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ABSTRACT

A potential energy surface is a major pre-requisite to carry-
ing out quantum molecular dynamics studies on chemical sys-
tems. These studies allow theoreticians to explore the behaviour
of modern-day chemistry in ways that are not feasible in a lab,
enabling predictions to be made about experiments performed at
extreme temperatures and pressures, and even helping to reveal re-
action pathways. To achieve this, a PES associates nuclear position
and energy, constructing an n-dimensional surface from high-level
ab initio calculations that are fit using physically motivated func-
tions. However, this fitting is a painstakingly slow process, and
must be tailored to individual systems. This thesis will explore
three ways of speeding up the generation of ab initio PESs: sim-
plifying the fitting process, reducing the number of fitting points,
and reducing the computational cost of the ab initio calculations
themselves.

Machine learning (ML) algorithms offer a number of poten-
tial advantages for the construction of PESs: firstly, they represent
more of a “black-box” approach to the fitting that promises an eas-
ier route to accurate surfaces; second, reducing the dimensionality
of the problem holds the promise of constructing a surface from
significantly fewer points. These algorithms also have access to
active learning techniques that aim to reduce the size of machine
learning datasets. As such, a particular subset of machine learning
model, the neural network, will be used along side a novel appli-
cation of a firefly inspired optimisation algorithm to speed up PES
generation. While the development of new basis sets paired with
correlation consistent effective core potentials will aim to speed up
data generation.
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1 | Potential energy surfaces

Potential energy surfaces (PESs) are central to the field of computational
chemistry, enabling theoreticians to explore the behaviour of modern-
day chemistry in ways not feasible in a lab. Particularly within the field
of quantum molecular dynamics (QMD), the study of chemical systems
through the solving of the Schrödinger equation, these surfaces have
made it possible to predict the results of an experiment performed at
extreme temperatures and pressures, predict reaction pathways, and
even calculate product ratios without the need for experiment. [1–7] To do
so, much data pertaining to the chemical system to be explored is needed;
specifically, it is important to have information about the energy of the
system at a range of different geometries, and for QMD it is preferable
to have energies spanning all possible geometries (the full range of bond
lengths and angles (the degrees of freedom) is known as the configuration
space). Generating this volume of data is computationally expensive
for anything other than small molecules at lower levels of theory, as
such, n-dimensional configuration spaces approximating energy from
geometry (potential energy surfaces) are needed to minimise the number
of expensive ab initio calculations.

1.1 THE ORIGIN OF THE PES

The nuclei of atoms in molecules respond to the potential energy of the
system. The value of this potential at any point in the configuration
space of a molecule can be calculated through quantum mechanics and
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2 | POTENTIAL ENERGY SURFACES

the time-independent Schrödinger equation,

ĤΨ = EΨ.

This equation will be unpacked in detail in Chapter 3, but briefly this is an
eigenvector/eigenvalue equation, where the state of a system, Ψ, is acted
on by the Hamiltonian operator, Ĥ, to give the energy, E, of that system
in the given electronic state. The relation between molecular position
and energy defines a potential energy surface. Therefore, by separating
the nuclear and electronic motion, solving the Schrödinger equation for
the electronic motion at a number of molecular geometries, and adding
the potential energy of the nuclei separately, it is possible to build an
n-dimensional surface for a molecule or reaction (where n is the number
of atoms in the system). This separation of nuclear and electronic motion
is known as the Born-Oppenheimer approximation [8] and its application
will be justified in Chapter 3.

The minimum energy points in this potential are stable structures.
For example, the relative energies of two separate configurations of a
molecule will reveal information about the most stable structure, and the
form it is likely to spend most of its time in at room temperature and
pressure. However, dynamics calculations need more than just informa-
tion about the stationary points on a surface, they require energies and
gradient information of transitional structures as well. Pre-computing
all conceivable energies of a system is not a particularly intelligent use of
resources, and is not achievable for anything other than small molecules
at low levels of theory. As an alternative, direct dynamics has been de-
veloped as a process by which the energy of the system is calculated ‘on-
the-fly’ as the geometry is explored allowing for the directed evaluation
of molecular behaviour, [9] and has been made possible due to the com-
putational leaps made in recent decades. However, as the molecules of
interest get larger, and the computational methods employed to explore
their properties get more costly, direct dynamics is also prohibitively
expensive for anything other than small molecules. Instead, it is often
cheaper to calculate a set of energies for a number of pre-determined
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geometries and use a multidimensional function to fit the points. This
function can be modified and adjusted based on fitting parameters, until
the energy of the system is reproduced accurately over a large range of
geometries. In theory this minimises the number of expensive ab initio
calculations required for dynamics calculations, and if this fitted function
is fast to evaluate then QMD calculations also become much faster to run.

This n-dimensional function is an approximation of the true potential
energy surface defined by the Schrödinger equation, and an example of
a 3D representation of a molecular PES is shown in Figure 1.1. Vari-
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Figure 1.1. Dependence of a molecular PES on bond lengths R1
and R2 of a figurative molecule. Highlighted on the surface are a
number of important points: the global minimum, the ground state
equilibrium geometry of a molecule; a local minimum, another sta-
ble conformation of the molecules; and a maximum/saddle point,
a transition state between conformations.

ous features of the surface correspond to important configurations of the
molecule, with minima indicating stable structures and first order sad-
dle points being transition states. A surface does not have to be purely
uni-molecular however, and it could instead be a reaction PES, where
the various minima would now be intermediates and products, and the
saddle points would be the transition states between them. When de-
veloping a PES for use in quantum molecular dynamics, there are a few
features that are important to the final form of the surface. It must be
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continuous, there should be no holes in the PES, and it must be smooth
for both energy and the first and second derivatives of the energy.

1.2 METHODS OF SURFACE FITTING

As was highlighted in Section 1.1, one cannot generate all conceivable
geometries of a system, and calculate their energies, for anything other
than small molecules. Therefore a smaller number of points must be
chosen and the function of the surface approximated.

The simplest, most general, method of fitting is to define a func-
tion with a number of adjustable parameters, and optimise the param-
eters so that the function correctly predicts the ab initio energies at any
given geometry. This method was employed widely early in the field,
and the reader is pointed towards a comprehensive review by Truhlar,
Steckler, and Gordon, covering much of the early work surrounding this
method†of function fitting. [10] For potentials with a small number of pa-
rameters this method appears to work well, but a PES developed by Kuhn
et al., covering the six degrees of freedom for hydrogen peroxide, has 76
adjustable parameters to define the full surface, [11] clearly making this
kind of ‘by hand’ fitting tedious. Some more modern examples include
a Ca2 surface incorporating the long range behaviour of the system, with
16 fitted parameters [12], and an improvement to an earlier NH3 surface
using 184 parameters. [13,14]

There are two other disadvantages of this method to highlight. The
first is that finding a suitable fitting function in the first place can be
difficult, especially as systems reach higher degrees of freedom. Secondly
this method requires a new function to be designed and fit for every new
problem, that is, there is no transferability, which incidentally makes the
complicated fitting process even more problematic. To deal with these
issues many methods have been developed to semi-automate the fitting
process using fitting methods and interpolation.

