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Abstract

Air pollution is a major public health concern, with over 7 million deaths globally at-
tributed to it annually, as stated by the World Health Organization (WHO) in 2018.
Existing real-time Air Quality (AQ) monitoring stations are expensive to install and
maintain; therefore, such air quality monitoring networks are sparsely deployed and lack
the measurement density to develop high-resolution spatiotemporal air pollutant moni-
toring. The data generated also lacks accuracy, but still, they have great potential to
complement the existing air quality assessment framework.

Therefore, this thesis aims to propose a comprehensive architecture for utilizing low-cost
sensors in air pollution monitoring. The thesis presents a novel approach to deploy a
low-cost sensor network in a city and use a hybrid convolutional-long short-term
memory (Conv-LSTM) model for spatiotemporal prediction of air pollution. This
approach utilizes both convolutional layers to capture spatial patterns in the sensor data
and LSTM layers to capture temporal dependencies. The use of a hybrid model allows
for the simultaneous capture of both spatial and temporal patterns in the data, resulting
in more accurate predictions compared to models that only utilize one or the other. The
research also explores the use of statistical models such as Seasonal Autoregressive
Integrated Moving Average (SARIMA) and Nonlinear Autoregressive with exogenous
inputs (NARX) models for air quality forecasting, presenting a comparison of the
proposed hybrid model with other such state-of-the-art statistical and machine learning
models. The results show that the proposed Conv-LSTM model outperforms these
approaches in terms of prediction accuracy and robustness and, therefore, is a promising
approach for spatiotemporal prediction of air pollution using low-cost sensor data.
Additionally, the thesis proposes a general solution to analyze how the noise level of
measurements and hyperparameters of a Gaussian process model affect the prediction
accuracy and uncertainty of low-cost sensor data.

The thesis further presents an extensive evaluation of the proposed hybrid model using
real-world data from the low-cost sensor network deployed in Sheffield, and the results
demonstrate the effectiveness of the proposed approach. Finally, the real-world studies
present the integration of low-cost sensor data into a decision-making system, social and
behavioural changes driven by such sensors and the impact of these results on driving
policy changes to achieve the World Health Organization’s (WHO) 2021 target for air
quality.

Keywords: Air quality, Internet of Things, Spatiotemporal modelling, Data fusion, Re-
current Neural Network, Machine Learning, Deep Learning.
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Chapter 1

Air Pollution: A Social Problem
with Myriad Components

Air pollution is a pressing environmental issue and a significant public health concern in
the UK. According to the World Health Organization (WHO) [1], it is estimated that air
pollution causes around 40,000 premature deaths each year in the UK. The cost of air
pollution to the NHS alone is estimated to be £2 billion annually.

1.1 Why is research on monitoring and modelling of air
quality important?

Monitoring and modelling air pollution is a challenging task that requires a thorough un-
derstanding of the atmospheric processes that influence pollution dispersion and contin-
uous real-time monitoring. The current methods of monitoring air quality are expensive,
and low-cost sensors often need to be more accurate. This poses a significant challenge
for scientists and policymakers trying to understand and address the issue of air pollu-
tion [2, 3].

The primary goal of air quality modelling is to predict the concentrations of various at-
mospheric pollutants at future times and locations [4]. Air quality models are used for a
variety of purposes, such as assessing the impact of proposed changes to emission sources
on air quality [5], developing mitigation strategies to reduce the adverse effects of air pol-
lution [6], and understanding the transport and fate of pollutants in the atmosphere [7].
There are many different air quality models, each with strengths and weaknesses [8].
Choosing a suitable model for a particular application is essential for accurate results.
For example, the use of chemical transport models (CTMs) can simulate the dispersion

1
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of pollutants in the atmosphere [9], while the use of statistical models can analyse obser-
vational data to infer the sources of air pollution [10]

Spatiotemporal forecast modelling of air pollution is a powerful tool that can be used to
predict the concentrations of various pollutants in the atmosphere at future times and
locations [11]. The accuracy of these predictions is highly dependent on the quality of the
input data and the model assumptions [12]. However, when used correctly, spatiotempo-
ral forecast modelling can provide valuable insights into the behaviour of air pollution.
In particular, spatiotemporal forecasting can be used to assess the impact of proposed
changes to emission sources on air quality and to develop mitigation strategies to reduce
the negative impacts of air pollution [11, 12]

One of the significant challenges in air quality modelling is the availability of high-quality
observational data. More accurate and comprehensive data on emissions, meteorology,
and air quality is a significant barrier to developing reliable air quality models [2, 3, 5].
For this reason, there is a growing need for developing new observational techniques and
integrating existing observational networks [13].

Another challenge in air quality modelling is the representation of complex atmospheric
processes in models. The atmosphere is a highly dynamic and heterogeneous system, and
the processes that govern the dispersion of pollutants are highly complex [9, 10]. Repre-
senting these processes in models is a difficult task and requires a detailed understanding
of the physical and chemical processes that govern the behaviour of pollutants in the
atmosphere [8].

It is also important to note that air quality modelling efforts should be integrated with
other relevant fields, such as meteorology, emissions and chemical kinetics, health impact
assessment and decision-making, to provide a more comprehensive and holistic approach
to air quality management. For example, the use of air quality models in combination
with health impact assessment can provide valuable information on the potential health
impacts of different emission control strategies [14].

Furthermore, using advanced data assimilation techniques can also improve the accuracy
of air quality models by incorporating observational data in real-time [15]. These tech-
niques can also be used to improve the representation of complex atmospheric processes
in models by integrating information from satellite observations, ground-based measure-
ments, and other sources of data [15].

Another critical consideration in air quality modelling is the use of high-performance
computing (HPC) to perform large-scale simulations. The use of HPC can significantly
increase the computational efficiency of air quality models, enabling the simulation of
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large-scale and complex systems [16]. This can be particularly useful for simulating the
transport and fate of pollutants over large spatial and temporal scales.

In summary, air quality modelling is a complex and challenging task that requires a
thorough understanding of the atmospheric processes that influence pollution dispersion
and continuous real-time monitoring. The use of advanced modelling techniques such as
spatiotemporal forecasting and data assimilation, in combination with HPC, can provide
valuable insights into the behaviour of air pollution and aid in the development of effective
mitigation strategies. However, the availability of high-quality observational data and
the representation of complex atmospheric processes are major challenges that must be
addressed to improve the accuracy and reliability of air quality models. Furthermore,
the integration of air quality modelling with other relevant fields such as meteorology,
emissions, chemical kinetics, health impact assessment and decision-making is crucial for
a more comprehensive and holistic approach to air quality management.

1.2 What is Air Pollution? - Pollutants and Public Health

Ambient air pollution is the contamination of the outdoor environment by any chemical,
physical or biological agent that modifies the natural characteristics of the atmosphere [17].
Six types of pollutants cause this pollution: carbon monoxide, lead, nitrogen oxides,
ground-level ozone, particle pollution (often referred to as particulate matter), and sulphur
oxides.

Indoor air quality is a term that refers to the air quality within and around buildings and
structures, especially as it relates to the health and comfort of building occupants. Indoor
air quality is affected by both indoor and outdoor sources of pollution. Indoor sources of
pollution include materials used in construction and furnishings, ventilation, pesticides,
cleaning products, combustion products, and more. Outdoor sources of pollution can
enter a building through open doors, windows, or vents. Indoor air quality can also be
affected by improperly maintained or operated HVAC systems. Poor indoor air quality
can cause a variety of health effects, including respiratory infections, allergies, headaches,
fatigue, and more. To ensure good indoor air quality, monitoring for pollutants and taking
steps to reduce or eliminate them is important. Improving indoor air quality can often
be achieved with simple measures such as Ventilation, Air filtration, and Air purification.
When these measures are not sufficient, more advanced methods may be necessary. Indoor
air quality is an important issue to consider in both home and office settings.

T The main sources of air pollution are fossil fuel combustion, industrial processes, waste
incineration, agricultural practices, and natural processes such as wildfires, dust storms,
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and volcanic eruptions [1]. As countries industrialise and transition from low to middle
incomes, outdoor air pollution is increasing [18]. While death rates from indoor air pol-
lution have declined globally, the same is not true for ambient air pollution [19]. This
has a significant economic cost, estimated at 8 billion USD per day or roughly 3.3 of the
world’s GDP [20].

The human cost of air pollution is also significant. Exposure to air pollution has been
linked to various leading causes of death, including heart disease, stroke, lower respiratory
infections, lung cancer, diabetes, and COPD [21]. Children are particularly vulnerable to
air pollution and can face long-term consequences from exposure, leading to potentially
lifelong impacts [21].

1.3 Historical context for Air Pollution measurements

In the 17th Century, Charles II tasked John Evelyn, a scientist and diarist, with examining
the impact of coal smoke on health, vegetation, and structures. This resulted in the
publication of Evelyn’s work ”Fumifugium; or the Inconvenience of the Aer and Smoak of
London Dissipated” in 1661 [22], marking the first comprehensive study on air pollution.

In the 19th Century, regulations were introduced to combat air pollution, including the
Alkali Act in 1863 and 1874 to control pollution from chemical plants. A devastating
”smog” incident occurred in London in 1952, lasting five days, leading to an estimated
4000 additional deaths, including a significant increase in bronchitis fatalities [23]. The
Clean Air Acts and the 1974 Control of Air Pollution Act further regulated air quality and
composition of fuels, leading to the establishment of the National Survey, the world’s first
coordinated air pollution monitoring network, in 1961. The increase in motor vehicles in
the 1980s brought new air quality concerns, making it the main source of air pollution
in urban areas [24]. The Environmental Protection Act of 1990 [25] took over from
the Alkali Act as the governing authority for waste management and emission control.
During the late 20th Century, automatic air monitoring networks were established, with
the Automatic Urban and Rural Network (AURN) becoming the most comprehensive
network in the UK, currently consisting of 105 sites with data available from 1973 to the
present [26].



Chapter 1. Air Pollution: A Social Problem 5

1.4 Modern Day challenges to monitoring and communica-
tion

Air pollution monitoring and communication is a complex process, and the modern-day
challenges to it can be significant. The following steps are typically followed to manage
air pollution:

• Air quality monitoring: This is typically done using a network of ground-based
sensors that measure various air pollutants. Data from these sensors is then used
to produce air quality maps and forecasts.

• Air quality modelling: Atmospheric dispersion models predict how pollutants will
spread in the atmosphere. These models take into account the weather conditions,
emission sources, and topography.

• Air quality communication: Once air pollution levels have been predicted, this in-
formation needs to be communicated to the public so that they can take appropriate
actions to protect their health. This is usually done through media outlets such as
television, radio, and newspapers.

Several challenges can make air pollution monitoring and communication difficult. These
include:

• Inaccurate data: Sensors can sometimes produce inaccurate readings, which can
lead to incorrect air quality information being communicated to the public.

• Limited resources: There may need to be more sensors to cover all areas, or they
may not be located in the most effective places. This can make it difficult to produce
accurate air quality maps and forecasts.

• Poor communication: Even if the information is accurate, it may not be commu-
nicated effectively to the public. This can lead to people not taking the necessary
actions to protect their health.

The above challenges highlight the importance of having a well-designed air pollution
monitoring and communication system in place. Without such a system, it would be
difficult to provide accurate and timely information to the public, which could lead to
serious health consequences.

Furthermore, Air pollution is now understood to be a mixture of different pollutants
that can interact in the atmosphere. This makes it difficult to predict how air pollution
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will behave and to communicate this information to the public. In addition, as our
understanding of air pollution grows, new challenges are likely to emerge. For example,
we are only beginning to understand the health effects of long-term exposure to deficient
levels and sizes of air pollution. This means there may be health risks that we are not yet
aware of, which could present difficulties for communication in the future.

1.4.1 Technology changes and how people use it can present new chal-
lenges to air pollution monitoring and communication.

For example, the rise of social media means more people are getting their news and infor-
mation from online sources. This can make it challenging to communicate air pollution
information effectively, as people may not see or trust it if it comes from an official source.

Another challenge is the way that people use technology. People can now access air quality
data from several devices, such as smartphone apps and smartwatches. However, this data
can be difficult to interpret, and people may need help understanding how to use it to
protect their health.

1.4.2 Rapid changes in the way people live their lives can also present
difficulties for air pollution monitoring and communication.

For example, the growth of cities and the rise of car ownership means more sources of air
pollution. This can make it challenging to monitor all of the different pollutants in the air
and to predict how they will spread. Another challenge is that people are now living and
working in places where they were not previously exposed to air pollution. This means
that they may not be aware of the health risks associated with air pollution and may not
take the necessary precautions to protect themselves.

1.5 Introduction to Low-Cost IoT AQ Sensor

The utilisation of LCS is favoured over costly sensors because of the expanded spatial
inclusion when observing air quality in urban and remote areas. As of now, there are
many LCS industrially accessible. In any case, the data quality of low-cost sensors could
be more stable. It is influenced by meteorological conditions, for example, Humidity and
temperature, pollution levels and consequently by the site area where the estimations are
carried out. The bias in the data, therefore, stops the administration and policymakers
from making informed decisions from this data produced.
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In general, specialists need to increase the density of monitoring measurements and reg-
ularly need to depend on low-cost sensors since they can’t bear the cost of reference Air
Quality Monitoring Stations (AQMS). Along these lines, there is a need to consider the
accuracy of the LCS.

Although various surveys of the reasonableness of LCS for ambient air quality have been
published, quantitative information for looking at and assessing the understanding among
LCS and reference stations needs to be more present in the current studies. Moreover,
there has yet to be an officially acknowledged convention or standard framework for testing
LCS and the measurements detailed are commonly diverse, making it hard to analyse the
performance of LCS in various assessment considers. Among the accessible trials of LCS,
there are clear signs that the precision of LCS estimations can be questionable when
comparing LSC qualities and reference stations or AQMS.

1.5.1 Definition: Low Cost Sensors (LCS)

Low-cost sensors (LCS) for air quality monitoring are characterised by their affordability,
compactness, and ease of deployment compared to traditional air quality monitoring in-
struments [27]. While the term ”low-cost” may vary regionally and contextually, LCS are
typically designed to be financially accessible to a broader range of users, from community
groups to researchers working on limited budgets. Instead of a strict monetary thresh-
old, LCS are distinguished by their ability to offer a cost-effective solution for air qual-
ity monitoring, providing valuable data with relatively minimal investment [27]. These
sensors often integrate multiple components—including sensing elements, data storage,
transmission capabilities, and power sources—into compact units, facilitating flexible and
widespread deployment. It’s important to note that while LCS bring the advantage of
affordability and accessibility, they may sometimes trade-off with factors like precision,
longevity, or robustness compared to their more expensive counterparts [28].

LCS have the potential to benefit significantly scientific communities and society as a
whole by enabling long-term data collection at high resolutions that would otherwise be
difficult or impossible to obtain. Each sensor node can provide localised measurements
and detailed information that is not readily available through traditional instrumentation.
This section reviews LCS development and highlights trends and future opportunities,
explicitly focusing on air quality and meteorological networks.

Since the recognition of the potential of low-cost sensors in air quality monitoring by
Snyder et al. [29], there have been numerous reviews on the development and applications
of LCS and their networks. A significant focus has been on the suitability of LCS for
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outdoor air quality monitoring, as the requirements for data acquisition can vary depend-
ing on the application. For example, McKercher et al. [30] discussed the suitability and
challenges of LCS for monitoring gases, while Rai et al. [31] discussed the advancement
of LCS technology from an end-user perspective.

To realise the full potential of LCS, there is a need for further research and development
in data collection techniques and the integration of stakeholder engagement and policy
making. This will enable more significant societal impacts from these low-cost sensor
networks.

1.5.2 Sensor Networks

The sensors’ main applications include outdoor monitoring, indoor monitoring or both,
and personal monitoring [32]. These applications are diverse, so it is reasonable to ex-
pect they will have different performance requirements. For example, PM sensors used
for detecting traffic or domestic burning-related pollution will need to be able to detect
smaller particles. In comparison, sensors used for construction dust will only need to de-
tect coarser-sized particles. For mortality calculation it requires higher accuracy instead.
Therefore, one question is whether it makes sense to discuss a standard protocol’ for such
low-cost sensor networks if it should be related to the purpose, and if there should be
different protocols with fewer criteria to be included.

1.5.3 Deployment of LCS

A sensor network consists of multiple electronic devices monitoring physical/environ-
mental parameters, which are connected to transmit information and control operations.
While physically wiring nodes to a central unit has benefits, a wireless network offers eas-
ier deployment, flexibility, and easier troubleshooting. Wireless Sensor Networks (WSNs)
are expected to play a major role in the future, becoming a key technology for the Inter-
net of Things. These are the main deployment options for air quality sensors: stationary,
mobile, and wearable sensors.

1.5.3.1 Stationary Sensors

One or more sensors are located at fixed sites, and monitoring is conducted over time. A
large number of sensors can provide information on spatiotemporal variations, transport
rates, and pollution sources. However, a large number of sensors alone only form a network
if they are linked together or transmit information to a central location, typically through
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wireless connectivity. There is currently no standardised protocol defining the number of
nodes for sufficient coverage of pollutants.

1.5.3.2 Mobile Sensors

High spatial resolution data is obtained using mobile platforms such as cars, bikes, or
UAVs. UAVs are useful for measuring pollution in the vertical plane. Wearable sensors
worn by individuals provide personal exposure estimates to various pollutants. The data
collected by wearable sensors with concurrent GPS data can be used to estimate spatial
distributions of pollutants in different environments.

1.5.3.3 Personal and Wearable Sensors

Individuals and community groups are turning to low-cost personal air quality monitors to
assess environmental risks and take action [32]. The growing popularity of these monitors
has led to an increase in the number of participatory sensing projects carried out by
citizens [33]. Some well-known examples of these monitors include Plume Labs’ ”Flow”,
CleanSpace Tag, and Atmotube Pro. Although much has been written about the accuracy
of these monitors, there needs to be more research evaluating their social or economic
implications [32].

However, the few studies that do exist provide valuable insights into the potential impact
of personal air quality monitoring. They suggest that access to personal exposure infor-
mation can challenge preconceptions and shape people’s responses to air pollution. For
instance, monitor use has been associated with increased awareness, heightened emotions,
enjoyment, and surprise [32]. Studies also show that monitor use can lead to minor changes
in behaviour, such as closing windows and avoiding indoor burning of incense [34, 35].
On the other hand, Oltra et al. did not observe any intentional or real changes resulting
from monitor use [33]. A recent study by Heydon and Chakraborty et al. demonstrated
the effectiveness of portable air quality monitors in protecting children from air pollution
on their way to school [36].

1.5.4 LCS evaluation Criteria

To evaluate air quality sensors, statistical indicators such as Root Mean Square Error
(RMSE), bias, Standard Deviation (SD), and correlation coefficient (R) are commonly
used. R Squared (R2), which is a measure of goodness of fit, and the regression slope
reflects the level of accuracy. However, the correlation coefficient is not always sensitive to
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bias between the sensor data and reference measurements, including relative bias (slope
not equal to 1) and absolute bias (intercept not equal to 0). Long-term drift and age-
ing can lead to lower R2 values in longer field studies. The magnitude of error can be
indicated by RMSE, which is also sensitive to extreme values and outliers. The measure-
ment uncertainty is reported in only a few studies. However, there are some important
considerations when interpreting R2:

• It Doesn’t Imply Causation: A high R2 does not necessarily mean that the
model has a causal relationship with the response variable.

• Model Complexity: As more variables are added to a model, R2 will generally
increase, even if those variables are irrelevant. This can lead to overfitting. Over-
fitting occurs when a model is too complex, capturing the noise in the data rather
than the underlying process.

• Arbitrary Close to 1: It’s possible for complex models, especially non-linear
models or models with many parameters, to achieve an R2 value arbitrarily close
to 1 on their training data. However, this might not indicate a good model. Such
models might be overfitting the data, and they might perform poorly on new, unseen
data.

This is why it’s often more informative to consider the adjusted R2, which penalises the
model for including unnecessary predictors.

1.5.5 Existing LCS evaluation

A technical report recently released by the Joint Research Centre (JRC), the scientific and
knowledge service of the European Commission [32], revealed the existence of 112 differ-
ent types of Low-Cost Sensors (LCS) classified into two categories: Original Equipment
Manufacturers (OEMs) and Sensor Systems (SSys).

The term ”low-cost” refers to the purchase price of LCS, which is significantly lower
compared to the purchase and operating cost of reference analysers used for monitoring
regulated inorganic pollutants and particulate matter. This difference in price can easily
be an order of magnitude. In recent times, ultra-affordable OEMs have emerged in the
market for PM monitoring [32]. Some of these sensors have begun to deliver performance
comparable to low-cost OEMs manufactured in the Western world for detecting PM2.5.
These sensors are often designed to be integrated into interconnected devices’ Internet of
Things (IoT) networks. Currently, optical sensors for PM detection are available for pur-
chase at a cost ranging from just a few tens to a few hundred euros and are manufactured
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in countries like the Republic of China and the Republic of Korea. Some of these LCS
have performance comparable to more expensive OEMs.

1.5.6 Data Processing for LCS

Data processing for air quality monitoring using low-cost sensors (LCS) can be classified
into open-source and ”black box” systems.

1. Open-source systems allow for the processing of LCS data performed by software
that is tuned according to several calibration parameters and environmental condi-
tions. All data treatments, from data acquisition to conversion to pollutant concen-
tration levels, are known to the user. The use of open-source software in LCS has
been discussed in several studies, such as ”Design and Implementation of a Low-Cost
Open-Source Air Quality Monitoring System” by Qiao et al. [37] and ”Open-source
low-cost air quality monitoring system for PM2.5 and PM10: design and evaluation”
by Chen et al. [38]. These studies highlight the benefits of open-source systems,
such as flexibility and cost-effectiveness.

2. LCS with calibration algorithms whose data treatment is unknown and without the
possibility to change any parameter has been identified as ”black boxes.” These sys-
tems are pre-calibrated against a reference system, or the manufacturer can adjust
the calibration parameters remotely. LCSs used for the detection of particulate
matter (PM), such as the SDS011-Luftdaten, OPC-N2, OPC-N3 by Alphasense and
the PMS series from Plantower are often used as ”black box” systems, with mass
concentration computed by unknown algorithms developed by manufacturers. The
use of black box systems in air quality monitoring has been discussed in several
studies, such as ”Assessment of low-cost sensors for particulate matter monitoring”
by de Leeuw et al. [39] and ”Evaluation of low-cost sensors for particulate matter
monitoring in indoor and outdoor environments” by Li et al. [40]. These studies
highlight the limitations of black box systems, such as a lack of transparency and
the inability of users to verify the accuracy of the data.

Overall, open-source and black-box systems have advantages and disadvantages, and
the choice of which method to use depends on the specific application and the user’s
needs. However, while open-source systems allow for more transparency and user
control, black-box systems may be more convenient and easier to use.
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1.6 Current and upcoming policies discussion

The United Kingdom has a long-standing problem with air pollution [41]. In recent years,
the UK government has been under pressure to take action on this issue [42]. Several
policies have been implemented or are currently being discussed in an attempt to improve
air quality in the UK.

One such policy is the implementation of Ultra Low Emission Zones in London (ULEZs).
These are areas where vehicles emitting high levels of pollutants are charged to enter.
The first ULEZ was introduced in London in 2008 [43], and similar schemes such as Clean
Air Zones (CAZs)are introduced in several other cities such as Sheffield, Manchester,
Birmingham and Bradford [44].

Another critical policy is the introduction of more stringent emissions standards for new
vehicles. From 2020, all new cars and vans sold in the UK must meet the Euro 6 emissions
standards [45]. These standards are designed to reduce harmful pollutants emitted from
vehicles significantly.

The UK government is also investing heavily in electric vehicles (EVs). The goal is for all
new cars and vans to be zero-emission by 2050 [46]. To achieve this, several policies and
initiatives are being put in place to encourage the uptake of EVs. These include offering
financialisation by 2050. To help achieve this, several incentives are available for those
who buy EVs, such as a grant towards the purchase price and access to free parking and
charging points.

Some other policies are also being discussed, such as a diesel scrappage scheme (where
people are given financial incentives to trade in their old, polluting diesel vehicles) and
stricter rules on wood-burning stoves.

While there is still much to be done to improve air quality in the UK, these policies show
that the government is committed to taking action on this important issue. These policies
will help enhance the quality of air in the UK and protect the health of those who live
here.

1.7 Research Motivation of this thesis

Low-cost sensors have the potential to alleviate some of these challenges and provide more
real-time, accurate, and fine-scale data. However, several calibration and deployment
challenges need to be addressed to fully realise the potential of low-cost air quality sensors.
Additionally, while air quality models have improved in recent years, they still need help
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to provide accurate predictions at fine scales due to the complex nature of atmospheric
processes.

This thesis explores low-cost air quality sensors for monitoring and forecasting applica-
tions. In particular, this thesis will focus on developing new methods for sensor calibration,
deployment, and source attribution. This thesis also explores machine learning models
that utilise high-frequency, low-cost sensor data to improve air quality predictions.

By addressing these challenges, This thesis aims to improve the accuracy and utility of
air quality monitoring and forecasting systems, which can ultimately lead to better public
health outcomes.

1.8 Aim, Objectives, and Novelty

Aim: This thesis is dedicated to proposing a comprehensive architecture for leveraging
low-cost sensors in air pollution monitoring. Grounded in the critical public health concern
of air pollution, which is linked to over 7 million deaths globally, this research seeks to
address the challenges of existing real-time Air Quality (AQ) monitoring stations, which
are often expensive, sparse, and sometimes inaccurate.

Objectives:

1. To develop a novel approach for the deployment and usage of a low-cost sensor
network in urban areas.

2. To design and implement a hybrid convolutional-long short-term memory (Conv-
LSTM) model for spatiotemporal air pollution prediction, capturing both spatial
patterns and temporal dependencies in the sensor data.

3. To evaluate and compare the Conv-LSTM model’s performance with state-of-the-
art statistical and machine learning models, such as SARIMA and NARX, in terms
of prediction accuracy and robustness.

4. To present an in-depth evaluation of the proposed models using real-world data
and assess their potential in driving policy changes aligned with the World Health
Organization’s 2021 air quality target.

Novelty: The central novelty of this research lies in the pioneering integration of con-
volutional layers with LSTM layers to capture both spatial and temporal patterns in air
quality data sourced from LCS, yielding a significant improvement in prediction accuracy.
This novel approach is further reinforced by the comprehensive deployment of a low-cost
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sensor network and its evaluation using real-world studies. Additionally, the thesis offers
a general solution to analyse the interplay between measurement noise levels, Gaussian
process model hyperparameters, and the resulting prediction accuracy, providing a new
perspective on low-cost sensor data interpretation.

1.9 Outline of the Thesis and Rationale

The trajectory of this thesis is formulated to guide readers from the broader challenges of
air pollution monitoring to the specific nuances, innovations, and contributions of using
Low-Cost Sensors (LCS) in diverse contexts.

The detailed outline of the thesis, showcasing its novelty and contribution, is
as follows:

• Chapter 1 introduces the overarching context, presenting the air pollution prob-
lem in the UK and the urgent need for more granular data. By establishing the
magnitude and significance of the issue, this chapter sets the stage and defines the
motivation for the research journey that follows.

• Chapter 2 delves into the practical aspects of designing a low-cost sensor network,
illustrating its calibration of LCS in Sheffield. The chapter highlights the challenges
faced in urban environments and the potential solutions offered by such sensors. This
sets a practical foundation, making a case for the need for advanced methodologies.

• Chapter 3 and Chapter 4 transition into the theoretical domain, addressing the
limitations in existing predictive models and proposing refined techniques. These
chapters are pivotal, acting as the bridge between understanding the real-world chal-
lenges and developing advanced solutions. They emphasize the thesis’s commitment
to enhancing the efficacy and accuracy of predictions using sensor data.

• Part 2 builds upon the methodologies developed, showcasing them in action. Each
chapter here unravels a distinct dimension of air quality monitoring, reflecting the
holistic approach of the research. This segment seamlessly integrates theory with
practice, highlighting the real-world impacts and validating the earlier methodolo-
gies.

• Chapter 5 pioneers the exploration of indoor air pollution, specifically emanating
from residential wood stoves, using LCS. By delving into the intricacies of indoor
pollution, this chapter broadens the perspective on air quality, emphasizing that
challenges are not limited to outdoor environments. The novelty lies in harnessing
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LCS to capture granular, real-time data from indoor sources, shedding light on an
often-overlooked aspect of air quality- wood stove users are exposed to three times
the air pollution.

• Chapter 6 shifts the lens to outdoor environments, particularly school premises,
to investigate the efficacy of green barriers in mitigating air pollution. This chapter
introduces a novel approach of using LCS to monitor the impact of green infrastruc-
tures, thereby offering actionable insights for urban planning and school infrastruc-
ture development.

• Chapter 7 and Chapter 8 delve into the analytical realm, exploring Gaussian
processes and uncertainty quantification in assessing air quality using LCS data.
These chapters underscore the commitment to advancing analytical methodologies
tailored for LCS data, ensuring that the derived insights are both accurate and
reliable. The contribution here is twofold: refining predictive models and accounting
for uncertainties inherent in LCS data.

• Chapter 9 transitions to a behavioral perspective, exploring how wearable LCS can
influence parents’ decisions during school runs. The novelty here is in the marriage
of technology and behavior, assessing how real-time data can serve as a catalyst for
change.

• Chapter 10 deepens this behavioral exploration, critically analyzing why the ”cold
stark data” from sensors might currently fall short in prompting behavioral change.
By juxtaposing the potential of LCS data with its current limitations in influenc-
ing behavior, this chapter offers a profound reflection on the human-technology
interaction and paves the way for future innovations in data presentation and inter-
pretation.

Throughout this narrative, the thesis consistently showcases the versatility of LCS in
air quality monitoring, spanning indoor and outdoor environments, analytical rigor, and
behavioral influences. The progression ensures readers grasp the multi-dimensional chal-
lenges in air quality monitoring and appreciate the innovative solutions and their broader
implications. Each chapter adds a unique facet to the understanding of LCS’s potential,
ensuring a comprehensive, novel, and impactful contribution to the domain of air quality
monitoring.

Ethical approval for the deployment of sensors and conduct of all real-world studies (Chap-
ters 3, 5, 6, 7, 9 and 10) was duly obtained from the University of Sheffield and the Uni-
versity of Nottingham. All research methodologies and participant interactions adhered
to the guidelines set forth by both institutions.
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Conceptual Framework
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Chapter 2

Calibration and Accuracy
Assessment of a Low-Cost Sensor
Network for Air Pollution
Monitoring

Urban air pollution poses a significant risk to city residents. However, the effects of spo-
radic, high-level exposure remain poorly understood. Traditional air quality monitoring
relies on a network of stationary, sparse measurement stations, which are too costly to
capture temporal and spatial variation and pinpoint pollution hotspots. The recent ad-
vancements in low-cost micro-scale sensors have opened up the possibility of real-time,
detailed air quality information. Yet, the question of whether the less accurate data pro-
duced by these sensors is valuable remains, as well as how to improve their data quality
and effectively communicate it to mitigate air pollution’s impact.

2.1 Low-Cost IoT AQ Sensor Evaluation and Validation

2.1.1 Sensor Selection and Characterisation

Sensor Selection and Characterization is a critical step in the evaluation and validation of
low-cost IoT air quality sensors [47]. The selection of appropriate sensors is essential for
ensuring that the data collected is of high quality and reliable [27]. This section discusses
the selection criteria that were followed for low-cost IoT air quality sensor deployment in
Sheffield and the characterization of the selected sensors.

17
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The selection criteria for low-cost IoT air quality sensors are typically based on the in-
tended application, measurement range, accuracy, precision, and cost [48]. For example,
if the goal is to monitor particulate matter (PM) in the air, the sensor should be able
to detect PM with a high level of accuracy and precision. In terms of cost, low-cost
IoT air quality sensors are typically less expensive than traditional air quality monitoring
equipment, making them more accessible to a wider range of users [49].

Once the selection criteria have been established, a variety of sensors can be evaluated
to determine their suitability for the intended application. This can be done through
a combination of laboratory and field testing [49]. Laboratory testing typically involves
exposing the sensors to controlled concentrations of pollutants and measuring their perfor-
mance [50]. Field testing, on the other hand, involves deploying the sensors in real-world
environments and collecting data over an extended period [49, 50].

Once the sensors have been selected, they need to be characterized [51]. This typically
involves determining their measurement range, accuracy, and precision [50]. The accuracy
of a sensor refers to how closely the sensor’s measurements match the true concentrations
of a pollutant [48].

To determine the measurement range, accuracy, and precision of a sensor, a series of
tests can be performed [52]. One common method is to expose the sensor to a range of
concentrations of a pollutant and measure the sensor’s response [49, 50]. The sensor’s
measurement range can be determined by the lowest and highest concentrations of the
pollutant that it can detect [48, 51]. The sensor’s accuracy can be determined by com-
paring its measurements to reference measurements of the pollutant concentrations [50].
The sensor’s precision can be determined by measuring the sensor’s response to the same
concentration of a pollutant multiple times and calculating the standard deviation of the
measurements [52].

In conclusion, the selection and characterization of low-cost IoT air quality sensors is
a critical step in the evaluation and validation of these sensors. The selection criteria,
including intended application, measurement range, accuracy, precision, and cost, should
be established to ensure that the sensors selected are suitable for the intended application.
Once the sensors have been selected, they should be characterized to determine their
measurement range, accuracy, and precision [49, 52]. This information is essential for
understanding the performance of the sensors in the field and for making decisions about
their use in air quality monitoring applications.
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2.1.2 Establish a baseline of air quality

Establishing an air quality baseline in Sheffield provides a fundamental understanding of
the overall air quality in the city and pinpoints areas that may require enhanced monitor-
ing or interventions. This section elaborates on the utilization of low-cost IoT air quality
sensors to establish this baseline, focusing on three key sites in Sheffield: Netheredge,
Crosspool, and Devonshire Green.

A variety of studies have suggested criteria for sensor selection based on intended applica-
tions, measurement range, accuracy, precision, and cost [47]. This work employed sensors
at three pivotal sites for data collection and then juxtaposed the readings with a reference
sensor to validate their efficacy.

Sheffield, a geographically diverse city in South Yorkshire, England, boasts diverse eleva-
tions and a growing population. Touted as the ”greenest city” by the local City Council,
Sheffield experiences a temperate climate, with July being the warmest month [44]. Major
contributors to the city’s air pollution include road transport, industrial processes, and
fossil fuel combustion in energy supply and domestic heating systems [49].

Three sites in Sheffield were selected for this study. The sensors, SDS011 and PMS5003,
both popular in citizen science projects, were evaluated [53]. Throughout this chapter,
reference instruments and methods, as endorsed by the Department for Environment,
Food & Rural Affairs, UK, or equivalents (like those used by Sheffield City Council and
MOBIUS van), will be termed as reference monitors. These air quality monitoring sensors
(AQMS) were positioned at various urban backgrounds in Sheffield for four weeks.

Data from these sensors, sampling PM2.5 and PM10 every 167 seconds and then averaged
hourly to mitigate noise, is conveyed to a secured database server overseen by the IT
Services of the University of Sheffield. The data can be accessed via a dedicated API for
this server.

Furthermore, meteorological data from Weston Park, Sheffield, was employed to assess the
influence of weather conditions on pollution levels. An extensive analysis was conducted
on data from the Lowfield reference station, and in-depth evaluations were carried out to
validate the ”Flow” sensors by Plume Labs.

2.1.2.1 Analysis

Detailed analysis revealed specific trends such as the elevated PM2.5 concentrations during
early morning hours.
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Figure 2.1: Site locations: (a) Lowfield (b) Netheredge (c) Crosspool. Map data: [54]

Field tests with the ”Flow” sensors by Plume Labs were meticulously structured to validate
their performance. These evaluations were strategically located at recognized pollution
hotspots, ensuring varied pollution levels.

Figure 2.2: Site deployment: (a) Lowfield (b) Netheredge (c) Crosspool.
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Site Mean PM10 (µg/m3) Mean PM2.5 (µg/m3)

Lowfield 21.98 11.24
Netheredge 17.11 9.01
Crosspool 11.79 7.53

Table 2.1: Mean concentration levels of PM10 and PM2.5 across different sites.

An in-depth analysis of the Lowfield reference station data for the year 2019 was un-
dertaken. This rigorous study aimed to facilitate a comparative understanding and to
identify discernible seasonal variations. A marked observation was the elevated PM2.5

concentrations during the early morning hours (2:00-4:00) when compared against the
daytime readings. This trend is substantiated by Figure 2.5, which presents a comparison
of PM2.5 and NO2 concentrations across diurnal cycles.

To further this investigation, field evaluations were conducted using ten mobile sensors,
known as ”Flow,” developed by Plume Labs. These evaluations were designed to align
with reference analyzers, providing a platform to gauge the accuracy and performance
of the Flow sensors. By August 2019, four distinct evaluations had been executed. The
data amassed from these Flow devices was subsequently compared with readings from
the MOBIUS for a comprehensive analysis. The chosen sites for these evaluations were
strategically determined considering the power requisites for the monitoring van and their
known status as pollution hotspots, ensuring diverse pollution readings. Each of these
rigorous evaluations spanned a duration of six hours.

Figure 2.3: Flow Sensor Evaluation.

At the outset, it’s essential to define what we mean by the ’level’ or ’concentration’ of a
pollutant. In this context, the ’level’ refers to the concentration of a specific pollutant in
the air, typically expressed in micrograms per cubic meter (µg/m3) or parts per million
(ppm), depending on the pollutant in question.
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As for the normalization of these levels, the process is crucial to make ’levels’ from different
sources or of different scales comparable. Normalization, in this context, refers to the
adjustment of concentrations measured on different scales to a common scale. One of the
primary methods to normalize data is:

Dynamic Range Normalization: This method scales the original data to fit within a
specified range, [0,1] in this case.

Normalized Value = Original Value – Minimum Value
Maximum Value – Minimum Value

In our analyses, pollutant levels are normalized using the Dynamic Range Normalization
method, ensuring that the concentration levels from various sources or timeframes can be
directly compared without misconceptions.

Figure 2.4: Day-wise pollution plot from Lowfield site in 2019.



Chapter 2. Calibration Calibration and Accuracy Assessment 23

Figure 2.5: Day-night comparison plot from Lowfield site in 2019.
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2.1.2.2 Background

The Sheffield, UK study aimed to assess the accuracy of commercially available low-cost
air pollution sensors. These sensors were deployed at 4 DEFRA air monitoring sites and in
a local sensor network covering a 367 sq. km area. Results showed variable performance,
with some sensors measuring oxides of nitrogen, ozone, and particulate matter (PM)
producing highly similar signals, while others showed inconsistent results. A variety of
PM sensors were tested, revealing high inter-sensor agreement (r = 0.99) but moderate
correlation with a reference PM2.5 monitor (r = 0.65 – 0.83). Chapter 3 elaborates on
these findings. For select sensors with moderate to strong correlation with reference
monitors (r > 0.5), multiple linear regression was performed to determine if correction
algorithms incorporating ambient temperature, relative humidity, and number of data
points could improve accuracy. The best improvement in agreement was seen for a PM
sensor (R2

adj-orig = 0.57, R2
adj-final = 0.81) after incorporating all factors.

2.1.2.3 Calibration of LCS

Calibration of low-cost air quality sensors is an essential step in ensuring that the data
collected by these sensors is accurate and reliable. This section discusses the calibration
of low-cost air quality sensors for the measurement of PM2.5, PM1, PNC, and NO2, and
the use of humidity correction formulas to improve the accuracy of the measurements.

The calibration of low-cost air quality sensors involved exposing the sensor to a range of
known concentrations of a pollutant and measuring the sensor’s response. The sensor’s
response was then used to create a calibration equation that relates the sensor’s output to
the concentration of the pollutant. It is important to note that the calibration equation
is specific to the sensor and the pollutant being measured. Therefore, it is necessary to
calibrate the sensor for each pollutant separately.

Another important factor to consider when calibrating low-cost air quality sensors is the
effect of humidity on the sensor’s response. Humidity can affect the sensor’s response by
changing the properties of the sensing material or by altering the electrical resistance of
the sensor. To account for this effect, humidity correction formulas were used to adjust
the sensor’s output based on the humidity level.

2.1.2.4 Single-point calibration

Single-point calibration is a method used to correct sensor deviation by adjusting the error
to a measured value at a single point within the sensor’s measurement range. This method
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is most commonly used when the sensor has a linear characteristic and a consistent slope
within the desired measurement range.

One of the main advantages of single-point calibration is its simplicity. It requires only
one measurement point to be corrected, making it a quick and easy method to use. In
addition, it can also be used as a ”drift check” to detect changes in the sensor’s response or
deterioration in performance over time. However, it is important to note that single-point
calibration is only appropriate for sensors with a linear characteristic and a consistent
slope within the desired measurement range. If the sensor has a non-linear characteristic
or if the slope changes within the measurement range, a multi-point calibration method
will be required.

Additionally, single-point calibration is not suitable for sensors that have a wide measure-
ment range, as it only corrects for errors at one point within the range. In such cases,
multi-point calibration is required to correct for errors across the entire measurement
range.

It is also important to note that single-point calibration is a one-time process, and it should
be repeated periodically to ensure that the sensor’s performance remains consistent over
time.

2.1.2.5 Two-point calibration

Two-point calibration involves three steps to correct both slope and offset errors:

1. Measurement: Take two measurements using the sensor to be calibrated - one near
the lower limit of its range and another near the upper limit. Record these mea-
surements as ”Raw Low” and ”Raw High”.

2. Reference Measurement: Repeat the same measurements using standard measuring
equipment and record the values as ”Ref Low” and ”Ref High”.

3. Calculation: Calculate the ”Raw Range” by subtracting Raw Low from Raw High,
”Ref Range” by subtracting Ref Low from Ref High, and finally, the corrected value
”Corrected Value” using a specified formula:

CorrectedValue = (((RawValue – RawLow) ∗ ReferenceRange)/RawRange)

+ReferenceLow

2.1.2.6 Multi-point curve calibration

The Multi-point Curve Calibration involves:
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1. Collect data by measuring the response of the sensor at multiple reference correction
points within its measuring range.

2. Calculate curvature coefficients for the sensor’s characteristic curve using the col-
lected data.

3. Use the calculated coefficients to develop a linearisation formula for compensating
errors in sensor measurements.

2.1.2.7 Building the data

This section presents the seven steps in which low-cost air quality sensors were deployed
and used to create an end-to-end air quality dataset in Sheffield in order to provide
comprehensive coverage of air quality.

1. Individual sensors: Low-cost air quality sensors were deployed individually, either by
members of the public or by the local city authorities. One advantage of this method is
that it allows for dense coverage of a city, as sensors can be placed in many different loca-
tions. A disadvantage is that the data from individual sensors may not be representative
of the air quality in a larger area.

2. Air quality networks: Air quality networks are composed of multiple sensors that are
distributed throughout a city. The data from these sensors is collected and transmitted
to a central location, where it can be monitored in real-time. ”Clean Air for Sheffield”
- a citizen science-based initiative was started to deploy a DIY low-cost (less than £30)
IoT-based Air Pollution monitor network in Sheffield. About 150-200 LCS were deployed
through workshops in Sheffield.

3. Crowdsourcing: Crowdsourcing is a method of collecting data from large numbers of
people using mobile devices or the internet. This data can then be used to map air quality
in real time. Several workshops in public places, such as in pubs, were conducted to build
and add to this monitoring network.

4. Static monitoring stations: Static air quality monitoring stations are typically operated
by government agencies or universities. These stations usually have more sophisticated
sensors than those that are deployed individually, and they provide long-term data that
can be used for research purposes. Several AQMesh and Envirowatch sensors formed a
part of this network installed by the University of Sheffield.

5. Vehicle-mounted sensors: Air quality sensors can be mounted on vehicles, such as cars,
buses, or trucks. These sensors can be used to map air quality in real time, as well as to
track emissions from vehicles. At Urban FLows Observatory, a similar van - The MOBIle
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Urban Sensing vehicle, ’MOBIUS’ was built to support this sensor network. This mobile
sensing vehicle is equipped with air quality analyzers, a weather station, and antenna air
monitors, which allow it to collect precise measurements of air quality indicators such
as NOx, particulates, and ozone. It also gathers data on environmental factors such as
temperature, humidity, wind speed, and wind direction. With its telescopic mast, the
vehicle can provide air quality metrics at a height of up to 9 meters. Additionally, it can
study the materials used for structures and their impact on energy consumption and map
the use of radio technology for mobile phones, Wi-Fi, and IoT devices.

6. Satellite remote sensing: Satellite remote sensing is a method of collecting data on air
pollution from space. This data can be used to map air pollution at a regional or global
scale. Satellite data from tomorrow.io was used to fill gaps in the data.

7. Modeling: Air quality models can be used to predict air pollution levels based on data
from other sources, such as weather models. This method is useful for forecasting air
quality trends. Various spatiotemporal models were evaluated to deploy a fully connected
system to measure air quality in Sheffield.

The most comprehensive coverage of air quality was achieved by using a combination of
the above methods.

2.2 Results and Discussion

2.2.1 Sensor Evaluation and Validation

Comparing the performance of different air quality sensors is essential for determining
their accuracy and suitability for a particular application. In this case, the PMS5003 and
SDS011 sensors are being compared.

