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Abstract

The need for multiscale modelling comes from the fact that it is rare

for measured data to contain contributions at a single scale. For

example, a typical signal from an experimental process may contain

contributions from a variety of sources, such as noise and faults. These

features usually occur with different localisation and at different lo-

cations in time and frequency. It is also inevitable for copy number

DNA sequencing. Identifying Copy Number Alteration (CNA) from a

sample cell faces difficulties due to errors, different sizes of reads being

recorded, infiltration from normal cells, and different sizes of test and

normal genomes. Thus, the representation of the measurements in

terms of multiscale offers efficient feature extraction or noise removal

from a typical process signal.

One of the powerful tools used to extract the multiscale character-

istics of the observed data is wavelets. Wavelets are mathematical

expansions that are able to transform data from the time domain into

different layers of frequency levels. In this thesis, wavelets are used,

first, to segment the CNA data into regions of equal copy number

and secondly, to extract useful information from the original data

for a better prediction of tumour subtypes. For the first purpose, an

approach called TGUHm method is presented which applies the tail-

greedy unbalanced Haar (TGUH) wavelet transform (Fryzlewicz, 2018)

to perform segmentation of CNA data. The ‘unbalanced’ characteristic

of the TGUH approach gives the advantage that the data length does

not have to be a power of two as in the traditional discrete Haar

wavelet method. An additional benefit is it can address the problem



that commonly arises in Haar wavelet estimation where the estimator

is more likely to detect jumps at dyadic locations which might not be

the actual locations of the jumps/drops in the true underlying CNA

pattern.

For the next step, the TGUHm method is applied to the existing

data-driven wavelet-Fisz methodology to deal with the heteroscedas-

tic noise problem that we often find in CNA data. In practice, real

CNA data deviate from homoscedastic noise assumption and indicate

some dependencies of the variance on the mean value. The proposed

method performs variance stabilisation to bring the problem into a

homoscedastic model before applying a denoising procedure. The use

of the unbalanced Haar wavelet also makes it possible to estimate short

segments better than the balanced Haar wavelet-based segmentation

methods. Moreover, our simulation study indicates that the proposed

methodology has substantial advantages in estimating both short and

long-altered segments in copy number data with heteroscedastic error

variance.

For the second purpose, a wavelet-based classification framework was

proposed which employs non-decimated Haar wavelet transform to

extract localised differences and means of the original data into several

scales. The wavelet transformation decomposes the original data into

detail (localised difference) and scaling (localised means) coefficients

into different resolution levels. This would bring an advantage to

discover hidden features or information which are difficult to find from

original data only. Each resolution level corresponds to a different

length of wavelet basis and by considering which levels are most useful

in a model, the length of the region that is responsible for the prediction

could be identified.
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Chapter 1

Introduction

1.1 Motivation and Background

Changes in genomic copy number are commonly found in cancer patients and

become hallmarks of its progression (Hanahan & Weinberg, 2011). These changes

are called copy number alteration (CNA) and are created as a result of genomic

events that cause discrete gains or losses of copy number at some genomic regions.

Identifying the type (gains/losses) and location of the alterations in the genome

becomes an important step toward improved diagnosis and treatment of cancer

(Dancey et al., 2012).

Sequencing technologies such as next-generation sequencing (NGS) enable us

to obtain copy number ratio data between tumour and normal cells along the

genomes and make the estimation of CNA possible (Wagle et al., 2012). But

these copy number data can be very noisy due to biological variation and random

experimental error. An important step called segmentation is needed here to deal

with the noise in the analysis of CNA data. The goal of this segmentation step is

to remove the random error and recover the unknown function that represents

the true CNA pattern from the observed measurements, so that subsequent

downstream analyses can be carried out based on this information. Furthermore,

this underlying pattern can be considered to be a piecewise constant function and,

therefore, it can be said that the identification of the CNA pattern is, in principle,

a change-point detection and estimation problem.
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1.2 Objectives

Many change-point detection methods have been developed to locate change-

points in copy number data where the noise level is constant across the genome.

These includes, circular binary segmentation (CBS), proposed by Olshen et al.

(2004), which is a copy number segmentation method developed based on a

statistical test to detect significant breakpoints in the data. An approach based

on a least-squares segmentation algorithm named CopyNumber method was

introduced by Nilsen et al. (2012) to perform copy number segmentation by

combining least squares principles and a penalization scheme. Some of wavelet-

based change-point detection methods have also been developed such as HaarSeg

(Ben-Yaacov & Eldar (2008)) which applies the non-decimated discrete wavelet

transform (NDWT) and wavelet thresholding to CNA data. In a more recent

approach, Li et al. (2016) proposed FDRSeg method, a segmentation method

which controls the false discovery rate of the whole segmentation.

To deal with this problem, in this thesis, a multiscale analysis using wavelets

was conducted. The need for multiscale modeling comes from the necessity to

represent the observed data into some different layer of frequency level since it

is rare for measured data to contain contributions only from a single scale. For

example, a typical signal from an experimental process may contain contributions

from a variety of sources, such as sensor noise, disturbances, and faults. These

features usually occur with different localizations and at different locations in

time and frequency.

One of the powerful methods used to extract the multiscale characteristics of

the observed data is wavelet method. The key information that wavelets extract

is the ‘detail’ in the observed data at different scales and different locations. This

representation provides tools to estimate the true signal hidden in the data. This

reason motivates to conduct research concerning the investigation of multiscale

models of copy number data using wavelets.

1.2 Objectives

There are many problems related to copy number alteration analysis. The focus

of this thesis is outlined and summarised into three main problems as follows.
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1.2 Objectives

1. Identify the most suitable wavelets for CNA data analysis. When choosing

a suitable wavelet, it is essential to understand the characteristics of the

DNA copy number profile and the basic properties of wavelets. The DNA

copy number profile of a tumour is a piecewise constant that reflects the

relative abundance of chromosomal segments. Due to this, it is natural

to employ the Haar wavelets which belong to a family of square-shaped

functions that are able to produce the piecewise constant approximation.

But recently, there are several choices of Haar wavelet-based methods that

can be considered. Thus, an investigation to identify the most appropriate

Haar wavelet-based method for CNA data analysis is needed.

2. Develop a Haar wavelet-based segmentation method. One of the main

challenges in the analysis of CNA data is segmentation. Knowing the exact

location of abrupt changes in DNA profiles serves several biological needs

such as identifying possibly damaged genes involved in a particular type of

cancer. Many segmentation methods have been developed to produce a clear

piecewise approximation of CNA profiles, but most of them are only sensitive

to long altered segments. Meanwhile, in the context of low-coverage, short

segments also potentially bring key oncogenes or tumour-suppressor genes

of interest. Therefore, a method that performs well in estimating both long

and short segments is generally needed.

3. Prediction of tumour subtypes using wavelets. Lung cancer is one of the

major causes of cancer mortality in the world (Siegel et al., 2012). The most

common lung cancer that contributes to this is non–small cell lung cancer

(NSCLC) which can be further divided into lung adenocarcinoma (LA) and

lung squamous cell carcinoma (LS). These two subtypes are often classified

together as NSCLC even though they have different biological signatures

(Herbst et al., 2008). Hence, it is essential to investigate statistical models to

distinguish these two subgroups clinically. By utilizing the wavelet transform,

the aim here is to decompose the CNA segmented data into several scales

and investigate the hidden information which is not easy to identify only by

the original data.
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1.3 Outline of Thesis

1.3 Outline of Thesis

This thesis is structured as follows. Chapter 2 begins with an introduction to CNA

and wavelet analysis. Descriptions of the CNA data and the CNA identification

as a change point detection problem are provided. The wavelet analysis, including

a brief theoretical review of wavelets and the wavelet denoising principle, is also

described in Chapter 2. A simple wavelet denoising example using four types of

wavelets is presented, which illustrates why the Haar wavelet is used as the main

wavelet to perform multiscale analysis of CNA data.

In Chapter 3, a comparison study of three kinds of Haar wavelet-based segmen-

tation methods is presented. Three wavelet methods considered in this chapter are

the basic Haar wavelet, HaarSeg, and tail-greedy unbalanced Haar methods. The

first two methods utilise the standard ‘balanced’ Haar wavelet, while the third

one uses the ‘unbalanced’ Haar wavelet. The flexibility of the unbalanced Haar

wavelet to adjust its breakpoint to follow the pattern of observed data makes the

TGUH method able to provide more clean segmentation results compared to the

balanced Haar wavelet-based methods. A comparative simulation study presented

in Chapter 3 also suggests that the TGUH method is the most preferable.

Even though the TGUH method has a strong ability to provide clean seg-

mentation compared to the ‘balanced’ Haar wavelet-based methods, its copy

number segmentation results for NGS data have a tendency to estimate spikes

(very short altered segments of only one or two data points). This is due to

the characteristic of NGS data that it often contains many extreme observations

(outliers). The wavelet thresholding used in the standard TGUH method is unable

to threshold/remove the detail coefficients corresponding to these outliers as they

are likely translated into large coarse-scale coefficients by the TGUH transform.

This causes the final estimator to contain spurious change points as spikes (very

short altered segments of only one or two data points). To address this problem,

in Chapter 4, an extended TGUH method named TGUHm method is introduced.

In our TGUHm method, an additional procedure called unconnected thresholding

is added to the connected thresholding used in TGUH (Fryzlewicz, 2018) for

pruning the spikes and controlling the minimum altered segment size.
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1.3 Outline of Thesis

Another characteristic of CNA data from NGS technology is that the variance

exhibits some association with the mean. In practice, it often observed that in

the NGS data, the higher the copy number ratio, the higher the random variation.

This brings a disadvantage to the TGUHm method, as it is designed to deal

with the homoscedastic noise problem. The TGUHm method would produce

many spurious change points in a high copy number ratio region. To address

this problem, Chapter 5 presents a new wavelet approach named data-driven

TGUH-Fisz (DDTF) that extends the data-driven wavelet-Fisz methodology

(Fryzlewicz, 2008) to TGUHm wavelets denoising for handling non-negative data

with heteroscedastic noise whose variance is a non-decreasing function of the mean.

This method performs variance stabilisation before the denoising/thresholding

step so that it allows us to translate the signal into a set of unbalanced Haar

wavelet coefficients that are approximately Gaussian, and then the standard

wavelet denoising/thresholding technique can be applied to those coefficients.

In Chapters 4 and 5, two unbalanced wavelet-based segmentation methods

have been introduced, the TGUHm and DDTF methods. Those methods can be

used to separate noise from the CNA data, resulting in chromosomes splitting

into regions of equal copy number. The resulting CNA estimates can then be

processed into a cancer subtype classification procedure. Given those segmented

lines, Chapter 6 utilises the wavelet transform to gain a more detailed summary

for each location in the genome as part of different scales in viewing the data. The

use of the segmented line itself is already known to be useful for investigating the

important gains and losses along the genome that contribute to cancer subtype

classification, but the wavelet-transformed data is expected to be more informative

due to its ability to decompose data into several scales. Furthermore, determining

which resolution scales are the most informative can open up the opportunity

for improved interpretation. For the analysis in Chapter 6, the DDTF method

is considered to perform the segmentation, and the non-decimated Haar wavelet

transform is used to extract the localised information of those segmented CNA

data.

The final summary and conclusions of the thesis are given in Chapter 7. The

final conclusion is included with some suggestions for further work. The thesis is

concluded with an Appendix and References.
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Chapter 2

Introduction to Copy Number

Alteration and Wavelet Analysis

2.1 Introduction

Copy Number Alterations (CNAs) play a crucial role in various biological processes

and are frequently associated with complex diseases, including cancer. Detecting

CNAs and understanding their locations within the genome are essential for

uncovering underlying genetic mechanisms and potential therapeutic targets.

Change point analysis, on the other hand, is a statistical technique used to

identify points in a dataset where a significant shift or change occurs. In the

context of genomics, change point analysis is employed to pinpoint regions within

a genome that exhibit abrupt changes in characteristics such as gene expression,

copy number, or other biological properties. Since CNA can be defined as a genetic

variation or anomaly that involves changes in the number of copies of a particular

segment of DNA within an individual’s genome, it is natural to consider the

identification of CNA from the noisy raw CNA data as the change-point detection

problem.

The relationship between CNAs and wavelet analysis lies in the application

of wavelet methods to detect change points in genomic data affected by CNAs.

Wavelet analysis is a mathematical tool that allows the analysis of signals at

multiple scales and resolutions. Particularly, by performing suitable wavelet

denoising, it has been proven to be effective in capturing abrupt changes in
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2.2 Copy Number Alteration

complex and noisy datasets (Ben-Yaacov & Eldar, 2008; Hsu et al., 2005), making

it particularly suited for detecting the CNAs.

This chapter delves into two significant subjects: copy number alteration

(CNA) and wavelet analysis. This chapter starts by briefly reviewing CNA in

Section 2.2, the subsequent explanation of the CNA detection as the change-

points analysis can be found in Section 2.3. The discussion also extends to the

dataset utilized for CNAs in this thesis, detailed in Section 2.4. Following this,

the introduction of wavelet is outlined in Section 2.5, which encompasses both

theoretical understanding and the application of wavelet denoising.

2.2 Copy Number Alteration

Copy number alterations refer to gains (duplications) and losses (deletions) of

large segments, with a size from a few kilobases up to whole chromosomes (Wu

et al., 2014). A kilobase (kb) refers to a unit of measurement in molecular biology

equal to a thousand base pairs of DNA or RNA where a base pair (bp) is a

fundamental unit of double-stranded nucleic acids. In a normal human body, each

cell has two copies of every chromosome except sex chromosomes (chromosomes X

and Y) which vary between males and females. Copy number alterations mark the

change in the number of copies of genomic DNA from the normal two copies. For

example, if some genomic regions exhibit gains (duplications) of genetic code, this

means that the copies of chromosome (copy number) in those regions are larger

than two. On the other hand, if some genomic regions exhibit losses (deletions),

this means that the copy number related to those regions is less than two.

CNAs are commonly found in cancer patients and become hallmarks of their

progression (Hanahan & Weinberg, 2011). Many cancers, such as breast cancer,

lung cancer, and prostate cancer, are a consequence of CNA. Even though the

specifics of genome alteration may vary drastically among different tumour types,

Hanahan & Weinberg (2011) have shown that instability of the genome results

in the vast majority of human cancer cells. Furthermore, previous CNA studies

have shown that distinct patterns of DNA copy number alteration are associated

with different cancer subtypes (Bergamaschi et al., 2006; Pei et al., 2001; Sy et al.,

2004; Yakut et al., 2006) so that identifying the accurate locations of gains and
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2.3 Detecting CNA as a Change-Point Problem

losses of DNA copy number is very important for prediction of cancer subtype

and knowing the correct subtype is critical for considering the right treatment for

the patient (Dancey et al., 2012).

2.2.1 Next-Generation Sequencing for CNA

Several technologies are available to identify CNAs. One of the most recent

technologies is called Next-Generation Sequencing (NGS). The NGS platforms

such as Illumina, Roche 454, and ION Torrent PGM, allow to sequence a large

number of DNA fragments at a reasonable cost and speed. Another advantage of

using sequencing instead of array technology is that it avoids the typical saturation

or background noise commonly observed in hybridization techniques such as array

technologies (Gusnanto et al., 2012).

NGS machines extract a large number of short DNA fragments (reads) from a

biological sample. The copy number of any genomic region can be estimated by

counting the number of reads aligned to a particular region (Magi et al. (2011)).

This procedure is done for a set of non-overlapping fixed-width genomic regions

(windows). The data-based optimal window size can be obtained based on Akaike’s

information criterion and cross-validated log-likelihood (Gusnanto et al. (2014)).

The selection of optimal window size is a crucial step to make sure the patterns

of genomic features are informative enough for further analysis. If a much smaller

window size is used, this will cause many genomic regions with zero read count and

make the overall analysis non-informative. On the other hand, using a much bigger

window size will ‘smooth out’ some patterns of alteration. Then, by comparing

the number of reads in each window and chromosome between cancer and normal

cells, the copy number ratio can be estimated. The schematic representation of

the NGS copy number data is shown in Figure 2.1.

2.3 Detecting CNA as a Change-Point Problem

Let ui be the observed number of reads from a tumour sample or genome at i-th

window, where i = 1, . . . , n and n is the total number of windows in a genome.
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2.3 Detecting CNA as a Change-Point Problem

Figure 2.1: Schematic representation of the extraction of NGS DNA copy number

data.

Let vi be the observed number of reads in a normal sample at i-th window. To

identify the CNA in window i, the ratio between the tumour and the normal

genomes in each window i can be taken as,

ri =
ui
vi
. (2.1)

Ideally, as shown in Figure 2.1, the ratio in Equation 2.1 can then be plotted

against the windows i to identify regions of duplication or deletion.

In a normal human body, the number of chromosome copies in a cell or the

ploidy is two. If there exists CNA within a cell, the ploidy can take any value
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2.4 Description of Non-Small Cell Lung Cancer Dataset

within a set {0, 1, 2, 3, . . .}. Hence, ideally, the copy number ratios ri take any

value in {0, 0.5, 1, 1.5, 2, . . .}. The copy number alterations are indicated if the

ratio of the experimental and normal samples ri deviates from one.

In real practice, the value of ri may deviate from its ideal values due to several

factors such as experimental error and the different sizes of the tumour and normal

cells. This measurement error can be modelled by relating the observed copy

number changes ri to the true signal fi as follows,

ri = fi + ϵi, (2.2)

where ϵi is the noise contained in the measured data. Our aim is to estimate fi

using the observations ri.

Since the ideal values for the ratio ri lie in {0, 0.5, 1, 1.5, 2, . . . }, the function

fi in equation (2.2) can be considered as a one-dimensional, piecewise-constant

signal with change-points whose number N and locations ν1, ..., νN are unknown.

Therefore, the identification of the CNA pattern, in principle, can be mentioned

as a change-point detection and estimation problem.

2.4 Description of Non-Small Cell Lung Cancer

Dataset

Throughout this thesis, to motivate and test the proposed methods, the copy num-

ber dataset used is from 76 patients with Non-Small Cell Lung Cancer (NSCLC)

(Belvedere et al., 2012). The dataset consists of two groups: squamous carcinoma

(38 patients) and adenocarcinoma (38 patients). The detailed description of sample

preparation, DNA extraction, and library preparation is described in Wood et al.

(2010). DNA sequences were aligned to the human genome (USCS hg19) using

the Burrows–Wheeler Alignment (BWA) tool suite version 0.5.9-r16 Li & Durbin

(2009).

Only short sequences (‘reads’) with the BWA mapping score greater than 37

are used. Using ‘depth of coverage’ the reads are counted and mapped to fixed

non-overlapping genomic regions (‘windows’), estimated to be 150 kb (Gusnanto

et al., 2014). The total number of windows along the genome is 20,652. To avoid

10



2.4 Description of Non-Small Cell Lung Cancer Dataset

problems occurring in further analysis, the sex chromosomes, the mitochondria

chromosome and the centromere regions as missing data are removed. At the end

of this removal procedure, the number of genomic windows becomes 17,931.

For easier comparison between CNA profiles, a normalisation using the

CNAnorm package (Gusnanto et al., 2012) is performed. Normalisation is a

crucial step in CNA analysis to correct the variations caused by factors other than

the copy number. For example, correcting for GC-content and tumour sample

contamination. Both corrections mentioned are needed because the GC-contents

can affect the staining intensity and subsequent analysis and the contamination of

normal cells when the sample is taken from the cancerous tumour or the tumour

sample contamination potentially leading to inaccurate conclusions.

As described in the previous section, normal genomic regions in the tumour cell,

ri = 1. Thus the CNAnorm proposed by Gusnanto et al. (2012) will shrink the

copy number ratio ri towards ratio 1 when there exists contamination of normal

cells with the tumour cells. It also aligns the CNA data so that the most common

genomic regions are centred at ratio 1. Figure 2.2 shows an example of the CNA

ratio of each lung cancer subtype, squamous carcinoma and adenocarcinoma, after

the data preparation procedures mentioned above.

11



2.4 Description of Non-Small Cell Lung Cancer Dataset

0 5000 10000 15000

Window

C
N

A
 R

a
ti
o

0
1

2
3

4
5

0 5000 10000 15000

Window

C
N

A
 R

a
ti
o

0
1

2
3

4
5

Figure 2.2: The CNA ratio for each window along the genome for a patient with

squamous carcinoma (top) and adenocarcinoma (bottom) type lung cancer after

removal and normalisation procedure. The y-axis denotes the CNA ratio and

x-axis denotes the indication of window or i in equation 2.2. The window size

used is 150 kb, which means that for window equal to 1 denote the CNA ratio

between 1–150.000 bp, window equal 2 between 150.001–300.000 bp of genome,

and so on.
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2.5 Wavelet Analysis

2.5 Wavelet Analysis

In this section, some mathematical background and terminology which is required

to understand the wavelet application on the CNA data are explained. For more

rigorous and general mathematical coverage of wavelets may be consulted to

Daubechies (1992), Härdle et al. (2012) or Vidakovic (2009).

Since the discovery of wavelets in the early 1980s, wavelets have gained huge

attention both from the mathematical and applied sciences points of view. The

term wavelets is commonly referred to as a set of basis functions with special

characteristics, the oscillation and the compact support. The oscillation refers

to the wavelet ‘goes up and down’ or mathematically can be expressed by the

condition that
∫∞
−∞ ψ(x)dx = 0 where ψ is wavelet function or mother wavelet.

The compact support characteristic does not mean that all the wavelets have

compact support but they must decay to zero rapidly.

Given the prevalence of wavelets and wavelet-like quantities across various

disciplines, describing them becomes challenging due to the multitude of starting

points. Therefore, in this section, a popular starting point of wavelet: the Haar

wavelet is used to begin with.

2.5.1 Continuous Haar Wavelets

In the early 1980s, Morlet et al. (1982) introduced key theoretical results and laid

the groundwork for continuous wavelet decompositions of L2 functions. Once one

has a mother wavelet ψ(x) ∈ L2, a family of functions ψa,b, where a ∈ R \ {0} and

b ∈ R, can be defined as translations and re-scales (or dilations) of the function ψ:

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
. (2.3)

Here, the parameters a, and b are called dilation and translation parameters,

respectively. These parameters vary continuously over R× R.
The mother wavelet ψ is assumed to satisfy the admissibility condition,

Cψ =

∫
R

|Ψ(ω)|2

|ω|
dω <∞, (2.4)
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2.5 Wavelet Analysis

where Ψ(ω) is the Fourier transformation of ψ(x). The admissibility condition

(2.4), implies 0 = Ψ(0) =
∫
ψ(x)dx. This property of the function ψ motivates

the name wavelet.

For any L2 function f(x), the continuous wavelet transform (CWT) is defined

as,

CWTf (a, b) = ⟨f, ψa,b⟩ =
∫
f(x)ψa,b(x)dx. (2.5)

In its essence, the Haar mother wavelet is expressed as follows:

ψHaara,b =
√
a
[
⊮
(
b ≤ x ≤ a

2
+ b
)
− ⊮

(a
2
+ b ≤ x ≤ a+ b

)]
, (2.6)

where a ∈ R+, b ∈ R, and ⊮ is an indicator function. Then the continuous Haar

wavelet transform can be formulated as:

CWTf (a, b) = ⟨f, ψHaara,b ⟩ = 2
√
a×

[
F
(a
2
+ b
)
− F (b) + F (a+ b)

2

]
. (2.7)

2.5.2 Discrete Haar Wavelets

Discrete wavelet transformations (DWT) are applied to discrete data sets and

produce discrete outputs. From equation (2.5), the continuous wavelet transform

is a convolution of the data sequence with a scaled, a, and translated, b, version

of the mother wavelet. This means that the wavelet transform is calculated

by continuously shifting a scalable function over a signal and calculating the

correlation between the two. As a result, for practical application, the continuous

wavelet transform will generate an infinite number of wavelets.

To simplify the continuous wavelet transform, it is possible to choose discrete

values for the scaling parameter a and translation parameter b while ensuring

that the transformation remains invertible. This means that the original function

can be uniquely recovered by applying the inverse transformation, even with the

discrete selections of a and b. For some real parameters a > 1 and b > 0, one can

discretise them by setting a = 2−j and b = 2−jk, where j, k ∈ Z. Therefore, one
once has wavelet function ψ, one can generate the function

ψj,k = 2j/2ψ(2jx− k) (2.8)
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2.5 Wavelet Analysis

for integers j and k which can provide an orthogonal basis for suitable choices

of ψ. It turns out that such wavelets can form an orthonormal set (containing

orthogonal and unit length vectors). Moreover, such a set of wavelets can form

bases for various spaces of functions. Hence, any function f(x) can be decomposed

into the following series,

f(x) =
∞∑

j=−∞

∞∑
k=−∞

dj,kψj,k(x), (2.9)

where, due to the orthogonality of the wavelets, the coefficients of the expansion

can be found by,

dj,k =

∫ ∞

−∞
f(x)ψj,k(x)dx = ⟨f, ψj,k⟩, (2.10)

for integers j and k. This means that any signal can be reconstructed by taking a

sum of the weighted orthogonal wavelet basis functions.

The simplest wavelet, Haar wavelet (or Haar mother wavelet), is a wavelet

basis function which mathematically can be defined by

ψ(x) =


1 for x ∈ [0, 1/2),

−1 for x ∈ [1/2, 1),

0 otherwise.

(2.11)

But this function is not enough to cover the whole real line. The addition function

called father wavelet is needed to account for this problem. The Haar father (or

scaling) wavelet function is defined by

ϕ(x) =

{
1 for x ∈ [0, 1),

0 otherwise.
(2.12)

With the addition of the father wavelet, the constant function on [0, 1) for example,

or any constant function, can be represented easily as a multiple of the father

wavelet. Similar to the function in (2.13), the translation of the father wavelet

can be defined as the following function,

ϕj0,k = 2j0/2ϕ(2j0x− k). (2.13)

By using both mother and father wavelets, any f(x) can be written in terms of

integer translates of the father wavelets, ϕj0,k(x), which represent the ‘average’
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2.5 Wavelet Analysis

or ‘overall’ level of function (large-scale behaviour), and of mother wavelets,

ψj,k(x), which represent discontinuities or sharp features (small-scale behaviour)

accumulating information at a set of scales j ranging from j0 to infinity,

f(x) =
∑
k=Z

cj0,kϕj0,k(x) +
∞∑
j=j0

∑
k=Z

dj,kψj,k(x). (2.14)

The numbers {cj0,k} and {dj,k} are called the smooth (scaling) and detail (wavelet)

coefficients of function f , respectively.

2.5.3 Multiresolution Analysis

The multiresolution analysis framework is often used to define DWT. A multiscale

analysis is started with a scaling function ϕ and the nested sequence of close

subspaces Vn, n ∈ Z in L2(R) that form a ladder:

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2(R) (2.15)

such that

1. {ϕ(x− k)}k is an orthonormal basis for V0

2. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1

3.
⋂
j Vj = {0},

⋃
j Vj = L2(R).

The second condition above is called interscale linkage. This condition means

that if f(x) is a member of Vj, then f(2x) should belong to Vj+1. Moreover, if a

function f(x) is shifted along the line, for example, by an integral amount k, to

form f(x− k), then the function f(x)’s level of resolution does not change, or if

f(x) is a member of V0, then so is f(x− k).

Due to the conditions above, the scaling function ϕ(x) is an element of V0 and

{ϕ(x − k)}k is an orthonormal basis for V0. Also, due to the interscale linkage,

the function ϕ(x) ∈ V0 can be represented as the linear combination of functions

from V1,

ϕ(x) =
√
2
∑
k

hkϕ(2x− k), (2.16)
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2.5 Wavelet Analysis

where {hk}k ∈ l2 and x ∈ R. Once one has the scaling function ϕ, one can use it

to define the wavelet function ψ.

Now, let define the wavelet function ψ such the way that {ψ(x − k}k is

an orthonormal basis for the space W0 where W0 is defined as the orthogonal

complement of V0 in V1 (V1 = V0 ⊕W0). By defining

Wj =

{
f ∈ L2(R) | f(x) = 2j/2

∑
k

dkψ(2
jx− k)

}
,

Wj can considered as the orthogonal complement of Vj in Vj+1. Then,

Vj+1 = Vj ⊕Wj = . . . = V0 ⊕

(
j⊕
i=0

Wi

)
.

Recall that
⋂
j Vj = {0} and

⋃
j Vj = L2(R), this implies that

L2(R) = V0 ⊕

(
∞⊕
i=0

Wi

)
= Vj0 ⊕

(
∞⊕
i=j0

Wi

)
, ∀j0.

In Daubechies (1992), precise procedures to obtain ψ once ϕ is described (in

Section 5.1). One possibility (Theorem 5.1.1 (Daubechies, 1992)) of the wavelet

function is to represent it as

ψ(x) =
√
2
∑
k

h1−k(−1)kϕ(2x− k). (2.17)

The coefficients in (2.17) has its own notation:

gk = (−1)kh1−k. (2.18)

This coefficient is important to express how the wavelet is constructed from the

finer-scale father wavelet coefficients. By using this notation, the wavelet function

ψ can be rewritten as

ψ(x) =
√
2
∑
k

gkϕ(2x− k). (2.19)

for some k ∈ Z.
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2.5.4 Discrete Haar Wavelet Transform

To perform DWT, Mallat (1989) exploited the pyramidal structure of the multires-

olution analysis to construct a DWT algorithm for discrete data. DWT produces

a vector of wavelet coefficients of the input vector at dyadic scales and locations.

As the interest of this thesis is the Haar wavelet, here, the explanation is

started by describing the Haar DWT algorithm. For input data with length 2J ,

r = (r1, r2, . . . , rn), for any integer J ≥ 0, the Haar DWT transform works by

pairing up adjacent input values and computing their difference and sum. This

process is repeated iteratively, creating a multi-resolution analysis of the input

data. Given an input vector r, the Haar DWT is performed as follows:

1. Let cJ,i = ri.

2. For each j = J − 1, J − 2, . . . , 0, recursively form

cj,k = cj+1,2k−1 + cj+1,2k, (2.20)

dj,k = cj+1,2k−1 − cj+1,2k, (2.21)

for k = 1, 2, . . . , 2J .

The cj,k are called the smooth (or scaling) coefficients and the dj,k are the detail

(or wavelet) coefficients. The resulting coefficients then can be simply inverted to

recover the original vector r by the inverse Haar DWT as follows,

1. For each j = 0, 1, . . . , J − 1, recursively form

cj+1,2k−1 =
cj,k + dj,k

2
, (2.22)

cj+1,2k =
cj,k − dj,k

2
, (2.23)

for k = 1, 2, . . . , 2j.