†This method is sometimes known as ’guessed function fitting’ as the initial function
is chosen as a ’best guess’ of the true shape of the potential energy surface.
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1.2.1 SPLINE INTERPOLATION

In mathematics, spline interpolation is a type of fitting algorithm that fits
several low degree polynomials to pairs of points in the data, instead of
fitting a single high degree polynomial to the whole set. [15,16] For example,
a set of ten data points could be fit with a single polynomial of degree
ten, or instead nine cubic or square polynomials could be fit between
pairs of points. One of the main advantages of this method over simple
polynomial interpolation is that it avoids Runge’s phenomenon (shown
in figure 1.2); [17] when using high-degree polynomials there is a chance
that the fitted function oscillates between pairs of points, leading to a
wildly ‘wavy’ fit that technically fits the data, but is clearly not a good
interpolation of the points. The interpolated line would be said to be
overfit to the data, reproducing the inputs exactly, but failing to capture
the true nature of the curve.
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Figure 1.2. Points in the function y = 1/(1+ 25x2) interpolated by
(a) cubic splines and (b) a 15 degree polynomial exhibiting Runge’s
phenomenon.

Examples of spline use for the purpose of PES fitting start with
McLaughlin and Thompson, [18] who used cubic spline fitting to explore
the reaction dynamics of HeH+ + H2 → He + H3

+. The use of splines
removed the need to choose an interpolation function manually (and
often arbitrarily), and ensured continuity across the whole surface. In
an effort to simplify things the authors restricted the symmetry of the
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reaction pathway to C2v, and report success with the method. However
this does pose the question of how to deal with more complex, mul-
tidimensional surfaces. Sathyamurthy and Raff [19] aimed to solve this
problem by developing a 3D cubic spline fitting routine. This method
has been used to calculate both electronic and vibrational energies of
small molecules, [20] but Varandas et al. [21] expressed concerns with the
difficulty in obtaining a global fit of a PES using these methods, due
to the problem of dimensionality. That is, the number of ab initio cal-
culations that need to be solved for these methods scales with X3N−6,
where X is the minimum number of points required to fit the surface,
and N is the number of atoms, which can lead to very large numbers of
calculations being needed. Although Wu et al. were able to accurately
fit a surface for H3 using simple splines, they state that this was only
possible due to a dense grid of 76,000 evenly spaced calculations making
the fitting relatively simple. [22] As was expressed above, large numbers
of high-accuracy ab initio calculation are impractical for larger systems,
and methods that need less data are largely more desirable.

1.2.2 MODIFIED SHEPARD INTERPOLATION (MSI)

One way of cutting down the number of ab initio calculations is to start
with a more sparse set of data points, then approximate the surrounding
environment. When calculating the energy of a system through the
Schrödinger equation it is further possible to calculate the derivative
of the energy with respect to the nuclear coordinates. This reveals the
shape of the potential around the configuration and the derivative can be
used in a multivariate Taylor expansion to approximate nearby energies.
The accurate range of these expansions is much smaller than the range
of values one might be interested in when evaluating a PES, therefore
interpolation between many of these points is required.

Shepard’s method of interpolation [23] is as follows: for a set of points
xxx, the interpolated value of an unknown point in the same space is equal
to a weighted mean of all the known values. The weighting here is the
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inverse distance from each point. To improve performance, a cut-off
radius can be defined, and points beyond this radius are excluded from
the treatment. In the context of PES fitting as described by Collins, [24] it
is assumed that the PES can approximated as a Taylor expansion, Ti(ξ),
around a given configuration, ξ(i):

E(ξ) ≈ Ti(ξ) = E[ξ(i)] +
3N−6∑
n=1

[ξn − ξn(i)]
∂E

∂ξn

∣∣∣∣
ξ(i)

+
1

2

3N−6∑
n=1

3N−6∑
m=1

[ξn − ξn(i)]

× [ξm − ξm(i)]
∂2E

∂ξn∂ξm

∣∣∣∣
ξ(i)

+ . . . ,

where n andm are internal coordinates. The modified Shepard method
then expresses the PES as a weighted average of these Taylor expansions,

E(ZZZ) =

Ndata∑
i=1

wi(ZZZ)Ti(ZZZ), (1.1)

where ZZZ is a set of internal coordinates.† Following the MSI method,
configurations that are closest toZZZwill have the largest weights, and vice
versa.

In contrast to other methods of PES fitting, the MSI method starts
initially with a mostly arbitrarily selected path of points on the surface,
and the PES is fitted loosely to these points (as opposed to generating a
grid of data over the whole configuration space). As the PES is probed
in a trajectory calculation, extra ab initio points are calculated and added
to the fit, in a semi-direct-dynamics manner, to gradually build a picture
of the whole surface of interest. This way the number of calculations
is kept to a minimum. However it is important to note that in addition
to the energy calculation, gradients and Hessians have to be calculated
for this method, which adds to the base computational cost. Moyano

†ZZZ is actually defined as a set of reciprocal distances Zi = 1/Ri, this is because the
PES diverges to infinity if any atoms overlap. To make sure that this behaviour is seen,
Zi = 1/Ri is defined so that when Ri = 0, Zi = ∞ [24]
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and Collins proposed an improvement to the method, stating that by
changing the selection criteria for new data points faster convergence
could be reached. [25] They propose two new schemes, the first selects new
points that are locally maxima in either the uncertainty or variance of the
interpolated energy. This requires no additional ab initio calculations,
in contrast to the second method that explores the nearby surface with
a small number of additional calculations and adds new data points in
regions of the largest interpolation error.

Modified Shepard interpolation has been used to generate surfaces for
quantum reaction scattering, [26] to explore the catalysis of proton trans-
port and proton-abstraction reactions, [27] and to build reactive potential
energy surfaces for polyatomic systems. [28]

1.2.3 REPRODUCING KERNEL HILBERT SPACE (RKHS) INTERPOLATION

Another method of interpolating between points involves the use of
Hilbert spaces, a space of vectors with a defined inner product that satis-
fies a set of constraints. A reproducing kernel Hilbert space (RKHS) [29,30]

is a space of continuous real-valued functions, f(xxx). If given a set of of xxxi,
and the values of f(xxxi) are known (fi), then the representor theorem [31]

states that the true function of f(xxx) can be approximated through a linear
combination of kernel products:

f̃(xxx) =

N∑
i=1

ciK(xxx,xxxi). (1.2)

Here, ci are coefficients of the linear combination, and K(xxx,xxx ′) is a repro-
ducing kernel.† It is only a reproducing kernel if the inner product of the
function with the kernel gives the evaluation functional:

f(xxx) = ⟨f(xxx ′), K(xxx,xxx ′)⟩ ′,

†The form of this kernel is chosen depending entirely on the surface being fit, but
is generally a product of D, one-dimensional, kernels k(x, x ′), such that K(xxx,xxx ′) =∏D

d=1 k
(d)(x(d), x ′(d)), where x(d) is the dth component of a D-dimensional vector

xxx = {x(d)}, and k(d) is a one-dimensional kernel of dimension d.
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where the prime indicates that the inner product is performed over xxx ′.
The kernel is also chosen so that it is both symmetric,

K(xxx,xxx ′) = K(xxx ′, xxx),

and positive definite,
n∑

i,j=1

ciK(xxxi, xxxj)cj ⩾ 0.

such that the following equation can be solved through the Cholesky
decomposition [32] when the coefficients ci satisfy the linear relationship
fj =

∑N

i=1 ciKij, where Kij = K(xxxi, xxxj):∣∣∣∣∣∣∣∣∣∣∣

K11 K12 · · · K1N

K21 K22 · · · K11

... ... . . . ...
KN1 KN2 · · · KNN

∣∣∣∣∣∣∣∣∣∣∣


c1

c2
...
cn

 =


f1

f2
...
fn

 . (1.3)

Once the values of ci have been calculated, then the function f̃(xxx) from
equation 1.2 can be evaluated for any value of xxx, thus interpolating be-
tween the points of training data. The advantage of using RKHS inter-
polation over something like spline interpolation is that it can handle
irregularly spaced points and missing values, making it much more ro-
bust.