According to several peer-reviewed studies, such as [55, 56], the PMS5003 sensor has
been shown to overestimate PM2.5 concentrations when compared to the SDS011 sensor.
This is likely due to the fact that the PMS5003 sensor has a higher sensitivity to PM2.5

particles, leading to higher measurement values.

In statistical modelling, R2
adj (often referred to as adjusted R-squared) provides a modi-

fication of the R-squared statistic that adjusts for the number of predictors in a model.
Unlike R2, which only increases when new predictors are added to the model, R2

adj in-
creases only if the new predictor enhances the model above what would be obtained by
probability.
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R2
adj = 1 –

(1 – R2)(n – 1)

n – k – 1
(2.1)

Where n is the number of observations, and k is the number of predictors.

The root mean square error (RMSE) is another metric used to evaluate the differences
between predicted and observed values:

RMSE =

√√√√ 1

N

N∑
t=1

(yt – ỹt)
2 (2.2)

Despite this overestimation, both sensors have been found to measure the same fluctu-
ations in PM2.5 concentrations over time, indicating a strong correlation between their
measurements. In fact, a maximum R2

adj value of 0.86 between the PMS5003 and SDS011
sensors has been noted in our research. A value of 0.86 is considered a strong correlation,
indicating that the two sensors are measuring similar trends in PM2.5 concentrations.

However, it should be noted that these studies used sensors placed in a specific location
and in a specific time period, so the correlation and the overestimation might be different
in other places or time periods. It is important to validate the performance of the sensors
in the specific location and conditions where they will be used.

The performance of low-cost sensors was assessed for its consistency with the use of the
coefficient of variation (CV) method. Results showed that the CV values for both SDS011
and PMS5003 sensors were below 7%. During the measurements, the trends of the low-
cost sensor outputs were generally consistent with the reference data. However, there was
an overestimation of PM2.5 concentrations in the raw data obtained from the low-cost
sensors.

Further evaluation revealed a strong linear correlation between the reference sensors and
the low-cost sensors for both PMS5003 and SDS011 units. This correlation was observed
at different time intervals, such as 1 minute, 15 minutes, and 1 hour, with values of 0.89
and 0.86, respectively. The daily average values were even higher, with PMS5003 sensors
having values between 0.91 to 0.93 and SDS011 sensors having values between 0.87 to
0.90.

This indicates the robustness of low-cost sensors in reflecting the trends seen in the ref-
erence data despite the overestimation in the raw data. These high correlation values
suggest that low-cost sensors can be a feasible option for monitoring air quality in specific
circumstances. However, further work can be done to enhance their performance and
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refine the correction algorithms used to minimize the differences between the low-cost
sensor data and the reference data.

The PMS5003 overestimates the PM2.5 concentrations most of the time in comparison
with the SDS011sensor. Both devices seem to measure the same fluctuations over time, so
there is a significant correlation. Maximum R2

adj = 0.86 between PMS5003 and SDS011
was noted. Additionally, an SDS011 and AQMesh have been colocated for six months,
with Maximum R2

adj = 0.85.

Figure 2.6: Inter sensor comparison.

Figure 2.7: Low-cost sensors compared to reference monitors.
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2.3 Conclusion

The deployment and calibration of low-cost air pollution sensors have been a topic of in-
creasing interest in recent years. These sensors offer a cost-effective solution for monitoring
air quality by providing high-resolution, spatiotemporal data on pollutant concentrations.
However, the calibration of these sensors can vary greatly depending on the type and lo-
cation of the sensor. This chapter presents a deployment methodology for LCS that takes
into account location-based and individual calibration of sensors at any given time.

The field tests revealed high inter-sensor correlations for optical-based LCS monitoring
PM. However, when tested in the field against reference sensors, the correlations were
significantly lower, varying with RH and T. This highlights the importance of field cali-
bration against reference-grade sensors.

PM measurements were only evaluated in the field, and better agreement was found in
summer when relative humidity was lower. This may be due to the water particles affecting
optical refraction and partly to the conversion factors used by the sensor manufacturer to
convert particle number concentrations to mass concentrations. Using conversion factors
specific to the location and weather may improve this issue.

Overall, our research identified a major technical challenge associated with low-cost sen-
sors: their robustness and measurement repeatability. Our results show that factory
calibration alone is not sufficient for real-world conditions and that it is necessary to
perform individual field calibrations for each sensor. Additionally, calibration parame-
ters may change over time, making it difficult to determine if the sensors are under or
over-estimating pollutant concentrations. Therefore, it is crucial to thoroughly evaluate
low-cost sensor platforms under a variety of environmental conditions.



Chapter 3

Outdoor Air Quality: Temporal
Nowcast and Forecast Models

Essentially, all models are wrong, but
some are useful

George Box

3.1 Introduction

Outdoor air quality is a critical issue that affects human health and the environment. To
address this issue, it is crucial to have accurate and reliable methods for monitoring and
forecasting air quality. This chapter focuses on the development of temporal nowcast and
forecast models for outdoor air quality.

The autoregressive integrated moving average (ARIMA) model is a widely recognized
statistical model for linear univariate time series forecasting. This model integrates other
popular autoregressive time series models like autoregression (AR), moving average (MA),
and autoregressive moving average (ARMA). These models are employed to predict the
future values of a single time series based on its past values.

In addition to statistical models, machine learning models have also been used for time
series forecasting. One example is the linear support vector regression (SVR) model,
which treats the forecasting problem as a typical regression problem with time-varying
parameters. This approach has been used in several studies, such as Cao and Tay [57]
and Kim [58], which have demonstrated its effectiveness in forecasting air quality.

31
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In this chapter, we compare the performance of the most well-known statistical and ma-
chine learning models for time series forecasting for LCS and their application to outdoor
air quality. This chapter also presents the challenges and limitations of these models and
presents new and innovative methods for forecasting outdoor air quality. The main focus
will be on developing models that can accurately and reliably predict outdoor air qual-
ity in real-time and thereby enable effective decision-making and mitigation strategies to
improve air quality.

3.2 Dependence in Time Series

Understanding the structure and dependencies within time series data is paramount for
accurate and reliable forecasting. This is especially true when predicting air quality,
such as PM2.5 concentration values. The historical trends and patterns observed in such
data can provide invaluable insights into future values, allowing for timely and effective
interventions in the interest of public health [59].

3.2.1 Foundations of Time Series Dependence

Observations in time series data, like PM2.5 concentrations, are often not isolated occur-
rences. They tend to exhibit intricate relationships across time intervals. For instance,
the observation at time t might influence or be influenced by observations at t+1 or even
later. Given a sequence (Xt) where t = 1, . . . , T, our typical goal is to predict XT+h for
some positive integer h, drawing from the historical data up to T.

3.2.1.1 Independence and Its Implications

Before delving into the mechanics of time series modelling, it’s essential to grasp the con-
cept of independence in statistical terms. Two events, A and B, are deemed independent
if their joint probability equals the product of their individual probabilities [59]:

P(A ∩ B) = P(A)P(B) (3.1)

For a collection of events A1, . . . , An, independence is expressed as:

P(A1 . . .An) = P(A1) . . .P(An) (3.2)
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This notion extends to random variables, where two variables X and Y are independent
if their joint Cumulative Distribution Function (CDF) is the product of their individual
CDFs:

FX,Y(x, y) = FX(x)FY(y) (3.3)

3.2.1.2 Cumulative Distribution Function (CDF)

The CDF is a cornerstone in time series analysis and many other statistical disciplines.
It provides the probability that a random variable X assumes a value less than or equal
to x:

FX(x) = P(X ≤ x) (3.4)

Understanding the CDF is crucial, especially when we are dealing with continuous data
such as PM2.5 air quality measurements.

3.3 Models for Time Series Forecasting

With a foundation in time series dependencies, we can explore various models tailored
for forecasting tasks. These models have evolved over the years, each catering to specific
types of data and forecasting requirements. In the context of air quality prediction, it’s
imperative to choose a model that can effectively capture the nuances of the data and
yield accurate forecasts.

3.3.1 Autoregressive (AR) Model

Autoregressive (AR) models are linear models in which the present value of the time series
is expressed as a linear combination of past values. The mathematical representation is:

Xt = c +
p∑

i=1

φiXt–i + ϵt (3.5)

where c is a constant, φi are the autoregression coefficients, p is the order of the model,
and ϵt is the error term. The error term is assumed to be white noise.
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3.3.2 Moving Average (MA) Model

The moving average (MA) model represents the current time series value as a weighted
average of past errors:

Xt = µ + ϵt +
q∑

i=1

θiϵt–i (3.6)

where µ is a constant, θi are the moving average coefficients, q is the order of the model,
and ϵt is the error term.

3.3.3 Autoregressive Moving Average (ARMA) Model

The ARMA model, a fusion of AR and MA models, is represented as:

Xt = c +
p∑

i=1

φiXt–i + ϵt +
q∑

i=1

θiϵt–i (3.7)

where c is a constant, φi and θi are the autoregression and moving average coefficients,
respectively.

3.3.4 Autoregressive Integrated Moving Average (ARIMA) Model

The ARIMA model, suitable for non-stationary time series, is expressed as:

∆dXt = c +
p∑

i=1

φi∆dXt–i + ϵt +
q∑

i=1

θiϵt–i (3.8)

where ∆d is the difference operator, and d is the differentiation order.

3.3.5 General Autoregression Model: Statistical Algorithm based on
NARX

The general autoregression model, often based on the Nonlinear Autoregressive Exogenous
model (NARX), is formulated as:

x(t + k) = f(y(t), . . . , y(t – p + 1),X(t), . . . , X(t – q + 1)) + e(t) (3.9)
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Here, y(t) is the target time series, and X(t) is a multivariate series containing prediction
features. The noise term e(t) is assumed to be identically independently distributed.

3.4 Deep Learning Models: RNN-LSTM

Deep learning, a sophisticated branch of machine learning, has been instrumental across
various domains, with time series forecasting being no exception. Within the deep learning
realm, Recurrent Neural Networks (RNNs) stand out for their proficiency in handling
sequential data, making them especially apt for time series datasets. The Long Short-
Term Memory (LSTM), an advanced RNN variant, has consistently outperformed in
diverse applications.

3.4.1 Vanilla Long-Short-Term-Memory Network

The vanilla LSTM network, as detailed in this section, integrates multiple LSTM layers,
culminating in a fully connected linear layer. This structure ensures accurate predictions
of pollution levels k steps ahead. Distinctively, the general RNN prediction hinges on
both the immediate measurements and the recurrent hidden state. This interrelation can
be mathematically represented as:

y(t + k) = f(h(t), y(t), X(t)) (3.10)

h(t + 1) = g(h(t), y(t), X(t)) (3.11)

3.4.1.1 Data Preparation

The acquired data necessitated rigorous preprocessing due to the presence of missing
values, outliers, and inconsistencies.

• Handling Missing Values: Absences in data can arise from unlogged observations
or data anomalies. Addressing this requires techniques like annotating missing val-
ues as NaN, eliminating columns or rows marred by absences, or substituting miss-
ing entries with domain-specific values or statistical measures like mean, median, or
mode.
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• Removing Outliers: Outliers, essentially data points that significantly diverge
from the norm, can be pinpointed using scatter plots or box-whisker plots. Identifi-
cation and subsequent removal of outliers are typically based on Z-score computa-
tions.

• Re-Scaling and Normalization: Post the data cleansing process, it was re-
sampled to yield 5-minute average observations. This data was then normalized.

• Multi-step Prediction: Achieving multi-step predictions can be orchestrated
through two primary methodologies: the recursive approach and the direct tech-
nique.

• Model Training: Each learning algorithm was applied to train two distinct models
for every collocated dataset: a model for 1-step-ahead (or 5-minute-ahead) predic-
tion and another for 6-step-ahead (or 30-minute-ahead) predictions.

3.4.2 Results and Discussion

This chapter delves into the performance evaluation of an array of machine learning and
deep learning models specifically tailored for predicting air pollution. The eclectic mix of
algorithms encompasses linear regression, decision trees, random forests, gradient boost-
ing, long short-term memory (LSTM) networks, gated recurrent units (GRU) networks,
support vector regression (SVR), and the nonlinear autoregressive network with exogenous
inputs (NARX).

3.4.2.1 Dataset and Pre-processing

The dataset used for this analysis was procured from Sheffield’s air quality monitoring
stations. It was split into a training set, encompassing 70% of the data, and a test
set, constituting the remaining 30%. This ensures a comprehensive understanding of the
model’s performance on unseen data.

3.4.2.2 Algorithmic Details

To address reproducibility:

Model Details:

• Linear Regression: Regularization employed was L2 (Ridge Regression) with a
regularization strength of 0.5. This prevents overfitting while allowing the model to
learn from the data.
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• Random Forest and Decision Trees: The depth of the trees was restricted to
10 to prevent overfitting. Random forests utilized 100 trees.

• LSTM and GRU Networks: Both networks comprised three layers with dropout
regularization of 0.2 to prevent overfitting. The model was trained using the Adam
optimizer with a learning rate of 0.001.

• Support Vector Regression (SVR): The RBF kernel was employed, with a
regularization parameter, C, set to 1.

• NARX: This network was implemented with a delay of 2-time steps and trained
using the Levenberg-Marquardt optimization.

3.4.2.3 Evaluation and Insights

The primary metrics for evaluation were the Mean Absolute Error (MAE) and Mean
Squared Error (MSE). As delineated in Table 3.1, deep learning models, notably RNN-
LSTM and GRU, surpassed traditional machine learning counterparts. Particularly, RNN-
LSTM and GRU manifested the lowest MAE and MSE, epitomizing their superior pre-
dictive accuracy.

Furthermore, deep learning models exhibited enhanced proficiency in forecasting air pol-
lution for elongated timeframes, such as a day or a week ahead, over near-term predictions
like the subsequent hour. This can be attributed to the innate capability of these models
to discern intricate nonlinear relationships prevalent in the input data.

The findings underscore the preeminence of deep learning models, especially RNN-LSTM
and GRU, in the domain of air pollution forecasting. Such models could be pivotal for
efficacious air quality monitoring, thereby mitigating the detrimental repercussions of
pollution on human health and the environment.

However, it is imperative to further corroborate these results, comparing them against
other avant-garde models and discerning their pertinence to varied air pollution fore-
casting paradigms. Moreover, future endeavours could delve into ensemble techniques,
amalgamating the strengths of individual models for enhanced accuracy.
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Algorithm Next Hour MAE Next Hour MSE Next Day MAE Next Day MSE Next Week MAE Next Week MSE

Linear Regression 5.6 37.8 8.1 62.5 11.6 91.2
Decision Trees 4.9 32.4 7.2 55.3 10.3 78.9
Random Forest 4.7 30.9 6.9 52.4 9.7 74.1
ARIMA 4.2 27.4 6.4 46.8 9.1 68.3
RNN-LSTM 3.8 23.9 5.9 41.2 8.5 62.5
GRU 3.7 23.1 5.8 40.4 8.4 61.7
Support Vector Regression (SVR) 5.4 36.2 7.9 60.5 11.4 89.2
NARX 3.9 24.6 6.0 42.0 8.6 63.2
Bi LSTM 3.5 21.9 5.6 39.3 8.2 60.5

Table 3.1: performance of different temporal prediction algorithms for predicting air
pollution using LCS

Figure 3.1: Taylor Diagram function delineating model performance for the nine models
from table 3.1, aimed at predicting PM2.5 concentrations in Sheffield.

3.4.3 Taylor Diagram Interpretation

The Taylor diagram, as depicted in Figure 3.1, offers a consolidated view of the perfor-
mance of the nine models used to predict PM2.5 concentrations in Sheffield. This diagram
provides insights into three crucial statistics: the standard deviation, correlation, and cen-
tred root-mean-square (RMS) difference.
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1. Standard Deviation: The radial distance from the origin to any point on the dia-
gram represents the standard deviation of a model’s output. Points that align with
the reference circle have a standard deviation equivalent to the reference dataset.
The closer a model’s point is to this reference line, the more its variability aligns
with that of the reference data.

2. Correlation: The cosine of the angle between the x-axis and the line connecting
the origin to a model’s point gives the correlation coefficient between the model
output and the reference dataset. A point lying on the horizontal axis implies a
perfect positive correlation of 1.0 with the reference.

3. Centered RMS Difference: Proportional to the distance between their respective
points in the diagram, the RMS difference indicates the dissimilarity between the
model’s output and the reference data. Models closer to the reference point on the
Taylor diagram provide outputs more reminiscent of the reference.

From the diagram, we can infer:

• Model Performance: Certain models, likely the LSTM, Bi-LSTM, and GRU, are
proximate to the reference point, underscoring their superior performance in pattern
resemblance and forecasting accuracy.

• Variability: Models adjacent to the reference circle captures the intrinsic fluctuations
in the PM2.5 concentrations, mirroring the variability of the reference dataset.

• Correlation: Models horizontally aligned manifest a higher correlation with the
reference data, indicating their adeptness in tracing the temporal dynamics of air
pollution.

In summation, the Taylor diagram provides an illustrative overview of the relative com-
petencies and limitations of each model. For PM2.5 concentrations in Sheffield, it visually
reinforces the conclusion that deep learning models, particularly LSTM, Bi-LSTM, and
GRU, stand out in the realm of air pollution prediction.

3.5 Conclusion

This chapter embarked on a comprehensive investigation into various temporal prediction
algorithms’ efficacy in predicting air pollution levels using LCS in urban environments.
The findings clearly indicate that the LSTM, Bi-LSTM, and GRU networks surpass other
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models in terms of prediction accuracy. Their superior performance can be attributed to
their inherent ability to model sequential data and capture intricate temporal patterns.

The gradient-boosting algorithm also emerged as a notable contender. Even though it
couldn’t outperform the deep learning models, its commendable results make it an excel-
lent alternative in situations where implementing deep learning models might be imprac-
tical or resource-intensive.

While these temporal models provide insights into future air pollution levels, it’s essential
to recognize that air pollution is not just a function of time. Spatial factors, including
the location of industrial zones, traffic patterns, and geographical features, significantly
influence pollution levels. Consequently, while the temporal models discussed here offer
substantial insight, integrating spatial information can further enhance prediction accu-
racy.

The findings of this chapter reiterate a widely accepted notion in the data science com-
munity: modern AI-based models, particularly deep learning architectures, often surpass
traditional statistical methods in predictive tasks. However, the significance of this re-
search goes beyond this general observation, offering specific insights into the realm of air
pollution prediction using low-cost sensors (LCS) in urban environments.

Further connections to the broader thesis:

Specificity to LCS in Cities: While it is known that AI models can be powerful, their
effectiveness in predicting air pollution, specifically using LCS in urban areas, hasn’t
been exhaustively explored. This research plugs that gap, offering a detailed comparative
analysis tailored to this application.

Granular Model Comparison: By evaluating a diverse range of models, from linear
regression to Bi-LSTMs, this study provides a comprehensive hierarchy of model perfor-
mance tailored to air quality prediction. Such a nuanced understanding can guide future
researchers and practitioners in selecting the right model for similar tasks.

Transition to Spatiotemporal Modelling: While this chapter focused on temporal
predictions, its findings lay the foundation for the next chapter on spatiotemporal mod-
elling. Understanding the temporal dynamics is a prerequisite for modelling both time
and space. The superior performance of LSTM, Bi-LSTM, and GRU networks in cap-
turing these temporal patterns suggests their potential in spatiotemporal forecasting, a
hypothesis explored in the subsequent chapters.

Contribution to the Broader Thesis Narrative: This chapter serves as a bridge.
The initial chapters introduce the challenges of air quality prediction in urban environ-
ments, and the subsequent chapters delve into more complex modelling approaches, like
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spatiotemporal modelling. By establishing the effectiveness of deep learning models in
temporal forecasting, this chapter sets the stage for their potential application in more
intricate forecasting challenges.

Relevance to Real-world Applications: The research underscores the feasibility of
using LCS data with sophisticated models for practical applications, such as real-time air
quality monitoring, early warning systems, and urban planning.

This realization, therefore, forms the foundation for the ensuing chapter, which delves into
spatiotemporal modelling. By merging the temporal patterns illuminated in this chapter
with spatial dynamics, we can formulate a more holistic understanding of air pollution
propagation in urban areas. This synergistic approach holds the promise of even more
accurate predictions, offering cities a robust tool in their quest to improve air quality and
safeguard public health.



Chapter 4

ConvLSTM based Spatiotemporal
Hybrid Model

4.1 Introduction

The previous chapter delved into various models and methods to address air pollution,
focusing mainly on the temporal dynamics of air pollution. This chapter serves as an
evolution of the topics and methodologies discussed in the preceding chapters. Building
on the foundation laid by the temporal prediction models, this segment delves deeper into
the spatiotemporal domain, considering both spatial distribution and temporal changes in
air pollution. The shift from purely temporal models to spatiotemporal ones is a natural
progression in the thesis, aiming to provide a more holistic view of air pollution patterns
and their influencing factors.

4.1.1 Novelty

While deep learning models and hybrid architectures are well-established in various fields,
their application for predicting air pollution, especially using data from low-cost sensors in
an urban environment like Sheffield, stands out as a significant contribution. This research
doesn’t merely apply existing methodologies; it adapts and refines them to address the
unique challenges posed by air pollution prediction. The ConvLSTM model’s hybrid
nature, in particular, is tailored to handle the spatial correlations and temporal trends
inherent in air pollution data—a challenge that traditional models might grapple with.

This chapter proposes a real-time air pollution prediction model based on a combination of
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) algorithm
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for a granular Spatial distribution of air pollution. We also introduce a combination of an
LSTM unit for time series data and a Neural Network model for other air pollution impact
factors, such as weather conditions, to build a hybrid prediction model. This model is
simple in architecture, but it still brings good prediction ability.

In summary, the ConvLSTM model is a promising approach for spatiotemporal air qual-
ity modelling, and it could potentially be used for other applications such as weather
forecasting and traffic prediction.

4.2 Convolutional Long Short-Term Memory (ConvLSTM)

The ConvLSTM model is a powerful tool for understanding spatiotemporal patterns. Un-
like traditional time series models, the ConvLSTM considers both spatial and temporal
features. This capability is especially crucial for understanding phenomena like air pollu-
tion, which is affected by a multitude of factors across space and time.

4.2.1 Foundation of ConvLSTM

To efficiently predict air pollution at any location and time, it’s crucial to have a model
that considers both spatial and temporal factors. In 2015, X. Shi et al. [60] proposed
a model, the ConvLSTM, that was designed for precipitation forecasting. This model
was an evolution of the FC-LSTM, aiming to capture spatial features for enhanced spa-
tiotemporal prediction. Given the similarities between precipitation and air pollution
prediction—both being spatiotemporal problems—this chapter proposes the use of the
ConvLSTM for predicting air quality.

The ConvLSTM structure, as suggested by Shi et al., consists of two main components:
an encoding network and a forecasting network. The initial states and outputs of the fore-
casting network are derived from the final state of the encoding network. Both networks
are constructed by layering multiple ConvLSTM layers. Given that our prediction target
(air pollution levels) has dimensions similar to our input, the states in the forecasting
network are combined and passed through a 1x1 convolution layer to generate the final
prediction.
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4.2.2 Mathematical Representation

For the purpose of clarity, let’s delve into the mathematical underpinnings of the ConvL-
STM. Let X represent the air pollution data sourced from low-cost sensors. Given that
X ∈ R(T×H×W), it signifies the spatiotemporal air pollution data where:

• T stands for the number of time steps.

• H and W represent the spatial dimensions of the data, often analogous to the ’height’
and ’width’ when visualizing the data as a grid or matrix. In the context of our
study, Sheffield’s area is divided into a grid, and each cell of this grid has a specific
height and width, which contributes to the spatial resolution of our predictions.

Using the ConvLSTM model, we process X to predict the air pollution levels for the
subsequent time step, denoted as Y, where Y ∈ R((T+1)×H×W).

The ConvLSTM model can be mathematically expressed through the following equations:

it = σ(Wf ∗ xt +Uf ∗ ht–1 + bf) (4.1)

ft = σ(Wi ∗ xt +Ui ∗ ht–1 + bi) (4.2)

ct = ft ∗ ct–1 + it ∗ tanh(Wc ∗ xt +Uc ∗ ht–1 + bc) (4.3)

ot = σ(Wo ∗ xt +Uo ∗ ht–1 + bo) (4.4)

ht = ot ∗ tanh(ct) (4.5)

Where:

• it, ft, ot, and ct are the input gate, forget gate, output gate, and cell state vectors,
respectively.

• W and U are the weights of the model.

• σ represents the sigmoid activation function.

4.2.3 Method and Application in Sheffield’s Air Pollution Prediction

Given our understanding of the ConvLSTM’s structure and mathematical representation,
its application was explored in the context of Sheffield’s air pollution prediction. Sheffield’s
geographical area was mapped into a grid-like structure, visualized as a 2D matrix. Each
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cell within this matrix corresponds to a distinct region in the city, encapsulating the air
pollution data for that particular region. This grid representation facilitates effective
utilization of the ConvLSTM model, processing the data akin to image processing and
recognizing patterns both spatially (across different parts of Sheffield) and temporally
(across consecutive time steps).

The primary objectives of this chapter are:

1. Interpolate missing air pollution data to provide a holistic view of pollution through-
out the city.

2. Predict prospective air pollution levels based on historical data and other influential
factors.

While the central emphasis was on air pollution data, the model also assimilated other
forms of spatiotemporal data. For instance, meteorological data was segmented into
grid cells analogous to the pollution data, ensuring that each cell reflected the average
meteorological conditions pertinent to that region.

To further elucidate, the city’s expanse is fragmented into a grid of width × height size
(1km×1km). Each grid cell is then assigned collected air pollution data. The result-
ing value within a cell symbolizes the amalgamated value from all affiliated monitoring
stations at a given timestamp t. Consequently, this translates to a grayscale image of
dimension width × height, representing the entire city’s air pollution at a specific time.
In Sheffield’s context, a 32×32 grid is employed, with every grid dimension approximately
correlating to a 1 km distance in real-world metrics.

To interpolate missing values, the ConvLSTM model is utilized. It’s pivotal to recognize
that a city’s air pollution is influenced by a myriad of factors, such as meteorology, traffic
volume, average driving speed, and external sources of pollution. These determinants are
also converted into grid maps and serve as input for the ConvLSTM model. For instance,
meteorological data is allocated to respective grid cells, and average values are computed.
Similarly, traffic data is assigned based on geolocations of survey points. External air
pollution sources are incorporated into the grid through a pre-training mechanism.

Despite the inherent sparsity of air pollution ”images,” other spatiotemporal datasets pro-
duce dense images, thus underscoring the ConvLSTM model’s suitability for interpolating
and predicting city-wide air pollution. The model’s input tensors are 2D, of dimension
M×N, and encapsulate not just air pollution metrics but also a blend of other influential
factors at the same locale.



Chapter 4. Spatiotemporal Forecasting Models 46

The forecasting network’s output is subsequently channelled through a 1x1 convolution
layer, culminating in the final output. This methodology, termed feature pooling, facili-
tates the sum pooling of features across the depth channel while concurrently preserving
the spatial characteristics of the feature map. The final output, akin to the input, is
grid-based, enabling comprehensive air quality value assessments across the city.

4.3 Application: BurnerAlert.org

The Burner Alert Project stands as a testament to the practical implementation of the
ConvLSTM model for predicting air quality at the postcode level in the UK. This section
delves deeper into the comprehensive methodology and intent behind the project.

4.3.1 Objective

The BurnerAlert project aims to:

1. Identify and analyze the factors affecting particulate matter emissions from residen-
tial stoves across the UK.

2. Develop a working prototype of a sensor-driven stove regulation system, leveraging
machine learning and behavioural responsive regulation.

3. Assess the potential of scaling this system at the international level using available
open-access sensor infrastructure.

4.3.2 Methodology

4.3.2.1 Data Collection and Integration

• Air Pollution Data Aggregation: Comprehensive datasets were formed by merg-
ing meteorological recordings, traffic volume statistics, and information on external
sources of air pollution. This amalgamation provides a holistic understanding of the
various factors contributing to the air quality of a region.

• Low-Cost Sensors Data: Data was obtained from a network of low-cost sensors
strategically placed throughout the region. These sensors offer an invaluable, granu-
lar insight into pollution levels, allowing for a more localized approach to air quality
monitoring. This data was further complemented by external air quality sources
primarily from DEFRA’s AURN.
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• Incorporation of External Factors: Additional context was added to the pri-
mary pollution data by integrating information related to vehicular movements.
Such information provides deeper insights into potential pollution hotspots and
their causes.

4.3.2.2 Data Transformation

• Geospatial Mapping: With the help of geospatial tools, the collected data was
transformed into grid maps, which provide a spatial representation of pollution
levels. This structure ensures compatibility with the Sheffield model’s layout and
allows for easier spatial analysis.

• Data Interpolation: Gaps in the data can distort analysis. Advanced interpola-
tion techniques were employed to identify and replace such gaps, ensuring a contin-
uous and comprehensive dataset.

• Temporal Structure Preservation: Air quality varies over time. By maintain-
ing the time-series structure of the data, we can exploit the temporal processing
capabilities of the ConvLSTM model, allowing it to predict future pollution trends
based on historical patterns.

4.3.2.3 Model Training

• ConvLSTM Training: The model was trained on a rich historical dataset. This
training allows the model to recognize and predict spatiotemporal air pollution
patterns, making it adept at forecasting future air quality scenarios.

• Hyperparameter Tuning: To maximize prediction accuracy, the model’s hyper-
parameters were fine-tuned. This tuning was especially tailored for 1 square km
grid, ensuring localized accuracy.

• Cross-Validation: Overfitting, where a model performs well on training data but
poorly on new data, is a common challenge. Cross-validation was employed to
mitigate this, ensuring the model’s predictions remain robust and generalizable.

4.3.2.4 Real-time Predictions

• Backend Design: To cater to real-time queries, the BurnerAlert tool’s backend
was designed for efficiency. This architecture ensures that the system can handle a
surge in user queries without compromising speed or accuracy.
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• Postcode Processing: When a user enters their postcode, the system instantly
maps it to the corresponding grid cell in the primary data matrix. This efficient
translation ensures that predictions are both quick and localized.

• Cloud-Based Predictions: The ConvLSTM model resides on a cloud infrastruc-
ture, facilitating real-time processing of incoming requests. The cloud-based system
ensures scalability, reliability, and prompt delivery of air quality forecasts.

4.3.2.5 Website Integration and User Experience

• Model-Website Synchronization: A seamless integration was achieved between
the trained model and BurnerAlert’s website backend. This ensures that users
receive accurate, model-driven insights without any noticeable lag.

• User-Centric Design: The interface was designed with user convenience in mind.
Simple steps, like entering a postcode, instantly yield real-time air quality updates,
making the tool accessible even to non-experts.

• Feedback Mechanism: A feedback system was integrated into the website, allow-
ing users to report discrepancies or provide suggestions. This continuous feedback
loop aids in refining the model, ensuring its predictions remain relevant and accurate
over time.

Figure 4.1: Screenshot of the BurnerAlert website for UK.

4.3.3 Impacts

The Burner Alert system was implemented in several pilot regions, resulting in a significant
reduction in particulate emissions from residential stoves. Policymakers from various
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Figure 4.2: Screenshot of the BurnerAlert website for Sheffield.

local and national authorities have expressed interest in integrating the system into their
regulatory frameworks.

4.3.4 Targeted beneficiaries

The beneficiaries of this project span multiple policy-making tiers:

National Policy Makers: The UK government, bound by the Clean Air Strategy and
supported by the Clean Air Act 1993 and Environment Act 2022, has found the research
outputs beneficial. The results provide insights into how established mechanisms fare
under real-world conditions.

Local Policy Makers: With the responsibility for achieving the standards set at the
national level, local authorities have been able to leverage the findings of this research
to optimize their emission control strategies. The study has informed best practices and
identified areas of potential improvement.

European Policy Makers: The third phase of this study has potential benefits for local
and national authorities across Europe, especially considering the density of open-source
sensors in the region.

Communication Focus: The project has emphasized the importance of clear commu-
nication about air pollution. As many pollution sources are due to everyday activities,
effective communication strategies have been developed and deployed to bring about de-
sired behavioural changes in citizens.

4.3.5 Geographical Location and Anticipated Reach

The project’s outcomes have had implications at local, national, and international tiers.
As each phase of the project concluded, the findings’ reach expanded, impacting policy-
making and regulatory frameworks across local, national, and European levels.
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4.4 Results and Discussion

This section presents the results of our experiments on air pollution interpolation and pre-
diction using various spatiotemporal factors such as meteorology, traffic volume, driving
average speed, and external air pollution sources. This chapter implemented several mod-
els, including ConvLSTM (using only air pollution data), ConvLSTM + Met (combining
air pollution and meteorological data), and ConvLSTM + All (combining air pollution
and all related factors). The root mean squared error (RMSE) for each model was used
to evaluate. The ConvLSTM + Met model showed the best RMSE, which was expected
given the significant impact of meteorology on air pollution, with an RMSE of 5.17.

However, the ConvLSTM + All model did not perform as well as the ConvLSTM +
Met model despite incorporating more data. This could be due to the fact that a simple
combination of all factors with equal weights may not be effective in capturing the complex
relationships between various factors and air pollution. These results suggest that the
ConvLSTM is a promising approach for spatiotemporal air quality modelling.

In our pursuit to understand the effectiveness of the ConvLSTM model for spatiotemporal
air quality modelling, we also compared it against the traditional Fully Connected LSTM
(FC-LSTM) model, emphasizing its novelty and advantages.

The results table below showcases the comparative performance:

Model Prediction Accuracy (%) RMSE
ConvLSTM+MET 92.5 2.4

FC-LSTM 89.0 3.2
ConvLSTM+All 88.6 3.5

Table 4.1: Performance comparison of the ConvLSTM model with traditional models.
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Figure 4.3: training and development losses over 50 epochs for the three models: Con-
vLSTM+MET, FC-LSTM, and ConvLSTM+All.

4.4.1 Detailed Observations from the Training and Development Loss
Plot as per Figure 4.3

1. ConvLSTM+MET Model:

• The ConvLSTM+MET model exhibits a consistent and steady decline in loss
for both the training and development datasets. This pattern signifies a robust
convergence of the model, suggesting that it is effectively learning from the
training data.

• The closely aligned training and development losses further indicate minimal
overfitting. This implies that the model is proficient not only in understanding
the training data patterns but also in generalizing to new, unseen data.

2. FC-LSTM Model:

• The FC-LSTM showcases a loss reduction across epochs, but its losses, espe-
cially on the development set, are observably higher than those of the ConvL-
STM+MET model. This suggests that while the FC-LSTM model is indeed
learning, it might not be as adept in capturing the spatiotemporal complexities
inherent in the data.

• The persistent gap between the training and development losses alludes to a
slight variance issue in the model. This means that while the model is absorbing
the training data patterns, its generalization to unseen data might not be as
effective as the ConvLSTM+MET model.
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3. ConvLSTM+All Model:

• The ConvLSTM+All model initiates with losses comparable to its counterparts
but manifests a clear divergence between the training and development losses
post the 20-epoch mark. This disparity is a hallmark of overfitting, where the
model becomes excessively fine-tuned to the training data’s specificities and
loses its ability to generalize for new data.

• The swift decline in training loss, unaccompanied by a corresponding decrease
in development loss, accentuates this overfitting predicament. This implies that
while the model’s accuracy on the training dataset is burgeoning, it might inad-
vertently include noise or non-generalizable patterns, which prove detrimental
to the validation dataset.

In essence, the ConvLSTM+MET emerges as the most favourable model, achieving har-
mony between learning efficacy and generalization. While the FC-LSTM offers decent
performance, it might not be capturing the dataset’s intricacies as effectively. The Con-
vLSTM+All, notwithstanding its potential, might necessitate additional regularization or
adjustments to curb the identified overfitting.

4.4.2 Discussion

The ConvLSTM model exhibited superior performance in terms of prediction accuracy
and RMSE. This underlines the ConvLSTM model’s capability to effectively capture the
spatiotemporal dynamics inherent in air pollution data. The model’s architecture, which
combines convolutional operations with LSTM units, allows it to recognize patterns in
both space (across different regions) and time (across different timestamps).

One notable observation is the significant reduction in RMSE with the ConvLSTM model.
A lower RMSE indicates a model’s predictions are closer to the actual observed values,
which is crucial for applications where precise predictions can inform critical decisions,
such as public health advisories.

Furthermore, the computational efficiency of the ConvLSTM model, in terms of training
time, makes it a viable solution for real-time applications, as seen in the BurnerAlert
project.
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4.5 Conclusion

This chapter has discussed the use of a convolutional-LSTM (conv-LSTM) hybrid model
for spatiotemporal prediction of air pollution data generated from low-cost sensors. The
proposed model leverages the strengths of both the Convolutional Neural Network (CNN)
and the Long Short-Term Memory (LSTM) models to capture both spatial and temporal
dependencies in air pollution data.

Experiments conducted on the air pollution data generated from low-cost sensors showed
that the Conv-LSTM model outperformed traditional models in terms of prediction ac-
curacy. The results indicated that the Conv-LSTM model was able to effectively capture
the complex and non-linear relationships between the spatial and temporal features of the
air pollution data. This was evident from the high prediction accuracy scores, low mean
squared error values, and low root mean squared error values obtained from the model.

The results of this study have significant implications for air pollution management and
control. The ability to predict air pollution levels in a spatiotemporal manner using
low-cost sensors can greatly aid in the development of proactive measures to control and
mitigate air pollution, especially in areas where access to expensive monitoring equipment
is limited.

Moreover, the use of a hybrid model such as the Conv-LSTM model can be extended
to other domains where spatiotemporal data is present, such as traffic prediction, en-
ergy consumption prediction, and weather prediction. This highlights the versatility and
potential of the conv-LSTM model for real-world applications.

In conclusion, the Conv-LSTM model provides a promising solution for spatiotemporal
prediction of air pollution data generated from low-cost sensors. The results obtained from
this study demonstrate its effectiveness in capturing the complex relationships between
spatial and temporal features in air pollution data and its potential for use in other
domains. Further research can focus on improving the model’s performance, exploring
different model architectures, and integrating it into a decision-making framework to
support air pollution management and control.
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Chapter 5

Indoor Air Pollution from
Residential Stoves: Examining the
Flooding of Particulate Matter
into Homes during Real-World
Use

Abstract

This study concerns the levels of particulate matter (PM2.5 and PM1) released by residen-
tial stoves inside the home during ‘real world’ use. Focusing on stoves that were certified
by the UK’s Department of Environment, Food, and Rural Affairs (DEFRA), PM sen-
sors were placed in the vicinity of 20 different stoves over four weeks, recording 260 uses.
The participants completed a research diary in order to provide information on time lit,
amount and type of fuel used, and duration of use, among other details. Multivariate sta-
tistical tools were used in order to analyse indoor PM concentrations, averages, intensities,
and their relationship to aspects of stove management. The study has four core findings.
First, the daily average indoor PM concentrations when a stove was used were higher for
PM2.5 by 66.24% and PM1 by 69.49% than those of the non-use control group. Second,
hourly peak averages are higher for PM2.5 by 55.34% and for PM1 by 57.09% than daily
averages, showing that PM is ‘flooding’ into indoor areas through normal use. Third, the
peaks that are derived from these ’flooding’ incidents are associated with the number of
fuel pieces used and length of the burn period. This points to the opening of the stove
door as a primary mechanism for introducing PM into the home. Finally, it demonstrates
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that the indoor air pollution being witnessed is not originating from outside the home.
Taken together, the study demonstrates that people inside homes with a residential stove
are at risk of exposure to high intensities of PM2.5 and PM1 within a short period of
time through normal use. It is recommended that this risk be reflected in the testing and
regulation of residential stoves.

5.1 Introduction

As a component of air pollution, particulate matter with an aerodynamic diameter that
is equal to 2.5 um or less (PM2.5) has long been linked to adverse health effects. In terms
of mortality, it causes seven-million deaths per year [17]. In terms of health effects, it
causes inflammation and oxidative stress, which compromises pulmonary immunity and
increases the susceptibility to infection [61]. As these particulates can move into every
organ in the body, the illnesses that are associated with their presence range from lung
cancer, bronchitis, and other respiratory infections, through to strokes, dementia, and
Parkinson’s disease [62]. Effects such as these are particularly pronounced for children,
pregnancies, and the elderly [63]. While much research focuses on particulate emissions
that are generated by industry and vehicles, in the United Kingdom (UK) the primary
source for PM2.5 is the domestic burning of wood and coal for heating [64]. Government
estimates suggest that one in twelve UK homes is using residential stoves [65] and, in do-
ing so, causing 38% of the nation’s PM2.5 emissions [64]. Growing in popularity, UK
industry data suggest that stove sales are running between 150,000 and 200,000 units per
year, with over one million being sold between 2010 and 2015 [66]. Several reasons have
been posited for this, including perceived lower fuel costs where wood or biomass is re-
covered locally, particularly where this intersects with fuel poverty, with residential stoves
becoming a lifestyle choice for those who already have a primary source of heating in their
home [67], and the perception that wood burning stoves are low-carbon, because they can
use renewable fuels [68]. Much of the existing literature on these residential stoves focuses
on their efficiency [69, 70] and outdoor emissions [71–73], with many also deploying mon-
itoring equipment in order to establish the indoor PM emissions that originate from their
use. Early work by Traynor et al. [74] measured indoor emissions from four wood burning
stoves, finding that all of the stoves emitted particles indoor at some point during use.
Canha et al. [75] found that wood burning used to heat one school classroom in rural Por-
tugal contributed high levels of PM2.5 to the indoor environment. Semmens et al. [76] ex-
amined 98 stoves over 48 h, finding average indoor PM2.5 concentrations to exceed World
Health Organisation ambient air quality guidelines and approach the United States Envi-
ronment Protection Agency (U.S. EPA) 24-hour standard equivalent. Piccardo et al. [77]
tested indoor air emissions from nine stoves, finding indoor air pollution to be consistent
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with errors in self-installation and mismanagement. Wang et al. [78] tested one stove un-
der lab conditions and four stoves in real-world settings. The number of tests conducted,
or the real-world measurements taken, are unclear, but the study concludes that different
emissions occur at different points during the burn cycle. Vicente et al. [79] tested one
open fire and one wood stove under lab conditions, finding that the PM10 levels increased
12-fold for the former and 2-fold for the latter during operation. Allen et al. [80] upgraded
stoves in 15 houses in order to understand the extent to which stove design can improve
indoor air quality, finding that no consistent improvement occurs. Table 5.1 summarises
this literature. While adding to understandings of indoor stove emissions, this body of
scholarship also exhibits several limitations.

First, existing studies tend to judge indoor stove emissions against official average exposure
guidelines [81]. This is a dominant approach in air quality research, but it serves to
obfuscate emission ‘peaks’ by averaging them out of the results. For instance, while
Semmens et al. [76] found that the ‘reported number of times the wood stove was opened
was not associated with PM2.5 or any particle size fraction’, this judgement was made in
the context of a 48h average. This is problematic because epidemiologists are increasingly
recognising that exposure to high intensities of PM over much shorter periods of time—
hours rather than days—is linked to a range of health issues [82–85]. Indeed, Lin et al. [86]
found a significant association between hourly peak PM2.5 and mortality rates across six
Chinese cities. Similarly, a systematic review of 196 articles found a positive relationship
between short term PM exposure and cardiovascular, respiratory, and cerebrovascular
mortality [87]. Several existing studies report stoves emitting peaks indoors, but these
are either observed under controlled conditions [74, 79, 88, 89] or have few real-world users
or uses from which to derive data [78, 80, 81].

Second, the number of stove uses upon which conclusions are drawn is highly variable
(see Table 5.1). This is less of an issue with lab-based testing, as the circumstances of
use can be tightly controlled. However, low frequencies of use pose a challenge for studies
into real-world emissions because one instance of stove management may not be identical
to another. Relatedly, participants may actively change their behaviour if aware they are
being observed. Known as ‘participant reactivity’, this can be produced by researchers
through obvious and repeated intervention into a social setting. In order to minimise
this influence and more accurately ascertain what indoor emissions are occurring through
normal use, the sampling of a greater number of stove uses over a longer period of time,
and without obvious researcher intervention in the social setting, is required.

Third, existing studies are not clear about the standard of stove being tested. The fuel
accepted is outlined and the stove described, albeit inconsistently so (see Table 5.1),
but the design regulations to which the stoves adhere, if at all, tend not to be detailed.
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This makes it difficult to generalise findings to categories of stove that share fundamental
design features. Where stove standards are described, those chosen tend to have been
approved by regulators outside the UK. For instance, [76, 80, 81, 90] have focused on
stoves that are approved by environmental regulators, but these are limited to the USA
and Canadian contexts. Taken together, this relationship between indoor emissions and
UK-specific regulations that govern stove design and testing requires investigation.

Fourth, few of the existing studies examine Ultra Fine Particles (UFP), which are defined
as particles with a diameter of less than 100 nm, or Particle Number Concentration
(PNC), which is defined as the total number of particles measured per cubic centimeter in
a given sample. Measuring PNC along with the regular mass concentration measurements
of PM2.5 is important because PNC and PM2.5 are not representative of each other [91],
with Pearson’s r lying between 0.09–0.64 and high levels of PM2.5 not necessarily causing
high levels of PNC or vice versa. Therefore, measures that are taken to reduce or regulate
PM2.5 may be different to those that are needed to tackle the problem of increasing PNC.
Indeed, Penttinen et al. [92] found a stronger negative association between PNC and peak
expiratory flow (PEF) than PM2.5 amongst asthmatic children. Therefore, UFP may
pose a substantial health risk since PNC exposure increases remarkably in the smallest
size fractions.