2. Set ri = cJ,i.

The above Haar DWT algorithm is very effective and efficient but there it can

not preserve the energy of the input. The energy here refers to the norm which is

defined by ∥r∥2 =
∑n

i=1 r
2
i . By the algorithm above, the norm, or energy of the
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output sequence is much larger than that of the input. To address this energy

problem, or to make the output energy is same as the input, a multiplier α is

introduced to the formulae in (2.20) and (2.21) as follows

cj,k = α(cj+1,2k−1 + cj+1,2k), (2.24)

dj,k = α(cj+1,2k−1 − cj+1,2k), (2.25)

for j = 0, 1, . . . , J − 1 and k = 1, 2, . . . , 2j . For clarity, J = 1 is considered so that

the procedure of the Haar DWT only needs one iteration hence the parameter j

can be ignored. Then, the (2.24) and (2.25) are equal to

ck = α(r2k−1 + r2k) (2.26)

dk = α(r2k−1 − r2k). (2.27)

Thus, the input (r2k−1, r2k) is transformed into the output (dk, ck) and the (squared)

norm of the output is

d2k + c2k = α2(r22k−1 − 2r2k−1r2k + r22k) + α2(r22k−1 + 2r2k−1r2k + r22k) (2.28)

= 2α2(r22k−1 + r22k), (2.29)

where r22k−1 + r22k is the (squared) norm of the input. Hence, to make the norm of

the output equal to the norm of the input, the multiplier α should be set to equal

2−1/2 (α = 2−1/2). With this normalisation, the equation (2.26) and (2.27) can be

written as,

ck = h0r2k−1 + h1r2k (2.30)

dk = g0r2k−1 + g1r2k. (2.31)

where h0 = h1 = 2−1/2, g0 = 2−1/2, and g1 = −2−1/2, or in more general form:

cj,k =
∞∑

l=−∞

hlcj+1,2k−l, (2.32)

dj,k =
∞∑

l=−∞

glcj+1,2k−l, , (2.33)
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where

hl =


2−1/2 for l = 0,

2−1/2 for l = 1,

0 otherwise,

(2.34)

gl =


2−1/2 for l = 0,

−2−1/2 for l = 1,

0 otherwise,

(2.35)

and for j = J , the cJ is equal to the input ri (cJ,i = ri).

2.5.5 Matrix representation of discrete wavelet transform

Any discrete finite wavelet transform can be represented as a matrix. In the

matrix representation, for given vector r = (r1, . . . , rn), the DWT of r is

d = Wr, (2.36)

where d is an n× 1 vector comprising both discrete scaling coefficient c0,k and dis-

crete wavelet coefficients dj,k, andW is the n×n orthogonal matrix whose elements

are defined by the wavelet basis generated by the dilation and translation of the

wavelet function and father wavelet (scaling function). For example, for a vector

input r = (r1, r2, . . . , r8), which produces the output Haar wavelet coefficient vec-

tor d = (c0,1, d0,1, d1,1, d1,2, d2,1, d2,2, d2,3, d2,4), the following matrix multiplication

matrix W gives the connection between r and the wavelet coefficients d,

W =



√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

1/
√
2 −1/

√
2 0 0 0 0 0 0

0 0 1/
√
2 −1/

√
2 0 0 0 0

0 0 0 0 1/
√
2 −1/

√
2 0 0

0 0 0 0 0 0 1/
√
2 −1/

√
2

1/2 1/2 −1/2 −1/2 0 0 0 0
0 0 0 0 1/2 1/2 −1/2 −1/2√
2/4

√
2/4

√
2/4

√
2/4 −

√
2/4 −

√
2/4 −

√
2/4 −

√
2/4


.

(2.37)

It is easy to see that the three ‘wavelet vectors’ at different scales that are

‘stored’ within the matrix, for example, (1/
√
2,−1/

√
2) in rows two through five,
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(1/2, 1/2,−1/2,−1/2) in rows six and seven, and (1, 1, 1, 1,−1,−1,−1,−1)/2
√
2

in the last row.

The matrix W is orthogonal so that the inverse DWT (IDWT) is simply given

by

r = W′d, (2.38)

where W′ denotes the transpose of W.

2.5.6 Wavelets Denoising

One of the most common statistical applications of wavelets is in nonparametric

function estimation, also known as ‘signal denoising’. Let W be the particular

wavelet matrix associated with the orthonormal wavelet basis chosen. In the

matrix representation, the wavelet transformed model of (2.2) can be written as

dr = d+ e, (2.39)

where dr = Wr, d = Wf , and e = Wϵ.

Because of the sparseness of the wavelet transformation, only a few large

wavelet coefficients, dr, contain information about the true signal, f , while small

dr are related to noise. Due to this characteristic of the wavelet transform,

Donoho & Johnstone (1994) proposed that the extraction of the informative

wavelet coefficients can be done by thresholding, setting to zero the wavelet

coefficients whose absolute value is below a certain threshold level and keeping

those that are larger. Under this scheme, the thresholded wavelet coefficients can

be obtained by

d̂ = δH(dr, λ) =

{
0 if | dr |≤ λ

dr if | dr |> λ,
(2.40)

and

d̂ = δS(dr, λ) =

{
0 if | dr |≤ λ

| dr | −λ if | dr |> λ.
(2.41)

where λ is the chosen threshold. The thresholding technique in (2.40) and (2.41)

are usually referred to as hard and soft thresholding, respectively. Roughly, hard
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thresholding is a ‘keep’ or ‘kill’ rule, whereas soft thresholding is a ‘shrink’ or ‘kill’

rule. For the threshold λ, A commonly used and powerful threshold estimator

called the universal threshold proposed by Donoho & Johnstone (1994) is used,

which is defined by

λ = σ̂
√

2 log n. (2.42)

Here, σ̂ is the estimate of the noise standard deviation σ which is computed based

on the median absolute deviation (MAD) of the sequence {|ri+1 − ri|/
√
2|n−1
i=1 };

these values are the finest-scale balanced Haar wavelet coefficients of the sequence

ri.

Once one obtains the thresholded wavelet coefficients, then the IDWT can

be used for reconstructing the response function. The resulting estimate can be

written as

r̂ = W′d̂. (2.43)

This three-step selective reconstruction estimation procedure can be summarized

by

r
DWT−−−→ dr

thresholding−−−−−−−→ d̂
IDWT−−−−→ r̂. (2.44)

Empirical Bayes for Wavelet Shrinkage

Besides the hard and soft thresholding, Bayesian wavelet methods have always been

very popular for wavelet shrinkage. Wavelet representations are inherently sparse,

and this sparsity can be considered a form of prior knowledge. Consequently, a

set of wavelet coefficients will consist of a portion of specific coefficients that are

exactly zero and the ones that are uncertain to us.

The standard procedure of a Bayesian wavelet shrinkage method is outlined

below. Initially, a prior distribution is defined for the ’true’ wavelet coefficients,

dj,k, which aims to capture the inherent sparsity present in wavelet representations.

Subsequently, Bayes’ theorem is employed to compute the posterior distribution of

the wavelet coefficients (on drj,k), taking into account a certain, usually assumed,

known distribution of the noise wavelet coefficients, ϵj,k. The ultimate goal is to

calculate a posterior distribution for the unknown function by applying the inverse

discrete wavelet transform (DWT) to the posterior distribution of the wavelet

coefficients.

22



2.5 Wavelet Analysis

Empirical Bayes for wavelet estimation involves using the data itself to estimate

the prior distribution of wavelet coefficients. The wavelet coefficients represent

the coefficients obtained by decomposing the data using wavelet transform, and

the goal is to estimate the underlying true wavelet coefficients.

The Empirical Bayes approach for wavelet estimation proceeds, first, by

estimating the empirical prior distribution. Assume that the wavelet coefficients

dj,k are sampled from a prior distribution. For clarity, now drop the j, k indices as

they add nothing to the current exposition. Johnstone & Silverman 2005b, 2004,

2005c suggest the prior for the wavelet coefficient, d, as

fprior(d) = ωτ(d) + (1− ω)δ0(d). (2.45)

Under this model, each d is zero with probability (1− ω), while, with probability

ω, d is drawn from a symmetric heavy-tailed density τ .

The key aspect of the empirical Bayes approach is the choice of mixing weight

ω. Let g be the density function obtained by the convolution between the heavy-

tailed density τ with the normal density ϕ. The marginal density of the observed

wavelet coefficients dr is given by

ωg(dr) + (1 + ω)ϕ(dr). (2.46)

In this stage, the g, ϕ, and dr are known, but the ω is not. Johnstone & Silverman

(2004) then suggest to degine the marginal maximum likelihood estimator ω̂ of ω

to maximize the log-likelihood

(ωj) =
∑
k

log{ωjg(drj,k) + (1− ωj)ϕ(d
r
j,k)}. (2.47)

Next, the estimated mixing weights are reintroduced into the prior model, and a

Bayes procedure is employed to obtain the posterior distribution. Similarly, other

parameters in the prior distribution can be estimated using a similar Maximum

Marginal Likelihood (MML) approach. As for the noise variance σ, it is computed

conventionally using the Median Absolute Deviation (MAD) of the finest-scale

wavelet coefficients. Alternatively, if the noise is believed to be correlated across

levels, the computation can be performed on each level.
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2.5.7 The Examples of Wavelet Estimation

As an illustration of wavelet estimation, here, four types of popular wavelet basis

are considered and shown in Figure 2.3 to perform wavelet denoising. Given the

simulated noisy signal in the panel (a) of Figure 2.4, our objective is to remove

the noise and get as close as possible to revealing the true structure (see panel

(b) of Figure 2.4). In this example, the test function used is block function from

Donoho & Johnstone (1994) as it very similar to the pattern of CNA data which

can be seen as a piecewise constant function.

Figure 2.3: Example of few popular wavelets: Haar, Daubechies2, Symlet4, and

Coiflet1. The number which follows the wavelet name represents the number of

vanishing moments.

From Figure 2.4, the result of wavelet estimation using the Haar wavelet is the

best in the sense that it yields piecewise constant estimates. This motivates us

to employ Haar wavelet as the main basis to employ multiscale analysis on CNA

data.
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Figure 2.4: The examples of wavelet estimation. (a) Simulated noisy signal.

(b) True function. (c) Reconstruction by Haar wavelet. (d) Reconstruction by

Daubechies2 wavelet. (e) Reconstruction by Symlet4 wavelet. (f) Reconstruction

by Coiflet1 wavelet.
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Chapter 3

Wavelet Change Point Analysis

3.1 Introduction

Three Haar wavelet-based methods are compared in this chapter. The first method

is the basic Haar wavelet denoising method using universal thresholding (Donoho

& Johnstone, 1994) with two kinds of thresholding techniques, hard and soft

thresholding. The second method is the HaarSeg method (Ben-Yaacov & Eldar,

2008), which is a copy number segmentation method based on nondecimated

Haar wavelet transform. The last one is the tail-greedy unbalanced Haar (TGUH)

method (Fryzlewicz, 2018) which applies the unbalanced Haar wavelet transform

for signal denoising. The works in this chapter has been presented and submitted

to the proceedings of Sriwijaya International Conference on Basic and Applied

Sciences 2021 (Ummi et al., 2023 planning to be published).

3.2 Non-Decimated Haar Wavelet

The decimated (basic) Haar wavelet is not translation-invariant. In other words,

at any given scale, it only provides information about the input vector at certain

(dyadic) locations. In contrast, the nondecimated Haar wavelet transform (NDWT)

is over-complete (using more than n coefficients to describe n data points) and

does contain a coefficient at each scale for each location. It achieves this by

retaining both the odd and even decimations at each scale. This translation
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3.2 Non-Decimated Haar Wavelet

invariance property makes the NDWT well suited for the task of data analysis

(Starck et al., 2004).

Suppose that the following CNA sequence r = (r1, r2, ..., rn).The equations

described in (2.33) and (2.32) can be rewritten more succinctly as

dj,k = D0Gr and cj,k = D0Hr, (3.1)

where

(D0r)l = r2l, (3.2)

and G and H denote the regular filtering operation, as in (2.33) and (2.32). The

dyadic decimation step used in the discrete Haar wavelet transform, D0, essentially

picked every even element from a vector r, which only extract the information

between (r1, r2), (r3, r4), and so on. But if the values r2, r3 have quite different

values, we might miss something. In the NDWT transform, to obtain the wavelet

coefficients not only for the even elements but also the odd ones, the father and

mother wavelet coefficients for both even and odd elements at each level scale are

calculated. The odd dyadic decimation operator D1 can be defined by

(D1r)l = r2l+1. (3.3)

More precisely, both D0Gr and D1Gr can be applied. The length of Each of

these sequences is n/2, hence in total, the number of wavelet coefficients (both

decimations) at the finest scale is 2× n/2 = n. Then for the next level wavelet

coefficients, both D0G and D1G are applied to both of D0Gr and D1Gr. The

number of the wavelet coefficients for each of these is n/4 at scale J − 2. Hence

the total number of coefficients is n. For the next steps, these procedures are

repeated until reach the coarsest scale.

The number of coefficients produced by non-decimated wavelet transform is Jn,

since there are J-scale, or sometimes written as n log2 n. The computational effort

required to calculate non-decimated wavelet transform is also O(n log2 n). This is

not fast as the discrete wavelet transform, which is O(n), but the non-decimated

algorithm could be considered efficient (with a reasonable constant factor).

In this chapter, the HaarSeg method from Ben-Yaacov & Eldar (2008) which

is a segmentation method based on the nondecimated Haar wavelet decomposition
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3.3 Tail-Greedy Unbalanced Haar Wavelet

and thresholding that is particularly designed for the copy number segmentation

problem is considered. The HaarSeg method proposed by Ben-Yaacov & Eldar

(2008) includes four main steps. First, the nondecimated discrete wavelet transform

is applied to the observed data ri. Then, the second step is to denoise the data using

the false discovery rate (FDR) thresholding procedure (Abramovich & Benjamini,

1995), where FDR is defined as the proportion of false positives out of all positives.

After obtaining the denoised coefficients, a list of significant breakpoints in the

data is created by setting a minimum distance between breakpoints to avoid the

same breakpoint being detected at several levels. Finally, the segmentation result

is reconstructed from the list of those significant breakpoints.

3.3 Tail-Greedy Unbalanced Haar Wavelet

Girardi & Sweldens (1997) introduce the unbalanced Haar wavelet basis where the

difference between unbalanced and ‘balanced’ or traditional Haar wavelet is that

the discontinuities in the basis functions do not necessarily occur in the middle

of their support. The main idea of the unbalance Haar wavelet transformation

(UHWT) is to concentrate as little of the variability in the data as possible at

fine scales. The purely greedy approach to perform UHWT was done in the

heuristic procedure and outlined in Fryzlewicz (2007) which then was improved

using ’tail-greedy’ approach in Fryzlewicz (2018). The UHWT does not have

any fixed structure like the basic Haar wavelet. Hence the shape or breakpoint

location of the unbalanced wavelet basis used in the TGUH transformation can

be adjusted following the data. The Tail-Greedy Unbalanced Haar (TGUH)

decomposition has been proven to be a powerful tool to estimate the locations of

multiple change-points in data. Consider the problem of recovering a piecewise

constant signal fi from its noisy measurements (observed copy number ratio) ri

as modelled in equation (2.2) where i = 1, . . . , n and n is the total number of

windows in the genome, the TGUH approach proposed consists of three main

steps: (i) Forward TGUH transform, (ii) Thresholding and (iii) Inverse TGUH

transform.
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3.3 Tail-Greedy Unbalanced Haar Wavelet

3.3.1 Step 1: TGUH Transformation

The TGUH transformation is a bottom-up method that chooses adjacent pairs

of data that are believed to have the least variability in each iteration, in an

attempt to concentrate as little as possible variability or ”power” in the data at the

”finer” or lower levels of resolution (Fryzlewicz, 2018). This is done starting from

the finest scale by recursively merging some neighbouring regions that have the

smallest power or ”differences”. The merge here means calculating the ”differences”

between two consecutive regions and treating those two regions as one single region

for the next scale.

The algorithm starts by first initiating the variables. Define the parameter j to

describe the scale of the transform. After each TGUH transformation procedure

described below, the scale j will increase by one. At the ”finest” scale j = 1, the

regions merged are between some neighbouring regions that are all individual

points {i}, i = 1, . . . , n. While at the ”coarsest” scale j = J , there is only a single

merge between regions {1, . . . , b} and {b+1, . . . , n} for a certain b ∈ {1, . . . , n−1}.
Let cs,e be the smooth (local rescaled average) coefficients of copy number

ratio data ri given by

cs,e =
1√

e− s+ 1

e∑
i=s

ri. (3.4)

The two subscripts in cs,e denote the start (s) and end (e) index of the region of

the data used to compute cs,e. For j = 1, the smooth coefficients are assigned to

be the input data itself, c = (c1,1, c2,2, . . . , ci,i) = (r1, r2, . . . , ri).

For each iteration ⌈ραk⌉ pairs are merged, where the parameter ρ controls the

proportion of pairs to merge in each iteration and αj is the number of regions

remaining, after the j-th iteration. In the application in this thesis, ρ is set to be

equal to 0.01 (Fryzlewicz, 2018).

To be more precise, the algorithm proceeds as follows:

1. At the j-th iteration, for each adjacent pair of local rescaled average co-

efficients, construct a ‘detail’ filter (ls,b,−rb+1,e) with l
2
s,b + r2b+1,e = 1 and

ds,b,e = ls,bcs,b − rb+1,ecb+1,e should be zero if (rs, . . . , re) is a constant vector.

Compute the detail coefficient defined by

ds,b,e = ls,bcs,b − rb+1,ecb+1,e (3.5)
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3.3 Tail-Greedy Unbalanced Haar Wavelet

for each adjacent pair of coefficients in c and sort the sequence |ds,b,e| in
ascending order. Then, search for the ⌈ραk⌉ pairs of smooth coefficients that

have the smallest absolute value of the detail coefficient vector and save

them as detail coefficients of scale j, djs,b,e.

2. Merge the local rescaled average coefficients which correspond to the selected

detail coefficients. Then, produce new local rescaled average coefficients

which define the scaled average of those merged regions. Specifically, for

a selected detail coefficient djs,b,e at iteration j, the regions {s, . . . , b} and

{b+ 1, . . . , e} are merged into single region {s, . . . , e}. Note that the new

detail and smooth coefficients pair (djs,b,e, cs,e) is the result of rotation of the

pair (cs,b,cb+1,e) as following(
djs,b,e
cs,e

)
=

[
ls,b −rb+1,e

rb+1,e ls,b

](
cs,b
cb+1,e

)
=: Λs,b,e

(
cs,b
cb+1,e

)
. (3.6)

3. Set j = j + 1 and go back to step 1, unless only one detail coefficient was

extracted in step 2, in which case the algorithm terminates.

3.3.2 Step 2: Thresholding

In a wavelet context, thresholding is commonly used to remove noise from data by

shrinking/deleting some wavelet coefficients that fall below a specified threshold.

In the TGUH decomposition, by construction, the bulk of the activity of the data

will be concentrated in coarse-scale (large k) detail coefficients and fine-scale (small

k) coefficients will be small and contain mostly noise. Therefore, by removing

those coefficients which are smaller than some threshold, most of the noise can be

removed.

The thresholding technique that is used by Fryzlewicz (2018) is called ”con-

nected thresholding”. This thresholding preserves the ‘unary-binary’ structure of

the detail coefficients and produces an estimate where the number of change-points

is equal to the number of detail coefficients.

Let the children coefficients of detail coefficient djs,b,e be the set of finer-scale

coefficients whose support is entirely inside [s, e]:

C
j
s,b,e = {dj

′

s′,b′,e′ : [s
′, e′] ⊆ [s, e] for all j′ = 1, . . . , j − 1}. (3.7)
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3.4 Simulation Study

Connected thresholding, with threshold λ > 0, sets to zero all detail coefficients

djs,b,e for which |djs,b,e| < λ and each of its children coefficients are also smaller in

magnitude than λ. More formally, if gjs,b,e and d
j
s,b,e are the detail coefficients re-

spectively of the true unknown signal fi and the observed data ri in Equation (2.2),

the connected thresholding estimate of gjs,b,e is given by

ĝjs,b,e = djs,b,e1{∃d
j′

s′,b′,e′ ∈ C
j
s,b,e > λ}, (3.8)

where 1{·} is the indicator function. The default threshold λ for the TGUH

method is defined by

λ = σ(2(1 + 0.01) log n)1/2, (3.9)

where σ is estimated by computing the median absolute deviation (MAD) of the

sequence {|ri+1 − ri|/
√
2; i = 1, . . . , n − 1} (Fryzlewicz, 2018). In other words,

gjs,b,e are estimated by zero if only if both djs,b,e and its all children coefficients fall

below the threshold λ.

3.3.3 Step 3: Inverse TGUH Transform

Now, a set of survived detail coefficients, ĝjs,b,e, was obtained. The final estimator

can be obtained by taking inverse TGUH transform to those survived coefficients.

The inverse TGUH transformation is performed by undoing the rotations specified

in formula 3.6. Since Λs,b,e is an orthonormal matrix, the operation can easily be

undone as follows:(
cs,b
cb+1,e

)
= ΛTs,b,e

(
ds,b,e
cs,e

)
=

[
ls,b rb+1,e

−rb+1,e ls,b

](
ds,b,e
cs,e

)
. (3.10)

3.4 Simulation Study

A simulation experiment was conducted to compare the performance of the wavelet

methods. Two kinds of the true function fi were considered and presented in

Figure 3.1. The first type of true function is based on the block signal, a well-

known synthetic signal taken from the work by Donoho & Johnstone (1994) with

three additional short segments located at points 500, 600, and 900. The length of

these short segments is set to be 6 points as in the copy number study the shortest
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3.4 Simulation Study

meaningful segment is about 1 Mb which is equivalent to 6-7 points in our data.

The change in height of the first short segment was set to 1 and the others to 0.5

to see how each method deals with different heights of short segments. The second

type of true function is based on the test function used in Fryzlewicz (2018) which

aims to evaluate the performance in estimating segments with different lengths.
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Figure 3.1: The first (left panel) and second (right panel) true functions.

The simulated CNA data ri were generated using the model ri = fi + ϵi where

ϵi is a random error term independently distributed as N(0, σ2). The simulations

were repeated for σ = 0.1, . . . , 0.5 to obtain a controlled comparison of different

levels of noise variance relative to the changes that are wished to be detected in

CNA data, which are generally of magnitude 0.5 or 1. One thousand simulated

data sets were generated for each value of σ2 and all the segmentation methods

explained in the previous sections were applied to each of them.

To evaluate the operating characteristic of each method, the problem of copy

number segmentation can be viewed as a binary classification problem (Pierre-

Jean et al., 2015). A sequence r = {ri}ni=1 is said to have a breakpoint at j if

|rj+1−rj| > θ, where 1 ≤ j < n. The true positive (TP) is defined as an estimated

breakpoint whose location is found inside a given tolerance parameter and closest

to the true breakpoint location while the false positive (FP) is the remaining

estimated breakpoints. For this simulation study, θ is set to θ = 0.1 (Mermel et al.,

2011) and the tolerance parameter is equal to two, which means that an estimated

breakpoint is classified as a true positive if it is closest and located within two

points to the left/right to the true breakpoint. The illustration of these definitions

is presented in Figure 3.2. Based on this definition, the average true positive

rate (aTPR) and the average false positive rate (aFPR) were computed over
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3.4 Simulation Study

1000 replicates. Receiver operating characteristic (ROC) curve for each method

over different noise levels was also presented to further evaluate the operating

characteristics of each method.

0.
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2 5 t1= 7 9 12 t2=14 16 21

segmentation result
true breakpoint
tolerance area
TP
FP

Figure 3.2: Illustration of false positive and true positive to build performance

evaluation.

3.4.1 Results

Figure 3.3 indicates that the HaarSeg and TGUH methods are much better than

the basic Haar wavelet methods in terms of average Mean Integrated Squared

Error (aMISE) for both the first and second simulation settings. Figure 3.4 shows

the average TPR (aTPR) results of simulation using the first and second test

functions. These results indicate that the TGUH performs very well by showing

excellent results in both simulation settings. Besides TGUH, HaarSeg comes

second, showing a good result in terms of aTPR for the second test function,

where it surpasses TGUH for the highest noise level (σ = 0.5).

Even though HaarSeg works well in terms of aMISE and estimating altered

location, it comes with a high average false positive rate (aFPR) compare to TGUH

as shown in Figure 3.5. Figure 3.5 also indicates that the aFPR of the basic Haar

wavelet method using hard and soft thresholding is far above the TGUH method.

This is due to the dyadic structure of the balanced Haar wavelet transform which

causes a tendency to form spurious breakpoints at dyadic locations irrespective of

the location of the true breakpoints in the underlying signal.

To investigate more the performance of each method in estimating the correct

location of alterations, Figure 3.6 shows how many times (from 1000 simulated
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Figure 3.3: Average Mean Integrated Squared Error (aMISE) of simulation using

first (left) and second (right) test function over 1000 replicates.
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Figure 3.4: Average True Positive Rate (aTPR) of simulation using first (left)

and second (right) test function over 1000 replicates.
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Figure 3.5: Average False Positive Rate (aFPR) of simulation using first (left)

and second (right) test function over 1000 replicates.

datasets) each method detects a breakpoint at each location along the sequence.

Here, only the results for σ = 0.3 are shown. The results of other noise levels are

quite similar in terms of the pattern/rank but with different heights. Based on

Figure 3.6, TGUH has the highest sensitivity in terms of detecting short segments

while still showing a good performance in estimating long segments.
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Figure 3.6: Plot of the proportion of replicates with an estimated breakpoint

against location. Each value denotes the proportion of replicates where a break-

point is found at the corresponding location out of 1000 simulated datasets

contaminated by Gaussian noise with mean 0 and variance σ2 = 0.32. The dots

denote proportion of each of the methods producing breakpoints at the correct

location. The grey solid line is the corresponding test function, repeated here

from Figure 3.1 for a quick reference. The left and right vertical axis show the

proportion of replicates with an estimated breakpoint and the corresponding test

function’s height, respectively.

A careful inspection shows that the basic Haar has peaks at the dyadic

location near the true altered positions. More details explanation of this tendency

is explained in Section 3.5. Even though HaarSeg tried to address this problem

by setting a minimum distance between breakpoints, this artefact still remains

and is reflected by small peaks near the true breakpoint location. Only TGUH
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3.5 Dyadic Structure of Balanced Haar Wavelet Transform

method can provide a clean segmentation result without showing any tendency to

estimate spurious breakpoints at a particular location.

Figure 3.7 shows the AUC for all tested methods over different noise levels.

Only for the second simulation with σ = 0.5, the AUC of TGUH below HaarSeg

but it outperforms the others for the remaining.
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Figure 3.7: AUC of ROC of the methods correspond to the first (left) and second

(right) type of simulated data over different noise level.

3.5 Dyadic Structure of Balanced Haar Wavelet

Transform

Based on the simulation in Section 3.4, the balanced Haar wavelet method has a

strong tendency for estimating change points at dyadic locations, and this brings

a disadvantage to it as, in practice, the change points are not only located at

dyadic locations. In this section, the focus is to discuss and seek to explain in

more detail the reasons that cause this tendency in the balanced Haar wavelet

method.

The most interesting property of the wavelet transform compared to the

other signal processing transforms is localization. This localization feature makes

wavelet transforms able to represent many functions ”sparse” which results in

many useful applications such as noise removal. Another characteristic of this

localization feature is if a function f(x) has a discontinuity or a jump (if f(x) is a
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3.5 Dyadic Structure of Balanced Haar Wavelet Transform

piecewise constant function), it only affects the wavelet ψj,k(x) that close to it.

Only wavelet coefficients corresponding to wavelet ψj,k(x) that overlaps the jump

will be influenced.

This localization characteristic can also be seen in the balanced Haar wavelet

transform. The balanced Haar wavelets can only shift at dyadic locations and do

not themself overlap, hence, each point in the original data only corresponds to

at most one wavelet at each scale. Due to its even dyadic decimation step which

essentially picked every even element from an input vector, if the jump is located

at for example 1/2 of the input vector, only the coarsest level wavelet coefficient

will carry out this jump information. On the other hand, if it is not located at

the dyadic location, then more wavelets will be affected.

Figure 3.8 shows the comparison of the Haar wavelets that are affected by

the discontinuity in the vector {xi}16i=1 which located between x8 and x9 (top

panel) and x5 and x6 (bottom panel). The functions inside the graph illustrate

the Haar wavelets used at each of the resolution levels to extract the information

of the piecewise constant vector {xi}16i=1 with only one discontinuity. When the

discontinuity is located between x8 and x9 or exactly in the middle of the data,

the coarsest scale (resolution level 0) wavelet is the only wavalet that carries out

the information of this discontinuity as it is the only wavelet that overlaps the

jump. While, when the discontinuity is located between x5 and x6, there are four

wavelets overlap, which are denoted by red lines.

In terms of wavelet denoising, if noise is added to the vector {xi}16i=1, the

coefficients which correspond to those red color wavelets are likely to survive the

thresholding. There is no big problem if the discontinuity is located at the dyadic

location, but when the discontinuity is not located at the dyadic location, as shown

in the bottom panel of Figure 3.8, there will be many spurious change points

estimated. This is because not only the coefficient that corresponds to the wavelet

whose breakpoint exactly aligns at the discontinuity survive the thresholding, but

other coefficients in the coarser scales that correspond to the wavelet that overlaps

the discontinuity also tend to survive the thresholding.

A simple simulation was carried out to illustrate the tendency of Haar wavelet

estimation. A true function {xi}16i=1 where xi = 0I(1 ≤ i ≤ 5)+3I(6 ≤ i ≤ 16) was

considered. Then, it is contaminated by Gaussian noise with mean 0 and variance
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Figure 3.8: The illustration of Haar wavelet transform of an input data {xi}16i=1

which contains a jump between x8 and x9 (top panel) and x5 and x6 (bottom

panel). The vertical axis denotes the resolution level or scale and the horizontal

axis denotes the input data. The functions inside the graph illustrate the Haar

wavelets used at each of the resolution level to extract the information of the input

vector {xi}. The red color denotes Haar wavelets that are influenced by the jump.
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3.6 Application to Real Data

σ = 0.1 to produce a noisy data x∗i (see top panel of Figure 3.9) and perform the

Haar wavelet estimation to estimate xi. The simulation was conducted 1000 times

and the change-points estimated were counted at each location over 1000 trials

(see bottom panel of Figure 3.9). Based on Figure 3.9, the Haar wavelet method

obviously has a tendency to estimate change-point not only at the location where

the jump is located at the true function but also at the dyadic location close to

the true jump.
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Figure 3.9: Top: The true function xi (black solid line) and the simulated data

x∗i (gray dots). Bottom: Plot of the frequency of change-point estimation against

location. Each value denotes how many times a change-point is found at the

corresponding location over 1000 simulated datasets.

3.6 Application to Real Data

Figure 3.10 presents the results of segmentation based on the basic Haar, HaarSeg,

and TGUH methods in chromosome 12 of lung adenocarcinoma patient LA57.
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3.6 Application to Real Data

Each point in Figure 3.10 denotes the copy number ratio of LA57 patient data

which corresponds to a genomic window (with size 150 kb). CNAnorm Gusnanto

et al. (2012) was used to normalize the data and the missing regions were removed.

From this example, the segmentation characteristic of each method can obviously

be seen.

A visible difference between hard and soft thresholding used in the basic Haar

wavelet method is clearly illustrated in Figure 3.10. The magnitude of the change

or transition between segments of the hard thresholding is high compared to

the soft one. This is due to the hard thresholding rule leaving large coefficients

unchanged, while soft thresholding shrinks them towards zero, as defined in

equation (2.40) and (2.41). This shrinkage will result in smaller jumps/drops

within segments.