This method has been used in the exploration of N(2D) + H2 by Holle-
beek et al. [33] Two surfaces were produced for the 1A” and 1A’ states of
the reaction and surface crossing calculations carried out. They report
that "the resulting surfaces are smooth, accurate, efficient to evaluate,
exactly reproducing the input data upon which they are based. . . ". [33]

Ho and Rabitz have also successfully produced a surface for the C(1D) +
H2 reactive system, showing that the use of RKHS interpolation could
produce an accurate and smooth PES using significantly fewer points of
ab initio data, while also covering regions that are dynamically relevant
and non rectangular. [34] There are, however, two major drawback to this
method, occurring as the set of N training examples becomes large: [30]
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1. The method used to solve equation 1.3 to determine the coefficients
scales with ON3, which quickly gets prohibitive for large numbers
of training examples (N > 105).

2. Equation 1.3 also reveals that the evaluation of f(xxx) involves a sum
over all training examples scaling as ON. This is acceptable if only
a few evaluations are required, but for QMD calculations many
thousands of evaluations are needed and this results directly in a
linear increase in simulation time.

1.2.4 INTERPOLATING MOVING LEAST-SQUARES (IMLS)

Computing both the derivative of the energy and the Hessian of a system,
such as in modified Sheppard interpolation, adds significant computa-
tional cost to the generation of data and initial fitting points. One method
that avoids both of these entirely has been outlined by Guo, called the
interpolating moving least-squares (IMLS) method, and its application to
PES fitting is as follows. [35] The fitted potential in this case is expressed as
a linear combination of basis functions, bi(ZZZ), dependent on the molec-
ular configuration, ZZZ,

Vfitted(ZZZ) =

M∑
i=1

ai(ZZZ)bi(ZZZ). (1.4)

M is the total number of basis functions, while bi(ZZZ) are polynomials of
a known form. The values of ai(ZZZ) are determined by solving ∂D

∂ai
= 0

where D is defined by

D[Vfitted(ZZZ)] =

N∑
j=1

wj(ZZZ)[Vfitted(ZZZ
(j)) − V(ZZZ(j))]2,

=

N∑
j=1

wj(ZZZ)

[
M∑
i=1

ai(ZZZ
(j))bi(ZZZ

(j)) − V(ZZZ(j))

]2
,

a sum of weighted squared deviations. [35] This is solved for N ab initio
points at positions ZZZ(ji) with energies V(ZZZ(j)). The parameter w(ZZZ) is
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a weight function, and similarly to the modified Shepard interpolation
technique, this weight is larger the closer the unknown point is to the
known points. Following this minimisation through leads to a matrix
equation of the form,

BBBTWBaWBaWBa = BBBTWVWVWV, (1.5)

where BBBT denoted the transpose of the N×Mmatrix BBB,

BBB =


b1(ZZZ

(1)) b2(ZZZ
(1)) · · · bM(ZZZ(1))

b1(ZZZ
(2)) b2(ZZZ

(2)) · · · bM(ZZZ(2))
... ... . . . ...

b1(ZZZ
(N)) b2(ZZZ

(N)) · · · bM(ZZZ(N))

 ,

WWW is a diagonal matrix of weights of size N × N and VVV is a vector of
energies, length N,

WWW = diag[w1(ZZZ), w2(ZZZ), . . . , wN(ZZZ)],

VVV = [V(ZZZ(1)), V(ZZZ(2)), . . . , V(ZZZ(N))]T .

Solving equation 1.5 leads to the vectoraaa being obtained, which can then
be used in equation 1.4 to calculated the potential at a given pointZZZ. The
downside of this method is that aaa is a function of ZZZ and thus must be
re-evaluated at every single step of a trajectory propagation. Therefore
the method cost scales with NM2 and it can get prohibitively expensive
if steps aren’t taken to minimise bothM and N.

The IMLS method has been directly compared to the MSI method by
Ishida et al. [36] They compared the results from an IMLS fit of the O(1D) +
H2 surface to that of a Shepard fit using second-order Taylor expansions,
and report that the surface "reproduces the correct reactive cross-sections
more accurately than the Shepard scheme, and with RMS [root mean
squared] errors for energy and gradients that are significantly smaller
than those from Shepard interpolation." They go on to clarify that "this
occurs even though the present scheme does not utilize derivative and
Hessian information, whereas the Shepard interpolation does", making
this method far cheaper computationally. It has also been shown by Guo
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et al., that a small number of points are able to fit an accurate PES for
the system H2 + CN → H + HCN. As few as 330 CCSD(T)/aug-cc-pvtz
calculations were used to for a PES using the IMLS method, producing
root mean squared errors of "few tenths of a kcal/mol." [37] The predictions
of vibrational levels of 1CH2 and HCN have also been made with errors
as small as 0.1 cm−1 using less than 500 ab initio calculations of the energy
and gradients. [38]

1.2.5 DOUBLE MANY BODY EXPANSION (DMBE)

The interpolation methods presented so far are very involved, and in
the case of MSI and IMLS, probing the surface requires new calculations
of gradients or Hessians. The double many body expansion (DMBE)
method makes probing the surface a little easier by providing a single
functional, that once fit, requires no extra ab initio data when it comes
time to evaluate the surface. The method has been described in detail
by Varandas [39] and the reader is pointed towards references for justifi-
cations of the forms of these equations and in depth review. [39–42] Here
an overview of the formulation is presented for comparison to other PES
fitting methods.

The potential energy surface is defined in two parts, an extended
Hartree-Fock type energy, VEHF, and a dynamic correlation term Vdc,

V = VEHF(RRR) + Vdc(RRR).

For an N-atom system this is generalised to

V(RRRN) =

N∑
n=2

[V
(n)
EHF(RRR

n) + V
(n)
dc (RRRn)]. (1.6)

whereRRRN is the full set of interatomic coordinates ofN atoms,RRRn is a set of
n(n−1)/2 interatomic coordinates of fragments containing n atoms, and
V

(n)
x (where x = EHF,dc) is an n body term of the energy component. If
n = 2, RRR2 represents a diatomic fragment of the full molecule, and n = 3

is a triatomic, and so forth. Equation 1.6 can be expanded and written as
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a ’many body expansion’ of terms such that,

VEHF(RRR
N) =

∑
αβ

V
(2)
EHF(RRR

2) +
∑
αβγ

V
(3)
EHF(RRR

3) +
∑
αβγρ

V
(4)
EHF(RRR

4) + . . . , (1.7)

