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Abstract 
 

The drive to decarbonise energy systems is leading to increased deployment of renewable generation; 

such generation is typically intermittent, leading to difficulties in matching supply and demand. 

Whilst battery storage and related technologies can address intermittency on a short timescale, longer 

timescales will likely require storage of energy as hydrogen (or perhaps other fuels). Reversible solid 

oxide cells (rSOCs) embody both electrolyser and fuel cell in one device; that is, they can convert 

both power to gas, and gas to power - when combined with hydrogen storage, an energy store is the 

result. They also boast superior efficiency to the rival alkaline and PEM technologies, whilst the high-

grade heat given off during fuel cell operation provides an interesting opportunity to supply heat 

demand. 

This project aims to assess the possible application of rSOCs as electrical energy storage for the 

residential sector. Simulation models are developed to investigate the techno-economic benefits of the 

technology, principally as a store for solar power. In the first two results chapters, these models are 

combined with global optimisation in order to investigate the optimal sizing of the energy storage 

system, and the choice of energy storage technology (rSOC versus battery). Findings indicate 

challenging economics for electrical energy storage with the rSOC. Battery storage and / or oversizing 

of generation is often a more cost-efficient way to address the intermittency of generation, with the 

rSOC an optimal selection only when a high degree of self-sufficiency is required of the system, 

leading to a need for seasonal energy storage; even in this case, the financial metrics (payback period, 

net present value) for the rSOC are not entirely encouraging. 

A secondary theme of the work is peer-to-peer (P2P) trading, whereby electricity (and perhaps heat) 

can be traded between customers, rather than with the utility company only. P2P is introduced to the 

modelling in the last two results chapters, using an agent-based approach to model the P2P market. 

Electrification of transport and heat will introduce large loads to the electricity network in the future, 

but these loads are expected to have a degree of flexibility; P2P provides the incentive to synchronise 

these flexible loads with local generation, as far as possible. As such, P2P may be seen as competing 

with energy storage as a solution to intermittency, or as synergetic. The third results chapter 

demonstrates the efficacy of P2P in conjunction with solar PV and energy storage using electric 

vehicle batteries (‘V2H’). Financial savings are demonstrated across technology penetration 

scenarios, and for all classes of participant in the market. In the fourth results chapter, the rSOC 

returns, participating in a simulated P2P market alongside EV chargers, PV and heat pumps. For this 

work, a novel P2P model is constructed on the basis of continuous double auction, along with 

strategies for bidding with flexible devices or energy storage. It is demonstrated that the P2P 

electricity trading gains significant profits for the rSOC owners, as well as bringing environmental 

and technical benefits. In future work, it is hoped to recombine results of the P2P market with the 

earlier work on optimal technology choice and sizing.  
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1. Introduction 
 

In order to mitigate the threat of climate change, it is urgently necessary for energy systems around 

the world to move away from the carbon intensive fossil fuels upon which they have largely depended 

in the past. Renewable electricity generation (wind, solar, hydropower, biomass) has the potential to 

displace generation from fossil fuels. However, wind and solar energy in particular suffer from the 

problem of intermittency [1]–[3], meaning that the available supply of electricity may not match the 

demand. Thus energy storage technologies may have an increasing role to play in future energy 

systems, storing renewable energy when it is available, for consumption when it is required. 

 

Of existing energy storage technologies, most are ill-adapted to store energy for sufficient time 

periods, or in sufficient bulk, to compensate for fluctuations in renewable output beyond a timescale 

of hours or days. By contrast, power to gas (‘P2G’), the use of electricity to synthesise a gas fuel such 

as hydrogen or methane, has potential to provide storage of weeks’ or months’ duration, enabling 

heavier reliance on renewables by the energy system as a whole. This would typically be 

accomplished by splitting water with an electrolyser to produce hydrogen gas, which can be stored 

and subsequently converted back to power using a fuel cell or internal combustion engine. Key 

difficulties for this form of energy storage are high expense and low round-trip efficiency. 

 

Solid oxide cells (SOCs), although less technologically mature than alkaline or PEM cells, potentially 

offer superior energy conversion efficiencies both as electrolysers (P2G) and as fuel cells (G2P). 

Furthermore, it is possible for an SOC to operate reversibly, with a single device able to operate 

alternately as fuel cell and electrolyser; in this case, it is termed a ‘reversible solid oxide cell’ or 

rSOC. SOCs also have a capability to work directly with carbonaceous gases, including methane, a 

capability not shared by alkaline or PEM cells; use of methane rather than hydrogen as the energy 

storage medium may offer higher round-trip efficiency, and also enable difficulties with the storage 

and transport of hydrogen gas to be sidestepped. 

 

A secondary theme of the project is peer-to-peer (P2P) energy trading. This innovation allows for the 

trading of electricity (and perhaps heat) between customers; compare the current paradigm where 

energy can only be purchased from, and perhaps sold to, the supplier. P2P trading is potentially a 

powerful tool to help shift demand to synchronise with local energy generation. For this reason, P2P 

trading could perhaps offer a rival solution to energy storage such as the rSOC – or perhaps prove to 

be complementary; either way, the study of the rSOC in tandem with P2P trading should provide a 

novel and interesting area to investigate. 

 

1.1 Objectives 
 

The objective of this project is to assess the efficacy and cost of rSOCs for providing energy storage 

at the ‘distributed’ scale – for instance at suburban/residential level. The core of the project will use 

the multi-paradigm simulation software AnyLogic [4] to carry out simulation of such a local scale 

system, seeking to optimise its design and its control. The agent-based simulation paradigm available 

in AnyLogic is well-adapted to the simulation of complex modern electrical systems, where the 

interaction of different components is less predictable than in traditional systems with centralised 
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generation; the ability to model such interactions between components and observe the overall 

emergent behaviour is a key feature of agent-based modelling (see Chapter 2.11).  

 

Observed benefits of the rSOC will be weighed against costs, to determine whether there is a strong 

case for this technology. Benefits should be considered to include self-sufficiency and environmental 

benefits, as well as possible economic advantages. A key priority is that the rSOC should not be 

assessed in isolation, but should be compared to other storage options, particularly battery storage as 

this is the most prevalent form of energy storage at the present time (other than pumped hydropower). 

Ultimately, it is the objective of the project to assess the utility of the rSOC in a distributed energy 

context with energy demands for heat, power and mobility all considered, and to identify whether a 

synergy can be found between the rSOC and a P2P energy trading market. 

 

1.2 Thesis structure 
This thesis is presented in a ‘publication’ format. Chapter 2 presents the background and literature 

surrounding both rSOCs and P2P energy trading. Chapter 3 provides an overview of the publications; 

the publications themselves occupy chapters 4 – 7. Conclusions and a discussion of future work are 

found in Chapters 8 and 9. 
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2. Literature Review 

2.1 Introduction 
 

This chapter relates the background information and academic literature relevant to the present work. 

The first (and larger) portion of the chapter focuses on reversible solid oxide cells (rSOCs) and 

surrounding topics. The latter sections (2.10 and 2.11) consider peer-to-peer (P2P) electricity trading  

and agent-based modelling, before the chapter concludes in Section 2.12. 

In this thesis, rSOCs are considered primarily for the application to electrical energy storage, and 

accordingly this chapter begins with an overview of electrical energy storage in 2.2.1. Energy storage 

is simply defined as the storage of energy available at one time for use at a later time; electrical 

energy storage is distinguished by the fact that the stored energy is recovered as electricity, rather than 

in other forms (such as heat or kinetic energy). In 2.2.1 the motivations for electrical energy storage 

are discussed, as well as the challenges inherent in achieving bulk storage for long periods of time. 

One possible approach to achieving bulk storage is the synthesis of fuels (especially, but not limited 

to, hydrogen) using electricity; this is often termed power-to-gas ‘P2G’ and is discussed in 2.2.2. P2G 

may be used for electrical energy storage provided the synthesised fuel can be reconverted into 

electricity (power-to-gas-to-power ‘P2G2P’); this is the mode by which an rSOC could provide 

electrical energy storage. P2G2P would conventionally be achieved using separate electrolyser and 

fuel cell devices, and accordingly these technologies are discussed in 2.2.2.1. An energy storage 

system based on P2G2P also requires storage of the fuel itself; in the case of hydrogen, this is not 

straightforward, and so in 2.2.2.2 approaches for hydrogen storage are discussed. 

With the context of electrical energy storage and P2G established, sections 2.3 to 2.5 focus on the 

rSOC, discussing its chemistry and thermodynamics (2.3); its high-level characterisation (2.4); and 

the body of literature covering system level modelling and plant design – which forms a high 

proportion of the available rSOC literature (2.5). 

2.6 covers mainly microgrid applications for energy storage using hydrogen, including the small 

amount of academic literature previously published on rSOCs in this context. A microgrid may be 

defined as a small local cluster of electrical loads, generation and possibly storage; it may be stand-

alone or grid-connected, but typically aims to achieve a measure of independence from the grid, and 

grid-connected systems may be capable of ‘islanded’ mode where the microgrid operates fully 

independently [5]. The applications for rSOCs considered in this thesis are at microgrid scale; utility 

scale energy storage using rSOC has been considered in the literature, for instance by Sigurjonsson 

and Clausen [6] and by Zhang et al [7] but is mainly outside of the scope of this work. The microgrids 

considered in this work are envisaged for the distribution level, meaning they would likely be 

downstream of primary substations and distribution transformers – in simple terms, they would be at 

the level of a street or community. Note that in 2.6, owing to the scarcity of academic work on 

applications for rSOCs, the scope is widened to include some of the literature on other fuel cell and 

electrolyser technology for microgrids. 

Whilst 2.6 is concerned with academic literature, 2.7 provides an overview of some of the real-world 

trials of rSOC, and hydrogen energy storage more generally. 2.8 gives a brief overview of future 

developments for the rSOC, before 2.9 concludes this part of the literature review. 

Peer-to-peer (P2P) energy trading is a secondary theme of this work, and this topic is discussed in 

2.10. P2P energy trading enables consumers to trade energy with one another (i.e., their peers) rather 
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than with the energy supplier only [8]. The ability to trade P2P can incentivise the shifting of 

electrical load to better align with the availability of renewable generation, increasing efficiency and 

cutting costs; as such, in some ways it can be seen as a rival to energy storage. On the other hand, a 

P2P market might offer better financial reward for power exported from an rSOC or other energy 

store.  

Section 2.11 gives a brief overview of the agent-based philosophy of modelling, which is employed in 

parts of this work – particularly in conjunction with P2P. Agent-based modelling typically involves 

the interactions of many entities (‘agents’) which are programmed to behave in certain ways, often 

pursuing their own self-interest; an emergent picture of the overall outcome can then be obtained. 

Finally, 2.12 provides an overall conclusion to Chapter 2. 

2.2 Background 

2.2.1 Overview of electrical energy storage 

Approaches to handling the intermittency of renewable energy sources may be grouped into four 

broad categories: flexible generation, interconnection, demand side management and energy storage. 

Flexible generation, the dominant solution at present, involves the ramping up or down of 

conventional thermal power plants to accommodate the lack or surplus of renewable energy. The 

ability to do this relies on having a stockpile of fuel – usually a fossil fuel. Interconnection allows for 

the import/export of electricity with adjoining geographic areas. Demand side management seeks to 

reschedule electrical loads to better match the availability of electricity generation. Here our focus is 

on energy storage, which enables surplus renewable electricity to be stored until needed. [9]. 

 

Various forms of electrical energy storage are extant, with different capabilities and applications. 

They may be classified loosely according to the duration for which energy is stored – as shown in 

Figure 2.1. Flywheels and supercapacitors provide short bursts of power lasting only seconds or 

minutes, and are thus used to ensure quality of power rather than shifting appreciable amounts of 

energy in time [9]–[11]. Batteries of various kinds occupy the middle ground; typically these store 

energy for time periods on the order of hours [9], making them suitable (for instance) for storing solar 

power generated during the day for consumption in the evening. Lead acid batteries were at one time 

the most prevalent choice, but lithium ion batteries are gaining momentum, partly thanks to the 

improvements in performance and reductions in cost that have accompanied their use in electric 

vehicles. Battery energy storage may be deployed at the level of a single household but larger ‘grid-

scale’ deployments are also increasingly seen. High temperature molten salt batteries (such as the 

sodium sulphur battery) have potential for industrial or grid-scale applications; they offer the 

advantages of durability and long cycle life, and employ materials which are cheap and abundant [12]. 

 

In conventional batteries, capacity in terms of both energy and power is tied to the area of the 

electrodes. By contrast, in flow batteries, the solid electrodes of conventional batteries are replaced 

with liquid ‘anolyte’ and ‘catholyte’ which circulate past a membrane. Thus, the cross-sectional area 

of the membrane dictates the achievable power, whilst energy storage capacity depends on the total 

volume  
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Figure 2.1 This image from the US Energy Information Administration [13] shows the 

approximate capabilities of mainstream technologies for electrical energy storage, with 

discharge time plotted against power. None of the technologies shown are considered 

suitable for the storage of energy for weeks or months.

of the tanks for storage of anolyte and catholyte. Power and energy capacity can therefore be varied 

independently; furthermore, self-discharge is minimal since anolyte and catholyte are stored in 

separate tanks. [9], [11]. Flow batteries also offer the advantage of a long lifetime. However, low 

energy/power density, inferior cycle efficiency (in comparison with conventional batteries) and high 

cost are all concerns [11]. Flow batteries are closely related to the reversible fuel cells which are the 

focus of the present work. 

 

For the storage of electrical energy ‘in bulk’, pumped hydropower storage (PHS), whereby energy is 

stored gravitationally by pumping water uphill between reservoirs at different altitudes, is currently 

the only mature and widespread technology. The largest pumped storage facilities can store tens of 

GWh of electricity [10], compared to hundreds of MWh for the largest battery storage facilities to 

date [14], [15]. Indeed, pumped hydropower accounts for the vast majority of energy storage capacity 

installed globally [11], [16]. Round-trip efficiency can be somewhat above 80% [3], [9]. The only 

other bulk-storage technology to be implemented at comparable scale is compressed air energy 

storage (CAES) using underground caverns; the number of large-scale CAES pilot projects is in 

single figures as of 2022, with many projects cancelled in recent years [17], [18]. CAES suffers a 

much lower round-trip efficiency than pumped hydro [3], [16]. Both storage technologies are 

geographically constrained in where they can be sited [9], [19] and are only really feasible when 

implemented at large scale – whereas the concern of this present work is with storage that can be 

implemented at a distributed scale – e.g. at the level of a household / street / district. 

 

Of the energy storage technologies listed (not exhaustively) above, none offer the prospect of storing 

electricity in sufficient volume, or for sufficient duration, to compensate for longer term fluctuations 

in renewable output – i.e. on the scale of weeks, months or seasons. Thus, flexible generation or 

perhaps interconnection would always be required in conjunction with them. Power to gas is a 

possible technology for shifting large amounts of energy across these longer time periods, and this 

will now be discussed. 
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2.2.2 Power to gas 

Power to gas (P2G) is the use of electricity to synthesise a gas fuel. Most commonly this involves the 

splitting of water to produce hydrogen (although syngas or methane may also be produced via co-

electrolysis of CO2 [20]–[22]). Such gas might then be used for heating applications [23] but here our 

interest is in the reconversion of stored gas back into electricity (i.e. ‘power-to-gas-to-power’). To 

achieve this, one typically needs an electrolyser for the production of hydrogen; some means of 

storing the hydrogen; and either a fuel cell or a gas turbine that consumes the stored hydrogen to 

generate electricity. [9]. 

 

There are various reasons why P2G is attractive as an energy storage technology. Firstly (unless 

stored cryogenically) the gas retains its stored energy indefinitely; there is no self-discharge. 

Secondly, achievable energy density is high: 2500 kWh / m3 for hydrogen compressed to 700 bar, 

which compares with an upper limit of 700 kWh / m3 for lithium ion batteries. Thirdly, energy storage 

capacity can be added relatively cheaply, since this simply entails providing more storage tanks [24]; 

as with flow batteries, energy and power capacity are decoupled [9]. Together these attributes suggest 

the possibility for long term storage of energy (compare PHS / CAES which tend to operate on cycles 

of at most a few days) [3], [22].  

 

A key challenge for hydrogen as an electrical storage technology is poor round-trip (i.e. power to gas 

to power) efficiency [25]. This is typically expected to be below 50% [3], [10]; indeed, pilot hydrogen 

energy storage plants have reported efficiencies in the 20s of percent [26], [27]. Further concerns are 

high costs and high rates of degradation for electrolysers and fuel cells, necessitating frequent 

replacement [22]. It should be noted that at present, global hydrogen production is mostly via steam 

reformation of methane; this is cheaper than electrolysis, but emits CO2, unless used in conjunction 

with carbon capture and storage (CCS) [28]. 

 

As an aside, it is worth noting that, whilst electrolysis remains the most important method for splitting 

water, there are a number of other technologies undergoing research. At very high temperatures (2500 

°C and above) water molecules disassociate into hydrogen and oxygen through thermolysis with no 

electrical work required. The necessity for such high temperatures makes this a challenging approach 

in practice. However, by the use of intermediate chemical reactions forming a ‘thermochemical 

cycle’, water can be split at lower temperatures; around 850 °C to 1000 °C. Corrosion is a challenge, 

as is the provision of the high grade heat needed - concentrated solar power is one possible heat 

source [29][28]. Meanwhile photoelectrochemical cells aim to integrate photovoltaic generation and 

electrolysis within one device, producing hydrogen from water and sunlight; this technology is still 

under development [1]. Electrolysers and fuel cells remain the core technologies for energy storage 

with P2G; an overview of the most important types is provided in the next section. 

 

2.2.2.1 Electrolyser / fuel cell technologies 

Electrolysers use electrical power to split water into hydrogen and oxygen. Other reactions are also 

possible; for instance, solid oxide electrolyser cells can split CO2 into carbon monoxide and oxygen. 

Conversely, fuel cells generate electricity from the oxidation of a fuel (usually hydrogen). It is 

important to note that the conversion of fuel to electrical power can in theory be performed much 

more efficiently by a fuel cell than by a heat engine (i.e. an internal combustion engine); this is 

because the heat engine is limited by the Carnot efficiency [20]. 
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Fuel cells and electrolysers are fundamentally the same device operating in opposite modes. 

Nonetheless it is more common for cells to be designed and optimised for one mode of use only; in 

Gahleitner’s 2012 review of hydrogen energy storage schemes, separate (‘discrete’) devices were 

invariably used for power-to-gas and gas-to-power [30]. Cells that are designed to be used in both 

modes are referred to as ‘unitised’ or ‘reversible’; the term ‘regenerative’ is also used, although this 

may also be used of a system that can perform in both electrolysis and fuel cell modes, whilst using 

discrete cells for these roles [31][32]. 

The different types of fuel cells / electrolytic cells are distinguished principally by the electrolyte 

employed; the following are the most important types [33]: 

• alkaline fuel cell / electrolyser 

• proton exchange membrane (PEM) fuel cell / electrolyser 

• phosphoric acid fuel cell 

• molten carbonate fuel cell  

• solid oxide fuel cell / electrolyser 

Of these, PEM and alkaline cells are currently the most commonly used for stationary energy storage 

applications [30]. These technologies are the main competitors with solid oxide cells, both for fuel 

cell and electrolysis applications; their attributes are compared to SOCs in Table 2.1. Molten 

carbonate and phosphoric acid electrolytes are rarely considered for electrolysis.  

 

Alkaline cells generally use an alkaline aqueous solution of potassium hydroxide for the electrolyte. 

The electrodes are separated by a gas tight diaphragm. Hydroxide anions OH- carry charge across this 

diaphragm to balance the half reactions. Alkaline fuel cells are a mature technology with low cost and 

are relatively easy to mass produce [1]. The corrosive nature of the electrolyte is a disadvantage [34]. 

Start-up time can be of the order 15-20 minutes [26]. For electrolysis, alkaline cells are the most 

mature technology, offer the lowest cost, and have tended to be the preferred choice [1], [30], [34]. 

Large alkaline electrolysers are available capable of producing over 500 Nm3/h and consuming 

several MW [29]. 

 

PEM cells employ a polymer membrane electrolyte which is conductive of hydrogen cations (that is, 

protons). PEM may thus stand for proton-exchange membrane or polymer electrolyte membrane. Rare 

earth metals (usually platinum) are needed at the electrodes to catalyse the half reactions, and this 

leads to high costs which are a key challenge for this technology [29][34]. Typical operating 

temperatures are 50 – 100 °C, although research is underway to allow operation at higher 

temperatures, allowing higher efficiency operation [1]. PEM fuel cells appear to be the preferred 

option for conversion of hydrogen to power in pilot energy storage schemes [30]. PEM electrolysers 

are also gaining popularity [30], with one expert elicitation study [35] predicting that by 2030 they 

will dominate the electrolysis market jointly with SOEC. PEM cells offer superior kinetics to alkaline 

cells; they are better able to work at partial loads (down to 5% [36] or even 0% [37] of rated capacity), 

and have a much faster start-up / response time [26][28][34]. These attributes make them potentially 

well suited for use with an unpredictable renewable energy source. Power density is also superior [1]. 

Besides the rarity and high cost of catalyst materials, disadvantages include very low tolerance of 

impurities and susceptibility to fast degradation [1][28]. Costs per kW appear to be greater than for 

alkaline technology, but less than SOC. 

 

Phosphoric acids fuel cells, which use an electrolyte of concentrated phosphoric acid, were the first 

fuel cells to be commercialised. However, their competitiveness is now doubtful as they are costly and 
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relatively inefficient, with an inferior power density. [1]. Molten carbonate fuel cells run at high 

temperature (600 – 700 °C), employing a molten sodium and potassium carbonate as the electrolyte. 

Since the transport of charge within the cell relies on carbonate anions, only carbonaceous fuels 

(syngas or methane) can be used – not pure hydrogen. Advantages are reasonably high efficiency and 

low capital costs thanks to the lack of rare metal catalysts; however, challenges include poor 

durability and short lifetime. [1]. 

 

Solid oxide cells (SOCs) employ porous solid oxide ceramics as both electrolyte and electrodes. Their 

high operational temperature (600 - 1000 °C), and ability to work with carbonaceous substances 

including syngas and methane, distinguish them from PEM and alkaline cells [29], [34]. Carrying out 

electrolysis at high temperature is attractive as the reaction is more endothermic - this leads to 

increased efficiency through the recycling of unavoidable joule heat, and also raises the possibility of 

using an external source of waste heat [29]. SOCs remain an immature technology, particularly for 

electrolysis [28], [29], [34].  For this reason (as well as difficulties with manufacturing cells at scale, 

and expense of high-temperature BoP equipment) costs per kW are high [35], [38], [39]. However, the 

possibility of using SOCs reversibly, with a stack operating as both fuel cell and electrolyser, may 

allow cost savings [22], [40], [41], and it has also been suggested that reversible operation can 

actually reduce degradation [42]. An SOC cell or stack capable of such reversible operation will be 

referred to as rSOC. SOCs and rSOCs will be introduced in greater detail in Section 2.3; first, this 

overview of power-to-gas will conclude with a summary of hydrogen storage technologies. 



13 

 

Table 2.1. A summary of alkaline, PEM and solid oxide technology for electrolysis and fuel cell applications. 

 
 Alkaline PEM SOC 

Operating temp. (°C) 

 

<100 °C [29], [34] 

 

< 140 °C [1], [34] 600 – 1000 °C [29], [34] 

 

Electrolysis efficiency 

(system level LHV 

efficiency) 

 

51 - 60% [37] 

43 – 67%  [43] 

63%  [44] 

 

46 - 60% [37] 

40 - 67% [43] 

65%  [44] 

highest 

76 - 81% [37] 

63 – 76% [43] 

82% [44] 

 

Fuel cell electrical 

efficiency (system 

level) 

 

45 – 60% [45] 45 – 50% [45] 

 

35 – 60%AC; [44] 

~50%LHV [46] 

45 – 50%  [45] 

61% [47] 

 

 

Lifetime 

 

 

 

Stack 90000 hours 

System 20-30 years [28] 

Stack 20000 hours 

 System 10-20 years [28] 

Stack 40000 hours [28] 

Dynamics and 

flexibility 

• 15 minute startup [34] 

• Min partial load 10-40% [37] 

• <15 minute startup [34] 

• Quick response; suitable for 

variable load operation [26], [28], 
[34], [36] 

• Partial load possibly to 0% [37] 

 

• Start-up from cold: hours [1], [34] 

• From hot standby: perhaps minutes 

[48], [49] 

• Intermittent loads challenging as 

causes thermal stress [1], [34] 

 

Max. system size 100’s MW [1], [28], [37] Multiple MW [43] 100’s kW [43] 

Key advantages • Most mature technology for 

electrolysis; reliable, safe, long 

lifetime [29], [30], [34] 

• Usually preferred fuel cell [30] 

• Suitable for use with intermittent 

loads 

• Electrolyser yields highest purity 

hydrogen  [29] 

 

• High efficiency particularly for 

SOEC [29] 

• Further boost electrolysis efficiency 

through use of waste heat [34] 

• Can work with carbonaceous 

species 

• Possible CHP applications 

• Possible reversible operation 

 

Key challenges • Inferior dynamic response to PEM 

electrolyser 

• Corrosive electrolyte [34] 

• Rare, expensive catalyst materials; 

high cost of membranes  [29], [34] 

• Shorter lifetime for electrolysis [1] 

[29] 

• Less scalable than alkaline 

technology [29] 

• Immature technology [29], [34] 

• Susceptible to rapid degradation 

especially for electrolysis [29] 

• Thermal management is 

challenging 

• Load changes can cause thermal 

stress [34] 

• Shortest lifetime [35] 

• Difficult to manufacture cells at 

scale [50] 

 

Costs 

(whole system 

CAPEX for 

electrolysis unless 

otherwise specified) 

 

lowest 

 

• 800 – 1500 € / kW [37] 

• 750 – 1200 € / kW [51] 

• 700 – 1400 € / kW [35] 

• 1000 – 1200 € / kW [43] 

medium 

 

• 1400 – 2100 € / kW [37] 

• 1200 – 1500 € / kW [51] 

• 800 – 2200 € / kW [35] 

• 1900 – 2300 € / kW [43] 

highest 

 

• >2000 € / kW [37] 

2500 – 8000 € / kW [35] 

 

• SOFC system, CAPEX for kW 

scale system: 2000 – 6600 € / kW 

[38] 

 

• SOFC system, CAPEX for 100-250 

kW system: 800 – 1500 € / kW [39] 

 

• Greatest potential for cost 

reduction, possibly to 760 € / kW 

[35] 
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2.2.2.2 Hydrogen storage technologies 

Whilst the gravimetric energy density of hydrogen is very high, at 39.4 kWhHHV / kg (2.5 times the 

figure for methane), because it is so light its volumetric energy density at normal conditions is low – 

only 3.5 kWh / Nm3, one third that of methane [29]. When one considers that a TESLA Powerpack 

achieves 85 kWh/m3 even at pack level [52], it will be understood that storage of hydrogen at higher 

density is necessary in order to achieve a useful energy storage density. The principal storage 

technologies are: 

• Compressed hydrogen gas (CHG): storage of H2 gas at high pressure and ambient temperature  

• Liquid hydrogen 

• Sorption 

• Liquid carriers (methanol, ammonia, liquid organic hydrogen carriers)   [9] 

 

CHG has overwhelmingly been the approach taken in pilot hydrogen storage schemes; CHG was used 

in 88% of the demonstration hydrogen storage plants in Gahleitner’s 2012 review paper [30]. The 

highest storage pressure encountered by this review was 420 bar, although most projects used 200 bar 

or below. Makridis gives 800 bar as the upper pressure limit for existing lightweight composite 

cylinders [53]. Gahleitner notes that extra storage density at higher pressures comes at the expense of 

efficiency. The advantages of the CHG approach lie in its simplicity and scalability, technological 

maturity and low cost. The energy needed for compression is of course a consideration. Ghosh et al 

[26] state that using a metal membrane compressor, only 9% of the hydrogen’s stored energy was 

needed for compression to 120 bar. Running an electrolyser at high pressure can reduce or eliminate 

the need for subsequent compression, and increase efficiency [29][34]. 

 

 

Figure 2.2. The gravimetric and volumetric capacities of various hydrogen storage technologies. 

(The targets shown are the US Department of Energy’s targets for automotive applications.) [55]. 

Reproduced by permission. 
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Liquid hydrogen offers a very high energy density of nearly 2800 kWh/m3; compression to 800 bar 

would be needed to match this with hydrogen gas [53]. Unfortunately there are many disadvantages 

that tend to outweigh this. To liquefy hydrogen, it must be cooled to 21°K. The energy needed to 

achieve this is at least 30% of the hydrogen’s lower heating value [1][54], implying a severe impact 

on round- 

trip efficiency of the storage system. Furthermore, it is very difficult, if not impossible, to prevent the 

hydrogen from boiling off; it has been reported that 2-3% of the stored hydrogen is inevitably vented 

per day [1].  For long-term energy storage liquid hydrogen is thus a very unlikely choice, especially 

when space is not at a premium. Cryo-compression of hydrogen involves the storage of hydrogen at 

low temperature and high pressure, and may combine some of the merits of both approaches – but this 

again is of more interest for vehicular applications [55]. 

Hydrogen may also be stored in certain solids through absorption or adsorption. In 

absorption/chemisorption hydrogen atoms are integrated within the lattice of the absorbent material, 

whereas in adsorption/physisorption, hydrogen binds to the surface of the adsorbent material. [1]. 

Certain metals, including magnesium, lithium and sodium, are able to absorb hydrogen within their 

metallic structures, forming metal hydrides. It is these materials which have provoked the most 

interest for storage of hydrogen in solid carriers; metal hydrides were used in five of the pilot plants 

reviewed by Gahleitner, being the only technology employed other than CHG [30]. According to 

Dutta [56], magnesium is the material attracting most interest, although many different metal hydrides 

are available. Magnesium is able to store 7.6 wt.% hydrogen [56], which implies an energy density 

above 4 MWh / m3 for this storage material. It is important to note that hydrogen tends to bind 

strongly with metal hydrides; as a result moderately high temperatures (150 – 600°C depending on the 

material [1]) are needed to retrieve it. Conversely, the absorption of hydrogen will be exothermic. In 

fact this has potential to complement the thermal management of a hydrogen energy storage system, 

since endothermic electrolysis can use heat produced by the hydride store, whilst exothermic fuel cells 

can supply heat to release hydrogen. This idea is explored in [57]. Simplicity and lack of moving parts 

are among the advantages of hydrogen storage in metal hydrides [1]. However slow reaction kinetics 

are a concern [58]. 
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Figure 2.3. Tanks of compressed hydrogen at the HARI project, West Beacon 

farm, Loughborough. 2856 Nm3 of hydrogen is stored at 137 bar, providing the 

farm with around three weeks of storage (3.8 MWh). Image: [27]. Reproduced by 

permission.

 

Adsorbents considered for hydrogen storage include carbon materials (such as graphite, carbon 

nanotubes and Buckyballs) as well as zeolites. Adsorption offers lower energy density (volumetric 

and gravimetric) than absorption, but may offer a faster reaction kinetic and less problems with 

thermal management, as binding is weaker than for absorbent storage media [1]. 

 

Finally, the difficulties of storing hydrogen may be bypassed through conversion to an energy carrier 

which is more energy dense and easier to handle, such as methanol or ammonia; Siemens is currently 

running a pilot project using the Haber-Bosch process to store green hydrogen as ammonia [59]. 

Methane is also easier to transport and store than hydrogen [3], [22], and there is considerable interest 

in the use of solid oxide technology to synthesise methane via the coelectrolysis of water and CO2 

[60]–[65]. 

 

2.3 Introduction to SOCs and rSOCs 
The electrodes and electrolytes of SOCs are made of porous solid oxide ceramics. They operate at 

intermediate to high temperature (600 - 1000 °C), such temperatures being necessary to attain 

sufficient ionic conductivity. They potentially offer the highest efficiency available from any 

electrolyser or fuel cell [28], [40], [50]; however, the technology is significantly less mature than 

either PEM or alkaline cells – particularly for electrolysis [28], [29], [34]. Because of the high 

temperature operation, rare metal catalysts are not required, which is potentially a significant 

advantage over PEM cells [66][33]. Another advantage is their ability to work with various fuels, not 

only hydrogen: natural gas, syngas or even ammonia can all be used in solid oxide fuel cells (SOFCs) 

[20], [33], [66], [67]; conversely, solid oxide electrolyser cells (SOECs), besides being able to split 

water into H2 and O2, can also split CO2 to produce carbon monoxide and oxygen, or co-electrolyse 

CO2 and water to produce syngas or methane [20][21]. The tolerance of solid oxide cells to impurities 

in the fuel is also superior to that of PEM cells [33]. 

2.3.1 Chemistry and materials 

Most commonly, the electrolyte in a solid oxide cell conducts negatively charged oxygen ions. In fuel 

cell mode, the reactions in the cell proceed as follows: at the oxygen electrode, oxygen is reduced to 
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O2- and these anions migrate across the electrolyte to the anode. At the anode, the fuel is oxidised and 

combines with O2-
 to form water (or CO2 in the case that the fuel is CO). Thus, the half-reactions for a 

solid oxide cell working with hydrogen are: 

Anode: H2 + O2- ↔ H2O + 2e- 

Cathode: 
1

2
O2 + 2e- ↔ O2-

 

Overall: H2 + 
1

2
O2 ↔ H2O 

            [1] 

In fuel cell mode these reactions run from left to right; in electrolysis mode, from right to left. 

Proton conducting ceramic electrolytes for SOCs also exist; however they generally display inferior 

performance to the O2- conducting electrolytes and have accordingly attracted less interest [1][68]. 

 

 

Figure 2.4. Schematic of a solid oxide cell [40]. The cell is depicted as a reversible cell, with fuel 

cell mode shown on the left and electrolyser mode on the right. The fuel produced / consumed is 

either pure hydrogen or syngas. Reproduced by permission. 

 

As for all fuel cells, the electrolyte of a SOC must be highly ionically conductive, but not conductive 

of electrons; furthermore it must be stable in both oxidising and reducing environments. The most 

common material used is yttrium stabilised zirconia (YSZ), although many other materials have been 

considered [29][40][68]. YSZ only achieves adequate ionic conductivity at high temperatures (750 °C 

– 1000 °C); if lower temperature operation is desired, alternatives must be sought; LSGM (a 

lanthanum gallate doped with strontium and magnesium) is one of these [40]. 

Since (in contrast with PEM or alkaline cells) the reactants are in gas phase, the electrodes of a solid 

oxide cell must be highly porous, maximising the solid / gas interface [29], whilst being electronically 

and ionically conductive. For the fuel electrode, a cermet of nickel and the electrolyte material is most 

commonly used. Nickel is readily oxidised when using an SOC for electrolysis, one of the reasons 

why this application is more challenging for SOCs. [68]. For the oxygen electrode, common materials 

are lanthanum strontium manganite (LSM), or a mixture of LSM and YSZ. Again, LSM exhibits 

worse stability during electrolysis than fuel cell mode. 
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Solid oxide cells may be produced in either planar or tubular designs. The tubular design may offer 

superior mechanical strength and resistance to thermal shock; nonetheless the planar design remains 

more common [42][40]. Manufacture of large cells is challenging, and in any case smaller cells are 

less susceptible to fail when subjected to thermal shock [50]. 

2.3.2 Thermodynamics 

Figure 2.5 shows why carrying out electrolysis at high temperatures can be desirable; the electrolysis 

reaction is increasingly endothermic at higher temperatures, with a greater proportion of the overall 

energy requirement supplied from heat. For a solid oxide electrolyser cell (SOEC) operating at 1000 

°C this proportion is as high as 40.1% [29]. This enables the electrolysis to be highly efficient, as the 

joule heat inevitably produced within the cell may be recycled by the reaction. If an external source of 

waste heat can be used, the electrical efficiency can be increased still further. 

 

 

Figure 2.5. The theoretical energy requirements for electrolysis at different temperatures [29]. ΔG 

(Gibb’ free energy) is the portion of the energy that must be provided by electrical work. TΔS, the 

product of temperature and entropy change, is the energy that may be supplied by heat. It will be 

seen that electrolysis at higher temperatures is more endothermic, with a higher proportion of the 

overall energy requirement ΔH provided as heat. Figure reproduced by permission; © 2012 IEEE. 

 

This may be understood in terms of the ‘thermo-neutral voltage’; this is the voltage whereby each unit 

of charge is given precisely enough energy to supply both the necessary heat and the necessary 

electrical work for the electrolysis reaction. Operation at the thermoneutral voltage keeps the cell in 

thermal equilibrium; above the thermoneutral voltage the cell generates heat; below it, the cell is 

endothermic. According to [29] most commercial electrolysers are designed to operate close to the 

thermo-neutral voltage, so that the current provides all required heat. However, there is also the 

potential to run electrolysis below the thermoneutral voltage if a source of high-grade heat (e.g. waste 

heat from industry or a nuclear power station) can be supplied, in which case the electrical efficiency 

can be brought above 100% [21], [42], [60]. 

For a SOFC, operation is inevitably exothermic [42], [63], [69], theoretically returning heat and work 

in the same proportions as shown in Figure 2.5. This naturally leads to the question of whether the 

heat from SOFC mode could be stored and subsequently used to boost the efficiency of SOEC mode 

in a reversible cell [69]. Phase change materials can provide such thermal storage at high 

temperatures, as discussed in [60] and [70], although it is dubious whether storage duration is long 
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enough to be useful. It can also be noted that certain hydrogen storage technologies (metal hydride 

and CHG) can achieve a good synergy with an rSOC, since the storage of hydrogen is exothermic and 

its release endothermic. Such heat may be used to assist with steam production if not the direct supply 

of heat to the stacks. 

A further possibility for boosting thermodynamic performance is to work with methane as the storage 

medium. Steam reformation of methane is endothermic, whereas the reverse reaction (methanation of 

syngas) is exothermic. If coelectrolysis of CO2 and H2O is used to produce syngas, methanation can 

therefore provide some heat to the electrolysis reaction – the overall reaction is more reversible. 

Conversely, steam reformation during fuel cell mode can absorb heat from the oxidation reaction. 

Such an approach potentially allows for high round-trip efficiency and has attracted considerable 

interest; it will be discussed further in Section 2.5. [60], [63]. 

 

2.4 Assessment of rSOC characteristics for high level modelling 
The section discusses some of the characteristics of rSOCs that are expected to be relevant for high-

level modelling and techno-economic analysis, with the aim of informing future modelling work. 

2.4.1 Capacity 

The largest rSOC systems constructed have had capacity below 200 kWAC for electrolysis mode [49]; 

a 720 kW electrolysis project is in the pipeline as of late 2021 [71]. Contrast this with the more 

mature PEM technology, where electrolysis projects in the order of 10 MW are planned or operational 

[72]–[74]. Saarinen et al [75] recommend that large rSOC systems be constructed in modules of at 

most 100 kW, to minimise the impact of cell failures on the plant.  

Capacity is invariably higher for SOEC mode than SOFC mode. This partly reflects the round-trip 

efficiency of the rSOC, but may also be the result of using a higher current density in SOEC mode 

[76]. Table 2.2 gives the power in each mode of some rSOCs found in the literature. 

Table 2.2. Reported rSOC capacity by mode. 

Reference SOEC 

nominal 

load (kW) 

SOFC 

nominal load 

(kW) 

Ratio Notes 

[77] 14.3 5.4 2.65 : 1 Experimental 

[78] 80 15 5.33 : 1 Experimental 

[46] 150 30 5 : 1 Experimental 

[79] - - 4 : 1 Modelling 

assumption 

[80] - - 5 : 1 Modelling 

assumption 
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2.4.2 Flexibility 

2.4.2.1 Partial load range 

SOC systems cannot in general operate at indefinitely small partial loads, a consequence of the need 

to maintain stable temperature. (PEM systems, by contrast, can viably operate at very low partial 

loads below 5% [36], [37]. Different sources give a variety of values for minimum attainable partial 

loads; these are given in Table 2.3.  

Table 2.3 . Reported attainable partial load for SOC. 

Reference Minimum partial load 

SOFC 

Minimum partial load 

SOEC 

Notes 

[81] 40% 33% 4 kWSOEC / 1 kWSOFC 

stack. Experimental. 

[78] 23% 58% Experimental. 

[82] - 24% Experimental. 

[83] 14% 14% Modelling assumption. 

[77] 

 

30% / 

20%* 

10%* Experimental 

*required external heat 

supply 

[46], [49], [84], [85] 

 

40% 

0% with efficiency 

penalty 

50% Experimental 

(GrInHy project) 

[86] - 5% Advertised 

[87] 50% - Advertised 

  

2.4.2.2 Full shutdown versus hot standby 

Safely warming up an SOC stack from room temperature to the operational temperature (at least 

600°C) takes multiple hours [1], [34]. Heating and cooling the stack over this temperature range 

causes it to degrade faster [88]–[90]. For this reason, it is generally accepted that full shutdown of an 

SOC system should be rare ( Nousch et al suggest only 21 full thermal cycles in a stack’s lifetime 

[89]); instead, systems are designed with a ‘hot standby’ / ‘hot idle’ mode. This generally entails a 

slight cooling of the stack, and operation at a reduced loadpoint to minimise energy consumption. 

Sunfire’s SOC stacks appear to use a hot standby temperature of  500 – 550 °C, compared to a 

operational temperature of 750°C [91]; standby temperatures in the range 400 – 600°C are seen in 

other literature [88], [92]. For an rSOC, standby mode could correspond to operation at the lowest 

possible partial load in either electrolysis or fuel cell mode; alternatively, temperature could be 

maintained by external supply of heat. Aicart et al [81] give the operating modes for the rSOC system 

developed for the SMARTHYES prototype, where the standby mode corresponds to approximately 

10% partial load in SOEC mode. Mottaghizadeh et al [93] present an SOEC system where standby 

corresponds to ca. 5% partial load, with heat also needing to be supplied; in [94] 10% partial load is 

assumed for standby mode of an SOFC. 

It is important to note that, in contrast to the multiple hours required to begin operation from cold 

shutdown, SOC systems require only minutes to start from the hot idle state [81], [86].  

2.3.2.3 Degradation and lifetime 

Degradation of SOCs is widely reported to be more rapid and severe for SOEC than for SOFC, with 

this degradation occurring principally at the oxygen electrode [29], [67], [68], [95]. The review by 

Zhang et al [1] suggests a stack lifetime of no more than 40000 hours for SOEC; still superior to PEM 

electrolysers, but inferior to alkaline; from the review by Wang et al [68] it seems clear that outcomes 

can vary considerably according to the materials used. By contrast, SOFC can have a reasonably long 
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lifetime: Jülich Research Centre reported that their SOFC stack operated for 93000 hours 

continuously [96]. 

Generally, voltage degradation for SOC is of the order 1% per thousand hours (that is, 1%/kh). The 

GrInHy project have reported degradation of 0.8%/kh, after 5000 hours of reversible operation of 

their 150 kW rSOC plant [46], [49], [84], [85]. Aicart et al [81] reversibly operated a 4.8 kW stack of 

25 cells over 800 hours, and found voltage degradation for the cells to be 0.9 – 2.4%/kh, excluding 

four damaged cells. Nechache and Hody [76] measured the voltage degradation of a ca. 5 kW stack in 

electrolysis mode only; voltage degradation was 4.1%/kh; but 1.3%/kh excluding the worst cell. The 

degradation of commercial SOCs made by Ceres is reported to be 1%/kh [97].  

An interesting and still controversial question is whether reversible operation of an rSOC, with 

frequent cycling between modes, might possibly counteract degradation mechanisms – or accelerate 

them. The literature does not yet offer a firm conclusion. Graves et al [98] found that the deterioration 

in the microstructure of the oxygen-electrode/electrolyte interface, observed when performing 

continual electrolysis at high current density, was no longer observed when cycling between fuel cell 

and electrolysis modes. In fact, Ohmic resistance actually decreased after 4000 hours of cycling. Chen 

et al [99] found very similar results: degradation of an LSM oxygen electrode during electrolyser 

mode was reversed during fuel cell mode. Reflex Energy also report that daily cycling of their 80 kW 

‘Smart Energy Hub’ technology significantly reduces degradation [100]. However, research published 

by NASA in 2010 [101] found degradation when cycling between modes to be worse than continuous 

electrolysis (the researchers noted that this contradicted the received wisdom). Experimental work by 

Choi et al [102] and Hong et al [103] also found cycling between modes gave rise to worse 

degradation. It is of course possible that degradation is associated with dynamics of the actual switch 

between modes; in this case controlling the mode-switching appropriately may solve the problem, as 

discussed in [104]. 