HaarSeg segmentation estimates fewer breakpoints than the basic Haar method

but it tends to estimate a low magnitude of breakpoints near the high one as the

one located around position 250 on chromosome 12. Among all the segmentation

results, TGUH shows the cleanest segmentation as presented in the bottom right

panel of Figure 3.10.
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Figure 3.10: CNA estimate as a result of Haar wavelet-based segmentation of

chromosome 12 from patient LA57. Top left: Haar+H segmentation. Top right:

Haar+S segmentation. Bottom left: HaarSeg segmentation. Bottom right: TGUH

segmentation.

3.7 Conclusion

In this chapter, a comparative simulation study was presented to evaluate the

performance of several Haar wavelet-based methods for the segmentation of

CNA data. The results suggest that the TGUH method has good operating

characteristics to detect segments of different sizes and provide a clear segmentation

result. The basic Haar wavelet method and HaarSeg method have a tendency to

identify more spurious breakpoints due to the dyadic structure of the balanced

Haar wavelet transformation which was described in Section 3.6. Only TGUH

offers clean segmentation with high sensitivity but a low false positive rate.
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3.7 Conclusion

In general, the appealing point of the wavelet approach is its ability to extract

multiscale ‘information’ from the data and represent them as a series of coefficients.

The key information that can be extracted here is the variation in the data at

different scales and different locations. Moreover, the flexibility of the TGUH

method to adjust the location of its discontinuity in the unbalanced Haar wavelets

to follow the likely structure of the signal, resulting in more precise breakpoint

location estimates than alternatives based on traditional balanced Haar wavelets.

This advantage has made the TGUH method the most preferable alternative for

CNA segmentation compared to the basic Haar and HaarSeg methods.
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Chapter 4

Modified TGUH Method for

Copy Number Segmentation

4.1 Introduction

The occurrence of extreme observations (outliers) of biological or technical origin

is inevitable in NGS data. These outliers pose an additional challenge to the

segmentation method’s ability to provide a clear result. However, copy number

segmentation of NGS data with the TGUH method which has been explained in

Section 3.3 tends to estimate spikes (very short altered segments of only one or two

data points) as a result of these outliers. Figure 4.1 shows the TGUH segmentation

of the copy number ratio of patient TMA-93 which obviously illustrates spikes

(due to extreme single points) that are often found in TGUH segmentation. Given

that those spikes are single points, they rarely represent ‘true’ changes. Thus, an

investigation of how these spikes occur is needed to improve the performance of

the TGUH method.
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Figure 4.1: TGUH estimate as a result of segmentation of patient TMA-93.

This chapter particularly deals with the investigation of spurious change-points

that are commonly found in the TGUH segmentation as single point spikes and

also describes a modification to the TGUH method to reduce the occurrence of

these spikes. The layout of this chapter is as follows: Section 4.2 describes how

the spikes occur in the TGUH segmentation. This includes the visualisation of the

TGUH transform and the explanation of how the outliers in the data can cause

spurious change points to appear in the TGUH estimates. A modified TGUH

method, named the TGUHm method, is proposed to deal with this problem in

Section 4.3. A simple thresholding procedure, which is described in Section 4.3.2,

is performed in the TGUHm method as an addition to the connected thresholding

used in the original TGUH method to reduce the spikes. To assess the performance

of the TGUHm method, some simulation studies are presented in Section 4.4.

In Section 4.5, typical segmentation patterns for real NGS data are used in the

simulations, and the segmentation results of the TGUHm method are compared

with the original TGUH method and the other well-known segmentation methods.

A paper based on the work in this chapter is currently under review (Ummi et al.,

2023 submitted).
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4.2 Visualisation of TGUH Detail Coefficients

4.2 Visualisation of TGUH Detail Coefficients

To identify the reason why spikes often occur in the TGUH segmentation, it is

important to be able to illustrate or visualise the TGUH detail coefficient, ds,b,e.

Here, a simple example is shown to illustrate the relationship between detail

coefficients with the resulting estimation.

Example 1. Let x = (x1, . . . , xn) = (1, 0, 3, 3, 2, 4, 3, 4, 5, 2). To perform

TGUH segmentation as described in Section 3.3, the parameter ρ is set to be

0.01 (Fryzlewicz, 2018). Then, for scale j = 1 or the first iteration, the smooth

coefficients cs,e are set as

(c1,1, c2,2, . . . , c10,10) := (1, 0, 3, 3, 2, 4, 3, 4, 5, 2) (4.1)

so that the filter coefficients are (ls,b,−rb+1,e) = (1/
√
2,−1/

√
2) since s = b

and b + 1 = r. For a quick reminder, s, b, and e are related to the ‘start’,

‘breakpoint’, and ‘end’ of the unbalanced wavelet basis used to construct the

detail coefficient ds,b,e, respectively. The detail coefficient, ds,b,e, is computed by

ds,b,e = ls,bcs,b − rb+1,ecb+1,e for each adjacent pair of smooth coeffcients. For this

example, the smallest detail coefficient in absolute order is d1,13,3,4 = 0. Therefore,

d1,13,3,4 is saved as a detail coefficient of scale one. Then, the pair of neighbours

(s3,3, s4,4) = (3, 3) is merged to be s3,4 = (3 + 3)/
√
2. At the end of the above

pass through the data at scale j = 1, the input vector will therefore reduced

to (s1,1, s2,2, s3,4, s5,5, s6,6, s7,7, s8,8, s9,9, s10,10). Then, for the next scales, the same

procedures are performed recursively. The iteration is continued until the input

vector has been reduced to the single coefficient s1,10. In this example will produce

nine detail coefficients as following

(d1,13,3,4, d
2,2
1,1,2, d

3,3
6,6,7, d

4,4
6,7,8, d

5,5
3,4,5, d

6,6
6,8,9, d

7,7
3,5,6, d

8,8
3,6,10, d

9,9
1,2,10) =

(0, 0.707, 0.707,−0.408, 0.816,−1.155,−1.745, 1.336,−3.478). (4.2)

The connected thresholding was performed to the detail coefficients in (4.2

to denoise or obtain an estimate of the ‘true’ underlying piecewise constant

signal on which the noisy data x is based. The detailed procedure of connected

thresholding is explained in Section 3.3. Using formula in (3.9), the universal
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4.2 Visualisation of TGUH Detail Coefficients

threshol λ = 2.2609 is obtained. Therefore, by the thresholding, only d9,91,2,10

survives and the remaining coefficients are set to zero.

Figure 4.2 shows the plot of detail coefficients of Example 1 before and after

the thresholding. Throughout this thesis, the detail coefficients are depicted by

plotting the detail coefficients ds,b,e against b. To be more precise, if coefficients

ds,b,e survive the thresholding, this means that there is a change point at location

b. The coefficients ds,b,e are plotted against index b and the value of the coefficient

is displayed by a vertical mark located along the imaginary line y = 0. The value

or magnitude of the detail coefficients is displayed by a vertical mark located along

the region that merges the line that corresponds to the coefficient. The position

of the coefficients on the region merges line indicates the index b. The red and

blue colours of the lines show the positive and negative signs of the coefficients,

respectively. The black dashed lines indicate the detail coefficients whose value is

equal to zero.
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4.2 Visualisation of TGUH Detail Coefficients
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Figure 4.2: Top: Plot of the sequence xi and its resulting TGUH segmentation.

Each of the red dots denotes the xi and the black solid line denotes xi after TGUH

denoising. Middle: Plot of the detail coefficients of xi before the thresholding.

Bottom: The detail coefficients of xi after thresholding. The value or magnitude

of the detail coefficients is displayed by a vertical line located along the region that

merges the line that corresponds to the coefficient. The position of the vertical

line indicates the index b. The red and blue colours of the lines show the positive

and negative signs of the coefficients, respectively. The black dashed lines indicate

the detail coefficients whose value is equal to zero.
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4.2 Visualisation of TGUH Detail Coefficients

4.2.1 The Occurrence of Spikes in The Estimation

Spikes in the TGUH estimate are likely to occur when the detail coefficients dks,b,e,

with either e− b or b− s+ 1 equals to one, survive the thresholding. Ideally, to

control the occurrence of these ‘spikes’, the detail coefficients dks,b,e with either

e − b or b − s + 1 less than a constant m∗ need to be set to zero. By setting

m∗ = 2, the spikes can be reduced and the user will have direct control of the

minimum length of segments. More formally, the connected thresholding estimate

of gks,b,e in (3.7) can be rewritten as

ĝks,b,e = dks,b,e1{∃dk
′

s′,b′,e′ ∈ Cks,b,e > λ}1{(b− s+ 1) > m∗}1{(e− b) > m∗}. (4.3)

But due to the unary-binary structure of connected thresholding, there could be

a case when a segment with a length less than m∗ could not be removed. This is

due to the connected thresholding being unable to delete parent detail coefficients

which have children coefficients whose magnitudes are above the threshold even

though the parent coefficient corresponds to a segment with length less than m∗.

Let us define ”wing” as the length of either b− s+ 1 or e− b (the length of

TGUH basis from the start point (s) to the breakpoint (b) or breakpoint (b) to the

endpoint (e)). The length of the segments in the final estimator is determined by

the length of the TGUH wavelet wing length used to produce the detail coefficients.

Therefore, to remove all segments whose length is less than m∗, it must be ensured

that all detail coefficients corresponding to the TGUH wavelet with wings length

less than m∗ are to be removed. A simple example to illustrate this condition is

presented in Figure 4.3.
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4.2 Visualisation of TGUH Detail Coefficients
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Figure 4.3: The detail coefficients of noise function Xi before and after the

thresholding. Top left: Plot of noise function Xi. Top right: Plot of TGUH

denoising of Xi. Bottom left: The detail coefficients of Xi before the thresholding.

Bottom right: The detail coefficients of Xi after the thresholding withm
∗ = 1. The

grey dotted lines denote detail coefficients corresponding to the detail coefficient

d8,8,19, d11,11,19, and d15,15,19 which related to spikes in TGUH denoising of Xi (top

right panel). The value or magnitude of the detail coefficients is displayed by a

vertical line located along the region that merges the line that corresponds to the

coefficient. The position of the vertical line indicates the index b. The red and

blue colours of the lines show the positive and negative signs of the coefficients,

respectively. The black dashed lines indicate the detail coefficients whose value is

equal to zero.
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4.2 Visualisation of TGUH Detail Coefficients

Figure 4.3 presents plots of a noised dataXi = (X1, X2, ..., X19) = (1, 1, 0, 1, 4, 3,

3, 8, 0, 1, 9, 0, 1, 2, 9, 3, 5, 3, 3) and its resulting TGUH segmentation together with

their corresponding detail coefficients. The top right panel of Figure 4.3 shows that

there are three spikes produced by the TGUH estimate. These spikes are related

to detail coefficients d8,8,19, d11,11,19, and d15,15,19. Among those three spikes, only

the third spike corresponds to detail coefficient d15,15,19 that can be removed by

connected thresholding by increasing the value of m∗ > 1. The detail coefficient

d15,15,19 does not have any children coefficients that survive the thresholding hence

it can be removed without breaking the connected thresholding rule. On the other

hand, both d8,8,19 and d11,11,19 have children coefficients whose value exceeds the

threshold λ and its unbalanced Haar wavelet wings length (either e− b or b−s+1)

are greater than one. Therefore these coefficients can not be set to zero as shown

in Figure 4.4.
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Figure 4.4: The detail coefficients of noise function Xi before and after the

thresholding with m∗ = 2. Top left: Plot of noise function Xi. Top right: Plot

of TGUH denoising of Xi. Bottom left: The detail coefficients of Xi before the

thresholding. Bottom right: The detail coefficients ofXi after the thresholding with

m∗ = 2. The first, second, and third gray dotted lines denote detail coefficients

corresponds to the detail coefficient d8,8,19, d11,11,19, and d15,15,19, respectively,

which related to spikes in the TGUH denoising of Xi (top right panel). Here,

only the detail coefficient d15,15,19 can be ‘killed’ by setting m∗ = 2. The value or

magnitude of the detail coefficients is displayed by a vertical line located along

the region that merges the line that corresponds to the coefficient. The position

of the vertical line indicates the index b. The red and blue colours of the lines

show the positive and negative signs of the coefficients, respectively. The black

dashed lines indicate the detail coefficients whose value is equal to zero.
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4.3 TGUHm method

4.3 TGUHm method

In this section, the TGUHm method are described. The TGUHm method is a

modified TGUH method with an additional procedure in the thresholding step

for pruning the spikes commonly found in NGS data. This TGUHm method has

shown the best performance compared to four other TGUH-based segmentation

methods which are presented in Section 4.4.6.

Let n be the number of windows/regions; we segment each chromosome

separately, so n is the number of windows in a chromosome and we do not need an

index to denote chromosome. Alternatively, one can segment the whole genome

simultaneously, in which case n would denote the number of windows in the entire

genome. Let xi denote the location of the i-th window in the chromosome/genome

for i = 1, 2, . . . , n, satisfying the condition x1 < x2 < · · · < xn. Let N be the

number of change-points in the data, with 0 ⩽ N ≪ n, and if N > 0, let ηp,

p = 1, . . . , N be the locations of the change-points. For a sequence {ri}i=1,...,n,

a change-point is located at ηp = xi if |ri+1 − ri| > θ, where 0 < i ≤ n. The

threshold θ directly affects the balance between sensitivity (the ability to detect

true positives) and specificity (the ability to avoid false positives). A lower

threshold may result in higher sensitivity, detecting more potentially relevant

alterations, but it may also increase the likelihood of false positives. On the other

hand, a higher threshold may increase specificity but could miss some genuine

alterations. In this chapter, the height tolerance parameter θ is set to be equal to

0.1 as suggested in Mermel et al. (2011) to give the balance between sensitivity

and specificity. As an illustration, η2 = x100 means that the second change-point

in the data is located at x100 and |r101 − r100| > θ. In a simulation study, N and

the ηp’s are known, but in practice for real data they are unknown.

In the context of NGS, let ri denote the ratio between the number of reads

in the tumour and normal sample in the i-th window corresponding to location

xi (Gusnanto et al., 2012). There is no requirement for the ri to be normalised.

In the normalisation of CNA data from clinical samples, segmentation may be

involved at the start and the end of normalisation (see Gusnanto et al. (Gusnanto

et al., 2012)).
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4.3 TGUHm method

The observed ri are given by a true (unknown) signal fi obscured by additive

random error. This model can be expressed as

ri = fi + ϵi, (4.4)

where ϵi represents measurement noise and f is a one-dimensional, piecewise-

constant signal with change-points at unknown locations η1, . . . , ηN . In this section,

the error term ϵi is assumed as Gaussian noise with mean zero and variance σ2.

Thus the problem is how to estimate the true function f from noisy data ri.

The standard TGUH approach proposed by (Fryzlewicz, 2018) consists of

three main steps: (i) Forward TGUH transform, (ii) Thresholding and (iii) Inverse

TGUH transform. This subsection describes a method called TGUHm that mainly

follows these steps but with some modifications in steps (ii) and (iii) to adapt to

the characteristics of CNA data from NGS, particularly to address the ‘spikes’

that commonly occurs in the TGUH estimates. The TGUHm method can be

outlined in the following steps.

1. Apply the (standard) TGUH transformation to the data to obtain TGUH

detail coefficients. The coefficients are assigned into a unary-binary tree

(i.e., one in which each ‘parent’ coefficient has one or two ‘child’ coefficients).

Please see Section 3.3.1 for more detailed explanation.

2. Threshold or delete those detail coefficients whose values are less than a

specified threshold. Two-stage thresholding is performed here to firstly

remove smaller coefficients that are believed to represent noise ϵ rather than

the true signal f . This is part of the standard TGUH method. Additionally,

in the second stage, some coefficients that correspond to ‘spikes’ are removed.

These spikes are occured due to extreme outliers in copy number ratios.

3. Reconstruct the segmentation result by returning the sample mean of the

observed data within each segment between consecutive estimated change-

points. This step is different to that in the standard TGUH method.
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4.3 TGUHm method

4.3.1 Step 1: TGUH Transformation

As explained in section 3.3.1, The TGUH wavelet transform is a bottom-up

method that utilises unbalanced wavelets to translate the sequence ri into a set of

different type coefficients that form an unary-binary tree structure (Fryzlewicz,

2018). Therefore, in the first step of the TGUHm method, the TGUH transform is

applied to the data ri to obtain a sparse representation of the data ri in terms of a

set of piecewise-constant basis functions. At the end of the TGUH decomposition

of ri, we have a set of detail coefficients dj,ks,b,e and smooth coefficients cj,ks,b,e. Please

see Section 3.3.1 for more detailed explanation of these coefficients.

4.3.2 Step 2: Thresholding

The ‘tail-greediness’ of the TGUH method induces the bulk of the variance of

the data will be concentrated as a few large detail coefficients at coarse-scale

(large k). Meanwhile, at the fine-scale (small k), the detail coefficients will be

small and contain mostly noise. Therefore, by removing those coefficients that are

smaller than some threshold, most of the noise can be removed. But in some cases

where there is a frequent occurrence of outliers, as is often found in NGS data,

basic wavelet thresholding is unable to threshold/remove the detail coefficients

corresponding to these outliers as they are likely translated into large coarse-scale

coefficients by the TGUH transform. This causes the final estimator to contain

spurious change-points as spikes (very short altered segments of only one or two

data points). In the TGUHm method, therefore, an additional procedure is added

to the connected thresholding used in TGUH (Fryzlewicz, 2018) for pruning these

spikes.

In more detail, the thresholding procedure in the TGUHm method proceeds

in the following two stages.

1. Connected thresholding . Perform connected thresholding to detail coeffi-

cients dks,b,e. This thresholding is used by Fryzlewicz (2018) which preserves

the ‘unary-binary’ structure of the detail coefficients and produces an esti-

mate where the number of change-points is equal to the number of detail

coefficients.
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4.3 TGUHm method

Let the children coefficients of detail coefficient dks,b,e be the set of finer-scale

coefficients whose support is entirely inside [s, e]:

Cks,b,e = {dk′s′,b′,e′ : [s′, e′] ⊆ [s, e] for all k′ = 1, . . . , k − 1}.

Connected thresholding, with threshold λ > 0, sets to zero all detail coeffi-

cients dks,b,e for which |dks,b,e| < λ and each of its children coefficients are also

smaller in magnitude than λ. More formally, if gks,b,e and d
k
s,b,e are the detail

coefficients respectively of the true unknown signal f and the observed data

y in Equation (4.4), the connected thresholding estimate of gks,b,e is given by

ĝks,b,e = dks,b,e1{∃dk
′

s′,b′,e′ ∈ Cks,b,e > λ}, (4.5)

where 1{·} is the indicator function.

2. Unconnected thresholding . An additional ‘unconnected’ form of thresholding

is proposed after the above step. This thresholding does not preserve the

‘unary-binary tree’ structure of detail coefficients. This reduces the tendency

of connected thresholding to leave ‘spikes’ in the estimated segmentation.

‘Spikes’ are likely to occur when the detail coefficients dks,b,e, with either

e − b or b − s + 1 equals to one, survive the thresholding. To control the

occurrence of ‘spikes’, the detail coefficients dks,b,e with either e−b or b−s+1

less than a constant m∗ are set to zero. By setting m∗ = 2, the spikes can

be reduced and the user will have direct control over the minimum length

of segments. The final estimator g̃ks,b,e of g
k
s,b,e is given by

g̃ks,b,e = ĝks,b,e1{(b− s+ 1) > m∗}1{(e− b) > m∗}. (4.6)

We will see later that the additional unconnected thresholding with m∗ = 2 gives

us better estimates compared to using connected thresholding only.

4.3.3 Step 3: Signal Reconstruction

Unlike the original TGUH method of Fryzlewicz (2018), the reconstruction proce-

dure is not conducted by performing the inverse TGUH transform. This is due to

the additional unconnected thresholding used in the previous step. If the inverse
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4.4 Simulation Study

TGUH transform is applied directly to the unconnected thresholding results, there

may occur a situation where the estimated signal for a segment is not equal to the

sample mean of the data in that segment. Since each breakpoint b in the middle

of surviving wavelet/detail coefficients g̃ks,b,e denote the locations of change-points,

we therefore, estimate the piecewise constant signal fi between two consecutive

change-points by the sample mean of all copy number ratio data ri in that interval.

More formally, let b = {bl} denote the collection of b ∈ g̃ks,b,e in ascending

order where l = 1, .., N and N is the number of estimated change-points. Define

ηp = {0, b1, b2, . . . , bN , n}; n is the length of the copy number ratio data ri. So

that, the final estimator f̂ of the true function f in Equation (4.4) is defined by

f̂t =
1

ηp+1 − ηp

ηp+1∑
k=ηp

rk (4.7)

for t ∈ [ηp, ηp+1], p = 1, . . . , N + 1.

4.4 Simulation Study

To evaluate the performance of the methods, a comparative simulation study was

conducted by considering four kinds of test functions which are explained in detail

as follows.

1. The first true function is shown in panel A of Figure 4.5 and this pattern

is based on some patterns of different segment lengths including both long

segments and short segments commonly observed in real data and the

aberrations in height/depth varies between 0–4.

2. The second function only includes short segments with various heights which

is shown in panel B of Figure 4.5. The aim of simulation using this test

function is to assess the ability of the method in estimating short segments.

3. The third test function, which is presented in panel C of Figure 4.5, is an

extreme case where there is only a single altered segment with a very short

(6 point) width.

57



4.4 Simulation Study

4. The fourth type test function is generated by adapting genomic profiles

generation scheme proposed by Fridlyand (2004) to obtain more realistic

DNA copy number truth with known truth. One thousand simulated copy

number patterns (test functions) are generated based on the Circular Binary

Segmentation (CBS) fit of a normalised 38 samples lung adenocarsinoma

(LA) tumour dataset. We randomly sampled copy number levels from the

empirical distribution of segment mean values, where mean values were

binned into the intervals less than 0.25 (0 copies), between 0.25, and 0.75

(one copy), between 0.75 and 1.25 (2 copies), between 1.25 and 1.75 (three

copies), between 1.75 and 2.25 (four copies), between 2.25 and 2.75 (five

copies), between 2.75 and 3.25 (six copies). The length of normal segments

(two copies) were assigned by randomly sampling the segment length from

the empirical length distribution of copy number levels belong into the

[0.75, 1.25] bin. Similarly, the lengths were asigned to the altered segments

by sampling from the length distribution for segments with levels outside

that bin, without distinguishing among length distributions with different

copy numbers. So that we could record the ”true breakpoint”. Since one of

the interests is to know the ability of the method to estimate short segments,

for each of the generated data, four short segments were assigned with a

length of six data points and a height set to 0.5.

In this simulation study, the aberrations are distinguished into two types:(i)

short segments and (ii) long segments, for the purpose of evaluating the ability

of the method in estimating both of those types of abberations. The aberrations

with length between 6–10 data points are referred as short segments while long

segments comprise more than 10 data points. This is based on the window size

used in our data (150kb), in which a 1 Mb segment is represented by only 6-7

windows or data points. The height of the short segments is set to 0.5 to represent

the typical smallest change that might expected in real data.

One thousand replicates were generated for each of the first, second and third

true functions. For each of the true functions considered, two kinds of noise models

were used to contaminate those data. The first noise model is i.i.d. Gaussian

noise N(0, σ2) and the second is a heavier-tailed noise model that reflects extreme
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Figure 4.5: The true patterns of copy number alterations, denoted f , in simulated

examples. (A) First true function. The irregular pattern of segment length is

based on common patterns observed in real data. (B) Second true function,

which aims to characterise the proposed method’s performance in a case where

the underlying true pattern only contains short altered segments. (C) Third true

function. An extreme case where there is only a short altered segment in the

middle of long segment.
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observations that often occur in the NGS copy number ratio data. A classical way

to generate the second noise model is to use “contaminated normals”, where the

error distribution is a mixture of two normal distributions (Tukey, 1960). With

probability 1 − α the error was drawn from a distribution N(0, σ2), and with

probability α from N(0, d2σ2), with d = 3 and α = 0.05 (Nilsen et al., 2012).

The simulations were repeated for σ = 0.1, . . . , 0.5 for both noises to obtain a

controlled comparison of different levels of noise variance relative to the changes

that are wished to be detected in CNA data, which are generally of magnitude

0.5 or 1 (Gusnanto et al., 2012).

As the data generation framework used provides copy number profiles with

known truth, the problem of change points detection can be considered as a

binary classification problem. Specifically, for each generated profile, the true

change-points locations are known. There are several ways that can be used to

measure the performance of a binary classification model, each providing different

insights into the model’s effectiveness. Here are some performance metrics for

binary classification that is used in this chapter:

� True positive rate (TPR). The TPR is the proportion of true positive

predictions out of all actual positive instances in the dataset. It focuses on

the ability of the model to capture all positive instances and is valuable

when the cost of false negatives is high.

� False positive rate (FPR). The FPR is the proportion of negative instances

that are incorrectly classified as positive by the classifier. A lower FPR

indicates that the classifier is better at distinguishing true negatives from

false positives.

� Receiver operating characteristic (ROC) curve and its area under the curve

(AUC). The ROC curve plots the TPR against the FPR at various dis-

crimination thresholds. The AUC quantifies the overall performance of

the classifier, providing a single scalar value that summarizes its ability to

distinguish between the two classes. A perfect classifier has an AUC of 1,

while a random or no-discrimination classifier has an AUC of 0.5. Generally,

the higher the AUC, the better the classifier’s ability to distinguish between

the classes.
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Besides the metrics mentioned above, there are other evaluation metrics such

as F1 score which is effective in evaluating the trade-off between false positives

and false negatives and the precision-recall curve which focuses specifically on

the performance of the positive class (change-points). However, in the context

of change-points problem, the ROC curve is used as the focus is to evaluate

the performance of each method in estimating change-point with minimal false

positives. By using the ROC curve, the trade-off between identifying actual

change-points (true positive rate) and the number of false alarms (false positive

rate) across various decision thresholds can be obviously illustrated.

In this simulation, For the computation of performance metrics, correctly

identified change-points (true positive, TP) are defined as those whose locations

are found within two windows and closest to the true change point. If there

are two closest change-points detected, one is assigned as TP and the other one

as false positive (FP). The remaining change points detected, FP = P − TP,

where P denotes positives or the total number of estimated change points N , are

considered spurious estimates (FP) (Pierre-Jean et al., 2015). The illustration of

these definitions is presented in Figure 3.2. Based on this definition, the average

of true positive rate (aTPR) and the average false positive rate (aFPR) were

computed over 1000 replicates. To assess the ability of the method in estimating

short segments, the average true positive rate in estimating short segments

(aTPRsh) was also calculated. Moreover, the similarity of the estimates and the

true function was measured by calculating average mean squared error (aMSE)

over 1000 replicates. The results of these performance metrics are presented in

Section 4.4.2.

In Section 4.4.3, to further evaluate the operating characteristics of each

method, the Receiver Operating Characteristic (ROC) curve was calculated for

each method across different values of σ2. The ROC curves are plotted based on

the mean TPR and FPR across replicate data sets for each segmentation method.

The classification threshold for the ROC curve varied from 4.5 to −0.1.

To investigate and compare the performance of each method in estimating

each of the change-points of the test functions, in Section 4.4.4, the frequency of

a change-point estimated at the correct locations was plotted.
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4.4.1 Comparative Methods

For all the simulations above, the TGUHm segmentation was performed and

compared to the original TGUH method (Fryzlewicz, 2018). To evaluate the

practical impact of the constant m∗, two values of m∗ were considered, m∗ = 1

and m∗ = 2. For m∗ = 1, both TGUHm and TGUH will produce exactly the

same results, which is denoted by TGUH1.

Besides the original TGUH method, another TGUH-based segmentation

method was also considered. The original TGUH combined with a localised

pruning method using the R package breakfast ver 2.2 (Anastasiou et al., 2021)

which is denoted by TGUHb.

Several well-known published methods listed below were also considered as

competitors.

1. Circular Binary Segmentation (Olshen et al., 2004) using package DNAcopy

(Seshan & Olshen, 2020). Circular Binary Segmentation (CBS) is a statistical

method used for copy number segmentation in DNA sequences. It is designed

to detect regions of the genome with distinct copy number changes. The key

idea behind CBS is to iteratively divide the DNA sequence into segments of

equal copy number, allowing for both gains and losses of genetic material to

be accurately identified.

The algorithm starts with an initial segment that covers the entire DNA

sequence. The initial segment is then tested for any copy number change

using a statistical test. CBS typically employs a statistical test, such as

the t-test or Wilcoxon rank-sum test, to evaluate if the data points in a

segment have a significantly different mean from the neighbouring segment.

If the statistical test detects a significant difference, the segment is split into

two smaller segments. This process continues iteratively. The algorithm

iteratively applies the statistical test to each segment. If a segment is found

to have a significant copy number change, it is split into two new segments.

The process continues until no further significant changes are detected, or a

predefined stopping criterion is reached. The circular aspect of CBS comes

into play if the DNA sequence is circular (e.g., a circular chromosome).

In such cases, the algorithm ensures that the segmentation process takes
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into account the circularity, avoiding potential artefacts at the sequence’s

endpoints. Once the segmentation process converges, the algorithm outputs

a set of segments, each representing a region with a constant copy number.

These segments correspond to regions of copy number gain and loss in the

DNA sequence.

2. HaarSeg (Ben-Yaacov & Eldar, 2008) using package HaarSeg (Ben-Yaacov &

Eldar, 2009). HaarSeg method is a segmentation method based on wavelet

denoising principles. HaarSeg identifies statistically significant breakpoints

in the data, using the maxima of the Haar wavelet transform, and segments

accordingly. The method starts with applying the non-decimated discrete

wavelet transform (NDWT) on the input data using the Haar wavelet. A

group of detail subbands are chosen from the transform, and then the local

maxima in the chosen detail subbands can be identified. After finding the

local maxima, an FDR (False Discovery Rate) thresholding procedure is

applied to the maxima of each subband. By combining the selected maxima

from all subbands a comprehensive list of significant breakpoints in the data

can be created to reconstruct the final segmentation result.

3. CumSeg (Muggeo & Adelfio, 2010) using package cumSeg (Muggeo, 2020).

The ”CumSeg” method is a cumulative approach to time series segmentation,

and it can be used to identify segments in time series data with distinct

characteristics or trends. Instead of using a fixed threshold or a predefined

number of segments, CumSeg determines the number of segments based

on the data itself. It does this by cumulatively adding segments until a

specified criterion, often related to goodness-of-fit or information criteria, is

met.

4. FDRseg (Li et al., 2016) using package FDRSeg (Li & Sieling, 2017). The

FDRSeg method is a multiscale segmentation method that effectively controls

the false discovery rate (FDR). This means that the number of false jumps

is limited proportionally to the number of true jumps, enabling the method

to adjust its sensitivity based on the actual number of true jumps. A
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non-asymptotic upper bound is provided in the method for the FDR in a

Gaussian scenario, allowing proper calibration of FDRSeg’s single parameter.

5. CopyNumber (or PCF) method Nilsen et al. (2012) using package copy-

number (Nilsen et al., 2013). This method employs penalized least squares

regression to estimate a piecewise constant fit to the data. In the Copy-

Number method, a single penalty parameter γ is introduced to control the

balance between high sensitivity (minimizing missed true aberrations) and

high specificity (reducing false aberrations) which is very critical for all

segmentation procedures. Therefore, in the simulation, the CopyNumber

method was applied twice, with its main parameter γ set to be 12 and

40 as suggested by Nilsen et al. (2012) to give different balances between

sensitivity and specificity. The results for these two separate analyses are

denoted as Copy12 and Copy40, respectively.