Vdc(RRR
N) =

∑
αβ

V
(2)
dc (RRR2) +

∑
αβγ

V
(3)
dc (RRR3) +

∑
αβγρ

V
(4)
dc (RRR4) + . . . , (1.8)

where the sums over α,β, γ, ρ indicate all combinations of diatomics,
triatomics, and so on. The many body expansion terms of equations
1.7 and 1.8 are specific to the system, and must be formulated each
time a new fragment is to be explored. The DMBE method has been
used widely [39,43–47] and Ballester and Varandas have used it to develop
a global potential energy surface for HSO2, [41,42] which will specifically
be explored in detail in Chapter 6. The following are examples of the
two, three, and four body terms specific to the HSO2 surface (their forms
will differ for other systems). The two body terms are relatively straight
forward; for the two-body EHF energy,

V
(2)
EHF = DR−1

(
1+

3∑
i=1

air
i

)
e−γ(r)r + χexec(R)V

asym
exc (R). (1.9)

χexec(R) is a damping function to account for charge overlap effects, D is
the well depth of the diatomic potential energy curve, [48] and γ is a range
determining exponent, where

γ = γ0[1+ γ1 tanh(γ2r)]. (1.10)

Here r = R− Re is the equilibrium displacement of the diatomic, and γi

are variable coefficients chosen based on the specific requirements of the
system. [41] The asymptotic exchange energy Vasym

exc (R) is defined as,

Vasym
exc (R) = −ÃRα̃(1+ ã1R+ ã2R

2)e−γ̃R (1.11)

with Ã, ãi, α̃, γ̃ are usually just a priori theoretical parameters. [41] The
associated two-body dynamical correlation potential is,

V
(2)
dc =

∑
n

Cnχn(R)R
−n, (1.12)
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where the damping function χn(R) takes the form,

χn(R) =

[
1− exp

(
−An

R

ρ
− Bn

R2

ρ2

)]
. (1.13)

This function has a set of ’dimensionless universal parameters’ that de-
fine An = α0n

−α1 and Bn = bβ0e
β1n (α0 = 16.36606, α1 = 0.70172,

β0 = 17.19338, β1 = 0.09574), and for an atom pair, XY, ρ = 5.5 +

1.25(⟨r2X⟩1/2 + ⟨r2Y⟩1/2). [41] All remaining coefficients appearing in the
two-body equations above (1.9-1.13) are chosen so that they reproduce
the experimental and theoretical data available for the diatomic fragment
in question. [41] It is clear from the two body terms alone that the DMBE
method is very involved, and requires a lot of prior knowledge about the
system being explored. The addition of both three and four body terms
increases this problem.

For the three body terms the extended Hartree-Fock energy takes the
form,

V
(3)
EHF(RRR

3) =

n∑
i

P
(3)
i (RRR3)T

(3)
i (RRR3),

where T (3)i is a function determining the range, P(3)i is a three-body
polynomial, and n is the number of polynomials used in the fit. The
value ofn and the form of P(3)i are determined by the fitting requirements
of the three-body system they come from.

The three-body dynamical correlation is treated a little differently to
the two body term, in that the following general form of the dynamical
correlation and electrostatic energies is used,

V
(3)
ele (RRR

3) =
∑
i

∑
n

fi(RRR
3)C(i)

n (Ri, θi)χn(ri)r
−n
i , (1.14)

where
fi(RRR

3) =
1

2
{1− tanh[ξ(ηsi − sj − sk)]}. (1.15)

(ri, Ri, θi) represent Jacobi coordinates. Equation 1.14 contains long
range coefficients C(i)

n (Ri, θi) that take the values n = 4 for the dipole-
quadrupole and n = 5 for the quadrupole-quadrupole interactions.
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Atom-diatom dispersion coefficients are represented by C(i)
n (Ri, θi) for

n = 6, 8, and 10. χn are the same damping functions that are defined
in equation 1.13. In equation 1.15, the switching function fi(RRR3), has
si = Ri − R

ref
i (i = 1 − 3), which is a displacement from the reference

geometry.
The four body terms for HSO2 initially seem very similar, taking the

forms,

V
(4)
EHF(RRR

4) = V
(4)
S + V

(4)
T + P(4)T (4), (1.16)

V
(4)
ele (RRR

4) =
∑
i

∑
n=3,4,5

fi(RRR
4)C(i)

n (Ri, Ri+3, θi, θi+3, ϕi)χn(ri)r
−n
i , (1.17)

fi(RRR
4) =

1

2
{1− tanh[β(ηSi − Sj − Sk)]}, (1.18)

however there are some important differences. In equation 1.17 values
of C(i)

n are based upon well established forms, [49] e.g.,

C3 = −µAB(RAB)µCD(RCD)(2 cos θa cos θb − sin θa sin θb cosϕ).

RRR4 contains six distances defining a four atom system, and the switching
function (equation 1.18) uses generalised coordinates, Si = si + si+3.
Here, si = Ri − R

ref
i is a displacement from an equilibrium distance. The

two parameters β and η are defined so that fi(RRR4) vanishes when any of
the four atoms is placed at infinite separation to the other three, and it
must equal one at the diatom-diatom dissociation limit.

The EHF energy term was derived from exploring a version of the
PES excluding it, and ensuring that any function added should alter the
surface so as to fix issues such as too deep energy wells and the absence
of formation barriers. [41] As a result of this exploration, equation 1.16 is
made up of two four body Gaussian-type functions (V(4)

s and V(4)
T ), a

second-order polynomial (P(4)), and a Gaussian-type range determining
factor (T (4)).

It is clear that the fitting of a surface using the DMBE method is
very involved, requires specific formulations for each system of interest,
and most importantly, intimate knowledge of the surface behaviour is
needed to fit it in the first place (which introduces significant problems



16 | POTENTIAL ENERGY SURFACES

surrounding chemical intuition). The major advantage of this method
over methods such as spline interpolation or RKHS, is that there is de-
fined a functional potential that can be evaluated in seconds for any
geometry, without the need for further ab initio calculations, allowing for
fast surface evaluation.

1.3 IMPROVING UPON CURRENT METHODS

It is clear that conventional methods of PES fitting are cumbersome and
involved. Either a lot of work has to go into the functional form of the
surface (in the case of DMBE) or many costly ab initio calculations are
required to begin the fitting process. In addition, some methods require
even more calculations to be carried out to accurately probe the full
surface, such as derivatives being calculated at every step in the IMLS
method, or every function evaluation requiring a sum over all training
examples in RKHS.

For QMD to be more easily accessible, it would be helpful to speed up
or simplify the fitting of potential energy surfaces so more molecules can
be described by accurate potentials. There are three ways of speeding up
PES generation that will be explored in this thesis:

1. Simplify the fitting process, either making it transferable or more
easily applied to other systems.

2. Speed up the ab initio data generation itself.

3. Reduce the number of points of data needed to fit an accurate
surface.

Simplifying the fitting process. At the core of the PES problem is a set
of data points, representing geometries and their calculated energies, for
which it is assumed that a function exists that maps the geometry and
atoms onto an energy. However it is either unknown, incredibly sophis-
ticated, or both. In recent years the field of machine learning (ML) has
boomed in the literature with the number of ML papers being released
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year to year drastically increasing. [50] Machine learning algorithms spe-
cialise in fitting unknown functions to large datasets and certainly appear
like they would be well equipped to assist with PES fitting. Chapter 2
will show that this is the case, and outline exactly how one can apply
the concepts of machine learning to the generation of potential energy
surfaces.