2.4.2 Costs 

Owing to the immaturity of the technology, costs for SOC / rSOC installations are rather uncertain 

[35]. Some of the estimates for whole system CAPEX in the literature have been collated in Table 2.1. 

Balance of plant can be a significant proportion of costs; [105] suggests that BoP is 2/3 of the cost for 

a 250 kW SOFC system, and for rSOC it is reasonable to expect BoP to account for a still greater 

portion. What is fairly clear is that for now, costs per kW are higher than for alkaline or PEM cells; 

however, there is also considerable scope for costs to fall in the future [35]. It seems reasonable to 

estimate system costs as at least €2000 / kW on the basis of [35], [37], [38], although [39] suggests 

that large SOFC systems for CHP (combined heat and power) can get below €1000 / kW. [44] points 

out that cost per kW is not the whole story, claiming that SOEC is already cost-competitive thanks to 

its higher efficiency. 

 

Some of the research papers presenting detailed system designs for energy storage with rSOCs (see 

Chapter 2) include some economic analysis. For instance, estimates given in [61] and [64] for the 

whole system CAPEX of a distributed scale energy storage plant fall in the range 233 - 452 [1864 – 

3616] $/kW [$/kWh]. For comparison, it is worth bearing in mind that the average cost of lithium-ion 

batteries at pack level was $176/kWh in 2018, and is expected to eventually fall below $100 / kWh 

[106]. 
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2.4.3 Conclusions 

The challenges that SOCs face in avoiding excessive degradation from sudden temperature swings 

will need to be considered in modelling. This is likely to mean limiting the amount of mode-

switching, and perhaps constraining ramp-rate. Concerning standby and on/off modes, the literature 

seems clear that transitions to and from a fully off cold state should be rare. An assumption that hot 

standby mode is used should be appropriate for high-level modelling. Concerning stack lifetime, the 

rSOC technology apparently still has ground to make. Nonetheless, with some optimism expressed in 

the literature that reversible operation can even extend lifetime, it may be reasonable to assume that 

lifetime will eventually rival that currently displayed by SOFC. 
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2.5 rSOCs – system level modelling 
In this section, we examine the various systems for energy storage using rSOCs that have been 

proposed in the literature. Different approaches are distinguished by: 

• the gas stored: hydrogen, syngas or methane; 

• the proposed method for storage (compression / metal hydride);  

• the approach to thermal management, including possible use of thermal energy storage; 

Accordingly, these studies tend to involve the modelling of the whole proposed storage system 

including all balance-of-plant components. The modelling of individual components is often 

simplified, for instance by the application of zero-dimensional lumped models. In most cases the 

predicted round-trip efficiency is calculated; some researchers also include an assessment of the cost 

of storage for the proposed system. 

A great deal of interest in the literature has arisen from an idea which seems to have originally been 

due to Bierschenk et al [107]; this idea involves the coelectrolysis of CO2 and water in an rSOC at 

intermediate temperature (650 °C), allowing the produced syngas to undergo methanation within the 

stack. This offers a number of advantages: methane gas allows for higher energy storage density than 

hydrogen with less compression. Furthermore, the exothermic methanation reaction can help with the 

supply of heat to the endothermic electrolysis reaction, allowing a lower voltage to be used. 

Conversely, steam reformation of methane in fuel cell mode makes the overall reaction a little less 

exothermic; overall, the storage cycle is closer to being isentropic. 

The difficulty with this approach lies in the particular conditions (lower temperature and high 

pressure) needed for methanation to take place. The usual YSZ electrolyte does not have sufficient 

ionic conductivity at 650 °C, so alternatives such as doped lanthanum-gallate (LSGM) must be used. 

Despite the challenges, this approach to energy storage using rSOCs has attracted a great deal of 

interest since, with several papers modelling energy storage plants at system level and/or undertaking 

economic analyses. Wendel et al [62] used an LSGM electrolyte, and conducted experiments using a 

button cell to validate a cell-level numerical model for the proposed SOC. The modelling suggested 

that a current density of 0.32 A/cm2 would achieve the targeted round-trip efficiency of 80%, with this 

efficiency dropping off linearly as current density increased. This figure did not include balance of 

plant considerations. It was felt that further improvements were needed to enable operation at higher 

current densities (>0.4A/cm2) and lower temperatures (600 °C). [60] discusses the application of this 

technology to a stand-alone energy storage system with tanks to hold both fuel and exhaust. A system 

level model incorporating all balance of plant components was constructed. In a ‘base case’ scenario 

operating the rSOC stack at 650 °C and 20 bar pressure, the model predicted a system level roundtrip 

efficiency of 72.6%. It was noted that the roundtrip efficiency was strongly influenced by system 

thermal integration. The researchers also commented on the playoff between storage density and 

roundtrip efficiency; the fuel mix generated at the optimal conditions for efficiency was not the most 

energy dense possible. 

The application of the system at a distributed scale (100 kW, 800 kWh) is discussed in [61]. Different 

system configurations were considered, including the question of whether to store water as vapour or 

liquid. Storage of water as vapour was predicted to achieve higher round trip efficiency (almost 74%), 

but at the cost of lower storage density and higher capital cost. [64] extends this work. A techno-

economic analysis put the capital cost of the distributed storage plant at $422 - $452 / kWh, and the 

LCOS just below 20 ¢/ kWh. The estimated roundtrip efficiency was 53% for this study, although this 

was considered to be ‘a conservative lower limit’. [63] discusses the implementation of the 
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aforementioned design at a large scale, employing caverns for storage of methane and CO2. A 250 

MW, 500 GWh store was proposed, which would undergo just 44 cycles over a 20 year lifetime, 

achieving an estimated electricity cost of around $0.03 / kWh - comparable to pumped hydropower. 

[65] also considers a large megawatt scale storage facility; here, only CO2 would be stored locally, 

with the gas grid used for storage of CH4. Simulations of this plant suggested a round-trip efficiency 

of 79.6%DC – a higher figure than seen in previous studies, which was attributed to lower current 

density and extra methane formation. However, lab experiments could not replicate the modelled level 

of methane formation during electrolysis. 

Ren et al [108] present an rSOC system intended for grid energy storage. In the proposed system the 

mix of fuel and exhaust (hydrogen and steam) always remains in the pressurised vessel containing the 

fuel cells. The advantages of this design were considered to be the avoidance of any need to preheat 

the fuel entering the SOC stack, the avoidance of contamination, and a more uniform temperature in 

the stack. Bronze was used as a phase change material to prevent overheating in fuel cell mode, and 

provide heat during the endothermic electrolysis mode. The researchers carried out modelling using 

Matlab / Simulink, building from a cell level model to a system model incorporating the stack, the 

thermal storage and the inverter providing the AC grid connection. The maximum round trip 

efficiency was found to be 64%. It should be noted that the application envisaged for the system was 

cycles over ‘short time periods, such as hours’. This is presumably dictated by the use of phase 

change thermal storage and the restriction on storage capacity resulting from keeping the fuel and 

exhaust within the system. One might be inclined to question whether fuel cells are competitive to 

operate with such short cycles.  

 

Frank et al [109] describe a 6 kW rSOC energy storage plant. They describe their design as 

‘particularly environmentally friendly’ since no carbonaceous gases are involved. Hydrogen is 

produced by electrolysis of steam and stored at 70 bar using multistage compression with intermediate 

cooling. Unconverted steam is condensed so that only hydrogen is stored. Electrolysis takes place 

slightly below the thermoneutral voltage; thus heating plates are used to maintain the stack at 750 °C. 

In fuel cell mode the stack temperature is controlled by adjusting the flow of air. As in most designs, 

heat is exchanged between the inlet and outlet gases. Balance of plant calculations for the proposed 

design indicated a maximum efficiency of 61.4% in fuel cell mode and 74.3% in electrolyser mode, 

for a 45.6% round-trip efficiency. With the recycling of heat from the condensers, this could be 

improved slightly to 51%. These figures were for steady state operation, and do not account for mode 

switching. The possibility of using thermal storage was mentioned, but to keep the system simple it 

was not included. 

 

Perna et al [110] considered a distributed scale rSOC energy storage system (100 – 200 kW), with 

storage of pressurised hydrogen at 200 bar. The thermal balance of the plant was elegantly designed in 

order to avoid the use of any external heat sources. Preheating of gas streams and steam production 

were to be achieved using heat exchange with the off-gas, or heat given off by the compression of 

hydrogen. Also, waste heat produced by the system was to be used for the supply of hot water at 65 

°C. Diathermic oil was to be used as a medium for both heat exchange and heat storage. A SOC 

model was constructed and validated against experimental data, before being incorporated into a 

modular balance-of-plant model. The electrical round-trip efficiency was predicted to be 60%, and the 

cogeneration efficiency 91%. 
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Table 2.4. Summary of studies with system level modelling of rSOC energy storage plants. 

Source / 

institution / year 

Notable features Thermal management Modelling Modelling 

environment 

Roundtrip 

efficiency 

Economic analysis 

Ren et al [108] / 

U. of Strathclyde 

/ 2012 

 

H2 / H2O mix remains in 

sealed pressure vessel with cell 

stack. 

 

PCM (bronze) 0D cell & BoP models Matlab / 

Simulink 

64% - 

Akikur et al 

[111] / U. of 

Malaya / 2014 

 

Cogen. system using 

concentrated solar power and 

PV. 

 

CSP for steam generation Mathematical analysis - Co-gen 71%; 

electrical 38% 

Total system CAPEX: 

c. $6000 / kW; 

COE: $0.0676 / kWh 

di Giorgio and 

Desideri [112] / 

Pisa / 2016 

Focus on use of TES, and 

comparison of scenarios 

with/without storage of water 

vapour. 

 

Sensible TES using ceramics / 

PCM with eutectic metal alloy / 

Steam drum 

0D cell & BoP models 

 

Matlab / 

Simulink 

64 – 74% - 

Frank et al [109] 

/ Jülich research 

centre / 2018 

6 kW plant with storage of H2 

at 70 bar. 

Heating plates for electrolysis; 

coupling of heat sources / sinks; 

possibility of TES noted. 

 

1D cell model; 

cascade of continuous stirred 

tank reactors for BoP 

Matlab / 

Simulink / C 

51% - 

Perna et al [110] / 

U. of Cassino / 

2018 

100 – 200 kW plant 

storage of H2 at 200 bar. 

Coupling of heat sources and 

sinks; diathermic oil for TES and 

heat transfer 

 

0D cell & BoP models Fortran 60% 

(91% cogen.) 

- 

Srikanth et al / 

Stuttgart / 2018 

Study focused on safety / 

durability under mode 

switching. 

 

Electric preheater 1D cell model 

Simple system model (H2 

storage not modelled) 

 

Modelica 42% - 

Giap et al [113] /  

Daejeon / 2018 

rSOC plant using waste heat 

for electrolysis; storage of H2 

at 22 bar. 

 

Waste heat provides steam 0D cell & BoP models EBSILON 53.8% with 

use of waste 

steam 

- 

Lototskyy et al 

[57] / U. Western 

Cape / 2018 

Tri-generation system for 

coupling with PV generation. 

Metal hydrides for storage of 

H2 & heat. 

TES using metal hydrides 0D cell & BoP models Matlab Tri-gen 

70.6%; 

electrical 

46.7% 

- 
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Table 2.4 continued. 

Source / institution / 

year 

Notable features Thermal management Modelling Modelling 

environment 

Roundtrip efficiency Economic analysis 

Wendel et al [60] / 

Colorado School of 

Mines / 2015 

 

1 MW scale system with 

tanks for fuel and 

exhaust. 

Methanation / steam 

reformation reactions 

improve efficiency 

Draws on 1D cell 

model. 

? 72.6% - 

Wang et al [114] / 

Beijing / 2019 

Distributed energy 

storage of c. 200 kW; 

emphasis on detailed 

cell / stack model. 

 

TES using diathermic 

oil 

 

3D cell model 

0D BoP models 

gPROMS / Matlab / 

DETCHEM 

58.3% (system) 

72.3% (stack) 

 

Jensen et al [63] /  Tech. 

U. of Denmark / 2015 

Large scale system (250 

MW, 500 GWh) with 

storage of fuel and 

exhaust underground 

Methanation / steam 

reformation reactions 

improve efficiency; 

coupling of heat sources 

and sinks 

 

1D steady-state cell 

model; 0D BoP models 

? >70% CAPEX $269 / kW 

Storage cost $0.03 / 

kWh 

Wendel and Braun [61] 

/ Colorado School of 

Mines / 2016 

Distributed scale system 

(100 kW / 800 kWh); 

tanks for fuel and 

exhaust; comparison of 

scenarios with/without 

storage of steam 

 

Methanation / steam 

reformation reactions 

improve efficiency; 

coupling of heat sources 

and sinks 

1D steady-state cell 

model; 0D BoP models 

? 68.3 – 73.7% CAPEX: $233 – $317 

/kWh 

Energy storage cost 

$0.088 / kWh-cycle 

 

Butera et al [65] / 

Technical University of 

Denmark / 2018 

 

Multi megawatt plant 

storing CO2 

underground, CH4 in 

gas grid. 

Methanation / steam 

reformation reactions 

improve efficiency 

0D cell & BoP models Dynamic Network 

Analysis 

79.6%DC  

Reznicek and Braun 

[64] / Colorado School 

of Mines / 2018 

 

Distributed scale system 

(100 kW / 800 kWh); 

tanks for fuel and 

exhaust. 

Methanation / steam 

reformation reactions 

improve efficiency; 

coupling of heat sources 

and sinks 

 

1D steady-state cell 

model; 0D BoP models 

gPROMS ModelBuilder ≥53% CAPEX: $422 - $452 / 

kWh 

LCOS $0.1808 – $0.196 

/kWh 

https://www.psenterprise.com/products/gproms/modelbuilder
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Ullvius and Rokni [115] 

/ Tech. U. of Denmark / 

2018 

 

Polygeneration system 

carrying out 

desalination and power 

generation 

CSP for steam 

generation. 

Waste heat used for 

DCMD desalination. 

0D cell model Dynamic Network 

Analysis 

42 - 45% electrical - 
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In a 2018 paper, Srikanth et al express concern that the ‘simplified block models’ used in [109][62] 

and others tend to overestimate the performance of rSOC energy storage systems. They note that the 

zero-dimensional models of cells / stacks may not predict failures caused by local effects; thus unsafe 

or unrealistic operating conditions are permitted. Accordingly the researchers built a more detailed 1D 

model of a solid oxide cell in Modelica, and validated this model experimentally using a 10 cell stack 

in both SOFC and SOEC modes. This model was then incorporated into a simple system level model; 

this model included thermal balance-of-plant components, but not any kind of hydrogen storage. The 

research was particularly concerned with safety, and the avoidance of cell failure, during mode 

switching. On this point, it was concluded that rather than instantaneous switching between modes, 

the composition of inlet gases should be ramped over one minute, and the temperature of inlet gases 

over around 10 minutes. The efficiencies predicted for SOEC and SOFC mode were 49% and 87% 

respectively, for 42% round-trip efficiency. 

Giap et al [113] express the opinion that designs intended to produce methane for storage (as 

discussed above) are likely to suffer faster degradation thanks to the steam reformation and 

methanation reactions. Instead they consider a system based purely on hydrogen / steam, and their 

main interest is in the possibility of employing waste steam from industrial processes. The balance-of-

plant design was intended to be ‘simple and highly practical’ but not necessarily claimed to be 

optimal. Storage of hydrogen was to be realised at the unusually low pressure of 22 bar. A zero-

dimensional lumped model of the proposed system was constructed in EBSILON software. The 

round-trip efficiency was predicted by the model to be 53.8%; if the energy to create steam had to be 

considered, this would fall to 37.9%. The researchers felt that these figures were still too low; one of 

their recommendations was that the incorporation of thermal energy storage should be considered. 

Lototskyy et al [57] considered a distributed rSOC system designed for combined cooling, heating 

and power, using metal hydrides for storage of both hydrogen and heat. It was proposed that the 

system would be powered by photovoltaics. Three different types of metal hydride (MH) bed were 

incorporated in the design. A MH hydrogen and heat storage system would store H2 and medium 

grade heat, consuming heat during SOFC mode and releasing it in SOEC mode. A MH hydrogen 

compressor would supply hot water at 90 °C to the end user, whilst a MH heat pump would supply 

chilled water. A numerical analysis of the system was conducted, with optimisation of the most 

sensitive parameters conducted in MATLAB. It was noted that operating SOFC and SOEC at too high 

an efficiency would lead to a deficit in energy to drive the MH heat management system. The analysis 

suggested that the thermal management strategy could give a round-trip efficiency of 70.6%, though it 

should be noted that this is tri-generation efficiency, accounting for the provision of heat and cold; 

electrical round-trip efficiency would be 46.7%. A concern with this approach would be the 

unlikelihood of demand for heat and cool aligning with the operation of the hydrogen storage. 

Furthermore, the system seems to have been designed for a daily cycle which again is a questionable 

application for hydrogen storage. 

Akikur et al [111] present a system combining rSOCs with concentrated solar power and 

photovoltaics, to be used for combined heat and power. In the proposed system, a parabolic trough 

solar collector (PTSC) assists with the generation of steam during electrolysis, whilst the PV provides 

the electric current. In addition to hydrogen, water would also be stored within the system. 

A heat store is used to buffer the output of the PTSC, but plays no other role in the thermal 

management of the plant. Heat exchangers enhance thermal performance by exchanging heat between 

air leaving and entering the SOC stack. The researchers constructed mathematical models for the 

PTSC, SOC and PV components, and validated these against results in the literature and in the 

manufacturer’s data. The model predicted 44.3% efficiency for fuel cell mode (83.6% allowing for 

cogeneration) and 85.1% efficiency for electrolysis. The electrical round-trip efficiency is thus 
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predicted as around 38%. The researchers also carried out an analysis of the economics for the 

proposed plant. Capital cost estimates included the various components of the system ($1000 / kW 

was assumed, perhaps optimistically, for the SOCs). The cost of electricity for this system was 

computed as $0.0676 / kWh, assuming a twenty year lifetime for the plant as a whole, and a five year 

lifetime for the SOC module. It should be noted that although a ‘hydrogen storage tank’ is mentioned, 

neither the technical nor the economic analysis gives detailed consideration to this. 

In [112] a system is proposed using thermal energy storage in close contact with the stack. This would 

be either sensible heat storage using a ceramic material or latent storage using a eutectic metal alloy. 

Hydrogen would be stored at 108 bar. In similar fashion to [61], two configurations were considered: 

one in which water vapour would be condensed out of the off-gas, and one in which the vapour would 

be stored (removing the need for a steam generator). In the first configuration, surplus heat during 

SOFC mode was transferred to a steam drum in preparation for SOEC mode. This configuration was 

found to be capable of 72% RT efficiency, with either form of TES. However, electrolysis could not 

continue for long before external heat was needed for steam generation. The stored vapour 

configuration could achieve RT efficiency of only 64% - although this would reach 74% if the stack 

could be pressurised. The evaluation cycles considered in this research were of short duration, with 

two hours of fuel cell mode followed by electrolysis. 

Wang et al [114] considered a distributed scale rSOC energy storage system of around 200 kW 

capacity, working with hydrogen only (no carbonaceous species). This research used an unusually 

detailed stack model, enabling the heat distribution in the stack to be monitored in three dimensions. 

Diathermic oil would be used for thermal storage, as in [110]; hydrogen would be stored at 20 bar. 

BoP components were modelled using 0D lumped models in gPROMS. Round-trip efficiency was 

found to be 72.3% at stack level, and 58.3% at whole system level. The research also examined the 

thermal gradients arising in the stack, which were found to be much higher in SOFC mode. Up to the 

time of writing, only steady state simulations had been carried out, and the researchers noted the need 

to conduct dynamic simulations, as well as to conduct economic analysis. 

Ullvius and Rokni [115] present a concept for a polygeneration plant using concentrated solar power 

with rSOC’s and hydrogen storage. The distinguishing feature of this idea is the use of waste heat 

from the rSOC for carrying out desalination using direct contact membrane distillation. Dish Stirling 

solar collectors would generate electricity, whilst parabolic trough solar collectors would generate 

steam for electrolysis. Hydrogen would be stored at pressure in tanks (the precise details are unclear); 

this would enable the plant to continue operating through the night, and possibly provide longer term 

storage also. Simulations were undertaken using in-house software Dynamic Network Analysis. The 

round-trip efficiency of the energy storage component was found to be 42 - 45%, without accounting 

for the use of waste heat for desalination. A case study was undertaken for a South African location 

where the plant would generate a constant 500 kW and produce c. 8.5 tonnes of fresh water per day; 

this design incorporated 70 stacks of 200 rSOC’s. However, simulations were conducted only for one 

randomly chosen day, with no consideration of the variation in solar resource over the year. The 

economics of the proposed plant are yet to be studied. 
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2.6 Extant literature on energy storage using hydrogen in microgrids 

and distributed energy applications 
We now consider some of the literature dealing with the role of hydrogen energy storage in the 

context of microgrid or distributed applications. Recall that a microgrid is defined as a localised 

grouping of electrical loads, generation and perhaps storage; a microgrid will generally manage its 

energy to achieve some measure of independence from the utility grid, and may be capable of 

functioning completely independently [5]. The studies reviewed here are concerned with the ‘high-

level’ design and simulation of microgrid energy systems, and tend to include models for renewable 

generation and electrical load as well as the storage components. Accordingly, modelling of the 

individual components tends to be relatively simple. The objective of these studies is frequently to 

assess the technical or financial viability of the whole energy system. In some cases optimisation is 

carried out to determine the best choice of technologies and their capacities and dispatch over time. 

Only a few studies of this kind have considered rSOCs; more commonly, alkaline / PEM cells are 

considered, whilst some studies do not even specify the exact technology to be used.  

Baldinelli et al [116], noting that rSOC’s are considered to have poor load-following capability, 

accordingly put forward a concept in which rSOC’s are hybridised with flywheel energy storage to 

smooth out short term transients. A case study is presented wherein the hybrid energy storage forms 

part of a minigrid consisting of a number of homes (2 kW mean demand) and PV generation (11 kW 

peak). A hydrogen tank would be used for bulk energy storage. PV output is modelled using solar 

generation profiles constant within each month. The rSOC is modelled in simple fashion using 

efficiencies for each mode of operation (respectively 85% and 50% for SOEC, SOFC). Preliminary 

sizing of the flywheel, rSOC and hydrogen tank is done analytically: the flywheel would provide 2.1 

kWh of storage, the H2 tank 25 kWh; the rSOC would have 2.6 kW / 1.14 kW capacity as electrolyser 

/ fuel cell. A control algorithm is proposed to determine charge / discharge of the two energy stores, 

with the rSOC limited to one cycle per day, to minimise degradation. The algorithm decides the mode 

for the rSOC according to whether there is a generation surplus / deficit for the entire day, rather than 

on an instantaneous basis. 

It was found that the hybrid energy storage could increase self-consumption from 52.1% to 58.0%; 

with the bulk storage alone, only 54.5% would be achievable. (N.B. the formula used for self-

sufficiency appears to be unconventional.) Interaction with the grid (annual imports + exports) could 

be reduced from 15.6 MWh to 11.4 MWh (or 13.5 MWh for bulk storage only). Some of the current 

literature (e.g. [46], [48]) does reveal optimism that SOCs may in fact be capable of a good level of 

flexibility, possibly obviating the need for storage to be hybridised as described here. No economic 

assessment was undertaken in this research.  

Sorrentino et al [117] designed a microgrid to supply power to an apartment complex in Salerno, 

Italy. This consisted of an rSOC and hydrogen storage, as well as PV and a vertical axis wind turbine. 

Thinking along similar lines to [116] the design only allowed for one load point for each mode of the 

rSOC; the researchers suggested that short term storage should be used to ‘manage the transient 

phases’, but this was not included in the model. The rSOC was modelled simply in terms of 

efficiencies for each mode: for electrolysis the efficiency was given as 0.64, which allowed for the use 

of some hydrogen to burn for heat; for fuel cell mode the efficiency was 0.7 (which seems 

implausibly high). The model of the hydrogen storage tank is not reported. 

Sizing of the wind, PV generation, and hydrogen storage was optimised using the Excel Solver, the 

objective function being payback time (plus a penalty term to discourage net accumulation or loss of 
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stored energy over a full year). The capacity of the rSOC appears to have been specified as 28 kW, to 

cover peak demand of the seven flats. The optimised design would have 11.7 kW of PV, 36.7 kW of 

wind, and would require 144 kg of H2 storage (almost 5 MWh). The system would be capable of 3-10 

days of full grid independence. It was claimed to achieve a payback period of 11.27 years; however, 

some of the CAPEX estimation seems very optimistic (rSOC $400 / kW; PV €817 / kW). 

Patterson et al [118] used HOMER software (“Hybrid Optimization Model for Electric Renewables” 

[119]) to optimise the design of a microgrid to supply the Biosphere 2 Village, a research facility 

located in Arizona, consisting of 28 houses. The design was required to enable 45% of the microgrid’s 

electricity to be procured from embedded renewables (solar photovoltaic panels); to cut its associated 

CO2 emissions by 50%, and to keep annual imports from the grid below 120 MWh. Zinc bromine 

flow batteries and proton exchange membrane (PEM) electrolysers / fuel cells were considered as 

providers of electrical energy storage. It is unclear why more established technologies such as Li-ion 

were not considered. HOMER software was used to attempt the optimisation of the following key 

metrics: economics in terms of net present cost (NPC) and cost of electricity (COE); environmental 

impact in terms of grid imports and associated CO2 emissions; and ‘autonomy’, the length of time the 

microgrid could function in islanded mode. A communal quick charger for electric vehicles was 

added to the microgrid’s load, with different penetrations of electric car ownership considered. 

Various combinations of flow batteries and fuel cells were found to be capable of meeting the 

microgrid’s requirements. The cheapest solutions used flow batteries only; however, the researchers 

felt that a hybrid system combining 63 kW of fuel cells with an 8.75 kWh flow battery was more 

favourable because of the increased autonomy provided by the hydrogen storage. This hybrid system 

would cut the microgrid’s emissions by almost 80% and its dependence on the grid by over 75%; the 

COE would be an estimated $0.21 / kWh.  Whilst NPC of the hybrid system was only 14% above that 

of a 50 kWh flow battery system, a large question remains here of whether it could possibly be cost 

competitive with more conventional battery storage. 

 

In their 2004 paper [120], Khan and Iqbal consider the design of a stand-alone hybrid energy system 

for a remote off-grid house notionally located in Newfoundland, Canada. This research also employed 

HOMER. Wind turbines, photovoltaic (PV) modules and diesel generators were the generation 

technologies considered, whilst storage could be provided by PEM electrolysers and fuel cells, and/or 

by lead acid batteries. The system was optimised for cost, with sensitivity analyses conducted to vary 

the capital cost of fuel cells, the cost of diesel, and the wind and solar resource. It was concluded that 

a wind-diesel-battery system was the cheapest possible solution. However, if the capital costs of PEM 

fuel cells (estimated to be $3000 / kW at the time) were 35% lower, a wind-diesel-fuel cell-battery 

system would become financially viable, with the COE estimated at $0.49 / kWh. For an 85% 

reduction in fuel cost, a system with only wind generation and fuel cell / electrolyser could be 

optimal, achieving a COE of $0.42 / kWh. Clearly it is difficult to rival the cost-effectiveness of a 

diesel generator to complement the intermittency of renewable generation – so a secondary objective 

of minimising emissions could have been interesting here.  

 

Another study using HOMER software was conducted by Shahinzadeh et al [121]. The microgrid 

under consideration was to be located in Nain, Iran. The considered technologies for generation were 

wind turbines, solar PV and gas microturbines; storage options were electrolysers / fuel cells and 

batteries; a connection to the external grid allowed additional flexibility. The net present cost of the 

energy system was minimised. The capital costs used for fuel cells and electrolysers were 

significantly lower than in [120] at $1800 / kW and $333 / kW respectively; this price for electrolyser 

capacity seems implausibly low [35].  Notably, the fuel cells and hydrogen storage were selected by 
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the optimisation, providing 2% of electricity demand across the year. The optimised COE for the 

energy system was calculated as $0.106 / kWh. 

 

Maroufmashat et al [122] considered the design of a hydrogen powered microgrid for the remote 

community of Cornwall, Ontario. A novel aspect of the model was the inclusion of hydrogen powered 

vehicles (HPVs) as well as the electrical load. It was wished to deliver a microgrid capable of two full 

days in islanded mode; PEM electrolysers and fuel cells would be used with hydrogen storage to store 

renewable energy (wind and solar). Mixed integer dynamic optimisation was used to determine the 

installed capacity of each technology, optimising for lowest cost. The optimal design employed 380 

kW of solar generation, 6.4 MW of wind, 4 MW of electrolysers and 4 MW of fuel cells. The 

researchers noted that the cost of the storage system would be excessive at around 70% of the CAPEX 

of the entire energy system; the fuel cells by themselves contributed 42%, eclipsing the 30% 

contribution of the installed wind and solar generation. A further ‘vehicle to grid’ scenario was 

explored in which HPVs could release electricity back to the microgrid. This enabled a reduction in 

the installed capacity of fuel cells, which nonetheless still contributed 35% to the system cost. The 

possibility of using waste heat from the electrolyser was also mentioned but does not seem to have 

been included in the model. COE does not appear to have been calculated for the proposed energy 

system, making a judgement of its overall financial viability difficult. 

 

A 2011 paper from Kyriakarakos et al [123] discusses the design of a microgrid for deployment on 

remote islands in the Aegean sea. The conceived microgrid would supply two dwellings with power, 

and would also power a desalination unit and supply fuel to a hydrogen powered vehicle. Solar PV 

and wind power would provide renewable energy, with energy storage realised by PEM electrolysers 

and fuel cells in tandem with metal hydride hydrogen storage – and/or by lead acid batteries. Particle 

swarm optimisation was used to optimise the sizing of the various components, in order to minimise 

the capital and maintenance costs of the energy system over twenty years. The optimisation sized the 

electrolyser at 700 W, the fuel cell at 300 W and the lead acid battery at 48 kWh. (It should be noted 

that the selection of hydrogen storage by the optimisation was inevitable owing to the inclusion of a 

hydrogen powered vehicle in the model.) The fuel cell would operate for less than ten hours a year; 

the researchers argue it cannot be dispensed with as it is needed for security of supply and to avoid 

deep cycling of the battery. To evaluate the economics of the proposed microgrid, the avoided cost of 

potable water and petrol was considered, and the cost of electricity generation was compared with a 

more conventional diesel-battery microgrid. A Monte Carlo method was used to take account of 

uncertainty in fuel prices et cetera; it was concluded that the hydrogen microgrid was profitable 

(positive net present value) with around 90% probability. 

 

Nelson, Wang and Nehrir [124][125] considered the design of a stand-alone energy system for 

implementation in Montana, USA. The research involved unit sizing and cost analysis for two 

designs: one using conventional battery storage, and one using hydrogen storage with electrolysers 

and fuel cells. Both designs incorporated wind and PV generation. Batteries were modelled with a 

simple round-trip efficiency of 85%; electrolysers and fuel cells were assigned efficiencies of 74% 

and 50% respectively. Designs were constrained to have a loss of power supply probability of below 

0.0003. It was found that of the viable solutions, the ones with the least amount of PV generation were 

most cost effective, owing to the high capital cost of PV modules. Ultimately it was found that the 

COE for the hydrogen-based energy system was far higher at $0.70 / kWh, with the battery system at 

only $0.37 / kWh. The factor underlying this was the low round trip efficiency of the hydrogen 

storage, which led to more generation capacity needing to be installed. For this reason, the hydrogen 

system was found to have a higher COE even if the fuel cells and electrolysers had zero capital costs. 
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The researchers therefore emphasised the need for fuel cells and electrolysers to achieve higher 

efficiencies in order to compete viably with batteries. It has to be pointed out that the modelling did 

not include the self-discharge of the batteries, and therefore the advantage of the electrolyser/fuel cell 

system for long term storage would not have been captured. It should also be noted that the costs of 

PV generation have fallen dramatically since 2005 when the research was published. 

 

Finally, Gabrielli et al [126] used mixed integer linear programming (MILP) to optimise the provision 

of energy to a district of Zurich, Switzerland. Uniquely among the work reviewed here, the demand 

for both power and heat was considered. Solar PV and solar thermal were considered as renewable 

energy sources, with electricity and gas also available to import from the national grid. Energy storage 

options considered were hydrogen storage using PEM electrolysers and fuel cells, in addition to Li-

ion battery storage and hot water sensible thermal storage. The fuel cells and electrolysers were 

modelled with efficiency depending on power according to an affine approximation, an improvement 

on simply using a flat efficiency. Battery self-discharge was also taken into account. The optimisation 

was conducted with two objectives: the minimisation of both cost and CO2 emissions. Thus a 

cost/emissions Pareto set was constructed. Notably, the hydrogen storage was not selected by the 

optimisation when minimising for cost only; indeed it was only selected when emissions cuts of 80% 

and above were required. For less ambitious curtailment of CO2, battery storage was chosen as the 

more cost-effective option. Furthermore, the selection of the hydrogen storage was found to be 

relatively insensitive to its capital costs. 

 

2.7 Real-world trials of hydrogen energy storage 
This section discusses a few of the real-world pilot schemes that have been conducted using hydrogen 

for stationary energy storage in distributed energy systems. The overwhelming majority of such 

schemes to date have employed alkaline or PEM electrolysers and fuel cells, and to provide some 

background, a few of these are discussed first. We then describe the pilots involving rSOCs, which are 

all recent and as yet are few in number. 

What follows is by no means intended to be an exhaustive account; for a more thorough review on 

pilot schemes with hydrogen energy storage, Gahleitner’s review paper [30] is recommended, 

although this only covers to the year 2012. Here we discuss four schemes that seem particularly 

relevant to this project. Common themes worth noting are the low round-trip efficiencies that are 

achieved, and the desirability of hybridising hydrogen energy storage with shorter term storage. 

The PHOEBUS demonstration plant at the Central Library of the Jülich Research Centre, Germany, 

ran for 10 years to 2003 [26]. A 30 kW solar array was used to power an alkaline electrolyser; the 

oxygen and hydrogen produced were stored in separate pressurised tanks, at 70 bar and 120 bar 

respectively. The 6 kW fuel cell initially installed was found unreliable and a grid connection was 

used as a fuel cell simulator instead, before finally a PEM fuel cell was installed. A lead acid battery 

bank was also installed, with 303 kWh capacity able to supply the load for three days. In fact the 

battery supplied over half of the final power demand, with the hydrogen storage supplying less than a 

quarter. The hydrogen storage was noted to have ‘very low efficiency’, at around 22 to 26%. ‘Lessons 

learned’ included that storage of O2 was perhaps an unnecessary expense, as the fuel cell could have 

run on air; also that running the electrolyser at high pressure (200 bar) could have reduced the energy 

cost of compressing hydrogen (from 9% of stored energy to 3%). 

The Centre for Renewable Energy Systems Technology (CREST) ran the Hydrogen and Renewables 

Integration (HARI) project at West Beacon farm, Loughborough, beginning in 2001 [27], [127]. The 
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system was designed to store surplus power from onsite wind, solar and hydro generation. 3.8 MWhe 

of hydrogen storage – enough for about three weeks - was realised using an alkaline electrolyser and 

tanks pressurised to 137 bar. A 20 kWh ZEBRA battery was also used to buffer the variable 

electricity supplying the electrolyser. Two PEM fuel cells were used for conversion of H2 to power. 

One of these 

Figure 2.6.  Schematic of the stand-alone power system at West Beacon farm [27]. 

Reproduced by permission. 

was designed to output useful heat as well as electricity, but it is unclear if/how this heat was used. 

Modelling suggested that the hydrogen storage would have a round trip efficiency of only around 

25%; it wasn’t specified whether this accounted for the possible use of fuel cell heat. The indicative 

capital cost of the storage system excluding the controls and converters was given as £369000 or £97 / 

kWh. In the 2007 paper the system was still described as ‘not fully operational’.  

A wind/hydrogen system launched on the Norwegian island of Utsira in 2004 was used to supply 

electricity to ten houses [36]. The system used an alkaline electrolyser to produce hydrogen at times 

of surplus wind power; 2400 Nm3 of hydrogen could be stored at a pressure of 200 bar (presumably 

representing several MWh of stored energy). A 10 kW PEM fuel cell was installed, but suffered 

various failures and degradation over time, so that at the time of writing a 55 kW hydrogen generator 

was exclusively used in its place. With the production of hydrogen estimated to be only 53% efficient, 

and the hydrogen engine under 20%, the round-trip efficiency for the hydrogen storage would have 

been only around 10%. Nevertheless the microgrid, which was also equipped with 5 kWh of flywheel 

storage and a 50 kWh battery storage system for regulation of frequency and voltage, could achieve 

two to three days of energy autonomy for the island. 

Around 2005, the PURE (‘Promoting Unst Renewable Energy’) project on Unst in the Shetland 

Islands became operational, supplying electricity to five business properties [128]. Compressed 

hydrogen was used as a storage medium for electricity generated by two 15 kW wind turbines. Pains 

were taken to reduce ‘on-demand’ electrical load at the beginning of the project; on-demand electrical 
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heating was removed and replaced with storage heaters charged by surplus wind power, and building 

insulation was substantially improved. These measures reduced the ‘on-demand’ load by 55% and 

apparently saved the project £40000 in capital costs whilst costing only £3000. The project 

experienced difficulty in finding a suitable electrolyser, with concerns that alkaline electrolysers are 

not appropriate for use with an intermittent supply; nonetheless one was eventually chosen that was 

expected to be efficient under flexible load. The PEM option was considered but dismissed, the cited 

concerns being degradation, short lifetime and inadequate efficiency at high current density. A 5 kW 

fuel cell was used for generation, and hydrogen was also stored in hydride cylinders and used in a fuel 

cell vehicle, and for ‘other applications’. Few other technical details are available. 

2.7.1 Real-world trials using rSOCs 

To the author’s knowledge, only two pilot schemes have been conducted using rSOCs at the time of 

writing (assuming that lab-scale work is discounted). A third is under development at the time of 

writing. The two demonstration projects that have already published results have both involved 

German SOC manufacturer Sunfire, which has a number of SOC and rSOC products relatively near to 

commercialisation [129]. 

The first of these projects was a collaboration between Sunfire and Boeing [24]. This multi-kW scale 

system, designed with microgrid applications in mind, was commissioned in 2015 and underwent 

testing at Boeing’s Huntingdon Beach facility in southern California. 1920 cells in stacks of 30 could 

generate 50 kW in fuel cell mode, and absorb 120 kW in electrolyser mode. The system was 

apparently online for 1000 hours, although only underwent seven cycles during that time. 

 

 

 

 

Figure 2.7. rSOC energy storage system demonstrated at Boeing Huntingdon Beach. [24]. 

Reproduced by permission.
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Storage of hydrogen was in tanks at about 250 bar. The storage was ‘sized for 12 hours of operation in 

fuel cell and electrolysis modes’; however the paper stresses that more storage could be added easily 

and cheaply (cost of tanks was given as $30-$40 / kWh). The compressor used 13% of the total 

electrical load during electrolysis. Electrolysis was carried out at close to the thermoneutral voltage. 

In terms of hydrogen’s HHV and neglecting the electricity consumption of the compressor and the 

steam generator, electrolysis was 99.3% efficient; the more realistic figure, using hydrogen’s LHV 

and allowing for the compressor and steam generator, was 60.5%. Fuel cell mode was reported to be 

49% efficient, indicating a power-to-power round-trip efficiency of about 30%. Apparently, gas 

burners were also used for start-up and during electrolyser mode, and it is not clear if/how this energy 

consumption was accounted for. The researchers argue that unfavourable comparisons to battery 

storage are unfair, given the ‘theoretically infinite’ energy storage capacity. No mention is made of 

whether any degradation was detected during the tests. 

A second trial using Sunfire rSOC technology is reported in [46], [49], [85], [130]; this is the 

‘GrInHy’ or ‘Green Industrial Hydrogen’ project. The technology application here is somewhat 

different, with the 143 kW rSOC installed in a steelworks at Salzgitter, Germany in 2017. This 

enabled the energy cost of steam generation to be avoided through use of waste steam from the 

steelworks. Furthermore, generated hydrogen could be used in the steelworks as a reducing agent (in 

place of coke) and for annealing, as an alternative to using it for electricity generation. Although such 

industrial applications will not be a focus of this present work, results from GrInHy cast unique light 

on the current capabilities of rSOC technology, so are of interest. 

The rSOC storage had a nominal load of 143 kWAC in electrolyser mode, and generated 30 kWAC in 

fuel cell mode. The system was operational for 5000 hours overall, with seven full shutdowns needed 

to exchange BoP components. Efficiency of electrolysis was reported as 84%LHV - although this was 

subject to improving the power electronics (DC to AC conversion was responsible for the majority of 

energy losses in this mode). For fuel cell mode, efficiency was 47%LHV for potential round-trip 

efficiency of nearly 40%. (In practice the device was not used as energy storage as such, since H2 

generated was used in the steelworks and fuel cell mode was primarily run using natural gas.) Other 

notable results include the achieved level of flexibility, with relatively fast startup (from hot standby) 

and shutdown times possible, and a good range of achievable partial loads without efficiency penalty; 

see Table 2.5. Additionally, the degradation of the system was monitored over the duration of its 

operation; mean ASR degradation was measured at 21 mΩ·cm2 per thousand hours, equating to 

voltage degradation of 0.8% per thousand hours in electrolysis mode. The fact that running fuel cell 

mode using natural gas (rather than stored hydrogen) was considered more cost-effective for this 

project is worth noting. 
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Table 2.5 Details pertaining to GrInHy’s rSOC system [46], [49], [85], [130]. 

Mode Electrolysis Fuel cell (H2)` Fuel cell (NG) 

Nominal AC power (kW) 

 

143 30 25 

AC efficiency (%LHV) 

 

84 47 50 

Test regime 1400 hours; 

160 on-off cycles 

Only used for calibration & 

monitoring degradation 

 

1000 hours; 60 on-off 

cycles; mainly 80 – 100% 

load. 

 

Partial load range 50% - 113% with no 

efficiency penalty 

- 40 – 100% 

(down to 0% with 

efficiency penalty) 

 

Startup time (hot standby → 

100% load) 

 

24 mins - 20 mins 

Shutdown time (100% load 

→ hot standby) 

 

7 mins - up to 6 mins 

 

It is worth briefly mentioning the third major demonstration project to employ Sunfire’s SOC 

technology: HELMETH (‘high temperature electrolysis and methanation’) [131]. This is purely a 

power-to-gas project; the SOCs are not used reversibly. The syngas produced by electrolysis 

undergoes methanation, boosting the overall efficiency of electrolysis – a concept that has attracted a 

great deal of attention ([60]–[65], [107]). This may be the first project to implement such a concept 

beyond lab-scale (the HELMETH prototype is 10 kW.) Unlike the concept studied by Braun’s 

research group, here methanation is carried out in a separate component to the SOC stack, but is 

thermally coupled to it. The system achieved 76%HHV efficiency, with potential to reach 80%HHV at 

industrial scale. 

A third major pilot project using rSOC technology is REFLEX [48], [132], [133], a European project 

coordinated by CEA-Liten, using rSOCs manufactured by Estonian company Elcogen. This project is 

currently in development; a Smart Energy Hub located at Envipark, Turin, Italy is to be completed by 

the end of 2019 with testing in 2020. This will incorporate three rSOC modules for total electrolysis 

capacity of 120 kW, which will be hybridised with li-ion batteries for shorter term storage. CHG will 

be stored at 200 bar. The Energy Hub will be co-located with solar and hydro generation and will 

supply both heat and power. It is of note that the rSOCs are expected to be capable of a reasonable 

dynamic response; the design allows three load points for each mode, with transition times between 

these of the order of minutes – see Figure 2.8. 
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Figure 2.8. Operation modes for the rSOC modules at the REFLEX Smart energy Hub, with expected transition 

times in minutes. [48]. 