4.4.2 Simulation Results

Figures 4.6, 4.7, and 4.8 show the result of the simulation study using the first,

second, and third true functions. The corresponding quantitative results are

presented in the Appendix A. Figure 4.6 indicates that for the basic Gaussian

noise TGUHm, TGUH, and TGUH1 outperform the other competitors in terms

of estimating both short and long segments by showing the highest aTPRsh and

aTPR values for all noise levels but it comes with slightly larger aFPR and aMSE

than most of the tested methods. In particular, different m∗ values (m∗ = 1 or

m∗ = 2) do not affect the results much when the noise is standard Gaussian noise.

The differences in performance due to these choices are more apparent in the case

when the noise comes from the mixture of two normal distributions with different

variance; see the right side plots of Figure 4.6. For aTPRsh, all of TGUHm, TGUH,

and TGUH1 do not show a significant difference (still the best) but TGUH1 is

marginally the worst in terms of aFPR and aMSE. On the other hand, TGUHm

and TGUH are much better than TGUH1 for both aFPR and aMSE which indicate

that setting m∗ equal to two successfully reduces spurious change-points (spikes)

which are caused by the occasional extreme outliers. Moreover, compared to

TGUH, TGUHm tends to return fewer false positives. This shows that adding
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the unconnected thresholding is preferable as it allows us to use the m∗ to control

the minimum segment width compared to using connected thresholding alone.

Figures 4.7 and 4.8 show the performance metric of the tested methods when

the simulated data only contain short segments. TGUHm still performs very

well by showing excellent results in terms of aTPRsh and aMSE without excess

false positives. Besides TGUHm, the TGUH1, TGUH, Copy12, and FDRSeg

methods do well in terms of estimating short segments. CBS also performs well in

estimating short segments for the standard Gaussian noise but it is not as good

as those methods when the noise is the Gaussian mixture noise. It also shows

poor performance in terms of aTPRsh when the true function only contains an

isolated short segment in the middle of a very long segment as shown in Figure 4.8.

The FDRSeg method, while showing good performance for short test signals, it is

sensitive to occasional extremely noisy observations. This reflects in larger aFPR

and aMSE for Gaussian mixture noise.

Figure 4.9 show the performance metric of the tested methods based on the

fourth type of test function. Unlike the three previous simulations which only

consider one fixed test function, in the fourth type of simulation, there were 1000

different test functions. This condition enables us to see the performance of the

tested method in more general. Even in this setting, TGUHm still performs very

well in terms of aTPRsh and aMSE with relatively lower aFPR which is similar

to the results in the previous simulations.

Compared to the other methods, based on all of the simulation models consid-

ered, CumSeg and Copy40 tend to miss some change-points and fail to estimate

short segments even for low level of noise contamination. This also indicates

that the performance of CopyNumber method is sensitive to the selection of γ.

Therefore, in practice, it may be necessary to test a number of γ values to find

the optimal one.

4.4.3 Receiver Operating Characteristic of the Simulation

To show in a graphical way the connection/trade-off between sensitivity and

specificity for every possible cut-off, ROC curves of each of the simulations across

different noise levels were considered and the corresponding area under the curve
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Figure 4.6: Performance metrics for 1000 replicates of the first test function (see panel A of

Figure 4.5). (A) (B) Average of true positive rate in estimating change-points that corresponds

to short segments (aTPRsh). (C) (D) Average true positive rate (aTPR). (E) (F) Average of

false positive rate (aFPR). (G) (H) Average of mean-square error (aMSE) of the estimated

piecewise constant signal to the true function. The left column (panels A,C, E, and F) show

results for i.i.d. Gaussian noise N(0, σ2), while the right column (panels B,D, F, and H) show

results for noise from a mixture of two Gaussian distributions 0.95×N(0, σ2)+0.05×N(0, 3σ2)).

For a quick reminder, TGUH1 denotes both TGUH and TGUHm method with m∗ = 1 while

TGUHm and TGUH denote TGUHm and TGUH method with m∗ = 2, respectively. TGUHb

denotes TGUH method with a localised pruning algorithm. Copy12 and Copy40 denote

CopyNumber method with γ parameter equal to 12 and 40, respectively.
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Figure 4.7: Performance metrics for 1000 replicates of the second test function (see panel

B of Figure 4.5). (A) (B) Average of true positive rate in estimating change-points that

corresponds to short segments (aTPRsh). (C) (D) Average of false positive rate (aFPR).

(E) (F) Average of mean-square error (aMSE) of the estimated piecewise constant

signal to the true function. The left column (panels A,C, and E) show results for i.i.d.

Gaussian noise N(0, σ2), while the right column (panels B,D, and F) show results for

noise from a mixture of two Gaussian distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)).

The aTPR results are omitted as the simulated data only contains short segments. For a

quick reminder, TGUH1 denotes both TGUH and TGUHm method with m∗ = 1 while

TGUHm and TGUH denote TGUHm and TGUH method with m∗ = 2, respectively.

TGUHb denotes TGUH method with a localised pruning algorithm. Copy12 and Copy40

denote CopyNumber method with γ parameter equal to 12 and 40, respectively.
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Figure 4.8: Performance metrics for 1000 replicates of the third test function (see panel

C of Figure 4.5). (A) (B) Average of true positive rate in estimating change-points that

correspond to short segments (aTPRsh). (C) (D) Average of false positive rate (aFPR).

(E) (F) Average of mean-square error (aMSE) of the estimated piecewise constant

signal to the true function. The left column (panels A,C, and E) show results for i.i.d.

Gaussian noise N(0, σ2), while the right column (panels B,D, and F) show results for

noise from a mixture of two Gaussian distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)).

The aTPR results are omitted as the simulated data only contains an isolated short

segment. For a quick reminder, TGUH1 denotes both TGUH and TGUHm method

with m∗ = 1 while TGUHm and TGUH denote TGUHm and TGUH method with

m∗ = 2, respectively. TGUHb denotes TGUH method with a localised pruning algorithm.

Copy12 and Copy40 denote CopyNumber method with γ parameter equal to 12 and 40,

respectively.
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Figure 4.9: Performance metrics for 1000 replicates of the fourth test function as explained in

Section 4.4. (A) (B) Average of true positive rate in estimating change-points that corresponds

to short segments (aTPRsh). (C) (D) Average of false positive rate (aFPR). (E) (F) Average

of mean-square error (aMSE) of the estimated piecewise constant signal to the true function.

The left column (panels A,C, and E) show results for i.i.d. Gaussian noise N(0, σ2), while

the right column (panels B,D, and F) show results for noise from a mixture of two Gaussian

distributions 0.95×N(0, σ2)+0.05×N(0, 3σ2)). The aTPR results are omitted as the simulated

data only contains an isolated short segment. For a quick reminder, TGUH1 denotes both

TGUH and TGUHm method with m∗ = 1 while TGUHm and TGUH denote TGUHm and

TGUH method with m∗ = 2, respectively. TGUHb denotes TGUH method with a localised

pruning algorithm. Copy12 and Copy40 denote CopyNumber method with γ parameter equal

to 12 and 40, respectively.
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(AUC) is reported in Figure 4.10. For both noise types used in the simulation, it

is quite clear that performance in terms of AUC severely deteriorates when the

noise level increases.

The results in panels E and F in Figure 4.10 show that, in a very extreme case

where there is only a short altered segment in the underlying test function, the

performance of the CBS, Copy40, and CumSeg methods are very poor. Those

methods tend to produce a long flat segment and are unable to estimate the short

segment even for low noise levels. This is reflected by their AUC scores that

drastically drop to 0.5 for noise level with standard deviation σ greater than 0.1.

Figure 4.10 also indicates that TGUHm, TGUH1, and TGUH has better AUC

than the other methods in most of the noise levels considered. Their results almost

overlap. This is due to the number of false positive that corresponds to spikes

being very low compared to the number of negative cases. To avoid the issues

caused by this condition (imbalanced dataset), Figure 4.11 shows partial AUC for

early retrieval area (FP < 20). From the results shown in Figure 4.11, it is quite

clear that for acceptable FP (FP < 20), TGUHm method still provides excellent

results over all the noise levels for both noise types considered. For simulation

using the standard Gaussian noise, the results of TGUHm, TGUH1, and TGUH

are very close but for the heavier-tailed noise type that caused extreme outliers

in the data, TGUHm shows a significant improvement over the original TGUH

(TGUH1, TGUH) method (see right side column of Figure 4.11). This indicates

that TGUHm method is competent to reduce spurious change-points commonly

found in the original TGUH method caused by extreme outliers.

70



4.4 Simulation Study

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

A

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

B

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

C

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

D

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

E

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

F

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

G

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5
σ

R
O

C
−

A
U

C

Method

TGUHm

TGUH1

TGUHb

TGUH

CBS

HaarSeg

Copy12

Copy40

CumSeg

FDRSeg

H

Figure 4.10: AUC of ROC curve of the methods applied to the first, second, and third test

functions described in Section 4.4. The left column (panels A,C, and E) show results for i.i.d.

Gaussian noise N(0, σ2), while the right column (panels B,D, and F) show results for noise

from a mixture of two Gaussian distributions 0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)). The first

(panels A and B), second (panels C and D), third (panels E and F), and fourth (panels G and

H) row correspond to the first, second, third, and fourth test function presented in Figure 4.5,

respectively. For a quick reminder, TGUH1 denotes both TGUH and TGUHm method with

m∗ = 1 while TGUHm and TGUH denote TGUHm and TGUH method withm∗ = 2, respectively.

TGUHb denotes TGUH method with a localised pruning algorithm. Copy12 and Copy40 denote

CopyNumber method with γ parameter equal to 12 and 40, respectively.
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Figure 4.11: Partial AUC for FP < 20 of ROC curve of the methods applied to the test

functions described in Section 4.4. The left column (panels A,C, E, and G) show results for

i.i.d. Gaussian noise N(0, σ2), while the right column (panels B,D, F, and H) show results

for noise from a mixture of two Gaussian distributions 0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)).

The first until fourth row correspond to the first, second, third, and fourth test function

described in Section 4.4, respectively. For a quick reminder, TGUH1 denotes both TGUH

and TGUHm method with m∗ = 1 while TGUHm and TGUH denote TGUHm and TGUH

method with m∗ = 2, respectively. TGUHb denotes TGUH method with a localised pruning

algorithm. Copy12 and Copy40 denote CopyNumber method with γ parameter equal to 12 and

40, respectively.
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4.4.4 Proportion of Times a Change-point is Estimated

To investigate the performance of each method in estimating the correct location

of each change-point, Figures 4.12, 4.13, and 4.13 show the proportion of times

(from 1000 simulated datasets) that each method detects a change-point at each

location along the sequence base on test function as shown in Figure 4.5. Here,

the results shown are only for simulated data contaminated with noise from a

mixture of two normal distributions 0.95 × N(0, σ2) + 0.05 × N(0, 3σ2) where

σ = 0.3; results for the remaining results with basic Gaussian noise can be found

in Appendix B. Since the results of TGUHm and TGUH almost overlap, the

resultsof TGUHm and TGUH were plotted as one line.

Based on Figure 4.12, the proposed method, TGUHm method, has the highest

sensitivity in terms of detecting short segments while still showing a relatively

good performance in estimating long segments. This superiority of TGUHm

method in estimating short segments is seen clearer in 4.13, and 4.13. Most of the

methods have narrow ‘peaks’ in the location of the true changes, which indicate

the ability of the methods to estimate change-point exactly at the true location

over 1000 iteration. But careful inspection shows that the HaarSeg method has

small peaks near the true change-points. This shows the tendency of HaarSeg

to produce spurious change-points near the true change-point locations. This is

commonly found in Haar wavelet-based methods and is its main weakness which

has successfully been overcome by the proposed method.
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Figure 4.12: Proportion of times a change-point is estimated against location out of 1000

simulated datasets contaminated with a mixture of two Gaussian distributions 0.95×N(0, σ2) +

0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote the proportion of detection at locations where

there are actual change-points. The grey solid line is the corresponding test function, repeated

here from panel A of Figure 4.5 for ease of reference. The left and right vertical axis show the

proportion of replicates where a change-point is estimated and the corresponding test function’s

height, respectively.
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Figure 4.13: Proportion of times a change-point is estimated against location out of 1000

simulated datasets contaminated with a mixture of two Gaussian distributions 0.95×N(0, σ2) +

0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote the proportion of detection at locations where

there are actual change-points. The grey solid line is the corresponding test function, repeated

here from panel B of Figure 4.5 for ease of reference. The left and right vertical axis show the

proportion of replicates where a change-point is estimated and the corresponding test function’s

height, respectively.
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Figure 4.14: Proportion of times a change-point is estimated against location out of 1000

simulated datasets contaminated with a mixture of two Gaussian distributions 0.95×N(0, σ2) +

0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote the proportion of detection at locations where

there are actual change-points. The grey solid line is the corresponding test function, repeated

here from panel C of Figure 4.5 for ease of reference. The left and right vertical axis show the

proportion of replicates where a change-point is estimated and the corresponding test function’s

height, respectively.
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4.4.5 Comparison of TGUHm Segmentation with Various

m∗ Values

To see the effect of the choice of m∗ value in TGUHm segmentation, the TGUHm

method was performed with several small m∗ values to the simulated data; m∗ =

1, 2, 3, 4, 5, 8, 10. As a comparison, the results for the basic TGUH method with

m∗ is equal to one and two were also shown. For simplicity, TGUH1 denotes both

of the results of the TGUH and TGUHm methods with m∗ = 1 since their results

are almost the same. The TGUH method with m∗ = 2 is denoted as TGUH2 while

TGUHm2, TGUHm3, TGUHm4, and TGUHm5 denote TGUHm method with

m∗ value equal to 2, 3, 4, and 5, respectively. TGUHm8 and TGUHm10 denote

TGUHm method results where m∗ = 8 and 10, respectively, these choices are used

to see the performance of the proposed method in estimating short segment when

m∗ is greater than the shortest altered segment length in the underlying data.

Figure 4.15– 4.17 show a performance metrics plot for 1000 replicates of the

true functions. Those figures indicate that the differences in performance due to

the choice of m∗ are more apparent in the case when the noise comes from the

mixture of two normal distributions with different variances. The most significant

improvement appeared on aFPR and aMSE between m∗ = 1 and m∗ = 2 while for

larger m∗ values, the improvement is not significant compare to it. This motivates

the setting of m∗ = 2 as default and indicates that m∗ = 2 significantly reduces

the occurrences of single-point spikes. Especially, from Figure 4.17, if m∗ is larger

than the shortest true segment length (m∗ > 6, TGUH8 and TGUH10), the

proposed method was almost unable to estimate the short segment which confirms

the ability of m∗ in controlling the minimum estimated segment length.
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Figure 4.15: Performance metrics of TGUHm method with various m∗ values for 1000 replicates of the first

test function (see panel A of Figure 4.5). (A) (B) Average of true positive rate in estimating change-points that

corresponds to short segments (aTPRsh). (C) (D) Average of false positive rate (aFPR). (E) (F) Average

of mean-square error (aMSE) of the estimated piecewise constant signal to the true function. The left column

(panels A,C, and E) show results for i.i.d. Gaussian noise N(0, σ2), while the right column (panels B,D, and F)

show results for noise from a mixture of two Gaussian distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)). The

aTPR results are omitted as the simulated data only contains an isolated short segment. For a quick reminder,

TGUH1 denotes the results of both the basic TGUH method and TGUHm method with m∗ = 1. TGUH2

denotes the basic TGUH method with m∗ = 2. TGUHm2, TGUHm3, TGUHm4 and TGUHm5 denote TGUHm

method with m∗ value equal to 2, 3, 4, and 5, respectively.
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Figure 4.16: Performance metrics of TGUHm method with various m∗ values for 1000

replicates of the second test function (see panel B of Figure 4.5). (A) (B) Average

of true positive rate in estimating change-points that corresponds to short segments

(aTPRsh). (C) (D) Average of false positive rate (aFPR). (E) (F) Average of mean-

square error (aMSE) of the estimated piecewise constant signal to the true function.

The left column (panels A,C, and E) show results for i.i.d. Gaussian noise N(0, σ2),

while the right column (panels B,D, and F) show results for noise from a mixture of

two Gaussian distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)). The aTPR results are

omitted as the simulated data only contains short segments. For a quick reminder,

TGUH1 denotes the results of both the basic TGUH method and TGUHm method with

m∗ = 1. TGUH2 denotes the basic TGUH method with m∗ = 2. TGUHm2, TGUHm3,

TGUHm4 and TGUHm5 denote TGUHm method with m∗ value equal to 2, 3, 4, and 5,

respectively.
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Figure 4.17: Performance metrics of TGUHm method with various m∗ values for 1000

replicates of the third test function (see panel C of Figure 4.5). (A) (B) Average of true

positive rate in estimating change-points that corresponds to short segments (aTPRsh).

(C) (D) Average of false positive rate (aFPR). (E) (F) Average of mean-square error

(aMSE) of the estimated piecewise constant signal to the true function. The left column

(panels A,C, and E) show results for i.i.d. Gaussian noise N(0, σ2), while the right

column (panels B,D, and F) show results for noise from a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)). The aTPR results are omitted as the

simulated data only contains short segments. For a quick reminder, TGUH1 denotes the

results of both the basic TGUH method and TGUHm method with m∗ = 1. TGUH2

denotes the basic TGUH method with m∗ = 2. TGUHm2, TGUHm3, TGUHm4 and

TGUHm5 denote TGUHm method with m∗ value equal to 2, 3, 4, and 5, respectively.
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4.4.6 Comparison of TGUH-based Methods

In the TGUHm method, a two-stage thresholding procedure is applied to replace

the basic connected thresholding used in the original TGUH method. But in

practice, there are several options for thresholding techniques that can be applied

in the denoising stage of the TGUH method. This section introduces three other

possible TGUH-based segmentation methods and presents a simple simulation

study to compare their performances.

The first method is the UTGUH method, a TGUH-based method that uses

only the unconnected thresholding technique to set to zero all the coefficients

below the threshold λ. The second method is the UTGUHmean method. This

method is similar to the UTGUH method, but instead of using the inverse TGUH

transform, it takes the mean of the data between two consecutive change-points

to construct the segmentation result, as in the TGUHm method. The third

method is the TGUHb method, a segmentation method that combines the basic

TGUH method with the localised pruning algorithm (Cho & Kirch, 2021). In the

simulation, these three TGUH-based methods were compared to the basic TGUH

method and the TGUHm method.

Below is the list of five TGUH-based methods considered in the simulation.

1. TGUH (Basic TGUH method (TGUH transform - connected thresholding

- inverse TGUH)

2. TGUHm (TGUH transform - two-stage thresholding (connected thresh-

olding to delete all the detail coefficients lower than the threshold value λ -

unconnected thresholding to delete all detail coefficients which one of its

wings is less than a β parameter) - reconstruct the result using mean of the

data between two consecutive estimated change-points)

3. UTGUH (TGUH transform - unconnected thresholding - inverse TGUH

transform)

4. UTGUHmean (TGUH transform - unconnected thresholding - reconstruct

the result using mean of the data between two consecutive estimated change-

points)
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5. TGUHb (Basic TGUH method combined with a localized pruning algorithm

(Cho & Kirch, 2021))

The constant m∗ was set equal to 2 for all of the above methods to control the

minimum segment length. Those five methods are also compared with the TGUH

method using m∗ = 1 which is denoted as TGUH1.

The simulation study was conducted using the first test function as explained

in section 4.4 (please see the top panel of Figure 4.5 for the plot of the test function

used). Same as in the previous simulations, 1000 replicates were generated for

each of the true functions and two kinds of noise models were used to contaminate

the test function. The first noise model is i.i.d. Gaussian noise N(0, σ2) and the

second is a heavier-tailed noise model that reflects extreme observations that often

occur in NGS copy number ratio data. Then, the simulations were repeated for

σ = 0.1, . . . , 0.5 for both noise.

0.1 0.2 0.3 0.4 0.5

0
.0

0
0

.0
1

0
.0

2
0
.0

3
0

.0
4

σ

a
M

IS
E

TGUH1

TGUH

TGUHb

TGUHm

UTGUH

UTGUHmean

0.1 0.2 0.3 0.4 0.5

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

σ

a
M

IS
E

TGUH1

TGUH

TGUHb

TGUHm

UTGUH

UTGUHmean

Figure 4.18: Plot of average mean-square error (aMSE) of the estimated piecewise

constant signal to that of the signals estimated using the true change points.
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Figure 4.19: Average true positive rate (aTPR; first row). Average true positive

rate in estimating change-points that correspond to short segments (aTPR.sh;

second row), false positive rate (aFPR; third row) in estimating correct change-

points over 1000 replicates of TGUH-based methods. The left and right side plot

corresponds to the noise distribution used to contaminate the simulated data

(left: i.i.d Gaussian noise N(0, σ2), right: a mixture of two normal distributions

0.95×N(0, σ2) + 0.05×N(0, 3σ2)).
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Figure 4.20: Example of TGUH1, TGUH, UTGUH, UTGUHmean, TGUHb, and

TGUHm estimates corresponds to the first test function. Noise is a mixture of

two normal distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)) with σ = 0.2.

Figure 4.19 shows the results of the simulation. Among the TGUH-based

methods, TGUH1, TGUH, TGUHm, and UTGUH almost overlap and give the

best results in terms of aMSE, aTPRsh, and aFPR for simulated data contami-

nated with i.i.d Gaussian noise, while for the mixture Gaussian noise, TGUHm

outperforms the others.

Furthermore, UTGUHmean performance is very poor in terms of aTPRsh.

84



4.4 Simulation Study

Its ability to estimate short segments (aTPRsh) is far below the other TGUH

methods. Figure 4.20 shows that UTGUHmean is the only one that could not

estimate short segment properly even the noise is relatively low (σ = 0.2). The

aTPR and aTPR.sh of TGUHb are also low compared to the other methods, as it

tends to over prune change-points. The UTGUH and TGUHm methods, on the

other hand, perform well in terms of estimating change-points in long and short

segments without significantly harming or increasing the AFPR.

Based on the result of the simulation above, below is the table of rank of each

method evaluated.

Table 4.1: Table of the average ranking of performance measurement for simulation

using for i.i.d. Gaussian noise N(0, σ2) over all of the noise level σ. Lower the

rank denotes a better method.

Method Average Rank Rank

aMSE aTPR aTPR.sh aFPR

TGUH1 4.4 1.5 1.5 6.0 3.35

TGUH 2.8 2.7 2.5 4.8 3.20

TGUHb 6.0 6.0 6.0 1.0 4.75

TGUHm 1.8 3.1 2.9 3.6 2.85

UTGUH 2.2 3.4 4.0 2.6 3.05

UTGUHm 3.8 4.3 4.1 3.0 3.80

Table 4.1 and 4.2 present the mean performance metric ranking across all

noise levels, along with its overall ranking. These findings highlight the TGUHm

and UTGUH methods as the leading pair compared to the rest. While they may

not consistently excel in every individual metric, they consistently maintain a

remarkable proximity to the optimal outcomes.
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Table 4.2: Table of the average ranking of performance measurement for simulation

using for noise from a mixture of two Gaussian distributions 0.95 × N(0, σ2) +

0.05 × N(0, 3σ2) over all of the noise level σ. Lower the rank denotes a better

method.

Method Average Rank Rank

aMSE aTPR aTPR.sh aFPR

TGUH1 6.0 1.6 1.2 6.0 3.70

TGUH 3.6 3.0 2.8 5.0 3.60

TGUHb 5.0 6.0 6.0 1.0 4.50

TGUHm 1.8 3.8 3.8 3.2 3.15

UTGUH 1.6 2.0 2.6 2.0 2.05

UTGUHm 3.0 4.6 4.6 3.8 4.00

Even though UTGUH show a good performance, the estimated signal for a

segment, for example, [a, b], is not obtained as a sample mean of the corresponding

segment and it tends to form a small spike as seen at the position around 200

in Figure 4.20. This phenomenon occurs because UTGUH directly employs the

inverse TGUH transform to reconstruct the segmentation. Hence, considering this

result, it is preferable to use the utilization of TGUHm.
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Figure 4.21: Comparison of segmentation result of chromosome 16 LA11 patient

data using TGUH1, TGUH, UTGUH, UTGUHmean, TGUHb, and TGUHm

methods.

4.5 Application to Real Data

To illustrate the types of segments produced in more detail, Figure 4.22 presents

the results of segmentation based on TGUHm, TGUH, TGUH1, TGUHb, CBS,

HaarSeg, CumSeg, and FDRSeg method in chromosome 8 of Patient TMA- 93
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Figure 4.22: CNA estimate as a result of segmentation of chromosome 8 from

patient TMA-93. (A) The copy number ratio data of chromosome 8 in Patient

TMA-93. (B) TGUHm segmentation. (C) TGUH1 segmentation. (D) TGUH

segmentation. (E) TGUHb segmentation. (F) CBS segmentation, (G) HaarSeg

segmentation, (H) CopyNumber segmentation with γ = 12 and (I) γ = 40, (J)

CumSeg segmentation, and (K) FDRSeg segmentation. For a quick reminder,

TGUH1 denotes both TGUH and TGUHm method with m∗ = 1 while TGUHm

and TGUH denote TGUHm and TGUH method with m∗ = 2, respectively.

TGUHb denotes TGUH method with a localised pruning algorithm. Copy12

and Copy40 denote CopyNumber method with γ parameter equal to 12 and 40,

respectively.

88



4.5 Application to Real Data

0
1

2
3

4
5

6
7

Genomic location

C
o

p
y
 N

u
m

b
e

r 
R

a
ti
o

chr 1 chr 2 chr 3 chr 4 chr 5 chr 6 chr 7 chr 8

A

0
1

2
3

4
5

6
7

Genomic location

C
o

p
y
 N

u
m

b
e

r 
R

a
ti
o

chr 9 chr 10 chr 11 chr 12 chr 13 chr 14 chr 16 chr 18 chr 20

B

Figure 4.23: TGUHm CNA estimate as a result of segmentation of (A) chromo-

some 1–8 and (B) chromosome 9–22 in patient TMA-93.
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Belvedere et al. (2012). The TGUH segmentation of the whole genome is shown

in Figure 4.23. Figure 4.22 shows that most of the methods except CBS, Copy40,

TGUHb and CumSeg estimate short segments at position around 50 and 250.

From the simulation study, it has been shown that the CBS, CumSeg, TGUHb And

Copy40 are not sensitive to short segments compared to the remaining methods.

This indicates that there may be short altered segments at that region with high

probability. TGUHm estimates more short segments than Copy12 but less than

HaarSeg and FDRSeg which corresponds to results from the simulation, where

Copy12 is less sensitive to short segments while both HaarSeg and FDRSeg tend

to form more false positives than TGUHm.

Moreover, in this example, the differences between TGUH and TGUHm are

clearly seen. The spikes (due to extreme single points) that are remained in

TGUH1 (m∗ = 1) are completely removed in TGUHm (m∗ = 2). While the

standard TGUH without the unconnected thresholding could not remove all those

spikes, even when m∗ = 2. Since the truth in real data is unknown, it is difficult

to confirm whether the spikes are real changes or not although, given that they

are single points, we expect a priori that they are not. However, these results

indicate that one should consider TGUHm when it is appropriate to assume a

value for the minimum segment length m∗.

4.5.1 Array Comparative Genomic Hybridization (aCGH)

Data

Figure 4.24 and 4.25 show the TGUHm segmentation for the breast cancer dataset

from Snijders et al. (2001). The CNA data are from array comparative genomic

hybridization (aCGH) technology. From our observation, the aCGH data are not

as noisy as NGS data but the results indicate the TGUHm method shows a similar

segmentation pattern as seen in NGS data. It estimates more short aberrations

compared to the CBS method but fewer than the FDRseg method. This is

consistent with the simulation results, CBS is less sensitive to short segments

while FDRseg tends to overestimate the change-points.

The true CNA pattern of this example is unknown but, for example from

Figure 4.24, even with eyes, there can be seen that there might be a drop around
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location probe number 360–430 and then a jump around 430–470 which are indi-

cated by red dotted lines. The CBS method is unable to estimate these alterations,

which is consistent with its strength in estimating long segments but often misses

short segments. On the other hand, both the TGUHm and FDRseg method are

able to estimate those alterations, but they are more sensitive to outliers in the

data, leading to short segments corresponding to noise. One advantage of the

TGUHm method is that by the application of two-stage thresholding, the sensitiv-

ity of the TGUHm method to outliers can be restrained so that its segmentation

results are not as noisy as the FDRseg.
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Figure 4.24: CNA estimate as a result of segmentation of array comparative

genomic hybridization (aCGH) data GSM799. The points are normalized log

ratios and graph is in genomic coordinates. (A) TGUHm segmentation. (B) CBS

segmentation, (C) FDRSeg segmentation.
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Figure 4.25: CNA estimate as a result of segmentation of array comparative

genomic hybridization (aCGH) data GSM802. The points are normalized log

ratios and graph is in genomic coordinates. (A) TGUHm segmentation. (B) CBS

segmentation, (C) FDRSeg segmentation.

93



4.6 Conclusion

4.6 Conclusion

This chapter has described how ’spikes’ occurred in the TGUH segmentation. The

extremely short length of either of the unbalanced Haar wavelet wings becomes

the main cause of the occurrence of spikes. Spikes in TGUH estimate are likely to

occur when the detail coefficients that correspond to these extremely short wing

unbalanced Haar wavelets survive the thresholding.

To address this tendency of the standard TGUH method to overestimate

CNA spikes, the TGUH method was adapted for use with copy number data

by modifying its thresholding technique so that it is no longer constrained to

the ‘unary-binary tree’ structure; this adaptation is named TGUHm method.

By modifying the thresholding procedure, the TGUHm method is shown to be

successful in reducing those spikes.

The simulation study showed that setting m∗ to two gives the most benefit in

terms of reducing the occurrences of single-point spikes in the segmented CNA.

When m∗ is increased further to three, four, or even five, say, the results are very

similar to m∗ = 2. This indicates that, for reasonably low values of m∗ ≥ 2, the

conclusion is not sensitive to the choice of m∗. From the simulation, for m∗ higher

than the length of the shortest true segment, the TGUHm method was almost

unable to detect the short segments. This confirms the ability of m∗ to control

the minimum length of the estimated segment. Based on this result, if users do

not generally know the minimum length of expected altered segments, it is safe

to set m∗ = 2 as it provides a significant improvement to the performance of the

method.

The simulation results also suggested that the proposed method has good

operating characteristics to detect segments of different sizes. Some methods

may have a tendency to identify more short segments or long segments. The

proposed methods demonstrably work well for both short and long segments. This

result becomes increasingly crucial in the case of low-coverage NGS data such

as is the case in this study. This is because, for example, a 1 Mb segment is

represented by only 5-7 windows or data points (Gusnanto et al., 2014). In this

case, segmentation methods are tested to the limit of detection, and the choice

of the method becomes crucial. In the context of high-coverage NGS data, then
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the same 1 Mb segment can be represented by hundreds of points. In such cases,

most of the segmentation methods are expected to perform well with very little

difference between their results.