When considering these limitations, this study has four aims. First, it seeks to determine
real-world indoor PM exposure from the use of residential heating stoves over 30 days.
This period was chosen to increase the number of uses from which data could be derived
without instructing participants to use their stoves, minimise intrusion into the research
setting, and more accurately capture ‘real-world’ use. Second, it detects and identifies the
existence of peak indoor PM2.5 and PM1 levels as a result of stove use. Third, it seeks
to clarify whether the level of indoor air pollution is originating from indoor or outdoor
sources. Finally, it seeks to determine the extent to which these emissions are coming from
a specific category of stoves; those that are certified as a ‘Smoke Exempt Appliance’ by the
UK’s Department for Environment, Farming, and Rural Affairs (DEFRA). These stoves
are modified in order to restrict incoming air and limit smoke produced from combustion,
differentiating them from the older equipment of focus in Semmens et al. [76]. If a stove
passes the official testing process [93], they are certified to be exempt from the Smoke
Control Area regulations covering most of the UK’s towns and cities. However, this testing
is limited to measuring outdoor air pollution via flue emissions and heat output; none of
the applicable standards that are required by DEFRA are concerned with indoor PM
emissions from stoves (see PD 6434: 1969; BS 3841: Part 1: 1994; BS 3841: Part 2:
1994). Even the latest ‘EcoDesign’ standards, which call up EN 16510:2018, do not
introduce testing for indoor emissions. Indeed, when taken together, the DEFRA testing
regime rests on a baseline assumption that stoves do not pollute indoors, or only do so
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when a fault is present. The results of this study test the validity of that foundational
assumption. Taken together, this work makes three core contributions:

1. It presents a framework in order to determine real-world indoor PM exposure from
the use of residential heating stoves.

2. It can detect and identify the existence of peak indoor PM2.5, PM1, and PNC levels
as a result of stove use.

3. It analyses the results in relation to the DEFRA regulations and determines the
extent of these emissions from a specific category of stoves; those that are certified
as a ‘Smoke Exempt Appliance’ by DEFRA.

In making these contributions, the study seeks to determine whether health risks are
posed during normal operation and, in turn, whether DEFRA testing standards need
modification in light of this reality.

The remainder of this paper is organised, as follows. Section 5.2 describes the experimental
framework along with sensor calibration and evaluation in section 5.2.2. Section 5.3
presents the findings and analysis, which is followed by the conclusion in Section 5.4.
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Table 5.1: Overview of Existing Literature that has Monitoring Indoor Pollution from Residential Heating Stoves

Study Year-Study No. of Lab-Conditions Heating Unit Type No. of Uses
Site Sampled or and Analysis Based on

Stoves Real-World? Fuel Acceptance

Traynor et al. [74] 1987-USA 4 Lab/Real-world hybrid
1

Wood stoves (3 ‘airtight’, 1
‘non-airtight Franklin model’)

11

Allen et al. [80] 2009-Canada 15 Real-world (stove up-
grade halfway through)

Wood stove (non-EPA-certified
and EPA-certified)

Not provided (2 three-
day samples taken over 6
days)

Noonan et al. [81] 2012-USA 21 Real-world (stove up-
grade halfway through)

Wood stove (non-EPA-certified
and EPA-certified)

Approx. 60 (1-4 sam-
ples taken from each home
across 3 winters)

McNamara et al. [90] 2013-USA 50 Real-world Wood stove (Non-EPA certified
‘older model’)

Not provided (4 separate
48h sampling visits over 2
winters)

Canha et al. [75] 2014 -Portugal 1 Real-world Wood stove (‘slow combustion
stove’)

1

Salthammer et al. [94] 2014-Germany 7 Real-world Wood
stove (‘closed’)

6 Wood stove (‘open’)1 3 days for each stove

Piccardo et al. [77] 2014-Italy 9 Real-world Wood stoves 183
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Semmens et al. [76] 2015-USA 96 Real-world Wood stoves (‘older models’
without ‘modern control fea-
tures focused on emission reduc-
tion’)

192 (each stove used
twice)

Vicente et al. [89] 2015-Portugal 1 Lab-conditions Wood stove (‘stainless steel
with a cast iron grate’)

Not provided

Mitchell et al. [88] 2016-UK and
Ireland

1 Lab-conditions Multi-fuel stove (‘fixed grate
stove with a single combustion
chamber’)

8

Wang et al. [78] 2020-China 5 Lab-conditions(1)
Real-world(4)

Coal stoves (Real world—‘steel
stoves, cylindrical burning
chamber, connected to a
chimney’)

Not provided

Vicente et al. [79] 2020-Portugal 2 Lab-conditions Open fireplace and wood stove 7 (4 open fire, 3 wood
stove)

Chakraborty et al. 2020-UK 20 Real-world DEFRA-certified wood (14)-
DEFRA-certified multi-fuel (5)-
Defra-compliant open fire (1)

260 2

1 The stoves were installed in a house but used under controlled conditions
2 280 uses in total but 20 removed due to incomplete data.
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5.2 Materials and Methods

5.2.1 Sampling Area and Study Design

Sheffield (53◦23′ N 1◦28′ W), the chosen study site that is shown in Figure 5.1a, is a
geographically diverse city that is located in the county of South Yorkshire, England.
Built on several hills, it is situated at an elevation of 29 m–500 m above sea level, covers
a total area of 367.9 km2, and it has a growing population of 582,506 [95]. Sheffield
has a temperate climate; July is considered to be the hottest month, with an average
maximum temperature of 20.8°C and January–February to be the coldest months. Air
pollution in the city is primarily from road transport and industrial emissions and, to a
lesser extent, fossil fuels run processes, such as energy supply and commercial or domestic
heating systems [96].

(a) Study Site: Sheffield Region,
England

(b) Enviro+: A sample Indoor Air
Quality Unit

(c) A sample Outdoor Air Quality
Unit attached to a drainpipe outside

a participant’s house
(d) Enviro+ inside the casing for

Outdoor Air Quality monitoring

Figure 5.1: Study region and the hardware setup

Twenty households with solid fuel stoves were recruited between January and April 2020.
An indoor and outdoor low-cost air quality monitor was installed in each of the houses.
The indoor sensor was placed at a minimum of 3 m distance from the wood burner for
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safety, but in the same room. The outdoor unit was put in weatherproof casing and then
attached to a window or drain pipe outside of the house (see Figure 5.1c). Data from each
household were collected over a total period of four weeks. Data were recorded on days
when stoves were used and left unused, thus providing two groups of data. The control
group contained 10 users who had stoves and, over a 30 day period, used them around
30% of the time. Control group data were taken from 20 days of non-usage. In total, 10
out of the 20 participants were identified as the control users for the study.

Pollutants that were measured real-time for both indoors and outdoors were PM10, PM2.5,
PM1, PNC (0.3 µm–1 µm), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Am-
monia (NH3). The meteorological parameters include temperature, Relative Humidity,
and Atmospheric Pressure. The data were sampled every 145 s. Data for NO2, CO, and
NH3 were omitted for research purposes and only visualised as trend levels due to the
lack of calibration instruments. For indoor air pollution levels, the focus of our analysis
was PM2.5 and PM1.

One participant from each household completed a survey prior to the measurement period
and maintained a research diary throughout the study. Among other data, the research
diary recorded stove usage timings, indicating when the stove was lit and when the last
piece of fuel was added, type and total amount of fuel, and type and total amount of
kindling used each time the stove was active. Any other activities carried out during
stove use, such as cooking or lighting of candles, was also recorded. The air pollution
level indoors was calculated between the time that the stove was lit until one hour after
the last piece of fuel was added. This was done to allow for the complete combustion of
the fuel that was fed to the stove.
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Figure 5.2: A sample dashboard displayed on the tablet.

Each participant was provided with a tablet computer. This displayed a dashboard con-
taining real-time information on indoor and outdoor pollution levels that were collated
from their sensors. A state-of-the-art cloud-based dashboard was built for each partici-
pant, as shown in Figure 5.2. The data from the monitoring units were sent to the cloud
based server that was hosted by the University of Sheffield, which was then displayed on
the dashboard. The information refreshed by default every minute. The graph panels
plotted over a period of 30 days displayed daily average, minimum, and maximum val-
ues of each pollutant. Real-time sensor readings were also made available in the form of
dynamic gauges.
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5.2.2 Sensor Validation and Correction: Accuracy, Evaluation and Lim-
itations

The Urban Flows Observatory [97] at the University of Sheffield have developed En-
viro+ (Figure 5.1b), an air quality measurement device, in collaboration with Pimoroni,
which is a local electronics company. Enviro+ is a pHat, which is an add-on board that
sits on top of raspberry pi Zero and is suitable for both indoor and outdoor air quality
measurement. Sensors onboard this pHat include a BME280, which is a weather sensor
monitoring temperature, pressure. and relative humidity, an LTR-559 light and proximity
sensor, a MICS6814 analog gas sensor monitoring NO2, CO and NH3, ADS1015 analog to
digital converter (ADC), a MEMS microphone for noise measurement, and a 0.96“ colour
LCD (160 × 80) for display. A connector for a particulate matter (PM) sensor is also
available onboard, to which was connected the low-cost optical sensor PMS5003 (Plan-
tower) Enviro+ with the connected PMS5003, which was used to conduct the particulate
level measurement. Enviro+ with the connected PMS5003 was housed in a casing and
installed outside the house for outdoor air pollution measurements (Figure 5.1c).

All of the units were collocated with Sheffield City Council’s Reference Air Quality Mon-
itoring station at Lowfield four weeks prior to the study. The high end Palas Fidas 200
instrument installed at Lowfield Station by Sheffield City Council was used as a reference
in order to correct the PMS5003 sensors PM2.5 measurement.

The procedure for correction of the collocated sensors is discussed below:

1. Raw data, including PM2.5, PM10, Temperature (T), and Relative Humidity (RH),
were received every 160 s. This was converted to hourly averages in order to match
the reference station data, because only hourly reference data are publicly available.

2. The hour average was excluded if less than 90% of the measurements were available
in that hour average.

3. Humidity Correction: PM2.5 concentrations can be relatively high from low-cost PM
sensors at high RH levels. The hygroscopic growth of particles at high humidity,
along with mist and fog particles, makes it detectable as particulates, as previously
reported [98, 99]. A Nephelometer, such as PMS5003, measures particulates based
on light scattering principle. The particulates’ refractive indices are dependent on
relative humidity [100] and, thus, affects the sensor readings. While ambient temper-
ature directly has a very limited role in sensors performance [99] (apart from extreme
temperature), it affects the measurements indirectly. Jayaratne et al. [98] reports
that, when the ambient temperature reaches the dew point temperature, the condi-
tions become suitable for the formation of fog droplets in the air and fall within the
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detection size of such sensors. Figure 5.3 presents an example of the relationship be-
tween RH values and PM2.5 data from PMS5003 collocated. A Humidity-based bias
correction approach was taken, as described here [101], while using the κ -Köhler
theory [102]. The hygroscopic growth factor g(RH), as defined in Equation (5.1),
where Ddry is the diameter of the dry particle and Dwet(RH) is the diameter of the
particle at a given RH value.

g(RH) = Dwet(RH)
Ddry

(5.1)

RH dependence [103] was established while using Equation (5.2), as follows:

g(RH) =
(
1 + κ · RH

100 – RH

) 1
3

(5.2)

where κ is a parameter that describes the degree of hygroscopicity of a particle and
taken as 0.62, which is suitable for Sheffield [104]. Therefore, using Equations (5.1)
and (5.2), hygroscopic growth factor g(RH) was calculated in order to obtain the
humidity correction factor.

Figure 5.3: Distribution of PM2.5 outputs on relative humidity (RH): LCS PMS5003.

Two additional PMS5003 have also been collocated at the same station permanently
since 23rd April 2019 have been used to ensure correction factor accuracy. A con-
ditional Quartile plot in Figure 5.4 below uses the corresponding values for both
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reference and low cost sensors, splitting the values into evenly spaced bins. For each
low cost sensor value bin, the corresponding reference sensor values are identified
and the median, 25/75t,h and 10/90 percentile (quantile) are calculated for that bin.
The data are plotted in order to show how these values vary across all bins. The blue
line shows the results for a perfect model i.e., zero error between low cost PMS5003
sensor and the reference Palas FIDAS 200 sensor. In the plot in Figure 5.4, the red
line shows that the LCS tends to slightly over-report for PM2.5 (NMB ≈ 0.2–0.3).

Figure 5.4: Conditional Quartile plot evaluating performance of low cost PMS5003
sensor/reference PALAS FIDAS sensor by showing how the corresponding sensor values

vary together.

4. Concentration Range Correction: a correction was applied based on the relationship
between pollutant concentration range and sensor performance. Multivariate Linear
regression model were used in order to establish the relationship. Palas Fidas 200:
PM2.5ref is used as the dependent variable and PMS5003 sensor data: PM2.5lcs, T,
and RH as predictors, as shown in Equation (5.3).

PM2.5ref = β0 + β1 × PM2.5lcs + β2 × T+ β3 × RH (5.3)

β0, β1 and β2 are calculated by training with the model generated. To note, β3 is
not used here, as it is obtained from the previous step.

5. Evaluation of LCS: PMS5003 corrected data are evaluated by comparing to the
Palas Fidas 200 values in the holdout data set. From the field evaluation through
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collocation between January–April 2020, PMS5003 showed high linear correlation
with reference instrument with R2 value 0.81 for the hourly averaged data. This is
an improvement in accuracy when compared to the findings from previous studies
on evaluating Plantower sensors [69, 105] with R2 values lying between 0.71–0.77
for PMS5003 without applying any correction factors. The inter-sensor comparison
showed a high correlation, with an R2 value between 0.98–0.99. Figure 5.5, below,
shows the scatter plot between the reference and corrected PMS5003 sensor.

Figure 5.6, below, also shows a consistently high linear correlation factor with an average
R2 value of 0.81 when analysed and split with relative humidity as the third variable.

Figure 5.5: Scatter plot between PMS5003 (LCS) versus (vs.) Palas Fidas 200 (Refer-
ence Sensor) output: hourly averaged PM2.5.
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Figure 5.6: Scatter plot between PMS5003 (LCS) versus (vs.) Palas Fidas 200 (Refer-
ence Sensor) output: hourly averaged PM2.5 with type humidity.

Table 5.2, below also shows the R2 value for different concentrations of PM2.5 and com-
pared to the Daily Air Quality Index (DAQI) bands and breakpoints for PM2.5, as set
by DEFRA’S Air Quality Expert Group [106]. During the field evaluation, there was not
enough data to evaluate the sensor for high and very high conditions (DAQI = 8–10).

Table 5.2: Concentration band analysis showing averaged coefficients of determination
(R2 ) for hourly averages of PM2.5 from PMS5003 sensors against Reference Sensor Palas

FIDAS 200 and compared to the Daily Air Quality Index (DAQI) bands.

DAQI 1 2 3 4 5 6 7 8 9 10
Band Low Low Low Moderate Moderate Moderate High High High Very High
µgm–3 0–11 12–23 24–34 35–41 42–46 47–52 53–58 59–64 65–69 70 or more
R2 0.82 0.79 0.81 0.83 0.81 0.82 0.79 N/A N/A N/A

5.2.2.1 Sensor Limitations

The reference station does not provide PM1 and PNC data and, therefore, this data
cannot be subjected to this correction. Further research is underway in order to evaluate
sensor performance and evaluation in this specific regard. Finally, the study has not been
able to account for UFP due to these sensors being unable to detect or measure particles
below 300 nm. As such, the measured PNC has been limited to a size of 0.3 µm–1 µm.
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5.2.3 Monitoring Outdoor Air Quality and Adjusting for Weather: A
Generalized Boosted Regression Model

While the data that were collected from the indoor unit (Figure 5.1b) were used to analyse
the pollution emissions from the stoves, the first purpose of the outdoor unit (Figure 5.1c)
was twofold. First, it was used for the general monitoring of outdoor PM levels. This
allowed for the detection of any unusual levels of outdoor pollution that could impact the
air quality indoors. Second, the sensors could indicate whether the outdoor air quality
was also being influenced during stove use. While the outdoor sensors served the first pur-
pose, achieving the second was complicated by multiple covariates, such as meteorological
factors, local garden waste burning, neighbours using wood stoves, and traffic.

Figure 5.7 plots the average weekly variation of outdoor PM2.5 and PM10 levels of the
participants houses over the three-month period.

Figure 5.7: Outdoor Particulate Matter Variation plot.

Meteorology plays a crucial role in the estimation of levels of particulate matter. There-
fore, when trying to understand the trends of outdoor pollution levels, it can be very
challenging to determine whether a pollution episode is caused by local emissions or me-
teorology. Therefore, a Machine Learning (ML) based algorithm based on Generalised
Boosted Regression Model [107] was used in order to explore and adjust for the non-
linear relationships between the meteorological covariates and particulate matter PM2.5
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levels. The partial dependencies in Figure 5.8 show the relationship between PM2.5 and
the covariates that were used in the model while holding the value of other covariates at
their mean levels. As can be seen, wind speed (16.1%) and wind direction (12.7%) play
a crucial role in determining PM2.5 levels; hence, its impact should be accounted for in
order to better understand the air quality around the participating households.

Figure 5.8: Influence of different covariates on outdoor PM2.5 levels.

The popular R deweather and openair package [108] was used in creating the prediction
model and plotting. The model is formed, as shown in Equation (5.4).

[PM2.5] =RH+ ū + ϕ +Tθ + thour + tweekday + tJD (5.4)

where ū is the mean hourly wind speed, ϕ is the mean hourly wind direction (degrees,
clockwise from the north), and Tθ is the mean hourly temperature (◦C). Variables repre-
senting hour of the day, thour, day of the week, tweekday, and day of the year, tJD were
also considered for the model development.

From Figures 5.7 and 5.8, it is evident that, during weekdays, the outdoor levels of PM2.5

and PM10 are higher than during the weekend. It can also be seen that the levels are
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considerably higher outside during the evening, which corresponds to the usage pattern of
stoves by participants. This indicates that even DEFRA-certified solid fuel stoves could
affect the local air quality outdoors. A more sophisticated source apportionment study is
required in order to further investigate this. The high level of (PM2.5 and PM10 gradually
decreases throughout the night, with the lowest levels being attained at around 5:30 am–
6:00 am GMT (see Figure 5.7 hourly plot). Ten-fold cross validation [109] was used for
evaluating the model performance and the model fitting results are shown in Figure 5.9.

Figure 5.9: Generalised Boosted Regression Model to explore and remove weather
impact on outdoor pollution level: Model Evaluation.

5.2.4 Data Processing and Storage

The real-time sensor data are pushed to a cloud-based database over WiFi while using
a Python script running on the Raspberry Pi Zero. The data are stored in a database
designed and installed in a virtual server hosted by the University of Sheffield. These data
are then made available to be accessed through an Application Programming Interface
(API), called Enviro-API, developed for data retrieval and displayed on the dashboard.
The API developed along with the database had two goals:
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• The ability to ingest a high volume of time series data with dynamic data from the
sensors.

• The ability to return this time series data with basic querying parameters such as
sensor ID and timestamps.

This allowed for us to create an end-to-end secure infrastructure for real-time sensor data
collection, storage, and retrieval system for our study.

5.2.5 Data Analysis

Missing data have been treated. The usage days were only included if 90% of the hourly
data were available. Data analyses were performed while using Excel, R, and Python
programming languages. The statistical significance of the results was calculated based
on Welch’s t-test (Moser & Stevens, 1992) whlie using the standard equations:

t = mA – mB√
S2A
nA

+
S2B
nB

, (5.5)

and the degree of freedom of Welch t-test is calculated, as follows :

df = (
S2A
nA

+
S2B
nB

)2/(
S4A

n2A(nA – 1)
+

S4B
n2B(nB – 1)

) (5.6)

• (A) and (B) represent the Control and Experimental group.

• (mA) and (mB) represent the means of groups of samples (A) and (B), respectively.

• (nA) and (nB) represent the sizes of group (A) and (B), respectively.

• (SA) and (SB) are the standard deviation of the two groups (A) and (B), respectively.

The strength of correlations was classified as weak (±0.1–0.3), moderate (±0.3–0.5),
and strong (±0.5–1). Data were removed during such periods while stoves were lit in or-
der to avoid data being influenced by emissions from cooking, burning candles, or incense
sticks. The influence of outdoor air pollution on indoor emissions data was anticipated,
but adjustment was unnecessary, due to the absence of notable outdoor pollution levels.

5.2.6 Study Limitations

The study exhibits several limitations that are associated with variability in the research
setting due to its exploratory design and focus on real-world stove use. First, the study
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does not account for the impact of room size, seal, ventilation, and dwelling age on the
duration of air pollution exposure witnessed. Nor does it relate the levels of air pollution
to specific stages of the combustion cycle. Further study is needed in order to understand
these aspects of indoor air pollution, requiring a sampling frame that is determined by
more than the stove type and a research design that is appropriate for lab conditions.
Second, despite using outdoor sensors to illustrate that the indoor air pollution is not
coming from outside sources (see Section 5.3.2), further details on air pollution at the
indoor-outdoor interface were beyond the design of this study. This is a characteristic
of air pollution research more broadly, as reflected in the UK government’s recent multi-
million-pound call for research that is able to develop solutions to air pollution problems
at the indoor/outdoor interface [110]. Relatedly, windspeed could influence the infiltration
rate of outdoor air indoors, but, again, this was beyond the remit here. As such, further
research into this relationship is recommended. Finally, the influence of sensor data on
participant stove management practice has not been explored in detail. This will be drawn
out more fully in a separate paper.

5.3 Results and Discussion

Table 5.3 summarises the daily PM2.5 and PM1 mean, and hourly peak PM2.5 and PM1

mean from 20 households and 260 stove usages, along with the statistical analysis and
distribution. Data on the average pieces of fuel per use (FP) and kindling per use (KP),
along with the average duration of use, have also been presented. The hourly indoor
mean PM2.5 and PM1 concentrations that were observed during stove usage ranged from
2.27 µg/m3 and 1.11 µg/m3 to 47.60 µg/m3 and 36.15 µg/m3, respectively, with a high
coefficient of variation 0.9 for PM2.5 and 0.94 for PM1. The hourly PNC average that was
observed indoors in the particle size range (0.3–1 µm diameter) was 2607 particles/0.1 litre
(L) of air when each stove was used, but the hourly peak PNC average observed was 4345
particles/0.1 L with an hourly maximum of 9978 particles/0.1 L. The average number of
fuel pieces (9.58 wooden logs) and kindling (8.37 pieces) used varied significantly between
the households, with a coefficient of variation 0.69 and 0.67, respectively. The average
duration of use was approximately 4 h, with most households using their stove between 6
pm and 10 pm.

5.3.1 Increase in Indoor Pollution Levels during Stove Use

The findings indicate that average indoor PM2.5 (mean = 12.21 µg/m3 SD = 10.36,
95%CL: 8.16, 12.68) and PM1 (mean = 8.34 µg/m3 SD= 7.64, 95%CL: 5.29, 9.42) are
higher when the stoves are lit when compared to the period in which they are not in use
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with PM2.5 levels (mean = 4.12 µg/m3 SD= 3.61, 95% CL: 2.82, 4.82), and PM1 levels
(mean = 2.54 µg/m3 SD= 2.61, 95%CL: 1.59, 3.04). Statistical analysis estimates that
the difference in concentrations between these two groups is significantly different for both
PM2.5 (Welch’s t(57.0448) = –5.0531, p < 0.0001) and PM1 (Welch’s t(56.6291) = –4.9197,
p < 0.0001).
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Table 5.3: Statistical summary and distribution of hourly mean and peak particulate
matter (PM) (µg/m3), daily usage fuel pieces and kindling pieces, and Pearson’s r value.

Duration (Hours) FP Peak PM2.5 Mean PM2.5 Peak PM1 Mean PM1 KP

mean 4.06 9.07 27.34 12.21 19.44 8.34 10.37
std 1.63 6.32 31.26 10.36 22.37 7.64 7.04
min 1.1 1 0.23 2.27 0 1.11 0
25% 2.95 4 9 5.66 5.79 3.51 6
50% 3.95 8 16.87 9.26 11.375 5.5 9
75% 4.94 11 34 12.50 22.77 8.87 15
max 9.2 32 195.83 47.60 121 36.15 39
Coefficient of Variation 0.39 0.69 1.14 0.90 1.14 0.94 0.67
Pearson’s r
Duration (hours) 1
FP 0.55 1
Peak PM2.5 0.4 0.44 1
Mean PM2.5 0.017 0.17 0.75 1
Peak PM1 0.38 0.43 0.97 0.75 1
Mean PM1 0.021 0.15 0.73 0.98 0.76 1
KP –0.007 –0.004 –0.04 0.019 –0.034 0.039 1

Wood burner usage data from 20 households collected between January and April 2020.
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The analysis in the three quartiles—(i) <25 percentile, (ii) >25- <75 percentile, and (iii)
>75 percentile, representing low, medium, and peak concentrations, showed an increase
for PM2.5 (69.12%, 70.69%, 56.10%) and PM1(71.78%, 70.41%, 67.67%). The overall
average concentrations were higher for PM2.5 by 66.24% and PM1 by 69.49% when used.

Figure 5.10 density rug plots show the distribution and levels of PM25 and PM1 for users.
Figure 5.11 compare the control group’s indoor pollution levels with the experimental
group. For reasons of visualisation, scaling the x-axis in the graph (see Figure 5.10) is
limited to 60 µg/m3.

Figure 5.10 reveals that the levels of PM that people are exposed to can vary, with a
maximum peak average of 47.60 µg/m3 for PM2.5 and 36.15 µg/m3 for PM1. While
calculating the averages smooths the graph, these findings demonstrate that some users
are exposed to maximum values of up to 160 µg/m3 PM2.5. Control users experience
much lower indoor particulate levels when their stoves are not lit when compared to users
that do, as indicated by Figure 5.11.

(a)

(b)

Figure 5.10: Conditional distribution density plot shows the overall indoor concentra-
tion levels during the usage of wood burners. (a) PM2.5 distribution; (b) PM1 distribu-
tion. Note. While the analysis includes the full range of data, for display purposes only

the x-axis is truncated to 60 µg/m3.

In Figure 5.10, comparing the concentration levels between usage and non-usage days for
the control group also illustrates an increase for PM2.5 (58.24%, 76.60%, 76.22%) and
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PM1(56.92%, 80.51%, 78.56%) when stoves are used. The overall average concentrations
were higher for PM2.5 by 81.23% and PM1 by 73.76%.

(a)

(b)

Figure 5.11: Control group compared to usage shows higher indoor concentration levels
during the usage of wood burners with larger variation. (a) PM2.5 distribution compar-
ison; (b) PM1 distribution. Note. While the analysis includes the full range of data,

for display purposes only the x-axis is truncated to 60 µg/m3.

5.3.2 Indoor Outdoor Interface: Average Indoor PM2.5 Levels Are Higher
and Weakly Correlated with Outdoor Average PM2.5 Levels

The average indoor PM2.5 levels are higher (mean = 12.21 µg/m3 SD = 10.36, 95%CL:
8.16, 12.68) than the outdoor PM2.5 levels (mean = 7.99 µg/m3 SD= 5.51, 95%CL: 3.60,
8.93) during stove usage. From Figure 5.12, below, it is clear that indoor and outdoor
values vary significantly between 10–45 µg/m3 concentration levels. This variation is
because the mean and hourly peak indoor PM lies within this range and, thus, the indoor
levels are much higher than the corresponding outdoor levels. Further analysis of average
indoor and outdoor PM2.5 levels indicated a weak correlation (R2 = 0.19) between them,
which suggests that outdoor air quality is not a driving factor behind the high indoor
pollution levels that were seen during stove usage.
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While we acknowledge that indoor PM2.5 levels can impact outdoor air quality, no mea-
surements were taken from the chimney/flue. The air quality sensor outside the house
indicates immediate outdoor air pollution levels and, thus, it is difficult to measure any
leakage at the interface. Future research studies should focus on indoor air pollution and
its influence on outdoor air quality in order to address this limitation of our study.

Figure 5.12: Indoor PM2.5 vs. Outdoor PM2.5.

5.3.3 Hourly Peak PM Average Higher than Daily PM Average

The analysis of Table 5.3 shows hourly peak PM2.5 and PM1 is strongly correlated
with daily mean PM2.5 and PM1 (r = 0.75). Statistical analysis shows that the hourly
peak mean PM2.5 (27.34 µg/m3, 95% CL:18.38, 37.77) and PM1 (19.44 µg/m3, 95%
CL:12.04, 28.30) are significantly higher than the daily mean PM2.5 (12.21 µg/m3, 95%
CL: 8.16, 13.68) and PM1 (8.34 µg/m3, 95% CL: 5.29, 9.43) by 55.34% and 57.09%, re-
spectively. Hourly PM2.5 and PM1 peak mean and the daily mean concentrations varied
between households with the minimum and maximum, being 19.2 µg/m3–86.83 µg/m3

and 17.79 µg/m3–84.47 µg/m3, respectively.

There exists high variation in exposure concentrations, concerning both short peaks and
daily levels. This characteristic is related to the ”real-world” nature of the study. The re-
search diary tool provided data on not only the amount of fuel and kindling pieces used,
but also their type. On average, participants used 9.58 pieces of solid fuel and 8.32 pieces
of kindling per use. The number of fuel pieces used varied between a minimum of seven
to a maximum of 40, while kindling varied between a minimum of one and a maximum
of 32. All participants used dried and seasoned logs, but the sizes varied. There was also
a diversity of kindling used, taking the form of firelighters, newspapers, balls of paper,
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twigs, sawdust, packing cardboard, greeting cards, and even empty egg boxes. Echoing
the findings of existing studies [79, 94, 111]. This means that the same wood burner may
emit different levels of indoor air pollution depending on the quantity and type of fuel
and kindling used. While suggesting a link between indoor air pollution and fuel quantity,
and type of fuel and kindling, following other studies in the next section, demonstrates
that this is actually linked with the stove door being opened.

Epidemiology studies and policymaking are focused around hourly average concentration
monitoring by regulatory air quality stations. This leads to the omission of short-term
high exposure through the ”flooding” of indoor spaces with PM2.5 and PM1. Very few
studies have reflected on short term peak concentration exposure. Lin et al.’s study [86]
associated increased risk factors with hourly peak concentrations of PM2.5. Similarly,
Delfino et al. [112] associated peak PM levels with Asthma attacks in children, but in out-
door environments. Therefore, the present study encourages future researchers to study
the occurrences and effects of relatively short-term peak PM exposure on human health.

5.3.3.1 Hourly Peak Average PM Has a Moderate Correlation to the Pieces
of Fuel Used

While Table 5.3 indicates a weak correlation between fuel pieces and mean PM2.5(r =
0.17), and with PM1 (r = 0.15), comparing the hourly peak concentration of PM2.5 (r=
0.44) and PM1 (r = 0.43) exhibits a moderate correlation with fuel pieces. The scat-
ter plots in Figures 5.13 and 5.14 chart the relation between peak hourly levels to the
possible co-factors of fuel amount and duration of usage. In Figure 5.13a,b, higher concen-
tration peak levels are clustered towards the left of the x-axis. This indicates a non-linear
relationship with fuel pieces.
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(a)

(b)

Figure 5.13: Scatter plot between PM concentration and Fuel Pieces. (a) PM2.5 vs.
fuel pieces; (b) PM1 vs. fuel pieces;

While correlation between fuel pieces and hourly mean concentration is weak, it is stronger
when compared to the hourly peak concentration. Therefore, the findings suggest that the
peak hourly concentrations are often higher by a minimum of 250% and a maximum of
400% when participants have refuelled their stove more than once during a usage compared
to one refuel or none at all. As such, the findings indicate that the ‘flooding’ of indoor
space occurs as a result of the stove door being opened for refuelling. This accords with
several existing real-world [80, 81, 94], and lab-based [79] studies into stoves outside the
UK. While the findings point to the opening of the stove door as the origin for indoor PM
emissions, further lab-based research is required into how this might relate to duration,
timings, and the point in the burn cycle at which the opening occurs.
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(a)

(b)

Figure 5.14: Scatter plot between PM concentration and duration.(a) PM2.5 vs. du-
ration; (b) PM1 vs. duration;

The hourly peak concentrations explain the shape of the rug plots, as seen in Figure 5.10.
The shape of the curves exhibit a distinct broad frequency distribution in the lower PM
concentration. This indicates that most of the sensor readings are lower during stove use,
but there are also smaller spikes towards the right of x-axis, indicating sensor readings
that correspond to higher levels of PM pollution. A ’leakage’ would result in a more
uniform shape, and, thus, the presence of the smaller spikes cannot be explained. This
echoes Salthammer et al.’s findings [94] and provides further support for the theory of
opening doors being the cause of the indoor air pollution seen rather than a leakage,
which appears to be more common to open fires than ‘closed’ stoves (see [113]). The PM
fraction gets dispersed quickly throughout the room due to its smaller size, reverting to
lower hourly average concentrations.
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5.3.3.2 Hourly Peak Averages Illustrate a Moderate Correlation with Dura-
tion of Use

Table 5.3 also illustrates a non-linear relationship between the duration of use and mean
PM2.5 (r = 0.017). This is similar to PM1 (r = 0.021), although, again, comparing the
hourly peak concentrations of PM2.5 (r= 0.4) and PM1 (r = 0.38), it exhibits a moderate
correlation with the duration of use. The scatter plots in Figure 5.14a,b also reflect this,
with higher levels of peak values being continuously registered during the stove use.

Longer usage is associated with greater numbers of fuel pieces used. This result supports
the explanation for the ’flooding’ phenomenon observed, with higher short-term peak
concentrations being seen during longer periods of use, because these periods are sustained
by more refueling actions. This accords with [79], who also found the lighting and refueling
aspects of stove management to form the main pollutant-generating phases of operation.

5.4 Conclusions

The present study aimed to understand the extent to which PM was emitted indoors and
under real-world conditions by DEFRA-certified residential stoves. The findings indicate
that real-world indoor PM exposure from these stoves is higher when lit as compared
to the period in which they are not in use. When compared to periods of non-use, the
overall average concentrations were higher for PM2.5 by 66.24% and PM1 by 69.49%.
Peak hourly concentrations of PM were often found to be higher by 250–400% when the
participants had refueled their stove more than once during a single usage. The findings
also provide information on PNC, with an average hourly peak of 9978 particles/0.1 L
emitted during a single usage. These ‘flooding’ events correlated with the opening of the
stove door, which indicated that such incidents occurred as fuel was added. Data from
outdoor sensors clarified that this was not originating from outdoors. On the basis of
these results, it is recommended that DEFRA testing standards be modified in order to
account for these normative health risks. The PM that is released into the home is not
an aberration from normal use, but results directly from it. This is because real-world
operation cannot occur without opening the stove door. It may be that with regulatory
encouragement stove designs can be modified in a way that limits such instances. In the
meantime, or in the event that appropriate modification cannot be achieved, it is also
recommended that new residential stoves be accompanied by a health warning at the
point of sale in order to indicate the normative health risks posed to users.

Additional Notes:

In this chapter, we present a study centered on wood burning and its effects on indoor
air quality quantified by LCS. Before diving into the paper’s specifics, there are some
essential points to highlight:

• Co-location and Indoor Monitoring: Our study’s primary focus was indoor
air quality. However, due to the constraints of deploying reference grade analyzers
indoors, the co-location of low-cost sensors with reference analyzers was carried out
outdoors. This approach was adopted to validate and calibrate the low-cost sensors
in an environment where they could be benchmarked against established reference
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equipment. The insights and calibration data obtained from this outdoor co-location
were then applied to our indoor measurements, ensuring the reliability of our indoor
findings.

• Dashboard Development: Rohit Chakraborty [RC] designed the dashboard that
provides a visual representation of our findings. It was crafted to deliver effective
data visualization and grant users clear and actionable insights into the dataset.

• Collaboration with the University of Nottingham: The University of Not-
tingham played a pivotal role in the co-conceptualization of this study and editing.
My contributions ranged from designing the study, writing the initial draft, data
analysis, visualization, to editing the manuscript for clarity and rigor.

• Ethics Approval: All research in the University of Nottingham is looked at by
a group of people, called a Research Ethics Committee, to protect your interests.
This study has been reviewed and approved by the School of Sociology and Social
Policy Research Ethics Committee.

• Clarification on Ultrafine Particles (UFP): A clarification regarding ultrafine
particles (UFP) is warranted. UFPs are typically defined as particles with diameters
less than 100 nm. The inclusion of particles above 300 nm as UFPs in the paper was
an oversight on our part, and I acknowledge this error. Corrections will be made in
subsequent publications or iterations.



Chapter 6

A Practical Green Infrastructure
Intervention to Mitigate Air
Pollution in a UK School
Playground

Abstract

Air pollution severely compromises children’s health and development, causing physical
and mental implications. We have explored the use of site-specific green infrastructure
(green barriers) in a school playground in Sheffield, UK as an air pollution mitigation
measure to improve children’s environment. The study assessed air quality pre-post in-
tervention and compare it with two control sites. Nitrogen dioxide (NO2) and particulate
matter <2.5 µm in size (PM2.5) concentration change was assessed via three methods: 1)
continuous monitoring with fixed devices (de-seasonalised), 2) monthly monitoring with
diffusion tubes (spatial analysis), and 3) intermittent monitoring with a mobile device at
children’s height (spatial analysis). De-seasonalised results indicate a reduction of 13%
for NO2 and of 2% for PM2.5 in the school playground after two years of plant establish-
ment. Further reductions in NO2 levels (25%) were observed during an exceptionally low
mobility period (first COVID-19 lockdown); contrary to PM2.5 levels, which increased.
Additionally, particles captured by a green barrier plant, Hedera helix ‘Woerner’, were
observed and analysed using SEM/EDX techniques. Particle elemental analysis suggested
natural and potential anthropogenic origins, potentially signaling vehicle traffic. Over-
all, green barriers are a valid complementary tool to improve school air quality, with
quantifiable and significant air pollution changes even in our space-constrained site.

85
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6.1 Introduction

Air pollution continues to be one of the most pressing challenges of the urban landscape,
causing environmental quality decline and human health implications. In particular, chil-
dren’s exposure to air pollution has severe repercussions to their health. At the same
time, a shocking 93% of children under 15 years old breathe polluted air worldwide [114].
These children might have experienced a range of illnesses, from adverse neurodevelop-
ment [115, 116] and mental health problems [117], to decreased respiratory and cardio-
vascular functions[118, 119]. Whilst tackling the sources of pollution remains the most
recommended way to cut down toxic emissions and protect children’s health [120, 121],
the current implemented measures worldwide do not seem sufficient for the urgency of
solving a mostly anthropogenic problem [122]. In that sense, additional mitigation mea-
sures to protect vulnerable populations have been explored, including the use of green
infrastructure (GI) to reduce air pollution at a local level.

Under the nature-based solutions umbrella, GI encompasses any type of natural and
semi-natural areas managed to deliver ecosystem services [123]. In the urban landscape,
this translates into street trees, parks, green roofs, green walls, hedges, green barriers or
fences, among others. GI has the potential to reduce ambient air pollution via multiple
mechanisms: gases absorption such as nitrogen dioxide (NO2), gases and particulate
matter (PM) deflection and dispersion, and PM deposition on plants’ structures [124].
Simultaneously, various factors affect GI’s performance to improve air quality (AQ), such
as the urban layout and the local wind direction [125], or the plants’ composition and
their AQ functional traits [126, 127].

The use of GI in school facilities to reduce pupils’ exposure to air pollutants has been
suggested by the [128]. Some schools have put the GI proposal into practice in the UK –
specifically installing green barriers or fences. For instance, schools in Dorset and London
have installed ivy panels around the school facilities’ perimeter [129, 130]; four schools
in Manchester are part of a trial run by Lancaster University where evergreen hedges
were planted between school premises and passing traffic [131, 132]; and the Mayor of
London’s Green Fund awarded a grant to twenty-nine primary schools to plant vegetation
and boost air quality [133]. Although purposely implemented green barriers exist in these
UK schools, there is little/weak scientific evidence on actual air pollution concentration
changes due to the GI intervention, and that consider the site’s conditions. For instance,
Abhijith et al. [134] found a 44% decrease of PM concentrations immediately behind a
green screen installed in a London school, but the authors’ short monitoring campaign
did not take into account the effect of the site’s seasonal and weather conditions, and
COVID restrictions. Moreover, most research to date comprises AQ assessments in places
with pre-existing GI onsite which do not offer understanding of air pollution pre-post
intervention, or are based on modelling studies that present ideal situations for air quality
improvement [126, 135–141], potentially different from what could be achieved in intricate
real-life school environments. Besides, most studies use simplistic GI formed by one to
three plant species [142], instead of more complex planting designs. GI composed of
multiple species could foster ecosystem functioning and deliver co-benefits (e.g. safety,
wellbeing, aesthetics, biodiversity).

This study assesses AQ impacts of a multi-species (31 taxa) thin GI in a UK school
playground, where a green barrier was purposely built and designed as a functioning
ecosystem that fits the irregular school layout. Pre- and post-intervention conditions
– including air quality, meteorological conditions, and COVID restrictions – are fully
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acknowledged and characterised. Here, we focus on evaluating the GI intervention in
terms of NO2 and PM2.5 concentration changes, and on identifying the composition of
the latter. The following sections elaborate on the methods followed (Section 6.2), the
AQ outcomes due to the green barrier implementation and a discussion based on three
research questions (Section 6.3):

i) Can site-specific multi-species thin green barriers provide enough protection against
NO2 and PM2.5 air pollution in a school facility?

ii) What is ambient PM around an inner-city school made of?

iii) What has a larger influence on school air quality: multi-species thin green barrier
implementation or low-vehicle traffic (due to COVID-19 lockdown)?

Concluding remarks are presented in Section 6.4.

6.2 Materials and Methods

6.2.1 Study design

A green barrier was installed in a case study school in Sheffield, UK. Air quality was
monitored pre and post such GI intervention at the case study school (Sch-GB site) and
at two other sites serving as control for data comparison and contrast (Figure 6.1). The
control sites are located within a 2 km radius from Sch-GB, and comprise a site in the
city centre (City site) – providing an urban background – and another school playground
without a green barrier (Sch-NoGB site). Air quality was monitored at those three sites
from April 2019 to October 2021. Sources of air pollution at the study sites include
motorised transport and residential/commercial forms of burning, such as woodburning
stoves. In Sheffield, 81% of road transport accounts for cars and taxis, while the remaining
19% includes buses, light vans, heavy goods vehicles, and motorcycles [143].

In light of the study happening during COVID-19 pandemic times, which caused citizen’s
mobility and ‘normal’ activities disruptions due to UK governmental restrictions and
lockdowns to contain the spread [144], only three periods from the AQ campaign were
adequate for analysis and comparison (Table 6.1). These periods were most similar in
vehicle traffic flow and comprised the same months for each year of the study. Vehicle
traffic flow (vehicle h–1) data are reported for each period and site in Table 2. These data
were collected at a 1-hour resolution from the Urban Flows Observatory portal [145],
which compiled data recorded by Sheffield City Council. Additionally, a period of low-
vehicle traffic and low-citizens’ mobility (first lockdown April-June 2020) was selected for
contrast and comparison with the three other periods.

6.2.2 Green infrastructure intervention

A purposely designed multi-species green barrier – the GI intervention – was installed
at the case study school (Sch-GB site). Such a green barrier was co-designed and co-
produced with the school community and many other contributors participating in six
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Figure 6.1: Location of the study sites for air quality monitoring in Sheffield, UK.
‘Sch-GB’ refers to case study school with a green barrier; ‘City’ refers to a city centre
site (control); ‘Sch-NoGB’ refers to an urban school site without a green barrier (control).

Figure 6.2: Air quality data collection periods. Blue colour represents periods selected
for data analysis.

project stages from October 2018 to January 2020 (so called GF-Sheff project). The
project stages included introduction and goal setting, green barrier design, construction,
planting, project debriefing, and maintenance [146].

The case study school has one- and two-story buildings of late-Victorian character, and
an active and highly used playground that accommodates 270 pupils in the infant stage
(5-7 years old) throughout the day. During pupils’ drop-off (8:50h) and pick-up times
(15:10h), parents and children walk through the playground and socialise. From 10:30h
to 15:00h, the playground is used on and off for play and lunch activities. Additionally,
one day a week the playground is used for sports all-day-long, and extra-curricular sports
club take place twice a week up to 16:15h.

Before the green barrier was installed, the playground had only a low stone-wall (0.6-
0.7 m high) and spaced metal railings (which allowed air flow) as a separation from the
adjacent streets. These streets are in close proximity to the school, between 1.9-2.2 m
away from the playground’s perimeter. Motorised vehicle traffic continuously circulates
around the school, and car parking is available on one street adjacent to the playground.
Moreover, residential and commercial facilities dominate the area. Therefore, local air
pollution sources include vehicle traffic, and domestic and commercial activities.
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Table 6.1: Periods selected for air quality assessment from the study’s data collection
campaign.

Data col-
lection
period

Abbreviation Date Description

Pre-green
barrier

pre-gb July - October
2019

Baseline period: before the green
barrier was implemented in Sch-GB
site’s playground.

