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Abstract

Research and development of new manufacturing processes require large in-
vestments of time, labour, and resources to develop new products. Tradi-
tionally, experimentation for manufacturing has been handled using Design of
Experiments or Experimental Design (DoE) such as: OVAT, Factorial Designs,
and Taguchi Orthogonal Arrays. Whilst these DoE approaches are simple to
implement, they select their full experimental budget prior to experimentation
which can lead to excessive costs in areas of low experimental value.

In new manufacturing industries such as Additive Manufacturing (AM)
experimentation is becoming increasingly expensive, whereby traditional DoE
approaches will lead to increased costs. The research challenge is to develop
data-efficient DoE methods that iteratively select experiments to maximise in-
formation gained whilst minimising the number of experiments to improve the
understanding of the underlying processes and/or locate the global optimum.

This thesis investigates the use of Bayesian Optimisation (BO) as a data-
efficient DoE method for expensive AM DoE problems and subsequent devel-
opment of two novel algorithms, Batch Bayesian Experimental Design Opti-
misation (BB-DoE) and Multi-Objective Batch Bayesian Experimental Design
Optimisation (MOBB-DoE). They are then assessed against current state-of-
the-art algorithms and/or applied onto expensive AM DoE case studies.

To assess the methodological viability of BO an exploratory investigation is
presented. The investigation utilised synthetic benchmarks, theoretical prop-
erty analysis, and an AM case study to demonstrate BOs capabilities. This
investigation also produces the necessary information to contrast each BO cost
function through analysis of their properties and performance to determine
the suitable cost function to act as the foundation for further algorithmic de-
velopment.

Both BB-DoE and MOBB-DoE algorithms were shown to have improved
or comparable performances against current state-of-the-art algorithms on syn-
thetic problems. BB-DoE also demonstrated favourable performance on an
AM case study for a Directed Energy Deposition (DED) process seeking an
optimal Dendritic Arm Spacing (DAS) property by locating the optimal DED
settings.
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Chapter 1

Introduction

Within current and developing manufacturing industries the development of
new manufacturing processes, products, and implementation of new machin-
ery require an incredibly large investment. These Research and Development
phases require large investments of time, labour, and resources prior to con-
sumers ever seeing or purchasing the final products.

In order to effectively design new products/processes for use in manufac-
turing industries the underlying interactions between controllable manufac-
turing variables and the desired outcomes in product properties needs to be
understood. In order to gain the understanding of the process interactions,
experiments are required to access the process at varying levels of control-
lable variables (machine settings, feed materials, operational constraints). The
techniques used to perform these experiments to understand these interactions
are Design of Experiments (DoE) or Experimental Design methods which are
used to analyse and inform users on which experiments to perform to gather
as much information as possible.

1.1 Motivation

The DoE techniques used in current and developing industries is typically of
a very simplistic nature. The techniques that are often used are simple One-
Variable-at-a-time (OVAT) methods which are implemented due to their ease
of use [213]. Other techniques do see application but at a more infrequent
rate such as Taguchi Orthogonal Arrays, Factorial or Fractional Factorial De-
signs [109] which serve as an introductory approach for statistical methods of
DoE. The DoE approaches introduced so far are static approaches in which
every experiment that is selected must be performed prior to analysis [164].
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2 1.1. Motivation

One disadvantage of such approaches is the non-adaptability of experiments
which can lead to excessive experimentation in areas of low importance. Cou-
pled with the lack of data analysis until the completion of experimentation
will inhibit these approaches use in Industry 4.0. Wherein, Industry 4.0 the
increasingly complex processes accompanied alongside manufactures’ lack of
willingness to adopt statistical methods for selecting experiments, will lead to
excessive experimentation being performed needlessly [177].

The problem plaguing the introduction and application of statistical meth-
ods for selecting experiments for use in manufacturing can be broken down
into two main areas [213]:

• Theoretical ignorance of DoE for real applications.

• Absence of a clear methodology to simplify implementation.

The first key issue in manufacturing DoE is the availability of suitable tech-
niques for the types of problems faced in manufacturing industries, whereby
in industry the types of problems that manufacturers can face are varied de-
pending on the industry to which they belong to. For example, in new up and
coming industries such as Additive Manufacturing (AM): (3-D printing, Metal
Powder Manufacturing, Polymers), these industries are capable of producing
detailed and intricately designed products using new materials. For these
developments they need to analyse the machining parameters and feedstock
quality of many types of materials to optimise their processes, this leads to
requiring a method with these requirements:

• Capable of handling many input variables. (High Dimensional Problems)

• Capable of optimising many output variables. (Multi-Objective)

• Capable of utilising multiple manufacturing units simultaneously. (Batch)

• Minimise experimentation time/resource use. (Expensive Materials)

• Help with post-experimentation needs. (Model Development and Data
post-processing)

One method that has been gaining traction in literature that tackles some
of these issues outlined is Bayesian Optimisation (BO). BO is a statistical
experimental design optimisation framework that uses statistical modelling
with a Bayesian approach to select new experiments in an iterative manner,
such that each experiment selected provides maximal information gain to the
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user in order to guide towards an optimum. This methodology was originally
introduced back by Mockus et al. [161] but has been gaining renewed interest
in the most recent decade as an efficient iterative approach for DoE in fields
such as: robotics [144], environmental monitoring [153], automatic machine
learning [25] [210], sensor networks [77], and experimental design [13].

BO uses an optimisation framework to iteratively select the next best ex-
periment to perform by building a surrogate statistical model of the process
to cheaply evaluate each experiments potential value. Once an experiment is
chosen and evaluated its results are then used to update the surrogate model,
this stage allows for each experiment selected to improve knowledge in the
region of interest. Thus, with each experiment selected the model updates to
better encapsulate the information obtained so far and guide the selection of
the next best experiment to perform. By using a BO approach, the surrogate
model is built and updated throughout, the data post-processing is handled
during operation. Also, the iterative selection allows for reduction in excessive
over-experimentation from selection prior to experimentation.

1.2 Research Aims and Objectives

Whilst BO has provided a solid framework for iterative DoE for use in a variety
of industries such as: hyper-parameter tuning [25], robotics [49], neuroscience
[135], materials discovery [218], and Additive Manufacturing (AM) [246]. It
is still lacking in some its use-cases for desirable properties that manufacturers
require, as well as lacking in uptake of use by manufacturers. These properties
include a generalised and simple to understand method that the consumers
with less technical knowledge in the fields of statistics can apply.

Also more recently developments in the BO literature have begun the devel-
opment of Batch Bayesian Experimental Design Optimisation (BB-DoE) ap-
proaches [59] [192] and Multi-Objective Batch Bayesian Experimental Design
Optimisation (MOBB-DoE) approaches [51] [225] using the basis of B-DoE
to tackle some of the lack of availability of these techniques. However, the
approaches utilised are often designed for use by people in the same field and
utilise overly complex statistical techniques preventing their adoption for use in
manufacturing [213]. Therefore this work aims to produce suitable techniques
which utilise more generalised approaches and easier to follow methodologies
to encourage the implementation in manufacturing DoE problems as well as
demonstrate its capabilities on additive manufacturing problems. The aims of
this study are:



4 1.2. Research Aims and Objectives

• Reproduce and benchmark existing Bayesian Optimisation (BO) algo-
rithms for Design of Experiments or Experimental Design (DoE) prob-
lems. Assess and analyse their performances with regard to exploration
and exploitation of the design spaces to assess suitability of acquisition
functions for later development within the thesis.

• Investigate the theoretical properties of the available BO acquisition func-
tions to assist in the determination of which acquisition function is most
suitable to act as the foundation for further development throughout this
thesis.

• Investigate whether the suggested BO algorithms can provide a suitable
basis for expensive DoE on Additive Manufacturing (AM) problems to
improve efficient data driven experiment selection.

• Extend and benchmark an existing BO acquisition function with suitable
properties by designing a novel Non-Greedy Batch Bayesian Experimen-
tal Design Optimisation (BB-DoE) that will both generate accurate sur-
rogate model (exploration) and locate the global optimum (exploitation)
using a batch selection scheme.

• Compare the non-greedy BB-DoE algorithms performance against both
types of current state of the art algorithms: a greedy BB-DoE algorithm
and a non-greedy BB-DoE algorithm.

• Investigate the performance of any developed non-greedy BB-DoE al-
gorithm on a blind AM manufacturing case to assess performance in
a real-world scenario in which no experimentation has been previously
applied.

• Extend and benchmark the BB-DoE algorithm for use onto Multi-Objective
Problems (MOP) by designing a novel Multi-Objective Batch Bayesian
Experimental Design Optimisation (MOBB-DoE) algorithm suited to pro-
ducing an accurate, diverse and spread Pareto Optimal Set (POS) that
represents the true Pareto Front (PF) by efficiently selecting batches of
experiments.

• Develop and assess a potential stopping criterion methodology to accom-
pany the algorithms designed throughout this thesis, with the purpose
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of early termination of experimentation once accurate surrogate models
are determined.

1.3 Thesis Structure

The structure of this thesis is built upon the initial exploration of Bayesian Op-
timisation (BO) techniques as an alternative DoE methodology for expensive
AM problems. This is to discern if literature Bayesian Experimental Design
Optimisation (B-DoE) techniques are a suitable framework for AM problem
characteristics discussed in Section 1.1, and if so develop new and novel meth-
ods to tackle novel AM problem characteristics.

• Chapter 2 reviews and introduces the background knowledge and history
of the literature regarding DoE and the optimisation frameworks used
in correspondence with DoE. This chapter is meant to serve as an in-
troduction to the basis of knowledge and background history to support
the research that is carried out in later chapters.

• Chapter 3 provides the theoretical knowledge of the optimisation tools
used throughout the thesis. This will include an introduction of the
metrics used to assess performance of developed methods as well as their
comparison against methods published in literature. The set-up for the
global optimiser used throughout the thesis: Genetic Algorithm (GA) and
the methodology used when tuning the surrogate models parameters.

• Chapter 4 introduces the sequential B-DoE framework onto a series of
representative synthetic benchmarks as well as an AM problem to assess
the methods available in literature and their suitability to the problems
goals. The synthetic simulations, AM problem application and theoretical
analysis will be analysed to discern the most suitable set-up for further
extensions of B-DoE for application in AM in Chapters 5/6.

• Chapter 5 using the insights from Chapter 4 aims to extend B-DoE into
a non-greedy batch selection (BB-DoE) that is not as computationally
complex as literature non-greedy methods but is of comparable perfor-
mance to both greedy and non-greedy literature methods. This devel-
oped framework is then assessed and compared by implementation on a
set of benchmark functions and a manufacturing case study.
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• Chapter 6 seeks to further extend upon the work in Chapter 5 by in-
troducing a second beneficial extension for AM, Multi-Objective handling
capabilities. This extension develops the MOBB-DoE framework which
draws inspiration from MOGA a rank-based multi-objective evolutionary
algorithm to solve batch multi-objective problems, which is then applied
onto a benchmark function to assess performance.

• Chapter 7 concludes the thesis. The development of the BB-DoE and
MOBB-DoE frameworks are summarised and their application to AM
problems. The limitations encountered throughout the thesis as well as
the potential future avenues for research are also presented.

1.4 Research Contributions

The primary research contributions of this thesis are as follows:

• The identification of a suitable data efficient sequential DoE methodology
for application onto expensive Additive Manufacturing (AM) problems
which can discern which experiments are of greater potential value in
improving process models and optimisation of process parameter settings
in an iterative manner to fully exploit experimental information as it is
obtained.

• Extending and designing a novel Non-Greedy Batch Bayesian Experi-
mental Design Optimisation (BB-DoE) methodology capable of selecting
multiple experiments simultaneously that weights the contributions of
each experiment against other members of the batch set, based upon the
data efficient sequential DoE methodology.

• The implementation of a novel Non-Greedy Batch Bayesian Experimen-
tal Design Optimisation (BB-DoE) methodology onto a blind AM DoE
problem: Optimisation of micro structural property Dendritic Arm Spac-
ing (DAS) in nickel super-alloy on a Directed Energy Deposition (DED)
process. Investigating the process interactions between the Laser Power,
Nozzle Velocity, and Hatch spacing with the DAS.

• Extending and designing a novel Multi-Objective Batch Bayesian Exper-
imental Design Optimisation (MOBB-DoE) methodology which selects
batches of experiments in a data efficient manner to provide an accurate,
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spread and diverse Pareto Optimal Set (POS) close to the true Pareto
Front (PF) based upon the novel Non-Greedy BB-DoE methodology.

• Designing and assessing a novel DoE stopping criterion to determine
when to terminate the DoE methodology in the event of accurate surro-
gate model(s) being found.

A paper is currently being prepared for review prior to publication at the
time of submission.



Chapter 2

Literature Review

This chapter aims to introduce the main background concepts and an overview
of literature relevant to the research conducted in this thesis which will be
covered in the coming chapters. The main topics that will be discussed in
Chapter 2 will be in the field of Design of Experiments or Experimental De-
sign (DoE) and its use in manufacturing industries, Bayesian Experimental
Design Optimisation (B-DoE) and Extensions to B-DoE suitable for manufac-
turing problem characteristics including: batch selection and multi-objective
optimisation.

2.1 Manufacturing DOE

2.1.1 Design of Experiments

Manufacturing industries are entering the 4th industrial revolution or industry
4.0, which aims to integrate automation into the manufacturing process leading
to rapid advancements in productivity, customised production and increased
control over the entire value chain of products [222]. One of the nine pillars
of Industry 4.0 is Big Data which encapsulates the five v’s of data: Volume,
Variety, Veracity, Velocity and Value of data [222]. One of the challenges
facing Industry 4.0 is the analysis of this Big Data, both historical and new
manufacturing process data analysis is needed to achieve improvements in
efficiency [222].

Manufacturing industries are constantly innovating new products, pro-
cesses and even new branches of manufacturing fields to deliver new products
and services that have previously never existed. Even when innovation is not
occurring manufacturing companies seek to continually improve upon prod-
ucts and processes that have been previously developed to provide higher

8
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quality, lower costs and reduce variability [123]. The fundamental key to both
innovation and improvement of products/processes is knowledge and under-
standing of underlying interactions and mechanisms of processes being utilised
in order to harness their full potential [123].

Figure 2.1: Block Diagram of manufacturing process to visualise DoE method.

An illustration of a manufacturing process is shown in Figure 2.1. Fig-
ure 2.1 represents a manufacturing process as an unknown mechanism (old or
new), where there is no knowledge on the inner mechanisms with controllable
input variables and observable response variables [10]. Therefore, in order to
understand the processes underlying mechanisms, experimentation is required
to vary the controllable input variables, to discern the underlying relationships
with the desired output response variables, whilst under uncertainty caused
by uncontrollable variables [10].

The methodological approach that forms the basis for how experimentation
is performed in manufacturing as shown in Figure 2.2. Figure 2.2 details the
thought process when tackling a new manufacturing problem; determining
goals, selection of responses, factors, and levels, designing experiments, analy-
sis of results and testing of the experiments hypothesis [94]. In this thesis we
focus on the 4th step in Figure 2.2, in which Engineers and Scientists utilise
a statistical methodology known as DoE defined in Definition 2.1.1. Whereby
the goal of DoE in manufacturing is to select experiments systematically in
order to:

• Maximise information gain of underlying processes.

• Minimise the total number of experiments, and subsequently cost.

• Develop accurate and representative models.

• Optimise process parameters of desired manufacturing processes.
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Figure 2.2: Flowchart of steps taken in order to define the DoE.

Definition 2.1.1 (Design of Experiments).
A systematic statistical method that seeks to determine the relationship be-
tween the controllable (input) factors affecting a process and their influence on
key (output) responses. A structured approach for the collection and analysis
of data typically in the form of experiments [164].

DoE is a statistical method unlike mathematical modelling, as the key
difference is their representation of underlying mechanisms. Mathematical
modelling seeks to produce a model that replicate the physical relationship
of the complex mechanisms, whereas DoE produces a statistical correlation
between factors (controllable variables) and responses (output variables) [8].
DoE can also be further categorised by the purpose of the experiments into 5
fields of study [94]:

1. Comparison Studies:
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If a choice between multiple options is required, you can design an
experiment to choose the best option to run. An example of such a
comparison could be several nozzle designs for a AM process, will each
design provide a similar production lifetime? If they’re different, how
do they differ and which is the best choice.

2. Variable Screening
The Pareto Principle in DoE [164] states that most of the performance

is controlled by a few important controllable variables. Thus, a variable
screening DoE can be used to reduce the complexity of the DoE by
selecting/removing controllable variables to a reduced set. This ensures
that the variables chosen are most likely to have the largest contribution
in effecting the performance of the response variables.

3. Transfer Function Exploration
The relationship between the controllable variables and the response

variables is referred to as the Transfer Function [94]. Therefore, once a set
of controllable variables has been chosen, DoE can be used to efficiently
select experiments to explore the design space to study the underlying
relationship.

4. System Optimisation
Once a transfer function and/or model has been identified DoE can

be used to efficiently select experiments sequentially in order to identify
the optimal settings of the controllable variables. The DoE achieves this
by selecting experiments that move towards the region of interest, for
improving the processes product quality and reliability in an efficient
manner.

5. System Robustness
After identifying the underlying process interaction through transfer

function exploration and identifying the optimal controllable system pa-
rameter settings through system optimisation. Another important task
that DoE can handle is to reduce the uncertainty in the system by mak-
ing it robust to uncontrollable variables such as environment conditions
and noise variables via Robust Design (RD).

Two of these 5 categories (3 and 4) have been grouped together for study
in literature under the name Response Surface Methodology (RSM), for which
this will be the sub-category of approaches that will be built upon throughout



12 2.1. Manufacturing DOE

Table 2.1: Commonly used terminology in Design of Experiments and their
descriptions [164].

Experimental Design Terminology
DoE Term Description
Response A response is the dependant (output) vari-

able(s) that is to be evaluated by varying
the controllable factors of interest. There can
be multiple responses studied in one experi-
ment.

Factor A factor is the independent (input) vari-
able(s) that are varied to assess their effects
on the response. There can be multiple fac-
tors studies in one experiment.

Level Each factor is varied at pre-specified discrete
intervals (levels) during experiments on a
continuous domain. The number of levels
considered will affect the level of precision
obtained from experiments.

Orthogonality Orthogonality can be expressed as factors in-
dependence such that it guarantees that the
effect of one factor or interaction can be esti-
mated separately from the effect of any other
factor or interaction in the experiment.

Blocking Blocking is a method for increasing precision
by removing the effect of known uncontrol-
lable factors (e.g. batch-to-batch variability).

Randomisation Randomisation protects against unknown
bias distorting experiments (e.g. measure-
ment drift with each successive experiment).

Replication Replication is the the repeat of an experiment
to increase the precision in the response from
uncontrollable factors.

this thesis. Throughout Section 2.1.1 and the remainder of the thesis some
key terms will be used repeatedly and so shall be defined further in Table 2.1:
Response, Factor, Level, Orthogonality, Blocking, Randomisation and Replica-
tion.
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2.1.2 Brief History of Design of Experiments

The most common DoE method proposed in early work focused on a One-
Variable-at-a-time (OVAT) approach which often could be thought of a trial-
and-error approach to experimentation. This method was brought to its peak
through the work of Thomas Edison’s Trial and error methods [10]. Whereby
all controllable variables that are chosen for the experiment are set to a constant
value except for a single variable, for which this variable is varied with each
experiment at a variety of levels. This is then repeated for each controllable
variable involved in the experiment.

However, despite OVAT popularity due to its simplicity it came with a va-
riety of problems and limitations including over-experimentation, lack of vari-
able interaction analysis, and luck-based results. As the industrial revolution
began to pick up steam, industrial research could no longer utilise/implement
the generic OVAT approach with its obvious limits. The next spark that be-
gan the field of research we now know of today as Design of Experiments was
due to the work of Fisher’s in Agriculture in the 1930’s. In R.A. Fishers
influential work [70], they found carrying out experiments improperly (trial
and error approach) had a negative impact of the analysis of the data. This
coupled with the nature of the field of work, agriculture requires large areas
of land, long times between set-up to completion and a wide variety of both
controllable and uncontrollable factors to consider. Therefore, implementing
OVAT approaches would negatively impact experimentation, which lead to the
development of early DoE methods [4].

The next big push in DoE literature began in the 1950’s with Box and
Wilson [36], where after the 2nd World War they were attempting to solve
problems within the chemical industries at Chemical Imperial Industries [234].
Their inspiration arose from the dissimilarities of chemical process industries
in comparison to agriculture in two main ways. Firstly, the response output
variable can be observed almost immediately (referred to as, immediacy) and
secondly, the experimenter can learn crucial information from a small number
of runs in order to set which experiments to run next (referred to as, se-
quentiality) [164]. Another difference was in the experimentation cost namely
the cost per run for process industries was much greater than in agricul-
ture [234]. Thus Box and Wilson [36] began developing statistical modelling
(transfer function exploration) and process optimisation methodologies which
were later grouped together under Response Surface Methodology (RSM) as
mentioned in Section 2.1.1.

In the 1950’s the term ‘Made in Japan’ was often regarded to as a product
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of low quality but, in the late 1950’s W Edward Deming taught the importance
of statistical quality control including Design of Experiments to Japanese Sci-
entists and Engineers [10]. One such scientist that became the pioneer of this
era/field was Genichi Taguchi who advocated for using DoE for what termed
Robust Parameter Design [164]. This ushered in the Second Industrial Era or
Quality Revolution which primary focuses were on [164]:

1. Make processes insensitive to uncontrollable factors.

2. Make products insensitive to variation from components.

3. Finding levels of controllable factors that force the response factors to
a desired value whilst simultaneously reducing variability around this
value.

Taguchi [211] suggested a variety of statistical methods to achieve these
goals to which he referred to as Orthogonal Arrays but were more often referred
to as Fractional Factorial Designs in the west. One of the first companies to
apply his methods were Toyota. His work generated much discussion and
controversy due to its lack of peer review but by the late 1980’s it had been
peer reviewed and more widely accepted. The benefit of this controversy led to
an increased interest in the field of DoE not only in manufacturing industries
but a variety of industries [164].

Finally, the most recent push in the field of DoE is regarding the Six Sigma
quality initiative which was launched by Motorola in the 1980 – 1990’s [4].
Whilst Taguchi simplified DoE for managers to minimise costs, Six Sigma
packaged DoE into a framework for adoption by companies on a larger scale
[87]. Where DoE slotted into its improvement phase of its Design Measure
Analyse Improve and Control (DMAIC) methodology [8]. Goh [87] argued
that Six Sigma took DoE further in a variety of ways:

• Extending its application to transactional processes as well as physical
processes.

• Focusing on its impact to attract the attention of CEO and management.

• Attaching certification system with its training using a martial arts belt
system (yellow, green and black belts).

Whereas in the history of DoE there have been many developments into
opening new fields of study and increased benefits associated with each field,
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the Six Sigma methodology is seeking to package DoE as part of a greater
method for the wider adoption of larger companies [8].

There have been many developments in DoE in recent history when seek-
ing to develop understanding between controllable inputs and measurable
outputs typically when analysing a physical process. Alongside the advent
of computer technology and its rapid advancement has also opened other al-
ternative branches of modern DoE such as non-deterministic DoE methods
which sought to select experiments that filled the design space as uniformly
as possible [79].

2.1.3 Non-Deterministic DoE

The early development of non-deterministic DoE methods borrowed inspira-
tion from traditional DoE methods which didn’t account for knowledge of the
underlying systems such as OVAT or Factorial Designs. Therefore, the early
non-deterministic DoE methods sought to fill the design space of interest as
uniformly as possible [79]. This was primarily achieved through the random
placement of experiments within the design space of interest.

One of the first pseudo-random non-deterministic DoE methods was Monte
Carlo Sampling (MCS) [158] which utilised pseudo-random numbers to gen-
erate a pre-specified number of random sample point within the design space
of interest. The intention behind these initial approaches were that by per-
form random actions, eventually the design space would be filled. However,
depending upon the sample size the random space filling could result in clus-
tering of samples in section of the design space and sparsity in others resulting
in under-representation [79].

In order to alleviate the issues caused by MCS, researchers proposed Strat-
ified Monte Carlo Sampling (SMCS) which divided the design space into non-
random strata (sub-sections) and applying MCS to each strata [79]. Another al-
ternative proposed by researchers are the Quasi-Monte Carlo Sampling (QMCS)
which use a quasi-random low discrepancy (QRLD) sequences to generate
samples [79]. In these cases a low discrepancy sequence are sequences that
generate random points within a design space that minimise large areas of
low and high density of random points resulting in a more spread distribu-
tion. There have been a variety of QRLD sequences used in QMCS including:
Halton [97], Hammersley [98], and Sobol [205] which provide a more evenly
distributed random sequence than pseudo-random sequences such as MCS.

Space-filling designs are another non-deterministic DoE methodology which
seek to construct a systematic uniform grid of sample point within the design
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space [79]. Johnson et al. [115] proposed two designs: minimax and maximin
designs that placed sample points with a pre-defined design space based upon
the distance between each sampled point. The maximin is a distance based
design which places samples that maximise the minimum distance between
every other point in the design space. Whereby samples are placed as far as
possible from the other as shown in Figure 2.3b. Whilst on the other hand,
the minimax is also a distance-based design which places samples as close to-
gether as possible whilst maintaining maximum coverage of the design space,
as shown in Figure 2.3a.

One of the more popular space-filling design developed and researched
within literature is the Latin Hypercube Design (LHD) [155]. A LHD works
by dividing the design space into bins of equal size based upon the number
of samples ns for which their will be an equal number of bins along each
dimension of the design space as illustrated in Figure 2.4.

Once the design space has been partitioned into the equally sized bins there
will be an equal number of bins along each dimension of the design space as
shown in Figure 2.4 with ns = 7 in a 7x7 grid on the 2-D design space. Samples
are then placed within the LHD grid in the design space such that for each
column and row (in 2-D) of bins, no two samples are placed which is known
as the non-collapsing design condition [79]. Due to its formulation as well
as the non-collapsing design condition, LHD performs well over a range of
dimensions but it is not without its limitations. One limitation is the sampling
of design points using LHD is still random which in some cases can lead to
poor space-filling designs shown in Figure 2.5 which has ns = 10 all placed
along the diagonal of the 2-D design space.

Therefore, since LHD publication a variety of researchers have been im-
proving the core LHD with various features such as: maximising the minimum
distance between sample points [166] and orthogonal array-based LHD [240].

2.1.4 Use of DoE in Manufacturing

As shown in Section 2.1.2 despite DoEs origins over the years of its initial
development of its five sub-classifications it has been applied to a variety of
fields involving both manufacturing and non-manufacturing fields. In [61]
the authors analysed 20 years of DoE research and showed that there had
been steady growth in the application of DoE in literature that has been
increasing with time. With medicine (18%), engineering (10%), biochemistry
(10%), physics (7%) and computer science (6%) equating to 50% of the total
literature. The primary focus of DoE regarding this thesis is in the field
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(a) Visual representation of distance-based space filling design: min-
imax design for 7 sample points in 2-D space, taken from [120]

(b) Visual representation of distance-based space filling design: max-
imin design for 7 sample points in 2-D space, taken from [120]

Figure 2.3: Distance-based space filling designs: minimax and maximin for 7
sample points in 2-D space, taken from [120].
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Figure 2.4: A Latin Hypercube Design (LHD) in 2-D space using ns = 7
samples uniformly distributed, taken from [120].

Figure 2.5: A Latin Hypercube Design (LHD) in 2-D space using ns = 7
samples distributed only the diagonal, taken from [79].
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of manufacturing industries/engineering with a particular focus on Additive
Manufacturing (AM).

Ilzarbe et al. [109] provides a snapshot of the application of DoE in liter-
ature in the field of engineering over the period of 2001-2005, which offers
good overall insight into how researchers are utilising the statistical tools that
have been developed thus far. In this study they looked at practical appli-
cation papers in a variety of engineering fields totalling 77 application papers
looking at a selection of metrics of how DoE was used.

The first metric to consider is the types of DoE utilised previously intro-
duced in Section 2.1.1, in which there are five categories of DoE which where
grouped into three in this paper: Traditional (Comparison + Variable Screen-
ing), RSM (Modelling and Optimisation) and Robust Design (RD). The first
insight gained is that traditional methods were implemented in most applica-
tions studies at 58% with 33% for RSM and 9% for RD [109] a decade ago.
This suggests that despite the availability of powerful statistical methodologies
researchers are often opting for a more simplistic approach.

Another important characteristic to be considered is the number of con-
trollable variables (or factors) to be assessed, which in a manufacturing setting
can initially a large variety of factors. This may be due to the need to ac-
count for process operation parameters and materials characteristics as well
as their interactions which can lead to complex multi-factor problems. Yet
Ilzarbe et al. [109] found that on average the number of factors considered
were 5 factors and 71% of the studies considered 2-5 factors. Manufactur-
ing and engineering problems typically would be presumed to have a large
number of factors to consider during DoE due to multiple controllable inputs
and uncontrollable factors. However, in [109] results were contrary to this
hypothesis suggesting researchers were screening factors prior to publication
by either using screening designs or prior knowledge. This screening could
have been implemented using expert knowledge or DoE methods as “most
of the performance is controlled by a few important controllable variables” as
stated by the Pareto principle of DoE [164].

The final characteristic to be considered from [109] was the types of DoE
methods implemented. Of which there were four main designs considered:
Taguchi orthogonal arrays (31%), Full Factorial Designs (16%), Fractional
Factorial Designs (14%) and Central Composite Designs (9%). This is further
corroborated in AM in which Durao et al. [62] noted the large majority of DoE
methods implemented used either a Taguchi orthogonal array or a factorial
design, whilst RSM were utilised less frequently.
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Both Durakovic [61] and llzarbe [109] have shown the breakdown of the
increasing use of DoE in literature and characteristics involved in the appli-
cation of DoE in engineering. However Tanco et al. [213] presents a survey
of 760 manufacturing companies in Basque Country of which 18% responded
showing a disconnect between literature developments and industry applica-
tion. It showed that 80% of the companies implemented an OVAT strategy,
Moreover, only 20% carry out experimentation using a pre-established DoE
method [213]. There was also a dependency of industry size where 18%
of small-medium sized companies applied DoE and 29% at large industries.
Taguchi methods were applied at the same rate regardless of company size,
likely due to simplicity in application. Finally, Tanco et al. [213] asked its re-
spondents what they believed the biggest barriers to uptake of DoE to which
the following split of responses were received:

• Theoretical ignorance of DoE for real applications (43%).

• Absence of a clear methodology to simplify implementation (37%).

2.1.5 Common DoE used in Manufacturing

Despite the many advances in the field of DoE, manufacturers often rely on the
simpler statistical implementation schemes as pointed out by Ilzarbe et al. [109]
which are: OVAT, Full Factorial, Fractional Factorial and Taguchi Orthogonal
Arrays in a variety of industries.

One-Variable-at-a-time (OVAT)

One variable at a time method has a simple implementation methodology,
where the experimenter has chosen an array of factors and several levels to
vary each factor by. The experiments are then chosen by setting all factors
to a constant level while varying one factor for the levels chosen. OVAT
methods main advantage is their simplicity in implementation in comparison
to alternative statistical methods. However, this is usually the only advantage
and it should only be chosen in scenarios where experimentation costs are
cheap.

In contrast the disadvantages occur when experimentation costs are higher
and factor interactions are of greater importance. As in most scenarios it is
more important to vary factors simultaneously in order to access the factors
interactions and their effect on the response. Another disadvantage is the
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large number of runs required to achieve the same level of precision as more
complex DoE methods, which can often miss optimal settings of factors.

Table 2.2: Example of OVAT approach for selecting experiments for 2 factors
at 2 levels.

One-Variable-at-a-time (OVAT) DoE for 22 Design
Experiment Index Temperature (◦C) Pressure (Pa)

1 50 (T1) 250 (P1)
2 100 (T2) 250 (P1)
3 50 (T1) 500 (P2)

Table 2.2 illustrates a simple OVAT example in which two factors: Pressure
(P) and Temperature (T) are varied for two levels each, in order to search for
an optimum. In Table 2.2 the temperature and pressure are held constant at
levels: T1 and P1, resulting in 3 experiments but, as only 1 factor is varied at
a time not all interactions are considered.

Despite the disadvantages of OVAT listed above, the methodology is one
of the more popular choices in engineering and manufacturing applications
[213] and has been applied in a variety of industries: Materials Science [190],
Food Sciences [66], Chemical [156], and Mechanical [141].

Full Factorial Design

Whilst a OVAT approach chooses to vary a single factor at a time, a full
factorial design consists of performing all possible combinations of the factors
and levels involved. This difference can be illustrated by looking at the same
example shown in Table 2.2 in Section 2.1.5, looking at Pressure (P) and
Temperature (T) at two levels each.

Table 2.3: Example of Full Factorial approach for selecting experiments for 2
factors at 2 levels.

Full Factorial DoE for 22 Design
Experiment Index Temperature (◦C) Pressure (Pa)

1 50 (T1) 250 (P1)
2 100 (T2) 250 (P1)
3 50 (T1) 500 (P2)
4 100 (T2) 500 (P2)

Comparatively a full factorial design is an improvement on OVAT methods
as it also accounts for the analysis of factor interaction effects, which is the
primary advantage. As long as the number of factors and levels to be used
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have been chosen, the method of implementation is simple to use. Although,
by accounting for factor interaction effects the total number experiments re-
quired can increase dramatically based on the combination of factors and levels
considered which is the methods primary disadvantage. For example, using
Pressure and Temperature, 22 = 4 experiments however, as the number of
factors and levels increase the number of experiments grows drastically such
as:

• Increasing factors at low levels e.g.,
5 factors at 2 levels is 25 = 32 experiments.

• Increasing levels at low factors e.g.,
2 factors at 5 levels is 52 = 25 experiments.

• Or increasing both levels and factors e.g.,
5 factors at 5 levels is 55 = 3125 experiments.

These issues are then amplified further when repetitions are required in
some manufacturing cases due to variability. Even in the event of requiring
many runs the Full Factorial design is the 2nd most utilised DoE in engineering
literature [109] and has been applied in a variety of industries: Additive
Manufacturing [105], Logistics [75], Material Science [189], Chemical [224],
Automotive [69], and Food Industry [241].

Fractional Factorial Design

A fractional factorial design is a reduced size factorial design that acts as
a screening design to determine which factors and their interactions have
the most influence on the response. This allows the experimenter to reduce
the total number of factors that then need to be considered in a later full
factorial design. In order to do this it follows the sparsity-of-effects principle
[164], which states that a system is usually dominated by main factors or
two factor interactions and so higher-order interactions can be ignored. For
example in Table 2.4 a 3 factor 2 level fractional factorial design is set-up, by
using the sparsity of effects principle it can be assumed that the effect of the
ABC interaction is negligible and thus can be ignored. Therefore, as ABC is
investigated at two levels initially one of the levels can be removed and in this
example level 2 is removed as shown in Table 2.4a to Table 2.4b.

As can be seen in Table B as the 3rd order interaction was removed it only
needs to stay at a single level. Also notice factors AB and C have identical
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Table 2.4: Example of Fractional Factorial approach for selecting experiments
for 3 factors at 2 levels (1 and 2).

Full Factorial DoE for 23 Design
Experiment
Index

A B AB C AC BC ABC

1 2 2 1 2 1 1 2
2 1 2 2 2 2 1 1
3 2 1 2 2 1 2 1
4 1 1 1 2 2 2 2
5 2 2 1 1 2 2 1
6 1 2 2 1 1 2 2
7 2 1 2 1 2 1 2
8 1 1 1 1 1 1 1

(a) Full Factorial design before reduction

Fractional Factorial DoE for 23-1 Design
Experiment
Index

A B AB C AC BC ABC

2 1 2 2 2 2 1 1
3 2 1 2 2 1 2 1
5 2 2 1 1 2 2 1
8 1 1 1 1 1 1 1
(b) Fractional Factorial design after removing 3rd order interactions

levels, this is known a confounded or aliased effect. By using the results of
the experiments with Analysis of Variance (ANOVA) the statistically significant
factors can be identified for which a full factorial design can then be used.

The main advantage of using a fractional design is to reduce the total
number of experiments required to determine which factors are the most sig-
nificant. Whereas the main disadvantage is this is often used in conjunction
with other DoE methods as a screening method and so is not a stand-alone
technique. Just as with full factorial designs, fractional designs have been ap-
plied in a variety of industries: Chemical Industry [67], Food Industry [148],
Mechanical [200], and Manufacturing [200].

Orthogonal Array’s

The Taguchi Orthogonal Arrays are a type of highly fractionalised factorial
design proposed by Genichi Taguchi [211], which are similar to fractional
factorial design but incorporate the orthogonality property as described in
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Table 2.1. After factors and levels have been chosen the DoE is chosen from
a pre-defined list of designs using an array selector table [122] see Table 2.5.

Table 2.5: Taguchi Orthogonal Array Design Selection Array

Number of Parameters
2 3 4 5 6 7 8 9 10

Number
of Levels

2 L4 L4 L8 L8 L8 L8 L12 L12 L12
3 L9 L9 L9 L18 L18 L18 L18 L27 L27
4 L16 L16 L16 L16 L32 L32 L32 L32 L32
5 L25 L25 L25 L25 L25 L50 L50 L50 L50

As with fractional factorial designs the advantages of this method is its
easy application and large reduction in the total number of experiments to
be performed. However, in contrast its disadvantages it shares some of the
same disadvantages of being a screening method, it also does not account for
every factor relationship. By not accounting for every relationship up until
at least second order interactions, it leads to difficulty in determining if some
factor interactions have a significant effect on the response. In this scenario
it should not be applied where all process interactions are required. Despite
these drawbacks the Taguchi method is one of the most frequently applied
designs (31%) in manufacturing literature and has been used in: Additive
Manufacturing [245], Logistics [194], Manufacturing [201], Mechanical [43],
and Chemical [252].

2.1.6 Additive Manufacturing

The future of manufacturing is encapsulated by the concept of Industry 4.0,
which combines the advancements in machine learning and automation to
switch from a mass production model to a customised production model [222].
Industry 4.0 can be broken down into nine core principles: Augmented Reality,
System Integration, Cloud Computing, Big Data, Internet of Things (IOT),
Additive Manufacturing, Cyber Security, Autonomous Robots, and Simulation
[60].

For the smart factories of Industry 4.0 consumers will have constantly
changing demands increasing the challenge of producing high quality and
high-performance products for individualised use rather than mass production
of generalised products [222]. Additive Manufacturing provides a beneficial
framework for tackling these issues through its capability in producing prod-
ucts with complex geometries with unique micro structures. Additive Man-
ufacturing fabricates products layer by layer using a computer aided design
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(CAD) file, allowing the fabrication of complex parts over a shorter production
cycle [162]. Therefore, Additive Manufacturing is currently being used to sup-
ply these specialised products to a variety of industries including: Biomedical
[130], Aerospace [220], Construction [235], and Automotive industries [221].

Despite its vast manufacturing potential for application, its adoption into
manufacturing industry is being hindered by a limited materials library, for-
mation of various types of defects during processing, and inconsistent product
quality [226]. These issues stem from a lack of understanding of the under-
lying mechanisms which can be explored in process parameter optimisation
using design of experiments [226].

Process Parameter Optimisation

Process Parameter Optimisation (PPO) in additive manufacturing is a cru-
cial step for guaranteeing consistently well-developed products by minimising
variation during the processing leading to defect formation at both mesoscale
and macroscale [226]. Mesoscale properties are attributes at the microscale
that may not be easily constructed from properties at the atomic scale [186].
Mesoscale properties in additive manufacturing that are of common concern
include: porosity (void fraction of material), lack of fusion (lack of binding
between melted layers), and cracks (fractures caused by thermal strain in rapid
heating and cooling of materials) [39]. Whilst macroscale properties refer to a
materials mechanical properties such as: tensile strength, yield strength, and
hardness [226], which are dependent on the mesoscale properties.

Traditionally, PPO literature implements experimental design methodolo-
gies mentioned in Section 2.1.5 [226]. This was illustrated in the work of
Mohamed et al. [162], which reviewed the PPO literature in a popular AM pro-
cess, Fused Deposition Modelling (FDM) [170]. Mohamed et al. [162] found
Taguchi Designs with an ANOVA analysis to be a dominant choice among
researchers in determining which factors were significant with a substantial
reduction in the total number of experiments. This reduction is achieved
when factor interactions are confounded with each other which leads to issues
in the determination of the optimal process parameter settings, as shown in a
variety of FDM studies [7] [169] [245] [132].

Whilst Taguchi methods provide reductions in both factors and total exper-
iments required, they do not satisfy other goals and requirements of AM when
performing PPO. Other goals when performing PPO include the generation of
high quality fitted models of the process being explored [162]. Whilst there
are a variety of requirements for AM problems to tackle [162]:
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• Expensive experimentation.

• Large number of factors.

• Batch processes.

• Constrained processes.

• Multiple conflicting response criteria.

Therefore, the use of traditional Taguchi methods in these scenarios is not
a suitable approach to tackle these issues. Rather another sub-category of DoE
offers more beneficial properties for addressing some of these requirements:
Response Surface Methodology (RSM).

2.1.7 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) in essence is a combination of design
and analysis of experiments, process modelling, and optimisation [125]. Fig-
ure 2.6 depicts the generalised approach of RSM methods in which an initial
screening design is used, typically a fractional factorial or Taguchi design to
explore as many factors in as few runs as possible [125]. Once these screening
experiments are performed an ANOVA analysis is used to identify the factors
which have a significant effect on the response factor [125]. Upon reducing the
total factors to evaluate a RSM experimental design is chosen. The most com-
monly applied design is: Central Composite Design (CCD) and Box-Behnken
Design (BBD) [168]. Experiments are then performed according to these de-
signs in the next step to generate a data set of responses from which surrogate
models can be fit to the experimental data.

Surrogate modelling is used to provide a low-cost approximation of under-
lying processes. This offers a cheaper means of approximating responses to
various experiment settings and thus cheaper optimisation of the underlying
process [92]. However, the performance of the optimisation is dependent on
the choice of the surrogate model according to the assumptions of the underly-
ing process and the subsequent precision of the surrogate model implemented
[33]. RSM typically approximates using a low-order polynomial. If the un-
derlying process is well-modelled as a linear function a first-order polynomial
model should be used [149]:

f(x) = η0 +
n∑

i=1
ηixi +

∑
i<j

∑
ηijxixj + ε (2.1)
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Figure 2.6: Response Surface Methodology flowchart.

Where, η0 is the unknown constant parameter, ηi is the unknown 1st order
parameter for input xi, and ηij is the unknown 1st order parameter for the
interaction effect between input xi and input xj. ε is the random error. On the
other hand, if the underlying process has a non-linear function a first-order
model will result in poor model precision. In such cases a RSM design such
as CCD which utilise central points can investigate non-linear functions to be
approximated using a second order-polynomial model [149]:

f(x) = η0 +
n∑

i=1
ηixi +

n∑
i=1

ηiix
2
i +

∑
i<j

∑
ηijxixj + ε (2.2)

where, ηii is the unknown 2nd order input parameter.
Whilst a low-order polynomial is unlikely to reproduce the true underlying

relationships of the process over a small region of experimentation with a small
number of factors, it is a good approximation [149]. Once the surrogate models
have been fitted to the experimental data, their predictive precision is assessed
using an ANOVA test to quantify whether they have reached a satisfactory
level of precision. If a satisfactory level of precision is not achieved, Steps 2 to
6 in Figure 2.6 are repeated to until new models of greater fit are developed
[125]. The final step is to implement an optimisation approach to determine
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the optimal process parameter settings of the process, which are then further
verified via experimentation [125].

The development and implementation of RSM in manufacturing did tackle
some of the initial requirements of AM process DoE problems through the
integration of modelling and optimisation techniques [167]. Yet as mentioned
in Section 2.1.6, in manufacturing industries such as AM each experiment
can be expensive due to use of excess resources [5]. Also, when coupled
with increasing numbers of factors the total experiments required will scale
accordingly as will the importance of model precision [5].

Hence traditional RSM methods do not provide the tools necessary for
current manufacturing issue in regard to manufacturing DoE. However, al-
ternatives have been introduced in a variety of literature as early as 1933
[214]/1935 [215], as well as by Mahalanobis in 1940 [151]), and finally in re-
gard to experimentation literature in 1952 by Robbins [184] which suggested
utilising a sequential selection design scheme.

2.1.8 Adaptive Response Surface Methodology (ARSM)

Sequential designs choose the next experiment settings based upon information
provided from previous experiments. The primary benefit of implementing a
sequential scheme is their greater adaptability to features that appear during
experimentation [92].

These capabilities were integrated into Adaptive Response Surface Method-
ology (ARSM) after model precision checks are performed as shown in Fig-
ure 2.7, in which instead of re-specifying DoE factors as in Step 6 of Fig-
ure 2.6 the next experiment is chosen using a defined infill criterion [5]. This
cycle iterates through performing experiments, re-fitting the model, assess-
ing precision, and choice of the next optimal experiment until a pre-specified
model precision is reached [5]. The efficiency and performance of an ARSM
is strongly dependent upon the choice of surrogate model, infill criterion, and
optimisation methodology employed [74].