Speeding up data generation. Before a surface can be fit, a number of
ab initio calculations must be carried out to attain the data needed for the
fitting process, and this is still the case for ML fit PESs. Although com-
putational power has increased massively over the last decade, potential
energy surfaces can often require a spectroscopic level of accuracy (on
the scale of a few cm−1) and as such the level of theory that the surface
needs to be fit at has grown and grown. For example, Garrido et al. [51]

report that the initial level of theory that the DMBE-HSO2 PES was fit
at (complete active space self consistent field theory using a correlation
consistent, polarised triple-ζ basis set augmented with additional diffuse
functions [CASSCF/aug-cc-pVTZ]) is not sufficient to accurately repre-
sent all aspects of that system. As such they performed additional higher
level calculations (complete active space with second order perturbation
theory [CASPT2/aug-cc-pVTZ]) and used them to improve the fit of the
surface. These kinds of high level calculation will be computationally
expensive, especially as the systems of interest get larger.

Computational calculation times are directly related to the number of
electrons in the system. This fact opens up a pathway to speed things up.
Using an effective core potential (ECP) to model a number of the core elec-
trons in an atom effectively ’removes’ them from the calculation, directly
speeding up the calculation (Chapter 3 contains further technical details).
Sticking with the example of HSO2, recently a set of correlation-consistent
ECPs (ccECPs) for second row atoms were developed by Bennet et al. [52]

and can be used to replace some of the core electrons in sulfur. However,
to use these ccECPs, specifically optimised basis sets must be paired with
them in the electronic structure calculation, so Chapter 5 will discuss the
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development of a new family of basis sets for second row atoms. [53]

This chapter will also cover the fitting of new core polarisation poten-
tial (CPP) parameters for second row atoms that approximate the effects
of correlating core electrons in an electronic structure calculation.

Reducing the initial dataset size. Finally, it would be ideal to reduce
the size of the dataset needed for an accurately fit surface, circumventing
a number of ab initio calculations entirely. Active learning is a concept
within the field of machine learning that aims to reduce the size of train-
ing datasets. It achieves this by first training on a minimal dataset, then
selectively including additional, important, data points to improve the fit
as quickly as possible with as few points as possible. How data points
are defined as ’important’ is different from method to method. Chapter
4 will introduce a new a new algorithm based on a firefly heuristic to be
used with machine learning techniques to identify regions of ’poor’ fit
on potential energy surfaces and incrementally add new data points to
the dataset.

Finally Chapter 6 will bring together both the new basis sets and the
new firefly algorithm, to train a machine learning algorithm to fit a global
PES for HSO2, at a higher level of theory than the original DMBE-PES of
Ballester and Varandas, using minimal data points in the fitting process.
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Machine learning is a statistical ‘tool’ that scientists and software devel-
opers are using to assist with the areas of research and development that
prove difficult, or sometimes impossible, to navigate. Predominantly,
ML is being applied to the analysis of large volumes of data and pattern
recognition in very advanced relationships, but the methods can often be
difficult to implement and as such, the human element has not been en-
tirely eliminated. Some areas that machine learning algorithms are being
applied to today include: image captioning [54], machine translation [55],
playing complex computer games [56], and even helpful, human-like chat
bots (GPT-4 and ChatGPT). [57] The following quote is the output of Chat-
GPT, a state of the art natural language processor, prompted with the
following: “write me an example of an introduction to a thesis on ma-
chine learning in computational chemistry”.

The field of computational chemistry has seen a rapid growth in
recent years, largely due to the development of machine learning al-
gorithms that enable efficient and accurate predictions of molecular
properties and behavior. The use of machine learning in computa-
tional chemistry has opened up new avenues for exploring complex
chemical systems, from drug discovery to materials design. This the-
sis aims to investigate the potential of machine learning approaches
in predicting various chemical properties, such as molecular energy,
reactivity, and solubility, using large-scale datasets and state-of-the-
art algorithms. By harnessing the power of machine learning, this
research seeks to enhance our understanding of chemical processes

19
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and inform the design of new molecules and materials with desirable
properties. [57]

It covers the important topics, hitting on the concepts of property pre-
diction and drug design, while also accurately bringing in ideas sur-
rounding large datasets and complex algorithms. Most interestingly,
and controversially, it reads much like something a human could have
written themselves.

A concise, general definition for machine learning was first given by
Samuel:

[Machine learning is the field] of study that gives computers
the ability to learn without being explicitly programmed. -
Arthur Samuel, 1959

This statement captures the hypothesis behind this field of research - is
it possible to get a computer program to improve itself and learn from
mistakes, without having to write a long list of rules that have to be added
to as time goes on? A more specific breakdown of what is meant by the
idea of learning is given in the textbook by Mitchell: [58]

A computer program is said to learn from experience E with
respect to some task T and some performance measure P,
if its performance on T , as measured by P, improves with
experience E. - Tom Mitchell, 1997

When asking if a computer is learning it is possible to simply ask: does
it get better at the task given to it over time?

2.1 THE TYPES OF MACHINE LEARNING

Machine learning is specifically a subset of the wider Artificial Intelli-
gence (AI) umbrella. The distinction between the two is subtle, AI covers
all aspects of computers exhibiting human like intelligence; whereas ma-
chine learning is simply an application of AI, using statistical models to
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learn without direct intervention. Learning is the process of taking a
dataset (be it a collection of images, data rows in a table, or outputs from
electronic structure calculations etc.) and feeding it into an algorithm
that can extract some insights from the data. A computer is said to have
learnt if its performance at a given task improves with experience of said
task. Providing the algorithm with more experience is called training.
There are a few different ways to achieve learning, and ML can be fur-
ther broken down into broad categories of supervised, unsupervised, and
reinforcement learning, the major differences lying in the data being used
to train the algorithm. Ultimately the end goal is insight, either in the
form of prediction, or in the form of categorisation.

In what is arguably the simplest of the three to understand, supervised
learning makes use of labelled training data, providing the algorithm
with both the input and the ‘correct’ output. The aim here is to discover
the relationship between the input and the output, so as to predict the
output from new datapoints. It is possible to further define regression
and classification problems within the supervised learning framework.
The output from regression tasks is a continuous variable, whereas a
classification task would have a categorical output (such as identifying
an image as either a cat or not a cat). On the other hand, unsupervised
learning makes use of unlabelled data. The ML algorithm in this case
aims to find patterns and relationships in the data, without a pre-defined
end goal, known as association and clustering. This is useful for the
analysis of very noisy data, or even data that looks, to the human eye,
unrelated. Examples include media recommendations for TV shows or
music; the machine learning algorithm clusters users into similar groups,
assuming that likeminded people will enjoy the same kinds of media. In
the scientific community, unsupervised learning is used in a number of
different areas, for example: dimensionality reduction through principal
component analysis, [59–65] and the approximation of molecular dynamics
kinetics simulations. [66,67] For more information on the architecture of
these unsupervised learning algorithms the interested reader is directed
to a comprehensive review by Glielmo et al. [68]
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Finally, reinforcement learning is quite different to both supervised
and unsupervised learning in its approach to training. In these models an
agent manipulates its environment to achieve an end state. The agent makes
decisions and is rewarded if said decision is successful in moving towards
the end state. If it is not then the agent is either not rewarded or pun-
ished. In the wider science community these kinds of learning algorithms
have found use in self driving cars, [69] robotics, [70] and gaming. [56] Within
computational chemistry they have been used to optimise chemical re-
actions, [71], design new molecules [72] and even predict the ground state
energy of a system. [73] Similarly, the interested reader is pointed towards
a recent review by Gow et al. for more information on the applications
of reinforcement learning to computational chemistry. [74]

Table 2.1 shows a summary of the three types of learning, outlining
the core differences between them. Supervised learning methods are

Table 2.1. Comparison of the different types of machine learning.