 

Having examined some of the hydrogen energy storage trials reported in the literature, a few points 

may be highlighted.  

• The realisation of rSOC energy storage at scale is in its infancy, with no projects pre 2015. 

• rSOCs do appear to have proven a superior round-trip efficiency compared to PEM and 

alkaline technology (but still only 30 – 40%). 

• The more complex concepts for thermal integration of rSOC energy storage (see sections 2.3, 

2.5) have not been tried at scale 

• Almost all pilot hydrogen storage schemes seem to require shorter term energy storage as a 

buffer. 

• Details of costs are generally not available. 

 

2.8 Challenges and future developments for SOC technology 
Gomez and Hotza [40] list the challenges for solid oxide technology as: materials properties, materials 

costs, mechanical strength, electrode stability, delamination, and difficulties with bulk manufacture of 

complex ceramic parts. Similarly, [50] states that ‘the materials problems of SOFCs are profound’, 

and in a 2012 review [42], Laguna-Bercero concluded that materials improvements were needed 

before commercialisation. 

 

As is to be expected, several of the challenges for solid oxide fuel cells and electrolysers pertain to the 

high operational temperatures. The time taken to heat up or cool down is considerable – it can even be 

as much as 12 hours. This limits the applications of the technology, suggesting that it is best deployed 

where the stack can be in continual use [1][33]. High temperature operation also necessitates balance-

of-plant components able to tolerate a high temperature gas stream [134]. It is desirable to keep the 

temperature of a SOC stack stable, as changes in temperature can lead to mechanical stresses and 

cracking/flaking in the layers of individual cells [50]. It is therefore difficult to use a SOC as a fuel 

cell supplying a variable load, or as an electrolyser running on intermittent renewable generation. 
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[34], [135] both suggest that SOECs should not be coupled to renewable energy sources. However, 

the proposals for SOC energy storage plants discussed in Section 2.5 seek to address this problem in 

various ways. 

 

The susceptibility of individual SOCs to thermal shock is minimised by keeping their dimensions 

small. According to [50], the largest planar SOC to be fabricated was only 20cm by 20cm. Larger 

cells are in any case inherently more delicate and difficult to manufacture. PEMFC or alkaline 

technology, by contrast, can use much larger individual cells [50]. This does imply challenges for the 

scalability of SOC technology. 

 

For a SOEC with O2- conducting electrolyte, it is important to note that the fuel-electrode off-gas 

consists of both hydrogen and unreacted steam. This is a disadvantage in comparison with PEM or 

alkaline electrolysers, which can directly produce hydrogen of high purity (99.999% for PEM [1]). 

The need to separate unreacted steam from hydrogen in a system using SOECs pushes up the capital 

costs [29]. It is also often necessary to mix hydrogen with the steam supplied to the SOEC, in order to 

reduce oxidation of the nickel; in the literature the inlet gas is 10-50% H2 [29], [109], [110], [113]. 

 

2.8.1 Future developments for SOCs 

As has been stated, the majority of SOCs employ O2- conducting electrolytes. Alternative electrolytes 

(strontium zirconates) conduct protons H+ rather than oxygen ions. This can be desirable as pure 

hydrogen can be obtained, rather than a mixture of hydrogen and unreacted steam. Unfortunately the 

performance of such cells is still inferior to the more conventional design, but may improve in the 

future [68][42][29]. Further to this, hybrid electrolytes have also been considered which conduct both 

oxygen anions and protons. Steam is supplied, and hydrogen given off, at both electrodes. This may 

enable much higher current densities (and hence power densities) to be achieved [136]. 

 

Other research has focused on enabling SOCs to run at lower temperatures. This requires that either 

the electrolyte be made thinner, or use different materials [134]. In [137], Goodenough describes a 

new solid O2- conducting electrolyte exhibiting high conductivity at room temperature, raising the 

prospect of solid oxide cells that could operate at 300 °C if not all the way down to room temperature. 

Clearly this could help to overcome the difficulties associated with high temperature operation: 

complex and costly balance of plant components, and fast degradation. 

2.9 Conclusions on rSOCs 
Modelling of rSOCs in the literature typically draws its boundaries around the energy storage system 

itself (if not the cell or stack). Very few studies have carried out work at higher level than ‘balance of 

plant’. When real-world applications are considered, very simple assumptions are often made – for 

instance the assumption of a static electrical load. Hence there is a gap in knowledge as to how well 

suited these systems are for real-world applications – how well-matched are their properties to the real 

loads experienced in a distributed energy system? 

 

Studies on hydrogen-based energy storage in the context of microgrids have certainly been performed 

by many, but there appears to be more interest generally in PEM fuel cells than solid oxide fuel cells. 

This may be because PEM is considered cheaper [35], easier to implement because of the lower 

temperatures, or more established. Still, the result is that that the literature lacks much exploration of 

the possible advantages offered by rSOC: higher efficiency; the incorporation of fuel cell and 

electrolyser functions in one device; and the potential for CHP applications. It is also the case that the 
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‘microgrid’ studies tend to use highly simplified models for fuel cell / electrolyser components, often 

modelling them simply with a blanket conversion efficiency. In some cases this is to ensure 

tractability for linear optimisation algorithms. Also, the design of microgrids is often undertaken 

considering the demand, supply and storage of energy in an aggregated fashion. Storage is assumed to 

be a communal asset, or its configuration is not specified at all. For this current work, the potential of 

rSOCs to supply heat as well as power provides an incentive to build a simulation that can capture 

individual dwellings in more detail. 

 

In general, there is concern that electrolysers with hydrogen storage are an overly expensive storage 

option [120][122][124][126]. Niche applications, such as the HPVs in [122] and [123] can potentially 

provide more incentive. There is also naturally more incentive to consider hydrogen storage when the 

microgrid is remote or completely stand-alone as in [120][123]; when there is a reliable grid 

connection, as in [126], the incentive diminishes. 
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2.10 P2P energy trading 
 

In traditional energy systems, households are exclusively consumers of energy, and they buy this 

exclusively from a large-scale supplier. Peer-to-peer (P2P) energy trading would represent a 

disruptive shake-up of this paradigm, as it definitionally enables the trade of energy between 

customers. For instance, household A might charge an electric vehicle using solar PV exported from 

household PV, with this transaction remunerated on a P2P market. 

On the road to decarbonisation, the energy system faces various changes, and some of these contribute 

to the motivation for P2P as an innovation. Such changes include the decarbonisation of heat, the 

decarbonisation of transport, and the proliferation of embedded generation (mainly PV). For the 

UK, decarbonisation of heat is likely to involve electrification of the ca. 700 TWh/a [138] of existing 

heat demand. This is approximately double the existing annual electricity demand, and also brings 

peak demand roughly quadruple the peak electricity demand (214 GW versus 53 GW for winter 2017 

– 18) [139]. Therefore, accommodating electrified heat in the electricity transmission and distribution 

network is an immense challenge. Decarbonisation of transport using electric vehicles (EVs) would 

compound these problems, with the distribution grid similarly ill-equipped to meet peak demand for 

vehicle charging [140]. PV generation can bring clean power generation to homes, but electricity 

demand is not necessarily well-matched to PV output [141], whilst excessive generation surpluses can 

disrupt the distribution grid [142]. 

All of these challenges point to the advantages of managing energy more creatively in localities. A 

key opportunity is to match locally generated energy to local demands (including for EV charging or 

heat pumps); achieving this reduces the burden on distribution / transmission grid infrastructure, 

especially if demand can be shifted temporally to align with generation. Under the existing paradigm, 

there tends to be no incentive for local generators and consumers of energy to cooperate, since all 

parties are trading at fixed prices with utility companies; this is where P2P could provide the missing 

piece of the jigsaw. 

Interest in P2P is growing, and companies including Centrica and EDF have carried out pilot schemes 

for P2P in recent years [143], [144]. A number of platforms for the P2P buying and selling of energy 

have also been designed, including among others Piclo [145] and Vandebron [146].  In terms of the 

actual market mechanism through which P2P exchange of power is agreed and paid for, the literature 

covers a number of different possibilities. These include centralised control; centrally issued price 

signals; auctions and iterative markets – where these categories are not exhaustive and may also 

overlap. These approaches will now be discussed in more detail. 

Under centralised control, decisions on which market participants should trade energy are made 

centrally, in order to optimise the welfare of the entire community. This may entail direct control of 

EV batteries and other flexible devices by the central coordinator. When the dispatch of the microgrid 

has been optimised, the coordinator can then dictate how traded energy is remunerated; for instance, a 

mid-market rate (MMR; halfway between the grid tariff and the feed-in tariff) may be used. Solving 

the full-scale optimisation problem for an entire P2P community requires that the central coordinator 

receives detailed information about each participant’s forecast demand or generation, and the 

availability of their devices. As such, this gives rise to concerns about the privacy and the autonomy 

of participants, as well as the computational complexity of optimising the entire microgrid [147]. 

Consequently, some researchers have formulated the central optimisation problem in their work, 

before recasting it as a distributed optimisation [148]–[150]. Oh and Son [151] compared central 
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optimisation of microgrid dispatch with a distributed algorithm, finding that the distributed approach 

was almost as effective. Centralised optimisation may of course be used as a tool to understand the 

potential of a local energy market, even if not intended for real-life implementation, as in [152]. In 

[153], centralised MILP optimisation is used to determine P2P trades of energy between EVs.  

Another approach is for microgrid participants to retain full autonomy, whilst the microgrid operator 

tries to incentivise desirable actions via centrally issued price signals. For instance, increasing the 

microgrid’s internal prices should incentivise the reduction of load, or the increase of generation. 

Under this paradigm, households trade only with the microgrid operator; nonetheless, the tariffs 

chosen can effectively transfer money between generators and consumers within the microgrid to 

compensate for energy which is physically shared. Price signals can be issued ahead of time (e.g. day 

ahead) or in real time. Kim et al [154] consider this approach, with reinforcement learning used to 

improve the operator’s strategy. The approach in general may be interpreted as a Stackelberg game, 

with the microgrid operator as leader and households as followers [155], [156]; equilibria for such 

games can be identified through iteration, so that this paradigm overlaps with iterative markets. 

A natural approach to local energy markets is through the use of auctions – especially as microgrid 

auctions can be designed to emulate traditional energy markets, as in [157]. Double auctions, wherein 

buyers of energy submit ‘ask’ prices and sellers submit ‘bid’ prices are of most interest; auctions may 

be ‘one-shot’, with all asks and bids submitted simultaneously, or continuous, where asks and bids are 

submitted and accepted/rejected on a rolling basis. Auctions may be uniform, with all agreed trades 

receiving the same clearing price, or discriminatory, with participants receiving different prices [158]. 

The Brooklyn microgrid operates using a discriminatory double auction [158]. Participants in auctions 

need to employ some kind of strategy to determine their bid/ask prices, in order to maximise their 

benefits. For instance, Wang et al [159] modelled a continuous double auction for a microgrid, with 

participants employing an adaptive learning strategy, incorporating an aggressiveness model; 

similarly, Marufu et al [160] studied a local energy market with participants employing the adaptive 

aggressive strategy; Li and Ma [158] compared an ‘eyes on best price’ strategy with a ‘zero-

intelligence’ strategy. None of these three specifically consider flexible loads or energy storage, 

however. Zhang et al [161] considered an auction for PV and flexible loads, whereby forecasting 

uncertainty is paired with load flexibility – although the strategy of bidders in setting prices is unclear. 

El-Baz et al [147] considered a uniform double auction for microgrid energy sharing, with different 

bidding strategies for different flexible devices. The P2P market was able to effect a doubling of self-

sufficiency, and a decrease in household bill of up to 23%. Meanwhile Block et al [162] contrived a 

two dimensional auction for heat and power in microgrids, based on call-market trading. 

As has been touched on in the above, Game Theory is often a useful tool to approach the study of P2P 

markets. Participants in such markets are generally competing to serve their own self-interests, so that 

the market may be modelled as a non-cooperative game, and the problem of choosing a strategy 

requires identifying a Nash equilibrium; this approach is seen in references [163]–[166]. In some 

cases, the game theoretic problem is converted to an optimisation problem to be solved iteratively or 

otherwise [167]–[170]. Stackelberg games with ‘leaders’ and ‘followers’ are also frequently used, as 

already noted [155], [156], [171], [172]. 

Many papers discuss iteratively settled markets, in which feedback from each round of bidding is 

used by participants to update their new bids; the market is only finally settled if and when it 

converges, otherwise requiring an exit mechanism of some kind. For instance, Guo et al [148] 

considered a P2P market with components for both energy and reserve (to address forecasting 

uncertainty). The consensus method of direct multipliers was used to iterate the market until each pair 
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of participants agreed the volume and price of energy to be traded. In Li et al [158] an iterative 

process is used to solve a Nash bargaining theory problem in order to settle the market. Kim et al 

[173] compare two iterative, distributed optimisations for deciding P2P trades: one in which 

participants collaborate, and one in which they compete in pursuit of their own self-interest. 

Liu et al [174] contrived an iterative pricing mechanism for an energy-sharing zone consisting of 

buildings with PV generation and some adjustable loads. The internal tariffs for import and export of 

power were functions of the supply-demand ratio (SDR), i.e. the total of all exported power over all 

buildings, divided by the total of imported power. As such, this pricing mechanism will henceforth be 

referred to as the SDR tariff; it is the mechanism adopted in the present work, and so will be discussed 

in more detail. When SDR > 1, prices are low (equal to the grid feed-in tariff), incentivising demand 

to be increased or supply reduced. For SDR < 1, prices increase towards the cost of grid power, 

incentivising demand to be reduced or supply increased. Prices are designed so that the operator 

operates a balanced budget – i.e. all payments effectively flow between households and the utility 

grid, or between different households, with the operator not profiting. In [174], all of a building’s 

demand was considered reschedulable, but subject to an inconvenience cost, weighted by a parameter 

reflecting the willingness of a participant to shift load. The final prices and load schedules are decided 

iteratively. In each round, participants optimise their load schedule relative to the most recently issued 

internal prices. The new schedules give rise to a new SDR and new prices, and the process repeats 

until convergence is achieved: viz. prices do not significantly change between iterations. Successful 

convergence indicates that a kind of Nash equilibrium has been found: every participant cannot 

further improve their strategy given the strategies chosen by all other participants. Implementing the 

SDR tariff for a case study with a number of residential and commercial/office buildings, and found 

that modest technical and economic benefits resulted – these quite dependent on the willingness 

parameter. 

Zhou et al also consider the SDR tariff in [8]. This work was focused on (i) possible approaches to 

improving the convergence of the iterative market mechanism; and (ii) the comparison of the SDR 

tariff to alternatives (mid-market rate and bill-sharing). They point out that the iterative market is 

likely to diverge in the presence of large flexible loads such as EVs or electric water heaters, which 

can readily be rescheduled without inconvenience. In the absence of convergence controls, demand 

will always jump to the cheapest timeslots; thus response to the price signal is discontinuous. Step-

length control and learning-rate methods were tried to mitigate this problem. Also, technical and 

economic indices were formulated to facilitate comparison of the different tariffs and convergence 

aids. Simulations involved 20 households equipped with PV and flexible loads, with one day 

simulated at a time. Flexible loads considered were water heaters and washing / drying machines in 

addition to EVs. The methods to improve convergence were both found to be effective, and the SDR 

pricing tariff was considered to outperform the alternative pricing formulas. 

For the modelling of P2P markets incorporated in this thesis, both the iteratively settled market 

mechanism, and the double auction mechanism, are considered of interest. 
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2.11 Agent-based modelling approaches 
 

Agent-based modelling has attracted interest lately for the simulation of energy systems. As noted by 

Ringler et al [175], agent-based modelling lacks a universally agreed definition. In general, it involves 

the simulation of a complex system by modelling its individual components as distinct agents, which 

interact with each other and with their environment. Typically – but not universally – agents are many 

in number, and whilst their individual models may well be simple, their interactions give rise to 

emergent phenomena which may be unforeseeable by the modeller ahead of time. It is often – but not 

universally - the case that agents are programmed to pursue some individual goal; Kremers suggests 

that proactive pursuit of such a goal is a defining attribute of a true ‘agent’ [176]. However, there is no 

real consensus on this: [177] emphasises that there are many different styles of agent-based 

modelling: “some [agents] communicate while others live in total isolation, some live in a space while 

others live without a space, and some learn and adapt while others never change their behaviour 

patterns…An object that seems to be absolutely passive can be an agent…” Kremers states that even 

simple objects like an on/off resistive heater can be modelled as agents. He also notes that agent-based 

modelling is a close relation of object-oriented programming (OOP), whilst lacking the same formal 

definition and framework. The author’s own view is that the pursuit by agents of their own individual 

goals, and the emergent behaviour that results, is key to the definition of an agent-based model. It can 

be contrasted with more top-down methods, such as optimisation methods. 

An agent-based modelling approach is becoming increasingly more attractive for the simulation of 

energy systems. As noted in [178], this is because energy systems are moving away from their 

traditional structure, with large centralised generators distributing power to consumers who are 

essentially passive; the advent of distributed energy generation (and storage), along with smart-grid 

type technologies like demand-side management (DSM) and vehicle-to-grid (V2G) mean that 

customers can no longer be considered as a passive, well-behaved electrical load. Instead they become 

‘prosumers’ and their individual, disaggregated behaviour becomes more significant. Agent-based 

modelling is well-suited to capturing such complexity. As noted in [176], it also allows social and 

economic behaviours to be simulated alongside technical aspects. 

The most common use of agent-based modelling for questions pertaining to energy systems focuses 

on economics, with agents interacting via markets. This may be combined with models for the 

adoption of new technologies. For instance, Ponta et al [179] constructed an agent-based 

macroeconomic model, with producers of renewable energy or fossil fuel generators taking 

investment decisions in response to fossil fuel prices and government feed-in tariffs. Mittal et al [180] 

modelled the adoption of rooftop PV for households, and the feedback effects of such adoption on 

electricity generators and other stakeholders. Kuznetsova et al [181] constructed an agent-based 

microgrid model, wherein agents (representing a train station equipped with PV, a district of small 

businesses and residences, and a local wind farm) vied with each other to maximise revenues from 

sold energy and minimise costs, with robust optimisation used to tackle uncertainties attached to 

renewable generation. 

Whilst models focused on economics, social aspects or technology adoption are common, agent-based 

models that mainly address the technical aspects of an energy system are also seen [178], [182]–[185]. 

For instance, in [178] Gonzalez de Durana et al present a highly generalised and versatile agent-based 

model, describing the flow of multiple energy carriers (electricity, heat and chemical energy) around a 

network, with nodes acting as loads or converters of energy between types. The model, which was 

implemented in AnyLogic, was also intended to be adaptable to a wide range of scales, from the 

workings of a single electric vehicle, to a smart grid. (There may perhaps be some debate over 
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whether this is truly an agent-based model, or merely an object-oriented one. Ultimately, an agent-

based modelling environment is also a good environment to build an object-oriented simulation.) 

Another example is the work of Bazan and German [186] who present a hybrid simulation for the 

study of distributed storage and generation of energy in a domestic microgrid, also implemented in 

AnyLogic; the simulation was used to study the cooperation of multiple houses with a nearby solar 

park, attempting to approach energy self-sufficiency. 

Ultimately, a strength of agent-based modelling is its adaptability to address many different types of 

question, whether focusing on technical, social or economic aspects. As with OOP, an advantage of 

constructing a simulation through the creation of various agent types is the ability to develop different 

sub-models separately, to incrementally improve them, and to deploy them in different places. 

Inheritance of behaviour by agent-types is another advantage in common with OOP.  

The multi-paradigm simulation software AnyLogic [4] is used for most of the modelling work in this 

project. This provides agent-based simulation functionality, along with discrete-event and system-

dynamics modelling paradigms. In this work, the agent-based modelling approach will come to the 

fore when P2P markets are simulated, particularly in Chapter 7. 

 

2.12 Conclusions 
 

This chapter opened by demonstrating how, despite the broad range of extant electrical energy storage 

technologies, storing electricity in bulk for long duration storage cycles is challenging, with P2G one 

of the principal solutions available. Whilst PEM and alkaline cells are currently the main technologies 

employed as fuel cells and electrolysers for P2G, rSOCs are promising for a number of reasons – 

these include the higher conversion efficiency; potential CHP applications; comparatively abundant 

electrode materials; and possible savings from reversible operation, including the possibility that some 

degradation may be reversed. Foremost among the challenges for rSOC are the difficulties in thermal 

management and slow dynamic response; also the cost and complexity of high-temperature balance-

of-plant equipment, and the difficulty in manufacturing at scale. 

 

It has been seen that rSOC technology is still in its infancy relative to more established technologies, 

with few pilot plants and no commercialised solutions. Academic literature, meanwhile, has tended to 

concentrate on plant design, with limited exploration of applications or economic analysis. 

Furthermore, few studies on rSOC or hydrogen energy storage incorporate all the relevant features of 

the future energy system: electrified transport and heat as well as distributed generation. The current 

work aims to address some of these gaps.  

 

This work will focus on the rSOC as electrical energy storage for the residential environment. Utility 

scale rSOC plants are a long way from being realisable, so a scale of approximately 1 – 1000 kW to 

operate in such an environment appears a reasonable object for study. Further, the residential sector is 

the single biggest electricity consuming sector in the UK [187] and will perhaps also see some of the 

most interesting changes and challenges on the road to decarbonisation. This choice of application 

means that the most important energy generation to pair with the rSOC will be rooftop PV. The 

residential setting also makes P2P trading an interesting topic for study in tandem with the rSOC, as it 

offers another approach for helping to reconcile fluctuating renewable generation with electrical 

loads; P2P may thus be a complementary or perhaps a rival solution to energy storage. It has been 

demonstrated that the academic literature on P2P has covered a profusion of market designs and 



46 

 

modelling techniques. It is not necessarily an objective of this work to contrive new designs of P2P 

market, but rather to experiment with simulation of P2P and consider the impact (financial and 

technical) of P2P alongside energy storage technologies. 

 

The final topic examined in this chapter, agent-based modelling, was shown to be an approach 

increasingly used in the study of energy systems. Models constructed on this basis have seen use 

particularly in modelling energy markets and the adoption of new energy technologies. In this work, 

all modelling will be constructed in an agent-based modelling environment (AnyLogic); it is expected 

that this agent-based aspect will become most useful in conjunction with the study of P2P markets. 
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3. Overview of publications 
 

Methodology and results in this thesis are presented in publication format. The first three papers have 

been published, whilst the fourth is prepared for publication but not yet submitted. Published papers 

appear exactly as published, except for renumbering of figures, tables etc.  

(i) Hutty, T. D., Dong, S., & Brown, S. (2020). Suitability of energy storage with reversible 

solid oxide cells for microgrid applications. Energy Conversion and Management, 226, 113499. 

https://doi.org/10.1016/j.enconman.2020.113499 

The first paper considers the application of an rSOC system with hydrogen storage for electrical 

energy storage in a residential microgrid. The rSOC system was based on the Sunfire pilot system 

[24]; results on the technical performance of this system were available in the literature, but an 

examination of potential applications had not been made. In this work, the application was storage of 

distributed (rooftop) solar generation, for supplying the houses’ electricity load. Because solar 

generation naturally has short-term (diurnal) variability, battery energy storage was also considered, 

with one objective of the work being to identify when the battery storage was adequate, or when the 

long-term storage with rSOC was an optimal selection. 

Optimising the design of seasonal energy storage can be challenging, due to the length of time that the 

model must cover. Here, the approach taken was to employ a global optimiser (OptQuest [188]). The 

global optimiser is used to plan the load points for the rSOC and battery over five-day periods on a 

rolling basis throughout the year. This was superior to a simple greedy algorithm, whilst still fast 

enough for the ‘outer’ optimisation of the system design, also using OptQuest, to be viable. 

Economics of the optimised microgrid systems were evaluated in terms of CAPEX and simple 

payback time. Payback times for the systems were generally discouraging. Hybrid energy storage with 

battery and rSOC was an optimal selection only when (a) required self-sufficiency for the system was 

high and (b) sizing of the generation was constrained. The novelty of the paper lay in the exploration 

of an application for rSOC energy storage, which was rare in the literature at the time; and in the 

comparison between the short-term and long-term energy storage. Siyuan Dong, having contributed to 

the author’s understanding of the AnyLogic software, is credited as the second author in this paper. 

(ii) Hutty, T. D., Dong, S., Lee, R., & Brown, S. (2021). Long term energy storage with 

reversible solid oxide cells for microgrid applications. Energy Reports, 7, 24–33. 

https://doi.org/10.1016/j.egyr.2021.02.059 

The second paper covers similar ground to the first; the main difference in the model is the 

introduction of a model for EV charging demand, based on the UK National Travel Survey (NTS) 

[189].  

In contrast with the previous paper, in which separate optimisations were run with different 

constraints for self-sufficiency ratio (SSR), in this paper multi-objective optimisation was used to 

construct Pareto fronts for payback period against SSR. This method did require simplifying the 

dispatch model in the simulation, in order to be viable computationally. Economic analysis was 

extended from the previous paper to include estimation of net present value (NPV), and a greater 

spread of scenarios for costs and efficiency was considered. Results confirmed the findings of the 

previous publication; the microgrids designed using the rSOC and battery energy storage invariably 
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had negative NPV and overly long payback period. On the other hand, rSOC was selected for most 

system designs with SSR above 60%, but only if PV capacity was constrained below 6 kW.  

In this paper, a ‘charge when home’ assumption was made for the EVs. This resulted in a peak 

roughly coincident with the peak in standard electrical load, and poor utilisation of solar power by the 

EV chargers. Moving forward, it was wished to model EV demand as a flexible load, since failure to 

consider the potential of demand-shifting can lead to overstating the case for additional energy 

storage. This was one of the motivating factors to investigate P2P trading in the second half of the 

project. 

Rachel Lee is credited as third author of this paper in recognition of guidance and advice she provided 

regarding the use of the National Travel Survey. Siyuan Dong is credited as the second author as 

previously and for the same nature of contribution. 

An appendix (not part of the original publication) has been attached to this chapter to give some extra 

information on the construction of the EV model. 

(iii) Hutty, T. D., Pena-Bello, A., Dong, S., Parra, D., Rothman, R., & Brown, S. (2021). 

Peer-to-peer electricity trading as an enabler of increased PV and EV ownership. Energy Conversion 

and Management, 245, 114634. https://doi.org/10.1016/j.enconman.2021.114634 

The third publication is the product of the author’s first attempts to introduce P2P trading to the 

microgrid model, and hence to ensure that the benefits of flexible demand are properly considered. 

The rSOC is not included in this paper (the rSOC topic is picked up again in the final publication). 

Instead, the paper explores how P2P can contribute to a synergy between PV generation and EVs. The 

novelty of the paper lies not in the design of the market mechanism, which was derived from the 

literature; rather the novelty lies in the consideration of the relative merits of smart charging (V1G), 

vehicle-to-home (V2H) and vehicle-to-grid (V2G) when combined with P2P trading. Also in the 

estimation of annual savings for households of different categories under different scenarios; and in 

the combination of the P2P system with a stationary battery energy storage. A chief conclusion from 

the work was that the combination of P2P electricity trading with V2H can effect particularly 

interesting household savings and technical benefits. A further notable conclusion was that even at 

near 100% PV and EV ownership, the P2P trading is beneficial – a result that contradicted some of 

the existing literature, and was probably a consequence of properly modelling the diversity in EV 

availability though use of data from the UK National Travel Survey. 

In this paper, the MILP model for scheduling flexible devices in response to prices was based on the 

BASOPRA model developed at University of Geneva [190]. This was originally a model for 

stationary battery storage; accordingly the author made multiple adjustments to encode the availability 

of the EV battery, the ‘compulsory’ discharge for travel, and the possibility of rapid charging away 

from home. The model was also adjusted to allow the export of battery power to the grid, rather than 

the house only, and some structural changes were made to decrease the number of binary variables. 

The creators of the original BASOPRA optimisation model, Alejandro Peña-Bello and David Parra, 

are credited as authors; the remaining authors are credited for their supervisory role. 

 

(iv) Hutty, T. D., Brown, S. P2P trading of heat and power via a continuous double auction. 

The final paper, which is prepared for publication but not yet submitted, reunites the topics of rSOCs 

and P2P energy trading. It also fulfils the project’s objective to create a model for an rSOC 

application wherein the three key energy demands of electricity, heat and transport are all present. 

https://doi.org/10.1016/j.enconman.2021.114634
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Whilst the EV battery and travel model was retained from the previous work, the P2P market was 

redesigned for this paper. In the previous paper, bids by auction participants consist only of the 

volume of electricity at each timeslot. Although this proved effective for the sharing of PV power for 

EV charging, it was felt important to have a market structure in which bidders could specify their 

reserve prices as well as volumes of energy. Therefore, the new market model was constructed as a 

continuous double auction, which also seems a more realistic model of possible real-world P2P 

implementations. Because of the presence of energy storage and flexible loads in the market, it was 

considered important that trading could be carried out simultaneously for all the upcoming timeslots, 

to assist with the realisation of strategies for these devices. Furthermore, the model allowed 

simultaneous trading of heat as well as electricity. Strategies were developed to address the 

interdependence of bids for power and heat, as well as interdependence between bids in different 

timeslots. The resulting model, a continuous double auction for trade of power and heat across 

multiple timeslots of the day ahead, is possibly unique in the literature. 

This paper demonstrated that the possibility to trade energy P2P is of particular interest for rSOCs in a 

distributed energy setting. The availability of a P2P tariff substantially higher than the grid feed-in 

tariff incentivises the rSOC to run SOFC mode at a much higher average load factor. Reliance on grid 

electricity is reduced both in terms of overall energy import and peak load. Resultant savings for the 

rSOC owners are in the order of £10’s per week, and heat trading can bring additional financial gain 

when compared with power trading only. However, participant willingness was not generally 100%, 

indicating that some auction participants made losses by their P2P trading strategies; also the 

advantages of heat trading were not clearcut. These issues may indicate that the trading strategies in 

the model still need further development. 

For this work, it was felt advantageous to drop the MILP model from the previous publication, in 

order to build something more modular, customisable and reusable. The kernel library in Pyomo was 

employed for development of this model, being more object-oriented than the standard environment 

library. This new model made it straightforward to add arbitrary devices to a house, or to optimise 

multiple houses simultaneously. Consequently the BASOPRA model is not credited in this chapter, 

and the only co-author is Prof. Solomon Brown for his supervisory role. 
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4. Suitability of energy storage with reversible 

solid oxide cells for microgrid applications 
Timothy D Huttya, Siyuan Donga, Solomon Browna* 

aDepartment of Chemical and Biological Engineering, University of Sheffield, UK 

Abstract 

Reversible solid oxide cells (rSOCs) offer the prospect of long term bulk energy storage using hydrogen or methane fuel. Solid oxide 

technology, whilst less mature than alkaline and PEM technology, offers superior conversion efficiency - especially for electrolysis. 

Furthermore, the possibility of using the cells reversibly means that separate ‘power-to-gas’ and ‘gas-to-power’ components are not needed, 

potentially reducing costs. In this work, we consider the suitability of energy storage using rSOCs and/or battery storage for a microgrid 

consisting of houses equipped with solar PV generation. An agent-based simulation model is developed to assess the performance of such a 

microgrid. The model enables the microgrid’s self-sufficiency to be quantified, and hence the possible cost savings through avoided imports 

of grid power. Sizing of microgrid components is optimised to determine the most cost-effective design capable of achieving given self-

sufficiency ratio. Case studies are considered for England and Texas. Initially, designs are considered with hydrogen energy storage only; 

subsequently, hybrid energy storage is considered, with a community scale battery working alongside the rSOC. Results suggest that 

payback periods for pure rSOC systems tend to be unfavourable. However, if prices fall to levels foreseen in the literature, a system 

designed to achieve 50% grid-independence could pay back its investment costs within 20 years. Systems designed for Texas need relatively 

less storage, owing to the good year-round solar resource; as such, payback time in Texas is superior to the UK. Hybrid storage with battery 

+ rSOC is found to be preferable to battery only systems when (i) high SSR is required and (ii) large over-capacity of PV generation is not 

possible.  

Keywords: energy storage; reversible solid oxide cell; microgrid; hybrid energy storage; self-sufficiency ratio; rSOC 

*Corresponding author. 

E-mail address: s.f.brown@sheffield.ac.uk 

4.1 Introduction 

4.1.1 Reversible solid oxide cells ( rSOCs) and their applications 

 

In order to mitigate the threat of climate change, it is urgently necessary for energy systems around 

the world to move away from the carbon intensive fossil fuels upon which they have largely depended 

in the past. Renewable electricity generation (wind, solar, hydropower, biomass) has the potential to 

displace generation from fossil fuels. However, wind and solar energy in particular suffer from the 

problem of intermittency [1]–[3], meaning that the available supply of electricity may not match the 

demand. Thus energy storage technologies may have an increasing role to play in future energy 

systems, storing renewable energy when it is available, for consumption when it is required. 

Of existing energy storage technologies, most are ill-adapted to store energy for sufficient time 

periods, or in sufficient bulk, to compensate for fluctuations in renewable output beyond a timescale 

of hours or days. By contrast, power to gas (‘P2G’), the use of electricity to synthesise a gas fuel such 

as hydrogen or methane, has potential to provide storage of weeks’ or months’ duration, enabling 

heavier reliance on renewables by the energy system as a whole. This would typically be 

accomplished by splitting water with an electrolyser to produce hydrogen gas, which can be stored 

and subsequently converted back to power using a fuel cell or internal combustion engine. Key 

difficulties for this form of energy storage are high expense and low round-trip efficiency. 

 

Solid oxide cells (SOCs), although less technologically mature than the more prevalent alkaline or 

PEM cells, potentially offer superior energy conversion efficiencies both as electrolysers (‘P2G’) and 

as fuel cells (‘G2P’). SOCs employ ceramic electrolytes and operate at high temperatures (600 – 1000 
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°C) [29], [34]. These high operational temperatures are associated with some of the key advantages of 

SOC technology: higher efficiency, tolerance to fuel impurities [29], abundant electrode materials 

[33], and possibilities for combined heat and power (CHP) applications [57], [111]. At the same time, 

high operational temperature is also responsible for long start-up times [1], difficulties in pairing with 

a dynamic load [34], complex and expensive balance-of-plant (BoP) equipment [39], and rapid 

degradation of cell materials [29]. It is possible for an SOC to operate reversibly, with a single device 

able to operate alternately as fuel cell and electrolyser [24]; in this case, it is termed a ‘reversible solid 

oxide cell’ or rSOC.  

 

Figure 4.1. Operation of an rSOC working with hydrogen / steam. Fuel cell mode and electrolyser 

mode are shown respectively left and right.  

 

The operation of an SOC as both a fuel cell (‘SOFC’) and electrolyser (‘SOEC’) is illustrated in 

Figure 4.1. The electrolyte of an SOC is usually conductive of negatively charged oxygen ions. In fuel 

cell mode, the reactions proceed as follows: at the oxygen electrode, oxygen is reduced to O2- and 

these anions migrate across the electrolyte to the fuel electrode. At the fuel electrode, the fuel is 

oxidised and combines with O2-
 to form steam (or CO2 in the case that the fuel is CO). In electrolysis 

mode, the reactions are reversed and the ions and electrons flow in the opposite direction. [1]. 

SOFC is a more mature technology than SOEC, suffering fewer problems with degradation: the Jülich 

Research Centre reported that their SOFC stack operated for 93,000 hours continuously [96]. 

Nonetheless, SOEC is attractive because the electrolysis reaction is increasingly endothermic at high 

temperature [29]. Electrolysis with SOEC is consequently highly efficient, since the reaction recycles 

unavoidable Joule heat, and may also use external high temperature heat sources. In particular, SOEC 

is more efficient than PEM or alkaline electrolysers [37], [43], [44], though degradation represents more 

of a challenge [1], [29]. There is some evidence though, that reversible use of a cell (i.e. as an rSOC) 

can actually reverse degradation reactions and prolong the lifetime [42] [99]  – but this is still 

uncertain. Reversible operation can certainly offer a saving in investment costs versus systems with 

separate devices for P2G and G2P [22], [40], [41]. An overview of the comparison between SOC with 

the more mature PEM and alkaline technologies is given in Table 4.1. 

Whilst energy storage using rSOC remains a relatively immature technology, pilot schemes of 

significant scale have begun to emerge in recent years. The most significant demonstration projects to 

date have been conducted using SOC technology from German manufacturer Sunfire [129]. The first 
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of these projects was a collaboration between Sunfire and Boeing; this multi-kW scale system, 

designed with microgrid applications in mind, was commissioned in 2015, undergoing testing at 

Boeing’s Huntingdon Beach facility in southern California. 1920 cells in stacks of 30 could generate 

50 kW in fuel cell mode, and absorb 120 kW in electrolyser mode. Hydrogen storage at 250 bar was 

sized for cycle durations of only 12 hours, although more storage volume could have been added 

easily and cheaply. The system was online for 1000 hours of testing, undergoing seven full cycles in 

that time, and achieved electrolysis efficiency of ca. 60%LHV (allowing for steam generation and 

hydrogen compression). In comparison, fuel cell mode was found to be 49%LHV efficient, resulting in 

a round-trip efficiency of around 30%. Whether any degradation was observed over the test’s duration 

is not reported. 

Another trial using Sunfire rSOC technology is reported in [46], [49], [84], [85]; this is the ‘GrInHy’ 

or ‘Green Industrial Hydrogen’ project. The 143 kW rSOC was installed at a steelworks, where the 

ready availability of waste heat enabled the energy cost of steam generation to be avoided. 

Furthermore, generated hydrogen could be used by the steelworks as a reducing agent (in place of 

coke) and for annealing. Thanks to the use of waste heat, electrical round-trip efficiency was able to 

approach 40%.  

 

 

The rSOC demonstrated a good level of flexibility, with transition between hot standby and 100% 

load taking respectively 24 and 20 minutes for electrolysis and fuel cell operation; partial load 

operation down to respectively 50% and 40% was possible with no efficiency penalty. Voltage 

degradation of 0.8% per thousand hours was observed in electrolysis mode. In practice, it was more 

Table 4.1. Comparison of electrolytes: solid oxide versus alkaline and PEM. 

 

Electrolyte Alkaline PEM Solid oxide 

Operating temp. (°C) <100 °C [29], [34] < 140 °C [1], [34] 600 – 1000 °C [29], [34] 

Electrolysis efficiency 

(system level) 

43 - 67% [37], [43], [44] 40 - 67% [37], [43], [44] 63 - 82% [37], [43], [44] 

Fuel cell efficiency 

(system level) 

45 – 60% [45] 45 – 50% [45] 

 

35 – 61% [44]–[47] 

 

Startup time 15 minutes [34] < 15 minutes [34] From cold: hours [1], [34] 

From hot standby: minutes [48], [49] 

Dynamics and 

flexibility 

Min partial load 10-40% 

[37] 

Suitable for partial load and 

variable load operation [26], 

[28], [34], [36], [37] 

Rapid load changes can cause problems due 

to thermal stress [1], [34]. 

 

Key advantages Most mature technology 

for electrolysis; reliable, 

safe, long lifetime [29], 

[30], [34]. 

Preferred for fuel cell 

applications [30]; electrolyser 

yields highest purity hydrogen  

[29]. 

Use waste heat to boost electrolysis 

efficiency [34]; work with carbonaceous 

species; possible CHP applications; possible 

reversible operation. 

Key challenges Inferior dynamic response 

to PEM; corrosive 

electrolyte [34]. 

Expensive membranes, catalyst 

materials [29] [34]; less 

scalable than alkaline 

technology [29]. 

Immature technology [29] [34]; rapid 

degradation especially for SOEC [29] [35]; 

thermal management is challenging [34]. 

System cost for 

electrolysis 

lowest 

700 – 1500 € / kW [35], 

[37], [43], [51] 

medium 

800 – 2300 € / kW [35], [37], 

[43], [51] 

highest 

>2000 € / kW [37] [35] 

Potential for cost reduction, possibly to 

760 € / kW [35] 
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economically viable to use generated hydrogen in the steelworks, and run fuel cell mode using CH4, 

rather than using the rSOC as a true energy store. 

A third notable pilot project is REFLEX [48], [132], [133], a European project coordinated by CEA-

Liten, using rSOCs manufactured by Estonian company Elcogen. The project is currently in 

development, with a ‘Smart Energy Hub’ to be built at Envipark, Turin, Italy. This will incorporate 

three rSOC modules for total electrolysis capacity of 120 kW, with storage of CHG at 200 bar, and 

Li-ion batteries providing shorter term storage. The Smart Energy Hub will be co-located with solar 

and hydro generation and will supply both heat and power. The stated objective is to achieve 90%LHV 

efficiency for electrolysis, and 50%LHV for fuel cell operation. Testing of the facility is to take place in 

2020. 

With sophisticated balance-of-plant (BoP) configurations, it may be possible to improve on the 

efficiencies observed in these real-world trials - and a great deal of work has been done to model 

rSOC energy storage at the BoP scale. The thermal management of the plant is key to unlocking 

higher RT efficiency. Many proposed plants use thermal energy storage (TES) to enable surplus heat 

from fuel cell mode to supply heat for electrolysis; waste heat from the compression of hydrogen or 

other heat sources may also be used. For instance, modelling by Giap et al [113] found that the use of 

industrial waste heat in an rSOC plant could enable RT electrical efficiency to reach 53.8%; the 

researchers felt this to be too low, recommending the use of TES to boost efficiency further. Ren et al 

[108] modelled a concept for rSOC energy storage in which fuel and exhaust species would remain 

always in a pressurised vessel, with bronze used as a phase change material for TES. The system, for 

which the suggested storage duration was ‘short time periods, such as hours’, was modelled to achieve 

round-trip efficiency up to 64%. Perna et al [110] modelled a 100 – 200 kW rSOC energy storage 

system, wherein coupling of heat sources and sinks, together with the use of diathermic oil for TES, 

enabled the modelled RT efficiency to reach 60%. The proposed plant would also supply hot water, 

with cogeneration efficiency of 91%. Lototskyy et al [57] present a novel rSOC system designed for 

combined cooling, heating and power; various metal hydride beds would be used to store both 

hydrogen and heat. Their modelling suggested that the system, which was proposed for use with 

domestic solar PV, could achieve electrical RT efficiency of 46.7%, and tri-generation efficiency of 

70.6%. Akikur et al [111] propose a solar + rSOC plant for CHP. Solar PV would provide power for 

electrolysis, with concentrated solar power providing heat for steam generation. Mathematical 

modelling suggested electrical round-trip efficiency of around 38%. Economic analysis found that the 

cost of electricity for the plant would be $0.0676 / kWh, although the cost of the hydrogen storage 

component was neglected. 

Ullvius and Rokni [115] suggest a rather different approach to extracting additional value from an 

rSOC plant: the use of waste heat for water desalination using direct contact membrane distillation. 

Such a system was modelled for deployment on the South African coast, with concentrated solar 

power providing both heat and power for electrolysis. The plant would export 500 kW of power 

continually, and also generate 8.5 tonnes of fresh water per day. 

Giorgio and Desideri have proposed an rSOC system using TES in close contact with the stack [112]. 

This would be either sensible heat storage using a ceramic material or latent storage using a eutectic 

metal alloy. Hydrogen would be stored at 108 bar. In similar fashion to [61], two configurations were 

considered: one in which water vapour would be condensed out of the off-gas, and one in which the 

vapour would be stored (removing the need for a steam generator). In the first configuration, surplus 

heat during SOFC mode was transferred to a steam drum in preparation for SOEC mode. This 

configuration was found to be capable of 72% RT efficiency, with either form of TES. However, 
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electrolysis could not continue for long before external heat was needed for steam generation. The 

stored vapour configuration could achieve RT efficiency of only 64% - although this would reach 

74% if the stack could be pressurised. The evaluation cycles considered in this research were of short 

duration, with two hours of fuel cell mode followed by electrolysis. 