Previously, the primary choice of surrogate models in RSM and ARSM were
low-order polynomial a type of parametric model [167]. Parametric models
are typically used for the simplistic implementation, training speed and low
data requirements [167]. The nature of parametric models defines that the
underlying process can be represented by a finite set of parameters, which
makes parametric models not very flexible [167].

An alternative choice are non-parametric models which assume that the
data can be represented by an infinite number of functions. This in turn
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Figure 2.7: Adaptive Response Surface Methodology flowchart.

allows for greater flexibility in scenarios where knowledge of the properties of
underlying functions is unknown [182]. Care is required when tuning non-
parametric surrogate model parameters as there can be an infinite number of
functions, if handled improperly over fitting the model to the data can occur
[182]. Non-parametric surrogate models used in RSM and ARSM include:
Gaussian Processes, Thin-plate splines, and neural networks [167] [33] [92].

The next decision in the design of a suitable ARSM approach is the choice
of the infill criterion which decides which experiment is optimal to perform by
balancing two features; exploration and exploitation [33]. Firstly, exploration
ensures that experiments are chosen in areas/regions of factor space that have
previously not been explored [92]. Secondly, exploiting in areas of high po-
tential in the factor space where a local or potentially global optimum could be
located [92]. The infill criterion chosen should ensure that a reasonable equi-
librium between exploration and exploitation can be reached. This ensures
a well fitted surrogate model can be produced as well as locating the global
optimum for process parameter settings in the problem investigated [92].
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2.1.9 Summary of Manufacturing DoE

In summary, AM and manufacturing DoE problems are constantly seeking to
improve their understanding upon current and new manufacturing processes.
This improvement in understanding is achieved through systematic and ef-
ficient experimentation following structured approaches known as Design of
Experiments or Experimental Design (DoE), which aim to:

• Maximise information gain of underlying processes.

• Minimise the total number of experiments, and subsequently cost.

• Develop accurate and representative models.

• Optimise process parameters of desired manufacturing processes.

Whilst choosing a suitable DoE approach that is capable of tackling the
AM problems characteristics:

• Expensive experimentation.

• Large number of factors.

• Batch processes.

• Constrained processes.

• Multiple conflicting response criteria.

Therefore, the most suitable class of DoE that satisfies the DoE aims is an
ARSM. The model choice should be a non-parametric model for increased flex-
ibility against varied unknown problem types. An appropriate infill criterion
that balances between exploring regions of interest and exploiting potential
globally optimal regions. Finally, a global optimiser methodology of the in-
fill criterion to ensure the entire factor space is explored to locate the global
optimum. One such approach that has garnered attention from the literature
that suits these requirements is Bayesian Optimisation (BO) using Gaussian
Process Regression (GPR) surrogate models [92].
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2.2 Bayesian Optimisation

Bayesian Optimisation (BO) is a sequential model-based approach for finding
the global optimiser for an unknown response function that is expensive to
evaluate [40]. BO can be applied to a variety of optimisation problems where
there is no closed-form response representation, but where the response can
be observed (possibly noisy) in the event of providing a sample or experiment
settings [40]. The aim of BO is shown through Equation 2.3, where each
experiment selected aims to maximise its expected utility towards locating the
global optima and building a representative surrogate model:

xt+1 = argmax
x∈R

u
(
xt|D1:t

)
D1:t =

[
x1:t,y1:t

]
(2.3)

Where xt+1 is the next experiment to be selected. R is the design space
of interest (feature space). u (. . . | . . .) is the expected utility or acquisition
function to be optimised. xt is an experiment comprising of d inputs, where
d is the total number of input variables. D1:t is the currently observed data
set which contains pairs of experiments and their observed responses for all
experiments run up until the interval t.

BO is known as a data-efficient approach for the number of function eval-
uations required [119]. This efficiency stems from the use of prior beliefs in
DoE approach. A prior belief is the understanding or expert knowledge of
a particular problem that can be encoded into the optimisation procedure to
help guide the search of the feature space [40]. This prior belief is then se-
quentially refined with each experiment performed as the surrogate model is
updated via Bayesian posterior updating [195].

Bayesian posterior updating is the core of BO, which is based upon Bayes
Theorem developed by Thomas Bayes in the 18th century [19]. In this context,
Bayes Theorem states that "The posterior probability of a model given data is
proportional to the likelihood of the data given the model multiplied by the
prior probability of the model over the probability of the data" [19].

P (M|E) = P (M) ∗ P (E|M)
P (E)

(2.4)

Where P (. . . | . . .) is the conditional probability of an event given that
another event has occurred. P (M|E) is the posterior probability of a model M
given evidence E. P (M) is the prior probability of a model M and P (E) is the
prior probability of evidence E. P (E|M) is the likelihood of evidence E given
model M. However, in the case of BO the probability of the data is fixed and
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the Bayes theorem is reduced to its simplified form as shown in Equation 2.5:

P (M|E) ∝ P (M) ∗ P (E|M) (2.5)

In this case, the prior represents the beliefs about the behaviour/properties
of the feature space for possible response functions [40]. Manufacturers can
utilise this property to incorporate their expert knowledge into the modelling
and optimisation process to improve its efficiency [195].

There exists a variety of priors that could be used in BO to incorporate prior
knowledge however, a set of assumptions were determined to restrict which
probabilistic priors were most suitable for use [40]. Initially, priors had to
satisfy two assumptions whereby a BO method would guarantee convergence
to the optimum if [160]:

• The acquisition function (expected utility) is:

– Continuous.

– Minimises the expected deviation from the global optimum at a fixed
point.

• Conditional variance converges to zero (or noise) if and only if the nearest
observation distance is also zero.

Mockus [160] would later incorporate 3 more assumptions that were deemed
natural conditions for selecting a suitable prior: the response is continuous,
the prior is homogeneous, and Optimisation is independent of the N-th differ-
ences.

Following these assumptions, a Gaussian Process (GP) prior is the most
suitable choice [160]. A GP prior is frequently implemented choice of prior
[131] [161] [119] [208] [100] where a GP is an extension of the multi-variate
Gaussian distribution to an infinite-dimension stochastic process [40].

To summarize, BO can be subdivided into two key components required.
Firstly, a probabilistic surrogate model which encodes the data received through
experimentation as well as the prior beliefs of the underlying response function
[195]. Secondly, an acquisition function which quantifies the expected utility
or loss of potential experiments which trade-off between exploring the feature
space and exploiting to locate the desired optimum [195]. See Algorithm 2.1
for a pseudo-code representation of the generic BO framework.
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Algorithm 2.1 Generic Bayesian Optimisation Framework
Inputs:

Dt : Dataset, Dt =
[
xi, yi

]t
i=1

λ : Model Hyper-Parameter Priors
T : Experimentation Budget

1: GP (m, k)← θt
(
λ, Dt

)
// Fit GP Hyper-parameters, θt

2: for t = 1, 2, . . . , T do
3: xt+1 = argmax

x∈R⊂RN
u
(
x|D1:t

)
// Optimise Acquisition function

4: yt+1 = f
(
xt+1

)
+ ε // Evaluate Proposed Experiment

5: Dt+1 =
[
D1:t,

(
xt+1, yt+1

)]
// Augment Data set

6: GP (m, k)← θt+1
(
λ, Dt+1

)
// Update Surrogate Model, θt+1

7: end for

2.2.1 Gaussian Process Regression (GPR)

Definition 2.2.1 (Gaussian Process Regression).
GPR is a non-parameteric regression to model the predictive distribution
P
(
ft+1|D1:t, x1:t

)
using a GP prior and condition it on training data to model

the joint distribution between the observed training data f1:t and the inferred
test point ft+1 as a GP [182].

Definition 2.2.2 (Gaussian Process).
A GP is a potentially infinite collection of random variables (functions) such
that the joint distribution of a finite set of random variables have a consistent
joint multivariate Gaussian Distribution [182].

A GP can be fully specified by its mean function m(x) and a covariance
function k(x, x’) [182].

f(x) ∼ GP(m(x), k(x, x’)) (2.6)

Where f(.) is the predicted response output for inputs x using the surrogate
model. m(x) is the mean function and k(x, x’) is the covariance function
(kernel) of a GP.

A standard f (. . .) returns a scalar output at any given input. Whereas,
a GP surrogate model will return a mean and variance value of a normal
distribution at any given input [40]. The mean and variance represent the GP
surrogate models prediction and uncertainty respectively for an experiment
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with factors xi [40]. Therefore, a GP’s possible response functions are dictated
by the selection and tuning of its mean and variance functions [40].

Gaussian Process: Mean Function

A GP mean function determines the possible off-set in the mean of the response
[195]. The off-set can either be set to a constant off-set or can be a variable
off-set function [195]. Despite the ability to incorporate expert knowledge into
the GP prior through choosing a mean function, in literature for convenience
the mean function is often set to a constant m(x) = 0 [40].

Gaussian Process: Variance Function

As the GP mean function is often set to a zero constant, this results in the choice
and tuning of the GP variance (kernel) function determining the generalisation
properties of the GP surrogate model [63]. A kernel is a positive-definite
function between two input vectors x. The covariance is the similarity of
outputs based upon the belief of if two inputs are located in proximity of each
other so will their outputs, this functionality is embedded in the covariance
function [63].

The kernel functions available exist in a variety of forms, each of which
encode different properties which affect how the response function is modelled.
Each kernel function contains a set of free parameters that can be tuned
to specify the shape of covariance functions [182]. These free parameters
are referred to as hyper-parameters as they do not specify parameters that
affect the response function directly [182]. Rather, they affect the distribution
over the response function parameters [182]. Some of the more commonly
implemented kernels include [63]:

• Squared Exponential (SE) Kernel

kSE

(
xi, xj

)
= σ2

f exp
(
– 1
2L2

(
xi – xj

)2)
x =

[
x1, x2, . . . , xd

]
(2.7)

where, σ2
f is the output variance hyper-parameter. L is the length scale

hyper-parameter. x is a vector of d inputs for an experiment.

The SE kernel is a stationary kernel that is infinitely differentiable and
has its response limited to the local neighbourhood at experiment x. The
length scale determines the distance in the feature space from which a
new experiment can be extrapolated from observed data points. The
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output variance determines the average distance the response function is
from its mean, although simply this is just a scaling factor [63].

• Periodic Kernel

kPer

(
xi, xj

)
= σ2

f exp

–
2 sin2

(
π‖xi – xj‖/p

)
L2

 x =
[
x1, x2, . . . , xd

]
(2.8)

where, ‖.‖ is the absolute function. p is the period hyper-parameter.

The periodic kernel is also a stationary kernel similarly to the SE kernel
but is more suited to model functions that have a repeating pattern such
as seasonal effects or an oscillatory nature. The period factor determines
the distance between each repetition of the function [63].

• Linear Kernel

kLin

(
xi, xj

)
= σ2

b + σ2
f
(
xi – c

)T (
xj – c

)
x =

[
x1, x2, . . . , xd

]
(2.9)

where, c is the off-set hyper-parameter and σ2
b is the uncertainty off-set

for the model.

The linear kernel on the other hand is a non-stationary kernel which
varies its responses in a linear structure. The off-set c determines the
input coordinate from which all functions in the posterior must pass
through. Whilst the constant variance is an uncertain offset that deter-
mines the height of the response function that will be observed at zero
[63].

The stationary property of a kernel means that the covariance is only de-
pendent upon the difference between two sets of experiments, or xi – xj. As
such, if each experiment were to be shifted by ∆x, the observed covariance
would remain unchanged. In contrast to this is in the case for non-stationary
kernels such as linear kernels where if shifted by ∆x, the observed covariance
would change [63]. Figure 2.8 illustrates how different kernel functions rep-
resent different covariance structures which in turn when sampled from the
GP prior results in varied response structures.
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Figure 2.8: Underlying structure of basic kernels and example draws from
the GP prior of each example kernel, adapted from [63].

Gaussian Process: Squared Exponential Kernel

Once an appropriate kernel is selected for the GP prior surrogate model its
hyper-parameters need to be tuned [182]. One property of GP models that
is beneficial for this problem is that there is an analytical expression for the
marginal likelihood of the data [195]. Where the marginal likelihood of the
data represents the likelihood of a particular set of model hyper-parameters
estimating the true response at previously observed experiments [195]. The
log marginal likelihood is simply given by Equation 2.10:

logP (y|D, θ) = –1
2y

TK–1
y y – 1

2 log |Ky| –
N
2 log2π (2.10)

Where Ky = K+σ2
n ∗ I is the covariance matrix for noisy target responses y,

with K, σ2
n, and I representing the noise free covariance matrix, noise hyper-

parameter and identity matrix respectively. n is the number of data points
in the D or data set used for training the model. θ is a vector of the hyper-
parameters used to tune the GP model.

The log marginal likelihood in Equation 2.10 can be broken down into
three interpretable terms. The first term quantifies the surrogate model fit of
response estimates to the true responses [195]. The second term is a quan-
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tification of the model complexity as smoother covariance functions will have
a smaller determinant and subsequently lower model complexity [195]. The
final term is a penalty term for the data set size, where as the size of the data
set increases the log marginal likelihood decreases [195].

The optimisation of the hyper-parameters using the log marginal likelihood
can be performed using an off the shelf optimiser as long as the kernel is
differentiable, or for non-differentiable kernels using cross-validation [195]. In
this thesis a k-fold cross validation approach will be predominately used with
k = 10, except in the instances where the data set size is smaller than 10
experiments [182]. In these cases the k-fold cross-validation approach will be
replaced with a leave-one out cross-validation approach [182].

Figure 2.9: A diagram to represent the data partitioning into training and
testing data sets for both a K-Fold cross-validation approach and a leave-one-
out cross-validation approach when the size of the data set n < k.

Figure 2.9 illustrates the procedure of both a k-fold cross-validation ap-
proach or a leave-one out cross-validation approach for one set of hyper-
parameters being assessed θh. The primary difference between the two cross-
validation approaches is the partitioning of the data set into a training and
testing data set. For example in a 10 fold cross-validation on 20 experiments
each fold contains 2 experiments, which when split into the two sub-sets:
training (white in Figure 2.9) and testing (blue in Figure 2.9), would result
in 18 training experiments and 2 testing experiments. On the other hand for
leave-one-out cross-validation with 5 experiments there would only be 5 it-
erations with one experiment set aside to perform testing with the remainder
used for training.

After partitioning the initial data set, the training data is used to train the
surrogate model for a particular set of hyper-parameter settings and generated
the covariance matrix.
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Ktrain = kSE
(
xtrain, xtrain, θh

)
(2.11)

Where xtrain is the vector of training input data and θh is a vector set of
hyper-parameters that are to be assessed, in a noise-free SE kernel θh =

[
σ2
f , L

]
.

Once the surrogate model is trained the responses are inferred at the testing
sets experiment locations to get their estimated mean (See Equation 2.21a) and
uncertainty (See Equation 2.21b).

The estimated response (mean) and their uncertainty (standard deviation)
are then used to calculate the predictive log probability which is referred to as
a pseudo-log likelihood [182].

log p
(
yi|x, yj, θi

)
= –1

2 logσ2
i –

(
yi – μi

)2
2σ2

i
– 1

2 log2π (2.12)

Where i and j represent the testing and training sets respectively which are
partitioned from the observed data set, the data contained within each i and j
sets will alternate after each cross-validation fold is completed. log p

(
yi|x, yj, θh

)
is the pseudo-log likelihood of the testing data given the model trained on the
training data using θh hyper-parameters. μtest is the predicted mean of the
test set and σtest is the predicted standard deviation of the test set.

These steps are repeated for each fold k of the cross-validation as shown
in Figure 2.9, whereby the training data and testing data are recombined and
redistributed accordingly for each iteration after the predictive log probability
has been calculated. Once the predictive log probability for all folds is deter-
mined the cross-validation predictive log probability is calculated [182] using
Equation 2.13.

LPLP
(
x,y, θh

)
=

k∑
i=1

log p
(
yi|x, yj, θh

)
(2.13)

Where LPLP is the predictive log probability which is the summed pseudo-
log likelihood log p

(
yi|x, yj, θh

)
for each fold distribution for hyper-parameter

set θh. In order to select an appropriate hyper-parameter setting, the cross-
validation predictive log probability is maximised for a variety of hyper-
parameter settings.

θbest = argmax
θ

LPLP
(
x,y, θh

)
h = 1, 2, . . . , H (2.14)

Where θbest is the optimal hyper-parameter set according to maximising
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the LPLP
(
x,y, θh

)
k-fold cross-validation pseudo log likelihood. H is the total

number of hyper-parameter set variations being assessed. This is achieved
through the use of a suitable global optimiser that can efficiently test a variety
of hyper-parameter settings [182].

Gaussian Process: Inference

As shown in Section 2.2.1 in Equation 2.12 an analytical inference expression
is required for the prediction of the posterior mean and variance functions of
a GP. This allows for the prediction at any point x to determine their esti-
mated mean and variance [182]. This can be used in model selection detailed
in Section 2.2.1 but also will be utilised to cheaply optimise an acquisition
function detailed in Section 2.2.2 to select the next optimal experiment in the
BO framework [182].

When sampling from the GP prior we would use the observed data x and
sample the responses y at these indices to produce data pairs that make up
the initial data set, D [40].

D1:t =
[
x1:t,y1:t

]
Where x is a vector set of experiment inputs and y is a vector set of the true

responses at the experiment locations. t is the total number of experiments
run so far. The response y are drawn according to a multivariate normal
distribution [40].

f1:t(x) ∼ N(m1:t,K1:t)

m1:t(x) = 0 K1:t =


k(x1, x1) . . . k(x1, xt)... . . . ...
k(xt, x1) . . . k(xt, xt)

 (2.15)

Where m1:t(x) is the mean function of the Gaussian process of the observed
data set, K1:t is the covariance matrix function of the Gaussian process of the
observed data set. By using the properties of a GP the next experiment xt+1
and response f(xt+1) are jointly Gaussian with the GP prior responses f(x1:t).ft+1

f1:t

 ∼ N

0,
k

(
xt+1, xt+1

)
kT

k K1:t

 (2.16)

Where,
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k =
[
k
(
xt+1, x1

)
, k

(
xt+1, x2

)
, . . . , k

(
xt+1, xt

)]T (2.17)

Where k is the covariance between the sampling point and the already
observed data set. In this form the predictive distribution can be formulated
as a conditional distribution of P

(
ft+1

∣∣∣ f1:t) by using the Sherman-Morrison-
Woodbury inversion lemma formula [40].xy

 ∼ N


μx
μy

 ,
 A C
CT B


 (2.18)

x|y ∼ N(μx + CB–1(y – μy), A – CB–1CT) (2.19)

Using the Sherman-Morrison-Woodbury inversion lemma can easily arrive
at an expression for the predictive posterior distribution. This can be used to
derive analytical expression for the predictive mean and variance at the next
experiments experiment location xt+1.

P
(
ft+1|D1:t, x1:t

)
= N

(
μt

(
xt+1

)
,σ2

n
(
xt+1

))
(2.20)

Where,

μt
(
xt+1

)
= kTK–1f1:t (2.21a)

σ2
t (xt+1) = k

(
xt+1, xt+1

)
– kTK–1k (2.21b)

Where μt
(
xt+1

)
is the predictive mean and σ2

n
(
xt+1

)
is the predictive vari-

ance at sampling point xt+1. The posterior mean and variance represent the
posterior GP models prediction and uncertainty in the response at any exper-
iment evaluated [195].

2.2.2 Bayesian Optimisation: Acquisition Functions

As mentioned in summary of Section 2.2, BO was sub-divided into two key
stages. In the previous Section 2.2.1 a surrogate model was chosen which
encodes expert knowledge and sequentially observed data that will be selected
through the optimisation of a cheap acquisition function [40]. The focus of
this section is the secondary stage of BO where the focus lies on the optimisa-
tion of the cheaper-to-evaluate acquisition function, which trades off between
exploring the feature space and exploiting potentially optimal experiments
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[40].
The acquisition function or infill criterion is the function which represents

the expected utility of potential experiments. Depending on the acquisition
function that is utilised the expected utility focus may change between locating
the global optimiser (exploitation), looking for new promising areas of the
feature space (exploration), or a balance of both.

xt+1 = argmax
x

u
(
x
∣∣∣D1:t

)
(2.22)

where xt+1 is the next experiment to be chosen by optimisation an acquisition
function u. There is a vast literature detailing the strategies and acquisition
functions available to achieve the goals of BO, but they can be broadly cate-
gorised into 3 main types [195]:

• Improvement-Based acquisition functions.

• Optimistic-Based acquisition functions.

• Informative-Based acquisition functions.

Bayesian Optimisation: Improvement-Based Acquisition Functions

Improvement-based acquisition functions seek to choose experiments that im-
prove over the current best solution located, also known as the incumbent
solution f

(
x+)

[40]. There have been a few different improvement-based ac-
quisition functions published and reviewed in literature with one of the earliest
being Probability of Improvement (PI) [131].

PI seeks to identify potential experiment settings that have a high prob-
ability to improve over the current target solution which is comprised of a
pre-specified improvement over the incumbent solution [131].

τ = f
(
x+)

– TL ∗ f
(
x+)

(2.23)

Where τ is the target improvement TL over the incumbent x+, the posterior
probability distribution when using a Gaussian prior is also Gaussian, this can
be evaluated analytically using Equation 2.24:

uPI(x) = P
(
f (x) ≥ f

(
x+))

uPI(x) = Φ

(
μ(x) – τ
σ (x)

)
(2.24)
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Where P(A ≥ B) is the probability that random variable A is greater than
random variable B. PI is a simple and easy to implement acquisition function
shown in Figure 2.10, which seeks to maximise the improvement over the
current best solution. Although this can be a disadvantageous trait as the PI
value will be highly dependent upon the tuning of τ. Whereby, if τ is set
too small the PI will tend to over-exploit locally in the neighbourhood of the
current best solution aggressively, thus leading to a lack of exploration [118].
Whereas, if τ set too large PI will tend to over-explore. Although in contrast
if the target improvement is selected well then, the experiments selected using
PI are encouraged to explore more globally [118].

Figure 2.10: A single input/output function of a stretched sine wave (black
line) in which three data points have been observed (black dots), whereby
the shaded region denotes twice the standard deviation (uncertainty) at each
input value. A GP model has been fitted to the observed data using a SE
kernel. x1, x2 and x3 represent three potential experiments to be assessed and
x+ being the currently best observed data point with an output value of F(x+).
Adapted from [40].

In Figure 2.10 the experiments x1, x2 and x3 are being evaluated to see if
they can improve or maximise the 1-D function. The PI of x1 and x2 show
no possibility of improvement as they do not improve over the current best
observed data point x+. On the other hand, x3 does improve over the current
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best solution x+ with the dark-green shaded region representing the measure
of improvement.

Another improvement-based acquisition function was then introduced into
literature to tackle these issues stemming from aggressive exploitation in PI,
Expected Improvement (EI) [195]. EI sought to improve upon PI by intro-
ducing the concept of assessing the magnitude of improvement that a potential
experiment can provide over an incumbent as well as its probability to im-
prove [40]. Mockus et al. [161] achieved this by introducing the improvement
function shown in Equation 2.25.

I(x) = max
[
0, ft+1 (x) – f1:t

(
x+)]

(2.25)

Where I(x) is the improvement function of experiment x. ft+1 (x) is the pre-
dicted response using the surrogate model for the next experiment x. f1:t

(
x+)

is the incumbent’s response which is current best solution up until interval t.
Equation 2.25 shows is that the improvement of the next experiment xt+1 is

only positive when the predicted response is greater than the incumbent, oth-
erwise it is set to zero [40]. By maximising the expectation of the improvement
function we can select the next optimal experiment.

xt+1 = argmax
x

E
[
max

[
0, ft+1 (x) – f1:t

(
x+)] ∣∣∣∣∣ D1:t

]
(2.26)

Where E[A] is the expectation of event A. However just as with PI as the
posterior probability distribution of the predicted response is Gaussian, an
analytical form of the expectation of the improvement function can be derived
[40].

uEI(x) =
 (μ(x) – f(x+))Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(2.27)

Where,

Z =
 (μ(x)–f(x+))

σ(x) if σ(x) > 0
0 if σ(x) = 0

(2.28)

Where Φ is the cumulative distribution function, φ is the probability density
function. μ(x) is the posterior mean at the experiment point, f(x+) is the
observed value of the incumbent point, σ(x) is the posterior standard deviation
at the experiment point.

In Equation 2.27 the incumbent solution is equivalent to the τ in Equa-



44 2.2. Bayesian Optimisation

tion 2.24 whereby it would be thought to aggressively search the surrounding
feature space, however in EI this is not the case. This choice subsequently
reduces the complexity of EI with requiring no hyper-parameters to tune.

Bayesian Optimisation: Optimistic-Based Acquisition Functions

Optimistic-based acquisition functions seek to choose experiments that are
optimistically the best selection even in the face of uncertainty according to
the surrogate model [195]. Thus, an optimistic selection policy can be thought
of as selecting an optimal experiment by comparing their respective upper (or
lower) confidence bound as shown in Figure 2.11 [195].

Figure 2.11: A single input/output function of a stretched sine wave (black
line) in which three data points have been observed (black dots), whereby the
shaded region denotes twice the standard deviation (uncertainty) at each input
value. A GP model has been fitted to the observed data using a SE kernel.
x1, x2 and x3 represent three potential experiments to be assessed and the red
border represents the upper and lower bounds. Adapted from [40].

In Figure 2.11 the experiments x1, x2 and x3 are being evaluated to which
experiment is the next best selection. Depending on if Equation 2.29 or Equa-
tion 2.30 is used the selected experiment would change accordingly. Since,
as can be seen if Equation 2.29 were maximised x3 would be selected due,
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whereas if Equation 2.30 were minimised x1 would be selected.
This selection policy was first introduced as a means of trading-off between

exploration and exploitation in the multi-armed bandit literature with prov-
able cumulative regret bounds [133]. Srinivas et al. [208] adapted the upper
confidence bound criterion from multi-armed bandit literature into a suitable
criterion for BO literature with provable regret bounds in Equation 2.29:

uGP–UCB(x) = μ(x) + βtσ(x) (2.29)

where, uGP–UCB(x) is the Gaussian Process Upper Confidence Bound (GP-
UCB) acquisition function, βt a domain-specific time-varying trade-off param-
eter, μ(x) is the posterior predictive mean of experiment x, and σ(x) is the
posterior predictive standard deviation of experiment x. Equation 2.29 can
also be modified to its lower bound variant by subtracting the second term
instead of adding as shown in Equation 2.30:

uGP–LCB(x) = μ(x) – βtσ(x) (2.30)

where, uGP–LCB(x) is the Gaussian Process Lower Confidence Bound (GP-
LCB) acquisition function. The selection and tuning of the βt is the determin-
ing factor in the theoretical convergence of their regret bounds [208]. Whereby
the βt parameter adaptively determines the trade-off between exploration and
exploitation in optimistic BO policies [40].

Bayesian Optimisation: Information-Based Acquisition Functions

Information-based acquisition functions are the most recent class of selection
criterion introduced in BO literature which uses information theory to approx-
imate the information gain of potential experiments towards the unknown
optimum x∗ [100] [101] [230]. The basis for this approach was built upon
the foundation of expected change in knowledge from experiments, where ex-
ploring smaller high-density information regions (local optimums) may lead
to smaller increases in global knowledge. Whereas exploring a broader re-
gion of low-density information could lead to a greater expected increase in
knowledge which was not captured by improvement or optimistic techniques
[100].

This expected change in knowledge through information gain is quantified
via information theories entropy [197], which is the average level of informa-
tion for a random variable for all possible outcomes. However, entropy is used
to describe discrete random variables and so differential entropy will be used
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henceforth for continuous random variables. In information-based acquisition
functions sought to gain the most knowledge of the global optimiser x∗ which
can be quantified using its distribution P

(
x∗

∣∣∣D)
and its corresponding entropy:

H
(
P
(
x∗

∣∣∣D))
= –

∫
x
f
(
P
(
x∗

∣∣∣D))
logP

(
x∗

∣∣∣D)
dx (2.31)

Where, P
(
x∗

∣∣∣D)
is the posterior distribution of the global optimiser, H(.)

is the differential entropy of its argument. Entropy Search (ES) was the first
implementation of an information-based approach that sought to maximise
the information gain with each experiment, this is equivalent to maximising
the reduction in entropy of P

(
x∗

∣∣∣D)
[100] as shown in Equation 2.32:

uES(x) = H
(
P
(
x∗

∣∣∣D))
– EP(y |D,x)H

[
P
(
x∗

∣∣∣D ∪ {x, y})] (2.32)

Where, uES is the Entropy Search (ES) Acquisition Function, EP(.)H(.) is the
expectation of the differential entropy of its argument H(.) over the posterior
distribution P(.). H

[
P
(
x∗

∣∣∣D ∪ {x, y})] is the differential entropy of the posterior
distribution of the global optimum with respect to a particular experiment
{x, y} and P (y ∣∣∣D, x) is the posterior predictive distribution of y given x.

Whilst an information-theoretic approach provides a more probabilistic ap-
proach in comparison to the heuristic methods of improvement and optimistic
approaches, they are more computationally expensive [195]. The computa-
tional expense in ES is due to two difficulties:

• P
(
x∗

∣∣∣D ∪ {x, y}) must be computed for various combinations of x and y
during the optimisation.

• The entropies involved in Equation 2.32 are analytically intractable and
so must be approximated using Expectation Propagation (EP) on a dis-
cretised grid.

In order to alleviate some of the issues raised due to the computational
complexity of the ES framework Henrández-Lobato et al. [101] developed
Predictive Entropy Search (PES). PES is able to reduce some of the computa-
tional complexity by utilising the mutual information between x∗ and y given
a set of experiments (N) have been performed [101]. Since the mutual infor-
mation is a symmetric function Equation 2.32 can be re-written in the form
Equation 2.33:

uPES(x) = H
(
P (y ∣∣∣D, x)) – EP(x∗ |D)H

[
P
(
y
∣∣∣D, x, x∗

)]
(2.33)
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where, uPES is the Predictive Entropy Search (PES) Acquisition Func-
tion, H

(
P (y ∣∣∣D, x)) is the differential entropy of the posterior predictive dis-

tribution, P
(
x∗

∣∣∣D)
is the posterior distribution of the global optimum, and

H
[
P
(
y
∣∣∣D, x, x∗

)]
is the differential entropy of the posterior predictive distribu-

tion of y given the observed data D and global optimum x∗ are known.
The benefit of PES is that the first term is now an entropy of a predictive

distribution, for which there is an analytical form. Although the second term
is still a distribution dependent upon the global optimiser x∗ its entropy still
requires approximation using EP [101].

The final information-based approach in literature is the Max Value En-
tropy Search (MES) [230]. MES is a similar approach to PES in that it
utilises the symmetric property of mutual information to reformulate Equa-
tion 2.32. Instead MES focuses on the mutual information between y∗ and the
next experiment x. Therefore, Equation 2.33 can then be reformulated into
Equation 2.34.

uMES(x) = H
(
P (y ∣∣∣D, x)) – EP(y∗ |D)H

[
P
(
y
∣∣∣D, x, y∗

)]
(2.34)

where, uMES is the Max Value Entropy Search (MES) Acquisition Func-
tion, H

(
P (y ∣∣∣D, x)) is the differential entropy of the posterior predictive dis-

tribution, P
(
y∗

∣∣∣D)
is the posterior distribution of the global optimum output,

and H
[
P
(
y
∣∣∣D, x, y∗

)]
is the differential entropy of the posterior predictive dis-

tribution of y given the observed data D and global optimum output y∗ are
known.

MES shares advantages with those previously mentioned in regard to PES
whereby the first term is an entropy of a predictive distribution and is thus
analytically tractable. However, the key advantage arises in regard to the sec-
ond entropy term where it was previously analytically intractable due to the
dependency on the global optimiser x∗ [101]. Instead in MES the second en-
tropy is a truncated Gaussian distribution of y∗, which is analytically tractable
given y∗ is known [230].

Only the expectation over the distribution P
(
y∗

∣∣∣D)
requires approximation

which is achieved using Monte Carlo estimation using a set of sampled y∗

[230]. Wang and Jegelka [230] suggested two methods to sample the y∗:

• Sampling from a Gumbel distribution.

• Sampling from a posterior Gaussian distribution and optimising the sam-
ples.
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By utilising the analytical forms of the differential entropies and the ap-
proximation of the expectation using Monte-Carlo estimation an analytical
form for MES is shown in Equation 2.35:

uMES(x) = 1
ω

∑
y∗∈Y∗

γy∗ (x)φ
(
γy∗

)
2 ∗ Φ

(
γy∗

) – logΦ
(
γy∗

) (2.35)

where,

γy∗ =
y∗ – μ(x)
σ(x) (2.36)

ω is the total number of Monte Carlo estimations of the global optimum
output y∗, φ is the probability density function, and Φ is the cumulative density
function.

2.2.3 Bayesian Optimisation: Global Optimiser

The final decision in BO is the choice of a suitable optimiser for cheap ac-
quisition functions which is central to the operation of the BO framework
for selecting new experiments [195]. Hence the choice of an optimiser is de-
pendent upon the properties of the acquisition function for which traditional
optimisers may not be suitable.

As the optimisation landscape for acquisition functions is multi-modal, this
leads to increased optimisation complexity with many local optima as well as
problems which require constraints and/or multiple response criteria [195]. As
a result, the literature has implemented a variety of optimisation approaches
including: discretization [203], adaptive grids [16], divided rectangles [116],
gradient-based optimisers [145], and other global optimisation heuristics [35].
Although gradient-based optimisers require multiple restarts to prevent being
trapped in local optima and can only be implemented when gradients can be
cheaply evaluated [195].

Therefore, a global optimisation technique with capabilities in handling
multi-modal functions, large input parameter spaces, constraints, and multiple
response criteria all of which increase the problem complexity would be suit-
able. A global optimiser well-suited to multi-modal problems are population-
based search meta-heuristics in particular Genetic Algorithm (GA) [233]. A
GA is a population-based metaheuristics which imitates Darwin’s Theory of
Natural Selection to evolve or iterate a population of Individuals ” (experiments)
towards a global optimum [35].
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The benefit of implementing a GA is the evolution of a population of
individuals which provides the ability to perform parallel searches in the factor
space and locate various potentially optimal solutions [33]. This in contrast
to gradient-based optimisers in which if the initial points are chosen poorly
it will result in unfavourable local optima, thus requiring multiple restarts
which is not the case for GA’s [149]. GA’s are also incredibly flexible for the
incorporation of constraints into the feature space, as well as handling multiple
response criteria simultaneously [149]. On the other hand, a GA is inhibited
by the requirement to tune a large number of evolutionary parameters that
are used in both primary as well as additional evolutionary functions which
are used to obtain good GA performance [149].

Therefore, a population-based metaheuristic in this thesis Genetic Algo-
rithm (GA) was chosen as the optimiser of choice for use within the Bayesian
optimisation framework. Section 3.3 will detail the choices of primary and
secondary evolutionary functions incorporated into the GA optimiser as well
as the tuning or choice of their subsequent parameters.

2.2.4 Bayesian Optimisation: Related Literature

Whilst BO is most commonly applied using a GP surrogate model in combi-
nation with any of the acquisition functions mentioned in Section 2.2.2, these
are not the only surrogate models utilised. Other alternative surrogate models
are implemented throughout BO literature including student-t process pri-
ors [193], random forests [108], deep neural networks [204], Bayesian neural
networks [206], Mondrian trees [231], and Kriging [128].

Of these alternative surrogate models, a popular alternative in BO liter-
ature is Kriging which was developed in Geo-statistics at the University of
Witwatersrand in 1951 [128]. Although the method was further popularised
by the works of Matheron and colleagues in 1970s [154]. In Kriging the core
assumption lies in the fact that errors are not independent and are in fact
spatially correlated [40]. For example, if an experiment has a large error, then
an experiment close in the feature space is also likely to have a large error
[40].

Kriging is a combination of two models: a linear regression model and
a stochastic (GP) model of the errors of the linear model [40]. Therefore, a
kriging model interpolates a random field via a linear predictor [40]. Thus, a
Kriging model will fit a model to locally restricted regions of the feature space
in contrast to a GP that utilises all data in the feature space to produce a global
model [40].
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Kriging was implemented into experimental design as part of the Design
and Analysis of Compute Experiments (DACE) framework [188]. The DACE
DACE framework was then integrated with the sequential EI criterion shown
in Equation 2.27 by Jones et al. [119], to produce the Efficient Global Opti-
misation (EGO) algorithm which has become a significant body of work with
various extensions.

2.2.5 Constrained Bayesian Optimisation

Expensive Constrained Optimisation Problems (ECOP) exist both within the
literature and manufacturing industries whereby either the process or ob-
jective functions are expensive to evaluate and subject to constraints [229],
represented in Equation 2.37:

min f(x) x =
(
x1, x2, . . . , xd

)
(2.37)

s.t. gi(x) ≤ 0 i = 1, 2, . . . , I (2.38)

Where f(x) is the response variable, x is the input variables from 1 to d, gi(x)
is the ith inequality and equality constraints. In this classification a solution is
determined to be feasible if it is contained within the feasible space defined by
the constraints be held valid. The constrained Bayesian optimisation literature
can be roughly categorised into two sections [229]:

1. Constrained Bayesian Optimisation (CBO).

• Probability of Feasibility
• Expected Volume Reduction
• Multi-Step Look-ahead

2. Surrogate-Assisted Constraint-Handling methods.

CBO: Probability of Feasibility

CBO literature can be further broken down into three main sub-categories,
of which the first is probability of feasibility based methods. Probability of
feasibility based methods are combinations of BO acquisition functions with
feasibility indicators to provide a combined acquisition function for the con-
strained BO problems. The most commonly modified BO acquisition for use
with feasibility indicators is the EI such as: weighted EI (wEI) [80] [76] and
constrained EI (cEI) [93] [124] which is typically defined as in Equation 2.39
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cEI (x) = EI (x)
I∏

i=1
Pr

(
gi(x) ≤ 0

)
(2.39)

Although EI is the more frequently adapted acquisition function for use
with feasibility indicators there have been implementations with alternative
acquisitions such the Knowledge gradient [44] [219].

CBO: Expected Volume Reduction

The expected volume reduction branch of CBO is a class of acquisition func-
tions based upon the principles of Stepwise Uncertainty Reduction (SUR) [46].
The SUR strategy seeks to construct a sequence of evaluation points so as
to quickly reduce the residual uncertainty about a quantity of interest given
the information provided by the evaluation points [46]. Therefore, many ac-
quisition functions can be derived to accommodate constraints by reducing a
specific type of uncertainty measure [229].

In Picheny [175] an uncertainty measure was based upon PI combined
with a feasibility indicator (see Section 2.2.5) in order to accommodate for the
constraints. Following similar principles using the EI acquisition function the
Integrated expected conditional improvement (IECI) was defined [28]. Alter-
natively other uncertainty measures have been implemented using entropy in
information-theory based acquisition functions using both PES [103] [78] and
MES [174].

CBO: Multi-Step Look-Ahead

Multi-step Look-Ahead is one of the smaller sub-branches of CBO which im-
plements constraint handling on non-myopic acquisition functions. Whereby,
typically in BO acquisition functions are myopic in which they seek to select an
experiment one step ahead into the future, whilst ignoring the potential impact
this selection may have on future selections [229]. In contrast a non-myopic
acquisition function aims to select samples or experiments by evaluating and
optimising the long-term reward multiple steps into the future.

In Lam and Willcox [134] formulated the BO look-ahead as a dynamic
problem using a variety of acquisition functions including: PI, EI, and UCB.
Constraints were factored into [134] by redefining the stage-reward to the re-
duction of the objective function that satisfied the constraints, however the
large computational burden is also large. Recently in order to rectify the
computational burden produced from the previous non-myopic acquisition
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function in [134], Zhang et al. [251] introduced a constrained two step acqui-
sition function known as 2-OPT-C which uses likelihood ratios to perform the
optimisation.

Surrogate-assisted constraint-handling

In order to circumvent the computational and theoretical complexity involved
in the derivation and development encountered in ECOP’s, instead of develop-
ing new acquisition functions the BO can simply be incorporated into existing
constraint-handling methods.

One branch of constraint-handling methodology of great interest is the
evolutionary algorithm such as genetic algorithms or MOEA’s [229]. For
example in [249], two acquisition functions (EI and probability of feasibility)
are used as output objectives for the MOEA to optimise simultaneously.

2.3 Manufacturing Extensions: Bayesian Optimisation

As mentioned in Section 2.1.9, manufacturing industries in particular AM
have various problem characteristics that require a suitable DoE approach. In
Section 2.2, BO was introduced as a DoE approach for tackling problems with
expensive experimentation, that produces representative surrogate models and
locates global optimums in as few experiments as possible. Also, by using a
GA optimiser for the acquisition function optimisation the inclusion of factor
or process constraints are easily implemented.

Equally important AM DoE problems are DoE methods capable of selecting
experiments to be performed in batches as well as selecting experiments in
the presence of multiple conflicting response variables. In this section an
introduction into the DoE issues related to selecting experiments in batch and
optimisation in the presence of multiple conflicting response variable will be
introduced.

2.3.1 Batch Design of Experiments

Initially BO performed a sequential design in which experiments are chosen
sequentially to perform to generate new information. Although, in recent years
the manufacturing industries such as AM have seen large investment due
to their ability to provide customized high-quality products with increased
production speed [60]. These capabilities are leveraged through the use of
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AM production processes which are often smaller in scale in comparison to
conventional manufacturing processes [60].

As AM uses intensified manufacturing processes, multiple processes can be
run in parallel as well as using Nesting in which multiple parts can be built
in parallel in the same processing step [45]. Therefore, when performing DoE
on AM problems selecting multiple experiments at each iteration instead se-
quential selection will result in a reduction of the total experimentation time
required [91]. Despite the potential benefits performing multiple experiments
in parallel can potentially bring there are also subsequent disadvantages that
need to be addressed. The primary concern of a Batch Bayesian Experimen-
tal Design Optimisation (BB-DoE) approach is the type of selection method:
Greedy and Non-Greedy selection.

Batch Optimisation: Greedy vs Non-Greedy Selection

Initially in BO the goal of each iteration is to select a single experiment which
is used to both explore the feature space as well as search the feature space for
a globally optimal parameter settings for the DoE problem. However, in batch
selection the optimisation goal in Equation 2.3 is modified in Equation 2.40
for the selection of multiple experiments in the same iteration step:

Bt+Q = argmax
B∈R

u
(
B|D1:t-1

)
B =

[
xt+1, xt+1, . . . , xt+Q

]
(2.40)

where, Bt+Q is the next batch set of Q experiments to be selected, R is the
design space of interest, and B is a batch set that is evaluated.

A greedy batch selection scheme selects a locally optimal experiment to be
added to the batch set one at a time, which is repeated until the batch set is
filled. Although as each experiment added to the batch set is not yet evaluated,
an alternative heuristic should be used to provide an approximation of their
outputs prior to evaluation [53]. The approximated outputs are referred to as
Hallucinated Outputs as defined in Definition 2.3.1:

Definition 2.3.1 (Hallucinated Outputs).
Approximation of the output for pending experiments, using a variety of
heuristics such as: Kriging Believer [85], Constant Liar [85] and Predictive
mean Desautels et al. [59]. These hallucinated outputs act as placeholders in
the data set D1:t+Q until the batch sets are filled and the experiments evaluated.
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D1:t+Q =



x1, y1
x2, y2...

xt+1, yt+1
xt+2, yt+2...
xt+Q, yt+Q


(2.41)

where, y are pseudo or hallucinated response values. The purpose of
the approximated responses or hallucinated outputs is that each experiment
chosen will influence the selection of the next experiment. Therefore, the hal-
lucinated output acts as an approximate response value to be used to update
the data set temporarily. This informs the sequential optimisation of the next
batch experiment and thus the method used to update pseudo-response im-
pacts the performance of greedy BB-DoE approaches. This series of sequential
optimisation and pseudo-response updating is iterated until the batch set has
been filled as shown in Figure 2.12a. Once filled the batch of experiments
are performed to retrieve the actual response values, then the data set and
subsequently the surrogate model are updated.

The advantage of greedy BB-DoE scheme is the capability of locating lo-
cally optimal parameter settings within a small number of steps which in some
cases can lead to a good approximation of a globally optimal solution [192].
This is an attractive property when tackling complex feature spaces with a
large number of factors as these can be complex to optimise. Secondly, is their
fast implementation as the scheme is strictly a sequential scheme with adap-
tations to allow for multiple experiments to be selected without observation
of their true responses [195]. Whereby, Greedy BB-DoE literature approaches
are primarily varied based upon the pseudo-response estimation method im-
plemented [86] [84] [59].