Supervised Unsupervised Reinforcement
Data type Labelled data Unlabelled data Punishment and

reward

Problem
type

Regression, clas-
sification

Association,
clustering

Exploitation,
exploration

Example
models

Linear regres-
sion, Neural
Networks

K-means Q-learning

Applications Property pre-
diction, energy
prediction

Dimensionality
reduction for
molecular dy-
namics

Reaction optimi-
sation, molecu-
lar design

most common in the application of ML to computational chemistry, and
will therefore be the only type of algorithm to be discussed in detail in
this chapter.
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2.1.1 LINEAR REGRESSION

A logical way to understand the various parts that make up a supervised
learning algorithm is to look at the simplest example: linear regression.
In statistics, linear regression is a way of modelling a linear relationship
between an dependent and an independent variable. In machine learning
the dependent variable would be the output or labels, while the indepen-
dent variable would be the inputs or features. The aim in any supervised
machine learning task is to find the function that transforms the features,
x, into the labels, y. Oftentimes x is a vector of several features called a
feature vector, and allows the label to depend on more than one variable.
A collection of feature vectors and their true/calculated labels is known
as a dataset.

A hypothesis function is a guess that should sufficiently represent the
true function describing the system. For linear regression it takes the
following form,

y = ω · x+ b. (2.1)

Hereω is a weight controlling the contributions of x, and b is a bias used
to shift the values by a fixed amount. The ‘best’ values of ω and b will
give rise to the line of best fit, and a function that can successfully predict
new values of y for any value of x. By changing the hypothesis func-
tion to something more complicated, including powers and exponentials
(known as nonlinear regression), it is possible to model much more in
depth relationships between x and y.

To find the ’best’ values of the weights and biases, the algorithm is first
shown a selection of the dataset, called the training set. The weights and
biases can be initialised randomly and then adjusted through an iterative
process of minimising the error between all of the predicted labels, ypred,
and the true labels, y. This error is quantified through a loss function, J,

J =
1

n

n∑
i=1

(yi − ypred, i)
2,
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or substituting in the hypothesis function, equation 2.1,

J =
1

n

n∑
i=1

(yi − (ωxi + b))
2, (2.2)

where n is the number of datapoints in the training set. For linear regres-
sion this is simply the Mean Squared Error (MSE) between ypred and yi.
To minimise this value the model typically uses the gradient descent algo-
rithm. [75] Once J is minimised, the algorithm uses the resulting, optimal
values of ω and b to predict the labels for the remainder of the dataset,
called the test set, to provide an estimate of the performance of the model
and ensure that the algorithm can generalise to datapoints that it was not
trained on.

The gradient descent algorithm. Imagine a hiker is at the top of a hill
and wishes to reach the bottom. They take a look at their surroundings
and head downhill in the direction that is steepest. They take large steps
while the hill is very steep but as they move closer to their goal, and
the terrain starts levelling out, they begin to take smaller and smaller
steps. Eventually every direction to take a step will be up hill and they
know they are at the bottom of the hill. This “hill walker” heuristic gives
some insights into how the gradient descent algorithm works. Firstly
the partial derivatives with respect to the weights and biases of the loss
function (∇θJ(θ)) are calculated to determine the gradients at the current
step,

∇θω
J(θ) =

1

n

n∑
i=1

2(yi − (ωxi + b))(−xi),

=
−2

n

n∑
i=1

xi(yi − ypred,i),

∇θb
J(θ) =

−2

n

n∑
i=1

(yi − ypred,i).
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The weights and biases are then updated with respect to the gradients
calculated,

ω← ω− η · ∇θω
J(θ),

b← b− η · ∇θb
J(θ).

η here is the learning rate and controls the size of the update made at each
step. A small value of η is common (η = 0.0001) to ensure reasonable
accuracy.† This process is repeated until a threshold on the loss function
is reached. Ideally this would be J = 0, but in reality it is set to a
sensible value for the problem being solved. The loss function could
be something other than MSE, such as root mean squared error (RMSE)
or mean average error (MAE), and often the choice of loss function can
be the difference between a ML model performing well or performing
poorly. [76,77]

2.1.2 CONSIDERATIONSWHEN USING MACHINE LEARNING

In the application of machine learning there are two major pitfalls to
consider, either the data used to train the network could be ’bad’ or the
algorithm chosen is unsuitable for the given task.

The data Firstly it is important that there is enough data. Small datasets
are hard for ML algorithms to sufficiently learn from (although there is
interesting research into low data training). [78] Secondly, and perhaps
slightly obviously, it is important that the data being fed into the algo-
rithm is accurate and does not contain errors, as an ML algorithm will
not attempt to identify if data is erroneous and will train on anything
passed to it.

Not only does the dataset need to be large enough to learn from, but
the training set needs to be representative of the whole information space
in order to cover all areas that predictions could potentially need to be

†η is an example of a hyperparameter, some value within the algorithm itself that can
be adjusted to alter how the algorithm performs.
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made for. For example, assume a model needs to predict house prices
all around the world. If it has been trained on only house prices in the
UK there is no way for the model to accurately predict house prices in
other countries. There may be some similarities between size and local
geography, but the housing market from country to country is different
enough that it is unlikely the model will be able to extrapolate well. This
is, in fact, an important point to make about machine learning in general,
in that it can not necessarily extrapolate well, only interpolate.

The feature vector chosen as the representation of the dataset is very
important, and must be sufficient enough to contain all the relevant infor-
mation, but not too complex as to cause training issues. In the example
of the house price prediction, if only location was given to the model as a
feature it is not likely that the predicted house price would be accurate as
there is too much variation in house price within similar locations. If in-
stead the feature vector contained information about location, number of
bedrooms, size of house, and number of bathrooms, it would be expected
that the model would perform much better. The problem of represen-
tation is of particular interest in the application of machine learning to
computational chemistry, and will be discussed in Section 2.3.

The algorithms Using a very complex model, such as an artificial neural
network (NN), for a simple problem can lead to a problem known as
overfitting. The essence of this problem is that the algorithm learns the
training data too well, and has so much freedom in the ’line’ that it can
fit, that it cannot generalise to new datapoints/the test set. For example,
Figure 2.1 shows two lines fit to the same dataset. In Figure 2.1a the
predicted hypothesis function is a simple curve, with an RMSE of 0.2098
(dimensionless). To the human eye this seems like a good fit, and it likely
is. However, Figure 2.1b has an RMSE of zero (the curve goes through
every point), which would suggest that it is a better fit. This is not the
case, and is obvious to the reader, but without plotting the data it is not
immediately clear (this is similar to Runge’s phenomenon seen in 1). This
is where the test set mentioned earlier comes into play. Once the machine
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Figure 2.1. (a) Line of best fit. (b) 20-degree polynomial curve of
best fit. They both have the similar RMSE values, in fact (b) is zero,
but the polynomial curve clearly cannot generalise.

learning model has been trained, two loss values can be calculated, one
for the training set, and the other for the test set. If the training loss
value is drastically lower than the test set loss, then the model is said to
be overfit. There are several methods of combatting overfitting, and they
often come in the form of hyperparameters, but it is sometimes better to
just use a simpler model.