4.1.2 Hydrogen energy storage for microgrids – existing work 

There is a fair amount (e.g. refs [118], [120]–[126]) of extant research on the applications of hydrogen 

energy storage for distributed scale, microgrid type applications. Such research often includes 

optimisation of technology choice, sizing, or dispatch over time, and some assessment of the 

economic case for the storage. Common themes include concerns with high costs; the desirability of 

hybridisation with shorter term storage; and the extraction of additional value through niche 

applications such as hydrogen powered vehicles. These studies overwhelmingly consider PEM or 

alkaline technology, and studies assessing applications of rSOCs are much less numerous. However, 

Baldinelli et al [116] propose a concept in which rSOCs are hybridised with flywheel energy storage 

to smooth out short term load fluctuations. A control algorithm is proposed to determine charge / 

discharge of the two energy stores, and the system’s components are sized for a microgrid consisting 

of a number of homes with PV generation. The hybrid system was able to moderately increase the 

microgrid’s self-sufficiency (from 52.1% to 58.0%); economic analysis was not conducted. Sorrentino 

et al [117] present a microgrid consisting of an rSOC and hydrogen storage, as well as PV and a 

vertical axis wind turbine, for the supply of power to an apartment complex. The use of additional 

short-term storage was recommended but not modelled. Sizing of the microgrid’s components was 

optimised to achieve the lowest possible payback time; the optimal system would store 144 kg (~5 

MWh) of hydrogen gas, enabling up to 10 days of grid independence, and was claimed to achieve 

payback in just over 11 years. However, CAPEX estimates appear to have been rather optimistic 

(rSOC $400 / kW; PV €817 / kW). 

 

4.1.3 Novel contribution of this work 

Whilst simulations at BoP level are abundant in the literature, studies on actual applications for rSOC 

energy storage are few. Literature on microgrid applications for hydrogen energy storage typically 

assumes use of PEM or alkaline technology with separate components for gas-to-power and power-to-

gas. Here we consider the design of a microgrid using rSOC specifically. Accordingly, key 

characteristics of rSOCs (limited partial load capability; limited ramp rate; coupled fuel cell and 

electrolysis capacity) are included in the model. Whilst there is some extant work on rSOC based 

microgrids, it gives an incomplete picture, especially on economic aspects. Here we attempt to give a 

fuller picture, through inclusion of different scenarios for location, cost and performance of the 

technology. We also obtain some indication of the circumstances under which rSOC can compete 

with, or complement, battery storage. 

 

The rest of the paper is structured as follows: in Section 4.2, the simulation model constructed in 

AnyLogic is described, including its various sub-models. Section 4.3 introduced the case studies and 

presents the results obtained from them; conclusions are summarised in Section 4.4.   
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4.2 Model construction 

 

Figure 4.2. Schematic representation of the microgrid model. Most elements of the model are 

represented as agents (denoted by the red icons). 

 

4.2.1 Overview 

The purpose of this work is to simulate how an rSOC energy storage system might perform in a real-

world distributed energy context. To this end, a simulation has been constructed of a small distributed 

energy system (or microgrid), consisting of a residential area with local renewable generation, 

supported by a hydrogen energy storage system (HESS) using rSOC, and a grid connection. A 

community battery, which can be used in tandem with the rSOC, is also modelled. A schematic of the 

simulation is provided in Figure 4.2. This simulation has been implemented using the multi-paradigm 

simulation programme AnyLogic [4]. Agent-based modelling provides versatility in modelling the 

components of the microgrid as distinct entities, and readily allows for combination of social or 

economic models with technical ones. Most elements of the microgrid model are agents (or sub-

agents), including individual households – although the behaviour of households on an individual 

level is not discussed here. 

We now present the various sub-models in more detail. 

4.2.2 rSOC model 

For the present work a detailed BoP model is not desirable. Instead, the rSOC is described by a few 

key parameters (see Table 4.2): the nominal capacity of the rSOC in each mode; the partial load 

range; the efficiency and the achievable ramp rate. The efficiency values are intended to incorporate 

all BoP losses, including power electronic converters and (for electrolysis mode) steam generation. 
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Table 4.2. Parameters used to characterise the rSOC system. 

Parameter Symbol Unit Values from [24], [46] 

Electrolyser mode nominal 

capacity 

PSOEC kWAC 166 

Electrolysis efficiency* ηSOEC MJ / kg
H2

 172.5 

Electrolyser partial load range - % 50 … 125% 

Fuel cell mode nominal capacity PSOFC kWAC 30 

Fuel cell nominal efficiency* ηSOFC MJ / kg
H2

 60 

Fuel cell partial load range - % 30 … 100% 

Ramp rate Δ % of nominal 

capacity per minute 

5% 

*including steam production and all BoP other than H2 compression 

The state of the rSOC at a given point in time is described by the partial load percentage, which here 

we shall represent by μ. This can range from -100% (or below) for electrolysis to +100% for fuel cell 

mode, where +/-100% are respectively mapped to the nominal loads PSOFC and PSOEC for fuel cell and 

electrolyser mode. Thus, the AC power either generated (+) or consumed (-) is given by: 

 

𝑃𝐴𝐶 = {

𝜇

100
× 𝑃𝑆𝑂𝐹𝐶  , 𝜇 ≥ 0

𝜇

100
× 𝑃𝑆𝑂𝐸𝐶  , 𝜇 < 0

 (Eqn. 4.1) 

 

 

The consumption or production of hydrogen, 𝑚̇𝐻2 in kg per hour is then given as follows: 

 

𝑚̇𝐻2 = 

{
 
 

 
 
3.6 × 𝑃𝐴𝐶
𝜂𝑆𝑂𝐹𝐶

 , 𝜇 ≥ 0
 

 
3.6 × 𝑃𝐴𝐶
𝜂𝑆𝑂𝐸𝐶

, 𝜇 < 0

 (Eqn. 4.2)  

 

The rate at which μ can change is limited by the ramprate Δ. Work from GrInHy [49], [84] suggested 

that their electrolyser could ramp its output by least 10 kW/min, which was about 7% of the nominal 

142.9 kW load. Here Δ defaults to a conservative value of 5% of nominal load per minute. When 

changing mode, the rSOC can pass through ‘forbidden’ load points that are outside the permissible 

partial load range; however, it is not permitted to remain continually at such load points. It is worth 

noting that although we allow load to vary continuously in the permitted range, it is also possible that 

a real system might only have discrete partial load settings. 

As a starting point, the rSOC model is parametrised based on the data available from the various trials 

of Sunfire’s rSOC technology [24], [46]. PSOEC and PSOFC may be scaled up or down, but will be 

assumed to remain in proportion. With efficiencies of 172.5 MJ/kgH2 for electrolysis, and 60 MJ/kgH2 
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for fuel cell mode, round-trip efficiency is just under 35%, before allowing for the electrical work to 

compress the hydrogen for storage. 

4.2.3 Hydrogen storage model 

During electrolysis mode, additional power is required for compression of hydrogen; this is calculated 

as follows. The isentropic compression energy W for compression of 1 kg of hydrogen between 

pressures P1 and P2 is given in kJ by [191]: 

𝑊 = 
𝛾𝑅𝑇

𝛾 − 1
((
𝑃2
𝑃1
)

𝛾−1
𝛾
− 1) ∙ 𝑀𝐻2

−1 (Eqn. 4.3) 

 

where T is temperature in Kelvin, R is the ideal gas constant; γ = 1.41 is hydrogen’s heat capacity 

ratio and MH2 = 2.014 g / mol is hydrogen’s molar mass. Multi-stage compression with intercooling 

can allow the required work to be less than the isentropic work. Whilst the specific configuration of 

compressors and intercoolers is outside the scope of this work, we assume that the hydrogen storage 

system would be designed with intercooling. Accordingly, we assume that the work of compression 

can be reduced to 74.5% of the isentropic work, where this proportion is derived from reference [191]. 

Thus, the mass flow rate of hydrogen 𝑚̇𝐻2 in kg/hour can be used to find the electrical load Pcomp for 

the compression of hydrogen (in kilowatts): 

 

𝑃𝑐𝑜𝑚𝑝 = 
0.745 ∙ 𝑊 ∙ 𝑚̇𝐻2

3600
 

(Eqn. 4.4) 

This power is drawn from the microgrid in addition to the power required by the rSOC itself. 

4.2.4 Battery model 

 

Table 4.3. Parameters used to characterise the community battery. 

Parameter Symbol Unit Default value 

Nominal capacity CBESS kWh - 

DC to DC 

efficiency 

ηBESS - 0.94 [192] 

Inverter efficiency ηDCAC - 0.95 [49] 

Rectifier efficiency ηACDC - 0.95 [49] 

C rate RBESS h-1 2 [193] 

Self-discharge rate Λ h-1 4.2 × 10-5 [194], 

[195] 

State of charge 

range 

- % 5 – 95% 

 

The community scale battery energy storage system (BESS) is modelled primarily in terms of its 

capacity in kWh (CBESS), its achievable C rate (RBESS) and its DC to DC round-trip efficiency ηBESS. 

Unlike for the rSOC, the efficiencies of the power electronic converters are accounted for separately 

as ηDCAC and ηACDC, both equal to 0.95 [49]. Self-discharge is also included, although impact of this is 
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expected to be negligible, with the default value of 4.2 × 10-5 h-1 equating to 3% per month. Here the 

model is parametrised to represent Li-ion battery technology, based on figures from [192], [193]. 

For simplicity, the losses according to ηBESS are modelled as though they occur entirely during the 

charging of the battery. RBESS is interpreted such that RBESS
-1 gives the minimum time in hours to 

either fully charge or discharge the battery. In contrast with the rSOC, there is no lower limit set on 

the charge / discharge power: i.e. partial load can be varied all the way down to 0%. Similarly, there is 

no restriction placed on the battery’s ramp rate. It is reported in [193] that a 2 MW battery is able to 

fully reverse its output in 40 milliseconds; this is many orders of magnitude smaller than the time 

resolution considered here. 

Where Pch is the AC power supplied to the battery, Pdch is the AC powered discharged from the 

battery, and EBESS is the electrical energy stored in the battery, the model imposes the following 

equations (with hours as time unit): 

𝐸̇𝐵𝐸𝑆𝑆 = 𝜂𝐵𝐸𝑆𝑆 ∙ 𝜂𝐴𝐶𝐷𝐶 ∙ 𝑃𝑐ℎ − 
𝑃𝑑𝑐ℎ
𝜂𝐷𝐶𝐴𝐶

− 𝛬 ∙ 𝐸𝐵𝐸𝑆𝑆 
(Eqn. 4.5) 

0 ≤ 𝐸𝐵𝐸𝑆𝑆 ≤ 𝐶𝐵𝐸𝑆𝑆 (Eqn. 4.6) 

0 ≤ 𝑃𝑐ℎ ≤ 
𝑅𝐵𝐸𝑆𝑆∙𝐶𝐵𝐸𝑆𝑆

𝜂𝐵𝐸𝑆𝑆∙𝜂𝐴𝐶𝐷𝐶
 (Eqn. 4.7) 

0 ≤ 𝑃𝑑𝑐ℎ ≤  𝜂𝐷𝐶𝐴𝐶 ∙ 𝑅𝐵𝐸𝑆𝑆 ∙ 𝐶𝐵𝐸𝑆𝑆 (Eqn. 4.8) 

 

Equation [5] is modelled using system dynamics, with EBESS represented as a stock, and flows of 

power in or out according to the charge, discharge and self-discharge terms. A statechart is used to 

classify the battery as ‘empty’ once EBESS ≤ 0.05∙CBESS, ‘full’ when EBESS ≥ 0.95∙CBESS, and ‘partially 

charged’ otherwise. 

4.2.5 PV model 

Solar generation profiles are simulated using measured hourly data for global horizontal irradiance 

(GHI). The model outlined here uses GHI to predict the output of PV panels with arbitrary tilt and 

orientation. Clearness index kt is calculated as [196]: 

𝑘𝑡 =
𝐺𝐻𝐼

𝐼𝐸𝑇 sin 𝛼𝑠
 

(Eqn. 4.9) 

             

where αs is the sun’s altitude above the horizon, and IET is the normal irradiance above the Earth’s 

atmosphere, which averages 1367 Wm-2, varying by ±3.3% throughout the year. Erbs’ model [197] is 

then employed to predict diffuse fraction kd from the value of kt, so that the diffuse horizontal 

irradiance (DHI) is known. The simplifying assumption is made that diffuse irradiance is distributed 

evenly across the sky. The total radiation Ipv incident on one square metre of tilted panel can now be 

calculated [198]: 

𝐼𝑝𝑣 =  𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 + 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

+ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

 

= 
𝐺𝐻𝐼(1 − 𝑘𝑑)

sin𝛼𝑠
cos𝜃𝑖  + 𝐺𝐻𝐼 ∙ 𝑘𝑑 ∙  

1 + 𝑐𝑜𝑠(𝜁𝑝𝑣)

2
+  𝐺𝐻𝐼 ∙ 𝑅𝑔𝑟 ∙  

1 − 𝑐𝑜𝑠(𝜁𝑝𝑣)

2
   (Eqn. 4.10) 
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Here, θi is the incident angle between the sun’s rays and the normal to the tilted PV panel, and Rgr is 

the reflectance of the ground, taken to be 0.2. θi is obtained from the sun’s azimuth φs and altitude αs, 

and the panel’s azimuth φpv and tilt ζpv, as follows [198]: 

𝑐𝑜𝑠(𝜃) = 𝑠𝑖𝑛(𝜁𝑝𝑣)𝑐𝑜𝑠(𝜑𝑝𝑣)𝑐𝑜𝑠(𝛼𝑠)𝑐𝑜𝑠(𝜑𝑠)

+ 𝑠𝑖𝑛(𝜁𝑝𝑣)𝑠𝑖𝑛(𝜑𝑝𝑣)𝑐𝑜𝑠(𝛼𝑠)𝑠𝑖𝑛(𝜑𝑠) + 𝑐𝑜𝑠(𝜁𝑝𝑣)𝑠𝑖𝑛(𝛼𝑠) 

 

 

 

(Eqn. 4.11) 

Assuming a fixed efficiency ηpv and area A for the PV installation, the generated power P is simply  

𝑃 = 𝜂 ∙ 𝐴 ∙ 𝐼𝑝𝑣 (Eqn. 4.12) 

 

5.75 m2 of PV is assumed to correspond to 1 kWp capacity [199]. Validation of the PV model was 

conducted using hourly irradiance data for 2015 recorded at Rothamsted [200], and corresponding PV 

generation data for a 3.96 kW installation located 5.9 km to the south-west [201]. Modelled and 

measured generation were compared at daily resolution over the year, and at hourly resolution over a 

two-week period in June. At daily resolution, the model achieved mean absolute error of 0.769 kWh / 

day (7.6% of average daily generation). At hourly resolution, mean absolute error was 0.112 kWh/h. 

The errors observed were checked for correlation with temperature (hourly average; daily min, max 

and average) and irradiance. No significant correlations were found, suggesting that a simple model 

with constant efficiency is adequate for the UK climate. 

For the results presented below, the model was calibrated by enforcing a capacity factor of 11.8% for 

a south-facing panel at 40° tilt angle in SE England [202]; this was achieved by setting ηpv = 0.1541. 

For the SE England case study, houses are assumed to have random orientation, resulting in diversity 

between the different rooftop PV installations; the average capacity factor then becomes ~11.0%. 

4.2.6 Control strategies 

4.2.6.1 Control of rSOC without BESS 

Since time-variable import / export tariffs are not considered in this work, the most cost-effective 

dispatch of a single energy storage type, whether battery or rSOC, is trivially achieved via a greedy 

algorithm. At every time step, the energy surplus (or deficit) is calculated, and the energy storage will 

absorb (or supply) as much of this as possible, as constrained by its capacity, partial load capability, 

and state of charge. 

4.2.6.2 Control of hybrid energy storage 

When rSOC and BESS are both used, the control is less trivial, even in the absence of variable tariffs. 

A naïve approach is to continue to use a greedy algorithm, which preferentially uses the battery 

because of its superior efficiency. For instance, all surplus generation would be sent to the battery 

until the battery is full, after which the rSOC would take over. This is an unsatisfactory approach; the 

two energy stores need to be worked simultaneously, otherwise the rSOC capacity would have to be 

sized larger to absorb the largest deficits / surpluses by itself. 

In this work, the approach taken is to plan the rSOC dispatch in advance, whilst the BESS continues 

to follow a ‘greedy’ approach, compensating for the remaining surplus/deficit. Five-day forecasts, at 

one-hour resolution, are made for electrical load and generation, and passed to a controller agent. 

Forecasts for load and irradiance assume perfect foreknowledge; PV generation forecast is calculated 

from irradiance by modelling the many separate solar rooftop installations as just three large arrays at 

different orientations. 
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The controller works by setting bounds (𝑃𝑚𝑎𝑥,𝑑)1≤𝑑≤5 and (𝑃𝑚𝑖𝑛,𝑑)1≤𝑑≤5 on the net load absorbed by 

the rSOC on each day d of the forecast. For each time step, the rSOC responds to the microgrid’s net 

load as far as possible (see Figure 4.3), as constrained by 𝑃𝑚𝑖𝑛,𝑑 and 𝑃𝑚𝑎𝑥,𝑑, as well as its partial load 

capability and the H2 storage capacity. Remaining load imbalances are then addressed by the battery 

and the grid connection, in that order. In this way, an hourly schedule (𝑃𝐻𝐸𝑆𝑆,𝑡)0≤𝑡<120 for the rSOC 

net load is produced. The full details of this method are given in the appendix.  

Thus, there are ten decision variables for the controller to optimise, (𝑃𝑚𝑎𝑥,𝑑)1≤𝑑≤5 and (𝑃𝑚𝑖𝑛,𝑑)1≤𝑑≤5. 

The objective function is defined as the (negative) value of effective energy stored at the end of the 

forecast period, plus the cost of imported power during the forecast period, as follows: 

−𝑐𝑠𝑡𝑜𝑟𝑒 ∙ (
𝜂𝑆𝑂𝐹𝐶
3.6

∙ 𝑚𝐻2,120 + 𝜂𝐷𝐶𝐴𝐶 ∙ 𝐸𝐵𝐸𝑆𝑆,120) + 𝑐𝑔𝑟𝑖𝑑 ∙∑𝑃𝑖𝑚𝑝,𝑡

119

𝑡=0

  (Eqn. 4.13) 

 

Here, 𝐸𝐵𝐸𝑆𝑆,120 is the final kWh stored in the battery; 𝑐𝑔𝑟𝑖𝑑 is the cost of grid-imported power, and 

𝑐𝑠𝑡𝑜𝑟𝑒 is the value assigned to energy stored at the end of the forecast period. 𝑐𝑠𝑡𝑜𝑟𝑒 is set to £0.10 for 

the case study in this work. 𝑐𝑠𝑡𝑜𝑟𝑒 < 𝑐𝑔𝑟𝑖𝑑 is essential or the rSOC will never use fuel cell mode. 

The controller carries out this optimisation using the OptQuest optimisation engine [188]. OptQuest is 

well suited to problems with low dimensionality and unknown structure, which is why the controller 

has been designed in this manner. The controller runs at 6pm every day to update the schedule for the 

rSOC. 

Figures 4.4 and 4.5 show microgrid dispatch over the same three days for microgrids with differently 

sized energy storage components. Note that the controller produces markedly different schedules in 

each case. In Figure 4.4, the rSOC is small but the battery large. The controller sets the maximum 

load negative, close to the minimum (similar to Figure 4.3b), so that electrolysis continues steadily 

through the night, powered by the battery. The battery manages the day/night cycling, whilst the 

stored hydrogen climbs continually. In Figure 4.5, the battery is not large enough for this approach. 

The maximum load is set positive, so that fuel cell mode is active during the night (similar to left hand 

side of Figure 4.3). The rSOC and battery both contribute to the day/night cycling. 

For the microgrid specification in Figure 4.4, the control method described here reduces annual grid 

imports by around 15% compared to a greedy algorithm. 
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(a) (b) 

Figure 4.3. Illustrates how the response of the rSOC to the microgrid’s deficit / surplus is curtailed by 

the maximum and minimum daily load imposed by the controller. The rSOC may be permitted to 

operate in both modes, as in (a), or constrained to operate in only one mode – as in (b), where 

electrolysis carries on even when the microgrid is in deficit. Operation in one mode throughout the 

day is likely to occur when battery capacity is large but rSOC capacity is small.  

 

 

(a) 

 

(b) 

 
 

(c) 

Figure 4.4. Example dispatch of the microgrid with hybrid energy storage over three days in 

early May. 6 kW PV per dwelling; 50 kW rSOC; 1438 kWh battery.  

 (a): power consumed; (b) power generated; (c) state of charge of each energy storage.  
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(a) 

 

(b) 

 

(c) 

Figure 4.5. Example dispatch of the microgrid with hybrid energy storage over three days in 

early May. 6 kW PV per dwelling; 75 kW rSOC; 300 kWh battery. 

(a): power consumed; (b) power generated; (c) state of charge of each energy storage.  
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4.2.7 Performance metrics; scenarios for cost and efficiency; optimisation of technology 

choice and sizing 

 

 

 

 

 

 

 

 

Self-sufficiency ratio (SSR) for the community is defined to be the annual energy consumed which is 

not imported from the grid, as a proportion of total energy consumption: 

𝑆𝑆𝑅 =  
(𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)−(𝑔𝑟𝑖𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑠)

(𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)
     

 (Eqn. 4.14) 

As well as quantifying the microgrid’s grid-independence, SSR gives a basic measure of 

environmental benefit; under the simplifying assumption that grid emissions are constant, SSR is 

equal to the percentage reduction in emissions per unit of electricity consumed by the microgrid. In 

fact, SSR may give an underestimate of emissions curtailment, since the HESS and BESS are most 

likely to discharge in the early evening, when grid emissions are often above average. To give a rough 

idea for the cost of the energy system, based on the installed capacities of PV, rSOC and hydrogen 

storage, estimates for these technologies’ installed CAPEX costs are used as shown in Table 4.4. 

Initial work uses the higher ‘baseline’ figures; we then consider a more optimistic future scenario 

(although the installed cost of battery storage is the same for both). Accordingly, the installed cost for 

the microgrid is estimated as: 

𝑐𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑝𝑣 ∙ 𝑛 ∙ 𝐶𝑝𝑣 + 𝑎𝐻𝐸𝑆𝑆 ∙ ( 𝑐𝑟𝑠𝑜𝑐 ∙ 𝑃𝑆𝑂𝐸𝐶 + 𝑐𝐻2 ∙ 𝑚𝑓𝑢𝑙𝑙) + 𝑎𝐵𝐸𝑆𝑆 ∙ 𝑐𝐵𝐸𝑆𝑆 ∙ 𝐶𝐵𝐸𝑆𝑆 
 

(Eqn. 4.15) 

Here, n represents the number of houses; 𝐶𝑝𝑣 the mean kW of installed PV per house; and 𝑚𝑓𝑢𝑙𝑙 the 

capacity of the hydrogen storage in kg. 𝑎𝐻𝐸𝑆𝑆 and 𝑎𝐵𝐸𝑆𝑆 are binaries expressing whether each form of 

storage is installed. 

Annual savings achieved by the microgrid are considered equal to the avoided cost of grid-imported 

power. The retail price of electricity cgrid is estimated to be £0.144 / kWh for the SE England study, 

and $0.127 / kWh for Texas. Simple payback periods are then calculated simply as CAPEX divided 

by annual savings: 

𝑝𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑐𝑡𝑜𝑡𝑎𝑙

𝑐𝑔𝑟𝑖𝑑∙𝑆𝑆𝑅∙𝐸𝑦𝑒𝑎𝑟
      (Eqn. 4.16) 

where 𝐸𝑦𝑒𝑎𝑟 is the microgrid’s annual electricity consumption in kWh, and 𝑐𝑔𝑟𝑖𝑑 is the cost of 

imported power per kWh. 

 Table 4.4. Estimates for installed CAPEX (two cost scenarios) 

Technology Symbol Cost scenario 1 

(Baseline estimate) 

Cost scenario 2 

(Low/future estimate) 

References 

rSOC crsoc £2000 / kWSOEC £750 / kWSOEC [35], [37] 

PV cpv £1750 / kWp £1000 / kWp [203] 

H2 storage cH2 £1000 / kg (£30 / kWh)  £333 / kg (£10 / kWh) [24], [204], 

[205] 

Li-ion 

battery 

storage 

cBESS £500 / kWh £500 / kWh [206], 

[207] 
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For comparison between the case studies, an approximate exchange rate of $1.25 to £1 is assumed. 

Two scenarios are considered for the efficiency of rSOC technology. The first (baseline) scenario is 

based on technology already demonstrated at scale by Sunfire [24], [46], achieving round-trip 

efficiency just under 35%. The second scenario assumes round-trip efficiency of 60%. Balance-of-

plant level simulation work seen in the literature suggests that this may be realistic for rSOC 

technology in the future. 

Table 4.5. Scenarios for efficiency of rSOC technology. 

 Efficiency scenario 

1 

(Baseline estimate) 

Efficiency scenario 

2 

(High/future 

estimate) 

ηSOEC 172.5 MJ/kgH2 120 MJ/kgH2 

ηSOFC 60 MJ/kgH2 72 MJ/kgH2 

rSOC round-

trip 

34.8% 60% 

 

All optimisations are conducted using the OptQuest global optimisation engine [188], [208]. In this 

work, optimisation of microgrid design has the minimisation of payback period (see Equation 4.16) as 

the objective, subject to constraints on the SSR to be achieved. Decision variables are summarised in 

Table 4.6: 

Table 4.6. Decision variables for the optimisation of the 

microgrid design. 

Variable Type Description 

𝑎𝐻𝐸𝑆𝑆 Binary Installation of HESS 

𝑎𝐵𝐸𝑆𝑆 Binary Installation of BESS 

𝐶𝑝𝑣 Continuous Capacity of PV (kWp per house) 

𝑃𝑆𝑂𝐸𝐶 Continuous Capacity of rSOC (kW) 

𝑚𝑓𝑢𝑙𝑙 Continuous Capacity of H2 storage (kg) 

𝐶𝐵𝐸𝑆𝑆 Continuous Capacity of BESS (kWh) 
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4.3 Results 
This section falls into the following parts. Firstly, the two case studies are introduced. Secondly, rSOC 

energy storage is considered for both of these, with optimisation of microgrid design under different 

scenarios. Thirdly, hybrid energy storage with battery and rSOC is considered (for the England case 

study only). 

4.3.1 Case Studies 

The model described above has been employed for two case studies. In both cases the scenario is a 

small residential community, each house equipped with rooftop PV, with the rSOC energy storage 

serving the whole community. The location for case study 1 is the south-east of England. Electrical 

load data comes from a smart-meter trial in London carried out by UK Power Networks and has half-

hourly resolution [209]. Climate data was recorded by the UK Environmental Change Network at 

Rothamsted (near London) and has hourly resolution [28]. Rooftop PV installations are assumed to 

average 3 kWp [210]. Simulations begin on May 1st, around the time of year that daily surpluses of 

solar power begin. 

The second case study is located in Austin, Texas, USA. Two factors motivate this choice. Firstly, 

Pecan Street Inc. have a rich set of freely available data for many houses in Austin, with measured 

time series data for both electrical load and PV generation [211]. Secondly, the location provides a 

good contrast to the UK case study: peak electricity demand is in summer (owing to air-conditioning 

loads) rather than winter; PV installations tend to be larger and have higher capacity factor, and 

overall domestic electricity consumption is also much higher. These differences may be seen in Figure 

4.6 and Table 4.7. Simulations for this case study begin with the calendar year, since solar surplus is 

experienced in late winter and early spring. 

 

Table 4.7. Details of the two case studies. All parameters 

are for the microgrid as an aggregate whole. 

 SE 

England 

Austin, 

Texas 

No. of dwellings 92 92 

Annual electricity 

consumption 

384 MWh 1090 MWh 

PV installed 276 kWp 508 kWp 

Annual PV generation 267 MWh 633 MWh 

Capacity factor 11.0% 14.2% 

SSR 33.4% 36.1% 

Annual cost of imported 

power 

£36830 $88494 
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(a) 

 
(b) 

Figure 4.6.  Average daily load and PV generation for the community of 92 dwellings, 

for (a) SE England and (b) Austin, Texas, over one year, prior to deployment of any 

energy storage. Clear differences between the case studies are evident. Electrical load 

is higher throughout the year in the Austin study, and peaks dramatically during the 

summer, rather than the winter. PV output is also more constant over the course of a 

year (due to both climate and latitude, it is assumed). PV output is modelled for 

England case study, but comes from Pecan Street Inc. data for Texas. 

 

 

4.3.2 Initial results with existing PV capacity 

Firstly, we explored what the rSOC energy storage could achieve alongside the baseline amount of 

installed PV. To determine the maximum possible impact, the rSOC capacity PSOEC was optimised to 

achieve maximum SSR (with H2 storage volume unlimited and PV capacity fixed). Correct sizing of 

the rSOC is important, since its partial load capability is limited. Table 4.8 gives a summary of the 

results for each case study. For both locations, the rSOC + H2 storage system would enable SSR to 

increase to about 42% (up from 33% and 36% for the UK and Texas respectively). This is the 

maximum SSR achievable without installing additional PV capacity. 

The storage profile over the year (in terms of mass of stored H2) is shown in Figure 4.7, for each 

location. For the Texas case study, only short term cycles of at most a week’s duration are observed. 

This is unsurprising, since a daily surplus of solar energy is rare (see Figure 4.6) and it tends to 

suggest that long term storage using hydrogen is hard to justify here, without an increase in PV 

capacity. For the UK study, surpluses of solar power are common enough in the summer that the 

storage profile does display a long-duration cycle. 

The increase in SSR achieved by the storage results in lower payments for imported grid power. 

When comparing to the microgrid equipped with PV only, the rSOC + H2 storage saves around £5000 

p.a. in the UK, or $8000 p.a. in Texas. These savings are far from sufficient to offset the extra 

investment; in both locations, payback periods for the addition of storage exceed 60 years – far 

beyond the system lifetime. The addition of the HESS energy storage is thus hard to justify here, with 

poor economics and only a small increase in SSR to improve environmental credentials. 
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Table 4.8. Summary of rSOC impact on microgrid with baseline solar PV 

capacity & optimised rSOC capacity  
SE England Austin, Texas 

 PV only PV + 

rSOC 

PV only PV + 

rSOC 

SSR achieved 0.334 0.423 0.361 0.418 

PV per dwelling (kWp) 3 3 5.52 5.52 

rSOC capacity (kW) 0 91.5 0 168.4 

Max required H2 storage (m3) 0 14.12 0 4.86 

Max required H2 storage (MWh) 0 5.03 0 1.73 

Estimated CAPEX £0.483m £0.817m $1.111m $1.597m 

Grid imports (MWh) 255.7 221.6 696.4 634.4 

Annual savings  £18466 £23369 $49963 $57838 

Payback time (years) 26.2 35.0 22.2 27.6 

Payback time versus PV (years) N.A. 68.1 N.A. 61.7 

 

 

 

(a) 

 

(b) 

Figure 4.7. Annual hourly storage profiles for each case study, with baseline PV capacity and 

optimally sized rSOC. (a) SE England, (b) Austin, Texas. A long term cycle does emerge for SE 

England. For Texas, the longest storage cycles are of about a week’s duration for this system. Note 

that cycling is deepest in spring and autumn, when surpluses of solar power are more common. 
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4.3.3 Optimisation of installed capacity for each component 

Next, the optimiser was permitted to vary the installed capacity of all three components (rSOC, H2 

storage and PV). The intention was to explore scenarios with greater capacity of installed PV, perhaps 

providing more incentive for long term energy storage. The optimiser searched for the microgrid 

design achieving lowest CAPEX cost, whilst constrained to achieve a particular SSR. Payback periods 

were calculated for the microgrid as a whole, relative to a baseline scenario with all power imported 

from the grid (0% SSR). Results are shown in Figure 4.8 and Tables 9 and 10. 

 

  

(a) (b) 

Figure 4.8. Estimated CAPEX costs and payback times for systems optimised to achieve specified SSR. (a) 

SE England, (b) Austin, Texas. 

Table 4.9. Summary of microgrid energy systems for SE England, with 

CAPEX minimised to achieve given SSR. 

SSR requirement 0.5 0.6 0.7 0.8 0.9 

PV per dwelling (kWp) 4.90 7.30 14.00 16.99 17.98 

rSOC capacity (kW) 132.8 149.0 182.0 268.0 329.2 

H2 storage (m3) 2.1 8.0 2.7 71.6 246.9 

H2 storage (MWh) 0.75 2.85 0.96 25.53 88.03 

Estimated CAPEX (£m) 1.077 1.559 2.647 4.037 6.194 

Grid imports (MWh) 192.0 153.6 115.2 76.8 38.4 

Annual savings (£) 27643 33172 38700 44229 49757 

Approx payback time 

(years) 38.9 47.0 68.4 91.3 124.5 
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Table 4.10. Summary of microgrid energy systems for Texas, with CAPEX 

minimised to achieve given SSR. 

SSR requirement 0.5 0.6 0.7 0.8 0.9 

PV per dwelling (kWp) 7.66 11.32 14.69 17.40 24.80 

rSOC capacity (kW) 168.7 305.2 400.0 541.5 773.1 

H2 storage (m3) 9.6 7.0 47.5 29.5 66.8 

H2 storage (MWh) 3.42 2.50 16.93 10.52 23.82 

Estimated CAPEX ($m) 2.090 3.135 4.590 5.250 7.816 

Grid imports (MWh) 544.9 435.9 326.9 218.0 109.0 

Annual savings ($) 69201 83041 96881 110722 124562 

Approx payback time 

(years) 30.2 37.8 47.4 47.4 62.8 

 

For both case studies, it was possible to design systems achieving SSR of 90% or somewhat above. 

(100% SSR is not possible without the addition of more flexible, shorter term storage.) In every case, 

significant capacity of rSOC and H2 storage was installed by the optimiser (i.e. the required SSR 

could not be achieved simply by oversizing the PV component). Thus, the rSOC energy storage has 

value to boost SSR and as such, to boost environmental sustainability. 

The high SSR systems would require very large capacities of PV, which is a consequence of the 

rSOC’s low round-trip efficiency. Such large capacities of PV would likely need to be ground-

mounted. It will be noticed from Figure 4.8 that the cost of PV is the most significant part of system 

CAPEX, until very high SSR is required. For the UK, the H2 storage volume and cost balloons if SSR 

above 0.8 is required. For Texas, this does not happen to the same extent, which reflects the 

reasonable availability of solar power throughout the seasons, as compared to its extreme seasonality 

in the UK. 

Payback periods exceed 30 years in all cases, indicating that the systems would not be financially 

viable; furthermore, payback time worsens with increasing SSR. Better payback times are achieved 

for Texas than for the UK, which may be ascribed to the higher PV capacity factor and better 

synchronisation of PV and load. Since the energy storage is clearly not financially viable at the high 

costs and low efficiencies initially assumed, the low cost and high efficiency scenarios are now 

explored (see Tables 4.4 and 4.5 above). As before, the optimiser constrains for SSR and sizes the 

components to minimise CAPEX. Results are shown in Figure 4.9 and Tables 4.11 and 4.12. 

Highly (90%) self-sufficient systems remain too costly in all scenarios. This is especially true for the 

UK study, with payback times of 80 and 46 years for the two scenarios. Payback periods of < 30 years 

for the Texas study are more hopeful, although still in excess of the system’s likely lifetime. Note that 

higher efficiency for the energy storage allows for reduction in the required PV capacity, whilst the 

required rSOC capacity is similar. The impact of increasing rSOC efficiency has more impact in the 

UK, with the reduced requirement for H2 storage allowing CAPEX to almost halve. 

For systems with modest (50%) self-sufficiency, the results are more interesting. Payback periods of 

less than twenty years are suggested in both scenarios for Texas, and for the UK if cost and efficiency 

are both improved. These systems require only a few cubic metres of hydrogen storage, and PV 

capacities within realistic bounds for rooftop installations. At their present state of maturity, rSOCs 

cannot be expected to last even for 20 years. SOFCs are capable of running for at least ten years [96], 

but use in electrolysis mode causes accelerated degradation [28], [29], [34]. Ten years may be a 

reasonable lifetime for an rSOC stack in the medium term. This suggests that more detailed work is 
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needed, taking the stack replacement cost into account, to establish whether a PV / rSOC / H2 

microgrid can really save versus grid imports over its lifetime. 

It may be noted that the impact of increased efficiency is small for the 50% SSR systems; the system 

becomes 12% cheaper for the UK, and only 2.4% cheaper for Texas. The impact is greatest for the 

UK 90% SSR system, where the microgrid is 43% cheaper with enhanced efficiency. For the UK, 

achieving high SSR demands considerable use of storage because of the large seasonal mismatch 

between load and generation. By contrast, high SSR in Texas is achieved mainly by scaling up solar 

capacity, with less extra storage capacity needed. 

 

(a) 

 

(b) 

Figure 4.9. Estimated CAPEX costs and payback times, under future scenarios. (a) SE 

England, (b) Austin, Texas. 
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Table 4.11. Summary of optimised microgrid energy systems for SE England: 

future scenarios. 

Scenarios Efficiency 1, Cost 2 Efficiency 2, Cost 2 

SSR requirement 0.5 0.9 0.5 0.9 

PV per dwelling (kWp) 5.71 24.70 4.99 17.49 

rSOC capacity (kW) 110.9 348.0 91.1 346.1 

H2 storage (m3) 3.9 412.2 5.0 118.3 

H2 storage (MWh) 1.39 146.96 1.78 42.18 

Estimated CAPEX (£m) 0.622 4.003 0.545 2.291 

Grid imports (MWh) 195.0 39.0 195.0 39.0 

Annual savings (£) 27643 49757 27643 49757 

Approx payback time 

(years) 20.9 80.4 18.4 46.0 

  

Table 4.12. Summary of optimised microgrid energy systems for Texas: future 

scenarios. 

Scenarios Efficiency 1, Cost 2 Efficiency 2, Cost 2 

SSR requirement 0.5 0.9 0.5 0.9 

PV per dwelling (kWp) 7.70 20.63 7.50 16.17 

rSOC capacity (kW) 163.9 822.7 160.8 801.4 

H2 storage (m3) 9.7 89.5 9.7 148.6 

H2 storage (MWh) 3.46 31.91 3.46 52.98 

Estimated CAPEX ($m) 1.082 3.542 1.056 3.273 

Grid imports (MWh) 544.9 109.0 544.9 109.0 

Annual savings ($) 69201 124562 69201 124562 

Approx payback time 

(years) 15.6 27.9 14.3 26.3 
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4.3.4 Results for hybrid energy storage 

In this section, results are presented for the SE England study, now with battery storage (BESS) 

available in addition to rSOC. Similarly to the previous section, four components of the microgrid 

(PV, BESS, rSOC and H2 storage) were sized to achieve the specified SSR for minimal payback time. 

Binary decision variables aBESS and aHESS determined whether BESS and HESS were to be installed. 

Thus, these results say something about the conditions under which hybrid energy storage (HESS + 

BESS) is preferable to a system with battery storage only. Scenarios 1 and 2 for efficiency and cost 

are considered. Details of the optimised microgrid systems are given in Table 4.13 and in Figures 

4.10-4.12. 

The optimiser exhibited a notable preference to install very large over-capacity of PV, with battery 

storage, rather than installing HESS. This approach allows for sufficient daily solar generation even 

during the winter so that the need for long-term bulk energy storage is obviated. Under baseline 

scenarios for efficiency and cost, even a 90% SSR system is most cheaply achieved without HESS, 

with 15.25 kW of PV per house. Under the improved scenarios, HESS is not selected until requiring 

SSR above 85%. It is worth noting that a 90% SSR system using hybrid storage has a payback period 

of about 37 years; with pure hydrogen based storage the figure was 46 years (see Table 4.11). 

Such large PV installations will not often be feasible in the built environment. Therefore, further 

results were taken with PV per household constrained below 6 kW. This restriction increases the 

chance that the HESS is part of the optimal design: the optimiser now selects HESS whenever SSR 

above 75% is required. This was the case regardless of cost and efficiency scenario. It can be 

concluded that HESS using rSOC can be an optimal choice when high SSR is desired, whether to 

achieve high independence from the national grid, or to showcase environmental benefits. These 

systems are probably not economical, with simple payback period ranging from 20 to 100 years 

(according to the scenario and the SSR required). Nonetheless, the use of rSOC to obtain the higher 

SSR and emissions curtailment is implied to be more economical than the use of battery storage alone, 

if SSR is above the 75% SSR threshold.  
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 1 

 2 

Table 4.13. SE England case study; optimisations with battery / hybrid storage 

Scenarios Constraints Optimal system design Finances 

Price 

Scenario 

Efficiency 

scenario 

SSR 

constraint 

PV 

constraint 

(kW / 

house) 

PV 

(kW / 

house) 

BESS 

(kWh) 

HESS? rSOC 

(kW) 

H2 

storage 

(m3) 

CAPEX 

(£m) 

Payback 

(years) 

1 1 0.9 <20 15.25 1798 No - - 3.354 67.2 

2 2 0.8 < 20 9.83 1016 No - - 1.412 31.9 

2 2 0.85 < 20 9.97 651 Yes 165.1 42.6 1.518 32.2 

2 2 0.9 < 20 13.34 787 Yes 138.7 28.7 1.827 36.8 

1 1 0.7 < 6 6.00 898 No - - 1.415 36.5 

1 1 0.75 < 6 6.00 1438 Yes 50.0 64.7 2.478 59.6 

1 1 0.8 < 6 5.86 1267 Yes 56.2 217 4.007 89.6 

1 1 0.9 < 6 6.00 2810 Yes 169.3 685 10.035 204 

2 2 0.6 < 6 4.76 450 No - - 0.662 19.8 

2 2 0.65 <6 5.40 612 No - - 0.803 22.2 

2 2 0.7 <6 6.00 929 No - - 1.017 26.1 

2 2 0.75 <6 5.97 728 Yes 64.1 174 1.582 35.6 

2 2 0.8 <6 6.00 1106 Yes 172.4 202 1.955 42.5 

2 2 0.9 < 6 6.00 1815 Yes 162.9 331 2.763 54.8 
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Figure 4.10. Costs and payback times of optimised microgrid energy systems, with PV capacity 

constrained below 20 kW. 

 
Figure 4.11. Costs and payback times of optimised microgrid energy systems, with PV capacity 

constrained below 6 kW. Scenario 1 for cost and efficiency. HESS is selected when SSR above 

75% is required. 

 

 
Figure 4.12. Costs and payback times of optimised microgrid energy systems, with PV capacity 

constrained below 6 kW. Scenario 2 for cost and efficiency. HESS is selected when SSR above 

75% is required. 
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4.4 Conclusions and future work 
In this paper we have presented an agent-based simulation model for a microgrid equipped with 

rooftop PV generation, and an rSOC + H2 storage enabling long term energy storage. This model has 

been used to quantify the level of grid-independence that such a system could attain, and the 

consequent cost savings. These benefits have been set against the estimated CAPEX for the 

microgrid. Two locations have been considered, the south-east of the UK, and Texas, which exhibit 

differences in both scale and seasonality of solar resource and electricity demand. 

Initial simulation work considered households with average-sized PV installations, for each location, 

and the possible impact of adding the energy storage. In both locations, it was found that the energy 

storage could allow the microgrid to achieve a self-sufficiency ratio of around 42% over a year, a 

fairly modest increase from SSR achievable by PV without storage. The cost saving associated with 

this would not be sufficient to make the energy storage system a viable investment, with payback 

periods of over six decades indicated. The moderate impact of the storage is partly due to the fact that 

typical residential PV installations do not generate long-term surpluses of power, in either location. 

Therefore, subsequent work allowed for PV capacity to be scaled higher. 

Next, the capacity of the microgrid’s three main components (PV, rSOC, H2 storage) were optimised 

in order to achieve given SSR. It was possible to design systems with SSR of 90% or higher. A high 

SSR is expected to imply similarly high percentage curtailment of the emissions associated with 

electricity consumption. However, costs increase faster than savings as SSR is increased, with 

payback times between 30 and 120 years. Systems designed for Texas can be more conservative in 

scale (relative to the size of annual demand); this is thanks to the solar resource being less seasonal 

and better synchronised with the load. Consequently, cost-effectiveness is closer to being attainable 

for Texas. It is also worth noting that the low round-trip efficiency leads to large requirements for PV 

capacity in order to obtain high SSR. 

