtered the potential statistical methods for the analysis of PROs in 

RCT settings and decided to carry forward the following list of 10 statistical methods: MLR, Median, 

Tobit, CLAD, OL, OP, BB, BLN, Frac, and BR. 

In this chapter, technical details of the 10 filtered statistical methods are provided to explicitly explain 

their model functions, estimation methods, model assumptions, and interpretations of their estimated 

treatment coefficients. Two estimand frameworks are introduced to allow the comparison of estimates 

on their original scales and on a unified standardised scale. The 10 statistical methods are applied to an 

RCT dataset with a PRO as clinical outcome measurement to demonstrate how these methods can be 

fitted, and how their outputs can be interpreted in the computational software Stata/MP 17.0.  

Table 6.1 SF-36v2 dimension scores at baseline and 6-month post-randomisation in the LM trial 

SF-36 
dimension 

Control  Intervention  Total 

N Mean SD  N Mean SD  N Mean SD 

At baseline 

PF 143 71.66 26.37  145 67.52 25.28  288 69.57 25.86 

RP 143 76.79 25.51  145 72.36 27.62  288 74.56 26.64 

BP 143 64.67 26.47  145 61.21 25.56  288 62.93 26.03 

GH 143 68.76 20.38  145 63.65 20.36  288 66.18 20.49 

VT 143 60.31 20.85  145 58.45 21.42  288 59.38 21.12 

SF 142 81.95 26.40  144 82.90 21.96  286 82.43 24.23 

RE 143 84.50 21.52  145 82.70 23.43  288 83.59 22.48 

MH 143 77.00 18.24  145 75.47 18.34  288 76.23 18.28 

At 6-month post-randomisation 

PF 126 70.71 27.28  136 66.03 28.39  262 68.28 27.91 

RP 126 73.86 26.39  136 69.85 29.93  262 71.78 28.30 

BP 126 61.60 27.44  136 60.46 27.95  262 61.01 27.66 

GH 126 64.81 21.06  136 61.89 22.67  262 63.30 21.92 

VT 126 58.02 21.74  136 56.42 22.17  262 57.19 21.94 

SF 126 81.35 26.02  136 77.85 28.18  262 79.53 27.16 

RE 125 86.67 19.37  136 82.72 23.21  261 84.61 21.51 

MH 126 75.93 18.74  136 77.31 18.22  262 76.65 18.45 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation - emotional; 
RP, role limitation - physical; SD, standard deviation; SF, social functioning; VT, vitality. 
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6.2 Data source  

We used secondary data from an RCT named Lifestyle Matters (Mountain et al., 2017), referred as LM 

in the rest of this thesis, as the example dataset. This trial compared an occupation-based lifestyle 

intervention to usual care for sustaining and improving the mental well-being of adults aged 65 years or 

over, using the SF-36 version 2 (SF-36v2) mental health (MH) score at 6-month follow-up as the 

primary outcome. The randomisation ratio of the LM study was set at 1:1. Baseline measures of this 

study were collected before randomisation, and SF-36v2 were sent out and collected at 6-month and 24-

month post-randomisation.  

The primary outcome of the LM trial, the SF-36v2 MH score at 6-month follow-up is chosen as the 

response variable, and the SF-36v2 MH score at baseline and treatment group is selected as confounding 

factors. Table 6.1 summarises the SF-36v2 dimension scores at baseline and at 6-month post-

randomisation in the LM trial. The distribution of original SF-36v2 MH scores in each treatment arm at 

baseline and at 6-month follow-up are shown in Figure 6.1. 

 

 
 

Figure 6.1 Distribution of SF-36v2 MH scores, at baseline and 6-month post-randomisation on the 
original 0 to 100 scale  
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6.3 Estimand framework  

An estimand is a well-defined and explicit description of precisely what treatment effect is to be 

estimated in an RCT (Little and Lewis, 2021). An estimand is the target of the estimation for a particular 

trial objective (ICH, 2021). The estimand framework typically consists of five attributes: the treatment 

condition of interest; the population of patients targeted by the clinical question; the variable or endpoint 

to be obtained for each patient; intercurrent event handling; and a population-level summary measure of 

how outcomes between the different randomised groups will be compared (Lawrance et al., 2020).  

For the empirical analysis of the treatment difference in a PRO score at a specific post-randomisation 

between randomised groups, four attributes of the estimand framework, i.e. population, treatments, 

outcomes, and intercurrent event handling, are unchanged, but the fifth attribute, the population 

summary measure, may not be consistent among the different statistical methods. Common population 

summary measures include the difference in means, risk ratios and ORs. 

If the treatment coefficients from the 10 statistical methods are chosen as the population summary 

measure to compare outcomes between the different groups, then it may not make sense to compare the 

10 statistical methods (i.e. estimators) and their associated estimates because their estimated treatment 

coefficients stand for different things. For instance, MLR produces estimates of treatment effect as a 

difference in location or in group means while OL produces estimates of the treatment effect as a logOR. 

However, some of the methods, such as MLR, Tobit, CLAD, and Median, produce estimates that have 

similar population summary measures that look at differences in location or central tendency e.g. 

differences in means or medians. Therefore, it may be sensible to compare the treatment coefficient 

estimates of difference in means or medians between two treatment groups produced by these statistical 

methods. Again, some of the methods, such as OL, BB, BLN, Frac, and BR, also have similar population 

summary measures that estimate the logORs for the treatment difference. Therefore, it may be sensible 

to compare the estimates of log ORs between two treatment groups produced by these statistical methods. 

If we need the comparison of estimates from these methods that are based on different scales, a universal 

population summary measure, which can be compared across these 10 statistical methods, is required. 

The standardised effect size (SES), which is calculated through a standardisation procedure by dividing 

the group difference by the pooled standard deviation (SD), can produce estimates with no units of 

measurement and therefore handle the issue of comparing estimates that are based on different scales 

(Cohen, 2013; Cook et al., 2014; Rothwell, Julious and Cooper, 2018). The SES is believed as a suitable 

population summary measure to compare outcomes between the different treatment groups. The other 

four attributes for the estimand are the same despite whichever of the 10 statistical methods are used, 

such that the estimand, the SES, is the same, but the estimators (i.e. the 10 statistical methods) will be 

different and may produce different estimates that will be compared and presented. 
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Therefore, two estimand frameworks are adopted to compare estimates from different statistical methods 

that produce treatment estimates on different scales. The first framework is called the scale-based 

estimand framework that categorises statistical methods according to the scales of their original 

population summary measures (i.e. means/medians and logORs). The second framework is called the 

SES estimand framework, which adapts the SES as the population summary measure and allows the 

comparison of the SES estimates from different statistical methods. 

6.3.1 Scale-based estimand framework 

In the scale-based estimand framework, the population summary measure is the mean or median in the 

treatment difference between two treatment arms for statistical methods with estimates on the 

untransformed scale (MLR, Tobit, CLAD, and Median), and the population summary measure is the 

logOR of the treatment difference between two treatment arms for statistical methods with estimates are 

based on the transformed scale (OL, BB. BLN, BR, and Frac). For example, the scale-based estimand 

framework of the LM trial can be interpreted as:  

For statistical methods with the estimates on the untransformed (ordinal measurement) scale: 

In independently living adults aged 65 years or over with normal cognition, what is the 

difference in mean/median score of their mental wellbeing (as measured with the SF-

36v2 mental health dimension scores) between an occupation-based lifestyle intervention 

in addition to usual care followed by any subsequent therapy/treatment (as needed) 

compared with usual care treatment group only followed by any subsequent 

therapy/treatment (as needed) after 6-month post-randomisation or death (whichever 

occurs first), regardless of study treatment discontinuation? 

For statistical methods with the estimates on the transformed scale: 

In independently living adults aged 65 years or over with normal cognition, what is odds 

ratio for the odds of having of higher/better mental wellbeing scores (as measured with 

the SF-36v2 mental health dimension scores) between an occupation-based lifestyle 

intervention in addition to usual care followed by any subsequent therapy/treatment (as 

needed) compared with usual care treatment group only followed by any subsequent 

therapy/treatment (as needed), after 6-month from randomisation or death (whichever 

occurs first), regardless of study treatment discontinuation? 

As the logit link is used for OL, BB, BLN, BR, and Frac, their estimated treatment coefficient, denoted 

by 𝑐𝑜𝑒𝑓(𝑇𝐸), is the logOR which can be interpreted as OR through the exponential transformation.  

 𝑂𝑅𝑇𝐸 = exp⁡(𝑐𝑜𝑒𝑓(𝑇𝐸))  (6.1) 
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A special case of these methods is the OP which uses a probit link, denoted by 𝛷−1. The estimates of 

OP cannot be transformed to the original scale or to an OR as other methods do, but it can be interpreted 

as the probability or the effect size in the response.  

6.3.2 SES estimand framework 

Since the population summary measures of different statistical methods are not comparable, to allow the 

comparison of estimates from different statistical methods, these statistical methods should estimate the 

same estimand (i.e. target of estimation). The SES is such an estimand that to unify and to allow the 

comparison of estimates from different statistical methods. For example, the SES estimand framework 

of the LM trial for 10 statistical methods can be interpreted as:  

In independently living adults aged 65 years or over with normal cognition, what is the 

difference in standardised effect size of their mental wellbeing (as measured with the SF-

36v2 mental health dimension scores) between an occupation-based lifestyle intervention 

in addition to usual care followed by any subsequent therapy/treatment (as needed) 

compared with usual care treatment group only followed by any subsequent 

therapy/treatment (as needed) after 6-month post-randomisation or death (whichever 

occurs first), regardless of study treatment discontinuation? 

The fundamental formula to calculate SES is the estimated values divided by the common within-

population SD (Cohen, 2013). In a two-arm RCT, the scale-invariant SES was calculated using the 

estimated treatment coefficient, denoted by 𝑐𝑜𝑒𝑓(𝑇𝐸), divided by its associated standard error, denoted 

by 𝑆𝐸(𝑇𝐸), after adjusting for the sample size, which is equivalent to the Z-statistics with the adjustment 

of the sample size in each treatment arm (Rothwell, Julious and Cooper, 2018).  

 𝑆𝐸𝑆 =
𝑐𝑜𝑒𝑓(𝑇𝐸)

𝑆𝐷(𝑇𝐸)
=

𝑐𝑜𝑒𝑓(𝑇𝐸)

𝑆𝐸(𝑇𝐸)
× √

1

𝑛1
+

1

𝑛2
= 𝑍⁡ ×√

1

𝑛1
+

1

𝑛2
  (6.2) 

where Z stands for the Z-statistics; TE stands for the treatment effect; and 𝑛1 and 𝑛2 represents the 

sample size in each treatment arm respectively.  

The standard error of the SES, denoted by 𝑆𝐸(𝑆𝐸𝑆), is based on a Normal approximation of non-central 

t-distribution (Hedges, 1981): 

 𝑆𝐸(𝑆𝐸𝑆) = √
𝑛1+𝑛2
𝑛1𝑛2

+
𝑆𝐸𝑆2

2(𝑛1+𝑛2)
  (6.3) 

Therefore, the associated 95% CIs of SES are given using the following formula:  

 𝑆𝐸𝑆 ± 1.96⁡𝑆𝐸(𝑆𝐸𝑆)  (6.4) 
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6.4 Description of the filtered statistical methods 

This section gives detailed descriptions and explanations of the 10 filtered statistical methods. These 

methods are described under the GLM framework. Key components of a GLM are (Nelder and 

Wedderburn, 1972): 

1. An outcome or dependent variable, denoted by 𝑌, whose distribution with parameter, denoted 

by 𝜋, is assumed to follow a particular distribution from the exponential family, 

2. A set of independent variables, denoted by 𝑿, that provide a linear predictor, denoted by 𝑿𝜷, 

for 𝑌, and  

3. A link function 𝑔(∙) that connects the parameter (𝜋) and the linear predictor (𝑿𝜷), i.e. 𝑔(𝜋) =

𝑿𝜷. 

In the case of analysing SF-36 scores, each dimension at a specific post-randomisation timepoint (𝑌) is 

analysed separately, with the independent variables (𝑿) being the treatment group and the corresponding 

baseline score to detect the treatment effect on SF-36 dimension scores. This is because the treatment 

effect is regarded as the main outcome of clinical trials, and a PRO score is likely to correlate with its 

baseline score (Vickers and Altman, 2001; Coens et al., 2020). The parameter (𝜋) is defined as the mean 

value of PRO score (𝜇) for methods with the identity link for MLR and Tobit , as the median of PRO 

score, denoted by 𝑄𝑌|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛), for Median and CLAD, and as the mean value of the probability of 

success, denoted by 𝜃 for methods with logit or probit link. The probability of success represents the 

probability that the PRO score, 𝑌, is less than or equal to particular score or category 𝑙, i.e. 𝑃(𝑌 ≤ 𝑙) for 

the ordinal regression methods, or represents the probability of the PRO score being the discrete value 

or category 𝑙, i.e. 𝑃(𝑌 = 𝑙) for the binomial and fractional regression methods. 

The characteristics of these statistical methods are summarised in Table 6.2, including their model 

assumptions, link function, recoding requirement, and estimation methods. A detailed description of the 

10 statistical methods, together with their application to an example RCT dataset using SF-36v2 MH 

score at a single post-randomisation follow-up, is summarised and presented in the rest of this section. 

Appropriate recoding techniques were applied for eight dimension scores to accommodate the 

application of various statistical methods. The Stata codes for the recoding and regression analysis of 

the SF-36v2 MH scores from the LM trial are presented alongside the explanation of each statistical 

method in this chapter. 
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Table 6.2 Summary of 10 statistical methods for the analysis of SF-36 dimension scores under the GLM framework 

Statistical 
methods  

Distribution of the 
outcome/dependent 
variable (𝒀)  

Link function 
𝒈(∙) 

Model assumption  
Recoding 
of PRO 
needed*  

Interpretation  
Estimation 
method  

Stata 
command 

Classical model 
     

 

MLR  Continuous Identity 
𝑔(𝜇) = 𝜇 = 𝑿𝜷 

Normality (of residuals); 
homoscedasticity; linearity; 
independence of outcomes. 

No  Mean OLS or MLE  regress 

Median Continuous  𝑔 (𝑄𝑌|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛))

= 𝑄𝑌|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛)

= 𝑿𝜷𝑚𝑒𝑑𝑖𝑎𝑛 

Linearity; independence of 
outcomes. 

No Median LAD qreg 

Censored regression  
  

    

Tobit Observed 𝑌: Continuous 
and censored;  
latent⁡𝑌∗: Continuous 

Identity 
𝑔(𝜇∗) = 𝜇∗ = 𝑿𝜷 

Normality (of residuals); 
homoscedasticity; linearity; 
independence of outcomes. 

No  Latent Mean MLE  tobit 

CLAD Observed 𝑌: Continuous 
and censored;  
latent⁡𝑌∗: Continuous 

𝑔 (𝑄𝑌∗|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛))

= 𝑄𝑌∗ |𝑋(𝑚𝑒𝑑𝑖𝑎𝑛)

= 𝑿𝜷𝑚𝑒𝑑𝑖𝑎𝑛 

Linearity; independence of 
outcomes. 

No Latent Median CLAD clad 

Ordinal regression 
  

    

OL  Ordinal Logit 

𝑔(𝜃𝑖𝑙) = ln⁡(
𝜃𝑖𝑙

1 − 𝜃𝑖𝑙
) 

Proportional-odds; linearity; 
independence of outcomes. 

Yes (to [0, 
𝑘-1] ⊆ ℕ) 

Odds ratio MLE  ologit  

OP  Ordinal Probit 
𝑔(𝜃𝑖𝑙) = 𝛷

−1(𝜃𝑖𝑙) 
Proportional odds; linearity; 
independence of outcomes. 

Yes (to [0, 
𝑘-1] ⊆ ℕ) 

Probability MLE oprobit 

 Continued on the next page 
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Statistical 
methods 

Distribution of the 
dependent variable (𝒀) 

Link function 
𝒈(∙) 

Model assumption 
Recoding 

of PRO 
needed* 

Interpretation 
Estimation 
method 

Stata code 

Binomial regression 
  

    

BB Beta-binomial 
i.e. 𝑌𝑖~𝐵𝑖𝑛(𝑘, 𝜃𝑖) 
𝜃𝑖~𝐵𝑒𝑡𝑎(𝛼, 𝛾) 

Logit 

𝑔(𝜃𝑖) = ln⁡(
𝜃𝑖

1 − 𝜃𝑖
) 

Linearity; independence of 
outcomes; beta distribution 
of probability of success  

Yes (to [0, 
𝑘-1] ⊆ ℕ)  

Odds ratio MLE  betabin  

BLN Binomial-logit-Normal 
i.e. 𝑌𝑖~𝐵𝑖𝑛(𝑘, 𝜃𝑖) 
𝜃𝑖~𝐿𝑁(0,1) 

Logit 

𝑔(𝜃𝑖) = ln⁡(
𝜃𝑖

1 − 𝜃𝑖
) 

Linearity; independence of 
outcomes; logit-Normal 
distribution of probability of 
success  

Yes (to [0, 
𝑘-1] ⊆ ℕ)  

Odds ratio MLE  glm...link(lo
git) 
family(bino
mial N) 

Fractional regression 
  

    

Frac (logit link) Recoded 𝑌′: continuous 
and bounded in [0, 1]  

Logit 

𝑔(𝜇𝑌′) = ln⁡(
𝜇𝑌′

1 − 𝜇𝑌′
) 

Linearity; independence of 
outcomes  

Yes (to [0, 
1] scale)  

Odds ratio Quasi-likelihood 
estimation  

fracreg logit 

BR (logit link) Recoded 𝑌′′: continuous 
and bounded in (0, 1)  
𝑌′′~𝐵𝑒𝑡𝑎(𝜇𝜑, (1 − 𝜇)𝜑)  

Logit 

𝑔(𝜇𝑌′′) = ln⁡(
𝜇𝑌′′

1 − 𝜇𝑌′′
) 

Linearity; independence of 
outcomes 

Yes (to (0, 
1) scale)  

Odds ratio MLE  betareg 

BB, Beta-binomial regression; BLN, binomial-logit-Normal regression; CI, confidence interval; CLAD, censored least absolute deviations; Frac, fractional logistic regression; 
GLM, generalized linear model; LAD, least absolute deviations; Median, median regression; MCAR, missing completely at random; MCDA, multi-criteria decision analysis; 
MLE, maximum likelihood estimation; MLR, multiple linear regression; Tobit, Tobit regression; OL, ordered logit model; OLS, ordinary least squared; OP, ordered probit model; 
PRO, patient-reported outcomes; 𝑘, represents the number of possible categorical values in a domain; 𝜇 denotes the mean; 𝜇∗ denotes the latent mean; ℕ, denotes the non-
zero positive natural numbers i.e. 1,2,3… 𝑘-1; 𝜑 is the precision parameter for beta distribution; 𝛷 stands for the standard Normal cumulative distribution function. 𝜃, 
denotes the probability of success or the cumulative response probabilities i.e. 𝜃𝑖𝑙 = 𝑃(𝑌 ≤ 𝑙) the probability of a response in category 𝑙 or below for OL, and 𝜃𝑖 = 𝑃(𝑌 = 𝑙) 
the probability of a response in category 𝑙 for BB, BLN, and BR. Note that clad and betabin are user-developed packages in Stata, and therefore installation of the 
corresponding package is required to run these two commands. 
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We first start with classical models including MLR, as it is one of the most popular methods that have 

been applied for PRO analysis, and Median, which does not require Normally distributed residuals. Then, 

we consider censored regression methods that deal with the boundedness or censoring, including Tobit 

and CLAD which have similar assumptions to MLR and Median respectively but additionally accounts 

for the censored feature of PRO scores. Later, we look at methods that assume PRO scores as ordinal 

outcomes and require recoding techniques to apply, including ordinal regression (OL and OP) and 

binomial regression (BB and BLN). Finally, fractional regression (Frac and BR) for ratio response 

outcomes between 0 and 1 are applied after recoding SF-36 dimension scores from their original 0 to 

100 interval to a 0 to 1 interval. 

6.4.1 Classical model 

6.4.1.1 Multiple linear regression (MLR) 

In MLR, the relationship between the mean of each SF-36 dimension score and the linear predictor is 

described using the following equation: 

Model 

 𝑌 = 𝑿𝜷 + 𝜀 (6.5) 

 𝜀~𝑁(0, 𝜎2)  (6.6) 

where the 𝑌 is a vector of observed PRO score (mh6), 𝑿 is the design matrix that denotes multiple row 

vectors of independent variables such as baseline score (mh0) and treatment group (group), and 𝜀 is 

the error term which captures the difference between the linear predictor and the independent variable 

and is assumed to follow a Normal distribution with the mean of 0, and standard error of 𝜎. 

Model assumptions 

1. Linearity: There must be a linear relationship between the outcome variable 𝑌  and the 

independent variables 𝑿.  

2. Multivariate Normality: The residuals 𝜀 are Normally distributed.  

3. No multicollinearity: The independent variables 𝑿 are not highly correlated with each other. 

4. Homoscedasticity: The residuals 𝜀 have the same variability or constant variance for all the 

fitted values of 𝑌.  

5. Independence: The observations in the sample are independent. 
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Estimation method: OLS or MLE 

OLS is an estimation method of unknown parameters in a linear model by minimising the sum of squares 

of the differences between the observed dependent variable and the predicted values by the linear model. 

MLE is an estimation method of unknown parameters of assumed probability distributions in the 

assumed statistical model by maximising the likelihood function. OLS is identical to the MLE when the 

Normality assumption of residuals is met.  

Stata code  

regress mh6 group mh0 

Stata output 

 

Interpretation 

The mean of SF-36v2 MH score at 6 months for the treatment group is 2.31 points higher than the mean 

for the control group after allowing or adjusting for the baseline MH score. Alternatively, given two 

individuals with the same baseline MH score, on average the individual subject in the treatment group 

will have a 2.31 point higher MH score at 6 months than a subject in the control group.  

6.4.1.2 Median regression (Median) 

Median is a special case of quantile regression when the quantile level is set at 50th. Quantile regression 

estimates the conditional median of the response variable and does not assume a particular parametric 

distribution for the response. It has a similar equation as MLR, but depicts the relationship between the 

median of dimension scores, denoted by 𝑄𝑌|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛) and the linear predictor. It can be used as an 

alternative to MLR when the conditions of linear regression are not met. Quantile regression is robust 

to response outliers, i.e. very small or large PRO scores, and it needs sufficient data to run (Rodriguez, 

Yao and Inc, 2017). 
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Model  

 𝑄𝑌|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛) = 𝑿𝜷𝑚𝑒𝑑𝑖𝑎𝑛  (6.7) 

where 50th conditional quantile of 𝑌 is given as a linear function given 𝑿. 

Model assumptions  

1. Linearity: There must be a linear relationship between the outcome variable 𝑌  and the 

independent variables 𝑿.  

2. Independence: The observations in the sample are independent. 

Estimation method: LAD  

Median model finds a line through the data that minimises the sum of the absolute residuals, which are 

the deviations of the data points from the line.  

Stata code 

qreg mh6 group mh0 

Stata output 

 

Interpretation  

The median of SF-36v2 MH score at 6 months for the treatment group is 5.00 points higher than the 

median of the control group after allowing or adjusting for the baseline MH score. 
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6.4.2 Censored regression  

Censored regression models assume the boundaries of the dependent variable are due to censoring, i.e. 

the mean of latent PRO scores, denoted by 𝑌∗ for Tobit, or the median of latent PRO scores, denoted by 

𝑄𝑌∗|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛)⁡for CLAD regression, can exceed the upper and lower boundaries, but they are not 

observable. The CLAD model is a subset of Median that estimates the median value of the parameters, 

whereas Tobit regression is an extension of MLR that estimates the mean. Both Tobit and CLAD 

regression describe the relationship between the latent variable and the linear predictor. The observed 

dependent variable of the censored regression is defined using the following equations: 

 𝑌 = {
𝑎, 𝑌∗ ≤ 𝑎
𝑌∗, 𝑎 < 𝑌∗ < 𝑏
𝑏, 𝑌∗ ≥ 𝑏

  (6.8) 

where 𝑎 and 𝑏 denotes the lower and upper bounds of the PRO score respectively.  

6.4.2.1 Tobit regression (Tobit) 

Type I Tobit model is used for most PRO scenarios where both sides of the PRO scale are bounded or 

censored to certain scores e.g. SF-36v2 MH score is bounded between 0 and 100.  

Model 

 𝑌∗ = 𝑿𝜷 + 𝜀 (6.9) 

 𝜀~𝑁(0, 𝜎2) (6.10) 

where 𝑌∗  denotes the latent variable of the PRO score, which satisfies the classical linear model 

assumptions; whereas 𝑦 , the censored outcome of the latent variable 𝑌∗  does not have a linear 

relationship with 𝑿 and 𝜀.  

Model assumptions and estimation methods of Tobit are identical to MLR, with one difference that 𝑌 

denotes the latent variable but not the observed variable.  

Stata code  

tobit mh6 group mh0, ll(0) ul(100) 
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Stata output 

 

Interpretation 

The mean of uncensored SF-36v2 MH score at 6 months for the treatment group is 2.02 points higher 

than the mean of the control group after allowing or adjusting for the baseline MH score. 

Tobit regression coefficients are interpreted in the similar manner to MLR coefficients; however, the 

linear effect is on the uncensored latent variable 𝑌∗, but not on the observed variable 𝑦, i.e. 𝐸(𝑌∗|𝑋) is 

linear to 𝑿, but 𝐸(𝑌|𝑋) is nonlinear to 𝑿. 

Marginal effect  

The estimated treatment effect for the latent variable 𝑌∗ that is assumed not to have boundaries. The 

command margins is used to estimate the means of the marginal effects on the expected value of the 

censored outcome 𝑌. The following code is used to estimate the changes in the conditional expected 

value of the dependent variable i.e. the change in the observed PRO score that is bounded between 0 

and 100.  

Stata code 

margins, dydx(*) predict(ystar(0,100)) 
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Stata output 

 

Interpretation 

The average marginal effect of SF-36v2 MH score at 6 months for the treatment group is 1.79 points 

higher than the marginal effect of the control group after allowing or adjusting for the baseline MH 

score. 

6.4.2.2 Censored least absolute deviations regression (CLAD) 

CLAD holds similar assumptions on the latent variable as Tobit. i.e. the latent variable 𝑌∗ is assumed to 

have a linear relationship with 𝑿, but the observed variable 𝑌 is non-linear to 𝑿. As a derivation of 

Median, CLAD models the median but not the mean (Pullenayegum et al., 2010). 

Model  

 𝑄𝑌∗|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛) = 𝑿𝜷𝑚𝑒𝑑𝑖𝑎𝑛  (6.6) 

where 𝑄𝑌∗|𝑋(𝑚𝑒𝑑𝑖𝑎𝑛) denotes the latent variable of PRO score 𝑌∗, which is assumed to be linear to 𝑿.  

Model assumption 

1. Linearity: There must be a linear relationship between the latent outcome variable 𝑌∗ and the 

independent variables 𝑿.  

2. Independence: The observations in the sample are independent. 

Estimation method: CLAD 

Stata code 

clad mh6 group mh0, rep(1000) ul(100)  
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Note: 

1. A package for CLAD (package sg153.pkg) needs to be installed before running the code. 

2. The number of iterations are required to be pre-specified to run CLAD in Stata, and we select 

1,000 as the repetition number for this analysis. 