Even though it has been shown that the TGUHm method perform well in

identifying change-points where the data contain Gaussian noise with constant

variance, analysing data with more complex noise structures is still challenging.

This is a subject for the next chapter.
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Chapter 5

Data-Driven TGUH-Fisz (DDTF)

Method for Copy Number

Segmentation with

heteroscedastic noise

5.1 Introduction

This chapter explores a new wavelet approach named data-driven TGUH-Fisz

(DDTF) that extends the data-driven wavelet-Fisz methodology (Fryzlewicz, 2008)

to TGUHm wavelets denoising for handling non-negative data with heteroscedastic

noise whose variance is non-decreasing function of the mean. The performance of

the proposed method is assessed by simulation study and application to the real

copy number ratio data. A paper based on the work in this chapter is currently

in preparation.

Copy number alteration (CNA) data, especially those from NGS technology,

have some characteristics that pose two inter-related challenges for change-point

detection. The first challenge is the presence of non-constant random variation in

the data, partly due to the normalisation pre-processing needed for this type of

data (Gusnanto et al., 2012). Specifically, the variance exhibits some association

with the mean, which is exacerbated in the context of our study by low-coverage

sequencing (<0.1X) (Wood et al., 2010). When a segment has a high copy number
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ratio, higher random variations are generally observed in the CNA data. Secondly,

with such non-constant error variance in our copy number data, the detection of

short segments is extremely challenging with some spurious changes often detected.

In a low-coverage setting, a short segment, e.g. 1 Mbp, may be represented by

just a few data points. In the analysis of CNA data, it is important to be able to

detect accurately both short and long segments because they may give information

on the location of oncogenes or tumour suppressor genes (Lengauer et al., 1998).

This chapter aims to address these challenges in a unified analytical framework.

For the first challenge, segmentation methods that rely on the homoscedastic

error assumption are not ideal for CNA data since they can produce a large

number of spurious change-points. Therefore, to handle this, a method that

acknowledges the heteroscedasticity of error by using a method that applies a

variance stabilisation process before proceeding to change-point estimation is

generally needed.

Fryzlewicz et al. (2007) proposed a data-driven Haar-Fisz (DDHF) which

utilises the balanced Haar wavelet transform to perform stabilisation in the

wavelet domain prior to denoising the variance-stabilised data. This approach

assumes that the noise variance is linked to the mean level of the data by an

unknown function whose estimation is data-driven. Fryzlewicz et al. (2007) show

that their DDHF transform is able to stabilise the variance better than some of

time-domain variance stabilising transforms.

However, this approach in its standard form is not sufficient to address the

above problem in CNA data. Like other methods based on balanced Haar

wavelets, it creates spurious change-points at dyadic locations as an artefact of

the balanced Haar wavelet transform. Therefore, in this chapter, the DDHF

approach is extended by considering the tail-greedy unbalanced Haar (TGUH)

wavelet transformation (Fryzlewicz, 2018) instead of the balanced Haar wavelet.

As described in the previous chapter, unlike the balanced Haar transform, this

application of the TGUH transform gives the advantage of adaptively adjusting the

breakpoints in each wavelet basis function to sparsely describe the likely structure

of the signal compared. This important feature enables us to reduce the number

of spurious change-points commonly found in balanced Haar methods due to its
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transformation structure. In section 5.4, a segmentation method named data-

driven TGUH-Fisz (DDTF) method that utilises the TGUH wavelet transform

for both variance stabilisation and denoising to replace any use of balanced Haar

wavelet in DDHF method is introduced.

With regard to the challenge of estimating short segments, some spurious

‘spikes’ (segments with only one data point) can still be present, even with the

adoption of the TGUH wavelet transformation in our proposed method. This makes

it difficult to interpret the results because the short segments estimated are only

represented by approximately 6-7 data points (Gusnanto et al., 2014). Therefore,

the estimation of short segments is at or close to the limit of detection and to

address this challenge, as in the TGUHm method, an additional unconnected

thresholding step is added as an improvement to the standard thresholding

technique used in the TGUH method. This additional step enables control of the

minimum segment length which can be estimated and, therefore, is able to control

the occurrence of ‘spikes’ while at the same time still allowing the identification

of these short segments.

This chapter proposes a unified analytical framework to address these challenges

and presents good operating characteristics of the proposed method in a simulation

study. Analysis of a real data example also shows that the proposed method

is able to deal with the challenges and produce sensible results. The rest of

the chapter is organised as follows. Section 5.3 reviews the key concepts of the

DDHF method. The details of the proposed DDTF methodology are described in

Sections 5.4. Section 5.5 illustrates in detail the differences between DDHF and

DDTF methods. Sections 5.6 and 5.7 compare the performance of the proposed

method with existing methods through simulated and real copy number DNA

data, respectively.

5.2 Dataset

In this chapter, DNA sequence data from Belvedere et al. (2012) were considered.

DNA extraction and libraries were prepared and sequenced using methods ex-

plained in detail in Section 2.4. The regions with missing values were removed,
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5.3 Data-Driven Haar-Fisz method

such as the centromeres. An example of CNA data from patient TMA-93 is shown

in Figure 5.1.
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Figure 5.1: Example of chromosome 3 copy number ratio data from one patient,

TMA-127. The data was normalised using CNAnorm (Gusnanto et al., 2012) and

regions with missing values, such as the centromeres, are removed. Each point

in the figure denotes the copy number ratio of TMA-127 which corresponds to a

specific genomic window (150 kb).

5.3 Data-Driven Haar-Fisz method

In general, the pattern of copy number alterations (CNA) can be considered as a

piecewise constant function. CNAs can be identified by estimating the locations

of regions with DNA copy number ratio deviating from one (Gusnanto et al.,

2012). This process is closely connected to the problem of detecting the locations

of change-point.

To proceed with the statistical modelling, let ri be a sequence of the observed

ratio between the tumour and normal genomes in the i-th window at genomic

locations xi for i = 1, 2, . . . , n. The genomic locations xi are known and satisfy

x1 < x2 < · · · < xn. Generally, an additive measurement error model for relating

the true copy number ratio signal fi and the observed copy number ratio ri can
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5.3 Data-Driven Haar-Fisz method

be expressed as the following canonical change-point model

ri = fi + ϵi, i = 1, . . . , n, (5.1)

where ϵi is the error term and fi is unknown and believed to be a piecewise-constant

signal with change-points at unknown location η1, . . . , ηN .

CNA data, as illustrated in Figure 5.1, often exhibit a feature where the noise

variance may be linked to the mean level of the data. Because of this, the observed

data ri is assumed to have distributional properties as specified below.

1. (ri)
n
i=1 is a sequence of independent, nonnegative random variables with

finite positive means µi > 0 and positive variances σ2
i > 0.

2. The variance σ2 is a non-decreasing function of the mean µ:

σ2
i = h(µi), (5.2)

where the function h is independent of i.

Thus the task is to estimate change-points in fi from the noisy data ri under the

above assumptions when h is a non-decreasing function of the mean and unknown.

Fryzlewicz (2008) introduced a fully automatic multiscale technique named

data-driven wavelet-Fisz (DDWF) method for approximately stabilising the vari-

ance of sequence of non-negative independent random variables whose variance

is non-decreasing function of the mean. The term ‘data-driven’ here refers to an

automatic way to estimate the function h from the data as part of the variance

stabilisation procedure. The DDWF methodology performs variance stabilisation

in the wavelet domain, not in the time domain, like the standard square root

transformation. One advantage of DDWF is it can make use of any wavelet

denoising to remove noise from data whose variance is non-constant. In the

context of change-point analysis, by employing Haar wavelets which have ”square-

shaped” characteristic, the piecewise constant estimation of noisy data can easily

be obtained.
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5.3.1 Literature Review of Data-Driven Haar-Fisz Method

The Data-Driven Haar-Fisz (DDHF) transform applies wavelet-fisz Methodology

using Haar wavelets which allows us to obtain piecewise constant estimates

(Fryzlewicz et al., 2007). This approach requires the length of input data ri to be

the power of two and the assumption that the noise variance is linked to the mean

level of the data µ by an unknown function h(µ). Under the assumption that

variance is a non-decreasing function of the mean, the DDHF method is able to

transform the heteroscedastic noisy signal to one where the variance of the noise is

constant. Fryzlewicz et al. (2007) show that DDHF transform is able to stabilise

the variance better than some of ‘time-domain’ variance stabilising transform.

In the DDHF method, the appropriate variance-stabilising transformation

is estimated from the data by first estimating the mean-variance relationship

(the non-decreasing function h(µ)) and then performing Haar-Fisz transform

(Fryzlewicz & Nason, 2004) for stabilising the variance of the sequences. This

variance stabilisation is called DDHF transformation.

Before describing further the DDHF transform, let us briefly recall the formula

for the Haar transform. The Haar transform is a linear orthogonal transform

Rn → Rn where n = 2J . Given an input vector X = (Xi)
n
i=1, the Haar transform

can be performed as follows:

1. Let cJi = Xi.

2. For each j = J − 1, J − 2, . . . , 0, recursively form vectors of smooth (or

scaling) and detail coefficients, cj and dj:

cjk =
cj+1
2k−1 + cj+1

2k

2
; djk =

cj+1
2k−1 − cj+1

2k

2
, k = 1, . . . , 2j. (5.3)

The inverse Haar transform simply reverses the formula 5.3 and is performed as

follows:

1. For each j = 0, 1, . . . , J − 1, recursively forms cj+1:

cj+1
2k−1 = cjk + djk; c

j+1
2k = cjk − djk, k = 1, . . . , 2j. (5.4)
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2. Set Xi = cJk .

Note that, throughout this chapter, the requirement of balanced Haar wavelet

transform input data to be the power of two is handled using the symmetric signal

extension.

The main idea of the Haar-Fisz transform is to decomposeX by Haar transform,

stabilise the variance of detail coefficients djk, and then apply the inverse Haar

transform to obtain a vector with variance approximately stabilised. In set up (5.1),

a simple Haar-Fisz transform would proceed as follows:

1. Take the Haar transform of X to obtain the detail coefficients djk and the

smooth coefficients cjk.

2. Modify the smooth coefficients at each scales j = 1, . . . , J − 1 to transform

them into local means of the data, c∗jk = 2(j−J)/2cjk.

3. Form the Haar-Fisz stabilised coefficients

d∗jk =
djk

ĥ1/2(c∗jk )
, (5.5)

where ĥ is the estimated h function. This can be viewed as a kind of

‘studentisation’ in the wavelet domain. Note that the variance of djk is ap-

proximately equal to h(µjk), where µ
j
k denotes the local mean of the sequence

Xi computed over the same support as the corresponding coefficients djk and

cjk so that µjk can be pre-estimated by c∗jk .

4. Take the inverse Haar transform of the transformed coefficients d∗jk ,

cj+1
2k−1 = cjk + d∗jk ; c

j+1
2k = cjk − d∗jk , k = 1, . . . , 2j, (5.6)

for k = 1, . . . , 2j − 1 and j going from 1 to J . Call the final cJk vector,

obtained from the Fisz–modified coefficients, uk for k = 1, ..., 2J = n. The

variance of the sequence uk is now stabilised.

Then now, after the Haar-Fisz transform, any wavelet denoising for homoscedas-

tic noise can be applied. The most common yet effective wavelet denoising is Haar

wavelet denoising with hard universal thresholding (Donoho & Johnstone, 1994).
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For the remaining of this chapter, for simplicity, the term DDHF method refers

to DDHF transform with hard universal thresholding.

Finally, the final piecewise constant estimator of Xi can be obtained by taking

the inverse Haar-Fisz transform. The inverse Haar-Fisz transform can be achieved

by reversing the above steps: take the Haar wavelet transform of uk, remultiply the

d∗jk coefficients by h(c∗jk )
1/2, and then perform the inverse Haar wavelet transform.

5.3.2 Data-Driven Haar-Fisz with TGUHm Thresholding

As described in the previous subsection, it is important to note that any wavelet

denoising technique that is appropriate for Gaussian noise (i.e., Discrete Haar

Wavelet Transform (DHWT)—thresholding—inverse DHWT) can be used for the

denoising stage. In this subsection, the DDHF method is extended using TGUHm

denoising to utilise the superiority of TGUHm in estimating change-point location

by perform it in the denoising stage of DDHF method. For the remaining text,

this approach is called as DDHF+T method.

The detailed procedure of the DDHF+T method can be outlined as the

following four stages.

1. Stage 1: Variance stabilisation stage. Apply a DDHF transform to the noisy

data ri which will result in data that is contaminated with approximately

Gaussian homoscedastic noise rsi .

2. Stage 2: Denoising stage. Denoise the stabilised data rsi using TGUHm

method as explained in Section 4.3 to obtain the piecewise constant estimate

r̂si .

3. Stage 3: Reconstruction stage. Reconstruct the segmentation result by

taking the inverse Haar-Fisz transform. This can simply be achieved by re-

versing the Haar-Fisz transform procedure: take the Haar wavelet transform

of r̂si , remultiply it by h1/2(c), and then perform the inverse Haar wavelet

transform.
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5.4 Data-driven TGUH-Fisz Method

Despite the simplicity and flexibility of the DDHF method, the use of Haar

wavelet transform often causes oversegmentation due to the dyadic structure of its

transformation. A more detailed explanation of this oversegmentation tendency

is discussed in Section 5.5. For that reason, in this section, a new wavelet-based

approach is proposed to replace the balanced Haar wavelet transform with the

TGUH wavelet transform (Fryzlewicz, 2018) in the variance stabilisation step.

The aim is to take benefit from the unbalanced Haar wavelet used in the TGUH

transform which makes the transformation not take the dyadic structure anymore.

Rather, it follows the structure of the data by adjusting the location of breakpoints

of the unbalanced Haar wavelet. This transformation, which called as TGUH-Fisz

transform, allows us to translate the signal into a set of unbalanced Haar wavelet

coefficients that are approximately Gaussian. Then the denoising/thresholding

can be done to those coefficients via universal thresholding.

In the following subsections, the proposed method named data-driven TGUH-

Fisz (DDTF) method which is a change-point detection method based on a

wavelet-domain variance stabilising transform. The procedure of the DDTF

method can be outlined into the following four main steps:

1. Estimation of the variance function h as a function of the mean. In the real

data problem, it is often to face a situation when the function h is unknown

so we need to estimate it from the data. Here, the function h is estimated

using isotone regression (Johnstone & Silverman, 2005a), as suggested by

Fryzlewicz et al. (2007). This is described further in Section 5.4.1.

2. Variance stabilisation. In this stage, the heteroscedastic noise problem

is addressed by performing variance stabilisation in the wavelet domain.

the TGUH-Fisz transform is applied to transform data with non-constant

variance noise to a set of unbalanced Haar wavelet coefficients named detail

coefficients which are approximately Gaussian with mean zero and variance

equal to one. The details are described in Section 5.4.2.

3. Denoising or thresholding. The main purpose of this stage is to determine

which wavelet coefficients are likely to represent the true signals and should
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be retained in the wavelet reconstruction phase by performing a two-stage

threholding process which includes the connected thresholding introduced in

Fryzlewicz (2018) and then followed by unconnected thresholding to prune

the spurious change-points which are commonly estimated due to extreme

observations found in NGS data. The details are described in Section 5.4.3.

4. Signal reconstruction. The final step, reconstruct the signal by taking the

sample mean of the observed data within each segment between consecutive

estimated change-points.

5.4.1 Estimation of Function h

As mentioned earlier, in practice, there may occur a condition when one believes

there is a mean-variance relation in the data where σ2 = h(µ) but does not know

exactly what is the function h. The h function is needed to be estimated from

the data first. Since σ2 = h(µ), the standard deviation can be written as a

non-decreasing function of the mean, σ = h(µ). Due to the piecewise-constant

pattern of the underlying signal, σ2
i can be estimated by σ̂2

i = (ri − ri+1)
2/2 and

the empirical mean µ̂i can also be estimated by µ̂i = (ri+ ri+1)/2. This discussion

motivates the following regression setup:

σ̂2
i = h(µ̂i) + ϵi. (5.7)

As h should be a non-decreasing function of µi, h can be estimated via a monotonic

regression. Also, the standard deviation σ can be estimated by h1/2.

In this chapter, a “pool-adjacent-violators” algorithm for least-squares isotone

regression described in Johnstone & Silverman (2005a) is used. Given a set of

data points (µ̂i, σ̂
2
i ), the objective of isotone regression is to find a non-decreasing

function h(µ̂i) that minimizes the sum of squared differences between the observed

response σ̂2
i and the fitted values hi. Mathematically, this problem can be written

by

f(µ̂) =
∑
i

w(σ̂2
i − hi)

2 → min! (5.8)
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which has to be minimized over hi under the inequality restrictions h1 ≤ h2 ≤
. . . ≤ hn. The wi in the equation above are some optional observation weights.

The weights wi ≥ 0 are added to the equation (5.8) for generality, although usually

wi = 1 (in this chapter wi is equal to 1 also).

Let us assume that the pairs (µ̂i, σ̂
2
i ) are ordered with respect to the predictors

µ̂i. Let l be the index of iteration and p be the index of the blocks where

p = 1, . . . , B. The pool-adjacent-violators algorithm can be performed as follows.

1. For l = 0, set the initial solution as h
(0)
i := σ̂2

i and set p = n which means

that each observation h
(0)
p is set to be a block.

2. Merge h(l)-values into blocks if h
(l)
p+1 < h

(l)
p .

3. Solve f(µ̂) in equation (5.8) for each block p.

4. If there is h
(l)
p+1 < h

(l)
p increase l := l + 1 and go beck to step 2.

The iteration stops when all the blocks are increasing, i.e., h
(l)
p+1 ≥ h

(l)
p . Finally,

the block values are increased with respect to the observations i = 1, . . . , n such

that the final result is the vector ĥ of length n with elements in increasing order.

5.4.2 Variance Stabilisation: TGUH-Fisz Transformation

To bring the heteroscedastic noise problem into homoscedastic noise, the variance

stabilisation procedure holds an important role. In the proposed method, variance

stabilisation is performed in the unbalanced Haar wavelet domain. Due to the

‘unbalanced’ nature of the wavelet used, it allows us to remove the dyadic artefact

of the original DDHF method. The variance stabilisation procedure is performed

by first, applying TGUH wavelet transform (Fryzlewicz, 2018) to decompose the

data into several scales and bring them into unbalanced wavelet domain and then

performing Fisz transform to stabilised the decomposed data.

The TGUH wavelet transform is a bottom-up method that utilises unbalanced

wavelets to translate the sequence ri into a set of different type coefficients that

form an unary-binary tree structure (Fryzlewicz, 2018). The detailed procedure

of the TGUH transform has been described in Section 3.3.1. But for a quick

reminder, here a brief explanation is presented.
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The TGUH transform is started by constructing adjacent pairs of local rescaled

average coefficients named smooth coefficients, cs,e. Given the sequence ri of copy

number ratio observations, the smooth coefficients, cs,e, in the region i = s, . . . , e,

is given by

cs,e =
1√

e− s+ 1

e∑
i=s

ri. (5.9)

At each iteration j, let Cj = {cs,e} to be the set of smooth coefficients of the data

ri, and αj to be the length of the smooth coefficients, after the j-th iteration.

The main idea of the TGUH transform is to concentrate as little as possible

power of the data at the ‘finer’ or lower levels scale. This is attained by merging

⌈ραj⌉ pairs of regions which are thought to have the smallest variability. The

merged regions are determined by computing the detail coefficients, ds,b,e, which

represent the ‘difference’ between two consecutive regions and select its ⌈ραj⌉
smallest absolute value. The ρ parameter describes the number of regions merged

at each iteration and the parameter ρ is set to 0.01 as suggested by (Fryzlewicz,

2018) in the remainder of the chapter.

For j = 1, initial smooth coefficients are assigned to be the data, C1 =

{c1,1, c2,2, . . . , ci,i, . . . , cn,n} = {r1, r2, . . . , ri, . . . , rn}. Then the detail coefficients,

ds,b,e, for each adjacent pair in Cj can be computed as

ds,b,e = ls,bcs,b − rb+1,ecb+1,e, (5.10)

where (ls,b,−rb+1,e) is the ‘detail’ filter with restriction: l2s,b + r2b+1,e = 1 and

ds,b,e = ls,bcs,b − rb+1,ecb+1,e should be zero if (rs, . . . , re) is a constant vector.

Roughly speaking, the indices s, b and e correspond to the approximate location of

the start, breakpoint, and end of the unbalanced Haar wavelet used, respectively.

The detail coefficients of scale j are chosen by sorting the sequence |ds,b,e|
in ascending order then save the ⌈ραj⌉ pairs of the smallest absolute value of

the detail coefficient vector. Then, the new local smooth coefficients, Cj+1, are

produced by merging the regions that correspond to the selected detail coefficients

and computing the scaled average of the data in those merged regions. These

procedures are repeated until only one detail coefficient is extracted. Therefore,

at the end of the iteration, a set of detail coefficients dj,ks,b,e is obtained where j
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5.4 Data-driven TGUH-Fisz Method

denotes the iteration or scale and k indexes the detail coefficients according to

increasing s at each scale j; k = 1, . . . , K(j).

One advantage of the TGUH transform due to the ‘greedy’ and ‘unbalanced’

characteristic is its flexibility to have detail coefficients ds,b,e that correspond to

wavelets whose either left/right (b − s + 1/e − b) region length is very short at

the coarser (larger) scale. This means that it is possible to store the significant

‘difference’ related to short segments at the coarser scale that tend to survive after

thresholding. This gives the benefit of improving the sensitivity of the method in

estimating short segments.

Note that now we have a set of detail coefficients, {dj,ks,b,e}, and the estimation of

h1/2(µi) which is approximately equal to the standard deviation of {dj,ks,b,e}. Thus,
the stabilised detail coefficients can be obtained through a simple standardisation

procedure as follows:

1. Modify the smooth coefficients cj,ks,e to transform them into local means of

the data

c∗j,ks,e = (e− s+ 1)−1/2cj,ks,e. (5.11)

2. If ĥ(c∗j,ks,e ) ̸= 0, form the TGUH–Fisz stabilised coefficients d∗j,ks,b,e by divid-

ing the detail coefficients dj,ks,b,e, by its local estimated standard deviation

ĥ1/2(c∗j,ks,e )

d∗j,ks,b,e =
dj,ks,b,e

ĥ1/2(c∗j,ks,e )
. (5.12)

Otherwise, set d∗j,ks,b,e = dj,ks,b,e. In a non-wavelet setting, the above ratio

transformation is similar to that studied by Fisz (1955) which justifies the

name of TGUH-Fisz transform.

At this stage, the stabilised detail coefficients, d∗j,ks,b,e, are obtained which are

approximately Gaussian with mean zero and variance one. This means that now

the heteroscedastic noise has been transformed into a homoscedastic noise and,

therefore, any suitable Gaussian wavelet thresholding can be used.
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5.4.3 Thresholding

Unlike the standard TGUH denoising which only uses connected thresholding,

a two-stage thresholding technique as explained in the Chapter 4.3.2 is used

for the DDTF method. It applies connected thresholding to set those detail

coefficients whose values are less than a specific threshold to zero and unconnected

thresholding to control the minimum estimated segment length, m∗, say.

Specifically, let the children coefficients of d∗j,ks,b,e be the set of finer-scale coeffi-

cients whose support is entirely inside [s, e]:

C
j,k
s,b,e = {d∗j

′,k′

s′,b′,e′ : [s
′, e′] ⊆ [s, e] for all j′ = 1, . . . , j − 1}.

The connected thresholded stabilised coefficients d∗j,ks,b,e is given by

d̂∗j,ks,b,e = d∗j,ks,b,eI{∃d
∗j′,k′
s′,b′,e′ ∈ C

j,k
s,b,e > λ}, (5.13)

where I{·} is the indicator function.

Using only connected thresholding often leads to the problem of single-point

spikes occurring in the estimation. ‘Spikes’ are likely to occur when the detail

coefficients d∗j,ks,b,e, with either e − b or b − s + 1 equals to one, survive the con-

nected thresholding. To control the occurrence of these ‘spikes’, the unconnected

thresholding is applied to the d̃∗j,ks,b,e which is given by

d̃∗j,ks,b,e = d̂∗j,ks,b,eI{(b− s+ 1) > m∗}I{(e− b) > m∗}. (5.14)

Based on the simulation in Section 4.4.5, setting m∗ = 2 has enabled a

significant reduction of spurious change-points that are generally caused by single-

point outliers. For reasonably low values of m∗ ≥ 2 (i.e. three and four), the

results are very similar to m∗ = 2 which indicates that the conclusion is not

sensitive to the choice of m∗, for m∗ ≥ 2. This is shown in the Appendix.

5.4.4 Signal Reconstruction

The last step is the reconstruction of the estimated segment. The final estimator

of fi is obtained by setting the value of the signal between two consecutive

breakpoints to be the average of all copy number ratio data in ri over that interval.
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Since the estimated location of breakpoints are given by index q in the survived

stabilised detail coefficients d̃∗j,ks,b,e, our final estimator f̂ is given by

f̂t =
1

ηl+1 − ηl

ηl+1∑
s=ηl

rs, (5.15)

for t ∈ [ηl, ηl+1] and ηl = {0, b1, b2, . . . , bN , n}. The n is the length of the copy

number ratio data ri and {bl} denote the collection of b ∈ d̃∗j,ks,b,e in ascending order

where l = 1, .., N and N is the number of estimated change-points.

5.5 Comparison of DDHF, DDHF+T, and DDTF

So far, the standard DDHF method (Fryzlewicz & Delouille (2005)), the DDHF

method with TGUHm thresholding (DDHF+T method), and the proposed DDTF

method have been described. In this section, the focus is to discuss the differences

of these methods in more detail from the detail coefficients’ points of view. For

this matter, it is important to be able to visualise the detail coefficient produced

by both Haar and TGUH transformations. Here, two kinds of visualisation of the

wavelet coefficients are used to illustrate each of those transformations.

For the Haar wavelet transform, the first visualisation is shown in the middle

left panel of Figure 5.2. The figure is produced by ywd function from wavethresh

R package Nason (2016). Each of Haar wavelet coefficients djk is plotted with the

finest-scale coefficients at the bottom of the plot and the coarsest at the top. The

level or parameter j is indicated by the left-hand axis. The value of the coefficient

is displayed by a vertical mark located along an imaginary horizontal line centred

at each level. The magnitude of coefficients at each level is plotted according

to a scale that varies according to level. The k, or location parameter, of each

djk wavelet coefficient is labelled ‘Translate’, and the horizontal positions of the

coefficients indicate the approximate position in the original sequence from which

the coefficient is derived. The second visualisation of the Haar wavelet transform

is shown in the bottom left panel of Figure 5.2. This attempts to visualise the

magnitude of the wavelet coefficients more clearly by plotting the value/magnitude

of coefficients with regards to their location hence each coefficients are comparable.
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Figure 5.2: Top row: identical copies of the simulated data. Middle: the first

visualisation of Haar wavelet coefficients (left) and TGUH coefficients (right) of

the simulated data. The level or parameter j is indicated by the left-hand axis.

The magnitude of the coefficient is displayed by a vertical mark located along an

imaginary horizontal and the horizontal positions of the coefficients indicate the

approximate position in the original sequence from which the coefficient is derived.

For the TGUH coefficients plot, the length of the basis used is denoted by the

horizontal lines. Bottom: the second visualisation of Haar wavelet coefficients

(left) and TGUH coefficients (right). The second visualisation of both the Haar

and TGUH coefficient plot the magnitude of the coefficients with regards to their

corresponding location of the original data.
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For TGUH wavelet transform, two kinds of visualisations are also considered.

The first visualisation (see middle right panel of Figure 5.2) intends to explain the

region merges to produce a detail coefficient ds,b,e at each scale. The region merges

are denoted by a horizontal line with 3 dots. The first, second, and third dot

denote indices s, b, and e of the detail coefficient dj,ks,b,e respectively. The line that

only has 2 dots indicates that s = b which means the first dot denotes both s and

b. The region merges are plotted with the finest-scale coefficients at the bottom

of the plot and the coarsest at the top. The level is indicated by the left-hand

axis. The value of the detail coefficient is displayed by a vertical mark located

along the region merges line that corresponds to the coefficient. The position

of the coefficients on the region merges line indicates the index b or in terms of

its wavelet shape, it denotes the location of the breakpoint of the corresponding

wavelet. The red and blue colours of the lines show the positive and negative

signs of the coefficients, respectively. Whereas the black dashed lines indicate the

detail coefficients which are equal to zero. For the second visualisation of the

TGUH transform, the TGUH coefficients are plotted using the exact same way as

the second visualisation of the Haar wavelet transform (see bottom right panel of

Figure 5.2).

Figure 5.3: An example of simulated data contaminated by Gaussian noise with

mean zero and variance σ2 = 0.22f 2
i . Grey dots denote the simulated data. Black

solid line denotes the true pattern.

In the following subsections, the characteristic of each method is evaluated
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5.5 Comparison of DDHF, DDHF+T, and DDTF

using the wavelet coefficients visualisations defined above. For the purpose

of illustration, a simple heteroscedastic change-points detection problem was

considered. A simulated data contaminated by Gaussian noise with mean zero

and variance σ2 = 0.22f 2
i was used as shown in Figure 5.3.

5.5.1 Data-Driven Haar-Fisz (DDHF)

The variance stabilisation procedure of the DDHF method is performed by applying

Fizs transform in Haar wavelet domain. In this section, for the simplicity of

illustration, the DDHF method procedure is divided into three main stages:

(i)variance stabilisation stage, (ii)denoising stage, and (iii)reconstruction stage.

Figures 5.4, 5.5, and 5.6 show each those stages, respectively.

First, the Haar transform is applied to the data to obtain Haar wavelet

coefficients. Then, Fisz transform is performed by dividing wavelet coefficients

by their approximate standard deviation. The change of wavelet coefficient by

this Fisz transform can be seen in Figure 5.4. The finest or scale 9 coefficients

that relate to the higher variability in the original data tend to have higher values.

But after the Fisz transform (right side panel of Figure 5.4), even only using

eyes, we can see that the magnitude of coefficient become more uniform which

indicates that the variance is stabilised. If one takes an inverse of these stabilised

coefficients, as shown in the top right panel of Figure 5.4, one can see that the

data is stabilised as well.

The next procedure is denoising. For this purpose, Haar wavelet shrinkage with

hard thresholding is used. The threshold value, λ, is obtained by the universal

threshold which is given by λ = σ
√
2 log n. In practice, σ can be easily estimated

by computing the Median Absolute Deviation (MAD) of 21/2|Xi+1 −Xi|n−1
i=1 , in

which a MAD of the finest scale Haar wavelet coefficients. The plots of the

wavelet coefficients before and after thresholding are shown in Figure 5.5. The

left column of Figure 5.5 shows the simulated data and wavelet coefficients before

thresholding and the right column shows them after thresholding. Most of the

wavelet coefficients at the finer level are set to zero by thresholding and only leave

the coefficient which likely to relate to the true function. In this case, the locations

of significant changes in the simulated data are captured by coefficients at scale 6.
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Figure 5.4: Illustration of the change of wavelet coefficients in variance stabilisation

stage of DDHF method. Left hand column corresponds to the wavelet coefficients

before stabilisation and right hand column to the coefficients after stabilisation.