Two further scenarios were then considered, with lower CAPEX costs and higher rSOC round-trip 

efficiency. In these scenarios, it was found that a microgrid designed to achieve SSR of 50% could be 

cost effective over 20 years relative to grid-imported power. Such a design would incorporate 

hydrogen storage below 10 m3 volume, providing the equivalent of 10’s of kWh of storage per 

household (about an order of magnitude higher than typical household batteries). Increasing the 

efficiency of the storage had only a minor effect on system cost for a 50% self-sufficient system; 

efficiency becomes important if high SSR is required. Accordingly, we conclude that if the lower 

CAPEX costs shown in Table 4.4 can be realised, a microgrid designed for 50% self-sufficiency, 

using rSOC for energy storage, could be cheaper than grid imported power. In addition to reduced 

costs, rSOC lifetime will need to increase towards (or beyond) the 10-year lifetime currently 

achievable by SOFCs. (It is worth noting, though, that replacement costs for degraded rSOC stacks 

would likely only be 20-30% of original CAPEX, since the majority of expense is for balance of plant 

equipment [105].) 

Further work considered the possibilities of using the rSOC in tandem with battery storage for a 

‘hybrid’ energy storage, and the degree to which this can compete with standalone battery storage. It 

was found that battery storage is in fact preferred to the hybrid storage in many circumstances. 

However, there is a threshold SSR above which the installation of the rSOC becomes cost-optimal; 

this threshold appears to be at least 75%, and is higher if the installation of very large capacity PV 

systems is an option. If it is wished to have a system with SSR above this threshold, to obtain very 

high environmental benefits and grid independence, the addition of rSOC is advised for the cheapest 

possible microgrid design. At very high SSR, investment cost and payback period grow very large; 
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financial viability is most plausible for the microgrid with hybrid energy storage with SSR near to the 

75% threshold. 

The challenging nature of the economics for rSOC energy storage is a common theme in these results, 

however certain recommendations can be made: firstly, it is notable from Section 4.3.4 that when 

HESS is selected, the hydrogen storage component becomes the single most significant cost. It is also 

known that rSOC efficiency indirectly impacts this (see Figure 4.9a). Thus, reduction of H2 storage 

cost and improvement of rSOC efficiency are priorities. Secondly, payback time may also be 

improved if the rSOC can realise value in other ways: for instance, by deferring grid upgrades or by 

supplying heat. 

Various directions are suggested for future work: 

• Promising microgrid designs should be considered in more detail, with assessment for 

operating expenditure and equipment replacement costs, as well as possible degradation of 

equipment. 

• The role of mass electric vehicle uptake and its effect on the microgrid’s load will be 

considered. 

• The possibility of extracting additional value from the rSOC through utilisation of its waste 

heat will be considered. 

• This work has considered only a flat price for imported electricity, and has not considered the 

possibility of export tariffs, variable or otherwise. Future work could consider variable import 

and export tariffs, including under future energy scenarios (where these are expected to 

fluctuate more dramatically). 

• CO2 abatement has only been considered indirectly via the microgrid’s SSR. Future work 

could quantify CO2 abatement directly, again with consideration of future scenarios for grid 

electricity. 

• The model should be run at higher time resolution, to allow better study of constraints on 

rSOC ramp-rate. 

• Alternative forms of renewable generation, notably wind, may need to be considered. With 

less seasonal variation than solar power, the relative advantages of different energy storage 

technologies may change. 

• The agent-based nature of the simulation will be used to study the interaction of individual 

households with the microgrid and the extent to which they might benefit financially by 

participating in peer-to-peer energy trading or a bill-sharing scheme.  
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4.6 Appendix – details on hybrid storage controller 
 

Table 4.A1. Variables pertaining to the hybrid storage controller. 

Symbol Unit Definition 

𝑡 ∈  {0…120} - Hour of forecast period 

𝑑 ∈  {1…5} - Day of forecast period 

𝑃𝑚𝑎𝑥,𝑑 kW Max AC power to be generated by SOFC during day d 

𝑃𝑚𝑖𝑛,𝑑  kW Max AC power to be consumed by electrolyser during day d 

𝑃𝑙𝑜𝑎𝑑,𝑡 kW Forecast electrical load for the microgrid at time t 

𝑃𝑔𝑒𝑛,𝑡 kW Forecast PV generation for the microgrid at time t 

𝑃𝑛𝑒𝑡,𝑡 kW Forecast net generation for the microgrid at time t (positive sign 

indicates surplus generation) 

𝑃𝐻𝐸𝑆𝑆,𝑡 kW Scheduled power for the HESS at time t (positive sign indicates fuel 

cell mode) 

𝑃𝐵𝐸𝑆𝑆,𝑡 kW Scheduled power for the BESS at time t. (positive sign indicates 

discharge) 

𝑃𝑖𝑚𝑝,𝑡 kW Power imported from grid at time t. 

𝑃𝑒𝑥𝑝,𝑡 kW Power exported to grid at time t. 

𝑚𝐻2,𝑡 kg Mass of hydrogen stored at time t. 

𝑚𝑓𝑢𝑙𝑙 kg Maximum quantity of storable hydrogen 

𝐸𝐵𝐸𝑆𝑆,𝑡 kWh Energy stored in battery at time t. 

𝐶𝐵𝐸𝑆𝑆 kWh Nominal capacity of BESS 

𝜂𝑐𝑜𝑚𝑝 MJ / kg Energy required for compression of hydrogen 

𝑐𝑔𝑟𝑖𝑑 £ / kWh 

$ / kWh 

Price of grid imported electricity. 

𝑐𝑠𝑡𝑜𝑟𝑒 £ / kWh 

$ / kWh 

Value assigned to stored energy at the end of the forecast period. 
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Figure 4.A1. Flowchart showing how a schedule (𝑃𝐻𝐸𝑆𝑆,𝑡,, 𝑃𝐵𝐸𝑆𝑆,𝑡  )0≤𝑡<120 is created for the hybrid 

energy storage, for given values of (𝑃𝑚𝑎𝑥,𝑑)1≤𝑑≤5 and (𝑃𝑚𝑖𝑛,𝑑)1≤𝑑≤5. 
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Abstract 

Reversible solid oxide cells (rSOCs) offer the prospect of long term bulk energy storage using hydrogen or methane fuel. 
Whilst less mature than alkaline and PEM fuel cell / electrolysis technology, solid oxide cells offer superior efficiency: as 
high as 80 -  90%LHV at system level. Furthermore, the possibility of using the cells reversibly means that separate ‘power-to-
gas’ and ‘gas-to-power’ components are not needed. Here, we consider the suitability of a hydrogen energy storage system 
(HESS) using rSOCs for a solar-powered residential microgrid. Battery energy storage (BESS) is considered as a competing 
(or complementary) energy storage technology. Since the electrification of transport is likely to be a major aspect of the 
transformation of domestic energy consumption, electric cars are also included in the microgrid model. The performance of 
the microgrid is evaluated in terms of its grid independence (self-sufficiency ratio, SSR) and economics (simple payback 
time and net present value). Optimisation is used to select and size the microgrid's components under different scenarios. 
Optimisation results suggest that battery storage is often preferred to HESS. However, two factors in particular can cause the 
selection of HESS to be favoured: (i) a requirement for high SSR and (ii) a lower constraint (6 kW) on the PV capacity per 
household. The economics for such systems remain very challenging. 

© YEAR The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of the scientific committee of the Name of the Conference, Conference Organizer Name, Year or Edition of 

Conference. 
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5.1. Introduction 
As the World’s energy systems move towards greater dependence on renewable energy, the 

intermittent nature of solar and wind power may call for widespread use of energy storage. Electrical 

energy storage using batteries is already quite widespread; however, battery storage is not viable for 

storage of energy in bulk, or with discharge duration longer than 4 - 8 hours [9], [212], [213]. For 

bulk, long-duration energy storage, the conversion of electrical energy to a fuel such as hydrogen is a 

more viable option. The conversion of electrical power to hydrogen is accomplished by an 

electrolyser, whilst a fuel cell performs the reverse conversion of gas-to-power. The most prevalent 

technologies use alkaline and, increasingly, PEM electrolytes; the electrolyser for power-to-gas and 

fuel cell for gas-to-power are typically separate devices [30]. Reversible solid oxide cells (rSOCs), by 

contrast, achieve both functions within the same device, switching between solid oxide fuel cell 

‘SOFC’ mode and solid oxide electrolyser cell ‘SOEC’ modes. These cells are also distinguished by 

their high temperature of operation (600 – 1000°C), and tend to be more efficient than the rival 

technologies: system level efficiency above 80%LHV may be possible, whereas 60-70%LHV is more 

typical for alkaline or PEM systems [34], [37], [43], [44]. However, rSOC technology is immature, 

suffering problems with material degradation [29], [34], [35], and also remains expensive [35], [37]. 

The work presented here considers the possible utility of energy storage using rSOC in a microgrid 

setting; that is, a small, localised electricity network, with its own generation and energy storage, 

seeking to achieve a degree of autonomy from the national grid. The possibilities of hydrogen energy 

storage for microgrids have received some attention in the academic literature (e.g. [118], [120]–
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[126]) with common themes including concerns with high cost and the desirability of hybridisation 

with shorter term storage. rSOCs are rarely considered in these studies, which instead include separate 

gas-to-power and power-to-gas components. Notable exceptions include the work of Baldinelli et al 

[116] who considered an rSOC hybridised with flywheel energy storage to supply power to a number 

of homes, and Sorrentino et al [117], who considered an rSOC microgrid for an apartment complex. 

Nonetheless, most research on rSOCs considers balance-of-plant level detail, with little coverage of 

applications. 

Here, we present a simulation of a microgrid with community energy storage, and the optimisation of 

the microgrid design. The work discussed here extends the modelling and optimisation work detailed 

in [214]. The main developments are (1) the inclusion of electric vehicles and (2) a more careful 

consideration of economics. 

 

5.2. Methods 

5.2.1. Microgrid model overview 

This work employs a microgrid simulation model which has been implemented in the multi-paradigm 

simulation software AnyLogic [4]. This model has previously been reported in [214]; the key details 

are recapped here. The microgrid consists of a number of houses, equipped with rooftop PV 

generation. Shared community energy storage (CES) may be used; this consists of either a hydrogen 

energy storage system (‘HESS’), with rSOC and storage of compressed hydrogen gas; or a battery 

energy storage system (‘BESS’); or a hybrid system with both BESS and HESS. Additionally, each 

house has an electric car and a 7.2 kW charger. The overall setup of the microgrid is illustrated in 

Figure 5.1. Some details will now be given of the sub-models. 

 

 

 

Figure 5.1. Schematic of simulated microgrid, incorporating houses with rooftop PV, electric cars, and 

community energy storage. (The figure symbol indicates that the component is modelled as an agent in 

AnyLogic.) 

5.2.2. Solar model 

 

The solar model calculates PV generation from measured irradiance data, for panels at arbitrary 

orientation. Erbs’ correlation [197] is used to predict the diffuse component of irradiance. Solar 

installations vary in orientation between the different houses in the simulation; this results in an 

average capacity factor of 11.1% for the location under consideration (SE England). Validation of the 

PV model was conducted using hourly irradiance data for 2015 recorded at Rothamsted [200], and 
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corresponding PV generation data for a 3.96 kW installation located 5.9 km to the south-west [201]. 

Comparing daily totals for generation over the year, mean absolute error was 0.769 kWh per day; 

comparing hourly generation over a summer fortnight, mean absolute error was 0.112 kWh/h. 

 

5.2.3. Energy storage models 

 

Table 5.1. Parameters used to characterise the rSOC system. 

Parameter Symbol Unit Values from [24], [46] 

Electrolyser mode nominal capacity PSOEC kWAC 166 

Electrolysis power consumption* ηSOEC MJ / kg
H2

 172.5 

Electrolyser partial load range - % 50 … 125% 

Fuel cell mode nominal capacity PSOFC kWAC 30 

Fuel cell power generation* ηSOFC MJ / kg
H2

 60 

Fuel cell partial load range - % 30 … 100% 

Ramp rate Δ % of nominal capacity per 

minute 

5% 

*including steam production and all BoP other than H2 compression 

The rSOC system is characterised in terms of its capacity and power consumption/generation in each 

mode, and its maximum and minimum partial load. The ramp rate is also constrained to 5% of 

nominal capacity per minute, in each mode; however, at the half-hourly time resolution used in this 

work, this is not restrictive. It is assumed that the coupling of HESS with BESS would allow for 

shorter term oscillations in load to be evened out; future work using a higher time resolution will 

verify this. The baseline values for rSOC parameters are based on trials of Sunfire’s rSOC technology 

[24], [46]. These values give a round-trip efficiency ηrsoc of 0.348. Hydrogen is assumed to be 

compressed to 150 bar for storage and the energy cost for compression is calculated accordingly. 

Battery storage is assumed to be Li-ion technology. DC efficiency is 94%, with further 5% losses 

incurred by power converters in each direction, for total round-trip efficiency of 84.8%. The C-rate 

RBESS  is the reciprocal of the time in hours to charge or discharge the battery system. RBESS is assumed 

never to exceed 2; lower values can allow for cheaper power conversion equipment (see 5.2.6). 

 

5.2.4. Dispatch of hybrid storage 

Here, rather than the control method detailed in [214], we use a simple greedy approach. For every 

half-hour, the net load on the microgrid is calculated. If BESS is installed, the BESS is prioritised to 

absorb as much of the net load as possible, as constrained by its C-rate and state of charge. If the 

microgrid is still unbalanced, and HESS is installed, the HESS will then absorb as much as possible of 

the remaining surplus or deficit. Grid import / export of power addresses any imbalance still 

remaining. 
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5.2.5. Electric vehicles 

The present work extends the work reported in [214] by incorporating electric vehicles (EVs) into the 

simulation. This is approached in a similar way to reference [215], using trip data from the UK 

National Travel Survey [216] to determine when cars are at home, and the energy consumed on trips. 

A sample of 100 cars from the 2017 survey is used, with one car assigned to each house in the 

simulation. The sample is restricted to cars belonging to single-car households in a location classified 

as urban. Furthermore (and unlike in [215]), trip profiles are excluded if they cannot be achieved by 

EVs with 30 kWh batteries charging exclusively at home, on a 7.2 kW charger. In practice, only eight 

of 100 datasets needed to be substituted to satisfy this restriction. The cars in the final sample travel a 

mean weekly distance of 80.5 miles (median 65.5); the number of weekly trips averages 16.9 (median 

15). Energy consumption is assumed to be a constant 3 miles / kWh. 

It is the intention that the cars in the simulation will eventually charge their batteries smartly, in 

response to conditions on the microgrid, and perhaps discharge them to offset the load of the house 

(vehicle-to-home, ‘V2H’) or the microgrid (vehicle-to-grid, ‘V2G’). However, in this present work 

the cars simply plug in to charge upon reaching home, and continue charging until their batteries are 

full. Figure 5.2 shows the contribution to the microgrid’s load that results. The average weekly 

profiles are shown for standard domestic load, and PV generation (3 kWp per house) for comparison 

with the EV load. There is clear potential for the EV load to be moved away from the domestic peak 

load, and synchronised better with the solar generation. This will be explored in future work. 

 

 
Figure 5.2. Impact of electric car charging on the microgrid’s load. 
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5.2.6. Economics 

 

5.2.6.1 CAPEX calculation 

The investment costs for the microgrid are calculated according to the capacities of installed PV, 

rSOC, H2 storage and BESS. Cost assumptions are given in Table 5.2 with references. 

Table 5.2. Installed cost for microgrid components. 

Symbol Unit Description Value range, with sources 

crsoc £/kW 
rSOC system level installed cost, per kW 

capacity in electrolysis mode 

750 – 2000 [35], [37], 

[118] 

cpv £/kWp Installed cost of PV per kWp 1000 – 1750 [203] 

cH2 £/kWhLHV 

Installed cost of hydrogen storage, per 

kWhLHV. (Lower heating value ‘LHV’ of H2 is 

33.32 kWh/kg.) 

10 – 30  [205], [217] 

cBESS,KW £/kW 
Installed cost of BESS per kWh energy 

capacity. 
210 - 336  [218] 

cBESS,KWH £/kWh 
Installed cost of BESS per kW power 

capacity. 
318 – 404  [218] 

 

 

Accordingly, total CAPEX in GBP is given as: 

 

𝑐𝑡𝑜𝑡𝑎𝑙 = 100 ∙ 𝑐𝑝𝑣 ∙ 𝑃𝑝𝑣 + 𝑎𝐻𝐸𝑆𝑆 ∙ ( 𝑐𝑟𝑠𝑜𝑐 ∙ 𝑃𝑆𝑂𝐸𝐶 + 33.32 ∙ 𝑐𝐻2 ∙ 𝑚𝑓𝑢𝑙𝑙) 

+ 𝑎𝐵𝐸𝑆𝑆 ∙ 𝑃𝐵𝐸𝑆𝑆 ∙ (𝑐𝐵𝐸𝑆𝑆,𝐾𝑊𝐻 + 𝑅𝐵𝐸𝑆𝑆 ∙ 𝑐𝐵𝐸𝑆𝑆,𝐾𝑊) 

  

(Eqn. 5.1) 

 

Here, 100 is the number of houses, and 33.32 kWh/kg is the lower heating value of hydrogen. aHESS 

and aBESS are binary variables for the installation of HESS and BESS. 

5.2.6.2 Operational costs 

 

References [105], [217], [219] suggest that annual OPEX for an rSOC of ca. 100 kW would be in the 

low £1000s. In particular, reference [105] suggests $0.03 per kWh generated for a SOFC; to allow for 

operation in both modes, we double this figure, giving ca. £0.048 per kWh generated. For the 70% 

SSR system detailed in the first row of Table 5.5, this would amount to £2150/a. For H2 storage, we 

follow reference [219] in assuming annual OPEX equal to 1% of CAPEX. For the BESS system, we 

assume £8 per kW per annum [218]. Operational costs for PV are not considered. 

 

5.2.6.3 Equipment replacement costs 

 

The lifetime of the rSOC is assumed to be 40 000 operational hours [28]. It should be noted that a 

lifetime of this duration hasn’t yet been demonstrated for rSOC, although the lifetime of SOFC can 



84 

 

 

already exceed this [96]. It is assumed that replacement cost equates to the CAPEX of the rSOC stack, 

which is assumed to be 20% of total rSOC system CAPEX (the cost of the rSOC system is dominated 

by balance of plant costs). Operational hours per year are calculated by the simulation, enabling 

identification of the years where stack replacement will be necessary. The lifetime of the Li-ion 

battery storage is assumed to be 3000 cycles [220], with the replacement costs assumed equal to the 

energy component of the BESS CAPEX. 

 

5.2.6.4 Performance metrics; net present value (NPV) 

 

The self-sufficiency ratio ‘SSR’ of the microgrid is defined to be the proportion of annual energy 

consumed Econs which is not imported from the grid. This is evaluated through running the simulation. 

 

𝑆𝑆𝑅 =  
𝐸𝑐𝑜𝑛𝑠−𝐸𝑔𝑟𝑖𝑑

𝐸𝑐𝑜𝑛𝑠
        

 (Eqn. 5.2) 

SSR gives an indication of the microgrid’s level of grid independence, as well as a crude indication of 

its environmental benefit. The annual savings achieved by the microgrid are assumed equal to the 

avoided costs of imported power:  

 

𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 0.144 ∙ (𝐸𝑐𝑜𝑛𝑠 − 𝐸𝑔𝑟𝑖𝑑)     

 (Eqn. 5.3) 

where £0.144 / kWh is the assumed cost of grid electricity. The simple payback period is calculated as 

the number of years required for the annual savings to offset the initial CAPEX investment: 

 

𝑝𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑐𝑡𝑜𝑡𝑎𝑙

𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
      

 (Eqn. 5.4) 

The payback period for the microgrid gives a rough indication of its economic value but neglects 

ongoing costs and the time value of money. Accordingly, net present value (NPV) is also calculated, 

taking into account CAPEX, OPEX, equipment replacement costs, and annual savings, over a system 

lifetime of 25 years. Inflation of 2% and a discount rate of 12% are assumed. 

 

5.2.7 Optimisation; scenario definitions 

 

Multi-objective optimisation is carried out using the OptQuest optimisation engine [208], with SSR 

and payback period as the two objectives. The decision variables are given in Table 5.3. Binary 

variables determine whether BESS and HESS are to be installed; the five continuous variables 

determine sizing of microgrid components. The optimiser is permitted up to 10000 iterations of the 
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simulation in order to construct a Pareto front for payback period versus SSR. SSR above 50% is set 

as a requirement for all solutions, as the threshold SSR for installation of the HESS is always above 

this, and restricting the width of the Pareto front improves the quality of results. 

Table 5.3. Decision variables for the optimisation of the microgrid design. 

Variable Type Description Lower bound Upper bound 

𝑎𝐻𝐸𝑆𝑆 Binary Installation of HESS 0 1 

𝑎𝐵𝐸𝑆𝑆 Binary Installation of BESS 0 1 

𝑃𝑝𝑣 Continuous Capacity of PV (kWp per house) 0.25 𝑃𝑝𝑣,𝑚𝑎𝑥 

𝑃𝑆𝑂𝐸𝐶 Continuous Capacity of rSOC in electrolysis mode 

(kW) 

10 1000 

𝑚𝑓𝑢𝑙𝑙 Continuous Capacity of H2 storage (kg) 10.7 

(1 m3 @ 150 bar; 

350 kWhLHV) 

10700 

(1000 m3 @ 150 

bar; 350 MWhLHV) 

𝐸𝐵𝐸𝑆𝑆 Continuous Capacity of BESS (kWh) 100 10000 

𝑅𝐵𝐸𝑆𝑆 Continuous C rate of BESS system (h-1) 0.01 2 

 

The optimisation problem has been solved 15 times for different scenarios with varying costs and 

efficiencies, as detailed in Table 5.4. For every scenario, the optimiser designs microgrids with SSR in 

the range 50 – 100%. 

 

Table 5.4. Definition of different scenarios considered. Where cells are blank, the value is as per 

the baseline scenario. 

Scenario Ppv,max crsoc cH2 cBESS,KW cBESS,KWH cpv ηrsoc 

1. Baseline 6.0 2000 15 361 273 1750 34.8 

2. Allow large PV 12.0       

3. BESS cost low    318 210   

4. BESS cost high    404 336   

5. rSOC cost mid  1500      

6. rSOC cost low  750      

7. H2 storage cost high   30     

8. H2 storage cost low   10     

9. rSOC efficiency high       60.0 

10. Scenarios 9 and 6  750     60.0 

11. Scenarios 9, 6 and 8  750 10    60.0 

12. Cheaper PV      1000  

13. Favourable BESS; unfavourable 

HESS 
  30 318 210   

14. Unfavourable BESS; favourable 

HESS 
 750 10 404 336  60.0 

15. All favourable values  750 10 318 210 1000 60.0 
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5.3. Results 

5.3.1. Case study 

The microgrid considered in this work is notionally located in the SE of England, and consists of 

100 houses with rooftop PV, as well as shared BESS and/or HESS. Electrical load data comes from a 

smart-meter trial in London carried out by UK Power Networks and has half-hourly resolution [209]. 

Domestic electricity load excluding EVs is 412 MWh annually, with peak half-hourly load of 103.4 

kW. The addition of EVs as described in Section 5.2.5 adds 150 MWh / a, and increases peak load to 

184.4 kW. Climate data was recorded by the UK Environmental Change Network at Rothamsted 

(near London) and has hourly resolution [28]. Installed PV has a capacity factor of 11.1% after 

allowing for diversity in orientation; so with 3 kW per household (the average installation size in the 

UK) annual generation is 291 MWh. 

Each run of the simulation lasts for one year, beginning 1st May, which is the approximate time of 

year when typical PV systems begin producing a daily energy surplus for this location. Figure 5.3 

compares the shape of the load (excluding EVs) with the solar resource, over one year. 

 

 

Figure 5.3. Contrast of electrical load with PV resource for the SE England location. (Daily resolution over one 

calendar year.) 

 

 

5.3.2. Results of multi-objective optimisation 

 

In all scenarios considered, BESS is installed by the optimiser in order to achieve the minimum SSR 

of 50%, and continues to be installed for all SSR up to the maximum achieved. For HESS, there is a 

higher threshold SSR above which installation of HESS becomes optimal, resulting in a hybrid energy 

storage system. The optimiser does not ever choose to install HESS without BESS. This threshold 

SSR tends to be around 60%, and in fact this value is relatively unchanging across almost all the 

different scenarios explored. Further, some of the variation that is seen is counterintuitive, suggesting 

that it should be regarded as noise. This threshold value is given in Table 5.5 for each of the scenarios. 

The table also gives the details for a microgrid design achieving 70% SSR in each scenario. Figures 

5.4 and 5.5 show the Pareto front of payback time versus SSR for two of the scenarios, along with the 

CAPEX contribution per component. It is worth noting that the Pareto front appears chaotic at the 

highest SSR, but this may be due to shortcomings of the optimiser rather than a real effect. 

The one scenario which does alter the 60% threshold is Scenario 2, in which a larger capacity of 

installed PV is permitted. In this case, energy storage with BESS alone is preferred right up to SSR of 
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80%. This is because significant overcapacity of PV can almost eliminate the seasonal deficit in 

generation. Thus, only the day night cycle, and shorter term weather fluctuations, need to be 

addressed by storage, and battery storage is preferred for these short term cycles. This agrees with our 

previous conclusion in [214]: overcapacity of generation is often cheaper than long term energy 

storage to achieve high SSR.  

 

 

(a) 

 

(b) 

Figure 5.4. Results of multi-objective optimisation for Scenario 1 (‘baseline’). (a) Pareto front 

for payback period against SSR, also showing NPV. (b) Contribution of each component to 

CAPEX cost. 
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(a) 

 

(b) 

Figure 5.5. Results of multi-objective optimisation for Scenario 2 (‘Allow large PV’). (a) Pareto 

front for payback period against SSR, also showing NPV. (b) Contribution of each component to 

CAPEX cost. 

 

 

As will be seen from Figures 5.4 and 5.5, payback period rises and NPV falls as SSR increases. The 

payback time for the 60% SSR system in Scenario 1 (the first system to install HESS) is 28.5 years, 

longer than the expected system lifetime. The lowest payback time for a system with HESS installed 

is 15.9 years for a 58% SSR system under Scenario 15 (the most optimistic scenario). However, NPV 

is still negative (-£300k) for this system once OPEX and equipment replacement are accounted for. 

Indeed, negative NPV is found for all systems with SSR above 50%, even the BESS only systems. On 

this basis it cannot be concluded that the hydrogen storage with rSOC is an economical investment. 

Nonetheless, if high SSR is desired and overcapacity is not possible, it forms part of the cheapest 

possible microgrid design. 

Another point worth highlighting is the size of H2 storage required. For 70% SSR, this tends to be of 

the order 1000 kg (ca. 30 MWh, ca. 100 m3), which is fairly substantial. The volume balloons quickly 

with increasing SSR; for Scenario 1, mfull = 948 kg for 70% SSR, and 2700 kg for 75% SSR. It is also 

worth commenting on the C-rates for the battery storage which tend to indicate discharge times 

between three and eight hours. These C-rates are easily achievable by the batteries and would enable 

smaller scale power electronics to be installed. 
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Table 5.5. Optimisation results for all scenarios. Shown is the threshold SSR above which the 

optimiser chooses to install HESS. Also shown are the details for a system with 70% SSR for each 

scenario (this includes HESS in all but one case) with the calculated NPV and simple payback time. 

Scenario Threshold 

SSR for 

HESS 

installation 

Details for a 70% SSR system 

  𝑃𝑝𝑣  𝐸𝐵𝐸𝑆𝑆  𝑅𝐵𝐸𝑆𝑆  𝑃𝑆𝑂𝐸𝐶  𝑚𝑓𝑢𝑙𝑙  NPV 

(£k) 

Payback 

(years) 

1. Baseline 60.0% 6.00 2001 0.15 116 948 -1904 42.3 

2. Allow large PV 80.2% 9.09 1335 0.18 - - -1543 36.0 

3. BESS cost low 58.2% 6.00 1898 0.13 143 802 -1702 39.0 

4. BESS cost high 58.9% 6.00 1177 0.38 125 1287 -2093 44.3 

5. rSOC cost mid 59.9% 6.00 1309 0.29 140 1040 -1822 40.1 

6. rSOC cost low 62.0% 5.99 1721 0.20 137 860 -1675 38.4 

7. H2 storage cost high 59.3% 5.97 1314 0.21 171 1070 -2510 51.4 

8. H2 storage cost low 59.4% 6.00 1340 0.32 119 1155 -1729 38.6 

9. rSOC efficiency 

high 

68.5% 6.00 1978 0.10 143 287 -1547 36.8 

10. 9 and 6 62.4% 6.00 1238 0.23 125 924 -1571 35.4 

11. 9, 6 and 8 59.2% 5.95 1458 0.13 179 454 -1251 31.6 

12. Cheaper PV 63.2% 6.00 1413 0.14 167 352 -1028 27.6 

13. Favourable BESS; 

unfavourable HESS  

64.7% 5.91 2644 0.20 141 873 -2029 43.5 

14. Unfavourable 

BESS; favourable 

HESS 

60.0% 6.00 2001 0.15 116 948 -1904 42.3 

15. All favourable 

values 

58.2% 5.75 1239 0.23 119 964 -841 23.4 

 

 

5.4. Conclusions and future work 
This work has considered the utility of hydrogen energy storage, using an rSOC, alongside Li-ion 

battery storage, to improve the self-sufficiency of a residential microgrid. Results suggest that such 

microgrids are not economical in terms of NPV. However, if high SSR is desired for greater grid 

autonomy or environmental credentials, the community energy storage becomes a cost optimal 

selection. In particular, hybrid energy storage with BESS + HESS is often the cheapest design once 

SSR above ca. 60% is required. The role of the HESS is then to engage in long duration storage cycles 

which can alleviate the seasonal mismatch between demand and solar generation (see Figure 5.3), 

whilst the battery carries out shorter term cycling with discharge duration invariably below ten hours. 

This threshold SSR is higher if there is an option to install larger PV systems (> 6 kW per house) 

which can start to obviate the winter deficit in generation. 

This work still requires considerable further development. A priority is to improve the control 

strategy of EVs, so that charging is scheduled more intelligently; V2G may also need to be 

considered. These improvements should allow higher SSR perhaps with less community energy 

storage. Additionally, the possibility of distributing the rSOC’s waste heat to supply the houses’ 

thermal load will be investigated [220]. Since heat is generally a cheap commodity, distribution of 

heat is not expected to increase NPV much for a given microgrid design - but it would increase SSR. 

It is also possible that the value of the energy storage may increase if it can perform other 

applications, such as peak shaving, perhaps avoiding the need for distribution grid upgrades, or 

avoiding capacity charges - another topic for future work. Further work should also improve the 

accuracy of the rSOC model by accounting for energy consumption to sustain a ‘hot idle’ state. 
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Finally, it is intended to study more closely the interaction of households trading energy peer-to-peer, 

and the extent to which the energy storage could be financially beneficial to individual households. 
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5.6 Appendix: Further details of EV model 
 

The EV agents in Chapter 5 comprise the following key components: trip schedule, trip statechart, 

battery model and charge schedule. 

The trip schedule is loaded as an AnyLogic Schedule object, which can robustly handle periodicity 

(weekly in this work), as well as details like Daylight Saving Time. Schedules specify the day and 

time of trip departure and arrival, as well as the trip distance and the classification of start and finish 

location. In this work, the trip schedule is viewed as deterministic, although stochastic elements could 

readily be introduced. The trip schedule can be disrupted if the EV battery runs out during a trip, 

causing a delay in the timings while rapid charging occurs. In the present work (chapters 5 – 7) trip 

schedules are constructed by sampling the UK National Travel Survey, as described in Section 5.2.5. 

Locations of cars in the sample over a seven day schedule are shown in Figure 5.7. Note the high 

proportion of time parked ‘at home’ – 78.7% in this sample, comparable to the 73% figure from the 

RAC [221]. 

The trip statechart monitors the status of the vehicle during simulation time (see Figure 5.6). It is 

responsible for controlling rapid charging if needed, and for triggering any other actions that are 

required on arrival or departure. Rapid charging is assumed to take place at 50 kWDC, and ends when 

the battery is full, or when stored energy equals the requirement to finish the current journey, plus 

25%. Note that the cars’ actually geographic location / route is not considered important for this work 

and is omitted. 

The EV battery is a sub-agent of the EV agent. The battery model is almost identical in construction 

to the model described in Section 4.2.4, although the rate of charge is typically limited by the capacity 

of charger connected, rather than by the inherent c-rate of the battery. Equation 4.5 from 4.2.4 can be 

rewritten as: 

𝐸̇𝑏𝑎𝑡𝑡 = 𝜂𝑏𝑎𝑡𝑡 ∙ 𝜂𝐴𝐶𝐷𝐶 ∙ 𝑃𝑐ℎ − 
𝑣𝐸𝑉
𝐹𝐸𝐸𝑉

− 𝛬 ∙ 𝐸𝑏𝑎𝑡𝑡 
[*] 

where 𝐸𝑏𝑎𝑡𝑡 is the energy stored in the EV battery in kWh, 𝑃𝑐ℎ is AC charge power in kW, 𝑣𝐸𝑉 is the 

speed in miles per hour (typically assumed constant for the duration of each trip), 𝐹𝐸𝐸𝑉 is the fuel 

economy of the EV in miles per kWh, and 𝛬 is the self-discharge rate with units h-1. In Chapter 5, fuel 

economy is assumed constant; in Chapter 6 the model is improved by allowing for the effect of 

temperature (see Section 6.2.1). 

Different approaches to charge scheduling are possible. In Chapter 5, a naïve approach is taken 

wherein cars plug in and charge until full as soon as they return home. In chapters 6 and 7, charging is 

scheduled according to the trades agreed in P2P electricity markets. 

EV characteristics in Chapters 5 - 7 are based on the Nissan Leaf [222]. The diversity of behaviour 

across the modelled EV agents thus arises from their different trip schedules, since fuel economies 

and battery characteristics are assumed homogenous. Future work could allow for varying car / 

battery characteristics.  
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Figure 5.6. Main view of EV agent in AnyLogic, showing some of the key components. 

 

 
Figure 5.7. Locations of the cars from the NTS sample, across one week Monday to Sunday. Note 

the high proportion of time parked ‘at home’, suggesting the potential to synchronise some EV 

charging with solar generation. 
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Abstract 

Peer-to-peer (P2P) energy trading enables households to trade electricity with one another, rather than just with their supplier. This can help 

to incentivise the shifting of electrical loads to align with local renewable generation, which leads to decreased dependence on grid 

electricity and can bring financial savings for households. P2P is expected to be particularly suitable to complement embedded PV 

generation and electrical vehicles (EVs), two key technologies for grid decarbonisation. In this work we simulate P2P energy sharing for a 

local microgrid of 50 households with PV and EV ownership at various penetrations. In particular, we consider the merits of P2P in 

combination with uni-directional EV chargers (‘V1G), and with chargers that can discharge EV battery energy to the home (‘V2H’) or the 

grid (‘V2G’); we also consider the use of community energy storage (‘CES’) as an alternative to storage of energy in EV batteries. We 

simulate the interactions of the households with the P2P energy market over one week, for each of three seasons, and evaluate the 

microgrid’s energy independence and the financial savings for households. Results suggest that P2P trading with V1G can effect an increase 

in shared energy, modest improvements to microgrid self-sufficiency, and improvements to household bills. However, the combination of 

P2P with V2H brings advantages substantially greater than either innovation individually. The typical household can save approaching 

£100/a (compared to an average bill of ca. £540 with no P2P), with savings exceeding £200/a in some situations. Importantly, we find that 

the P2P can achieve savings regardless of technology penetration, and furthermore, all types of household can benefit, including households 

that own both PV and EV. Under the market mechanism considered, we find only negligible impact for allowing V2G in addition to V2H. 

Keywords: Peer-to-peer electricity trading; vehicle-to-house V2H; vehicle-to-X V2X; solar PV; microgrid; community energy storage 
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6.1. Introduction 

6.1.1 Outline and key definitions 

 

Two significant aspects of energy decarbonisation that impact the electricity grid at a local level are 

the proliferation of embedded renewable generation (especially PV) and the electrification of 

transport. In the UK there are currently almost a million small scale solar PV installations, still 

leaving immense scope for growth [223]; and whilst electric vehicles (EVs) currently account for 

around 1% of vehicles on UK roads, the government plans to impose a ban on combustion vehicles by 

2030 [224], [225] and it has been suggested that the UK fleet will need to be 55% electric by that date 

[225]. These technologies come with challenges and opportunities. High take-up of EVs will require 

considerable extra electrical energy for charging, and existing distribution grid infrastructure may 

struggle to meet peak charging demand [140]. Meanwhile, solar PV is a fluctuating, non-dispatchable 

resource, and generation is not guaranteed to align well with electrical demand (self-consumption for 

a UK household is typically below 50% annually [141]). Exports of solar power from multiple houses 

simultaneously pose a threat to distribution grids, potentially giving rise to voltage violations and line 

overload [142]. 

Clearly, PV and EVs offer a potential synergy, with EV batteries absorbing surplus power from 

nearby PV installations. However, the conventional energy system, wherein households can only trade 

power with their electricity supplier, provides no incentive for this (unless PV and EV are behind the 
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same meter) [8], [226], [227]. The formation of local energy communities, with energy traded 

between households (as for instance in [8], [174]) could help to address this. An EV using a 

neighbour’s surplus energy to charge would need to pay a price above the supplier’s feed-in tariff but 

below the retail electricity price; both parties to the transaction would then benefit. We term such an 

exchange of energy a peer-to-peer (P2P) trade. As well as bringing financial savings, communities 

with P2P trading can achieve environmental benefits and reduce stress on the distribution grid [8], 

[147]. 

‘Smart’ scheduling of EV charging (for instance, to absorb renewable generation as described above) 

is generally termed V1G, denoting a one-way flow of power from grid to vehicle [228]. If a two-way 

charger is available, the vehicle can also discharge power to supply its own household (vehicle-to-

home, V2H) or to export (vehicle-to-grid, V2G); the EV thereby becomes an energy storage device, 

shifting renewable energy to the time when it is required [228].  

This work considers the benefits of P2P in combination with PV and V1G/V2H/V2G, in a local 

community of residential households. We will refer to this community as a ‘microgrid’, the term 

commonly applied to a local group of electrical loads and generation capable of a degree of autonomy 

from the main grid. We combine a realistic model for EV usage with a simulation of an iteratively 

settled P2P market. We compare the relative merits of V1G, V2H and V2G, evaluating performance 

in terms of the savings achieved by households, as well as the increased energy autonomy of the 

microgrid as a whole. Additionally, we consider the combination of the P2P market with community 

energy storage (CES) as an alternative to the use of EV batteries for energy storage. 

The remainder of this section will discuss existing work on P2P energy trading, and V2H/V2G. 

6.1.2 P2P energy markets 

In traditional energy systems, households are purely consumers of energy, which is bought 

exclusively from a large-scale supplier; thus P2P energy trading represents a disruptive shake-up of 

this paradigm. Whilst in its strictest sense, P2P refers to trades of energy that are negotiated bilaterally 

between parties, here we use the term in its broader sense to denote any energy tariff or market that 

can incentivise and remunerate the sharing of electricity between households, a definition consistent 

with [8], [174]. Interest in P2P is growing, with companies including Centrica and EDF carrying out 

pilot schemes in recent years [143], [144]; a number of platforms for the P2P exchange of energy 

have also been designed, including among others Piclo and Vandebron [229]. 

In terms of the actual market mechanism through which P2P exchange of power is agreed and paid 

for, the literature covers a number of different possibilities. These include centralised control; 

centrally issued price signals; auctions and iterative markets – where these categories are not 

exhaustive and may also overlap. Under centralised control, optimisation is carried out centrally to 

determine which microgrid participants should trade energy, and how all the microgrid’s flexible 

devices are to be scheduled. For instance, in [153] central optimisation is used to determine P2P 

energy trades between EVs. Centralised control raises concerns about participants’ privacy and 

autonomy, and may also be computationally intensive unless the number of devices is small. Several 

researchers [148]–[151] pose a centralised optimisation problem, before going on to discuss 

distributed optimisation methods whereby participants need not surrender as much control or data. 

Another approach is for microgrid participants to retain full autonomy and plan their behaviour in 

response to centrally issued price signals. The problem then is for the operator to set the best prices 

to incentivise desirable behaviour; this problem may be interpreted as a Stackelberg game as in [155], 

[156], whilst in [154] a reinforcement learning approach is used. A natural approach to P2P markets is 

through the use of auctions – which may be designed to emulate traditional energy markets, as in 
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[157]. Double auctions, wherein buyers of energy submit ‘ask’ prices and sellers submit ‘bid’ prices 

are typically of most interest. In an auction market the chief problem is for individual participants to 

set their strategies intelligently; the literature includes approaches such as adaptive learning [159], the 

adaptive aggressive strategy [160], ‘eyes on best price’ [158] and ‘zero intelligence’ [158]. Literature 

covering P2P electricity auctions with flexible loads includes [147], [161]. In iteratively settled 

markets, feedback from each round of bidding is used by participants to update their new bids, and 

the market is settled if and when it converges, otherwise requiring an exit mechanism of some kind. 

Iterative market mechanisms of various kinds are employed in [8], [148], [158], [173], [174].  

Liu et al [174] contrived an iterative pricing mechanism for an energy-sharing zone consisting of 

buildings with PV generation and some adjustable loads. The internal tariffs for import and export of 

power were functions of the supply-demand ratio (SDR), i.e. the total of all exported power over all 

buildings, divided by the total of imported power. As such, this pricing mechanism will henceforth be 

referred to as the SDR tariff; it is the mechanism adopted in the present work. When SDR > 1, prices 

are low (equal to the grid feed-in tariff), incentivising demand to be increased or supply reduced. For 

SDR < 1, prices increase towards the cost of grid power, incentivising demand to be reduced or 

supply increased. Prices are designed so that the operator operates a balanced budget – i.e. all 

payments effectively flow between households and the utility grid, or between different households, 

with the operator not profiting. The final prices and load schedules are decided iteratively; in each 

round, participants optimise their load schedule relative to the most recently issued internal prices. 

The process repeats until convergence is achieved: viz. prices do not significantly change between 

iterations. In [174], this market mechanism was implemented in a case study with a number of 

residential and commercial/office buildings, and was found to achieve modest technical and economic 

benefits. Zhou et al [8] also consider the SDR tariff. This work was focused on (i) possible approaches 

to improving the convergence of the iterative market mechanism; and (ii) the comparison of the SDR 

tariff to alternatives (mid-market rate and bill-sharing). Simulations involved 20 households equipped 

with PV and flexible loads, with one day simulated at a time. Flexible loads considered were water 

heaters and washing / drying machines in addition to EVs. The methods to improve convergence were 

found to be effective, and the SDR pricing tariff was considered to outperform the alternative pricing 

formulas. 

In this work the SDR tariff with iterative bidding is adopted. Reasoning for this choice is as follows: 

(i) The approach is amenable to use with energy storage. By contrast, strategies for energy 

storage in auction markets can be complex, and the auctioneer may need to process 

complex bids (as also in large scale power markets [230]). 

(ii) Fairness: all households are offered the same prices at each timeslot.1 

(iii) Autonomy: except for the constraints imposed by the convergence aids, houses are free to 

optimise their schedules in their own interests. 

(iv) Confidentiality: only the planned net power of a household needs to be shared with the 

market, and no other details. 