3. Command clad only functions with lower or upper censoring; you cannot specify censoring at 

both the lower and upper bound. If nothing is specified for a lower or upper bound, clad 

assumes that the lower limit is zero. 

Stata output 

 

Interpretation 

The median of uncensored SF-36v2 MH score at 6 months for the treatment group is 5.00 points higher 

than the median of the control group after allowing or adjusting for the baseline MH score. 

CLAD, similar to Tobit, depicts the relationship between the latent variable and covariates, and in order 

to obtain coefficients for the observed PRO score i.e. SF-36v2 MH score on a 0 to 100 scale in our case, 

marginal effects can be used (Clarke, Gray and Holman, 2002; Pullenayegum et al., 2011). However, 

the marginal estimations for the CLAD estimator are not available in Stata/MP 17.0.  

6.4.3 Ordinal regression  

Ordinal regression assumes the observed dependent variable (𝑌) is ordinal with 𝑘  possible ordered 

categories or levels, and the latent dependent variable (𝑌∗) is a continuous variable with a linear function 
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of a series of independent variables (𝑿). The inverse standard Normal cumulative distribution function, 

denoted by 𝛷−1, is used for ordered probit model, and the logit link is used for ordered logit model. The 

cumulative probability if individual 𝑖 having 𝑌 equal or less than the value of a level 𝑙 is 

 𝜃𝑖𝑙 = 𝑃(𝑌𝑖 ≤ 𝑙); 𝑙 = 0,1,… , 𝑘 − 1; 𝑖 = 1,… , 𝑁  (6.12) 

 𝑌∗ = 𝑿𝜷 + 𝜀  (6.13) 

For the OL:  

 𝑔(𝜃𝑖𝑙) = 𝑙𝑜𝑔𝑖𝑡(𝜃𝑖𝑙) = ⁡ln⁡(
𝜃𝑖𝑙
1−𝜃𝑖𝑙

) = 𝑿𝜷  (6.14) 

 𝜀⁡~⁡𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1)  (6.15) 

For the OP:  

 𝑔(𝜃𝑖𝑙) = 𝑝𝑟𝑜𝑏𝑖𝑡(𝜃𝑖𝑙) = 𝛷−1(𝜃𝑖𝑙) = 𝑿𝜷  (6.16) 

 𝜀⁡~⁡𝑁(0,1)  (6.17) 

The key assumption of both models is the proportional odds assumption, which assumes that each 

covariate share a constant OR across the cut-points i.e. the influence of each covariate on the response 

variable is independent of the cut-points (Arostegui, Núñez-Antón and Quintana, 2012).  

6.4.3.1 Recoding technique for ordinal and binomial regression  

Recoding of PRO scores to ordinal scale is required to run ordinal regression (OL and OP) (Arostegui, 

Núñez-Antón and Quintana, 2013). In our example, SF-36v2 MH scores at baseline and at 6-month 

post-randomisation follow-up are recoded into a new ordinal scale with 21 possible ordered categorical 

values, ranging from 0 to 20.  

The observed dependent variable (𝑌) of the ordinal regression and binomial regression is defined using 

the following equations: 

 𝑌 =

{
 
 

 
 

0, 0 < 𝑌∗ ⁡≤ 𝑗1
1, 𝑗1 <⁡𝑌

∗ ⁡≤ 𝑗2
… , ⁡⁡⁡ ⁡
𝑙𝑘−2, 𝑗𝑘−3 < ⁡𝑌

∗ ≤ 𝑗𝑘−2
𝑙𝑘−1, 𝑗𝑘−2 < ⁡𝑌

∗ ≤ 100

  (6.18) 

where 𝑗  is a set of cut-points, 𝑘  is the number of possible categorical values, and 𝑌∗  denotes the 

continuous latent dependent variable. In the case of the SF-36v2 MH score,  
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𝑘 = 21 

𝑙 ∈ {0,1,… ,20} 

𝑗 ∈ {0, 2.5, 7.5, 12.5,…92.5, 97.5, 100} 

Variable specification (using mh6 as an example) 

- mh6 is the SF-36v2 MH scores at 6-month post-randomisation in the LM trial; 

- omh6 is the recoded ordinal score of mh6 to fit ordinal and binomial regression. 

Stata code for recoding to ordinal scale 

gen omh6 = recode(mh0, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 

42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 92.5, 

97.5) 

The distribution of the recoded SF-36v2 MH scores at baseline and 6-month post-randomisation on a 

21-point ordinal scale is shown in Figure 6.2. 

 
 

 
Figure 6.2 Distribution of SF-36v2 MH score on a 21-point ordinal scale from 0 to 20 
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6.4.3.2 Ordered logit model (OL) 

Model  

 𝑙𝑜𝑔𝑖𝑡(𝜃𝑖𝑙) = 𝛽0𝑙 +𝑿𝒊𝜷   𝑙 = 0,… , 𝑘 − 1; 𝑖 = 1,… ,𝑁  (6.19) 

where 𝛽0𝑙 stands for different intercepts for 𝐿 categories, which is assumed to be specific for each one 

of the 𝑘 equations in the model. 𝛽 stands for the effect the covariates have on the cumulative probability, 

which is assumed to be equal for the 𝑘 equations in the model (proportional odds assumption).  

Model assumption: proportional odds assumption.  

Estimation method: MLE  

Stata code 

ologit omh6 group omh0 

Stata output 
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Interpretation  

Treatment group tends to have higher SF-36v2 MH scores at 6-month follow-up. There are three 

different population summary measures that are commonly generated from OL: OR, effect size (Chinn, 

2000), and probability.  

OR: A person in the treatment group has an increase of 1.34 in the odds of having a SF-36 mental health 

score one level or higher at 6 months than the odds in the control group after allowing or adjusting for 

the baseline MH score. 𝑂𝑅𝑇𝐸 = exp(𝑐𝑜𝑒𝑓(𝑇𝐸)) = exp(0.294) = 1.34 

Effect size (ES): 𝐸𝑆 =
𝑐𝑜𝑒𝑓(𝑇𝐸)

𝜎
=

0.294

𝜋/√3
= 0.163  

Probability: The probability of scoring 90.0 at 6 months is 21.5% for the treatment group and 21.0% for 

the usual care group… 

Stata codes 

predict r1 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 

r19 r20  

tabstat r1 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 

r19 r20, by(group) stat(mean) 

Stata output 
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6.4.3.3 Ordered probit model (OP)  

Model  

 𝛷−1(𝜃𝑖𝑙) = 𝛽0𝑙 +𝑿𝒊𝜷  (6.20) 

The model assumption of OP s identical to OL except that OP uses a probit link function.  

Stata code  

oprobit omh6 group omh0 

Stata output 

 

Interpretation 

The population summary measure of OL can be ORs whereas there is no such explanation for OP. There 

are two different population summary measures that are commonly generated from OL: effect size 

(Chinn, 2000), and probability. The most common way to interpret ordered probit is the predicted 

probabilities based on estimates. 



6.4 Description of the filtered statistical methods  79 

 

Effect size (ES): ES estimated by the OP (0.156) is similar to the effect size estimated by the OL (0.163). 

Probability: The probability of scoring 90.0 at 6 months is 21.2% for the treatment group and 20.9% for 

the usual care group after allowing or adjusting for the baseline MH score… 

Stata codes 

predict r1 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 

r19 r20  

tabstat r1 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 

r19 r20, by(group) stat(mean) 

Stata output 

 

Highlight 

Although the coefficients estimated by ologit and oprobit are different, the predicted probabilities 

by both methods are similar. For both OL and OP, marginal effect can be produced to show the change 

in probability when the independent variable increases by one unit, using the margins command 

following the regression command.  

ologit omh6 group omh0 or oprobit omh6 group omh0 

margins, dydx(*) 
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6.4.4 Binomial regression  

Binomial regression is a generalisation from logistic regression, which assumes that the conditional 

distribution of 𝑌𝑖  of the 𝑖th subject given the number of success (𝜃𝑖 ) obtained in 𝑘 binomial trials follows 

a binomial distribution, i.e. 𝑌𝑖~𝐵𝑖𝑛(𝑘, 𝜃𝑖). Unlike ordinal regression, 𝜃𝑖  is thought to differ between 

individuals i.e. there are individual random effects. In terms of the PROs, the original score 𝑌, is recoded 

into 𝑘 discrete values or categories, and the recoded outcome 𝑌∗ is on a 0 to 𝑘 − 1 interval, 𝜃𝑖  represents 

the probability of obtaining one point or value, 𝑙, on the recoded PRO dimension, 𝑌∗, for a particular 

subject. 

The baseline probability of success (𝜃0𝑖 ) with no covariates is a random variable. 𝜃0𝑖  is assumed to 

follow a beta distribution for beta-binomial regression, and a logit-Normal distribution for binomial-

logit-Normal regression (Arostegui, Núñez-Antón and Quintana, 2007, 2012; Liang et al., 2014).  

 𝑌𝑖~𝐵𝑖𝑛(𝑘, 𝜃𝑖)  (6.21) 

 𝐸(𝑌𝑖) = 𝑘𝜃𝑖   (6.22) 

The estimated regression coefficients from both methods can be interpreted as (log) ORs. Same as the 

ordinal regression, recoding of the observed SF-36 dimension scores to an ordinal form is required to 

run binomial regression.  

6.4.4.1 Beta-binomial regression (BB) 

Model 

 𝑙𝑜𝑔𝑖𝑡(𝜃𝑖) = 𝑙𝑜𝑔𝑖𝑡(𝜃0𝑖) + 𝑿𝒊𝜷  (6.23) 

 𝜃0𝑖~𝐵𝑒𝑡𝑎(𝛼, 𝛾)  (6.24) 

where 𝜃0𝑖  represents the baseline probabilities of success with no covariates in the model, and is 

independent beta random variables.  

Estimation method: MLE 

Stata code  

gen N = 21 //N is the maximum number of score  

replace N=. if omh6 ==. 

betabin omh6 group omh0, n(N) link(logit) nolog 

Note that a package for BB (st0337_1.pkg) needs to be installed before running the codes.  
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Stata output 

 

Interpretation  

Odds ratio: A person in the treatment group has an increase of 1.12 in the odds of having a one level 

better (out of 21) or 5.00 points higher SF-36 MH score at 6-month post-randomisation follow-up than 

the odds in the control group after allowing or adjusting for the baseline MH score.𝑂𝑅𝑇𝐸 =

exp(𝑐𝑜𝑒𝑓(𝑇𝐸)) = exp(0.110) = 1.12.  

6.4.4.2 Binomial-logit-Normal regression (BLN) 

Model  

 𝑙𝑜𝑔𝑖𝑡(𝜃𝑖) = 𝜎𝑧𝑖 + 𝑿𝒊𝜷  (6.25) 

 𝑧𝑖~𝑁(0,1)   i.e. 𝜃0𝑖~𝐿𝑁(0,1)  (6.26) 

where 𝑧𝑖  is assumed to be independent standard Normal random variables. 𝜃0𝑖  has a standard logit-

Normal distribution (notation 𝐿𝑁).  

Estimation method: MLE cannot be numerically evaluated, Gauss-Hermite quadrature can be used, 

leading to maximise marginal likelihood approximation (Arostegui, Núñez-Antón and Quintana, 2012). 

Stata code 

glm omh6 group omh0, link(logit) family(binomial N) nolog 
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Stata output 

 

Interpretation  

A person in the treatment group has an increase of 1.13 in the odds of having a one level better (out of 

21) or 5.00 points higher SF-36 MH score at 6-month post-randomisation follow-up than the odds in 

the control group after allowing or adjusting for the baseline MH score. 𝑂𝑅𝑇𝐸 = exp(𝑐𝑜𝑒𝑓(𝑇𝐸)) =

exp(0.121) = 1.13  

6.4.5 Fractional regression  

Fractional regression can be used to analyse bounded data on a continuous 0 to 1 scale (Papke, 1996). 

Under this category, we introduce BR and Frac, both of which assume a continuous ratio scattering 

between 0 and 1. Note that a Frac fits a dependent variable that is greater than or equal to 0 and less than 

or equal to 1, whereas BR cannot deal with scores at 0 or 1. 

 logit(𝜇𝑖/(1− 𝜇𝑖)) = ⁡𝑿𝜷  (6.27) 

 𝐸(𝑦′) = ⁡𝜇  (6.28) 

where 𝑦′ is the recoded form of 𝑦 that distributes between 0 and 1.  



6.4 Description of the filtered statistical methods  83 

 

6.4.5.1 Recoding technique  

Recoding of the observed dimension scores to a 0 to 1 scale is necessary to run fractional regression. 

For Frac, the SF-36 scores on a [𝑎, 𝑏] scale need to be transformed to a closed interval [0, 1]. The 

equation to calculate the transformed score, denoted by 𝑌′, is shown below:  

 𝑌′ = (𝑌 − 𝑎) (𝑏 − 𝑎)⁄   (6.29) 

As BR cannot account for scores at boundaries (i.e. a or b or 0 or 1), the SF-36 scores need to be 

‘squeezed’ to an open interval (0, 1) using sample size, denoted by 𝑁, for adjustment. The transformed 

score, denoted by 𝑌′′ , is calculated using the following equation (Ferrari and Cribari-Neto, 2004; 

Smithson and Verkuilen, 2006; Hunger, Baumert and Holle, 2011).  

 𝑌′′ = [𝑌′(𝑁 − 1) + 0.5]/𝑁  (6.30) 

The distributions of the recoded SF-36v2 mental health on percentile scales to run fractional logistic 

regression and beta regression are shown in Figure 6.3 and Figure 6.4 respectively. 

 
 

 
Figure 6.3 Distribution of SF-36v2 MH score on percentile scale [0-1] 
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Variable specification (using mh6 as an example) 

- mh6 is the SF-36v2 MH scores at 6-month post-randomisation in the LM trial; 

- fmh6 is the recoded score of mh6 on a [0,1] scale to fit fractional logistic regression; 

- bmh6 is the recoded score of mh6 on an (0,1) scale to fit beta regression;  

- SZ is the sample size of patients; 

Stata code for recoding to percentile scale 

** To [0,1] scale 

gen fmh6 = mh6/100 

** To (0,1) scale 

egen SZ6 = count(mh6) 

gen bmh6 = (fmh6*(SZ6-1)+0.5)/SZ6  

 
 

 
Figure 6.4 Distribution of SF-36v2 mental health score on percentile scale (0-1), squeezed 
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6.4.5.2 Fractional logistic regression (Frac) 

The logit link is adapted for fractional logistic regression and therefore the regression coefficients can 

be interpreted as logORs. 

Estimation method: Quasi-likelihood estimation, which does not require the knowledge of the true 

distribution of the entire model to obtain consistent parameter estimates.  

Stata code  

fracreg logit pkpain12 group kpain0 

To fit a fractional logistic regression, the response variable is required to be adjusted to a closed interval 

between 0 and 1. Note that the robust SEs are calculated by default in Stata/MP 17.0. 

Stata output 

 

Interpretation 

A person in the treatment group has an increase of 1.15 in the odds of having one level better (out of 

21) or 5.00 points higher SF-36 MH score at 6-month post-randomisation follow-up than the odds in 

the control group after allowing or adjusting for the baseline MH score.⁡𝑂𝑅𝑇𝐸 = exp(𝑐𝑜𝑒𝑓(𝑇𝐸)) =

exp(0.139) = 1.15 

6.4.5.3 Beta regression (BR) 

BR is proposed because of its flexibility to skewed and bounded data, in which case the PROs is assumed 

to have a beta distribution with predefined boundaries and the logit link function is often used (Ferrari 

and Cribari-Neto, 2004). The logit link is adapted because the resulting regression coefficients can be 

interpreted as logORs. 

Model assumption 

 𝑦′~𝑏𝑒𝑡𝑎(𝜇𝜑, (1 − 𝜇)𝜑)  (6.36) 
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Estimation method: MLE 

Stata code and output  

betareg kpain12beta2 group kpain0  

Stata output 

 

Interpretation  

A person in the treatment group has an increase of 1.05 in the odds of having one level better (out of 

21) or 5.00 points higher SF-36 MH score at 6-month post-randomisation follow-up than the odds in 

the control group after allowing or adjusting for the baseline MH score. 𝑂𝑑𝑑𝑠⁡𝑅𝑎𝑡𝑖𝑜𝑇𝐸 =

𝑒𝑥𝑝(𝑐𝑜𝑒𝑓(𝑇𝐸)) = 𝑒𝑥𝑝(0.044) = 1.05 

A summary of how to interpret the estimated treatment coefficients from the included 10 statistical 

methods is presented in Table 6.3. The estimate produced by Tobit is slightly smaller than MLR, while 

the estimates from both Median and CLAD are much larger than the estimates by MLR and Tobit. OL 

produces larger estimated ORs than other transformed scale-based methods, and the rest of these 

methods tend to produce similar estimates except that the estimates from BR is relatively small.  
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Table 6.3 Summary of how to interpret the estimated treatment coefficient from the statistical 
methods evaluated based on the SF-36 MH score at 6-month follow-up in the LM trial 

(a) Statistical methods that used the untransformed scales of measurement 

Statistical 
methods 

Coef Interpretation 

MLR 2.31 
The mean of the MH score at 6 months for the treatment group is 2.31 points 
higher than the mean for the control group, after adjusting for baseline MH 
score.  

Tobit 2.02 
The mean of the uncensored MH score at 6 months for the treatment group is 
2.02 points higher than the mean for the control group, after adjusting for 
baseline MH score. 

Median 5.00 
The median of the MH score at 6 months for the treatment group is 5.00 points 
higher than the median for the control group, after adjusting for baseline MH 
score. 

CLAD 5.00 
The median of the uncensored MH score at 6 months for the treatment group 
is 5.00 points higher than the median for the control group, after adjusting for 
baseline MH score. 

(b) Statistical methods that used transformed scales of measurement 

Statistical 
methods 

Coef 
Odds 
ratios 

Interpretation 

OL 0.29 1.34 
The treatment group has an increase of 1.34 in the odds of having one 
level or 5.00 points higher MH score at 6 months than the odds in the 
control group, after adjusting for baseline MH score. 

OP 0.16 NA 

(Marginal effects need to be calculated to generate the probability)  
The probability of scoring 90.0 at 6 months is 21.2% for the treatment 
group and 20.9% for the usual care group, after adjusting for baseline 
MH score… 

BB 0.11 1.12 
The treatment group has an increase of 1.12 in the odds of having one 
level or 5.00 points higher MH score at 6 months than the odds in the 
control group, after adjusting for baseline MH score. 

BLN 0.12 1.13 
The treatment group has an increase of 1.13 in the odds of having one 
level or 5.00 points higher MH score at 6 months than the odds in the 
control group, after adjusting for baseline MH score. 

Frac 0.14 1.15 
The treatment group has an increase of 1.15 in the odds of having one 
level or 5.00 points higher MH score at 6 months than the odds in the 
control group, after adjusting for baseline MH score. 

BR 0.04 1.05 
The treatment group has an increase of 1.05 in the odds of having one 
level or 5.00 points higher SF-36 MH score at 6 months than the odds 
in the control group, after adjusting for baseline MH score. 

BB, beta-binomial regression; BLN, binomial-logit-Normal regression; BR, beta regression; CLAD, censored 

absolute least deviations regression; Coef, treatment coefficient; Frac, fractional logistic regression; Median, 

median regression; MH, SF-36 mental health dimension; MLR, multiple linear regression; OL, ordered logit model; 

Tobit, Tobit regression.   
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6.5 Discussion 

In this chapter, we explicitly described 10 statistical methods that we have identified and filtered from 

previous chapters. We started with the explanation of the theory under the GLM framework of these 

statistical methods including model formula, model assumptions, and estimation methods. We provided 

an example of the empirical analysis by using SF-36v2 MH sores at 6-month post-randomisation in the 

LM trial to explain how to fit these methods in computer statistical software (Stata/MP 17.0) and how 

to interpret the estimates generated by different statistical methods (i.e. estimators).  

In addition, we introduced the concept of the estimand framework and explained the described the 

estimand framework for the example dataset. We proposed the use of two different estimand frameworks, 

i.e. the scale-based estimand framework and the SES estimand framework. The scale-based estimand 

framework present the estimates from different statistical methods on their original scales, but some 

estimates cannot be compared directly as they are not on the same scale. Therefore, we adapted the SES 

as the population summary measure of the treatment effect in the SES estimand framework, which is 

not as frequently seen as other population summary measures of the treatment effect such as means, 

risks, or ORs (Walters, Campbell and Lall, 2001).  

In practice, the concept of SES has been applied in various scenarios in trials using PROs and their 

related studies. This includes summary studies such as meta-analysis in literature reviews that compare 

PROs on different scales, sample size calculation in trial designs that use PRO as primary outcomes, 

and trials with PROs that used the effect size as the measurement of treatment effectiveness (Parsons et 

al., 2014; Bell et al., 2017; Clare et al., 2019; Brealey et al., 2020; Vanderhout et al., 2022). For linear 

models, the effect size is a ratio of estimated coefficient over SD of the estimate. The standardisation 

procedure is completed by the Z statistics, adjusting for sample size. Therefore, when estimating the 

same treatment effect using different methods, the SES assesses the statistical power of these methods 

for a given sample size. For instance, if the data is ordinal and the model assumption of OL is satisfied, 

the OL is likely to have higher power than other statistical methods, and thus be the most appropriate 

method for analysing the data. In theory, the most appropriate method is more likely to capture the ‘truth’ 

than other methods. However, as the dimension scores of SF-36 have different categories and 

distribution patterns, it is therefore difficult to assign them to a certain type of distribution and to decide 

what statistical methods to use for analysis. 

In the next chapter, the empirical analysis will be conducted by applying these 10 statistical methods to 

eight dimensions in both versions of SF-36 using RCT datasets.  
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Chapter 7 Results of empirical analysis of the filtered 

statistical methods for the analysis of SF-36 in RCTs 

7.1 Introduction  

In Chapter 6, the technical details and practical applications of the 10 filtered statistical methods have 

been described and explained using an example dataset. This chapter aims to conduct empirical analysis 

to test the ability of these methods to run in different real world data scenarios, to compare the 

consistency in their estimates, and to evaluate their model fit and post-estimation statistics.  

In the rest of this chapter, we fit the 10 filtered statistical methods to PROs in multiple RCTs, interpret 

their estimated treatment coefficients and SESs, and present the change of model fit statistics with an 

increase in the number of possible categorical values.  

7.2 Methods  

A series of secondary analyses of PROs at multiple post-randomisation time-points were conducted by 

applying the 10 statistical methods to RCT datasets that used SF-36 as clinical outcomes.  

7.2.1 Description of the SF-36 PRO 

The SF-36 is a widely used PRO to measure QoL from patients’ perspectives in clinical trials. The SF-

36 consists of eight health dimension scores and one health transition item using 36 items on different 

ordinal categorical scales. The eight dimension scores include physical functioning (PF), role limitation 

- physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role 

limitation - emotional (RE), and mental health (MH) (Ware, Kosinski and Gandek, 1993).  

The original version of SF-36 was initially released in 1992 (Ware and Sherbourne, 1992), with its 

validity and reliability tested in the sequent two years (McHorney, Ware and Raczek, 1993; McHorney 

et al., 1994). Modifications of the original SF-36 (SF-36v1) include the RAND 36-item (Hays, 

Sherbourne and Mazel, 1993), a publicly available version with slightly different scoring methods to the 

original version (Ware, Kosinski and Gandek, 1993); the SF-36v2 (Ware, 2000), an upgraded version 

with improvements in wording and in different ordinal categorical scales of some items to improve the 

internal reliability consistency and reduce ceiling and floor effects (Jenkinson et al., 1999); the SF-6D, 

a popular preference-based measure that produces utility scores for use in economic evaluation (Brazier, 

Roberts and Deverill, 2002); and other shorter versions that use only eight or 12 items instead of all 36 

items (Laucis, Hays and Bhattacharyya, 2015). 
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The main difference between the SF-36v1 and SF-36v2 is the change in wording and in ordinal 

categorical scales of some items, which accordingly changes the number of possible values in some 

dimensions. For example, the RE dimension in SF-36v1 is composed of three binary items, the crude 

score of which ranges from three to six with four possible values; after scattering the four values equally 

in a 0 to 100 scale, the possible values for RE is 0, 33.3, 66.7, and 100. Whereas the RE dimension in 

SF-36v2 is composed of three items on five-point Likert-scale, the crude score of which ranges from 

three to 15 with 13 possible values. The scoring strategies for the eight dimension scores in both versions 

of SF-36 are shown in Table 7.1.  

Two types of scoring mechanisms are commonly seen to produce SF-36 dimension scores: the original 

scoring and the norm-based scoring. The original scoring anchors each scale from 0, representing the 

worst score on all items to 100, representing the best score on all items. Norm-based scoring linearly 

rescales the eight dimension scores to achieve a mean score of 50 and a SD of 10 in the reference 

population (i.e. the US general population) (Ware, 2000; Maruish, 2011). While the described methods 

apply to both scoring approaches, we use the original, 0 to 100, scoring here for simplicity. 

Table 7.1 Different scoring strategies for eight dimensions in SF-36v1 and SF-36v2 

SF-36 
Dimension 

No. 
items 

 SF-36v1  SF-36v2 

 No. levels 
Crude 
scores 

No. values 
after recoding 

 No. levels 
Crude 
scores 

No. values 
after recoding 

PF 10  21 4 to 24 21  21 4 to 24 21 
RP 4  5 4 to 8 5  17 4 to 20 17 
BP 2  10 2 to 11 10  10 2 to 11 10 
GH 5  21 4 to 24 21  21 4 to 24 21 
VT 4  21 4 to 24 21  17 4 to 20 17 
SF 2  10 2 to 11 9  9 2 to 10 9 
RE 3  4 3 to 6 4  13 3 to 15 13 
MH 5  26 5 to 30 26  21 4 to 24 21 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation - emotional; 
RP, role limitation - physical; SF, social functioning; VT, vitality.  

7.2.2 Description of datasets 

The nine RCTs analysed in this chapter are Acupuncture (Thomas et al., 2006), FED (Gariballa et al., 

2006), IPSU (Jha et al., 2018), Knee Replacement (Mitchell et al., 2005), Leg Ulcer (Morrell et al., 

1998), NAMEIT (Jack, Prestele and Bakshi, 2000), COPD (Waterhouse et al., 2010), LM (Mountain et 

al., 2017), and PLINY (Mountain et al., 2014). Their trial characteristics are presented in Table 7.2. A 

total number of 2,045 patients were randomised and 1,569 of them were analysed. Of the nine trials, 

three used SF-36 dimension scores as primary outcomes: the Acupuncture trial used SF-36v1 BP score 

at 12-month post-randomisation; LM and PLINY used SF-36v2 MH score at 6-month post-

randomisation. 
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7.2.3 Statistical methods for empirical analysis 

The 10 statistical methods were applied for the empirical analysis of the treatment difference of SF-36 

dimension scores using trial data: MLR, Median, Tobit, CLAD, OL, OP, BB, BLN, Frac, and BR. 

The estimated treatment coefficients by different statistical methods may not be comparable as they are 

theoretically based on different scales. Therefore, the two estimand frameworks that were described in 

Chapter 6 Section 6.3 were adapted to generate the scale-based population summary measures (i.e. 

means/medians and logORs) and the SES population summary measure.  