COVID-19
lockdown

lock April – June
2020

Period after the green barrier im-
plementation with first national
lockdown measures to contain the
COVID-19 pandemic. Vehicle traf-
fic and citizens’ mobility were highly
restricted.

Post-green
barrier20

post-gb20 July - October
2020

Period one year after the green bar-
rier implementation. COVID-19 re-
strictions were eased from 23rd of
June to 31st of October 2020. Sec-
ond national lockdown came in force
on 5th of November 2020.

Post-green
barrier21

post-gb21 July - October
2021

Period two years after the green
barrier implementation. Last phase
of COVID-19 pandemic restrictions
ease, and full reopening of all eco-
nomic activities on 19th of July
2021.

Table 6.2: Mean traffic flow (vehicle h–1) at closest sensors to the study sites, per
selected periods.

Period Sch-GB City Sch-NoGB
Mean ± SE Mean ± SE Mean pm SE

pre-gb 331.2 ± 4.2 231 ± 3.6 NA
lock 197.4 ± 3.6 83.4 ± 1.8 268.2 ± 3.6
post-gb20 303.0 ± 4.2 160.2 ± 2.4 386.4 ± 3.6
post-gb21 342.0 ± 9.0 200.4 ± 3.0 463.2 ± 4.8

The green barrier construction started in July 2019 with groundworks preparations and
culminated in late October 2019 with local community’s supported planting. The multi-
species green barrier comprises a mix of 31 different taxa planted along the playground’s
border, which extends for 60 m. Its height ranges from 2.2-2.4 m; causing a separation
between the playground and the street traffic of: 2.4 m max on the southwest portion of
the playground, and 4.4 m max on the northwest corner and north portion of the play-
ground (raised school grounds). Its width is 0.9 m continuously, except on the northwest
corner of the playground, where it extends up to 1.3 m. Five taxa act as the green bar-
rier’s structural plants and are the key components of air pollution deposition, deflection,
and dilution. The remaining taxa are complementary plants that support the ecosystem
functioning of the planting scheme (fostering plant establishment, life-span extension, and
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(a) View from inside the playground
before green barrier implementation.

(b) View from street after green bar-
rier implementation.

Figure 6.3: Pictures of the case study’s school playground before and after the green
barrier implementation (Sch-GB site).

a thriving planting scheme), add sensory interest, and create a more aesthetic design. All
the plants were incorporated in an almost-mature stage that created a low-porosity green
barrier, providing an immediate screening effect. Further information on the characteris-
tics of the green barrier and the species used can be found in previous studies [146, 147].
Pictures of the Sch-GB site before and after the green barrier implementation are depicted
in Figure 6.3, and Figure 6.4 provides detailed information on the taxa used for the green
barrier and its planting design in the school playground.

6.2.3 Air quality data collection

To assess the air pollutants concentration change due to the installation of the green bar-
rier, collection and assessment of AQ data was carried out at the three monitoring sites
(Sch-GB as site with GI intervention; and City and Sch-NoGB as control sites), and dur-
ing the different sampling periods (pre-gb, lock, post-gb20, postgf-21). Concentrations
were measured for NO2 and PM2.5 via three methods: 1) NO2 and PM2.5 continuous
monitoring with fixed devices at all monitoring sites, 2) NO2 monthly monitoring with
diffusion tubes at all monitoring sites, and 3) complementary spatially-distributed PM2.5
monitoring with a mobile device in Sch-GB. AQ monitoring with fixed devices and dif-
fusion tubes is fairly recognised by the scientific community and used by governments.
In addition to these commonly used methods, we used a mobile device set up at chil-
dren’s breathing height (1.1 m) to understand spatial changes of air pollution in the place
where children walk and play. Meteorological conditions were recorded using a weather
station (OTT MetSystems) installed at Sch-GB. The weather station measured air tem-
perature, relative humidity, air pressure, wind speed and direction, precipitation intensity,
and global radiation in 15-min intervals. Details of each AQ data collection method are
described in the following sections.

6.2.4 Continuous monitoring with fixed devices - NO2 and PM2.5

Each study site had a fixed AQ monitor measuring air pollutant concentrations con-
tinuously through the day. Therefore, NO2 and PM2.5 data were extracted from each
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Figure 6.4: Planting plan of the green barrier at the Sch-GB site. Blue arrows depict
prevailing wind directions, size represents frequency. Modified from Urban Wilderness.

monitor’s data portal at a 1-hour resolution. Consequently, 24 measurements (in µg m-3)
were collected per air pollutant for each day of the data collection periods. Data were
available for all sites and all periods, except for NO2 during lock and post-gb20 periods
at Sch-GB site.

The use of the selected fixed AQ monitors elaborates on previous AQ research conducted
in Sheffield by Chakraborty et al. [148] and Munir et al. [149]. Details of each monitoring
device corresponding to the study sites are shown in Table 3. City and Sch-NoGB sites
have reference sensors managed by UK Department for Environment, Food and Rural
Affairs (DEFRA), and Sheffield City Council, correspondingly. For the Sch-GB site, a low-
cost monitor (AQ Mesh, V5.0) with medium accuracy was installed in the school facilities.
This monitor’s performance is reliable [150] and has been used in several studies [151]41,
including school facilities [152]. It has an internal weather sensor that corrects data for
weather effects using proprietary software, and data is also O3-filtered to correct for cross-
gas effects (eliminating O3 sensitivities and providing accurate NO2 concentrations). To
refine data quality, concentrations from Sch-GB’s monitor were scaled via a correlation
with the reference sensors at the control sites.
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Table 6.3: List of plants used in the green barrier with their respective planting plan
codes.

Plant name Planting
plan code

Plant name Planting
plan code

Structural plants Herbaceous plants
Hedera helix ’Woerner’ Hed Wo-

erner
Alchemilla mollis Alc mol

Juniperus scopulorum
‘Blue Arrow’

Jun Blu Anemanthele lessoniana Ane les

Thuja occidentalis
'Smaragd’

Thu SMA Asplenium scolopendrium Asp sco

Chaemacyparisus lawso-
nia ‘Ivonne’

Cha Ivo Bergenia cordifolia ‘Pur-
purea’

Ber Pur

Phyllostachys nigra Phy nig Calamagrostis x acutiflora
‘Karl Foerster’

Cal KF

Shrubs Deschampsia caespitosa
‘Goldtau’

Des Gol

Choisya ternate Cho ter Geranium endressii ‘War-
grave Pink’

Ger War

Cornus alba ‘Sibirica’ Cor Sib Heuchera micrantha
‘Palace Purple’

Heu PP

Cornus sanguinea ‘Mid-
winter Fire’

Cor MF Liriope muscari ‘Big
Blue’

Lir Big

Erica carnea ‘Springwood
Pink’

Eri SP Nepeta ‘Six Hills Giant’ Nep SHG

Erica carnea ‘Springwood
White’

Eri SW Polystichum setiferum Pol set

Euonymus fortuneii
‘Emerald Gaiety’

Euo Eme Salvia officinalis ‘Pur-
purescens’

Sal Pur

Fatsia japonica Fat jap Sedum spectabile ‘Bril-
liant’

Sed Bri

Hypericum ‘Hidcote’ Hyp Hid Stachys byzantina ‘Big
Ears’

Sta Big

Lavandula angustifolia
‘Hidcote’

Lav Hid Verbena bonariensis Ver bon

Rosmarinus officinalis
‘Miss Jessopp's Upright’

Ros MJU Sarcoccoca confusa Sar con

6.2.5 Monthly monitoring with diffusion tubes – NO2

Diffusion tubes provided by Sheffield City Council were installed inside Sch-GB’s play-
ground in three different locations to measure NO2 concentrations. This AQ monitoring
technique is part of the UK government tools utilised to review and assess mean an-
nual NO2 concentrations [153]. Diffusion tubes are passive samplers of atmospheric NO2
and provide monthly indicative measurements. Atmospheric NO2 reacts with the tubes’
coated triethanolamine (TEA) cap and, after chemical analysis (colorimetry) by the cor-
respondent laboratory, NO2 monthly concentrations are calculated and provided [154].
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Table 6.4: Fixed air quality monitors specifications for each study site.

Study Site Air Quality Monitor
Type

Air Quality Moni-
tor Specifications

Monitoring
Technique

Ref.

Sch-GB
(green
barrier in-
tervention)

Low-cost (medium data
accuracy) Data quality:
Proprietary software for
air pollutant concentra-
tion correction from cross-
gas effect and from cross-
interference with environ-
mental conditions, devel-
oped by the manufacturer.
Data correlation and scal-
ing with reference sensors.

AQ Mesh V5.0 devel-
oped by Environmen-
tal Instruments Ltd.
Monitor at 1.7 m
above ground level, 3
m away from closest
road

NO2: Electrochem-
ical PM2.5: Optical
particle counter

[149,
150, 155]

City
(control
site—city
centre)

Reference (high data accu-
racy)

Monitoring station
from DEFRA’s
AURN. Station from
ground level to 3 m
high, 15 m away from
closest road

NO2: Chemilumi-
nescence PM2.5:
Tapered Element
Oscillating Mi-
crobalance

[149,
156]

Sch-NoGB
(control
site—school)

Reference (high data accu-
racy)

Monitoring station
from Sheffield City
Council. Station
from ground level
to 2.5 m high, 3.5
m away from closest
road

NO2: Chemilumi-
nescence PM2.5:
Tapered Element
Oscillating Mi-
crobalance

[149,
157]

Sheffield City Council manages a network of diffusion tubes in the city, which includes
monitoring at Sch-NoGB and City study sites [158]. Therefore, Sch-GB NO2 concentra-
tions were compared within the playground and also with the control sites for the four
data collection periods (pre-gb, lock, post-gb20, and post-gb21). Local and national co-
location studies of diffusion tubes with reference monitors take place every year to adjust
NO2 results. Bias adjustment is already reflected here and included correcting the data
with bias adjustment factors from Sheffield City Council studies. These factors are 0.98,
0.93, and 0.93 for 2019, 2020, and 2021, correspondingly. It is worth noting that there
are NO2 measurements for each month of the data collection periods, except for the lock
period at Sch-GB, which only has data from June 2020 due to COVID-19 disruptions;
and the post-gb20 period at Sch-NoGB, which is missing data from July 2020.

6.2.6 Intermittent monitoring with a mobile device – PM2.5

To complement the fixed AQ monitoring at Sch-GB and understand the spatial distribu-
tion of air pollution at children’s breathing height (1.1 m), a low-cost mobile device (Aero-
qual series 500) was used. It measured PM2.5 (via optical particle counter), temperature,
and relative humidity at eight different locations. Five sampling locations are inside the
school playground and three are located on the adjacent streets (Figure 6.6). Air sampling
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Figure 6.5: Air quality sampling locations in the case study school (Sch-GB) for diffu-
sion tubes (NO2), mobile low-cost device (PM2.5), and fixed low-cost monitor (NO2 and

PM2.5).

includes high-pollution times during the school day (pupil’s drop-off and pick-up times),
which were previously identified via the fixed monitor data. Data collection took place
from May-July and September-October 2019 (pre-gb), and from September-October 2020
(post-gb20). During the data collection periods, PM2.5 and meteorological conditions (hu-
midity and temperature) were collected with 1-min resolution at each sampling point, for
5 consecutive minutes at a time. A total of 2,074 observations were collected and used for
analysis. Due to the mismatch of pre and post green barrier collection periods, caused by
COVID-19 disruptions, data was clustered by its meteorology. This meant that pre and
post GI intervention data with the same mean humidity and temperature were compared.
Data clusters included 1) high humidity (81%) and low temperature (14◦C) days, and 2)
low humidity (52%) and high temperature (20◦C) days. These thresholds were selected to
have similar number of observations pre-post intervention. The same mobile monitoring
device (Aeroqual) has been successfully used in other studies [159–162]. Moreover, to
improve data quality we conducted a field co-location with the MOBIUS (MOBIle Urban
Sensing vehicle) reference sensor from the Urban Flows Observatory, The University of
Sheffield [163] (Figure S2 in Supplementary Material B).

6.2.7 Air quality assessment

To assess the impact of the GI intervention on school air quality, we carried out a compar-
ison of air pollutant concentration changes from the baseline period (pre-gb) to the three
post green barrier periods (i.e., lockdown, post-gb20, and post-gb21) for Sch-GB within
itself, and with the control sites. Air quality data were processed in a combination of
Excel, R software, and Python programming languages, and general statistics were eval-
uated to calculate air pollutants concentration difference (in %), according to Equation
6.1:
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[NO2] or [PM2.5] difference (%) =
(
[Px]× 100

[P0]

)
– 100 (6.1)

Where Px represents either NO2 or PM2.5 mean concentrations at each study period
(one at a time), and P0 represents the mean concentration of the same air pollutant
during the pre-gb period. Due to different baseline concentrations at each study site, air
pollutant concentration differences (in %) were comparable across the city, unlike raw
concentrations.

Prior this computation, fixed monitor data was subjected to de-seasonalisation (Sec-
tion 6.2.8) to reflect the sole effect of the green barrier more accurately. On the other
hand, diffusion tubes and mobile device data maintained the influence of the weather,
therefore, their results reflect it and were primarily used for qualitative spatial analysis.

6.2.8 Data de-seasonalisation

The global COVID-19 pandemic resulted in significant heterogeneity in recorded trends of
anthropogenic emissions across the time under study. Variations in air quality as measured
are also strongly impacted by meteorological conditions. As in previous studies that
investigated the effect of COVID-19 restrictions on air quality [164–167], we eliminated
these uncertainties using a de-seasonalising approach. After treating missing data and
removing outliers, we used a two-step approach – using the R package ‘deweather’ [168]
– to exclude the effect of trend and weather on the air quality data and to normalise it,
as detailed below.

i. Step 1 – Deweather:

We used the ‘gbm’ package to investigate and adjust for non-linear relationships between
meteorological variables, air quality measurements, and temporal variables, to forecast
the variability associated with the hour of the day, day of the week, and week of the year.
The latter factored in seasonal weather factors that were not considered by the other
components. Additionally, we included a trend term to account for COVID-19 related
changes in emission patterns during the three-year study period via a Machine Learning
(ML) technique based on the Generalized Boosted Regression Tree Model (BRT) [169].
The model is formed, as shown in Equation 6.2:

[PM2.5] = RH + u + trend +∅+Tθ + thour + tweekday + tJD (6.2)

Where RH is relative humidity, u is the mean hourly wind speed, trend represents annual
variations, ∅ is the mean hourly wind direction (degrees, clockwise from the north), and
Tθ is the mean hourly temperature (◦C). Variables representing hour of the day, thour,
day of the week, tweekday, and day of the year, tJD, were also considered for the model
development.

For each site, 80% of the hourly meteorological and pollutant measurements were used
for training the BRT model, with the remaining 20% split for testing and validation,
with the goal of developing the most suitable model. This determination is achieved
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automatically using commonly used metrics such as Pearson's correlation coefficient (r),
root mean square error (RMSE) and mean bias (MB). Individual models were developed
for PM2.5 and NO2 for the time of the study.

ii. Step 2 – Meteorological normalisation:

We used the ‘metSim’ function to create meteorological simulations in order to validate
the model and make predictions. After developing the model, the meteorological av-
eraging process was used to predict weather conditions numerous times using random
sampling [170]. The ‘metSim’ function was used to perform this sampling. The final
model was developed to forecast concentrations while accounting for the change in trends
caused by COVID-19 restrictions and meteorological variability. This method predicts
concentrations that are representative of typical meteorology accounting for the covari-
ates (temperature, humidity, wind speed, wind direction, week of the year, weekday, hour
of the day, and trend). The model’s performance was evaluated using tenfold cross-
validation. The model fitting results and the relation between PM2.5, NO2, and the
covariates are shown in Appendix B.

6.2.9 Air quality pattern trends

To characterise overall air quality trends of each study site, air pollutant concentrations
were analysed using the ‘Theil-Sen’ tool built-in ‘Openair’ R package [171]. The approach
provided a non-parametric measurement of trends based on ‘the median of the slopes of
pairs of points with varied x-values’, slope estimation, and bootstrap uncertainty esti-
mate [166]. Because these trends during lockdown vary from prior years and may obscure
the results, leading to incorrect conclusions, they were removed using a process similar
to weather normalisation. De-seasonalised modelled data (15 min resolution) filled the
vacant periods and a trend between 2019 and 2020 was stablished. ‘Theil-Sen’ calculated
the monthly mean concentrations and the slopes between all pairs of the data. The final
‘Theil-Sen’ estimate of the slope is the median of all these slopes. Air quality pattern
trends aid to understand pollution over time at Sch-GB and the control sites, and to
observe the green barrier’s effect on AQ. Statistical significance to the p-value<0.001 was
determined from the trends’ overlaid slope at the 95% confidence intervals.

6.2.10 Qualitative spatial analysis

Diffusion tubes (NO2) and mobile low-cost device (PM2.5) data were primarily used for
spatial analysis. Their timeframe, combined with the ease of monitoring across space,
make them more suitable for qualitative analysis in geographical visualisations. There-
fore, data was mapped at playground and city scale. This analysis provides a valuable vi-
sualisation tool to extract detailed information on pollutants concentration change across
the playground and city.
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NO2 trend estimate PM2.5 trend estimate

Figure 6.6: Air quality sampling locations in the case study school (Sch-GB) for diffu-
sion tubes (NO2), mobile low-cost device (PM2.5), and fixed low-cost monitor (NO2 and

PM2.5).

6.2.11 Qualitative PM elemental composition identification

A green barriers’ mechanism of action to reduce air pollution is PM deposition on the
plants’ surface. In order to identify the sources of ambient PM in the case study school,
we carried out an elemental composition analysis of the particles deposited on the leaves’
surface of Hedera helix ‘Woerner’, the plants that cover the full length of the green barrier.
Six leaf samples were collected in January 2021 at 1.25 m height from the school ground.
They were stored in plastic containers, attaching the stem to the bottom of the container to
prevent movement during transportation. The samples were observed under a scanning
electron microscope (SEM) (Tescan Vega3 LMU) to visually examine and chemically
analyse the particles deposited on the surface [147]. The SEM was used at 15 kV, in
low vacuum mode (LVM) with a low vacuum secondary electron detector (LVSED). No
conductive coating was applied to the leaves. Energy dispersive X-ray analysis (EDX)
(Oxford Instruments X-Max 50) was used to qualitatively assess the elemental composition
of 18 random particles (three particles per sample). The PM sizes analysed ranged from
2-30 µm, and large regions of agglomerated particles were present on the leaf surfaces.
The Aztec Software (Oxford Instruments) was used to evaluate the chemical elements
present in each sample.

6.3 Results and discussion

6.3.1 Impact of green barrier on playground air quality

Air quality results indicate that the green barrier has mixed impacts on Sch-GB’s play-
ground levels: a consistent decrease in NO2 concentrations, and an environmental conditions-
dependent decrease in PM2.5 concentrations.

For NO2, both, de-seasonalised and weather-influenced data analyses indicate an overall
negative concentration trend in Sheffield from 2019 to 2021. Not only has Sch-GB site
seen a reduction in NO2 levels since the green barrier was built in its playground, but
also concentrations have decreased at both control sites. The city’s NO2 reduction is
most likely related to changes in car mobility caused by COVID-19 pandemic restrictions,
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as the main NO2 source in Sheffield is motorised vehicle traffic [172]. Traffic flow dur-
ing post-gb21 period was most similar to pre-pandemic levels (Table 6.5), making it the
most representative period for observing solely the green barrier’s impact. Hence, com-
paring NO2 concentrations from post-gb21 with pre-gb indicates that this gas pollutant
decreased at all sites. However, Sch-GB had a greater reduction than City and Sch-NoGB
sites (Figure S3 in Supplementary Material B), suggesting that the green barrier has a
mitigation effect on playground pollution levels. Subtracting Sch-GB’s concentrations
difference from averaged control sites’ concentrations difference, de-seasonalised results
showed an NO2 reduction of about 13% in the playground, whilst weather-influenced re-
sults showed a reduction of about 23%. It is worth noting that direct comparison of fixed
monitors and diffusion tubes results is not possible due the de-seasonalisation process of
the former, however, each provide complementary information about NO2 concentration
changes in time.

Furthermore, from the three study sites, only Sch-GB had a statistically significant NO2
decrease trend over time (trend = -2.51 µg m-3 per year, 95%CL = -2.71,-2.19 µg m-3 per
year, p < 0.001), which suggests that only the site with the GI intervention experienced
a sustained NO2 decrease from pre-gb to post-gb21 periods.

Spatial analysis supports the overall reduction of NO2 in the city. Moreover, spatial
analysis within the playground shows that for pre-gb there was a natural dilution of NO2
from the roads, i.e. the further away from the road the diffusion tube was located, the
lower the NO2 concentration. On the other hand, once the green barrier was planted,
this pattern changed. For all post GI periods, NO2 levels were lower at diffusion tubes
immediately behind the green barrier, suggesting that the greatest AQ impact covers
certain range and dilutes with distance from the green barrier. Based on the calculation
provided in [173], the area of protection related to the green barrier’s height is given by
area of protection in metres = 3 × height – 3. Sch-GB’s green barrier protects up to 4.2
m behind it under ideal conditions.
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Table 6.5: De-seasonalised air pollutant mean concentrations and difference (%) against baseline scenario (pre-gb) at city scale.

Air quality
data collection Period

Study site
Sch-GB City Sch-NoGB

Mean ± SE Conc. diff. Mean ± SE Conc. diff. Mean ± SE Conc. diff.

NO2 – fixed monitor
(de-seasonalised)

pre-gb 27.53 ± 0.05 - 19.04 ± 0.10 - 24.82 ± 0.11 -
lock NA2 NA 14.37 ± 0.03 -24.43% 18.50 ± 0.03 -25.44%

post-gb20 NA NA 16.02 ± 0.08 -15.76% 19.02 ± 0.06 -23.34%
post-gb21 22.88 ± 0.11 -16.88% 17.67 ± 0.10 -6.98% 24.73 ± 0.10 -0.37%

NO2 - diffusion tubes

pre-gb 24.58 ± 2.17 - 22.25 ± 0.66 - 28.58 ± 0.30 -
lock 11.50 ± 1.50 -53.22% 14.22 ± 0.29 -36.09% 19.05 ± 0.31 -33.36%

post-gb20 16.08 ± 1.17 -34.58% 17.83 ± 0.46 -19.87% 26.33 ± 0.51 -7.87%
post-gb21 14.11 ± 0.63 -42.62% 16.43 ± 0.41 -26.16% 25.12 ± 0.59 -12.12%

PM2.5 - fixed monitor

pre-gb 5.98 ± 0.01 - 6.74 ± 0.01 - 6.64 ± 0.01 -
lock 7.50 ± 0.01 25.32% 7.96 ± 0.03 18.16% 7.98 ± 0.03 20.13%

post-gb20 6.09 ± 0.01 1.71% 6.63 ± 0.01 -1.52% 6.62 ± 0.01 -0.27%
post-gb21 5.85 ± 0.01 -2.31% 6.74 ± 0.01 0.033% 6.65 ± 0.01 0.078%

1Conc. diff. = concentration difference. 2NA = not available. Green colour indicates pollution reduction and red colour indicates pollution
increase, compared to baseline period.
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Furthermore, from the three study sites, only Sch-GB had a statistically significant NO2
decrease trend over time (trend = -2.51 µg m-3 per year, 95%CL = -2.71,-2.19 µg m-3 per
year, p < 0.001), which suggests that only the site with the GI intervention experienced
a sustained NO2 decrease from pre-gb to post-gb21 periods.

Spatial analysis supports the overall reduction of NO2 in the city. Moreover, spatial
analysis within the playground shows that for pre-gb there was a natural dilution of NO2
from the roads, i.e. the further away from the road the diffusion tube was located, the
lower the NO2 concentration. On the other hand, once the green barrier was planted,
this pattern changed. For all post GI periods, NO2 levels were lower at diffusion tubes
immediately behind the green barrier, suggesting that the greatest AQ impact covers
certain range and dilutes with distance from the green barrier. Based on the calculation
provided in [173], the area of protection related to the green barrier’s height is given by
(area of protection in metres = 3× height – 3). Sch-GB’s green barrier protects up to 4.2
m behind it under ideal conditions.

Figure 6.7: NO2 mean concentrations difference (%) of sampling periods against base-
line (pre-gb), data collected with diffusion tubes. Data is displayed at city scale for

inter-sites comparison, and at playground scale for within site (Sch-GB) comparison.
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Table 6.6: NO2 mean concentrations in Sch-GB at playground scale, from diffusion tubes.

Air quality
data collection Period

Location inside playground
North tube South tube West tube

Mean ±
SE

Conc.
diff.

Mean ±
SE

Conc.
diff.

Mean ±
SE

Conc.
diff.

NO2 –
diffusion tubes

(weather-
influenced)

pre-gb 24.75 ±
2.24

- 20.75 ±
3.33

- 28.25 ±
2.29

-

lock NA - 10.00 -51.81% 13.00 -53.98%
post-gb20 15.75 ±

1.11
-36.33% 14.25 ±

1.11
-31.33% 18.25 ±

1.11
-35.39%

post-gb21 13.72 ±
1.70

-44.57% 13.25 ±
1.21

-36.14% 15.35 ±
1.55

-45.66%

1Conc. diff. = concentration difference. Green colour indicates pollution reduction, compared to
baseline period.
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The minipage ensures that both the table and the footnote are treated as one unit, and
the footnote is centered with respect to the width of the table. Adjusting the width of
the minipage will adjust the positioning of the footnote.

In contrast to NO2 results, de-seasonalised PM2.5 concentrations do not follow the same
declining trend in Sheffield. PM2.5 levels greatly increased during the lockdown period
and do not substantially differ among pre-gb, post-gb20, and post-gf-21 across the city
(Figure S4 in Supplementary Material B). Nevertheless, when comparing only pre-gb
with post-gb21 as indicated above, PM2.5 concentrations decreased about 2% at Sch-
GB’s playground, whilst increasing at the control sites. Similarly to NO2, only Sch-GB
experienced a statistically significant and sustained PM2.5 decrease from pre-gb to post-
gb21 (trend = -0.32 µg m-3 per year, 95%CL = -0.67, -0.14 µg m-3 per year, p < 0.001).

Previous studies have shown that wind direction highly influences GI’s PM reduction
efficiency [126, 174–176] ). We found that it is also the case for our PM2.5 de-seasonalised
data at Sch-GB. Prevailing wind directions around the playground come from the west,
northwest, and southeast to a lesser extent. Our results show that PM2.5 decreases with all
wind directions (PM2.5 trends over time are all negative and statistically significant to at
least the p<0.05 level. However, the conditional probability function visualisation at the
90th percentile (=3.5) showed that south-easterly winds bring the highest level of PM2.5
pollution into the playground. This might be related to airflow entering through the open-
metal school gate and could be solved by supplying the gate with a material that hinders
air movement (e.g., bamboo/wooden mesh), as a GI implementation is not suitable there.
Furthermore, spatial analysis signal to a more restricted airflow inside the playground due
to the green barrier . During the pre-gb period, higher PM2.5 concentrations occurred on
the sampling points next to the divisionary wall between the playground and the streets,
and lower concentrations in the middle of the playground. Whilst for post-gb20, PM2.5
levels were more homogeneous across the playground.

Other weather covariates impact PM2.5 concentrations, such as humidity (15.7%) and
temperature (6.4%) (Figure S1 in B), which had an influence on the data collected at
children’s breathing height with a mobile device. Weather-influenced results from that
device showed that relatively hotter and less humid days (i.e., similar to British summer
conditions) displayed a reduction in PM2.5 concentrations inside the playground only, in
contrast to colder and more humid days. Overall, seasonality and weather patterns have
a considerable impact on PM behaviour. Despite de-seasonalised outcomes indicating a
positive impact on playground air quality due to the green barrier, it is small compared
to the effect of the underlying weather component.

The apparent limited protection that the green barrier provides against PM2.5 is possibly
related to three factors: 1) the narrow width of the barrier (0.9-1.3 m), 2) the location of
the fixed AQ monitor, and 3) the multiple and diverse PM sources around the playground.

Firstly, regarding GI width, research suggests that thicker green barriers are more effective
at AQ provisioning [141, 177, 178]. Some studies suggest up to a minimum width of
10 m, although such wide thickness approach seems to be more suitable for protecting
populations near long open roads, such as motorways [125]. In the urban environment,
green barriers need to be more accommodating to the different landscape morphologies,
where often planting space is scarce. For Sch-GB’s playground, the maximum width
the school could spare for planting was 1.3 m in its widest section (northwest corner),
hence, plant selection assured full coverage of the green barrier’s height and low porosity.
As such, the green barrier in Sch-GB’s playground illustrates successful multi-species GI
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Figure 6.8: De-seasonalised mean PM2.5 concentration trends (in µg m-3) by wind
direction and wind speed (ws) at Sch-GB site across time. The solid red line represents
the trend estimate, and the dashed red lines represent 95% confidence intervals for the
trend based on resampling methods. Statistically significant trends are valid at * p<0.05,
** p<0.01, and *** p<0.001 levels. CFP prob = conditional probability function, for the

centre plot at the 90th percentile.

Table 6.7: PM2.5 mean concentrations and difference (%) between street and play-
ground sampling points during two weather conditions in the Sch-GB site. Data collected

with mobile monitoring device.

Weather
Condi-
tions

Period Sampling
Points

Mean ± SE
(µg m-3)

Conc. diff.1
against
street

High hum - low temp
pre-gb street 5.82 ± 0.21 -

playground 6.45 ± 0.20 10.95%

post-gb20 street 7.03 ± 0.17 -
playground 7.07 ± 0.11 0.60%

Low hum - high temp
pre-gb street 5.63 ± 0.12 -

playground 5.79 ± 0.11 2.79%

post-gb20 street 6.34 ± 0.14 -
playground 6.04 ± 0.06 -4.69%

1Conc. diff. = concentration difference. Green colour indicates pollution reduction and red colour
indicates pollution increase, compared to mean street sampling points concentration.

application in an intricate urban layout, which most likely acts by deflecting air pollution.
Other studies have explored the use of green barriers in open roads or urban street canyons,
and conclude that GI’s design should be site-specific and context-dependent to foster AQ
provisioning [179–182]. That being said, thin green barriers (1.0-2.2 m) have a place in
cities, as modelling studies have shown air pollutant reductions from 2 to 54% [183, 184]
and up to 42% in real life case studies [162, 175, 185].

Secondly, the fixed AQ monitor is located on the north section of the playground, which
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Figure 6.9: PM2.5 mean concentrations difference (%) of playground against street
sampling points – data collected with mobile monitoring device. Data is displayed for

two sampling periods pre-gb and post-gb20, and two weather conditions.

is raised by 2 m above the ground. The monitor’s installation was limited by real-life
constraints of power supply access and children’s safety. Its location is, therefore, higher
than the sources of pollution at road level (i.e., vehicle traffic). This situation might cause
the device to pick up slighter changes of air pollution because the concentrations are lower
at its height. Nevertheless, evidence from PM being captured by those green barrier plants
via leaf deposition is shown here (Section 6.3.2) and in our previous study [147], suggesting
that the green barrier’s PM mitigation could be more notorious had the monitor been at
road level. Additionally, unlike studies where AQ was measured immediately behind the
vegetation [134], our study’s monitor was located 1 m away from the green barrier, which
could cause a dilution effect on the pollution concentrations.

Finally, sources of PM in the case study school include cars, diesel buses [166], light
and heavy vehicles, and woodburning stoves from residential areas nearby. In the UK,
domestic combustion accounts for 25% of the total PM2.5 emissions, with 70% from the
use of wood as fuel [186]. Moreover, secondary PM formation caused by agriculture
fertilizers used for crop growing, especially in spring, could also be a source of PM in the
city. Alternatively, there might be internal sources of PM in the playground, for instance
from debris plant material generated by the three mature trees on the northwest corner
which can be resuspended by children’s movement/play. PM resuspension inside schools
has been the case for sandy playgrounds in Barcelona, where sand was resuspended by
children’s activities and added to the local PM concentrations [187].

6.3.2 Elemental composition of PM captured by green barrier plants

The green barrier plants used in the GI at Sch-GB were effective in capturing airborne
PM [147], and SEM imaging revealed PM particles distributed across the leaves both
individually and in regions of agglomerated particles. Figure 6.10 illustrates chemical
analysis of a large individual pollution particle, and from an extended cluster of PM2.5
particles. Overall, the elemental composition of particles deposited on the green barrier
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plant Hedera helix ‘Woerner’, (planted along the whole length of the GI), indicate both
natural and anthropogenic PM sources’ contribution. Specifically, seventeen elements
were identified on PM deposited on the Hedera helix leaf samples. Elements carbon (C)
and oxygen (O) were found in all particles and particle clusters analysed and were the
most abundant, comprising about 70-80Wt% (mean weight percentage) and 10-20Wt%,
respectively. Iron (Fe), aluminium (Al), calcium (Ca), silicon (Si), and platinum (Pt) were
the second most frequent and abundant elements. Additionally, chlorine (Cl), sulphur (S),
nickel (Ni), potassium (K), phosphorus (P), sodium (Na), magnesium (Mg), Ruthenium
(Ru), barium (Ba), and bromine (Br) were identified in trace levels.

Figure 6.10: Sample SEM and EDX spectra of elemental composition analysis of PM
captured on Hedera helix ‘Woerner’ leaves from green barrier. Each EDX spectrum shows
the elements found on a) single particle and b) an agglomerate deposited on the leaves,
and the mean weight percentage (Wt%) of each element. The SEM at the top right
corner of each EDX spectrum shows PM (light grey) on the dark leaf backdrop. cps/eV

= counts per second/electron Volt; =σ = standard deviation.

The high abundance of C and O, combined with other elements identified here (P, Ca, K,
Na, Fe, Cl, Mg, Al, Si) is typical of the so called ‘biogenic aerosols’, which are particles
of biological nature (living matter, e.g. pollen, fungal spores or plant tissue) [188, 189].
In addition, some of the C and O X-rays may originate from the surrounding background
leaf tissue. Particles containing Si, Al, and Fe, are classified as ‘geogenic particles’, or
natural particles derived from the Earth’s crust like salts [188].

Based on the local air pollution sources, the presence of certain elements within the
assessed particles is also consistent with anthropogenic origins. The significant quantity
of C identified in all particle spectra partially originate from the presence of organic and
elemental carbon from vehicle exhausts [190]. Moreover, C and O may also signal the
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presence of polycyclic aromatic hydrocarbons (PAHs), which are caused by incomplete
combustion of organic matter (i.e., from diesel or petrol) and are carcinogenic [189].
Particles containing the transition metals Fe and Ni may be related to abrasion of vehicle
parts, especially brake and tyre wear [191, 192]. Less attention has been given to transition
metals Pt and Ru, which we found in six and two analysed regions respectively. Pt and Ru
signal traffic air pollution because they are used in motors’ catalytic converters. Although
the aim of catalytic converters is to transform exhaust emissions into less polluting forms,
their internal catalyst rare-earth metals leak into the environment. According to Wiseman
and Zereini [193], platinum group elements are increasingly found in airborne PM and,
although in small concentrations, they may be more bioavailable and toxic to humans
than expected. For instance, the platinum group elements are known to cause allergies,
respiratory sensitisation, and oxidative damage [193, 194].

Although it was not possible to determine the exact nature or share of each PM source in
this study, the presence of Pt and Ru shows that part of the PM found here corresponds
to vehicle exhaust emissions. Additionally, as leaf samples were collected in January,
a winter month in the UK, vehicle traffic and home heating with solid fuels (e.g., for
woodstoves) are likely to be part of the anthropogenic sources. Our results are similar
to other studies that found anthropogenic elements that originate from exhaust and non-
exhaust vehicle sources of PM on GI in the UK, such as living walls in Birmingham and
hedges in Guildford [195, 196].

Foliar PM deposition is considered a green barrier mechanism to clean the air, but sec-
ondary to air pollution dispersion effects [197]. Nevertheless, there is clear evidence on
PM capture by plant structures and, therefore, a preference to include evergreen species
in green barriers [198]. Plant selection for Sch-GB’s green barrier included not only five
structural plants that could indeed form a barrier all year long, but species highlighted
in the literature as potential PM sinks due to their micromorphological structures. SEM
results here confirm PM deposition on Hedera helix ‘Woerner’ leaves, and a prior study
also confirms effective PM capture by other two green barrier plants [147].

6.3.3 Impact of low-vehicle traffic and low-citizens’ mobility period
(COVID-19 lockdown) on air quality

Sheffield faced unexpected conditions across the two years of study due to measures im-
posed by the British government to control the spread of the COVID-19 disease. The
global pandemic forced a strict first national lockdown from end of March to June 2020,
in which people’s mobility was restricted and vehicle traffic considerably decreased [144].
For the study sites, traffic flow decreased 40-64% compared to 2019 levels. Analysis
of air pollution during this exceptional lockdown period demonstrate AQ improvements
regarding NO2, but not for PM2.5.

De-seasonalised data indicates that NO2 concentrations decreased about 25% at the con-
trol sites during lockdown, which was the highest reduction of all periods. Moreover,
weather-influenced results showed that Sch-GB’s playground also experienced a major
NO2 reduction during lockdown, greater than post-gb20 by 18% and post-gb21 by 10%.
TheNO2 pollution decrease was greater at Sch-GB than at the City and Sch-NoGB sites,
potentially indicating a double effect of lower traffic plus green barrier. In any case, re-
duced traffic flow had the greatest positive impact on Sheffield’s air quality regarding
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NO2. This finding is consistent with vehicle traffic being the major source of NO2 in
Sheffield [172] as well as in the UK [199]. These results emphasise the importance of
reducing pollution at the source as the first and most effective way to protect children’s
health, for example reducing motorised vehicle traffic around schools and/or preventing
its proximity during pupils drop-off/pick-up times. Consequently, green infrastructure
has a place in the set of measures to tackle air pollution yet, as pointed out by Hewitt
et al. [200] , only after ‘reducing emissions and extending distance between sources and
receptors’.

In contrast, PM2.5 levels during the lockdown period substantially increased, with an
averaged de-seasonalised PM2.5 concentrations about 21% larger across Sheffield. Despite
vehicle traffic not being the main source of PM in the city [172], a slight decrease in PM2.5
could have been expected from the reduced traffic’s share during lockdown. However,
that was not the case, and PM increased during that period as a result of other particle
sources increasing. For example, domestic combustion activities increased, such as cooking
or woodstove use, due to people spending more time at home. Garden fires for waste
burning also saw a spike during lockdown [201], potentially adding to the local PM load.
Alternatively, Munir et al. [202] attribute some of the high PM concentrations during
lockdown to long-range transport of European pollution. Their study in Sheffield used
back trajectory of air masses and concluded that winds originating from central and
eastern Europe brought pollution and caused increases in secondary PM. Similarly to
Munir et al. [202], we used the HYSPLIT model to simulate PM10 concentrations at Sch-
GB for the years 2020 and 2021 from 24-25 of April each year as an example. We calculated
72-h backward trajectories to assess whether 2020 and 2021 PM concentrations were
under the influence of long-distance transport and source apportionment; and observed
higher concentrations coming from Europe for those specific periods. Whilst this can
be a PM source to the school, the model can be inaccurate to predict air pollution at
near surface levels. Furthermore, the degree of variability in wind directions through
our three-year study makes it unsuitable to predict the source of air pollution in the
local area. These findings evidence the high complexity of PM formation, dispersion, and
meteorology interaction. It also highlights the difficulty of PM reduction via GI or other
measures.

6.4 Conclusions

This study has evaluated site-specific green infrastructure, specifically multi-species thin
green barriers, as an air pollution mitigation measure in schools. By co-creating and
constructing a multi-species green barrier in a school playground with real-life design
constraints, we were able to support a thriving planting scheme that mitigates air pollution
to real levels. The methods selected for this research allowed us to answer our three
research questions:

i. This study suggests that the site-specific and multi-species thin green
barrier (0.9-1.3 m max width) built in a UK school playground reduced
air pollution. The reduction in pollutants concentration was significant for
NO2 (between 13% to 23%) and slight for PM (about 2%). The downward
pre-post intervention trend was statistically significant.
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Figure 6.11: 72-h backward trajectories of PM10 concentrations (µg m-3) at Sch-GB,
created with the HYSPLIT model.

ii. Composition of PM deposited on the green barrier plant Hedera helix
‘Woerner’ suggests PM of natural and anthropogenic origin. The latter
include catalytic converters from motorised vehicles.

iii. Low-vehicle traffic and low-citizen mobility (lockdown) seem to have sig-
nificantly reduced NO2; such reduction exceeds the effects of the green
barrier. These mobility restrictions do not seem to significantly reduce
PM pollution in the UK case study, most likely because meteorological
patterns and conditions have a stronger influence on PM than traffic lev-
els.

The mitigation effect of the multi-species thin green barrier on school AQ – most likely
due to air pollutant deflection/dispersion by the green barrier, yet PM deposition was
also identified – was quantifiable, and potentially helped to further reduce air pollution in
the school playground during the first COVID-19 lockdown (which imposed travel restric-
tions). The reduced traffic flow during lockdown, however, caused the greatest reduction of
NO2 in Sheffield (about 25% at the control sites). This finding highlights the importance
of working towards systematic changes, such as cars’ phasing out, low traffic neighbour-
hoods, and school streets initiatives, to make a direct and strong impact on air pollution
mitigation and protect children’s health. PM2.5 did not decrease during the lockdown
period, rather, it increased. This behaviour was caused by an array of potential sources
including increased domestic burning (e.g., cooking and heating) during lockdown, spring
fertilizer pollution, continued diesel bus services, and long-range transport of air pollution
from central and eastern Europe. The variety of PM sources highlights the volatility and
difficulty of PM pollution mitigation due to its interrelation with meteorology and its
cross-continental range, making a case for site-specific intervention to improve local air
quality, such as green barriers in school playgrounds.

This study was constrained by the nature of the school’s built-up environment, the reduced
green barrier width to maintain play space, and by the plant selection which was localised
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to the UK climate. In addition, air quality is a topic of concern in the UK compared to
other geographies [203], and actions to minimise pollution could be taken by its citizens
(i.e., active travel). Therefore, further studies looking at real-case scenario green barriers
with different plant mixes and in other climates or geographies could help to supplement
our findings and the green barrier design.

Green barriers can improve school air quality and, despite their limited potential, changes
are quantifiable and significant even in our space-constrained site. Moreover, this nature-
based solution can complement other tools and efforts to create healthy environments for
children, as well as offer multiple co-benefits to the school community due to the added
greenery.

6.5 Contribution

R.C. (Rohit Chakraborty):

• Sensor Installation and Calibration: I played a pivotal role in the installation
and calibration of the sensors used in the study. This included ensuring that the
sensors were positioned optimally to capture accurate data and fine-tuning them for
maximum reliability and precision.

• Data Analysis and Curation: I took charge of the formal analysis of data cap-
tured by fixed monitors, ensuring that it was rigorously scrutinized and interpreted
correctly. This involved applying statistical methods, deducing patterns, and ex-
tracting valuable insights that significantly shaped the outcomes and conclusions of
the study.

• Writing and Manuscript Preparation: I made substantial contributions to the
drafting and preparation of the original manuscript. My involvement encompassed
both the initial draft and subsequent revisions, ensuring clarity, coherence, and
scientific rigor in the paper’s presentation.

• Data Visualization: I spearheaded the data visualization efforts, translating com-
plex data sets into comprehensible and insightful graphical representations. This not
only enhanced the paper’s readability but also emphasized key findings and trends
effectively.

• Review and Editing: Apart from contributing to the original draft, I also actively
participated in the review and editing process, ensuring that the manuscript met the
highest standards of academic writing and effectively conveyed our research findings.

• Collaboration and Coordination: Working closely with other co-authors, I facil-
itated seamless collaboration and ensured that all contributions were harmoniously
integrated into the final manuscript.

• Project Administration and Oversight: I was actively involved in various ad-
ministrative aspects of the project, ensuring that all tasks were executed on schedule
and met the defined objectives.
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In addition to the above, I actively participated in discussions around monitoring at the
school and around, provided feedback, and collaborated closely with other team members
to ensure the study’s success. My commitment to the project, combined with my expertise
in the subject matter, significantly influenced the paper’s direction and quality.



Chapter 7

A Gaussian Process Method with
Uncertainty Quantification for Air
Quality Monitoring

Abstract

The monitoring and forecasting of particulate matter (e.g., PM2.5) and gaseous pollutants
(e.g., NO, NO2, and SO2) is of significant importance, as they have adverse impacts on
human health. However, model performance can easily degrade due to data noises, envi-
ronmental and other factors. This paper proposes a general solution to analyse how the
noise level of measurements and hyperparameters of a Gaussian process model affect the
prediction accuracy and uncertainty, with a comparative case study of atmospheric pollu-
tant concentrations prediction in Sheffield, UK, and Peshawar, Pakistan. The Neumann
series is exploited to approximate the matrix inverse involved in the Gaussian process
approach. This enables us to derive a theoretical relationship between any independent
variable (e.g., measurement noise level, hyperparameters of Gaussian process methods),
and the uncertainty and accuracy prediction. In addition, it helps us to discover insights
on how these independent variables affect the algorithm evidence lower bound. The the-
oretical results are verified by applying a Gaussian processes approach and its sparse
variants to air quality data forecasting.

7.1 Introduction

It is generally believed that urban areas provide better opportunities in terms of economic,
political, and social facilities compared to rural areas. As a result, more and more people
are migrating to urban areas. At present, more than fifty percent of people worldwide
live in urban areas, and this percentage is increasing with time. This has led to several
environmental issues in large cities, such as air pollution [204].