6.1.3 EVs in P2P power markets 

Existing studies on P2P markets are often preoccupied with demonstrating the feasibility of a 

particular market mechanism; they tend to confine themselves to small scale, ‘proof-of-concept’ case 

studies. These may involve various different technologies, as shown in Table 6.1. The use of flexible 

load (either in the abstract, or pertaining to appliances like washers/dryers) in case studies is more 

 
1 This might be considered a limited definition of fairness; some further discussion of the distribution of benefits 

is found in Section 6.3.2. 
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common than either EVs or energy storage. Kim et al [173] performed a case study with eight 

households, with a mixture of EVs of three types – capable of V2H, V2G, or V1G only. PV 

generation was not included. El-Baz et al [147] carried out a case study for their double auction 

model, wherein ten households all possess PV, an EV and a heat pump; household savings up to 23% 

were achieved. Zhang et al [161] carried out a study where 10 PV systems were matched with 100 

flexible loads including EVs. The emphasis of this work was the use of flexibility to address 

inaccuracy in PV forecasting; it was found that 78% of forecasting error was able to be absorbed 

locally in the case study. V2H/V2G were not considered. Alvaro-Hermana et al [153] considered the 

P2P exchange of power between EVs in Belgium, employing a detailed data-driven model for EV 

power consumption and availability. For those EVs requiring charging during the daily travel 

schedule, costs were reduced by 71%. Renewable generation was not modelled: the motivation to 

trade relied on a time-variable grid tariff. Finally, Zhou et al [8], as already noted, include EVs in their 

work comparing the SDR tariff to alternatives. This work is more far-reaching in its consideration of 

EVs than previous references; in particular, it includes sensitivity analysis of EV and PV technology 

penetration in the community of 20 households. This work does not, however, discuss possible 

household savings in absolute terms. Also, although V2H/V2G are available to the EVs in the model, 

the paper does not discuss the value of these options versus V1G. 

Table 6.1. Aspects included in P2P studies from the literature. N.B. This 

signifies whether such aspects have been used in an actual case study, not 

whether the P2P system could theoretically accommodate them. 

Reference(s) Aspects modelled 

 P2P / 

local 

energy 

market 

Flexible 

load 

PV Stationary 

energy 

storage 

EV V2H/V2G 

[148], [154]–

[156] 

✓ ✓ - - - - 

[159] ✓ - - ✓ - - 

[153] ✓ - - - ✓ ✓ 

[173] ✓ ✓ - - ✓ ✓ 

[231]  ✓ ✓ ✓ ✓ - - 

[166], [232] ✓ - ✓ ✓ - - 

[149], [233] ✓ ✓ ✓ - - - 

[158] ✓ - ✓ - - - 

[161] ✓ ✓ ✓ - ✓ - 

[147] ✓ ✓ ✓ ✓ ✓ - 

[8] ✓ ✓ ✓ - ✓ ✓ 

 
 

6.1.4 Contribution of this work 

The aim of this work is specifically to consider the possible advantages of a P2P energy market to 

complement PV generation and EVs, in the setting of a community of households forming a grid-

connected microgrid. For this purpose, we adopt the SDR tariff introduced in [174]. We are interested 

in quantifying the possible real-world financial benefits for households, as well as the impact on the 

microgrid’s overall energy autonomy. Additionally, since community energy storage (CES) has been 
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proposed in the literature as an interesting alternative to household level energy storage [234], [235], 

we introduce shared CES as an alternative / complementary technology, and compare this to the use 

of the EV batteries for energy storage. 

This paper’s contributions can be summarised as follows: 

• Comparison of the impact of V1G, V2H and V2G operating within a P2P energy sharing 

market, which to the authors’ knowledge has not been addressed before. 

• Estimation of annual savings for households (rarely covered by existing work), and 

comparison between households of different categories. 

• Adaption of the SDR market mechanism to work in tandem with community energy storage 

(CES); comparison of CES to V2H / V2G. 

 

 

 

 

  



98 

 

 

6.2. Method 

6.2.1 Model overview 

In this work we model an energy community consisting of a number of households. These are 

assumed to be proximately located and to share the same distribution transformer, so as to form a 

grid-connected microgrid. The houses may each own an EV and / or a PV system. We consider 

different combinations of a P2P tariff with the options of V1G, V2H and V2G, and compare these to a 

baseline with the standard grid tariff. We also consider the use of the P2P tariff in tandem with CES. 

This forms an interesting comparison with the use of EV batteries for energy storage: the latter are 

dispersed, sometimes unavailable, and under the direct control of a subset of individual households; 

whereas the former is always available, and interacts with all the households via the market. Figure 

6.1 gives a high-level schematic of the model. 

The various sub-models will now be discussed. 

 

 

Figure 6.1. Overall schematic of model. All model aspects are implemented in AnyLogic [48], except 

optimisers which use Pyomo [236], [237] with the GLPK solver [238]. Key to note is the exchange of 

information between the coordinator and the households: the coordinator sends prices and receives 

energy schedules back.2 

 
2 The ‘coordinator’ is regarded as running all centralised activities of the microgrid, including CES if any. In the simplest 

case the coordinator is simply software which mediates the P2P market. It is not specified in this work which real life parties 

would take on these activities; it could be the energy supplier, the DNO or some kind of energy cooperative.  
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6.2.1.1 Solar model 

The solar model utilised here is reported in [214], and uses measured data for global horizontal 

irradiance to predict the radiation incident on an inclined plane. A constant efficiency of 15.4% is then 

applied to calculate generation; this efficiency is calibrated so that a south-facing system with 40° tilt, 

located in the London area, would have capacity factor of 11.8% [202].    

6.2.1.2 EV model 

EVs in the model follow week-long travel schedules recorded in the UK National Travel Survey, 

2017 – 2019 [216]. The survey includes 27,516 vehicles for these years. Here, we restrict to cars 

belonging to single-car households in an urban location, of which there are 8,948. Further, we restrict 

to vehicle schedules that can be completed by EVs with a 30 kWh battery and 7.2 kW charger, 

assuming a constant fuel economy of 3.75 miles/kWh: this is 7,769 vehicles. The final sample of 

vehicles is then taken as a stratified sample by number of trips in the week (vehicles with data 

inconsistencies are excluded). It is worth noting that around 18% of vehicles make no trips at all over 

the course of a week. 

Table 6.2. Details of vehicle sample. 

Sample Number 

of 

vehicles 

Distance driven 

(miles) 

Trips taken 

  Mean Median Mean Median 

Urban cars 21,189 99.7 63.7 12.4 12 

Urban cars, one car 

household 

8,948 94.7 61.5 13.3 12 

Urban cars; one car 

household; viable 

for 30 kWh EV 

battery 

7,769 84.0 54 12.2 11 

Final sample 50 78.1 53.3 12.4 12 

      

 

The 30 kWh Nissan Leaf is taken as the template for the modelled EVs. It is assumed that actual 

available battery capacity is 28.5 kWh, and that average fuel economy is 3.75 miles / kWh [222], 

[239]. This fuel economy is then adjusted according to the temperature, as shown in Figure 6.2. 
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Figure 6.2. Adjustment to EV fuel economy according to outdoor temperature [239]. 

 

We use the same trip schedules regardless of the time of year, as the seasonal variation of weekly 

mileage / number of trips in the source data is negligible. The significant seasonal effect comes via the 

impact of temperature on fuel economy, rather than vehicle usage. 

V2X efficiency 

In this work we allow for energy losses of 5% for power conversion between AC and DC, and for 6% 

losses from the battery itself [192], [193]. Thus, the V2G storage efficiency is 84.9%. Although [240], 

[241] suggest that V2G round-trip efficiency may only be 50 – 70%, experimental work published 

more recently by Schram et al [242] suggests a range of 79.2 to 87% is realistic. Schram et al also 

found that the effects of state-of-charge or temperature on charging efficiency are relatively small, so 

these are neglected here. 

6.2.2 Microgrid internal pricing and iterative bidding process 

For this work, we adapt the P2P mechanism laid out in Liu et al [174]. This is not a P2P mechanism in 

the strictest sense (trades that are negotiated bilaterally) but in the broader sense that it incentivises 

and remunerates power sharing between peers. Houses receive prices from the microgrid coordinator 

and plan their battery schedules accordingly. The new energy schedules are submitted to the 

microgrid operator, and new prices are calculated. The process iterates until convergence is achieved 

(or the maximum number of iterations is reached). The microgrid operator operates a balanced 

budget. Details of the process will now be given. 

6.2.2.1 Pricing formula 

 

The prices for household import and export of power are set according to the SDR formula [174]. 

Eqns. 6.1 – 6.5 give the details. If 𝐸ℎ,𝑡 is the net energy flow for household h during time period i, 

then the total of all household energy surpluses is: 

𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖 = ∑ 𝑚𝑎𝑥(0, 𝐸ℎ,𝑖)ℎ𝜖𝐻    (Eqn. 6.1) 

whereas the total of energy deficits is: 

𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖 =∑𝑚𝑎𝑥(0,−𝐸ℎ,𝑖)

ℎ𝜖𝐻

 (Eqn. 6.2) 
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The supply demand ratio may then be defined: 

𝑆𝐷𝑅𝑖 =
𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖

𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖
  (Eqn. 6.3) 

The prices that will be applied to the households’ bills are then calculated in terms of the SDR, and 

fixed costs 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 in £/kWh [174]: 

𝜋𝑒𝑥𝑝𝑜𝑟𝑡(𝑆𝐷𝑅𝑖) = {

𝜋ℎ𝑖𝑔ℎ∙𝜋𝑙𝑜𝑤

(𝜋ℎ𝑖𝑔ℎ−𝜋𝑙𝑜𝑤)∙𝑆𝐷𝑅+𝜋𝑙𝑜𝑤
     , 𝑆𝐷𝑅 < 1

𝜋𝑙𝑜𝑤  ,      𝑆𝐷𝑅 ≥ 1
     

(Eqn. 6.4) 

𝜋𝑖𝑚𝑝𝑜𝑟𝑡(𝑆𝐷𝑅𝑖) =  {
𝑆𝐷𝑅 ∙ 𝜋𝑒𝑥𝑝𝑜𝑟𝑡 + (1 − 𝑆𝐷𝑅) ∙ 𝜋ℎ𝑖𝑔ℎ      ,   𝑆𝐷𝑅 < 1

𝜋𝑙𝑜𝑤      𝑆𝐷𝑅 ≥ 1
   

(Eqn. 6.5) 

In general, 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 are respectively equal to the retail price and the feed-in tariff, that is, 

𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 and 𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝; however, they may take different values when CES is used, as detailed 

below. Note that, as SDR rises to 1, import and export prices fall towards 𝜋𝑙𝑜𝑤, whereas they rise 

towards 𝜋ℎ𝑖𝑔ℎ when SDR approaches 0. 

 

Figure 6.3. Internal microgrid prices as a function of SDR. 

 

6.2.2.2 Iterative bidding process 

The P2P market in this work is for periods of one day at half hour resolution. Days run from 5.30am, 

since very few cars have trips earlier than this; this time can be regarded as the ‘beginning of the EV 

day’. k is used to index the iterations of the bidding process, whereas i is used to index the day’s 48 

time periods. Thus, 𝐸ℎ,𝑖
𝑘  is the signed net energy production of house h for time interval i, as 

scheduled at iteration k of the market mechanism (where a positive sign indicates power export). 

𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
𝑘  is the SDR corresponding to the prices issued to households for bidding round k. 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖

𝑘  

is the SDR resulting from the re-optimisation of household schedules at round k. 
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For each household, 𝐸ℎ,𝑖
0  is initialised according to the inelastic demand 𝐸𝑙𝑜𝑎𝑑,𝑖 and generation 𝐸𝑃𝑉,𝑖, 

i.e. 

𝐸ℎ,𝑖
0   =  𝜂𝑖𝑛𝑣 ∙ 𝐸𝑃𝑉,𝑖 − 𝐸𝑙𝑜𝑎𝑑,𝑖 (Eqn. 6.6) 

 

(𝜂𝑖𝑛𝑣 represents the efficiency of the household’s inverter.) From this, 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
1  can be calculated, 

and hence prices 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖
1 , 𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖

1 . For each subsequent iteration, k ≥ 1, each household with an EV 

optimises its EV battery schedule in response to the latest prices {𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖
𝑘 , 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖

𝑘 }. The 

optimisation model employed by households uses MILP and is detailed in Section 6.2.5. The new 

values of 𝐸ℎ,𝑖
𝑘  are then used to calculate the resulting supply demand ratio 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖

𝑘 . 

For the next round,  𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
𝑘+1  is calculated as 

𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
𝑘+1 = 0.5 ∙ 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖

𝑘 +  0.5 ∙ 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖
𝑘                  (∀𝑘 ≥ 1)  (Eqn. 6.7) 

 

An alternative would be to set 𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
𝑘+1 = 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖

𝑘  as in [174] but we find that the approach given 

in Eqn. (6.7) can achieve better convergence. New prices are then calculated according to the SDR 

and the iteration continues. To improve convergence, we impose a maximum adjustment ∆𝐸𝑚𝑎𝑥 to 

the net household energy flow at each time interval; this applies from the second iteration onward, and 

the value of ∆𝐸𝑚𝑎𝑥 is reduced in subsequent rounds: 

|𝐸ℎ,𝑖
𝑘 − 𝐸ℎ,𝑖

𝑘−1| ≤ ∆𝐸𝑚𝑎𝑥,𝑘 ≔ {
0.5 kWh     ,     2 ≤ k < 6

    0.1 kWh     ,     6 ≤ k < 12  
0.05 kWh     ,     12 ≤ k

 
(Eqn. 6.8) 
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6.2.2.3 Convergence criteria 

Satisfactory convergence is considered to be achieved at round 𝑘̂ if the following hold: 

1. SDR has converged to a fixed point so that values before and after the round of optimisations 

are close: 

 

|𝑆𝐷𝑅𝑃𝑅𝐸,𝑖
𝑘̂ − 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖

𝑘̂ | < 0.02 (Eqn. 6.9) 

        

2. No household has incremented its energy flow by the maximum permitted amount, and in the 

same direction, for two consecutive steps. This can be expressed as: 

(𝐸ℎ,𝑖
𝑘̂ − 𝐸ℎ,𝑖

𝑘̂−1) (𝐸ℎ,𝑖
𝑘̂−1 − 𝐸ℎ,𝑖

𝑘̂−2) < 0.052,       ∀ℎ, 𝑖  (Eqn. 6.10) 

   

When convergence is achieved, households are committed to the energy bids submitted at the last 

iteration. The final prices will be calculated according to 𝑆𝐷𝑅𝑃𝑂𝑆𝑇,𝑖
𝑘̂ . If convergence has not been 

achieved after 25 iterations, the prices and schedules for the 25th iteration are implemented.  

 

6.2.2.4 Adaption of process for community energy storage 

When CES is present, it is scheduled by the microgrid operator to benefit the whole microgrid as a 

collective. The iterative bidding process is adapted to incorporate CES as follows. At each iteration, 

dispatch of the CES is optimized immediately after households submit their own newly optimised 

schedules. The objective function for minimisation is the total cost of energy exchanged with the grid, 

plus a penalty term to encourage peak shaving: 

∑{−𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝 ∙ 𝑚𝑎𝑥 (𝐸𝐶𝐸𝑆,𝑖 + ∑𝐸ℎ,𝑖
ℎ

, 0) + 𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 ∙ 𝑚𝑎𝑥 (−𝐸𝐶𝐸𝑆,𝑖 − ∑𝐸ℎ,𝑖
ℎ

, 0)}

𝑖

 

+ 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∙ 𝑚𝑎𝑥𝑖 (2 |𝐸𝐶𝐸𝑆,𝑖 + ∑𝐸ℎ,𝑖
ℎ

|) 

 

 

 

 

(Eqn. 6.11) 

where 𝐸𝐶𝐸𝑆,𝑖 is the net energy from the CES at time interval i (with positive sign corresponding to 

energy generation) and 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is a nominal cost per kW for the peak usage of the grid connection 

(N.B. this does not actually form part of the retail tariff).  

The contribution of CES is excluded from the calculation of SDR as specified in Eqn. 6.3. The 

discharge of CES does not make energy cheaper to buy for households at the specific time it occurs 

(conversely, when the CES charges, the households do not get an increased export tariff at that 

specific time). Instead, the value gained by use of the CES is distributed to households throughout the 

day, by adjusting the value of 𝜋ℎ𝑖𝑔ℎ and 𝜋𝑙𝑜𝑤 in Eqns. 6.4 and 6.5: 

𝜋ℎ𝑖𝑔ℎ = 𝜋𝑔𝑟𝑖𝑑,𝑖𝑚𝑝 −  𝜆 

𝜋𝑙𝑜𝑤 = 𝜋𝑔𝑟𝑖𝑑,𝑒𝑥𝑝 +  𝜆 

 

 

(Eqn. 6.12) 

The value of 𝜆 is chosen to ensure that the microgrid operator has a balanced budget – i.e. net cash 

flow of zero for the day. Prices for the next bidding iteration are then calculated as per Eqns. 6.12, 6.4 
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and 6.5. This approach ensures that the dispatch of CES is not detrimental to the convergence of the 

bidding process. 

6.2.3 Case study 

We consider a grid-connected microgrid consisting of 50 households, notionally located in the south-

east of England. The number of households is intentionally larger than in most previous literature; this 

is to help ensure that the model captures the diversity between demand profiles and vehicle schedules 

for different households, since such diversity is a motivating factor for P2P. These households are 

assumed to share a single distribution transformer, and may each have an EV, a 3 kW PV installation, 

or both. 3 kW is the average capacity for small-scale solar installations in the UK [223]. The houses’ 

basic electrical load comes from half-hourly measured data recorded by UK Power Networks in 2013 

[209]. Measured irradiance data used for the PV model was recorded at Rothamsted in 2013, by UK 

Environmental Change Network [243]. PV systems are assumed to be split roughly evenly between 

south-facing, east-facing and west-facing systems; tilt angle of 40° is assumed in each case. The retail 

price of electricity is assumed to be £0.15/kWh and the feed-in tariff £0.05/kWh. Sizes of CES 

considered are 100 kWh, corresponding to ca. five hours of storage with respect to the load, and 500 

kWh, corresponding to roughly a day of storage. 

6.2.3.1 Representative climate weeks 

We simulate the microgrid over one week for each of three seasons, with low, medium and high 

irradiance. Thus, 21 days are simulated overall (more than in most extant work), enabling estimation 

of annual performance. Details of the representative weeks are given in Table 6.3. Estimation of 

annual household savings is done by assuming 52 weeks to a year, and giving double weighting to the 

Autumn week. This weighting corresponds to annual insolation of 982 kWh / m2, which is reasonable 

given that insolation for Southern England is typically 950 – 1100 kWh / m2 / a (equivalently, 108 - 

126 W/m2) [244]. 

     

Table 6.3. Representative weeks for three seasons. 

Season Dates Average 

irradiance (W/m2)

  

Load excluding 

EVs 

(kWh/house/day) 

Weighting 

Winter 23rd – 30th Nov 2013 26.3 13.7 0.25 

Autumn 22nd – 29th Sept 2013 97.7 10.0 0.5 

Summer 4th – 11th June 2013 226.7 10.0 0.25 
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6.2.3.2 Systems and scenarios 

We compare seven different microgrid setups, or ‘systems’; these are shown in Table 6.4. G_V1G is 

the baseline system, whereby households are billed according to the grid tariff. EVs cannot engage in 

V2H or V2G; however, households with an EV and PV can optimise EV charging against their own 

generation. Subsequent systems allow different combinations of tariff with V2H or V2G. Note that all 

EV households are assumed to have the same capability regarding V2H / V2G. In the final two 

systems, CES sized at respectively 100 kWh (ca. five hours of storage) and 500 kWh (ca. one day of 

storage) is used for energy storage, but there is no V2H or V2G.  

Table 6.4. Microgrid systems. 

System name Description 

G_V1G Grid tariff; V1G. 

G_V2H Grid tariff; V2H. 

P2P_V1G P2P tariff; V1G. 

P2P_V2H P2P tariff; V2H. 

P2P_V2G P2P tariff; V2G. 

P2P_CES_100 P2P tariff; V1G, community energy storage 100 kWh 

P2P_CES_500 P2P tariff; V1G, community energy storage 500 kWh 

 

We consider penetrations of EV and PV ownership of 10%, 20%, 40%, 60%, 80% and 90%, so that 

there are 36 penetration scenarios overall. We do not consider 0% or 100% penetration, since it is 

more interesting to observe the performance of households that are in a minority, rather than 

completely eliminate a type of household. For some of the analysis in Section 6.3, we also group 

aggregate scenarios into four quadrants Q1 – Q4; see Figure 6.4. 

Penetration scenarios assume that EV and PV ownership are statistically independent. Thus, for 

instance, if EV and PV penetration are respectively 60% and 20%, then 12% of houses will have both 

technologies. 

 
Figure 6.4. Shows the 36 technology penetration scenarios. These are also grouped into four 

quadrants Q1 – Q4. 

 

6.2.4 Performance metrics 

Self-sufficiency ratio (SSR) is defined as the proportion of load which is procured locally within the 

microgrid, i.e. not procured from grid imports. As such this provides a measure of the microgrid’s 

energy independence, and a rough indication of emissions curtailment: 
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𝑆𝑆𝑅 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 − 𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
 

(Eqn. 6.13) 

 

Here, ‘total energy consumed’ includes energy charged to cars, as well as energy required for the 

basic household load. 

Energy balance index (EBI) is a measure introduced in [8]. Like SSR, it is a measure of grid 

independence, but penalises exports to the grid as well as imports: 

𝑆𝑆𝑅 = 1 − 
𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 + 𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑒𝑥𝑝𝑜𝑟𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 + 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
 

(Eqn. 6.14) 

 

We also consider the total energy shared between households: 

𝑡𝑜𝑡𝑎𝑙 𝑠ℎ𝑎𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 =∑𝑚𝑖𝑛(𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠,𝑖, 𝐸𝑑𝑒𝑓𝑖𝑐𝑖𝑡,𝑖)

𝑖

 
  (Eqn. 6.15) 

We also consider the maximum power flow through the transformer at the microgrid’s grid coupling 

in either direction. The grid connection is assumed to balance the microgrid’s net energy demand, 

whenever sharing energy / CES cannot wholly do so. 

6.2.5 Optimisation of a household’s EV dispatch 

 

The optimisation model employed by households for scheduling of EV batteries is based on the 

‘BASOPRA’ model reported in [190]. The model has been adapted to represent an EV battery by 

introducing parameters to represent battery availability and battery discharge to the EV. Unlike in 

[190], the battery may be permitted to export power to the grid. Additional constraints can also 

impose a minimum state-of-charge for the battery at the end of the optimisation time frame (one day), 

and a minimum state-of-charge at which V2X can take place. A variable is also introduced to allow 

rapid charge of EV batteries while the car is away from home. This energy is priced at £0.30/kWh 

[245], [246]. The availability of rapid charge ensures that individual optimisations are always feasible, 

although the high cost of this energy means that use of rapid charging will always be as minimal as 

possible. Optimisation is conducted using the GLPK solver. 
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Table 6.5. Nomenclature for EV battery optimisation 

Description Symbol Unit Set, or default value 

Optimisation parameters    

Time parameters    

Time instant t - 𝑇 = {0,1,…48} 

Time step i - 𝐼 =  {1,2,…48} 

Length of time step dt hours 0.5 

Settings    

Permit EV battery discharge (V2X) 𝛣𝑉2𝑋 - {0, 1} 

Permit household power export 𝛣𝑒𝑥𝑝 - {0, 1} 

Valuation of final energy stored 𝜋𝑓𝑖𝑛𝑎𝑙 £ / kWh 0.06 

Price for rapid charge during trip 𝜋𝑟𝑎𝑝𝑖𝑑,𝑖 £ / kWh 0.30 

Capacity tariff 𝜋𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 £ / kW 0 

Battery and inverter    

Battery nominal capacity 𝐶𝑏𝑎𝑡𝑡
𝑛𝑜𝑚 kWh 30 

Battery DC efficiency 𝜂𝑏𝑎𝑡𝑡 - 0.94 

Battery initial energy stored 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛𝑖𝑡 kWh [0,∞) 

Minimum final energy stored 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑓𝑖𝑛𝑎𝑙 kWh [0,∞) 

Minimum battery energy for V2X 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑉2𝑋 kWh [0,∞) 

Battery maximum charge power 𝑃𝑚𝑎𝑥−𝑐ℎ𝑎𝑟 kW 7.2 

Battery maximum discharge power 𝑃𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ kW 7.2 

Battery maximum state of charge 𝑆𝑂𝐶𝑚𝑎𝑥 - 0.95 

Batter minimum state of charge 𝑆𝑂𝐶𝑚𝑖𝑛 - 0.05 

Inverter efficiency 𝜂𝑖𝑛𝑣 - 0.95 

Inverter power 𝑃𝑖𝑛𝑣 kW 10 

Time series inputs    

Price for household power import 𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖 £ / kWh [0,∞)|𝐼| 

Price for household power export 𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖 £ / kWh [0,∞)|𝐼| 

Household load 𝐸𝑙𝑜𝑎𝑑,𝑖 kWh [0,∞)|𝐼| 

PV generation 𝐸𝑃𝑉,𝑖 kWh [0,∞)|𝐼| 

Energy required for driving 𝐸𝑑𝑟𝑖𝑣𝑒,𝑖 kWh [0,∞)|𝐼| 

Availability of EV battery 𝛼𝑖 - [0, 1]|𝐼| 

Optimisation decision variables    

Energy stored in battery 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡 kWh [0,∞)|𝑇| 

DC kWh for battery charge 𝐸𝑐ℎ𝑎𝑟,𝑖 kWh [0,∞)|𝐼| 

DC kWh from battery discharge 𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 kWh [0,∞)|𝐼| 

Binary variable for battery charge 𝛣𝑐ℎ𝑎𝑟,𝑖 - {0, 1}|𝐼| 

Binary variable for battery discharge 𝛣𝑑𝑖𝑠,𝑖 - {0, 1}|𝐼| 

Net AC energy for inverter 𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 kWh ℝ|𝐼| 

Net energy flow for household 𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 kWh ℝ|𝐼| 

Energy from rapid charger 𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 kWh [0,∞)|𝐼| 

Net cashflow 𝐶𝐹𝑖 £ ℝ|𝐼| 

Max powerflow 𝑃ℎ𝑜𝑢𝑠𝑒,𝑚𝑎𝑥 kW [0,∞) 
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𝛣𝑐ℎ𝑎𝑟,𝑖 and 𝛣𝑑𝑖𝑠,𝑖 are initialised to random values before solving. This encourages households to find 

different solutions, aiding convergence of prices. 

6.2.5.1 Optimisation Constraints 

Constraints on EV battery 

Eqns. 6.16 to 6.19, below, describe the stored energy in the EV battery 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖, including the initial 

and final values. 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,0 = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_𝑖𝑛𝑖𝑡  (Eqn. 6.16) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖 = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖−1 + 𝜂𝑏𝑎𝑡𝑡 ∙ 𝐸𝑐ℎ𝑎𝑟,𝑖 − 𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 − 𝐸𝑑𝑟𝑖𝑣𝑒,𝑖 + 𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 , 𝑖 > 0  (Eqn. 6.17) 

𝑆𝑂𝐶𝑚𝑖𝑛 ∙ 𝐶𝑏𝑎𝑡𝑡
𝑛𝑜𝑚  ≤  𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 ∙ 𝐶𝑏𝑎𝑡𝑡

𝑛𝑜𝑚    (Eqn. 6.18) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,48 ≥ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑓𝑖𝑛𝑎𝑙  (Eqn. 6.19) 

Eqns. 6.20 and 6.21 impose the availability of the EV battery, the maximum charge/discharge power; 

and the binary on/off state for charge/discharge. Eqn. 6.22 ensures that charge and discharge are not 

simultaneous. 

𝐸𝑐ℎ𝑎𝑟,𝑖 ≤ 𝛼𝑖 ∙ 𝑃𝑚𝑎𝑥−𝑐ℎ𝑎𝑟 ∙ 𝛣𝑐ℎ𝑎𝑟,𝑖 ∙ 𝑑𝑡   (Eqn. 6.20) 

𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤ 𝛼𝑖 ∙ 𝑃𝑚𝑎𝑥−𝑑𝑖𝑠𝑐ℎ ∙ 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖 ∙ 𝑑𝑡   (Eqn. 6.21) 

𝛣𝑐ℎ𝑎𝑟,𝑖 + 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖  ≤ 1  (Eqn. 6.22) 

 

     

Eqn. 6.23 prevents discharge of the battery if V2X is not permitted; Eqn. 6.24 imposes the minimum 

battery state-of-charge for V2X. Eqn. 6.25 ensures that rapid charging only occurs while the vehicle is 

away from home. 

𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤ 𝛣𝑉2𝑋 ∙ 10
6  (Eqn. 6.23) 

𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 ≤ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑖−1 − 𝐸𝑠𝑡𝑜𝑟𝑒𝑑_min_𝑉2𝑋 ∙ 𝛣𝑑𝑖𝑠𝑐ℎ,𝑖  (Eqn. 6.24) 

𝐸𝑟𝑎𝑝𝑖𝑑,𝑖 ≤ (1 − 𝛼𝑖) ∙ 10
6  (Eqn. 6.25) 

Inverter constraints 

Eqns. 6.26 and 6.27 constrain the net power on the AC side of the inverter; Eqn. 6.26 covers the case 

of power export through the inverter, whilst Eqn. 6.27 covers the case of power import. Eqn. 6.28 

imposes the inverter capacity. The inverter can curtail power if necessary. 

𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤ 𝜂𝑖𝑛𝑣 ∙ (𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 − 𝐸𝑐ℎ𝑎𝑟,𝑖 + 𝐸𝑃𝑉,𝑖)    (Eqn. 6.26) 

𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤
1

𝜂𝑖𝑛𝑣
(𝐸𝑑𝑖𝑠𝑐ℎ,𝑖 − 𝐸𝑐ℎ𝑎𝑟,𝑖 + 𝐸𝑃𝑉,𝑖)   

(Eqn. 6.27) 
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−𝑃𝑖𝑛𝑣 ∙ 𝑑𝑡 ≤  𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 ≤ 𝜂𝑖𝑛𝑣 ∙ 𝑃𝑖𝑛𝑣 ∙ 𝑑𝑡 (Eqn. 6.28) 

 

Household constraints 

Eqn. 6.29 gives the overall net load for the household; Eqn. 6.30 controls whether export of power is 

allowed. Eqns. 6.31 and 6.32 control the net payments for export / import of energy. 

𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 = 𝐸𝑖𝑛𝑣_𝑛𝑒𝑡,𝑖 − 𝐸𝑙𝑜𝑎𝑑,𝑖    (Eqn. 6.29) 

𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ≤ 𝛣𝑒𝑥𝑝 ∙ 10
6  (Eqn. 6.30) 

𝐶𝐹𝑖 ≤ 𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ∙  𝜋𝑒𝑥𝑝𝑜𝑟𝑡,𝑖   (Eqn. 6.31) 

𝐶𝐹𝑖 ≤ 𝐸ℎ𝑜𝑢𝑠𝑒_𝑛𝑒𝑡,𝑖 ∙  𝜋𝑖𝑚𝑝𝑜𝑟𝑡,𝑖   (Eqn. 6.32) 

 

Objective function 

This consists of the nominal value assigned to final energy stored, the payment for rapid charging, and 

the net bill for import and export of power. 

𝑂𝐵𝐽 =  𝜋𝑓𝑖𝑛𝑎𝑙 ∙ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,48 − 𝜋𝑟𝑎𝑝𝑖𝑑 ∙∑𝐸𝑟𝑎𝑝𝑖𝑑,𝑖
𝑖

+∑𝐶𝐹𝑖
𝑖

 (Eqn. 6.33) 

6.3. Results 
This section is organised as follows. We first present results for the operation of the microgrid over 

the summer week, and consider the overall performance in terms of the technical performance 

indicators, and household savings. We then assess the impact of season on the microgrid’s 

performance, before focusing specifically on the annual savings for households, and how these are 

distributed to households of different classifications. 

6.3.1 Results for summer 

To illustrate the operation of the microgrid, Figure 6.5 shows simulation results for system P2P_V2G 

over the course of the summer week, for a scenario with 80% PV penetration and 40% EV 

penetration. Shown are energy production, energy consumption, self-consumed vs. shared power, and 

internal microgrid prices. By comparison of Figures 6.5 (a) and 6.5 (b), it will be seen that the 

charging of EVs tends to track the rise and fall of solar generation. Conversely, the discharging of 

EVs at night time tracks the standard (inflexible) electric load. As shown in Figure 6.5 (c), this 

flexibility is accomplished both by self-consumption within houses, and also to a significant extent by 

power sharing via the P2P market. The total shared energy over the week was 1681 kWh, compared to 

619 kWh for the baseline system G_V1G at the same technology penetration levels. Grid imports 

across the week are reduced by 59%, from 1714 to 701 kWh; grid exports by 55% from 2012 kWh to 

908 kWh; self-sufficiency increases from 55% to 86%. Consequently the average household is £3.19 

better off across the week compared to the baseline system. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.5. Operation of microgrid P2P_V2G over the simulated week, with 80% PV penetration and 40% 

EV penetration. (Hour zero is Monday 5.30am.)  

(a) Power generation 

(b) Power consumption 

(c) Power self-consumed by households / shared between households / imported from grid 

(d) Internal microgrid prices 
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Figure 6.6 Performance indicators for the microgrid, for the various systems and scenarios, over the summer week. In each block, PV penetration increases 

from left to right, and EV penetration increases from top to bottom. Shading has highest values coloured green and lowest values red, except for ‘Max 

transformer load’ where this colour scheme is reversed.  
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Figure 6.6 summarises the performance of the microgrid over all systems and technology penetration 

levels for the summer week. Performance indicators shown are SSR, EBI, maximum transformer 

loading at the grid connection, shared kWh and average household savings (versus the baseline 

scenario, G_V1G). Certain broad observations can be made: the impact of PV penetration on these 

metrics is generally strong, whereas the impact of EV penetration tends to be more subtle, even when 

V2H / V2G are permitted. Whilst SSR naturally climbs with increasing PV penetration, shared energy 

and household savings (relative to the grid tariff) tend to peak at middling PV penetration. Peak 

transformer loading and EBI also achieve their best values for middling PV penetration. 

In G_V1G (the baseline system) SSR for the week varies between 11% and 58%, EBI between 21% 

and 57%, and maximum transformer loading between 40.5 kW and 91.7 kW, according to the 

technology penetration. Power shared varies between 282 and 873 kWh (N.B. this is power which is 

physically shared, although not traded). SSR and EBI improve strongly as PV penetration increases. 

Increasing EV penetration tends to have a more modest, downward impact on these metrics. However, 

additional EVs can improve EBI if PV penetration is high, owing to the reduction in grid exports. 

In G_V2H, EV households are permitted to discharge their batteries as V2H. Without a P2P trading 

system or time-of-use tariff, only the households in possession of EV and PV can profit by this. Thus 

the impact is negligible unless PV and EV penetration are high. With high enough penetration, we see 

moderate improvements in the microgrid’s SSR and EBI, and decreased transformer loading; the 

highest SSR and EBI achieved are now 72% and 70%. Shared power decreases somewhat under 

G_V2H, since PV households can store surplus power for later use. 

P2P_V1G introduces the P2P market mechanism (but does not allow V2H). There is now an incentive 

for households with EVs, but no PV, to schedule their charging to synchronise with peaks in solar 

generation. The effect is best demonstrated by observing the increase in energy shared between 

households, relative to the baseline G_V1G. This increase is typically at least 20%, representing up to 

250 additional shared kWh across the week; across all technology penetration scenarios, the 

maximum shared energy is now 1,119 kWh (for 40% PV, 90% EV penetration). The increases in 

shared power correspond to modest improvements in SSR and EBI, although less than the 

improvements effected by G_V2H. No improvement is seen in the maximum transformer loading. 

The P2P tariff achieves household savings averaging up to £2.28 for the week; the best savings are 

seen when EV penetration is high and PV penetration is medium. 

For most penetration scenarios, performance indicators for P2P_V2H are significantly improved 

versus G_V1G, G_V2H and P2P_V1G. Thus, the combination of V2H and a P2P tariff achieves 

much more than either innovation individually, a point we wish to emphasize. (However, for PV 

penetration below 20%, performance is similar to P2P_V1G, as there is insufficient surplus energy to 

store for V2H.) The increase in shared power versus the baseline is often several hundred kWh, with 

the largest increases of over 1 MWh additional shared power, occurring for PV penetration ≥ 60% and 

EV penetration 10 – 40%. Imported power is much reduced; for instance at 60% PV, 40% EV 

penetration, imports fall from 1,952 kWh baseline to 1,071 kWh under P2P_V2H (-45%). The 

reduced grid interaction is also reflected in improved SSR and EBI scores, with the best values now 

88% and 87% respectively. Further, the maximum loading on the microgrid’s transformer is also 

reduced; for instance, 90% penetration of both PV and EV can be accommodated with a peak loading 

of 58 kW, compared to 90 kW under G_V1G; a 36% reduction (although it should be remembered 

that this peak reduction is just over a one-week duration). The savings for households across the week 

can average up to £3.54.  
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P2P_V2G additionally allows all EV households to export power from EV batteries (V2G). In these 

results, the impact of allowing V2G is minimal to non-existent, so that P2P_V2G and P2P_V2H have 

very similar performance across all performance indicators. At middling PV penetration, V2G does 

result in an increase in shared power, but this increase is small. A possible explanation would be that 

households prefer to expend all energy stored in the EV battery on offsetting their own local electrical 

load. However, the average daily load for a household is only ca. 10 kWh, compared to 15 kWh of EV 

battery storage made available for V2X. Thus, the average household carrying out V2X should have 

enough battery capacity for V2G as well as V2H. The other explanation is simply that the iterative 

market mechanism is not good at incentivising V2G. Specifically, the SDR approach cannot allow a 

large proportion of supply to be exported from EV batteries, as the price paid for household export 

inevitably falls as the power exported from EVs increases. To incentivise V2G, some form of double 

auction is preferable, since this allows owners of EV batteries (or other flexible generation / storage) 

to make energy bids contingent on securing a given price. This power to dictate prices is absent from 

the market mechanism used here. 

The final two systems introduce stationary CES (respectively 100, 500 kWh) but do not allow V2H or 

V2G. The energy independence measures, SSR and EBI, are improved substantially versus the 

baseline, reaching SSR = 73%, EBI = 74% for P2P_CES_100; and SSR =  87%, EBI = 86% for 

P2P_CES_500. The 500 kWh CES outperforms the 100 kWh CES only when PV penetration exceeds 

60%; this is reflected in the scores for SSR, EBI and transformer loading, as well as the household 

savings.  Thus it seems that for the lower PV penetration, 100 kWh of community storage is adequate. 

Broadly speaking, P2P_CES_500 achieves similar levels of energy independence to P2P_V2H across 

most technology penetration scenarios. On the other hand, the CES is significantly more successful at 

reducing peak transformer load. For example, P2P_CES_500 can accommodate 90% penetration of 

both EV and PV ownership, with a peak load of 39 kW – compared to 58 kW under P2P_V2H and 90 

kW under G_V1G. This is expected since the CES is controlled with peak shaving as an explicit 

objective, whereas for previous systems, any peak shaving is an incidental consequence of households 

pursuing their self-interest. 

Besides the clear advantages of combining P2P with V2H, a further point to emphasize is that doing 

so can achieve benefits regardless of EV and PV penetration. This contradicts a result of Zhou et al 

[8] who suggested that P2P becomes redundant when PV and EV penetrations are both high, as 

households can charge their own EV with their own generation. In our results, the average household 

saves £3.23 when EV and PV penetration are at 90% thanks to the P2P system. 

6.3.1.1 Seasonal variation 

The results up to this point have been for the typical summer week; we now introduce the impact of 

seasons. Figure 6.7 shows SSR and mean household savings for the various microgrid systems, across 

three seasons, with the penetration scenarios averaged into four quadrants (see Section 6.2.3). Season 

has a pronounced effect on both measures. In autumn, the P2P systems can still achieve notable 

improvements to SSR and to bills, although the improvements are reduced in magnitude. Generally, 

the relative performance of the different systems in summer and autumn is very similar; in particular, 

P2P_V2H still clearly outperforms G_V2H and P2P_V1G in autumn. For winter, savings and SSR are 

around an order of magnitude less than in summer, and the P2P systems can make only negligible 

impact. In the next section, we discuss the annual savings for households, which are estimated as a 

weighted combination of weekly savings in summer, autumn and winter.  
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(a) 

 

(b) 

Figure 6.7. Impact of season on (a) SSR and (b) weekly household savings, for each of the seven 

microgrid systems. Household savings are relative to the baseline system with no P2P (G_V1G). 

Quadrants Q1 – Q4 are used for technology penetration (see Section 6.2.3). 

 

 

6.3.2 Household savings and distribution of benefits 

In this section we discuss the possible annual savings for households participating in the microgrid’s 

market. Under G_V1G the average annual bill is £590 for a household with no EV or PV, £770 for a 

household with an EV; £380 for a household with PV; £440 for a household with both technologies. 

Figure 6.8 shows estimated annual savings across all microgrid systems and penetration scenarios, 

with households classified according to ownership of PV / EV. Figure 6.9 uses additional 

classifications of households (commuter / non-commuter; PV orientation), and shows results for 

P2P_V1G, P2P_V2H and P2P_CES_500.  
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Figure 6.8. Average improvement in annual household bill, relative to G_V1G, for different household 

types and scenarios. In each block, PV penetration increases from left to right, and EV penetration increases 

from top to bottom. Blocks with no possibility of households making a saving are left blank. Unit is GBP. 

 

Annual bill savings enabled by the various P2P systems tend to average up to £100, but can be over 

£200 for some household types in some scenarios. It is important to note that all types of households 

can benefit from the P2P. For instance, even for households with both PV and EV, P2P_V2H achieves 

markedly higher savings than G_V2H. Thus, these households evidently benefit from the ability to 

trade energy with neighbours, despite possessing their own generation and energy storage. This even 

remains true even at 90% penetration of the technologies. Households with neither PV nor EV can 

also benefit, although usually to a lesser extent than households with EV/PV.  The largest savings 

(>£200/a) from P2P are enjoyed by households with an EV but no PV of their own, in scenarios with 

high PV penetration creating a buyer’s market. Conversely, large benefits can also be felt by 

households with PV but no EV, especially when low PV penetration and high EV penetration create a 

seller’s market.  

Under G_V2H (given that the grid tariff is assumed constant) households must have both PV and EV 

in order to benefit economically; for these households, the benefits to the annual bill average ca. £44. 

Under P2P_V1G, household savings average £38/a across all household types and technology 

penetrations; savings are greatest at middling PV penetration, reaching a maximum of £54/a. 

Middling PV penetration allows that different households can simultaneously be in deficit or surplus, 

so that the P2P is most beneficial. 
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As with the technical performance measures, P2P_V2H achieves notably greater household savings 

than either G_V2H or P2P_V1G; the average across all household types and scenarios is £60/a. The 

savings are most significant at middling to high PV penetration, which allows households to charge 

cheap power to their vehicles during the day for use after sunset. Unlike P2P_V1G, savings do not 

peak at mid-range PV penetration, suggesting that more generation can always be put to use; savings 

reach ca. £90/a when PV penetration is high.  Again, the biggest savings versus G_V1G (sometimes 

>£200) are made by households with EVs but no PV. Interestingly though, the jump in savings from 

P2P_V1G to P2P_V2H is actually less for the EV owners than the PV owners, who evidently benefit 

from the competition to buy power for V2H. 

As already discussed, the market mechanism is not well-designed to incentivise V2G. Thus savings 

under P2P_V2G are very similar to P2P_V2H, with the average benefit again being £60/a across all 

tech penetration levels. Household savings for P2P_CES_100 and P2P_CES_500 average respectively 

£51 and £60. Because the CES enables microgrid prices to be smoother throughout the day, avoiding 

extreme values, distribution of benefits to different classes of households is somewhat more even than 

under P2P_V2H (see also Figure 6.9). The magnitude of household savings is broadly comparable for 

systems P2P_V2H and P2P_CES_500. 

 

6.3.2.1 EV usage and PV orientation 

For an EV owner, pay-off from the P2P systems comes from charging the vehicle when power is 

cheap, i.e. when PV generation is high. Thus it would be expected that commuter vehicles, that are 

often away at work during the daytime, will benefit less. This does indeed prove to be the case in our 

results (wherein we define a commuter household to be any household with four or more trips to work 

in the morning, over the week-long travel schedule). For instance, under P2P_V1G, average annual 

benefits for commuter EV households are £29, but £47 for non-commuters; under P2P_V2H the 

discrepancy is £60 to £77. Figure 6.9 shows that the discrepancy in earnings between commuters and 

non-commuters is greater when EV penetration is higher (3.5 (b) and (d)); whereas higher PV 

penetration is beneficial to both groups of EV drivers (3.5 (c) and (d)). 