A hyperparameter is a value within the model that can be adjusted in
order to modify the behaviour of the algorithm, and improve the overall
performance. Some examples include the learning rates of optimisers,
the train/test split ratio, and the number of layers in a neural network.
To determine the best values for the hyperparameters the test set is often
split further into two sets: a validation set; and a test set. The validation
set is used during training to check if the model can generalise. After
one training cycle (a set of parameter updates, called an epoch), the model
is used to predict values in the validation set, and much like before if
the loss value on the training set is significantly less than the loss for
the validation set, then the model is likely overfit. The hyperparameters
can then be adjusted to reduce the error in the validation set, while also
maintaining the performance on the training set. The test set is a final
test of the algorithm to ensure that it has not just overfit to the validation
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set after hyperparameter optimisation. It is vital that the network is
tested on data that it has never seen before, to ensure a fair assessment
of performance.

Underfitting is the opposite problem and is commonly caused by the
use of models that are too simple. For example, linear regression is
unlikely to be able to model the housing market to any sufficient level as
there are just too many factors at play. This can be fixed by using a more
powerful model (such as a neural network) or even using a better selection
of features. When considering the method to use for a new ML problem
it is important to balance underfitting and overfitting (sometimes called
bias and variance respectively) to achieve the best possible accuracy.

2.2 NEURAL NETWORKS

Artificial neural networks were given their name due to having been
inspired by a biological neural network, the brain. In a drastic simplifica-
tion, neurons in the brain work by triggering a signal when they receive
enough inputs from other neurons, being similar to logic gates in this
manner.

Neural networks are developed from an interconnected set of simple
units (nodes or neurons) that resemble these logic gates, they take inputs
from either the feature vectors, or a number of other nodes, and output a
single value. One of these nodes is shown in Figure 2.2a and it can be seen
that each node in the network is actually a single linear regressor such
as in Section 2.1.1, with the output being transformed by an activation
function (in this case bounding the output to between 0 and 1). The
combination of several of these nodes is what makes up a neural network,
and an example of one is shown in Figure 2.2b. The first set of nodes is
called the input layer. These inputs then connect to each node in the next
layer that performs a transformation on the input, with contributions of
each input node being controlled by the weights, ω, and offset by some
value of the bias, b. This layer is called the hidden layer as the outputs
are not seen. These outputs could then either lead into another hidden
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later, or alternatively feed into a final layer, y, known as the output layer.
The power of NNs lies in the fact that they are able to make multiple

input layer, x

transformation{

activation function
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input layer, x hidden layers output layer, y
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Figure 2.2. (a) The structure of an individual node within a network.
(b) A deep neural network. The node consists of an input layer, a
linear combination function node and an activation function, in this
case the sigmoid function, σ.

non-linear transformations through many hidden layers, and by adding
more hidden layers (constructing a deep neural network) it is possible to
model increasingly complex and abstract features.

To update the weights and biases in linear regression a gradient de-
scent algorithm can be used, however to update these values in an NN
simple gradient descent cannot be applied. Updating the weights and
biases in neural networks is done through a process called backpropaga-
tion.† Up until 1986 researchers struggled to train deep neural networks,
but a paper by Hinton et al. [82] introduced this idea of backpropagation
and opened up the field. In backpropagation, a network’s output error is
determined and the algorithm computes how much the previous hidden
layers of nodes contributed to that error. It then calculates how much of
these error contributions came from each node in the hidden layer before
that, continuing in the same manner until it reaches the input layer. The

†This is only true for feed-forward neural networks. A feed-forward neural network
is one in which the layers do not form, or contain, any loops. The NN that has been
described so far is an example of such a feed-forward network. An example of an NN
that does contain such a loop would be a recurrent neural network [79–81]
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algorithm essentially measures the error gradient across all the weights
in the network, and gradient descent is performed on those values.

2.2.1 VANISHING/EXPLODING GRADIENTS PROBLEM

The activation function within a neural network turns an unbounded
input into a bounded output, and allows for a non-linear transformation.
The first example of an activation function is the sigmoid function, σ(x),
that returns a value between 0 and 1 (Figure 2.3),

σ(x) =
1

1+ e−x
. (2.3)

Large negative numbers will return 0 and large positive numbers will
return 1. After the breakthrough with backpropagation, the sigmoid
function was the most popular activation function in the implementation
of neural networks. However, issues in training were discovered such
that the gradient tended to get smaller and smaller as the algorithm
moved to the earlier layers in the backpropagation algorithm, and the
gradient descent algorithm ends up leaving these parameters virtually
unchanged. This lead to instances of training never converging and is
called the vanishing gradients problem. There was also the issue of the
exploding gradients problem that, expectedly, is the opposite issue. The
product of multiple large gradients leads to an exponentially growing
gradient, which in turn leads to very large updates in the parameters
and convergence never being reached.

This is partially why deep neural networks had been abandoned until
around 2010 when Glorot and Bengio [83] discovered that the outputs from
layers further through the network were getting extremely large, eventu-
ally saturating the popular sigmoid activation function when combined
with the most common initialisation technique for the weights and biases
(random initialisation using a normal distribution with mean 0 and stan-
dard deviation 1). Figure 2.3 shows that very large or very small values
return values close to zero and one, and the derivative at these points is
close to zero. Thus backpropagation ends up working on too small of a
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gradient to start with, and has little to propagate back through the sys-
tem. Glorot and Bengio proposed a few solutions to this problem. They
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Figure 2.3. The sigmoid function, showing the small gradient of
the curve as the values of x get larger, and the values of y get closer
to zero and one.

state that if variance of the inputs was equal to the variance of the out-
puts, and the variance of the gradient was consistent throughout training
then the vanishing gradients problem could be solved. These constraints
are not possible to guarantee unless the number of nodes in the input
and the output are the same, but they suggested a compromise. Instead
of simply initialising the weights with a mean and standard deviation of
0 and 1, the weights should be selected from a normal distribution with
a mean of 0 and a standard deviation equal to,

σ =

√
2

ninputs + noutputs

where n is the number of inputs and outputs to the layer of which the
weights are being initialised. For situations where the activation function
is logistic, this kind of initialisation can solve the problem of vanishing
gradients.

As the activation function is partially to blame for this problem, other
alternatives have also been suggested. Particularly, two of the most com-
mon activation functions used today are the Rectified Linear Unit [84]

(ReLU - shown in figure 2.4a) and the hyperbolic tangent function [85]
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Figure 2.4. (a) The ReLU activation function, showing that it returns
x when x > 0, and 0 when x < 0. (b) The tanh function, varying
between −1 and 1.

(tanh, shown in figure 2.4b). ReLU is a function that returns x when x >
0, and 0 when x ⩽ 0. This does not saturate for positive values and is very
fast to compute, thus making it a popular activation function. The tanh
function is very similar in shape to the sigmoid function, but varies from
−1 to 1 instead of 0 to 1. If ReLU or tanh are used, it is recommended that
a different type of initialisation is used. For ReLU the normal distribution
should have a standard deviation of

σ =
√
2

√
2

ninputs + noutputs
,

and for tanh the normal distribution should have a standard deviation of

σ = 4

√
2

ninputs + noutputs
.