On the other hand, the disadvantage of a greedy BB-DoE scheme is that
they frequently do not locate or approximate a globally optimal parameter
setting, but rather a lower performing local approximation [192]. Thus, greedy
BB-DoE schemes can lead to the globally worst solution as was shown in Gutin
et al. [95] for the travelling salesman problem.

This is in contrast to non-greedy BB-DoE selection schemes which seek
to select each experiment within the batch set simultaneously as shown in
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(a) Greedy Batch Selection of three points over three iteration in order from left to
right of x3,1, x3,2, and x3,3 respectively. The figures along the top represent the GP
model with the figures underneath their corresponding acquisition function value
plots.

(b) Non-Greedy Batch Selection of three points over 1 iteration selecting all x3,1, x3,2,
and x3,3 simultaneously. The figures along the top represent the GP model with the
figures underneath their corresponding acquisition function value plots.

Figure 2.12: Comparison between the selection schemes of Greedy BB-DOE
shown in Figure 2.12a and Non-Greedy BB-DOE shown in Figure 2.12b for a
batch set of B = 3. The problem is a minimisation problem on a 1-D function
(black line) with two previously observed data points (black dots) at x1 and
x2 and the shaded region denotes twice the standard deviation (uncertainty)
at each input value.

Figure 2.12b. Thus, the main advantage of a non-greedy BB-DoE selection
scheme is that the joint acquisition cost for a batch set can be determined
whilst accounting for experiment interactions with each other to locate an
optimal combination of experiments.

Consequently, this also links to a new combinatorial optimisation compo-
nent for non-greedy BB-DoE approaches which becomes their primary dis-
advantage. Whereby, in order to select the next batch set, a large variety
of combinations of experiments for which each experiment will also contain
their own combinations of factors (parameter settings) must have their joint
acquisition cost determined. Therefore, non-greedy BB-DoE strategies require
methods to minimise increased optimisation complexity in order to leverage



56 2.3. Manufacturing Extensions: Bayesian Optimisation

the improved performance achieved through accounting for inter-batch set
interactions and their effects on the batch set acquisition cost.

2.3.2 Multi-Objective Optimisation

Similarly, in Section 2.3.1 wherein B-DoE was initially focused upon sequential
selection instead of batch selection, in the same way traditional methods were
focused upon optimising a single response variable or objective. In particular
for manufacturing and AM problems this is often not the case but rather
a manufacturing process can have multiple response variable to optimise in
conflict with one another. Therefore, an alternative branch of optimisation is
used to seek solutions to Multi-Objective Problems (MOP) that contain multiple
conflicting response variables, known as Multi-Objective Optimisation (MOO)
represented in Equation 2.42:

min fm(x) m = 1, 2, . . . ,M (2.42)
s.t. gi(x) ≥ 0 i = 1, 2, . . . , I (2.43)

hj(x) = 0 j = 1, 2, . . . , J (2.44)

where, fm(x) is the mth response variable to be optimised, gi(x) are the
inequality constraints, and hj(x) are the equality constraints.

When optimising MOP which have multiple response variables it often the
case that in order to improve the performance in regard to one response,
this will lead to degradation in the other responses [237]. Therefore, when
optimising MOP’s the goal isn’t to seek a globally optimal solution but rather a
set of potentially optimal solutions that trade-off between all response variables
known as the Pareto Optimal Set (POS) [54]. Each experiment in the POS is
optimal in the sense that no improvement can be gained in one response
variable without the degradation of another [73] [71] [72].

To determine whether a potential experiment belongs to the POS a set
of definitions are required to differentiate which experiments are: Inferior,
superior and non-inferior with respect to other experiments in the feature
space [73].

Definition 2.3.2 (Inferiority).
An experiment u =

(
u1, . . . , un

)
is said to be inferior to experiment v =(

v1, . . . , vn
)
, if experiment v is partially less than experiment u (v < u) at
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all inputs i:
vi ≤ ui ∀i = 1, . . . , n

Definition 2.3.3 (Superiority).
An experiment u =

(
u1, . . . , un

)
is said to be superior to experiment v =(

v1, . . . , vn
)
, if v is inferior (See Definition 2.3.2) to u.

Definition 2.3.4 (Non-Inferiority).
A set of experiments (u and v) are said to be non-inferior to each other if they
are neither Inferior (See Definition 2.3.2) or Superior (See Definition 2.3.3) to
each other.

For an experiment to be a member of the POS they must satisfy Defini-
tion 2.3.3 with respect to experiments outside the POS and Definition 2.3.4
to members within the POS. The POS is collectively known as the Pareto
Front (PF) which represents the current best solutions in the response space
as shown in Figure 2.13 in a two-response variable example.

Figure 2.13: Representation of a Pareto Front for a 2-Dimensional (Response)
Minimisation Multi-Objective Problem in the response space.

MOO strategies can be classified into 3 main types: a priori methods, a
posteriori methods and interactive/preference methods [54]. Firstly, a priori
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methods utilise high level information (provided by an expert or the decision
maker) in order to convert a MOP into a Single-Objective Problems (SOP). This
is accomplished through the use of a weight vector scalarisation approach such
as Weighted Sum approach shown in Equation 2.45:

M∑
i=1

wi ∗ fi(x), i = 1, 2, . . . ,M and
M∑
i=1

wi = 1 (2.45)

where, wi is the ith weight and M is the total number of output objectives.
Through conversion of the MOP into a SOP, a simpler Single-Objective Op-
timisation (SOO) approach can be implemented to retrieve a single optimal
solution. However, this methodology is highly dependent on the choice of the
weight vector set which can be disadvantageous as this does not guarantee the
global optimal solution is located [54].

Secondly, a posteriori method in contrast to a priori methods seek to gen-
erate a full POS for the MOP using a MOO. Once a non-dominated set of so-
lutions has been generated and converged a decision maker or experimented
can utilise high-level information to select the optimal solution. Whilst this
method generates a POS to reduce the risk of missing a potentially globally
optimal solution, its primary disadvantage is the increase in computational
complexity [54].

Finally, a hybrid of both a priori and posteriori methods are available also
known as interactive or preference methods. An interactive approach initially
follows a posteriori method using a MOO on the MOP to generate a POS. Upon
the generation of a POS the optimisation process is paused for the decision
maker to utilise high-level information to focus on particular regions of interest
in order to guide the search. These steps are repeated systematically until a
generated POS or optimal solution is located that matches the decision makers
preference [54].

Multi-Objective Optimisation: Optimisation Methodologies

Of the 3 categories of MOO previously mentioned the most suitable choice for
inclusion with a DoE approach is a non-interactive approach that provides
a population of solutions to be selected from in each iteration. Therefore, a
posteriori approach is the most suitable choice but within literature there are
3 main design goals that should be satisfied when selecting a MOO to ensure
the production of an optimal and representative POS [217]:

Design Goal 1: Convergence
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Locate a POS as close to the true PF as possible.

Design Goal 2: Diversity
Locate a uniformly distributed and diverse POS along the PF as

possible.

Design Goal 3: Coverage
Locate a POS that covers the majority of the PF.

Within the literature in previous decades the most popular choice of a
posteriori MOO used is Evolutionary Algorithm (EA) as shown in 2002 [117],
whereby 70 % of MOO used EA’s. Also, the primary optimiser for the B-DoE
approach will be a GA (a type of EA) ) this will provide ease of integration of
a MOO approach when extending the B-DoE DOE methodology for tackling
MOP’s. For further introductions into the core GA methodology implemented
see Section 3.3 for further details.

Multi-Objective Evolutionary Algorithm (MOEA) can be further classified
into 3 main optimisation approaches based upon their approach to optimis-
ing the MOP, which will be briefly defined before a decision on the type of
approach to be utilised is made:

1. Pareto-Dominance Multi-Objective Evolutionary Algorithm (PD-MOEA)

2. Performance Indicator Multi-Objective Evolutionary Algorithm (PI-MOEA)

3. Decomposition Based Multi-Objective Evolutionary Algorithm (D-MOEA)

Pareto-Dominance Multi-Objective Evolutionary Algorithms

A PD-MOEA is an MOEA which sorts solutions within the response space in
relation to how they dominate other solutions into ranks. This is expressed
as non-dominated solutions that lie within the POS as having the greatest
potential fitness and thus the best ranking. Whereby, each rank lower will have
a correspondingly lower fitness assigned and as such have a lower likelihood
to be selected for evolution in the GA.

This approach promotes convergence (Design Goal 1) by increasing the
potential of non-dominated solution to mate in the GA. However, this mech-
anism does not encourage or maintain the diversity of solutions within the
population and so these properties are maintained by alternative evolutionary
functions [54]. A variety of diversity management methods have been de-
veloped for PD-MOEA’s including crowding distance, fitness sharing, elitism
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and non-dominated sorting [244]. The combination of PD-MOEA methodol-
ogy with select diversity management techniques mentioned previously have
led to the development of frequently implemented state-of-the-art methods:
MOGA [73] [71] [72], SPEA/SPEA-II [253] [255], and NSGA/NSGA-II [207]
[55].

Figure 2.14: Ranking a Pareto front in 2-Dimensional objective (response)
space using pareto dominance from Fonseca and Fleming [73] on a minimi-
sation problem. As stated in Definition 2.3.2 a solution is dominated if for all
outputs of interest are partially lower than another. This can be seen visually
on a 2-D problem with rank 1 solutions as their dashed line zones do not con-
tain any other solutions and are thus non-dominated solutions. Whereas as
can be seen with the rank 3 solutions within their dashed box zones there are
2 other solutions resulting in a rank of 3 and are thus dominated solutions.

Fonseca and Fleming [73] initially developed MOGA which comprised of
a Pareto ranking strategy, where a chosen solution rank is determined by
how many other solutions it dominates with non-dominated solution in POS
holding a rank of 1 as shown in Figure 2.14. In order to maintain diversity
MOGA implemented a fitness sharing measure based upon niching suggested
by Goldberg [88]. A niching criterion determined dense locations within the
response space where solutions were located within a pre-specified distance
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to each other (σshare) to have their fitness reduced. This encourages the
EA to search the entire feature space for alternative non-dominated solution
promoting diversity within the population.

Srinivas and Deb [207] developed NSGA and updated to NSGA-II which is
a PD-MOEA which uses: non-dominating sorting method, a crowding param-
eter and elitism. The non-dominating sorting method is similar in the sense
that solutions are incrementally ranked based upon how many solutions they
dominate and are sorted into sets of corresponding ranks (Sp). The variation
occurs in the diversity management step whereby a niching parameter isn’t
used but the distance between solutions within the same rank is calculated.
The distance within a (Sp) is used to partially order solutions, so solutions
in higher ranks and less dense spaces within the response space are more
likely chosen during selection. The final evolutionary function is an elitism
parameter which is used to maintain good solutions through generations of
the EA. Elitism operators work by maintaining an external set of solutions that
are updated with each generation of the EA but are not involved during the
population update procedure. By maintaining an external set, a potentially
good solution may not be lost from one generation to the next preventing
generational divergence, explained in more detail in Section 3.3.5.

The final state-of-the-art PD-MOEA is SPEA/SPEA-II developed by Zitzler
and Thiele [253] which utilise another alternative ranking measure called
strength value based upon how many solutions it dominates and it is dominated
by. They also implement an elitist set which is filled after each generation
with non-dominating solutions. However, when the elitist set is overfilled, it
is truncated using a nearest neighbours’ algorithm to remove solutions until a
fixed size is reached.

PD-MOEA’s is a thoroughly research field of MOEA literature with a
breadth of knowledge and application onto MOP’s. However, they are lim-
iting in their applicability to MOP’s, with greater than 4 objectives known
as Many-Objective Optimisation Problem (MaOP). Since as the number of re-
sponse variables increase there will also be an increase in the total number
on non-dominated solutions within the POS and thus require increasing EA
population sizes. By increasing population sizes in accordance with these
issues will result in greater computational complexities during optimisation
[110] [81].
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Performance Indicator Multi-Objective Evolutionary Algorithms

A Performance Indicator Multi-Objective Evolutionary Algorithm (PI-MOEA)
is an MOEA which uses a Performance Indicator (P_I) measure of a solutions
contribution towards PF as part of the POS as a combination of Design Goal
1 and 2 [217]. By utilising a P_I, a quantitative measure of the quality of
solutions in the POS can be determined and subsequently optimised. Within
PI-MOEA literature there are a variety of P_I available: Hyper-volume [136],
S-Metric [29], and Lesbesgue measure [138]. These are then incorporated into
EA optimisers to produce state-of-the-art PI-MOEA’s which include: IBEA
[254], SIBEA [41], and SMS-EMOA [29].

HV
(
fref, xPOS

)
= Λ

(
∪x∈xPOS

[
f1 (x) , fref1

]
× . . . ×

[
fN (x) , frefN

])
(2.46)

where, HV
(
fref, xPOS

)
is the hyper-volume approximation dependent upon

fref the response reference point and xPOS the experiment members of the POS.
Λ is the Lebesgue measure.

Firstly, the Hyper-volume measure is the most widely used P_I measure
due to its known theoretical properties and thorough application as shown in
Equation 2.46 [12]. The Hyper-volume is the volume that a non-dominated
solution occupies within the response space in correspondence with a reference
point, illustrated in Figure 2.15

As shown in Figure 2.15 the Hyper-volume indicator is maximised as a
solution converges towards the true PF and is in less dense sections of the
POS in accordance with Design Goal 1 and 2. This is supported in the work
of Zavala et al. [242], which validated the hypothesis that the Hyper-volume
indicator is maximised if and only if the PF contains only Pareto optimal
solutions.

In Beume et al. [29], the S-Metric is used in SMS-EMOA which is formu-
lated as a combination of the Hyper-volume indicator and the non-dominated
sorting from NSGA-II [55]. SMS-EMOA generates a single solution per popu-
lation in each generation to be added to an external archive set that is sorted
using non-dominated sorting. The archive set is truncated iteratively to re-
move the lowest contributing Hyper-volume in the worst ranked front in the
archive set. Knowles and Corne [126] demonstrated that the Hyper-volume
indicator is highly dependent on the correct reference point which will also
impact the non-dominated sorting and handling of boundary solutions.

The main advantages of using a PI-MOEA is their quantitative selection
measure and pressure during the optimisation of MOP’s which assesses both
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Figure 2.15: Graphical representation of how hyper-volume is quantified
along the Pareto Front (PF) in a simple 2-Dimensional minimisation problem.

the convergence and diversity of solutions within the population [217]. Also,
unlike PD-MOEA’s which have scalability issues, PI-MOEA’s are suitable for
application onto MaOP’s [244]. Whereas for disadvantages firstly, the diversity
of P_I’s available mainly stem from the Hyper-volume indicator [29]. Secondly,
is there computational complexity corresponding to a large computational cost
that is polynomial with population size and exponential with the number of
response variables [29].

Although, there are some works within the literature to tackle computa-
tional complexity by producing more efficient optimisation procedures using
Monte Carlo simulations in HypE [14], there is also research into more efficient
Hyper-volume based indicators in R2 [42] and δp [191] [217].

Multi-Objective Evolutionary Algorithms via Decomposition

A Multi-Objective Evolutionary Algorithm via Decomposition (MOEA/D) is
an MOEA which converts an MOP into a set of SOP’s which are then opti-
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mised simultaneously using a scalarisation function and weight vectors. The
neighbourhood collaboration occurs during the mating step (See Section 3.3.2)
to encourage good solutions with similar weight vectors to mate prior to the
implementation of genetic operators, as shown in Figure 2.16

Figure 2.16: Flowchart detailing the logic process for an Multi-Objective Evo-
lutionary Algorithm via Decomposition (MOEA/D) splitting an MOP into sev-
eral SOP

The field of D-MOEA was inspired by the publication of [247] on their
MOEA/D algorithm, after which many approaches have been published to
expand and improve upon their initial approach which is thoroughly reviewed
in Trivedi et al. [217]. D-MOEA are comprised of two main variations upon
other MOEA’s: the method of scalarisation of MOP into SOP’s and the method
of neighbourhood collaboration.

In order to decompose a MOP into several SOP’s a scalarisation function
is required and the diversity of the POS is highly dependent upon the weight
vector set used [217]. However, an evenly or uniformly distributed weight
vector set does not guarantee an evenly or uniformly distributed POS [247],
especially for MaOP’s [82] [83]. Thus, some authors have sought to develop
methods to generate weight vector sets that would satisfy Design Goal 2 such
as the work by Giagkiozis et al. [82]. In Giagkiozis et al. [82], Generalised
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Decomposition is used to select an optimal weight vector based upon the
perceived shape of the PF. However, the disadvantage of this method is that
the shape of PF is often unknown and thus a linear approximation of the PF
is used. The approximation was able to achieve good performance albeit not
optimal due to lack of prior PF shape knowledge.

Three main scalarisation functions were assessed in [247]: Weighted Sum
(WS, See Equation 2.45), Tchebycheff (TBF, See Equation 2.47), and Penalty
Boundary Intersection (PBI, See Equation 2.48).

STCH = max
1≤i≤N

[
wi

∣∣∣ fi (X) – z∗i
]

z∗ =
[
z∗1, . . . , z

∗

M
]

(2.47)

where, wi is the ith weight parameter, z∗i is the ith reference point, and i
refers to its corresponding response variable.

SPBI = d1 + θd2 (2.48)

where,

d1 = ‖a‖
‖w‖

The effect of various scalarisation functions affect how they search the
response space during an optimisation which can be shown illustratively for
a 2-Dimensional MOP in Figure 2.17 [227]. As seen in Figure 2.17 region
A determines which new solution can be used to improve upon previous
solutions and its shape is determined by its contour. The contour property is
unique to each scalarisation function utilised which was investigated in [58].
Derbel et al. [58] demonstrated that depending on the MOP’s specific PF
geometry different scalarisation functions would be more suitable than others
such as WS performing better on convex PF’s vs non-convex PF’s [217].

The neighbourhood mating scheme was the 2nd core principle which drove
D-MOEA’s unique formulation to differentiate from PD-MOEA’s and PI-
MOEA’s. The neighbourhood mating scheme defined a neighbourhood set
of size T around each sub-SOP to generate new offspring solutions from [247].
However, an issue in Zhang and Li [247] MOEA/D was during mating replace-
ment, a single optimal solution could replace multiple solutions in multiple
sub-SOP’s simultaneously [217]. If left unchanged this would lead to potential
loss of population diversity with each successive generation.

This led to the development of an additional constraints to be used with
scalarisation functions to extend D-MOEA [217] to MOEA/D-CD and MOEA/D-
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Figure 2.17: Illustration of the effect of most popular scalarisation functions
in D-MOEA literature on a 2-Dimensional response space. A represents the
improvement region of each response space: (a) Weighted Sum, (b) Weighted
Tchebycheff, (c) Penalty Boundary Intersection. The square point is the cur-
rent best solution for each sub-SOP with the triangle point indicating the next
optimal solution in the neighbourhood along direction vector ai, taken from
[227].

ACD. MOEA/D-CD and MOEA/D-ACD used constant and adapting constraints
respectively, to alter the contour property to minimise excessive replacement.
Thus, increasing diversity and improve optimisation performance if the con-
straints were tuned correctly.

Whilst Zhang and Li [247], utilised constraints to minimise excessive re-
placement Giagkiozis et al. [83] suggested changing how the neighbourhood
mating pools were defined. As originally the neighbourhood mating pools
were defined by proximity of weight vectors to one another, this did not guar-
antee proximity of sub-SOP solutions in the response space. Giagkiozis et al.
[83] also suggested adaptively updating the neighbourhood sets as the popu-
lation of solutions would also evolve through the optimisation.

The main advantages of using D-MOEA’s is their flexible and scalable
applicability to MOP’s, constrained MOP’s, and high dimensional MaOP’s
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[244]. By leveraging the scalarisation functions to decompose complex MOP’s
and MaOP’s into a set of sub-SOP’s and solve each in parallel. On the other
hand, the main disadvantage of D-MOEA’s is limited application and research
in comparison to PD-MOEA and PI-MOEA due to interest being sparked
from Zhang and Li [247] in 2007. Thereby lacking equivalency in theoretical
property analysis and implementation in a variety of fields.

2.4 Literature Analysis

In BO there has been a wide uptake of use for the methodology in a large
variety of fields including Design of Experiments or Experimental Design
(DoE) [92]. Although Bayesian Optimisation (BO) is continuously being
developed and updated for an ever-increasing variety of use-cases such as:
high-dimensional optimisation, multi-objective optimisation, multi-fidelity op-
timisation, constrained optimisation, etc [92]. these approaches are not always
assessed on practical real-world application studies. Thus, it is difficult to
assess whether the developed techniques are applicable for manufacturers to
implement on a larger scale especially with the increased drive towards In-
dustry 4.0.

Therefore, a systematic search of the DoE literature for implementations
of BO was conducted through a search of Google Scholar using the following
keywords: Bayesian optimisation, sequential, adaptive, acquisition or utility
function, and Design of Experiments or DOE. The findings suggest the use
of Bayesian Optimisation (BO) as a DoE on application cases is a relatively
limited field with 100 papers and the majority of application papers being
published within the last five years. The most prominent fields of application
which utilised BO were Aerospace/Automotive [9] [180] [142], Pharmaceuticals
[223], Chemistry [199] [129], Biology [187], Electronics [56] [52] [196] [172],
Engineering [137] and Additive Manufacturing (AM) [246].

Of the DoE applications implemented the BO methodology most frequently
implemented was the sequential BO using mainly the Expected Improvement
(EI) acquisition function [56] [52] [187] [137], with some methods utilising
GP-CB acquisition function [196] [137] as well as ensemble approaches [172].
After which the next most frequently implemented DoE approach was Multi-
Objective Bayesian optimisation [142] [129] albeit with half as many publica-
tions using some variation of the EI acquisition function. The remaining DoE
implementations using BO were for more specialised problem types including:
constrained [180], batch [199] and multi-fidelity [9].
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One field of DoE application that is beginning to see increasing interest is
AM with 8 papers within the last five years [246]. Of these 8 papers the vast
majority also implemented sequential BO using primarily the EI acquisition
function [104] [238] [163] [90]. Whilst there were also one paper each for
sequential BO using GP-CB [57], constrained optimisation using an cEI (see
Section 2.2.5) [198], and multi-fidelity optimisation [236].



Chapter 3

Methods and Manufacturing
Case Studies

In the previous chapter DoE’s history and progression as a field of study was
introduced including its background concepts to provide a basis of knowledge
for the research conducted in this thesis. In this chapter, further detail will be
provided on key methods, performance measures, and processes to be used
throughout the thesis to support the research.

3.1 Data Processing

In traditional regression analysis or modelling, the processing of both input
and output data can play an important role in ensuring well-tuned models
with good inference performance. Input variables are processed to minimise
the impact of differing input scales/ranges. Whilst output variables are pro-
cessed to centre on a zero mean to simplify GPR model assumptions (See
Section 2.2.1).

Processing of input data is particularly important in application where
models are based upon distance/similarity between data points [182] such as
GPR models. As GPR models determine the covariance between two data
points if the scale/range of one variable far exceeds the remaining variables it
will likely dominate any subsequent covariance calculations such as predictive
mean and variance in Equation 2.21a and 2.21b respectively.

The method of processing the regression data for modelling using GPR
in this work is known as Standardisation. In this thesis, the standardisation
approach implemented is referred to as Standard Score or Z-scores which is
calculated using Equation 3.1.

69
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vscore (
xi

)
=

xi – μ
(
xi

)
σ
(
xi

) (3.1)

Where, each experiment x can be broken down into each of its ith input
variables the vscore (

xi
)
standard score of the ith input variable can be de-

termined using: the mean of the ith input variable μ
(
xi

)
and the standard

deviation of the ith input variable σ
(
xi

)
.

The mean and standard deviation of a variable to be standardised can
be found from the data set accurately if a large volume of data is available.
However, the application cases in B-DoE studies and Additive Manufacturing
(AM) are expensive to evaluate and thus have limited experiments/experimen-
tal budgets. ITherefore, an assumption surrounding the distribution of input
variables is made to allow for the approximation of the mean and standard
deviation of input variables. As the selection of any single input variable set-
ting is equally likely the variables are assumed to be distributed uniformly in
a continuous space. By using the properties of a continuous uniform distri-
bution Equation 3.2a and Equation 3.2b are used to estimate the mean and
standard deviations of each variable respectively.

μ
(
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)
= 1

2
(
xL
i + xU

i
)

(3.2a)

σ
(
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)
=

√
1
12

(
xU
i – xL

i
)2 (3.2b)

Often the upper and lower bounds required for standardisation are known
apriori for input variables but unknown for output variables. In order to
account for the unknown bounds of the output variables they must be re-
estimated after each iteration of the DoE to provide new upper and lower
bounds. These updated bounds can then be utilised with Equation 3.2a and
Equation 3.2b to re-standardise the output data after each iteration of DoE.

3.2 Algorithm Performance Metrics

In traditional DoE methodologies the experiments are all selected a priori,
after which experiments are performed with an ANOVA statistical test being
conducted last. Whereas, when implementing adaptive DoE or BO in this
thesis, analysis of performance can occur at each iteration of experimentation.
The DoE aims to satisfy the goals of maximising information gain, minimising
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experiments performed, develop accurate surrogate models and to optimise
the process parameter settings. The performance metrics can be used to assess
which of these goals the DoE methods can satisfy as well as compare against
alternative methods. For this work two performance measures are required to
illustrate these DoE goals:

• Global Optimisation Performance:
Ability of an algorithm to locate globally optimal design parameters

within a design space.

• Statistical Model accuracy/precision:
Ability of a statistical model to encapsulate underlying patterns and

interactions to allow for accurate inference of unexplored locations.

3.2.1 Optimisation Metric: Regret

The metric for assessing an algorithm’s capability in locating the globally
optimal parameter setting that has been used throughout adaptive DoE or BO
literature is, Regret [208] [230] [100] [101]. When making decisions under
uncertainty an individual’s choice of their perceived best course of action does
not always lead to the best possible decision in that instance, the response
to this disparity is often referred to as Regret. Regret defines the disparity
between the choice made under uncertainty and the best possible decision, in
decision theory. [24].

In decision theory there are multiple variations of types of Regret that can
be calculated, however, for use in DoE or BO literature the most suitable type
is the Immediate Regret.

Rt =
∣∣∣∣f (x+)

– f
(
x∗

)∣∣∣∣ (3.3)

Where, |. . .| is the absolute function, Rt is the regret of the decision made at
iteration t, x+ is the incumbent which is the current best experiment performed
and x∗ is the global optimum. Rt represents the difference between the best
choice made at interval t and the globally best choice (global optima) that could
have been made. This metric is a simple calculation to implement but also
accurately represents the progress of searching the decision space for the global
optima. This is often the only metric which is considered when comparing
algorithm frameworks in literature. Their goals are to improve upon the
current state-of-the-art methods in locating globally optimal solutions within
a minimum number of intervals t.
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3.2.2 Statistical Model Error Metric: NRMSD

The goal of this work is not to simply improve upon the state-of-the-art
method but also to provide a suitable framework for implementation in in-
dustry. As previously specified in Section 3.2, the goals of B-DoE are to
produce accurate/precise surrogate models of the underlying process and their
variable interactions. The prediction or inference accuracy of statistical models
is often overlooked when assessing algorithmic performance as it is assumed
that the models produced are accurate.

As shown in Section 2.2 the selection of each new experiment is built
upon the inference of GPR models, the accuracy of models directly affects the
optimisation performance. By monitoring the accuracy improvements of the
surrogate models with each experiment selected this can provide insight into
the algorithms performance in exploring the decision space.

A variety of performance metrics are implemented in regression/machine
learning literature with changing preference year by year [34]:

1. Mean Squared Error (MSE)

MSE = 1
N

N∑
i=1

(
yi – yi

)2 (3.4)

2. Root Mean Squared Error (RMSE)

RMSE =
√

MSE (3.5)

3. Mean Absolute Error (MAE)

MAE = 1
N

N∑
i=1

∣∣∣yi – yi
∣∣∣ (3.6)

where, N is the total number of test predictions, yi is the predicted output of
test i and yi is the true output of test i.

MSE is perhaps one of the more frequently applied regression performance
metrics due to its simple calculation method as shown in Equation 3.4. Despite
its simple calculation method which leads to its primary advantage, it also
pertains to one of its primary disadvantages as well since the MSE is sensitive
to outliers in its residual (yi– yi). Another consideration to be made is that the
unit of MSE due to squaring the residual is not directly relatable to the units
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of the data. This led to the adoption of RMSE whereby it takes the square root
of the residuals as shown in Equation 3.5. Another frequently used choice is
MAE which instead of taking the square of the residual to remove negative
values it instead takes the absolute of the residual as shown in Equation 3.6.
Also, just as with RMSE, MAE units are the same as the data’s initial units,
allowing for improved interpretability.

Given the properties of the modelling performance metrics the most suit-
able metric would be either RMSE or MAE, however another consideration
should be accounted for when choosing a suitable metric and that is compar-
ative ability. As with both metrics the quantities are sensitive to the scale of
the response variable being analysed [182]. Therefore, in order to compare
modelling performance on different types of problems, to make the models
errors independent of response scale, it is suitable to use a normalised metric.
Consequently Normalised Root Mean Square Deviation (NRMSD) would be a
suitable modelling metric to use for this work:

NRSMD = RMSE(
yU – yL) (3.7)

Where, yU is the maximum value or upper limit of the predicted output
variable and yL is the minimum or lower limit of the predicted output variable.

3.3 Global Optimisation Algorithm: Genetic Algorithm

As specified in Section 2.2 and Section 2.3, Genetic Algorithm (GA) are a
suitable optimisation approach for global optimisation problems that seek to
isolate a globally optimal solution using a population-based search built upon
the principle of survival of the fittest.

This core theory behind this principle as an optimisation approach is to
generate a set of random solutions or Individuals which constitute a combined
Population of solutions which are augmented through iterative Generations using
evolutionary-based functions to progressively evolve the population towards
an optimal solution [54]. This procedural evolution uses the concept that
with each successive generation the good/optimal controllable variables values
Genes converge towards the optimal solution. Whilst the baseline GA is a
simple algorithm shown in Figure 3.1, using a variety of modified or add-
on evolutionary functions allows the developer to augment its features. To
improve performance or adjust application onto various types of optimisation
problems, aside from the initial sequential problems others include: batch,
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multi-objective, and multi-objective batch.

Figure 3.1: Flowchart illustrating basic structure of an Evolutionary Algo-
rithm, Genetic Algorithm.

Figure 3.1 Illustrates the basic structure of a GA with its primary evo-
lutionary functions: population generation, mating pool selection, crossover,
and mutation. In addition to the primary evolutionary functions, there are
a series of additional add-on functions that will be utilised to improve GA’s
performance throughout including: elitism, and population constraints.

3.3.1 Population

The first step in the GA algorithm is to generate an initial set of individuals
which will make up the initial population. Each individual C is split further
into components known as Genes however, these genes can encode information
by two different methods: Binary and Real Parameter encoding [54].

The method of encoding is dependent on the type of problem that is being
optimised, a binary encoding is suitable for discrete-space controllable inputs,
and real parameter encoding is suitable for continuous-space controllable in-
puts [54]. The issue of using a binary encoding in a continuous space is a
matter of attainable precision. The binary string length to encode discrete
value into a binary string must be known a priori, a predetermined amount of
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information can be encoded into each gene, which limits controllable inputs
precision in the continuous space. Therefore, in a DoE setting of manufac-
turing industries the majority of problems involve a continuous controllable
inputs, so henceforth real parameter encoding and evolutionary functions shall
be used:

C =
[
xi, xi+1, . . . , xd

]
∀ i = 1, 2, 3, . . . , d (3.8)

where, C is the real-parameter encoded individual and xi is the real-parameter
value of gene i representing the ith input variable.

In order to generate an initial set of individuals the boundaries of the
controllable factors need to be defined. After which, drawing from a random
distribution and scaling the draws to within the bounds of each gene will
generate the initial population prior to implementation of the GA.

3.3.2 Mating Selection

Once the initial population has been generated the first generation of the GA
begins. Prior to any evolutionary functions evolving a population the cost of
each individual in a population is calculated. The cost assignment employed
is dependent on the type of problem being solved, wherein we are assessing
an experiments expected value if performed. Therefore, the individuals that
produce a large expected value or acquisition cost should be selected, the
specific cost applied will be dependent upon the B-DoE acquisition function
being employed, with the acquisition functions being investigated detailed in
Section 2.2.

Once the population has been evaluated and cost assigned to each individ-
ual in the population, a convergence criterion is assessed such as: wall-clock
time [152], maximum number of generations [152], small improvements in
optimum located [152], and small improvements in acquisition value [147]
[171]. In order to implement a stopping criterion using incremental changes
in either a global optimum or acquisition value, a tolerance must be set and
tuned which can be difficult to determine [152]. On the other hand, using
a maximum number of generations could lead to a waste in computational
budget if set too large, but it is a much simpler scheme to utilise. If the cri-
terion is met then the GA will end and export the optimal solution, whereas
in the case the criterion is not met the population will be modified. Using
three main evolutionary functions, a GA aims to duplicate good individuals
and eliminating bad individuals [54].
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The first evolutionary reproduction function is the mating pool selection,
which determines which two or more individuals in a population will combine
their encoded genes with the intention of generating improved solutions during
the subsequent reproduction stages. There exist a large variety of selection
schemes but can these be broadly classified into 3 types [54]:

• Proportionate Selection

• Ranking Selection

• Tournament Selection

A proportionate selection scheme sets the likelihood of selecting an indi-
vidual to add to a mating pair as proportional to its value or cost in relation
to the total available cost of the entire population:

P
(
Ci

)
=

eval
(
Ci

)
∑P

j=1 eval
(
Cj

) (3.9)

where, P (. . .) is the probability of selection of an individual, eval (. . .) is the
evaluated value or cost of an individual, and ∑P

j=1 indicates the sum of all
evaluated values/costs of individuals in the population of size P.

The most common implementation of this scheme is a roulette wheel se-
lection scheme where the proportion of each individual is scaled to fit onto a
roulette wheel, as seen in Figure 3.2. After which the roulette wheel is spun
each time to select a solution to add to the mating population up until the
number of mating pairs is reached [54].

The primary issue with using a proportionate selection scheme is that it
has a scaling problem, whereby if a single individual has a significantly larger
cost than the remaining population its probability of selection will dominate
the remaining individuals. As such this would lead to the repeated selection
of a single individual into the mating pool, increasing the likelihood of the
population converging and losing population diversity which would inhibit
convergence to the optimum.

To prevent this, a ranking selection was introduced [88]. Ranking selection
first sorts individuals according to their costs from the worst (rank 1) to the
best (rank N) [54]. Individuals in each rank are then assigned a new cost
equal to their ranking upon which, using the same underlying functions as
proportionate selection schemes, they choose the mating pairs.

According to [89], the tournament selection scheme is the best in terms of
convergence and computational time than other methods. Another advantage
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Figure 3.2: Example of Roulette Wheel Selection strategy for 5 possible indi-
viduals of varying fitness and subsequently probability of selection determined
using Equation 3.9.

it is also unaffected by the scale of the cost function [15] unlike proportionate
methods. In a tournament scheme, individuals are added to a Tournament in
which the best individual is selected to be added to the mating pool as seen
in Figure 3.3.

A tournament selection scheme can be varied by changing its tournament
size (S) and whether individuals are replaced after each tournament. If S = 1
the tournament would be equivalent to random selection, on the other hand
if S = N only the highest cost individual would be selected each tournament.
Thus, a balance is required when selecting the tournament size wherein Blickle
and Thiele [32] found when individuals are replaced after each tournament
if S ≥ P the loss of population diversity with each generation would be over
50%. An important factor to consider is when using a lower S with replace-
ment after each tournament can lead to some individuals not participating in
any tournaments. On the other hand, using a tournament selection scheme
without replacement, whilst guaranteeing that each individual participates at
least once, it does not prevent loss of diversity as bad individuals will always
be removed through selection. The main issue is to prevent loss of good so-
lution diversity, which can be maintained through using other evolutionary
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Figure 3.3: Diagram demonstrating an example of a binary tournament (S=2)
selection scheme on a population of 8 individuals.

functions as described in Section 3.3.5.

3.3.3 Crossover Operator

After a parent sub-population has been chosen from the current generation
total population, new individuals or Offspring are generated through crossover
functions. The purpose of the crossover function is to expand upon the work
done by the selection operator. Selection chooses individuals with good/desir-
able characteristics (genes) to carry on into future generations, the crossover
function is to generate new potentially better solutions by recombining parents
of superior genes [54]. Therefore, crossover guides the individuals to converge
towards optimal regions of the design space.

This work implements a real-parameter crossover function known as Blend
Crossover (BLX-a), which blends the two parents along every gene using a
blending variable which is re-calculated for each mating pair.

O(1,t+1) =
(
1 – γ(i)

)
× C(1,t) + γ(i) × C(2,t)

O(2,t+1) = γ(i) × C(1,t) +
(
1 – γ(i)

)
× C(2,t)

(3.10)

where, O1 and O2 are the offspring created via crossover, γ is the blending
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operator is re-drawn after each crossover according to Equation 3.11 which is
re-calculated for each mating pair.

γi = (1 + 2α) rndi – α (3.11)

Where, α is the blending constant and rndi is a random number drawn
from a uniform distribution between (0,1). rndi ensures a degree of random-
ness in the mixing between mating pairs from one pair to the next. Deb [54]
states that α was found to be most optimal to be set to 0.5. Whereby the
maximum variation achievable is 1.5 times over or under their parents gene
values within the upper and lower bound limits as illustrated in Figure 3.4.

Figure 3.4: Total BLX-α crossover spread possible when using a blending
constant (α) of 0.5.

3.3.4 Mutation Operator

The crossover operator guides the GA to convergence through repeated crossover
of individuals with desired Genes over many generations, however there is no
guarantee of convergence. This is due to the inherent diversity within the pop-
ulation of individuals, as the population may be trapped in a local optimum.
Therefore, as the goal of a GA is to locate a globally optimal solution, another
evolutionary function must be utilised to improve the diversity of the popu-
lation. To ensure generational convergence to a global optimum rather than
a local optimum, diversity of the population needs to be maintained through
generations. GAs incorporate the Mutation operator to maintain population
diversity [54].

This thesis uses a simple mutation function known as Random Mutation,
which randomly selects an individual from the available offspring population
onto which a random gene is specified on that individual to mutate. This gene
is mutated by randomly drawing a new gene from within the bounds of the
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search space around its upper and lower bounds [159].

xM
i = rndi ×

(
xU
i – xL

i
)

∀ i = 1, 2, 3, . . . , N (3.12)

Where, xM
i is the mutated form of gene i, rndi is a random number drawn

from a uniform distribution between (0,1), xU
i is the upper limit of gene i and

xL
i is the lower limit of gene i. This evolutionary function is equivalent to

random initialisation of a new gene on an individual in order to create a new
individual in the search space in order to maintain diversity.

After a small sample of the offspring population have been mutated, they
are placed back into the offspring population. The offspring population and
the prior generation of individuals are then combined into a single population
and incremented into the next generation as shown in Figure 3.1.

3.3.5 Additional GA Functions

Apart from the core evolutionary functions required to implement a GA succes-
sively, there is a variety additional functions available to improve deficiencies
and/or lack of capability to handle specific goals of the optimisation frame-
work. Two such evolutionary functions are to be described below which are
implemented alongside the selection, crossover and mutation functions.

Elitism Operator

Methods to maintain genetic diversity of a population of individuals have been
achieved through the use of mutation functions to introduce new solutions
into the population. Also as mentioned in Section 3.3.2 during selection with
replacement, there is a chance of solutions not being selected to participate in a
single tournament. This can lead to loss of diversity through random chance.
In order to prevent these losses of diversity in the population of solutions most
GAs introduce an Elitism policy [54].

Elitism is a method to store and preserve the best solutions found from
one generation to the next in an external population, that is maintained and
updated through each successive generation. In this work, an external elitist
set policy of a fixed size dependent on the size of the GA population is defined
in Equation 3.13.

Esize = 1
10 × Psize (3.13)

where, Esize is the size of the elitism set and Psize is the size of the GA
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population.

As the elite set is stored externally their costs and constraints must be re-
evaluated from one generation to the next, in parallel with the current GA
population. After constraint application (Section 3.3.5), the updated elite set
is compared with the current population to identify potential new individuals
to be added to the external elite set. Once new elite individuals are identified
and added to the external elite set, any identical elite individuals are removed
with the worst performing elites being culled to the pre-specified size defined
in Equation 3.13. The elite set updating procedure is performed in accordance
with Algorithm 3.1.

Algorithm 3.1 Elite Set Update
Inputs:

P : Population of Individuals
E : Elite Population

Esize : Elite Set Size
u : Acquisition value

1: P← Constraint Penalty (P) // See Equation 3.14
2: E← Constraint Penalty (E) // See Equation 3.14
3: procedure Elite Set Updater(P,E,Esize) do
4: Epotential ← find

(
P (u) > Eold

(
ulowest

))
5: Enew =

[
Eold, Epotential

]
6: Enew ← Unique Sorting

(
Enew

)
// Identical candidate removal

7: if Size(Enew) > Esize then
8: Enew ← Order Sorting

(
Enew

)
// Descending sort

9: Enew ← Removal
(
Enew

(
ulowest

)
, Esize

)
// Remove worst elites

10: end if
11: return New external elite population, Enew
12: end procedure

These elite individuals are kept external to the main population across
every generation except during mating pool selection tournaments, where they
are inserted into the available pool. When the stopping criteria is met they are
also added during the final optimal individual selection.
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Constraint Functions

In GAs, the optimiser is capable of searching the design space globally and
efficiently however in many benchmark problems and manufacturing design
problems a feasible search space is required. This search space domain is often
defined using the upper and lower bounds on the controllable factors which
are incorporated as the real-parameter individuals’ genes. In order to ensure
that individuals remain within these limits during the optimisation search a
Penalty or Constraint function is applied.

A variety of methods exist to enforce these design space boundaries de-
pending on how strict the boundaries are as well as methods to improve
search capabilities close to the design space boundaries [54]. In this work, a
strict death penalty [54] is combined with a shrinking border approach in or-
der to maintain strict boundary conditions whilst searching close to boundary
conditions.

Constraints are applied after the cost of individuals in a population has been
assessed as shown in Figure 3.1. A death penalty constraint function identifies
individuals that through crossover, mutation and other evolutionary functions
have caused the gene to drift outside their bounds making them infeasible
individuals [54]. Upon this identification, their associated cost is reduced to
0, effectively killing the individual as its chance of winning a tournament is
removed in accordance with Equation 3.14.

χ(C) = χ(C) ∗Dpenalty Dpenalty =


0, if xi ≥ xU

i
0, if xi ≤ xL

i
1, otherwise

(3.14)

Where, χ(C) is the population cost associated with individual C, Dpenalty is
the death penalty cost, xi is the ith gene of individual C and xU

i and xL
i are

the upper and lower bounds respectively of the ith gene of individual C.
As a death penalty constraint is a strict constraint applied to prevent in-

feasible individuals from being retained within a population. It can inhibit
the search for feasible individuals close the boundary as even a slight overstep
is a violation. Thus, in order to prevent the death penalty constraint from
inhibiting the GA searching close to the boundary, a slightly larger boundary
domain is initially allowed. In Figure 3.5, a temporarily increased boundary
is utilised to allow for searching close to and beyond the original boundary
(Personal Communication, K. Grzȩdziński 2019).

By gradually shrinking the boundary over many generations, the conver-
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Figure 3.5: Initial increase in search space domain before gradual reduction
to the original search space to improve exploration close to boundaries.

gence of potentially beneficial individuals near the boundary can converge
within the population. This shrinking occurs slowly over the first 10% of the
total generations to allow for increased boundary convergence but is reduced
to the original boundary for the remaining generations.

Aside from boundary constraints by using a GA optimiser, it is possible
to introduce extra constraints with respect to specific problems which is an-
other benefit in using a GA optimiser for manufacturing-based problems. As
problem specific constraints can easily be incorporated into the GA optimiser
increasing the domain of problems that DoE with a GA based optimiser can
handle [54].

3.3.6 Genetic Algorithm: Parameters

In Section 3.3.1 - Section 3.3.5 a variety of evolutionary functions have been
introduced to explain the GAs functionality and set-up. To follow-on from this,
there exist a variety of tune-able parameters that require specification for the
GA optimiser to run efficiently, as well as reasoning behind their specification.
Table 3.1 provides a list of GA parameters that can be varied and their related
evolutionary functions.

As with designing a new B-DoE framework that is generalised for appli-
cation to a variety of problem types in which according to the No Free Lunch
Theorem [232], there is not a universal solution to its design that is suitable
to all problems. In parallel, this theorem can also be applied to the selection
and tuning of the GA parameters in which there is no set parameters that will
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Table 3.1: GA Parameters that can be selected and tuned depending on the
requirements of the optimisation problem.

GA Tunable Parameters
GA Parameter GA Function Symbol
Population Size Population Generation Psize
Number of Generations GA Initialisation Ngen
Elite Population Size Elitism Esize
GA Boundary Stretch Coefficient Boundary Stretch Coefficient BSsize
Blending Crossover Constant Crossover α

prove optimal for all types of problems.