Additionally, we consider the orientation of PV systems (east, west, or south). Overall the benefits of 

the P2P mechanisms for each orientation appear very similar (see Figure 6.9). There is some 

indication that high PV penetration in the microgrid is more detrimental to the households with south-

facing PV (see particularly Figure 6.9 (c)). However, it’s important to note that the bills for 

households with south-facing systems are already lower in absolute terms (average £362/a for south-

facing PV, versus £431/a for the other orientations, under G_V1G). 
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(a) Q1 

 

(b) Q2 

 

(c) Q3 

 

(d) Q4 

Figure 6.9. Average improvement in household net daily bill relative to G_V1G, for different 

household categories and microgrid systems. Estimated for one full year. Systems shown are 

P2P_V1G, P2P_V2H and P2P_CES_500. 
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6.4. Discussion 
This work has developed a simulation model to investigate a P2P market mechanism based on 

iterative bidding, in combination with realistic models for EV usage and PV generation. We have 

confirmed that P2P trading can achieve significant benefits, both technical and economic. These are 

particularly interesting when the P2P market is combined with V2H technology. For instance, at 40% 

penetration for EV and PV ownership, average bills over a summer week improve by £2.42 (around 

33% of the average summer weekly bill) and SSR increases from 41 to 60%. The benefits of V2H and 

P2P in tandem exceed the benefits of either in isolation. Perhaps counter-intuitively, this is still true 

when PV penetration and EV penetration are both high, so that most households possess both: for 

90% penetration of each, V2H alone achieves average weekly savings of £1.02; P2P achieves £1.52; 

but the two in combination save households an average of £3.23. That P2P trading is profitable even 

when most households have PV and EV makes sense when considering two factors (i) EVs are not 

always available and (ii) they can charge at higher power than the output of typical rooftop solar 

(respectively 7.2 kW and 3 kW in this work). Thus, an available vehicle can utilise all the surplus PV 

from its own household, and still benefit from buying additional power from a neighbour whose car is 

unavailable. 

We find some indication that the benefits of the P2P market for commuters, whose cars are likely to 

be unavailable during the day, may be less than for non-commuters. For the system with V2H and 

P2P, the annual benefits for non-commuters are 28% greater, averaged over all scenarios. We also 

compared the usage of EVs for energy storage with shared, stationary CES. This was controlled to 

minimise the microgrid’s aggregate net bill, whilst also peak shaving for the grid connection. Because 

the CES schedule is controlled directly – whereas the schedules of EV batteries can only be 

influenced by market conditions – CES proved more successful at reducing peak loads than V2H; 

whereas household cost savings and improvements in energy autonomy were similar for V2H / CES. 

The iterative bidding market mechanism used for this study has various strengths and weaknesses. 

Optimisation of household schedules in response to published prices is a simple and intuitive problem. 

Unlike in other market mechanisms, energy bids are never declined – rather, adjustments are 

encouraged by the price changes for the next iteration. Thus, there are no ‘lucky’ or ‘unlucky’ 

participants in the daily market. On the other hand, the need for constraints to encourage convergence 

of prices means that a level of central control is still present – the households are not fully free in their 

decision making. Pricing can tend to favour consumers more than generators. In particular, this 

market mechanism would need adapting in order to incorporate generation with non-zero marginal 

cost (V2G, CHP) as the mechanism currently assumes prices must be low whenever most supply is 

procured internally. Thus in this work, making V2G available achieved negligible benefits versus 

V2H – but there is no reason why this has to be true in general. Future work could compare this 

iterative market mechanism with other mechanisms: for instance, full central control; one-shot double 

auction; continuous double auction. 

It is worth noting that passive participants in the microgrid (who have neither an EV or a PV) still 

benefit from the P2P market, especially in a buyer’s market scenario (see Figures 6.8, 6.9). These 

benefits are always less than households with flexible load, but can sometimes be greater than the 

benefits to PV households. This is not necessarily reasonable, as these households are essentially 

profiting at the energy supplier’s expense whilst taking no actions to benefit the community. The 

rationale for allowing these households to participate is that the market mechanism should not 

necessarily be aware of, or care about, what is ‘behind’ a household’s meter. However, it might be 

worthwhile to consider market designs that more explicitly reward flexibility in demand. One 

possibility could be to reward load adjustments which are made to alleviate forecasting uncertainty or 
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unforeseen fluctuations – see for instance [161]. Another possibility might be to impose a fee to join 

the P2P market, and thus recoup the average benefit of passive participants. It’s also worth noting that 

participants without EV or PV could still contribute to the microgrid through control of smaller 

flexible loads (e.g. dishwashers, fridges) although these have not been modelled here. 

6.5. Conclusions and future work 
The authors believe that this work has demonstrated P2P to be a very interesting innovation that could 

greatly assist the integration of a high penetration of PV and EVs in the built environment. It can 

enable significant gains in energy independence (which should correspond to a reduction in 

emissions) and significant reduction of household bills, especially when PV penetration is high (see 

Figure 6.7). In particular, the coupling of P2P with V2H chargers is of interest, bringing greater 

benefits than either innovation individually.  

 

Suggested topics for future work include: 

• P2P market mechanisms that can take account of forecasting uncertainty. Uncertainty in 

forecasting generation / demand has received some attention; in contrast, forecasting of EV 

usage / availability has received little if any. 

• Simulation of P2P mechanisms at higher time resolution. Existing work, including the present 

work, tends to use hourly or half-hourly resolution. Real life management of a microgrid 

demands attention to shorter term fluctuations. 

• Coupling of markets for heat and power. Some proposals have been made for this (e.g. [162]) 

but such work is rare. 
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7. P2P trading of heat and power via a continuous 

double auction 
Timothy D Huttya, Solomon Browna* 

aDepartment of Chemical and Biological Engineering, University of Sheffield, UK 

Abstract 

Peer-to-peer (P2P) energy trading, whereby customers can trade energy with one another rather than 

the energy supplier only, has the potential to save money for consumers whilst also incentivising more 

efficient and environmentally beneficial behaviour. Many existing models for P2P only consider a 

real-time or hour-ahead market, which does not allow proper scope for the planning of flexible 

demand or for energy storage. Accordingly, in this model we employ a day-ahead continuous double 

auction, in which all the upcoming timeslots are simultaneously open for trading. This allows 

schedules for device dispatch to be developed properly. Furthermore, we consider the trade of heat as 

well as power, via a low temperature heat network. Heat and power trading interact due to the use of 

air source heat pumps (ASHPs) as well as reversible solid oxide cells (rSOCs) which can provide 

combined heat and power, or alternatively produce hydrogen via water electrolysis. In our case study, 

the P2P market is simulated with 25 houses participating, for two week long periods in different 

climate conditions. P2P electricity trading is found to bring a marked reduction in reliance on grid 

electricity, and a reduction in peak grid load. This is brought about mainly by the incentive for rSOCs 

to generate at a higher average load factor, and the average house makes savings of ca. £10 / week in 

winter weather. Trading of heat brings a further decrease in reliance on grid electricity, and largely 

eliminates the use of inefficient resistive heat. However, the heat trading may not be financially 

worthwhile in all conditions. 
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7.0 Nomenclature and terminology 
 

Table 7.1. Acronyms. 

ASHP Air source heat pump 

CDA Continuous double auction 

CHP Combined heat and power 

COP Coefficient of performance (of heat pump) 

EV Electric vehicle 

G_ONLY Market paradigm where only grid trade of electricity is available. 

LHV Lower heating value 

MILP Mixed integer linear programming 

P2P Peer-to-peer 

P2P_P Peer-to-peer market allowing trading of electrical power only 

P2P_H_P Peer-to-peer market allowing trading of both heat and power 

rSOC Reversible solid oxide cell 

SOEC Solid oxide electrolyser cell [mode of rSOC] 

SOFC Solid oxide fuel cell [mode of rSOC] 

TES Thermal energy storage 

TR Truthful [bidder] 

V2X; V2H; V2G Vehicle to anything; vehicle to house; vehicle to grid 

ZI Zero intelligence [bidder] 

 

Table 7.2. Symbols. 

Symbol Unit Description 

𝑡 - Timeslot, typically in {1…24} 

𝑡𝑙𝑎𝑠𝑡 - Final timeslot, typically 24. 

∆𝑡 s Duration of a timeslot. 

b - Binary variable 

𝑣𝑉2𝑋 £/kWh Estimated financial benefit of 1 kWh charged to the EV battery for 

V2X. 

C kWh/°K Heat capacity 

𝐶𝐸𝑉 kWh Capacity of EV battery 

𝑐𝑉2𝑋 £/kWh Estimated cost of discharging 1 kWh from the EV battery for V2X. 

𝑐𝑟𝑎𝑝𝑖𝑑 £/kWh Cost of rapid charging. 

𝒟  Set of devices owned by auction participant 

𝑝 £/kWh 

£/kg 

Price; £ / kWh for energy, £ / kg for H2. 

𝑝𝑐𝑙 £/kWh Clearing price for double auction 

𝐻 kWh Thermal energy 

H2 kg Hydrogen 

K kW/°K Thermal transfer coefficient 

𝐸 kWh Electrical energy 

𝐸𝑚𝑖𝑛_𝑓𝑖𝑛𝑎𝑙 kWh Minimum kWh for the final storage state of the EV battery. 

P kW Power 

PEN £ Penalty term in objective function 
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𝑇 °C Temperature 

VAL £ Valuation of a device’s stored energy 

𝜂𝑖𝑛𝑣  Efficiency of inverter 

𝜂𝑆𝑂𝐹𝐶 kWh/kgH2 For rSOC in SOFC mode, kWh electricity generated per kg H2. 

𝜂𝑆𝑂𝐹𝐶𝑡ℎ kWhth/kgH2 For rSOC in SOFC mode, kWh heat generated per kg H2. 

𝜂𝑆𝑂𝐸𝐶 kWh/kgH2 For rSOC in SOEC mode, kWh electricity consumed per kg H2. 

 

Subscripts 

buy  Energy to buy via future trades 

sell  Energy to sell via future trades 

bought  Energy already bought via successful offers 

sold  Energy already sold via successful asks 

imp  Imported 

exp  Exported 

cl  Cleared in auction 

P2P  peer-to-peer 

res  reserve price 

rh  resistive heat 

st  energy storage 

tes  Thermal energy storage 

grid_retail  Grid retail tariff for electricity import 

grid_FI  Grid feed-in tariff for electricity export 

 

7.1. Introduction 
 

As the world seeks to decarbonise its energy systems, some of the changes will be seen at a local and 

household level. These changes will be felt across the key sectors of power, transport and heat. They 

include the growth of embedded generation, both solar PV and combined heat and power (CHP) 

systems [223]; the proliferation of electric vehicles (EVs) [247]; and the decarbonisation of heating 

systems. Peer-to-peer (P2P) energy trading, whereby consumers are able to trade energy with one 

another, rather than the energy supplier only, can help to incentivise the efficient use of these new 

technologies [8], [248]. In particular, P2P can incentivise the synchronisation of flexible loads with 

surpluses in renewable generation; a simple example of this is the scheduling of EV charging to make 

use of a peer’s surplus solar power. The net effect is increased local self-sufficiency in energy, 

decreased environmental impact and a reduction in bills [248]. Whilst current market regulations in 

the UK do not permit peer-to-peer trading, interest is growing, with companies including Centrica and 

EDF carrying out trial schemes in recent years [143], [144]. 

Decarbonisation of heat, which is often neglected in studies of P2P trading, can lead to additional 

motivations to trade energy [249], [250]. For instance, air source heat pumps (ASHPs) can make use 

of peers’ surplus electricity generation, storing heat either in the fabric of buildings or in dedicated 

thermal storage. Meanwhile, CHP systems which typically produce heat and power in a fixed ratio 

[251], can benefit by exporting surplus power to peers while tracking heat demand. The possibility of 

local trading in heat between peers, rather than power only, has received a limited amount of attention 

in the literature. Such trading requires connection to a heat network, likely operating at a moderate 
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temperature [250]. In theory, this enables the extra flexibility to procure heat from different sources, 

depending on what is most cost-effective at a given time, achieving additional savings.  

In this work, we consider a continuous double auction (CDA) for P2P trading of energy in a small 

residential community, and present an agent-based simulation of this setup. The CDA resembles the 

continuous trading which takes place, for instance, in stock and currency markets, as well as intraday 

electricity markets, with prices on the market being determined purely by competition on the supply 

and demand sides. No information is required to be shared by peers beyond the volume of energy they 

wish to trade, and the reserve price. CDAs for each timeslot of the upcoming day run simultaneously; 

this is key to enable scheduling of flexible loads and energy storage. We present results both for the 

trading of power only, and for the trading of both heat and power. 

The next section discusses in more detail the literature and background surrounding the topic of P2P 

trading. 

7.2. Literature Review 

7.2.1 P2P trading and double auctions 

By enabling peers to trade with one another, rather than the energy supplier, P2P trading can be 

advantageous for both consumers and generators (often termed ‘prosumers’); for electricity, trades 

agreed at prices between the grid retail cost and the feed-in tariff (if any) are profitable to both parties 

[226]. In the absence of flexible demand, generation or energy storage, P2P can still be profitable, as 

it simply provides fairer recompense for energy that would be physically shared anyway – as in [158]. 

The real power of P2P, however, lies in its ability to incentivise smart coordination of flexible devices 

between peers, where these incentives do not exist under the traditional market paradigm. For 

instance, this can include the scheduling of a flexible load, or energy storage, to absorb surplus solar 

generation from a peer [8], [231]. It is this aspect of P2P which can bring technical and environmental 

benefits, rather than financial only [248]. 

Existing literature on P2P includes both a variety of market structures, and a variety of approaches to 

their simulation and study. In some cases, flexible devices and energy sharing transactions are 

optimised centrally [148], [149], [153] although for real-world implementations this would often be 

unviable [147]. Central optimisation methods can be reposed as distributed optimisation problems, 

with the alternating method of mixed multipliers (ADMM) a popular approach, as in [252]. Game 

theoretic approaches are frequently seen, as in [154], [163]–[166]; and many researchers have 

considered various forms of iterative market, where peers repeatedly adjust their strategies on the 

basis of feedback from the previous iteration, until convergence is achieved [8], [173], [174], [248]. 

In this work the focus is on a double auction as the basis of the P2P market; this is an auction where 

buyers and sellers of a commodity are simultaneously in competition. One of the merits of this 

approach is the analogy with the operation of utility scale markets [230], as well as existing P2P 

schemes like the Brooklyn microgrid [158]. Participants submit bids to buy or sell consisting of a 

volume of energy and a reserve price; an equilibrium price is established and as many trades are 

cleared as possible. The clearing of the market may be one-off, as in [163], or may happen on a 

rolling basis as in [159], [253]; the latter case is termed a continuous double auction (CDA).  

There is a reasonable amount of previous work on double auctions for P2P energy trading, covering 

such issues as secure, distributed implementation [160], use of Blockchain [159], and comparison of 

price setting strategies [158]. Zhang et al [161] contrived a novel auction system wherein flexible 

loads were explicitly paired with the forecasting uncertainty of renewable generation. Chen et al [254] 

used a data-driven machine learning method to integrate price predictions with the strategy formation 
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of auction participants in a CDA electricity market; the focus here was on the benefits to the single 

prosumer using the machine learning method, rather than the benefits of the market overall. Thakur et 

al [255] consider a novel distributed double auction market in which any peer can act as the 

auctioneer; the focus here is on the reduction of computational overhead via use of the distributed 

algorithm, and flexible load / generation appears not to have been considered. Haggi et al [256] 

consider a hierarchical double auction, with nodal, zonal and distribution network stages. The auction 

mechanism is able to ensure that physical network constraints are not violated; again, flexible load / 

generation is not considered, and only one timeslot is settled at a time. Zhang et al [257] present an 

iterated double auction wherein agents may adjust their prices to increase profits with successive 

rounds. 

The inclusion of flexible devices / energy storage in P2P markets brings particular challenges, owing 

to the coupling that these devices introduce between different timeslots. For instance, a battery may 

seek to buy additional energy at 12pm, contingent on being able to sell this energy at 7pm; an EV may 

prefer to charge at 6pm unless cheaper energy will be available at 11pm. El-Baz et al [147] note that 

these issues mean that the real-time or hour-ahead trading most commonly seen in literature is not 

adequate when flexible devices and energy storage are involved. It is important that multiple timeslots 

of an upcoming day are simultaneously available for trading. It is worth noting that in utility scale 

double auctions, the potential interdependence of bids between timeslots can be addressed by the use 

of complex bids: these include linked block orders, flexible hourly orders and exclusive block orders 

[230]. These were instituted more for the benefit of pumped hydropower energy storage, as opposed 

to newer forms [258]; their use adds considerable complexity to the auction clearing algorithm, and is 

only appropriate for auctions that are cleared one time, as opposed to the CDA. 

7.2.2 Heat and power 

The consideration of heat in studies of P2P energy trading can take two forms. Firstly, without actual 

trading of heat, but with consideration of household devices that couple electricity and heat demand: 

that is, principally heat pumps or CHP. Secondly, with P2P trading of heat as well as power. In the 

first category, Gan et al [259] considered P2P electricity trading between multiple energy ‘hubs’ 

equipped with 200 kW CHP generators; an increase in profits of up to 19% was obtained. Zhu et al 

[249] studied synergies between power, heat and hydrogen energy flows, with only power traded; P2P 

trading and hydrogen storage were both found to be important in cutting costs. The work of Nguyen et 

al [252] is particularly relevant to the present work, as it involves P2P power trading between fuel 

cells providing CHP. The motivation to trade stemmed partly from the variable efficiency of the fuel 

cell at different partial loads. Heat from the fuel cells was used for DHW tanks – this system was the 

sole flexible device involved in the trading. Detailed consideration of bill savings is not included. The 

work of Block et al [162] is also of interest; here a two-dimensional auction for heat and power was 

contrived, allowing for dependency between bids in the two energy types.  

In the second category, Davoudi et al [260] considered a trading of both heat and power, albeit with 

the price for heat assumed to be fixed and constant. An iterative approach was employed where peers 

had the ability to form both fixed-price and variable-price contracts. The P2P market was found to be 

profitable with respect to grid trading. Shi et al [261] studied an integrated energy system with trading 

in heat, power and hydrogen. ADMM was used to optimise transactions between peers, and it was 

found that P2P together with a demand response programme was more profitable than either in 

isolation. Jing et al [262] considered the trading of heat and power between commercial and 

residential prosumers, with an emphasis on finding fair prices for transactions – although they do not 

appear to have allowed the P2P prices to vary across timeslots. Daryan et al [263] consider trading of 

heat and power between Smart Energy Hubs; the settlement of trading is broken down into 
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optimisation of the trades which should take place, followed by identification of fair prices to 

incentivise these trades; the total social cost sees a 14% reduction. Finally, Wang et al [250] employed 

coalition game theory to study a double auction market for heat and power. Trading was motivated by 

slightly undersized heat pumps in dwellings, the varying COPs of these, and varying willingness to 

compromise on comfort.  

7.2.3 Contribution of this work 

 

In this work, we consider a continuous double auction for P2P trading of both heat and power. The 

CDA is chosen as one of the most simple, generic and flexible forms of market [254], and because of 

its resemblance to utility scale markets. The market has a day-ahead format, with all timeslots 

simultaneously available to trade, improving the ability of peers to schedule flexible devices and 

energy storage. To our knowledge, an auction of this form which also extends to both heat and power 

has not been covered in the literature before. 

We include in our case study reversible solid oxide fuel cells (rSOCs) which can convert power to 

hydrogen, as well as converting hydrogen to heat and power. Although the participation of fuel cell 

CHPs in P2P has occasionally been studied, we believe this has not in the past extended to rSOC. 
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7.3. Method 

7.3.1 Overview 

 

The day-ahead P2P energy market consists of a continuous double auction for each timeslot of the 

upcoming day, and where applicable each energy type (heat and power). Figure 7.1 gives a high-level 

overview of this, and a simplified view of household strategy. MILP optimisations are carried out 

using Pyomo [236] with the GLPK solver [238]; all other aspects of the market simulation are 

modelled in AnyLogic software [4]. 

Essential issues that need to be considered include the following: 

• flexibility of bids in time 

• interdependence of bids between energy types (e.g. sale of heat and power from the rSOC) 

• interdependence of bids between timeslots (as for energy storage charge and discharge) 

 

The CDA market structure does not allow ‘complex’ bids with inherent interdependence or flexibility 

in time, and so here, these issues have to be handled principally by the strategies of the bidders 

themselves. To facilitate this, it is enforced that the auctions for different timeslots and energy types 

never clear simultaneously; thus, participants always have opportunity to respond to their success or 

failure in a particular auction by adjusting bids in other auctions. 

We adopt the following conventions for terminology: 

Bid – any order whether to buy or sell energy. Offer – a bid to buy energy. Ask – a bid to sell energy. 

Timeslot – A future time period during which power is traded, typically half an hour or one hour in 

duration. 

Round – an iteration of the market wherein CDA’s are cleared for every timeslot for both heat and 

power. 

We define D to be the set of devices available to an auction participant. ‘Device’ is to be interpreted 

broadly, as for instance the inflexible electrical load of a house and the space heating demand are both 

regarded as ‘devices’. 
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Figure 7.1. A simplified overview of the market structure and household strategisation process. 

 

7.3.2 Markets 

As in [147], [264], offers and asks are not submitted to the auctions in truly continuous time, but 

rather in a sequence of rounds. Multiple bids will typically arrive at each auction every round, after 

which the auction is cleared. The separate auctions for different timeslots clear in chronological order 

every round, with the auction for heat following the auction for power, for each timeslot, where 

applicable. Auction clearing entails ordering the offers in descending order of the submitted price, and 

the asks in ascending order. Offers are matched to asks until either the current ask price exceeds the 

current offer price, or there are no more asks to process, or there are no more offers to process. The 

clearing price 𝑝𝑐𝑙 is midway between the price of the final ask and offer to be cleared. Typically, 

either the final offer or final ask is only partially fulfilled. The auctions implement a ‘pay-as-cleared’ 

rule, meaning that all the cleared trades are transacted at the same price 𝑝𝑐𝑙. Figure 7.2 illustrates how 

the auction is cleared, showing the supply / demand curves as a function of price, with the intersection 

of these curves giving the clearing price. 
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Figure 7.2. Illustrates how the clearing price is found when a double auction is resolved. Note that 

each vertical step corresponds to a bid. 

 

7.3.3 Determination of bidding strategy 

A bidding strategy is defined as the full set of asks and offers that a participant wishes to submit, 

across all timeslots of the auction, incorporating both the quantities to trade and the reserve prices. 

Participants may theoretically update strategies at any time; for the purposes of this work strategies 

are only updated between rounds, and in general only every few rounds. Smaller adjustments may be 

made more frequently; these typically involve the interdependence of bids (see Section 7.3.3.4) – and 

could involve the activation / deactivation / cancelling of bids, as well as adjustments to reserve 

prices. 

When the final round of auctions is completed, all households optimise their devices one final time, 

with respect to the trades they have successfully closed. Grid prices are available for further trade of 

power; further trade of heat is not allowed.  

7.3.3.1 Categories of bid 

 

Table 7.3. Categories of bids. 

Name Description 

Offers (power) 

INFLEXIBLE_LOAD Standard electrical load of the house, assumed inflexible 

EV_ESSENTIAL EV charging that is essential for travel. 

EV_ARBITRAGE EV charging for V2X, or to carry energy into the next day. 

ASHP_BUY Power required for the ASHP to meet the heat demand 

ASHP_FOR_TES Power required for the ASHP to charge thermal storage. 

ASHP_FOR_EXPORT Power required for the ASHP to export heat (P2P_H_P only) 

RESISTIVE_BUY Power for resistive heat 

RSOC_BUY Power required to run SOEC mode of the rSOC 

Asks (power) 

PV_EXPORT Exported solar PV power 

EV_V2X Power exported from the EV battery 

RSOC_SELL Power from SOFC mode of the rSOC 

Offers (heat) 

HEAT_DEMAND Heat required to meet household demand 



129 

 

 

HEAT_FOR_TES Heat to charge thermal storage 

Asks (heat) 

HEAT_FROM_RSOC Heat from the rSOC 

HEAT_FROM_ASHP Heat from the ASHP 

HEAT_FROM_RH Heat from the resistive heater 

 

 

7.3.3.2 Price prediction 

For simplicity, the initial price prediction at the start of trading is equal to the mid-market rate 

halfway between grid retail and feed-in price. Initial heat price predictions are £0.10 / kWh or £0.08 / 

kWh, dependent on season, where this is based on experience running the model. A truer picture of 

prices emerges after a few rounds of bidding. Subsequent price predictions at each timeslot are the 

mean of the two most recent clearing prices. If no trading is occurring for the timeslot in question, the 

price predictions start to ‘decay’ exponentially towards limiting prices given by top-of-book prices, if 

outstanding bids exist, or otherwise the utility prices. A decay constant of 0.22 is used based on 

experience. Note that in the absence of trading, price predictions can still improve if top-of-book 

prices improve. The price of hydrogen is considered fixed, at least over the one day time horizon of an 

auction. 

 

7.3.3.3 Optimisation and internal auction 

 

A full update to bidding strategy employs MILP optimisation of a household’s energy flow, combined 

with rules to generate additional backup bids. 

Electricity purchased to charge the EV battery may be required either for essential travel, or for V2H / 

V2G, and this affects the valuation per kWh. To enable these bids to be separated, the optimiser runs 

twice, with V2X disabled the first time. 

For each timeslot t the MILP optimisation receives information on the energy that has already been 

traded, i.e. 𝐸𝑏𝑜𝑢𝑔ℎ𝑡,𝑡, 𝐸𝑠𝑜𝑙𝑑,𝑡, 𝐻𝑏𝑜𝑢𝑔ℎ𝑡,𝑡, and 𝐻𝑠𝑜𝑙𝑑,𝑡, as well as the latest price forecasts for each 

timeslot. The optimiser calculates schedules for all devices and the amount of energy to be imported / 

exported. At each timeslot, the net energy required by the devices must balance with the energy 

already bought / sold, and the energy to be bought / sold in the future, as expressed in equations 7.1 

and 7.2. 

𝐸𝑠𝑜𝑙𝑑,𝑡 − 𝐸𝑏𝑜𝑢𝑔ℎ𝑡,𝑡 = − 𝐸𝑠𝑒𝑙𝑙,𝑡 + 𝐸𝑏𝑢𝑦,𝑡 +    ∑(𝐸𝑔𝑒𝑛,𝑑,𝑡 −  𝐸𝑐𝑜𝑛𝑠,𝑑,𝑡)

𝑑∈𝒟

 (Eqn. 7.1) 

𝐻𝑠𝑜𝑙𝑑,𝑡 −𝐻𝑏𝑜𝑢𝑔ℎ𝑡,𝑡 = − 𝐻𝑠𝑒𝑙𝑙,𝑡 +𝐻𝑏𝑢𝑦,𝑡 +    ∑(𝐻𝑔𝑒𝑛,𝑑,𝑡 −  𝐻𝑐𝑜𝑛𝑠,𝑑,𝑡)

𝑑∈𝒟

 (Eqn. 7.2) 

Note that the left hand side of each equations consists of fixed parameters, whereas the right hand side 

consists of non-negative decision variables. 

For simplicity, P2P trades that have previously been made are not reversed; i.e. participants do not sell 

/ buy back energy that they have previously bought / sold. Thus, participants will never have both asks 

and offers agreed for the same energy type at the same timeslot. (The exception is at the very end of 

the trading, when trade with the utility electricity supplier, at retail tariff, may be used to reverse P2P 

trades if wished.) Accordingly, the following constraints apply: 
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{
𝐸𝑏𝑜𝑢𝑔ℎ𝑡,𝑡 > 0 ∶   𝐸𝑠𝑒𝑙𝑙,𝑡 =  0  

𝐸𝑠𝑜𝑙𝑑,𝑡 > 0 ∶   𝐸𝑏𝑢𝑦,𝑡 =  0
 

 

(Eqn. 7.3) 

{
𝐻𝑏𝑜𝑢𝑔ℎ𝑡,𝑡 > 0 ∶   𝐻𝑠𝑒𝑙𝑙,𝑡 =  0   

𝐻𝑠𝑜𝑙𝑑,𝑡 > 0 ∶   𝐻𝑏𝑢𝑦,𝑡 =  0
 

 

(Eqn. 7.4) 

The objective function for the household optimisation is given as the net earnings; plus the value 

attached to any energy stored at the close of the day; minus any penalty terms arising from individual 

device models. Note that this is expressed as a maximisation problem: 

𝑜𝑏𝑗 =  ∑(𝐸𝑠𝑒𝑙𝑙,𝑡 ∙ 𝑝𝑝𝑜𝑤𝑒𝑟,𝑒𝑥𝑝,𝑡 − 𝐸𝑏𝑢𝑦,𝑡 ∙ 𝑝𝑝𝑜𝑤𝑒𝑟,𝑖𝑚𝑝,𝑡) 

𝑡

 

+ ∑(𝐻𝑠𝑒𝑙𝑙,𝑡 ∙ 𝑝ℎ𝑒𝑎𝑡,𝑒𝑥𝑝,𝑡 − 𝐻𝑏𝑢𝑦,𝑡 ∙ 𝑝ℎ𝑒𝑎𝑡,𝑖𝑚𝑝,𝑡) 

𝑡

 

+ 𝑝𝐻2,𝑒𝑥𝑝∑𝐻2𝑠𝑒𝑙𝑙,𝑡 

𝑡

− 𝑝𝐻2,𝑖𝑚𝑝∑𝐻2𝑏𝑢𝑦,𝑡  

𝑡

 

+ ∑𝑉𝐴𝐿𝑑,𝑡𝑙𝑎𝑠𝑡  

𝑑∈𝒟

− ∑  

𝑑∈𝒟

∑𝑃𝐸𝑁𝑑,𝑡
𝑡

 

 

 

(Eqn. 7.5) 

The variables, constraints and penalty terms that describe the specific behaviour of each device 𝑑 ∈ 𝒟 

are given in Section 7.3.4. 

The optimisation model is expressed in terms of net energy generation / consumption; thus it does not 

explicitly specify which devices in a house share energy with each other, nor which devices are 

assigned to use (supply) energy previously bought (sold) on the P2P market. However, for the 

assignment of reserve prices in the P2P market, it is necessary to know which device is seeking to buy 

/ sell energy. Therefore, before bids are submitted to the P2P auctions, the devices in each household 

participate in an internal auction. Each device places offers for the amounts 𝐸𝑐𝑜𝑛𝑠,𝑑,𝑡 and asks for the 

amounts 𝐸𝑔𝑒𝑛,𝑑,𝑡; these may be broken down into separate bids with differing reserve price. Prices 

submitted to the internal auction are always truthful (see Table 7.4). Additionally, the amounts 

𝐸𝑏𝑜𝑢𝑔ℎ𝑡,𝑡 and 𝐸𝑠𝑜𝑙𝑑,𝑡 enter the internal auction respectively as asks and offers; they are assigned 

respectively very low and very high prices, to ensure that they are cleared. The internal auctions are 

cleared in identical fashion to the P2P auction (see Section 7.3.2). Bids cleared in the internal auction 

are stamped with a nominal valuation that corresponds either to the current predicted P2P price (when 

the bid has been matched with another household device) or, if matched with a previously successful 

P2P bid, the traded price of this bid. Bids not cleared in the internal auction proceed to the P2P 

auction. 

7.3.3.4 Interdependence of bids 

As has been already mentioned, bids to buy and sell energy can be interdependent in two ways. 

Firstly, in the heat and power market, there is interdependence between bids for the two types of 

energy. For the rSOC (in SOFC mode) to export both heat and power at a particular timeslot, it is 

fundamentally required that: 

𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣 ∙ 𝑝𝑝𝑜𝑤𝑒𝑟 + 𝜂𝑆𝑂𝐹𝐶𝑡ℎ ∙ 𝑝ℎ𝑒𝑎𝑡 ≥ 𝑝𝐻2    (Eqn. 7.6) 

 

Where heat (power) from the rSOC is matched in the internal auction, the corresponding power (heat) 
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can immediately be assigned a reserve price and sent to the P2P market. The P2P reserve price in this 

case is obtained by substituting the valuation assigned by the internal auction into Equation 7.6. 

Where neither heat nor power are matched in the internal auction, so that both are to be sold to peers, 

the following approach is taken: 

 1. The bulk of the energy for export is assigned a reserve price that guarantees a profit, i.e. 

𝑝𝐻2 / 𝜂𝑆𝑂𝐹𝐶𝑡ℎ for heat and 𝑝𝐻2 / 𝜂𝑆𝑂𝐹𝐶 for power. 

 2. Incremental amounts of heat / power corresponding to 10% of the rSOC capacity are 

assigned more aggressive reserve prices that still mutually satisfy Equation 7.6. 

 3. Whenever a P2P bid to sell rSOC heat or power is matched, the corresponding quantity of 

power / heat receives a new price obtained by substituting the clearing price into Equation 7.6. 

 4. When the aggressively priced incremental amounts are matched, they are replaced, until 

there is no more capacity to sell, or the auction ends.  

For the ASHP to import power in order to export heat, it is required that: 

 𝐶𝑂𝑃 ∙ 𝑝ℎ𝑒𝑎𝑡 ≥ 𝑝𝑝𝑜𝑤𝑒𝑟 (Eqn. 7.7) 

 

This is addressed in a similar manner to the rSOC. Where power is to be imported in order to export 

heat, only 10% of the ASHP capacity is entered into the P2P electricity auction at one time. This is 

priced at 𝐶𝑂𝑃 ∙ 𝑝̃ℎ𝑒𝑎𝑡 where 𝑝̃ℎ𝑒𝑎𝑡 is the predicted price to sell heat. 100% of the ASHP thermal 

capacity can be entered into the P2P heat market with a price of 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙  / 𝐶𝑂𝑃, as the grid retail 

price is guaranteed to be available. If a bid to buy power is matched, the price of the corresponding 

heat can be updated as 𝑝𝑐𝑙  / 𝐶𝑂𝑃. Note that the incremental bidding of 10% capacity prevents 

excessive purchase of electricity when the sale of corresponding heat may not be achieved. 

The second type of interdependence is between bids to charge and discharge energy storage. For 

instance, for the EV, the fundamental requirement in order to buy energy at t1 and sell at t2 is: 

𝜂𝑖𝑛𝑣
2 ∙ 𝜂𝑠𝑡(𝑝𝑝𝑜𝑤𝑒𝑟,𝑡2 −  𝑐𝑉2𝑋) ≥  𝑝𝑝𝑜𝑤𝑒𝑟,𝑡1 (Eqn. 7.8) 

 

where 𝑐𝑉2𝑋 represents the cost of cycling the EV battery, 𝜂𝑠𝑡 is the DC round-trip battery efficiency, 

and 𝜂𝑖𝑛𝑣 is the inverter efficiency. As with the ASHP and rSOC, the approach is to only allow small 

increments of energy to be submitted to the P2P auction at one time. For the EV, the total volume of 

bids to charge the storage (i.e. type EV_ARBITRAGE) should not exceed the volume of matched 

V2X energy by more than 10% of battery capacity. Conversely, the total volume of bids to discharge 

storage does not exceed the volume of matched EV_ARBITRAGE bids by more than 10%. As with 

the interdependence of heat and power bids, matching of a P2P bid to charge / discharge the EV will 

trigger adjustment of the price for a corresponding volume of discharged / charged energy. Bids to 

charge and discharge the TES are dealt with in analogous fashion. 

It is worth noting that the model also allows heat energy to be stored in the fabric of the house, by 

exceeding the minimum thermostat demand temperature. The interaction of timeslots induced by this 

energy storage is handled by the optimiser, but we have not attempted to explicitly address it in the 

bidding strategy and reserve prices. 

Interdependent bids are updated after the clearing of every timeslot in every round, even if the house 

does not perform a full strategy update that round (this detail is omitted from Figure 7.1). 
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7.3.3.5 Pricing strategy 

Truthful reserve prices 

It is important for bidders to assign a value to the energy they are seeking to trade; i.e. a minimum 

acceptable price for asks and a maximum acceptable price for offers. The assumptions made for these 

reserve prices are shown in Table 7.4. 

Table 7.4. Truthful reserve prices (i.e. limit prices) assumed for different applications. 
Category Truthful reserve price (£/kWh) 

 

Offers to buy power 

 

INFLEXIBLE_LOAD 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙 

 

EV_ESSENTIAL 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙 

 

ASHP_BUY 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙 

 

ASHP_FOR_EXPORT 𝐶𝑂𝑃 ∙ 𝑝̃ℎ𝑒𝑎𝑡 where 𝑝̃ℎ𝑒𝑎𝑡 is the predicted price to sell heat 

RESISTIVE_BUY 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙 

 

RSOC_BUY 𝑚𝑖𝑛 (𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙 ,   
𝑝𝐻2 ∙ 𝜂𝑖𝑛𝑣
𝜂𝑆𝑂𝐸𝐶

) 

 

EV_ARBITRAGE For an amount corresponding to the EV_V2G bids that have been matched 

(internally or externally) at an average value of 𝒑𝑽𝟐𝑿: 

 

(𝑝𝑉2𝑋 −  𝑐𝑉2𝑋) ∙ 𝜂𝑖𝑛𝑣
2 ∙ 𝜂𝑠𝑡 

 

For a further amount not exceeding 10% of battery capacity in each 

auction round: 

 

(𝑝̃𝑉2𝑋 −  𝑐𝑉2𝑋) ∙ 𝜂𝑖𝑛𝑣
2 ∙ 𝜂𝑠𝑡 

 

(where 𝑝̃𝑉2𝑋 is the predicted average value of corresponding EV_V2X.) 

 

 

 

 

Asks to sell power 

 

PV_EXPORT 𝑝𝑔𝑟𝑖𝑑_𝐹𝐼 

RSOC_SELL No heat trading: 

For the power corresponding to heat used in the house: 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣 + 𝜂𝑆𝑂𝐹𝐶𝑡ℎ
 

 

For any further power: 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣
 

 

With heat trading: 

Where corresponding heat is unmatched: 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣
 

 

Where corresponding heat is matched at price 𝒑𝒉𝒆𝒂𝒕: 

 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣
− 
𝑝ℎ𝑒𝑎𝑡 ∙ 𝜂𝑆𝑂𝐹𝐶𝑡ℎ
𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣

 

 

 

EV_V2G For an amount corresponding to the EV_ARBITRAGE bids that have been 
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matched (internally or externally) at an average value of 𝒑𝑨𝑹𝑩: 

 
𝑝𝐴𝑅𝐵

𝜂𝑖𝑛𝑣
2 ∙ 𝜂𝑠𝑡

+  𝑐𝑉2𝑋 

 

For a further amount not exceeding 10% of battery capacity in each 

auction round: 

 

𝑝̃𝐴𝑅𝐵
𝜂𝑖𝑛𝑣
2 ∙ 𝜂𝑠𝑡

+  𝑐𝑉2𝑋 

 

where 𝑝̃𝐴𝑅𝐵 is the average predicted price of the EV_ARBITRAGE bids not yet 

matched. 

 

Offers to buy heat 

 

HEAT_DEMAND 𝑚𝑖𝑛(𝑝̃𝑝𝑜𝑤𝑒𝑟 , 𝑝ℎ𝑒𝑎𝑡,𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙  ) where 𝑝̃𝑝𝑜𝑤𝑒𝑟 is predicted power price and 

𝑝ℎ𝑒𝑎𝑡,𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 is the price to generate more heat locally. 

 

Asks to sell heat 

 

HEAT_FROM_RSOC Where corresponding power is unmatched: 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶𝑡ℎ
 

 

Where corresponding power is matched at price 𝒑𝒑𝒐𝒘𝒆𝒓: 

 
𝑝𝐻2

𝜂𝑆𝑂𝐹𝐶𝑡ℎ
− 
𝑝𝑝𝑜𝑤𝑒𝑟 ∙ 𝜂𝑆𝑂𝐹𝐶 ∙ 𝜂𝑖𝑛𝑣

𝜂𝑆𝑂𝐹𝐶𝑡ℎ
 

 

HEAT_FROM_ASHP Where corresponding power has not been obtained: 
𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙

𝐶𝑂𝑃
 

 

Where corresponding power has been obtained at price 𝒑𝒑𝒐𝒘𝒆𝒓: 

 
𝑝𝑝𝑜𝑤𝑒𝑟
𝐶𝑂𝑃

 

 

 

Submitted prices 

Some auction participants submit their truthful valuations (or ‘limit’ prices) with their bids, as per 

Table 7.4. This is termed an ‘aggressive’ strategy, since it maximises the chance of making a trade, 

possibly at the expense of obtaining a less favourable price. Other participants are ‘zero-intelligence’ 

(Z.I.) bidders. Z.I. bidders submit a reserve price uniformly distributed between their truthful reserve 

price and an upper or lower bound price. For bids to buy power, this means: 

𝑝𝑟𝑒𝑠 ~ 𝑈(𝑝𝑔𝑟𝑖𝑑_𝐹𝐼 , 𝑝𝑡𝑟) (Eqn. 7.9) 

 

For bids to sell power: 

𝑝𝑟𝑒𝑠 ~ 𝑈(𝑝𝑡𝑟, 𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙  ) (Eqn. 7.10) 

 

For bids to buy heat: 

𝑝𝑟𝑒𝑠  ~ 𝑈(0, 𝑝𝑡𝑟) (Eqn. 7.11a) 
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For bids to sell heat: 

𝑝𝑟𝑒𝑠 ~ 𝑈(𝑝𝑡𝑟,  𝑝𝑔𝑟𝑖𝑑_𝑟𝑒𝑡𝑎𝑖𝑙) (Eqn. 7.11b) 

  

 

7.3.3.6 Flexible bidding by the EV  

For the charge and discharge of the EV battery, it is assumed that bidding can be more flexible than 

the strategy dictated by optimisation. The timeslots are partitioned into availability periods 𝐴𝑖 

representing distinct periods when the vehicle is available (long availability periods may also be 

subdivided). The amount to buy or sell from the battery is then calculated for the period as a whole, 

using the optimisation output, as per equations 7.12 and 7.13.  

𝐸𝑏𝑢𝑦,𝐸𝑉
𝐴𝑖 = ∑ 𝐸𝑏𝑢𝑦,𝐸𝑉,𝑡

𝑡∈𝐴𝑖

 (Eqn. 7.12) 

𝐸𝑠𝑒𝑙𝑙,𝐸𝑉
𝐴𝑖 = ∑ 𝐸𝑠𝑒𝑙𝑙,𝐸𝑉,𝑡

𝑡∈𝐴𝑖

 (Eqn. 7.13) 

The bidder then places a ‘group’ of offers or asks across multiple timeslots of the availability period. 

These include the bids specified by the optimiser, as well as backup bids with a total volume of up to 

𝑟𝑏𝑢 ∙ 𝐸𝑏𝑢𝑦,𝐸𝑉
𝐴𝑖  or 𝑟𝑏𝑢 ∙ 𝐸𝑠𝑒𝑙𝑙,𝐸𝑉

𝐴𝑖  where 𝑟𝑏𝑢 is a backup ratio randomly chosen by each auction participant. 

Since the total volume of the bids is now greater than required, superfluous bids must be cancelled 

once the targeted amount is secured for the availability periods. Because the timeslots of the auction 

are settled sequentially, there is opportunity after the settlement of each timeslot to make these 

adjustments. Note again that the market does not allow the submission of bids that are flexible by 

time. Instead, the flexibility is achieved entirely by the bidder’s strategy of placing additional bids and 

cancelling those which become superfluous. 

Since the ‘backup’ bids have not been specified by the optimiser, the headroom to charge or discharge 

the battery has to be checked at each timeslot, against any bids to buy or sell that have already 

succeeded, and any energy planned to exchange between EV and house.  