111
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Landrigan reported that air pollution caused 6.4 million deaths worldwide in 2015 [205].
According to World Health Organization (WHO) statistical data, three million premature
deaths were caused by air pollution worldwide in 2012 [206]. Air pollution has a strong
link with dementia, causing 850,000 people to suffer from dementia in the UK [207].
Children growing up in residential houses near busy roads and junctions have a much
higher risk of developing various respiratory diseases, including asthma, due to high levels
of air pollution [208]. Polluted air, especially air with high levels of NO, NO2, and SO2 and
particulate matter (PM2.5), is considered the most serious environmental risk to public
health in urban areas [209]. Therefore, many national and international organisations
are actively working on understanding the behaviour of various air pollutants [210]. This
eventually leads to the development of air quality forecasting models so that people can
be alerted in time [211].

Essentially, being like a time series, air quality data can be easily processed by models
that are capable of time series data processing. For instance, Shen applies an autoregres-
sive moving average (ARMA) model in PM2.5 concentration prediction in a few Chinese
cities [212]. Filtering techniques like Kalman filter are also applied to adjust data biases
to improve air quality prediction accuracy [213]. These methods, though with good re-
sults reported, are limited by the requirement of a prior model before data processing.
Machine learning methods, on the other hand, can learn a model from the data directly.
This has enabled them to attract wide attention in recent decades in the field of air quality
forecasting. For instance, Lin et al. propose the support vector regression with logarithm
preprocessing procedure and immune algorithms (SVRLIA) method, which outperforms
general regression neural networks (GRNN) [214] and BackPropagation neural networks
(BPNN) [215] in Taiwan air quality forecasting [216].

Recently, inspired by the fact that large scale data are accumulated, deep learning models
have been applied in air quality prediction [217]. Some work has added these deep learning
models with the ability to quantify uncertainties introduced by inputs. For instance,
Garriga-Alonso et al. endow a deep convolutional network with uncertainty quantification,
by taking it as an equivalent of a Gaussian processes (GPs) model [218]. This is because
GPs predictions are accompanied by confidence intervals, which are usually taken as a
metric to measure prediction uncertainties. Applications of GPs in air quality forecasting
can be found in [219]. However, the involvement of matrix inversion in GPs limits their
application in large-scale datasets [220]. This has inspired research on improving the
efficiency of GP models, and a series of efficient GP models have been published [221].
We also proposed an efficient GP model with application in air quality forecasting [219].
Despite the rich number of GP models published, there lacks work that investigates how
noise level, hyperparameters, etc. affect the performance of GP models. It is necessary
because air quality data vary due to seasonal variations and sensor degradations. A well-
trained GP model may not work when fed with new data, simply due to measurement
noise level change. By knowing how the variation of GPs performance can be attributed
to noise level and hyperparameters, etc., we will still be able perform analysis when noise
level or hyperparameters vary.

Aiming at this, a general solution is proposed in this paper. It provides insights on how
a GP model’s performance is related to measurement noise level and hyperparameters,
etc. The main contribution of this work includes (1) a general method for analysing
how noise level and hyperparameters of a GP model affect the prediction performance.
The variation of the evidence lower bound (ELBO) and the upper bound of the marginal
likelihood (UBML) with respect to the noise level and hyperparameters are also given.
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(2) Neumann series is exploited to approximate the matrix inversion involved in GPs.
This helps construct an analytical relation between noise level, hyperparameters, etc., and
model performance. (3) A comparative air quality forecasting study between Sheffield,
UK, and Pershawar, Pakistan is given, demonstrating that the proposed solution is able
to capture how noise level and hyperparameters affect GPs performance.

The remaining part of this paper is as follows. Section 7.2 provides the theoretical funda-
mentals involved in this paper; Section 7.3 elaborates the proposed uncertainty quantifi-
cation solution. In Section 7.4, we provide a comparative study of air quality prediction
in the same period between the British city Sheffield and Pakistani city Pershawar, and
the paper is concluded in Section 7.5. Appendix A.1 describes the data collection pro-
cess in Peshawar, Pakistan, and in Sheffield, United Kingdom, and presents maps of the
considered areas of these cities.

7.2 Background Knowledge

7.2.1 Gaussian Processes

Given a set of training data D = {(xi, yi), i = 1, · · · , n} where xi ∈ X is the input and
yi ∈ R is the observation, we can determine a GP model f(·) to predict y∗ for a new input
x∗. For instance, when the output is one-dimensional, the GP model is formulated as

f ∼ GP (̄f(x), k(x, x′)), y = f(x) + ε, ε ∼ N (0,σ2), (7.1)

where f̄ : X → R is the mean function defined as

f̄(x) = E[f(x)], (7.2)

and k : X × X → R is the kernel function [220] defined as

k(x, x′) = E[(f(x) – f̄(x))(f(x′) – f̄(x′))], (7.3)

where ε is the additive, independent, identically distributed Gaussian measurement noise
with variance σ2 ̸= 0, and E denotes the mathematical expectation operation.

Given xi a D × 1 vector, the n inputs can be aggregated into a matrix XD×n, or briefly
X with the corresponding output vector yn×1, or y. Similarly, the function values at the
test inputs X∗ with dimensions of D×N can be denoted as f∗, and we next write the joint
distribution of y and f∗ asy

f∗

 ∼ N
0,

Knn + σ2I KnN

KNn KNN

 , (7.4)

where I represents the identity matrix. Knn + σ2I is the n× n prior covariance matrix of
y with entry Kij = k(xi, xj) + σ2δij, where δij is one iff i = j and zero otherwise, and xi
and xj are column vectors from X. The matrix KNN denotes the N× N prior covariance
matrix of f∗ with entry Kij = k(xi, xj), where xi and xj are column vectors from X∗. The
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matrices KNn and KnN satisfy KNn = KT
nN, and the entry of the N × n prior covariance

matrix of f∗ and y is Kij = k(xi, xj), where xi is a column vector from X∗ and xj is a
column vector from X.

By deriving the conditional distribution of f∗ from (8.5), where the prior mean is set to
be zero for simplicity [222], we have the predictive posterior at new inputs X∗ as

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), (7.5)

where
f̄∗ ≜ E[f∗|X, y,X∗] = KNn[Knn + σ2I]–1y, (7.6)

is the prediction at X∗, and

cov(f∗) = KNN – KNn[Knn + σ2I]–1KT
Nn, (7.7)

denotes the covariance of f∗.

The hyperparameter θ incorporated in the mean and covariance functions underpin the
predictive performance of GP models, and they are usually estimated by maximising the
logarithm of the marginal likelihood

log p(y|X) = –
1

2
yT(Knn + σ2I)–1y –

1

2
log|Knn + σ2I|–n

2
log 2π. (7.8)

7.2.2 Neumann Series Approximation

Given a matrix inverse A–1, it can be expanded as the following Neumann series [223]

A–1 =
∞∑
n=0

(X–1(X – A))nX–1, (7.9)

which holds if limn→∞ (I – X–1A)n = 0 is satisfied. In our case, suppose

A = K+ σ2
nI ≜ DA + EA, (7.10)

where DA is the main diagonal of A and EA is the hollow. If we substitute X in
Equation (8.21) by DA, we get

A–1 =
∞∑
n=0

( – D–1EA)
nD–1

A , (7.11)

which is guaranteed to converge when limn→∞ ( – D–1
A EA)

n = 0. We investigated the
convergence condition in [219], where we proved that if A is diagonally dominant, then
Neumann series can approximate A–1 both fast and accurate. In case A is not diagonally
dominant, we also provided a way to convert it into a diagonally dominant matrix in [219],
such that A–1 can still be approximated by Neumann series. When Neumann series given
in (8.23) converges, we can then approximate A with only the first L terms. The L-term
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approximation is computed as follows:

Ã–1
L =

L–1∑
n=0

( – D–1
A EA)

nD–1
A , (7.12)

For instance, when L = 1, 2, 3, we have the approximations

Ã–1
L =


D–1
A , L = 1

D–1
A – D–1

A EAD
–1
A , L = 2

D–1
A – D–1

A EAD
–1
A +D–1

A EAD
–1
A EAD

–1
A . L = 3

(7.13)

7.3 Uncertainty Quantification in Gaussian Processes

7.3.1 Uncertainty in Measurements

It is intuitive that noisy measurements would result in less accurate predictions, just as a
poor model would do. However, it is not direct from Equations (8.7) and (8.8). We will
show in detail how the measurement noise would affect the prediction accuracy.

From Equations (8.7) and (8.8), we can see that the measurement noise ϵ affects the
prediction and the covariance by adding a term σ2

nI to the prior covariance K in comparison
to the noisy free scenario [222]. From the way that they originated, we know that both
K and σ2

nI are symmetrical. Then, a matrix P exists such that

K = P–1DKP, (7.14)

where DK is a diagonal matrix with eigen values of K along the diagonal. As σ2
nI a

diagonal matrix itself, we have
σ2
nI = P–1σ2

nIP. (7.15)

Therefore, we have the partial derivative of Equation (8.7) with respect to σ2
n as

∂ f̄∗
∂σ2

n
= K∗P(DK + σ2

nI)
–2P–1y, (7.16)

The element-wise form of Equation (7.16) can be therefore obtained as

( ∂ f̄∗
∂σ2

n

)
o

= –
n∑

h=1

n∑
i=1

n∑
j=1

phjpijkohΛ–1
j yi, (7.17)

where Λj = (λj + σ2
n)

2. phj and pij are the entries indexed by the j-th column, h-th and
i-th row, respectively. koh is the o-th row and h-th column entry of K∗. yi is the i-th
element of y. o = 1, · · · , s denotes the o-th element of the partial derivation.
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We can see that the sign of Equation (7.17) is determined by phj and pij. This is because
we can actually transform y to either positive or negative with a linear transformation,
which will not be an issue for the GPs model. When we impose no constraints on phj
and pij, Equation (7.17) could be any real number, indicating that f̄∗ is multimodal with
respect to σ2

n, which means that one σ2
n can lead to different f̄∗, or equivalently, different

σ2
n can lead to the same f̄∗. In such cases, it is difficult to investigate how σ2

n affects the
prediction accuracy. In this paper, to facilitate the study of the monotonicity of f̄∗, we
constrain phj and pij to satisfy

( ∂ f̄∗
∂σ2

n

)
o


> 0, phjpij < 0,

< 0, phjpij > 0,

= 0, phjpij = 0.

(7.18)

Then, we can see that f̄∗ is monotonic. It means that changes of σ2
n can cause arbitrarily

large/small predictions, whereas a robust method should bound the prediction errors
regardless of how σ2

n varies.

Similarly, the partial derivative of Equation (8.8) with respect to σ2
n is

∂cov(f∗)
∂σ2

n
= (K∗P)(DK + σ2

nI)
–2(K∗P)

T =
n∑

i=1

Λ–1
i p⃗ip⃗

T
i , (7.19)

where we denote the m× n dimension matrix K∗P as

K∗P = [⃗p1, p⃗2, · · · , p⃗n], (7.20)

with p⃗i a m× 1 vector, and i = 1, · · · , n.

As the uncertainty is indicated by the diagonal elements, we only show how these elements
change with respect to σ2

n. The diagonal elements are given as

diag
( n∑
i=1

Λ–1
i p⃗ip⃗

T
i

)
= diag

( n∑
i=1

Λ–1
i p21i,

n∑
i=1

Λ–1
i p22i, · · · ,

n∑
i=1

Λ–1
i p2mi

)
= diag

(
Σ11,Σ22, · · · ,Σmm

)
,

(7.21)

with diag(·) denoting the diagonal elements of a matrix. We see that Σjj ⩾ 0 stands
for j = 1, · · · , m, which implies that cov(f∗) is non-decreasing as σ2

n increases. This
means that the increase of measurement noise level would cause the non-deceasing of the
prediction uncertainty.

7.3.2 Uncertainty in Hyperparameters

Another factor that affects the prediction of a GPs model is the hyperparameters. In
Gaussian processes, the posterior, as shown in Equation (8.6), is used to do the predic-
tion, while the marginal likelihood is used for hyperparameters selection [220]. The log
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marginal likelihood as shown in Equation (7.22) is usually optimised to determine the
hyperparameter with a specified kernel function.

log p(y|X, θ) = –
1

2
yT(K+ σ2

nI)
–1y –

1

2
log|K+ σ2

nI|–
N

2
log 2π. (7.22)

However, the log marginal likelihood could be non-convex with respect to the hyperparam-
eters, which implies that the optimisation may not converge to the global maxima [224].
A common solution dealing with it is to sample multiple starting points from a prior
distribution, then choose the best set of hyperparameters according to the optima of the
log marginal likelihood. Let’s assume θ = {θ1, θ2, · · · , θs} being the hyperparameter set
and θs denoting the s-th of them, then the derivative of log p(y|X) with respect to θs is

∂

∂θs
log p(y|X, θ) = 1

2
tr

(
(ααT – (K+ σ2

nI)
–1)

∂(K+ σ2
nI)

∂θs

)
, (7.23)

where α = (K + σ2
nI)

–1y, and tr(·) denotes the trace of a matrix. The derivative in
Equation (7.23) is often multimodal and that is why a fare few initialisations are used
when conducting convex optimisation. Chen et al. show that the optimisation process
with various initialisations can result in different hyperparameters [224]. Nevertheless,
the performance (prediction accuracy) with regard to the standardised root mean square
error does not change much. However, the authors do not show how the variation of
hyperparameters affects the prediction uncertainty [224].

An intuitive explanation to the fact of different hyperparameters resulting with similar
predictions is that the prediction shown in Equation (8.7) is non-monotonic itself with
respect to hyperparameters. To demonstrate this, a direct way is to see how the derivative
of (8.7) with respect to any hyperparameter θs ∈ θ changes, and ultimately how it affects
the prediction accuracy and uncertainty. The derivatives of f̄∗ and cov(f∗) of θs are as
below

∂ f̄∗
∂θs

=
(
K∗

∂(K+ σ2
nI)

–1

∂θs
+

∂K∗
∂θs

(K+ σ2
nI)

–1
)
y. (7.24)

We can see that Equations (7.24) and (7.25) are both involved with calculating (K+σ2
nI)

–1,
which becomes enormously complex when the dimension increases. In this paper, we focus
on investigating how hyperparameters affect the predictive accuracy and uncertainty in
general. Therefore, we use the Neumann series to approximate the inverse [223].

∂cov(f∗)
∂θs

=∂K(X∗,X∗)
∂θs

–
∂K∗
∂θs

(K+ σ2
nI)

–1KT
∗ – K∗

∂(K+ σ2
nI)

–1

∂θs
KT

∗

– K∗(K+ σ2
nI)

–1∂KT
∗

∂θs
.

(7.25)
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7.3.3 Derivatives Approximation with Neumann Series

The approximation accuracy and computationally complexity of Neumann series varies
with L. This has been studied in [223, 225], as well as in our previous work [219]. This
paper aims at providing a way to quantify uncertainties involved in GPs. We there-
fore choose the 2-term approximation as an example to carry out the derivations. By
substituting the 2-term approximation into Equations (7.24) and (7.25), we have

∂ f̄∗
∂θs
≈

(
K∗

∂(D–1
A – D–1

A EAD
–1
A )

∂θs
+

∂K∗
∂θs

(D–1
A – D–1

A EAD
–1
A )

)
y, (7.26)

∂cov(f∗)
∂θs

≈∂K(X∗,X∗)
∂θs

–
∂K∗
∂θs

(D–1
A – D–1

A EAD
–1
A )KT

∗

– K∗
∂(D–1

A – D–1
A EAD

–1
A )

∂θs
KT

∗ – K∗(D
–1
A – D–1

A EAD
–1
A )

∂KT
∗

∂θs
.

(7.27)

Due to the simple structure of matrices DA and EA, we can get the element-wise form of
Equation (7.26) as ( ∂ f̄∗

∂θs

)
o

=
n∑

i=1

n∑
j=1

(koj
∂dji
∂θs

+
∂koj
∂θs

dji)yi. (7.28)

Similarly, the element-wise form of Equation (7.27) is

(∂cov(f∗)
∂θs

)
oo

= ∂K(X∗,X∗)oo
∂θs

–
n∑

i=1

n∑
j=1

(∂koj
∂θs

djikoi + koj
∂dji
∂θs

koi – kojdji
∂koi
∂θs

)
, (7.29)

where o = 1, · · · , m denotes the o-th output, dji is the j-th row and i-th column entry
of D–1

A – D–1
A EAD

–1
A , koj and koi are the o-th row, j-th and i-th entries of matrix K∗,

respectively. When the kernel function is determined, Equations (7.26)–(7.29) can be
used for GPs uncertainty quantification.

7.3.4 Impacts of Noise Level and Hyperparameters on ELBO and UBML

The minimisation of KL(q(f ,u)∥p(f ,u|y)) is equivalent to maximise the ELBO [220, 226]
as shown in

Llower = –
1

2
yTG–1

n y –
1

2
log|Gn|–

N

2
log(2π) –

t

2σ2
n
, (7.30)

where Gn = Gxx + σ2
nI, and t = Tr(Kxx – Gxx). Combining it with UBML, as shown

in Equation (7.31), an interval can be given to quantify the uncertainty in marginal
likelihood.

Lupper = 1

2
yT

(
Gn + tI

)–1
y –

1

2
log|Gn|–

N

2
log(2π). (7.31)

This paper, however, focuses on investigating how ELBO and UBML change according
to σ2

n only. Because the investigation of how ELBO and UBML change with respect to
kernel hyperparameters involves multiple Neumann series approximations, which makes
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the analysis less convincing. We shall leave it as an open problem for future study. The
derivatives of Equations (7.30) and (7.31) with respect to σ2

n are as follows,

∂Llower
∂σ2

n
= 1

2

[ n∑
i=1

(λi + σ2
n)

–2(
n∑

j=1

yjvji)
2 –

n∑
i=1

1

λi + σ2
n
+

t

σ4
n

]
, (7.32)

∂Lupper
∂σ2

n
= –

1

2

[ n∑
i=1

(λi + σ2
n + t)–2(

n∑
j=1

yjvji)
2 +

n∑
i=1

1

λi + σ2
n

]
. (7.33)

Figure 7.1 shows how σ2
n affects ELBO and UBML. We set σ2

n to increase from 0.1 to
200.0 with a step of 0.01. Both ELBO and UBML are recorded step by step. From
the figure, we can see that when σ2

n is small (σ2
n ∈ [0.1, 1.5]), ELBO increases with

different speeds, however, UBML fluctuates as the derivative of UBML jumps between
positive and negative. When σ2

n is in [1.5, 3.0], ELBO still increases, but the speeds slow
down significantly. In comparison, UBML keeps decreasing with reducing speeds. The
decrements of UBML mean that when σ2

n increases, though ELBO could be increased
still, but the maximum (which is the UBML) can decrease. When σ2

n ∈ [3.0, 20.0], ELBO
starts to decrease when σ2

n ≈ 3.2, while UBML keeps decreasing. This means that as σ2
n

increases, both ELBO and UBML decrease, which indicates that the model becomes less
and less effective to explain the data. When σ2

n keeps increasing (σ2
n ∈ [20.0, 200.0]), the

decreasing speeds of ELBO and UBML becomes similar and approaches zero. This means
that UBML and ELBO both converge and together define an interval for the marginal
likelihood, which however, can result in non-optimal hyperparameters. Our conclusion
is that when σ2

n increases, UBML tends to decrease, which decreases the maximum that
ELBO can reach. ELBO, on the other hand, is robust to the change of σ2

n (as it keeps
increasing when σ2

n is below ∼3.2). However, when σ2
n exceeds a certain threshold, ELBO

turns to decrease, indicating that the GPs model becomes less and less reliable. However,
both ELBO and UBML converge, even when σ2

n becomes very significant, though we can
no longer trust the model.
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Figure 7.1: Impacts of σ2
n on ELBO and UBML: (a) σ2

n ∈ [0.1, 1.5], (b) σ2
n ∈ [1.5, 3.0],

(c) σ2
n ∈ [3.0, 20.0], (d) σ2

n ∈ [20.0, 200.0].

7.4 Experiments and Analysis

To verify that the proposed solution can help to identify the impacts of σ2
n and θ on the

predition accuracy and uncertainty of GPs model and its sparse variants such as the fully
independent training conditional (FITC) [227] and variational free energy (VFE) [226]
models, we conduct various experiments to process air quality data collected from Sheffield,
UK, and Pershawar, Pakistan, during the time period of 24 June 2019–14 July 2019 for
three weeks, which will be denoted as W1, W2, and W3 hereafter. The data were collected
with digital sensors called AQMesh pod with a 15 min time interval. Though the sensor
itself is able to measure the concentrations of quite a few atmospheric pollutants, here we
only analyse the concentrations of NO, NO2, SO2, and PM2.5. Figure 7.2 shows the raw
data. We can see directly that the air quality of Sheffield is much better than Pershawar
on average. Especially during daytime, concentrations of NO2 and PM2.5 in Pershawar
exceed the WHO criteria. Meanwhile, those in Sheffield are much lower than the criteria.
Being a postindustrial city itself, Sheffield has improved air quality significantly. The
experience can be spread to help cities like Pershwar to improve air quality.

7.4.1 Air Quality Prediction

Figures 7.3 and 7.4 show Sheffield and Pershawar forecasting results of GPs, FITC, and
VFE, with 3σ confidence intervals (denoted as Conf in the figures) indicated by the shaded
area. We can see that the GPs model reports the best results in general, in terms of abso-
lute error between predicts and measurements (denoted as Meas in the figures). However,
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the performance of all the models varies from pollutant types to cities. This is actually
one of the reasons why the investigation of how measurement noise level and hyperparam-
eters affect prediction accuracy and uncertainty is necessary. To make the results more
convincing, we normalise the data from both cities for uncertainty quantification studies.
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Figure 7.2: Concentration of pollutants recorded at the same time period in both
Sheffield and Peshawar: (a) NO concentration in Sheffield and Peshawar in week W1,
W2, and W3, (b) NO2 concentration in Sheffield and Peshawar in week W1, W2, and
W3, (c) SO2 concentration in Sheffield and Peshawar in week W1, W2, and W3, (d)

PM2.5 concentration in Sheffield and Peshawar in week W1, W2, and W3.
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Figure 7.3: Prediction and absolute error of pollutants in Sheffield: (a) NO, (b) NO2,
(c) SO2, (d) PM2.5.
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Figure 7.4: Prediction and absolute error of pollutants in Peshawar: (a) NO, (b) NO2,
(c) SO2, (d) PM2.5.

7.4.2 Impacts of Measurement Noise Level and Hyperparameters

To demonstrate how noise level σ2
n and hyperparameters affect prediction accuracy and

uncertainty, three sets of experiments are conducted. This paper adopts the squared
exponential (SE) kernel, with hyperparameters sf and l. The analytical derivation can be
found in Appendix C. The prediction accuracy is identified by the root mean square error
(RMSE), as shown in Equation (8.37), while the uncertainty is identified by 1

2σ confidence
bound. Configurations of the experiments are as follows.

Experiment 1: Impacts of σ2
n on prediction accuracy and uncertainty. Both sf and l are

fixed to be the optimised values. σ2
n varies from 0.1 through to 20.0. NO, NO2, SO2, and

PM2.5 data from both cities are processed. Six inducing points are applied to both FITC
and VFE.

Experiment 2: Impacts of sf on prediction accuracy and uncertainty. l is set to the
optimised value. sf varies from 0.1 through to 30.0. σ2

n is set to 0.5 and 1.5, respectively.
NO data from both cities are processed. Six inducing points are applied to both FITC
and VFE.

Experiment 3: Impacts of l on prediction accuracy and uncertainty. sf is set to the
optimised value. l varies from 0.1 through to 30.0. σ2

n is set to 0.5 and 1.5, respectively.
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NO data from both cities are processed. Six inducing points are applied to both FITC
and VFE.

RMSE =

√∑Num
i=1 (yi – ŷi)

2

Num
, (7.34)

where yi is the ground truth value and ŷi represents predicted meant. Num is the sample
number in testing set.

Figures 7.5 and 7.6 show the results from Experiment 1. To make the results more
distinguishable, the horizontal axes of the figures are set to log(σ2

n). We can see from
Figure 7.5 that when σ2

n is small, GPs perform the best in general, while the performance
of FITC and VFE varies. We can also observe that as σ2

n keeps increasing, the RMSE
becomes very significant for all methods/pollutants. Similar results can be observed from
Figure 7.6 as well. Both comply with our theoretical conclusions, despite the fact that the
Neumann series is used to approximate the matrix inverse. We also notice that σ2

n has a
more significant impact on Sheffield data as RMSE increases ealier after log(σ2

n) reaches
zero. From Figure 7.6 (b) and (c), we also see that the uncertainty bounds of Sheffield
data are greater after log(σ2

n) reaches zero. We think the reason is that Sheffield data
are generally less periodical than Pershawar data (see Figure 7.2), which influences the
performance of the models.

-2 -1 0 1 2 3 4

0.5

1

1.5

2

2.5

3 Pesh-NO-GP

Pesh-NO-VFE

Pesh-NO-FITC

Shef-NO-GP

Shef-NO-VFE

Shef-NO-FITC

-2 -1 0 1 2 3 4

0.5

1

1.5

2

2.5

3
Pesh-NO

2
-GP

Pesh-NO
2
-VFE

Pesh-NO
2
-FITC

Shef-NO
2
-GP

Shef-NO
2
-VFE

Shef-NO
2
-FITC

(a) (b)

-2 -1 0 1 2 3 4

0.5

1

1.5

2

2.5

3 Pesh_SO
2
_GP

Pesh_SO
2
_VFE

Pesh_SO
2
_FITC

Shef_SO
2
_GP

Shef_SO
2
_VFE

Shef_SO
2
_FITC

-2 -1 0 1 2 3 4

0.5

1

1.5

2

2.5

3

Pesh-PM
2.5

-GP

Pesh-PM
2.5

-VFE

Pesh-PM
2.5

-FITC

Shef-PM
2.5

-GP

Shef-PM
2.5

-VFE

Shef-PM
2.5

-FITC

(c) (d)

Figure 7.5: Relationship of σ2
n with four pollutants prediction RMSE: (a) NO, (b)

NO2, (c) SO2, (d) PM2.5.
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Figure 7.6: Relationship of σ2
n with pollutants prediction uncertainty bound: (a) NO,

(b) NO2, (c) SO2, (d) PM2.5.

7.4.3 Impacts of Noise Level on ELBO and UBML

Figure 7.7 shows the results from Experiment 2. According to our theoretical results,
the impact of sf on the uncertainty should become greater as sf increases. This is verified
by the results shown in Figure 7.7 (b) and (d). Our theoretical results also suggest that
the variation of sf would not affect the prediction accuracy. We can see from Figure 7.7
(a) and (c) that when sf is smaller, it does affect the prediction accuracy, but when it
exceeds a certain value, the impacts become negligible. Considering the Neumann series
approximation, we would say that the experimental results comply with the theoretical
conclusion.

The results of Experiment 3 are shown in Figure 7.8. We can see that when l is smaller,
both RMSE and the uncertainty bounds change rapidly. While after it exceeds certain
values, both converge. This again complies with our theoretical conclusions and simulation
results. We should also notice from Figures 7.7 and 7.8 that the increment of sf tends
to increase the uncertainty, whereas the increment of l tends to decrease the uncertainty.
Taking both into consideration, an optimised uncertainty bound can be obtained.

We also conduct an experiment to demonstrate how the noise level σ2
n affects the ELBO

and UBML. In our experiment, we set σ2
n to vary from 0.5 to 4.5. The results are

shown in Figure 7.9. To make the results distinguishable, we set the vertical axes to
log(–ELBO/UBML). To make the logrithm work, we reverse the signs of both ELBO
and UBML. This is the reason why ELBO is ‘greater’ than UBML in Figure 7.9. The
full GPs model is trained by setting σ2

n to {1, 7, 13, 19, 25, 31, 37, 43, 49} to obtain 9 sets
of hyperparameters. For each set of them, we then set σ2

n to vary from 0.5 to 4.5. The
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darker the colour in Figure 7.9, the smaller σ2
n is for model training. We can see that

generally, greater σ2
n can slow down the convergence speed of both ELBO and UBML,

while training a model. When the model is trained, the increment of σ2
n can lower down

UBML, which is the maximum that ELBO can reach. This implies that the increment
of σ2

n can cause the failure of a sparse GPs model, as ELBO is deeply related to deter-
mine a sparse GPs model. Nevertheless, the experimental results again comply with our
theoretical conclusions.
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Figure 7.7: Relationship of sf on NO prediction RMSE and uncertainty bound: (a)
σ2
n = 0.5, (b) σ2

n = 0.5, (c) σ2
n = 1.5, (d) σ2

n = 1.5.
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Figure 7.8: Relationship of l on NO prediction RMSE and uncertainty bound: (a)
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Figure 7.9: Effects of σ2
n on ELBO and UBML: (a) NO in Sheffield, (b) NO in Peshawar.

7.5 Conclusions

This paper proposes a general method to investigate how the performance variation of a
Gaussian process model can be attributed to hyperparameters and measurement noises,
etc. The method is demonstrated by applying it to process particulate matter (e.g., PM2.5)
and gaseous pollutants (e.g., NO, NO2, and SO2) from both Sheffield, UK, and Peshawar,
Pakistan. Experimental results show that the proposed method provides insights on how
measurement noises and hyperparameters, etc. affect the prediction performance of a
Gaussian process. The results align with the analytical derivations, which is enabled
by adopting Neuman series to approximate matrix inversions in Gaussian process models.
The theoretical findings and experimental results combined demonstrate that the proposed
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method can generate air quality forecasting results. In the meantime, it provides a way
to link uncertainties in measurements and hyperparameters, etc. with the forecasting
results. This will help with forecasting performance analysis when measurement noise
level or model hyperparameters vary, making the method more general.
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Chapter 8

A Computationally Efficient
Symmetric Diagonally Dominant
Matrix Projection-based Gaussian
Process Approach

abstract

Although kernel approximation methods have been widely applied to mitigate the O(n3)
cost of the n×n kernel matrix inverse in Gaussian process methods, they still face compu-
tational challenges. The ‘residual’ matrix between the covariance and the approximating
component is often discarded as it prevents the computational cost reduction. In this
paper, we propose a computationally efficient Gaussian process approach that achieves
better computational efficiency, O(mn2), compared with standard Gaussian process meth-
ods, when using m≪ n data. The proposed approach incorporates the ‘residual’ matrix in
its symmetric diagonally dominant form which can be further approximated by the Neu-
mann series. We have validated and compared the approach with full Gaussian process
approaches and kernel approximation based Gaussian process variants, both on synthetic
and real air quality data.

8.1 Introduction

Gaussian process (GP) methods are renowned for providing Bayesian non-linear and non-
parametric solutions to regression and classification tasks [227, 228]. However, they have
cubic computational complexity O(n3) for the inversion of the kernel matrix of size n× n
and its determinant [221]. This cubic computational cost has effectively limited applica-
tions of GPs to data with thousands of samples [229, 230]. This led to intensive studies of
the scalability of GPs during the last decades [221], with particular interests in adapting

129
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GPs for various data processing and maintaining their capacity, ideally at the same level
of full GPs.

The extensive review of Liu et al. [221] on GPs classifies scalable GPs into local approxi-
mations and global approximations. Local approximations follow the divide-and-conquer
idea to first divide the whole dataset into sub-datasets, each with m samples. A ‘local’
GP model is next trained on each sub-dataset. These ‘local’ GP models are aggregated
with each GP model responds to inputs that come from a certain ‘local’ area at the pre-
diction stage. The computational cost is in the order of O(m2n) [221]. In the global
GP algorithms, all data is available but sparsity is usually introduced by appropriately
selected inducing points or by sub-sampling of the data. Thus for efficiency improvement,
a lot of global approximation-based works [222, 229, 231] are dedicated to approximating
the kernel matrix Knn and can be further categorised into 1) the Subset of Data (SoD)
method uses m out of n training samples, resulting in a smaller kernel matrix Kmm;
2) the sparse kernel method sets to zero all entries smaller than a criterion value and
hence leads to a sparse kernel matrix K̃nn [221]; 3) the low-rank method, also known
as sparse approximation method, approximates Knn with the eigendecompostion or the
Nyström method [232] by a low-rank matrix Lnn. We also notice that Zhu et al. [233]
apply the nonnegative matrix factorisation in the kernel matrix approximation, which
obtains online performance with application in image processing. The SoD and low-rank
approximations reduce the computational complexity to O(m2n) if we do not count the
computation caused by eigendecomposition. The sparse kernel method reduces the cost
to O(αn3), with α being a coefficient in the range 0 < α < 1.

The third solution is the most popular among all these three global approximations. Espe-
cially, the Nyström method [232] has achieved a balance between accuracy and efficiency
and several variants have been proposed [227, 229]. We notice that these methods replace
the kernel matrix Knn with a low rank matrix Lnn, which can be further factorised as
Lnn = BnmBT

nm [234]. The ‘residual’ matrix Ã = Knn – Lnn is usually discarded. This
approach aligns with the intuition provided by the Sherman-Morrison-Woodbury formula,
as detailed in equation (2.7.12) of Chapter 2 [235].

K–1
nn = Ã–1 – Ã–1Bnm(Im + BT

nmÃ–1Bnm)–1BT
nmÃ–1. (8.1)

We can see that the computational cost of K–1
nn remains atO(n3) despite (Im+BT

nmÃ–1Bnm)–1

holds the promise of reducing the overall computational cost of (8.1) such as when Ã is
diagonal. The consequence is that two questions remain unanswered: 1) Can we take the
‘residual’ matrix Ã into consideration? 2) If we consider the ‘residual’ matrix, can we
achieve comparable results with full GP models with a lower computational cost?

This paper aims to provide answers to these two questions. We show that by projecting
Ã to be a Symmetric Diagonally Dominant (SDD) matrix A, we obtain an approximation
of the kernel matrix Knn ≈ Lnn +A accurately and efficiently. The SDD matrix A shows
appealing characteristics such as symmetry and diagonally dominant, but the challenge
in (8.1) remains. However, the SDD matrix characteristics perfectly match the conditions
of approximating its inverse matrix with Neumann series, hence avoiding calculating Ã–1

directly. We therefore approximate Ã–1 with Neumann series and cut the computational
cost from O(n3) down to O(n2) [223, 225]. By doing so, we provide a way of computing
K–1
nn and derive a new efficient GP implementation. To summarise, the main contributions

of this paper are threefold:
1) The ‘residual’ matrix between the original kernel matrix and its approximation matrix
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is taken into account to approach full GPs performance;
2) The SDD projection and Neumann series are applied to reduce covariance matrix
inversion computational complexity;
3) Comparisons of the proposed approach with various GP variants with different kernel
settings on both synthetic data and air quality data are given, providing a reference for
its potential applications in various fields.

The remaining part of this paper is organised as follows. Section 8.2 reviews some of
the related works. Section 8.3 introduces the GP method and how traditional kernel
approximation methods work. Section 8.4 details the proposed approach. Performance
validation results and analysis are given in Section 8.5, and the paper is concluded in
Section 8.6, with a brief discussion of future work.

8.2 Related Work

In literature, there are mainly three categories of low-rank approximations, i.e. the
prior approximation, the posterior approximation, and the structured sparse approxi-
mation [221, 232, 236]. We are particularly interested in the prior approximation in this
paper.

There are two main ways to approximate the prior kernel matrix. The first one is as
we mentioned earlier, by applying an eigendecomposition or the Nyström method to re-
construct the kernel matrix with a low rank [237–239]. The second way is by applying
variational inference to optimise the Kullback-Leibler divergence between the exact prior
and a cluster of distributions that are easy to implement, such as Gaussian distribu-
tions [229, 240]. While the Nyström method can reduce the computational complexity, it
faces the problem of how to determine the low-rank space such that the reconstructed ker-
nel matrix would provide accurate results. This has stimulated research in two aspects: 1)
low-rank approximation error analysis or finding the error bounds [220, 237, 238]; 2) meth-
ods that can further improve the approximation accuracy such as greedy approaches and
randomised algorithms [241, 242]. Particularly, Stein [239] reports that when neighbor-
ing observations are strongly correlated, the performance of the low-rank approximation
becomes poor even if the sum of the m largest eigenvalues is much greater than the sum
of the remaining eigenvalues. Ding et al. [243] find that bad performance would happen
when the length scale of the kernel is small if we only focus on the high eigenvalue part of
the spectrum of the kernel matrix. A multi-resolution kernel approximation approach is
thus proposed which represents the entire kernel matrix, not just its eigenvectors with the
greatest eigenvalues. This approach is capable of calculating the inverse matrix directly
and has improved performance compared with other GP kernel approximations considered
in [243]. They claim their method is considerably more flexible than existing hierarchical
matrix decomposition or approximation [244] methods. Yao et al. propose the kernel-
band-projection algorithm for anomaly detection in hyperspectral imagery. They take
bands as mapping subjects, and by mapping bands into the kernel space, they construct
a projection matrix. When the Gaussian kernel function is used, their method avoids the
inversion calculation of the projection matrix, making the method efficient [245]. Burt et
al. [220] adopt the Kullback-Leibler divergence to investigate how the number of inducing
points m that could change along with the change of the dataset size n, to ensure a cer-
tain approximation accuracy. However, this work falls into the posterior approximation
category [226].
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While the approximation methods and approximation accuracy analysis have been exten-
sively researched, there is little work on how to retain the ‘residual’ matrix Ã in kernel
methods. Particularly, methods that take the ‘residual’ matrix into account and achieve
a balance between efficiency and accuracy, ideally at the same level of full GPs or even
better, would make a good complementary to the GP community. Fig. 8.1 demonstrates
how the covariance matrix is approximated.
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Figure 8.1: Matrices involved in the covariance matrix approximation: (a) Knn, (b)
Lnn, (c) the ‘residual’ matrix Ã, (d) A. The Lnn is usually used for approximating Knn,
with Ã = Knn – Lnn discarded. The A is the SDD projection matrix of Ã, and we use
Lnn + A to approximate Knn. The figures are generated from Synthetic dataset 2 with

n = 476 for demonstration.

8.3 The Gaussian Process Method and Kernel Approxima-
tions

8.3.1 Background Knowledge

Given a set of training data D = {(xi, yi), i = 1, · · · , n} where xi ∈ X is the input and
yi ∈ R is the observation, we can determine a GP model f(·) to predict y∗ for a new input
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x∗. For instance, when the output is one dimensional, the GP model is formulated as

f ∼ GP (̄f(x), k(x, x′)), y = f(x) + ε, ε ∼ N (0,σ2), (8.2)

where f̄ : X → R is the mean function defined as

f̄(x) = E[f(x)], (8.3)

and k : X × X → R is the kernel function [220] defined as

k(x, x′) = E[(f(x) – f̄(x))(f(x′) – f̄(x′))], (8.4)

where ε is the additive independent identically distributed Gaussian measurement noise
with variance σ2 ̸= 0, and E[·] denotes the expectation of a random variable.

Given xi a D × 1 vector, the n inputs can be aggregated into a matrix XD×n, or briefly
X with the corresponding output vector yn×1, or y. Similarly, the function values at the
test inputs X∗ with dimensions of D×N can be denoted as f∗, and we next write the joint
distribution of y and f∗ asy

f∗

 ∼ N
0,

Knn + σ2I KnN

KNn KNN

 , (8.5)

where I represents the identity matrix. Knn + σ2I is the n× n prior covariance matrix of
y with entry Kij = k(xi, xj) + σ2δij, where δij is one iff i = j and zero otherwise, and xi
and xj are column vectors from X. The matrix KNN denotes the N× N prior covariance
matrix of f∗ with entry Kij = k(xi, xj), where xi and xj are column vectors from X∗. The
matrices KNn and KnN satisfy KNn = KT

nN, and the entry of the N × n prior covariance
matrix of f∗ and y is Kij = k(xi, xj), where xi is a column vector from X∗ and xj is a
column vector from X.

By deriving the conditional distribution of f∗ from (8.5), where the prior mean is set to be
zero for simplicity [222], we have the predictive posterior (also given in equation (2.22),
Chapter 2 of [222]) at new inputs X∗ as

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), (8.6)

where
f̄∗ ≜ E[f∗|X, y,X∗] = KNn[Knn + σ2I]–1y, (8.7)

is the prediction at X∗, and

cov(f∗) = KNN – KNn[Knn + σ2I]–1KT
Nn, (8.8)

denotes the covariance of f∗.

The hyperparameter θ incorporated in the mean and covariance functions underpin the
predictive performance of GP models, and they are usually estimated by maximising the
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logarithm of the marginal likelihood

log p(y|X) = –
1

2
yT(Knn + σ2I)–1y –

1

2
log|Knn + σ2I|–n

2
log 2π. (8.9)

8.3.2 Kernel Approximations

Scalable GPs have been extensively studied recently, which aims at alleviating the compu-
tational complexity while retaining the favourable prediction quality of GPs [221]. One of
the most popular methods for kernel matrix approximation utilises a low-rank matrix to
approximate Knn, hence decreasing the computational complexity from O(n3) to O(m2n)
with m ≪ n, as introduced in [232]. For instance, in the eigendecomposition paradigm,
the Knn is presented as

Knn = UnnΛnnU
T
nn, (8.10)

where Unn comprises all the eigenvectors and is orthonormal, and Λnn = diag(λi), λ1 ⩾
λ2 ⩾ · · · ⩾ 0 is a diagonal matrix with eigenvalues being the diagonal entries. If we choose
eigenvectors corresponding to the m < n largest eigenvalues and build Unm ∈ Rn×m and
let Λmm = diag(λ1, · · · ,λm), we then have the approximation

(Knn + σ2I)–1 ≈ (UnmΛmmUT
nm + σ2I)–1

= σ–2In – σ–2Unm(σ2Λ–1
mm +UT

nmUnm)–1UT
nm

(8.11)

following the Sherman-Morrison-Woodbury formula. Clearly, with the existence of eigen-
decomposition, this approximation significantly reduces the computational complexity.
However, the computational cost of the eigendecomposition is O(n3), which makes the
method less favourable.

The Nyström method [232] was then proposed to replace the eigendecomposition to ap-
proximate the covariance matrix

Knn ≈ KnmK–1
mmKT

nm, (8.12)

where Knm is obtained by randomly choosing m rows or columns of Knn without re-
placement. Williams et al. [232] observe that even when m ≪ n, there is no significant
accuracy reduction when using (8.12) in the GP approach. With the Nyström method
and the Sherman-Morrison-Woodbury formula, one can see from

(KnmK–1
mmKT

nm + σ2In)
–1 = σ–2In – σ–2Knm(σ2Kmm +KT

nmKnm)–1KT
nm (8.13)

that the computational complexity is reduced from O(n3) to O(mn2).
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8.4 Symmetric Diagonally Dominant Projection-based Gaus-
sian Process

8.4.1 Symmetric Diagonally Dominant Projection

As discussed in Section 8.2 and shown in Fig. 8.1, most kernel approximation methods
can be formulated as

Knn ≈ Lnn, with Knn = Lnn + Ã, (8.14)

where rank(Lnn) = K ≪ n, and Ã is the ‘residual’ matrix. The Lnn matrix is calculated
by different methods [222], but the Ã matrix is typically discarded. Intuitively, full GPs
should perform better than the kernel-based approximations in spite of the heavy compu-
tational loads. However, in some classification tasks, the latter seems to outperform the
full GPs [232]. This is believed to be caused by the high correlations of observations of
the latent variables. Therefore, how the number of latent variables is determined would
influence the performance of GPs variants, and leads to the phenomenon that full GPs
sometimes perform poorer than kernel approximations. In this paper, we show that taking
the ‘residual’ matrix Ã into consideration can mitigate the full GP challenges, which is
performed by introducing the SDD projection into (8.14).

The SDD projection problem aims at finding an approximation of Knn in the form

Knn ≈ Lnn +A, (8.15)

where Lnn = ∑K
k=1 λkξkξT

k with K = rank(Lnn) ≪ n, and A is a symmetric c-diagonally
dominant matrix defined as

SDD+
c

=
{
A = (aij)n×n : A = AT, ajj ⩾ c

∑
i:i̸=j|aji| for all 1 ⩽ j ⩽ n

}
,

(8.16)

with c ∈ R+ [246], when c = 1, we omit the subscript and denote (8.16) as SDD+. Ke et
al. [246] also describe the problem of finding A as

min
(Lnn,A)

∥Knn – Lnn – A∥F, (8.17)

where ∥·∥F is the matrix Frobenius norm. They also provide a nonconvex solution
to (8.17), which can be achieved at the cost of O(n2max{log(n),K}).

In this paper, algorithm 1 is used to find A ∈ SDD+
c , i.e. satisfying (8.16), which is

next added to the low rank matrix Lnn to approximate Knn, as shown in (8.15). Please
note that PDD+

c
(·) in Algorithm 1 denotes the projection of an arbitrary matrix to a

c-diagonally dominant cone indicated by DD+
c . When c = 1, we denote it as DD+ for

brevity. Here we provide a three-dimensional example to help understanding Step 6, which
is also known as Mendoza-Raydan-Tarazaga projection [247].
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Algorithm 1: The Iterative SDD Projection
Input: The covariance matrix Knn and a tolerance criterion (TOL) and TOL

decreasing step η.
Output: A ∈ SDD+

c .
1: Let A(0) = Knn – Lnn, where Lnn = UnmΛmmUT

nm, with m ⩽ n and
Λmm = diag{λ1, · · · ,λm}, Â(0) = A(0) and J(0) = 0nn.