Top row: Simulated data before (left) and after (right) variance stabilisation

by Haar-Fisz transform. Middle row: Plot of the magnitude of Haar wavelet

coefficient before (left) and after (right) the Fisz transform. Bottom row: Plot of

the magnitude of Haar wavelet coefficients with regard to their scale and location

before (left) and after (right) the Fisz transform.
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But due to the structure of Haar transformation, the coefficients at coarser scales

(greater than 6) whose corresponding wavelet basis overlaps with the location of

those significant changes location also survived the thresholding. Each of these

survived coefficients will result in a single change-points. This cause the tendency

of the DDHF method to overestimate change-points by forming many additional

change-points at the dyadic location.

After the piecewise estimation for stabilised data is obtained, the last proce-

dure is done by performing the inverse Haar-Fizs transform to bring back the

segmentation to fit the original simulated data. This can be done by applying

Haar transform to the stabilised data estimate, undoing the Fisz transform pro-

cedure by remultiplying the wavelet coefficients by the estimated local standard

deviation relate to those coefficients, and then performing the inverse Haar wavelet

transform. Figure 5.6 shows the illustration of the estimation before (left column)

and after (right column) the inverse Haar-Fisz transform. The top left panel of

Figure 5.6 shows the final result of the DDHF method. Each of change-points

estimated from the denoising step is isolated which causes the final estimator to

have the exact same number of change-points.

5.5.2 DDHF Method Using TGUHm Wavelet Shrinkage

(DDHF+T)

As in the previous subsection, here, the DDTF+T method is also divided

into three main stage: (i)variance stabilisation stage, (ii)denoising stage, and

(iii)reconstruction stage. The illustration of the first stage of DDHF+T method

is exactly same as DDHF method, and is shown in Figure 5.4. The difference

over DDHF method is located in the second stage, here TGUHm denoising is

performed and the illustration of the change of wavelet coefficients is presented in

Figure 5.7. The second row of Figure 5.7 shows the TGUH coefficients before (left)

and after (right) thresholding. Most of the small coefficients that correspond to

the noise were thresholded and only leave those whose values are high and likely

to relate to the true change. Compare to the Haar wavelet threshold in Figure

5.5, the TGUHm shrinkage gives a better estimation in terms of estimating the

change-point number and location.
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Figure 5.5: Illustration of the change of wavelet coefficients in denoising stage of

DDHF method. Left-hand column corresponds to the wavelet coefficients before

denoising and the right-hand column to the coefficients after denoising. Top

left: Simulated data after variance stabilisation by Haar-Fisz transform before

denoising. Top right: Black solid line denote the denoising result. Middle row:

Plot of the magnitude of Haar wavelet coefficient before (left) and after (right)

the denoising. Bottom row: Plot of the magnitude of Haar wavelet coefficients

with regard to their scale and location before (left) and after (right) the denoising.
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Figure 5.6: Illustration of the change of wavelet coefficients in reconstruction stage

of DDHF method. The left-hand column corresponds to the wavelet coefficients

before reconstruction and right-hand column to the coefficients after reconstruction

(final estimator). Top left: Simulated data after variance stabilisation. Black

solid line denote the denoising result. Top right: Black solid line DDHF estimate

result after reconstruction. Middle row: Plot of the magnitude of Haar wavelet

coefficient before (left) and after (right) the inverse Haar-Fisz transform. Bottom

row: Plot of the magnitude of Haar wavelet coefficients with regard to their scale

and location before (left) and after (right) the inverse Haar-Fisz transform.
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Figure 5.7: Illustration of the change of wavelet coefficients in denoising stage

of DDHF+T method. Left hand column corresponds to the wavelet coefficients

before denoising and right hand column to the coefficients after denoising. Top

left: Simulated data after variance stabilisation by Haar-Fisz transform before the

denoising. Top right: Black solid line denote the denoising result using TGUH

shrinkage. Middle row: Plot of the magnitude of Haar wavelet coefficient before

(left) and after (right) the denoising. Bottom row: Plot of the magnitude of Haar

wavelet coefficients with regard to their scale and location before (left) and after

(right) the denoising.
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Figure 5.8: Illustration of the change of wavelet coefficients in reconstruction stage

of DDHF+T method. Left hand column corresponds to the wavelet coefficients

before reconstruction and right hand column to the coefficients after reconstruction

(final estimator). Top left: Simulated data after variance stabilisation and the

denoising stage. Black solid line denotes the denoising result. Top right: black

solid line denotes DDHF+T estimate (final estimator). Middle row: Plot of

the magnitude of Haar wavelet coefficient before (left) and after (right) the

inverse Haar-Fisz transform. Bottom row: Plot of the magnitude of Haar wavelet

coefficients with regard to their scale and location before (left) and after (right)

the inverse Haar-Fisz transform.
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After the TGUHm estimate of the stabilised data is obtained, the inverse

Haar-Fisz transform is performed to reconstruct the result. This is done by first,

taking the Haar wavelet transform to the TGUHm estimate, then remultiplying

the wavelet coefficients by the estimated local standard deviation, and lastly

performing the inverse Haar wavelet transform. Due to the dyadic structure of

the Haar wavelet transform, each of the changes (jumps/drops) in the TGUHm

estimate will be represented by one or more Haar wavelet coefficients. Only if the

change is located exactly in the middle of the data, it will be represented by only

a coefficient, otherwise, several coefficients will carry out this information. This

will result in more change-points found in the final estimator as shown in the top

right panel of Figure 5.8.

5.5.3 Data-Driven TGUH-Fisz (DDTF) Method

In order to address the problem that arise in DDHF and DDHF+T method,

instead of only changing the shrinkage procedure with TGUHm denoising, the

DDTF method directly applies the variance stabilisation via Fisz transform in

TGUH wavelet domain.

DDTF method starts by performing TGUH transform into the simulated data.

The resulting TGUH coefficients are shown in the middle and bottom left panel of

Figure 5.9. One can see that the TGUH coefficients related to the high variability

region have higher values. Then the Fisz transform is applied to these coefficients

to stabilise the variance. The right column of Figure 5.9 shows the simulated data

and TGUH coefficient after Fisz transform. Now, the coefficients that correspond

to the noise are more uniform while all the large/significant coefficients are still

prominent.

The next step is denoising. Similar to the DDHF+T method, two-stage

thresholding with a universal threshold is used. By this thresholding procedure,

most of the small coefficients corresponding to the noise are removed/set to

zero leaving the large coefficients which are likely related to the true changes.

Figure 5.11 illustrates the simulated data and TGUH coefficients before and after

thresholding. The black solid line in the top right panel of Figure 5.10 illustrates

the piecewise pattern that could be produced by applying inverse TGUH transform
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to the survived coefficients after the thresholding stage. Note that this is just for

illustration as in the DDTF method, it does not need to bring back the domain

from wavelet to ‘time’ domain.

The final step is the reconstruction stage. The final estimator of fi is obtained

by setting the value of the signal between two consecutive breakpoints to be the

average of all copy number ratio data over that interval. The illustration of the

change of wavelet coefficients in the reconstruction stage of the DDTF method

is presented in Figure 5.11. Unlike the DDHF+T method, each of the survived

coefficients from the thresholding stage only corresponds to a single change-point

in the final estimator, hence it will result in cleaner estimation.
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Figure 5.9: Illustration of the change of wavelet coefficients in variance stabilisation

stage of DDTF method. Left hand column corresponds to the wavelet coefficients

before variance stabilisation and right hand column to the coefficients after variance

stabilisation. Top left: Simulated data. Top right: Simulated data after variance

stabilisation by TGUH-Fisz transform. Middle row: Plot of the magnitude of

TGUH wavelet coefficient before (left) and after (right) the Fisz transform. Bottom

row: Plot of the magnitude of TGUH wavelet coefficients with regard to their

scale and location before (left) and after (right) the Fisz transform.
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Figure 5.10: Illustration of the change of wavelet coefficients in denoising stage of

DDTF method. Left hand column corresponds to the wavelet coefficients before

denoising and right hand column to the coefficients after denoising. Top left:

Simulated data after variance stabilisation by TGUH-Fisz transform before the

denoising. Top right: Black solid line denote the denoising result using two-stage

thresholding. Middle row: Plot of the magnitude of TGUH wavelet coefficient

before (left) and after (right) the denoising. Bottom row: Plot of the magnitude

of TGUH wavelet coefficients with regard to their scale and location before (left)

and after (right) the denoising.
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Figure 5.11: Illustration of the change of wavelet coefficients in reconstruction

stage of DDTF method. Left hand column corresponds to the wavelet coefficients

before reconstruction and right hand column to the coefficients after reconstruction

(final estimator). Top left: Simulated data after variance stabilisation and the

denoising. Black solid line denote the denoising result. Top right: DDTF estimate

result. Middle row: Plot of the magnitude of TGUH wavelet coefficient before (left)

and after (right) reconstruction procedure. Bottom row: Plot of the magnitude of

Haar wavelet coefficients with regard to their scale and location before (left) and

after (right) the reconstruction procedure
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5.6 Simulation Study

5.6 Simulation Study

To understand the operating characteristics of the proposed methodology, a

simulation study using four kinds of test functions as shown in Figure 5.12 was

conducted. The first test function includes both of long segments and short

segments to evaluate the performance of the proposed method in estimating both

of those altered segments. Short segments are defined as aberrations with length

between 6–10 data points since, in our real data, a 1 Mb segment is represented

by only 6-7 windows or data points. The second function only contains short

altered segments with various aberrations height to assess the sensitivity of the

methods toward short altered segments. The third one is a simple repetitive

pattern with various segment height which aims to assess the ability of the method

in estimating altered segment with different height at regular location. The last

test function is similar to the third one but the change points are set to be located

at dyadic locations.

The simulated datasets were generated from the model ri = fi + εi where ϵi is

a random error term that follows the assumption described earlier in Section 5.3.

Two kinds of noise types were considered; additive i.i.d Gaussian noise N(0, σ2)

and a mixture of two normal distributions. The mixture of normal distribution

noise is considered to illustrate the extreme values that are commonly found on

copy number data (Nilsen et al., 2012); with probability 1− α the error is drawn

from a distribution N(0, σ2), and with probability α from N(0, d2σ2), typically

with d = 3 and α = 0.05.

For both noise types, the variance σ2 is defined as σ2
i = σ2

0f
2
i to represent

the mean-variance relation in NGS copy number data; several noise level is

considered σ0 = 0.1, 0.2, 0.3, 0.4, and 0.5. Here as one of the interests is to

evaluate the performance of the method deal with a very noisy signal, where

the human eye is not of much help in estimating the true signal and a reliable

automatic statistical technique becomes important. As shown in the second

and third rows of Figure 5.13, it is difficult to identify short altered segments

underlying the noisy signal only by eyes even for the lowest noise level that we

consider (σ0 = 0.1, especially those with the smallest change (0.5)). This setting
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Figure 5.12: The true patterns of copy number alterations, denoted f , in simulated

examples. First row: First true function. The irregular pattern of segment length

is based on common patterns observed in real data. Second row: Second true

function, which aims to characterise the proposed method’s performance in a case

where the underlying true pattern only contains short altered segments. Third

row: Third true function. A test function to assess the ability of the method

in estimating altered segment with different height. Fourth row: Fourth true

function, where contains repetitive pattern with change-points located at dyadic

locations.
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5.6 Simulation Study

is considered to represent a difficult real data situation where the height difference

between segments is almost at its limit.

To assess the performance of the proposed method, the sensitivity or true

positive rate (TPR) and specificity or false positive rate (FPR) were computed.

The TPR is the proportion of the correctly identified change point out of the k

true change points. While the FPR is the proportion of the spurious estimators or

false positives out of the total length of the dataset minus k. The true positives

(TP) or correctly identified change-points is defined as the number of estimated

change-points that are located closest to the true change-point location and inside

a given distance tolerance, δ = 2. While, the number of false positives (FP) is

defined as the remaining change points estimated, FP=P-TP, where P denotes

positives or the total number of change points estimated. The illustration of these

definitions is presented in Figure 3.2.

For illustration, an estimated change-point is classified as TP if it is located

closest and at least two points to the right or left to the true change-point location.

Based on this definition the average of true positive rate (aTPR) and the average

false positive rate (aFPR) were computed over 1000 replicates. To evaluate the

ability of the method in estimating short segments, the average true positive rate

in estimating short segments (aTPRsh) was also calculated. The average mean

squared error (aMSE) to the estimated piecewise constant signal and the true

function also were reported to measure the similarity between the estimated and

true segmentation.

To understand the operating characteristics of the proposed method, it is

compared with some segmentation methods that have been used widely in the

analysis of copy number such as Circular Binary Segmentation (CBS) (Olshen

et al., 2004), HaarSeg (Ben-Yaacov & Eldar, 2008), CopyNumber (Nilsen et al.,

2012) and FDRseg (Li et al., 2016). For the CopyNumber method, same as in

Chapter 4, the CopyNumber method is applied twice, with its main parameter γ

set to be 40 and 12 to give different balances between sensitivity and specificity as

suggested in Nilsen et al. (2012). The results for these two separate analyses are

denoted as Copy12 and Copy40, respectively. The TGUHm method introduced

in Chapter 4 which has been proven as a powerful segmentation method that

employs unbalanced Haar wavelets is also evaluated. Moreover, to emphasise
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Figure 5.13: First row: The first (left panel) and second (right panel) type of

test function denoted f . Second row: The simulated data contaminated with i.i.d

Gaussian noise N(0, σ2
0) that corresponds to the first row test functions. Third

row: The simulated data contaminated with a mixture of two normal distributions

0.95×N(0, σ2) + 0.05×N(0, 3σ2) that corresponds to the first row test function,

where variance σ2 is defined as σ2
i = σ2

0f
2
i . This is an example for σ0 = 0.1
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the advantage of the use of TGUH wavelets compared to the ‘balanced’ Haar

wavelets in variance stabilisation, the data-driven Haar-Fisz (DDHF) method

(Fryzlewicz & Delouille, 2005) which performs variance stabilisation in ‘balanced’

Haar wavelet domain is also considered as comparison method.

The following list labels and describes three variation wavelet denoising of the

DDHF methods considered in the simulation.

� DDHF: The DDHF method with the universal thresholding from Donoho

& Johnstone (1994) which uses median absolute deviation (MAD) variance

estimation on all coefficients. This is the default setting of DDHF method

suggested in Fryzlewicz & Delouille (2005)

� DDHF+T: The DDHF method with the TGUHm denoising as explained

in Section 4.3.

� DDHF+B: The DDHF method with the eBayes thresholding as described

in Johnstone & Silverman (2005a).

5.6.1 Results

Figures 5.14, 5.15, 5.16, and 5.17 show the results of the average true positive

rate in estimating correct change-points (aTPR) and in estimating those which

are related to short segments (aTPRsh), the average false positive rate (aFPR)

and mean square error (aMSE) over 1000 simulated data for different noise levels

and types using first, second, third, and fourth type of true function, respectively.

Based on Figure 5.14, for the first type of true function, DDTF shows excellent

results in terms of aTPR and aTPRsh. At some noise levels, it is below DDHF+B

and DDHF+T, but both DDHF+B and DDHF+T come with high aFPR and

aMSE, which means that both of those methods have a tendency to produce

many spurious change-points, especially for DDHF+B. Otherwise, DDTF is able

to present relatively low aFPR and aMSE compared to most of the evaluated

methods for both noise types used in the simulation.
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Figure 5.14: Performance metrics of the simulation based on first type of true

function (see top panel of Figure 5.12). The left (A,C,E, and G) and right

(B,D,F, and H) side corresponds to noise distribution used to contaminate the

simulated data (left: i.i.d Gaussian noise N(0, σ2), right: a mixture of two normal

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)), where variance σ2 is defined as

σ2
i = σ2

0f
2
i . (A) (B) Average of true positive rate in estimating change-points

that corresponds to short segments (aTPRsh). (C) (D) Average true positive

rate (aTPR). (E) (F) Average of false positive rate (aFPR). (G) (H) Average

of mean-square error (aMSE) of the estimated piecewise constant signal to the

true function. The average is taken over 1000 replicates.
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Figure 5.14: Continued.

For the simulation study using the second type of true function, DDHF+T is

the best in terms of aTPR and aTPRsh but, same as the first simulation, it comes

with high aFPR as shown in Figure 5.15. Even though DDTF slightly below

DDHF+T in terms of aTPR and aTPRsh, its aFPR and aMSR are relatively

low. Furthermore, an interesting point to see here is the results of DDTF and

TGUHm are almost overlap for all of the performance metrics. This is happen

due to the pattern of the test function which only contains short altered segments.

In this particular example, DDTF and other data-driven methods only have very

small information to estimate the function h, which gives a disadvantage to our

proposed method. But even in this difficult situation, the performance of the

DDTF method never gets worse than the TGUHm method.

For the results of the simulation study using the third type of true function

(see Figure 5.16, DDTF, DDHF+T, TGUHm, HaarSeg, FDRSeg methods show

an excellent result in terms of aTPR for both types of noise considered. But most

of them are unable to present low aFPR and aMSE, only DDTF has good results

in both metrics. An interesting point here is when the simulation is done using

the true function whose shape is very similar to the third true function but all

change points located at dyadic location, the aTPR or the sensitivity of the DDHF-

based method (DDHF, DDHF+B, and DDHF+T) is much higher, as shown in

Figure 5.17. This superiority comes from one of the unique characteristics of the

‘balanced’ Haar wavelet transform used where the discontinuity or breakpoints

of the basis are always aligned at the dyadic location of the input data. But it

comes with high aFPR since due to this characteristic, it also tends to estimate

spurious change points at other dyadic locations.
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Figure 5.15: Performance metrics of the simulation based on second type of true

function (see second row of Figure 5.12). The left (A,C,E, and G) and right

(B,D,F, and H) side corresponds to noise distribution used to contaminate the

simulated data (left: i.i.d Gaussian noise N(0, σ2), right: a mixture of two normal

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)), where variance σ2 is defined as

σ2
i = σ2

0f
2
i . (A) (B) Average of true positive rate in estimating change-points

that corresponds to short segments (aTPRsh). (C) (D) Average of false positive

rate (aFPR). (E) (F) Average of mean-square error (aMSE) of the estimated

piecewise constant signal to the true function. The average is taken over 1000

replicates. The aTPR results are omitted as the simulated data only contains an

isolated short segment.
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Figure 5.16: Performance metrics of the simulation based on third type of true

function (see third row of Figure 5.12). The left (A,C,E, and G) and right

(B,D,F, and H) side corresponds to noise distribution used to contaminate the

simulated data (left: i.i.d Gaussian noise N(0, σ2), right: a mixture of two normal

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)), where variance σ2 is defined as

σ2
i = σ2

0f
2
i . (A) (B) Average of true positive rate in estimating change-points

that corresponds to short segments (aTPRsh). (C) (D) Average of false positive

rate (aFPR). (E) (F) Average of mean-square error (aMSE) of the estimated

piecewise constant signal to the true function. The average is taken over 1000

replicates. The aTPRsh results are omitted as the simulated data only contains

long segments.
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Figure 5.17: Performance metrics of the simulation based on fourth type of true

function (see fourth row of Figure 5.12). The left (A,C,E, and G) and right

(B,D,F, and H) side corresponds to noise distribution used to contaminate the

simulated data (left: i.i.d Gaussian noise N(0, σ2), right: a mixture of two normal

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)), where variance σ2 is defined as

σ2
i = σ2

0f
2
i . (A) (B) Average of true positive rate in estimating change-points

that corresponds to short segments (aTPRsh). (C) (D) Average of false positive

rate (aFPR). (E) (F) Average of mean-square error (aMSE) of the estimated

piecewise constant signal to the true function. The average is taken over 1000

replicates. The aTPRsh results are omitted as the simulated data only contains

long segments.
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To further evaluate the operating characteristics of each method, the area

under the curve (AUC) of the receiver operating characteristic (ROC) curve is also

calculated for each segmentation method across different values of σ2. Figure 5.18

reports the area under the ROC curve at each noise level. It shows that for both

true functions, our proposed method is relatively better than most of the other

methods for both of the noise types and all of the σ0 levels.

A more careful inspection was done by plotting the proportion of estimated

change-point against location as shown in Figure 5.19, 5.20, 5.21, and 5.22. The

reason for the poor aFPR results of DDHF-based methods (DDHF, DDHF+B,

and DDHF+T) is obviously seen here. All of Figure 5.19, 5.20, and 5.21 show that

only change-points estimated by DDTF, CBS and Copy40 methods concentrated

in the true locations while DDHF-based methods have a propensity to estimate

change-points at some particular locations (dyadic location) and the remaining

methods (TGUHm, HaarSeg, Copy12, and FDRSeg) tend to estimate false change-

points at high segments (with higher variance). This tendency is clearly shown

in Figure 5.21 and Figure 5.22, higher the mean level, most of the methods fail

to present a clean segmentation. Here, only the plot for datasets contaminated

with a mixture of two normal distributions 0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)

is presented, where variance σ2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.2. But this

behaviour also can be seen through all the noise levels evaluated. The results for

other noise levels are shown in Appendix C.
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Figure 5.18: AUC of ROC of the methods correspond to the first type (first row),

second type (second row), third type (third row), and fourth type (fourth row)

simulated data. The left and right side corresponds to noise distribution used

to contaminate the simulated data (left: i.i.d Gaussian noise N(0, σ2), right: a

mixture of two normal distributions 0.95 × N(0, σ2) + 0.05 × N(0, 3σ2), where

variance σ2 is defined as σ2
i = σ2

0f
2
i ).
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Figure 5.19: Proportion of times a change-point is estimated against location

corresponds to the first test function (first row of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.2. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure 5.20: Proportion of times a change-point is estimated against location

corresponds to the second test function (second row of Figure 5.12). Each value

denotes the proportion of a change-point found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.2. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding test

function. The left and right vertical axis shows the proportion of the estimated

change point and the corresponding test function’s height, respectively.

138



5.6 Simulation Study

location

DDTFDDTF

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHF+TDDHF+T

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHFDDHF

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHF+BDDHF+B

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

TGUHmTGUHm

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

CBSCBS

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

HaarSegHaarSeg

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

Copy12Copy12

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

Copy40Copy40

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

FDRSegFDRSeg

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o
rt

io
n
 o

f
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

Figure 5.21: Proportion of times a change-point is estimated against location

corresponds to the third test function (third row of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location out

of 1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.2. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure 5.22: Proportion of times a change-point is estimated against location

corresponds to the fourth test function (fourth row of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location out

of 1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.2. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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5.7 Application to Copy Number DNA Data

In order to see the types of segmentation from each method, Figure 5.23 shows the

results of segmentation in chromosome 3 of TMA-127 patient data (Belvedere et al.,

2012). The whole genome segmentation using the DDTF method is presented in

the Supplementary material. Figure 5.23 indicates that only the DDTF and CBS

methods are able to present clear segmentation for the higher mean level segment

with high variance which is located around position 1200. In more detail, the

DDTF method also estimates short altered segments at low mean level segments.

Since the truth in real data is unknown, it is difficult to confirm whether these

short altered segments are real changes or not, but based on the simulation results,

we speculate that they are true changes.

5.8 Conclusion

In this chapter, a segmentation method, DDTF method, was proposed for detecting

change-points with applications in copy number segmentation where the data

variance depends on the mean. The method was developed based on the DDHF

methodology which is known to be effective in variance stabilisation. A novel

application was presented which includes the TGUH denoising method to improve

its performance in estimating change-point location in the DDHF method.

The simulation study suggested that the proposed method yields excellent

results in terms of estimating change-point locations, especially in estimating short

segments. This advantage also found in some of the DDHF-based methods but it

is followed by a high false positive rate due to the Haar wavelet transformation

used in variance stabilisation and reconstruction stages. Unlike those methods,

the DDTF method replaces the use of the balance Haar wavelet transform with

unbalanced Haar wavelet transform. This enables us to match the likely structure

of the data by adjusting the breakpoint of the unbalanced Haar wavelets which

results in more accurate estimates of change-points. The spurious change-points at

dyadic locations that often occurs in the DDHF-based methods are well addressed

by DDTF method. This is important for the identification of copy number

alterations as the alterations may occur in any location in the genome. Therefore
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Figure 5.23: CNA estimate as a result of segmentation of chromosome 3 in patient

TMA-127 using ten different segmentation methods.
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based on the simulation done, in the real data application, when the user thinks

that the data might contains many short altered segments, the DDTF method

would be the good choice to be used.

It is also interesting to note that DDTF still performs well even when the data

do not give enough information to estimate mean-variance relationship, i.e. in

the case when the underlying pattern only contains short altered segments. It

can preserve its performance to at least not worse than the TGUHm method but

still better than the basic DDHF method. This advantage has made the proposed

method a flexible alternative for change-points estimation even though there is

insufficient mean-variance information in the data.
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Chapter 6

Wavelet-based Cancer Subtypes

Classification

6.1 Introduction

In previous chapters, two unbalanced wavelet-based segmentation methods have

been introduced. Those methods can be used to separate noise from the CNA

data. The resulting CNA estimates can then be processed into a classification

procedure. In this chapter, the aim is to explore the advantage of wavelet analysis

in classifying cancer subtypes, particularly lung cancer.

Lung cancer is one of the major causes of cancer mortality in the world (Siegel

et al., 2012). The most common lung cancer that contributes to this is non–small

cell lung cancer (NSCLC) which can be further divided into lung adenocarcinoma

(LA) and lung squamous cell carcinoma (LS). These two subtypes are often

classified together as NSCLC even though they have different biological signatures

(Herbst et al., 2008). Hence, it is essential to investigate statistical models to

distinguish these two subgroups clinically.

Changes in DNA copy number or copy number alteration (CNA) is a hallmark

of cancer cells (Hanahan & Weinberg, 2011). Each LS and LA tumour subtype has

unique patterns of copy number alteration (CNA) due to the differences in their

development process (Jamal-Hanjani et al., 2017). Previous studies have shown

that CNAs bring important key information for the prediction of the NSCLC

subtypes (Gusnanto et al., 2015; Li et al., 2014).
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The use of the CNA segmented line itself is already known to be useful for

investigating the important gains and losses along the genome that contribute to

cancer subtype classification. But in many cases of data classification, representing

data as wavelet-transformed variables may improve classification performance.

Functions of wavelet coefficients, which enable to emphasise the localised infor-

mation of the original data, can be used as explanatory variables in a predictive

regression method. The wavelet transform allows rapid identification of sudden

segment changes in the original data and represents them as a set of wavelet

coefficients. It also allows decomposing data into different scales that bring the

opportunity for improved interpretation by identifying which resolution scales are

the most informative.

This chapter presents a general framework for the application of wavelet

transformation to the classification of lung cancer CNA data. This framework is

started by first performing segmentation to separate noise from the CNA data

and splitting it into regions of equal copy number. For this step, the segmentation

methods that have been developed in Chapter 5 can be utilised. Then wavelets

are used to transform the segmented CNA data into a set of wavelet coefficients

that bring its localised information. The key information extracted by the wavelet

transform here, is the localised mean and difference. Finally, a classification

method uses the resulting wavelet coefficients to classify the CNA data into one

of the non–small cell lung cancer subtypes; lung adenocarcinoma (LA) or lung

squamous cell carcinoma (LS). For the classification method, a logistic regression

model with a sparse solution is condidered. The term ‘sparse’ refers to the case

where the coefficients of some variables are forced to be exactly zero, while the

others are estimated to be away from zero. Due to this sparseness, only coefficients

related to the most significant variables are kept, which enables us to identify the

key variables that are informative to distinguish lung cancer subtypes.

The details of the proposed framework are described in Section 6.2. Then it is

evaluated using simulated data as shown in Section 6.3 and applied to the real

CNA data as shown in Section 6.4.

145



6.2 Methodology

6.2 Methodology

In this section, the detailed classification procedure for CNA data using wavelet

transform is described. The procedure can be outlined into four main stages as

follows.

1. Stage 0. Data preparation. For easier comparison between CNA profiles,

several data preparation steps need to be performed such as determining

the optimal window size of the raw CNA data and data normalisation. This

step is particularly suggested for CNA data obtained from NGS technology

and can be ignored for other copy number data.

2. Stage 1. Segmentation. The normalised CNA profiles are segmented to

translate noisy data into regions of equal copy number.

3. Stage 2. Non-decimated Haar wavelet transform (NDWT). Take

the NDWT of segmented CNA profiles which results in a set of NDWT detail

and scaling coefficients. The detailed explanation about NDWT transform

is explained in Section 3.2.

4. Stage 3. Classification using Logistic regression. Perform prediction

algorithm (logistic regression) using the NDWT coefficients.

In this chapter, logistic regression is used as it has been proven to be a valid

choice for classification using copy number alteration (CNA) data (Ghosh & Chin-

naiyan, 2005; Kaymaz et al., 2021). Furthermore, because the wavelet transform

translates signals into sparse representation, and this chapter aims to pinpoint

key genomic markers for lung cancer subtype classification (squamous carcinoma

and adenocarcinoma), using logistic regression with Lasso is advantageous. This

method provides a sparse solution and automatically selects relevant features

while shrinking the coefficients of less important features to zero.

For future study, some classification methods such as Naive Bayes, Decision

Trees, and Random Forests may offer distinct advantages. However, those methods

were not chosen to be used in this chapter because based on practical knowledge,

some of those methods have certain disadvantages that we aim to avoid for

CNA analysis: the Naive Bayes assumes feature independence, which may not
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6.2 Methodology

align well with correlated genomic markers in CNAs, and the decision Trees and

Random Forests capture nonlinearities and interactions but might struggle with

high-dimensional data.

6.2.1 Data Preparation

In our case, copy number alterations data obtained from 76 lung cancer patients

(n = 76) from the Leeds Teaching Hospitals NHS Trust (UK) as explained in

Section 2.4 are used. For this dataset, with the 150 kb window size, the reads are

binned approximately into 20,000 genomic windows. Since missing values can be

problematic for the analysis, the sex chromosomes and the centromere regions are

removed. At the end of this removing procedure, the number of genomic windows

q becomes 17,931 (q = 17, 931).

6.2.2 Segmentation

To separate the informative copy number pattern from noise, the data-driven

Haar-Fisz (DDTF) segmentation, which has been explained in detail in Chapter 5,

is performed on the normalised CNA samples. The minimum wing length (m∗)

is set to two to minimise the effect of a single extreme data point. The CNA

estimates from the patients are then summarised in a matrix of size n = 76 by

q = 17, 931. The column is ordered based on genomic locations.

6.2.3 Non-decimated Haar Wavelet Transform of CNA

Profiles

For data such as CNA, where the true pattern underlying the ‘noisy’ data is

a piecewise constant function, the standard transformation such as the Fourier

transform is unsuitable since it captures global frequency information, meaning

frequencies that persist over an entire signal. In contrast, wavelets are able to

decompose a signal into a set of wavelets (or scales). In the context of CNA

analysis, if we use the Fourier transform, localised information in the signal like

a discontinuity will affect the entire coefficients of the series. But if we use the

wavelet transform, it only affects the coefficients produced by the wavelets that

147
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overlap with this discontinuity, which will enable us to identify the ‘informative’

coefficients.