Model assumptions were tested in trials using SF-36 dimension scores as primary outcomes (i.e. 

Acupunture, LM, and PLINY), including the Normality of residuals and the homoscedasticity 

assumptions for MLR and Tobit regression, and proportional odds assumptions for ordinal regression 

methods.  

Different recoding techniques are required to run ordinal regression, binomial regression, and fractional 

regression. We used the recoding techniques for SF-36v1 dimension scores proposed by Arostegui, 

Núñez-Antón and Quintana (2013) for this empirical analysis, but we slightly tweaked this recoding 

techniques to fit our data. This is because our dataset also contains SF-36v2, which requires different 

recoding techniques in some dimensions that have been improved with a different number of possible 

values. In addition, the scorings for the BP and SF in SF-36v1 in our RCT datasets did not follow the 

standard scoring strategy (Ware, Kosinski and Gandek, 1993) and the raw scores are not retrievable for 

recalculation of the standardised dimension scores. The detailed recoding techniques for SF-36 

dimension scores are explained in Appendix C.1.  

7.2.4 Model fit estimated by Akaike information criterion 

The Akaike information criterion (AIC) (Akaike, 1974) values were produced when fitting different 

statistical methods to compare the model fit, using the following equation: 

 𝐴𝐼𝐶 = 2𝑠 − 2⁡ln⁡(𝐿̂)  (7.5) 

where 𝐿̂ is the maximum likelihood for the model, and 𝑠 is the number of estimated parameters.  

A lower AIC value represents a better model fit. The value 𝑠 for different statistical methods with the 

same set of independent variables can be different, and the AIC values cannot be calculated for CLAD 

and Median since they both are quantile regression methods which use LAD or CLAD for estimation 

and not maximum likelihood. As the comparison of AICs require the methods to model the same 

response variable (Akaike, 1974), these methods are categorised into different groups according to their 

distributional assumptions and recoding techniques on SF-36 dimension scores in the scatterplots. 
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Table 7.2 Characteristics of the nine RCT datasets with SF-36 for empirical analysis 

Trial name Trial population 
SF-36 

version 

Follow-up 
timepoints 
(months) 

Sample size at baseline  Max N (PRO)  ̂
Reference 

Total Control 
Treat
ment 

 Total Control 
Treat
ment 

Acupuncture* 
Adults with non-specific low 
back pain 

v1 3, 12, 24  239 80 159  217 71 146 
(Thomas et al., 
2006) 

FED 
Older hospitalised patients 
(aged>=65) with acute illness 

v1 1.5, 6  445 222 223  225 119 106 
(Gariballa et 
al., 2006) 

IPSU 
Women with urinary 
incontinence and sexual 
dysfunction 

v1 6  107 53 56  66 35 31 
(Jha et al., 
2018) 

Knee 
Replacement 

Osteoarthritis patients 
undergoing total knee 
replacement 

v1 3  115 58 57  114 57 57 
(Mitchell et 
al., 2005) 

Leg Ulcer Patients with venous leg ulcers v1 3, 12  233 113 120  233 113 120 
(Morrell et al., 
1998) 

NAMEIT 
Patients with early severe 
rheumatoid arthritis 

v1 
2, 4, 6, 8, 10, 
12  

222 110 112  222 110 112 
(Jack, Prestele 
and Bakshi, 
2000) 

COPD 
Patients with chronic 
obstructive pulmonary disease 

v2 2, 6, 12, 18  239 129 110  174 93 81 
(Waterhouse 
et al., 2010) 

Lifestyle 
Matters* 

Independently living older 
people (aged 65 or more) 

v2 6, 24  288 143 145  262 126 136 
(Mountain et 
al., 2017) 

PLINY* 
Independently living older 
people (aged 75 or more) 

v2 6  157 79 78  56 30 26 
(Mountain et 
al., 2014) 

Total    2045 987 1060  1569 754 815  
* Trials using SF-36 dimensions as primary outcomes.  

^ Max N is the maximum sample size for the baseline and post-randomisation follow-up correlations. 

PRO, patient-reported outcomes.
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Scatterplots were generated to compare the estimated treatment coefficients from different statistical 

methods, using consistent markers for each method and consistent colours for each trial. Estimated 

treatment coefficients from MLR and BB were used as the reference benchmark for statistical methods 

that produce estimates on the untransformed and transformed scales respectively, since MLR is the most 

commonly used methods for analysing PROs (Qian et al., 2021), and BB was reported to render 

satisfactory results in various situations for PRO analysis (Arostegui, Núñez-Antón and Quintana, 2012). 

The SESs from different methods were displayed in scatterplots, using MLR as the reference benchmark 

for all included methods regardless of their scales, as the SES is believed comparable among statistical 

methods on different scales under the estimand framework. Effect size plots were graphed for SESs with 

its associated CIs from 10 statistical methods, together with two horizontal lines representing the clinical 

and statistical significance. We also graphed the change of AICs against a different number of possible 

categorical values in SF-36, using a series of scatterplots with fitted lines. The statistical package 

Stata/MP 17.0 is used for statistical analysis and MATLAB R2023a is used for data visualisation. The 

Stata codes to apply recoding techniques and regression analysis are summarised in Appendix C.3. 

7.2.5 Ethics approval 

This empirical analysis conducts secondary analyses of previously collected trial data. The data have 

been previously obtained from RCTs run within the School of Health and Related Research (ScHARR), 

University of Sheffield, where the ethics approvals were received from the appropriate NHS Research 

Ethics Committee and individual informed consent was obtained to take part in the original trial. This 

project uses non-personal robustly anonymised, existing data from which the original participants cannot 

be identified, and this project will not involve recruiting new participants. The ethics application has 

been approved by the ScHARR Research Ethics Committee (Reference Number 036168). The approval 

letter is available in Appendix C.2. 
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7.3 Results 

A total of 1,760 estimates of treatment coefficients were calculated across nine trials from 10 statistical 

methods. Each method produced 176 estimates of treatment effect for eight SF-36 dimensions across 

the nine RCTs with 22 post-randomisation timepoints in total. In general, in the three trials using SF-36 

dimension scores as primary outcomes (i.e. Acupuncture, LM and PLINY), skewed distributions of 

residuals and heteroscedasticity were seen using SF-36 dimension scores post estimation of MLR and 

Tobit. For estimating treatment coefficients of the group difference in the SF-36 eight dimensions in 

these three trials, 6/24 and 5/24 of the estimation violated the proportional odds assumption when 

applying OL and the OP respectively. A summary of post-estimation plots for MLR and Tobit are shown 

in the Appendix C.3.  

7.3.1 Estimated treatment coefficients under the scale-based estimand 

framework 

Figure 7.1 shows the scatterplots of estimated treatment coefficients from the untransformed scale-based 

methods (i.e. Tobit, Median, and CLAD) against MLR and the transformed scale-based methods (i.e. 

OL, BLN, Frac, and BR) against BB. Estimates from statistical methods on the untransformed scale 

deviated from MLR. When the magnitude of the estimated treatment effects were large, they tended to 

produce higher estimates than MLR. Tobit especially produced much larger magnitude of estimates than 

MLR for LegUlcer and NAMEIT. CLAD and Median shared a similar pattern when the estimates were 

small, i.e. they tended to produce estimates scattering at zero and to take values that are multiplier of the 

difference between two neighbouring categorical values. Estimates from methods on the transformed 

scales are presented using logORs, except for OP. The logORs estimated from BLN and Frac were 

shown similar to BB. The OL produced higher absolute estimates than other methods, which was 

obvious in PLINY that presented averagely higher treatment estimates than other trials. 

7.3.2 Estimated SESs under the SES estimand framework  

Overall, the estimated SESs in our datasets were small (i.e. absolute value less than 0.2), except for the 

SESs of some dimensions being large or very large in PLINY (i.e. absolute value between 0.5 and 1.4). 

Median and CLAD failed to converge on one and 10 occasions respectively, especially under the 

scenarios for analysing SF-36 dimensions with less than 10 possible values.  

When estimating the treatment coefficient of the same response variable using different methods, SESs 

with different directions were produced from the 10 statistical methods, but there was no case where 

these methods produced statistically significant estimates with different directions. Moreover, SESs with 

the same direction may have different magnitude of effect size. We found that 16/176 analyses of the 
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same response did not have similar magnitude of the estimated standardised effect from all 10 methods, 

i.e. 16 analyses of the same response estimated from these methods had statistically significant SESs in 

different ranges of effect size. This mainly appeared in the SESs estimated from BLN that tended to 

produce large and significant SES compared to other methods.  

Figure 7.2 presents the SESs estimated from the 10 statistical methods against MLR across nine trials. 

For statistical methods that used the untransformed scale of measurement, Tobit has almost identical 

pattern against MLR, whereas both Median and CLAD tended to produce estimates close to zero and 

showed less consistency to MLR than Tobit does. OL that produced higher estimated treatment 

coefficients (i.e. logORs) showed similar SESs as other methods after standardisation. Conversely, 

although the BLN produced similar estimated coefficients (i.e. logORs) as BB, the SESs from BLN are 

larger than other methods after standardisation. The figure also shows that the Tobit, BB, OP, OL, and 

Frac have stronger agreement with MLR, i.e. the difference between each of these four methods against 

MLR is associated with less bias and narrower 95% CIs than rest of the methods. 

Figure 7.3 shows the SESs with associated 95% CIs estimated from 10 statistical methods in three trials 

(Acupuncture, PLINY and LM) that used SF-36 dimension scores as primary outcomes. Two horizontal 

lines are drawn in the plot, representing the SES having no effect or no difference between two treatment 

groups (i.e. y = 0), and clinical significance (i.e. y = MCID/SD). When analysing the treatment effect of 

the same response, the use of different statistical methods may draw different results in terms of 

statistical significance and/or clinical significance. For example, SESs estimated from CLAD and 

Median are shown statistically significant for BP scores at 12-month post-randomisation in Acupuncture 

and for MH scores at 6-month post-randomisation in LM, whereas this is not the case for MLR and 

Tobit. In PLINY, most methods produced statistically significant estimates except for MLR, CLAD and 

Median. Additional effect size plots for the rest of the SF-36 dimension scores in three trials (i.e. COPD, 

LM, and PLINY) are generated and presented in Appendix C.3.  

7.3.3 Change of model fit with the number of possible categorical values in 

SF-36 dimension scores 

Figure 7.4 is a series of scatterplots on how the model fit, measured by the AIC statistic, changed when 

applying the 10 statistical methods to analyse different number of possible categorical values (levels) of 

dimension scores in SF-36, using data from the nine RCTs. When fitting SF-36 dimension score with 

higher levels, the AIC statistics of Tobit, ordinal, and binomial regression became larger, representing 

a poorer fit, whereas the AICs for the MLR became smaller, representing a better fit. The scatterplot 

shows that AIC values for Frac were less sensitive to the change in dimension levels.   



96 Chapter 7 Results of empirical analysis of the filtered statistical methods for the 

analysis of SF-36 in RCTs 

(a) Coefficients (means or medians) estimated by untransformed scale-based methods (Tobit, 

CLAD, and Median) using MLR as the benchmark 

 
(b) Coefficients (LogORs) estimated by transformed scale-based methods (OL, BLN, Frac, and BR) 

using BB as the benchmark 

 
Figure 7.1 Estimated coefficients under the scale-based estimand framework using nine RCT datasets 

with SF-36 as clinical outcomes 

BB, beta-binomial regression; BLN, binomial-logit-Normal regression; BR, beta regression; CLAD, censored 
absolute least deviations regression; Coef, treatment coefficient; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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Figure 7.2 SES estimated from ten different statistical methods against MLR using nine RCT datasets 
with SF-36v2 as clinical outcomes 

The x-axis of the scatterplots is the SES estimated by MLR, and the y-axis is the SES estimated by other statistical 
methods. The black dash line represents the method that produces the same standardised effect size as MLR.  

BB, beta-binomial regression; BLN, binomial-logit-Normal regression; BR, beta regression; CLAD, censored least 
absolute deviations regression; Frac, fractional logistic regression; Median, median regression; MLR, multiple 

linear regression; OL, ordered logit model; OP, ordered probit model; Tobit, Tobit regression.  
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(a) SF-36v1 bodily pain at 12 months in Acupuncture 

 
(b) SF-36v2 mental health at 6 months in LM 

 
(c) SF-36v2 mental health at 6 months in PLINY 

 

 
Figure 7.3 SES with 95% CIs from ten different statistical methods for Acupuncture, LM and PLINY that 

used SF-36 dimension scores as primary outcomes 

BB, beta-binomial regression; BLN, binomial-logit-Normal regression; BR, beta regression; CLAD, censored least 

absolute deviations regression; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; OP, ordered probit model; Tobit, Tobit regression.  
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(a) SF-36 version 1  
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(b) SF-36 version 2 

 
 
 

 
Figure 7.4 Scatterplot of AIC statistics for different statistical methods against the number of possible 

observable values of SF-36 dimensions in nine RCT datasets 

AIC, Akaike information criterion; BB, beta-binomial regression; BLN, binomial-logit-Normal regression; BR, beta 
regression; CLAD, censored least absolute deviations regression; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; OP, ordered probit model; Tobit, 
Tobit regression. Note that Median and CLAD do not have AIC scores, and thus are not compared in this figure.  

  

A
IC

 s
ta

ti
st

ic
s 

Number of possible observable values of each dimension 



7.4 Discussion 101 

 

7.4 Discussion 

This chapter applied 10 statistical methods for the analysis of PROs to nine RCT datasets in various 

clinical areas using both versions of the SF-36. A total of 1,760 estimates of treatment coefficients for 

SF-36 dimension scores were calculated across nine trials with 22 post-randomisation time-points using 

10 methods: MLR, Median, Tobit, CLAD, BB, BLN, OL, OP, Frac, and BR.  

Our empirical analysis shows that SESs estimated from different methods are generally consistent, using 

MLR as the reference benchmark, although the estimated treatment coefficients by different methods 

vary. For example, the magnitude of estimated treatment coefficients from Tobit is larger than MLR in 

some trials, but the estimated SESs from Tobit and MLR are almost identical. This may result from the 

fact that the Tobit accounts for the censoring or boundedness of the response variable and assumes the 

latent response variable having a wider scale than the observed response variable that is used for 

estimation by MLR. However, adjusting the SD of treatment estimates offsets the large magnitude of 

the estimated coefficients, and thus results in the agreement in SES between Tobit and MLR.  

It is, therefore, possible for different combinations of values to produce the same effect size on the 

standardised scale (Cook et al., 2014). An example for the transformed scale-based methods is OL, 

which generally produced higher estimates than other methods, resulting in higher estimated OR. 

However, the SEs estimated from OL were also higher than other methods, offsetting the high values of 

estimates when calculating the SESs. Conversely, BLN produced slightly higher SES estimates, whereas 

the treatment coefficients from it were similar to other methods. A possible explanation for large 

estimates from OL is that the estimated coefficients from OL stands for the probability that the PRO 

score, 𝑌 , is less than or equal to particular score or category 𝑙 , i.e. 𝑃(𝑌 ≤ 𝑙) , while the estimated 

coefficients from other methods that produced logORs such as BB and Frac stands for the probability 

of the PRO score being the discrete value or category 𝑙, i.e. 𝑃(𝑌 = 𝑙) for the binomial and fractional 

regression methods. Naturally, the magnitude of the previous estimand is supposed to be higher than the 

latter. However, after the standardisation procedure the scale and meaning of the original estimand in 

each method does not matter, and the estimated SESs from these methods with different meanings in 

their original scale are shown similar.  

CLAD, another method that can account for boundedness of the outcome, was found to be inefficient 

compared to other methods, as it took longer to run in Stata/MP 17.0 and failed to converge on some 

occasions. For statistical methods that produced estimates on the untransformed scale, quantile 

regressions (Median and CLAD) showed more variation. This may be because they adopt a different 

estimation method (i.e. LAD or CLAD) in comparison to those that use MLE. As was found in another 

study comparing Tobit, Median, and CLAD using the HUI (Austin, 2002), Median and CLAD tend to 
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produce estimates with similar patterns and their estimates tend to be shrunk to zero compared to MLR 

and Tobit.  

SESs from BR scattered more than Frac using MLR as the reference benchmark, MLR. This may be 

caused by the required ‘squeezing’ procedure in BR, which can reduce the estimation precision (Hunger, 

Baumert and Holle, 2011). The requirement on data distributed between 0 and 1 by fractional regression 

methods makes them more seemingly suitable for the analysis of health utility scores than other included 

statistical methods. However, it is worth noting that, in scenarios where health utilities index scatter on 

slightly different scales, e.g. SF-6D scattering between 0.291 and 1 for the UK value set (Brazier, 

Roberts and Deverill, 2002), the two fractional regression methods may not be straightforward (Hunger, 

Baumert and Holle, 2011; Kharroubi, 2020). 

Generally, when increasing the number of possible observable values, the AIC for statistical methods 

with logit or probit link increased; it decreased, however, for MLR. Interestingly, Tobit, an extension of 

MLR designed to adapt for censored outcomes, generated lower AIC values (i.e. better model fit) when 

analysing outcomes with a small number of possible observable values. This shows an adverse trend 

compared to MLR and requires further investigation.  

Regarding the results of this empirical analysis, the following six statistical methods are carried forward 

for the simulation analysis.  

1. Multiple linear regression (MLR) 

2. Median regression (Median) 

3. Tobit regression (Tobit) 

4. Ordered logit model (OL) 

5. Beta-binomial regression (OP) 

6. Fractional logistic regression (Frac) 

The following summary of rationales for why other statistical methods are excluded are covered in 

previous paragraphs in this discussion and presented below: 

- CLAD regression (CLAD): CLAD is not shown efficient in this empirical analysis, given it 

takes comparatively long time to run, it requires bootstrapping to generate CIs, and it does not 

provide p-values directly. Moreover, it is a user-built code in both Stata and R, and it is found 

not to converge on some occasions even when increasing the number of iterations.  

- Ordered probit model (OP): OP produces almost identical SES estimates and model fit statistics 

to ordered logit model, but its estimated treatment effect cannot be explained in (log)ORs as OL 

does which decreases the interpretability (or the clinical relevance) of OP.  

- Binomial-logit-Normal regression (BLN): BLN produces slightly higher SES estimates than 

other methods, but its estimated treatment coefficients are similar to other methods. It has 
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similar model assumptions except for the distribution of the random variable, but in comparison 

to BB, the command for running BLN in the computational software is constructed using the 

general code under the GLM framework since there is no established and validated commands 

available for running BLN.  

- Beta regression (BR): Unlike Frac, BR cannot account for scores at boundaries, i.e. values at 0 

or 1, and therefore requires the ‘squeezing’ process to recode dimension scores, the compressing 

process of which is likely to bias the estimations and reduce the precision.  

This empirical analysis has the following limitations: 

First, we included nine trials that focused on different disease areas and populations, which can be seen 

as a source of heterogeneity. However, this study does not intend to compare the size of treatment 

estimates across different trials but to compare whether different statistical methods can produce similar 

estimates under two estimand frameworks. Therefore, the results of this chapter should not be influenced 

by the magnitude of effect sizes and heterogeneity in trials.  

Second, this chapter focused on dimension scores in SF-36v1 and SF-36v2, and extrapolation to other 

versions of SF-36 and other types of PROs may require further validation. However, the SF-36 is a 

widely used generic PRO which shares similar data features (i.e. discrete, bounded, and skewed) with 

other PROs, and it may be more prone to ceiling effects or less responsive to subtle changes in some 

dimensions that are not targeted than a disease-specific measure.  

Third, the regression models were kept in simple and similar forms, i.e. only the treatment group and 

the baseline score of the corresponding dimension were included as independent variables, since the aim 

of this chapter is to compare different statistical methods but not to identify or determine the best model. 

Other potential effects such as time and clustering, i.e. hospital sites or centres, were not considered. As 

the majority of the statistical methods included are under the GLM framework, they can be extended for 

longitudinal analysis by using GLMM with coefficients estimated by MLE or GLM with coefficient 

estimated by GEE (Walters, 2009).  

Fourth, our empirical analysis was based on the real case data such that the ‘truth’ of the treatment effect 

is unknown (Morris, White and Crowther, 2019; Boulesteix et al., 2020). Therefore, we were not able 

to evaluate which statistical methods have less bias than other methods using results from this empirical 

analysis. Using real data to compare statistical methods in this chapter can show how robust the methods 

could be when applied to real case data. However, it still needs further investigation on how close the 

estimates produced by these methods are to the predefined ‘truth’, and which method remains robust 

when analysing different dimension scores of the SF-36 and when model assumptions are violated.  

The next chapter will develop a protocol for simulation analysis to evaluate the narrowed list of six 

statistical methods in terms of their estimation accuracy and model robustness in different scenarios. 
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Chapter 8 Protocol of simulation analysis of statistical 

methods for the analysis of PROs in RCT settings 

8.1 Introduction 

In the previous chapter (Chapter 7), a series of empirical analyses were conducted by applying identified 

statistical methods to RCT datasets that used PROs as clinical outcomes. However, as the ‘truth’ is 

unknown for real world datasets (Boulesteix et al., 2020), it still needs further investigation on how 

close the estimates produced by these methods are to the predefined ‘truth’, and whether the performance 

of these methods remain robust when analysing different dimension scores of PROs and when model 

assumptions are violated. Therefore, simulation analysis is needed to evaluate the statistical methods in 

terms of their accuracy and robustness using a number of performance measures such as bias, coverage 

of the 95% CIs, Type I error rate and power. This chapter establishes a simulation protocol to guide the 

simulation analysis in the next chapter. The five key steps proposed by Morris et al (Morris, White and 

Crowther, 2019), including aims, data-generating mechanism (DGM), estimands, methods, and 

performance measure (ADEMP), are adapted to develop this protocol.  

8.2 Aims  

This simulation study aims to evaluate whether the estimators (i.e. statistical methods) can estimate the 

predefined ‘truth’, i.e. compare the performance of the statistical methods in estimating the treatment 

effect under a range of scenarios including no treatment effect and different values of true treatment 

effects, using a number of performance measures. The statistical methods that were narrowed down 

from the previous chapters include MLR, Tobit, Median, Frac, OL, and BB.  

8.3 Data-generating mechanism 

Multiple DGMs are proposed to ensure the coverage of different scenarios, by varying the number of 

observations and predefined treatment difference, such that each DGM provides us with empirical 

results for a specific scenario (Morris, White and Crowther, 2019). Monte Carlo methods will be applied 

to generate data from pre-specified distributions. 

The SF-36 is used as the representative of PROs as it is found as the most used PROs in publicly funded 

RCTs in the UK (Qian et al., 2021). Because the layout and scoring of SF-36v1 and SF-36v2 partly 

overlapped with each other and SF-36v1 contains more variability in the number of possible values that 

a dimension score can have, the distribution of the SF-36v1 dimension scores that were collected in our 

RCTs (as described in Chapter 7) are used as the real-world dataset to guide the construction of DGMs.  
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The eight dimension scores in SF-36v1 have a different number of possible categorical values after 

discretisation. We aim to apply a similar DGM to construct simulated datasets for three different 

dimensions with a range of ordinal categorical values i.e. role limitation - emotional (RE) (𝑛 = 4), 

bodily pain (BP) (𝑛 = 10), and mental health (MH) (𝑛 = 26), where 𝑛 is the number of possible ordinal 

categorical values. BP is selected because it was used as the primary outcome in the Acupuncture trial 

(Thomas et al., 2006), and RE and MH are selected because they are the dimensions with the lowest and 

highest number of possible ordinal categorical values in SF-36v1. The possible ordinal categorical 

values of these three dimensions are presented in Table 8.1.  

Table 8.1 Possible ordinal categorical values of the three dimensions in SF-36v1 (RE, BP, MH) 

Dimensions  Possible ordinal categorical values 

RE (𝑛 = 4) 0, 33.3, 66.6, 100 

BP (𝑛 = 10) 0, 11.1, 22.2, 33.3, 44.4, 55.6, 66.7, 77.8, 88.9, 100 

MH (𝑛 = 26) 
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 
72, 76, 80, 84, 88, 92, 96, 100 

𝑛 represents the number of possible ordinal categorical values of a dimension score. BP, bodily pain; MH, mental 
health; RE, role limitation - emotional. 

We also plan to adapt a variation of predefined treatment difference to see whether these methods may 

fail when having different location shifts. This is to be conducted by adding different magnitudes of 

predefined values to the observations in the treatment group, and then conduct the analysis using these 

methods to measure whether they are able to detect the predefined ‘truth’. As these statistical methods 

are developed to solve different problems, results on a better performance model may vary according to 

different scenarios.  

Since one DGM may favour certain methods over others, we consider different combination of 

parameter values to observe if a method can cover a wide spectrum of potentially plausible situations. 

The dilemma of this is finding the appropriate distribution with predefined parameters that can depict 

the distribution of SF-36 dimension scores, which is typically bounded, skewed, and ordinal.  

The Normal distribution, denoted by 𝑁𝑜𝑟𝑚𝑎𝑙(µ, 𝜎2), is proposed to generate the SF-36 dimension 

scores. Of the three parameters, treatment difference (𝜃) is varied to test the performance of six included 

statistical methods under multiple scenarios, while mean (𝜇) and SD (𝜎) are kept the same. We use 

random sample generated under 𝑁𝑜𝑟𝑚𝑎𝑙(50, 222) for the base-case DGM, using evidence from our 

Acupuncture trial (Thomas et al., 2006) where the average mean score of the SF-36v1 BP score for the 

control group at the primary endpoint (i.e. 12-month post-randomisation) is 58, with a SD of 22. The 

distribution of the SF-36v1 BP score at 12-month post-randomisation is shown in Figure 8.1.  

As the statistical methods to be evaluated in this simulation produce estimates on different scales, the 

SES is used to compare the group difference produced by the different statistical methods. To simulate 

different magnitudes of the effect size, we derived the value of 0, 0.2, 0.5, 0.8, and 1.0 for the SES from 
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different degrees of the Cohen’s classified effect size (Sawilowsky, 2009; Cohen, 2013), representing 

no effect, small effect, median effect, large effect, and very large effect. With the value of SD fixed at 

22, the treatment difference (𝑑) is set at 0, 4.4, 11, 17.6, and 22 respectively. Table 8.2 presents the 

parameter specification using Normal distribution. The same set of parameters are used for all the three 

levels in SF-36v1 (i.e. RE, BP, and MH). The seeds and streams for the random-number generator are 

set the same to ensure that the exact same set of Normal distributions are used to produce scores for 

these three dimensions.  

An issue of generating data from the Normal distribution is that the simulated dimension scores may go 

beyond the boundaries of 0 and 100 for the SF-36 BP score. The following strategy is used to deal with 

this issue. Firstly, simulated scores exceeding the lower and upper bounds will be rounded to the values 

at boundaries, i.e. 0 or 100, and secondly the values on the continuous scale are discretised onto a 

categorical scale between 0 and 100. The discretisation techniques are determined by the number of 

possible ordinal categorical values of the simulated dimension score. For example, RE scores with four 

possible values will be discretised into 0, 33.3, 66.6, or 100. The discretisation techniques for these 

dimension scores in this simulation analysis are shown in Table 8.3.  