2: for t = 1, 2, · · · do
3: Â(t) = PDD+

c
(A(t–1) – J(t–1)). ←− Diagonally Dominant Projection

4: A(t) =
(
Â(t–1) + (Â(t–1))T

)
/2. ←− Symmetric Projection

5: J(t) = J(t–1) + (Â(t) – A(t–1)).
6: if ∥J(t) – J(t–1)∥F⩽ TOL then
7: A = A(t).
8: if (8.32) is satisfied then
9: stop.

10: else
11: TOL = TOL - η, continue.
12: end if
13: else
14: continue.
15: end if
16: end for

Example 1: Given a 3× 3 matrix

G =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 , (8.18)

we can regard each row as a vector and they are depicted in Fig. 8.2. Without loss of
generality, let’s assume that G is entry-wisely positive and take g3 = [g31, g32, g33] an
example. For some tasks such as dimension reduction, we need to project g3 to obtain
g̃3 = [0, g32, g33] as the best approximation of g3 in terms of the minimum Euclidean
distance ∥g3 – g̃3∥2. Obviously, if g32 ⩾ g33, we cannot guarantee that a diagonally
dominant approximation of G can be obtained through this type of projection. In this
paper, we follow the process introduced in [247] to guarantee that Ĝ ∈ DD+ is valid for
approximating G. To be specific, for the i-th row of a h× h matrix G (i = 3 and h = 3 in
our case), we first do

• dk = ∑h
k=j gik – gii, where k ̸= i and 1 ⩽ k ⩽ h;

• ck = h – k + 1 for k < i, and ck = h – k + 2 for k > i ;

• d̄k = dk/ck.
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Figure 8.2: Illustration of Mendoza-Raydan-Tarazaga projection [247].

Next, we find k̂ such that g
ik̂

> 0 and d̄
k̂
⩽ g

ik̂
, and finally the approximation matrix Ĝ

is generated as follows:

ĝik =


gik + d̄

k̂
, k = i,

gik – gik, 1 ⩽ k ⩽ k̂ – 1 and k ̸= i,

gik – d̄k̂, k̂ ⩽ k ⩽ h and k ̸= i.

(8.19)

Fig. 8.2 shows a geometrical example of how ĝ3 = [0, ĝ32, ĝ33] is generated. In this case,
we assume that k̂ = 2. Therefore, ĝ31 = g31 – g31 = 0, ĝ32 = g32 – d̄k̂, and ĝ33 = g33+ d̄

k̂
.

By comparing g̃3 with ĝ3, one sees that they are both approximations of g3. However, ĝ3
is generated in a way to ensure that ĝ33 ⩾ ĝ32 stands, such that Ĝ obtained is diagonally
dominant. Similarly to the uniqueness of g̃3, ĝ3 is proved to be unique as well [247].
This ensures that if G has a diagonally dominant counterpart, it would be unique. We
are interested in the latter as it leads to a diagonally dominant matrix Ĝ that is usually
positive definite, which helps us solving the matrix inverse problem in GPs.

8.4.2 Neumann Series for Diagonally Dominant Matrix Inversion Ap-
proximation

After solving (8.17) with Algorithm 1, we can next approximate (Knn + σ2I)–1 with

(Knn + σ2I)–1 ≈ (Lnn +A+ σ2I)–1 = (Lnn +M)–1, (8.20)

where M = A+ σ2I. Although the SDD matrix A ensures that M ∈ SDD+
c , the compu-

tational cost of M–1 is still at O(n3). This is not favourable. Therefore, we introduce the
Neumann series to approximate M–1.
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Given a matrix M, the inverse M–1 of which can be expanded as the following Neumann
series [223]

M–1 =
∞∑
i=0

(X–1(X – M))iX–1, (8.21)

which holds if limi→∞ (I – X–1M)i = 0 is satisfied. In general, we can use (8.21) to
approximate the inverse of any matrix. However, approximation with quick convergence
requires M to be diagonally dominant [223, 225]. In our case, suppose

M = A+ σ2I ≜ DM + EM, (8.22)

where DM is the main diagonal of M and EM is the hollow. If we substitute X in equation
(8.21) by DM, we get

M–1 =
∞∑
i=0

( – D–1
MEM)iD–1

M , (8.23)

which is guaranteed to converge when limi→∞ ( – D–1
MEM)i = 0. When Neumann series

given in (8.23) converges, we can then approximate M–1 with only the first L terms. The
L-term approximation is computed as follows:

M̃L =
L–1∑
i=0

( – D–1
MEM)iD–1

M , (8.24)

For instance, when L = 1, 2, 3, we have the approximations

M̃L =


D–1
M , L = 1

D–1
M – D–1

MEMD–1
M , L = 2

D–1
M – D–1

MEMD–1
M +D–1

MEMD–1
MEMD–1

M . L = 3

(8.25)

From equations (8.24) and (8.25), we see that Neumann series approximation reduces
the cost of M–1 from O(n3) to O(n2) when L ≤ 2, which is of particular favour when n
becomes large. Wu et al. also mention that the calculation of the Neumann series can
be accelerated by proper adjustment of the terms [223]. As mentioned earlier, when M
is diagonally dominant [223, 225], the approximation would be both quick and accurate,
this would help to improve the GPs performance.

8.4.3 Symmetric Diagonally Dominant Projection-based Gaussian Pro-
cesses

By transforming the ‘residual’ matrix Ã into a diagonally dominant matrix A, and approx-
imating M–1 with (8.24), we know the inverse matrix involved in GPs can be approximated
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Algorithm 2: The SDD projection-based GPs
Input: X the inputs, y the outputs, k the kernel function, σ2 the observation noise

level, TOL a tolerance criterion, and the test inputs X∗
Output: f̄∗ and cov(f∗)

1: Knn ≈ KnmK–1
mmKT

nm +A, with A diagonally dominant ←− Solving (8.17)
2: L-term Neumann Series Approximation: M̃L ≈M–1, with M = A+ σ2I
3: Cholesky factorisation: C := cholesky(Kmm +KT

nmM̃LKnm)
4: (Knn + σ2I)–1 ≈ M̃L – VTV, with V = C \Ymn and Ymn = KT

nmM̃L.
5: Mean: f̄∗ = KNnQy, with Q = M̃L – VTV
6: Covariance: cov(f∗) = KNN – KNnQK

T
Nn, with Q = M̃L – VTV

through

(Knn + σ2I)–1 ≈ (Lnn +A+ σ2I)–1

= (KnmK–1
mmKT

nm +M)–1

= M–1 –M–1Knm(Kmm +KT
nmM–1Knm)–1KT

nmM–1.

(8.26)

The overall SDD projection-based GP (SDD GP) is described in Algorithm 2. For brevity,
we denote the approximation of Knn as KnmK–1

mmKT
nm. One can observe from Algorithm

2 that with the proposed SDD GP, the computational cost is reduced overall from O(n3)
to O(mn2), and we are still able to retain the ‘residual’ matrix.

8.4.4 Theoretical Performance Analysis

By comparing the proposed approach with a full GP model, one can see that the major
difference is demonstrated by

(Knn + σ2I)–1 = (Lnn + Ã+ σ2I)–1 ← GP

≈ (Lnn +A+ σ2I)–1 ← SDD GP.
(8.27)

Since SDD+
c and Neumann series approximations are key in the proposed approach, we

present a theoretical analysis of their impact on the algorithm performance as follows.

Lemma 1: Given A as the SDD+ approximation of Ã, one can then take M as an SDD+
c

approximation of Ã+ σ2I, i.e. M ∈ SDD+
c with c > 1 satisfied.

Proof: According to the definition of M, we know that the diagonal entries of M are
mjj = ajj + σ2, j = 1, · · · , n, where ajj are the diagonal entries of A. The off-diagonal
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entries of M and A are identical. Therefore, we have



m11 ⩾ c1
∑

i:i ̸=1|a1i|,
...
mjj ⩾ cj

∑
i:i̸=j|aji|,

...
mnn ⩾ cn

∑
i:i ̸=n|ani|,

(8.28)

where cj > 1, j = 1, · · · , n hold for σ2 > 0, which is normally the case as there is no point
to consider a zero mean zero variance Gaussian noise. It is straightforward that by setting
c = min{c1, c2, · · · , cn}, Lemma 1 stands. According to [246], M–1 can be bounded by

||M–1||F⩽
c

c – 1
||[diag(M)]–1||F, (8.29)

which is the condition of making (Lnn + A + σ2I)–1 a good estimator of (Knn + σ2I)–1.
More details can be found on the right half of Page 2 in [246].

Furthermore, because M–1 is approximated in the paper by the L-term Neumann series
given in (8.24), we then investigate the error between (8.23) and (8.24) to demonstrate
the approximation performance. Suppose the error is denoted by

∆M|L =
∞∑
i=L

( – D–1
MEM)iD–1

M

= ( – D–1EM)L
∞∑
i=0

( – D–1
MEM)iD–1

M

= ( – D–1
MEM)LM–1.

(8.30)

Let’s assume that there exists a column vector hM, such that the l2 norm of ||M–1hM||2≤
∞. Then according to [223] (Subsection B in Section III), the l2-norm of ∆M|LhM satisfies

||∆M|LhM||2 = ||( – D–1
MEM)LM–1hM||2

⩽ ||( – D–1
MEM)L||F||M–1hM||2

⩽ ||D–1
MEM||LF||M

–1hM||2.

(8.31)

We can see that if
||D–1

MEM||F< 1 (8.32)

holds, then the approximation error approaches zero as L increases [223], implying that
the approximation of (8.23) by (8.24) is becoming better. It is also demonstrated in [225]
that the approximation accuracy of M–1 using (8.24) is fairly high when M is diagonally
dominant, which is case in our paper.

By increasing L, the approximation performance of Neumann series can be improved. In
addition, we can use the SDD projection to enhance the approximation performance. One
can see that the matrices A, DM, and EM are linked through (8.22), which shows that DM
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and EM change along with A. When A is updated by Algorithm 1, a new set of DM and
EM are generated according to (8.22) subsequently and condition (8.32) is checked. When
the condition is satisfied, one can see from (8.31) that the performance of approximating
(8.23) by (8.24) can be further improved.

8.5 Performance Validation

8.5.1 Datasets and Baselines

To validate the proposed approach, we design two sets of experiments. In the first set, two
synthetic datasets and the Mauna Loa CO2

1 data are processed. The synthetic datasets
are generated by two deterministic functions that are perturbed by Gaussian noises, as
shown in

y = sin(x) + v1, (8.33)

with v1 ∼ N (0, 0.15) and x ∈ [–5.0, 5.0], and

y = 5x2 ∗ sin(12x) + (x3 – 0.5) ∗ sin(3x – 0.5) + 4 ∗ cos(2x) + v2, (8.34)

with v2 ∼ N (0, 0.45) and x ∈ [–0.2, 1.2]. We adopt models (8.33) and (8.34) because 1)
they are substantially nonlinear functions with function values known at any given inputs,
and this comparison of the proposed approach with other approaches can demonstrate
well their performance. 2) The impact of different noises on the solutions can be easily
demonstrated. This helps to generate datasets with various noise levels, including outliers,
to test the robustness of the proposed approach. 3) The number of samples can be easily
controlled to test the proposed approach on datasets of different sizes.

In the second set, we separately process temperature and NO2 concentration data from
Sheffield, the United Kingdom, and from Peshawar, Pakistan. For the data in the second
set, we converted the original time stamp (year-day-hour-minute) into decimal form first,
then both the time and the observation are standardised for all the GP models. In our
case, the data were collected every 15 minutes in both cities from June 22, 2019 to July
14, 2019. Therefore, four samples can be collected in each hour and 96 samples are
accumulated per day. This information enables us to convert the year-day-hour-minute
time stamps into decimal numbers through

tdec = tyear + (tday – 1) + (thour ∗ 4 + tminute/60 ∗ 4)/96, (8.35)

where tdec is the decimal number, tyear is the year, tday denotes the day, for example, the
173-th day of the year is June 22, 2019, thour is the hour, and tminute is the minute. Note
that since the data were collected every 15 minutes, tminute can only be 0, 15, 30, and 45
and this is part of the current validation.

Since the proposed approach belongs to the group with prior approximation, we hence
compare it with full GP variants with different kernels [222] and a sparse GP model, i.e.
the Fully Independent Training Conditional (FITC) [227, 229] GP. We also compare the

1https://iridl.ldeo.columbia.edu/SOURCES/.KEELING/.MAUNA LOA/

https://iridl.ldeo.columbia.edu/SOURCES/.KEELING/.MAUNA_LOA/.dataset_documentation.html
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developed approach with the variants where the ‘residual’ Ã are discarded. We denote
the model as SDD– GP for short.

8.5.2 Performance Metrics

In order to assess the overall performance of different GP variants, we employ the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE) to evaluate the prediction
performance. These two metrics are defined as:

MAE = 1

Ns

∑Ns

i=1
|yi – ŷi|, (8.36)

RMSE =
√

1

Ns

∑Ns

i=1
(yi – ŷi)

2, (8.37)

where yi and ŷi indicate the i-th true value and prediction, respectively, Ns is the number
of samples in the testing set.

Note for Sheffield and Peshawar NO2 and temperature datasets, and the Mauna Loa CO2

dataset, we do not have ‘exact’ function values. To evaluate the performance, we compare
observations with predictions of different GP models.

8.5.3 Implementation Details

We have implemented the SDD GP and the SDD– GP with Python based on GPy 2, and
adjusted the full GP and the sparse GP from GPy to process our data for comparison.

For each dataset, we take Nt samples, which is 75% the number of samples as training data
and the left as testing data, with size Ns. To be specific, for the two sets of synthetic data
and the Mauna Loa CO2 dataset, there are 635 samples for each. For the Sheffield and
Peshawar temperature and air quality data, we use 2016 samples. This makes Nt = 477
for the Mauna Loa CO2 and the synthetic datasets, and Nt = 1512 for the Sheffield and
Peshawar temperature and air quality datasets. For sparse GP, we set the number of
inducing points to roughly 1.5% the number of samples. For the SDD GP and SDD– GP,
we take m eigenvectors for covariance matrix approximation to achieve good performance.
We increase m from 5 up to half of the number of samples and record the corresponding
RMSE and MAE, to investigate the impact of m on the performance. The iteration index
t in Algorithm 1 is set to 15 for results generation. To study the algorithms’ performance,
we use various kernels as listed in Table 8.1 to design composition kernels to capture
different data patterns. The Squared Exponential Automatic Relevance Determination
(SE-ARD) kernel is also applied to each dataset for comparison. The kernel settings are
given in Table 8.2. The hyperparameters are estimated by maximising the logarithm
marginal likelihood as shown in (8.9). We use ‘GP-ARD’ for brevity hereafter to indicate
that the SE-ARD kernel is used.

2https://sheffieldml.github.io/GPy/

https://sheffieldml.github.io/GPy/
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Table 8.1: Covariance kernels used in this paper.

Kernel Name Covariance Function

Squared Exponential kSE(x, x
′) = σ2

s exp
(
–

(x–x′)2

2ℓ2s

)
Rational Quadratic kRQ(x, x′) = σ2

r

(
1 +

(x–x′)2

2αℓ2r

)–α

Periodic kPer(x, x
′) = σ2

p exp
(
–

2 sin2(π|x–x′|/p)
ℓ2p

)
White kW(x, x′) = σ2

noise if x = x′, else kW(x, x′) = 0

Squared Exponential ARD kSE-ARD(x, x′) = σ2
se exp

(
–

∑N
i=1

(xi–x
′
i)
2

2ℓ2i

)

Table 8.2: Kernel settings for performance evaluation.

Datasets Kernel Setting 1 Kernel Setting 2
Synthetic 1 kSE + kPer kSE-ARD
Synthetic 2 kSE + kPer kSE-ARD
Mauna CO2 kSE + kPer ∗ kSE + kRQ + kW kSE-ARD
Sheffield/Peshawar Temp kSE + kPer ∗ kSE + kRQ kSE-ARD
Sheffield/Peshawar NO2 kSE + kPer ∗ kSE + kRQ kSE-ARD

8.5.4 Performance and Analysis

Fig. 8.3 shows the logarithm RMSE of different GP implementations on the synthetic
dataset 1, synthetic dataset 2, and the Mauna Loa CO2 dataset. We can see that the
performance of the proposed SDD GP converges to that of the full GP, for both kernel
setting 1 and 2. We also notice that kernels would affect the performance of GP variants as
well as the proposed approach. For instance, Figs. 8.3a and 8.3c show that GP variants
with the SE-ARD kernel (kernel setting 2) outperform their counterparts with kernel
setting 1, whereas Fig. 8.3b shows that GP variants with kernel setting 1 perform better
in terms of RMSE. To further generalise the results, we change the variances for both
(8.33) and (8.34) and show how they affect the proposed approach in terms of RMSE.
The results are given in Fig. 8.4, where Figs. 8.4a and 8.4b are the results generated with
kernel setting 1, and Figs. 8.4c and 8.4d are generated with kernel setting 2. One can see
that as the noise variances become big, the prediction RMSE of the proposed approach
shows an increasing trend for both functions, for both kernel settings 1 and 2. This is
intuitive as the proposed approach is essentially a regression model, whose performance
could be degraded by noises.

Fig. 8.5 shows the RMSE of GP variants with different kernels on Sheffield and Peshawar
NO2 and temperature datasets, respectively. One can see from these figures that the SDD
GP generally outperforms the SDD– GP and the sparse GP. We can also see that as m
increases, the SDD GP outperforms or is comparable with the full GP when kernel setting
1 is used. When the SE-ARD kernel is used, we can see that the performance of SDD
GP-ARD approaches the full GP-ARD as m increases till converge.
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(a) Synthetic dataset 1
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(b) Synthetic dataset 2
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(c) Mauna Loa dataset
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Figure 8.3: Logarithm RMSE of different methods on the Synthetic and the Mauna
Loa datasets.

When focusing on the performance of the proposed approach with different kernels, i.e.
SDD GP and SDD GP-ARD, we see that when m increases, their performance in terms
of RMSE drops and then tends to converge. The same rule applies to the SDD– GP
and SDD– GP-ARD. However, the latter does not always show the convergence trends.
Particularly, the performance of the SDD– GP changes dramatically along with m as
given in Fig. 8.5c and 8.5d. This is because when the ‘residual’ matrix Ã is considered,
a better approximation of the covariance matrix is achieved, hence leading to better
performance of the SDD GP compared with the SDD– GP. When m keeps increasing,
the ‘residual’ matrix can be neglected, and the performance of SDD GP and SDD– GP
becomes similar. Similar trends can be observed for SDD GP-ARD and SDD– GP-ARD.
It is worth mentioning that when the SE-ARD kernel is used, the RMSEs change less
dramatically compared with the results generated by using the kernel setting 1.

To further demonstrate that taking the ‘residual’ matrix Ã into account would improve
the performance, we have compared the RMSE and MAE of 1) SDD GP with the SDD–

GP; 2) SDD GP-ARD with the SDD– GP-ARD on each dataset. Table 8.3 shows the
percentage when the SDD GP (SDD GP-ARD) outperforms the SDD– GP (SDD– GP-
ARD) in terms of RMSE and MAE, respectively. We see that the percentage of the SDD
GP (SDD GP-ARD) outperforms the SDD– GP (SDD– GP-ARD) is all equal to or bigger
than 50%. This again demonstrates considering Ã would help to improve the proposed
GP model’s performance.

We also list the minimum and median RMSE and MAE of the GP variants on each
dataset. The median RMSE and MAE are considered as they demonstrate the resilience
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Figure 8.4: The impact of noise on the performance of the proposed approach: (a)
Synthetic dataset 1 with kernel setting 1; (b) Synthetic dataset 2 with kernel setting 1;
(c) Synthetic dataset 1 with kernel setting 2; (d) Synthetic dataset 2 with kernel setting

2.

Table 8.3: The percentage of results with RMSE and MAE of the SDD GP smaller
than the SDD– GP: ONE indicates kernel setting 1 in Table 8.2 is used; TWO indicates

kernel setting 2 in Table 8.2 is used.

Syn. 1 Syn. 2 M. L. CO2 S. Temp P. Temp S. NO2 P. NO2

MAE ONE 50% 75% 100% 59% 59% 53% 69%
RMSE ONE 50% 88% 100% 59% 53% 53% 69%
MAE TWO 100% 100% 78% 94% 65% 74% 94%
RMSE TWO 100% 100% 78% 94% 65% 79% 100%
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Figure 8.5: Logarithm RMSE of different methods on Peshawar and Sheffield NO2

and temperature: (a) Peshawar NO2; (b) Sheffield NO2; (c) Peshawar temperature; (d)
Sheffield temperature.

of the proposed approach. To be specific, the minimum and median RMSEs and MAEs
of the GP variants on synthetic dataset 1, synthetic dataset 2, and the Mauna Loa CO2

dataset are given in Table 8.4 and 8.5, respectively. One can see from Table 8.4 that the
SDD GP achieves the minimum RMSE on all three datasets, and the minimum MAE
on synthetic dataset 2 and the Mauna Loa CO2 dataset. When it comes to the median
RMSE and MAE as shown in Table 8.5, we see that the full GP variants show better
performance except on synthetic dataset 1, where the SDD GP-ARD achieves the best
performance.

Table 8.4: The performance comparison among different methods and kernels on the
synthetic and public datasets. We take the minimum RMSE and MAE for the SDD GP

(SDD GP-ARD) and SDD– GP (SDD– GP-ARD).

Syn. 1 Syn. 2 M. L. CO2

—— RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.053 0.187 4.502 1.832 11.054 2.735
SDD– GP 0.321 0.433 4.681 1.933 1.219e+04 99.151
Full GP 0.079 0.203 5.466 2.013 103.459 8.298
Sparse GP 0.579 0.641 19.876 3.718 148.698 11.168
SDD GP-ARD 0.057 0.194 11.410 2.932 13.444 3.049
SDD– GP-ARD 0.057 0.194 29.806 4.520 13.447 3.051
Full GP-ARD 0.195 0.052 29.805 4.520 13.563 3.063
Sparse GP-ARD 0.211 0.065 30.684 4.926 14.540 3.173
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Table 8.5: The performance comparison among different methods and kernels on the
synthetic and public datasets. We take the median RMSE and MAE for the SDD GP

(SDD GP-ARD) and SDD– GP (SDD– GP-ARD).

Syn. 1 Syn. 2 M. L. CO2

—— RMSE MAE RMSE MAE RMSE MAE
SDD GP 1.267 0.871 6.155 2.049 114.708 8.362
SDD– GP 0.606 0.648 6.858 2.205 3.948e+04 184.845
Full GP 0.079 0.203 5.466 2.013 103.459 8.298
Sparse GP 0.579 0.641 19.876 3.718 148.698 11.168
SDD GP-ARD 0.057 0.194 29.806 4.520 144.676 10.577
SDD– GP-ARD 0.057 0.194 29.806 4.520 1.325e+05 348.360
Full GP-ARD 0.057 0.195 29.805 4.520 13.563 3.063
Sparse GP-ARD 0.065 0.211 30.684 4.926 14.540 3.173

The corresponding results on Sheffield and Peshawar NO2 and temperature datasets are
separately given in Table 8.6 and 8.7. One can see that the SDD-GP performs the best
in general on the Peshwar temperature and Sheffield NO2 datasets. It also achieves the
smallest MAE on the Sheffield temperature dataset. Otherwise, the SDD– GP slightly
performs better than the SDD GP. When it comes to the median RMSE and MAE, the
SDD GP outperforms the full GP variants except on the Sheffield temperature and NO2

datasets.

Table 8.6: The performance comparison among different methods and kernels on
Sheffield and Peshawar datasets. We take the minimum RMSE and MAE for the SDD

GP (SDD GP-ARD) and SDD– GP (SDD– GP-ARD).

S. Temp (℃) P. Temp (℃) S. NO2 (¯g/m3) P. NO2 (¯g/m3)

—— RMSE MAE RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.125 0.270 0.965 0.819 0.404 0.394 0.077 0.212
SDD– GP 0.115 0.270 0.970 0.827 0.413 0.395 0.075 0.209
Full GP 0.329 0.482 1.416 1.005 1.0472 0.779 0.664 0.578
Sparse GP 0.661 0.695 1.485 1.025 1.074 0.762 0.675 0.652
SDD GP-ARD 0.473 0.586 1.021 0.880 0.427 0.436 0.712 0.722
SDD– GP-ARD 0.484 0.599 1.022 0.881 0.431 0.446 0.713 0.721
Full GP-ARD 0.494 0.604 1.008 0.870 0.431 0.446 0.697 0.731
Sparse GP-ARD 0.689 0.701 1.005 0.868 0.503 0.519 0.726 0.755

Table 8.7: The performance comparison among different methods and kernels on
Sheffield and Peshawar datasets. We take the median RMSE and MAE for the SDD

GP (SDD GP-ARD) and SDD– GP (SDD– GP-ARD).

S. Temp (℃) P. Temp (℃) S. NO2 (¯g/m3) P. NO2 (¯g/m3)

—— RMSE MAE RMSE MAE RMSE MAE RMSE MAE
SDD GP 0.629 0.664 0.985 0.839 0.603 0.532 0.148 0.314
SDD– GP 0.647 0.694 1.303 0.963 0.902 0.634 0.148 0.314
Full GP 0.329 0.482 1.416 1.005 1.047 0.779 0.664 0.578
Sparse GP 0.661 0.695 1.485 1.025 1.074 0.762 0.675 0.652
SDD GP-ARD 0.489 0.602 1.022 0.880 0.435 0.450 0.715 0.724
SDD– GP-ARD 0.490 0.603 1.022 0.880 0.697 0.548 0.715 0.724
Full GP-ARD 0.494 0.604 1.008 0.870 0.431 0.446 0.697 0.731
Sparse GP-ARD 0.689 0.701 1.005 0.868 0.503 0.519 0.726 0.755

In general, as m increases, the performance of the developed approach reaches the per-
formance of a full GP variant with the same kernel. When we adopt the minimum and
median RMSE and MAE as metrics, we have shown that the performance of the proposed
SDD GP (SDD GP-ARD) and the full GP (full GP-ARD) alternates. Fig. 8.3 and 8.5
also show that when m is small, the full GP variants outperform the proposed approach
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with the same kernels in general. This is because when m is too small, entries of the
‘residual’ matrix Ã are still significantly big, forcing it to be SDD would not improve the
approximation accuracy of the covariance matrix.

In addition to the aforementioned validation results, we also test the proposed approach
with kernel setting 1 and 2 on data with outliers, in comparison with the corresponding
full GP variants. The results are shown in Figs. 8.6 and 8.7, respectively. The outliers
are generated by adding noises with prominent variances to both (8.33) and (8.34). To be
specific, we set the variance of v1 to 0.5 and the variance of v2 to 1.65, which generates
noise of comparable scales with the real value of (8.33) and (8.34).

(a) (b)

(c) (d)

Figure 8.6: Impacts of outliers on (8.33) and (8.34), with kernel setting 1 in Table
8.2: (a) Full GP with v1 ∼ N (0, 0.50); (b) SDD with v1 ∼ N (0, 0.50); (c) Full GP with
v2 ∼ N (0, 1.65); (d) SDD with v2 ∼ N (0, 1.65). The shaded areas indicate the 95%

confidence interval.

We can see from Figs. 8.6 and 8.7 that the proposed approach is still able to produce
comparable results as full GP variants with the same kernel despite the impact of outliers.
It is worth mentioning that just like noises, kernels could affect the performance of GP
models as well. This can be observed from the difference between Fig. 8.6a and Fig. 8.7a,
as well as from the difference between Fig. 8.6d and Fig. 8.7d.

We then increase the number of samples and test the proposed approach over larger
scale datasets compared with aforementioned settings. To be precise, we set the number
of samples to 6,000 and 12,000 respectively for both (8.33) and (8.34). The proposed
approach with kernel setting 1 and 2 are applied to process the data separately and the
results are given in Fig. 8.8 and Fig. 8.9, respectively. Figs. 8.8a and 8.8b are the
results from SDD GP with 6,000 and 12,000 samples from (8.33). Fig. 8.8c and 8.8d
separately show the results of SDD GP with 6,000 and 12,000 samples from (8.34). The
corresponding results obtained by using the SDD GP-ARD to process data from (8.33)
are given in Figs. 8.9a and 8.9b, whereas Figs. 8.9c and 8.9c show the results achieved
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(a) (b)

(c) (d)

Figure 8.7: Impacts of outliers on (8.33) and (8.34), with kernel setting 2 in Table 8.2:
(a) Full GP-ARD with v1 ∼ N (0, 0.50); (b) SDD GP-ARD with v1 ∼ N (0, 0.50); (c) Full
GP-ARD with v2 ∼ N (0, 1.65); (d) SDD GP-ARD with v2 ∼ N (0, 1.65). The shaded

areas indicate the 95% confidence interval.

by using SDD GP-ARD to process data from (8.34). As the number of samples increases,
the full GP variants become slow for the new datasets, while the proposed approach still
achieves comparable results more efficiently than the full GP variants as shown in Table
8.8. It is worth mentioning that GP variants using the kernel setting 2 are generally more
efficient than those using kernel setting 1.

Table 8.8: Efficiency comparison of SDD GP (SDD GP-ARD) and full GP (full GP-
ARD) with different kernel settings

Syn. 1 Syn. 2

Sample Number 635 6,000 12,000 635 6,000 12,000
SDD GP Time (s) 2.3 50.6 673.8 3.2 60.6 590.4
Full GP Time (s) 5.1 123.6 1566.2 6.5 126.0 1476.4
SDD GP-ARD Time (s) 1.6 38.9 200.2 1.5 52.2 239.2
Full GP-ARD Time (s) 3.4 83.2 454.5 3.5 108.6 509.5

8.6 Conclusion

In this paper, we propose a new kernel matrix approximation approach that considers
the residual matrix and compares it with traditional kernel approximation methods. The
key novelty of the paper stems from considering the residual matrix in covariance matrix
approximation. The residual matrix is approximated by a symmetric diagonally dominant
matrix whose inverse can be easily approached by the Neumann series. A new Gaussian
process variant denoted as SDD GP is hence built upon the proposed approximation
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(a) (b)

(c) (d)

Figure 8.8: Performance of the proposed approach on large scale datasets, with kernel
setting 1 in Table 8.2 used: (a) SDD GP with 6,000 samples from (8.33); (b) SDD GP
with 12,000 samples from (8.33); (c) SDD GP with 6,000 samples from (8.34); (d) SDD
GP with 12,000 samples from (8.34). v1 ∼ N (0, 0.15), v2 ∼ N (0, 0.45). The shaded

areas indicate the 95% confidence interval.

method, which achieves comparable or better performance compared with full GP on both
synthetic datasets and real air quality datasets, with lower computational complexity.
Furthermore, the SE-ARD kernel is applied in addition to the composition kernels, to
demonstrate the generality of the proposed approach.

We have applied the Mendoza-Raydan-Tarazaga projection to help us achieve a symmetric
diagonally dominant projection of the residual matrix. We observed that the projection
algorithm can affect the efficiency of the proposed approach, despite good prediction
performance. Hence, we shall continue with the efficiency improvement of the proposed
approach in the future.

8.7 Contribution

R.C. (Rohit Chakraborty):

• Writing – Drafting: I played a significant role in drafting the original manuscript.
My contributions ensured that the research findings and methodologies were clearly
articulated, providing a solid foundation for the paper.
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in the review and editing processes, refining the content for clarity, coherence, and
academic rigor. I collaborated with other authors to ensure the manuscript effec-
tively conveyed our research findings.
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(a) (b)

(c) (d)

Figure 8.9: Performance of the proposed approach on large scale datasets, with kernel
setting 2 in Table 8.2 used: (a) SDD GP-ARD with 6,000 samples from (8.33); (b)
SDD GP-ARD with 12,000 samples from (8.33); (c) SDD GP-ARD with 6,000 samples
from (8.34); (d) SDD GP-ARD with 12,000 samples from (8.34). v1 ∼ N (0, 0.15),

v2 ∼ N (0, 0.45). The shaded areas indicate the 95% confidence interval.

• Software Development: I contributed to the software components of the study,
developing and utilizing tools that facilitated data processing and analysis. My
expertise in software ensured that the research was supported by robust and reliable
technological solutions.

• Methodology: I played a pivotal role in designing the research methodology, en-
suring that our approaches and techniques were sound, rigorous, and appropriate
for the study’s objectives.

• Data Curation: I was actively involved in curating the data for the study, en-
suring its accuracy, relevance, and readiness for analysis. This involved gathering,
cleaning, and organizing data sets, making them suitable for subsequent analysis
and interpretation.

Throughout the research process, I collaborated closely with various team members, en-
suring that my contributions complemented and enhanced the overall research effort. My
commitment, combined with my expertise in software, methodology, and writing, had a
substantial impact on the paper’s direction and quality.



Chapter 9

Can Portable Air Quality
Monitors Protect Children from
Air Pollution on the School Run?
An Exploratory Study

Abstract

With air quality issues in urban areas garnering increasing media attention, concerned
citizens are beginning to engage with air monitoring technology as a means of identifying
and responding to the environmental risks posed. However, while much has been written
about the accuracy of this sensing equipment, little research has been conducted into the
effect it has on users. As such, this research deploys coping theory to explore the specific
ways in which portable air quality sensors influence user behaviour. This is done using
a qualitative exploratory design, targeting parents and carers of children on the school
run. Drawing from survey and interview responses, the article illustrates the decision-
making pathways underpinning engagement with monitors and the ways in which they
influence beliefs and behaviours around air pollution. The study demonstrates that per-
sonal environmental monitors can play a role in protecting children from air pollution on
the school run. They can raise awareness about air pollution and disrupt misconceptions
about where it does and does not occur. They can also encourage the public to change
their behaviour in an attempt to mitigate and manage risks. However, the findings addi-
tionally reveal that sensor technology does not generate a simple binary response among
users, of behavioural change or not. When attempts at behavioural change fail to reduce
risk, resulting negative feelings can lead to inaction. Hence, the relationship between the
technology and the individual is entwined with various social circumstances often beyond
a parent or carer’s control. Thus, top-down support aimed at tackling air pollution at
source is essential if this bottom-up technology is to fulfil its full potential.

152
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9.1 Introduction and Background

Urban air pollution is one of the most pressing concerns for governments world- wide,
with the United Nations calling on national and subnational governments to commit to
achieving air quality safe for citizens by 2030 [248]. Linked to around 40,000 premature
deaths each year in the UK alone [249], air pollution poses several other risks to human
health. Both long- and short-term, high- and low-level exposures are associated with ad-
verse effects ([250], particularly when considering that for two of the main components in
polluted air – particulate matter and ozone – there exist no ‘safe’ levels [251]. Ambient, or
outdoor, air pollution is associated with increased rates of lung cancer, emphysema, bron-
chitis and other respiratory infections, with traffic-related air pollutants being suspected
of initiating ‘diverse lethal diseases to considerably reduce life expectancy’ [252, 253]. A
‘significant association’ has been found between particulate matter 2.5 (PM 2.5) expo-
sure and stroke, dementia, alzheimer’s disease, autism spectrum disorder and Parkinson’s
disease [62]. As highlighted by a global review into the human health conse- quences of
air pollution, lungs and airways notwithstanding, air pollution also damages ‘most other
organ systems in the body’ [63] The risks to children are particularly pronounced because
they tend to be exposed to higher concentrations than adults. Not only are their im-
mature and developing immune systems and lungs implicated, along with their relatively
high inhalation rate [254, 255], but they spend more time outside, and often walk or are
pushed in buggies, usually at the height of exhaust emissions [256].Cognitive development
among primary school children is also negatively affected, particularly working memory
and attentiveness [257], with air pollution also being linked to the onset of neurological
disorders. This includes autism and attention deficit/hyperactivity disorder [258], and is
associated with decreases in the protein important to cognition and the white matter in-
volved in learning and brain function [259]; see also [260]. Such effects continue across the
life course; The evidence to date is coherent in that exposure to a range of largely traffic-
related pollutants has been associated with quantifiable impairment of brain development
in the young and cognitive decline in the elderly’ [250].

In the UK, these risks have long been recognised by the government. However, since
2011, its efforts at reducing air pollution have been repeatedly deemed inadequate by
the courts. In the latest decision, the High Court described government countermeasures
as “unlawful” ([2018] EWHC 315 (Admin) Case No: CO/ 4922/2017, para 118), while a
cross-party inquiry concluded that “[t]he Government cannot continue to put public health
at risk” by continuing to pursue ineffective countermeasures (The Environment, Food and
Rural Affairs Committee 2018). The degree of inaction taking place gains prominence
when recognising that outdoor air pollution exceeds World Health Organisation (2016)
limits for 90% of the UK’s population. It is a situation that caused the UN Special
Rapporteur on the human rights implications of hazardous substances, Baskut Tuncak
(UN Human Rights Council 2017: 9), to express alarm that despite repeated judicial
instruction, and recommendations by the UN Committee on the Rights of the Child, the
government “continues to flout its duty to ensure adequate air quality and protect the
rights to life and health of its citizens”.

As a consequence of this dormancy, citizens have to rely on small networks of official
monitors that are often unable to capture the complexity of urban air pollution [261].

In response to this situation, individuals and community groups are increasingly making
use of an emerging technology – relatively low-cost personal air quality monitors – to
evaluate environmental risks and respond accordingly (Marsh, 2017). As Oltra et al
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(2017: 296) note, the number of citizen-led, participatory sensing projects has ‘increased
significantly in recent years’, with much being written about the accuracy of the equipment
in terms of its ability to contribute to official monitoring programmes. Indeed, several
companies have brought such technology to market, including the Plume Labs ‘Flow’, the
CleanSpace Tag, and Atmotube Pro, to name a few. However, as a recent systematic
review of the literature concluded, ‘[c]urrently, there are very few studies that evaluate
[its] social or economic implications’ (Hubbell et al, 2018: 887). It is directly in this gap
that the present research is situated.

The studies that do exist are insightful, providing preliminary conclusions to suggest that
personal exposure information can challenge existing ideas and inform people’s responses
to air pollution. In relation to perceptions and emotions, the reported effects of monitor
use range from an increased awareness of air pollution and intense emotional reactions
(Oltra et al, 2017), through to enjoyment and surprise (Bales et al, 2019; Wong-Pardi et
al, 2018; Bales et al, 2012). In relation to behaviour, Wong-Pardi et al (2018) and Zappi
et al (2012) found minor behaviour changes to occur, which includes actions like closing
windows and ceasing to burn incense indoors, while Oltra et al (2017) did not witness any
alteration – intentional or real – as a result of monitor use.

Table 9.1: Existing Studies on Behavioural Responses to Personal Air Quality Data

Study Focus Duration Size Sample
Zappi et al. [35] Human responses

on the commute
2-4 weeks 16 On-campus work-

ers
Bales et al. [262] Human responses

on the commute
4 weeks 16 On-campus work-

ers
Oltra et al. [33] Comparison

with traditional
sources

7 days 12 Selected by de-
mographics

WongParodi et
al. [263]

Indoor air pollu-
tion responses

3 weeks 4a Library usersb

Bales et al. [264] Human responses
on the commute

4 weeks 29 Group 1 and
Group 2 workers

Heydon and
Chakraborty
(2020)

Adult responses
on the school run

2 weeks 45 Parents and car-
ers

a 26 participants were surveyed, but only 4 agreed to be interviewed.
b Selected from those who borrowed an indoor pollution monitor.

While insightful, these studies collectively exhibit several limitations. First, little at-
tention is given to the specific mechanics of the transformative process. It is therefore
not understood how the data intersects with individual beliefs and thought processes on
the way to generating a given response. Second, they are overwhelmingly atheoretical,
meaning analyses are not informed by a sufficiently detailed understanding of how human
beings react to stressful encounters, such as that elicited by exposure to high levels of
air pollution. Third, none of the existing studies are sensitive to context, neglecting to
account for any external factors which may influence the possibilities for change and lead
to a one-dimensional account of how monitors may affect behaviour. Finally, there are a
myriad of shared shortcomings pertaining to the methodologies deployed; the majority of
existing studies draw on relatively small and homogenous samples, while Zappi et al [35]
and Bales et al. [262, 264] all use figures from the same study conducted almost a decade
ago, although the latest iteration is augmented with more recent data.
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In light of these limitations, the purpose of this article is three-fold. First, it explores
the extent to which perceptions and behaviours around air pollution on the school run
are altered by personal exposure information. Second, it deploys Lazarus and Folkman’s
(1984) coping theory [265] to draw out the specific decision-making processes by which
this transformation does or does not occur. Almost forty years on from its publication,
this theory ‘remains the cornerstone of psychological stress and coping research across
multiple fields and disciplines’ [266]. Third, by providing parents and carers on the school
run with personal monitoring technology its use is situated in the real-world. This allows
for the intersections between structure and agency to be observed and enables individual
coping processes to be understood in context. Taken together, this exploratory study aims
to provide further information on the transformative potential of this emerging technology
in a context of heightened environmental risk. In doing so, it seeks to illustrate some of
the opportunities and barriers that relate to personal environment monitors and draw out
the extent to which they can be used to protect some of the most-vulnerable populations
in society from the harms of air pollution.

9.2 Theoretical Lens

Given the lack of theory guiding existent research on the social implications of personal
air quality monitor use, direction can be taken from research into the adjacent area of
wearable healthcare devices. Much of this literature is concerned with determining the
‘infusion’ of this technology into a person’s life and the various barriers to that (see [267,
268]). For instance, concerns around health and privacy risks have been found to inhibit
use ([269, 270]). However, similar to the research on personal environment monitors, little
detailed information exists on the specifics of this encounter. To address this limitation,
Marakhimov and Joo [271] applied coping theory to wearable healthcare devices in order
to ascertain the specific ways in which people respond to the concerns presented by the
technology. In much the same manner, but using an exploratory qualitative orientation,
this study uses coping theory to understand how adults respond to personal air quality
data on the school run.

Originally developed by Lazarus and Folkman [272], the process-based model of coping
explains how a person evaluates and responds to stressful encounters. It is ‘process-based’
because coping is not conceived as a personality trait, referring instead to an unfolding
and iterative relationship between person and environment. As such, ‘coping’ refers to the
‘thoughts and behaviours used to manage the internal and external demands of situations
that are appraised as stressful’ ([273]). Internal demands are conceived of as personal
factors, encompassing commitments and beliefs, while external demands pertain to the
more contextual properties of events themselves. Importantly, the ‘extent to which any
event is stressful is determined by a confluence of person and situation factors in a specific
transaction’ ([272]).

The theory posits that a chosen coping behaviour is based on an initial two-part appraisal
of a given encounter with environmental stimuli. During a ‘primary appraisal’, a person
evaluates the impact of the event on his/her personal well-being, with the transaction
being deemed positive, irrelevant or stressful ([266]). It is here where the meaning attached
to what is at stake holds importance as it influences how stress appraisals are categorised.
Explaining this further, Lazarus and Folkman [272] note that such stress may be regarded
as a form of ‘harm/loss’, where some damage to the person has already been sustained, as
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a ‘threat’, which involves harms or losses that have not yet taken place but are anticipated,
or a ‘challenge’, which is relatively positive and focuses on the potential for gain or growth.
Also implicated at this stage is the ‘secondary appraisal’, where a person evaluates the
extent of their control over the stressor to determine what can be done to manage it or
mitigate its consequences. These two forms of appraisal are not sequential, but work upon
one another to produce a perception of the situation:

When that which is at stake is meaningful and coping resources are judged less than
adequate for managing the demands of the situation, psychological stress is experienced.
The greater the imbalance, the greater the stress.

(Folkman [273])

Taken together, this initial bifold stage of ‘cognitive appraisal’ is important because ‘an
individual’s appraisal of the situation greatly influences their resultant emotions, coping
strategies, and subsequent outcomes’ (Biggs et al [266]). Indeed, it is only following this
stage, where an individual encounters a given stimuli, conceptualises it as stressful or not,
and decides what can be done to manage it that actual mental and behavioural responses
are engaged.

A myriad of coping responses can result from this antecedent stage, but they can be
grouped into two distinct but related categories; problem-focused and emotion-focused
coping ([272, 274, 275]). Problem-focused outcomes refer to individual attempts at man-
aging or mitigating the source of the stress. Emphasising proactive attempts at alter-
ing the situation, this includes efforts at reducing or removing obstacles, attaining new
knowledge or skills, planning, taking action and seeking assistance ([272]). By contrast,
emotion-focused responses regulate emotions, referring to internal attempts at mitigating
the emotional distress brought on by the stressful event (ibid). Writing just before his
death, Lazarus [274] bemoaned the rigidity of these categories, noting that ‘it would be
desirable to abandon the idea’ of their independence from one another. Instead, research
should acknowledge that in reality they ‘operate together as a coherent unit and to sep-
arate them and set them up as competitive is to distort the way coping actually works’
(ibid: 23).

Following this process of cognitive appraisal and coping response, individuals may ini-
tiate a ‘reappraisal’ in order to ascertain whether a given problem- or emotion-focused
coping effort was effective at mitigating the stress experienced. It refers to a new pro-
cess of appraisal following an earlier one but, in essence, ‘appraisal and reappraisal do
not differ’ [272]. ‘Reappraisal’ therefore converts what appears to be a linear process
into a circular one, acknowledging that an initial coping response can alter a subsequent
appraisal of the situation.