In this study, the non-decimated discrete wavelet transform (NDWT) is con-

sidered to represent CNA estimates in the location and frequency domains. Unlike

the ‘basic’ discrete Haar wavelet transform (DWT) that uses dyadic wavelets,

the NDWT has complete location localisation at each scale, resulting in an over-

complete basis. Therefore, it suits the characteristics of copy number alteration

data as the change points in CNA data do not always occur at dyadic locations

(can be found anywhere along the sequence).

The NDWT will result in two kinds of coefficients: (i) detail coefficient and (ii)

scaling coefficients. The detail coefficients carry the ‘different’ information of two

consecutive pairs while the scaling coefficients carry the ‘average’ information. For

the detail coefficients, at a fine scale (high frequency) resolution level, wavelets

are highly localised which means that the coefficients representing the information

of the number and location of change-points in the corresponding signal more

precisely, while those at a coarser scale measure lower frequency activity meaning

that the coefficient carries the ‘different’ information of two consecutive pairs for

a larger region. Meanwhile, the scaling coefficients contain coarsening of that

in the CNA estimates. As explained in Section 3.2, the procedure of obtaining

scaling coefficients is similar to a moving average smoothing operation, in which,

coarser the scale smoother the signal. However, the NDWT only represents data

of length q at ⌊log2(q)⌋ resolution levels or scales. For both detail and scaling

coefficients, each scale (resolution level) represents activity at approximately twice

the frequency of the previous scale.

For a quick reminder, a brief explanation of the NDWT transform is presented

here. A more details explanation of the NDWT transform is explained in Section3.2.

In the NDWT, the wavelet function ψ (mother wavelet) and Haar scaling function

ϕ (father wavelet) are used, where

ψ(τ) =


1 for τ ∈ [0, 1/2),

−1 for τ ∈ [1/2, 1),

0 otherwise.

and ϕ(τ) =

{
1 for τ ∈ [0, 1),

0 otherwise.
(6.1)
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By using dilation and translation, the wavelet detail and scaling functions at

location k and scale j can be obtained by:

ψj,k(τ) = 2j/2ψ(2j(τ − k)), and ϕj,k(τ) = 2j/2ϕ(2j(τ − k)), (6.2)

where j = 1, 2, . . . , ⌊log2(q)⌋ and k = 0, . . . , q − 1.

The NDWT maps a discrete CNA estimate vector r to a collection of NDWT

detail (dj,k) and scaling (cj,k) coefficients at levels j = 1, 2, . . . , ⌊log2(q)⌋ and

locations k = 0, . . . , q − 1 defined by

dj,k = ⟨r, ψj,k⟩ and cj,k = ⟨r, ϕj,k⟩. (6.3)

Figure 6.1 shows the wavelet transform of a simple piecewise constant signal

and Figure 6.2 is the wavelet transform of a LS patient. The top row shows the

piecewise constant signal and the middle and bottom rows show the plot of its

NDWT detail and scaling coefficients, respectively. The coefficients dj,k and cj,k

are plotted with the finest-scale coefficients at the bottom of the plot, and the

coarsest at the top. The left-hand axis indicates the scale. The magnitude of the

coefficient is denoted by a vertical mark located along an imaginary horizontal

line centred at each level. The horizontal positions of the coefficients indicate the

approximate position in the original data from which the coefficient is derived.
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Figure 6.1: Discrete wavelet detail (middle row) and scaling (bottom row) co-

efficients of a piecewise constant signal. The left-hand axis indicates the scale.

The magnitude of the coefficient is denoted by a vertical mark located along an

imaginary horizontal line centred at each level. The horizontal positions of the

coefficients indicate the approximate position in the original data from which the

coefficient is derived.
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Figure 6.2: First row: copy number ratio of the LS80 cancer patient. Second row:

Haar NDWT detail coefficient. Third row: Haar NDWT detail coefficient. For the

second and third rows, the left-hand axis indicates the scale. The magnitude of

the coefficient is denoted by a vertical mark located along an imaginary horizontal

line centred at each level. The horizontal positions of the coefficients indicate the

approximate position in the original data from which the coefficient is derived.
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6.2.4 Classification using Logistic Regression

Let q be the number of samples and y as a vector of binary cancer subtype with

yi = 1 if the cancer is LS and yi = 0 if the cancer is LA for i = 1, 2, . . . , n.

Let xi ≡ (xi1, ..., xim) be a fixed covariate vector, including the intercept, and

zi ≡ (zji1, ..., z
j
in), where z

j
ik the NDWT detail/scaling coefficients of the k-th

location at a scale j and q is the length of CNA data (since the length of NDWT

detail/scaling coefficients of the CNA data r at each scale is equal to the length

of CNA data itself).

The pi, can be modelled in vector notation as

log
pi

1− pi
= x′ib+ z′iβ (6.4)

where b is fixed regression parameter and β is parameter vectors for the NDWT

coefficients. In matrix notation 6.4 can be written as

log
p

1− p
= Xb+ Zβ, (6.5)

where X and Z are the n×m and n× q matrices by storing row vectors x’s and

z’s and the function on the left-hand side is understood to apply element-wise. In

general, X can contain any clinical predictors but in the specific application of

this chapter, X is set as a vector of ones or a fixed intercept. The term Xb in the

equation (6.5) then can be replaced by b0.

Here the case is the number of subjects n is much less than the number of

explanatory variables q, n << q. One problem that commonly occurs due to this

condition is multicollinearity or several (groups) of zjik’s show identical patterns.

In the context of CNA data, the multicollinearity is very understandable: there

will be genes that have a nearly identical pattern. This characteristic is clearly

shown by the presence of correlation blocks in the correlation between genomic

regions in the CNA dataset as shown in Kaymaz et al. (2021). This characteristic

also isolates the wavelet-transformed variables.

Many solutions have been proposed to solve the multicollinearity problem

such as variable selection, principal component analysis, partial least squares and

penalised estimation. This chapter only considers the latter. The most commonly

used penalised regression include (i) ridge regression, (ii) Lasso regression, and
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(iii) elastic net regression. In this chapter, the Lasso regression is used to make

the coefficients of some less contributed variables are forced to be exactly zero

and only the most significant variables are kept in the final model. The logistic

Lasso estimator is defined as

β̂λ = argmin
β

(||Y − Zβ||22 + λ

n∑
l=1

|βl|). (6.6)

Here, λ > 0 is a tuning parameter that controls the sparsity of the estimator

(i.e., the number of coefficients with a value of zero). In practice, it is selected by

cross-validation. For obtaining the logistic Lasso estimator, the glmnet package in

R (Simon et al., 2011) was used.

In practice, two kinds of explanatory variables are considered in this study as

follows:

1. NDWT detail coefficients of each scale. At each of the models, Z

is defined as the NDWT detail coefficients of one specific scale, j. The

extension part of the signal is truncated so that the size of the matrix Z is

n = 76× q = 17931. As an illustration, a logistic regression model 1 uses

the scale 1 NDWT detail coefficients only as the matrix Z, model 2 uses the

scale 2 NDWT detail coefficients, and so on.

2. NDWT scaling coefficients of each scale. Similar to the previous

model, here the scaling coefficients of one specific scale j are considered

as the explanatory variable. The coefficients of each scale are considered

and compared to obtain the best result where each of the models uses the

NDWT scaling coefficients of a scale on its own as the matrix Z.

Then by comparing the misclassification rate results, the most informative scale

can be identified.

S-fold Cross-validation

Cross-validation is considered for estimating λ and as a method to assess the

method performance in terms of classification error. The cross-validation can be
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performed by, first, splitting q observations in the data into a training set of size

nt and a validation set of size nv where nt + nv = n such that

y :=

 yt. . .
yv

 , X :=

Xt

. . .
Xv

 , Z :=

Zt. . .
Zv

 . (6.7)

In cross-validation, ”S-fold” refers to the number of subsets or ”folds” into

which the original dataset is divided during the evaluation process. The term ”S”

represents the number of folds, and it determines how many iterations of training

and testing will be performed during the cross-validation procedure. In n-fold

cross-validation, the dataset is partitioned into S subsets of approximately equal

size.

In practice, four-fold cross-validation is performed and the classification error

is calculated using validation sets across the four folds, which means that if there

are 100 elements in a dataset, it is partitioned into four subsets and each subset

has 25 elements. One set is taken among those four sets for validation and the

remaining three are for training. Then the process is repeated for all four sets.

The training set is used for estimating the model parameters b̂t and β̂t. The

resulting estimates are then used in the validation set to obtain model prediction

ŷv = I
(

1

1 + e−(Xv b̂v+Zv β̂v)
≥ 0.5

)
(6.8)

where I is an indicator function such that ŷv equals one if the expression inside

the brackets is true, and zero otherwise.

From this prediction, the classification error in the validation set is calculated by

comparing the prediction ŷv with the observed group labels yv. The classification

error is defined as

CE =
1

nv

nv∑
k=1

I(yvk ̸= ŷvk), (6.9)

where yv = (yv1, yv2, . . . , yvnv)
T and ŷv = (ŷv1, ŷv2, . . . , ŷvnv)

T .

At the end of the proposed approach, a set of CE for each scale j will be

obtained, and then, let CEj be the median of CE at each scale. By finding
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the smallest CEj across each scale, the scale that contributes the most to the

classification can be identified. It can be written mathematically as

jb = argmin
j

CEj, (6.10)

where jb is the best scale.

6.3 Simulation Study

To understand the characteristics of the proposed methodology, a simple simulation

study with a smaller signal length was considered under the following setting. To

obtain realistic CNA estimates, the simulated data is produced from the ‘known

truth’ of the CNA pattern of LA and LS tumours then contaminated with standard

Gaussian noise and lastly, segmented by the DDTF method. In this simulation

study, one hundred simulated datasets, Dv (v = 1, . . . , 100), are generated and

each of these datasets consists of 50 samples of group one (LA), av,i, and 50

samples of group two (LS), sv,i, where i = 1, . . . , 50.

Let the ‘true’ functions of the CNA pattern of LA and LS be the same within

the group and denoted as fa for the LA group f s for the LS group. Several

types of the ‘true’ functions or test functions are considered and explained further

in the next subsections. Both f s and fa are piecewise constant functions with

length q = 1024. The noisy cancer CNA data of each patient are generated

independently. Mathematically, each samples of group one (LA) are generated

from model av,il = fal +ϵl and group two (LS) from sv,il = f sl +ϵl, where l = 1, . . . , q

and ϵl is additive i.i.d Gaussian noise N(0, σ2).

After 100 noisy CNA datasets are obtained, the DDTF method was used to

segment all of these simulated samples to produce piecewise constant estimates

D̂v. Any segmentation method can be used here, but here the DDTF method

was chosen based on the results in Section 5.6.1 which indicates its superiority

compared to some other well-known segmentation methods. Then, the NDWT

was applied to each of âv,il and ŝv,il in D̂v. The NDWT maps each of discrete

vector âv,i and ŝv,i to a collection of NDWT detail (dj,k) and scaling (cj,k) coef-

ficients at levels j = 1, 2, . . . , 10 and locations k = 0, . . . , 1023. As described in
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Section 6.2.4, for each test function considered, the performance of: (i) NDWT

detail coefficients, and (ii) NDWT scaling coefficients of each scale, with those

that only use CNA estimates/segmented dataset D̂ (untransformed dataset) as

predictors are compared to the model that uses both detail and scaling coefficients

from all scales and the CNA segmented dataset itself. This simulation procedure

is summarised in a flowchart shown in Figure 6.3

Figure 6.3: Flowchart for simulation of wavelet-based copy number data classifica-

tion

Furthermore, to estimate the optimal λ in equation (6.6) of each model,

additional 10 datasets are generated in the same way as explained above and by
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performing 4-fold Cross-validation, the optimal λ is estimated as the one that

minimises the (4-folds) misclassification rate.

Test Function with One Altered Region

In this section, two kinds of simulated LA and LS CNA segmented patterns (a

piecewise constant function that is used to generate noisy data) are considered as

shown in the top panel of Figures 6.4 and 6.5. For both of the simulated patterns,

the difference between LA and LS groups only locate at a single altered segment.

The test function of the LS group has an altered segment while the LA group

does not have any altered region. The length of the altered segment of the first

simulated LS data is 50 (top panel of Figure 6.5) and the second one is 20 (top

panel of Figure 6.5).

The bottom panel of Figures 6.4 and 6.5 shows the misclassification rate

from 4-fold cross-validation of 100 datasets across different models using the

Lasso penalty. The first simulated data, scale-5 NDWT scaling coefficients as

predictors (Lasso penalty) gives the lowest misclassification rate. Besides scale-5,

the misclassification rate of scale-6 is also quite close to scale-5 and significantly

better than the untransformed data (seg) results. For the second simulated data

(see Figure 6.5), the lowest misclassification rate was produced by scale-4 NDWT

scaling coefficients (Lasso penalty). An interesting point here is that for both cases,

the lowest misclassification rate is obtained by the model which uses coefficients

that are produced by wavelets with length close to the length of the altered

segment in the LS group. The altered segment’s length in the first simulation

is 50 and the lowest misclassification rate was presented by scale-5 and scale-6

which is associated with wavelets with length 25 = 32 and 26 = 64, respectively.
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Figure 6.4: Misclassification rate of the first simulated dataset from 4-fold cross-validations of

100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation set)

where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted by

blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ labels indicate the result

for untransformed segmented CNA data and NDWT coefficients from all the scales as predictors,

respectively. The upper x-axis label shows the p-values of the models that are significantly lower

than the ‘seg’ model. Top panel: Plot of test functions, the black solid line denotes the test

function for LS group and the blue dashed line denotes LA group. The length of the altered

segment is 50. Bottom panel: Misclassification rate using Lasso regularisation.
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Figure 6.5: Misclassification rate of the second simulated dataset from 4-fold cross-validations

of 100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation

set) where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted

by blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ label indicate the

result for untransformed segmented CNA data and NDWT coefficients from all the scales as

predictors, respectively. The upper x-axis label shows the p-values of the models that are

significantly lower than the ‘seg’ model. Top panel: Plot of test functions, the black solid line

denotes the test function for LS group and the blue dashed line denotes LA group. The length

of the altered segment is 20. Bottom panel: Misclassification rate using Lasso regularisation.

Test Function with Two Altered Regions

Two kinds of simulated LA and LS CNA segmented patterns are considered as

shown in the top panel of Figures 6.6 and 6.9. For both of the simulated patterns,

the difference between LA and LS is located at two regions of the altered segment.

The test function of the LS group has two altered segments while the LA group

does not have any altered region. The length of the altered segments is 20 and 50.
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In the first simulated data (Figure 6.6), the height of both altered segments is the

same and set to one. Meanwhile, for the second simulated data (Figure 6.9), the

height of the narrower altered segment is two and the wider one is one.
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Figure 6.6: Misclassification rate of the third simulated dataset from 4-fold cross-validations of

100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation set)

where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted by

blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ labels indicate the result

for untransformed segmented CNA data and NDWT coefficients from all the scales as predictors,

respectively. The upper x-axis label shows the p-values of the models that are significantly lower

than the ‘seg’ model. Top panel: Plot of test functions, the black solid line denotes the test

function for the LS group and the blue dashed line denotes the LA group. The length of the

altered segments is 20 and 50. Bottom panel: Misclassification rate using Lasso regularisation.
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Figure 6.7: Frequency of times nonzero β are estimated for model with scale-6

of scaling coefficients over 4-folds cross-validation of 100 dataset of the third

simulated dataset.
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Figure 6.8: Frequency of times nonzero β are estimated for model with scale-7

of scaling coefficients over 4-folds cross-validation of 100 dataset of the third

simulated dataset.
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For the first simulation, Figure 6.6 indicates that the misclassification rate

of the model with scaling coefficients of scale-7 followed by scale-6 is the lowest.

The frequency of times non-zero βi estimated over 4-fold cross-validation of 100

datasets of these models is shown in Figures 6.7 and 6.8. The results show that

variable that corresponds to a region with a wider altered segment are chosen

more often than the narrower one. This indicates that in this case, the wider

altered segment region is more dominant or contributes more to distinguishing

the LS and LA groups.

In the second simulation, the results in Figure 6.9 show that the lowest

misclassification rate is achieved by scaling coefficients of scale-2 and then followed

by scale-6. For this case, the βi that corresponds to the narrower altered segment

is chosen more by Lasso penalty as shown in Figures 6.10 and 6.11.
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Figure 6.9: Misclassification rate of the fourth simulated dataset from 4-folds cross-validations

of 100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation

set) where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted

by blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ labels indicate the

result for untransformed segmented CNA data and NDWT coefficients from all the scales as

predictors, respectively. The upper x-axis label shows the p-values of the models that are

significantly lower than the ‘seg’ model. Top panel: Plot of test functions, the black solid line

denotes the test function for the LS group and the blue dashed line denotes the LA group. The

length of the altered segments is 20 and 50. Bottom panel: Misclassification rate using Lasso

regularisation.
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Figure 6.10: Frequency of times nonzero β are estimated for model with scale-2

of scaling coefficients over 4-folds cross-validation of 100 dataset of the fourth

simulated dataset.
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Figure 6.11: Frequency of times nonzero β are estimated for model with scale-6

of scaling coefficients over 4-folds cross-validation of 100 dataset of the fourth

simulated dataset.

These two cases indicate that the proposed methodology using scaling coeffi-

cients allows us to identify whichever feature that more dominant to distinguish

the two groups. The dominant feature does not always correspond to the wider

region.

Test Function with Multiple Altered Regions

In this section, a test function that has a more complicated pattern than the

previous ones is considered. The test functions used are shown in the top panel of

Figure 6.12. The different features between the two groups are located at several

segments with various heights.

Based on Figure 6.12, the best model that minimises the misclassification rate

is scale-4 scaling coefficients. From the plot of the frequency of times nonzero β

are estimated for scale-4 as shown in Figure 6.13, the most important feature that

is informative to distinguish the two groups are located at position 760–780. This
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region has the largest difference between LA and LS groups in terms of alteration

height. This result is consistent with what was shown in the previous simulation

that the important feature does not always correspond to the widest region but

also can be a narrower region but with larger differences in height.
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Figure 6.12: Misclassification rate of the fifth simulated dataset from 4-fold cross-validations

of 100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation

set) where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted

by blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ labels indicate the

result for untransformed segmented CNA data and NDWT coefficients from all the scales as

predictors, respectively. The upper x-axis label shows the p-values of the models that are

significantly lower than the ‘seg’ model. Top panel: Plot of test functions, the black solid line

denotes the test function for LS group and the blue dashed line denotes LA group. Bottom

panel: Misclassification rate using Lasso regularisation.
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Figure 6.13: Frequency of times nonzero β are estimated for model with scale-4 of

scaling coefficients over 4-folds cross-validation of 100 dataset of the fifth simulated

dataset.

Simulation with Unique Test Function

In the real application, the underlying true pattern behind each sample of the LS

or LA group differs due to biological variation. To get a realistic simulation, in

this section, a unique test function is generated for each of the samples. First, for

each of the groups, some fixed altered regions to distinguish LS and LA groups

are assigned. Then, for the remaining regions, the altered segment is generated

from the empirical profile constructed from the CBS segmentation of 76 lung

cancer patients. Then, randomly sampled copy number levels from the empirical

distribution of segment mean values, where mean values were binned into the

intervals less than 0.25 (0 copies), between 0.25, and 0.75 (one copy), between

0.75 and 1.25 (2 copies), between 1.25 and 1.75 (three copies), between 1.75 and

2.25 (four copies), between 2.25 and 2.75 (five copies), between 2.75 and 3.25 (six

copies). The length of normal segments (copy number 2) is assigned by randomly
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sampling the segment length from the empirical length distribution of copy number

levels belonging to the [0.75, 1.25] bin. Similarly, the lengths are assigned to the

altered segments by sampling from the length distribution for segments with

levels outside that bin, without distinguishing among length distributions with

different copy numbers. The illustration of this simulation setting is illustrated in

Figure 6.14.
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Figure 6.14: Top row: The fixed altered regions of each of the LS (left) and LA

(right) groups. Bottom row: An example of the simulated test function of each of

the groups before noise contamination.

Figure 6.15 shows the misclassification error of each of the logistic models

tested. The results show that only models with scaling coefficients from each of

the scales 4, 5, 6, 7, 8, 9, and 10 as predictors are significantly better than the
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model with untransformed segmented CNA data and scale 9 is the best among

those. The length of wavelets used to extract scale 9 NDWT scaling coefficients is

29 = 512. This indicates that the length of the feature that contributes the most

to the classification is close to 512 and this is consistent with the length of the

larger altered segment is 500. It can be confirmed by looking at the plot of the

frequency of times nonzero β are estimated for scale-9 as shown in Figure 6.16,

the variables that more informative to distinguish the two groups correspond to

the larger altered region.
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Figure 6.15: Misclassification rate of the seventh simulated dataset from 4-fold cross-validations

of 100 datasets (for each dataset 75 samples in the training set and 25 samples in the validation

set) where the predictors are NDWT detail (denoted by black x-axis label) and scaling (denoted

by blue x-axis label) coefficients across different scales. The ‘seg’ and ‘all’ labels indicate the

result for untransformed segmented CNA data and NDWT coefficients from all the scales as

predictors, respectively. The upper x-axis label shows the p-values of the models that are

significantly lower than the ‘seg’ model.
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Figure 6.16: Frequency of times nonzero β are estimated for model with scale-9

of scaling coefficients over 4-folds cross-validation of 100 dataset.

6.4 Application to Real Data

In this section, the proposed classification procedure was applied to the real copy

number dataset as described in Section 6.2.1. The four-fold cross-validation was

performed 100 times, where, out of 76 observations, 57 (75%) observations are

randomly selected to be in the training set and the remaining 19 (25%) observations

are in the validation set. For each of the 100 iterations of cross-validation, the

same dataset was used but with different arrangements of training and validation

set.

Based on the result in Figure 6.17, the lowest misclassification error rate is

given by scale-4 scaling coefficients followed by scale-4 detail coefficients. Further

investigation in the non-zero β estimates as shown in Figures 6.18 and 6.19 indicate

that for classification using the scaling coefficients, the most frequently chosen

variables are from chromosomes 3, 10 and 17 while for detail coefficients are from

chromosomes 3, 10, and 14. Compared the plot of the frequency of non-zero β in
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Figure 6.17: Misclassification rate from 4-fold cross-validations of 100 datasets (for each

dataset 75 samples in the training set and 25 samples in the validation set) where the predictors

are NDWT detail (denoted by black x-axis label) and scaling (denoted by blue x-axis label) coef-

ficients across different scales. The ‘seg’ and ‘all’ labels indicate the result for the untransformed

segmented CNA data and NDWT coefficients from all the scales as predictors, respectively. The

upper x-axis label shows the p-values of the results that are significantly lower than ‘seg’ model.

Figures 6.18 and 6.19, the frequency of non-zero β of scaling coefficients is more

dispersed than the detail coefficients. Each scaling coefficient brings information

about the scaled average of its surroundings while the detail coefficients bring

information about sudden jumps/drops in the original data. This causes the

scaling coefficients to have more variables to be chosen so that in most cases,

scaling coefficients offer better results.

One advantage of the use of the detail coefficients in the classification is to

identify the location of the sudden jumps/drops that contribute to the classification

of the LA and LS groups. For example, in Figure 6.19, there is a variable that

is highly chosen by Lasso regularisation which is located close to the transition

between chromosome 3 and 4 and its value is positive. This indicates that there

is a sudden drop in the CNA of the LS group that is significant for LA and LS

group classification.
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Figure 6.18: Plot of the results for a logistic regression model that only allows scaling

coefficients from scale-4 to be chosen by Lasso regularisation. First row: plot of scale-4 NDWT

scaling coefficients of segmented LS data averaged over 38 patients. Second row: plot of

scale-4 NDWT scaling coefficients of segmented LA data averaged over 38 patients. Third row:

Frequency of nonzero β coefficients over 100 times cross-validation of logistic regression. Fourth

row: mean of the magnitude of β over 100 times cross-validation.
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Figure 6.19: Plot of the results for a logistic regression model that only allows scaling

coefficients from scale-4 to be chosen by Lasso regularisation. First row: plot of scale-4 NDWT

detail coefficients of segmented LS data averaged over 38 patients. Second row: plot of scale-4

NDWT detail coefficients of segmented LA data averaged over 38 patients. Third row: Frequency

of nonzero β coefficients over 100 times cross-validation of logistic regression. Fourth row: mean

of the magnitude of β over 100 times cross-validation.
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6.5 Conclusion

Table 6.1: Confusion Matrix

Predicted LS Predicted LA

Actual LS TP = 36 FN = 2

Actual LA FP = 1 TN = 37

For a better illustration, Table 6.1 shows the confusion matrix from an iteration

of cross-validation of logistic regression with scale-4 detail coefficients as the

predictors which give a misclassification rate equal to 0.04. The misclassification

for this case is quite low but in the medical context, misclassification errors in

distinguishing between lung squamous carcinoma and lung adenocarcinoma are

crucial as they can lead to improper treatment choices, delayed interventions, and

inaccurate prognostic information. Therefore, a careful diagnosis from a biological

point of view is still needed. However, this classification approach is effective

in identifying, for example, potential biomarkers that might not be obvious to

human experts.

6.5 Conclusion

In the context of discovering an appropriate medicine for lung cancer, a main

objective for statistical modelling is the accurate prediction of tumours’ subtypes.

In this chapter, a wavelet-based classification framework is presented. Wavelets

provide a tool to extract features of the data in several scales, allowing the

classification technique (logistic regression with Lasso regularisation in our case)

to select from localised means and differences over a range of scales. The wavelet

transformation decomposes the original data into detail (localised difference) and

scaling (localised means) coefficients into different resolution levels. This would

bring an advantage to discovering hidden features or information that are difficult

to find from original data only. Each resolution level corresponds to different

lengths of wavelet basis and by considering which levels are most useful in a

model, the length of the region that may be responsible for the prediction can be

identified.
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Analysis of the simulated data indicates that scaling coefficients consistently

present the best misclassification rate, which means that the important information

of CNA data lies in the means of explanatory variables. The NDWT scaling

coefficients have characteristics similar to the moving average and higher (or

larger) the scale, more variables will carry out the altered segment information. It

will give more variable selection to be chosen compared to the detail coefficients

which only carry out the discontinuity of the data in the logistic regression with

the Lasso penalty.

But it is need to note here that this works where the simulated data of each

patient are generated independently. In a case where there is when the simulated

data are highly correlated in blocks, where the location of change-points (or

discontinuity) is easier to identify, the detail coefficient might be more informative.

It has been discussed that the lowest misclassification error rate tends to be

produced by models with NDWT scaling coefficients corresponding to wavelets that

have lengths close to the key region. Therefore, by comparing the misclassification

error rate of models across different scales, it is possible to identify the approximate

length of the region that contributes the most to distinguish the two groups.

Furthermore, by observing the sparse solution given by Lasso regularisation, its

variable selection effect makes it easier to identify important variables responsible

for prediction.

Regarding the wavelet-based cancer subtype prediction framework, currlently,

only logistic regression is used as the primary classification tool. However, it is

acknowledged that other classification methods, such as random forest, support

vector machines, neural networks, and K-Nearest Neighbors, could be considered

as alternatives. To better understand which method is best suited for the proposed

wavelet-based lung cancer subtype prediction framework, a simulation study is

planned to be conducted in future work.

From the analysis of the real data, the lowest misclassification error rate is

given by scale-4, which indicates that the length important feature that contributes

the most to the subtypes prediction is approximately 24 = 16 point width or in our

case around 2.4 Mb. Further investigation of the sparse solution results showed

that the most frequently chosen variables are from chromosomes 3, 10, and 17.
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Chapter 7

Conclusion

7.1 Summary

The thesis focused on the multiscale analysis of DNA copy number alteration using

wavelets, specifically in the development of copy number segmentation methods

and the prediction of cancer subtypes using wavelets.

In Chapter 3, a comparison study of three kinds of Haar wavelet-based seg-

mentation methods is conducted; (i)the basic Haar wavelet denoising method

using universal thresholding (Donoho & Johnstone, 1994), (ii)the HaarSeg method

(Ben-Yaacov & Eldar, 2008), and (iii) the tail-greedy unbalanced Haar (TGUH)

method (Fryzlewicz, 2018). Analysis of the simulated and real data suggests that

the tail-greedy unbalanced Haar (TGUH) method has good operating characteris-

tics to detect segments of different sizes and provide a clear segmentation result

compare to the ‘balanced’ Haar wavelet-based methods. The original Haar wavelet

and HaarSeg methods which utilise the ‘balanced’ Haar wavelets have a tendency

to identify more spurious breakpoints due to the dyadic structure of the balanced

Haar wavelet transformation. Only the TGUH method offers clean segmentation

results with high sensitivity but a low false positive rate.

But further analysis of the TGUH segmentation results has shown that the

occurrence of extreme observation (outliers) in NGS data causes the TGUH

method to estimate spurious change points as spikes (very short altered segments

of only one or two data points). Chapter 4 particularly focused on the investigation

of these spurious change points and also proposed a modification to the TGUH
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method to reduce them. The extremely short length of either of the unbalanced

Haar wavelet wings used in TGUH transformation becomes the main cause of the

occurrence of spikes. Spikes are likely to occur when the detail coefficients that

correspond to these extremely short-wing unbalanced Haar wavelets survive the

thresholding.

To address this problem, the TGUH method was adapted for use with copy

number data by modifying its thresholding technique so that it is no longer

constrained to the ‘unary-binary tree’ structure. This modified TGUH method is

named the TGUHm method. In the TGUHm method, an additional procedure

named unconnected thresholding was added to the connected thresholding used in

the original TGUH method. The simulation study has shown that this additional

thresholding procedure is effective in reducing the spikes.

In Chapter 5, based on a good performance of the TGUHm method shown in

Chapter 4, the data-driven wavelet-Fisz methodology (Fryzlewicz, 2008) further

was combined with the TGUHm method for handling non-negative data with

heteroscedastic noise whose variance is a non-decreasing function of the mean.

Actually, CNA data, as illustrated in Figure 5.1, often exhibit a feature where

the noise variance may be linked to the mean level of the data where the variance

increases as the mean level increases. This method was named as data-driven

TGUH-Fisz (DDTF) method.

The proposed DDTF method was developed to address two key challenges

for change-point detection in CNA data. The first challenge is the presence of

non-constant random variation in the data where the variance exhibits some

association with the mean. The second one is with such non-constant error

variance in the copy number data, the detection of short segments is extremely

challenging with some spurious changes often detected. In the DDTF method, the

first challenge was handled by a variance stabilisation method that combine Fisz

transform and the TGUH transform. This transformation has shown effective to

bring the TGUH detail coefficients approximately Gaussian with mean zero and

variance one. Then the second problem was addressed by applying the TGUHm

thresholding procedure in the thresholding stage of the DDTF method.

The simulation study in Chapter 5 suggested that the proposed DDTF method

offers excellent results in terms of estimating change-point locations, especially
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in estimating short segments. This advantage is also found in some of the data-

driven Haar-Fisz (DDHF)-based methods but it is followed by a high false positive

rate due to the Haar wavelet transformation used in variance stabilisation and

reconstruction stages. Unlike those methods, the DDTF method replaces the

use of the balance Haar wavelet transform with the unbalanced Haar wavelet

transform. This enables us to match the likely structure of the data by adjusting

the breakpoint of the unbalanced Haar wavelets which results in more accurate

estimates of change points. The spurious change points at dyadic locations that

often occur in the DDHF-based methods are well addressed by the DDTF method.