When adding a positive value to the treatment group, the discretisation techniques will underestimate 

the treatment difference if the sample is right bounded (i.e. censored to the upper bound at 100), and 

overestimate the difference if the sample is left bounded (i.e. censored to the lower bound at 0). However, 

we can never know the exact ‘truth’ after discretising the sample, except when the pre-specified group 

difference is set at zero, i.e. simulation under the null hypothesis. Thus, the pre-specified treatment 

difference to generate the sample before discretisation, and the observed treatment difference for the 

generated sample after discretisation will be recorded and presented. 

 

Figure 8.1 Distribution of the SF-36v1 bodily pain scores at 12-month post-randomisation from the 
Acupuncture trial 
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Table 8.2 Parameter specification for five DGMs using Normal distribution 

DGM 
Number 

Normal distribution 
generator (control group) 

 
Additional value add to 
treatment group 

Mean (𝝁) SD (𝝈)  
Group 
difference (𝒅) 

SES 

1 

50 22 

 0.0 0.0 
2  4.4 0.2 
3  11.0 0.5 
4  17.6 0.8 
5  22.0 1.0 

DGM, data-generating mechanism; SD, standard deviation; SES, standardised effect size.  

Table 8.3 Discretisation techniques for the three dimensions in SF-36v1 (RE, BP, MH) 

RE (𝒏 = 𝟒)  BP (𝒏 = 𝟏𝟎)  MH (𝒏 = 𝟐𝟔) 

Possible 
scores 

Discretisation 
techniques 

 
Possible 
scores 

Discretisation 
techniques 

 
Possible 
scores 

Discretisation 
techniques 

0 (−∞, 16.65]  0 (−∞, 5.55]  0 (−∞, 2] 

33.3 (16.65, 49.95]  11.1 (5.55, 16.65]  4 (2, 6] 

66.6 (49.95, 83.25]  22.2 (16.65, 27.75]  8 (6, 10] 

100 (83.25, +∞)  33.3 (27.75, 38.85]  12 (10, 14] 

    44.4 (38.85, 49.95]  16 (14, 18] 

    55.6 (49.95, 61.05]  20 (18, 22] 

    66.7 (61.05, 72.15]  24 (22, 26] 

    77.8 (72.15, 83.25]  28 (26, 30] 

    88.9 (83.25, 94.35]  32 (30, 34] 

    100 (94.35, +∞)  36 (34, 38] 

        40 (38, 42] 

        44 (42, 46] 

        48 (46, 50] 

        52 (50, 54] 

        56 (54, 58] 

        60 (58, 62] 

        64 (62, 66] 

        68 (66, 70] 

        72 (70, 74] 

        76 (74, 78] 

        80 (78, 82] 

        84 (82, 86] 

        88 (86, 90] 

        92 (90, 94] 

        96 (94, 98] 

        100 (98, +∞) 
𝑛 represents the number of possible ordinal categorical values of a dimension score. BP, bodily pain; MH, mental 
health; RE, role limitation - emotional. 
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8.3.1 Number of observations of a simulated dataset  

The number of observations (𝑛𝑜𝑏𝑠) (i.e. sample size) of each simulated dataset is determined using 

evidence from the 114 identified HTA trials that used PROs as primary clinical outcomes (Qian et al., 

2021). The overall sample size of these HTA trials ranges from 65 up to 7677, with the 5th, 50th, and 95th 

percentile being 102, 387, and 1,084 respectively. Given the right skewed distribution of their sample 

size, we decide to use 1600 as the maximum number of observations, and 100 as the minimum number 

of observations in each simulated dataset. The number of observations of the simulated dataset is set at 

100, 200, 400, 800, 1,200, and 1,600 under the null and alternative hypothesis. For each simulated 

dataset, half of the sample is assigned to the treatment group and half to the control group.  

8.3.2 Number of repetitions 

The number of repetitions (𝑛𝑠𝑖𝑚) is set at 5,000 for each scenario under both the null hypothesis and 

alternative hypothesis. The justification for the number of repetitions is described in Section 8.6.2.  

8.4 Estimands  

An estimand is a clear and explicit description of precisely what treatment effect is to be estimated in 

an RCT. It is made up of five connected attributes: the population, the treatments (you want to compare), 

the outcome or endpoint, how to account for intercurrent events and a population-level summary 

measures of how the outcome between the different treatment conditions will be compared.  

For the simulations four of the elements (population, treatments, outcomes, how to account for 

intercurrent events were unchanged, but the fifth the population-level summary measure of the how the 

outcome between the different treatment conditions will be compared was changed for some of the 

simulations. We adapt two estimand frameworks in this simulation study to compare estimates from the 

statistical methods that produce different types of outcomes, e.g. the difference in means from the MLR 

and OR from the ordered logit model.  

The first framework is called the scale-based estimand framework. The population-level summary 

measure of how the outcome between the different treatment groups used the mean or median in the 

treatment difference (𝜃) for methods that produce estimates on the untransformed scale, and used the 

logOR of the treatment difference for the population summary measure for methods that produce 

estimates on a transformed scale.  

The second framework is called the SES estimand framework, which unifies the estimated treatment 

difference from different methods using a standardisation procedure. The SES and its associated 
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standard error , denoted by 𝑆𝐸(𝑆𝐸𝑆), based on the Normal approximation of non-central t-distribution 

(Hedges, 1981) has been defined in Chapter 6 using the following formula. 

 𝑆𝐸𝑆 = 𝑍⁡ × √
1

𝑛1
+

1

𝑛2
=

𝑐𝑜𝑒𝑓(𝑇𝐸)

𝑆𝐸(𝑇𝐸)
× √

1

𝑛1
+

1

𝑛2
  (8.1) 

 𝑆𝐸(𝑆𝐸𝑆) = √
𝑛1+𝑛2

𝑛1𝑛2
+

𝑆𝐸𝑆2

2(𝑛1+𝑛2)
  (8.2) 

where Z stands for the Z-statistics; TE stands for the treatment effect; 𝑐𝑜𝑒𝑓(𝑇𝐸) stands for the estimated 

values for the treatment effect parameter; 𝑆𝐸(𝑇𝐸) stands for the SE of the treatment effect estimates; 

𝑆𝐸(𝑆𝐸𝑆) represents the SE of the SES; and 𝑛1  and 𝑛2  represents the number of observations (i.e. 

sample size) in each treatment group respectively. 

8.5 Methods of analysis 

Given the results from our previous empirical analyses in Chapter 7, six statistical methods are taken 

forward for this simulation analysis. These methods are categorised according to the type of estimates 

that they produce: 

- Untransformed scale-based methods: 

o Multiple linear regression (MLR)  

o Tobit regression (Tobit) 

o Median regression (Median) 

- Transformed scale-based methods: 

o Fractional logistic regression (Frac)  

o Ordered logit model (OL) 

o Beta-binomial regression (BB) 

Since the DGMs are simulated under the RCT settings, no other factors are introduced to influence the 

treatment difference. Therefore, these methods are applied to the simulated datasets by estimating the 

treatment effect without adjusting for covariates. The statistical package Stata/MP 17.0 is used for 

simulation analysis and MATLAB R2023a is used for data visualisation, and the Stata codes for 

conducting the simulation analysis are available in Appendix D.2.  

8.6 Performance measures 

The performance measures of interest are listed below. The estimated treatment coefficient from each 

statistical method is denoted using 𝜃𝑖 , and the pre-specified group difference is denoted using 𝜃. For 

untransformed scale-based methods (i.e. MLR, Tobit, and Median), 𝜃  is the predefined treatment 
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difference in mean or median. For transformed scale-based methods (i.e. Frac, OL, and BB), 𝜃 is 

supposed to be the logOR equivalence of the effect size, which is not available in this study. Under the 

null hypothesis, theta equals zero for all included statistical methods.  

8.6.1 Estimation of performance  

The main performance measures are bias, coverage of 95% CI, power and Type I error. Other 

performance measures listed below are considered and compared jointly in the simulation analysis. 

Table 8.4 describes the notation that is kept consistent in the following chapters.  

Table 8.4 Description of notation for the simulation analysis 

Notation Description 

𝑥 An estimand, and also the true value of the estimand, which is denoted as 𝜃 
for MLR, Tobit, and Median, and as logOR for Frac, OL, and BB under the scale-
based estimand framework; Under the SES estimand framework, it is denoted 
as SES for all methods.  

𝑛𝑜𝑏𝑠 Sample size of a simulated dataset. 
𝑛𝑠𝑖𝑚 Number of repetition used; the simulated sample size. 

𝑖 = 1,… , 𝑛𝑠𝑖𝑚 Indexes the repetitions of the simulation.  
𝑥 The estimation of 𝑥. 
𝑥𝑖 The estimate of 𝑥 from the 𝑖th repetition.  
𝑥̅ The mean of 𝑥𝑖 across repetition.  

𝑉𝑎𝑟(𝑥) The true variance of 𝑥, which can be estimated with large 𝑛𝑠𝑖𝑚. 
𝑉𝑎𝑟(𝑥𝑖) An estimated of 𝑉𝑎𝑟(𝑥) from the 𝑖th repetition. 

𝛼 The nominal significance level.  
𝑝𝑖  The p-value returned by the 𝑖th repetition. 

BB, beta-binomial regression; Frac, fractional logistic regression; logOR, log odds ratio; Median, median 

regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.  

Bias (𝜹) is defined as the average difference between the estimated values and the predefined ‘truth’. 

Due to the discretisation techniques attached to the DGMs, we can never know the exact ‘truth’, except 

when the pre-specified group difference is zero. Different biases are generated for the two estimand 

frameworks: the first is the bias in means or medians and logORs under the scale-based estimand 

framework, denoted as 𝛿𝜃  for MLR, Tobit, and Median and as 𝛿𝑂𝑅 for Frac, OL, and BB; and the second 

is the bias in SES under the SES estimand framework, denoted as 𝛿𝑆𝐸𝑆  for all methods.  

 𝛿𝑥 = ⁡
1

𝑛𝑠𝑖𝑚
∑ 𝑥𝑖
𝑛𝑠𝑖𝑚
𝑖=1 − 𝑥  (8.3) 

where 𝑥 represents the predefined ‘truth’ of the target estimand. It is defined as 𝜃 for MLR, Tobit, and 

Median, and defined as logOR for Frac, OL, and BB under the scale-based estimand framework; and 

defined as SES under the SES estimand framework. 𝑥𝑖 denotes the estimated values from each method; 

and 𝑛𝑠𝑖𝑚 is the number of repetitions of the simulation study.  
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Empirical standard error (𝑬𝒎𝒑𝑺𝑬𝒙) is the precision measure of the estimated values to the average 

(𝑥̅) for each method. The predefined ‘truth’ (𝑥) is not required to generate this measure. Relative % 

increase in precision (B vs A) compares the precision between different methods using EmpSE. 

 𝐸𝑚𝑝𝑆𝐸𝑥 =⁡√
1

𝑛𝑠𝑖𝑚−1
∑ (𝑥𝑖 − 𝑥̅)2
𝑛𝑠𝑖𝑚
𝑖=1   (8.4) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵⁡𝑣𝑠⁡𝐴) = ⁡100 ((
𝐸𝑚𝑝𝑆𝐸𝑥(𝐴)

𝐸𝑚𝑝𝑆𝐸𝑥(𝐵)
)
2
− 1)  (8.5) 

Mean squared error (𝑴𝑺𝑬) is calculated as the sum of the squared bias and variance of 𝑥𝑖, and it is 

reported to be more sensitive to the number of observations than bias or EmpSE (Morris, White and 

Crowther, 2019).  

 𝑀𝑆𝐸𝑥 =⁡
1

𝑛𝑠𝑖𝑚
∑ (𝑥𝑖 − 𝑥)

2𝑛𝑠𝑖𝑚
𝑖=1   (8.6) 

Average Model SE (𝑴𝒐𝒅𝑺𝑬) is the root of the average squared model SEs. The relative % error in 

ModSE measures whether the ModSE is overestimated or underestimated in comparison to EmpSE.  

 𝑀𝑜𝑑𝑆𝐸𝑥 = ⁡√
1

𝑛𝑠𝑖𝑚
∑ 𝑉𝑎𝑟̂
𝑛𝑠𝑖𝑚
𝑖=1 (𝑥𝑖)  (8.7) 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡%𝑒𝑟𝑟𝑜𝑟⁡𝑖𝑛⁡𝑀𝑜𝑑𝑆𝐸 = ⁡100 (
𝑀𝑜𝑑𝑆𝐸

𝐸𝑚𝑝𝑆𝐸
− 1)  (8.8) 

Coverage of CI is defined as the probability that a CI contains the predefined ‘truth’ (𝑥). For a (1 − 𝛼) 

CI, the coverage is expected to be exactly (1 − 𝛼) of the intervals containing 𝑥, else it is regarded as 

under- or over-coverage. Coverage for each DGM and statistical methods will be estimated as:  

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑥 = ⁡
1

𝑛𝑠𝑖𝑚
∑ 1(𝑥𝑙𝑜𝑤,𝑖 ≤ 𝑥 ≤ 𝑥𝑢𝑝𝑝,𝑖)
𝑛𝑠𝑖𝑚
𝑖=1   (8.9) 

Type I error is defined as the ‘false positive rate’, i.e. the probability to falsely reject the true null 

hypothesis that 𝑥 = 0, using an 𝛼  significance level of 0.05 or 5%. Power, denoted as 𝑃𝑜𝑤𝑒𝑟𝑥, is 

defined as the ‘true positive rate’, i.e. the probability to correctly reject the null hypothesis, when the 

alternative hypothesis is true.  

 𝑃𝑜𝑤𝑒𝑟𝑥 = ⁡
1

𝑛𝑠𝑖𝑚
∑ 1(𝑝𝑖 ≤ 𝛼)
𝑛𝑠𝑖𝑚
𝑖=1   (8.10) 
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8.6.2 Justification for the number of repetitions 

Three key performance measures for the simulation study are the accuracy measured by bias, precision 

measured by coverage of 95% CI, and the Type I error (under the null hypothesis scenarios) and power 

(under the alternative hypothesis scenarios). Monte Carlo standard error (SE) which quantifies 

simulation uncertainty and estimates the SE of a certain performance measure is used to justify the 

number of repetitions (Morris, White and Crowther, 2019).  

Assuming we are going to calculate a 95% CI for each of our estimates 𝑥𝑖, then the coverage of the 95% 

CIs for these estimates to be close to the nominal 95% or 0.95 level, i.e. for 95 out of the 100 simulated 

datasets and statistical methods, the CI should include the true value of the treatment effect parameter 

𝑥. Therefore, assuming the coverage is close to 95% or 0.95, with 5,000 simulations, the Monte Carlo 

SE of the estimate would be around 0.0031 leading to approximate 95% CI for the coverage of 0.944 to 

0.956, which we believe is a sufficient level of precision for the coverage performance measure (Table 

8.5). Similarly, with 5,000 simulations, the Monte Carlo SE of the estimated Type I error (assuming the 

Type I error is close to 0.05) will also be around 0.0031, leading to approximate 95% CI for the Type I 

error of 0.044 to 0.056, which we believe is a sufficient level of precision for the Type I error 

performance measure (Table 8.5).  

8.6.3 Graphs to present for visualisation  

Exploratory analysis will be carried out, mainly by graphs for each DGM, estimand, number of iterations, 

and method (Morris, White and Crowther, 2019). The following graphs and tables will be generated for 

each level under five DGMs to visualise the results: 

1. A summary table of the predefined parameter values and the observed parameter values.  

2. An example of distributions under the five DGMs, with predefined and observed treatment 

differences marked.  

3. A summary table of the estimated treatment difference by six statistical methods.  

4. A summary table of the number and percentage of missing values of estimated treatment 

coefficient from each statistical method. 

5. Distributions of estimated treatment coefficients and SESs.  

6. Scatterplots of the estimated treatment coefficients and associated SEs for each method.  

7. Scatterplots of the estimated treatment coefficients and SESs for one method vs another.  

8. Line plots of bias, MSE, coverage, Type I error, and power under the two estimand frameworks, 

and additional line plots of EmpSE, ModSE, and relative % error in ModSE under the scale-

based estimand framework, against the change of sample sizes for different levels, with 

predefined ‘truth’ marked. 



114 Chapter 8 Protocol of simulation analysis of statistical methods for the analysis 

of PROs in RCT settings  

8.7 Summary 

This chapter provides a practical plan for conducting simulation analysis to compare the accuracy and 

robustness of six statistical methods i.e. MLR, Tobit, Median, Frac, OL, and BB that were narrowed 

down from Chapter 7. Multiple scenarios for different types of PRO data i.e. with 4, 10, and 26 possible 

ordinal categorical values will be simulated using random-data generator from Normal distribution, and 

rescored by discretisation techniques. Two estimand frameworks are proposed to establish the target 

estimands in this simulation analysis. Various performance measures will be considered jointly to 

compare and contrast these statistical methods. Following this protocol, the next chapter will present the 

results of this proposed simulation analysis.  

Table 8.5 Monte Carlo SE of coverage and power with different number of simulations 

(a) Coverage 

𝒏𝒔𝒊𝒎 

Coverage 

Coverage 1-coverage 
Monte Carlo SE 
(Coverage) 

Approx 95%CI 

-2SE +2SE 

1,000 0.95 0.05 0.0069 0.936 0.964 

2,000 0.95 0.05 0.0049 0.940 0.960 

3,000 0.95 0.05 0.0040 0.942 0.958 

4,000 0.95 0.05 0.0034 0.943 0.957 

5,000 0.95 0.05 0.0031 0.944 0.956 

6,000 0.95 0.05 0.0028 0.944 0.956 

7,000 0.95 0.05 0.0026 0.945 0.955 

8,000 0.95 0.05 0.0024 0.945 0.955 

9,000 0.95 0.05 0.0023 0.945 0.955 

10,000 0.95 0.05 0.0022 0.946 0.954 

(b) Power 

𝒏𝒔𝒊𝒎 

 Power 

 
Power 1-power 

Monte Carlo SE 
(Power) 

Approx 95%CI 

 -2SE +2SE 

1,000  0.05 0.95 0.0069 0.036 0.064 

2,000  0.05 0.95 0.0049 0.040 0.060 

3,000  0.05 0.95 0.0040 0.042 0.058 

4,000  0.05 0.95 0.0034 0.043 0.057 

5,000  0.05 0.95 0.0031 0.044 0.056 

6,000  0.05 0.95 0.0028 0.044 0.056 

7,000  0.05 0.95 0.0026 0.045 0.055 

8,000  0.05 0.95 0.0024 0.045 0.055 

9,000  0.05 0.95 0.0023 0.045 0.055 

10,000  0.05 0.95 0.0022 0.046 0.054 
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Chapter 9 Results of simulation analysis of statistical 

methods for the analysis of PROs in RCT settings 

9.1 Introduction 

Following the simulation protocol in Chapter 8, the simulation analysis is conducted to evaluate the 

performance of the six statistical methods (i.e. MLR, Tobit, Median, Frac, OL, and BB) for the analysis 

of PROs in RCT settings. This chapter reports the characteristics of the simulated datasets under five 

proposed DGMs, and evaluates the performance measures of the six statistical methods for the analysis 

of PROs with different ordinal categorical values (levels) under each DGM.  

9.2 Characteristics of the simulated datasets 

Following the five proposed DGMs, each simulation generated one simulated dataset assuming an 

underlying latent Normal distribution to randomly generate the outcome. The base case (DGM 1) has a 

mean of 50 and SD of 22. The simulated latent Normally distributed PRO scores were then ‘discretised’ 

into an outcome with a discrete number of levels or scores (e.g. 4, 10 and 26 levels). Under each level, 

the mean PRO score in the control group was the same for all DGMs, but the mean PRO score in the 

treatment group varied by the five predefined treatment differences (i.e. SES of 0, 0.2, 0.5, 0.8, and 1.0). 

With 5,000 simulations and six sets of sample sizes (𝑛𝑜𝑏𝑠) per simulation (i.e. 100, 200, 400, 800, 1,200, 

and 1,600), a total number of (5,000 simulations × 6 𝑛𝑜𝑏𝑠) = 30,000 simulated datasets were produced 

under each level, resulting in (30,000 simulated datasets × 6 methods × 5 DGMs × 3 levels) = 2,700,000 

estimates in total (𝑛𝑡𝑜𝑡𝑎𝑙).  

Table 9.1 shows the parameter specification under the Normal distribution, the observed means in the 

control and treatment groups, and the observed treatment difference after applying the discretisation 

techniques, taking the average of the six 𝑛𝑜𝑏𝑠. A more detailed table on the parameters for each 𝑛𝑜𝑏𝑠 is 

available in the Appendix D (Table D.1). Figure 9.1 presents example distributions of five DGMs for 

different levels using scores generated from the same latent Normal distribution, with the observed 

average treatment difference and SDs marked. The example dataset used 400 observations since it is the 

closest to the median sample size of the 114 trials in the review on statistical methods that were used for 

analysing PROs published in the HTA Journal in Chapter 3 (Qian et al., 2021).  

The definition of the estimand framework is outlined in Chapter 6 and Chapter 8. Two estimand 

frameworks, for the population-level summary measure of treatment effect, are proposed for this 

simulation. The first is called the scale-based estimand framework that has two categories according to 

whether the treatment effect estimates from these six methods are in the form of differences in group 
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means or medians (MLR, Tobit, and Median) or logORs (Frac, OL, and BB). The second is called the 

SES estimand framework that uses the SES to unify the estimates of these six methods by dividing the 

estimate of the treatment effect by their associated SDs. This allows the comparison across these six 

methods. Table 9.2 provides the mean estimates from six different statistical methods under the five 

DGMs for each level using all observed estimates (𝑛𝑡𝑜𝑡𝑎𝑙 = 2,700,000), taking the average of the six 

𝑛𝑜𝑏𝑠. A more detailed table on the parameters for each 𝑛𝑜𝑏𝑠 are available in the Appendix D (Table D.2). 

Estimates for these methods under each DGM tend to decrease with an increase in the number of possible 

ordinal categorical scores, except for Median and BB. For example, under DGM 5 where the treatment 

difference is predefined as 22-point on the original latent Normally distributed PRO scale, the average 

treatment difference in MLR is 21.3 for level 4, 21.0 for level 10, and 21.0 for level 26. The average 

logOR estimates from OL are approximately two times higher than the logOR estimates from other 

methods.  

Table 9.3 summarises the missing values due to non-convergence for the six statistical methods under 

the five DGMs, taking the average of the six 𝑛𝑜𝑏𝑠. A more detailed table on the parameters for each 

𝑛𝑜𝑏𝑠 are available in the Appendix D (Table D.3). Except for Median and BB, non-convergence was not 

seen for the other included methods. BB showed a large number of missing estimates when analysing 

simulated PRO data with four possible ordinal categorical values (level 4), taking up to around 74% of 

the total estimates by BB for level 4 (111,002/150,000), and with a higher predefined treatment 

difference in level 4, BB tended to have more missing estimates (Table D.3). Median regression also 

produced around 0.1% missing values when analysing level 4. The degree of missingness for Median 

and BB decreased when analysing PRO scores with larger number of ordinal categorical values (e.g. 

level 10 or 26).
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Table 9.1 Comparison of predefined parameter values and observed parameter values 

DGM 
Predefined means 

 Observed means 

 Level 4  Level 10  Level 26 

Control 
Treat
ment 

Group 
Difference 

 Control 
Treat
ment 

Group 
Difference 

 Control 
Treat
ment 

Group 
Difference 

 Control 
Treat
ment 

Group 
Difference 

1 

50 

50 0.00  

49.99 

50.01 0.02  

50.03 

50.05 0.02  

49.98 

50.00 0.02 

2 54.4 4.40  54.36 4.37  54.36 4.33  54.29 4.31 

3 61 11.00  60.83 10.84  60.77 10.74  60.68 10.70 

4 67.8 17.80  67.18 17.20  67.02 16.99  66.92 16.94 

5 72 22.00  71.31 21.33  71.06 21.03  70.95 20.97 

Each cell contains up to a maximum of 30,000 estimates (= 5,000 simulations × 6 𝑛𝑜𝑏𝑠). DGM, data-generating mechanism. 
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Figure 9.1 Example distributions of the simulated dataset using the five DGMs under three levels (sample size = 400) 

The values in the bracket represent the mean and standard deviation of the displayed distribution. The first column represents the score distribution of the control group. 

DGM 1-5 represents the score distributions of the treatment group using the predefined SESs of 0, 0.2, 0.5, 0.8, and 1.0. Three rows represent three levels (i.e. 4, 10, and 26).   
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Table 9.2 Estimated treatment difference by six statistical methods for each level and each DGM (Ntotal = 2,700,000) 

Level DGM 

Scale-based estimand framework  SES estimand framework 

Mean or median  logORs  SES 

MLR Tobit Median  Frac OL BB  MLR Tobit Median Frac OL BB 

4 

1 0.019 0.020 0.235  0.001 0.002 0.001  0.001 0.001 0.004 0.001 0.001 0.001 

2 4.373 5.011 15.368  0.176 0.346 0.140  0.184 0.184 0.271 0.184 0.180 0.137 

3 10.845 12.626 16.247  0.441 0.864 0.344  0.459 0.455 0.454 0.455 0.440 0.337 

4 17.198 20.612 16.252  0.718 1.393 0.533  0.735 0.718 0.494 0.718 0.676 0.523 

5 21.327 26.250 16.254  0.913 1.754 0.658  0.920 0.887 0.460 0.884 0.814 0.645 

10 

1 0.019 0.017 0.096  0.001 0.002 0.001  0.001 0.001 0.003 0.001 0.001 0.001 

2 4.325 4.519 5.281  0.174 0.343 0.157  0.199 0.199 0.203 0.199 0.194 0.199 

3 10.736 11.305 10.862  0.437 0.856 0.388  0.496 0.496 0.403 0.493 0.475 0.495 

4 16.994 18.159 16.788  0.709 1.370 0.618  0.796 0.789 0.648 0.779 0.733 0.786 

5 21.030 22.791 21.526  0.898 1.714 0.772  0.998 0.982 0.799 0.963 0.888 0.977 

26 

1 0.017 0.016 0.033  0.001 0.002 0.001  0.001 0.001 0.001 0.001 0.001 0.001 

2 4.313 4.444 4.494  0.173 0.343 0.169  0.201 0.201 0.160 0.200 0.196 0.202 

3 10.704 11.096 10.852  0.435 0.854 0.421  0.501 0.502 0.389 0.497 0.479 0.500 

4 16.944 17.770 17.644  0.707 1.367 0.676  0.804 0.800 0.639 0.787 0.740 0.793 

5 20.968 22.238 21.943  0.895 1.711 0.849  1.008 0.997 0.796 0.972 0.897 0.984 
Each cell contains up to a maximum of 30,000 estimates (= 5,000 simulations × 6 𝑛𝑜𝑏𝑠). A total of 2,700,000 estimates are produced from the six statistical methods under 
five DGMs for three levels (= 30,000 estimates × 5 DGMs × 6 methods × 3 levels).  

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple linear regression; OL, 

ordered logit model; SES, standardised effect size; Tobit, Tobit regression.  