Population size and number of generations in a GA largely influence the
total number of function evaluations that will take place during one GA cycle.
Thus, the selection of both of these two parameters influences the computa-
tional cost of implementing a GA optimiser as shown in Equation 3.15.

NFevals = Psize ×Ngen (3.15)

where, NFevals is the total number of function evaluations that will take
place during one GA cycle. As such, the choice between both of these pa-
rameters falls under two implementation schemes: Large Psize with a small
Ngen or a small Psize with a large Ngen. Therefore, the choice between both
depends on the characteristics of each scheme. Using a large Psize increases
the populations diversity initially as it allows for a more precise grid of so-
lutions to be used but, a small Ngen suggests the GA will not have enough
generations to converge to the globally optimal solution. On the other hand
using a large Ngen provides more opportunities for convergence to the globally
optimal solution but limits diversity.

In this work, the large Ngen was opted for
(
Ngen = 1000

)
as there are

evolutionary functions available to increase the diversity of the population as
shown throughout Section 3.3, but no functions to ensure convergence within a
small number of generations. When considering the population size in the GA,
the Curse of Dimensionality of problems must be considered. More commonly
associated in optimisation literature as Combinatorial Explosion, where as the
number of controllable factors increases, this leads to the rapid growth of the
problem complexity. In order to ensure that there are sufficient individuals
in the population with regards to the problem complexity, the population size
will scale with the number of controllable factors [54].



Chapter 3. Methods and Manufacturing Case Studies 85

Psize = 10 × d

Where d is the input dimension of the problem of which in DoE is the
number of controllable factors. The size of the elitism set must also be chosen
prior to the implementation of the GA, which is chosen to be a small subset
of the population as specified in Section 3.3.5.

Typically in GAs, the crossover and mutation evolutionary functions often
have a probability or rate of occurrence associated with them [54]. These
probabilities determine randomly where to crossover between genes of mat-
ing pairs or when to mutate particular genes of offspring when using binary
encoded GAs. For our real-parameter GA, as long as the individual has been
selected using the mating operator it will undergo BLX-a crossover using
Equations 3.10 - 3.11 or mutation using Equation 3.12.

The final parameter to be chosen is the size of the shrinking boundary
constraint (BSsize) and the speed at which it reduces towards the true problem
boundary during the GA. As the purpose of the boundary is to increase the
diversity of solutions towards searching near the boundary, the increased size
should be small and quickly converge back into the original boundary. There-
fore, the boundary is expanded by 10% of its initial size, and reduce back to
the original boundary after the first 10% of the Ngen. This ensures the bound-
aries are fully explored first, with the subsequent generations to converge to
the global optimum.

3.4 Model Hyper-parameter Tuning

The GPR surrogate model hyper-parameters will be re-tuned after each sub-
sequent data acquisition in all algorithms in this thesis, as such the model
hyper-parameter tuning procedure will be detailed as follows in Section 3.4.
As previously mentioned in Section 2.2.1 the GP surrogate models’ hyper-
parameters are tuned through the optimisation of Equation 2.10, which con-
sists of a cross-validation cost function to evaluate a hyper-parameter set’s
fitness to the observed data set and a GA algorithm to efficiently search for a
globally optimal set of hyper-parameters.

The cross-validation approach was previously introduced in Section 2.2.1
to evaluate how well each hyper-parameters settings to fit to the observed data
set, detailed in Algorithm 3.2. However, in order to search for the optimal
configuration of hyper-parameter settings an optimiser is needed to search a
variety of hyper-parameter settings, in this thesis a GA algorithm is used as
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shown in Figure 3.1. The cross-validation approach is implemented as the
population evaluation component and the setup of the GA tuning parameters
is set according to Table 3.1.

Algorithm 3.2 Gaussian Process Model Tuning: K-Fold Cross-Validation

1: procedure GPR
(
λ, Dt,o

)
do

2: Initialise Pi (θ)← Random Draw (λ)
3: for i = 1, 2, . . . , NGen do
4: Partition Dt into k sets
5: for j = 1, 2, . . . , k do
6: Dtest ← Dt ∈ [x, y]j
7: Dtrain ← Dt ∈ [x, y]–j
8: GP

(
m,k|θi

)
← Train Model

(
Dtrain, PG

(
θi

))
9: μtest ← Predict Mean

(
Dtest, Dtrain, GP(m, k|θi)

)
// See Equation 2.21a

10: σtest ←
√
Predict Var

(
Dtest, Dtrain, GP(m, k|θi)

)
// See Equation 2.21b

11: log pj ← Pred Log Prob
(
ytest|xtrain, ytrain, θi

)
// See Equation 2.12

12: end for
13: LPLP ←

∑k
j=1 log pj

(
ytest|xtrain, ytrain, θi

)
14: end for
15: return θt ← argmaxθt

LPLP
16: end procedure

The final consideration in order to utilise the GA algorithm for hyper-
parameter optimisation is how the hyper-parameters are initially sampled. As
when the GA algorithm is utilised for acquisition function optimisation the
initial population is drawn from a defined feature space, this is not the case
for hyper-parameters for GP surrogate models. As when fitting GP surrogate
models the main concern is overfitting to the observed data which can lead to
poor inference [216].

To prevent the issue of overfitting and poor model prediction a hyper-prior
distribution is selected for each hyper-parameter from which the initial GA
individuals will be drawn from. Prior distributions can be roughly classified
into 3 main distribution types:

1. Informative Prior.

2. Non-Informative Prior.

3. Weakly Informative Prior.
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An informative prior is a prior which incorporates a large body of knowl-
edge (expert knowledge, literature, exploratory experimentation, etc.) into its
selection, which will have a large impact on the tuning of the model hyper-
parameters.

A non-informative prior utilises no information but rather lets the data
inform the selection of the hyper-parameters. A compromise prior distribution
are weakly informative distributions which are to be used in this work.

A weakly informative prior is ideal as the primary goal is the regulariza-
tion of the hyper-parameter to constrain the hyper-parameter within a suitable
range. By using a weakly informative prior distribution, the hyper-parameter
is prevented from overfitting to the data whilst also preventing excessive guid-
ance in the selection of the hyper-parameters.

The SE kernel (See Equation 2.7) has been selected and thus there are two
main hyper-parameters to be tuned: Length Scale (Ld) hyper-parameter and
output variance (σ2

f ) hyper-parameter. Also as specified in Section 2.2.1 an
additional noise hyper-parameter is also included, as outside of ideal condi-
tions some noise will exist within the data such as within manufacturing cases.
Therefore, an appropriate weakly informative hyper-prior has been selected
for each hyper-parameter:

• Length-Scale:

Inverse Gamma Distribution

• Output Variance:

Half-Normal Distribution

• Noise:

Uniform Distribution

3.4.1 Length Scale Hyper-prior

As previously mentioned in Section 2.2.1, the length scale hyper-parameter
determines the smoothness of variation along all or specific dimensions of the
GPR model. A variety of factors can influence the selection of a suitable hyper-
prior distribution for length scale based upon the kernel type, the processing
of the data, and prevention of overfitting and/or excessive smoothing.

Firstly, the kernel type being used in this work is the SE kernel shown
in Section 2.2.1, however this can be further split into 2 forms based upon
handling of multiple input dimensions. A SE kernel length scale can either be
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set for each individual dimension of inputs, known as an anisotropic kernel
or a single hyper-parameter for all input dimensions, known as an isotropic
kernel. In this work, we utilise the anisotropic form of the SE kernel (See
Equation 3.16) ), which is also referred to as the Squared Exponential (SE)
Automatic Relevance Determination (SE-ARD) kernel [63].

kSE–ARD

(
xi, xj

)
= σ2

f exp
–1

2
(
xi – xj

) 1
L2

d

(
xi – xj

) (3.16)

Where, xi is experiment i and xi is experiment j, σ2
f is the signal variance hyper-

parameter, and Ld is a diagonal matrix set of length scale hyper-parameters
with one parameter for each input dimension d.

Secondly, as a length scale determines the distance in which a new exper-
iment can be extrapolated from previously observed data [63], the processing
of the input data will affect the tuning of the hyper-prior distribution. As
previously specified in Section 3.1 the inputs will be standardised using Equa-
tion 3.1, after which the inputs will range between [–2, 2]d. Thus, the length
scales sampled from the hyper-prior distribution should fall within the range,
[–2, 2]d.

Finally, in order to overfit or excessively smoothen an SE kernel, the length
scale must be either an incredibly large (excessive smoothing) or an incredibly
small (overfitting) value. The prior distribution property of interest for these
scenarios are sharp-tailed distributions which place infinitesimal probability at
the tails of the distribution. To prevent overfitting a sharp left-tailed distri-
bution is required, whilst to prevent excessive smoothing a sharp right-tailed
distribution is required.

Whilst prevention of overfitting promotes a well-tuned GPR model without
exact interpolation, excessive smoothing is an undesirable property if imple-
mented excessively. Such that the smoothness of a particular length scale
hyper-parameter should be explored reasonably, it should also have a soft
limitation on the right-tail of the distribution with a sharp left-tail.

Therefore, when choosing a weakly informative hyper-prior distribution,
considering the desired distribution properties discussed previously an Inverse
Gamma distribution is the most suitable. An Inverse Gamma distribution is
defined by its shape (αIG) and scale (βIG) parameters, as shown in Equa-
tion 3.17.

f
(
x; αIG, βIG

)
=

β
αIG
IG

Γ
(
αIG

) (1
x
)αIG+1

exp
(
–
βIG
x

)
(3.17)
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where, f
(
x; αIG, βIG

)
is the inverse gamma’s probability density function,

αIG is the shape parameter, βIG is the scale parameter and Γ (.) is the Gamma
function.

To ensure that the length scales sampled from an Inverse Gamma distribu-
tion fall within [–2, 2]d, the Inverse Gamma distribution parameters are set to
αIG = 5 and βIG = 5, where the corresponding probability density function
is represented in Figure 3.6.

Figure 3.6: Inverse Gamma Probability Density Function with shape factor =
5 and scale factor = 5 .

3.4.2 Output Variance Hyper-prior

As previously mentioned in Section 2.2.1, the output variance hyper-parameter
determines the average distance the response function is from its mean, al-
though it is often referred to as a simple scaling factor. As the GPR model
is built upon a standardised data set, the range of output values vary be-
tween standard normal distribution (μ = 0,σ = 1) ranges. Therefore, the range
of values sampled from the hyper-prior distribution for the output variance
hyper-parameter should be greater than zero but, should not exceed the largest
sample from a standard normal distribution.

A Half-Normal distribution fits the requirements for the output variance
hyper-parameter perfectly. Whereby the distribution is a standard normal
distribution except the for probability of sampling below zero is equal to zero,
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as defined in Equation 3.18 and illustrated in Figure 3.7.

f (x;σ) =
√

2
σ
√
π

exp
– x2

2σ2

 and x ≥ 0 (3.18)

where, f (x;σ) is the half-normal’s probability density function and σ is the
standard deviation.

Figure 3.7: Half-Normal Probability Density Function with mean = 0 and
standard deviation = 1.

3.4.3 Noise Hyper-prior

As previously shown in Equation 2.10, the noise hyper-parameter is added
to models in which noise is present such as manufacturing cases. Although,
typically in most simulations, the benchmark problems or case studies are
noise-free and thus do not require a noise hyper-parameter. Despite this a
small value of noise is typically included within all GPR models to ensure ma-
trix inversion tractability [182]. By adding noise to the kernel, Equation 2.15
to Equation 2.21b are modified into Equation 3.19 to Equation 3.21b.

K1:n =


k(X1, X1) . . . k(X1, Xn)

... . . . ...
k(Xn, X1) . . . k(Xn, Xn)

 + σ2
noise ∗ I (3.19)

Which yields a noisy predictive posterior distribution:
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P
(
fn+1|D1:n, X1:n

)
= N

(
μn

(
Xn+1

)
,σ2

n
(
Xn+1

)
+ σ2

noise
)

(3.20)

Which can be re-arranged to derive the noisy predictive posterior mean
and standard deviation respectively.

μt
(
Xn+1

)
= kT [

K + σ2
noise

]–1 f1:n (3.21a)

σ2
t (Xn+1) = k

(
Xn+1, Xn+1

)
– kT [

K + σ2
noise

]–1 k (3.21b)

Therefore, when choosing a weakly informative hyper-prior distribution for
the noise hyper-parameter requires an easily scalable noise hyper-parameter
that can be small to ensure inversion tractability for simulation problems or
scalable for real world applications.

A continuous uniform distribution with tuneable constraints is the most
suitable distribution for the requirements of the noise hyper-parameter, shown
in Equation 3.22 and illustrated in Figure 3.8. A continuous uniform distri-
bution has equal probability of selecting values within the constrained limits,
of which the limits can be changed to suit the needs to specified problem.

f (x) =


1

b–a for a ≤ x ≤ b,
0 for x < a or x > b

(3.22)

where, f (x) is the continuous uniform probability density function, a is the
lower bound and b is the upper bound.

Whereby, for a noise-free simulation problem, the noise hyper-parameter
limits are set to a log10 scale. This is to transform the range limits to a small
but positive range kept reasonably small such as [10–3, 10–6]. This prevents
the kernel matrix inversion during inference (See Equation 2.21a/ 2.21b) from
being non-invertible, whereas this range can be altered for noisy manufactur-
ing cases based upon an expert’s knowledge.

3.4.4 Optimiser Adaptations

As described previously the GA framework when tuning the GPR model
hyper-parameters is mostly identical to the framework described in Section 3.3,
aside from the method of sampling the initial population of hyper-parameters
using hyper-priors. Another small modification that is required is to the mu-
tation operator, which operates under the same random mutation mechanism.
Rather they are sampled from their respective hyper-prior distribution as op-
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Figure 3.8: Uniform Probability Density Function between 10–6 to 10–3.

posed to sampling between the upper and lower limits of the feature space as
previously specified.



Chapter 4

Sequential DOE Optimisation

This chapter aims to assess the capabilities of the BO approach for application
onto DoE problems with a particular focus on Additive Manufacturing (AM)
problems. It also seeks to assess the capabilities and selection mechanisms of
the three acquisition function types discussed in Section 2.2.2 to identify which
is suitable for extension into a batch and multi-objective batch frameworks in
future chapters.

As discussed in Section 2.4 the majority of BO literature applied in a DoE
framework on AM in the last five years has primarily been focused on the use
of the EI acquisition function [246]. Coupled with the BO literature’s primary
focus on assessing BO algorithms ability to locate the global optimum, one
contribution in this chapter is the investigation and analysis of Improvement
[131] [119], Optimistic [208], and Informative [100] [101] [230] acquisition
functions for both their capability in building accurate surrogate models and
locating the global optimum.

Secondly, the novelty of the framework to be introduced in Algorithm 4.1
lies not in its formulation, but rather the combination of BO components:
GP surrogate model, sequential acquisition functions (EI, GP-CB, and MES),
and the surrogate-assisted constraint handling optimiser (GA) which have not
previously been applied onto a AM DoE manufacturing case study [246].

4.1 Introduction

As previously discussed in Section 2.1.1 when tackling an expensive manu-
facturing DoE problem, the goal is to improve understanding through a sys-
tematic and efficient approach. The approach should seek to gather as much
information as possible in as few experiments as possible whilst delivering on

93
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the objectives of accurate models and optimal process settings. Within DoE
literature the ARSM branch of literature was identified to contain the most
suitable methods that could handle the characteristics of interest, in particular
BO was chosen to be investigated (see Section 2.4 for review of BO in DoE).

In Section 2.2 an overview of the BO framework was introduced as a po-
tential ARSM approach for expensive manufacturing DoE problems. Although
within literature it is most frequently applied as a sequential approach, select-
ing a single experiment through the optimisation of an acquisition function.
Within this study we seek to explore whether this framework is a suitable
approach for application onto manufacturing problems. Whilst further exten-
sions onto other problem types such as batch selection or multiple conflicting
response criteria are deferred to Chapter 5 and 6 respectively.

4.2 Applicability of BO in DoE

BO was first introduced in Section 2.2 which detailed that the methodology
could be classified into three main components:

1. Building a surrogate model (Gaussian Process Regression, Section 2.2.1)

2. Acquisition function choice (Section 2.2.2)

3. Acquisition function optimisation (Section 3.3)

These three core components comprise the main interchangeable elements
that will affect the performance of the overall BO framework. Therefore,
through the variation of which model, acquisition function, and optimiser
is chosen determines the setup of the B-DoE framework and its subsequent
performance.

Gaussian Process Regression (GPR) models were compared and contrasted
in Section 2.2 as the choice of surrogate model for their flexible modelling,
versatility in application, and incorporation of expert knowledge, as well as
the thorough investigation throughout the BO literature [195].Whereas for
the optimisation component a variety of methods have been implemented
throughout literature as discussed in Section 2.2.3. Genetic Algorithm (GA)
were selected as the acquisition function global optimiser for its capability in
handling multi-modal functions, large input parameter spaces, constraints, and
multiple response criteria. As opposed to other gradient-based optimiser’s in
literature which can require multiple restarts to prevent being trapped in local
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optima and can only be implemented when gradients can be cheaply evaluated
[195].

Subsequently, as two of the three core components have been selected, the
primary method to influence performance of the BO framework is the choice of
the acquisition function. In order to adequately assess the capabilities of each
acquisition function as a B-DoE method for eventual application onto expen-
sive additive manufacturing problems, a series of investigations are required.
Firstly, an investigation onto performance of a series of benchmark synthetic
optimisation problems of varying characteristics: modalities, dimensions, and
separability.

4.3 Simulation Study: Benchmark Problems

Three B-DoE frameworks are to be investigated to evaluate their performance
on a series of synthetic benchmark functions to determine their suitability for
use in expensive additive manufacturing DoE. Each of the B-DoE algorithms
will be run identically as previously described in introduced in Section 2.2
using the GA optimiser introduced in Section 3.3 as shown in Algorithm 4.1.
Although, in each instance of the B-DoE algorithm a different acquisition
function will be utilised: Expected Improvement (EI), Gaussian Process Con-
fidence Bound (GP-CB), and Max Value Entropy Search (MES) as depicted in
Figure 4.1 with blue, red and green lines respectively depicting the differing
implementations and black the functions used throughout. Each acquisition
function is incorporated into Algorithm 4.1 on line 18 and further details for
each acquisition function in Algorithms:

• Expected Improvement (EI) in Algorithm 4.2 [119].

• Gaussian Process Confidence Bound (GP-CB) in Algorithm 4.3 [208].

• Max Value Entropy Search (MES) in Algorithm 4.4 [230].

As illustrated in Algorithm 4.3, only in GP-CB is there an additional pa-
rameter that requires definition and selection prior to implementation, the βt
parameter. The βt parameter is selected based upon the bounds of the GP prior
as discussed in Srinivas et al. [208] for which βt will be set using Theorem 1:

βt = 2 log
 | X | t2π2

6δ

 (4.1)
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Figure 4.1: High-level flowchart depicting the workflow for the B-DoE shown
in Algorithm 4.1, where the core algorithm flow is depicted with a black
line and how the three differing acquisition functions being investigated align
within the workflow. Expected Improvement (blue), GP Confidence Bound
(red) and Max-Value Entropy Search (green).

Where, log (. . .) is the natural log of its argument, t is the iteration number,
δ is a constant of value 0.1 and | X | is the number of discretised points. βt
was also further reduced by a factor of 5 from the originally defined value in
Equation 4.1 as Srinivas et al. [208] found it to improve the performance of
the GP-CB acquisition function.

Accessing the versatility and adaptability of the B-DoE algorithms requires
a variety of DoE problem types to ensure good performance in most DoE
scenarios. Therefore, the selection a few synthetic benchmark functions with
varied optimisation landscapes and characteristics will allow for the assessment
of the consistency of the B-DoE algorithms. In this simulation study three
synthetic benchmark functions were selected: Branin-Hoo [38], Cosines [6],
and Hartman [99].
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Algorithm 4.1 B-DoE Algorithm
Inputs:

ns : Number of LHS samples
λ : Model Hyper-parameter priors
o : Vector of optimisation settings
T : Experimentation budget

1: xt ← Latin Hypercube Sampling(ns, d)
2: yt ← Evaluate(xt)
3: Dt ←

[
xt, yt

]
4: θt ← GPR

(
λ, Dt

)
// See Algorithm 3.2

5: for t = 1, 2, . . . , T do
6: xt+1 ← B-DoE GA Optimiser

(
Dt, GP(m, k|θt),o

)
// See line 11

7: yt+1 ← Evaluate(xt+1)
8: Dt+1 ← Dt ∪

[
xt+1, yt+1

]
9: θt+1 ← GPR

(
λ, Dt+1

)
// See Algorithm 3.2

10: end for

11: procedure B-DoE GA Optimiser
(
Dt, GP(m, k|θt),o

)
do

12: Initialise GA Population
(
P1 =

[
C1

])
13: for G = 1, 2, . . . , NGen do
14: unew ← uAcqFunction

(
CG, Dt, GP(m, k|θt),o

)
// See Algorithm 4.2 - 4.4

15: PG ← Update Population
[
CG, unew

]
16: if G = 1 then
17: E← maxEsize

i=1 PG
18: else
19: ENew ← Elite Set Updater(PG, E, Esize) // See Algorithm 3.1
20: end if
21: PG ← Constraint Evaluation

(
PG

)
// See Section 3.3.5

22: ParG ← Tournament Selection
(
PG

)
// See Section 3.3.2

23: OG ← Blending Crossover
(
ParG

)
// See Section 3.3.3

24: MG ← Random Mutation
(
OG

)
// See Section 3.3.4

25: CG+1 ← OG ∪MG
26: end for
27: return xt+1 ← argmaxC u (P,E)
28: end procedure
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Algorithm 4.2 Acquisition Function: Expected Improvement

1: procedure Expected Improvement
(
C,Dt, GP(m, k|θt),o

)
do

2: if o = Max then
3: x+

← max
(
o, yt

)
4: else if o = Min then
5: x+

← min
(
o, yt

)
6: end if
7: for i = 1, 2, . . . , PSize do
8: μt+1

(
Ci

)
← Predict Mean

(
Ci, Dt, GP(m, k|θt)

)
// See Equation 2.21a

9: σt+1
(
Ci

)
←

√
Predict Var

(
Ci, Dt, GP(m, k|θt)

)
// See Equation 2.21b

10: Z
(
Ci

)
← EI-Score

(
o, x+,μt+1

(
Ci

)
,σt+1

(
Ci

))
// See Equation 2.28

11: uEI
(
Ci

)
←

(
σt+1 ∗ (Z ∗ Φ (Z))

)
+

(
σt+1 ∗ φ (Z)

)
12: end for
13: return uEI
14: end procedure

Algorithm 4.3 Acquisition Function: Gaussian Process Confidence Bound

1: procedure Guassian Process Confidence Bound
(
C,Dt, GP(m, k|θt),o

)
do

2: βt ← Trade-off Parameter (o) // See Equation 4.1
3: for i = 1, 2, . . . , PSize do
4: μt+1

(
Ci

)
← Predict Mean

(
Ci, Dt, GP(m, k|θt)

)
// See Equation 2.21a

5: σt+1
(
Ci

)
←

√
Predict Var

(
Ci, Dt, GP(m, k|θt)

)
// See Equation 2.21b

6: if o = Max then
7: uGP–CB

(
Ci

)
← μt+1

(
Ci

)
+

√
βt ∗ σt+1

(
Ci

)
8: else if o = Min then
9: uGP–CB

(
Ci

)
← μt+1

(
Ci

)
–

√
βt ∗ σt+1

(
Ci

)
10: end if
11: end for
12: return uGP–CB
13: end procedure
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Algorithm 4.4 Acquisition Function: Max-Value Entropy Search

1: procedure Max-Value Entropy Search
(
C,Dt, GP(m, k|θt),o

)
do

2: for i = 1, 2, . . . , R do
3: Sample f̃i (x) ∼

(
m,k|Dt

)
4: y∗i ← argmaxx f̃i (x)
5: end for
6: for j = 1, 2, . . . , PSize do
7: μt+1

(
Cj

)
← Predict Mean

(
Cj, Dt, GP(m, k|θt)

)
// See Equation 2.21a

8: σt+1

(
Cj

)
←

√
Predict Var

(
Cj, Dt, GP(m, k|θt)

)
// See Equation 2.21b

9: for k = 1, 2, . . . , R do
10: γk

(
Cj

)
← γ-Score

(
o, y∗k,μt+1

(
Cj

)
,σt+1

(
Cj

))
// See Equation 2.36

11: uMES,k(Cj)←
[
γk

(
Cj

)
φ
(
γk

(
Cj

))
2∗Φ

(
γk

(
Cj

)) – logΦ
(
γk

(
Cj

))]
12: end for
13: uMES(Cj)← 1

R
∑R

k=1 uMES,k(Cj)
14: end for
15: return uMES
16: end procedure
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It is of great importance when assessing the performance of an algorithm
that the results are analysed on a diverse collection of synthetic benchmark
functions, as no single synthetic benchmark function will universally represent
each characteristic possible.

• Modality
The modality of a synthetic benchmark problem corresponds to the num-
ber of local optima within the function landscape [111]. Whereby if a
synthetic benchmark function is multimodal there exist many local op-
tima, for which a gradient-based optimisation approach may get stuck
within and thus tests the B-DoE capabilities of exploring the search space.

• Separability
The separability of a synthetic benchmark problem is defined as a mea-
sure of the problem difficulty to optimise. Wherein a synthetic bench-
mark function which is separable consists of its input variables being
independently applied. In contrast to a non-separable synthetic bench-
mark function requiring the use of multiple input variables suggesting
inter-relation amongst each variable [111].

• Dimensionality
The dimensionality of a synthetic benchmark problem rather simply
refers to the number of dimensions involved, whereby as the dimen-
sion increases the search space increases exponentially [111] and thus the
optimisation task increases in difficulty.

4.3.1 Branin-Hoo Test Function

The Branin-Hoo function is a minimisation synthetic benchmark function
which has three global minima. Its function characteristics are: Multi-modal,
Non-separable, and 2-Dimensional, shown in Equation 4.2 [38]:

f (x) = a
(
x2 – bx2

1 + cx1 – r
)2 + s (1 – t) cos

(
x1

)
+ s (4.2)

Where, a, b, c, r, s, and t are constants with the following recommended
values:

a = 1, b = 5.1
4π2 , c = 5

π
, r = 6, s = 10, and t = 1

8π
The Branin-Hoo search space is located in the domain x1 = [–5, 10] and

x2 = [0, 15]. The value and locations of its global optima are defined as below:
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f
(
x∗

)
= 0.397887 x∗ = (–π, 12.275) , (π, 2.275) , and (9.42478, 2.475)

4.3.2 Mixture of Cosines Test Function

The Cosines function is a maximisation synthetic benchmark function which
has a single global maximum. Its function characteristics are: Multi-modal,
Separable and 2-Dimensional, shown in Equation 4.3 [6]:

f (x) = 1 –
(
u2 + v2 – 0.3 cos (3πu) – 0.3 cos (3πv) + 0.7

)
(4.3)

Where,

u = 1.6x1 – 0.5 and v = 1.6x2 – 0.5

The Mixture of Cosines search space is located in the domain xi = [0, 1]d=2.
The value and locations of its global optima are defined as below:

f
(
x∗

)
= 0.9 x∗ = (0.3120, 0.3120)

4.3.3 Hartman-4 Test Function

The Hartmann function is a minimisation which has a single global minimum.
Its function characteristics are: Uni-modal Non-separable, and 4-Dimensional,
shown in Equation 4.4 [99]:

f (x) = 1
0.839

1.1 –
4∑

i=1
ai exp

–
4∑

j=1
Aij

(
xj – Pij

)2
 (4.4)

Where,

a = (1.0, 1.2, 3.0, 3.2)T

A =


10.00 3.00 17.00 3.50 1.70 8.00
0.05 10.00 17.00 0.10 8.00 14.00
3.00 3.50 1.70 10.00 17.00 8.00
17.00 8.00 0.05 10.00 0.10 14.00
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P = 10–4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


The Mixture of Cosines search space is located in the domain xi = [0, 1]d=4.

The value and locations of its global optima are defined as below:

f
(
x∗

)
= –3.1345 x∗ = (0.1874, 0.1941, 0.5579, 0.2648)

4.3.4 Benchmark Selection Rationale

When selecting these three synthetic benchmark problems the rationale was to
select problems of varying degrees of difficulty but to also consider their com-
parability to AM DoE problems. As the goal of this study is to fully assess the
capabilities of the B-DoE algorithm and their three acquisition functions in lo-
cating the optimum and fully exploring the design space in as few experiments
as possible.

Typically in Additive Manufacturing (AM) DoE studies as illustrated in
Ilzarbe et al. [109] and Chia et al. [47] the number of factors considered
on average was 2-6. Therefore for the benchmark functions were chosen to
incorporate a comparable range of input variables with: Branin-Hoo (2-D),
Cosines (2-D) and Hartman (4-D). Initially another 6-D benchmark function
was being considered for implementation to obtain the full range of typical
input variables evaluated. However, due to the impact of COVID-19 the scale
of investigations conducted during the thesis had to be scaled back. This
was coupled with the desire to place more investigative importance on the
performance of the manufacturing case studies in Sections 4.4 and 5.4 resulting
the removal of the 6-D benchmark investigation.

Of the benchmarks considered the number of factors seem to match those
performed in literature [109] [47], but in actuality maybe too few factors con-
sidered. As an area of increasing literature interest in the AM field is high
dimensional optimisation in which a large number of factors are considered.
Its likely that the low number of average factors considered in literature for ap-
plication of DoE on AM is due to preliminary fractional factorial and Taguchi
screening designs to select a lower number of more important factors to per-
form the analysis upon. Therefore in order to truly represent the AM DoE
problems more complex benchmarks in: Dimensionality as well as complex-
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ity are required. For further discussion and reflection of research decisions,
limitations and impacts refer to Section 7.2.

4.3.5 Experiment Software

Algorithm 4.1 and the majority of functions have been self-coded in MATLAB
2017b in Windows 10 using their respective literature sources unless otherwise
stated. The code was developed using MATLAB 2017b’s parallel computing
toolbox to parallelise the Algorithm 4.1 to be run with multiple repeats of im-
plementations in parallel on ShARC in a private High Performance Computing
(HPC) cluster for the Automatic Control and Systems Engineering department
at the University of Sheffield. The private cluster has access to 2 worker nodes
each with access to 28 cores and 384 GB of RAM of which 20 cores and 20 GB
were used to run Algorithm 4.1 according to the details specified in Table 4.1.

The following functions were taken from existing libraries in public reposi-
tories rather than being self-coded: Branin-Hoo test function [209], Mixture of
Cosines test function [209], Hartman-4 test function [209], and MES function
shown in Algorithm 4.4 [230].

4.3.6 Experiment Details

The experiment conditions for the benchmark simulation studies will be set
according to the values specified in Table 4.1. Also included within Table 4.1
are the tuning parameter settings for the B-DoE algorithms to be assessed.

Table 4.1: Benchmarking experiments details and settings for assessment as
well as B-DoE settings.

Benchmark Study Settings
Parameter Symbol Value
Experimentation Budget t 50
Number of Repeats 50
Number of Latin Hypercube Samples ns 5

B-DoE Settings
Parameter Symbol Value
GP-CB βt Tuning Parameter δ 0.1
MES Number of Monte Carlo Estimates ω 100
Length-Scale Prior λLS InvGamma (5, 5)
Output-Variance Prior λOV HalfNorm (0, 1)
Noise Prior λN Uniform

(
10–6, 10–3)

In Table 4.1, an experimentation budget of 50 experiments was chosen
as the purpose of this study is to evaluate the B-DoE framework’s different
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acquisition functions capabilities in both exploring and exploiting the design
space. Therefore, enough experiments were required to ensure that the sur-
rogate models fit would converge sufficiently as well as potentially locate the
global optimum. Although, an excessive amount couldn’t be chosen to pre-
vent too many experiments increasing the computational time thus minimising
the amount of data to be analysed. Therefore, a careful balance of sufficient
budget was required to ensure enough data to examine the varying character-
istics of the experiment selection mechanisms for analysis in Section 4.6 whilst
minimising computational cost.

Similarly, the number of repeats were set to 50 to ensure that if good
performance is observed it is not due to a degree of randomness within the
algorithm but rather by design. However, the number of repeats were not set
too high as to prevent excessive time costs with implementing the study. As
B-DoE is aimed at the implementation on expensive to evaluate optimisation
problems in this case AM DoE [40], the number of initial experimental data
was also set to be small at roughly 1/10th the experiment budget.

For Algorithm 4.1 acquisition function parameters: GP-CB [208] and MES
[230] were set according to the suggestions in their original papers. Whilst
the hyper-prior’s for the GP surrogate models were investigated and chosen
according to the discussion in Section 3.4.

4.3.7 Results and Discussion

An exploratory assessment of the three most popular B-DoE algorithm acquisi-
tion functions is conducted within, assessing their capabilities in terms of both
exploration (model error) and exploitation (regret) on a series of benchmark
problems of varying characteristics: Modality, Separability and Dimensionality.

The results are seperated into the different benchmark optimisation prob-
lems they have been assessed upon, Figures 4.2 and 4.3 are for the Branin-
Hoo test function [38]. Figures 4.4 and 4.5 are for the Mixture of Cosines test
function [6]. Figures 4.6 and 4.7 are for the Hartmann test function [99].

Benchmark Results: Branin-Hoo (2D)

As discussed in Section 4.3.1, Branin-Hoo is a multi-modal 2-D minimisation
problem with three global optima. Of the three benchmark functions con-
sidered in this study Branin-Hoo is the easiest to optimise due to having a
smooth response surface with a small number of controllable variables. This
would allow for the GPR to fit a surrogate model to the underlying process
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more easily than the highly multi-modal Cosines or the Hartmann-4 with four
controllable inputs.

Figure 4.2: Comparison of NRMSD performance metric between three B-
DoE algorithm acquisition functions: EI, GP-CB, and MES on the Branin-Hoo
benchmark function. The B-DoE algorithm was run according to the settings
in Table 4.1 and plotted by taking the mean of the 50 repeats for the NRMSD.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the NRMSD.

Figure 4.2 illustrates the change in NRMSD with each iteration step (t) for
each acquisition function as the B-DoE algorithm optimises the Branin-Hoo
benchmark function. The results suggest that the MES acquisition function
has the best performance achieving a NRSMD of 1 % by the 25th experiment
performed in contrast to an NRMSD of 4.5 % for EI and NRMSD of 3.5 % for
GP-CB. The 2nd best performance in regard to NRMSD on the Branin-Hoo is
less clear, as initially GP-CB NRMSD improves at a faster rate in comparison
to EI until the 40th experiment in which their NRMSD’s are approximately
the same.

Although the MES acquisition function outperforms the alternates in the
first 25 experiments for NRSMD, all three acquisition functions plateau reach-
ing an NRMSD < 3.5 % prior to reaching the evaluation budget of 50 ex-
periments which would indicate relatively accurate surrogate models of the
underlying process.

Figure 4.3 shows the change in Regret for each acquisition function as
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Figure 4.3: Comparison of Regret performance metric between three B-DoE
algorithm acquisition functions: EI, GP-CB, and MES on the Branin-Hoo
benchmark function. The B-DoE algorithm was run according to the settings
in Table 4.1 and plotted by taking the mean of the 50 repeats for the Regret.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the Regret.

the B-DoE algorithm optimises the Branin-Hoo benchmark function. It can
be seen that the all three acquisition functions perform reasonably well in
determining the process parameter settings relatively close (Rt < 0.1) to the
global optimum within 30 experiments. However, both EI and GP-CB achieve
a Regret of (Rt < 0.1) in significantly fewer experiments, 16 and 18 respectively
in comparison to 30 for MES.

Benchmark Results: Mixture of Cosines (2D)

As discussed in Section 4.3.2, Mixture of Cosines is a multi-modal 2-D max-
imisation problem with one global optima. Among the benchmark functions
used for assessment, its level of optimisation difficulty ranks in-between the
other two benchmark functions due to its many local optima.

In Figure 4.4 it can be seen that all three acquisition functions perform
similarly for the first 20 experiments after which there is some variability in
modelling performance. Again much alike in Figure 4.2 the MES outperform
the alternative acquisition functions significantly reaching an NRMSD of 1% by
the end of the evaluation budget. Whilst EI also generated a relatively accurate
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Figure 4.4: Comparison of NRMSD performance metric between three B-
DoE algorithm acquisition functions: EI, GP-CB, and MES on the Mixture
of Cosines benchmark function. The B-DoE algorithm was run according to
the settings in Table 4.1 and plotted by taking the mean of the 50 repeats
for the NRMSD. The color shaded regions represent one standard deviation
confidence bands around the mean taken from the 50 repeats for the NRMSD.

GP surrogate model reasonably well within the evaluation budget achieving
the 2nd best NRMSD of 4.5%, with GP-CB GP surrogate model having the
worst NRMSD of 9%.

In Figure 4.5 the performance of all three acquisition functions in locating
the global optimum on the Mixture of Cosines benchmark problem is mostly
identical. Whereby, all three acquisition functions achieve a Regret of R30 <
0.025 by the 30th experiment, which is relatively close to the global optimum
considering a starting Regret of R0 = 0.5. Whilst it can be seen that EI
approaches the global optimum at a slightly faster rate of convergence and
GP-CB converges onto the optimum 10 experiments after EI and MES the
performance difference is marginal.
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Figure 4.5: Comparison of Regret performance metric between three B-DoE
algorithm acquisition functions: EI, GP-CB, and MES on the Mixture of
Cosines benchmark function. The B-DoE algorithm was run according to
the settings in Table 4.1 and plotted by taking the mean of the 50 repeats
for the Regret. The color shaded regions represent one standard deviation
confidence bands around the mean taken from the 50 repeats for the Regret.

Benchmark Results: Hartmann (4D)

As discussed in Section 4.3.3, Hartmann is a multi-modal 4-D minimisation
problem with one global optima. Among the benchmark functions used for
assessment, its level of optimisation difficulty ranks as the hardest when com-
pared to the other two benchmark functions due to its increased dimensionality
and with a multi-modal characteristic.

Figure 4.6 demonstrates decreased performance of all three acquisition
functions in comparison to those on Figure 4.2/ 4.4 most likely due to in-
creased optimisation difficulty on a higher dimension benchmark function.
Regardless of the acquisition function applied, the lowest NRMSD achieved
after fully utilising all of the evaluation budget is a NRMSD of 10 % us-
ing MES. For the initial 20 experiments selected the NRMSD determined at
each iteration step (t) between all three acquisition functions remained rela-
tively constant before variations began to occur between each of the acquisition
functions. Again the MES achieves the best NRSMD of 10 % followed by EI
with an NRSMD of 11.3 % and GP-CB with an NRSMD of 13.7 %.

A dissimilar pattern emerges in the Hartmann benchmark problem when
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Figure 4.6: Comparison of NRMSD performance metric between three B-
DoE algorithm acquisition functions: EI, GP-CB, and MES on the Hartman
benchmark function. The B-DoE algorithm was run according to the settings
in Table 4.1 and plotted by taking the mean of the 50 repeats for the NRMSD.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the NRMSD.

assessing the Regret as shown in Figure 4.7, possibly due to the increased
problem complexity when dealing with a greater number of input variables.
Whilst EI remains the best performing acquisition function approaching the
global optimum R25 < 0.1 on average within 25 experiments, GP-CB achieves
the same performance by the 30th experiment on average. However, MES
seems to struggle in locating the global optimum after utilising the full evalu-
ation budget to find R50 = 0.25 in contrast to the alternate approaches which
require significantly less experiments.
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Figure 4.7: Comparison of Regret performance metric between three B-DoE
algorithm acquisition functions: EI, GP-CB, and MES on the Hartman bench-
mark function. The B-DoE algorithm was run according to the settings in
Table 4.1 and plotted by taking the mean of the 50 repeats for the Regret.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the Regret.

4.4 Manufacturing Case Study: Selective Laser Melting

4.4.1 Introduction

Thus far the B-DoE algorithms have had their performance assessed upon
benchmark functions in Section 4.3 to evaluate their suitability for expensive
DoE problems. In this section we seek to expand the assessment onto an
additive manufacturing DoE problem. This case study was set to determine if
a B-DoE algorithm could select experiments in a more efficient scheme than
previously chosen using a traditional DoE method, the Factorial Design.

This case study investigates the underlying process mechanisms of defect
formation in a Selective Laser Melting (SLM) to develop a model of the process,
as well as find an optimal operation setting for the four process parameters.
The process parameters to be assessed are Laser Power (W), Spot Size (mm),
Hatch Spacing (mm), and Exposure Time (s).
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4.4.2 Background

A SLM process is a metal additive manufacturing method which utilises a high-
power density laser to melt and fuse metal powders together, see Figure 4.8.
The metal powder is spread in thin layers onto a processing surface, after
which a laser following a CAD profile melts the powder to fuse the powder
into a cohesive object. This process is sequentially repeated to add layer by
layer of metal powder to the surface of previously melted powder to generate
a 3-D printed metal object of desired shape.

Figure 4.8: Illustrated representation of the manufacturing process of a Se-
lective Laser Melter.

Despite the potential manufacturing benefits of a 3-D metal manufacturing
process it is not without disadvantages. The melting process can lead to the
formation of various microstructural defects within multiple layers of the 3-D
designed object, such as: Lack of fusion (or cracking), and Thermal Strain.

Lack of fusion is a defect formed via the entrapment of gas within the solid
material layers rather than the solidification of a cohesive structure throughout.
As this defect is formed through the inability of uniform melting across the
processing surface, it is most likely formed through insufficient Laser Power
or excessively fast nozzle tracking speeds. On the other hand, Thermal Strain
leading to cracking is caused by the rapid heating of the metal powders into
the rapid cooling of the 3-D metal object. This defect forms cracks via the
rapid exchange of heat within a melted material and so is most likely affected
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by the Laser Power and Exposure Time.

4.4.3 Aims and Objectives

The manufacturer originally implemented a traditional DoE scheme (Factorial
Design) to select a set of 67 experiments to perform on an expensive additive
manufacturing process. The aim of the study was to identify the optimal
process parameter settings to minimise the formation of defects in a SLM
process. However, given that the experiments had already been performed, the
study involved retrospective optimisation in determining the optimal sequence
of experimental settings amongst those carried out. For our case study the
objectives are to:

1. Using the data set of 67 experiments, assess if it were possible to select
experiments in a more efficient DoE scheme to gain more information in
fewer experimental runs.

2. Evaluate the performance of B-DoE algorithms on an additive manufac-
turing DoE problem.

3. Compare and contrast the acquisition function performance on an addi-
tive manufacturing DoE problem.

4.4.4 Methodology

Firstly, as new experiments could not be performed due to the 67 initial exper-
iments run using a factorial design, the initial GP surrogate models training
data would have to be from the 67 experiment data set. In order to fairly
compare the order of sequential experiment selection from the previously run
experiments the training data should be taken from the first set of experiments
performed. In the factorial design the experiments were run as part of sets of
7-9 experiments and the first set consisted of 7 experiments which would be
partitioned to become the training data set.

Dtrain = [x, y]7i=1 and Dremainder = [x, y]67
i=8

After the removal of the 7-9 experiment training set, the remaining 58-
60 experiments are set aside to become the pseudo design space. Following
on from the partitioning of the data sets, the data is pre-processed using
standardisation with Equation 3.1. Once the data has been partitioned and
processed, a continuous GP surrogate model is fit to the discrete data. Whilst
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the data available in this study is discrete due to new evaluations being unable
to be performed, the controllable inputs and the response variables are both
continuous. Using Algorithm 3.2 the GP surrogate models hyper-parameters
are fit to the training data set as detailed in Section 2.2.1 and Section 3.4.

As the design space of interest in this study are a set of discrete experiment,
Algorithm 4.1 is not implemented directly in which new experiment locations
are evaluated for their acquisition value but rather the already observed dis-
crete experiments are enumerated through. These discrete experiment have
their acquisition value determined and then optimised to select the next op-
timal choice for the discrete list of experiments. After each experiment is
selected from the remaining data set, they are subsequently removed. For
the replication of the experiments selected using the factorial design the re-
maining data set list is in the original selection order and thus the factorial
design experiments are selected from the top of the remaining experiment list
in order.

Dt+1 = Dt ∪
[x, y]i and Dremainder = Dremainder \

[x, y]i
Whilst the purpose of this case study is to verify the suitability and per-

formance of B-DoE algorithms which are sequential in nature, the SLM case
study has multiple output objectives. Therefore, in order for B-DoE to be ap-
plied onto this case the Multi-Objective Problems (MOP) requires conversion
to a Single-Objective Problems (SOP). In order to achieve this the modelling,
acquisition assessment, and performance metrics for Lack of Fusion and Ther-
mal Strain will be calculated for each of the separate objectives.