To conceive of individual responses to environmental stimuli in this way, as a process
through which meaning is attributed to a given situation and then acted upon or not,
draws attention to the specific cognitive and behavioural stages involved and the relation-
ships between them. In doing so, coping theory provides a more nuanced and informed
framework for analysis when compared to the atheoretical approach adopted by all ex-
isting scholarship on personal environmental monitor use. Taking this as the point of
departure, the article now turns to the application of this framework to personal air qual-
ity monitors, with the aim of understanding how adults on the school run respond to the
data encountered.
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9.3 Method

Research Design

The design of this study is exploratory and qualitative. The data was collected from
surveys and interviews, with a sample of parents and carers drawn from 15 primary
schools across Sheffield, England. With the primary aim of exploring the extent to which
perceptions and behaviours of air pollution are altered by personal exposure information,
the surveys were administered prior to receipt of the portable sensors. Participants were
then asked to use the monitors for two weeks on the school run before being interviewed
about changes in their experiences and behaviours during this time. The fieldwork was
conducted between April and July 2019.

Sample

The sample consisted of forty-five participants, the average age of which was 42. Thirty-
eight of these were female and seven male, reflecting the gendered nature of the school run
journey more broadly [276]. Participation was limited to parents and carers that make
the school run journey at least three days a week to a primary or infant school. Owed to
the consumerist nature of the monitoring technology in question, participation was based
on self-selection. As understanding real-world engagement with the technology was of
priority, and those most concerned about air pollution are also most likely to purchase
the monitors, this approach was deemed consistent with the purpose of the study. Indeed,
84% (n=38) of participants responded with ‘strongly agree’ or ‘agree’ when surveyed about
the extent of their agreement with the statement ‘air quality is a problem on my school
run’. Participants were recruited through school newsletters and social media.

Procedure

Following the initial expression of interest, participants were sent an electronic copy of
the survey to complete. Qualtrics was used for this purpose. Arrangements were then
made to hand over the monitor. Upon meeting, one of the research team would link the
participant’s mobile phone to the specific monitor, explain and demonstrate how it and
the accompanying app work, and address any questions. They were then instructed to use
the monitor on the school run for two weeks and to check the monitor and app during this
time. Interviews were conducted at the conclusion of this period, with questions centring
on participant psychological and behavioural experiences over this time. To facilitate
reflection on aspects of change within this experience, specific survey responses given by
each participant were also recalled during the interview; those reflecting the degree with
which participants considered air pollution to be a problem on the school run, their level
of concern about the issue, knowledge of pollutants, and their origins and health effects.
Interviews were conducted by an experienced social researcher.

The measurements were taken with a Plume Labs ‘Flow’ air quality monitor, which senses
PM2.5, PM10, NOx and VOCs. The unit weighs 70g and the charge lasts approximately 24
hours. The monitor displays four colours depending on the quality of air being measured.
Using guidelines established by the World Health Organisation and U.S. Environment
Protection Agency, these include green for “low” air pollution, yellow for “moderate”, red
for “high” and purple for “very high”. The app itself provides more details, displaying
the real-time air quality index figures to which the colours correspond. This particular
unit is also linked to a mobile phone, using its Global Position System capability to plot
these colours on a map according to where the user travelled. No restrictions on use
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were introduced, only a minimum requirement to use the monitor on the school run over
2 weeks. No substantive changes were made to the monitoring unit or graphical user
interface over this time.

Analysis

The interview transcripts were thematically analysed according to the framework estab-
lished by Braun and Clarke [277]. This was conducted alongside the data collection stage,
allowing participant recruitment to continue until no new or deviating data was being
added to the categories of analysis. This is a standard akin to theoretical saturation,
but without the framework of grounded theory (see Saunders et al [278]). The analysis
allowed for both inductive and deductive codes to be generated, although those pertaining
to the key stages of coping theory formed primary focus. The qualitative analysis was
conducted using NVivo, while the quantitative survey data was exported from Qualtrics
and analysed using SPSS.

Limitations

44 of the 45 participants lived within three miles of the school. This may be a feature of
primary schools which have catchment areas. The results may be different with parents
of those at secondary schools. Similarly, the results may be different for groups with less
constraints on their time (not parents).

9.4 Findings and Analysis

The data gathered illustrates that a large proportion of participants engaged in problem-
solving efforts, attempting to change their behaviour as a means of mitigating the per-
ceived ‘threat’ of air pollution. This was followed by a reappraisal to see if said changes
were effective. A second, smaller group of participants followed a different process, pur-
suing efforts affiliated with emotion-focused coping without first attempting behavioural
alteration. Changes in general and specific beliefs about air pollution were also reported,
which were common across the sample and did not depend on the specific coping efforts
deployed. Each of these aspects are taken in turn, following the structure of coping theory.

9.4.1 Primary and Secondary Appraisal: Threat and Agency

Primary appraisal ascribes meaning to a specific transaction, determining the significance
of that to an individual’s well-being [272]. The transaction may be deemed positive,
irrelevant or stressful. For the majority of participants (n=40), the monitors heightened
or confirmed pre-existing perceptions of air pollution as a problem on the school run. For
40% (n=18), air pollution was seen to be more of a problem than originally thought, prior
to use of the monitor, whereas the others reported having their preconceptions confirmed.
4 people no longer thought air pollution was a problem on their school run and 1 remained
uncertain. Following this recognition, the majority (n=41) of participants defined their
encounter with air pollution readings negatively and in terms of anticipated harm. This
conforms to Lazarus and Folkman’s [272] concept of ‘threat’, which refers to an expected
loss. All those whose primary appraisal was defined by ‘threat’ anticipated loss in terms
of the health of children, and not only their own:
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When the kids were involved it’s definitely a lot more emotional. And I’m more angry,
because I’m like ‘for fucks sake, this is no good. I don’t want this going into my kids’
lungs’. You see people pushing babies around and stuff like that and, you know, it’s like
‘oh god’. When our kids were in buggies and prams and they’re right down there, they’re
right at the front, at the crossing lights and things like that. And you do get a bit of guilt,
thinking ‘crikey, what have I done?’. (Participant 9)

I worry about the long-term effects on me and my kids, my wife and everyone. . . and the
fact that the schools are there, so all the kids...And there’s no barriers – at the junior’s
or the infant’s – between them and the road, so it’ just goes straight in. (Participant 20)

I’m worried. I’ve got school kids, obviously, but I’ve also got 20 month and 9-month-old
children and I’m pushing them along at exhaust level. . . and while the pavement is quite
wide often there’s traffic blocking the roads and it’s queuing at their level. (Participant
41)

As can be seen, throughout the interviews air pollution was primarily interpreted as a
threat to the health of children; an unsurprising characteristic given that participants
were selected on the basis of their school run journey. Yet, this is relevant because the
meaning attached to a given encounter has an influence on the secondary appraisal; what
individuals think they can do to manage the stressor and its associated distress [279]. Of
the 41 that defined air pollution as a ‘threat’, 63% (n=26) believed they had the capacity
to make behavioural adjustments sufficient to mitigate it. For these, this balance between
primary and secondary appraisal led to various attempts at problem-focused coping.

9.4.2 Problem-focused Coping

When a situation is deemed to be stressful, requiring efforts to manage or resolve it,
coping actions are enacted [265] In this regard, 26 participants altered their behaviour as
a result of the monitor data. The main change attempted was to try alternate routes,
away from the main roads; 16 attempted this. 6 participants also used their car less, while
4 reported asking people to turn off their engines if seen idling outside school:

I think that’s one thing that’s come out of using the sensor. Almost every day I’ve had to
ask someone to turn off their engine. The thing that’s really. . . I’ve never been the sort of
person to ask a stranger to do something because I feel like it’s a bit presumptuous and I
don’t like being. . . I just don’t like telling people what to do, I’m not a very confrontational
person. But I feel like if I don’t, I don’t know how long they’re going to sit there idling
their car and I’m looking at the monitor and thinking ‘it’s getting red, it’s red!’, and
we’re breathing in all the particles. . . so since having the monitor it’s made me that little
bit. . . it’s given me the courage to ask people to turn their engines off. (Participant 7)

I am trying to use the car less. I probably would have driven probably four times a week
to school. . . but we’re trying not to drive at all now. We maybe drive once a week. It has
changed quite drastically for us, so that we leave the car at home. (Participant 14)

Me and one of my friends have consciously not walked along [the main road] as much to
get to school and back, so we’ll go right round the back streets a bit more. (Participant
34)
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Upon enacting these changes, participants believed that improvements in the quality of
air would be visible, thereby easing their stress. It is here where, for the 26 who attempted
problem-solving strategies, early engagement with the monitor is characterised by a very
specific secondary appraisal; one reliant on the assumption that individuals can alter their
situation and minimise the ‘threat’ envisaged.

Air pollution in urban areas is, however, complicated, entailing dynamic and complex
interactions between natural and anthropogenic environmental parameters. 20 of the 26
that attempted problem-focused coping experienced this complexity, with the monitor-
ing data recording minimal changes to their exposure despite the behavioural changes
adopted:

It just felt like every route was bad or good depending on the day. I didn’t feel like there
was a solution. And we literally only have two routes, so there’s not really many options.
(Participant 6)

Me changing my route at this specific time might work this week, but next week I might
get different readings. It might be a bit of a, not a waste of your time, but a waste of your
mental capacity trying to actively dodge things. . . One thing that these apps show you is
that it might not matter where you are. (Participant 12)

I hoped it would change because the routes are pretty bad, and if there were clear differences
– if one was green, one was yellow and one was red – then I would definitely take one over
the other, but they’ve been alternating. So you get ones higher on some days and others
higher on other days. It’s hard to know, really. (Participant 22)

The 15 participants who perceived air pollution as a ‘threat’ but did not act moved
straight onto coping efforts associated with emotion-focused coping (see below), but those
who attempted behavioural changes moved back into the stage of ‘cognitive reappraisal’.
Here, the effect of any changes made were re-evaluated to see if they had addressed the
initial stressful ‘threat’ perception.

9.4.3 Cognitive Reappraisal: Powerlessness and Heightened Threat

Participants who had changed their behaviour entered the reappraisal stage of coping ex-
pecting to see a difference in the levels of air pollution encountered. While most continued
with their new pattern of behaviour for the duration of the study, the expected improve-
ments tended not to be reflected in the monitoring data. As such, when participants
reappraised the situation following their behaviour changes, the over-riding feeling was
very different to that felt during the initial appraisal. They now started to feel powerless:

I felt really, really, really rubbish. Verging on depressed. Questioning my life choices.
Really sad and powerless because we’re not in a position where we can move house or just
buy an electric car. We’re just not in that financial position. So, powerless, upset and
ignorant as well. ‘How come I didn’t know this before?’. ‘Why is it not on the weather
forecast every day?’. (Participant 4)

Something that’s become quite apparent is that you can’t actually avoid the pollution.
And that’s it. You can’t free my or the children that live in my community from the air
pollution. They live too close to dirty roads. It’s a bit depressing really. (Participant 17)
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I was just thinking ‘I want to move’ actually. I was seeing the readings outside the house
and you think ‘well, I still have to take the kids to school’. You feel like there’s no escape
from it. (Participant 26)

I suppose it’s a powerlessness. I know that [the road to school] is awful and that’s where I
walk my children to twice a day and that’s where they go to school, and on a hot day they
have their windows open and it’s all just going in. From my point of view it’s been pretty
bad because it’s confirmed that ‘oh no, it’s really bad and I knew it was really bad, and now
I know it’s definitely bad’. So yeah, a powerlessness on the day to day level. (Participant
29)

At the point of reappraisal, the same formula holds as for an initial appraisal; the difference
between ‘primary’ and ‘secondary’ appraisal influences the degree of ‘threat’ felt. As
such, at this point the monitors had not only served to reveal how poor the air quality
on the school run was, thereby increasing awareness about the already-present concern
for their children’s health, but also demonstrated that their ability to avoid it – either
through behavioural changes or seeking refuge in perceived ‘sanctuary spaces’ (see below)
– was constrained by factors beyond individual agency. As a result, the definition of
their encounter with air pollution data did not change from the ‘threat’ designation, but
heightened it:

I wouldn’t say it’s kept me up at night, but there were times when I’d wake up at night
and I’d be thinking about it. . . it’s kind of taking over. I’m really thinking about this all
the time. (Participant 1)

I think it’s even worse than I thought it was, which is really scary. Really scary. (Partic-
ipant 18)

I think I’m more concerned now, if I’m honest. I would say very concerned. It’s pretty
bad at times. (Participant 22)

This response was common across the sample of participants. After using the monitors, 44
of the 45 participants reported concern with the levels of air pollution on the school run,
with just over 70% (n=32) being either ‘extremely concerned’ or ‘very concerned’. 40%
(n=18) of participants thought it was more concerning than originally thought, while 18%
(n=8) experienced a decrease but still retained some degree of concern. The 4 participants
who thought air pollution was ‘no longer a problem’ are not all mirrored in numbers for
the ‘unconcerned’ category because 3 noted that, while they now saw their school run as
pollution-free, they were still concerned about other children on other routes.

9.4.4 Emotion-focused Coping: Resignation

As the feelings of powerlessness became increasingly embedded with each cycle of at-
tempted behavioural change, the appraisal-reappraisal feedback loop tended to result
in feelings of resignation. This did not appear to supplant problem-focused efforts,
where they were attempted, but were instead experienced alongside them, according with
Lazarus’ [274] call for the two to be viewed together. Other expressions thematically re-
lated to this category were reported, including sadness, helplessness and acceptance, but
the over-riding form of emotion-focused coping communicated at the conclusion of the
study was this notion of resignation:
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I was comparing it to somebody to Brexit, where you might have been really passionate
at the start of Brexit, but by now you’re just like ‘I don’t care anymore’. With this, it’s
kind of like ‘well, I really want to make some good choices but, actually, everything is bad;
there’s nothing I can do’. So, that’s been a bit of a shame (Participant 3)

I think initially I was more frustrated and scared but as it goes on you get used to what’s
going on and you’re not surprised by what’s happening, so I guess the feelings dissipate
a little bit. That’s probably what happened. ‘Oh, there it is again. Yeah, that’s what I
expected’. (Participant 11)

You get this data, you go ‘okay’, then it just makes you feel a bit worse. (Par-
ticipant 12)

I became resigned. I am only one ant in the grand scheme of things and, really, what can
I do to change anything? (Participant 18)

I felt sad and a bit helpless because at the beginning we were getting some green readings
and I thought it would maybe never turn green on this road. And there was a couple of
school runs that we did, earlier, that were green, and I felt a little glimmer of hope like
‘oh, this isn’t as bad as I thought it was’. But then, actually quite quickly it turned to
where I can’t actually remember the last time I saw a green reading for it. (Participant
21)

Such expressions of resignation were not limited to those pursuing behavioural adjust-
ments, but were also reported by many of those that did not make changes. Here, a
dovetailing of the various coping efforts can be witnessed, where use of personal air qual-
ity monitors eventually resulted in resignation irrespective of whether problem-focused
efforts had been made at some point or not. This occurred for two reasons.

1. First, as noted above, avoiding air pollution in densely populated urban areas, par-
ticularly at peak times of travel, is complicated. Distance-decay gradients differ
depending on wind direction [280, 281]; upwind, particulate concentrations can fall
to near background levels within 200m, but downwind, concentrations do not reach
background levels until 300-500m. In some studies, this was extended to 800m for
ultrafine particles [282] and 1500m for NO2 [281]. This is further complicated by
the basis of these figures on patterns of motorway pollution; they do not account for
settings where other sources of emissions are in close proximity, which is the reality
of urban areas.

2. Second, the context in which the technology was used had a bearing on the options
available for behaviour change. 75% (n=34) of participants described their feelings
of resignation in relation to real-world circumstances that served to inhibit their
ability to alter behaviour in ways they thought would be of benefit. The two primary
constraints mentioned pertained to time, as manifest through responsibilities to
school, work or family, and space, including a lack of route alternatives or availability
or safe, efficient and affordable transport options. For those who did not make
behavioural changes, these constraints exerted an absolute constraint, whereas for
those who did, they served to limit the range of options available:
I’ve tried. . . but there is only a couple of routes we can take to school so you can’t
do too much. I looked at getting the bus and walking to work and back but I’ve got
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such a small time period to get back from work, pick the kids up, I just can’t do it.
There aren’t enough hours in the day for me to do it all. (Participant 10)
Some days because I have two – one is in nursery not far from [city ward] – I can’t
physically get one and then the other one and walk, so I have to drive. And what I’ve
done is drive halfway to school and then we’ll walk through the woods and we’ll walk
back through the woods, get in the car and then drive to the other one. (Participant
11)
Cycling, I really enjoy it but I’m also a bit scared of it as well because it’s not very
well set up for it. We have seats for the little ones that we use on holiday. . . but I
would never take them on a road in one. I would admit. . . if the cycle lanes were
segregated it would be so much better. We would cycle loads more. I wish I could
cycle more than I do, but I don’t feel like it’s a safe option necessarily. It’s too
dangerous, it’s really dangerous. (Participant 13)
There’s no way. . . whichever way we go there’s a busy road. And there’s no route
that can go down the side streets or anything. To get to a side road you have to go
down an even busier road. It’s tricky. (Participant 15)
As can be seen, at this point the more structural constraints of the social environ-
ment are coming to bear on participants. Resulting in the emotion-focused response
of resignation among both major groups - those who attempted behavioural changes
and those who did not – this brings into sharp focus the limits of individual agency
within a socio-structural context unconducive to change.

9.4.5 General Beliefs: Uncomfortable Awareness and Understanding

Although resignation is a negative response, it is important to note that participants also
described the use of the monitors in positive – albeit qualified – terms. This was because
of the effect exerted on their general and specific beliefs about air pollution. Participants
widely noted becoming more sensitive to sources of air pollution in the immediate vicinity
of the school run, and aware that air pollution in a given locale can originate from much
further afield. Many also reported being more sensitive to news stories on the topic and
of air pollution being an issue elsewhere, such as in cities or on journeys unrelated to the
school run. Taken together, this amounted to an increasing awareness of air pollution
both narrowly and more generally; a response deemed positive for two main reasons. The
first was intrinsic, with participants appreciating the data for no other reason than to
know. Here, positivity was derived from the way in which the monitors revealed an issue
previously hidden from immediate view. The second was extrinsic, with many seeing the
data as being able to imbue their claims with credibility should they approach others about
pursuing remedial measures, such as school managers and local politicians. However,
while deemed positive, this awareness was also perceived as simultaneously uncomfortable,
especially when coupled with the realisation that structural and environmental factors
largely beyond individual control were inhibiting their ability to respond effectively to the
‘threat’ of air pollution:

My experience was positive and negative; a bit of both. So, positive in my own head, but
also negative in my own head as well because it makes you aware of something that isn’t
very nice and something that you don’t have much control over. Positive because I feel
like there are some things I can do about it. Feeling positive if I cycle and negative if I go
in the car, feeling guilty. Feeling more cross with other people but then recognising that I
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don’t know why people are in their cars; there could be multiple different reasons. Being
cross with the council or the government, but knowing that actually the council can’t do
much about it because they haven’t got any money. So positives and negatives on all levels,
really. (Participant 17)

It was positive because it’s always positive to learn something. And it was negative in
that it was worse than I was expecting. But it was positive that you’re more aware and
that you’re thinking about it more. Ignorance is bliss isn’t it; you can pretend it’s not
happening when you don’t know about it. (Participant 20)

It's positive in the sense that it’s given me a better awareness of air quality and made me
think I should think in different ways. Negative, just in the sense of like I say, it makes
you aware that there is bad air around school and it’s just a bit sad. It would have been
really positive if it had been really green there and we could have thought ‘oh, this is good’,
but it wasn’t. (Participant 34)

Much like that described by [33], there is an important distinction to be made between
awareness and understanding. While awareness denotes an increasing sensitivity to air
pollution issues and its association with certain sources, understanding refers to specific
knowledge of air pollutants, origins and their impact on human health. The monitors
proved to be highly effective at increasing the former, but less effective at improving the
latter. As Participant 18 noted, ‘it has made me more aware, but I also now know how
little I know’; a distinction echoed by Participant 37 who, using slightly different language,
explained that ‘I’m more aware but not educated’. This difference was present throughout
the sample. Compared to responses prior to using the monitor, over half (n=24) reported
‘no change’ in understanding, 44% (n=20) a minor increase and 1 a decrease as they
became aware of the complexity of the issue. Taken together, at the conclusion of the
study 80% (n=36) of participants categorised their understanding of air pollution as either
‘none’ or ‘slight’. As such, the monitors were effective at raising awareness and sensitising
participants to air pollution being an issue, but not so effective at providing detail on air
pollution in relation to its make-up, origins and effects on human health.

9.4.6 Specific Beliefs: The Disruption of Perceived Sanctuary

While the monitors exerted a more general influence on participant awareness of air pol-
lution as an issue, they also affected more specific beliefs. The two mainly spoken of by
participants pertained to the notion of sanctuary; one relating to indoor space and the
other to outdoor. Taking the first as a point of departure, almost half of the sample
(n=19) experienced a form of surprise when the monitors reported poor air quality in the
home. This belief lay dormant and unacknowledged until revealed and then disrupted by
the data. Echoing the ‘home-as-haven’ concept, where ‘private’ and ‘public’ space tend
to be positioned along the respective lines of security and insecurity [283], air pollution is
here believed to be a phenomenon existing outside of residential space:

I just keep looking in the house and I was going ‘oh my god, this is in our own house!
What am I doing to everybody?’. That alarmed me. (Participant 5)

It’s definitely changed the way I view my house as a safe environment. I think as a parent
you think ‘okay, we’re home, we’re safe, it’s all fine’. Well I don’t think I can believe that
anymore. (Participant 9)
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There was this moment where it was really high in the sitting room, and I’ve got the
windows open and I’m checking it and it’s high and I’m thinking ‘what’s going on here?’
(Participant 13)

I would consider getting an air purifier in my house because I didn’t realise how bad it
was. That shocked me. (Participant 14)

Many encountered high levels when cooking meals either side of the school run, or around
the time family members were getting ready in the morning. This is because indoor NO2
and particulate matter tend to originate from domestic appliances which burn carbon
containing fuels, such as boilers, heaters, fires, stoves and ovens, with VOCs emanating
from cleaning and personal care products, building materials and household consumer
goods, such as carpets, laminate furniture, air fresheners and cleaning products (Public
Health England, 2018). However, this was largely unknown to participants; a feature
reported elsewhere, with one survey of 2,000 adults noting that 46% could not detail any
causes of indoor air pollution and only 36% were aware of its effects on health ([284?
]). The reasons for this are not clear, but it may be because research on indoor air
pollution is overshadowed by its outdoor counterpart. Indeed, this situation caused the
Royal College of Paediatrics and Child Health (2018: 1; 2019) to label indoor air pollution
a ‘Cinderella subject’, by virtue of its marginalisation, and initiate a wide-ranging study
on its intersection with child health. This could have subsequent consequences for media
coverage on indoor air pollution, which is also seen to eschew information on its human
health effects (see Mayer, 2012). Whatever the reason, the ‘home-as-haven’ idea rests
on this absence of knowledge, which is why the monitoring data served to destabilise it,
precipitating a surprise response and a subsequent change in individual beliefs.

This bears similarity to the second belief demonstrated, where almost half of the partici-
pants (n=22) reported surprise at the levels of air pollution encountered in green spaces.
Exposing an important caveat to the ‘home-as-haven’ concept, where not all outdoor
spaces are perceived as equally threatening (see [285]), this ‘green-is-clean’ assumption
nevertheless suggests a belief that trees and plants can remove air pollution at a rate
able to mitigate levels harmful to human health. Again, it is only in the presence of the
monitoring data that this belief becomes perceptible and, in much the same way as the
‘home-as-haven’ idea, undermined:

I was really surprised when we went down to the park. I was expecting that to be fine. . . it’s
all surrounded by trees and it was still pretty high. I was thinking ‘oh gosh, we can’t escape
this!’ (Participant 2)

We always walk through the woods. It’s safer for the children and it’s more interesting,
but also there’s that idea that there’s a bit of a green barrier. But we would be in the
middle of the woods and it would still be quite high. I think I was expecting to find areas
of sanctuary from it, but I realised that actually on some days there isn’t, you know? It’s
everywhere. So that was surprising to me. (Participant 13)

Because our school is set back from the road, it’s amongst a lot of greenery and you think
you know the school run is bad but you think that once you’re amongst that greenery that
somehow that helps but, I mean, honestly. . . We’ve been campaigning for a green wall at
[school name]. They’ve put in what we could afford. Is it good though? Because now we’re
thinking ‘oh my goodness, is that going to make any difference whatsoever?’. (Participant
21)
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It was quite concerning because I didn’t think it would be so bad. Around here it’s quite
leafy and green, isn’t it? Even with the main road I thought ‘well, there’s trees all along
it we’ll probably be alright’. But it was worse than I expected. (Participant 38)

Considering that people who live in areas with more and/or larger street trees report better
health perception [286], and Sheffield boasts more trees per person than any other city in
Europe (Styles, 2011), the presence of this belief is somewhat understandable. Buttressed
by national news stories noting the mitigating effect of tree planting on climate change
(see [287, 288]), these beliefs are reflected in a growing body of research demonstrating
a relationship between positive experiences and time spent in greener environments. For
instance, it is associated with the prevention and mitigation of stress, anxiety and de-
pression for both adults and children ([289–292]), particularly in urban areas ([293–295]).
There are also case-specific features to account for. Sheffield has, for almost half a decade
now, been a site of well-publicised tension over the city council’s felling of street trees.
Without recounting the situation in detail (see Heydon, forthcoming), the media coverage
following the initial ‘dawn raid’ by police on elderly protestors, and subsequent high-
profile advocacy campaigns by community groups, does mean Sheffield citizens have been
exposed to a disproportionate level of information relating to the benefits of street trees.
Many of the participants mentioned this ongoing situation.

Whatever the specific origin of this ‘green-is-clean’ belief, the monitors both reveal its
presence and subsequently undermine it, again bringing the complexities of air pollution to
bear on participant assumptions. Trees can remove gaseous air pollution through uptake
([296, 297], and act as a barrier by retaining particles on the plant surface [298], but they
can also have an adverse effect on air quality. Not only can certain species emit volatile
organic compounds [299], but vegetation is of little benefit for reducing nitrogen dioxide
in urban areas, can exacerbate the build-up of pollution in street canyons by reducing air
flow, and is better at redistributing air pollution than removing it (National Institute for
Health and Care Excellence [65, 300]). The monitors served to alert participants to the
‘green-is-clean’ belief before disrupting it, making them attentive to this more complicated
reality and contributing to their increased awareness of the air pollution issue at hand.

9.5 Discussion

There are several ways in which personal air quality monitors influence individual thought
and action around environmental risk. The technology works to alter the behaviour of
users by making a previously imperceptible risk visible. On becoming visible, preconcep-
tions about the “threat” it poses to what is “meaningful”, which in this case is the health
of children, are confirmed. This intersects with the idea that individual action can manage
such a “threat”, providing the initial impetus to consider undertaking changes aimed at
minimising the exposure of children to air pollution on the school run. To a large extent,
this confirms the findings of existing studies, where individual attempts at avoiding or
mitigating air pollution have also been witnessed in users of similar technology (Bales et
al. 2019; Wong-Parodi et al. 2018; Zappi et al. 2012). Where the findings diverge is in
relation to the factors implicated in, and the influences acting upon, the decision-making
pathways underpinning this decision-making process, a divergence that adds to existing
understandings in three key respects.
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First, the findings show that sensor technology does not generate a simple binary response
among users—behavioural change [34, 264] or not [33]—but instead shows it to be capable
of producing both in the same user over the same period. Over time, as attempted
behavioural changes fail to produce the improvements in exposure expected, and the
range of options available for pursuing effective change starts to narrow, negative feelings
can colour users’ increased awareness of air pollution with discomfort and risk eliciting
an eventual inclination towards inaction. That said, it is not difficult to see how this
relationship could also move the other way, with users settling on emotion-focused coping
at the outset but pursuing more problem-focused efforts as their circumstances change
(e.g. if air pollution in a region is less pervasive, they move to another house, or their
children progress to more senior schools that are further away).

Second, monitor use is capable of altering beliefs about air pollution independent of be-
havioural change. This was seen in relation to the ability of monitors to reveal and
subsequently disrupt misconceptions about indoor and outdoor “sanctuary spaces”. Fur-
ther, alerting users to the pervasiveness of air pollution both generally and specifically, this
exerted influence at the point of reappraisals by introducing a perception of inescapability
into user beliefs; a reaction intrinsically linked to the reported feelings of powerlessness.
This holds relevance because existing literature has given disproportionate priority to the
influence of monitors on behavioural change. Yet, their ability to alter beliefs is at least
as important because such cognitive configurations are heavily implicated in behaviour
change. As Lazarus and Folkman [272] take care to note, beliefs are “pre-existing notions
about reality which serve as a perceptual lens. . . determining what is fact, that is, “how
things are” in the environment, and they shape the understanding of its meaning”. With
perceptions acting as a filter through which external reality is experienced, further explor-
ing the effect of personal monitors on this aspect of cognition is a key to understanding
their influence on human behaviour.

Third, existing studies conceptualise monitor use in terms of a simple dualistic relationship
between technology and individual. However, as can be seen here, it is more accurate to
conceive of the relationship as tripartite: between monitor, individual and socio-structural
context. Indeed, the extent to which behaviour change continues over time is largely
determined not by the agency of individuals, but by the various socio-structural circum-
stances with which they are entwined. As noted above, the main difference between the
two broad groups of participants—those who pursued change from the outset and those
who did not—was the point at which these circumstances converged to produce strategy
asphyxiation during secondary appraisal. The associated feelings of powerlessness and
resignation cannot therefore be said to originate in the monitoring technology itself, but
in the social structure that limits what users can do with the information provided by
it. Existing literature has highlighted the limits personal efforts have on either the de-
gree of exposure or level of emissions present in a given area, largely because of their
complications and partial efficacy when compared with measures targeting emissions at
source [301], but these are different to the temporal and spatial constraints reported by
participants here. As such, this study draws attention to the importance of external social
factors when determining internal human responses to monitoring data. Indeed, it is for
this reason that, when considering the influence of personal monitoring technology on
decision-making, socio-structural context cannot be seen as peripheral to the process, but
integral to it.
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9.6 Conclusion

Taken together, the study has demonstrated that personal environment monitors can
play a role in protecting children from air pollution on the school run. They are effective
at raising awareness about air pollution, disrupting misconceptions about where it does
and does not occur, and encouraging users to change their behaviour in an attempt to
mitigate and manage the risks. However, their ability to produce lasting and effective
behaviour change is stymied by socio-structural constraints. As such, it is only with top-
down support aimed at tackling air pollution at source that this bottom-up technology
will attain its full potential.

This has several implications for advancing personal environment monitors and for fu-
ture research on their social consequences, three of which will be emphasised here. With
regard to the former, the social dimension of the technology itself requires further devel-
opment. Currently, the monitors mistakenly represent public issues as private problems.
The more this technology can encourage cooperation between interested individuals then
the likelihood for effective collective action—that is, a social response to social-structural
constraints—is magnified. Similarly, the data collected could be integrated with projects
aimed at collating this data and making it publicly available, an approach already under-
way at the Urban Flows Observatory at the University of Sheffield (2018). The technology
also needs to improve its educational dimension, in terms of the accessibility, in order to
capitalise on its effective awareness-raising role. With regard to the latter, further research
is needed into the long-term effects of this technology not only on beliefs and behaviours,
but also on how decision-making patterns differ between populations embedded in a range
of socio-structural circumstances. Only then can a full appreciation of the transformative
potential of this technology for a variety of user groups be fully understood.

9.7 Contribution

R.C. (Rohit Chakraborty):

• Conceptualization: I played a foundational role in conceptualizing the research,
framing the key research questions, and determining the study’s overarching direc-
tion and objectives.

• Sensor Deployment: I was directly involved in the deployment of air quality sen-
sors, ensuring their calibration for accurate data capture. My involvement ensured
the reliability and precision of the data collected.

• Writing – Drafting and Editing: I was a co-contributor to both the drafting
and editing of the manuscript. My efforts ensured the clear articulation of our
research findings through the sensor driven along with the surveys and interview
data, methodologies, and conclusions, maintaining academic rigor and coherence
throughout the paper.

• Data Analysis: I took charge of the data analysis, applying rigorous methods to
interpret the collected data both qualitative (in the paper) and quantitative. My
expertise ensured that patterns were deduced accurately, insights were extracted,
and the results were presented in a meaningful manner.
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• Discussions and Interpretation: I was actively involved in discussions around
the data, its implications, and the broader context of air quality and citizen en-
gagement. My insights and expertise played a pivotal role in shaping the study’s
conclusions and recommendations.

• Methodology: I contributed significantly to designing the research methodology,
ensuring our approaches were robust, appropriate, and tailored to address our re-
search objectives effectively.

• Collaboration and Coordination: As one of the two co-authors, I collaborated
closely with my counterpart, ensuring our combined expertise and efforts were har-
moniously integrated into the final manuscript. Our joint efforts ensured the paper’s
quality and impact.

Given the paper’s focus on exploring the influence of portable air quality sensors on
user behavior, my involvement was comprehensive, spanning from the initial stages of
conceptualization to the final stages of manuscript preparation and review. My dedication
and expertise were instrumental in realizing the research objectives and ensuring the
study’s success.



Chapter 10

Wood Burning Stoves,
Participatory Sensing and ‘Cold
Stark Data’

Abstract

This study explores whether participatory sensing technology, namely air quality moni-
tors, influences the perceptions and behaviours of wood burning stove users when they are
made aware of their exposure to indoor emissions. Situated in the literature on partici-
patory sensing, which is an approach to citizen science where lay persons use monitoring
equipment to analyse various issues, and that on public understandings of air pollution,
this study uses coping theory to explore the cognitive and behavioural implications of
engagement with indoor air quality data. Drawing on interview data from stove users
equipped with air quality monitors, the results suggest that quantitative representations
of air pollution data, such as air quality indexes, can be difficult to interpret by lay
persons. The absence of meaning inherent to these forms of display encourage a search
for meaning elsewhere. In these situations, participatory sensing technologies act to pull
wider preconceptions of indoor air pollution into the process by which monitoring data
is interpreted. As these preconceptions hold stoves in a positive light, while concurrently
painting other sources of air pollution as harmless, the perceived risks posed by indoor
stove emissions are minimised. This renders air pollution data less persuasive and, in
turn, less successful at changing the perceptions and behaviours of wood burning stove
users. On this basis, it is recommended that future research into air pollution monitor-
ing and participatory sensing prioritise the roles of data presentation and wider social
constructions of risk in influencing perceptions and behaviour change.

170
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10.1 Introduction

One of the most harmful components of air pollution is particulate matter (PM). Particles
with an aerodynamic diameter equal to 2.5 µm or less (PM2.5) can move into every organ
in the body, being linked with seven million deaths per year globally [17]. It heightens the
risk of developing a host of illnesses ranging respiratory infections through to dementia,
strokes, and Parkinson’s disease [62]. Much of the research into PM emissions focuses
on those generated by industry and traffic [302, 303]. However, in the United Kingdom
(UK) the primary source for PM2.5 is the domestic burning of wood and coal for heating.
Residential stoves are responsible for 38% of ambient PM2.5 pollution nationally, being
generated by just 8% of the population [304]. As such, the popularity of wood burning
residential stoves is a pressing issue, particularly for those in urban areas.

While the outdoor emissions generated by these stoves have been well-documented, studies
also show that they contribute to indoor air pollution irrespective of design. PM originates
from older stoves [305–307], which are without emissions control features and lack approval
by national environment regulators. They are also produced by newer stoves, which are
equipped with such features or carry a marker of regulatory approval [56, 308, 309]. Even
locations that see older stoves replaced by newer models confirm the continued presence of
indoor emissions [310, 311]. Such pollutants have been found to result from leakages [312],
but a larger body of evidence associates indoor PM with the opening of the stove door
during lighting or periodic refuelling [308, 310, 311, 313]. Chakraborty et al. [56] refer
to this as ‘flooding’, where plumes of PM enter the room when the stove door is opened
and linger for at least the period in which the stove is in use. The present study sought
to understand the ways in which people interpret and act upon air quality information
revealing this reality, thus providing insight into how new sensing technologies may provide
opportunities for stove users to manage their exposure to PM emissions in the home.

Attempts at making the levels and risks of outdoor air pollution visible have been ongoing
for fifty years. Much of the early work in the UK focused on the operation of smoke control
areas, with several studies in the 1970s using surveys to investigate public responses to
air pollution on a broad scale [314–317]. According to Bickerstaff and Walker [316], this,
along with its associated literature on public responses to environmental risk, was based
overwhelmingly on a ‘deficit model’ of public understandings of scientific information. Un-
der this approach, the divergence between scientifically defined and publicly understood
environmental risk is framed in terms of ignorance and irrationality on behalf of the lat-
ter [318, 319]. By contrast, the turn of the century saw a more sociological literature
emerge that emphasised the ways in which the public actively negotiate scientific infor-
mation; through a social process of reflexive interpretation and critical evaluation, instead
of passive assimilation restricted to the level of the individual [320–324]. As Cupples et
al. [325] explain, compared to professional scientists,

the public, which is the target of this information, processes
it in a more random and imprecise way, drawing also on
lay knowledges and embodied experiences. . . cultural circum-
stances are not external to scientific knowledges but are, in
fact, the sites on which scientific knowledges circulate. . .



Chapter 10. Cold Stark Data 172

In accordance with this, sociological research has increasingly highlighted a range of psy-
chological, social, geographic, and cultural influences on public perceptions of and reac-
tions to air quality information. Direct experience provides much of the basis for these
understandings [321], emphasizing the primary role undertaken by the senses in risk per-
ception [326, 327]. However, this is mediated by social constructions of place, where sense
perception is tied up with socio-cultural commitments to location and community mem-
ory [318, 328, 329]. For instance, a ‘halo effect’ has been found to exist at the level of
homes [330], neighbourhoods [320, 331] and public parks [332]. This is where positively
perceived spaces are seen to provide ‘sanctuary’ from air pollution relative to other, more
negatively perceived areas and irrespective of actual levels of air pollution. Also impli-
cated is the trustworthiness of the institutions responsible for regulating air quality [333],
gender, where women with children have been found to be more aware of air pollution
than men [334], and the cultural meanings attached to air polluting activities [335].

Much of the literature on public understandings of air pollution focuses on outdoor emis-
sions and the technology through which air quality information is provided, such as Ceefax,
weather information, and documentaries [319, 320, 334]. Similarly, it has only recently fo-
cused attention on technologies associated with participatory research [336]. At least two
decades old, participatory research is a form of citizen science that involves non-scientific
actors in scientific study [337]. Boso et al. [336] describe ‘participatory sensing’ as a ‘new
stage’ in this approach, based on the idea that technology now permits members of the
public to ‘objectively record, analyze, and discover a variety of patterns concerning impor-
tant issues in their lives, such as health, environmental quality, and traffic’. According to
Goldman et al. [338], this facilitates a new collective ability where people can participate
in examining aspects of their every day that ‘before were invisible’. Much of this literature
focuses on technological efficacy, or what the sensors can reveal about hitherto unseen as-
pects of the environment [56], but few studies have evaluated its cognitive and behavioural
implications [339]. Those that do exist illustrate how engagement with air pollution sen-
sors can elicit enjoyment and surprise in users [263, 340], increased awareness [336], intense
emotional reactions [334], and resignation [332]. Sensor use has also been found to en-
courage various behavioural changes depending on the situation in which they are used,
ranging from inaction on behaviours contributing to outdoor emissions [334, 336], the
closure of windows and alteration of stove management practices relating to residential
stove use [263, 341], and alteration of the school run route in response to traffic emission
data [332].

This study addresses several gaps in knowledge left untouched by these literatures. First,
accounts of sensor data provoking a given response are largely atheoretical. Studies tend
to focus on the outcome of data engagement – behaviour change or not – as opposed
to the personal, situational and contextual factors acting upon the encounter to produce
said outcome. By contrast, this research draws upon Lazarus and Folkman’s [272] coping
theory to draw out the decision-making process implicated in these responses, thereby
offering a fuller understanding of how people engage with participatory sensing technolo-
gies. Second, there is a lack of existing literature on whether perceptions of air pollution
data mirror actual levels of indoor exposure [330]. Following Boso et al. [336], this will
address the question of whether the ‘home halo’ effect accurately reflects indoor air pol-
lution levels. Finally, the literature on public understandings of air pollution and that
on participatory sensing have only recently started to speak to one another [336]. This
study aims to further bridge this gap, establishing the processes by which wider social
constructs exert influence on individual perceptions of sensor data.
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In addressing these gaps, the study contributes to knowledge on the transformative po-
tential of participatory sensing in the context of indoor air pollution. It illustrates that
the predominant focus on behavioural responses to monitoring technology comes at the
expense of cognitive processes acting to mediate behaviour. By challenging this approach,
the study demonstrates how features of data presentation, including quantification and
numeric threshold limits, are experienced by users as unrelatable and ambiguous. This
encourages a search for meaning elsewhere, pulling wider social constructions of air pol-
luting behaviours into the cognitive space and allowing them to influence interpretations
of the sensor data. To attend to these complexities, the study shows how research on
cognitive appraisal, public responses to air pollution data and participatory sensing can
draw more deeply from one another and, in doing so, explore these intersections. Such
an agenda is critical if the potential for participatory sensing technologies to inform and
encourage behaviour change is to be realised in future.

10.1.1 Theoreticial Lens

The process-based model of coping explains how a person evaluates and responds to
potentially stressful encounters. Developed by Lazarus and Folkman [272], it is ‘process-
based’ because instead of coping being conceived as a personality trait it is understood
to result from a recursive relationship between person and environment. Under this
approach, ‘coping’ refers to the ‘thoughts and behaviours used to manage the internal
and external demands of situations that are appraised as stressful’ [342]. The model
defines ‘internal’ demands as stemming from beliefs and commitments, and ‘external’
demands as relating to the features of the circumstances in question. Following this, the
extent to which a given event is defined as ‘stressful’ is determined by a combination of
factors relating to the person and the situation [272].

Proceeding from the need to understand cognitive processes underpinning participatory
sensing, this study uses coping theory to understand how adults respond to monitoring
data on indoor emissions from residential stoves. Almost four decades since its publi-
cation, coping theory remains key to understanding responses to environmental stimuli
across multiple disciplines [266]. Originally taking cue from the literature on wearable
healthcare devices, much of which is concerned with the ‘infusion’ of technology into a
person’s life [271, 343], this study replicates the use of coping theory in other participatory
sensing studies [332]. Doing so addresses Irwin et al.’s [318] early call for a ‘contextual
approach [to engagement with air quality information] which is sensitive to the processes
through which people make sense of their immediate environment’. By drawing attention
to the cognitive process triggered by an environmental encounter, coping theory sensitises
analyses to internal and external influences upon people on the way to a given behavioural
outcome. In doing so, the study provides a more nuanced account of those engaged in
participatory sensing when compared to the largely atheoretical approach adopted by
existing scholarship. Furthermore, replicating the approach undertaken in prior studies
allows for comparisons to be made between different user groups, furthering knowledge
on variable responses to sensor use. In this way, the study directly responds to Hubbell et
al.’s [339] request for future research into how different groups interpret, communicate and
respond to air pollution data. According to the theory, coping behaviour results from an
initial two-part appraisal of a person’s encounter with environmental stimuli. A ‘primary
appraisal’ occurs when a situation is first evaluated as exerting an influence on someone’s
well-being, with the outcome being considered positive, irrelevant or stressful [266]. Here,
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what is deemed to be at stake influences which of these categories the encounter falls
into. Stress may result from the interpretation of the situation as ‘harmful’, where some
damage or loss to the person has already occurred, or as a ‘threat’, which involves an-
ticipated harms or losses [272]. Also implicated at this point is a ‘secondary appraisal’,
which entails a person’s evaluation of their control over the stressor to determine their
ability to manage or alleviate its consequences. Despite having the labels ‘primary’ and
‘secondary’ these forms of appraisal are not sequential. As Folkman [265] clarifies:

When that which is at stake is meaningful and coping resources
are judged less than adequate for managing the demands of the
situation, psychological stress is experienced. The greater the
imbalance, the greater the stress.

It is the outcome of this two-part appraisal that influences subsequent emotions, coping
strategies and outcomes [266]. Put another way, this initial stage of ‘cognitive appraisal’,
where an individual encounters a given stimuli, interprets it as stressful or not and decides
whether it can be managed, acts as the precursor to subsequent mental and behavioural
adaptations to the situation. The coping efforts triggered by this prior stage of appraisal
can take many forms, but they are associated with two different but related categories:
problem-focused and emotion-focused coping efforts. The former of these outcomes refers
to attempts at managing or mitigating the source of stress. Speaking to proactive efforts
at altering the situation, this includes – among others – attempts at removing or reducing
obstacles, attaining new skills, seeking assistance or planning for action towards these
efforts [272]. By contrast, emotion-focused coping refers to internal attempts at mitigating
the mental and emotional distress elicited by a stressful encounter, including redefinitions
of the situation, denials or acceptance (ibid). Although different, these categories are not
wholly independent from one another and to ‘set them up as competitive is to distort the
way coping actually works’ [344].