  



120 Chapter 9 Results of simulation analysis of statistical methods for the analysis of PROs in RCT settings  

Table 9.3 Number and percentage of missing values due to non-convergence for each level under five DGMs (Ntotal = 2,700,000) 

Level DGM 
MLR  Tobit  Median  Frac  OL  BB  Total 

N %  N %  N %  N %  N %  N %  N % 

4 

1 0 0.0  0 0.0  66 0.2  0 0.0  0 0.0  21,396 71.3  21,462 11.9 

2 0 0.0  0 0.0  38 0.1  0 0.0  0 0.0  21,781 72.6  21,819 12.1 

3 0 0.0  0 0.0  38 0.1  0 0.0  0 0.0  22,275 74.3  22,313 12.4 

4 0 0.0  0 0.0  40 0.1  0 0.0  0 0.0  22,408 74.7  22,448 12.5 

5 0 0.0  0 0.0  31 0.1  0 0.0  0 0.0  23,142 77.1  23,173 12.9 

Total 0 0.0  0 0.0  213 0.1  0 0.0  0 0.0  111,002 74.0  111,215 12.4 

10 

1 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  2 0.0  2 0.0 

2 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 

3 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4 0.0  4 0.0 

4 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  1 0.0  2 0.0 

5 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 

Total 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  9 0.0  10 0.0 

26 

1 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

2 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

3 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

4 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

5 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Each cell contains up to a maximum of 30,000 estimates (= 5,000 simulations × 6 𝑛𝑜𝑏𝑠). A total of 2,700,000 estimates are produced from the six statistical methods under 
five DGMs for three levels (= 30,000 estimates × 5 DGMs × 6 methods × 3 levels).  

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple linear regression; OL, 

ordered logit model; Tobit, Tobit regression.   
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(b) Level 10 
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(c) Level 26 

 
 

Figure 9.2 Histograms of theta or logOR by six different statistical methods for each level under five DGMs (sample size = 400) 
BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple linear regression; OL, 

ordered logit model; OR, odds ratio; Tobit, Tobit regression. 
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(a) Level 4 
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(c) Level 26 

 

Figure 9.3 Histograms of SES by six different statistical methods under the five DGMs for each level (sample size = 400) 

The red reference line represents the predefined treatment effect in SES.  

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple linear regression; OL, 

ordered logit model; SES, standardised effect size; Tobit, Tobit regression.
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(b) Level 10 
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(c) Level 26 

 
Figure 9.4 Scatterplots of SE vs. theta or logORs for each DGM (sample size = 400) 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; OR, odds ratio; SE, standard error; 
Tobit, Tobit regression.  
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(a) Level 4 
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(c) Level 26 

 

 

Figure 9.5 Scatterplots of theta using MLR as baseline for Tobit and Median, and of LogOR using Frac as 
baseline for OL and BB (sample size = 400) 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 

median regression; LogOR, log odds ratio; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit 
regression. 
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(c) Level 26 

 
Figure 9.6 Scatterplots of SES using MLR as baseline (sample size = 400) 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 

median regression; MLR, multiple linear regression; OL, ordered logit model; SES, standardised effect size; Tobit, 
Tobit regression. 
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9.3 Evaluation of statistical methods  

The six statistical methods are evaluated through exploratory analysis and performance measure analysis 

to compare their ability to estimate the predefined treatment effect under a range of scenarios that 

includes no treatment (i.e. treatment difference of zero) and a range of assumed true treatment difference 

(i.e. small, median, large, and very large values).  

9.3.1 Exploratory analysis 

A series of figures are graphed for exploratory analysis to identify outliers in this simulation analysis. 

Figure 9.2 and Figure 9.3 present the distributions of the estimated treatment effect coefficient (𝑥𝑖) and 

the estimated 𝑆𝐸𝑆̂𝑖 produced by the six statistical methods under the five DGMs for each level. Figure 

9.2 shows the estimates produced by these methods without any transformation under the scale-based 

estimand framework, so that the estimates from MLR, Tobit, and Median and from Frac, OL, and BB 

are not comparable. Figure 9.3 allows the comparison of estimates by these methods under the SES 

estimand framework as these estimates are standardised. Median only produced certain estimates when 

analysing each level. These estimates are about multipliers of the gap between two nearby categories. 

For example, the estimates were around multiples of 11.1 for level 10 (Figure 9.2). No bivariate outliers 

were seen in the scatterplots of estimated treatment coefficients (𝑥𝑖) against their associated SEs (𝑆𝐸̂(𝑥𝑖)) 

by different statistical methods under the five DGMs (Figure 9.4). Most methods tended to present no 

relationship or a positive relationship between 𝑥 and 𝑆𝐸̂(𝑥), whereas the Median had a striped pattern.  

Figure 9.5 shows the scatterplots of the estimated treatment coefficient by Tobit and Median against 

MLR, and estimated logORs by OL and BB against Frac under the scale-based estimand framework. 

Figure 9.6 presents the scatterplots of estimated SESs by different statistical methods against MLR under 

the SES estimand framework. When the magnitude of the predefined ‘truth’ increased, Tobit tended to 

produce numerically larger estimates than MLR when the possible ordinal categorical value was small, 

but its estimates became similar to MLR after standardisation (Figure 9.6). Similarly, the estimated 

logORs from OL tended to be numerically larger than Frac and BB, and this trend was more obvious 

with higher predefined ‘truth’. However, after standardisation, the difference of the estimated SES of 

these methods decreased. 

9.3.2 Analysis of performance measures 

Various performance measures are compared under the two predefined estimand frameworks. The key 

performance measures include the bias that measures the accuracy of these statistical methods for 

estimating the true treatment effect, the coverage of 95% CIs for including the true treatment effect and 
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the power or Type I error that measures the precision or the robustness of these methods. Performance 

statistics such as mean squared errors, empirical standard errors, and model-based SEs are also presented.  

Given the simulated datasets were generated from the Normal distribution where the treatment 

difference was in means, the predefined ‘truth’ for statistical methods that produced estimates on the 

logOR scale (i.e. Frac, OL, and BB) is unknown under the scale-based estimand framework, except for 

under the null hypothesis where the predefined ‘truth’ is zero. Therefore, statistical methods that 

produced estimates in logORs were only compared under the null hypothesis (i.e. DGM 1) under the 

scale-based framework. Since the predefined SESs are known, the SES estimates from the six statistical 

methods were comparable under the SES estimand framework.  

9.3.2.1 Under the scale-based estimand framework 

Under the scale-based estimand framework, estimates (𝑥𝑖) for MLR, Tobit, and Median are means or 

medians, denoted by 𝜃𝑖 , and estimates for Frac, OL, and BB are logORs , denoted by 𝑙𝑜𝑔𝑂𝑅𝑠̂
𝑖. 

9.3.2.1.1 Bias 

Bias measures the difference between the estimates and the predefined ‘truth’. Figure 9.7 presents the 

change in bias from the original scale-based methods and the transformed scale-based methods 

separately under the null hypothesis (DGM 1). When the predefined ‘truth’ is zero, both the original 

scale-based methods and the transformed scale-based methods were able to produce estimates close to 

the predefined ‘truth’. Their estimates fluctuated and gradually converged to the dash line (bias = 0) 

with the increase in 𝑛𝑜𝑏𝑠. Median presented larger bias than other methods especially for small number 

of levels. Since these methods produced estimates on different scales, their degree of biases were not 

comparable under the scale-based estimand framework.  

Figure 9.8 presents the change in bias estimated from the untransformed (i.e. original) scale-based 

methods under the alternative hypothesis (DGM 2-5). For MLR, Tobit, and Median, the bias was smaller 

for larger number of levels and higher 𝑛𝑜𝑏𝑠. When analysing a small number of levels, especially level 

4, Tobit tended to overestimate the treatment difference, and MLR tended to underestimate the treatment 

difference, but Tobit was more biased than MLR. However, when analysing a higher number of levels, 

the bias from Tobit became smaller than MLR.  

9.3.2.1.2 Mean squared error 

Under the null hypothesis, the MSE estimated by the MLR and Tobit in the original-scale based methods, 

and BB and Frac in the transformed scale-based methods, overlapped with each other, decreasing with 

the increase in 𝑛𝑜𝑏𝑠, and coverages to the dash line representing MSE = 0; whereas their counterparts, 

OL and Median, presented comparatively high MSE respectively (Figure 9.9). Under the alternative 
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hypotheses, MLR and Tobit showed similar trend, with Tobit having slightly larger MSE for level 4 but 

smaller MSE for level 26 while the predefined ‘truth’ was large (i.e. under DGM 4 & 5). This indicates 

that Tobit was less precise than MLR for small number of levels (i.e. level 4), but more precise than 

MLR for large number of levels (i.e. level 26). Despite the MSE of Median dropped dramatically with 

the increase in the number of levels, Median had the worst precision in comparison with MLR, and 

Tobit in all scenarios (Figure 9.10).  

9.3.2.1.3 Empirical standard error and average model standard error 

EmpSE measures how precise the estimates are to the average estimates of each statistical method 

(Figure 9.11), and the average ModSE measures the square root of the average squared model SEs 

(Figure 9.12). Comparing these two performance measures using the relative % error in ModSE can 

measure to what degree the ModSE is overestimated or underestimated (Figure 9.13).  

The EmpSE for MLR and Tobit remained similar under different scenarios, whereas Median was 

associated with higher EmpSE, i.e. less precision to the average estimates, when the number of levels is 

small. As shown in Figure 9.11(a) Median tended to have less EmpSE and converged to the trend for 

MLR and Tobit, when analysing outcome data with more discrete values (i.e. level 10 and level 26). 

The EmpSEs for the transformed scale-based methods increased for a higher predefined treatment effect, 

especially for OL as shown in Figure 9.11(b). This means that OL tended to have less precision to its 

average estimates than Frac and BB, which were associated with EmpSE approaching zero.  

The ModSE became small with the increase in 𝑛𝑜𝑏𝑠. The ModSE for each method remained similar 

across different DGMs for MLR and Tobit, whereas the Median was associated with higher ModSE 

under DGM 1 and 2 (Figure 9.12(a)). The ModSE of the transformed scale-based methods also showed 

a decrease with higher 𝑛𝑜𝑏𝑠, but their ModSE became higher with the increase in predefined ‘truth’, 

especially for OL (Figure 9.12(b)). 

For the original scale-based methods (Figure 9.13(a)), the relative % error in ModSE for MLR and Tobit 

was above the reference line y = 0 when the 𝑛𝑜𝑏𝑠 was set at 200 or 400, indicating that their ModSEs 

were overestimated by approximately 0.5% - 3%. The relative % error in ModSE for MLR and Tobit 

fluctuated below the reference line y = 0 when the 𝑛𝑜𝑏𝑠 was higher than 400 for most scenarios, meaning 

that their ModSEs were underestimated. The relative % error in ModSE for Tobit had an obvious 

decrease with the increase in predefined treatment difference. The relative % error in ModSE for Frac 

and OL shared a similar pattern with MLR and Tobit, with an exception that the relative % error in 

ModSE for OL was overestimated for most scenarios (Figure 9.13(b)). These trends indicate biases in 

the estimation of ModSEs for these methods, but they were much less than the bias in the estimation of 

ModSEs for Median in comparison with MLR and Tobit at all three levels, and for BB in comparison 

with Frac and BB at level 4. 



138 Chapter 9 Results of simulation analysis of statistical methods for the analysis of 

PROs in RCT settings  

9.3.2.1.4 Coverage of 95% CIs 

Figure 9.14 and Figure 9.15 show the coverage of 95% CIs for 𝑥𝑖 with the change in 𝑛𝑜𝑏𝑠, where the 

dashed reference line represents coverage = 0.95. This measures the probability that a CI would include 

the predefined ‘truth’. Under the null hypothesis (DGM 1), most methods were able to produce the 

estimates of zero, except for Median. Under the alternative hypothesis (DGM 2-5), the coverage of MLR 

and Tobit deviated from the reference line with the increase in the predefined ‘truth’ (the assumed true 

treatment effect) and the increase in 𝑛𝑜𝑏𝑠, and this phenomenon was more obvious for Tobit at level 4. 

However, for larger number of levels (i.e. for level 10 and 26), Tobit had less deviations from the 

reference than MLR did. Median had better performance in coverage when the simulated PRO scores 

became closer to continuous data (level 26), but its coverage was still not as good as MLR or Tobit 

under most scenarios.  

9.3.2.1.5 Type I error and power 

Figure 9.16 shows the Type I error for 𝑥𝑖 with the change in 𝑛𝑜𝑏𝑠 under the null hypothesis (DGM 1), 

where the dash line represents the Type I error of 0.05. It measures the probability of incorrectly rejecting 

the true null hypothesis. The lines of MLR and Tobit, Frac and OL overlapped with each other at y = 

0.05 when the significance level was set at 𝛼 = 0.05. The Median had Type I error at around 0.5 under 

DGM 1, indicating that Median produced far more false positives than MLR and Tobit. At level 4, BB 

had less Type I error at around 0.01, approximately five times smaller than Frac and OL. 

Figure 9.17 shows the power measured by 𝜃𝑖  with the change in 𝑛𝑜𝑏𝑠 under the alternative hypothesis 

(DGM 2-5). The power measures the probability of rejecting the null hypothesis when it is false. The 

increasing trend in power of MLR and Tobit overlapped with each other, while the power of Median 

was lower than MLR and Tobit under all DGMs for level 4 and under DGM 2-5 for level 10 and 26. 

The power of transformed scale-based methods overlapped in most scenarios, except for DGM 2 under 

level 4 where the power of BB increased slower with the increase in 𝑛𝑜𝑏𝑠.  
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Figure 9.7 Line plots of bias under the scale-based estimand framework with the change of sample size 

for different levels under the null hypothesis (DGM 1) 

 
Figure 9.8 Line plots of bias under the scale-based estimand framework with the change of sample size 

for different levels under the alternative hypotheses (DGM 2-5) 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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Figure 9.9 Line plots of mean squared error (MSE) under the scale-based estimand framework with the 

change of sample size for different levels under the null hypothesis (DGM 1) 

 
Figure 9.10 Line plots of mean squared error (MSE) under the scale-based estimand framework with the 

change of sample size for different levels under the alternative hypotheses (DGM 2-5) 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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(a) Original scale-based methods 

 
(b) Transformed scale-based methods 

 
Figure 9.11 Line plots of empirical standard error (EmpSE) under the scale-based estimand framework 

with the change of sample size for different levels 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; LogOR, log odds ratio; Median, median 
regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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(a) Original scale-based methods 

 
(b) Transformed scale-based methods 

 
Figure 9.12 Line plots of average model standard error (ModSE) under the scale-based estimand 

framework with the change of sample size for different levels 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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(a) Original scale-based methods 

 

(b) Transformed scale-based methods 

 
Figure 9.13 Line plots of relative % error in ModSE under the scale-based estimand framework with the 

change of sample size for different levels 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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Figure 9.14 Line plots of coverage for theta or LogORs with the change of sample size for different levels 

under the null hypothesis (DGM 1) 

 
Figure 9.15 Line plots of coverage with the change of sample size for different levels under the 

alternative hypotheses (DGM 2-5) 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; Tobit, Tobit regression. 
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Figure 9.16 Line plots of Type I error for theta or logOR with the change of sample size for different 
levels under the null hypothesis (DGM 1) 

Theta presents the original estimates under the scale-based estimand framework. BB, beta-binominal regression. 
DGM, data-generating mechanism; Frac, fractional logistic regression; Median, median regression; MLR, multiple 
linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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(a) MLR, Tobit, and Median 

 

(b) Frac, OL, and BB 

 
Figure 9.17 Line plots of power for theta or logOR with the change of sample size for different levels 

under the alternative hypotheses (DGM 2-5) 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.  
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9.3.2.2 Under the SES estimand framework 

9.3.2.2.1 Bias 

The estimated SESs in treatment difference for all six methods are compared using the predefined ‘truth’ 

in SES, i.e. 0, 0.2, 0.5, 0.8, and 1.0 for five DGMs. Under the null hypothesis, these six methods were 

able to produce estimated SESs at or around zero. For the majority of the methods, the bias in SESs 

tended to increase with an increase in the predefined SES, and dimensions with a smaller number of 

possible values tended to have larger bias. Except for Median, all methods tended to underestimate the 

predefined SES, and the degree of underestimation was greater in smaller levels. This is shown as the 

line of each method gradually deviating from the reference line in Figure 9.18. The MLR had the 

smallest magnitude of bias, followed by Tobit and Frac under level 4 or BB under level 10 and 26. 

Ignoring Median, BB had the highest bias for level 4, but being replaced by OL for level 10 and 26.  

9.3.2.2.2 Mean squared error 

Under level 4, Median and BB had larger MSE than other methods, with their trend lines above the 

majority. When fitting outcome data with more discrete values (i.e. level 10 and 26), the MSEs for 

Median and BB became smaller and closer to other statistical methods (Figure 9.19). The MSE of MLR, 

Tobit, Frac, and OL almost overlapped with each other in most scenarios except that the MSE of OL 

was slightly larger under DGM 4 and 5. Therefore, Median and BB were less precise than other methods 

when the data was less continuous, and Median and OL were less precise when the predefined treatment 

effect was large. Median was associated with larger numerically MSEs than other methods.  

9.3.2.2.3 Coverage of 95% CIs 

Figure 9.20 shows the line plots of coverage measured by SES with the change of 𝑛𝑜𝑏𝑠 for different 

levels, where the dashed reference line represents coverage = 0.95. Under the null hypothesis, most 

methods were able to produce the coverage of 0.95, except for Median under all three levels and for BB 

under level 4. For these methods, the coverage deviated from the reference line with the increase in the 

predefined ‘truth’ and the increase in the 𝑛𝑜𝑏𝑠, and this phenomenon was the most obvious for OL under 

DGM 4 and 5. With the increase in the number of possible values (i.e. at level 10 and 26), the coverage 

of OL increased but still remained far from the reference line in DGM 4 and 5.  

9.3.2.2.4 Type I error and power 

Figure 9.21 presents the Type I error under the null hypothesis (DGM 1) and power under a variety of 

assumed non-zero true treatment effects measured by SES (DGM 2-5) with the change of 𝑛𝑜𝑏𝑠  for 

different levels. Under the null hypothesis, most methods can correctly produce the Type I error of 0.05, 

shown as the lines of these methods overlapped at 0.05, whereas Median had much higher Type I error 
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than other methods. Under the alternative hypotheses, the lines of the majority methods except for 

Median overlapped and converged to the power of 1 with the increase in 𝑛𝑜𝑏𝑠, at around 1,600 for DGM 

2, 400 for DGM 3, and 200 for DGM 4 and 5. These methods are more likely to have higher power at a 

given 𝑛𝑜𝑏𝑠 when the predefined treatment effect increased. BB showed similar pattern to other methods 

under the alternative hypothesis, with an exception that it had less power than the rest of methods at 

level 4 under DGM 2. The power of Median is less than other methods in most scenarios. Its power 

remained at 0.5 for all five DGMs at level 4, but it turned to have similar pattern with other methods at 

level 10 and level 26 when the predefined treatment effect increased (DGM 4 and 5).  

  



9.3 Evaluation of statistical methods  149 

 

 

 
Figure 9.18 Line plots of bias under the SES estimand framework with the change of sample size for 

different levels 

 
Figure 9.19 Line plots of mean squared error (MSE) under the SES estimand framework with the change 

of sample size for different levels 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; SES, standardised effect size; Tobit, 
Tobit regression. 
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Figure 9.20 Line plots of coverage for SES with the change of sample size for different levels 

 
Figure 9.21 Line plots of Type I error and power for SES with the change of sample size for different 

levels 

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; SES, standardised effect size; Tobit, 
Tobit regression.  
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9.4 Discussion 

This chapter presents the results of a simulation analysis that was conducted following the simulation 

protocol established in Chapter 8. It compared the performance of six statistical methods (i.e. MLR, 

Tobit, Median, Frac, OL, and BB) in estimating the predefined treatment effect of PROs under two 

estimand frameworks considering a range of scenarios in RCT settings, using the Monte Carlo methods. 

The key performance measures of the six statistical methods were compared, i.e. bias, coverage, and 

Type I error under the null hypothesis of no treatment difference and power under a variety of assumed 

non-zero true treatment effects, and other performance measures including the MSE, EmpSE, ModSE 

and relative % error in ModSE were presented.  

Among the untransformed scale-based methods (i.e. MLR, Tobit, and Median), MLR performed better 

than other methods in terms of analysing simulated PRO datasets in RCT settings with a wide range of 

possible dimension levels. It was associated with little bias in the estimate, small mean squared error, 

and appropriate coverage of 95% CIs compared to Median and Tobit under most of the simulated 

scenarios. Tobit had slightly smaller bias with its coverage of 95% CIs closer to the 0.95 reference line 

than MLR when the predefined treatment difference is large (i.e. DGM 5) for level 10 and 26 under the 

scale-based estimand framework. However, it had larger bias and worse coverage than MLR when the 

number of possible categorical values was small (i.e. level 4). Median showed extremely large bias and 

errors, associated with low power and coverage compared to other statistical methods for most scenarios 

especially under level 4. The Type I error of Median was found to increase with the sample size under 

the null hypothesis, which can be explained by the decrease in SE with the increase in sample size, while 

the biased estimates from Median remain the same due to the discretisation techniques for generating 

the simulated dataset.  

Among the transformed scale-based method (i.e. Frac, BB, and OL) that require the application of 

discretisation techniques, Frac generally had better performance. It was associated with coverage around 

two times closer to 0.95 than OL and BB at level 4. Under the SES estimand framework, it had little 

bias, small errors, and appropriate coverage among the six methods, performing the second best after 

MLR. OL showed larger magnitude of bias under most of scenarios, and it had much worse coverage 

than its counterpart with the increase in the sample sizes and predefined treatment difference, which 

dropped to 0 for level 4, and to around 0.5 for level 10 and 26 under the SES estimand framework. BB 

produced over 70% missing estimates due to non-convergence when analysing outcomes with a small 

number of categorical values (i.e. level 4) in this simulation. However, BB had slightly better 

performance than Frac and OL in other scenarios. The use of BB for PROs with a small number of 

possible values in other software needs to be further investigated and discussed. 
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When analysing PRO with four possible ordinal categorical values (i.e. level 4), the missingness caused 

by the non-convergence of BB was widely seen in Stata. A few options were tried to loosen the criteria 

for convergence such as decreasing the tolerance level and increasing the number of simulations, or 

opting for difficult option in Stata, but convergence was still not achieved. In addition, due to the 

non-concaved log likelihood estimation of BB in Stata, it took the maximum number of simulations by 

default of 300 in Stata, resulting in slow estimation procedure under level 4. Further investigation was 

made on this issue by retrieving a few non-converged datasets, rerunning them in Stata, and fitting them 

in an alternative computational software, i.e. R. The results show that Stata still failed to produce 

converged estimates for BB due to the non-concave log likelihood estimation, but R produced converged 

estimates for BB using the same datasets. We believe that it is not sensible to merely use R to fit BB 

and to use Stata to fit other methods, as their estimations may not be consistent (Hodges et al., 2022). 

After further consideration, we decided not to rerun the entire simulation in R because the command for 

BB in R is also a user-developed package as the betabin command in Stata, such that it would be 

hard to decide the results of which software package to present if they produced different estimates.  

Previous studies (Austin, Escobar and Kopec, 2000; Pullenayegum et al., 2010; Meaney and Moineddin, 

2014) have conducted simulation analyses for the comparison of statistical methods for the analysis of 

PROs, but these studies focused on various groups of methods, proposed different DGMs, and made 

inconsistent recommendations on what statistical methods are more appropriate to use. This study 

compared six commonly used or proposed statistical methods for the analysis of PROs under multiple 

scenarios, with a thorough comparison in the performance measures of these included methods. The 

outcomes can be extrapolated to other popular PROs similar to SF-36, such as the BDI, HADS, and 

potentially preference-based PROs such as SF-6D, and EQ-5D. 

This simulation study has the following limitations: 

First, this simulation study considered 90 scenarios, i.e. five DGMs (five predefined treatment 

differences) to produce PRO scores under three different number of levels (4, 10, and 26), using six 

different sample sizes 𝑛𝑜𝑏𝑠. These scenarios are not able to represent all possible distributions of PRO 

that would appear in an RCT setting. However, the selection of these parameters was evidence-based, 

and the same set of parameters were used to compare performance measures across PRO data with 

different levels. The parameters for the DGMs used the observed mean and SD of the SF-36 pain score 

that was used as the primary outcome in the Acupuncture trial (Thomas et al., 2006). The categorical 

values of PROs to simulate (level 4, 10, and 26) were based on the minimum, median, and maximum 

number of categories of the SF-36v1 dimension scores, and the SF-36 or SF-6D was found to be the 

most popular PRO in use with the evidence from the published trials in the Health Technology 

Assessment Journal (Qian et al., 2021). The predefined treatment effect was derived from different 

degrees of the Cohen’s classified effect size (Sawilowsky, 2009; Cohen, 2013). 
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Second, the use of Normal distribution assuming an underlying latent variable to generate simulated 

datasets may favour original scale-based methods such as MLR and Tobit (Morris, White and Crowther, 

2019). Alternatively, other distributions could be used to produce the simulated datasets (Meaney and 

Moineddin, 2014; Najera-Zuloaga, Lee and Arostegui, 2018), for example, the use of beta-binomial 

distribution to generate PRO data is seen in the simulation analysis comparing two approaches to achieve 

the BB by Najera-Zuloaga et al (Najera-Zuloaga, Lee and Arostegui, 2018), but similarly it would favour 

the transformed scale-based methods such as BB and OL.  

If one believes that the PRO is measuring an underlying latent continuous variable, then use of the 

continuous Normal distribution for the simulations (albeit followed by a ‘discretisation’ process to 

render the outcome more like those observed) may be a reasonable and sensible assumption. However, 

if one believes the PRO is measuring an underlying latent discrete variable then the beta-binomial 

distribution may be a more appropriate underlying distribution to base the simulations on. Latent 

variables are abstract concepts that cannot be directly measured. So unfortunately, we cannot empirically 

test whether the underlying latent variable for the PRO is continuous or discrete and pragmatically we 

assumed the former (i.e. it was continuous). The Normal distribution is preferred to the beta-binomial 

distribution in this simulation analysis not only because of its simplicity and its wide application (Yensy, 

2021), but also because we believe that the PRO is by nature continuous. 

Third, for the treatment effect we assumed a ‘location shift’ on the underlying latent continuous 

Normally distributed PRO, i.e. the underlying distribution for the outcome is ‘shifted’ to the right so the 

mean of the new distribution is x-points higher (i.e. 4.4, 11, 17.8 or 22). Again, this assumption may 

favour statistical methods that assume the outcome is continuous.  

This simulation study only looked into the simple ‘location shift’, i.e. the mean and the SD of the Normal 

distribution was set at 50 and 22 for all scenarios. As described in Chapter 8, the mean and SDs were 

set using the evidence from the Acupuncture trial. If the mean was set at a higher value, the location 

shift would be more influenced by the ceiling effect given the current set of predefined treatment 

differences, i.e. there would be more values censored at the upper bound, and thus setting the mean at a 

higher value will make the observed treatment effects farther from the predefined value. If the mean was 

set at a lower value, there would be more space to move up on the scale, such that the location shift 

would be less influenced by the ceiling effect given the current set of predefined treatment differences, 

i.e. the observed treatment effects would be closer to the predefined value. If the baseline PROs were 

more scattered (i.e. having a comparatively high SD), with the ‘location shift’ to the right of the scale, 

the new distribution could be less scattered due to the ceiling effect depending on the degree of ‘shift’, 

which would be shown as having a smaller SD than the predefined value. This occurred in the example 

simulation datasets (Figure 9.1), where the observed SDs in the control and treatment groups were 

different from each other due to a ceiling effect.  
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In addition to the ‘location shift’, there could also be a change in the shape of the distribution. For 

example, when simulating from Normal distributions, the SD could be different in the two groups due 

to the effect of treatment. However, this simulation study only considered the simple scenario where the 

SD of two groups were assumed the same. The discretisation procedure is the only factor that may 

change the shape of the simulated PROs in this simulation besides the ceiling effect. 