In order to convert the MOP into a SOP, a variety of scalarisation ap-
proaches can be used as previously discussed in Section 2.3.2. Each of the
scalarisation approaches discussed had varying properties each with their own
advantages and disadvantages to their uses. For example the Weighted Sum
approach described in Equation 2.45 performs well on convex Pareto Front
(PF) geometries but poorly on non-convex PF geometries [58]. Whilst in com-
parison the Weighted Tchebycheff described in Equation 2.47 outperforms
Weighted Sum on non-convex Pareto Front (PF) geometries however, the
search capabilities scale poorly with increasing number of output objectives,
whilst Weighted Sum does not [114] [228].

Therefore, careful consideration must be taken when selecting the scalari-
sation approach although the motivation for this case study is not to perform
Multi-Objective Optimisation (MOO) in order to minimise the LOF and TS but
rather investigate the use of B-DoE on a AM problem. For this study the
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LOF and TS will be aggregated into a SOP using the weighted sum approach
with an equal weighting of wi = 0.5, as there currently exists no preference to
either output objective.

4.4.5 Metrics

As the manufacturing search space is discrete with no closed-form function
for its output, the assessment of its modelling error cannot be performed as
demonstrated in Section 3.2.2. Thus, prediction of the outputs will be per-
formed over all experiments in the remaining data set that have not been
currently selected within the iteration of the B-DoE. Therefore, as each ex-
periment is removed, the testing set for model error will gradually decrease.
Thus, the model error will be compared between the B-DoE selection scheme
and the traditional DoE scheme at each iteration, to evaluate the rate of model
improvement.

In the first instance when the traditional DoE was used a surrogate model
was not built and so no prediction values can be obtained for comparison. To
alleviate this, the initial GP surrogate model will be set as a baseline GP model
for both schemes. It will be updated with each experiment selected according
to the order of the traditional DoE scheme to produce a model error profile
for comparison with B-DoE schemes.

On the other hand, as the Regret is comparing the current best output with
the global optima as shown in Equation 3.3, it is not affected by differences
between a continuous or discrete search space.

4.4.6 Experiment Software

Similarly to Section 4.3.5, the set-up of algorithms and functions used were
in-line with the benchmark assessments but re-coded for use on the AM case
study specifics as discussed in Section 4.4. Algorithm 4.1 and the majority
of functions have been self-coded in MATLAB 2017b in Windows 10 using
their respective literature sources unless otherwise stated. The code was run
on a personal PC with the following specifications: AMD Ryzen 5 1600 6 core
processor with 12 threads and 24 GB of RAM of which all were used to run
Algorithm 4.1 according to the details specified in Table 4.1. In this study no
existing libraries or repositories were used.
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4.4.7 Results and Discussion

Figures 4.9; and 4.10 illustrate the model prediction error results, whilst Fig-
ures 4.11; and 4.12 illustrate the regret results which depict the optimisa-
tion performance. Each figure corresponds to one of the output objectives
with each acquisition function used for comparison against the DoE selection
scheme used originally by the researchers, Factorial Design.

Comparison of DoE Methods: Model Error

As the data set is a limited discrete set an external testing set could not be
provided to calculate the predicted model error, NRMSD. Instead the remain-
ing data set at each iteration step (t) was used as the testing set and thus as
the DoE proceeded with each experiment removed from the available data set
it was also removed from the testing set. Consequently, with each experiment
removed from the testing set, the NRMSD would begin to converge towards
zero, whereas if a large testing were available the prediction error could be
evaluated across the region of interest equally in which the NRSMD could both
increase or decrease depending upon if the model were well-tuned or poorly
fitted. Therefore, the key characteristic to analyse is the rate of convergence of
the NRMSD as a large testing set is unavailable.

Figure 4.9: Comparison of model error performance for Thermal Strain pa-
rameter using B-DoE algorithms from the discrete set of 67 experiments in
the SLM manufacturing case against the original scheme: Factorial design
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Firstly, in Figure 4.9 each of the B-DoE algorithm acquisition functions
outperform the Factorial design in the rate of convergence for the Thermal
Strain parameter. Wherein all three acquisition functions achieve a NRMSD
< 2 within the first 20 experiments selected, whilst the Factorial design scheme
requires 45 experiments to reach the same NRMSD. Although at the 4th itera-
tion step (t) for both EI and MES the NRMSD spikes, this is likely due to the
re-tuning of the GP surrogate model hyper-parameters. It could also be due
to both methods selecting the experiment which locates the global optimum
for the Lack of Fusion output as shown in Figure 4.12. After these initial
spikes in NRMSD both EI and MES begin to reduce at a much faster rate
in comparison to GP-CB but, all three B-DoE algorithm acquisition functions
outperform the Factorial design.

Figure 4.10: Comparison of model error performance for Lack of Fusion
parameter using B-DoE algorithms from the discrete set of 67 experiments in
the SLM manufacturing case against the original scheme: Factorial design

Secondly, in Figure 4.10 again each of the B-DoE algorithm acquisition
functions outperform the Factorial design in the rate of convergence for the
Lack of Fusion parameter. However, in comparison to Figure 4.9 all three B-
DoE algorithm acquisition functions NRMSD converge towards zero at roughly
identical rates until the 15th iteration step (t). Wherein both EI and MES
converge at a much faster rate than GP-CB, but all three B-DoE algorithm
acquisition functions outperform the Factorial design.
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Comparison of DoE Methods: Regret

Figure 4.11: Comparison of regret performance for Thermal Strain parameter
using B-DoE algorithms from the discrete set of 67 experiments in the SLM
manufacturing case against the original scheme: Factorial design

Firstly, in Figure 4.11 all three B-DoE algorithm acquisition functions out-
perform the Factorial design in locating the global optimum within 12 ex-
periments. Wherein EI is the quickest in identifying the global optimum in
8 experiments, MES next in 9 experiments and finally GP-CB in 12 experi-
ments with the factorial design requiring 56 experiments. This illustrates the
potential strength of the B-DoE algorithms over traditional DoE approaches
especially on AM problems.

Secondly, in Figure 4.12 only EI and MES outperformed the Factorial
design in locating the global optimum with the GP-CB performing significantly
worse in locating the global optimum with regard to the Lack of Fusion
parameter. Both EI and MES locate the global optimum for the Lack of
Fusion parameter in 5 experiments where the Factorial design locates it in 15
experiments, however GP-CB requires 55 experiments. This is likely due to
the theoretical properties involved in the formulation of the GP-CB acquisition
function in comparison to EI and MES.

Whereby, in the calculation of the acquisition cost typically the predicted
mean and standard deviation of an experiment are used as function compo-
nents to determine the acquisition cost of an experiment which is the case for
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Figure 4.12: Comparison of regret performance for Lack of Fusion parameter
using B-DoE algorithms from the discrete set of 67 experiments in the SLM
manufacturing case against the original scheme: Factorial design

EI and MES. On the other hand for GP-CB the predicted mean and standard
deviation of an experiment directly relate to its acquisition cost as shown in
Equation 2.29.

Thus, even in the event of the global optimum being located for one output
objective, the experiments acquisition cost with regard to that output objective
may only decrease slightly for GP-CB. Whilst EI and MES may see significant
reduction and thus the combined acquisition cost becomes dominated by the
2nd output objective, this may not necessarily be this case for GP-CB. This is
likely the reason as to why the GP-CB Regret for the Thermal Strain parameter
in Figure 4.11 shows the greatest performance of the four DoE methods in
contrast to its performance being the worst for the Lack of Fusion parameter
in Figure 4.12.

The aim of this work was to demonstrate the capabilities of the B-DoE al-
gorithms in contrast to a traditional DoE scheme and assess the suitability for
AM manufacturing problems. In regard to the objectives of this work it can be
clearly seen that the B-DoE algorithms provide an alternative approach to effi-
ciently sample the design space to achieve greater performance in both model
building and process parameter optimisation for manufacturing processes. In
terms of building the GP surrogate model all three acquisition functions pro-
vide improved performance with EI and MES slightly outperforming GP-CB.
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On the other hand in regard to process parameter optimisation both EI and
MES outperformed the traditional DoE scheme whilst GP-CB outperformed
for one output objective but not the other likely due to acquisition function
structure.

4.5 Theoretical Analysis of BO Acquisition Function
Properties

Previously, the B-DoE acquisition functions EI, GP-CB, and MES were assessed
for the suitability of application onto DoE problems and more specifically, AM
DoE problems using benchmark synthetic functions and a manufacturing case
study. Whilst this provides a demonstration of BOs capabilities onto DoE
problems the objective of this work is to also provide novel algorithmic de-
velopment for use-cases of interest in AM. These use-cases detailed in Sec-
tion 2.1.6 aim to utilise existing BO acquisition functions as a base to extend
the B-DoE algorithm for those particular use-cases. The first use-case scenario
which will be explored in Chapter 5 is the development and assessment of a
Batch Bayesian Experimental Design Optimisation (BB-DoE) algorithm.

The choice of which acquisition function to use as a base is not arbitrary as
their properties will impact the approach taken to derive the BB-DoE method-
ology. Therefore, an analysis of their properties will be performed throughout
this section to ascertain which acquisition function theoretically will serve as
the most suitable base. The BB-DoE methodology to be developed in the next
Chapter has a few pre-specified characteristics that must be considered during
the analysis of each respective acquisition function, as specified in Section 2.3.1
restated below:

• Non-Greedy Batch Selection

• Low Computational Complexity

4.5.1 Expected Improvement

Expected Improvement (EI) is one of the more popular acquisition functions
available in literature as it has both a simple closed-form (See Equation 2.27),
and does not require any tuning due to no hyper-parameters in its formula-
tion. As no hyper-parameters are used to drive the selection pressure of EI,
it instead uses the improvement function (See Equation 2.25) as its base to
choose the next best candidate.
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The improvement function provides the selection pressure necessary to dis-
cern which candidate experiments are expected to provide improvement over
the current iteration’s incumbent. Whereby, the incumbent is predominantly
set to the current best experiment performed thus far, such that for a candidate
to have a favourable EI acquisition it must be relatively close in value to the
incumbent.

This presents an issue, as despite EI providing an improved exploratory
nature over methods such as Probability of Improvement (PI), it still tends
towards over-exploitation in many situations especially in the event of locating
a local optimum [26]. The over-exploitation is derived from the characteristic
which its popularity is made, the improvement over the incumbent. Theo-
retically, as shown in Equation 2.27 its acquisition value is assigned to any
candidate which has a standard deviation greater than zero but, in practice
that isn’t the case.

The EI acquisition value is guided by two main functions within its closed-
form: Standard Normal Cumulative Density Function Φ and Standard Normal
Probability Density Function φ of each candidates’ Z (See Equation 2.28).
Figure 4.13 demonstrate the possible multipliers achievable by candidates de-
pending on their Z ranging from [–3, 3], where a Z = 0 is obtained when a
candidate’s output is identical to the incumbent.

(a) Plot of standard normal cumulative
density function in the range [-3,3]

(b) Plot of standard normal probability
density function in the range [-3,3]

Figure 4.13: Plots of the standard normal CDF and PDF profiles for EI’s Z
in the range [-3,3]

In comparison of Figure 4.13 and Equation 2.27 it can be observed how
EI can still lead to over-exploitation of local optimums. As previously dis-
cussed, Equation 2.27 can be separated into 2 components: the predicted
mean (output) contribution and the predicted standard deviation (uncertainty)
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contribution.
The φ value is maximised at zero when the candidate solution outputs are

identical to the current best point. The φ value also decreases regardless of
when the candidate improves or worsens over the incumbent, as shown in
Figure 4.13b. Thus, even if a candidate is located at maximum uncertainty at
the same predicted output of the incumbent, the φ can only contribute a small
acquisition value to the total.

On the other hand, the Φ value does not decrease once the candidates’
output surpasses the incumbent but continues to increase to a pre-determined
limit as seen in Figure 4.13a. Therefore, as long as the Z ≥ 0 its contribution
will dominate the EI acquisition value. This can be illustrated by looking at a
combined probability plot of Φ and φ, depicted in Figure 4.14.

Figure 4.14: Plot of the combined standard normal density functions (CDF
and PDF) of EI’s Z in the range [-3,3]

As it can be seen in Figure 4.14 as the Z increases it maximises at a small
improvement over the incumbent, this settles to a probability of one for any
Z > 0. Hence, the EI acquisition value is maximised at any candidate that
improves over the incumbent but only places minimal value at areas of high
uncertainty especially if they are predicted below the current incumbent. This
can be demonstrated by calculating the EI for a range of predicted mean (μt)
and standard deviation (σt) combinations to generate an EI surface, the varied
ranges are set as in Table 4.2.
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Table 4.2: EI surface plot for varied predicted mean (μt) and standard de-
viations (σt) values for all combinations that equate to the specified Z – score
range.

EI Surface Ranges
Parameter Lower Bound Upper Bound
Z Value -3 inf
Predicted Mean (μt) -3 3
Predicted Standard Deviation (σt) 0 1

EI Surface Settings
Parameter Value
Incumbent 0
Increment 0.01

Figure 4.15: Plot of a EI surface for the predicted mean (μt) and standard
deviation (σt) combinations as specified according to the range and settings
set out in Table 4.2

As was previously stated when the predicted mean (μt) is less than or
equal to the incumbent regardless of the predicted uncertainty (σt) the EI
acquisition value remains relatively small. However, once the predicted mean
(μt) surpasses the incumbent, their Z – score also become positive and the EI
acquisition begins to climb steadily. The increase in EI corresponds with the
increase in the difference between the predicted mean (μt) and the incumbent,
as shown in Equation 2.27.

Thus, in the event that the incumbent has located a local optimum, if the
global optimum is located in a region of high uncertainty but low predicted
output which is much lower than the incumbent, it is unlikely to be explored.
In literature some works sought to alleviate this issue by adding an additional
hyper-parameter to artificially increase or decrease the incumbent by a small
value [146]. Wherein Equation 2.28 is modified by an additional hyper-
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parameter (ζ) to present a modified Z Equation 4.5 below:

Z =


(
μ(x)–f

(
x+)–ζ)

σ(x) if σ (x) > 0
0 if σ (x) = 0

(4.5)

Where, ζ is a small tunable constant to balance the exploitation-exploration
trade-off within the EI acquisition function. The inclusion of the additional
parameter promotes the EI acquisition value to perform more exploration as
it artificially reduces the value of the incumbent. Intuitively Lizotte [146] sug-
gested to use a time-varying hyper-parameter that promotes early exploration
before exploitation but found this to be ineffective. Despite these methods’
potential, it is infrequently applied in literature as the addition of this hyper-
parameter requires strict tuning as to prevent over or under-exploration if
tuned incorrectly. This inherently detracts from the intended benefit of no
tuning required for the EI acquisition function.

Berk et al. [26] also suggested using Thompson Sampling (TS) for the
incumbent instead of the current best solution in their E3I algorithm. TS was
introduced to estimate the incumbent due to two useful properties. Firstly, in
the absence of noise, the sampled functions will agree with the current sample
points exactly. As such the optimum of the TS will occur at either the true
optimum or will over-estimate the optimum.

g∗ = max
x

g (x) = f
(
x+)

= y+ or g∗ > y+

Secondly, as the number of iterations increase the TS should converge
towards to true function, hence the incumbent will tend towards the true
incumbent. This allows for an increased level of exploration but still returns
to the exploitation properties of EI as the number of iterations increase. This
approach is more advantageous than Lizotte [146] approach as it does not
require additional tuning parameters but improves upon the over-exploitative
nature of EI. Although E3I algorithm is not without issues as the sampling of
TS increases the computational complexity, which scales with both the number
of data points and number of input variables [26].

As determined through the analysis of EIs properties the acquisition func-
tion is prone to over-exploitation due to the choice of the incumbent, despite
some attempts in literature to alleviate this issue. Wherein as long as a candi-
date improves over the incumbent, a high acquisition value is likely. Whilst if
the Z < –3 regardless of whether the candidate is in a highly uncertain region
that has been unexplored, it is likely to have negligible acquisition value.
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This over- exploitatory nature of the EI acquisition function detracts from
its suitability for use as the base of the non-greedy BB-DoE algorithm to be
developed in Chapter 5. As candidates are chosen which represent a wide
range of characteristics as well as their intra-batch interactions, for which in
EI the selection of the incumbent may inhibit exploration. Whereby, regions of
high uncertainty may be unexplored in favour of local exploitation for multiple
candidates within a batch set.

4.5.2 Max-Value Entropy Search

Max Value Entropy Search (MES) is one of the most recent additions of en-
tropy or information-based acquisition functions within the literature. MES
determines the expected information gain about the location of the global
optimum in the output space [230]. Where the primary benefit of using
an information-theoretic acquisition function is to provide a probabilistic ap-
proach to quantify the expected increase in global knowledge, which is not
captured by improvement or optimistic approaches [100].

Despite the probabilistic approach adopted by information-theoretic acqui-
sition functions most suffer from similar issues to varying degrees. Whereby,
in order to calculate the entropies of posterior distributions of the global op-
timiser, these distributions are intractable and require approximations. His-
torically, ES [100], and PES [101] required the approximation of the p

(
x∗

∣∣∣D)
which was a d-dimensional distribution and thus subsequently required ex-
pensive approximations using methods such as Expectation Propagation (EP)
[230].

The core contribution of Wang and Jegelka [230] is to find candidates that
maximise the gain of information about the global optimum in the output space
or y∗. This information takes the form of p

(
y∗

∣∣∣D)
which is a one-dimensional

intractable distribution, thus lowering the computational complexity in com-
parison to ES and PES. Despite the lowered computational complexity involved
in MES, an approximation of the global optimum output y∗ is required. This is
achieved by sampling functions from the posterior Gaussian distribution and
maximising the sampled functions [230].

While this provides a lower computational complexity information-theoretic
approach in sequential selection, it may not be the case when considering the
selection of Q candidates simultaneously. As when adapting for the selection
of Q candidates, in regard to MES, this equates to the selection of Q candidates’
outputs.



Chapter 4. Sequential DOE Optimisation 125

fxQ =
[
fx1 , fx2 , . . . , fxq

]
By extending MES in this manner Equation 2.34 requires modification

into Equation 4.6. Also, much like the assumption in the derivation of the
original MES where fx ≤ f

(
x∗

)
in the derivation of a batch method, an extended

assumption would also be made fxQ ≤ f
(
x∗

)
.

uMES–B = H
[
p
(
fxQ

∣∣∣∣∣Dt

)]
– E

p
(
fxQ

∣∣∣∣∣Dt

)H [
p
(
fxQ

∣∣∣∣∣ fxQ ≤ f
(
x∗

)
, Dt

)]
(4.6)

Where, H[.] is the differential entropy of probability distribution p (. | .),
p
(
fxQ

∣∣∣∣∣Dt

)
is a q-dimensional Gaussian distribution and p

(
fxQ

∣∣∣∣∣ fxQ ≤ f
(
x∗

)
, Dt

)
is a multivariate truncated normal distribution.

In this modified variation of the MES for batch selection, the first term
has become a q-Dimensional Gaussian distribution whose entropy can still
be analytically calculated [212]. However, the second entropy term is for
a multi-variate truncated normal distribution which either would require an
approximation approach for conversion into an analytically tractable form, or
a greedy selection approach [212].

Similarly, in Henrández-Lobato et al. [101] a multivariate truncated normal
distribution can be approximated as a Gaussian distribution using Expecta-
tion Propagation (EP). This approximation subsequently makes the entropy
calculation in the second term of Equation 4.6 analytical, but also introduces
expensive approximations into the formulation.

Alternatively, the batch MES acquisition function could be solved iteratively
using a greedy batch selection scheme approach. Whereby, as a greedy selec-
tion approach the MES acquisition function would be solved sequentially to
select a single candidate at a time, as detailed in Section 2.3.1. After which
the selected candidates’ output is hallucinated in order to allow for subsequent
selection to be conditioned on additions to the batch set previously [212]. This
process is repeated until the batch set is filled and the subsequent experiments
are performed to update the data set.

After review of the properties of MES acquisition function in order to ex-
tend it towards a batch selection scheme, the core benefit of its properties
would lead into greater computational complexity. As in order to select a
batch set of candidates simultaneously a multivariate truncated normal distri-
bution would require approximation onto a Gaussian distribution using EP.
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This would significantly increase the computational complexity of the chosen
scheme which deviates from the type of acquisition function that is intended to
be the base for development in Chapter 5. In order to alleviate these concerns
a greedy selection scheme could be utilised but the desired approach is for a
non-greedy batch selection scheme as previously specified in Section 4.5.

4.5.3 Gaussian Process Confidence Bounds

Gaussian Process Confidence Bound (GP-CB) acquisition functions are most
commonly split between the upper bound variant (GP-UCB) for maximisation
problems and lower bound variant (GP-LCB) for minimisation problems. Re-
gardless of which variant is implemented the three core components remain
unchanged; predicted mean, predicted standard deviation, and time-varying
exploitation-exploration trade-off βt, as defined in Equation 2.29.

Much like EI, GP-CB has a simple closed form expression allowing for
easy computation but on the other hand also contains a hyper-parameter to
control the trade-off between exploring uncertain regions or exploiting areas
of a potential optimum. As was originally demonstrated in Figure 2.11 the
GP-CB acquisition value corresponds to a candidates’ upper or lower limit of
their confidence bound. Whereby, the βt acts as a multiplier to the degree in
which the bound (standard deviation) is stretched from the predicted mean.
The tuning of the βt predominately effects the selection pressure of the GP-
CB acquisition function during the optimisation. As a result, no additional
modifications or functions are applied to the candidates’ predicted mean and
standard deviation.

Subsequently, the choice and tuning of the βt becomes of paramount im-
portance in determining the performance of GP-CB algorithms [157]. Merrill
et al. [157] reviewed a variety of βt settings on a set of synthetic benchmark
functions and observed highly variable performance. The design of the βt
in literature suggests early exploitative behaviour prior to an increase in ex-
ploration in later stages of the optimisation. Srinivas et al. [208] originally
developed GP-CB and suggested a variety of βt settings dependent on their
domain knowledge in their Theorem’s 1 and 2 as defined in Equation 4.1 and
Equation 4.7 respectively.

βt = 2 log
 t22π2

3δ

 + 2d log
t2dbr

√
log

(
4da
δ

) (4.7)

where, log (. . .) is the natural log of its argument, t is the iteration number, d
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is the number of input variables, r is the largest range on the input variables
and a, b, and δ are constants of value 1, 1, and 0.1 respectively.

For comparison in Equation 4.1, | X | or the number of discretised points
is set to 1000 points for each input dimension [157]. However in Srinivas
et al. [208], despite the βt settings for Equations 4.1/4.7 having proven regret
bounds, the authors often found the algorithms improved by scaling the βt
down by a factor of 5 [208]. Kandasamy et al. [121] also suggested an
alternative βt setting in Equation 4.8.

βt = 0.2d log (2t) (4.8)

Figure 4.16 illustrates how the βt varies during the B-DoE algorithm as
each candidate is chosen. Regardless of whether a problem with a lower input
dimension as shown in Figure 4.16a or higher input dimension as shown in
Figure 4.16b each βt initially starts small before growing in value.

Given the βt acts as a multiplier onto a candidates’ predicted standard
deviation, it seeks to manipulate the exploration aspect of GP-CB. In the case
of literature promoting early exploitation with later exploration, as exemplified
by the βt profiles in Figure 4.16. Fundamentally by setting the βt to a small
value it encourages the B-DoE algorithm to select candidates that exploit the
current optimal regions in the design space. However, Figure 4.16 suggests
the βt in literature are encouraging exploitation early which is a potentially
limiting approach, causing optimisations to be entrapped in local optimums.

Using a more exploitative βt profile may be beneficial initially when the
knowledge of the design space is low and there is no information of desirable
regions in the search space. Therefore, by following an initially exploitative
βt allows for quick identification of potentially beneficial regions, while also
being a limiting approach in the event of multiple local optimums. As in the
event of many local optimums, early exploitation may locate a single optimum
solution and be entrapped for a majority of the experimentation budget.

Another drawback surrounding the βt profiles suggested is that their defini-
tions with provable regret bounds are based upon known domain knowledge
[157]. This is unusual in the field of BO which explores global optimisa-
tion on unknown black-box optimisation problems. The assumption of domain
knowledge is only practical when assessing performance on known problems,
or a situation in which a domain expert can provide additional information.
Assessing performance on known synthetic benchmarks may lead to good per-
formance but, for later expansion on manufacturing DoE problems without a
domain expert could lead to under-performance using the same βt profiles.
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(a) Plot of Literature βt profiles: Srinivas et al. [208] Theorem 1 and
2 (divided by factor of 5) and Kandasamy et al. [121], for a small
number of input dimensions d = 2

(b) Plot of Literature βt profiles: Srinivas et al. [208] Theorem 1 and
2 (divided by factor of 5) and Kandasamy et al. [121], for a larger
number of input dimensions d = 10

Figure 4.16: βt profiles of: Srinivas et al. [208] Theorem 1 and 2 (divided
by factor of 5) and Kandasamy et al. [121], varied along 50 optimisation
iterations for a representative low (d = 2) and high number of input (d = 10)
dimensions.

From the context of a manufacturing DoE standpoint a variety of DoE
goals need to be satisfied as specified in Section 2.1.9, such as building a well-
defined and accurate model alongside locating optimal process parameters in
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as few experiments as possible. Furthermore, non-greedy BB-DoE algorithms
aim to select batches of candidates that maximise the information gained in
each batch, suggesting a more exploratory βt in early batches to explore un-
certain regions is more desirable. Therefore, by providing a well-rounded and
scalable βt profile which promotes early exploration could enhance the GP-CB
acquisition function effectiveness to serve as a base for a BB-DoE algorithm.

Through the analysis of the GP-CB acquisition functions properties the
primary concern is the tuning of the βt profile. As the βt profile has been shown
in the literature to have a large impact on optimisation performance and the
time-varying profiles developed thus far tend to over-exploit initially [157]. In
spite of this, the GP-CB has a simple closed-form whose value corresponds to
either the upper or lower bound of a candidates’ predicted mean and standard
deviation. This simple formulation could allow for additional functionality to
be added to the acquisition function, increasing its suitability for use as the
base of the non-greedy BB-DoE algorithm to be developed in Chapter 5.

4.6 Conclusion

The evaluation and assessment of the BO framework for use within DoE were
presented in this chapter as an ARSM approach for expensive manufacturing
DoE problems with a particular focus on Additive Manufacturing domains.
Wherein, three BO acquisition cost functions were assessed as part of a B-DoE
algorithm to determine which among them would be a suitable and capable
approach for implementation within a B-DoE algorithm for use on expensive
additive manufacturing DoE problems.

The evaluation of the three acquisition functions were split into three
methodological assessments: performance on synthetic benchmarks of varying
difficulties, performance on a preliminary SLM manufacturing case study and
the analysis of each acquisition cost functions properties. By comparing and
contrasting the performance of each acquisition cost function on all assessment
methods, an analysis can be drawn on their overall performance for use on
expensive manufacturing DoE problems. In particular, the overall assessment
of the three acquisition cost functions determines which acquisition cost func-
tion is most suitable for further algorithmic development onto both batch and
multi-objective batch algorithms later within this thesis.

In regard to the goal ascertaining which acquisition cost function is most
suitable for further algorithmic development, a key difference between the
DoE literature and the BO literature in their respective fields must be drawn.
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Whereby in BO literature the goal is to locate the global optimum as efficiently
as possible, whereas in DoE literature the goals include both optimising the
process parameter settings and developing an accurate model. Thus, the pur-
pose of the assessments was to ascertain if there was merit for using BO for
DoE in a B-DoE algorithm and of the three acquisitions functions investigated
which was the most suitable in regard to both global optimisation and model
development.

Firstly, the EI acquisition function demonstrated the greatest exploitative
performance among the three acquisition functions during both the synthetic
benchmarks and SLM manufacturing case study, efficiently locating the global
optimum in as few experiments as possible. Coupling this performance with
the property of having no hyper-parameters to tune would suggest that the
EI acquisition function as the most desirable approach for further algorithmic
development. However, as mentioned in the theoretical analysis EI is prone
to over-exploitation and getting caught in local optima [146]. This is due to
the incorporation of the improvement function which places high acquisition
value on experiments that improve over the current best. This becomes a
detrimental property early during the optimisation if the solution gets trapped
in a local optimum, as the EI places low acquisition value in areas of high
uncertainty that do not improve over the incumbent.

Therefore, when considering the EI acquisition function for use in DoE it
is likely to under-explore the design space especially in multi-modal design
space landscapes, inhibiting its own performance. However, the inclusion of
constraints or trade-off parameters could improve the performance as has been
suggested in [146] [26], but their fine-tuning would become the deciding factor
in performance.

Secondly, in contrast to the EI acquisition function MES demonstrated the
best modelling performance amongst the three acquisition functions during
both the synthetic benchmarks and the SLM manufacturing case study. Also
aside from the Hartmann synthetic benchmark, the exploitative performance
was close to that of EI if not slightly worse. In a similar vein to EI the issues
arise regarding its theoretical properties suggesting poor integration within a
B-DoE framework.

The core of the MES acquisition function is its probabilistic approach to
maximise the gain in information about the location of the global optimum
output using the entropy of probability distributions. The issues stem from
the definition of these probability distributions in that some are analytically
intractable and so require approximations increasing the computational com-
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plexity of the acquisition function.
Whilst MES does provide a lower computational complexity in comparison

to other information-based acquisition functions, if extended to a batch scheme
the computational complexity would increase. This would be due the premise
discussed in Section 4.5.2 where a batch derivation would result in optimising
the entropy of a multi-variate truncated normal distribution. This requir-
ing approximation using Expectation Propagation (EP) or optimising using a
greedy selection scheme, which is against the desired goal of a non-greedy
batch B-DoE scheme.

Finally, GP-CB on both the synthetic benchmarks and the SLM case study
was middle of the pack in terms of exploitative performance but showed
poor modelling performance in each synthetic benchmark performing slightly
worse than the next best acquisition function. Although GP-CB had a very
poor performance on the Mixture of Cosines NRMSD, upon further analysis
of the data sets this was found to be due to over-exploitation once the global
optimum had been located leading to excessive wasted experiments.

From the theoretical analysis it was discerned that GP-CBs performance in
BO is predominately determined by the selection and tuning of the βt [157].
Wherein the BO literature the βt often opts for an early exploitation with
increased exploration as the optimisation proceeds. However, by modifying
the βt profile for increased early exploration, the B-DoE algorithm should
be able to improve the modelling performance and prevent getting caught
in local optima. Another beneficial characteristic of the GP-CB acquisition
function is much like EI as it has a simple closed-form but is not limited
by a transformative acquisition function. As such, additional functionality
could be added to the acquisition function formulation such as methods to
prevent over-exploitation for example; constraints. These properties allow for
the potential of improving the performance of the GP-CB acquisition function
for the desired DoE goals specified previously in Section 4.5.

Hence, EI and MES are not suitable design choice for a non-greedy batch
DoE algorithm which will developed further in Chapter 5 and 6 for batch
and multi-objective batch DoE respectively, rather GP-CB is the most opti-
mal choice. Whilst GP-CB initially had reasonable B-DoE performance in
exploitative aspects and under-performance in explorative aspects, these could
be resolved through improved tuning of the βt and additional functions to
manage over-exploitative properties.



Chapter 5

Batch DOE Optimisation

In Chapter 4, an investigation was conducted to evaluate whether BO would be
a suitable approach for a sequential DoE in an additive manufacturing setting,
with the intention of identifying which acquisition function would be suitable
for adaptation and extension into a Batch B-DoE. GP-CB was determined to
be the most suitable acquisition function for this task due to its theoretical
properties and performance on both benchmark and manufacturing studies.

The primary novelty within Chapter 5 stems from the structure of the
developed BB-DoE algorithm as follows: GP surrogate model with cross-
validation tuning, a novel non-greedy batch optimistic-based acquisition func-
tion and the novel design of two batch constraints (IBC and ODC) included
within the surrogate-assisted constraint handling GA optimiser. The devel-
opment of this algorithm is novel as currently BB-DoE schemes rely heavily
upon greedy selection methods [192], which will be assessed upon a series of
synthetic benchmark functions used in Section 4.3.

Also a novel application of the developed BB-DoE algorithm (Algorithm 5.2)
onto a real-world additive manufacturing case investigating the Dendritic Arm
Spacing of nickel super-alloy using Directed Energy Deposition (DED) is pre-
sented [246]. Currently in BO DoE literature applied onto AM problems
according to [246] there are zero BB-DoE applications, although there has
been Constrained Bayesian Optimisation (CBO) implemented it was using cEI
[198] rather than surrogate-assisted constraint-handling in Algorithm 5.2.

The final novelty of Chapter 5 is the development of a new stopping cri-
terion, that will suggest early termination of the optimisation once the model
predictions become consistent. This will be assessed in parallel with the to be
developed BB-DoE scheme on both the synthetic benchmark functions and
on the real-world additive manufacturing case.

132
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5.1 Introduction

In this chapter, the aim is to derive a suitable Batch Bayesian Experimental
Design Optimisation (BB-DoE) approach to tackle potential future manufac-
turing issues with a particular focus in additive manufacturing. Additive man-
ufacturing would benefit immensely from a suitable BB-DoE approach due to
the reduced manufacturing scale allowing for operation of multiple processes
in parallel. Also, additive manufacturing can build multiple different parts in
parallel (Nesting) which would suit a BB-DoE approach.

As previously discussed in Section 2.3.1, a Greedy Batch scheme whilst fast
and easy to modify from a sequential scheme, has a lower likelihood of locat-
ing the global optimum. Each sequential selection will influence subsequent
experiments selected within the same batch set. This can lead to non-optimal
batch choices each iteration preventing the identification of the global optimum
[95]. In contrast, a Non-Greedy Batch scheme accounts for the inter-batch in-
teractions without any prior selections, thus allowing for the identification of
an optimal combination of experiments within a batch set. Whilst beneficial
theoretically it is not without its demerits, due to increased computational
complexity in implementation to identify the optimal batch set combination.

5.2 Batch Extension of GP-CB Function

The goal of BB-DoE is to optimise an objective function, which is unknown
but can be evaluated pointwise exactly or in the presence of noise in multiple
locations in parallel [192], as defined in Equation 5.1.

Bt+q = argmaxu
(
Bt

∣∣∣Dt
)

Bt+q = [xt+1, xt+2, . . . , xt+q] (5.1)

Where, Bt+q is the batch vector set of Q candidates to be evaluated. At
each iteration, a batch set of Q points must be selected for evaluation or
in the context of DoE for experimentation. We seek to select the batch of
experiments Non-Greedily such that all members of the batch set are chosen
whilst accounting for their interactions with each remaining member.

5.2.1 Batch Conditioning

To optimise Equation 5.1 a suitable BB-DoE acquisition function must be
derived using the GP-CB function as a base. Suppose a total acquisition cost
was defined as the joint total of each individual member comprising the batch
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set as shown in Equation 5.2.

uBatch
(
Bt

∣∣∣Dt
)
= uGP–CB

(
xt+1

∣∣∣Dt
)
+ . . . + uGP–CB

(
xt+q

∣∣∣∣Dt

)
(5.2)

Although, this formulation would likely lead to the selection of experiments
in identical locations within the search space. In greedy BB-DoE schemes this
issue is alleviated through the sequential selection and hallucination of outputs,
see Definition 2.3.1. These mechanisms periodically update the acquisition
costs within a batch set as each experiment is selected since each experiment
will influence subsequent selections. However, in non-greedy BB-DoE schemes
the selection occurs simultaneously, requiring a mechanism accounting for the
interactive effect of different members of the batch set on the joint acquisition
value.

For the GP-CB acquisition function it is only comprised of three elements:
predicted mean, predicted standard deviation, and the time-varying βt param-
eter. In order to influence the batch acquisition function cost calculation, one
of these elements requires modification. [59] first noted that the predictive
standard deviation of an experiment could be conditioned upon the selection
of unobserved experiments as Equation 2.21b is solely dependent upon the
inputs.

Therefore, as each greedy optimal experiment is added to the batch set
the predictive variance of the remaining experiments within the search space
can be updated by conditioning upon the inputs of the current greedy batch
set experiment. This process of optimisation, selection, and updating the
predictive variance of the search space is repeated until the batch set is filled.
However, the desired goal is for a Non-Greedy Batch GP-CB (NGB-GP-CB)
acquisition function which accounts for all batch set interactions rather than
conditioning upon the most recently added batch set experiment. Therefore,
the conditioning step must occur simultaneously on a batch set combination
rather than sequential conditioning on each greedily selected experiment, to
prevent unexplored optimal combinations.

Definition 5.2.1 (Conditioning).
The evaluation of a function under the belief that a specified action, result
or event has already occurred. E.g. The acquisition value of A given B has
occurred is u (A|B).

The change in acquisition function value for one point in a batch set can
be analytically evaluated by setting the remaining points within the batch
as conditioned data when calculating the acquisition cost. This can then be
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repeated for each experiment in the batch set until each acquisition value has
been updated, then the total acquisition cost of the batch set can be evaluated
as a whole.

Using an example of batch size Q = 2, both batch set members must be
evaluated for their acquisition cost once conditioned upon by the other mem-
bers of their batch set. Firstly, xt+1 is conditioned with xt+2 by assuming that
the experiment has already been performed, as such updating the observed
data set as follows with its known inputs and hallucinated outputs.

uGP–CB

(
xt+1

∣∣∣∣D′t+1

)
with D

′

t+1 =
[
Dt,

(
xt+2,μt+2

)]
Secondly, in a similar process to evaluating xt+1 by conditioning on xt+2

with a hallucinated output, the same process is repeated for xt+2 as below:

uGP–CB

(
xt+2

∣∣∣∣D′t+2

)
with D

′

t+2 =
[
Dt,

(
xt+1,μt+1

)]
Once the acquisition costs for the conditioned and hallucinated data sets

are performed the joint acquisition cost is calculated in Equation 5.4:

uBatch
(
Bt

∣∣∣Dt
)
= uGP–CB

(
xt+1

∣∣∣∣D′t+1

)
+ uGP–CB

(
xt+2

∣∣∣∣D′t+2

)
(5.3)

When conditioning data sets and hallucinating unobserved outputs for
batch sizes greater than Q > 2, each batch set member is conditioned on all of
the remaining batch set points as shown below for Q = 3 on xt+1:

uGP–CB

(
xt+1

∣∣∣∣D′t+1

)
with D

′

t+1 =
[
Dt,

(
xt+2,μt+2

)
,
(
xt+3,μt+3

)]
Thus, experiments in close proximity to one another will receive a lower

predictive variance which subsequently will lower their GP-CB acquisition cost.
This in turn will lower the NGB-GP-CB acquisition cost of a batch if too many
points are in close proximity to one another. In order to evaluate the total
acquisition value of a batch set, the expected GP-CB acquisition cost of each
point in the batch set are summed. Following the previous example of Q = 2,
the NGB-GP-CB acquisition function can be derived in Equation 5.4.

uNGB–GP–CB
(
Bt

∣∣∣Dt
)
=

Q∑
q=1

uGP–CB

(
xt+q

∣∣∣∣Dt, Bt \ xt+q

)
(5.4)

Where, Bt \ xt+q is the batch vector set containing every candidate except
for the batch candidate q that is being evaluated. By optimising Equation 5.4
on a variety of batch combinations within the design space the next optimal
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batch set can be determined for selection at each iteration.

5.2.2 Hallucinated Outputs

Unlike the predictive variance, the predictive mean values at the unobserved
experiments are dependent upon the observed outputs of the current observed
data set. Therefore, the predictive means cannot be updated prior to experi-
mentation taking place. Another mechanism incorporated into Desautels et al.
[59] to assist in this issue is the hallucination of outputs (see Definition 2.3.1).
The hallucination of the outputs to be supplemented in the greedy batch set
can be estimated through a variety of methods. In particular Ginsbourger
et al. [85] introduced two strategies to tackle this issue: Kriging Believer and
Constant Liar.

A Kriging Believer is based upon the kriging model (See Section 2.2.4)
whereby the hallucinated outputs are estimated using the previous iteration’s
kriging predictor [85] or predictive mean in GPR. Next the Constant Liar,
rather than estimating the output by using the previous iterations predic-
tions, is set to a constant value determined by the user. This constant value
does not change with each iteration but rather is set after the initial design,
which in Ginsbourger et al. [85] used three variations: minimum, mean, and
maximum of the output. In particular for Gaussian Process Batch Upper Con-
fidence Bound (GP-BUCB) each batch set experiments’ output is hallucinated
through the estimation via their predictive mean values using the previous
batch iteration GP model similarly to Kriging Believer.

Rather, for implementation in the NGB-GP-CB acquisition function, the
predictive means are calculated for each member of the prospective batch set
as shown in Equation 5.5, prior to NGB-GP-CB optimisation. These predic-
tive means of the batch set can then be used as hallucinated outputs within
Equation 5.4 in the Non-Greedy batch optimisation.

yt:t+q =
[
μt+1

(
xt+1

)
,μt+1

(
xt+2

)
, . . . ,μt+1

(
xt+q

)]
(5.5)

Where, yt:t+q are the hallucinated outputs for the t + 1 to Q batch set
candidates using their most recently updated predictive means.

5.2.3 Exploration-Exploitation Trade-off

In the design of a new NGB-GP-CB function to be used as part of a BB-DoE
approach, two of its three main components have been previously modified
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or updated so far in Chapter 5: using Conditioning (see Definition 5.2.1) and
Hallucinated outputs (see Definition 2.3.1). However, another core mechanism
that has a large impact on the exploration and exploitation properties of the
algorithm and is of paramount importance for the algorithmic performance, is
the βt parameter [157].

As discussed in Section 4.5, in the original GP-CB function [208] the au-
thors sought to exploit early and explore later in the time-varying profile.
Although the βt parameter still was reduced by a factor of 5 due to its ex-
cessive exploration, Berk et al. [27] suggested modifying or redesigning the βt
profile. However, for use in the NGB-GP-CB function the time-varying profile
desired is to promote early exploration with later exploitation.

Subsequently, the βt profile was split into two key components: the time-
varying profile and a scaling factor that adjusted the parameter based-upon
the DoE problem difficulty, or more simply its dimensionality. Firstly, the
time-varying profile was set to start with a large value and gradually decrease
towards exploitation as the experiments neared the limit of the experimentation
budget by modelling a logarithmic graph using Equation 5.6.

log
(
(BT)2

)
log

(
(T + 1)2

) (5.6)

Where, T is the total experimentation budget and BT is the current exper-
imentation batch counter. In Equation 5.6 the time-varying profile generated
will begin at 1 and tend towards 0 when the numerator begins at the same
value as the denominator and reduces to 1. Therefore, in order to achieve this
a maximum experimentation budget counter was attached (BT) and reduced
with each batch of experiments selected with its formulation (BT = T + 1 – t).

Secondly, now the time-varying profile had been set, the scaling component
of the βt parameter is required, which scales the exploration level with the
dimensionality of the problem. This component is required due to the nature
of Combinatorial Explosion in which as the dimensionality of the DoE problem
increases, the number of experiments to fully explore the design also increases
exponentially. As such the secondary βt parameter component was modelled
after the βt parameter in [121] which scaled the parameter by 2 ∗ d.

Combining both the logarithmic time-varying profile with the dimensional-
ity scaling, the new βt profile is detailed in Equation 5.7 as shown in Figure 5.1.

βt = 2 ∗ d ∗
log

(
(BC)2

)
log

(
(T + 1)2

) (5.7)



138 5.2. Batch Extension of GP-CB Function

Figure 5.1: New time-varying βt parameter profile for Non-Greedy Batch GP-
CB (NGB-GP-CB) scheme modelled using Equation 5.7, demonstrated at two
different DoE problem dimensions with the following settings: T = 50, and
d = 2 and 10.

5.2.4 Batch Acquisition Constraints

The updated Non-Greedy Batch GP-CB (NGB-GP-CB) acquisition function ac-
counts for the reduction in variance between experiments within the same
batch set, which prevents over-exploration of areas within the search space.
However, in the event of multiple experiments being chosen within a close
proximity of an area of high exploitation value, the reduction in predictive
variance may not significantly impact its potential acquisition value to prevent
over-exploitation. To prevent over-exploitation events for which condition-
ing based predictive variance reductions do not hinder, over-sampling batch
constraints were added to the optimiser.

In batch selection there are two scenarios in which over-exploitation can
occur:

• Intra-batch over-exploitation

• Observed data over-exploitation

Intra-batch over-exploitation occurs when multiple batch set experiments
are located in the same region of search space within a close proximity in either
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unexplored regions or close to already observed experiments. This is unde-
sirable as when batch set experiments are in too close proximity, potentially
good experiments could be overlooked due to lack of exploration.

Furthermore, observed data over-exploitation occurs when potential batch
set experiments are placed in close proximity to previously observed experi-
ments. Whilst this may be desirable in areas of high exploitation value at the
end of the optimisation, if experiments are permitted to be placed nearby at
the start of optimisation, then insufficient exploration may occur.

In both over-exploitation circumstances the repetitive over sampling in ar-
eas of good predictive mean value can lead to unexplored areas of the search
space. For which a lack of exploration may lead to the unsuccessful identi-
fication of the global optimum, poorly defined models and excessive experi-
mentation costs.