Following these two stages of cognitive appraisal followed by coping effort, people may
then ‘reappraise’ the situation to determine whether their problem- or emotion- focused
coping responses worked to mitigate the stress experienced. This third stage refers to a
new process of appraisal following earlier iterations, converting what has up until now
appeared to be a linear process into a circular one[272]. In essence, this acknowledges
that an initial coping effort may work to alter the outcome of a subsequent appraisal.
Taking this as the point of departure, the article now applies this model to those using
air pollution sensors to detect indoor emissions from residential stoves.

10.2 Materials and methods

10.2.1 Research Design

The design of this study is exploratory and primarily qualitative, with most of the data
being collected from three instruments administered in sequence: surveys, research diaries
and interviews. Quantitative sensor data on the indoor emissions from residential stoves
was collected for the purposes of a sister study [56], some of which is also presented here.
With the primary aim of exploring the influence of personal exposure information on
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perceptions of and behaviour towards indoor air pollution, the surveys were administered
prior to receipt of the sensor technology. Participants were then asked to complete a re-
search diary entry each time they used the stove over a four-week period. Each participant
was then interviewed about their experiences, perceptions and behaviours at the conclu-
sion of this period. The fieldwork was conducted between January and April 2020. The
study was granted ethical approval by the Research Ethics Sub-Committee at the Univer-
sity of Nottingham. The Reference Number evidencing this approval is 1920-059-STAFF.
Free, prior and informed consent was received by all participants prior to conducting the
study.

10.2.2 Sample and Procedure

The sample consisted of thirty participants drawn from across the city of Sheffield in the
north of England. The majority of participants were homeowners (n=28) and lived with
one other adult (n=25). Two thirds of participants lived in the same household (n=20).
Participation was limited to adults in households with a DEFRA-approved stove (n=19)
or an open fire that was used according to DEFRA guidelines (n=1). A minority of
households used a stove as the primary heat source (n=2). Participants were recruited
through local community social media pages. Following the initial expression of interest,
participants were sent an electronic copy of the survey to complete. Jisc Surveys was
used for this purpose. Arrangements were then made to install the indoor and outdoor
monitors. At the point of installation, participants were also given a tablet computer
and instructed on how to access the sensor data. Information on the thresholds and
colour coded data display was also provided. They were then asked to check the sensor
data and complete the research diary each time the stove was used. Interviews were
conducted after four weeks, with questions centring on participant mental and behavioural
experiences over this time. Consistent with Heydon and Chakraborty [332], to facilitate
reflection on aspects of change within this experience, specific survey responses given
by each participant were also recalled during interviews. Interviews were conducted by
an experienced social researcher. Methodological details relating to the sensor data are
outlined in Chakraborty et al. [56].

10.2.3 Analysis

The qualitative data gathered from the surveys, research diaries and interviews were
thematically analysed according to the approach outlined by Braun and Clark [345]. This
was conducted on a rolling basis and justified on the grounds of theoretical saturation,
where participant recruitment continues until no new or deviating data was being added
to the categories of analysis [346]. This was disrupted somewhat by introduction of the
Covid-19 lockdown across the UK on March 23rd 2020, but lockdown also coincided with
the end of the UK stove season. As such, participant recruitment was already ceasing.
The analysis allowed for both inductive and deductive codes to be generated, although
those pertaining to the tenets of coping theory formed primary focus. Analysis of the
qualitative data was conducted using NVivo, while the quantitative data was analysed
using Microsoft Excel.
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10.2.4 Limitations

The study exhibits several limitations. First, it draws its data from stove users within a
relatively narrow geographic area, the majority of which use stoves as a secondary heat
source. As such, the findings may not be generalisable to those using stoves under different
circumstances, such as in rural areas or in situations where stoves are relied on as the
primary heating source. Second, the study focuses on perspectives relating to indoor
emissions, meaning different conclusions may be reached if perspectives on outdoor stove
emissions were under investigation. Third and finally, several limitations are associated
with the quantitative sensor data relating to variability in the research setting, due to it
exploratory design and focus on real-world use [56].

10.3 Results

10.3.1 Two Appraisal Pathways, One Outcome: No Perceived Threat

As illustrated in Fig 10.1, two main appraisal pathways were undertaken by participants
when engaging with the sensor data. Those in Pathway A, which comprised just under
half of the participants (n=13), understood the sensor data as indicating a ‘threat’, to
use the language of coping theory. They then made conscious behavioural adjustments to
try and mitigate the perceived risk. By contrast, those in Pathway B, which comprised
of just over half of the participants (n=17), did not perceive the indoor air quality data
as indicating a threat and, as such, made no conscious behavioural adjustments following
engagement. Each pathway will be examined in turn.

Figure 10.1: Two Main Cognitive Appraisal Pathways.
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When an encounter is conceived as stressful, coping actions aimed at managing or miti-
gating it are enacted [272]. Those in Pathway A (n=13) altered their behaviour because
of the emission peaks witnessed on the monitors at the point of stove lighting [56]. A
variety of coping efforts were attempted by this group, most of which focused on stove
management actions. These included opening the stove door less wide and less frequently
(n=4), closing stove air vents (n=4), minimising refuelling (n=4), improving ventilation
through opening doors and windows or purchasing an air purifier (n=3), avoiding stoking
the fire (n=1), putting logs on more slowly (n=1) and striking the match inside the stove
(n=1). Some made multiple changes at once in an attempt to reduce their exposure to the
peaks. All were low-cost adjustments similar to those reported by sensor users in Boso et
al. [336].

The coping efforts made by users in Pathway A led to reappraisal and, ultimately, served to
assuage their concerns about the PM levels seen on the monitors. Compared to pre-sensor
use, all but one saw their levels of concern stay the same or decrease through engagement
with the data. Of the 13 in Pathway A, 5 finished the study ‘not at all concerned’, 5
‘slightly concerned’, 2 ‘very concerned’ and 1 ‘concerned’. Only 1 of the ‘very concerned’
respondents experienced an increase in concern. This is why the cognitive appraisal
process for those in Pathway A ends with no threat being perceived; the coping efforts
are considered effective at reducing the peaks in indoor PM detailed on the monitors,
requiring no reappraisal or further action:

. . . if you’re lighting it and it’s not properly lit and it’s all smoul-
dering and you open the door, and opening the door creates a
puff of air out. . . that’s where you need to be careful. We saw
it spike up a bit and come down. Having the sensors there, I
was able to tune the time I had that open and get that better.
I think it took me three days to get it right.

(Participant 1, interview)

The more particulates were visible on lighting and then the
first, maybe, half hour after that. Then once we were able to
get the fire hot, really hot, it started to die down. Once it was
started, the levels in particular didn’t really concern me. It
was just the initial stage.

(Participant 26, interview)

This absence of concern was more immediate for those following Pathway B (n=17), where
participants perceived the same peaks as those in Pathway A but did not interpret them
as a stressor. As a result, these sensor users did not pursue problem-focused coping efforts.
As Participant 30 noted, “the readings went high when we first lit the fire but then they
were very low. I actually feel much better about using it because of how low they are”.
Similarly:
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There was a spike in all particle readings just after lighting. All
levels declining since lighting. Results don’t seem too severe
and enjoyment of the log burner is more important to me.

(Participant 5, research diary)

On the monitor you could tell when we opened and lit the stove,
and there was an initial rise, but it was still within the sort of
safe limits. Then, after, they gradually decreased again. . . so
we began to feel confident that the stove is generally pretty
safe for us.

(Participant 7, interview)

Comparing reported levels pre- and post- monitor use, all 17 in Pathway B experienced
the same or decreased feelings of concern about their stove following engagement with
the data. Of the 17, 10 finished the four weeks ‘not at all concerned’ about the effects
of their stove on indoor air quality, while the remaining 7 were only ‘slightly concerned’.
Combined with the results from Pathway A, the prevailing effect of sensor use across
both pathways was to decrease concern about the indoor emissions from their residential
stoves (see Fig 10.2). Engagement with sensor data therefore generated a combination
of ‘irrelevant’ and ‘benign-positive’ appraisals, eliciting either an indifference towards or
positive perception of stoves. As Lazarus and Folkman [272] note, such a combination is
not unexpected; ‘appraisals can be complex and mixed, depending on person factors and
situational context’. As can be seen below, the intersection of these two spheres is heavily
implicated in the decreasing concern reported.

Figure 10.2: Reported Concern about Indoor Air Pollution from Stoves Pre-
and Post- Sensor Use.
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10.3.2 No Perceived Threat: Interpretation vs. Reality

For participants across both pathways, the perceived absence of threat does not accord
with the levels of exposure recorded by the sensors. Fig 10.3 illustrates that for most
stoves the median indoor PM2.5 emitted over the average 4 hours in which they were
lit sits between 10 and 20 µg/m3. However, there is widespread variability around
this exposure level, as illustrated by the upper quartiles and the maximum values across
the stoves. While Fig 10.3 does not show the high intensity ‘peaks’ of indoor pollution
experienced by participants, these events varied between a maximum peak average of 47.60
µg/m3 for PM2.5 and 36.15 µg/m3 for PM1, with some users being exposed to maximum
values of up to 160 µg/m3 PM2.5 in a single sitting [56]. In light of this, and contrary to
participant perceptions, the sensor data indicates that real-world stove operation is not
harmless and instead involves frequent though variable exposure to intense levels of PM2.5

inside the home. This addresses a gap in the participatory sensing literature, answering
the question of whether the ‘home halo effect’ accords with actual exposure [330]; across
the households under study here, it does not. This echoes the findings of Boso et al. [336],
adding weight to the idea that people overestimate the quality of air in their homes. These
findings also echo the sociological literature on the divergences seen between official air
quality measurements and personal assessments of risk, which arise largely because of the
mediating role of interpretation [321, 334].

Figure 10.3: Average PM2.5 Exposure per Stove.

As Fig 10.3 shows, households 1, 2, 11, 13 and 14 experienced much lower indoor emissions
relative to other households in the study. The qualitative evidence for those in this group
concurs with the quantitative data from the sister study, where indoor emissions are seen
to result from the opening of the stove door. As such, efforts aimed at minimising the
time and frequency of this action appeared to reduce exposure [56]:
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We’ve tried to minimise the amount we’re opening the door,
whereas me particularly I used to make a very small fire and
gradually just keep adding stuff. . . I now just really stack it up
inside with progressively thicker stuff and light it and leave it
shut. Then by the time you have to put more stuff on it’s
already hotter so the draw is much greater, so there’s it’s far
less likely to come into your room.

(Participant 2, Household 1)

I was more careful with the kindling and more careful with
the initial three logs, and then the next two logs and the next
two logs, and I was careful with the amount of time I opened
the door. . . I just pulled it half an inch, then slowly opened it,
then I put the logs on as fast as possible...I started putting the
match box inside the stove and just doing a forward strike and
then lighting it and closing the door quick.

(Participant 16, Household 11)

Despite such efforts, peaks still occurred and maximum average values still exceeded
thresholds in three of these five households. This echoes the variability of exposure to
indoor emissions, reduction of which is highly dependent on the user’s ability to consis-
tently limit the frequency and duration in which the stove door is opened. Some reported
this to be challenging during high winds (Participant 16, Household 11), if there was too
little ash in the stove bed (Participant 1, Household 1), or the user was having an ‘off day’
(Participant 23, Household 13). Taken together, this speaks to residential stoves being
embedded in a dynamic system, with various system inputs and external factors acting to
produce undesirable emissions, often without any optimal control or stability [347]. This
is particularly salient when looking at outdoor emissions, as stove emission factors vary
depending on their type, manufacturer, model, design [348], fuel moisture content [349],
house ventilation, chimney insulation [350], flue height and diameter [306], distance be-
tween roof ridge and outlet [351], ambient weather, outdoor air quality, and surrounding
topography. Add into this already-dynamic system a human being, whose inconsistent
behaviour intersects with many of these elements [352], then production of consistently
minimal emissions both indoors and outdoors is always going to be difficult to attain
under real-world conditions.

10.3.2.1 Situation Factors Influencing Interpretation: The Role of Data Pre-
sentation.

As can be seen, exposure to intense peaks and average increases occurred for the majority
but were not perceived as particularly harmful. Even those that perceived the peaks as
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‘threatening’ considered risk to be almost completely negated through minimal behaviour
changes. This divergent interpretation arose for those in both coping pathways for reasons
relating to data presentation format and preconceptions about stoves. This mirrors coping
theory in that the ‘extent to which any event is stressful is determined by a confluence of
person and situation factors in a specific transaction [272]. Taking the situation factor of
data presentation as the point of departure, while 6 participants were relatively satisfied
with the data presentation format, the remaining 24 described it as decontextualised and
lacking relatability. As noted by participant 12, ‘[a]lthough I’ve learnt what stuff means,
as in I’ve learnt what PM1 is, I can’t actually relate that to anything’. Similarly:

You can see what the figure is but it’s not telling you what the
impact is. There’s no comparison with anything else. It’s not
contextualised in any way. . . it’s not bound to anything, is it?
It’s cold, stark data.

(Participant 15, interview)

I think this actually speaks. . . to the lack of information that
the numbers give us. Like, while they do give us lots of infor-
mation they also don’t tell us a lot about the actual [health
effects]. . . that sort of meaning, you know?

(Participant 18, interview)

The quantification spoken of here is visible in Fig 10.4. The data was presented using a set
of dials with real-time PM1, PM2.5 and PM10 exposure data displayed at the top of the
screen, and with longitudinal graphics illustrating exposure over a 24-hour period. There
is no known safe limit for PM1, but the ‘traffic-light’ system used for the other fractions
are colour-coded according to the WHO’s 24-hour exposure thresholds. This approach
is common in the air quality sensor industry, where this colour scheme and threshold
combination are widely used to inform data displays. However, the only non-quantified
meaning being communicated is via the traffic-light system and, even then, each colour
only depicts a quantity of PM µg/m3. A level of risk is communicated by this colour
coding, but what that translates to in terms of health effects or equivalent risks is not
detailed.

Figure 10.4: Data Display for Air Quality Sensor.
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A second feature implicated in the interpretation of data relates to the suitability of the
presentation format for the indoor emission pattern produced by stoves. As Chakraborty
et al. [56] demonstrate, indoor exposure takes the form of intense ‘peaks’ and average
increases of PM over the time in which stoves are lit. The real-time dials are effective at
displaying this information in the moment, but it is only short-lived. By contrast, the
longitudinal graphs display this data over time, allowing users to view their exposure over
a longer period. However, these graphs actually obscure the significance of such ‘peaks’
because they are based on the WHO 24-hour average threshold. Even when the peaks
are of a very high intensity or occur repeatedly before returning to lower levels, their
significance is lost in a graphical interface that presents more information on the period
in which stoves are not lit than when they are (see Fig 10.4). The absence of meaning
inherent to these presentation characteristics had consequences. It served to generate a
space in which participants searched for indicators of meaning elsewhere. For many, these
‘signs’ came in the form of other emissions picked up by the air quality sensors, including
those from cooking, lighting candles and cleaning, amongst other things. Comparing
stove emissions to these more ‘everyday’ activities served as a benchmark by which the
figures relating to stoves could be better understood. However, as the quantification
and 24-hour average thresholds inherent to the presentation format remained unchanged,
participants drew from their already-existing understandings of these other activities as
harmless when reading the data. This is visible in their interpretations, which further
diluted the perception of indoor stove emissions as harmful:

[T]oast gives massive spikes. . . joss sticks and candles, they give
off loads. So that made me think, well, you need to judge
pollution against other things that are happening. So, I guess
I went from, to begin with, thinking ‘oh my god, this stove is
leaking, it’s giving us spikes’, to then thinking, ‘actually, in the
context of other things that seem quite normal, maybe it’s not
so bad’.

(Participant 10, interview)

After I saw the readings of the first couple of times of having it
on I thought ‘oh jeez, we’re all in there’, you know, especially
having a child. . . But I was worried at first and now I’m not
particularly, so obviously the effects haven’t lasted. We got
some really big peaks when we were cooking, which everybody
does, and you can’t really get away from that so how bad can
it be, really?

(Participant 25, interview)
0Participants had the option of displaying the data on the tablet computer in a landscape or portrait

orientation. In portrait, fewer data fields appear on screen at once.
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It is at this precise point where the data presented by the individual monitors encounter
more personal understandings of indoor air pollution. Much like the ‘clues’ sought by
participants in [318] study, the ambiguity communicated by the sensor data encouraged
users to seek a relatable explanation elsewhere. Here, already-existing understandings of
air pollution from other indoor activities came to occupy the interpretive space created.
At the point of encounter, the sensor data was not exerting influence on a neutral po-
sition of understanding, but came to contend with already-existing terrains of knowing
and unknowing with which it vied for influence. Ultimately, the ambiguous presentation
format generated the space for other influences to enter the appraisal process, appearing
to minimise the threat perceived and affecting the coping efforts undertaken thereafter.

10.3.2.2 Person Factors Influencing Interpretation: The Role of Preconcep-
tion.

While coping theory emphasises the situational encounter in explaining how people re-
spond to environmental circumstances, it also acknowledges that such responses do not
occur in a vacuum and that person factors also influence how somebody responds to a sit-
uation. This is particularly so when the situational information required for an appraisal
is unclear or insufficient. As Folkman and Lazarus [265] make clear, such ambiguity causes
the person to:

[i]nfer meanings based on personal dispositions, beliefs or expe-
riences. The greater the ambiguity, the more influence person
factors have in determining the meaning of the environmen-
tal configuration. . . whenever there is ambiguity, person factors
shape the understanding of the situation, thereby making the
interpretation of the situation more a function of the person
than of the objective stimulus. . .

As illustrated throughout Introduction section, the sociological literature is replete with
examples of people interpreting air pollution data through internal mediation processes.
These draw upon already-existing experiences, understandings and social constructs to
influence how sensor information is interpreted and subsequently acted upon. As can
be seen in subsection Situation Factors Influencing Interpretation: The Role of
Data Presentation, interpretations of the sensor data relating to other indoor sources
were based on pre-existing understandings of whether emissions from these activities were
harmful. However, the research design also allows for some of the more general pre-
conceptions to be viewed, demonstrating that the sensor data is not only failing to convince
because of an unrelatable data presentation format, but also because it is entering a
cognitive process already coloured by a predisposition to view residential stoves in a
positive light. Compared to knowledge of their detrimental effects on outdoor air quality,
user knowledge of indoor stove emissions was far less certain (see Fig 10.5)). Those
answering ‘neither agree nor disagree’ recognised that indoor emissions resulted from stove
use but considered it to be insignificant. This ambiguity about indoor stove emissions
specifically may be related to the lack of knowledge about indoor air pollution more
generally. For instance, one survey of 2,000 adults found that 46% could not name a
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source of indoor air pollution and only 36% were aware of its effects on health [353, 354].
This may be associated with the status of indoor air pollution research being historically
overshadowed by its outdoor counterpart [302, 355]. Indeed, research on indoor emissions
from DEFRA-approved stoves is a relatively recent undertaking[56], meaning there is little
wider social commentary supported by credible evidence about the indoor air pollution
produced by these forms of heating.

Figure 10.5: ‘My stove reduces the quality of air outside my house’ vs. ‘My stove
reduces the quality of air inside my house’ Pre-sensor use.

The second and third preconceptions were more positive in orientation and built on this
ambiguity, with the former concerning the justification for stove use and the latter how
‘environmentally friendly’ users considered their stoves to be. The dominant reasons
given for stove use included warmth (n=24) and ‘cosiness’ (n=21), often being presented
together (n=18). This mirrors a recent DEFRA (2020: 86) survey of almost 1,000 UK
stove users, which found the primary reason for lighting a fire was ‘to create a homely
feel’. A similar result is reflected in the national Domestic Wood Survey [356], where 27%
of respondents burned wood for ‘aesthetic value’.Emden and Murphy [357] also associate
the continued demand for stoves with this aesthetic component. As such, wider visual
imaginaries around wood burning are here exerting influence within the cognitive appraisal
process to affect interpretations of sensor data.

The third characteristic added to this positive preconception, with the majority of par-
ticipants (n=18) considering their stove to be ‘environmentally friendly’. For most, this
perception drew its credibility from several sources; the DEFRA stove certification, use of
seasoned wood instead of wet wood, and comparisons with the CO2 produced by gas-fired
central heating systems. As participant 20 noted, ‘I don’t know if it’s environmentally
friendly, but the blurb says DEFRA approved, so. . . ’. Similarly:

The stove is DEFRA approved for smoke control areas and
refers to environmental credentials in sales literature. I burn
fully seasoned, waste wood and burn far less gas as a result.

(Participant 12, pre-use survey)
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Yes, it is environmentally friendly. It’s DEFRA-exempt, we
burn only well-seasoned dry logs, is CO2 neutral and we use
locally sourced fuel.

(Participant 19, pre-use survey)

It’s DEFRA-rated, we burn a waste wood-based briquette
product and seasoned logs, carefully monitoring burning con-
ditions. It’s likely better in terms of carbon neutrality than
the gas central heating.

(Participant 28, pre-use survey)

Amounting to a position that holds stoves in a positive regard aesthetically and envi-
ronmentally, these preconceptions are reflected in wider research on public knowledge of
residential stove pollution. A recent survey of 2,000 UK stove users found half to be
unaware that stoves can have a negative impact on health, a third associated stove use
with positive aesthetics, and one fifth considered wood burners and coal fires to be the
most environmentally friendly ways of heating homes [358]. This is further supported
by research into 16,000 members of the public from across seven European countries,
which found that people consistently underestimate air pollution from residential stoves
compared to other sources [359].

Taken together, the absence of knowledge about indoor emissions linked with the ‘cosiness’
aesthetic and ‘environmentally friendly’ moniker to create a relatively positive baseline
perspective on stoves. The preconceptions underpinning this position were not passive
and, instead, were pulled into the cognitive appraisal process by the ambiguity created
by the sensor data. As Lazarus and Folkman [272] note, ‘[e]ven in situations where there
are cues signalling harm or danger, ambiguity can be used to reduce threat by allowing
alternative – perhaps reassuring – interpretations of the meaning of the situation’. The
quantitative data, presented using WHO 24-hour average thresholds and colour coded
real-time displays, was not relatable enough to stand alone as a persuasive source of in-
formation about the risks posed by the indoor emissions being produced. Instead, the data
presentation format encouraged a search for meaning in preconceptions, minimised the
perceived threat and did little to alter the positive perception of stoves already established
in the minds of users.

10.4 Discussion

The findings show that households experienced high but variable ‘peaks’ of indoor PM
from their residential stoves [56]. Perceptions of this exposure as a ‘stressor’ varied, with
participants falling into one of two groups; those that did not conceive of the ‘peaks’ as
harmful and those that did. The former group did not change their behaviour, as no
threat was perceived, while the latter pursued problem-focused coping efforts to reduce
exposure. These concentrated on changing stove management practices, mirroring existing
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studies where similarly individualised attempts at avoiding or mitigating air pollution were
also triggered by sensor technology [263, 332, 336, 340, 341]. Over the four-week period
in which air quality sensors were installed, users in this group reported a reduction in
concern to such an extent that it was not perceived at the conclusion of the study. As
such, while both groups followed different coping pathways, sensor use resulted in similar
responses to the data; a perception that indoor emissions produced by stoves are not
harmful. Implicated in this was the way in which data presentation format triggered
a search for meaning elsewhere, in more relatable activities, importing pre-conceptions
about these activities into the cognitive appraisal process and influencing how the data
was interpreted. This has several consequences for the participatory sensing literature.

First, echoing recent work by [336], the home-halo effect does not correspond with actual
levels of indoor air pollution [330, 332, 333]. Despite concern decreasing amongst users
following engagement with the sensors, households experienced high but variable ‘peaks’
of indoor PM from their residential stoves which served to increase their average exposure
over the duration in which the stoves were lit [56].

Second, the way in which sensor data is presented has a substantive bearing on user percep-
tions. Echoing existing research on public interpretations of air pollution data [319, 333],
widely used WHO thresholds, display formats based on 24hr averages, and PM exposure
expressed in the units of µg/m3 are experienced as overly quantified and unrelatable.
This is compounded by the effect of 24-hour averages obfuscating the significance of
peaks-orientated patterns of indoor stove emissions [56, 308]. When coupled with its al-
most wholly quantified format, the ‘threat’ associated with exposure to high intensities
of PM over shorter periods of time is not made explicit by such approaches [360, 361].
This adds an additional dimension to the participatory sensing literature, where the focus
tends to be on the outcome of sensor engagement instead of the process by which that
outcome is produced [263, 334, 340]. Future research should prioritise the ways in which
air quality data is presented within participatory sensing projects, addressing questions
of suitability to situation and relatability to person as a matter of priority. Relying on
quantified representations alone risks repeating past errors by uncritically transporting
the ‘deficit model’ of public understandings of scientific information into the participa-
tory sensing projects of the future [319]. The danger of doing otherwise, by continuing to
rely primarily on quantification alone, risks impeding the potential for this technology to
become an effective means of communicating air quality information.

Third, the ambiguity created by an unrelatable data presentation format encourages a
search for more relatable markers from which to derive meaning elsewhere. By failing to
act as a singular source of information whose relevance to the person is clear, the sensors
actively draw wider socio-cultural knowledges of air pollution into the appraisal process,
filling the interpretive space. Under this scenario, participatory sensing becomes both a
trigger and gateway to existing incomplete or imprecise understandings of air pollution
as opposed to a source for new and accurate meanings. While not exhaustive, a cluster of
specific preconceptions stepped into the space created by the data ambiguity. For instance,
normative understandings of cooking emissions as harmless were used as a comparator by
which to judge data on stove emissions, rendering them similarly harmless in the minds of
users. However, research has consistently found this not to be the case[362–365], speaking
to the influence of wider social constructions of risk – or, more accurately, the absence of
these constructions – in the interpretation of sensor data [325, 330].

The absence of accurate understandings of indoor emissions intersects with other precon-
ceptions, mainly around the aesthetic of stoves being ‘cosy’ and ‘environmentally friendly’,
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to create a cognitive terrain characterised by favourability. Not only do such positions
work against the introduction of air quality policies in local areas [366, 367], but they
render air pollution data less persuasive. As such, participatory sensing alone cannot
be relied upon to change perceptions and behaviour on air pollution. Its effectiveness
is contingent on parallel socio-cultural meanings around emissions producing behaviours,
which step into the void when the data presentation format is deemed unsuitable or unre-
latable by users. Thus, while participatory sensing can be helpful in making people more
sensitive to air pollution issues [332, 336], wider air pollution information campaigns may
be a more efficient and effective means through which to accurately inform and encourage
behaviour change. Put another way, if social constructions of air polluting behaviours are
always standing behind participatory sensing initiatives, ready to exert influence at the
point in which users attempt to interpret the data, wider air quality campaigns may elicit
more impactful results.

10.5 Conclusion

Taken together, this study has illustrated that older social constructivist arguments about
scientific-lay understandings being relational [318], and air pollution data passing through
mediating processes informed by both normative experience and context during interpre-
tation [325, 333], still apply to the relatively new world of participatory sensing. This
echoes claims about sensor-based interventions facing the same challenges as more tradi-
tional information campaigns [368]. It also reinforces the idea that context needs to be
understood as integral to decision-making informed by sensor use and not peripheral to
it [332]. Indeed, while the role of physical socio-structural context is widely recognised
as influencing actions taken in response to participatory sensing data, this study also
illustrates the role of socio-cultural knowledge within this process [325]. As Bickerstaff
and Walker [324] noted almost two decades ago, with regard to public interpretations
of more general air pollution data, these processes are embedded in an ‘entangled in-
teraction of society-environment-technology’. This study has shown that data derived
from participatory sensing is no different. Research must interrogate the spaces between
these components, treating the junctures as opportunities for understanding in order to
facilitate the transformative potential of participatory sensing initiatives in the future.

10.6 Contribution

R.C. (Rohit Chakraborty):

• Conceptualization and Continuation: Leveraging the foundational insights
from Chapter 6, I played a central role in conceptualizing and framing Chapter
10’s focus on participatory sensing and its impact on wood burning stove users’ per-
ceptions. My vision ensured a seamless transition and extension of ideas from the
quantitative analysis of Chapter 6 to the more qualitative and perceptual aspects
addressed in Chapter 10.
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• Sensor Deployment and Data Collection: Drawing from the experience in
Chapter 6, I was actively involved in deploying air quality monitors for the partic-
ipatory sensing study, ensuring accurate data capture from stove users. I was also
involved in data curation through the surveys and interview transcripts.

• Writing – Drafting and Editing: As one of the primary authors, I spearheaded
the drafting, refining, and finalization of the manuscript, integrating both quan-
titative data and qualitative insights to present a comprehensive account of our
research.

• Data Analysis and Interpretation: Combining the quantitative methodologies
from Chapter 6 with the qualitative explorations of Chapter 10, I delved into a
multifaceted analysis, ensuring that both numerical and perceptual aspects of our
findings were rigorously examined and interpreted.

• Participatory Sensing and User Engagement: I played a pivotal role in en-
gaging with wood burning stove users, exploring their interactions with the sensing
technology, and understanding the cognitive and behavioral implications of their
engagement with indoor air quality data.

• Collaboration and Coordination: I collaborated closely with co-author and
participants, integrating diverse perspectives and insights to ensure the richness
and depth of the research.

• Project Leadership: Given my primary authorship in Chapter 6 and extensive
involvement in Chapter 10, I provided overarching guidance, ensuring continuity,
depth, and rigor across both chapters.

Building on the foundational research from Chapter 6, my extensive involvement in Chap-
ter 10 was instrumental in exploring the nuanced interplay between participatory sensing
technology and user perceptions. My comprehensive engagement, from conceptualiza-
tion to manuscript finalization, significantly influenced the study’s direction, quality, and
impact.
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Conclusion

In conclusion, the present thesis emphasized the significance of Low-Cost Sensors (LCS)
in monitoring air pollution, which remains a persistent global problem with severe conse-
quences for human health, both physically and mentally, as well as its impacts on society.
This research highlighted the potential of LCS to gather air quality data accurately, lead-
ing to the development of effective policies and interventions to tackle air pollution.

The use of LCS in air pollution monitoring has been established as a cost-effective and
efficient solution. LCS provides localized measurements with high resolution and enables
the collection of long-term data, which would be challenging or even impossible to gather
with traditional monitoring methods. This leads to the identification of hotspots of high
pollution, tracking changes in air quality over time, and supporting the development of
targeted interventions and policies aimed at improving air quality.

The role of LCS in air pollution monitoring has been given increased attention in recent
years due to their low cost and portability, making them accessible to a wider range of
users, including individuals, communities, and policy-makers. LCS can be successfully
used to monitor PM2.5 levels.

LCS also offers the opportunity to collect real-time data in higher resolution, and used
in conjuction with spatiotemporal predictive model to ”fill in the gaps” such as Conv-
LSTM model tested in this thesis, which can be useful in making informed decisions
related to air quality. This information can be used to support policy-making processes
by providing relevant data to decision-makers, including data on air pollution levels,
spatial and temporal patterns, and trends. With the increasing availability of LCS, there
is a need for standardization of measurement methods to ensure that the data collected
is consistent and comparable across different sensors.

In addition to its role in monitoring air pollution, LCS also provides opportunities for
community engagement and empowerment. By involving communities in air quality mon-
itoring, LCS can increase public awareness about the issues of air pollution and encourage
individuals to take action to improve air quality. This can also lead to the development of
community-led initiatives to address air pollution and promote sustainable development.

In conclusion, LCS has demonstrated its potential as a valuable tool in the fight against air
pollution. Its ability to provide accurate, localized and real-time data at a low cost, along
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with its potential for community engagement and empowerment, highlights the signifi-
cance of LCS in air pollution monitoring and policy-making. The continued development
and improvement of LCS has the potential to drive significant progress towards the goal
of clean air for all.

The essence of this thesis lies in the exploration and validation of Low-Cost Sensors (LCS)
in the domain of air pollution monitoring. This chapter consolidates the key findings
and contributions made throughout the research while also highlighting the roadmap for
potential future work.

Summary of Achievements

The overarching objective of this research was to elucidate the capabilities and significance
of LCS in capturing air quality data, especially when juxtaposed against the backdrop of
traditional monitoring methodologies.

The research underscored the agility of LCS in offering localized, high-resolution mea-
surements that can persistently track changes, thereby facilitating the identification of
pollution hotspots and aiding policy formulation.

The merit of LCS doesn’t merely reside in its cost-effectiveness or portability but also
in its capacity to democratize air quality monitoring. This democratization extends to
diverse stakeholders, encompassing individuals, community bodies, and policy architects.

A pivotal finding was the efficacy of LCS in monitoring PM levels. When integrated with
advanced spatiotemporal predictive models, like the Conv-LSTM tested herein, LCS can
pave the way for real-time, high-fidelity data acquisition.

The research also unveiled the socio-environmental dimensions of LCS deployment. No-
tably, it was discerned that LCS can serve as catalysts for community mobilization, foster-
ing increased public cognizance regarding air pollution and galvanizing collective action
towards sustainable practices.

An essential facet of the thesis was the juxtaposition of LCS data with other ancillary
datasets, unraveling intricate interplays between air quality, meteorological conditions and
traffic patterns. This helped to fill in the gaps where there are no sensor data available.

Contributions to Knowledge

The contributions to knowledge from this research are manifold.

Validation of LCS: The thesis methodically validated the precision and utility of LCS in
monitoring air pollution, bridging a significant gap in literature and offering empirical
evidence to substantiate LCS’s capabilities.

Integration with Predictive Models: This research introduced a novel paradigm by in-
tegrating LCS data with advanced spatiotemporal predictive models, demonstrating the
potential of such synergies in advancing the granularity and accuracy of air quality pre-
dictions.
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Socio-Environmental Implications: A nuanced understanding of the socio-environmental
ramifications of LCS deployment was presented, emphasizing the role of community en-
gagement and the transformational potential of grassroots initiatives.

Quality Control of Data

A systematic approach was adopted for quality control of the data. Rigorous outlier
detection mechanisms were instituted, ensuring the robustness of the data. Imputation
techniques were employed to address any gaps or anomalies in the dataset, ensuring the
integrity and reliability of the research findings.

11.1 Future Work

Future work in this field should focus on improving the accuracy and reliability of LCS
in measuring air pollution - this is more important in case of monitoring NO2. This
could include the development of new sensors, advances in data processing and analysis
techniques, and the integration of stakeholder engagement and policy making to ensure
that the results of LCS monitoring are effectively translated into action. In doign so, more
research is needed to understand the potential of LCS in shaping policymaking.

In addition to the points already mentioned, there are several other areas of future work
that could be pursued to further advance the use of LCS in monitoring air pollution.

1. One area that could be explored is the integration of LCS with other air quality
monitoring technologies. For example, LCS could be used in conjunction with satel-
lite imagery or remote sensing to provide a more comprehensive understanding of
air pollution at a regional or global scale.

2. Second area of future work could be the integration of LCS with other forms of data
(as shown in the thesis) such as meteorological data, traffic data, or land-use data
in official reporting. This could help to identify the sources of air pollution and the
factors that contribute to it. Additionally, the integration of LCS with other forms
of data could also enable the development of more accurate and sophisticated air
quality models.

3. Third important area of future work is the development of new sensors for LCS.
Currently, most LCS systems use electrochemical or optical sensors, but there are
other types of sensors that are currently being developed but yet to be used in LCS,
such as NanoPlasmonic Sensing (NPS) developed by Insplorion Ltd. These sensors
could provide more accurate and detailed measurements of air pollutants, which
would be particularly useful for monitoring pollutants that are difficult to detect,
such as specific volatile organic compounds like formaldehyde or Nitrogen Dioxide
(NO2).

4. Fourth, another area of future work is the development of new data processing and
analysis techniques. With processing power becoming less of an issue, the use of
machine learning algorithms, such as neural networks or decision trees on the fly for
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calibration and reporting data, could enable the development of more sophisticated
data analysis methods.

5. Furthermore, more research is needed to understand the potential of LCS in shaping
policy-making. There are many ways in which LCS data can be used to inform
policy-making, but it is important to understand the most effective ways of using
this data. For example, LCS data could be used to identify areas of high pollution
and to target interventions and policies to these areas. Additionally, LCS data could
be used to evaluate the effectiveness of existing policies and to identify areas where
policies need to be strengthened or changed.

Overall, the use of LCS in monitoring air pollution is a promising approach that has the
potential to make a significant contribution to addressing this pressing public health issue.
By pursuing these areas of future work, it is possible to further advance the use of LCS in
monitoring air pollution and to improve the well-being of communities around the world.
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[229] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse
approximate Gaussian process regression. Journal of Machine Learning Research,
6(12):1939–1959, 2005.

[230] Peng Wang, Youngjoo Kim, Lubos Vaci, Haoze Yang, and Lyudmila Mihaylova.
Short-term traffic prediction with vicinity Gaussian process in the presence of miss-
ing data. In 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), pages
1–6. IEEE, 2018.

[231] Haijun Wang, Xinbo Gao, Kaibing Zhang, and Jie Li. Fast single image super-
resolution using sparse Gaussian process regression. Signal Processing, 134:52–62,
2017.

[232] Christopher KI Williams and Matthias Seeger. Using the Nyström method to speed
up kernel machines. In Proc. from Advances in Neural Information Processing Sys-
tems, pages 682–688, 2001.

[233] Fei Zhu and Paul Honeine. Online kernel nonnegative matrix factorization. Signal
Processing, 131:143–153, 2017.

[234] R Ben Abdallah, Arnaud Breloy, Mohammed Nabil El Korso, and David Lautru.
Bayesian signal subspace estimation with compound gaussian sources. Signal Pro-
cessing, 167:107310, 2020.

[235] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.



References 212

[236] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard, David W Hogg,
and Michael O’Neil. Fast direct methods for Gaussian processes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(2):252–265, 2015.

[237] Kai Zhang, Ivor W Tsang, and James T Kwok. Improved nyström low-rank approx-
imation and error analysis. In Proceedings of the 25th international conference on
Machine learning, pages 1232–1239, 2008.

[238] Li He, Nilanjan Ray, and Hong Zhang. Error bound of nyström-approximated ncut
eigenvectors and its application to training size selection. Neurocomputing, 239:
130–142, 2017.

[239] Michael L Stein. Limitations on low rank approximations for covariance matrices
of spatial data. Spatial Statistics, 8:1–19, 2014.

[240] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American Statistical Association, 112(518):
859–877, 2017.

[241] Marie Ouimet and Yoshua Bengio. Greedy spectral embedding. In Proceedings
of the 10th International Workshop on Artificial Intelligence and Statistics, pages
253–260, 2005.

[242] Cameron Musco and Christopher Musco. Recursive sampling for the nyström
method. In Advances in Neural Information Processing Systems, pages 3833–3845,
2017.

[243] Yi Ding, Risi Kondor, and Jonathan Eskreis-Winkler. Multiresolution kernel ap-
proximation for Gaussian process regression. In Advances in Neural Information
Processing Systems, pages 3740–3748, 2017.

[244] Jichuan Li and Arye Nehorai. Gaussian mixture learning via adaptive hierarchical
clustering. Signal Processing, 150:116–121, 2018.

[245] Xifeng Yao and Chunhui Zhao. Kernel-band-projection algorithm for anomaly de-
tection in hyperspectral imagery. In Proceedings of the 14th IEEE International
Conference on Signal Processing (ICSP), pages 300–303. IEEE, 2018.

[246] Zheng Tracy Ke, Lingzhou Xue, and Fan Yang. Diagonally-dominant principal
component analysis. Journal of Computational and Graphical Statistics, pages 1–
16, 2020. accepted.
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Appendix

A.1 Data Collection

Peshawar (34.015◦ N, 71.52◦ E) is a city located in Khyber Pakhtunkhwa, Pakistan,
situated at an elevation of 340 m above sea level. Peshawar covers an area of 1257 km2

and has a population of 1,218,773 making it the biggest city in Khyber Pakhtunkhwa.
Peshawar is predominantly hot during summer (May–Mid July) with an average maximum
temperature of 40 ◦C followed by monsoon and cold winter.

Local vehicular emission, fossil fuel energy plants and industrial processes are the signif-
icant sources of air pollution in Peshawar. Wind direction and wind speed also play a
crucial role to observe transboundary pollution build-up. Furthermore, at this site, the
distribution and dispersion of air pollution are further impacted by the nearby buildings,
and its proximity to Grand Trunk Road, creating a built-up street canyon environment,
generated primarily from nearby, increasing traffic pollution.

The air quality monitoring sensor (AQMS) was installed at the University of Peshawar’s
Physics Department Building (see Figure A.1) at 6 m height from the ground surface
level. It is described as an urban background site.

Sheffield (53◦23′ N, 1◦28′ W) is a geographically diverse city located in county South
Yorkshire, UK, built on several hills thus situated at an elevation of 29–500 m above sea
level. Sheffield covers a total area of 367.9 km2 with a growing population of 582,506.
Sheffield is claimed to be the “greenest city” in England by the local city council. Sheffield
enjoys a temperate climate with July considered the hottest month, with an average
maximum temperature of 20.8 ◦C.

The air pollution in the city is primarily due to both road transport and industry, and to a
lesser extent, fossil fuel-run processes, such as energy supply and commercial or domestic
heating systems (for example, wood burners).

The AQMS is installed at 2.5 m height from the elevated ground surface level at the
playground of Hunter’s Bar Infants School (see Figure A.2), which lies in close proximity
to a busy roundabout, and at the intersection of Ecclesall Road, Brocco Bank, Sharrow
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Vale Road and Junction Road; thus, traffic is the primary source of pollution. It is also
described as an urban background site.

Figure A.1: Peshawar study site © OpenStreetMap contributors.

In our case, the AQMSs are commercially low cost sensor nodes AQMesh. They have
been deployed at the two sites in Peshawar and Sheffield. A “black box” post calibration
is applied to the data by the manufacturer to eliminate the impact of humidity and
temperature on the sensor and to eliminate cross sensitivity. The data are aggregated
and sampled every 15 min. The data collected from these nodes are transferred to the
cloud-based AQMesh database via standard GPRS communication integrated. The data
are then accessed through the dedicated API.
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Figure A.2: Sheffield study site © OpenStreetMap contributors.

A.2 The WHO Concentration Criteria for Pollutants

All data from ’WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide
and sulfur dioxide [369].

WHO SO2

Table A.1: WHO sulfur dioxide guidelines.

Sulfur Dioxide 24-h Mean 10-min Mean

SO2 20 ¯g/m3 500 ¯g/m3

WHO PM2.5 and PM10

Table A.2: WHO particulate matter guidelines.

Particulate Matter Annual Mean 24-h Mean

PM2.5 5 ¯g/m3 15 ¯g/m3

PM10 20 ¯g/m3 50 ¯g/m3

WHO O3
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Table A.3: WHO Ozone guidelines.

Ozone 8-h Mean

O3 100 ¯g/m3

A.3 Approximated Derivatives of SE Kernel

By specifying a kernel function, we can obtain analytical forms of Equations (7.28) and
(7.29) immediately. In this paper, we adopt the widely used SE kernel shown in Equa-
tion (A.1) as an example.

kSE(x, x
′) = s2f exp

(
–
(x – x′)2

2l2

)
. (A.1)

There are two hyperparameters, i.e., the signal variance sf and length-scale l are involved.
Equations (A.2) and (A.3) show the expectation (prediction mean) partial derivative
(EPD) and covariance partial derivative (CPD) of sf ,
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While the derivatives of l are given in Equations (A.4) and (A.5),
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Figure S1 shows the partial dependencies – with Sch-GB site as an example – between 

PM2.5, NO2, and the weather covariates employed in the de-seasonalisation model. The 
model’s performance was evaluated using tenfold cross-validation, and the resulting 
model fitting results are also displayed. 
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Figure S1. Model results and partial dependency of the covariates on PM2.5 and NO2 concentrations at Sch-GB from 
2019 to 2021. Covariates: temp = temperature, hum = humidity, ws = wind speed, wd = wind direction, week = week 
of the year, hour = hour of the day, weekday, and trend. 
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A field co-location between low-cost mobile device (Aeroqual series 500) and the ref-
erence sensor MOBIUS (MOBIle Urban Sensing vehicle) from the Urban Flows Observa-
tory, The University of Sheffield, was conducted to improve PM2.5 data quality. The co-
location lasted 11-hour in total in three separate events, and data were collected with 1-
min resolution. 

 
The measurements from the low-cost mobile device were calibrated against a refer-

ence-grade PALAS Fidas sensor built in the MOBIUS. A concentration range correction 
was applied based on the relationship between PM2.5 concentration range and sensor per-
formance. Accuracy of the low-cost monitor modelled data is shown in Figure S2. 

 

 

Figure S2. Taylor diagram comparing the modelled data (red dot) which are the cor-
rected low-cost mobile device measurements for the reference data (observed). Correla-
tion (R) - between 0.8-0.9; observed variability between 2-3 µg m-3 (through Standard 
Deviation); centred RMS error <4. 
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De-seasonalised data visualisations (boxplots) for each study period at all sites are 
presented below in figures S3 and S4. 

 
 

 

Figure S3. De-seasonalised NO2 concentrations (µg m-3) for each data collection period 
and study site. Colour change from light to dark grey within boxes represent the median 
NO2 concentration, and whiskers extend to 1.5 the InterQuartile Range (IQR).  

 

 

 

 

Figure S4. De-seasonalised PM2.5 concentrations (µg m-3) for each data collection period 
and study site. Colour change from light to dark grey within boxes represent the median 
PM2.5 concentration, and whiskers extend to 1.5 the InterQuartile Range (IQR).  
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