Fourth, the discretisation techniques were required in this study to simulate the ordinal characteristics 

of the PRO data. The simulated datasets in this simulation analysis were discretised into equally spaced 

values, such that whether the conclusion from this simulation is generalizable to non-equally spaced 

PROs needs to be further investigated. However, there is no standard way to recode the PRO data, 

particularly for the BB and Frac models. Arostegui et al. (2013) have compared three different ways to 

recode SF-36v1 dimension scores, and proposed an optimal discretisation approach based on the 

goodness-of-fit. However, their proposed methods are data-dependent and may not be applicable for 

equally spaced PRO scores, which constrains its generalisability.  

Also, the discretisation of the Normally distributed latent PRO into 4, 10, or 26 levels or discrete values 

may mean that all the statistical methods produce a slightly biased estimate of the true treatment effect 

(as the observed differences in mean scores from the simulations show). Therefore, this discretisation 

procedure makes it impossible to observe the exact predefined treatment difference of 4.4, 11, 17.8, 22 

points on the underlying Normally distributed scale, except when the predefined treatment difference is 

set at zero, i.e. under the null hypothesis. Hence, when analysing under the alternative hypothesis, i.e. 

the predefined treatment difference is not set at zero, the accuracy of these methods, estimated by the 

bias performance measure, may not be reliable. 
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This thesis, entitled ‘comparison of different statistical methods for the analysis of patient-reported 

outcomes (PROs) in randomised controlled trials (RCTs)’, aimed to identify, describe, and compare 

different statistical methods that can be used for the analysis of PROs in RCT settings and make 

recommendations for the most appropriate statistical methods of analysis.  

The identification of available statistical methods for PRO analysis was carried out by conducting two 

reviews on the statistical methods that have been developed for analysing PROs (Chapter 2), and the 

statistical methods that have been applied for the analysis of PROs in the UK’s publicly funded RCTs 

(Chapter 3). The majority of publicly funded RCTs were found to use a PRO as one of their clinical 

outcomes, and over a third of the RCTs reported using a PRO as the primary outcome. Classical 

statistical methods such as the t-test, multiple linear regression (MLR), and analysis of covariance 

(ANCOVA) and their extensions to deal with correlated responses, such as mixed models, are widely 

used for the statistical analysis of PROs. This is despite the fact that complex statistical methods to deal 

with the bounded, skewed, and ordinal properties of the PROs have been developed and are ready to 

use.  

Chapter 4 specified the research aim and objectives and listed the identified statistical methods that can 

be considered for the analysis of PROs and the criteria to consider when conducting statistical analysis 

of PROs in RCTs. Chapter 5 then defined an appropriate statistical method for analysis of PROs in RCTs 

as one that:  

1. Can compare two or more treatment arms; 

2. Can adjust for confounding factors, including baseline PRO score; 

3. Can produce an estimate of treatment effect and associated confidence intervals (CIs); 

4. Can handle a bounded/censored scale; 

5. Requires the least amount of recoding to use the statistical method.  

The identified list of 29 statistical methods was filtered in Chapter 5 with a series of justifications, and 

10 statistical methods remained for further comparison, which includes MLR, Tobit regression (Tobit), 

Median regression (Median), censored least absolute deviations regression (CLAD), ordered logit model 

(OL), ordered probit model (OP), beta-binomial regression (BB), binomial-logit-Normal regression 

(BLN), fractional logistic regression (Frac), and beta regression (BR). 

The description of the 10 filtered statistical methods were presented under the generalized linear model 

(GLM) framework in Chapter 6. An example of an RCT dataset that used Short Form-36 (SF-36) mental 

health scores as the primary outcome to explain the application of these methods in the computational 
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software Stata and the interpretation of the estimates from each statistical method was also presented. 

These statistical methods were then applied to nine RCT datasets with SF-36 as clinical outcomes in 

Chapter 7, and their estimates were compared under two estimand frameworks. Based on their model 

performances, the 10 statistical methods were narrowed down to six methods, including MLR, Tobit, 

Median, OL, BB, and Frac.  

The comparison of the narrowed list of statistical methods was achieved using Monte Carlo methods to 

evaluate their accuracy of estimating the predefined treatment effect of PROs under a range of scenarios 

in RCT settings (Chapter 8 and Chapter 9). The key performance measures i.e. bias, precision, coverage, 

and power or Type I error of the different methods under multiple scenarios were compared and 

discussed.  

In this chapter, recommendations on the most appropriate statistical methods for the analysis of PROs 

in RCT settings will be proposed and discussed under different scenarios with the evidence from their 

technical details (Chapter 6), and their model performances in the empirical analysis (Chapter 7) and 

the simulation analysis (Chapter 9).  

10.1 Recommendations on what statistical methods to use  

MLR is recommended as the universal statistical method for the analysis of PROs in RCT settings under 

the scale-based estimand framework and the standardised effect size (SES) estimand framework. This 

recommendation is a trade-off on various aspects of the model performance, and is made on the premise 

that the same statistical method is expected to be used for the analysis of all dimension scores in a multi-

dimension PRO such as SF-36. MLR is also recommended by other studies that compared different sets 

of statistical methods for PRO analysis (Walters and Campbell, 2005; Pullenayegum et al., 2010; Coens 

et al., 2020). From a medical statistician’s point of view, MLR requires no transformation of the 

response variable, it produces point estimates that are based on the untransformed scale of measurement 

and are easy to interpret, and is a robust method when faced with the violation of model assumptions 

(Lumley et al., 2002; Collister et al., 2021), particularly when the population mean and difference in 

population means between the randomised groups is an appropriate population level summary measure 

of the treatment effect. From a health economist’s point of view, the mean treatment difference in a PRO 

is commonly used for the calculation of incremental cost-effectiveness ratio (ICER), which represents 

the additional cost of one unit increase in a PRO to inform the results of a cost-effectiveness analysis, 

than other estimands such as medians or ORs (Bang and Zhao, 2012).  

Other statistical methods can be considered under different scenarios including the types of targeted 

population summary measures, the assumptions of the PRO distributions, and the number of possible 

categorical values of a PRO dimension.  



10.1 Recommendations on what statistical methods to use  157 

 

 

Tobit is recommended to analyse PROs with no less than 10 possible categorical values if the average 

treatment difference is the targeted population summary measure. When analysing a small number of 

levels, especially level 4, Tobit tended to overestimate the treatment difference, and MLR tended to 

underestimate the treatment difference, but Tobit was more biased than MLR. The undercoverage of 

Tobit under level 4 can result from bias, heteroscedasticity, or non-Normality (Pullenayegum et al., 

2010). Tobit is shown to have better model performance for the analysis of outcome data with more 

discrete values (i.e. level 10 and 26), which is evident by previous studies that found Tobit to be 

consistent and efficient under the Normality assumption of residuals and homoscedasticity (Austin, 

Escobar and Kopec, 2000; Wilhelm, 2008).  

Although Median, a non-parametric statistical method, theoretically makes no assumption about the 

distributions of the outcome variable, it has been found to fail when the outcome variable is discrete 

(Padellini and Rue, 2018). Some degree of smoothness should be artificially imposed to apply quantile 

regression to ordered data, such as adding a uniformly distributed noise to the ordered data (Machado 

and Santos Silva, 2005). This explains why the simple median regression produced unsatisfactory 

estimates in striped patterns with poor performance when analysing the small number of possible levels 

in the empirical analysis and the simulation analysis. CLAD, a censored form of Median, can be used 

as a substitute to Tobit (Austin, 2002), which is also based on the premise that the latent PRO scores 

exceeding the low or high boundaries is possible and meaningful (Sullivan, 2011). Similar to Median, 

it is supposed to have better model performance when facing the non-Normally distributed residuals and 

homoscedasticity, but it was found to be relatively inefficient in our empirical analysis. This is because 

CLAD takes extra time to run compared to other methods as it uses bootstrapping to generate CIs, it 

does not provide p-values directly, and it may not converge on some occasions even when increasing 

the number of iterations. A study comparing Tobit, Median, and CLAD using the HUI scores found that 

Median and CLAD tended to produce estimates with similar patterns and their estimates tend to be 

shrunk to zero compared to MLR and Tobit (Austin, 2002). We therefore do not recommend the use of 

Median or CLAD for the analysis of PRO data, especially when the number of possible levels is small. 

Frac is recommended as the universal statistical method for the analysis of PROs in RCT settings if the 

(log) odds ratio (ORs) is the preferred population summary measure. In the simulation analysis, the 

power performance measures of MLR and Frac were found to be similar, which is evident in a simulation 

study comparing MLR, BR, and Frac in two sample design settings (Meaney and Moineddin, 2014). 

Among the transformed scale-based methods (i.e. Frac, BB, and OL), it was associated with coverage 

around two times closer to 0.95 than OL and BB at level 4. Under the SES estimand framework, it had 

little bias, small errors, and appropriate coverage among the six methods, performing the second best 

after MLR. However, Frac requires the recoding of PRO scores to apply compared to MLR, which may 

make it less attractive to use.  
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BR was not considered for the simulation analysis as, despite it producing similar estimates to Frac, it 

is not able to account for scores at boundaries and thus requires the ‘squeezing’ of the dimension scores, 

the compressing process of which is likely to bias the estimations and reduce the precision (Hunger, 

Baumert and Holle, 2011). This was evident in the empirical analysis where the estimates from BR were 

more scattered than Frac using MLR as the reference benchmark.  

OL and OP, the statistical methods designed for analysing ordered outcomes, were shown to have almost 

identical SES values and model fit statistics in the empirical analysis. The estimated treatment effect 

from an OP cannot be explained in (log)ORs, and hence it is less preferable to use. The simulation 

analysis found that OL tended to generate numerically large bias and small coverage compared to other 

methods that produce estimates of (log)ORs, especially when the true treatment effect was large (i.e. 

SES at 0.8 or 1.0). The poor performance and large estimated values of OL may result from the violation 

of model assumptions in proportional odds, or the different interpretation of the estimated logORs, 

which needs to be further investigated. 

BB is recommended to analyse PROs with no less than 10 possible categorical values if the (log)OR is 

the preferred population summary measure. BB had slightly better performance than Frac and OL in 

scenarios where PRO scores have no less than 10 possible categorical values. Similar to Frac, BB 

requires the recoding or PROs to apply, which may make it less attractive to use. Furthermore, BB 

produced over 70% missing estimates due to non-convergence when analysing outcomes with a small 

number of categorical values (i.e. level 4) in the simulation analysis, which is likely to associate with 

the limitation of the user built code in the computational programming software Stata.  

Similarly, BLN was not carried forward to the simulation analysis as it produced similar estimates as 

BB and there was no command available for running BLN in Stata except for building the code under 

the general GLM framework using glm command. BB and BLN may be preferred to other statistical 

methods such as Frac or OL as they can account for the ordinal and discrete feature of the PRO scores 

without the requirement for the distributional or proportional odds assumptions. However, the practical 

application of BB and BLN requires the availability of commands in computational software.  

In summary, considering a simple RCT setting where there is a single baseline and a single post-

randomisation assessment of outcome, for the analysis of a multi-dimensional PRO, MLR is 

recommended as the universal statistical method for the analysis of PROs if the population summary 

measure of the treatment effect is the difference in group means or the SES. Tobit is recommended as 

an alternative method to MLR if the number of possible categorical values is 10 or more for a multi-

dimensional PRO. Similarly, if the log(OR) is the targeted population summary measure, Frac is 

recommended as the universal statistical method, and BB is recommended as an alternative method to 

Frac if the number of possible categorical values is 10 or more in a multi-dimensional PRO.  



10.2 Main findings and comparison to other work  159 

 

 

For the analysis of a unidimensional PRO, if the population summary measure of the treatment effect is 

the difference in group means or the SES, MLR is recommended as the universal statistical methods for 

analysis, and Tobit can be used as an alternative for the number of categories in a dimension is 10 or 

more. If the log(OR) is the targeted population summary measure, Frac is recommended as the universal 

statistical method, and BB can be used as an alternative when the number of categories in a dimension 

is 10 or more.  

It is worth noting that the application of Tobit regression requires an additional premise that the PRO 

scores exceeding the lower and upper limits is believed to be meaningful. Both Frac and BB require the 

application of different recoding techniques to analyse PRO data.  

10.2 Main findings and comparison to other work 

The strategy for literature search in the method review has been updated using EMBASE, MEDLINE, 

and EconLit to identify literature that developed, reviewed, and recommended statistical methods for 

the analysis of PROs between 1 September 2021 and 1 May 2023. No new literature meeting the 

inclusion criteria, outlined in Chapter 2 was found.  

Existing guidance, including the FDA Guideline (FDA, 2009), CONSORT-PRO Extension (Calvert et 

al., 2013), and SPIRIT-PRO Extension (Calvert et al., 2018), mainly focus on the collection and the 

reporting of PROs in RCTs. In terms of the statistical analysis of PROs, they provide guidance on what 

components to report and consider such as the targeted dimensions, the specification of the primary 

endpoint, and the statistical approaches to deal with the missing data, but they do not provide guidance 

on what specific statistical methods should be considered to analyse PROs under different scenarios.  

The SISAQOL Consortium gathered experts and stakeholders with diverse backgrounds to ratify the 

statements proposed by four working groups with focuses on research objectives, statistical methods, 

missing data, and statistical terms (Coens et al., 2020). They recommended the use of Cox proportional-

hazards test for evaluating time-to-event data and linear mixed model for evaluating the magnitude of 

event at a time and a response trajectory over time, and the use of linear regression for evaluating 

magnitude of event at a specific timepoint. Although their recommendations focused on the analysis of 

PROs in cancer trials and were purely based on experts’ opinions without using evidence from data 

analysis, their statement is partially in line with our recommendation to use MLR to estimate the 

treatment effect of PROs for a single baseline and a single post-randomisation assessment of outcome. 

However, the other statistical methods that are recommended in this thesis such as Tobit, Frac, and BB 

are neither listed nor assessed by the SISAQOL Consortium.  

The existing literature that compared different statistical methods for the analysis of PROs using 

simulation methods did not reach consensus on the appropriate statistical methods for the analysis of 

PRO data. For example, Austin (2002) compared CLAD, Tobit, MLR, Median, and other statistical 
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methods for analysing health utility data measured by HUI scores. They found that CLAD and Median 

produced similar results, and CLAD was recommended because of its low prediction error and its 

robustness to heteroscedasticity and non-Normality of errors. Pullenayegum et al. (2010) compared 

MLR, Tobit, and CLAD for the analysis of health utility score measured by EQ-5D in terms of their 

bias and coverage of CIs, and recommended MLR with robust SEs or the non-parametric bootstrap as a 

simple and valid approach. Pullenayegum et al. (2011) compared Tobit and CLAD when facing utility 

decrement, and concluded that these two methods should not be used under this circumstance, and stated 

that both methods are not appropriate for the analysis of utility decrement. Hunger, Baumert and Holle 

(2011) compared MLR and BR for analysing SF-6D, and suggested that BR, especially with prevision 

covariates is a possible supplement to the methods currently used in the analysis of health utility data. 

Meaney and Moineddin (2014) compared MLR, BR, and Frac to estimate covariate effects on (0,1) 

response data in terms of bias, variance, Type I error and power, and found these measures were very 

similar. Kharroubi (2020) compared MLR, BR for analysing SF-6D, and found that BR perform better 

than MLR in predictive ability. Arostegui, Núñez-Antón and Quintana (2007, 2012) recommended the 

use of OL with random effects model, BB or BLN for continuous or ordinal PRO data after testing 

distributional assumptions.  

The findings in this thesis partly agreed with previous studies, but different recommendations were 

drawn because different criteria were considered. For example, we suggest the use of MLR as a 

universial statistical methods for the analysis of PROs, and Tobit as an altenative to MLR. We do not 

recommend the use of CLAD and Median due to their poor model performances (e.g. large bias, and 

undercoverage), which agrees with Pullenayegum et al. (2011) but partly disagrees with Austin (2002). 

Our findings agree with Hunger, Baumert and Holle (2011) that BR produces scattered estimates 

compared to its counterpart Frac, a possible explanation of which is the ‘squeezing’ process of BR 

reduced the precision in estimates. This thesis did not propose the use of BLN since the BLN produced 

higher estimates than other methods, and there is no available code for running BLN in Stata. The BB 

failed to converge for PRO scores with a small number of possible categorical values, and thus is 

recommended as an alternative to Frac for scores with over 10 levels if the log (ORs) is the targeted 

population summary measure.  

The recommendation of the most appropriate statistical methods to use in this thesis is based on the 

results of the technical details of these methods, and their model performance in the empirical analysis 

and simulation analysis, with the aim of estimating the treatment effect of the latent continuous PROs 

with equally spaced ordinal categorical scores ranging from 0 to 100 under a two-arm balanced design.  

We agree with Bottomley et al. (2018) that establishing predefined criteria to assess statistical methods 

used in PRO analysis is crucial for making scientifically informed choices. The choice of statistical 

methods for analysing PROs depends on multiple factors, including the nature of the outcome variable, 
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the adherence of the data to the method assumptions, and the criteria set for method evaluation by 

different stakeholders. The study design and the research question are the fundamental factors and can 

influence the selection of a statistical method, for example whether the PRO is believed to be measuring 

an underlying latent variable, and whether the underlying latent variable is believed to be fundamentally 

continuous or discrete; whether the study design requires the adjustment for clustering, time effects, or 

unbalanced data; and whether the PRO analysis is to be used for making predictions, estimating a 

treatment effect, or measuring influencing factors. These factors vary study-by-study and need to be 

carefully considered when researchers are making the decision on what statistical methods to use.  

Finally, we do not recommend the choice of statistical methods simply based on their degree of statistical 

significance. Our comparison of SES estimates with their associated 95% CIs in the empirical analysis 

suggested that the choice of statistical methods for data analysis might result in different conclusions 

drawn from the hypothesis tests in terms of the clinical and statistical significance. It is important to 

understand different statistical methods before selecting and applying them (Calvert et al., 2018). 

10.3 Strengths and limitations 

This thesis compared various statistical methods for the analysis of PROs in RCTs using an established 

set of criteria through their theoretical background, empirical analysis, and simulation analysis. Similar 

analyses have been carried out by previous studies (Austin, Escobar and Kopec, 2000; Pullenayegum et 

al., 2010; Meaney and Moineddin, 2014) for the comparison of statistical methods for the analysis of 

PROs, but these studies focused on different sets of statistical methods, proposed different DGMs, and 

made inconsistent recommendations on what statistical methods are more appropriate to use.  

This thesis conducted a review of publicly funded RCTs published in the HTA Journal, that is, as far as 

we know, the largest review of trials with 114 studies regarding the statistical methods that have been 

applied for the primary analysis of PROs in clinical trials. This review analysed the frequency of using 

PROs and the statistical methods for the analysis of PROs. Together with the method review, it 

summarised 29 available statistical methods for the analysis of PROs. Two estimand frameworks were 

proposed in this thesis, i.e. the scale-based estimand framework that allows the presentation of an 

estimate on its original scale and the SES estimand framework that allows the comparison of estimates 

from statistical methods on different scales. This thesis compared 10 different statistical methods for the 

analysis of PROs to nine RCT datasets in various clinical areas using the PRO scores from both versions 

of the SF-36, and it simulated the distribution of PROs under different scenarios and compared six 

statistical methods. Recommendations were provided on what statistical methods can be used for the 

analysis of PROs under different scenarios in RCT settings.  

A novel approach to decision making on the statistical methods for PRO analysis using multi-criteria 

decision analysis (MCDA) was proposed at the filtration stage of the statistical methods. Although it 
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was not fully performed in this thesis in terms of organising expert panel, establishing criteria, eliciting 

scores and weights, and deliberating on the ordering rank, it provides a possible solution to make the 

choice of statistical analysis more transparent and consistent. 

This thesis has the following limitations:  

First, this thesis focused on the dimension scores of SF-36 which were found to be the most used PROs 

together with SF-6D in UK’s publicly funded RCTs (Qian et al., 2021). The results of the simulation 

analysis were based on the data-generating mechanisms (DGMs) derived from the SF-36 distribution 

observed in the RCT datasets, with outcomes that have equally spaced scores with the boundaries at 0 

and 100, the extrapolation of which to other PROs may require further validation. However, the SF-36 

shares similar data features (i.e. discrete, bounded, and skewed) with other PROs, and it may be more 

prone to ceiling effects or less responsive to subtle changes in some dimensions that are not targeted 

than a disease-specific measure. Therefore, we believe that the outcomes can be extrapolated to other 

popular PROs similar to SF-36, such as the Beck Depression Inventory (BDI), Hospital Anxiety and 

Depression Scale (HADS), European Organization for the Research and Treatment of Cancer Quality 

of Life Questionnaire (EORTC QLQ-C30), and potentially preference-based PROs such as SF-6D, and 

EuroQol-5 Dimensions (EQ-5D). 

Second, the use of SES as the target population summary measure was proposed in this thesis to unify 

and compare the estimates from different statistical methods. The application of the SES is based on the 

premise that the SES derived from the different statistical methods are believed to be comparable which 

might not be agreed by some researchers. If the SES is not believed as a suitable summary measure to 

compare outcomes between the different treatment groups, then it may not make sense to compare the 

estimators on different scales and their associated estimates. Although the SES has been vastly used as 

the population summary measure in this thesis, it is only seen used in publicly funded clinical trials for 

sample size calculation, but not for the estimation of treatment effect in PROs (Qian et al., 2021).   

Third, we focused on the simple scenarios of PRO analysis where there is a single baseline and a single 

post-randomisation assessment of outcome in RCT settings. The statistical methods adapted in this 

thesis were kept in simple and similar forms in RCT settings. In the empirical analysis, we only adjusted 

for the corresponding baseline score of a PRO dimension to estimate the treatment effect. The baseline 

score was recorded the same way as the response variable of PRO scores for ordinal and binomial 

regression into ordinal categorical values, but it was treated as continuous covariate in these regression 

methods that were included for empirical analysis. In the simulation analysis, the simulated dataset was 

generated assuming two balanced treatment arms, and the treatment effect was estimated without 

adjusting for covariates. Although RCTs have charming features that they reduce biases and can inform 

causality, they cannot bypass the possible systematic error from sources such as invalid measurements 
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e.g. poorly or mistakenly filled PRO forms, ceiling or floor effects of the PRO scales, publication bias 

or selective reporting of statistical analyses.  

Other potential statistical methods that account for time effects, clustering, multivariate analysis, and 

the effect of missing values, are not included for comparison in this study. These statistical methods 

were excluded in order to narrow the scope of this thesis to a manageable size due to the workload and 

timeframe. Accounting for longitudinal data involves another level of complexity and multiple 

assumptions regarding the time effects, the pattern of PRO scores over multiple time assessments, the 

correlation structures between the repeated assessments. Trending statistical techniques to deal with 

time effects or correlated responses include using mixed models or using generalized estimating 

equation (GEE) for parameter estimation. Other methods such as response feature analysis that uses 

summary measures and time by time analysis have also been widely used (Walters, 2009). Clustering 

factor in trials with PROs may include practitioners or hospital sites, the ignorance of which may 

overestimate the study significance and decrease the study power. Flight et al. (2016) compared five 

approaches for the analysis of individually RCTs using four RCTs that were used in the empirical 

analysis with clustering in one arm and recommended treating each participant in the unclustered arm 

as a single cluster. Similarly, the inappropriate handling of missing values in PROs can potentially bias 

the results of the data analysis. Rombach et al. (2018) compared three methods that can be used to deal 

with missingness in longitudinal PRO data including maximum likelihood, multiple imputation, and 

inverse probability weighting using simulation analysis, and recommended multiple imputation when 

additional post randomization information is available. 

Additionally, this thesis focuses on the statistical methods under the ‘frequentist’ theory. Although a 

few papers on Bayesian statistics (Manuguerra and Heller, 2010; Gheorghe et al., 2017; Lim et al., 2023) 

and machine learning techniques (Matsangidou et al., 2021; Polce et al., 2021; Katakam et al., 2022; 

Martin et al., 2022) have been identified in our reviews, these methods were not included for comparison 

in this thesis.  

Furthermore, add-on techniques such as the bootstrapping and the robust SEs were not applied or 

compared in this thesis. In the HTA review, 6/114 studies applied bootstrapping and 9/114 studies 

applied robust SEs in the primary analysis. Theoretically, the application of these add-on techniques 

will not change the point estimate of the treatment effect, but they may influence the p-value, Type I 

error, and the coverage of 95% CIs. MLR with bootstrapping is recommended to use by Arostegui, 

Núñez-Antón and Quintana (2012) since bootstrapping is able to detect the statistical significance of an 

estimation whereas MLR cannot. Similarly, Pullenayegum et al. (2011) recommended using MLR with 

bootstrapping or robust SEs as a simple and valid method for analysing health utility data. In contrast, 

Walters and Campbell (2005) compared the estimations of SF-36 outcome by bootstrapping and t-test, 
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and did not recommend MLR with bootstrapping as the results generated by both methods are similar, 

indicating that bootstrapping does not add value to the estimation procedure.  

Finally, the simulation analysis considered 90 scenarios, and it is not able to represent all possible 

scenarios of PRO that would appear in an RCT setting. The recommendation to use Tobit or BB for 10 

possible categorical values or more is limited to the DGMs that only simulated outcomes with 4, 10, and 

26 levels were considered. Therefore, it is possible that Tobit starts performing better than MLR at any 

other number of categories between 5 and 9. Furthermore, the results of the simulation analysis are based 

on the potential limited capacity of the user built betabin command in Stata. Our investigation on the 

non-converged estimates by BB under level 4 found that it failed to converge in Stata while converged 

in R for the same dataset, therefore, the simulation results on BB might change when using a different 

computational software and the conclusion of this study might be altered. However, even if the 

estimation procedures of these statistical packages might be different for these statistical methods, they 

are believed to produce very similar and robust estimates with the commands for other statistical 

methods that use non user-built command.  

10.4 Future research  

Possible future research can focus on various topics stemming from this thesis, including the statistical 

methods for PRO analysis in more complex scenarios, the application of simulation analysis under 

multiple scenarios in R, and the establishment of a MCDA framework for decisions on statistical 

methods.  

This thesis focused on the simple situation where there is a single baseline and a single post-

randomisation assessment of an outcome, and compared the statistical methods that are suitable for such 

an analysis. There exists an opportunity to explore statistical methods for correlated responses, strategies 

to deal with missing values, and techniques to estimate clustering effect for the analysis of PROs.  

Future research could be extended to replicate the simulation analysis using other computational 

software, such as R, to see whether the outputs differ from Stata. Our investigation on the non-converged 

estimates by BB under level 4 found that it failed to converge in Stata while converged in R for the same 

dataset. Due to the time limit of this thesis, the entire simulation was not rerun in R. With the availability 

of this information, it would be possible to compare BB to other statistical methods under level 4, and 

to compare whether the estimates from these statistical methods running in Stata and R are consistent.  

In addition, the simulation analysis in this thesis only used the Normal distribution to generate PRO 

scores and the discretisation techniques were used, resulting in the unknown ‘truth’ under the alternative 

hypothesis. These choices may result in some of the statistical methods performing better than others. 