One method implemented within literature to mitigate these risks is to
utilise constraints to alter the acquisition value which works separately from
the acquisition function. Gonzalez et al. [91] first introduced using constraints
in conjunction with Greedy BB-DoE to create exclusion zones using Lipschitz
constant around experiments chosen within the batch set, see Figure 5.2

In BBO-LP the Lipschitz constant and the maximisation of the observed
outputs (M, red line in Figure ??) are used to estimate the exclusion zones
originating from the sampled locations expand towards their upper limit de-
termined by L and M. The effect of the local penalizer is to reduce the value of
the acquisition in the neighbourhood of the previously sampled points. While
this application of constraints has its merits, the Lipschitz constant required for
application cannot be calculated directly, rather it is approximated. The Lips-
chitz exclusion constraint approximation maximises the norm of the gradient
of the sampled outputs on a very fine grid, in which the greater the number
of samples the more accurate the approximation [91]. Despite a method for
approximation being available as it requires a sizable set of samples, in an
expensive manufacturing problem domain this is not a practical solution.

For a more practical approach, defining a constraint that is not dependent
upon excessive sampling to accommodate the approximation of the exclusion
constraint for a BB-DoE method is more desirable. The constraints to be
implemented in this thesis, were derived using inspiration from Gonzalez et al.
[91] work on BBO-LP as well as the method of inference used within GPR by
utilising covariance.

As demonstrated in Section 2.2.1 by calculating the covariance between all
observed data using Equation 2.17, the covariance between each experiment
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Figure 5.2: Batch Bayesian Optimisation via Local Penalisation constraint
function on a 1-D Forrester function f (x) = (6x – 2)2 sin (12x – 4) set in the
interval [0.3,1.4]. There are 5 evaluations represented as red dots with their
local penalisation zones set as dashed line determined by L and M (red line).
Where L is the Lipschitz constant and M is the maximum observed output.
After local penalisation is applied the regions of the design space not penalised
are represented as the green active regions, taken from [91].

is defined. These covariance values can then be used to find the predictive
mean and variance of unobserved experiments through inference using Equa-
tion 2.21a and Equation 2.21b respectively. Thus, the covariance between
two experiments can simply be thought of as the similarity between two ex-
periments. A low covariance experiment will have a small influence on the
inferred values, whilst a large covariance will have a large influence on the
inferred values.

In consequence, the covariance can be utilised as the basis for two new
constraint functions as demonstrated in Figure 5.3: Observed Data Constraint
(ODC) and Intra-Batch Constraint (IBC).

The ODC centres around the previously observed sampling locations sim-
ilarly to [91], in which when evaluating a batch candidate the covariance
between the previously observed data point and the batch candidate is eval-
uated. If the covariance is found to be within a pre-specified constraint limit
the acquisition cost would be reduced by a constraint penalty shown in Equa-
tion 5.8. For example the batch candidate shown in Figure 5.3 next to data
point x3 would have its acquisition cost constrained but the other batch can-
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Figure 5.3: A conceptual diagram of the NGB-GP-CB constraints: Intra-
Batch constraint (IBC) and Observed Data Constraint (ODC) on a 1-D sine
wave function. The previously observed data point are shown in black with
potential batch candidates shown in orange with the covariance rejection region
surrounding each point to illustrate overlaps and thus constraint violations.

didate would not be impacted by ODC.
The IBC centres around each batch candidate, in which the covariances

between each batch candidate are evaluated. If the covariance between two
candidates are found to be within a pre-specified constraint limit the acqui-
sition cost would be reduced by a constraint penalty shown in Equation 5.8.
The goal of the IBC is to prevent over-sampling of batch candidates within
similar locations within the search space and thus promote further explo-
ration into uncertain areas to improve model knowledge and potentially locate
a global optimum. This is illustrated in Figure 5.3 to the right of data point
x1.

As discussed in Section 3.3.5, a variety of constraint penalties can be utilised
within literature such as the Death penalty function shown in Equation 3.14.
A death penalty constraint is suitable for implementation when the feasibility
of an experiment has been lost, such as being located outside the bounds of
the search space. However, for the Intra-Batch Constraint (IBC) and Observed
Data Constraint (ODC) if a death penalty is used it will significantly reduce
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the search capabilities of the GA optimiser.
A suitable penalty would then be a severe reduction penalty function, which

reduces the overall acquisition value of an experiment upon the condition of
violating the set constraint.

χ(BC) = χ(BC) × Spenalty Spenalty =

0.25, if k
(
xi, x–i

)
≥ IBCcon

0.25, if k
(
xi, Dt

(
x1:t

))
≥ ODCcon

(5.8)
Where, χ(BC) is the population cost associated with batch individual BC,

Spenalty is the severe reduction penalty cost, xi is the ith individual C in BC.
x–i is every individual in the batch individual BC excluding C, D

(
x1:t

)
is all

the input locations are previous experiments, IBCcon, and ODCcon are the IBC
and ODC batch set over-exploitation constraints respectively.

Using a reduction penalty is beneficial over a death penalty in this scenario
as there may be multiple violations of the constraint per batch set. This aggre-
gation of penalties is applied multiplicatively to the NGB-GP-CB acquisition
value. For example, a batch set that contains a high initial acquisition value
with multiple constraint violations (See Batch 1 below) may not out perform
a batch set of low initial acquisition value with one constraint violation (See
Batch 2 below). If a death penalty was used in the prior example, both batch
sets would be deemed of equal non-value. Whereas, if a severe penalty is used
instead, a batch may be identified that outperforms the other depending on
initial acquisition value and the number of constraint violations.

Batch 1 : 2 Violations
uNGB–GP–CB = 10
uNGB–GP–CB = 10 ×Dpenalty

2 = 0

uNGB–GP–CB = 10 × Spenalty
2 = 0.625

Batch 2 : 1 Violation
uNGB–GP–CB = 5
uNGB–GP–CB = 5 ×Dpenalty

1 = 0

uNGB–GP–CB = 5 × Spenalty
1 = 1.25

As has been described in multiple instances throughout the BB-DoE frame-
work, a key mechanism of note is the trade-off between exploration and ex-
ploitation as the number batches increase. This trade-off benefits from strict
initial constraints for exploration but would also benefit from loose constraints
for exploitation in latter batches. Therefore, this time-varying mechanism can
be built into the constraint violation function.

For the constraint function a time-varying profile was chosen to model
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the constraint value after a plateau function as shown in Equation 5.9 and
Equation 5.10 for a pre-specified rate of convergence, illustrated in Figure 5.4.

YP = YPmax –
(
YPmax – YPmin

)
× exp

(
–kplat × t

)
(5.9)

kplat = 5
Nbatch

(5.10)

Where, YP is the plateau function output, YPmax is the maximum plateau
output, YPmin is the minimum plateau output and kplat is the rate constant of
the plateau function.

Figure 5.4: Time-varying plateau model profile for use within the NGB-GP-
CB constraints.

As the Plateau constraint min and max values have been set within a [0,1]
standard range, the GP σ2

f is used to scale the constraint to the equivalent scale
for covariance comparison.

Whilst the rate of convergence for the plateau functions is ideal for both
over-exploitation constraints, the intra-batch constraint should be stricter ini-
tially to encourage exploration. Therefore, to differentiate the application of
both constraints a smaller minimum starting value was chosen for the intra-
batch constraint. Figure 5.5 illustrates the plateau profiles of both constraints
with Figure 5.5a for intra-batch constraint and Figure 5.5b for observed data
constraint.

The only significant difference that can be observed between the two con-
straints as shown between Figure 5.5a and Figure 5.5b is the difference in the
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(a) Intra-Batch Constraint plateau model profile

(b) Observed Data Constraint plateau model profile

Figure 5.5: BB-DoE constraint function time-varying constraint profiles

initial starting values for both constraints. For the intra-batch constraint, the
initial value is significantly smaller at 0.4, indicating a much stricter constraint.
This is to encourage early exploration of the search space more thoroughly to
produce more well refined model and increase the chances of locating the
global optima. The observed data constraint has an initial value which is sig-
nificantly less strict at 0.8, as the purpose of this constraint is to prevent early
over-exploitation and lower the likelihood of the optimiser being stuck in a
local optimum.
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5.2.5 Batch GA Encoding

The final stage for updating the B-DoE into a Non-Greedy BB-DoE is to make
modifications to the GA optimiser in order to handle the selection of batch sets
in contrast to individual experiments. Whereby, previously in Section 3.3.1,
an individual encodes all input variables that constitute an experiment.

To extend this for use on a Non-Greedy BB-DoE problem, a batch in-
dividual (BC) is designed which is a concatenated series of individuals that
constitute a batch set. Therefore, in each batch individual BC encoding will be
a vector of each of the batch candidate’s concatenated, for which each batch
candidate individual is comprised of their input variable combinations. Thus,
each (BC) individual in the GA population will then correspond to a batch
combination set as exemplified in Figure 5.6.

Figure 5.6: Batch individual (BC) encoding for use in a GA population to be
supplied to the BB-DoE. BC is comprised of batch set members concatenated
in series where each gene of the BC corresponds to xi,t+j, wherein i is the
variable number index and j is the batch candidate number.

In Figure 5.6 each gene in the BC corresponds to a input variable xI,t+j
indexed by the variable number i and batch candidate number j. Hence the
2nd variable for the 3rd batch set member would be x2,t+3 and appear on
the 6th gene if there were only 2 input variables per individual. In order
to avoid repetitive sample points from occurring within the batch encoding,
this is handled during the optimisation through the use of the IBC and ODC
constraints introduced in Section 5.2.4. Wherein, repetitive sampling is dis-
couraged within a batch set and at previously chosen experiments by using
constraints which severely reduce to acquisition value of a BC.

Subsequently, each process involving the NGB-GP-CB optimisation pro-
cedure can be collated together into a pseudo-code representation as shown
in Algorithm 5.1 which will be utilised as part of the whole in the overall
BB-DoE framework as shown in Algorithm 5.2
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Algorithm 5.1 Acquisition Function: Non-Greedy Batch Gaussian Process
Confidence Bound
1: procedure NGB-GP-CB

(
BC,Dt, GP(m, k|θt),o

)
do

2: βt ← Trade-off Parameter (o) // See Equation 5.7
3: for i = 1, 2, . . . , PSize do
4: C1:Q ← Decode Batch Encoding

(
BCi,o

)
5: μt+1

(
C1:Q

)
← Predict Mean

(
C1:Q, Dt, GP(m, k|θt)

)
6: for j = 1, 2, . . . , Q do
7:

[
Cj, C–j

]
← C1:Q

8: Dt+Q–1 ←
[
Dt,

{
C–j,μt+1

(
C–j

)}]
// See Section 5.2.1

9: σt+1

(
Cj

∣∣∣∣C–j

)
←

√
Predict Var

(
Cj, Dt+Q–1, GP(m, k|θt)

)
10: if o = Max then
11: uNGB–GP–CB

(
Cj

)
← μt+1

(
Cj

)
+

√
βt ∗ σt+1

(
Cj

∣∣∣∣C–j

)
12: else if o = Min then
13: uNGB–GP–CB

(
Cj

)
← μt+1

(
Cj

)
–

√
βt ∗ σt+1

(
Cj

∣∣∣∣C–j

)
14: end if
15: end for
16: uNGB–GP–CB

(
BCi

)
←

Q∑
j=1

uNGB–GP–CB

(
Cj

)
17: end for
18: return PG

(
uNGB–GP–CB

)
19: end procedure

5.2.6 Stopping Criterion

Whilst BO is a sample-efficient optimisation approach, its evaluation budget
(T) must be defined in advance as once fully utilised the optimisation is ter-
minated. However, in the event of the optimum being located and the model
being well defined, any excess experiments may incur increased experimenta-
tion cost for little improvement. Thus, a stopping criterion provides the BO
algorithm the chance to stop early to prevent over-experimentation and reduce
the potential experimentation costs incurred.

Despite the potential benefits of integrating an early stopping criterion into
BO algorithms, the research literature on this topic is relatively underdeveloped
with only a few approaches available described hereafter. Most frequently the
BO algorithm is run until the evaluation budget has been completely utilised.
Another simple approach is to stop the BO algorithm once no better solution
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Algorithm 5.2 BB-DoE Algorithm
Inputs:

ns : Number of LHS samples
λ : Model Hyper-parameter priors
o : Vector of optimisation settings
Q : Batch Size
NB : Number of Batches (experimentation budget)

1: xt ← Latin Hypercube Sampling(ns, d)
2: yt ← Evaluate(xt)
3: Dt ←

[
xt, yt

]
4: θt ← GPR

(
λ, Dt

)
// See Algorithm 3.2

5: for t = 1, 2, . . . , NB do
6: Bt+Q ← BB-DoE GA Optimiser

(
Dt, GP(m, k|θt),o

)
// See line 11

7: yt+1:t+Q ← Evaluate
(
Bt+Q

)
8: Dt+1 ← Dt ∪

[
xt+Q, yt+Q

]
9: θt+1 ← GPR

(
λ, Dt+1

)
// See Algorithm 3.2

10: end for

11: procedure BB-DoE GA Optimiser
(
Dt, GP(m, k|θt),o

)
do

12: Initialise GA Population
(
P1 = [C]

)
13: for G = 1, 2, . . . , NGen do
14: unew ← uNGB–GP–CB

(
BCG, Dt, GP(m, k|θt),o

)
// See Algorithm 5.1

15: PG ← Update Population
[
CG, unew

]
16: if G = 1 then
17: E← maxEsize

i=1 PG
18: else
19: ENew ← Elite Set Updater(PG, E, Esize) // See Algorithm 3.1
20: end if
21: PG ← Constraint Evaluation

(
PG

)
// See Section 5.2.4

22: ParG ← Tournament Selection
(
PG

)
// See Section 3.3.2

23: OG ← Blending Crossover
(
ParG

)
// See Section 3.3.3

24: MG ← Random Mutation
(
OG

)
// See Section 3.3.4

25: CG+1 ← OG ∪MG
26: end for
27: return Bt+1 ← argmaxC u (P,E)
28: end procedure
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is found to improve over the current incumbent solution after a set threshold
of iterations [152].

One of the first types of early stopping criterion introduced in literature
assesses the expected change in acquisition costs of improvement-based ac-
quisition functions: PI [147] and EI [171]. Whereby, for improvement-based
acquisition functions as the number of evaluations increase the acquisition val-
ues of PI/EI tend to decrease [171]. Therefore, a threshold can be determined
in order to monitor the acquisition costs of chosen experiments, such that
when their acquisition value falls below the threshold the BO can be stopped
early, as shown in Equation 5.11.

Continue ? =

yes, if uEI > κ

no, if uEI ≤ κ
(5.11)

Where, κ is the stopping criterion threshold parameter. More recently
Makarova et al. [152] proposed a stopping criterion which constructed a high
probability confidence bound on the simple regret which cause the early ter-
mination of the BO when it crossed the threshold being less than the standard
deviation of the estimate, as shown in Equation 5.12.

Rt <
√
σ2
t+1

(
y+
t
)

(5.12)

Where, σ2
t+1

(
x+
t
)
is the predictive variance at the incumbent or best ob-

served input in the optimisation seen up until iteration (t). Although these
early stopping criteria have beneficial properties, they are not suitable for ap-
plication in this work. The use of BO until there is no large improvement
over the incumbent solution is highly dependent upon the user’s specifica-
tion of the threshold. Similarly, in the stopping criterion proposed by Lorenz
et al. [147] and Nguyen et al. [171], performance is highly dependent on the
selection of the threshold which may not be intuitive. Makarova et al. [152]
proposed a well-designed approach with theoretical bounds, which assumes
that the GP surrogate model is well calibrated. Wherein in this work, the GP
surrogate model is not assumed to be well calibrated, and another goal of the
BO algorithm is to produce a well-tuned model.

Considering the conflicts between the desired goals of this work and lit-
erature approaches, a new stopping criterion is proposed. The aim of this
stopping criterion is to assess the model prediction performance as the optimi-
sation proceeds and terminates once the model is well calibrated over a period
of multiple iterations. The premise behind this criterion is that it evaluates the
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current exploration of the design space such that it terminates the BO once the
GP surrogate model is well calibrated. On the other hand, previous criterions
evaluated the current exploitation of the design space in which termination
occurred once global optimum was located, or the current optimum did not
see significant improvement.

The stopping criterion evaluates the change in predictions of outputs for a
testing set between the previous iteration step (t – 1) and the current iteration
step (t) by modifying Equation 3.4 into Equation 5.13.

ρt = 1
ψ

ψ∑
i=1

(
μt–1

(
xi

)
– μt

(
xi

))2 (5.13)

Where, ρt is the stopping criterion for iteration step (t), ψ is the total number
of stopping criterion grid points sampled using a Sobol sequence. μt–1

(
x1:ψ

)
are the predicted means at the stopping criterion grid points for the previous
iteration step, and μt–1

(
x1:ψ

)
are the predicted means at the stopping criterion

grid points for the current iteration step.
Whereby, as the GP surrogate model prediction is re-tuned and calibrated

alongside the BO the prediction accuracy of each point in the design space
will improve, and thus the deviation in predictions between each iteration step
(t) will also decrease. As such when the deviation (ρt) becomes significantly
small, and a threshold (κ) is met, the BO will be terminated.

The termination strategy used in this stopping criterion uses a two-stage
approach.

1. The BO is eligible for termination once the deviation is below a chosen
threshold.

2. The deviation remains below the threshold for Ψ of iterations.

The purpose of introducing a secondary check to the stopping criterion is
to ensure that the BO is not terminated prematurely due to momentary con-
sistency in predictions. This situation may occur in the event of the BO being
caught in a local optimum. Combining the deviation metric in Equation 5.13
with the termination strategy produces the proposed stopping criterion demon-
strated in Equation 5.15

Ψt =

1, if ρt ≤ κ

0, if ρt > κ
Ψt:ΨT

=
[
Ψt,Ψt–1, . . . ,Ψt–ΨT

]
(5.14)
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Stop =

Yes if ∑ΨT
t=1Ψt = ΨT

No if ∑ΨT
t=1Ψt < ΨT

(5.15)

Where, Ψt is the stopping counter for iteration t, and ΨT is the total number
of iterations the stopping criterion must remain below the threshold. Whereby,
the stopping counter only stores the threshold evaluations for the ΨT assess-
ments, which acts as a moving window. By implementing the stopping crite-
rion in this manner only in the event in which the stopping criterion is below
the threshold successfully for ΨT iterations will the algorithm stop.

However, by introducing the ΨT parameter it increases the total number of
parameters to tune along with the threshold for deviation which increases the
complexity of implementation, but these can be examined during benchmark
assessments.

5.3 Simulation Study: Benchmark Problems

5.3.1 Introduction

In this chapter in order to assess the performance of the developed NGB-GP-
CB function and the modifications made to the B-DoE algorithm to produce
the BB-DoE framework, a diverse set of synthetic benchmark functions will
be used to assess both its exploration and exploitation characteristics. The
synthetic benchmark problems to be assessed will be the same as those used
in Section 4.3: Branin-Hoo [38], Mixture of Cosines [6], and Hartman [99].

Additionally, the stopping criterion introduced in Section 5.2.6 will be
evaluated alongside: NRMSD and Regret metrics. Through its use on the syn-
thetic benchmark functions we will be able to determine a suitable threshold
(κ). This will assist in the batch manufacturing case study discussed later in
this chapter as well as work in Chapter 6.

As discussed in Section 2.3.1 currently in literature there exists two types of
BB-DoE methodologies, Greedy and Non-Greedy. The goal of Chapter 5 is not
to simply develop a Non-Greedy BB-DoE approach and assess its performance
on a series of benchmark functions but also compare its performance against
current state of the art algorithms available within the BB-DoE literature.

Therefore, in order to assess BB-DoEs performance with regard to current
state of the art algorithms both Greedy and Non-Greedy, two comparison
methods were also assessed alongside NGB-GP-CB:
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1. Greedy BB-DoE: Gaussian Process Batch Upper Confidence Bound (GP-
BUCB)

2. Non-Greedy BB-DoE: Parallel Predictive Entropy Search (PPES)

Gaussian Process Batch Upper Confidence Bound (GP-BUCB) was cho-
sen for the greedy selection scheme due to its similarities with NGB-GP-CB,
wherein it uses the GP-CB as the core acquisition function. Another simi-
larity is GP-BUCB was one of the 1st algorithms to leverage the concept of
conditioning experiments on unexplored experiments to provide an updated
predictive variance to modify the GP-CB for batch selection, as discussed in
Section 5.2.1.

Parallel Predictive Entropy Search (PPES) was chosen for the non-greedy
selection scheme as it is one of the few literature approaches that utilises a non-
greedy selection scheme. However, there was no publicly available code for
PPES and thus in order to compare performance the results will be contrasted
against those published in [192].

5.3.2 Experiment Software

Algorithm 5.2 and the majority of functions have been self-coded in MATLAB
2017b in Windows 10 using their respective literature sources unless otherwise
stated. The code was developed using MATLAB 2017b’s parallel computing
toolbox to parallelise the Algorithm 5.2 to be run with multiple repeats of im-
plementations in parallel on ShARC in a private High Performance Computing
(HPC) cluster for the Automatic Control and Systems Engineering department
at the University of Sheffield. The private cluster has access to 2 worker nodes
each with access to 28 cores and 384 GB of RAM of which 20 cores and 20 GB
were used to run Algorithm 5.2 according to the details specified in Table ??.

The following functions were taken from existing libraries in public repos-
itories rather than being self-coded: Branin-Hoo test function [209], Mixture
of Cosines test function [209], Hartman-4 test function [209].

5.3.3 Experiment Details

Due to a lack of publicly available repository for the PPES code, in order to
compare and contrast the performance of NGB-GP-CB in a BB-DoE algorithm
against PPES. The same experimental conditions that were set according to
[192] will also be used as specified in Table 5.1 for Q, Nbatch and T.
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Table 5.1: Batch synthetic benchmark experimentation details and settings for
assessment of NGB-GP-CB.

Benchmark Study Settings
Parameter Symbol Value
Experimentation Budget T 50
Number of Latin Hypercube Samples ns 5
Number of Batches Nbatch 15
Batch Size Q 3
Number of Repeats 50
Length-Scale Prior λLS InvGamma (5, 5)
Output-Variance Prior λOV HalfNorm (0, 1)
Noise Prior λN Uniform

(
10–6, 10–3)

BB-DoE/GA Settings
Parameter Symbol Value
GP-CB βt Tuning Parameter δ 0.1
Intra-Batch Constraint minimum YPmin 0.4
Intra-Batch Constraint maximum YPmax 1
Observed-Data Constraint minimum YPmin 0.8
Observed-Data Constraint maximum YPmax 1
Death Penalty Dpenalty 0
Severe Reduction Penalty Spenalty 0.25

In PPES [192], their implementation on benchmarks: Branin-Hoo and
Mixture of Cosines utilised a batch set size of Q = 3 for 15 batches, thus
in order to compare performance of NGB-GP-CB and GP-BUCB against PPES
these conditions were replicated in this investigation. By utilising these settings
alongside an initial set of 5 experiments the total experimentation budget
equalled 50 experiments. As this is also comparable to the settings set out in
Table 4.1 which would allow for comparison between batch selection methods
with sequential selection methods upon further analysis.

The settings for the GP surrogate model hyper-priors were also kept con-
sistent with Table 4.1 and the GP-BUCB’s tuning parameter δ will also be set
according to [59]. Finally, the BB-DoE algorithm settings were developed and
discussed in Section 5.2 prior to collation into Table 5.1.

5.3.4 Results and Discussion

The results are broken down and separated into each of the synthetic bench-
mark problems tackled whose details are described in Section 5.3, with figures
illustrating the performance on: NRMSD (exploration), Regret (exploitation)
and stopping criterion. Figures 5.7, 5.8, and 5.9 represent the Branin-Hoo test
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function [38]. Figures 5.10, 5.11, and 5.12 represent the Mixture of Cosines
test function [6]. Figures 5.13, 5.14, and 5.15 represent the Hartmann test
function [99].

Benchmark Results: Branin-Hoo (2D)

In Figure 5.7, it can be seen that the non-greedy BB-DoE algorithm using
NGB-GP-CB was capable of achieving a much lower NRMSD at every stage
of the optimisation budget (T) reaching a NRMSD of < 2 %. Whilst on the
other hand the greedy BB-DoE algorithm using GP-BUCB surrogate models
accuracy was three times greater, plateauing at an NRMSD of < 6.5 %. Thus,
already demonstrating the performance improvement in regard to exploration
between greedy GP-BUCB and non-greedy NGB-GP-CB.

Figure 5.7: Comparison of NRMSD performance metric between a Greedy BB-
DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the
Branin-Hoo benchmark function. The BB-DoE algorithm was run according
to the settings in Table 5.1 and plotted the mean of 50 repeats for the NRMSD.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the NRMSD.

In contrast to the improved performance with regard to exploration, GP-
BUCB has an improved performance when assessing the Regret over the ex-
perimentation budget as shown in Figure 5.8. Whereby, GP-BUCB approx-
imately approaches a Regret (< 0.1) after 6 batches in comparison to NGB-
GP-CB which achieves the same level of Regret after 14 batches. In Shah
and Ghahramani [192] the PPES achieves a similar rate of convergence as
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NGB-GP-CB with both having a Regret of (R7 ≈ 1) by the 7th batch.

Figure 5.8: Comparison of Regret performance metric between a Greedy BB-
DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the
Branin-Hoo benchmark function. The BB-DoE algorithm was run according
to the settings in Table 5.1 and plotted the mean of 50 repeats for the Regret.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the Regret.

Finally, the stopping criterion can be seen to steadily decrease with each
successive batch for both BB-DoE approaches, with the stopping criterion
plateauing at approximately 5x10–3 for GP-BUCB. Whilst NGB-GP-CB con-
tinued to decrease until reaching 1x10–4 by the end of the experimentation
budget. It can be seen when comparing Figure’s 5.7/ 5.9 the GP-BUCB stop-
ping criterion plateau’s when the NRMSD also plateau’s thus preventing ex-
cessive experimentation when there is no further modelling improvement.
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Figure 5.9: Comparison of Stopping criterion between a Greedy BB-DoE (GP-
BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the Branin-Hoo
benchmark function. The BB-DoE algorithm was run according to the settings
in Table 5.1 and plotted the median of 50 repeats for the Stopping criterion.

Benchmark Results: Mixture of Cosines (2D)

In Figure 5.10 as seen previously in Figure 5.7 a similar pattern of performance
with regard to NRMSD is observed with GP-BUCB having a slow improve-
ment in NRMSD and NGB-GP-CB having significant improvement in NRSMD
over the experimentation budget. Wherein GP-BUCB slowly converges to an
NRMSD of 12.8 % by the end of the experimentation budget.

However, in regard to NRMSD both BB-DoE methods depsite being applied
onto another 2-Dimensional problem, the NRMSD is higher than when applied
onto the Branin-Hoo problem previously. This is most likely due to differ-
ences in optimisation landscape and the total number of global optimum’s.
Whereby, in Branin-Hoo there are 3 global optima potentially encouraging
greater exploration in comparison to Mixture of cosines with many local opti-
mums and only one global optimum, suggesting a lower exploration pressure
within the design space. Also NGB-GP-CB achieved a NRMSD of < 7 % by
the end of the experimentation budget, which is an improvement over the
performance observed in Figure 4.4 for the sequential GP-CB.

In Figure 5.11 both BB-DoE methodologies: greedy and non-greedy achieved
a similar Regret profile over the experimentation budget as previously seen in
Figure 4.5. Although NGB-GP-CB achieved a Regret of R8 < 0.01 by the
8th batch, slightly outperforming the GP-BUCB scheme reaching a Regret of
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Figure 5.10: Comparison of NRMSD performance metric between a Greedy
BB-DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on
the Mixture of Cosines benchmark function. The BB-DoE algorithm was run
according to the settings in Table 5.1 and plotted the mean of 50 repeats
for the NRMSD. The color shaded regions represent one standard deviation
confidence bands around the mean taken from the 50 repeats for the NRMSD.

R8 < 0.05 by the same batch. Again in Shah and Ghahramani [192] the PPES
appears to achieve a similar level of performance to NGB-GP-CB obtaining a
Regret of R8 < 0.01 by the 8th batch.

Finally, the stopping criterion followed a simply pattern to its application
upon the Branin-Hoo synthetic benchmark previously, in which both BB-DoE
approaches stopping criterion value decreased at roughly the same rate until
plateau’s occurred in the NRMSD. Whereby, the GP-BUCB plateau’d earlier
with a greater NRMSD and subsequently the stopping criterion plateau’d ear-
lier with a larger value of 5x10–3. Whilst on the other hand NGB-GP-CBs
stopping criterion continued to decrease in value to 6x10–4, although its value
did not plateau showing signs of potential for further experiments.
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Figure 5.11: Comparison of Regret performance metric between a Greedy
BB-DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on
the Mixture of Cosines benchmark function. The BB-DoE algorithm was run
according to the settings in Table 5.1 and plotted the mean of 50 repeats
for the Regret. The color shaded regions represent one standard deviation
confidence bands around the mean taken from the 50 repeats for the Regret.

Figure 5.12: Comparison of Stopping criterion between a Greedy BB-DoE
(GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the Mixture
of Cosines benchmark function. The BB-DoE algorithm was run according to
the settings in Table 5.1 and plotted the median of 50 repeats for the Stopping
criterion.
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Benchmark Results: Hartmann (4D)

The previous two benchmark functions were both 2-Dimensional problems,
whilst the Hartman benchmark function is a 4-Dimensional problem that in-
creases the optimisation difficulty. In Figure 5.13 the NRMSD improvement
over the first 5 batches for both the GP-BUCB and the NGB-GP-CB improved
at approximately the same rate. From the fifth batch to the full experimenta-
tion budget the non-greedy NGB-GP-CB function seemingly outperformed the
greedy GP-BUCB approach achieving a NRMSD of 13 %. The NGB-GP-CB
did improve upon the sequential B-DoE performance achieved in Figure 4.6
marginally, as well as outperforming the greedy GP-BUCB approach which
achieved an NRMSD of 15.7 % after the full experimentation budget.

Figure 5.13: Comparison of NRMSD performance metric between a Greedy
BB-DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the
Hartmann benchmark function. The BB-DoE algorithm was run according to
the settings in Table 5.1 and plotted the mean of 50 repeats for the NRMSD.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the NRMSD.

In Figure 5.14 the Regret profile over the experimentation budget per-
formed as expected with the greedy BB-DoE scheme (GP-BUCB) achieving
the desired Regret in as few experimental batches as possible. Wherein the
optimum is located by the 8th batch with a Regret R8 < 0.1. Whereas for the
non-greedy BB-DoE approach a similar regret is achieved by the 12th batch,
but as shown previously has more significant out performance in achieving a
better surrogate model accuracy.
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Figure 5.14: Comparison of Regret performance metric between a Greedy BB-
DoE (GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the
Hartmann benchmark function. The BB-DoE algorithm was run according to
the settings in Table 5.1 and plotted the mean of 50 repeats for the Regret.
The color shaded regions represent one standard deviation confidence bands
around the mean taken from the 50 repeats for the Regret.

Finally, in Figure 5.15 the stopping criterion decreased at a similar rate
for both the greedy and non-greedy BB-DoE approaches reaching a stopping
criterion value ≈ 1x10–2. However, in comparison to the stopping criterion
values achieved on both the Branin-Hoo and Mixture of Cosines synthetic
benchmark functions the Hartman function stopping criterion value is two
order of magnitudes greater. This suggests that for the Hartman synthetic
benchmark function that despite showing good Regret or exploitative perfor-
mance, the BB-DoE approaches could have benefited from more batches for
exploration and thus benefit from an increased experimentation budget.
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Figure 5.15: Comparison of Stopping criterion between a Greedy BB-DoE
(GP-BUCB) and Non-Greedy BB-DoE (NGB-GP-CB) approach on the Hart-
mann benchmark function. The BB-DoE algorithm was run according to the
settings in Table 5.1 and plotted the median of 50 repeats for the Stopping
criterion.

5.4 Batch Manufacturing Case Study

5.4.1 Introduction

This investigation discusses the DoE potential of a BB-DoE algorithm on an
additive manufacturing case. In Section 5.3, the algorithm was assessed on a
variety of synthetic benchmark functions under ideal conditions, whereas in
this investigation it will be stress-tested on a real-world expensive manufac-
turing case. The intended goal of this case study is to test the reproducibility
of initial performance on benchmark functions as well as assess whether it can
be replicated on real-world additive manufacturing applications.

This case study investigates the unknown mechanisms and interactions of
the Directed Energy Deposition (DED) process parameters for their impact on
the Dendritic Arm Spacing (DAS), which is linked to a variety of metallurgical
properties. The process parameters to be assessed are Hatch Spacing (mm),
Laser Power (W), and Nozzle Velocity (mm/min).

5.4.2 Background

A DED process is a powder-fed AM process which feeds powder directly
into the path of a high-power laser to melt and form desired products, see
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Figure 5.16. The laser is fed down the centre of the DED head and is focused
using a set of lenses that can manipulate the laser to a small singular spot for
focused melting [3]. The metal powder can be fed directly into the path of the
centred laser from a variety of angle’s depending upon the DED head design,
to allow for greater control in the manufacturing process [3].

Figure 5.16: Illustrated representation depicting the manufacturing process
using Directed Energy Deposition.

One property that provides insight into a wide variety of metallurgical
properties is the DAS which can influence a material’s mechanical, electrical,
and chemical properties. DAS is a microstructural property that measures the
spacing of crystalline grains called dendrites, these form during the solidifica-
tion process in metals. Thus, by developing a model of the process parameter
settings and their influence on the DAS, a manufacturer would be capable of
designing a product with the whichever metallurgical properties were desired.

In this case study the DED manufacturer is building nickel super-alloy
walls to analyse the process parameters interactions and their correlation to-
wards a desired DAS setting. In previous studies of similar alloys, the DAS
was identified to vary in a range of 2.3 μm to 9.0 μm, upon which preliminary
experimentation of this alloy found DAS between 2.3 μm to 3.0 μm supporting
the DAS specified range. Despite preliminary experimentation no experiments
returned DAS values within a range of 4.5 μm to 9.0 μm, and therefore fur-
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ther exploration of this unknown region is also desired particularly in terms
of manufacturability.

5.4.3 Aims and Objectives

The aims for this manufacturing case study can be split into two areas: the
algorithmic assessment, and the improvement of process understanding for
the manufacturers. The manufacturer aims to identify the process parameter
settings that locate a desirable DAS of 4.5 μm or the median of the known
alloy range, in order to achieve the desired metallurgical properties. With
respect to the aims in algorithm assessment of the BB-DoE, the objectives of
the case study are to:

1. Evaluate performance of BB-DoE algorithms on an AM DoE problem.

2. Assess the exploration vs exploitation capabilities of BB-DoE with a par-
ticular interest in the exploration of the unknown 4.5 μm to 9.0 μm
range.

Equally important, the manufacturers aim is to identify the optimal process
parameter settings to locate the desired DAS of 4.5 μm. Although an added
complexity to this optimisation is that the 4.5 μm falls as a median value in
the output range. Therefore, the objectives for the case study with respect to
the manufacturer are to:

1. Builds well-tuned surrogate GP model of the DED process interactions
effect on DAS.

2. Optimise the process parameter settings to locate the optimal DAS.

3. Minimise the total number of experiments required to locate the opti-
mum.

5.4.4 Methodology

A unique characteristic to this manufacturing case study is that the desired
optimum is located at the median of a range. Typically, in an optimisation
problem the goal of the optimiser to isolate either a minimum or maximum
for a particular objective function. However, in this case the desired goal
is a median, and thus either the objective function or methodology must be
modified in order to facilitate this goal.



Chapter 5. Batch DOE Optimisation 163

A simple solution to this issue would be to transform the process output,
such that the desired optimisation goal is converted to either a maximum or
minimum value. This could be achieved by centring the modulus of the DAS.

DAS – D = | DAS – 4.5 |

This conversion of DAS into DAS-D means the optimisation now seeks a
minimum of 0. However, through the conversion to DAS-D it introduces new
disadvantages that require modifications for implementation in the optimisa-
tion.

Firstly, by taking the modulus of the centred DAS, it is not possible to
discern whether the DAS-D’s original DAS existed above or below 4.5 μm.
This is of importance as the DAS region of 4.5 μm to 9.0 μm is unexplored,
therefore by not being able to evaluate which experiments are exploring this
region, one objective of the case study would be unaccomplished. To alleviate
these concerns, the GP surrogate models would be built on the original DAS
and only when a DAS-D is required for the evaluation of the NGB-GP-CB
acquisition function will the DAS be converted to DAS-D for optimisation.

Table 5.2: Directed Energy Deposition (DED) manufacturing process input
variable constraints.

Input Variable Constraints
Input Variable Lower Limit, xL Upper Limit, xU Resolution
Hatch Spacing (mm) 0.3 0.7 0.01
Laser Power (W) 200 600 1
Nozzle Velocity (mm/min) 500 3000 1

Additionally, when dealing with real-world manufacturing DAS problems,
additional constraints aside from defining the search space domain (See Ta-
ble 5.2) may also be required. As the optimiser of choice is a GA, its capability
in handling additional constraints can be tackled by the addition of another
constraint function, whether it be death or severe punishment penalty func-
tion. For this manufacturing DoE case study, the additional constraints are
to be placed upon the maximum and minimum allowable values of the DAS
with a death penalty as shown in Equation 5.16.

χ(BC) = χ(BC) ∗Dpenalty (5.16)

Dpenalty =

0, if DAS ≥ 9.0μm or DAS ≤ 2.3μm
1, otherwise

(5.17)
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Next the BB-DoE optimiser settings required specification are as shown in
Table 5.3. These settings were kept consistent with Table 5.1 for the BB-DoE
optimiser settings but the experimentation budget for the AM case study was
chosen to have a batch size of Q = 5 for 10 batches. Whilst the GA optimiser
settings remained unchanged from the implementation in Table 4.1. To see
the algorithms framework, refer to Algorithm 5.2.

Table 5.3: Batch Bayesian Experimental Design Optimisation (BB-DoE) set-
tings.

BB-DoE Algorithm Settings
BB-DoE Parameter Algorithm Function Setting
Batch Size General 5
Number of Batches General 10
IBC YPmin Batch Constraint 0.4
IBC YPmax Batch Constraint 1
ODC YPmin Batch Constraint 0.8
ODC YPmax Batch Constraint 1
Death Penalty Constraint 0
Severe Reduction Penalty Constraint 0.25

5.4.5 Experiment Software

Similarly to Section 5.3.2, the set-up of algorithms and functions used were
in-line with the benchmark assessments but re-coded for use on the AM case
study specifics as discussed in Section 5.4. Algorithm 5.2 and the majority
of functions have been self-coded in MATLAB 2017b in Windows 10 using
their respective literature sources unless otherwise stated. The code was run
on a personal PC with the following specifications: AMD Ryzen 5 1600 6 core
processor with 12 threads and 24 GB of RAM of which all were used to run
Algorithm 5.2 according to the details specified in Table 5.3. In this study no
existing libraries or repositories were used.

5.4.6 Results and Discussion

Prior to the implementation of the BB-DoE algorithm, the manufacturing client
who desired to optimise the DED process performed a set of 15 preliminary
experiments. These 15 experiments were carried using a traditional DoE
scheme using 3 factors and 3 levels as set out in Table 5.4. Of these 15
experiments, a subset of five experiments were selected for use as the training
data set to be reflective of the first uninformed batch.
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Table 5.4: Preliminary experimentation performed by the DED manufacturer
from which an initial data set will be retrieved to initialise the BB-DoE algo-
rithm.

DED Manufacturing DAS, Manufacturer Selected
Experiment
Number

Hatch
Spacing
(mm)

Laser
Power
(W)

Nozzle
Velocity

(mm/min)

DAS
(μm)

1 0.50 300 1500 2.5
2 0.50 550 1500 4.1
3 0.50 300 3000 1.8
4 0.50 550 3000 2.6
5 0.30 300 2250 2.7
6 0.30 550 2250 3.0
7 0.70 300 2250 2.9
8 0.70 550 2250 4.0
9 0.30 425 1500 n/a
10 0.30 425 3000 3.6
11 0.70 425 1500 3.0
12 0.70 425 3000 2.4
13 0.50 425 2250 3.5
14 0.50 425 1500 4.4
15 0.50 425 3000 3.0

From Table 5.4 experiments: 1, 6, 7, 12, and 15 were selected to ensure
that each level of each factor were included at least once to ensure a wide
spread of experiments in the design space. The training data set was used to
tune the model hyper-parameters for the GP model by optimising the negative
log likelihood in Equation 2.10 using K-Fold cross validation.

As can be seen in Table 5.4, despite the wide spread of data in the de-
sign space the traditional DoE scheme was unable to identify which process
parameter settings would result in a desired DAS, although the experimenters
did approach the optimum in experiment 14 with DAS = 4.4μm. Another
shortcoming of the preliminary experiments was the lack of exploration of
the 4.5 – 9.0μm region which could not be located within the 15 preliminary
experiments.

Table 5.5 details the experiment selection results from the BB-DoE al-
gorithm applied according to the specification set out in Section 5.4.4 and
optimiser settings in Table 5.3. From these results it can be seen that the
BB-DoE algorithm significantly outperformed the preliminary DoE scheme,
as within an identical 15 experiments (or 3 batches), the BB-DoE algorithm
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Table 5.5: DAS obtained from DED manufacturing experiments guided by
BB-DoE algorithm for an experimentation budget of 10 batches of 5 experi-
ments, terminated early by decision maker at 6 batches.

DED Manufacturing DAS, BB-DoE selected
Batch

Number
Experiment
Number

Hatch
Spacing
(mm)

Laser
Power
(W)

Nozzle
Velocity

(mm/min)

DAS
(μm)

DAS-
D

(μm)
1 1 0.51 331 2163 2.3 2.2
1 2 0.40 411 2850 3.0 1.5
1 3 0.38 558 1922 3.6 0.9
1 4 0.54 505 2577 3.2 1.3
1 5 0.70 567 1439 3.6 0.9
2 1 0.48 461 530 5.6 1.1
2 2 0.40 570 2869 3.2 1.3
2 3 0.43 568 1149 4.7 0.2
2 4 0.67 583 2642 2.7 1.8
2 5 0.44 504 2495 2.7 1.8
3 1 0.32 278 2925 2.0 2.5
3 2 0.53 559 1186 4.0 0.5
3 3 0.46 314 591 4.5 0.0
3 4 0.35 379 512 6.9 2.4
3 5 0.45 491 1201 3.7 0.8
4 1 0.43 399 1583 2.8 1.7
4 2 0.58 597 882 4.8 0.3
4 3 0.49 550 583 6.4 1.9
4 4 0.65 407 1189 3.9 0.6
4 5 0.63 486 589 5.2 0.7
5 1 0.41 228 1117 3.3 1.2
5 2 0.31 265 1544 3.8 0.7
5 3 0.62 205 901 2.8 1.7
5 4 0.66 582 812 5.8 1.3
5 5 0.69 394 710 6.1 1.6
6 1 0.41 368 884 4.9 0.4
6 2 0.39 485 1179 5.5 1.0
6 3 0.33 589 1654 4.2 0.3
6 4 0.35 339 1362 3.4 1.1
6 5 0.61 565 2948 3.7 0.8

identified the optimal process parameter settings required to achieve a DAS of
4.5 μm highlighted in Table 5.5.

Also in the 2nd batch of experiments at experiment 1 and 3 the BB-DoE
algorithm began to select experiments that were exploring the 4.5–9.0μm DAS
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region with DAS = 5.6 and 4.7μm respectively. Subsequently in each batch
following the 2nd batch, at least two candidate experiments of each chosen
batch set had experiments which explored the 4.5 – 9.0μm DAS region.

Therefore, the results shown in Table 5.5 have shown significant improve-
ments with regard to placing experiments in areas of the design space to deter-
mine the optimum and improve the exploration of the design space. However,
as set out in Chapter 3 in order to determine exploration and exploitation of
the DoE algorithms, Regret and NRMSD were to be utilised. However, NRMSD
requires the true output y at a set of testing experiments to be known a priori
in order to provide an estimate of the exploration performance.

Consequently, whilst a preliminary data set was available as shown in Ta-
ble 5.4 which could have been utilised as the testing data set in the calculation
of NRMSD it was not suitable for use. This is due to the fact that the experi-
ments available di not provide a uniformly distributed sample set of the design
space with regards to the outputs. Namely, no experiments were placed in the
DAS region 4.5–9.0μm which would inhibit predictive performance evaluation
if used as a testing set and was thus deemed unsuitable for use. Therefore, an
alternative performance measure was required to assess the exploration per-
formance of the BB-DoE algorithm. In order to assess the variation in model
performance from one batch to the next a visual representation of the changes
in predictive uncertainty and mean were generated using heat maps.