This is important for the identification of copy number alterations as the alterations

may occur in any location in the genome.

From Chapters 4 and 5, two unbalanced wavelet-based segmentation methods

have been introduced. Those methods can be used to separate noise from the

CNA data resulting chromosomes to split into regions of equal copy number. The

resulting CNA estimates can then be processed into a classification procedure.

Chapter 6 aimed to explore the use of wavelets in this procedure. Particularly,

to analyse the circumstances under which wavelet-transformed variables have a

better classification performance.

A wavelet-based classification framework was proposed in Chapter 6 which

employs the non-decimated Haar wavelet transform to extract localised differences

and means of the original data into several scales. Analysis of the simulated data

indicates that when the noise of the simulated data is generated independently for

each patient, scaling coefficients are consistent to present the best misclassification

rate which means that the important information of CNA data lies in the means

of explanatory variables. It has been discussed that the lowest misclassification

error rate tends to be produced by the model with NDWT scaling coefficients

corresponding to wavelets that have lengths close to the key region. Therefore,

by comparing the misclassification rate over different scales, one can identify

the approximate length of the region that contributes the most to distinguish

the two groups. Furthermore, by observing the sparse solution given by Lasso

regularisation, its variable selection effect make it easier to identify important

variables responsible for prediction.
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7.2 Future Work

It has been seen that compared to the Haar wavelet-based segmentation method

and some other well-known segmentation methods, the TGUHm and DDTF

segmentation methods perform very well. This thesis only explored the use of

those methods in CNA segmentation, but in practice, they can be used for a

wider range of data structures. For example for the prediction of transmembrane

helix locations Lio & Vannucci (2000), estimation of phase transitions in pain

symptoms Desmond et al. (2002), speech segmentation Shriberg et al. (2000), and

adaptive trend estimation in markets Schroeder & Fryzlewicz (2013).

But currently, those methods are particularly designed for a change-point

model with homoscedastic noise or heteroscedastic data where there is a non-

decreasing relationship between mean and variance. When there is a different

level of noise variance at the same mean, the proposed method still needs further

extension. An example of this condition is when there is a burst in the centromere

region (see Figure). This is a subject for future research.
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Figure 7.1: The observed copy number ratio of chromosome 1 from TMA-122

patient data.

One possibility to deal with this problem is by considering the spike and slab

model. The main idea of this model is to set the prior of the parameter to have

mass at zero which is suitable to model the sparsity of the detail coefficient dj,k of

the true function f . This technique is similar to the model in the Ebayesh threshold
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(Johnstone & Silverman, 2005a) which sets each of the dj,k as zero with probability

(1− w), while, with probability w, dj,k is drawn from a symmetric heavy-tailed

density. Then w is chosen automatically from the data, using a marginal maximum

likelihood approach, and then substituted back into the Bayesian model. But

in our case, the aim is to use Bayesian to estimate the location of the variance

instability in the real data. Therefore, to better illustrate the variance instability

in the real data, the following model may be considered

εi|pi ∼ N(0, σ2
i (h(µi) + pik)) (7.1)

pi ∼ Bernoulli(ω) (7.2)

and to adjust the burst location, set

ω = ω0I(i
s ≤ i ≤ ie) (7.3)

where I(·) is an indicator function, is and ie are the start and end of the location

where the burst is located, respectively. Figure 7.2 shows data generated from

this model with h(µi) = 0.2µi, ω0 = 0.35, k = 4, is = 780 and ie = 820. This

model seems to fit the copy number data better. But of course, further work is

needed to evaluate whether this approach is effective in reducing the influence of

the burst in the final estimator.
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Figure 7.2: the spike and slab model with ω0 = 0.35 and k = 4.

Besides the above spikes and slab model, another simple way that might

work to deal with the sudden burst near the centromere region is by applying
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a pre-processing procedure, for example, the wisorization used in Nilsen et al.

(2012) prior to the proposed segmentation methods. Winsorization is a simple

transformation to reduce the outliers by replacing a specified number of extreme

values outside a certain fractile with a smaller/higher data value which belongs to

that range. For identically distributed observations y1, . . . , yp, the corresponding

Winsorized observations are defined as ywj = ψ(yj) where

ψ(yj) = ψ(yj|c) =


−c, yj < −c
yj, |yj| < c

c, yj > c.

Here, c > 0 determines how extreme an observation must be to be relocated,

as well as the replacement value. A common choice is c = τs, where typically

τ ∈ [1.5, 3] and s is a robust estimate of the standard deviation (SD). A robust

scale estimator is the Median Absolute Deviation (MAD), defined as the median

of the values |yj − m̂|, where m̂ is the median of y1, . . . , yp.

Winsorization of copy number data can be achieved by first estimating the

trend in the data and then Winsorizing the residuals. Let the observations

represent a copy numbers ratio in p location be y = (y1, . . . , yp), ordered according

to the genomic position. A simple estimator of the trend is the median filter. The

trend estimate m̂j in the jth position is then given by the median of yj−k, . . . , yj+k

for some k > 0. The SD of the residuals yj − m̂j may then be estimated with

the MAD estimator sM , and Winsorized observations yw1 , . . . , y
w
p obtained by

ywj = m̂j + ψ(yj − m̂j|τsM).

In terms of the wavelet-based cancer subtype prediction framework, currently,

only logistic regression is considered as the tool to perform classification. However,

other classification methods such as random forest, support vector machines,

neural networks, and K-Nearest Neighbors can be the alternative to this. A

simulation study that compares those methods would be needed in our future

work to determine the most suitable method for the proposed wavelet-based lung

cancer subtypes prediction framework.

Also, it is important to notice that there can be “leakage” between different

levels of the NDWT. When the length of the key segment is somewhere between

two levels, there may be difficulty in choosing a single “best” level. For future
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work, continuous wavelet transformation can be considered to fill this ‘gap’ in

wavelet length between the scales. This may provide a better misclassification

rate and more accurate information on the length of the important region.
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Appendix A

Additional Tables of Section 4.4

A.1 Tables related to Figure 4.7

Table of the first, second, and third simulation study in chapter 4.4.2 (which

corresponds to Figure 4.6, 4.7, and 4.6): The average of mean-square error (aMSE),

average of true positive rate (aTPR), average of false positive rate (aFPR), and

average of true positive rate in estimating change-points that corresponds to short

segments (aTPRsh) over 1000 replicates of the simulation that were contaminated

by Gaussian noise N(0, σ2) and Gaussian mixture noise 0.95×N(0, σ2) + 0.05×
N(0, 3σ2).
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A.1 Tables related to Figure 4.7

Table A.1: Table of the first simulation study in the main article (which corresponds

to Figure 4.6 of the main article)

Gaussian noise Gaussian mixture noise

σ Method aMSE aTPR aFPR aTPRsh aMSE aTPR aFPR aTPRsh

0.1 TGUHm 0.00030 100.00 0.030 100.00 0.00060 99.87 0.068 99.76

TGUH1 0.00032 100.00 0.046 100.00 0.00294 99.93 1.443 99.88

TGUH 0.00030 100.00 0.030 100.00 0.00063 99.87 0.078 99.76

TGUHb 0.00044 99.47 0.064 98.88 0.00094 97.73 0.063 95.28

CBS 0.00028 99.99 0.001 99.98 0.00052 99.79 0.012 99.57

HaarSeg 0.00051 100.00 0.152 99.99 0.00114 99.92 0.392 99.85

Copy12 0.00046 99.26 0.015 98.44 0.00073 98.85 0.032 97.64

Copy40 0.00095 95.99 0.007 91.57 0.00164 92.75 0.011 84.84

CumSeg 0.01158 78.58 0.233 60.31 0.01236 74.31 0.209 51.17

FDRSeg 0.00036 100.00 0.070 100.00 0.00304 99.98 1.498 99.95

0.2 TGUHm 0.00241 96.88 0.083 94.27 0.00404 93.27 0.214 87.59

TGUH1 0.00247 96.93 0.101 94.37 0.01320 93.60 1.514 88.16

TGUH 0.00241 96.88 0.083 94.27 0.00516 93.30 0.307 87.64

TGUHb 0.00459 88.14 0.218 75.86 0.00568 82.15 0.177 64.03

CBS 0.00239 96.26 0.081 92.49 0.00493 85.03 0.099 69.61

HaarSeg 0.00419 88.37 0.418 75.92 0.00690 84.01 0.680 67.35

Copy12 0.00387 86.07 0.068 71.36 0.00566 80.22 0.116 59.65

Copy40 0.01032 52.08 0.006 0.03 0.01083 51.76 0.012 0.10

CumSeg 0.01887 51.54 0.103 5.25 0.02183 48.88 0.104 2.52

FDRSeg 0.00264 95.76 0.107 91.57 0.01343 92.82 1.515 85.97

0.3 TGUHm 0.00763 79.15 0.187 60.36 0.01160 70.40 0.327 44.42

TGUH1 0.00777 79.29 0.206 60.65 0.03241 71.86 1.592 47.30

TGUH 0.00764 79.16 0.187 60.37 0.01496 70.54 0.455 44.70

TGUHb 0.00979 71.10 0.288 42.86 0.01182 64.98 0.213 31.83

CBS 0.00843 73.00 0.146 45.93 0.01329 58.74 0.110 19.99

HaarSeg 0.01172 60.45 0.498 19.78 0.01637 60.05 0.809 20.72

Copy12 0.01048 58.12 0.054 14.83 0.01251 57.74 0.107 15.45

Copy40 0.01446 48.23 0.020 0.00 0.01651 47.15 0.026 0.02

CumSeg 0.02692 45.74 0.108 0.69 0.03096 43.37 0.123 0.24

FDRSeg 0.00963 69.25 0.173 38.22 0.03274 68.30 1.539 38.24

0.4 TGUHm 0.01425 61.34 0.202 27.81 0.01989 54.28 0.329 16.90

TGUH1 0.01454 61.53 0.223 28.21 0.05764 56.15 1.620 20.55

TGUH 0.01427 61.35 0.203 27.83 0.02527 54.40 0.438 17.12

TGUHb 0.01556 59.86 0.298 22.84 0.01867 53.64 0.239 13.06

CBS 0.01458 56.71 0.152 16.39 0.02128 47.65 0.110 5.06

HaarSeg 0.01757 51.26 0.603 5.80 0.02506 51.47 0.902 8.25

Copy12 0.01391 51.00 0.068 3.31 0.01776 50.54 0.132 5.02

Copy40 0.02518 42.08 0.018 0.00 0.02811 41.03 0.027 0.01

CumSeg 0.03522 41.95 0.135 0.22 0.04369 38.94 0.143 0.11

FDRSeg 0.01506 55.21 0.194 12.61 0.05539 55.30 1.512 16.43

0.5 TGUHm 0.02079 51.61 0.200 12.38 0.02885 47.18 0.333 8.55

TGUH1 0.02120 51.74 0.218 12.66 0.08783 49.30 1.609 12.40

TGUH 0.02081 51.61 0.200 12.38 0.03678 47.28 0.435 8.73

TGUHb 0.02201 52.58 0.282 12.30 0.02700 47.44 0.229 6.36

CBS 0.02052 49.08 0.150 6.42 0.03076 41.86 0.102 1.71

HaarSeg 0.02445 47.20 0.693 2.44 0.03560 46.92 0.987 4.38

Copy12 0.01800 47.77 0.087 1.08 0.02470 46.45 0.164 2.46

Copy40 0.03455 38.35 0.013 0.00 0.03872 37.35 0.026 0.00

CumSeg 0.04762 37.70 0.142 0.10 0.05880 34.62 0.152 0.08

FDRSeg 0.01983 49.34 0.176 5.08 0.08259 49.10 1.472 9.31
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Table A.2: Table of the first simulation study in the main article (which corresponds

to Figure 4.7 of the main article).

Gaussian noise Gaussian mixture noise

σ Method aMSE aTPR aFPR aTPRsh aMSE aTPR aFPR aTPRsh

0.1 TGUHm 0.00025 100.00 0.035 100.00 0.00065 99.94 0.169 99.94

TGUH1 0.00026 100.00 0.054 100.00 0.00295 99.96 1.538 99.96

TGUH 0.00025 100.00 0.035 100.00 0.00072 99.94 0.204 99.94

TGUHb 0.00053 98.11 0.060 98.11 0.00116 96.21 0.093 96.21

CBS 0.00023 99.97 0.002 99.97 0.00046 99.38 0.014 99.38

HaarSeg 0.00045 99.99 0.132 99.99 0.00104 99.89 0.368 99.89

Copy12 0.00021 100.00 0.002 100.00 0.00046 99.87 0.044 99.87

Copy40 0.00021 99.91 0.000 99.91 0.00044 99.31 0.002 99.31

CumSeg 0.01722 55.80 0.264 55.80 0.01862 47.31 0.231 47.31

FDRSeg 0.00027 100.00 0.046 100.00 0.00273 99.98 1.304 99.98

0.2 TGUHm 0.00207 95.75 0.087 95.75 0.00399 91.74 0.280 91.74

TGUH1 0.00215 95.79 0.108 95.79 0.01308 92.05 1.585 92.05

TGUH 0.00207 95.75 0.087 95.75 0.00558 91.79 0.427 91.79

TGUHb 0.00787 77.33 0.235 77.33 0.01154 67.15 0.255 67.15

CBS 0.00248 90.32 0.053 90.32 0.00482 75.99 0.060 75.99

HaarSeg 0.00388 84.13 0.477 84.13 0.00643 77.73 0.697 77.73

Copy12 0.00214 92.91 0.060 92.91 0.00368 88.34 0.159 88.34

Copy40 0.00944 41.70 0.003 41.70 0.00987 41.21 0.006 41.21

CumSeg 0.02436 21.50 0.153 21.50 0.02630 18.33 0.153 18.33

FDRSeg 0.00225 93.20 0.066 93.20 0.01211 90.45 1.304 90.45

0.3 TGUHm 0.00676 73.99 0.173 73.99 0.01119 64.91 0.396 64.91

TGUH1 0.00693 74.15 0.198 74.15 0.03222 66.06 1.676 66.06

TGUH 0.00677 73.99 0.174 73.99 0.01633 65.03 0.601 65.03

TGUHb 0.01796 47.37 0.295 47.37 0.02227 38.99 0.275 38.99

CBS 0.00773 61.57 0.086 61.57 0.01290 40.68 0.049 40.68

HaarSeg 0.01111 47.78 0.450 47.78 0.01495 46.58 0.620 46.58

Copy12 0.00764 62.48 0.087 62.48 0.01057 58.75 0.209 58.75

Copy40 0.01732 24.69 0.008 24.69 0.01882 22.53 0.010 22.53

CumSeg 0.03155 12.73 0.129 12.73 0.03731 7.86 0.070 7.86

FDRSeg 0.00910 57.13 0.110 57.13 0.03021 58.81 1.331 58.81

0.4 TGUHm 0.01188 54.58 0.171 54.58 0.01806 46.23 0.386 46.23

TGUH1 0.01217 54.76 0.194 54.76 0.05519 48.01 1.652 48.01

TGUH 0.01188 54.58 0.171 54.58 0.02791 46.53 0.601 46.53

TGUHb 0.02549 31.24 0.279 31.24 0.02912 24.32 0.243 24.32

CBS 0.01228 43.50 0.069 43.50 0.02057 22.55 0.030 22.55

HaarSeg 0.01694 31.60 0.282 31.60 0.02247 30.11 0.432 30.11

Copy12 0.01212 43.96 0.066 43.96 0.01645 41.62 0.182 41.62

Copy40 0.02375 13.94 0.001 13.94 0.02447 13.86 0.002 13.86

CumSeg 0.04154 4.31 0.036 4.31 0.04585 1.23 0.010 1.23

FDRSeg 0.01443 39.17 0.107 39.17 0.05014 40.69 1.259 40.69

0.5 TGUHm 0.01688 41.99 0.163 41.99 0.02644 34.85 0.403 34.85

TGUH1 0.01749 42.25 0.192 42.25 0.08731 37.06 1.710 37.06

TGUH 0.01693 42.01 0.164 42.01 0.04302 35.09 0.623 35.09

TGUHb 0.03096 21.83 0.257 21.83 0.03486 17.13 0.197 17.13

CBS 0.01723 31.42 0.065 31.42 0.02885 12.83 0.011 12.83

HaarSeg 0.02339 21.07 0.190 21.07 0.03156 21.11 0.342 21.11

Copy12 0.01666 33.48 0.065 33.48 0.02418 32.37 0.207 32.37

Copy40 0.03000 10.09 0.000 10.09 0.03333 8.40 0.001 8.40

CumSeg 0.04622 0.65 0.004 0.65 0.04690 0.21 0.002 0.21

FDRSeg 0.02049 26.72 0.090 26.72 0.07698 30.43 1.248 30.43
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Table A.3: Table of the first simulation study in the main article (which corresponds

to Figure 4.8 of the main article).

Gaussian noise Gaussian mixture noise

σ Method aMSE aTPR aFPR aTPRsh aMSE aTPR aFPR aTPRsh

0.1 TGUHm 0.00011 99.90 0.067 99.90 0.00021 99.70 0.091 99.70

TGUH1 0.00013 99.90 0.097 99.90 0.00288 99.85 1.709 99.85

TGUH 0.00011 99.90 0.068 99.90 0.00038 99.75 0.175 99.75

TGUHb 0.00068 59.45 0.078 59.45 0.00088 49.10 0.064 49.10

CBS 0.00005 99.70 0.001 99.70 0.00009 99.10 0.003 99.10

HaarSeg 0.00007 100.00 0.010 100.00 0.00034 99.60 0.104 99.60

Copy12 0.00006 100.00 0.006 100.00 0.00031 99.85 0.142 99.85

Copy40 0.00004 100.00 0.000 100.00 0.00008 98.90 0.000 98.90

CumSeg 0.00097 44.95 0.016 44.95 0.00128 22.40 0.006 22.40

FDRSeg 0.00006 100.00 0.007 100.00 0.00225 99.95 1.099 99.95

0.2 TGUHm 0.00061 92.40 0.082 92.40 0.00120 83.85 0.129 83.85

TGUH1 0.00071 92.80 0.112 92.80 0.01175 85.45 1.733 85.45

TGUH 0.00061 92.50 0.084 92.50 0.00306 83.90 0.324 83.90

TGUHb 0.00122 35.15 0.070 35.15 0.00147 22.90 0.046 22.90

CBS 0.00069 65.65 0.008 65.65 0.00146 11.95 0.004 11.95

HaarSeg 0.00130 23.85 0.012 23.85 0.00207 21.45 0.094 21.45

Copy12 0.00040 90.25 0.012 90.25 0.00147 83.50 0.163 83.50

Copy40 0.00153 0.60 0.000 0.60 0.00154 1.40 0.000 1.40

CumSeg 0.00153 0.00 0.000 0.00 0.00155 0.10 0.000 0.10

FDRSeg 0.00088 57.30 0.008 57.30 0.00934 63.95 1.091 63.95

0.3 TGUHm 0.00161 57.85 0.091 57.85 0.00281 33.70 0.143 33.70

TGUH1 0.00185 58.50 0.124 58.50 0.02649 38.00 1.725 38.00

TGUH 0.00163 58.05 0.095 58.05 0.00629 33.90 0.313 33.90

TGUHb 0.00179 15.10 0.051 15.10 0.00193 4.05 0.027 4.05

CBS 0.00150 13.00 0.005 13.00 0.00167 0.15 0.002 0.15

HaarSeg 0.00188 11.75 0.047 11.75 0.00408 7.95 0.185 7.95

Copy12 0.00139 32.35 0.016 32.35 0.00352 27.55 0.158 27.55

Copy40 0.00158 0.00 0.000 0.00 0.00161 0.00 0.000 0.00

CumSeg 0.00158 0.00 0.000 0.00 0.00161 0.00 0.000 0.00

FDRSeg 0.00166 6.55 0.004 6.55 0.02015 15.85 1.049 15.85

0.4 TGUHm 0.00267 25.40 0.090 25.40 0.00423 12.30 0.151 12.30

TGUH1 0.00306 26.10 0.119 26.10 0.04661 17.15 1.715 17.15

TGUH 0.00271 25.45 0.092 25.45 0.00903 12.70 0.275 12.70

TGUHb 0.00215 6.75 0.041 6.75 0.00229 1.20 0.024 1.20

CBS 0.00168 2.30 0.002 2.30 0.00186 0.10 0.002 0.10

HaarSeg 0.00304 7.75 0.134 7.75 0.00658 4.80 0.232 4.80

Copy12 0.00179 8.30 0.010 8.30 0.00562 9.90 0.160 9.90

Copy40 0.00164 0.00 0.000 0.00 0.00172 0.05 0.000 0.05

CumSeg 0.00164 0.00 0.000 0.00 0.00171 0.00 0.000 0.00

FDRSeg 0.00176 0.90 0.003 0.90 0.03485 7.80 1.042 7.80

0.5 TGUHm 0.00357 11.65 0.086 11.65 0.00573 6.05 0.152 6.05

TGUH1 0.00423 12.30 0.118 12.30 0.07229 10.40 1.711 10.40

TGUH 0.00364 11.70 0.089 11.70 0.01224 6.25 0.257 6.25

TGUHb 0.00260 2.85 0.039 2.85 0.00281 1.00 0.025 1.00

CBS 0.00183 0.25 0.003 0.25 0.00202 0.05 0.002 0.05

HaarSeg 0.00412 5.05 0.168 5.05 0.00911 2.75 0.252 2.75

Copy12 0.00201 2.40 0.008 2.40 0.00818 5.15 0.162 5.15

Copy40 0.00174 0.00 0.000 0.00 0.00189 0.00 0.000 0.00

CumSeg 0.00174 0.00 0.000 0.00 0.00186 0.00 0.000 0.00

FDRSeg 0.00191 0.35 0.004 0.35 0.05328 4.70 1.024 4.70
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Appendix B

Additional Figures of Section 4.4

B.1 Additional figures of the proportion of times

change-points estimated at each location:

noise model 1

Figures B.1–B.15 show the proportion of times (from 1000 simulated datasets)

that each method detects a change-point at each location along the sequence

based on 1000 simulated datasets contaminated with Gaussian noise with mean

zero and variance σ2.

B.2 Additional figures of the proportion of times

change-points estimated at each location:

noise model 2

Figures B.16–B.27 show the proportion of times (from 1000 simulated datasets)

that each method detects a change-point at each location along the sequence

based on 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2).
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Figure B.1: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.2: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.3: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.4: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.

191



B.2 Additional figures of the proportion of times change-points
estimated at each location: noise model 2

location

TGUHm/TGUH

TGUH1

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

A

0
1

2
3

4

location

TGUHb

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

B

0
1

2
3

4

location

CBS

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

C

0
1

2
3

4

location

HaarSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

D

0
1

2
3

4

location

Copy12

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

E

0
1

2
3

4

location

Copy40

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

F

0
1

2
3

4

location

CumSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

G

0
1

2
3

4

location

FDRSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

H

0
1

2
3

4

Figure B.5: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.6: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.7: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.8: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.9: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.10: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.

197



B.2 Additional figures of the proportion of times change-points
estimated at each location: noise model 2

location

TGUHm/TGUH

TGUH1

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

A

0
1

2
3

4

location

TGUHb

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

B

0
1

2
3

4

location

CBS

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

C

0
1

2
3

4

location

HaarSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

D

0
1

2
3

4

location

Copy12

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

E

0
1

2
3

4

location

Copy40

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

F

0
1

2
3

4

location

CumSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

G

0
1

2
3

4

location

FDRSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

H

0
1

2
3

4

Figure B.11: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.12: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.13: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.32. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.14: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.15: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.16: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.17: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.18: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.19: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel A

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.20: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.

207



B.2 Additional figures of the proportion of times change-points
estimated at each location: noise model 2

location

TGUHm/TGUH

TGUH1

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

A

0
1

2
3

4

location

TGUHb

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

B

0
1

2
3

4

location

CBS

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

C

0
1

2
3

4

location

HaarSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

D

0
1

2
3

4

location

Copy12

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

E

0
1

2
3

4

location

Copy40

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

F

0
1

2
3

4

location

CumSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

G

0
1

2
3

4

location

FDRSeg

0 200 400 600 800 1000

0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

P
ro

p
o
rt

io
n
 o

f 
e
s
ti
m

a
te

d
 c

h
a
n
g
e
 p

o
in

t

T
ru

e
 fu

n
c
tio

n

H

0
1

2
3

4

Figure B.21: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.22: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.23: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel B

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.24: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.12. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.25: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.22. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.26: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.42. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Figure B.27: Proportion of times a change-point is estimated against location

out of 1000 simulated datasets contaminated with a mixture of two Gaussian

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2) for σ2 = 0.52. The dots denote

proportion of detection at locations where there are actual change-points. The

grey solid line is the corresponding test function, repeated here from panel C

of Figure 5.12 for ease of reference. The left and right vertical axis shows the

proportion of replicates where a change-point is estimated and the corresponding

test function’s height, respectively.
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Appendix C

Additional Figures of Section 5.6

C.1 Additional figures of the proportion of times

change-points estimated at each location:

noise model 1

Figures C.1–C.12 show the proportion of times (from 1000 simulated datasets)

that each method detects a change-point at each location along the sequence

based on 1000 simulated datasets contaminated with Gaussian noise with mean

zero and variance σ2 where σ2
i = σ2

0f
2
i .

C.2 Additional figures of the proportion of times

change-points estimated at each location:

noise model 2

Figures C.13–C.20 show the proportion of times (from 1000 simulated datasets)

that each method detects a change-point at each location along the sequence

based on 1000 simulated datasets contaminated with a mixture of two normal

distributions 0.95×N(0, σ2) + 0.05×N(0, 3σ2)), where variance σ2 is defined as

σ2
i = σ2

0f
2
i and σ0 = 0.1, 0.3, 0.4, and 0.5.
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Figure C.1: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.1. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.2: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.3. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.3: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.4. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.4: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.5. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.5: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.1. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.6: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.3. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.7: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.4. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.8: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.5. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.9: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.1. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.10: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.3. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.11: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.4. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.12: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value

denotes the proportion of a change-point is found at the corresponding location

out of 1000 simulated datasets contaminated with an additive i.i.d Gaussian noise

N(0, σ2
0) where the variance σ

2 is defined as σ2
i = σ2

0f
2
i and σ0 = 0.5. The red dots

denote proportion of each of the methods produce change-points at the correct

location. The grey solid line is the corresponding test function. The left and right

vertical axis shows the proportion of estimated change point and the corresponding

test function’s height, respectively.
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Figure C.13: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.1. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.14: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.3. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.15: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.4. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.16: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.5. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.17: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.1. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.18: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.3. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Figure C.19: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.4. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.

234



C.2 Additional figures of the proportion of times change-points
estimated at each location: noise model 2

location

DDTFDDTF

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHF+TDDHF+T

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHFDDHF

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

DDHF+BDDHF+B

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

TGUHmTGUHm

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

CBSCBS

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

HaarSegHaarSeg

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

Copy12Copy12

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

Copy40Copy40

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

location

FDRSegFDRSeg

0 200 400 600 800 1000

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

P
ro

p
o

rt
io

n
 o

f 
e

s
ti
m

a
te

d
 c

h
a

n
g

e
 p

o
in

t T
ru

e
 fu

n
c
tio

n

0
1

2
3

4

Figure C.20: Proportion of times a change-point is estimated against location

corresponds to the first test function (top panel of Figure 5.12). Each value denotes

the proportion of a change-point is found at the corresponding location out of

1000 simulated datasets contaminated with a mixture of two normal distributions

0.95 × N(0, σ2) + 0.05 × N(0, 3σ2)), where variance σ2 is defined as σ2
i = σ2

0f
2
i

and σ0 = 0.5. The red dots denote proportion of each of the methods produce

change-points at the correct location. The grey solid line is the corresponding

test function. The left and right vertical axis shows the proportion of estimated

change point and the corresponding test function’s height, respectively.
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Härdle, W., Kerkyacharian, G., Picard, D. & Tsybakov, A. (2012).

Wavelets, Approximation, and Statistical Applications , vol. 129. Springer Science

& Business Media. 13

Herbst, R.S., Heymach, J.V. & Lippman, S.M. (2008). Molecular origins of

cancer: lung cancer. New England Journal of Medicine, 359, 1367–1380. 3, 144

Hsu, L., Self, S.G., Grove, D., Randolph, T., Wang, K., Delrow, J.J.,

Loo, L. & Porter, P. (2005). Denoising array-based comparative genomic

hybridization data using wavelets. Biostatistics , 6, 211–226. 7

Jamal-Hanjani, M., Wilson, G.A., McGranahan, N., Birkbak, N.J.,

Watkins, T.B., Veeriah, S., Shafi, S., Johnson, D.H., Mitter, R.,

Rosenthal, R., Salm, M., Horswell, S., Escudero, M., Matthews,

N., Rowan, A., Chambers, T., Moore, D.A., Turajlic, S., Xu, H.,

Lee, S.M., Forster, M.D., Ahmad, T., Hiley, C.T., Abbosh, C.,

Falzon, M., Borg, E., Marafioti, T., Lawrence, D., Hayward,

M., Kolvekar, S., Panagiotopoulos, N., Janes, S.M., Thakrar,

R., Ahmed, A., Blackhall, F., Summers, Y., Shah, R., Joseph, L.,

Quinn, A.M., Crosbie, P.A., Naidu, B., Middleton, G., Langman,

G., Trotter, S., Nicolson, M., Remmen, H., Kerr, K., Chetty, M.,

Gomersall, L., Fennell, D.A., Nakas, A., Rathinam, S., Anand,

G., Khan, S., Russell, P., Ezhil, V., Ismail, B., Irvin-Sellers, M.,

Prakash, V., Lester, J.F., Kornaszewska, M., Attanoos, R., Adams,

H., Davies, H., Dentro, S., Taniere, P., O’Sullivan, B., Lowe, H.L.,

Hartley, J.A., Iles, N., Bell, H., Ngai, Y., Shaw, J.A., Herrero, J.,

Szallasi, Z., Schwarz, R.F., Stewart, A., Quezada, S.A., Le Quesne,

J., Van Loo, P., Dive, C., Hackshaw, A. & Swanton, C. (2017).

Tracking the evolution of non–small-cell lung cancer. New England Journal of

Medicine, 376, 2109–2121. 144

Johnstone, I. & Silverman, B. (2005a). Ebayesthresh: R programs for

empirical bayes thresholding. Journal of Statistical Software, Articles , 12, 1–38.

104, 105, 129, 180

239



REFERENCES

Johnstone, I. & Silverman, B.W. (2005b). Ebayesthresh: R programs for

empirical bayes thresholding. Journal of Statistical Software, 12, 1–38. 23

Johnstone, I.M. & Silverman, B.W. (2004). Needles and straw in haystacks:

Empirical bayes estimates of possibly sparse sequences. 23

Johnstone, I.M. & Silverman, B.W. (2005c). Empirical bayes selection of

wavelet thresholds. 23
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