7.3.3.7 Protecting state-of-charge limits 

Bids to supply energy from energy storage (the EV battery or TES) may be contingent on bids to buy 

energy at a separate timeslot. If only a subset of the bids placed are successful, then the state-of-

charge limits of the storage could be infringed (in practice this could be prevented via last-minute 

trading at the grid tariffs, but this would be financially unattractive). To avoid this situation, the 

volume of bids can be trimmed to ensure that the future state-of-charge remains within limits. 

Following the settlement of the internal auctions, the ‘achieved’ storage profile 𝐸̂𝑠𝑡𝑜𝑟𝑒𝑑,𝑡 is obtained 

for the EV battery (or any other energy storage device). That is, the profile achievable with energy 

already bought / sold on the P2P market, and energy shared within the house, that the internal market 

has assigned to the storage. 𝐸̂𝑐𝑜𝑛𝑠,𝑠𝑡,𝑡 ∈ (0, 𝐸𝑐𝑜𝑛𝑠,𝑠𝑡,𝑡 ) and 𝐸̂𝑔𝑒𝑛,𝑠𝑡,𝑡 ∈ (0, 𝐸𝑔𝑒𝑛,𝑠𝑡,𝑡 ) are respectively 

the amounts of power consumption and generation cleared by the internal auction for the storage 

device d. The achieved storage profiles is then defined as follows: 
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𝐸̂𝑠𝑡𝑜𝑟𝑒𝑑,𝑡̂ 

= 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,0 +∑{𝜂𝑖𝑛𝑣 ∙ 𝜂𝑠𝑡 ∙ 𝐸̂𝑐𝑜𝑛𝑠,𝑑,𝑡 − 
1

𝜂𝑖𝑛𝑣
𝐸̂𝑔𝑒𝑛,𝑑,𝑡  + 𝐸𝑑𝑟𝑖𝑣𝑒,𝑡 − 𝐸𝑑𝑟𝑖𝑣𝑒,𝑡  }

𝑡̂

𝑡=1

 

(Eqn. 7.14) 

 

Before the auction for timeslot t is settled, each participant checks the headroom for charge and 

discharge: 

𝐵𝑈𝑌𝑚𝑎𝑥 = min
𝑡̂ ≥𝑡

(𝐶𝑠𝑡 − 𝐸̂𝑠𝑡𝑜𝑟𝑒𝑑,𝑡̂  ) ∙
1

𝜂𝑖𝑛𝑣 ∙ 𝜂𝑠𝑡
   

(Eqn. 7.15) 

𝑆𝐸𝐿𝐿𝑚𝑎𝑥 =  min(min
𝑡̂ ≥𝑡

(𝐸̂𝑠𝑡𝑜𝑟𝑒𝑑,𝑡̂  ) , 𝐸̂𝑠𝑡𝑜𝑟𝑒𝑑,𝑡𝑙𝑎𝑠𝑡  − 𝐸𝑚𝑖𝑛_𝑓𝑖𝑛𝑎𝑙) ∙ 𝜂𝑖𝑛𝑣  

Note that, if there is a constraint 𝐸𝑚𝑖𝑛_𝑓𝑖𝑛𝑎𝑙 on the final amount of energy stored, this must also be 

factored in. The volume of bids for energy to charge the storage are then compared to the value of 

𝐵𝑈𝑌𝑚𝑎𝑥 and reduced if necessary; asks are compared to 𝑆𝐸𝐿𝐿𝑚𝑎𝑥 in the same way. Conversely, bids 

that were previously reduced in this way may be restored to their original value following the success 

of ‘dependent’ bids. Bids with volume reduced to zero are not submitted to the auction, but still 

retained in case they can be activated in future rounds. 

7.3.4 MILP models for devices 

 

In this section details of the constraints that describe particular devices are given. Recall that 𝐻𝑔𝑒𝑛, 

𝐸𝑔𝑒𝑛, 𝐻𝑐𝑜𝑛𝑠 and 𝐸𝑐𝑜𝑛𝑠 are the main variables interfacing the rest of the model. 

7.3.4.1 ASHP 

COP is assumed dependent only on the outdoor temperature, with no dependence on the load point. 

For simplicity, full modulation to arbitrary partial load is assumed to be possible. 

𝐻𝑔𝑒𝑛,𝑎𝑠ℎ𝑝,𝑡 = 𝐶𝑂𝑃𝑡 ∙ 𝐸𝑐𝑜𝑛𝑠,𝑎𝑠ℎ𝑝,𝑡 (Eqn. 7.16) 

0 ≤  𝐸𝑐𝑜𝑛𝑠,𝑎𝑠ℎ𝑝,𝑡 ≤ ∆𝑡 ∙ 𝑃𝑎𝑠ℎ𝑝
𝑚𝑎𝑥 (Eqn. 7.17) 

 

7.3.4.2 EV battery 

Optimisation of the EV battery includes two important time series inputs: the energy required for 

driving 𝐸𝑑𝑟𝑖𝑣𝑒,𝑡 and the availability 𝛼𝑡 which takes a value in [0,1] for every timeslot. Decision 

variables are the AC power consumed by the battery 𝐸𝑐𝑜𝑛𝑠,𝐸𝑉,𝑡, AC power generated 𝐸𝑔𝑒𝑛,𝐸𝑉,𝑡, and 

power consumed from rapid charging while away from the house, 𝐸𝑟𝑎𝑝𝑖𝑑,𝑡. Penalty terms include the 

cost of rapid charging and the assumed cost for discharging the battery V2X. Generally V2X 

discharge will not happen except when 𝑝𝑝𝑜𝑤𝑒𝑟,𝑒𝑥𝑝,𝑡 > 𝑐𝑉2𝑋/𝜂𝑖𝑛𝑣. 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡+1 = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡 + 𝜂𝑖𝑛𝑣 ∙ 𝜂𝑠𝑡 ∙ 𝐸𝑐𝑜𝑛𝑠,𝐸𝑉,𝑡 + 𝜂𝑠𝑡 ∙ 𝐸𝑟𝑎𝑝𝑖𝑑,𝑡 − 
1

𝜂𝑖𝑛𝑣
∙ 𝐸𝑔𝑒𝑛,𝐸𝑉,𝑡

− 𝐸𝑑𝑟𝑖𝑣𝑒,𝑡 

(Eqn. 7.18) 



136 

 

 

0 ≤ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡+1 ≤  𝐶𝐸𝑉 (Eqn. 7.19) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑,𝑡𝑙𝑎𝑠𝑡 ≥ 𝐸𝑚𝑖𝑛_𝑓𝑖𝑛𝑎𝑙 (Eqn. 7.20) 

𝐸𝑟𝑎𝑝𝑖𝑑,𝑡 ≤ 50 ∙ (1 − 𝛼𝑡  ) (Eqn. 7.21) 

𝑃𝐸𝑁𝐸𝑉,𝑡 = 𝑐𝑟𝑎𝑝𝑖𝑑 ∙ 𝐸𝑟𝑎𝑝𝑖𝑑,𝑡 + 𝑐𝑉2𝑋 ∙ 𝐸𝑔𝑒𝑛,𝐸𝑉,𝑡 (Eqn. 7.22) 

 

7.3.4.3 rSOC 

The rSOC may operate in either SOFC or SOEC mode. Operation is described principally by decision 

variables 𝐸𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡, 𝐸𝑐𝑜𝑛𝑠,𝑟𝑆𝑂𝐶,𝑡 and 𝐻𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡 with hydrogen consumption / production derived 

from these. Binary variables 𝑏𝑆𝑂𝐹𝐶 and 𝑏𝑆𝑂𝐸𝐶 describe the mode of the rSOC, and enable minimum 

partial loads to be imposed. Switching between modes incurs a penalty described by 𝑃𝐸𝑁𝑟𝑆𝑂𝐶,𝑡  It is 

assumed that ‘hot idle’ operation corresponds to the lowest possible partial load for SOFC mode or 

SOEC mode; full cycling of the rSOC to a cold, fully off state is not considered in the context of the 

MILP formulation. Note that the rSOC is assumed to be able to dump heat if necessary. 

∆𝑡 ∙ 𝑃𝑆𝑂𝐹𝐶
𝑚𝑖𝑛 ∙ 𝑏𝑆𝑂𝐹𝐶,𝑡 ≤ 𝐸𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡 ≤ ∆𝑡 ∙ 𝑃𝑆𝑂𝐹𝐶

𝑚𝑎𝑥 ∙ 𝑏𝑆𝑂𝐹𝐶,𝑡 (Eqn. 7.23) 

∆𝑡 ∙ 𝑃𝑆𝑂𝐸𝐶
𝑚𝑖𝑛 ∙ 𝑏𝑆𝑂𝐸𝐶,𝑡 ≤ 𝐸𝑐𝑜𝑛𝑠,𝑟𝑆𝑂𝐶,𝑡 ≤ ∆𝑡 ∙ 𝑃𝑆𝑂𝐸𝐶

𝑚𝑎𝑥 ∙ 𝑏𝑆𝑂𝐸𝐶,𝑡 (Eqn. 7.24) 

𝑏𝑆𝑂𝐹𝐶,𝑡 + 𝑏𝑆𝑂𝐸𝐶,𝑡 = 1 (Eqn. 7.25) 

0 ≤ 𝐻𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡 ≤ 
𝜂𝑆𝑂𝐹𝐶𝑡ℎ
𝜂𝑆𝑂𝐹𝐶

𝐸𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡 
(Eqn. 7.26) 

𝐻2𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡 = 𝐸𝑐𝑜𝑛𝑠,𝑟𝑆𝑂𝐶,𝑡/𝜂𝑆𝑂𝐸𝐶   (Eqn. 7.27) 

𝐻2𝑐𝑜𝑛𝑠,𝑟𝑆𝑂𝐶,𝑡 = 𝐸𝑔𝑒𝑛,𝑟𝑆𝑂𝐶,𝑡/𝜂𝑆𝑂𝐹𝐶 (Eqn. 7.28) 

𝑃𝐸𝑁𝑟𝑆𝑂𝐶,𝑡+1 ≥ 𝑐𝑠𝑤𝑖𝑡𝑐ℎ ∙ (𝑏𝑆𝑂𝐹𝐶,𝑡+1 − 𝑏𝑆𝑂𝐹𝐶,𝑡 )    (Eqn. 7.29) 

𝑃𝐸𝑁𝑟𝑆𝑂𝐶,𝑡+1 ≥ 𝑐𝑠𝑤𝑖𝑡𝑐ℎ ∙ (𝑏𝑆𝑂𝐸𝐶,𝑡+1 − 𝑏𝑆𝑂𝐸𝐶,𝑡  )    (Eqn. 7.30) 

 

7.3.4.4 Space heating 

Buildings consist of two thermal masses, representing the building interior and building walls. 

Building archetypes consist of the thermal masses of these 𝐶𝑖 and 𝐶𝑤, and heat transfer coefficients 

𝐾𝑖↔𝑤, 𝐾𝑖↔𝑒, 𝐾𝑤↔𝑒, between the thermal masses and the environment. Heat 𝐻𝑠ℎ,𝑡 representing space 

heating output is added to the building interior. A trapezoidal method is used to discretize the 

resulting system of ODEs. Demand temperature is given by 𝑇𝑑𝑒𝑚,𝑡 while 𝑇𝑚𝑎𝑥,𝑡 gives an upper 

temperature limit. Penalty terms 𝑃𝐸𝑁𝑠ℎ,𝑡 are defined for infringing these limits, with 𝑐𝑠ℎ representing 

the cost per degree-hour of temperature infringement. 

𝐻𝑖↔𝑤,𝑡 = 0.5 ∙ ∆𝑡 ∙ 𝐾𝑖↔𝑤(𝑇𝑖,𝑡 + 𝑇𝑖,𝑡+1 − 𝑇𝑤,𝑡 − 𝑇𝑤,𝑡+1)          (Eqn. 7.31) 

𝐻𝑖↔𝑒,𝑡 = 0.5 ∙ ∆𝑡 ∙ 𝐾𝑖↔𝑒(𝑇𝑖,𝑡 + 𝑇𝑖,𝑡+1 − 𝑇𝑒,𝑡 − 𝑇𝑒,𝑡+1)          (Eqn. 7.32) 

𝐻𝑤↔𝑒,𝑡 = 0.5 ∙ ∆𝑡 ∙ 𝐾𝑤↔𝑒(𝑇𝑤,𝑡 + 𝑇𝑤,𝑡+1 − 𝑇𝑒,𝑡 − 𝑇𝑒,𝑡+1)          (Eqn. 7.33) 

𝑇𝑖,𝑡+1 = 𝑇𝑖,𝑡 +  (𝐻𝑠ℎ,𝑡 + 𝐻𝑔𝑎𝑖𝑛,𝑡 − 𝐻𝑖↔𝑤,𝑡 − 𝐻𝑖↔𝑒,𝑡)/𝐶𝑖     (Eqn. 7.34) 

𝑇𝑤,𝑡+1 = 𝑇𝑤,𝑡 +  (𝐻𝑖↔𝑤,𝑡 − 𝐻𝑤↔𝑒,𝑡)/𝐶𝑤 (Eqn. 7.35) 

𝑃𝐸𝑁𝑠ℎ,𝑡 ≥ 0 (Eqn. 7.36) 
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𝑃𝐸𝑁𝑠ℎ,𝑡 ≥ ∆𝑡 ∙ 𝑐𝑠ℎ ∙ (𝑇𝑑𝑒𝑚,𝑡 − 𝑇𝑖,𝑡) (Eqn. 7.37) 

𝑃𝐸𝑁𝑠ℎ,𝑡 ≥ ∆𝑡 ∙ 𝑐𝑠ℎ ∙ (𝑇𝑖,𝑡 − 𝑇𝑚𝑎𝑥,𝑡)( (Eqn. 7.38) 

 

7.3.4.5 TES 

Sensible thermal storage with hot water is modelled as a single thermal mass. This is described by 

variables 𝑇𝑡𝑒𝑠,𝑡, 𝐻𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 and 𝐻𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡. Losses 𝐻𝑙𝑜𝑠𝑠,𝑡𝑒𝑠,𝑡 are assumed proportional to the difference 

in temperature 𝑇𝑡𝑒𝑠 − 𝑇𝑖 between the storage and the house interior.  These losses are added to the 

gains term 𝐻𝑔𝑎𝑖𝑛,𝑡 of the space heating model. 𝐶𝑡𝑒𝑠 gives the constant heat capacity of the storage in 

kWh/°C. Using a trapezoidal method to account for any variation in 𝑇𝑖 over a timestep, the 

temperature of the storage evolves as specified in equations 7.39 and 7.40. Imposing a minimum 

usable temperature 𝑇𝑡𝑒𝑠
𝑢𝑠𝑎𝑏𝑙𝑒 requires the introduction of binary variables 𝑏𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 and 𝑏𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 

together with the constraints given in equations 7.42 – 7.44 and 7.46. 

 

𝛬 ≔  𝑒𝑥𝑝 (−
∆𝑡 ∙ 𝐾𝑡𝑒𝑠↔𝑖
𝐶𝑡𝑒𝑠

) 
(Eqn. 7.39) 

𝑇𝑡𝑒𝑠,𝑡+1 =  𝛬 ∙ 𝑇𝑡𝑒𝑠,𝑡 + (1 −  𝛬) ∙ (
𝐻𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 − 𝐻𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡

∆𝑡 ∙ 𝐾𝑡𝑒𝑠↔𝑖
+ 0.5 ∙ 𝑇𝑖,𝑡 +  0.5 ∙ 𝑇𝑖,𝑡+1) 

(Eqn. 7.40) 

𝐻𝑙𝑜𝑠𝑠,𝑡𝑒𝑠,𝑡 = 𝐶𝑡𝑒𝑠 ∙ (𝑇𝑡𝑒𝑠,𝑡 − 𝑇𝑡𝑒𝑠,𝑡+1) − 𝐻𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 + 𝐻𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡   (Eqn. 7.41) 

𝑏𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 + 𝑏𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 ≤ 1 (Eqn. 7.42) 

𝐻𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 ≤ 𝑏𝑐𝑜𝑛𝑠,𝑡𝑒𝑠,𝑡 ∙ ∆𝑡 ∙ 𝑃𝑡𝑒𝑠
𝑚𝑎𝑥 (Eqn. 7.43) 

𝐻𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 ≤ 𝑏𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 ∙ ∆𝑡 ∙ 𝑃𝑡𝑒𝑠
𝑚𝑎𝑥 (Eqn. 7.44) 

𝑇𝑡𝑒𝑠
𝑚𝑖𝑛 ≤ 𝑇𝑡𝑒𝑠,𝑡 ≤ 𝑇𝑡𝑒𝑠

𝑚𝑎𝑥 (Eqn. 7.45) 

𝑇𝑡𝑒𝑠,𝑡+1 ≥ 𝑏𝑔𝑒𝑛,𝑡𝑒𝑠,𝑡 ∙ 𝑇𝑡𝑒𝑠
𝑢𝑠𝑎𝑏𝑙𝑒  (Eqn. 7.46) 

 

7.3.4.6 Resistive heater 

A resistive heater in the model converts electrical power to heat with 100% efficiency. 

𝐻𝑐𝑜𝑛𝑠,𝑟ℎ,𝑡 = 𝐸𝑐𝑜𝑛𝑠,𝑟ℎ,𝑡 (Eqn. 7.47) 

0 ≤ 𝐸𝑐𝑜𝑛𝑠,𝑟ℎ,𝑡 ≤ ∆𝑡 ∙ 𝑃𝑟ℎ
𝑚𝑎𝑥 (Eqn. 7.48) 
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7.4. Results 

7.4.1 Case study 

 

Figure 7.3. Shows the possible devices included in houses (not all houses contain all devices). 1. 

PV generation. 2. EV. 3. Inflexible electric load. 4. ASHP. 5. rSOC. 6. Heat demand model. 7. 

TES. 25 houses with varying devices are included in the case-study. 

 

To investigate the efficacy of the P2P market, we employ a case study of 25 houses, containing 

various devices (see Figure 7.3). These are assumed to share the same circuit in the electrical 

distribution grid. Where heat trading is considered, the houses are assumed linked by a small 4th 

generation heat network. 

The energy sharing neighbourhood is notionally located in south-east England with climate data 

drawn from UKECN [265] and inflexible load data from UKPN [209]. 15 houses are randomly 

assigned to have 6 kWp solar PV systems; these are evenly split between east-, south- and west-facing 

systems. Generation is calculated from irradiance data and the azimuth and tilt of the panels, using the 

model reported in [214]. 

All houses have one EV, with a trip schedule drawn from the UK National Travel Survey 2017 – 2019 

[189]. The fuel economy of the vehicles is assumed to depend strongly on outdoor temperature; for 

more details of the data sample and EV model, see [248]. EV chargers have 7 kW capacity and for 

simplicity are assumed operable at any partial load. Furthermore, the possibility to discharge the EV 

battery V2H or V2G is always permitted.  

Heat demand is modelled by adopting the CREST building archetype for improved semi-detached 

buildings, with building parameters varied by ± 20% for additional diversity [266]. Space heating 

demand temperatures are uniformly distributed between 17.5°C and 22°C; 50% of houses are 

assigned morning and evening heating patterns, while 50% are assigned all day heating patterns. 13 

houses are assigned to have ASHP heating systems, and 12 have rSOCs. ASHPs have capacity 3 kWe; 

COP is assumed to be 38% of the ideal COP operating between the outdoor air temperature and a 

flow temperature of 55°C, an assumption based on reference [267]. The heat pumps are assumed to be 

accompanied with TES consisting of 300 litres of hot water, operating between an upper temperature 

of 80°C and a minimum usable temperature of 40°C. Insulation is 10cm thick with conductivity 0.03 

W/mK; thermal losses are assumed to flow into the internal node of the space heating model; see also 

the MILP model in Section 7.3.4.5. 



139 

 

 

The rSOC is assigned a capacity in SOFC mode of 2.5 kWe. We assign 𝜂𝑆𝑂𝐹𝐶 as 16.7 kWhe/kgH2 and 

𝜂𝑆𝑂𝐹𝐶𝑡ℎ as 13.3 kWhe/kgH2, for a total CHP efficiency of 90%LHV. 𝜂𝑆𝑂𝐸𝐶 is assigned as 48 kWhe/kgH2, 

so that used as an energy storage device, the rSOC has round-trip efficiency of just under 35%. 

Capacity in SOEC mode is taken as 7.5 kWe. In both modes, the rSOC is assumed to have a partial 

load range of 10 – 100%. The rSOC is sized as a compromise between the peak electrical load and the 

peak space heating load of around 5 kW; for peaks in heat demand, either resistive heat or the heat 

network connection must be employed. See also the MILP rSOC model in Section 7.3.4.3. 

Simulations were run over the duration of one week. The first week simulated was a spring week with 

moderate heat demand and moderate solar resource; the second was a winter week with high heat 

demand and low solar resource. The specifics are given in Table 7.5. Note that a ‘heating degree day’ 

(HDD) is calculated as the gap between a day’s mean temperature and 15.5°C. 

 

(a) 

 

(b) 

Figure 7.4. Irradiance and temperature for (a) the winter week and (b) the spring week.  

 

Table 7.5. Climate weeks for simulation. 

Season Sample week 

start date 

Mean GHI 

(W/m2) 

Mean HDD 

(°C) 

Winter 9th Jan 2013 22.1 14.5 

Spring 2nd April 2013 159.2 12.7 

   

Three scenarios are considered: G_ONLY, where only grid trade of electricity is possible, and no 

trading in heat; P2P_P, where P2P trading of power only occurs, using the double auction approach 

detailed in the previous section; and P2P_H_P, where P2P trading of both heat and power is available. 

The grid retail tariff in this work is assumed to be a constant £0.28 / kWh [268]; the grid feed-in tariff 

is £0.075 / kWh [269]. The cost of rapid charging for EVs is set at £0.0446 / kWh [246], [270]. We 

assume that the price of hydrogen is fixed in the case study, at £3.50 / kg [271], [272]. 
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7.4.2 Results 

 

We focus initially on the spring week in order to explore and showcase the functioning of the market. 

Figure 7.5 shows the volume of (a) power and (b) heat traded on April 2nd under P2P_H_P. The day’s 

timeslots are shown vertically, and the rounds of the auction horizontally. Importantly, trading comes 

to an end after finite time; this is expected, since re-trading of energy already bought / sold is not 

considered for this work. Here, no transactions are taking place by the 25th round of trading; a similar 

outcome was observed for all days and seasons. Note that heat trading continues for longer than 

power trading. One reason for this is that ASHP heat becomes available on the market after the 

corresponding power has been acquired. 

 

(a) 

 

(b) 

Figure 7.5. Shows progress of the double auction for April 2nd, the first day of the spring week, under 

P2P_H_P. Rounds of the auction are shown left to right, and timeslots of the day from top to bottom. 

(a) power trading; (b) heat trading. Timeslot 0 corresponds to 5 a.m. 

 

 

For the spring week under P2P_P, 9400 bids to trade power were matched by the P2P auction, 

representing a turnover of 2.95 MWh, with an average price of £0.220 / kWh. Figure 7.6 (a) shows the 

diurnal P2P price variation, with heat demand and inflexible electrical load shown for comparison. 

The variation in electricity price is relatively modest; the price peak is roughly coincident with peak 

inflexible demand at 7 p.m, whilst availability of solar power depresses the price during the daytime. 
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Figure 7.7 shows the volume of (a) offers and (b) asks matched by the P2P_P market, by category, 

averaged over the spring week. The purchase of power for EV charging clearly peaks during the 

lowest priced period, particularly for the non-essential (‘arbitrage’) charging. ASHPs also purchase 

power to charge TES during the low price period. Transactions to supply inflexible load and essential 

EV charging continue all day, with generation from the rSOC dominating the supply side. Figure 7.9 

shows the energy flows for P2P_P in the second column. When comparing with G_ONLY, the 

following observations can be made: 

1. The quantity of grid imports is greatly reduced, with generation from the rSOC filling the 

gap. 

2. Use of the rSOC’s SOEC mode is decreased. Houses with solar surpluses find it more 

profitable to sell power to peers rather than manufacture H2. 

3. EV charging increases during the peak in solar generation, replacing the SOEC use. 

4. Use of resistive heat is decreased. This is because the rSOCs in SOFC mode can now 

follow their household heat load, exporting the corresponding power to peers. 

For the spring week under P2P_H_P, 9100 bids to trade power were successful, representing a 

turnover of 3.6 MWh; for heat, 8200 bids representing 2.9 MWh were matched (compare the total 

heat demand of 5.9 MWh). The average price of power was virtually unchanged from P2P_P at 

£0.226 / kWh; the average heat price was £0.078 / kWh. Figure 7.6 (b) shows the diurnal price 

variation for P2P power and heat; variations in heat price clearly respond to the demand. 

Figure 7.8 shows the volumes of successful asks and offers under P2P_H_P. As before, EV charging 

increases in response to peak solar generation. Large amounts of power are purchased by ASHPs in 

order to re-export the heat. ASHP dominates the supply side of heat market during the day, whereas 

rSOCs are more likely to export heat at night when (a) COP is lower for the ASHPs, making them less 

competitive and (b) local heat demand is more likely to be low. 1.97 MWh of ASHP heat was 

exported overall, at an average price of £0.077 / kWh; for rSOC the corresponding figures were 0.90 

MWh, and £0.081 / kWh. Note that the cost of rSOC heat is well below the cost of the corresponding 

hydrogen, which is possible thanks to the high average value (£0.228 / kWh) of the corresponding 

power on the P2P market. Some import of heat in order to charge TES occurs during price troughs; 

this heat is always discharged locally, as no heat is observed to be sold back to the network. The 

impact of heat trading on the energy flows can be seen in Figure 7.9; the most significant impact is 

that the use of resistive heat now almost completely ceases, as heat that cannot be generated locally 

can instead be imported. Heat trading also appears to have enabled increased V2X discharge from the 

EVs, the reasons for which are not wholly clear. Use of TES is decreased, as exporting heat P2P may 

be more profitable than storing it. 
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(a) (b) 

 

 
Figure 7.6. Daily P2P price variations averaged across the spring week. (a) P2P_P (b) P2P_H_P 

 

(a) (b) 

 

 

Figure 7.7. Electricity trades matched under P2P_P for the spring week. (a) offers (b) asks. Shown are the volumes 

transacted as a daily profile averaged across the week, with the average P2P prices for comparison. 
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(a) (b) 

 

 

(c) (d) 

  
Figure 7.8. Trades matched under P2P_H_P for the spring week. Shown are the volumes transacted as a daily profile 

averaged across the week, with the average P2P prices for comparison. (a) electricity offers (b) electricity asks (c) heat 

offers (d) heat asks. 
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G_ONLY P2P_P P2P_H_P 

 

(a) Mean daily electricity consumption 

   
 

(b) Mean daily electricity generation 

   
 

(c) Mean daily heat consumption 

   
 

(d) Mean daily heat generation 

   
Figure 7.9. Average daily energy flow during the spring week, for G_ONLY (left), P2P_P (centre) and P2P_H_P 

(right). Shown are the generation and consumption of both heat and electricity.  

Note that timeslot 0 corresponds to 5 a.m. 
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7.4.3 Savings and participant willingness 

 

We now evaluate the economic advantages of the P2P markets; results from both spring and winter 

are considered. Figure 7.10 gives the average net bill for houses over (a) the winter week, and (b) the 

spring week; net bills comprise net P2P payments, net grid payments, and net hydrogen payments. 

Both trading systems enable the average house to save money relative to G_ONLY. For the winter 

week, the mean saving is £9.52 under P2P_P and £19.59 under P2P_H_P, and participant willingness 

is 84% and 88% respectively. rSOC houses appear to enjoy the greater financial benefits, but ASHP 

houses also profit. For the spring week, the mean saving is £16.99 under P2P_P and £16.69 under 

P2P_H_P, with participant willingness of 100% and 84%. From this it appears that the possibility to 

trade heat may not achieve additional financial savings during the spring weather conditions, although 

there may still be technical benefits. 

7.4.4 Technical and environmental impact 

 

Figure 7.13 shows the impact of the trading systems on the load duration curve for electrical grid 

interaction. For both winter and spring, P2P_P achieves a notable decrease in peak load, and 

P2P_H_P achieves a further reduction. Specifically, under G_ONLY, grid imports peak at 44.5 kW in 

winter and 35.3 kW in spring. P2P_P sees decreases of 20% (to 35.5 kW) and 44% (to 20.0 kW) for 

winter and spring respectively. P2P_H_P sees decreases of 44% (to 24.8 kW) and 66% (to 12.0 kW) 

for winter and spring respectively. Conversely, export of electricity to the grid becomes somewhat 

more common under P2P trading. This is especially the case under P2P_H_P, where for the rSOC, the 

opportunity to earn money by exporting heat P2P means that exporting power at the feed-in tariff is 

more viable. Under P2P_P the export of power to grid is more questionable and may indicate 

imperfections in houses’ bidding strategies. 

Note that grid interaction is a relatively small proportion of overall energy flow (see Figure 7.9); 

energy is principally obtained from hydrogen. P2P trading increases the usage of hydrogen, as the 

rSOCs are able to export energy to peers, and therefore run at a higher average load factor (see 

Figures 7.14, 7.12 (a)). The UK marginal GHG intensity for grid electricity is estimated at 0.269 

kgCO2e / kWh for 2022 [273]. Under the assumption that all hydrogen purchased is green hydrogen, 

the GHG emissions for the 25 houses are proportional to the grid imports. The highest GHG intensity 

occurs during the winter week under G_ONLY, averaging 5.93 kgCO2e per house per day. P2P_P 

cuts this to 2.81 kgCO2e (-53%), P2P_H_P to 1.88 kgCO2e (-68%). The respective figures for spring 

are 3.29 kgCO2e under G_ONLY; 0.447 kgCO2e (-86%) and 0.134 kgCO2e (-96%). 

  



146 

 

 

 

(a) (b) 

  
Figure 7.10. Average net household bills for (a) the winter week and (b) the spring week; these consist of net P2P 

payments, net grid payments, and net hydrogen payments.   

 

(a) (b) 

  
Figure 7.11. Participant willingness for (a) the winter week and (b) the spring week.  

 

 

  

(a) (b) (c) 

 
  

Figure 7.12. Impact of P2P trading on the rSOC and resistive heat use. (a) Average load factor for 

SOFC mode over one week. (b) rSOC heat used. (c) Resistive heat used. 
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(a) (b) 

  

  
Figure 7.13. Load duration curves for the grid connection in (a) winter and (b) spring, for the three trading setups. 

 

(a) (b) 

  
Figure 7.14. Imports of energy to the neighbourhood. (a) Grid electricity; (b) hydrogen. 

 

7.5. Discussion and future work 
 

The advantages of the P2P power trading market (P2P_P) are clear from these results, with the 

average house making significant weekly savings in both the climate weeks. Whilst PV and EVs play 

a part (see Figure 7.9) the rSOC is clearly the driving force, consuming more hydrogen in order to 

export power to peers at the P2P market price. The merits of the heat trading are more nuanced. In the 

cold winter week, P2P_H_P almost doubled the savings of an average house compared to P2P_P; 

however, in the spring week additional savings were not obtained. On the other hand, the burden on 

the grid connection was reduced both in terms of total and peak energy import. 

Participant willingness for engagement with the P2P market was generally under 100%, indicating 

that it was possible for households to lose money via their attempts to trade energy. This possibility is 

somewhat inevitable, given that actual clearing prices may always differ from predicted prices. Also, 

whenever passive bidding takes place, there is the possibility of sub-optimal outcomes – for instance, 
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an offer of type ESSENTIAL_LOAD could be outbid by an offer of type EV_ARBITRAGE. More 

sophisticated price prediction could perhaps help with participant willingness, and it may be that the 

bidding and pricing strategies could be further improved. A possible extension of the model could see 

the CDA preceded by a one-off double auction, allowing complex orders as found on the Nordpool 

and EPEX exchanges. 

It is worth noting that the P2P power market in this work experienced almost universal ‘seller’s 

market’ conditions, indicating an overall scarcity of power, and resulting in a P2P price closer to the 

retail tariff than the feed-in tariff. 6 kWp PV generation in houses was clearly insufficient to cause 

major downward pressure on prices, despite the 6 kWp figure being towards the upper end of what is 

viable for average UK housing stock (the actual average is 3 kWp [1]). The addition of wind power 

into the generation mix might add interesting dynamics to the market – however, wind power is not 

generally very feasible in proximity to the built environment. Perhaps of more interest would be to use 

a variable grid tariff (the grid tariff was constant in this work) which could reflect the abundance of 

wind power on the wider electricity network. 

A related issue to the prevailing seller’s market conditions was the negligible use of SOEC mode of 

the rSOC. For manufacture of hydrogen to be optimal, there needs to be an abundance of cheap 

energy generation. For the spring week under G_ONLY, only 2.6 kg of hydrogen was produced via 

water electrolysis, compared to 133 kg consumed by SOFC mode. With the introduction of P2P 

trading, even this hydrogen production was mainly eliminated, as it became more profitable to export 

energy surpluses to peers. Even when we tried a run of the model over a high irradiance summer week 

with negligible heat demand, demand for hydrogen was still an order of magnitude higher than 

production. This seems to indicate that it is difficult to have enough generation in a distributed energy 

setting to justify running electrolysis.  

All energy trading in this work was carried out on a day-ahead basis. In reality, trading would need to 

continue throughout the day, to balance imperfections in forecasting. The extension of the model to 

include such real-time trading should be relatively straightforward. Voltage constraints have also not 

been considered in this work (nor the analogous temperature constraints in the heat network); 

previous work such as [256] has explored such issues. 

We have not modelled the possibility of storing hydrogen locally in this work, nor the possible 

fluctuations in hydrogen price over time. This is a topic worthy of interest. The fluctuating availability 

/ price of hydrogen could provide additional incentives for P2P trading, as the relative desirability of 

procuring heat from ASHP and SOFC would see additional variation. 

7.5.1 Conclusions 

This work presented a continuous double auction P2P market for trading of power and heat in the day 

ahead. Both forms of market were successful in reducing reliance on grid electricity, and significant 

household savings were observed of the order of £10 / week; however some participants in the auction 

also incurred losses, and the availability of heat trading did not always provide an advantage over 

trading purely in power. 

Reversible solid oxide fuel cells (rSOCs) were particularly advantaged by the P2P energy markets; it 

is clear that the availability of P2P energy trading could help to incentivise the take-up of such devices 

for CHP in houses. However, the ‘reversible’ aspect of the rSOC proved insignificant, with little 

hydrogen manufactured. 
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8. Conclusions 
 

This work centred on the possible energy storage applications of reversible solid oxide cells (rSOCs). 

As seen in Chapter 2, rSOCs have some notable characteristics distinct from other electrolyser and 

fuel cells - PEM and alkaline cells being the main rival technologies. Specifically, rSOCs can operate 

electrolysis and fuel cell modes within just one device; the conversion efficiency is higher; and the 

high operational temperature leads to the possibility of combined heat and power applications. A 

sizeable body of academic work already existed considering plant design for rSOC, but higher-level 

work on applications and techno-economic analysis was found to be very rare. This work therefore 

aimed to address some of this research gap, with the rSOC in tandem with hydrogen storage 

considered as a provider of electrical energy storage. The work aimed to assess the technical and 

economic benefits of the rSOC, including in comparison with other energy storage, with an approach 

combining simulation, optimisation and agent-based modelling. 

A particular aim of the work was to consider the rSOC alongside distributed generation, electrified 

transport and electrified heat, since these three represent significant ongoing changes to the energy 

system that should not be omitted from any assessment of future technologies. Consideration of these 

also motivated the study of peer-to-peer (P2P) trading to be incorporated into the work. P2P can help 

to incentivise the shifting of demand (or generation) to allow more efficient energy use in a locality. 

Since P2P and energy storage both aim to address the problem of temporally matching energy supply 

and demand, studying both in conjunction seemed a logical approach. The various features were 

added progressively to the model, with embedded generation from Chapter 4 onwards; electric 

vehicles (EVs) from Chapter 5 onwards; P2P in chapters 6 and 7; and heat electrification in chapter 7. 

The first two publications included here (chapters 4 and 5) considered the rSOC as an electrical 

energy storage to supply residential demand for power, with rooftop PV as the embedded energy 

generation. The construction of a microgrid simulation model was detailed in these chapters, and this 

model was combined with a global optimiser in order to explore technology choice and sizing, and to 

assess techno-economics. In both chapters, the rSOC is compared to a more conventional energy 

storage technology, namely the Li-ion battery; such  comparison with alternative energy storage 

devices is missing from much of the extant literature. Electric vehicles were added to the simulation in 

Chapter 5. Both publications reached a similar conclusion: the economics for energy storage using 

rSOC, whether measured as payback period or net present value, are not attractive. Only when 

requiring the highest possible self-sufficiency is the hydrogen storage an optimal technology 

selection; even then, oversizing of generation is generally preferred where possible (for rooftop PV, of 

course, the sizing is generally constrained). For moderate increases in self-sufficiency, battery storage 

is generally preferred, and even battery storage systems will struggle to achieve positive NPV. The 

largest storage duration for the battery appears to be around 8 to 10 hours; addressing generation 

fluctuations on longer timescales did require the rSOC. 

The third publication (Chapter 6) presented an introductory exploration of P2P electricity trading. The 

P2P trading was simulated in tandem with energy storage (although the latter was provided by EV 

batteries in this chapter, with the rSOC returning only in Chapter 7). The academic literature contains 

many approaches to the design of, or simulation of, P2P markets, and it was not the objective of this 

chapter to improve on these, but rather to quantify the technical and economic benefits of the P2P 

market working with EV batteries. In fact, provision of estimates for annual household savings 

attainable from P2P is rather rare in the literature. Here these were found to be of the order £100/a, or 
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approaching 20% of pre-existing annual electricity bills. An important outcome of the work was the 

identification of a particularly strong synergy between P2P and V2H (that is, vehicle-to-home, where 

the EV battery stores energy for meeting household power requirements). Another notable outcome 

was the finding that P2P is beneficial even at very high penetrations of PV generation and EV 

ownership, somewhat contradicting results from earlier research, likely owing to the use of more 

realistic data inputs here. 

The fourth publication (Chapter 7) reunited the P2P topic with the rSOC technology. It also 

introduced the use of heat from the rSOC to supply space heating demand. A novel P2P auction was 

designed that could accommodate flexible loads (like EV charging) and energy storage, also allowing 

for trading of heat as well as power across multiple future timeslots. It was clear from this final piece 

of work that for a household scale rSOC system providing CHP the availability of a P2P trading 

market is highly beneficial, significantly reducing net running costs. The possibility of trading heat as 

well as power also showed promise, although more work is needed to confirm or refute this. 

The overarching conclusions of this work are that energy storage using rSOC is hard to justify 

financially, but that it may be a competitive solution if a high degree of self-sufficiency is required. 

P2P electricity trading, meanwhile, has undoubted potential to save money and increase the energy 

independence of localities. Furthermore, P2P markets - in addition to working well alongside EVs and 

rooftop PV - can notably increase the profitability of energy storages such as rSOC. 

 

9. Discussion and future work 
 

The potential advantages of P2P electricity trading should be considered established, in the light of a 

large body of literature, even if the details of implementation are not agreed. Whether P2P trading of 

heat could become significant is more questionable. Where the construction of heat networks makes 

such trading a possibility, it seems more likely that centralised heat generation will be in use. Even so, 

an efficient system is likely to have a variety of different heat supplies to suit different circumstances 

– such as the CHP and heat pumps considered in Chapter 7. Whilst in this work, the P2P trading 

model was only employed for trading between houses – which all had comparable assets with which 

to trade, and similar market power – the model should be readily adaptable for a situation where 

houses can bid to purchase heat from a variety of centralised sources. 

The clear next step for the work, which unfortunately was not reached within the project timescale, is 

to take the P2P energy trading model and use it to answer the sort of questions that the first two 

results chapters attempted to address: specifically the questions related to technology choice and 

sizing for a distributed energy system. Under what conditions would an rSOC be a profitable 

investment in the context of an energy sharing neighbourhood such as discussed in chapters 6 and 7? 

How should it be sized, and could hydrogen storage be sited locally? How important is the possible 

integration with heat networks to make the technology more financially attractive? The market model 

would be impossible to incorporate directly in the sort of global optimisation method employed in 

chapters 4 and 5, being computationally far too slow. However, it should be possible to employ the 

market model to create some ‘design days’ (or weeks) which could then be employed in an 

optimisation model. Two paradigms that would be of interest to compare would be rSOCs in 

individual houses, able to supply heat directly without the overhead costs of a heat network, with P2P 
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trading of power only; versus a centralised community system, where heat from the rSOC would have 

to be shared via a network. 

The ‘reversible’ nature of the rSOC did not have great impact in the market model presented in 

Chapter 7. This reflects the fact that, once demand for power, heat and transport are all accounted for, 

it is rather difficult to generate a surplus of energy in a distributed setting. Reference to Figure 6.5 is a 

good demonstration of this; even with 80% penetration of PV generation, and during a very sunny 

week, there is little surplus energy for grid export once the local demands for power and transport 

have both been addressed. Notwithstanding, there could be other incentives to store and use hydrogen 

in a distributed energy setting, even without large surpluses of local generation, and these could be the 

subject of future work. Even supposing that the future of renewable generation is centralised (e.g. 

offshore wind) there could still be an argument for transmitting wind power surpluses to downstream 

locations in the grid for electrolysis. One such argument would come from the possibility to distribute 

heat from the plant when running in the opposite (i.e. fuel cell) mode, which would be less practical 

with utility scale energy storage. A straightforward way to leverage the existing work to consider the 

local storage of national energy surpluses would be to consider a variable grid electricity tariff, which 

would fluctuate in accordance with the level of wind power as well as other market forces. A variable 

price for hydrogen could likewise be of interest in coupling the dispatch of local energy storage to the 

wider picture of energy supply and demand. 

We emphasised only the comparison between the rSOC and short-term (battery) energy storage in this 

work. It would be of interest in future to run models where alternative electrolysers and fuel cells (i.e. 

most likely PEM, the preferred technology at present) could compete for selection by an optimiser. 

This work did not consider fuel cell electric vehicles (FCEVs). This decision was made on the basis 

that the adoption of EVs has far greater momentum at present; but it could be of interest to consider 

the design of a microgrid energy system with a choice between EVs and FCEVs, along with the 

possible use of the rSOC and P2P trading. The travel model would be relatively easy to adopt for this 

purpose. 

The possibility of using industrial waste heat to boost SOEC efficiency has not been explored in detail 

in this work, other than implicitly in ‘high efficiency’ scenarios for the rSOC. The UK does in fact 

have significant quantities of waste industrial heat: 391 TWh in 2018 [274], which for context can be 

compared to 434 TWh of residential heat demand [275]. An interesting avenue of research would be 

to consider the benefits of the rSOC and hydrogen storage in the vicinity of an industrial waste heat 

source. In summer, the industrial waste heat would be used to boost the efficiency of hydrogen 

production; in winter when SOEC mode is less likely to run, the waste heat could be distributed via a 

heat network. The work completed in Chapter 7 concerning markets for heat and power could help to 

support such an investigation.  
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Epilogue 
At the commencement of this project, the average retail electricity price in the UK was around £0.13 / 

kWh, whilst gas was around £0.03 / kWh. These prices remained relatively stable, and were not 

considered by the author even to be a major source of uncertainty for calculation of economic 

indicators. The current year (2022) has proven this to be complacency. The UK price cap for 

electricity going into October is to be £0.52 / kWh, for gas, £0.15 / kWh [268].  

The relative merits of rSOC energy storage versus battery storage or other alternatives will not 

necessarily have changed much. In chapters 4 and 5, systems were sized according to the 

minimisation of CAPEX and maximisation of self-sufficiency. The conditions under which rSOC is 

preferable to a battery are likely similar to before. However, in absolute terms, the economic metrics 

for rSOC and hydrogen storage will be looking much attractive – and this will be true for a host of 

green technologies. PV uptake is already increasing [276]. Will prices remain at their elevated levels 

in the long-term? ICAEW predicts that prices will peak around the second quarter of 2023, but a fall 

back to 2021 levels is not yet foreseen [277]. If the age of cheap fossil fuels is over then many 

conclusions on the viability of renewable technologies will need to be rewritten – and not only in this 

present work. 
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