Heat Map Results

A heat map is a data visualisation approach that shows the magnitude and
change of the performance measure throughout the design space as colour in
2-Dimensions. Therefore in order to be implemented, a 2-D grid is required as
the DED manufacturing case would need for one of its three input variables to
be fixed to a constant value. In order to decide which input variable was most
suitable for setting as a constant for analysis, the DED machine’s degree of
variability was assessed using Table 5.2. Whereby, a DED machine only allows
for 41 different variations in Hatch Spacing and so setting it to a constant value
may have the lowest impact on the heat map analysis.

Hatch Spacing (mm) = [0.30, 0.40, 0.45, 0.50, 0.60]

The hatch spacing was set at five different settings with a finer grid closer
to the optimal setting that located the desired DAS of 4.5μm in batch 3. The
heat maps considered analysed the change in magnitude of the performance
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measures with each batch selected during 2 stages of the BB-DoE:

• Stage 1: Batches 0 to 3,
Predictive Uncertainty.
Predictive Mean with contours.

• Stage 2: Batches 4 to 6,
Predictive Uncertainty.
Predictive Mean with contours.

The heatmap colour scaling presented in Figures 5.17 and 5.19 for the
predictive uncertainty is set in the interval [0, 1], due to the tuning of the GP
surrogate model. A low predictive uncertainty is illustrated as blue and high
predictive uncertainty as red. Whilst in Figures 5.18 and 5.20 the heatmap
colour scaling is set in the interval [–3, 3], due to the standardisation of the
DAS output which is centred around the mean of 3.8886μm. Therefore, the
4.5μm optimum would be placed in the white to red region of the contour
plots in the hatch spacing column of 0.45mm.

Firstly, Figures 5.17 and 5.18 illustrate the changes in predictive uncertainty
and mean respectively for batches 0 (training data) to 3 (optimum located).
In batches 0 to 3 of the BB-DoE optimisation the predictive uncertainty is
high due to a lack of exploration of the design space, but gradually reduces
with each batch selected switching from red to white to blue. However, in
Figure 5.17 the 3rd batch’s predictive uncertainty seems to increase again,
likely due to the re-tuning of the GP model hyper-parameters in response to
new unexplored regions of the design space. Wherein, the 2nd and 3rd batch
experiments at a lower Laser Power (200 - 400) range with a low Nozzle
velocity (< 1500) began to explore the 4.5 – 9.0μm DAS region.

The predictive uncertainty observed in 2nd batch of Figure 5.17 with a
hatch spacing of 0.30 and 0.60 also seems to have higher level’s of uncer-
tainty towards the extremes of fixed hatch spacing settings. This suggests that
these sections of design space which have a high degree of uncertainty are
due to either a lack of exploration, or a high variability which may lead to
increased exploration in later batches. Where from the 3rd to 6th batch 60% of
experiments lay in the hatch spacing ranges (0.3 > x > 0.4) and (0.6 > x > 0.7)
despite only representing 50% of the design space as shown in Table 5.5.

Correspondingly, a similar pattern emerges in Figure 5.18 wherein initially
the predicted mean or response surface is undefined with only a few experi-
ments, but with each batch of experiments the response surface begins to take
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Figure 5.17: Evolution of predictive uncertainty in a 2-D grid rep-
resentation of the design space at 5 fixed hatch spacing settings,
[0.30, 0.40, 0.45, 0.50, 0.60]. The x-axis is the Laser Power (W) and the y-
axis is the Nozzle Velocity (mm/min). The figure above assesses the early
changes in predictive uncertainty between the training batch data to the 3rd
batch in which the optimal process parameter settings for the DAS are deter-
mined.
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Figure 5.18: Evolution of predictive mean with contours in a 2-D
grid representation of the design space at 5 fixed hatch spacing settings,
[0.30, 0.40, 0.45, 0.50, 0.60]. The x-axis is the Laser Power (W) and the y-
axis is the Nozzle Velocity (mm/min). The figure above assesses the early
changes in predictive mean (with contours) between the training batch data
to the 3rd batch in which the optimal process parameter settings for the DAS
are determined.
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shape. Whereby, in batches 0 to 2 of Figure 5.18 the response surface remains
relatively smooth with little variation in shape or degree of change as shown
with the smooth contours.

Change occurs in the 3rd batch in which the optimum is located on exper-
iment 3 and the 4.5 – 9.0μm DAS region becomes increasingly more explored.
As shown in Figure 5.18, the design space became increasingly defined in the
red regions of the heat map corresponding to the 4.5 – 9.0μm DAS region.
Also in the 3rd batch as the hatch spacing increases at a high Laser Power
(> 500) the proportion of design space representing the (> 4.5μm) DAS region
(red) gradually reduces for higher nozzle velocities.

Secondly, Figure 5.19 and Figure 5.20 illustrate the changes in predic-
tive uncertainty and mean respectively from the 4th batch to the 6th batch.
Unlike the initial batches shown in Figure 5.17 the predictive uncertainty in
Figure 5.19 seems to have greatly reduced suggesting convergence in the pre-
diction accuracy across the whole design space. However, in both the 5th

and 6th batches the predictive uncertainty seems to be increasing, especially
at hatch spacing > 0.5. This could suggest divergence in the model accuracy
but is most likely due to the re-tuning of the GP hyper-parameters that occurs
between each iteration step t. Whereby, the length scale hyper-parameter (Ld)
corresponding to the hatch spacing is likely getting smaller suggesting greater
variability in DAS over smaller changes in hatch spacing which could result in
the increase in predictive uncertainty observed in Figure 5.19 at the 6th batch.

On the other hand in Figure 5.20 the overall shape and change in the
response surface for the DAS from the 4th batch to the 6th batch is much
smoother suggesting convergence in predictive mean. Whilst the 2.0 – 4.5μm
DAS (blue) region predominately occupies a similar area of the design space at
nozzle velocities (> 1000 mm/min) for the entire laser power range (200–600
W). As the hatch spacing increases the 2.0 – 4.5μm DAS (blue) region shifts
into area’s of the design space with a lower nozzle velocity for at least low
laser power. As a result it can also be observed that the formation of DAS
> 4.5μm (red) requires a higher laser power as the hatch spacing increases at
low nozzle velocities.

Finally, in order to access whether the BB-DoE algorithm had converged to
an optimal stopping point by the 6th batch the stopping criterion developed in
Section 5.2.6 is assessed and shown in Figure 5.21. As discussed previously,
from the initialisation of the BB-DoE algorithm to the 4th batch there were
large variations in the predictive mean between batches. However, despite
the predictive uncertainty increasing in some areas of the design beyond the
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Figure 5.19: Evolution of predictive uncertainty in a 2-D grid rep-
resentation of the design space at 5 fixed hatch spacing settings,
[0.30, 0.40, 0.45, 0.50, 0.60]. The x-axis is the Laser Power (W) and the y-
axis is the Nozzle Velocity (mm/min). The figure above assesses the changes
in predictive uncertainty between the 4th batch to the 6th batch after the opti-
mal process parameter settings for the DAS have been determined.
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Figure 5.20: Evolution of predictive mean with contours in a 2-D
grid representation of the design space at 5 fixed hatch spacing settings,
[0.30, 0.40, 0.45, 0.50, 0.60]. The x-axis is the Laser Power (W) and the y-
axis is the Nozzle Velocity (mm/min). The figure above assesses the changes
in predictive mean (with contours) between the 4th batch to the 6th batch after
the optimal process parameter settings for the DAS have been determined.
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Figure 5.21: Evaluation of the stopping criterion for the BB-DoE algorithm
on the DED manufacturing case study.

4th batch, the variation in predictive mean from batch to the next begins to
reduce. This suggests that the predicted response surface of the GP surrogate
model converging and hence the BB-DoE algorithm can be stopped after the
6th batch of 10 potential batches.

This work has demonstrated that the BB-DoE algorithm can satisfy the
aims and objectives set out in Section 5.4.3 for a real AM problem specifically,
identifying the optimal process parameter settings and their interactions on
their effect on DAS in a DED processes in as few experiments as possible.

5.5 Conclusion

A BB-DoE algorithmic framework using a newly developed Non-Greedy NGB-
GP-CB acquisition cost function was designed and evaluated in this Chapter.
Developed alongside the Non-Greedy BB-DoE algorithm was a stopping crite-
rion designed to suggest early stopping, which occurs when the output predic-
tions from batch to batch become consistent as the surrogate model prediction
accuracy converges. Both of these newly designed algorithmic concepts were
assessed on the same synthetic benchmark functions previously applied in
Chapter 4, as well as a blind AM case study.

The performance of the Non-Greedy NGB-GP-CB acquisition cost function
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on the synthetic benchmark functions was shown to have improved exploration
performance as desired during its design process by including conditioning,
constraints and βt modifications. This performance was exemplified through
its comparison against a current state-of-the-art Greedy BB-DoE algorithm
using GP-BUCB which also utilises the conditioning property discussed in
Section 5.2.1. Whilst the exploration performance improved, it was expected
to have a decrease in exploitative performance when assessing the Regret on
the benchmark functions. However, the exploitative performance of the NGB-
GP-CB was only slightly worse with decreased performance in early batches
but still locating the global optimum by the end of the experimentation budget
(T).

The NGB-GP-CB was also briefly compared against one of the few cur-
rent state-of-the-art Non-Greedy BB-DoE algorithm, PPES with the results
demonstrated in Shah and Ghahramani [192] which assessed the Regret on
Branin-Hoo and Mixture of Cosines. The comparison could only be assessed
with regard to their exploitation performance in terms of Regret in which
NGB-GP-CB was found to have comparable exploitative performance.

The results concerning NGB-GP-CB application onto the 4-Dimensional
Hartmann benchmark function illustrated decreased exploration performance,
achieving a NRMSD of 13 %. However, the stopping criterion value did not
surpass 1x10–2, in contrast to both the Branin-Hoo and Mixture of Cosines
< 1x10–3. This suggests the NGB-GP-CB may have not converged and may
be suitable for implementation on a larger experimentation budget.

Whilst NGB-GP-CB did outperform the GP-BUCB on NRMSD by 2.7 %,
this also showed a decrease in model prediction accuracy when compared
to the 2-Dimensional Branin-Hoo function (< 2 %) and Mixture of Cosines
(< 7 %). This suggests poor exploration performance with increasingly large
input dimensions. Initially, the βt was modified to include an input dimension
scaling parameter to alleviate the impact of increasingly complex optimisation
landscapes for high dimensional problems. However, despite the improved
performance shown between BB-DoE and B-DoE on identical benchmark
problems another factor may be required to improve performance on high-
dimensional problems.

The stopping criterion formulated was based on stopping in the event
of output predictions from one batch to the next having minimal variation.
Whereby, when minimal variations occur an accurate surrogate model is likely
to have converged. However, the performance achieved on the benchmark
functions suggest that convergence in the stopping criterion can occur when
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the surrogate model ceases to improve. Thus, this could occur even in sce-
narios in which the derived surrogate model is in-accurate such as for the
GP-BUCB on the Mixture of Cosines function in Figure 5.10. Wherein the
NRMSD converged to 12.8 %, whilst the stopping criterion plateaus at 5x10–3

which is almost an order of magnitude greater than NGB-GP-CB at 6x10–4.
Therefore, a modification to the previously derived stopping criterion may be
required to account for scenarios involving premature convergence. Although
an additional parameter would likely be required, but in doing so a more
robust stopping criterion can be achieved.

Lastly, the BB-DoE using NGB-GP-CB was assessed on optimising a DED
process in order to investigate the process interactions between three input
parameters and the formation of the DAS within a nickel super-alloy. It was
shown that within the first 3 batches the process parameter settings which
could identify the optimal DAS of 4.5 μm were determined. It was also
shown within the study that the previously un-explored region for the DAS
4.5 – 9.0 μm was explored in later batches prior to initial convergence of
the surrogate model prediction accuracy. This was validated when assessing
the stopping criterion which from the 4th to 6th batch, the stopping criterion
began to converge towards values demonstrated in the benchmark functions
(< 1x10–3). Although from the 4th batch, the predictive uncertainty across the
design space began to increase despite apparent convergence in output predic-
tion. This was most likely due to model hyper-parameter updates that began
to fine-tune with each successive batch, which resulted in areas of increased
exploration interest which could lead to further convergence in the stopping
criterion. For discussion and reflection of research decisions, limitations and
impacts refer to Section 7.2.



Chapter 6

Multi-Objective Batch DOE
Optimisation

In Chapters 4 and 5, an investigation has been conducted into the viability
of using the BO algorithm onto expensive AM DoE problems and extending
the aforementioned BO algorithm for Batch DoE selection. As a result of the
investigations and simulation analysis it was found that the GP-CB acquisition
function was most suitable for extension into a Non-Greedy Batch acquisition
function, for which NGB-GP-CB was derived. NGB-GP-CB was subsequently
assessed for performance on a series of synthetic benchmark functions as well
as an expensive AM case. The exploratory performance was improved at the
expensive of early exploitative performance which recovered by the end of the
experimentation budget (T) as well as locating the global optimum.

The final novelty of the thesis is to extend the previous novel BB-DoE algo-
rithm for dealing with multi-objective issues which are of concern in additive
manufacturing DoE problems, as aforementioned in Section 2.1.6. Specifically,
the BB-DoE algorithm will be modified and integrated with a PD-MOEA
which in the MOBO literature methods primarily introduced methods using
EI [113] or kriging variance [140] [139]. Additionally a secondary selection
mechanism to non-interactively select a batch of experiments from the POS at
each iteration was modified from [23].

Whilst the developed MOBB-DoE algorithm is a novel formulation in the
context of the BO DoE literature (see Section 2.4), although due to unforeseen
circumstances (see Section 7.2.1 an AM DoE application was not performed
for this algorithm. However, the novel adapted MOBB-DoE algorithm will
be assessed upon a synthetic benchmark function from the multi-objective
optimisation literature to assess performance.

177
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6.1 Introduction

In this chapter, the aim is to further extend the previously developed NGB-GP-
CB acquisition function for further additive manufacturing problems, namely
dealing with multiple conflicting outputs. In additive manufacturing it is com-
mon to find an optimisation process in which there is more than one output
of interest such as: microstructure properties, defect formation, manufacturing
cost, etc. However, there is no guarantee that an experiment would provide
an optimal solution for each output of interest as some outputs are in conflict
with one another.

Figure 6.1: An illustration depicting a simple example of trading off between
two conflicting output objectives, cost and comfort of a car.

In Figure 6.1, a simple example of conflicting outputs of cost vs comfort
when comparing cars for purchase is used to illustrate the issue of solving
multi-objective problems. Whereby, as the comfort of a car increases the
corresponding cost to manufacture the car also increases. This leads to a
set of optimal choices where no one candidate can improve over another in
one output without a corresponding detriment to another output value, this
is known as a non-dominated set or a Pareto Optimal Set (POS). As a result,
there no longer exists a single candidate that is optimal but a set of candidates
to be chosen from, therefore multiple conflicting outputs add an increased
layer of complexity to the manufacturing DoE problems.
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6.1.1 Multi-Objective Bayesian Optimisation in Literature

Within the literature Multi-Objective Bayesian Optimisation (MOBO) is a field
of recent interest by a plethora of authors investigating the potential of MOBO
as well as innovating improvements of other authors. The MOBO literature
can be broadly classified into three main sections:

• Conversion of Multi-Objective Problems (MOP) into Single-Objective Prob-
lems (SOP) using scalarisation/aggregation functions.

• Adaptation of Single-Objective Bayesian Optimisation (SOBO) acquisition
functions for use on MOPs.

• Innovative Algorithmic approach.

MOBO: Scalarisation

The conversion of MOPs into several SOPs was initially developed in Decom-
position Based Multi-Objective Evolutionary Algorithm (D-MOEA) literature
in early works such as MSOPS in [106] [107], ParEGO in [127] and was popu-
larised as a research topic in MOEA/D by Zhang and Li [247]. However, these
approaches have been adapted for use in a selection of MOBO approaches:
ParEGO [127], TS-TCH [173], and their variants [17] [48] [2] [96] [50].

In each iteration of the ParEGO, the scalarisation occurs using the Tcheby-
cheff function (See Equation 2.47) with a weight vector drawn randomly from
a simplex lattice design [127]. The data set outputs are then scalarised using
the current weight vector, after which the scalarised data is utilised to fit the
DACE model [127]. Once the DACE surrogate model has been fitted, the EI
acquisition function is optimised using a GA to determine the next optimal
experiment to implement. The setup of the ParEGO methodology allows for
simple and fast optimisations of a MOP using EI, despite these benefits it is
often outperformed by other advanced approaches [179].

Similarly, TS-TCH employs the Tchebycheff function (See Equation 2.47)
to scalarise its outputs into a SOP for sequential optimisation of Thompson
Sampling (TS) acquisition function. In contrast, TS-TCH uses a prior on the
scalarisation weights to encode decision maker preference to search areas of
the PF that are of interest. Unlike ParEGO which fits the DACE model with
the scalarised data, in TS-TCH the GP surrogate models are maintained for
each output objective but scalarised during optimisation of the TS acquisition
function. TS-TCH provides a flexible MOBO methodology, but the increased
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flexibility comes at the cost of requiring the selection and tuning of the scalar-
isation prior. Whereby, the scalarisation prior varies by domain and is depen-
dent upon the decision maker’s choice but advantageously can be interactively
adapted during optimisation [173].

MOBO: Acquisition Functions

Another method for tackling MOBO is to instead adapt the acquisition func-
tions to tackle MOPs rather than their conversion into several sub-SOPs using
scalarisation functions. This is most frequently implemented using a Perfor-
mance Indicator (P-I) known as, Pareto Hyper-Volume (HV) or adapted for
use with a BO acquisition function.

Pareto Hyper-volume as discussed in Section 2.3.2, is a P-I that captures
the volume of space above the PF that is occupied by the candidate experiment
with respect to a given reference point [64]. By maximising the HV the opti-
miser will also locate the true PF, the HV is an ideal measure of performance
for MOBO. As such a large proportion of MOBO algorithms implement a
Pareto Hyper-Volume (HV) approach: SMS-EGO [179], EHVI [64], SUR [176],
and their variants [50] [51] [1] [239].

In SMS-EGO a set of non-dominated candidates or the POS is determined
by optimising a GP-CB acquisition function for each of the output variables.
Once a POS is discerned, a GP surrogate model is fitted for each output vari-
able prior to optimisation of the SMS-EGO acquisition function. Finally, each
candidate experiment in the POS has their expected gain in HV assessed, to
select the next optimal experiment to perform [179].

Expected Hyper-volume Improvement (EHVI) works in a similar manner
to SMS-EGO in which firstly a POS must be determined. However, the com-
putation of the EHVI can be very expensive to calculate, therefore a piecewise
integration of the partitioned output space is utilised [64]. The output space
is split into cells (see Figure 6.2) which are either active (non-dominated) or
inactive (dominated) cells [65]. Inactive cells are said to have a contribution
of 0 and thus by taking the sum of all cells, the piecewise integration is taking
the sum of contributions from active cells [65]. Therefore, the probability of
improvement is simply reduced to the probability that a candidate experiment
lies within a non-dominated cell [102].

EHVI Cells = (|POS| + 1)M

Subsequently, the speed of computation is directly related to the total num-
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ber of cells required, which is dependent upon the size of the POS and the
number of output variables. This relationship causes the total number of cells
to grow exponentially with the number of outputs, limiting the feasibility of
implementation to two or three outputs [102].

Stepwise Uncertainty Reduction (SUR) methodology is often equated to that
of EHVI’s as in both approaches the output space is separated into cells, see
Figure 6.2. However, in SUR the acquisition function utilises the Probability
of Improvement (PI) of the uncertainty or hypervolume at a candidate exper-
iment [102]. Whereby the SUR criterion will add the candidate experiment
that minimises the expected hypervolume of the POS [176].

Figure 6.2: A representation of how the output of a 2-D search space is split
in order to calculate the hyper-volume of a candidate experiment. The black
points are points in the population, except the point in the top-right corner
which is the reference point. The yellow region defines the measured hyper-
volume (HV) and an example cell is illustrated as the solid black boundary.

As previously described a primary issue of SUR and EHVI is the total
number of cells required for the computation [102]. This is hindered as the
optimisation progresses as undoubtedly the size of the POS will likely increase,
which will raise the computational load of the SUR/EHVI [176]. This is a large
contributor as to why SUR/EHVI are incapable of use for tackling MOPs of
greater than three objectives [102].

Whilst HV adaptations make up a large proportion of MOBO algorithms
that are adapted from SOBO algorithms, there are also alternatives available
within the literature. Similarly, information-based acquisition functions could
be extended for use in a multi-objective setting. In most information theoretic
algorithms, the aim of the acquisition function was to determine the next
optimal experiment to reduce the entropy or gain the most information about
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the location of the true optimum. Therefore, in MOBO the goal was to identify
the experiment which would result in the largest reduction in entropy or gain
in information about the Pareto Optimal Set (POS) rather than the global
optimum. Of which the main approaches within literature include: PESMO
[102], MESMO [20], and their variants [78] [22] [68].

Predictive Entropy Search Multi-Objective Optimisation (PESMO) follows
the same implementation methodology as PES detailed in Section 2.2.2, mod-
ified from seeking the global optimum (x∗) to seeking the POS (xpos) as shown
in Equation 6.1 [102]:

uPESMO(X) = H
(
P (y ∣∣∣D, x)) – EP

(
xpos

∣∣∣∣D)H [
P
(
y
∣∣∣∣D,X, xpos

)]
(6.1)

Where, uPESMO is the Predictive Entropy Multi-Objective Search (PESMO)
Acquisition Function, H

(
P (y ∣∣∣D, x)) is the differential entropy of the posterior

predictive distribution, P
(
xpos

∣∣∣∣D)
is the posterior distribution over the Pareto

optimal set, and H
[
P
(
y
∣∣∣∣D,X, xpos

)]
is the differential entropy of the posterior

predictive distribution of y given the observed data (D) and POS (xpos) are
known.

Similarly to PES, the second term must be approximated by sampling the
objective functions from their respective posterior distribution several times
[102]. This is achieved using random kernel features and linear models from
which the POS is approximated using a grid search of 1000 ∗ d points [102].
However, in high dimensional problems a 1000 ∗ d point grid is too expensive
to optimise such that instead NSGA-II is used instead [55].

Furthermore, Max-Value Entropy Search Multi-Objective Optimisation (MESMO)
as with PESMO is a MOBO adaptation of its SOBO counterpart MES. MESMO
methodology follows an identical implementation approach as detailed in Sec-
tion 2.2.2 that has been modified to maximise the information gain about the
output Pareto Front [20]. Whereby, Equation 2.34 has been reformulated for
maximising information gain about the location of the PF in the output search
space in Equation 6.2 [20]:

uMESMO(X) = H
(
P (y ∣∣∣D, x)) – EP

(
ypos

∣∣∣∣D)H [
P
(
y
∣∣∣∣D,X, ypos

)]
(6.2)

Where, uMESMO is the Max-Value Entropy Multi-Objective Search (MESMO)
Acquisition Function, H

(
P (y ∣∣∣D, x)) is the differential entropy of the posterior

predictive distribution, P
(
ypos

∣∣∣∣D)
is the posterior distribution over the Pareto
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optimal set in the output space, and H
[
P
(
y
∣∣∣∣D,X, ypos

)]
is the differential en-

tropy of the posterior predictive distribution of y given the observed data (D)
and Pareto optimal set in the output space (ypos) are known.

In the same manner in which PESMO must approximate its second term,
MESMO must approximate the second term as well. This is achieved in the
same manner as PESMO using random kernel features, linear models, and
NSGA-II to approximate the PF. As demonstrated in Equation 2.35, the MES
has an analytical form using Monte Carlo estimation of the expectation in
Equation 2.34. This analytical form can also be extended for MOP to be
reformulated into Equation 6.3 [20]:

uMESMO(X) = 1
ω

ω∑
i=1

M∑
j=1


γ
j
i (X)φ

(
γ
j
i

)
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(
γ
j
i

) – logΦ
(
γ
j
i

) (6.3)

and

γ
j
i =

yj∗
i – μj(X)
σj(X) and yj∗

i = max
(
yj
1, . . . , y

j
R

)
Where, ω is the total number of Monte Carlo estimations of the global

optimum y∗ for output j. M is the total number of output objectives, yj∗
i is the

optimum sample for output objective j, φ is the probability density function,
and Φ is the cumulative density function.

PESMO and MESMO offer structured extensions for information-based BO
algorithms for implementation on MOPs, but they are also not without their
own limitations. Much alike their SOBO counterparts they require a series
of approximations to calculate their entropies, which can sub-optimal [21].
Despite these approximations the optimisation may also be expensive to im-
plement and is highly dependent upon the number of Monte Carlo samples
[21].

Whilst adapted BO acquisition functions using the hyper-volume indica-
tor are the pre-dominantly implemented in MOBO literature, there are MOO
extensions that utilise SOBO acquisition functions. These extensions focus on
using the PD-MOEA optimiser with BO acquisition functions to generate a
POS that cover the PF such as: Multi-EGO [113], K-MOGA/KD-MOGA [140]
[139], and UseMO [23].

Multi-EGO was one of the first algorithms to extend the use of BO for use
on MOP which employed a PD-MOEA using a kriging model with EI [113].
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Whereby, the EI was applied onto the kriging predictors in each iteration for
every output objectives simultaneously and utilised non-dominated sorting to
maximise EI simultaneously. Therefore, the experiments that were chosen
were not the ones that maximised all the EI, but rather the trade-off between
them all [185].

K-MOGA is a kriging based MOGA which utilised the kriging variance as
the BO acquisition function. In each iteration of the MOGA, a kriging model
is fit to each output objective which is used to evaluate the predictive variance
of the entire population [140]. In order to ascertain which individuals in
the population to select the predictive variance is assessed to measure if a
threshold is passed (for which the threshold has a closed-form) and if they do
they are selected. By using this approach, the K-MOGA ensures that only in
areas of high uncertainty is the experiment performed. In order to select the
parents for the next generation of the MOGA a non-dominated sort is used
[185]. KD-MOGA is an extension of the K-MOGA with the inclusion of a
space-filling design [139]. The space-filling design is used each generation in
order to sample better points during reproduction of the MOGA [185].

MOBO: Innovative Algorithms

The final style of MOBO algorithms are methods which offer an innovative
algorithmic approach for optimisation to identify a POS. These methods are
often the most unique as they are not adaptations of methods or acquisition
functions previously introduced in BO literature. The most notable algorithms
introduced into the literature are: PAL [256], USeMO [23], and their variants
[18] [257] [22].

Firstly, Pareto Active Learning (PAL) is a classification MOBO algorithm
which aims to identify the POS iteratively in an efficient scheme. At each
iteration PAL selects a candidate experiment from a finite discrete set known
as the Uncertain Set in the search space to classify it as either Pareto Optimal
or Non-Pareto Optimal [256]. At each iteration a GP surrogate model is built
for each output which is used to infer their predictive means and standard
deviations for all outputs for every candidate experiment. After which each
candidate is assigned an uncertainty region (Ωt (x)), as given in Equation 6.4
[256]:

Ωt (x) = Ωt–1 (x) ∩Uμt,σt,βt+1
(x) (6.4)

and,
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Uμt,σt,βt+1
(x) =

[
y : μ(x) – β

1
2σ (x) � y � μ(x) + β

1
2σ (x)

]
where, Ωt (x) is the uncertainty region for iteration t. Uμt,σt,βt+1

is a hyper-
rectangle defined by μt, σt, and βt+1 which are the predictive mean, standard
deviation and scaling parameters respectively.

During PAL using the uncertain set candidate experiments are assigned to
one of the two regions: Pareto Optimal or Non-Pareto Optimal, from which
their classification remains unchanged [256]. An experiment is deemed to be
Pareto Optimal if the worst value in its Ω(x) is not dominated by the best
value in other experiments Ω(x). Whilst on the other hand it is classified as
Non-Pareto Optimal if an experiment’s best Ω(x) is dominated by any other
experiments worst Ω(x). All other points are to remain uncertain, after which
PAL will select an experiment to perform from the uncertainty set with the
largest Ω(x) [102].

Secondly, Uncertainty-aware Search Multi-objective Optimisation (USeMO)
operates equivalently to PD-MOEA algorithms (Section 2.3.2) by employing
SOBO acquisition functions, with an uncertainty maximisation selection mech-
anism for the selection of the next experiment candidate. At each iteration, GP
surrogate models are built for each output variable independently; these are
subsequently used to cheaply optimise a chosen SOBO acquisition function
from the available library [23]. Thus, for each candidate experiment there
will be a combination of multiple acquisition values corresponding to each
output variable, combining to form a cheap MOP to optimise using a MOO
solver. USeMO utilises NSGA-II to cheaply generate a PF of potential optimal
candidate experiments, from which the uncertainty maximisation mechanism
determines the next optimal candidate experiment to select [23].

In order to determine which candidate experiment from the POS to select
and evaluate, a mechanism is required to differentiate value between each
candidate in the PF. Previously in literature this has been achieved using two
approaches: Pareto Hyper-Volume (HV) [64] and the Uncertainty region [176].
USeMO uses the uncertainty region introduced in PAL [176] in Equation 6.4,
in which the volume of the uncertainty surrounding the candidate experiment
forms a hyper-rectangle. After the NSGA-II has optimised a PF of POS each
candidate’s uncertainty region volume are determined and maximised to select
the candidate with the largest uncertainty as the next experiment for evaluation
[23].
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6.1.2 Multi-Objective Batch Bayesian Optimisation in Literature

In Section 6.1.1, a review of MOBO literature was conducted to examine the
currently available literature, which was primarily focused upon sequential
selection. However, the goal of this work is to develop a Multi-Objective
Batch Bayesian Experimental Design Optimisation (MOBB-DoE). Thus, build-
ing upon the previous literature review a survey of the current Multi-Objective
Batch Bayesian Optimisation (MOBBO) algorithms is performed: MOEA/D-
EGO [248], qParEGO [50], qEHVI [50], qNEHVI [51], and TSEMO [37].

Firstly, MOEA/D-EGO is an extension of the D-MOEA algorithm which
selects a batch of candidate experiments by simultaneously optimising several
EIs, of different aggregates of a decomposed MOP using varied weight vectors
[243]. The EI of each sub-SOP scalarised by its weight vector is then optimised
simultaneously using D-MOEA detailed in Section 2.3.2, using Equation 6.5
[243].

maximise
[
EIw1 (x) , EIw2 (x) , . . . , EIwW (x)

]
(6.5)

where, wi is the ith weight vector, W is the total number of weight vectors
and EIwi (x) is the EI function of the aggregation function with the ith weight
vector.

Secondly, qParEGO extends ParEGO to the greedy batch selection setting
by reversing the order in which the surrogate models are built to before the
scalarisation functions are applied, the opposite of the order described in Sec-
tion 6.1.1. For each point added to the batch set in a sequential greedy
manner a different weight vector is applied [50]. Whilst MOEA/D-EGO and
qParEGO are similar in methodological application of utilising scalarisation of
the MOP into several sub-SOPs with EI applied onto each, they utilise different
algorithmic approaches [243].

Thirdly, qEHVI is the parallel extension of EHVI detailed in Section 6.1.1,
Wada and Hino [225] initially derived an exact formulation for the qEHVI
approach but after finding it difficult to optimise jointly without gradients,
an alternative was used [50]. Later [50] introduced a greedy batch selection
scheme for qEHVI using the inclusion-exclusion principle (IEP) and optimised
using gradients of the Monte Carlo (MC) estimator. IEP computed the joint
Hyper-Volume Improvement (HVI) over the previously selected batch points
and the new candidate point for each Monte Carlo sample. This involved
computing the volume jointly dominated by each 2q – 1 unsampled point in
the greedy batch candidate set [50]. Despite Daulton et al. [50] providing a
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suitable qEHVI formulation and optimisation strategy, the computations were
expensive. Whereby, the computation scaled exponentially with batch size and
multiplicatively with the number of hyper-rectangles in the box decomposition
[51].

Fourthly, qNEHVI is an extension to qEHVI for tackling noisy MOPs but,
it also introduced a different algorithmic approach towards calculating the
joint HVI using Cached Box Decomposition (CBD) instead of IEP to reduce
computational complexity [51]. CBD improves upon IEP as the joint HVI
computed using box decompositions are performed once per MOBO iteration
and stored. By doing so the qNEHVI reduced the computational scaling with
batch size from exponential scaling to polynomial.

Finally, TSEMO employs Thompson sampling alongside NSGA-II to gen-
erate an approximate POS for the MOP, from which the next individual or
batch set of candidate experiments are selected using the HV indicator [37].
Thompson sampling simply refers to choosing an action that is most likely
to result in the optimum reward. In TSEMO, this is achieved by building
surrogate GP models for each output variable, from which spectral sampling
is used to draw a set of distinct functions for each output variable. Whereby,
NSGA-II utilises the sampled functions to cheaply optimise and generate an
approximate POS. The next candidate experiment is then selected from the
POS by utilising the HV indicator, in which the candidate that maximises the
HVI is chosen. In the batch setting TSEMO selects batches of candidates using
a greedy selection strategy [37].

6.2 Multi-Objective Batch Extension of NGB-GP-CB Func-
tion

The goal of Multi-Objective Batch Bayesian Experimental Design Optimisation
(MOBB-DoE) is to optimise a series of objectives simultaneously, which are
unknown but can be evaluated pointwise exactly or in the presence of noise
at multiple locations in parallel, as defined in Equation 6.6.

Bt+1 = argmax f
(
Bt

)
=

[
f1

(
Bt

)
, . . . , fM

(
Bt

)]
(6.6)

Where, Bt+1 is the batch vector set of Q candidates to be evaluated, M is
the total number of output objectives to optimised simultaneously. At each
iteration, a batch set of Bt+1 points must be selected that seek to provide a
diverse and set of non-dominated solutions known as the Pareto Optimal Set
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(POS) that together form a Pareto Front (PF) that optimise a set of M output
objectives.

6.2.1 MOBB-DOE Optimiser Analysis

As discussed in Section 2.3.2, in order to develop a MOBO algorithm suit-
able for implementation on DoE problems a non-interaction multi-objective
optimisation (MOO) methodology is the most suitable. Non-interactive MOO
methods are often optimised using a GA, after which the literature can be
broadly classified into three algorithmic approaches:

• Pareto-Dominance Multi-Objective Evolutionary Algorithm (PD-MOEA)

• Performance Indicator Multi-Objective Evolutionary Algorithm (PI-MOEA)

• Decomposition Based Multi-Objective Evolutionary Algorithm (D-MOEA)

In Section 6.1.1, a variety of literature algorithms were integrated with
BO acquisition functions to develop state-of-the-art MOBO algorithms such
as: ParEGO [127], EHVI [64], SMS-EGO [179], PESMO [20], MESMO [20],
UseMO [23] as well as their MOBBO variants [248] [50]. Each of these
state-of-the-art algorithms which have previously integrated BO acquisition
functions had to consider how to integrate these into MOO solver’s whilst
accounting for: non-interactive experiment selection, diversity/spread mainte-
nance, exploitation-exploration trade-off and desired computational complex-
ity. These characteristics must be assessed and weighted against the NGB-GP-
CB acquisition function to decide which MOO solver to choose for integration
with a GA to design a state-of-the-art MOBB-DoE algorithm.

In BO algorithms one core mechanism that is often in conflict with MOO is
the requirement to select a single or batch of candidate experiment(s) at each
iteration. In traditional MOO a POS is generated which trades off performance
between all output variables considered, as to improve performance in one
output often leads to degradation of other solutions. Once a PF had been gen-
erated where each candidate experiment is as optimal as the next, a decision
maker would select from the POS. Whereas, in BO this selection must occur
non-interactively and thus a secondary mechanism is required. Historically, in
MOBO literature, the adaptation of non-interactive MOO approaches for BO al-
gorithms has been tackled predominately using two approaches: Scalarisation
and Hyper-volume.
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Firstly, scalarisation approaches utilise weight vectors to convert MOPs into
several sub-SOPs for optimisation on specialised algorithms such as MOEA/D-
EGO [248] or ParEGO [127]. The advantages of such algorithms are that by
scalarising the MOP into one or many SOP to be optimised, the original BO
acquisition could be applied directly. Thus, allowing for a simple and fast
MOBO algorithm to be developed. However, a key aspect that isn’t currently
explored in MOBO algorithms is maintaining the diversity and coverage of
candidate experiments on the PF, which is determined by the selection of the
weight vector set [237].

On the other hand this is topic is explored extensively in the D-MOEA
literature with schemes that have sought to improve on the original weight
vectors designs [82] [83] [250], introduce adaptive weight vectors schemes
[202] [181] and design schemes to introduce user preferences [150] [178].
Although as one property of interest is non-interactive implementation, the
user preference-based designs would not be suitable.

Generalised Decomposition (gD) [82] [83] is one D-MOEA literature method
which aimed to generate an optimal set of weight vectors under the assumption
that a reference PF exists for a particular scalarisation function. It was shown
to outperform the original weight vector designs using simplex lattice [247]
and uniform random sampling [112]. Although a limitation of this approach
was the requirement of knowing the PF geometry to determine a reference
PF but the authors argued a good performance could be achieved by using
a linear PF. This would be unsuitable for application in AM manufacturing
problems in which the PF geometry would pre-dominantly unknown.

In both ParEGO and qParEGO the weight vectors are randomly drawn
from the initial simplex lattice designs, to be applied in each iteration and
for each batch set candidate for the MOBO and MOBBO variants respectively.
Whilst MOEA/D-EGO utilised the uniform random sampling design. In both
MOBB-DoE algorithms the original weight vector generation methods were
used suggesting there would be no guarantees the weight vectors would lead
to efficient selection of candidate experiments that are well distributed along a
PF [82] [83].

Secondly, HV was initially developed in the PI-MOEA literature as it acted
as a performance indicator measuring the volume of space in which a non-
dominated candidate occupied on the PF. HV provided a quantifiable measure
of improvement that a particular candidate provided through its addition to
the PF, which attracted research interest into the development and integration
with various BO acquisition functions: GP-CB [179] and EI [176] [64] [50]



190 6.2. Multi-Objective Batch Extension of NGB-GP-CB Function

[51].
On the other hand, HV is computationally expensive to calculate as demon-

strated in [179] [176] [64] [50] [51], whereby the output space is partitioned
into cells. The number of cells required to compute the HV scales with the
number of output objectives exponentially [102], which prevents HV-based
methods from performing well on MOPs with greater than three objectives
known as Many-Objective Optimisation Problem (MaOP).

Whilst not as popular as scalarisation or hyper-volume approaches, there
is one class of acquisition function that could be directly scaled up into MOOs,
Information-Theoretic acquisition functions. This was demonstrated by [102]
and [20], where the predictive posterior distributions sought to gain infor-
mation about a POS rather than the global optimum in PES/MES [101]/[230].
However, much alike their SOBO counterparts the MOBO information-theoretic
acquisitions are expensive to calculate and require even more approximations
to perform despite their theoretical basis.

MOBB-DoE: MOO Optimiser Summary

In summary, the MOBO algorithms from literature predominantly were based
upon two types of non-interactive MOO: D-MOEA and PI-MOEA. Whilst
D-MOEA using scalarisation functions allow ease of extension into MOBO
algorithms through the conversion of MOP into several SOPs, if the weight
vectors are not chosen carefully there is no guarantee of selecting candidate
experiments that produce a diverse POS of experiments [82]. Although there
have been vast literature contributions into the investigation of improving
weight vector generation. Furthermore, by reducing the MOP into a SOP it
reduces the capability of D-MOEA algorithms to capture the trade-off between
multiple objectives, which can lead to more exploitative candidate selections
[23].

On the other hand, PI-MOEA using performance indicators such as HV
allow for a quantifiable measure of a candidate experiments improvement as
an addition to the PF. Therefore, using HV as a base the derivation of multi-
objective acquisition functions such as SMSego and EHVI was possible, but not
without limitations as the HV acquisition functions are often computationally
expensive to utilise beyond three output objectives [102] [20].

Another essential point to consider are the traits of the NGB-GP-CB acquisi-
tion function as they will contribute to the design of the MOBB-DoE algorithm
to be produced and assessed throughout this chapter. NGB-GP-CB is a batch
acquisition function which consolidates the acquisition value of each candidate
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within the batch set, based upon the SOBO acquisition function GP-CB. The
BB-DoE algorithm developed using NGB-GP-CB also utilised constraints to
prevent over-exploitation and promote exploration to further refine GP mod-
els and search for alternative optimums.

Considering the shortcomings of D-MOEA and PI-MOEA algorithms, whilst
accounting for the traits of the NGB-GP-CB acquisition function PD-MOEA is
the most suitable non-interactive MOO algorithm to implement. PD-MOEA
detailed in Section 2.3.2, optimise under the principle of Pareto-dominance
(Definition 2.3.2 - 2.3.4) where a candidate is optimal if it is not dominated
by any of candidate. Thus, the goal of a PD-MOEA is to generate a POS that
represent trade-offs between output objectives on a PF. However, an additional
mechanism is required once a POS is found to discern which candidate from
the POS will guide the MOBB-DoE towards to the true PF.

6.2.2 Multi-Objecitve Modelling

In order to optimise Equation 6.6 a suitable MOBB-DoE algorithm is required,
within this thesis a combination of the NGB-GP-CB acquisition function with
a PD-MOEA solver and finally a secondary POS selection mechanism will be
used. In order to select a batch which optimises the multi-objective batch cost
shown in Equation 6.7, the NGB-GP-CB acquisition function will be deter-
mined for each output objective of interest shown in Equation 6.8.

Bt+1 = argmax
Bt

uMOO–NGB–GP–CB
(
Bt

∣∣∣Dt
)

(6.7)

Where,

uMOO–NGB–GP–CB
(
Bt

∣∣∣Dt
)
=

[
ui

NGB–GP–CB
(
Bt

)
, . . . , uM

NGB–GP–CB
(
Bt

)]
(6.8)

where, uMOO–NGB–GP–CB is the multi-objective non-greedy batch acquisi-
tion function, Bt is a batch vector set of Q candidates to be evaluated, and
ui

NGB–GP–CB is the non-greedy batch acquisition value for the ith output ob-
jective of M total output objectives for the batch vector set Bt.

In order to optimise M NGB-GP-CB acquisition functions as shown in
Equation 6.8, corresponding predictive means are required for all M output
objectives. Only the predictive mean changes with each output objective as
mentioned in Section 5.2.1 the predictive standard deviation is dependent on
only the input variables. In order to alter the predictive mean for each output
objective a corresponding GP surrogate model is required for inference, leading
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to the need for tuning multiple GP surrogate models.
Hence the observed experiment sets of data are replicated and partitioned

for their corresponding output variables ready for use as training data sets for
each GP surrogate model. Once partitioned each representative data set can
then be used to tune each GP surrogate model using the framework set out in
Section 3.4 to tune each respective model hyper-parameters.

6.2.3 Multi Acquisition Function Ranking

After each GP surrogate model is tuned for their respective output, they can be
utilised in the NGB-GP-CB acquisition function with the methodology set out
in Section 5.2. Therefore, for each batch set of candidate experiments there
will be M acquisition values or to be referred to in this chapter as the output
objectives as depicted in Equation 6.7.

As noted in Section 2.3.2, there are a variety of PD-MOEA solvers available
within the literature that optimise MOPs using the basis of Pareto-Dominance
set out using Definitions 2.3.2 - 2.3.4. In this thesis, Fonseca and Fleming
[73] MOGA will be used to cheaply optimise the output objectives.

MOGA used a Pareto Ranking strategy (See Figure 2.14 for 2-D example
illustration), which ranks all candidates according to their level of domination.
Whereby a non-dominated candidate refers to having a Pareto rank of one
with all subsequent ranks being dominated candidates.

Prior to Pareto ranking, each candidate’s output objectives (ui
NGB–GP–CB)

are multiplied by negative one to convert the output objectives acquisition value
from a maximisation problem into a minimisation problem. Once transformed
into a minimisation problem to aid in the determination of Pareto ranks the
output objectives are normalised in the range of [0, 1]d using Equation 6.9.

vnorm = v – vmin

vmax – vmin (6.9)

where, vnorm is the variable v normalised to the range of [0, 1], vmin and
vmax are the minimum and maximum variable values respectively.

Once the output objectives are transformed through minimisation and nor-
malisation of output objectives, the Pareto ranks of each candidate will be
determined by iteratively setting a single candidate as a reference to compare
with the remaining GA population candidates.
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CP
i=1 =

Ci Reference Candidate
C,i Comparison Candidates

In each iteration, a single reference candidate is set to be compared with
the remaining candidates, which are compared along each output objective.
Each comparison candidates output objective value is subtracted from the
corresponding reference candidate output objective value to find its difference
value.

zPi=1 = unorm
NGB

(
Cref

)
– unorm

NGB

(
Ccomp,i

)
The difference values (z) between the reference candidate and each com-

parison candidate for all output objectives are stored to determine the ranking
of the reference candidate. The purpose of converting the output objectives to
a minimisation problem then normalising their values is to aid in the determi-
nation of reference candidates: Superiority (See Definition 2.3.3) or Inferiority
(See Definition 2.3.2) with respect to the comparison candidates.

rPi=1 =

1 if zi > 0
0 if zi < 0

By normalising the output objectives into the range [0, 1]d, for a minimisa-
tion problem the PF cannot exist lower than zero. Therefore, for each output
objective if the difference value is positive with respect to that output objective,
then the reference candidate is inferior to the comparison candidate. Whereas,
if the difference value is negative, it is superior with regard to that output
objective. Hence, the reference candidate is dominated by a comparison can-
didate in the event of when the difference values for all output objectives are
positive. Whereas, in the event that a single outputs difference value is nega-
tive, then the reference candidate in regard to that comparison candidate are
classified as non-dominate to each other.