Other distributions such as the beta distribution or beta-binomial distribution can be considered to 

generate the PRO scores in future research to investigate whether the model performance of each 
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statistical method may change. Furthermore, the location shift parameter i.e. the pre-specified treatment 

difference was set fixed with the standard deviation (SD) of zero, which may not reflect the reality. It 

would be interesting to know how these methods would perform with the change in the SD to the pre-

specified treatment difference. 

Further potential research lies in the establishment of an MCDA framework for the selection of statistical 

methods for general data analysis. As the MCDA allows trade-offs among different options (i.e. 

statistical methods) regarding various criteria (i.e. method properties), it will increase the transparency 

and consistency of the method selection process. 

10.5 Conclusions  

This thesis identified, described, and compared different statistical methods that can be used for the 

analysis of PROs in RCT settings. Recommendations have been made for the most appropriate statistical 

methods of analysis. The recommendations are based on the evidence identified from a series of 

qualitative and quantitative research including two literature reviews on the statistical methods being 

developed and used in practice, an empirical analysis and a simulation analysis for the comparison of 

model performances of different statistical methods. Considering a single baseline and a single post-

randomisation assessment of an outcome, MLR is recommended as the universal statistical method for 

the analysis of PROs in RCT settings if the population summary measure of the treatment effect is the 

mean or SES. Tobit is recommended as an alternative method for the analysis of PROs with 10 or more 

possible number of values. Frac is recommended as the universal statistical methods if the log(OR) is 

the targeted population summary measure, and BB is recommended as an alternative method to Frac if 

there are 10 or more possible number of values in a PRO dimension. Future research on the comparison 

and recommendation of statistical methods for PRO analysis should consider in more complex scenarios, 

the application of the simulation analysis in R, and an additional establishment of a MCDA framework 

for making decisions on statistical methods. 
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Appendix A Supplementary for the review of statistical 

methods for the analysis of PROs in Chapter 2 

A.1 Detailed inclusion and exclusion criteria for study selection 

Table A.1 A detailed inclusion and exclusion criteria 

Selection 
Criteria 

Inclusion Exclusion 

Study 
type 

Reviews on statistical 
methods for the analysis of 
PROs;  
Studies compared different 
methods for the analysis of 
PROs;  
Recommendations on what 
methods to use for the 
analysis of PROs;  
Studies developed statistical 
methods for the analysis of 
PROs.  

Trials; 
Studies that looked for association and correlation;  
Studies that developed PROs or tested the feasibility, 
validity and reliability of PROs;  
Methods or reviews that developed or summarised 
the statistical methods for cost-effectiveness analysis;  
Reviews that only reported the clinical effectiveness 
of PROs but did not summarise the applied statistical 
methods;  
Reviews that summarised different PROs but not 
statistical methods; 
Protocols; 
Pilot studies. 

Analysing 
methods  

Various statistical methods 
for the analysis of the 
between group difference in 
PROs. 

Studies that analysed PROs as explanatory variables;  
Methods for factor analysis;  
Methods for mapping a PRO to another.  

Measures PROs; QoL.  Studies that not focused on PROs.  

HTA, health technology assessment; PROs, patient-reported outcomes; QoL, quality-of-life. 
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A.2 Studies excluded from the secondary screening  

Table A.2 Studies excluded from the secondary screening with reasons (N = 29) 

Author (Year of publication) Exclusion Reason 

Ahn and Ahn (2020) Dealt with missingness 

Altun and Turkan (2016) Developed or validated a PRO 

Anota et al. (2017) Conference abstract 

Brombin and Di Serio (2016) Introduced a method for multivariate analysis 

Cocks, Tharmanathan and 
Smith (2013) 

Conference abstract 

Conigliani, Manca and 
Tancredi (2015) 

Mapped a PRO to EQ-5D 

Fu et al. (2012) Introduced a Bayesian approach to analyse device preference 
studies. It cannot be applied to the analysis of PRO data 

Ge, Peng and Tu (2020) Introduced a threshold linear mixed model for the identification 
of treatment-sensitive subsets 

Gilet et al. (2011) Conference abstract 

Hinds et al. (2018) Focused on statistical methods for developing or validating a PRO 

Hong et al. (2013) Introduced a Bayesian method to make indirect treatment 
comparison 

Kaciroti et al. (2006) Dealt with missingness 

Lee and Daniels (2013) Dealt with missingness 

Lee, Daniels and Sargent 
(2010) 

Dealt with missingness 

Lv et al. (2019) Dealt with missingness 

Majewska et al. (2019) Conference abstract 

Marinacci et al. (2001) Used statistical methods to fit PRO data as endpoint in a trial 

Mishra and Ghosh (2009) Dealt with censored data due to follow-up losses and study 
termination 

Moerkerke et al. (2005) Introduced a method for multivariate analysis 

O’Kelly et al. (2019) Conference abstract 

Quintana et al. (2019) Developed a Bayesian latent variable repeated measures model 
to determine disease progression. 

Ribaudo and Thompson 
(2002) 

Extended a hierarchical logistic regression to the multivariate 
analysis 

Sajobi et al. (2018) Reviewed statistical model- and design-based methods have 
been developed to test for response shift in longitudinal PROs 

van der Weijst et al. (2017) Conducted a systematic review on trials using PROs as endpoints. 
The statistical methods were not specifically summarised.  

Steen, Curran and 
Molenberghs (2001) 

Fit different models to a dataset, mainly solve the problem of 
missingness 

Velanovich (2007) Introduced a ‘top-box’ method to interpret PRO data 

Walters, Young and Kwon 
(2018) 

Conference abstract 

Wirth, Houts and Deal (2016) Conference abstract 

Wirth and Houts (2018) Conference abstract 
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Appendix B Quantitative MCDA for filtering different 

statistical methods in Chapter 5 

B.1 Scoring and weighting system  

We adapted the essential/highly desirable properties based on expert opinions from the SISAQOL 

Consortium (Coens et al., 2020) to establish the criteria for the qualitative MCDA. A total of 18 experts 

with multiple roles as statistician, researcher, trials methodologist etc. composed the SISAQOL 

statistical methods working group, and 16 of them involved in the establishment of the statistical criteria. 

The essential/highly desirable properties are whether the method can compare two treatment arms, adjust 

for baseline score, be clinically relevant, allow for confounding factors, handle missing data, and handle 

clustered data. 

Weights attached to included statistical properties are shown in Table B.1. Essential/highly desirable 

statistical properties composed the base-case criteria set (Set A) for primary analysis; and all 19 

statistical properties that were listed for discussion were adapted for sensitivity analysis (Set B). In the 

base-case criteria set, the criteria ‘Be clinically relevant’ criterion was divided into two sub-criteria – 

‘within-individual clinical relevance’ and ‘within-group and between group clinical relevance’ 

according to the SISAQOL guidance (Coens et al., 2020) .The weight of each criterion is calculated by 

the proportion of total votes that criterion represents, and the two sub-criteria of ‘Be clinically relevant’ 

took the average weight of it. For example, 16 experts rated criteria P1 (compare two treatment groups) 

as an important statistical property, accounting for 0.21 of the total votes (16/77) in the Set A, and for 

0.10 of the total votes (16/153) in Set B.  

The scoring system which assessed each method according to its statistical properties was developed 

based on both the coding scheme of the SISAQOL guidance (Coens et al., 2020) and our understanding 

of identified methods. In the established MCDA, the scoring for each criterion ranged from 0 to 100 

(worst to best), and equal intervals were taken for different levels of performance. For example, criteria 

P7 (Handle cluster data with repeated measurements) was defined to have three values: 100, where both 

the repeated assessments of each individual and the order of measurements over time are taken into 

account; 50, where either of the two components is taken into account; and 0, where neither of the two 

components is taken into account.  

To test the robustness of the established MCDA, sensitivity analyses were conducted. First, expand the 

base-case criteria set by adding another 13 statistical properties to the criteria (Set B in Table B.1); and 

second, change the weights of essential/highly desired statistical properties by applying another four 

sets to the MCDA (Set C-F in Table B.1).  
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Table B.1 Statistical properties proposed by the SISAQOL group with weights 

Statistical properties N 
Criteria sets with weights 

Set A Set B Set C Set D Set E Set F 

Essential/highly desirable statistical properties 

 P1 Compare 2 treatment arms 16 0.21* 0.10 0.14 0.40 0.17 0.16 

 P2 Adjust for baseline score 14 0.18 0.09 0.14 0.04 0.00 0.09 

 Be clinically relevant 13       

       P3 Within-individual  0.08 0.04 0.14 0.04 0.17 0.04 

       P4 Within and between group  0.08 0.04 0.14 0.40 0.17 0.08 

 P5 Allow for confounding factors 12 0.16 0.08 0.14 0.04 0.17 0.08 

 

P6 Handle missing data  
(Part 1: with least restrictions)  

11 0.14 0.07 0.14 0.04 0.17 0.07 

 

P7 Handle clustered data  
(Part 1: over time) 

11 0.14 0.07 0.14 0.04 0.17 0.07 

Sum 77 1.00  1.00 1.00 1.00  

Other statistical properties that did not meet the essential/highly desirable criteria 

 P8 Compare more than 2 treatment arms 9  0.06    0.06 

 

P9 Handle unbalanced designs  
(Part 2: due to the dependency of 
assessment time)  

9  0.06    0.06 

 P10 Calculate sample size 8  0.05    0.00 

 

P11 Handle unbalanced designs  
(Part 1: due to practical reasons) 

7  0.05    0.05 

 P12 Robustness  7  0.05    0.05 

 P13 Ability to maintain the ITT population 6  0.04    0.00 

 P14 Handle multiplicity 6  0.04    0.04 

 P15 Allow for time-varying covariates 5  0.03    0.03 

 

P16 Handle clustered data  
(Part 2: within group) 

5  0.03    0.03 

 P17 Handle a bounded scale 5  0.03    0.03 

 

P18 Handle clustered data  
(Part 3: between group) 

4  0.03    0.03 

 

P19 Handle unbalanced designs  
(Part 3: due to non-adherence)  

3  0.02    0.02 

 

P20 Handle missing data  
(Part 2: with uncertainty estimates)  

2  0.01    0.01 

Sum 153  1.00    1.00 
N, the number of votes for each statistical property by the expert panel; SISAQOL, Setting International Standards 

in Analyzing Patient-Reported Outcomes and Quality of Life Endpoints Data.  

*The weight of P1 compare 2 treatment arms is calculated as the number of votes for P1 (16) divided by the total 

number of values for desired statistical properties (77). 
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B.2 Calculation methods  

The evaluation process in the MCDA was independently conducted by YQ, SW and RJ who have 

backgrounds in mathematics, statistics, economics, and health-related science; and inconsistencies in 

scoring were discussed until reaching a conclusion.  

Multiple approaches can be used to aggregate values and weights for the MCDA. The simple linear 

additive model (SLAM) was adapted to calculate the score of each statistical method, as the SLAM can 

compensate among criteria and it is simple to be performed without the use of complex computer 

programs (Velasquez and Hester, 2013; Diaby and Goeree, 2014).  

The score of a statistical method 𝑥(𝑥 = 1, 2,…𝑛) can be calculated by aggregating the multiplication of 

the weight attached to each statistical property, 𝑊𝑝 (0 < 𝑊𝑝 < 1, 𝑝 = 1, 2,…𝑚), and the score of each 

statistical method on each property, 𝑆𝑥,𝑝(𝑝 = 1, 2,…𝑚; ⁡𝑥 = 1, 2,…𝑛), as shown in Table B.2. 

 𝑆𝑐𝑜𝑟𝑒⁡𝑥 =⁡∑ 𝑆𝑥,𝑝 ×𝑊𝑝
𝑚
𝑝=1   (B.1) 

 𝑊 = ∑ 𝑊𝑝
𝑚
𝑝=1 = 1  (B.2) 

Scores for each statistical method range from 0 to 100, and statistical methods with higher scores are 

considered to have more desired statistical properties than others. The scores of statistical methods can 

then be ranked, compared and selected.  

Table B.2 The structure of scoring and weighting options (simple linear additive model) 

Options (𝒙) 
Criteria (𝒑)  

Total 
Statistical property 1 Statistical property 2 … 

Statistical method 1 𝑆1,1 𝑆1,2 … 𝑆𝑐𝑜𝑟𝑒⁡1 

Statistical method 2 𝑆2,1 𝑆2,2 … 𝑆𝑐𝑜𝑟𝑒⁡2 

… … … …  

Weights (sum = 1) 𝑊1  𝑊2 …  

 

B.3 Performance matrix  

Table B.3 shows the performance matrices of different statistical methods when considering base-case 

set of weighted criteria (Set A). In general, multivariable methods are scored higher than univariable 

methods. Linear regression and Tobit regression are scored the same for sharing similar model theories 

and assumptions. The ANOVA and ANCOVA are scored less than linear regression since they are 

purely hypothesis tests and do not generate estimates or CIs for the treatment effect (which is regarded 

as good statistical practice), even if ANOVA and ANCOVA can be reformulated as multiple linear 
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regression models. The scores of beta regression, median regression and CLAD are equal but smaller 

than linear regression because their estimands of treatment effect cannot be explained as mean or odds 

ratios without transformation. 

Statistical methods that are developed for analysing ordinal data, i.e., ordinal regression (ordered logit 

& ordered probit) and binomial regression (beta-binomial and binomial-logit-Normal), have the same 

score. Again, unlike linear models, coefficients estimated by these methods cannot be explained and 

interpreted directly on the original scale or measurement or scoring system for the PRO, and the 

coefficients need to be transformed to odds ratios to estimate the treatment effect, which increases the 

difficulty in interpreting the results.  

The sensitivity analysis shows that the ranks of statistical methods remain stable, with exceptions of t-

test (Table B.4). The t-test stands out when giving heavy weights (Set 2) to ‘Compare 2 treatment arms’ 

(P1) and ‘Clinically relevant’ (P4), but t-test scored zero for the rest of the criteria set; and when 

considering additional statistical properties (Set B), CLAD and beta regression ranked higher than other 

methods for cross-sectional data, as both methods can account for boundaries and have few assumptions 

on data distribution.  

Table B.3 Performance matrix with scoring for base-case criteria set (Set A) 

Statistical methods 
Statistical properties Score 

(Set A) P1 P2 P3 P4 P5 P6 P7 
Multivariable methods for uncorrelated responses 
Tobit regression 100 100 0 100 100 0 0 62.99 
Linear regression  100 100 0 100 100 0 0 62.99 
Beta regression (logit link) 100 100 0 50 100 0 0 58.77 
CLAD regression 100 100 0 50 100 0 0 58.77 
Median regression 100 100 0 50 100 0 0 58.77 
Ordered logit model 100 100 0 50 100 0 0 58.77 
Beta-binomial regression 100 100 0 50 100 0 0 58.77 
Binomial-logit-Normal regression 100 100 0 50 100 0 0 58.77 
Ordered probit model 100 100 0 50 100 0 0 58.77 
ANOVA or ANCOVA 100 100 0 0 100 0 0 54.55 

Univariable methods 
t-test 100 0 0 100 0 0 0 29.22 
Sign test 100 0 100 0 0 0 0 29.22 
Kruskal-Wallis test 100 0 0 0 0 0 0 20.78 
Mann-Whitney U test 100 0 0 0 0 0 0 20.78 
Wilcoxon signed rank test 100 0 0 0 0 0 0 20.78 

ANCOVA, analysis of covariance; ANOVA, analysis of variance; CLAD, censored least absolute deviations. P1, 
compare two treatment arms; P2, adjust for baseline score; P3, be clinically relevant (within-individual); P4, be 
clinically relevant (within-group and between group); P5, allow for confounding factors; P6, handle missing data; 
and P7, handle clustered data.   
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Table B.4 Scoring by criteria sets for sensitivity analysis 

Statistical methods 
Criteria sets 

Set B Set C Set D Set E Set F 

Multivariable methods for uncorrelated responses 
Tobit regression 46.41 57.14 88.00 50.00 55.56 
Linear regression  40.85 57.14 88.00 50.00 50.00 
Beta regression (logit link) 46.57 50.00 68.00 41.67 53.76 
CLAD regression 46.57 50.00 68.00 41.67 53.76 
Median regression 43.30 50.00 68.00 41.67 50.49 
Ordered logit model 43.30 50.00 68.00 41.67 50.49 
Beta-binomial regression 41.01 50.00 68.00 41.67 48.20 
Binomial-logit-Normal regression 41.01 50.00 68.00 41.67 48.20 
Ordered probit model 41.01 50.00 68.00 41.67 48.20 
ANOVA or ANCOVA 38.89 42.86 48.00 33.33 44.12 

Univariable methods 
t-test 22.22 28.57 80.00 33.33 26.14 
Sign test 19.28 28.57 44.00 33.33 24.51 
Kruskal-Wallis test 18.63 14.29 40.00 16.67 23.86 
Mann-Whitney U test 17.97 14.29 40.00 16.67 17.97 
Wilcoxon signed rank test 12.75 14.29 40.00 16.67 17.97 

ANCOVA, analysis of covariance; ANOVA, analysis of variance; CLAD, censored least absolute deviations. 
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Appendix C Supplementary for the empirical analysis in 

Chapter 7 

C.1 Recoding techniques for empirical analysis 

For the scores of SF-36 bodily pain (BP) and social functioning (SF) dimension, two different types of 

scoring are seen from our nine trial data due to the application of non-standardised scoring strategies 

when collecting and calculating the SF-36v1 dimension scores. Appropriate recoding techniques are 

developed and applied to accommodate these two types of scoring, as shown in Table C.1.  

Table C.1 Recoding techniques for two scoring patterns for BP and SF scores in SF-36v1 and SF-36v2 

Two scoring patterns for BP 

SF-36v1 (𝒏 = 𝟏𝟎)  SF-36v2 (𝒏 = 𝟏𝟎) 

Scoring 
values 

Recoding 
techniques 

Recoded 
values 

 Scoring 
values 

Recoding 
techniques 

Recoded 
values 

0 [0, 5.55] 0  0 [0, 5] 0 
11.1 (5.55, 16.65] 1  12 (5, 16] 1 
22.2 (16.65, 27.75] 2  22 (16, 26] 2 
33.3 (27.75, 38.85] 3  31 

(26, 36] 3 
44.4 (38.85, 49.95] 4  32 
55.6 (49.95, 61.05] 5  41 

(36, 47] 4 
66.7 (61.05, 72.15] 6  42 
77.8 (72.15, 83.25] 7  51 (47, 57] 5 
88.9 (83.25, 94.35] 8  61 

(57, 67] 6 
100 (94.35, 100] 9  62 
    72 (67, 77] 7 
    84 (77, 92] 8 
    100 (92, 100] 9 

Two scoring patterns for SF 
SF-36v1 (𝒏 = 𝟏𝟎)  SF-36v2 (𝒏 = 𝟗) 

Scoring 
values 

Recoding 
techniques 

Recoded 
values 

 Scoring 
values 

Recoding 
techniques 

Recoded 
values 

0 [0, 5.55] 0  0 [0, 6.25] 0 
11.1 (5.55, 16.65] 1  12.5 (6.25, 18.75] 1 
22.2 (16.65, 27.75] 2  25.0 (18.75, 31.25] 2 
33.3 (27.75, 38.85] 3  37.5 (31.25, 43.75] 3 
44.4 (38.85, 49.95] 4  50.0 (43.75, 56.25] 4 
55.6 (49.95, 61.05] 5  62.5 (56.25, 68.75] 5 
66.7 (61.05, 72.15] 6  75.0 (68.75, 81.25] 6 
77.8 (72.15, 83.25] 7  87.5 (81.25, 93.75] 7 
88.9 (83.25, 94.35] 8  100 (93.75, 100] 8 
100 (94.35, 100] 9     

𝑛 denotes the number of possible levels. Note that for both BP and SF dimensions, the type 1 scoring is the non-
standardised scoring in our dataset with SF-36v1, and the type 2 scoring is the standardised scoring in our dataset 
with SF-36v2.  
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Recoding techniques for other six dimensions in both SF-36 versions are provided in Table C.2. 

Table C.2 Recoding techniques for RE, RP, VT, GH, PF, and MH dimensions in SF-36v1 and SF-36v2 

(a) Scoring strategies for SF-36v1 

Dimensions 

 SF-36v1 

 
Scoring values Recoding techniques Recoded values 

RE  0(33.3)100 16.65(33.3)83.35 0(1)3 

RP  0(25)100 12.5(25)87.5 0(1)4 

VT  0(5)100 2.5(5)97.5 0(1)20 

GH  0(5)100 2.5(5)97.5 0(1)20 

PH  0(5)100 2.5(5)97.5 0(1)20 

MH  0(4)100 2(4)98 0(1)25 

 

(b) Scoring strategies for SF-36v2 

Dimensions 

 SF-36v2 
 

Scoring values Recoding techniques Recoded values 

RE  0(8.3)100 4.15(8.3)95.45 0(1)12 

RP  0(6.25)100 3.125(6.25)96.875 0(1)16 

VT  0(6.25)100 3.125(6.25)96.875 0(1)16 

GH  0(5)100 2.5(5)97.5 0(1)20 

PH  0(5)100 2.5(5)97.5 0(1)20 

MH  0(5)100 2.5(5)97.5 0(1)20 

GH, general health; MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role 
limitation – physical; VT, vitality. Explanation of the values using SF-36v1 RE as an example: 0(33.3)100 represents 
the scoring values ranging from 0 to 100, with 33.3 as intervals, i.e. 0, 33.3, 66.6, and 100; 16.65(33.3)83.35 
means the recoding cut-points starting at 16.65, with 33.3 as intervals, i.e. 16.65, 49.95, and 83.35; 0(1)3 denotes 
the recoded values ranging from 0 to 3, with 1 as interval, i.e. 0, 1, 2, and 3.  
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C.3 Stata codes for the recoding and regression analysis  

We hereby present the Stata codes for recoding SF-36 dimension scores and conducting regression 

analysis, using SF-36v2 MH scores at 6-month post-randomisation from the Lifestyle Matters (LM) trial 

as an example.  

C.3.1 Variable Specification  

The variables are defined as follows: 

- mh6 is the score of SF-36 mental health score at 6-month follow-up in the LM trial. 

- omh6 is the recoded ordinal score of mh6 to fit ordinal regression and the binomial regression;  

- fmh6 is the recoded score of mh6 on a [0,1] scale to fit fractional logistic regression; 

- bmh6 is the recoded score of mh6 on an (0,1) scale to fit beta regression;  

- SZ is the sample size of patients; 

- mh0 is the SF-36 mental health score at baseline; 

- omh0 is the recoded ordinal score of mh0 to fit ordinal regression and the binomial regression;  

- fmh0 is the recoded score of mh0 on a [0,1] scale to fit fractional logistic regression; 

- bmh0 is the recoded score of mh0 on an (0,1) scale to fit beta regression;  

- group is a binary variable for treatment (treatment group = 1, control group = 0);  

- N is the number of possible observable values of a SF-36 dimension score. In our example, N 

equals 21 for the SF-36 version 2 mental health dimension.  

C.3.2 Recoding techniques 

** Recoding to an ordinal scale  

gen omh0 = irecode(mh0, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 

37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 

92.5, 97.5) 

gen omh6 = irecode(mh6, 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 

37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5, 87.5, 

92.5, 97.5) 

** Recoding to a [0, 1] scale  

gen fmh6 = mh6/100 

gen fmh0 = mh0/100 

** Recoding to a (0, 1) scale 

egen SZ6 = count(mh6) 

gen bmh6 = (fmh6*(SZ6-1)+0.5)/SZ6  
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egen SZ0 = count(mh0) 

gen bmh0 = (fmh0*(SZ0-1)+0.5)/SZ0  

C.3.3 Regression analysis 

** Multiple linear regression  

regress mh6 group mh0 

** Tobit regression  

tobit mh6 group mh0, ll(0) ul(100) 

** CLAD regression [package ‘sg153’ is required] 

clad mh6 group mh0, rep(1000) ul(100) 

** Median regression  

qreg mh6 group mh0 

** Ordered logit model  

ologit omh6 group omh0 

** Ordered probit model  

oprobit omh6 group omh0 

** Beta-binomial regression [package ‘betabin’ is required] 

betabin omh6 group omh0, n(N) link(logit) 

** Binomial-logit-Normal regression  

glm omh6 group omh0, link(logit) family(binomial N) 

** Fractional logistic regression  

fracreg logit fmh6 group pmh0 

** Beta regression 

betareg bmh6 group bmh0 

C.4 Post estimation plots MLR and Tobit 

A series of post estimation plots were generated to test model assumptions where possible, including 

homoscedasticity and Normality of residuals for post-estimation of MLR and Tobit, shown in Figure 

C.1, Figure C.2, Figure C.3, and Figure C.4.  



196 Appendix C Supplementary for the empirical analysis in Chapter 7  

(a) Acupuncture 

 
 

 

Continued on the next page  
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(b) LM 
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(c) PLINY 

 
Figure C.1 Residual plot against fitted values after multiple linear regression estimation of SF-36 eight dimension scores 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role limitation – physical; SF, social functioning; VT, 

vitality.  
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(a) Acupuncture 
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(b) LM 
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(c) PLINY 

 

 
Figure C.2 Histogram of residuals after multiple linear regression estimation of SF-36 eight dimension scores 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role limitation – physical; SF, social functioning; VT, 

vitality.  
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(a) Acupuncture 
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(b) LM 
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(c) PLINY 

 
Figure C.3 Residual plot against fitted values after Tobit regression estimation of SF-36 eight dimension scores 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role limitation – physical; SF, social functioning; VT, 

vitality.  
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(a) Acupuncture 
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(b) LM 
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(c) PLINY 

 
Figure C.4 Histogram of residuals after Tobit regression estimation of SF-36 eight dimension scores 

BP, bodily pain; GH, general health; MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role limitation – physical; SF, social functioning; VT, 

vitality.  
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C.5 Effect size plots for Acupuncture, LM, and PLINY 

(a) Acupuncture 
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(b) LM 
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(c) PLINY 

 

 

 

 
Figure C.5 SES with associated 95% CIs of treatment estimates by ten different statistical methods for 

SF-36 eight dimension scores using three RCTs 

The bars on two sides of the vertical line for each method represents the 95% CIs for SES. The red horizontal 
represents the SES for no different between two treatment arms (i.e. y = 0). BP, bodily pain; GH, general health; 
MH, mental health; PF, physical functioning; RE, role limitation – emotional; RP, role limitation – physical; SES, 
standardised effect size; SF, social functioning; VT, vitality.  
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Appendix D Supplementary for the simulation analysis in 

Chapter 9 

D.1 Additional tables and figures for exploratory analysis 

Detailed information on the predefined parameter values to generate the simulated dataset, and the 

observed parameter values generated from the simulated dataset under each DGM and each number of 

observations (i.e. sample sizes) for three levels is shown in Table D.1. The average estimated treatment 

differences of 5,000 estimates from each statistical method under two estimand frameworks for five 

DGMs and six sample sizes considering three levels are shown in Table D.2. The detailed information 

on the number and percentage of missing values under the five DGMs for each level is shown in Table 

D.3. The scatterplots of estimated SESs from different statistical methods in comparison with MLR are 

presented in Figure D.1.  
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Table D.1 Comparison of predefined parameter values and observed parameter values (Ntotal = 2,700,000) 

𝑛𝑜𝑏𝑠 DGM 
Predefined means 

 Observed means 
 Level 4  Level 10  Level 26 

Control Treat 
Group 

Difference 
 Control Treat 

Group 

Difference 
 Control Treat 

Group 

Difference 
 Control Treat 

Group 

Difference 
100 

1 50 50 0 

 49.93 49.98 0.05  49.98 50.05 0.07  49.93 49.98 0.05 

200  49.95 50.04 0.08  50.01 50.06 0.05  49.96 50.00 0.05 
400  49.99 50.01 0.01  50.03 50.05 0.01  49.98 50.00 0.02 

800  50.01 50.01 -0.01  50.06 50.05 -0.01  50.01 50.00 -0.02 
1200  50.01 49.99 -0.02  50.04 50.04 0.00  50.00 50.00 0.00 
1600  50.02 50.01 -0.01  50.06 50.05 0.00  50.00 50.01 0.00 

100 

2 50 54.4 4.4 

 49.93 54.37 4.44  49.98 54.34 4.36  49.93 54.28 4.35 
200  49.95 54.37 4.42  50.01 54.36 4.35  49.96 54.30 4.34 

400  49.99 54.35 4.36  50.03 54.36 4.33  49.98 54.29 4.31 
800  50.01 54.35 4.34  50.06 54.36 4.29  50.01 54.29 4.28 
1200  50.01 54.34 4.34  50.04 54.35 4.31  50.00 54.29 4.30 

1600  50.02 54.36 4.34  50.06 54.37 4.31  50.00 54.30 4.30 
100 

3 50 61 11 

 49.93 60.85 10.92  49.98 60.77 10.79  49.93 60.68 10.74 

200  49.95 60.82 10.86  50.01 60.78 10.77  49.96 60.69 10.73 
400  49.99 60.82 10.82  50.03 60.76 10.73  49.98 60.68 10.70 

800  50.01 60.83 10.82  50.06 60.76 10.70  50.01 60.68 10.67 
1200  50.01 60.84 10.83  50.04 60.76 10.72  50.00 60.68 10.69 
1600  50.02 60.83 10.81  50.06 60.77 10.71  50.00 60.69 10.69 

100 

4 50 67.8 17.8 

 49.93 67.18 17.25  49.98 67.01 17.04  49.93 66.92 16.99 
200  49.95 67.17 17.22  50.01 67.03 17.03  49.96 66.93 16.97 

400  49.99 67.18 17.18  50.03 67.02 16.99  49.98 66.92 16.94 
800  50.01 67.18 17.17  50.06 67.02 16.96  50.01 66.92 16.91 
1200  50.01 67.19 17.19  50.04 67.02 16.98  50.00 66.92 16.92 

1600  50.02 67.20 17.18  50.06 67.03 16.97  50.00 66.93 16.93 
100 

5 50 72 22 

 49.93 71.32 21.39  49.98 71.07 21.09  49.93 70.95 21.01 

200  49.95 71.32 21.37  50.01 71.06 21.06  49.96 70.95 20.99 
400  49.99 71.31 21.32  50.03 71.05 21.02  49.98 70.95 20.97 
800  50.01 71.30 21.29  50.06 71.05 20.99  50.01 70.95 20.93 

1200  50.01 71.31 21.30  50.04 71.06 21.01  50.00 70.94 20.95 
1600  50.02 71.32 21.30  50.06 71.06 21.01  50.00 70.96 20.95 
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Table D.2 Estimated treatment difference in by the six statistical methods for each level and each DGM 

(a) Level 4 

𝑛𝑜𝑏𝑠 DGM 

Scale-based estimand framework  SES estimand framework 

Mean or median  logORs  SES 

MLR Tobit Median  Frac OL BB  MLR Tobit Median Frac OL BB 

100 

1 0.050 0.041 0.155  0.002 0.006 0.000  0.002 0.002 0.005 0.002 0.003 0.000 
2 4.443 5.083 13.037  0.179 0.358 0.145  0.188 0.188 0.341 0.188 0.184 0.141 
3 10.925 12.730 16.593  0.446 0.886 0.351  0.465 0.462 0.577 0.461 0.444 0.344 
4 17.252 20.706 16.623  0.723 1.422 0.543  0.741 0.726 0.723 0.724 0.677 0.532 
5 21.388 26.370 16.633  0.919 1.792 0.665  0.928 0.896 0.598 0.891 0.812 0.651 

200 

1 0.082 0.099 0.573  0.003 0.006 0.004  0.003 0.004 0.012 0.003 0.003 0.004 
2 4.419 5.078 15.245  0.178 0.349 0.143  0.186 0.186 0.318 0.186 0.182 0.139 
3 10.863 12.664 16.597  0.443 0.867 0.347  0.460 0.456 0.571 0.456 0.440 0.340 
4 17.220 20.655 16.597  0.720 1.399 0.532  0.736 0.720 0.656 0.719 0.676 0.522 
5 21.367 26.318 16.597  0.915 1.764 0.657  0.923 0.890 0.581 0.887 0.814 0.644 

400 

1 0.013 0.018 -0.133  0.001 0.001 0.004  0.001 0.001 -0.002 0.001 0.000 0.004 
2 4.359 4.997 15.704  0.175 0.343 0.139  0.184 0.183 0.265 0.183 0.179 0.135 
3 10.822 12.600 16.084  0.440 0.860 0.345  0.458 0.453 0.501 0.454 0.439 0.339 

4 17.183 20.600 16.084  0.717 1.387 0.527  0.734 0.717 0.509 0.717 0.675 0.518 
5 21.317 26.247 16.084  0.912 1.748 0.657  0.919 0.885 0.502 0.883 0.813 0.645 

800 

1 -0.007 -0.011 0.320  0.000 0.000 -0.002  0.000 0.000 0.004 0.000 0.000 -0.002 
2 4.339 4.966 16.297  0.174 0.342 0.134  0.183 0.182 0.241 0.182 0.179 0.131 
3 10.817 12.582 16.304  0.440 0.858 0.339  0.457 0.452 0.410 0.454 0.439 0.333 
4 17.166 20.555 16.304  0.716 1.383 0.529  0.733 0.715 0.410 0.716 0.676 0.520 
5 21.288 26.178 16.304  0.910 1.741 0.652  0.917 0.883 0.410 0.882 0.814 0.640 

1200 

1 -0.016 -0.016 0.147  -0.001 -0.002 -0.001  -0.001 -0.001 0.002 -0.001 -0.001 -0.001 
2 4.337 4.970 16.077  0.174 0.340 0.138  0.182 0.182 0.230 0.182 0.179 0.135 
3 10.831 12.604 16.077  0.440 0.857 0.335  0.458 0.453 0.353 0.454 0.439 0.329 
4 17.187 20.583 16.077  0.717 1.383 0.528  0.733 0.715 0.353 0.716 0.676 0.519 
5 21.299 26.190 16.077  0.910 1.740 0.653  0.918 0.883 0.353 0.882 0.814 0.641 

1600 

1 -0.008 -0.012 0.346  0.000 0.000 0.000  0.000 0.000 0.003 0.000 0.000 0.000 
2 4.343 4.969 15.831  0.174 0.342 0.136  0.183 0.182 0.229 0.183 0.179 0.133 
3 10.811 12.575 15.831  0.440 0.856 0.333  0.457 0.452 0.316 0.453 0.439 0.327 

4 17.182 20.573 15.831  0.717 1.382 0.528  0.733 0.715 0.316 0.716 0.676 0.519 
5 21.304 26.196 15.831  0.911 1.739 0.651  0.918 0.883 0.316 0.882 0.814 0.640 

Continued on the next page 
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(b) Level 10 

𝑛𝑜𝑏𝑠 DGM 

Scale-based estimand framework  SES estimand framework 

Mean or median  logORs  SES 

MLR Tobit Median  Frac OL BB  MLR Tobit Median Frac OL BB 

100 

1 0.069 0.059 0.164  0.003 0.008 0.002  0.003 0.003 0.004 0.003 0.004 0.003 
2 4.362 4.549 4.889  0.176 0.353 0.158  0.202 0.203 0.173 0.202 0.197 0.203 
3 10.790 11.359 11.102  0.440 0.874 0.391  0.502 0.503 0.394 0.498 0.479 0.502 
4 17.037 18.208 17.429  0.713 1.395 0.621  0.803 0.799 0.622 0.786 0.737 0.796 
5 21.091 22.868 21.874  0.904 1.746 0.776  1.006 0.995 0.779 0.971 0.891 0.989 

200 

1 0.050 0.051 0.202  0.002 0.004 0.002  0.002 0.002 0.009 0.002 0.002 0.002 
2 4.353 4.553 5.268  0.175 0.345 0.158  0.200 0.201 0.195 0.200 0.195 0.201 
3 10.770 11.351 11.117  0.439 0.860 0.390  0.498 0.498 0.462 0.495 0.476 0.497 
4 17.025 18.207 17.149  0.711 1.375 0.620  0.798 0.792 0.642 0.781 0.734 0.789 
5 21.058 22.830 21.842  0.900 1.721 0.774  1.000 0.985 0.906 0.965 0.889 0.980 

400 

1 0.013 0.013 -0.020  0.001 0.001 0.000  0.001 0.001 0.000 0.001 0.001 0.001 
2 4.326 4.521 5.333  0.174 0.342 0.157  0.199 0.199 0.198 0.198 0.194 0.199 
3 10.727 11.296 10.727  0.436 0.853 0.388  0.496 0.495 0.487 0.492 0.474 0.494 
4 16.991 18.155 16.652  0.709 1.366 0.618  0.795 0.788 0.621 0.778 0.732 0.785 
5 21.020 22.776 21.441  0.898 1.710 0.772  0.996 0.980 0.972 0.961 0.887 0.975 

800 

1 -0.015 -0.017 0.116  -0.001 -0.001 -0.001  -0.001 -0.001 0.004 -0.001 0.000 -0.001 
2 4.292 4.484 5.488  0.172 0.339 0.155  0.197 0.197 0.208 0.197 0.193 0.197 
3 10.699 11.265 10.867  0.435 0.850 0.387  0.494 0.493 0.408 0.490 0.473 0.492 
4 16.957 18.115 16.592  0.707 1.361 0.617  0.793 0.785 0.628 0.776 0.731 0.782 
5 20.991 22.744 21.514  0.896 1.704 0.770  0.995 0.977 0.808 0.959 0.887 0.972 

1200 

1 -0.001 -0.002 0.031  0.000 0.000 0.000  0.000 0.000 0.001 0.000 0.000 0.000 
2 4.308 4.499 5.394  0.173 0.340 0.156  0.198 0.198 0.217 0.197 0.193 0.198 
3 10.717 11.282 10.700  0.436 0.850 0.387  0.495 0.493 0.351 0.491 0.473 0.492 
4 16.976 18.137 16.494  0.708 1.361 0.617  0.794 0.785 0.675 0.776 0.732 0.782 
5 21.011 22.766 21.298  0.897 1.703 0.771  0.995 0.977 0.699 0.960 0.887 0.972 

1600 

1 -0.003 -0.004 0.085  0.000 0.000 0.000  0.000 0.000 0.003 0.000 0.000 0.000 
2 4.312 4.506 5.313  0.173 0.340 0.156  0.198 0.198 0.226 0.198 0.193 0.198 
3 10.713 11.278 10.659  0.435 0.849 0.387  0.494 0.493 0.318 0.490 0.473 0.492 
4 16.975 18.133 16.413  0.708 1.360 0.617  0.794 0.785 0.702 0.776 0.732 0.782 

5 21.006 22.760 21.186  0.896 1.702 0.771  0.995 0.976 0.631 0.959 0.887 0.972 

  
Continued on the next page 
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(c) Level 26 

𝑛𝑜𝑏𝑠 DGM 

Scale-based estimand framework  SES estimand framework 

Mean or median  logORs  SES 

MLR Tobit Median  Frac OL BB  MLR Tobit Median Frac OL BB 

100 

1 0.048 0.042 0.066  0.002 0.006 0.001  0.002 0.002 0.002 0.002 0.003 0.001 
2 4.348 4.477 4.461  0.175 0.352 0.170  0.203 0.205 0.157 0.203 0.199 0.205 
3 10.742 11.132 11.040  0.438 0.871 0.423  0.506 0.509 0.389 0.502 0.483 0.507 
4 16.989 17.820 17.543  0.710 1.392 0.679  0.810 0.811 0.619 0.794 0.744 0.802 
5 21.013 22.294 21.895  0.900 1.741 0.852  1.015 1.010 0.772 0.980 0.900 0.995 

200 

1 0.047 0.044 0.099  0.002 0.003 0.002  0.002 0.002 0.003 0.002 0.002 0.002 
2 4.344 4.475 4.481  0.175 0.345 0.171  0.202 0.203 0.162 0.202 0.197 0.204 
3 10.733 11.131 11.042  0.437 0.858 0.423  0.503 0.504 0.398 0.499 0.480 0.503 
4 16.973 17.807 17.579  0.708 1.373 0.678  0.806 0.803 0.634 0.789 0.741 0.796 
5 20.993 22.274 21.921  0.897 1.718 0.851  1.010 1.000 0.791 0.975 0.897 0.987 

400 

1 0.020 0.021 -0.041  0.001 0.002 0.001  0.001 0.001 -0.001 0.001 0.001 0.001 
2 4.314 4.448 4.370  0.173 0.342 0.169  0.201 0.201 0.157 0.200 0.195 0.202 
3 10.705 11.098 10.946  0.435 0.852 0.422  0.501 0.501 0.394 0.497 0.478 0.500 
4 16.944 17.768 17.551  0.706 1.364 0.676  0.803 0.799 0.632 0.786 0.739 0.792 
5 20.969 22.236 21.920  0.895 1.707 0.849  1.007 0.995 0.789 0.971 0.896 0.982 

800 

1 -0.017 -0.018 0.046  -0.001 -0.001 -0.001  -0.001 -0.001 0.002 -0.001 0.000 -0.001 
2 4.278 4.409 4.492  0.172 0.339 0.168  0.199 0.199 0.163 0.199 0.194 0.200 
3 10.669 11.061 10.849  0.434 0.848 0.420  0.499 0.498 0.395 0.495 0.477 0.497 
4 16.908 17.730 17.682  0.704 1.359 0.675  0.801 0.796 0.649 0.784 0.738 0.789 
5 20.932 22.195 22.006  0.893 1.701 0.847  1.004 0.992 0.807 0.969 0.895 0.979 

1200 

1 0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 
2 4.295 4.425 4.534  0.172 0.339 0.168  0.199 0.200 0.161 0.199 0.194 0.200 
3 10.685 11.075 10.666  0.434 0.848 0.420  0.499 0.499 0.383 0.495 0.477 0.498 
4 16.924 17.745 17.717  0.705 1.358 0.675  0.801 0.796 0.654 0.784 0.738 0.789 
5 20.947 22.213 21.949  0.893 1.700 0.848  1.005 0.992 0.812 0.969 0.895 0.979 

1600 

1 0.004 0.005 0.026  0.000 0.001 0.000  0.000 0.000 0.001 0.000 0.000 0.000 
2 4.299 4.431 4.624  0.172 0.340 0.168  0.200 0.200 0.162 0.199 0.195 0.200 
3 10.689 11.079 10.570  0.434 0.848 0.421  0.499 0.499 0.373 0.495 0.478 0.498 
4 16.928 17.748 17.790  0.705 1.358 0.675  0.801 0.796 0.648 0.784 0.739 0.789 

5 20.953 22.216 21.967  0.893 1.700 0.848  1.005 0.992 0.802 0.970 0.896 0.979 
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Table D.3 A Number and percentage of missing values due to non-convergence under the five DGMs for each level 

(a) Level 4 

DGM 𝒏𝒐𝒃𝒔 
MLR  Tobit  Median  Frac  OL  BB  Total 

N %  N %  N %  N %  N %  N %  N % 

1 

100 0 0.0  0 0.0  65 1.3  0 0.0  0 0.0  2,634 52.7  2,699 9.0 
200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  3,041 60.8  3,042 10.1 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,436 68.7  3,436 11.5 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,856 77.1  3,856 12.9 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,152 83.0  4,152 13.8 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,277 85.5  4,277 14.3 
Total 0 0.0  0 0.0  66 0.2  0 0.0  0 0.0  21,396 71.3  21,462 11.9 

2 

100 0 0.0  0 0.0  37 0.7  0 0.0  0 0.0  2,922 58.4  2,959 9.9 
200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  3,138 62.8  3,139 10.5 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,471 69.4  3,471 11.6 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,886 77.7  3,886 13.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,135 82.7  4,135 13.8 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,229 84.6  4,229 14.1 
Total 0 0.0  0 0.0  38 0.1  0 0.0  0 0.0  21,781 72.6  21,819 12.1 

3 

100 0 0.0  0 0.0  26 0.5  0 0.0  0 0.0  2,960 59.2  2,986 10.0 
200 0 0.0  0 0.0  8 0.2  0 0.0  0 0.0  3,338 66.8  3,346 11.2 
400 0 0.0  0 0.0  3 0.1  0 0.0  0 0.0  3,704 74.1  3,707 12.4 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,967 79.3  3,967 13.2 
1200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  4,142 82.8  4,143 13.8 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,164 83.3  4,164 13.9 
Total 0 0.0  0 0.0  38 0.1  0 0.0  0 0.0  22,275 74.3  22,313 12.4 

4 

100 0 0.0  0 0.0  28 0.6  0 0.0  0 0.0  2,979 59.6  3,007 10.0 
200 0 0.0  0 0.0  8 0.2  0 0.0  0 0.0  3,340 66.8  3,348 11.2 
400 0 0.0  0 0.0  3 0.1  0 0.0  0 0.0  3,705 74.1  3,708 12.4 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3,953 79.1  3,953 13.2 
1200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  4,144 82.9  4,145 13.8 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,287 85.7  4,287 14.3 
Total 0 0.0  0 0.0  40 0.1  0 0.0  0 0.0  22,408 74.7  22,448 12.5 

5 

100 0 0.0  0 0.0  22 0.4  0 0.0  0 0.0  3,115 62.3  3,137 10.5 
200 0 0.0  0 0.0  5 0.1  0 0.0  0 0.0  3,562 71.2  3,567 11.9 
400 0 0.0  0 0.0  3 0.1  0 0.0  0 0.0  3,859 77.2  3,862 12.9 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,109 82.2  4,109 13.7 
1200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  4,207 84.1  4,208 14.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4,290 85.8  4,290 14.3 
Total 0 0.0  0 0.0  31 0.1  0 0.0  0 0.0  23,142 77.1  23,173 12.9 

Continued on the next page 
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(b) Level 10 

DGM 𝒏𝒐𝒃𝒔 
MLR  Tobit  Median  Frac  OL  BB  Total 

N %  N %  N %  N %  N %  N %  N % 

1 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  2 0.0  2 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  2 0.0  2 0.0 

2 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 

3 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4 0.1  4 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  4 0.0  4 0.0 

4 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  0 0.0  1 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  1 0.0  2 0.0 

5 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  1 0.0  1 0.0 

  

Continued on the next page 
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(c) Level 26 

DGM 𝒏𝒐𝒃𝒔 
MLR  Tobit  Median  Frac  OL  BB  Total 

N %  N %  N %  N %  N %  N %  N % 

1 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

2 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

3 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

4 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  1 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

5 

100 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
400 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
800 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1200 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
1600 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 
Total 0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0 

Each cell contains up to a maximum of 5,000 estimates from 5,000 simulations. 
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(a) Level 4 
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(b) Level 10 
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(c) Level 26 

 

Figure D.1 Scatterplots of SES using MLR as baseline  

BB, beta-binominal regression. DGM, data-generating mechanism; Frac, fractional logistic regression; Median, 
median regression; MLR, multiple linear regression; OL, ordered logit model; Tobit, Tobit regression.
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D.2 Stata codes for the simulation analysis 

Stata codes to simulate datasets and to analyse the simulated datasets are presented under this section. 

We first generate datasets using random-number generator under the Normal distribution, using six 

different numbers of repetitions (i.e. 100, 200, 400, 800, 1,200, and 1,600). The generated continuous 

data are rescored to pre-specified categorical values using the recoding techniques. Then, we analyse 

the simulated dataset with the six statistical methods (i.e. MLR, Tobit, Median, Frac, OL, and BB), and 

record their number of missing values, estimated treatment differences, associated standard errors, and 

the observed treatment differences. The dimension score with 10 possible ordinal categorical values 

(level = 10) is used as an example. 

D.2.1 Main codes 

set seed 1 

tempname postDGM  

tempname postseed 

postfile `postseed' str2000 s1 str2000 s2 str1100 s3 using 

seedfileL10_fixedsd.dta, replace 

postfile `postDGM' int(i) byte(dgm) str7(method) float(level SZ n1 

n2 mean1 mean2 Dmean theta se) using 

DGMscorewloopNulllevel10_fixedsd, replace 

local a = 1 //sample size controller 

local m = 50 //mean value of the Normal distribution 

local sd = 22 //standard deviation of the Normal distribution 

local d1 = 4.4 //treatment difference (small effect) 

local d2 = 11 //treatment difference (median effect) 

local d3 = 17.6 //treatment difference (large effect) 

local d4 = 22 //treatment difference (very large effect) 

local count = 0 //number of iteration tracer 

local level = 10 //number of possible ordinal categorical values 

 

while `a' <= 6 { 

 forvalues i = 1/5000 { //i is the number of simulation 

  clear 

  include "Loop4SampleSize.do" 

  post `postseed' (substr(c(rngstate),1,2000)) 

(substr(c(rngstate),2001,2000)) (substr(c(rngstate),4001,.)) 
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  set obs `SZ'  

  //DGM 1: null 

  gen rannum = uniform() 

  egen group = cut(rannum), group(2)  

  gen score1 = rnormal(`m', `sd') 

  //DGM 2-5: alternative 

  gen score2 = score1 

  replace score2 = score1 + `d1' if group == 1 

  gen score3 = score1 

  replace score3 = score1 + `d2' if group == 1 

  gen score4 = score1 

  replace score4 = score1 + `d3' if group == 1 

  gen score5 = score1 

  replace score5 = score1 + `d4' if group == 1 

    

  local x = 1 

  local y = 5 //number of score distributions 

  include "Loop4Regression.do" 

  local count = `count' + 1 

  di `count' 

 }    

 local a = `a' + 1 

} 

postclose `postDGM' 

postclose `postseed' 
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D.2.2 Codes for specify different sample sizes ("Loop4SampleSize.do") 

Loop for sample size  

if `a' == 1 { 

 local SZ = 100 

 } 

  else if `a' == 2 { 

  local SZ = 200  

  } 

  else if `a' == 3 { 

  local SZ = 400 

  } 

  else if `a' == 4 { 

  local SZ = 800 

  } 

  else if `a' == 5 { 

  local SZ = 1200 

  } 

 else { 

  local SZ = 1600 

 } 

  



D.2 Stata codes for the simulation analysis  225 

 

 

D.2.3 Codes for analysing simulated dataset ("Loop4Regression.do") 

while `x' <= `y' { 

 include "Loop4Recoding.do"  

 su oscore`x' if group == 0 

 local n1 = r(N) 

 local mean1 = r(mean) 

 su oscore`x' if group == 1 

 local n2 = r(N) 

 local mean2 = r(mean) 

 local Dmean = `mean2' - `mean1' 

 //MLR 

 regress oscore`x' group 

 post `postDGM' (`i') (`x') ("MLR") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (r(table)[1,1]) (r(table)[2,1]) 

 //Tobit 

 tobit oscore`x' group, ll(0) ul(100) 

 post `postDGM' (`i') (`x') ("Tobit") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (r(table)[1,1]) (r(table)[2,1]) 

 //Median 

 capture qreg oscore`x' group 

 if _rc == 1 { 

  exit 1  

 } 

 else if _rc == 0 { 

  local theta = r(table)[1,1] 

  local se_theta = r(table)[2,1] 

 } 

 else { 

  local theta = . 

  local se_theta = . 

 } 

 post `postDGM' (`i') (`x') ("Median") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (`theta') (`se_theta') 

 //Frac 
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 fracreg logit pscore`x' group 

 post `postDGM' (`i') (`x') ("Frac") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (r(table)[1,1]) (r(table)[2,1]) 

 //OL 

 ologit oscore`x'_c group  

 post `postDGM' (`i') (`x') ("OL") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (r(table)[1,1]) (r(table)[2,1]) 

 //BB    

 capture betabin oscore`x'_c group, n(`level') link(logit) nolog 

 if _rc == 1 { 

  exit 1  

 } 

 else if _rc == 0 { 

  local theta = r(table)[1,1] 

  local se_theta = r(table)[2,1] 

 } 

 else { 

  local theta = . 

  local se_theta = . 

 } 

 post `postDGM' (`i') (`x') ("BB") (`level') (`SZ') (`n1') 

(`n2') (`mean1') (`mean2') (`Dmean') (`theta') (`se_theta') 

 local x = `x' + 1  

} 

 

D.2.4 Codes for recoding continuous data to ordinal categorical data 

("Loop4Recoding.do") 

if `level' == 10 { 

 recode score`x' (min/5.55=0) (5.55/16.65=11.1) 

(16.65/27.75=22.2) (27.75/38.85=33.3) (38.85/49.95=44.4) 

(49.95/61.05=55.6) (61.05/72.15=66.7) (72.15/83.25=77.80) 

(83.25/94.35=88.9) (94.35/max=100.0), gen(oscore`x') 

 generate oscore`x'_c = irecode(score`x', 5.55, 16.65, 27.75, 

38.85, 49.95, 61.05, 72.15, 83.25, 94.35) 

 gen pscore`x' = round(oscore`x'/100,0.001) 
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 } 

 else if `level' == 4 { 

  recode score`x' (min/16.65=0) (16.65/49.95=33.3) 

(49.95/83.25=66.6) (83.25/max=100.0), gen(oscore`x') 

  generate oscore`x'_c = irecode(score`x', 16.65, 49.95, 

83.25) 

  gen pscore`x' = round(oscore`x'/100,0.001) 

 } 

 else if `level' == 26 { 

  recode score`x' (min/2=0) (2/6=4) (6/10=8) (10/14=12) 

(14/18=16) (18/22=20) (22/26=24) (26/30=28) (30/34=32) (34/38=36) 

(38/42=40) (42/46=44) (46/50=48) (50/54=52) (54/58=56) (58/62=60) 

(62/66=64) (66/70=68) (70/74=72) (74/78=76) (78/82=80) (82/86=84) 

(86/90=88) (90/94=92) (94/98=96) (98/max=100), gen(oscore`x') 

  generate oscore`x'_c = irecode(score`x', 2, 6, 10, 14, 

18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 

86, 90, 94, 98) 

  gen pscore`x' = round(oscore`x'/100,0.001) 

 } 

 else { 

  local a = 999 

 }  

Notes: 

1. The seed and stream for each simulated data is recorded using a seed file. This can help retrieve 

the failure by rerunning a certain iteration using the recorded seed (in the coding example, it is 

called seedfileL10_fixedsd.dta). As we aim to use the same set of seed and stream for 

different levels, the recorded seeds from these simulations can be recorded and they are expected 

to be identical across different levels.  

2. Command capture is used in Stata to continue the loop despite non-convergence or other 

errors are shown. It is used for Median and BB in our codes, as they are the methods which have 

shown missing values previously. 



 

 