As specified in Fonseca and Fleming [73] a non-dominated candidate has a
Pareto rank of one, which is determined by totalling the number of comparison
candidates that dominate each reference candidate using Equation 6.10.

Pr
(
Ci

)
= 1 +

P∑
i=1

ri (6.10)

The Pareto ranking’s range from one to the size of the GA population (P)
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being evaluated, with rankings of candidates sorting in ascending order. In
order to implement the chosen mating selection strategy (See Section 3.3.2)
a single assigned fitness value is required. In Fonseca and Fleming [73] this
procedure was referred to as ‘Average Fitness’ which assigned an identical
fitness to members within the same Pareto rank as shown in Equation 6.11.

Υ
(
Ci

)
= P –

Pr(Ci)–1∑
j=1

u
(
rj
)
– 1

2
(
u
(
ri
)
– 1

)
(6.11)

where, Υ
(
Ci

)
is the average fitness for GA individual Ci, P is the population

size of the GA, u
(
ri
)
is the total number of individual classified in r = i, and

u
(
rj
)
is the total number of individuals classified from r = 1 to r = i – 1.

Whereby, if there are 10 individuals in Pr = 1 then the u
(
r1

)
= 10 or 3

individuals of Pr = 2 then the u
(
r2

)
= 3. Thus, for each individual in the

next lower Pareto rank, the total number of indivudals up until that rank are
summed u

(
rj
)
∀j = 1, . . . , ri – 1 and subtracted from the assignable Average

Fitness of that next rank.
This is repeated until an average fitness (Υ (.)) is assigned for individual

(Ci) in the GA population. This ensured individuals in the same Pareto rank-
ing would have an equal opportunity of being selected during the mating
selection step. Following this updated MOBBO procedure, the standard GA
methodology can proceed according to Section 3.3, with the exception of a
modification required for the Elitism operator.

6.2.4 MOBB-DoE Modified Elitism Operator

In Chapters 4 and 5, the elitism operator followed Algorithm 3.1. In order
to facilitate multiple output objectives, the elite set update approach requires
further modification for use in conjunction with MOGA.

Previously, new elite set candidates were selected from the current GA
population by identifying any individuals whose acquisition value was greater
than the current elite set. However, in MOBO each candidate has an acquisition
value for each output objective which prevents the identification of new elite
set candidates in MOPs using the same methodology.

To alleviate this issue the Pareto ranks of individuals in the GA population
will be utilised. Whereby, once the Pareto ranks are determined, individuals
with Pr = 1 or non-dominated individuals, are identified as new elite set
candidates. These new elite set candidates are then placed with the current
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elite set, which undergo a second Pareto Ranking. The secondary Pareto
ranking is performed as the elite population are held as an external archive
set and therefore, there is no guarantee of all elite set candidates being non-
dominant with each other.

Following the secondary Pareto ranking, the combined elite set is reduced
to only Pr = 1 or non-dominated elite set candidates, which can proceed in the
same methodology as Algorithm 3.1. Another modification is required when
the size of the new elite set is greater than pre-specified elite population size
defined in Equation 3.13.

In Algorithm 3.1, , when the new elite set size was greater than the pre-
specified elite set size, the elite set was re-ordered into descending order of ac-
quisition value prior to removal of the worst performing individuals. Whereas,
in MOBO as Pr = 1 or non-dominated individuals are non-inferior to each
other (See Definition 2.3.4), wherein each individual is as good as any other
within the elite set. Thus, the new elite set cannot be sorted into descending
order for the removal the worst performing individuals, as each individual is
non-inferior to any other.

As the potential acquisition value of members of the new elite set cannot be
used to order the set from best to worst candidate in terms of greater value. A
different metric shall be utilised to improve the quality of the elite set through
removal of excess candidates, one such measure is the diversity of candidates.
This is achieved by utilising the similarity measure demonstrated in the K
Nearest Neighbour (KNN) Algorithm [31] which utilises Euclidean Distance to
determine clusters of individuals in search spaces.

Traditionally, KNN is a clustering algorithm whose primary purpose is to
classify new data based upon the previously obtained data classifications using
a similarity measure [31]. In this case, the similarity measure was used for
the purposes of thinning the new elite set to the pre-defined elite set size,
whilst ensuring the diversity within the set remained high by removing the
individuals in closest proximity in the output objective space.

The similarity measure utilises Euclidean distance between two candidates
to determine the distance between two points in space as shown in Equa-
tion 6.12.

EucD
(p, q) =

√√√ d∑
i=1

(
pi – qi

)2 (6.12)

where, EucD (.) is the Euclidean distance between two points in space, d is the
number of dimensions, and p/q are two arbitrary points in this d-dimensional
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space.
Therefore, a systematic approach is required to iteratively determine which

candidates of the new elite set are in closest proximity in the output space.
Upon which, one candidate from the closest proximity pair should be removed
from the new elite set. This approach will subsequently be repeated until the
elite set has been thinned down to the pre-specified elite size described in
Section 3.3.5.

Algorithm 6.1 MOBB-DoE Elite Set Update
Inputs:

P : GA Population
E : Elite Population

Esize : Elite Set Size

u : Acquisition value
Pr : Pareto Ranks
o : Optimisation options

1: P← Constraint Penalty (P) // See Equation 3.14
2: E← Constraint Penalty (E) // See Equation 3.14
3: procedure MOO Elite Set Updater(P,E,Esize, u, Pr,o) do
4: Epotential ← find

(
P
(
Pr = 1

))
5: Enew =

[
Eold, Epotential

]
6: Pr,new ← Pareto Ranking

(
Enew, Size(Enew)

)
// See Section 6.2.3

7: Enew ← Removal
(
Enew

(
Pr,new , 1

))
// Remove non Pr = 1 elites

8: Enew ← Unique Sorting
(
Enew

)
// Identical candidate removal

9: if Size(Enew) > Esize then
10: repeat
11: Eclose ← KNN

(
Enew, u

)
// Find elites in closest proximity

12: Distclose ← EucD
(
Eclose, Enew

)
// Identify Eclose with shortest EucD

13: Enew ← Removal
(
Eclose

(
Distclose

))
14: until Size(Enew) = Esize
15: end if
16: return New external elite population, Enew
17: end procedure

This methodology is demonstrated in Algorithm 6.1, which systematically
iterates through new elite set candidates to determine which combination of
candidates have the closest proximity. After which the short-listed candidates
are compared with the remaining candidates to determine which of the two
would be in close proximity in the output space with the remaining elite set
members. This is to ensure that the new elite set determined will have the
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greatest diversity in order to improve the diversity through the generations
of the GA. The systematic assessment of the new elite set candidates and the
excess removal is iterated through until the new elite set size matches the
pre-specified elite size described in Section 3.3.5.

6.2.5 Uncertainty Maximisation

As discussed in Section 6.2.1 a PD-MOEA was selected as the MOO solver to
generate a POS that represents a trade-off between output objectives on a PF.
Upon the completion of the PD-MOEA within its population a POS will have
been generated from which a single candidate must be chosen, so as to remain
a non-interactive methodology. In order to select the best candidate from the
POS, a secondary selection mechanism is needed.

Traditionally, in the MOBO literature as shown in Section 6.1.1 and 6.1.2,
the primary mechanism for selecting a single best candidate from the POS
is either implemented through the incorporation of the metric into the MOO
solver or as a stand-alone mechanism. Previously, as discussed in Section 6.2.1,
the Hyper-volume metric was shown to be a popular choice. However, this
metric was formerly discounted for use within the MOO olver due to scaling
poorly beyond three output objectives as well as being computationally ex-
pensive [102] [20]. For these disadvantages it will also be a poor choice as a
secondary selection mechanism for choosing between members of the POS for
the best candidate for experimentation.

An alternative measure was introduced in Belakaria et al. [23] which
utilised the volume of a hyper-rectangle which is constituted of the upper
and lower confidence bounds surrounding a candidate, as defined in Equa-
tion 6.13.

U(x) =
M∏
i=1

CI
(
fi (x) , x, βt

)
(6.13)

where, U(x) is the uncertainty hyper-rectangle for candidate x, and CI (.) is the
confidence interval function. fi (x) is Gaussian Process model for output i, x is
a GA candidate, and βt is the time varying exploration/exploitation trade-off
parameter.

The volume of a hyper-rectangle is determined by taking the product of
all the edge lengths, which in this context refers to the size of each confidence
bound for each output objective as shown in Equation 6.14
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CI
(
fi (x) , x, βt

)
= uGP–UCB

(
μi (x) ,σi (x) , βt

)
– uGP–LCB

(
μi (x) ,σi (x) , βt

)
(6.14)

where, uGP–UCB (.) is the Gaussian Process Upper Confidence Bound (GP-UCB)
and uGP–LCB (.) is the Gaussian Process Lower Confidence Bound (GP-LCB).
μi (x) is the predictive GP mean of output i and σi (x) is the predictive GP
standard deviation of output i.

In order to incorporate the uncertainty maximisation metric for use within
MOBB-DoE, the methodological approach requires modification for the deter-
mination of the volume of the hyper-rectangle for a batch set. Therefore, in
order to determine the volume, the upper and lower confidence bounds must
first be calculated. As discussed in Section 5.2.1 the predictive variance of
each batch set member should be conditioned upon the assumption, this is
that each remaining batch set member has already been observed.

By doing so the predictive variance will reduce for the batch set members
that are in close proximity of each other, which similarly will affect the size
of their confidence bounds. The updated predictive variance will then be
used to determine for each batch set member their corresponding upper and
lower confidence bounds in Equation 2.29. Hence each batch set member
will have a confidence bound for each output objective determined by using
Equation 6.14.

In order to determine the total volume of the uncertainty for the batch set,
each individuals’ batch set hyper-rectangle is determined according to Equa-
tion 6.13. This is achieved by taking the product of each confidence bound
or “edge” of each output objective as illustrated in Figure 6.3. This produces
a single volume for each member of the batch set which represents their un-
certainty volume. By summing each members’ volume, the total volume of
the batch set can be identified which can subsequently be used to select which
batch candidate is best from the POS.

U
(
Bt

)
=

Q∑
i=1

U
(
xt+i

)
In summary, Algorithm 6.2 is a novel approach which utilises the novel

NGB-GP-CB acquisition function using a PD-MOEA optimiser and secondary
selection for optimal candidates. Whilst PD-MOEA based MOBO have been
implemented previously in [113] [140] [139], these methods were focused on
EI or kriging variance and not GP-CB or batch selection methodologies. The
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Figure 6.3: Illustration of the secondary selection step in MOBB-DoE algo-
rithm: Uncertainty Maximisation. Wherein the confidence intervals for each
output objective form the edges of a hyper-rectangle which when multiplied to-
gether determines their volume for each batch set member which are summed
to find the total uncertainty volume of a batch candidate set.

modifications required to achieve this were developed and detailed in Sections
6.2.1 through 6.2.5.
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Algorithm 6.2 MOBB-DoE Algorithm
Inputs:

ns : LHS samples
d : Number of inputs
M : Number of outputs
λ : Model Hyper-priors

o : Optimisation settings
Q : Batch Size
NB : Number of Batches

1: xt ← Latin Hypercube Sampling(ns, d)
2: for i = 1, 2, . . . ,M do
3: yi

t ← Evaluate(xt, i)
4: Di

t ←
[
xt, y

i
t
]

5: θi
t ← GPR

(
λ, Di

t
)

// See Algorithm 3.2
6: end for
7: for t = 1, 2, . . . , NB do
8: Bt+Q ←MOBB-DoE GA Optimiser

(
D1:M

t , GP(m, k|θ1:M
t ),o

)
// See line 15

9: for i = 1, 2, . . . ,M do
10: yi

t+1:t+Q ← Evaluate
(
Bt+Q, i

)
11: Di

t+1:t+Q ← Dt ∪
[
xt+1:t+Q, yi

t+1:t+Q
]

12: θi
t+1 ← GPR

(
λ, Di

t+1:t+Q
)

// See Algorithm 3.2
13: end for
14: end for

15: procedure MOBB-DoE GA Optimiser
(
Dt, GP(m, k|θt),o

)
do

16: Initialise GA Population
(
P1 = [C]

)
17: for G = 1, 2, . . . , NGen do
18: unew ← uNGB–GP–CB

(
CG, Dt, GP(m, k|θt),o

)
// See Algorithm 5.1

19: PG ← Update Population
[
CG, unew

]
20: if G = 1 then
21: E← maxEsize

i=1 PG
22: else
23: ENew ← Elite Set Updater(PG, E, Esize) // See Algorithm 6.1
24: end if
25: PG ← Constraint Evaluation

(
PG

)
// See Section 5.2.4

26:
[
Pr, u (r)

]
← Pareto Ranking

(
PG

)
// See Section 6.2.3

27: Υ
(
PG

)
← Average Fitness

(
Pr, u (r)

)
// See Section 6.2.3

28: ParG ← Tournament Selection
(
Υ

(
PG

))
// See Section 3.3.2

29: OG ← Blending Crossover
(
ParG

)
// See Section 3.3.3

30: MG ← Random Mutation
(
OG

)
// See Section 3.3.4

31: CG+1 ← OG ∪MG
32: end for
33: return Bt+1 ← argmaxC u (P,E)
34: end procedure
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6.3 Simulation Study: Benchmarks

6.3.1 Introduction

In this chapter, a novel MOBB-DoE has been developed by incorporating the
NGB-GP-CB developed in Chapter 5 with a PD-MOEA chosen according to
the requirements set out previously, with a secondary optimisation step: Un-
certainty maximisation developed by Belakaria et al. [23] to select each batch
of candidates to add to the Pareto Front (PF). In Chapters 4 and 5, the as-
sessment of performance was carried out on a series of synthetic benchmark
functions selected for their varied optimisation landscape characteristics de-
tailed in Section 4.3.

Although these benchmark functions are no longer suitable for use when
assessing the performance of the MOBB-DoE algorithms which requires mul-
tiple conflicting output objectives. Therefore, in order to assess performance
of the developed MOBB-DoE an alternative benchmark function will be used:
Binh and Korn function [30].

Binh and Korn Test Function

The Binh and Korn function is a 2-Dimensional constrained synthetic bench-
mark function with two minimisation outputs, shown in Equation 6.15 [30]:

Minimise =

f1
(
x1, x2

)
= 4x2

1 + 4x2
2

f2
(
x1, x2

)
=

(
x1 – 5

)2 +
(
x2 – 5

)2 (6.15)

The Binh and Korn function is a constrained problem with the following
inequality constraints:

Constraints =

g1 (
x1, x2

)
=

(
x1 – 5

)2 +
(
x2

)2
≤ 25

g2 (
x1, x2

)
=

(
x1 – 8

)2 +
(
x2 + 3

)2
≥ 7.7

The Binh and Korn functions design space is located in the domain x1 =
[0, 5] and x2 = [0, 3]. The experiments that satisfy the constraints and are
Pr = 1 are contained in the POS which make up the true PF in the objective
space shown in Figure 6.4.
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Figure 6.4: Representation of the Binh and Korn functions True Pareto Front.

6.3.2 Experiment Software

Algorithm 6.2 and the majority of functions have been self-coded in MATLAB
2017b in Windows 10 using their respective literature sources unless otherwise
stated. The code was run on a personal PC with the following specifications:
AMD Ryzen 5 1600 6 core processor with 12 threads and 24 GB of RAM of
which all were used to run Algorithm 6.2 according to the details specified in
Table 5.1. In this study no existing libraries or repositories were used.

6.3.3 Experiment Details

Similarly, in Chapters 4/5 the experimentation budget to assess the performance
of the algorithms of interest were set to be a reduced total experimentation
budget of 50 experiments to provide an accurate representation of an expensive
to evaluate AM problem whilst also providing sufficient data to fit GP surrogate
models and locate optimum solutions in this case a diverse and accurate POS.
Therefore, as the core mechanisms of the MOBB-DoE framework utilise the
BB-DoE framework but expanded for multiple objectives on the Binh and
Korn test function, the simulation study settings will be identical to those in
Table 5.1.

Previously, in order to assess exploitative performance, the Regret metric
was utilised as detailed in Section 3.2.1. However, as shown in Figure 6.4
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each experiment located in the POS on the PF is as optimal as any other
member. This poses a problem in determining the exploitative performance of
the developed MOBB-DoE as Regret requires the comparison against a single
global optimum as shown in Equation 3.3.

Therefore, an alternative metric is required to assess exploitative perfor-
mance. Typically, in the MOO literature the most popular performance met-
ric is the Hyper-volume metric [183]. Whilst previously, in Section 6.2.1 he
Hyper-volume indicator or metric have not been implemented due to being
expensive to compute [179] [176] [64] [50] [51] and poor scalability [102].
Hence, an alternative metric that measures the accuracy of the optimised PF
that is frequently applied within the MOO literature is the Generational Dis-
tance (GD) [183].

Generational Distance

The GD is a measure which calculates the distance between a reference set
(selected experiments) and the true PF, as shown in Equation 6.16.

Gend = 1
|POS|

|POS|∑
i=1

Eucd
(
POSi

)
(6.16)

Where, |POS| is the size of the reference POS comprising the experiments
of Pr = 1 selected by the MOBB-DoE algorithm.

POS =
[
y1,y2, . . . ,y|POS|

]
Where, y is the vector set of output objectives for each selected experiment

in the reference set. In order to calculate each Eucd the closest point on the
true PF must be chosen for calculation. The experiment on the true PF closest
to the reference point of interest is chosen using a K Nearest Neighbour (KNN)
algorithm, after which the Euclidean Distance is calculated.

Although, GD is a frequently implemented metric within the MOO litera-
ture [183] this is primarily due to its simple formulation allowing for quick
implementation. GD provides a good approximation of how far the current
best solutions are from approaching the true PF but this characteristic also
links to its limitation in it only considers the accuracy of the POS in locating
the PF, but doesn’t consider the diversity.

This is exemplified in a situation in which a single solution is quickly placed
on the PF, as this would give a GD of 0 suggesting convergence to the true
PF [11]. Therefore, by using GD the is a risk of poor algorithmic performance
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being mis-represented due to a single solution locating the PF leading to a
small GD. It is due to these characteristics that Hyper-volume indicators or
Inverted Generational Distance (IGD) which may be more difficult to calculate
but represent both accuracy and diversity of the PF that they are so prevalent
in literature.

6.3.4 Results and Discussion

The results of this simulation study are to present a novel implementation
of a non-greedy MOBB-DoE algorithm on the performance metrics utilised
throughout this thesis as well as the Generational Distance (GD) introduced
in Section 6.3.3. The performance metrics are illustrated in Figures 6.5, 6.6,
6.7, 6.8 and 6.9.

Benchmark Results: PF Convergence

Figure 6.5 illustrates all of the experiments chosen via the MOBB-DoE algo-
rithm in the output objective space. They occupy a broad range across the
entire output objective space showing a wide diversity. The experiments cho-
sen also seem to search both edges of the Binh and Korn benchmark function
towards y1 < 50 and y2 < 130, suggesting the MOBB-DoE algorithm can
produce a diverse POS.

Of the 50 experiments shown in Figure 6.5, if they were to be reduced to
only their Pr = 1 experiments contained in the POS to show the experimental
PF this is demonstrated in Figure 6.6. Over the experimentation budget (T)
of 50 experiments, 27 experiments are Pr = 1 suggesting a 54% success rate
of selecting non-dominated experiments using the non-greedy MOBB-DoE
algorithm.
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Figure 6.5: Visual representation of experiment data in the output objective
space chosen using MOBB-DoE algorithm on the Binh and Korn test function
and was run according to the settings in Table 5.1.

Figure 6.6: Visual comparison between the true PF and the Pr = 1 experi-
mental data to illustrate distribution and diversity of experiment chosen using
MOBB-DoE algorithm on the Binh and Korn test function and was run ac-
cording to the settings in Table 5.1.
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As can be seen, the experimental PF found by the MOBB-DoE algorithm is
representative of the true PF. A diverse spread across the entire PF is achieved
locating experiments at the boundaries of the output objective space as well
as uniformly spaced along the PF. Although it can also be seen that more
experiments are placed in areas where y1 < 60 and y2 > 10.

Benchmark Results: Exploration

Previously in Figures 6.5 and 6.6 a diverse POS was demonstrated which can
be achieved by using MOBB-DoE, but this may not correspond to accurate
surrogate models of the respective design spaces. Although as shown in Fig-
ure 6.7, for both output objectives an accurate and representative surrogate
model is achieved with NRMSD < 0.1 % by the 8th batch.

Figure 6.7: NRMSD performance metric using the MOBB-DoE algorithm on
the Binh and Korn test function for both output objective 1 and 2. The
MOBB-DoE algorithm was run according to the settings in Table 5.1.

This aligns with the performance seen on SOPs in Chapters 4/5 for 2-
Dimensional DoE problems. This suggests that surrogate model accuracy is
maintained even when multiple objectives are optimised simultaneously.

Benchmark Results: Exploitation

As previously mentioned in Section 6.3.3 the GD metric is a replacement for
the Regret used throughout the thesis and the GD for the Binh and Korn
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function is shown in Figure 6.8. Initially the GD begins to increase over the
first 3 batches, after which the GD slowly begins to reduce with each batch set
of experiments performed, plateauing at 0.5.

Figure 6.8: Generational Distance (GD) performance metric using the MOBB-
DoE algorithm on the Binh and Korn test function and was run according to
the settings in Table 5.1.

An increase in the GD suggests that the average distance between the
performed experiments and the true PF is increasing, such as experiments
appearing farther from the true PF. However, as the rise in GD occurs during
the initial batches this is most likely caused by exploration of the design space.
As the MOBB-DoE proceeds and more experiments are performed this initial
divergence from the true PF is minimised by more experiments close to the
true PF and lowering the impact of outlier experiments.

Benchmark Results: Stopping Criterion

Similarly to B-DoE and BB-DoE, the MOBB-DoE algorithm shows a steady
decrease in the stopping criterion with each batch as shown in Figure 6.9.
Based upon the degree of reduction demonstrated by the stopping criterion,
the NRMSD and GD, an optimal stopping point could be in the 7/8th batch.

In Figures 6.10 and 6.11 the experimental data is split between the first
7 batches and last 8 batches to illustrate the differences in distribution of
experiments in the objective space.
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Figure 6.9: Stopping criterion determined for the MOBB-DoE algorithm on
the Binh and Korn test function and was run according to the settings in
Table 5.1.

Figure 6.10: Visual comparison between the true PF and the first 7 batches of
experimental data to illustrate distribution and diversity of experiment chosen
using MOBB-DoE algorithm on the Binh and Korn test function and was run
according to the settings in Table 5.1. Experiments selected are split into the
batch order they were selected.
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Figure 6.11: Visual comparison between the true PF and the last 8 batches
of experimental data to illustrate the distribution and diversity of experiments
chosen using MOBB-DoE algorithm on the Binh and Korn test function and
was run according to the settings in Table 5.1. Experiments selected are split
into the batch order they were selected.

As can be seen in Figure 6.10, there are a few experiments chosen within
the batch sets are placed in the POS on the true PF. Although the majority of
experiments performed are dominated solutions they are exploratory in nature
and improve the surrogate models accuracy resulting in good performance for
the stopping criterion observed in Figure 6.9 and in the NRMSD in Figure 6.7.

On the other hand as can be seen in Figure 6.11, a large proportion of the
experiments performed are located on the true PF and explore the boundaries
of the true PF. If the stopping criterion would end the MOBB-DoE algorithm
early these POS experiments would not be performed and the boundaries of
the true PF explored.

6.4 Conclusion

A MOBB-DoE algorithmic framework has been developed in this chapter. The
MOBB-DoE algorithmic framework can be sub-divided into three main com-
ponents: the non-greedy NGB-GP-CB acquisition cost function developed in
Chapter 5, a PD-MOEA Multi-Objective Optimiser, and an uncertainty max-
imisation approach taken from Belakaria et al. [23] modified for batch selec-
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tion. The developed MOBB-DoE algorithm was then applied onto a synthetic
benchmark problem to assess its capabilities in locating a diverse, accurate,
and spread POS in close proximity to the true PF.

The overall performance of the MOBB-DoE algorithm on the Binh and
Korn synthetic test function suggested acceptable performance as a represen-
tative POS which was spread across the true PF and accurate GP surrogate
models were developed within the experimentation budget. As the members
of the POS were spread along the entire PF reaching both boundary sections of
the objective space with POS members reasonably distributed along the entire
PF. Also, of the 50 experiments selected via the MOBB-DoE algorithm, 54 %
were non-dominated experiments, which as shown in Figure 6.6 were close
to the true PF demonstrating an efficient experiment selection process.

In regard to exploratory performance, accurate surrogate models were
found within 8 batches for both output objectives which is consistent with the
performance of the BB-DoE algorithm on similar 2-Dimensional problems.
Unlike in previous chapters which utilised Regret to determine exploitative
performance it was no longer a suitable performance metric as on MOPs there
is no single global optimum but rather a POS constituting the PF. Therefore,
the assess the exploitative performance the Generational Distance (GD) metric
was introduced and found slow convergence in performance with each succes-
sive batch added. Although initially the GD began to increase this was likely
due to the low experimental data volume and exploratory experimentation
leading to an initial greater GD for 2-3 batches. Thus, with each batch of
experiments placed closer to the true PF this led to a gradual lowering of the
GD with each successive batch after the 3rd.

An auxiliary goal of this chapter was to further investigate the validity
and performance of using the stopping criterion developed in Chapter 5 onto
MOPs. It was shown that the stopping criterion had quick convergence to-
wards the thresholds previously tested in Chapter 5, and far surpassing them
as the experiments continued. However, upon further examination if the
MOBB-DoE algorithm were to be stopped early under the recommendation
of the stopping criterion, it would result in a much greater reduced POS as
shown when comparing Figure 6.10 and 6.11.

Hence, the stopping criterion determines when a good model predictive
performance is found but as previously demonstrated it can occur whenever
the model improvement plateaus. Also, the stopping criterion does not indicate
good exploitative performance as well as when a representative POS is found.
Therefore, further modifications are required prior to implementation of the
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stopping criterion to make it suitable for inclusion in either a BB-DoE or a
MOBB-DoE framework.

The MOBB-DoE algorithm presented a novel approach for a non-greedy
batch DoE optimisation of MOPs that can efficiently select experiments in a
batch format to find a representative PF with experiments spread evenly along
the entire PF. However, in this work a limited set of synthetic benchmark
functions were applied with no application onto a real-world AM application
to demonstrate its performance onto a wider range of problems. Furthermore,
the proposed stopping criterion assessed suggested good capabilities in deter-
mining accurate surrogate models during the optimisation but was shown to
require further research. For discussion and reflection of research decisions,
limitations and impacts refer to Section 7.2.



Chapter 7

Conclusion

7.1 Summary and Conclusions

The central theme of this thesis has been the development of suitable algo-
rithms for Design of Experiments or Experimental Design (DoE) for imple-
mentation on various Additive Manufacturing (AM) processes. The DoE for-
mulations included: sequential, batch, and multiple conflicting outputs. The
requirements for the developed algorithms were to minimise the total number
of experiments whilst simultaneously produce accurate surrogate models and
optimise process parameter settings to locate the global optimum. Initially the
work was exploratory in nature investigating the Bayesian Optimisation (BO)
literature as a suitable DoE scheme for expensive AM DoE problems, prior
to algorithm development onto desired problem types needed in the additive
manufacturing field.

The main contributions of this work can be split into three sections: the
implementation of a novel BO framework onto the an expensive AM DoE
case study [246], and the development of two novel algorithms: a non-
greedy Batch Bayesian Experimental Design Optimisation (BB-DoE), and a
non-greedy Multi-Objective Batch Bayesian Experimental Design Optimisa-
tion (MOBB-DoE). Additionally, a useful stopping criterion was derived over
the course of the thesis to assist in the assessment of the developed algorithms
to evaluate their exploratory performance.

Bayesian Optimisation (BO) was suggested as an alternative data-efficient
DoE methodology for expensive manufacturing in Chapter 4. It was shown
for sequential experiment selection that on both synthetic benchmark functions
as well as the novel application onto an expensive additive manufacturing
problem, it significantly outperformed traditional DoE in both the generation

212
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of surrogate models and locating the global optimum. Further analysis of
the results demonstrated differences in exploration and exploitation for each
BO acquisition cost function coupled with the analysis of their theoretical
properties, discerning differences in their potential as B-DoE approaches.

The analysis showed MES demonstrated greater exploration whilst EI ex-
hibited improved exploitation and GP-CB showed a balance between the two.
Although in conclusion it was shown that the MES would be an overly ex-
pensive acquisition cost function if extended to batch selection [212] and EI
tended to overly exploit leading to poor exploration performance [26]. Subse-
quently, the GP-CB acquisition cost function was selected to form the basis for
the novel extensions for expensive AM DoE, non-greedy batch selection.

The second contribution of this thesis was the development of the Non-
Greedy Batch GP-CB (NGB-GP-CB) acquisition function: incorporated into
a GA optimisation framework to produce a novel BB-DoE algorithm. Its
performance was shown to outperform current state of the art greedy BB-DoE
algorithm: GP-BUCB, whilst having comparable performance to a non-greedy
BB-DoE algorithm: PPES.

The novel non-greedy BB-DoE algorithm using NGB-GP-CB was also im-
plemented onto a blind AM case study which sought to determine the pro-
cess parameter settings: laser power, nozzle velocity and hatch spacing which
optimised the micro structural property Dendritic Arm Spacing (DAS) for a
Directed Energy Deposition (DED) process. The optimal process parameter
settings were found within three batches of a ten-batch experimentation bud-
get. Whilst also selecting experiments in the 4.5 – 9.0μ m DAS region during
its subsequent batches after the optimum was identified, which had previously
unexplored. The process interactions leading to part formation with DAS in
this region have now been identified.

The third contribution to the thesis was the extension of the previously de-
veloped non-greedy BB-DoE algorithm onto Multi-Objective Problems (MOP)
resulting in the Multi-Objective Batch Bayesian Experimental Design Optimi-
sation (MOBB-DoE) algorithm. The algorithm developed utilised the previous
NGB-GP-CB acquisition cost function with a PD-MOEA optimiser to generate
batches of potential experiments that optimise multiple conflicting objectives
simultaneously. The non-dominated batches of potential experiments then re-
quired a secondary selection mechanism to select a single batch during each
iteration of the MOBB-DoE algorithm, a batch modified uncertainty maximi-
sation operator which was inspired by [23] and adapted for multi-objective
use. Whereby, each batch would select experiments with the purpose of gen-



214 7.2. Critical Reflections

erating an accurate, spread and diverse Pareto Optimal Set (POS) that lie on
the true Pareto Front (PF) providing a decision maker a wide selection of
optimal process parameter settings to choose from. The evaluation on the
synthetic benchmark function demonstrated the MOBB-DoE algorithm was
capable of generating the representative POS in a data-efficient scheme via a
novel algorithmic approach.

This thesis also contributed towards to development of a stopping criterion
as it is an important tool in assisting with the evaluation and early termi-
nation of expensive DoE problems. The stopping criterion was evaluated on
both the BB-DoE algorithm and the MOBB-DoE algorithm, suggesting early
termination in scenarios in which the model performance had plateaued.

The analysis and investigations carried out in the thesis has shown that BO
offers a beneficial algorithmic approach to expensive DoE in manufacturing,
particularly for AM. Whereby, BO is a data efficient approach that maximises
the information gained from each experiment whilst minimising the total num-
ber of experiments required to define accurate surrogate models and optimise
the process parameter settings. It also provided a stable foundation for ex-
tension onto manufacturing specific DoE problems to be tackled with batch
and multi-objective batch selection. In which both BB-DoE and MOBB-DoE
have resulted in improved performance over both traditional DoE schemes as
well as against current state-of-the art BO approaches in both exploration and
exploitation.

7.2 Critical Reflections

Throughout the thesis there have been many decisions at various stages that
have been made due to circumstances outside of my control as well as limita-
tions caused by choices in the research direction that require discussion and
reflection.

7.2.1 Impact of COVID-19

One of the primary limiters on the research performed during the thesis was
the impact of COVID-19 pandemic which led to the lockdown of facilities
specifically in universities. This led to issues regarding access to research
collaborators, access to research materials and apparatus which led to the
scaling back of intended research goals.

Firstly, the main problem that occurred for my research was the loss of
access to the high-performance computing (HPC) clusters in the university for
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a few months which led to the loss of implementation time and subsequently
required some of the simulation studies to be reduced. In the original goals
for the research an additional synthetic benchmark was planned which had 6
input variables and constraints applied called the Hesse function [209]. This
was planned to be implemented on both the B-DoE and BB-DoE algorithms
in Chapters 4/5.

Secondly, a 2nd multi-objective synthetic benchmark was also planned, this
function also only optimised two output objectives but had a multi-modal and
more complex PF geometry to increase the computational complexity for the
MOBB-DoE algorithm. This was intended to contrast against the simpler PF
geometry of the Binh and Korn test function assessed in Section 6.3. Which
would have provided a more balanced analysis of the MOBB-DoE algorithms
performance.

Thirdly, the manufacturing case studies investigated in this thesis had their
experimentation budget delayed due to inability to access research apparatus
for research collaborators or case studies such as the intended manufacturing
case study for Chapter 6 removed. Finally, in order to implement all of the
synthetic benchmarks within the reduced time frame for research the intended
experimentation budget for investigations had to be reduced in two aspects:
the total number of experiments performed in one repeat (75 to 50) and the
total number of repeats per problem (100 to 50).

7.2.2 Suitability of test function suite and case studies

In Section 4.3.4 a discussion on the rationale behind the choice of synthetic
benchmarks was conducted and to assess how they related potentially to a
AM DoE problem. One of the key characteristics that were varied among
the synthetic benchmark problems was the dimensionality of the input, which
varied from 2 – 4 input variables. Originally 4 synthetic benchmarks were
considered for both Chapters 4/5 which also included a 6-D input synthetic
benchmark.

These were chosen due to the initial literature review of engineering and
AM DoE review papers examined in the literature [109] [47] which stated on
average the number of factors considered were 2-6. Although in both Bayesian
Optimisation (BO) and Industry 4.0 an area of increasing literature interest is
high dimensional optimisation due to ever increasing number of controllable
inputs and sensor data available to researchers. Thus, there seems to be a
conflict in what is typically applied in literature and the increasing needs of
AM manufacturers.
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Therefore, from the standpoint of what is typically included within the
literature [109] [47], the choice of synthetic benchmarks was correct, although
unfortunately due to circumstance (see Section ??) the higher dimensional
problem was removed. However, considering the current/future needs of AM
DoE as well as Industry 4.0 where higher dimensional problems are valuable
assessments, the choice of limiting the synthetic benchmarks to 2-6 input
parameters may be a rather short-sighted implementation strategy. Yet, in
Section 1.2 the goal of the work was not to investigate high dimensional
problems so whilst limiting in applicability to AM problems, for this thesis I
believe it was the correct choice.

The assessment of MOBB-DoE in this thesis was the most limited imple-
mentation with only one synthetic benchmark considered with only 2 inputs, 2
outputs and a simple convex PF geometry. To further assess the capabilities of
the MOBB-DoE algorithm it would need to be fully assessed in a combination
of 3 further aspects for Multi-Objective Optimisation (MOO): higher dimen-
sional inputs, higher number of output objectives (3 or 4) and a more complex
PF geometry such as discontinuous or mixture of convex/concave. Much alike
its sequential and batch counterparts assessed in this thesis a higher dimen-
sionality of the number of input dimensions would be required to assess its
scalability. This was exemplified as necessary in Section 5.3.4 wherein as the
dimensionality of the inputs increased the modelling performance began to
decrease slightly. Also, the purpose behind implementing the MOBB-DoE on
a greater number of output objectives is due to the primary disadvantage of
PD-MOEA’s, in which as the number of output objectives increase the num-
ber of non-dominated solutions within a population also increase reducing the
selection pressure in the GA. Therefore, an investigation is required to assess
how these scalability concerns progress and effect the MOBB-DoE algorithm
as well as how both the dimensionality of input vs output objectives interact
affecting performance. Finally, the complexity of the MOO problems can be
affected by the shape of the PF geometry, for which a simple convex geome-
try was used to illustrate the MOBB-DoE algorithm capabilities. However, in
order to full ascertain its capabilities on a variety of problems and determine
its weaknesses more complex and varied geometries are required.

The other method of assessment used throughout the thesis were the novel
applications of AM case studies on defect formation in Selective Laser Melting
(SLM), and micro-structural property analysis in Directed Energy Deposition
(DED). The SLM case study used to assess the B-DoE algorithm was a rather
limiting case study as the experimentation had already taken place and no
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more experiments could be performed. This created an unusual opportunity
in order to ascertain whether a more efficient DoE scheme could be imple-
mented to select the same experiments in such a manner that obtained more
information with fewer experiments. However, due to its formulation it led to
issues in regard to how the modelling error was assessed. This was due to the
fact that as the size of data was so small there was not enough data that could
be set aside to be used as a testing set and no more experiments could be run
to generate a test set. Therefore, the testing set was set of the remaining data
set from which experiments were being selected from leading the model error
inevitably converging to zero regardless of modelling performance. In order
to improve the assessment in the SLM case study an external modelling test
set of 5-10 experiments perhaps chosen with a LHD to cover the entire space
would allow for thorough assessment of modelling performance.

On the other hand the implementation of the micro-structural property
analysis in Directed Energy Deposition (DED) tackled in Chapter 5 was well
implemented and achieved desirable results. The only drawback would be
the lack of successive experimentation to the full experimentation budget of 10
batches to fully assess how the modelling performance and stopping criterion
would progress. As reasonable convergence had occurred by the 6th batch, as
a joint decision the case study was stopped early but, in retrospect it would
have been desirable to run for the full budget to assess how the continued
placing of experiments would affect the results including:

1. Exploration into the DAS region of 4.5 – 9.0μm.

2. Finding process parameters for DAS larger than 6.9μm.

3. Assessment of impact of exploration on convergence of predictive uncer-
tainty in the design space.

4. Assessment of further experimentation on the convergence of the stop-
ping criterion.

Finally, whilst there were initially a MOO AM DoE case study planned it
had been removed due to time and facility constraints due to COVID-19 (see
Section ??). However, over the course of the DED case study a more applicable
case study was identified. In the micro-structural property analysis in Directed
Energy Deposition (DED) case study additional data was recorded for the
structural build quality of designed parts which seemed to be in conflict with
the DAS property. This presents an opportunity in a similar fashion the SLM
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case study in which previous case study data could be utilised to investigate
an alternative methodology. Although as illustrated in the issues discussed
earlier for the SLM case study, it would be more appropriate to implement the
case study as an additional case using new experiments but potentially using
the previous data as a modelling test set.

7.2.3 Methodological issues

Throughout the thesis the main topic for investigation was focused primar-
ily on the acquisition functions implemented. In Chapter 4, the literature
acquisition functions were re-assessed to determine which of the three: EI,
GP-CB and MES had the most desirable properties for extension to a Batch
Bayesian Experimental Design Optimisation (BB-DoE) and Multi-Objective
Batch Bayesian Experimental Design Optimisation (MOBB-DoE) algorithm in
Chapters 4/5 whilst accounting for both their exploratory and exploitative per-
formances. However, by focusing only of the algorithmic development and
their ability in achieving a desirable exploration and exploitative performance,
certain scalability within the methodology were not assessed including:

1. Introduction of noise.

2. Varying GA parameters.

3. Effect of batch sizes

4. Alternative βt parameter designs.

5. Effect of constraint settings.

As exemplified by the amount of the scalability that were not investigated
another concern/limitation of the work in the thesis was the large number of
tune-able parameters implemented. In Section 1.2 one of the guiding research
aims was to create a simple and easy to implement DoE methodology for use
on AM problems. However, as the research progressed in order to create a
more generalised approach that could be applied onto a wider range of ap-
plications and problems, more and more functions with tune-able parameters
were designed into the methodologies. Whereby, in order to achieve one goal
led to an ironic conclusion in which to achieve satisfactory performance I had
set aside another which in the process created an alternate problem to be
addressed.
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7.2.4 Computational costs

The final limitation to be considered in the thesis is the computational com-
plexity of the implemented methods which inhibited a larger proportion of
implementation due to time constraints preventing further investigations. The
methodology that led to the greatest computational load within the thesis
was the design of the model hyper-parameter tuning algorithm using K-fold
cross-validation with a GA optimiser as detailed in Section 3.4.

A significant proportion of the B-DoE, BB-DoE, and MOBB-DoE algo-
rithms implementation time per call was spent in the model hyper-parameter
tuning which occurred between each experiment selection optimisation. This
was due to the required matrix inversion in order to calculate the predic-
tive mean and standard deviations for each hyper-parameter configuration for
every fold shown in lines 8-11 in Algorithm 3.2. This repeated evaluation
compounded with the aspect that the matrix inversion in GP scale with the
number of samples/experiments, meant a large computational load was ever
increasing with each experiment selected. This issue was then multiplicative
when concerning the design of the MOBB-DoE algorithm, in which multiple
GP models were developed for each output objective, all of which required
individual tuning.

Alternative design choices could have severely reduced the computational
time by using a different optimiser for the model hyper-parameter optimisation
such as gradient-based optimiser since the kernel choice for the GP model was
a squared exponential kernel which is differentiable. This could have reduced
the computational time significantly, whereby increasing the proportion of the
research that could have been dedicated to alternative benchmarks or case
studies as mentioned in Section 7.2.2 as well as alternative investigations as
mentioned in Section 7.2.3. Also, model choice could have relieved some of
the computational burden by using a sparse GP to limit the impact of large
data sizes or a multiple-output GP to limit the number of surrogate models to
1 during MOBB-DoE instead of M.
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7.3 Future Research Avenues

The research performed throughout this work has covered a variety of topics
as well as raising several potential new avenues for future research to be
performed:

7.3.1 Algorithmic Development

• In Chapter 2, one research direction of interest for the thesis was to de-
velop a Manufacturing DoE approach for high dimensional input data,
due to increasing interest in the concept of Big Data. This is also an in-
creasingly popular area of interest in the Bayesian Optimisation literature
due to scalability issues beyond 10-20 input parameters [165]. Therefore,
extending the developed algorithms or providing modifications to exist-
ing algorithm components to improve performance in high dimensions,
would allow for greater diversity in problem application.

• Similarly, whilst Bayesian Optimisation is a sample-efficient approach its
non-parametric surrogate model, Gaussian Processes, also suffers from
scalability wherein it has cubic complexity with data size O(N) [143].
Examining alternative models or scalable GPs which retain the prediction
quality whilst improving the scalability to larger data sets could improve
performance on higher dimensional problems as well.

• Chapters 5/ 6 introduced a stopping criterion which was focused pri-
marily on the stability of model predictions to suggest early termination
of the optimisation when a well-defined model was identified. Despite
providing a good initial performance, it has limiting use in Bayesian
Optimisation which seeks to efficiently define a tuned surrogate model
whilst find the global optimum. Further research into the development
of a stopping criterion that balances the trade-off of exploration and
exploitation in Bayesian Optimisation can provide a balanced stopping
criterion.

• In Chapter 6, a key process involved during the PD-MOEA optimisa-
tion was the selection of the next batch of candidates using a secondary
optimisation. Whilst the approach implemented a batch extended uncer-
tainty maximisation approach [23] showing good performance, there has
been limited research on this topic. Exploring alternative architectures
and methods to tackle this non-interactive selection to improve diversity,
spread and approximation of the true PF is under researched.
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7.3.2 Application in Additive Manufacturing

• From the data acquired during the DED manufacturing case in Chapter 5
additional build quality data was also attained illustrating build accura-
cy/inaccuracy. When compared to the DAS there seemed to be better
quality builds in experiments with a lower DAS, suggesting a conflict be-
tween the two objectives. This suggests potential for further application
of the MOBB-DoE approach developed in Chapter 6, this could provide
an opportunity to further enhance and refine the developed approaches
on a broader range of additive manufacturing problems encouraging in-
dustry uptake.

Whilst the identified regions of future work are based upon future stages
of theoretical improvements building upon the algorithmic development and
broader use cases of additive manufacturing problems. There is of course
significant potential for development in cases beyond additive manufacturing.
This may include the automatic setup and configuration of the various tune-
able parameters with both the BB-DoE and MOBB-DoE algorithms based
upon different problem classifications to allow for quick implementation for
manufacturers without the need for extensive knowledge of the underlying
mechanisms of the algorithms.
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