2.2.2 OPTIMISATION ALGORITHMS

Training deep neural networks with lots of hidden layers can be quite
slow, and one area that can be adjusted to improve training speeds is
the optimiser that minimises the loss function. By far the most popular
optimiser is the adaptive moment estimation optimiser (or the Adam
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optimiser), [86] but it is worth exploring a few of the optimisers that came
before it to fully understand the various aspects that it includes.

Momentum optimisation [87] If a ball was rolled down a hill it would
be expected to slowly gain speed until it reached some terminal velocity
determined by the friction and air resistance. This is the basic idea
behind momentum optimisation, and contrasts the small regular steps
that gradient decent takes.

In section 2.1.1, gradient descent was shown to update the parame-
ters (θ) based on the gradient of the loss function calculated at each step
[∇θJ(θ)], then the gradient is discarded and the algorithm moves on. No
information about previous gradients is retained, and if the current gra-
dient is small the optimisation takes small steps. In contrast, momentum
optimisation retains a portion of the gradient at each step in a momentum
vectormmm, and uses this vector to update the weights and biases instead.

1. mmmi+1 ← βmmmi + η∇θJ(θ),

2. θi+1 ← θi −mmmi+1.

A friction factor, β, is used to prevent the momentum from getting too
large, and risking overshooting the minimum. This is typically set be-
tween 0 and 1 (low and high friction, respectively), and a common starting
value is 0.9. In essence the gradient acts as an acceleration rather than a
speed.

AdaGrad [88] Adaptive subgradient (AdaGrad) treats each parameter θi
individually, updating the learning rates for each one.

1. sssi+1 ← sssi +∇θJ(θ)⊗∇θJ(θ),

2. θi+1 ← θi − η∇θJ(θ)⊘
√
sssi+1 + ε.

Step one involves calculating the square of the gradients for each param-
eter, sss, and step two is much like gradient descent. However, the gradient
vector is scaled by a factor of

√
sss+ ε, where ε is a term to avoid dividing
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by zero. This has the effect of decaying the learning rate for parameters
with steeper gradients faster than those with shallower gradients, and
better points the resulting vector towards the global minimum. Although
this method works well for simple quadratic problems, it often stops too
early when used with neural networks due to the learning rate getting
very small very quickly.

RMSProp [89] To combat the problems highlighted with AdaGrad, Root
Mean Square Propagation (RMSProp) only keeps the most recent gradi-
ents when updating sss by adding an exponential decay, β, to step one.

1. sssi+1 ← βsssi + (1− β)∇θJ(θ)⊗∇θJ(θ),

2. θi+1 ← θi − η∇θJ(θ)⊘
√
sssi+1 + ε.

This method tends to outperform momentum optimisation techniques.

Adam [86] Returning to the start of this section, the adaptive moment
estimation, or Adam optimiser combines the ideas of momentum op-
timisation with those of RMSProp, keeping track of an exponentially
decaying average of both the past gradients and the past squared gradi-
ents.

1. mmmi+1 ← β1mmmi + (1− β1)∇θJ(θ),

2. sssi+1 ← β2sssi + (1− β2)∇θJ(θ)⊗∇θJ(θ),

3. mmmi+1 ←
mmmi+1

1− βT
1

,

4. sssi+1 ←
sssi+1

1− βT
2

,

5. θi+1 ← θi − ηmmmi+1 ⊘
√
sssi+1 + ε,

where T is the iteration number. Steps one and two are almost identical
to momentum optimisation and RMSProp, as is step five. Steps three
and four are there to boost mmm and sss at the start of training, as they are
initialised at 0 and therefore biased towards 0 to start with.
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Where gradient descent takes small steps at every point, an Adam
optimiser will take larger steps the steeper the gradient and smaller steps
at shallower gradients - leading to much faster optimisation.

2.2.3 OTHER HYPERPARAMETERS

When it comes to improving the performance of neural networks, there
are a few more methods available to reduce/avoid overfitting.

Regularisation Regularisation aims to address the bias vs variance
trade-off previously mentioned by introducing parameters to the loss
function to scale the learned parameters by a set amount. In general
there are two types of regularisation that get implemented. The first is
L1 regularisation (sometimes called lasso regression) which adds the ab-
solute value of magnitude of the coefficients to the loss function. Taking
equation 2.1 and adding this term, gives the following,

J =
1

n

n∑
i=1

(yi − (

p∑
j

ωjxij + bj))
2 + λ

p∑
j

|ωj|.

Here, x is now a feature vector of p features, and λ is a scaling parameter
that controls the strength of the regularisation. This has the effect of
shrinking the coefficients of the least important features to be equal to
zero, essentially performing a kind of feature selection, and reducing
overfitting. The second type of regularisation is called L2 regularisation,
or ridge regression. Instead of the absolute value of magnitude of the
coefficients, L2 regression adds the squared magnitude of the coefficients
to the loss function,

J =
1

n

n∑
i=1

(yi − (

p∑
j

ωjxij + bj))
2 + λ

p∑
j

ω2
j .

This also shrinks the least important features, but they will never equal
zero, and thus all features are used in predictions.

The type of regression, and the value of λ will need to be decided
for each individual problem, and are thus ‘adjustable parameters’, or
hyperparameters.
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Early stopping If a neural network is not trained for enough epochs
then it is likely to be underfit, and make poor predictions on the training
and testing sets. However, if it is trained for too long, then it can become
overfit, and only make accurate predictions on the training set, while
underperforming on the test set. Early stopping halts training after the
error on the validation set (usually half of the test set) begins to increase
(shown in Figure 2.5), or if the error has not improved for a determined
set of cycles. This stops the network becoming overfit to the training set,
while allowing it to train for as long as possible.
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Figure 2.5. An example of a fake dataset, where the validation
loss initially follows the training loss well, but after ∼20 epochs the
network begins to get over fit to the training data and the validation
loss begins to increase rapidly. After early stopping, the network
parameters as they were an epoch before stopping would usually
be taken as the trained network parameters.

Dropout One way of improving the performance of a machine learn-
ing algorithm, reducing overfitting, and forcing it to generalise, is by
averaging the output of many separately trained models, and if all the
combined models are different then this performance gain can be quite
large. [90] However, for larger neural networks this is impractical as ‘differ-
ent’ NNs will either have varying architectures or be trained on entirely
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different datasets, both of which can be problematic. Hyperparameter
optimisation of large networks can be difficult, and if the datasets are
hard to generate in the first place then there may not be enough data to
simply use subsets. Instead two datasets would need to be generated
which is, of course, undesirable.

Dropout aims to solve both of these problems by temporarily discon-
necting nodes† in the neural network, which changes the architecture for
a single epoch at a time, allowing the final trained network to be an ap-
proximation of a combination of exponentially many neural networks. [90]

A visualisation of this concept is shown in Figure 2.6, highlighting the

(a) (b)

Figure 2.6. (a) A two-hidden-layer neural network (b) The same
neural network with some of the nodes switched off (dropped).

different connectivity seen in the dropped out network. Srivastava et al.
report that dropout “has been proved to be highly successful, with even
the most state of the art models getting a 1 - 2 % accuracy boost.” [90]

Dataset selection One of the main challenges in machine learning is
acquiring a suitable set of training data. If not enough data exist then
you have to generate more, and if you have enough data then you need

†The rate of dropout for each node is determined randomly, with the probability
of a node turning off for any given training cycle being set by the hyperparameter p.
Srivastava et al. state that p = 0.5 “seems to be close to optimal for a wide range of
networks and tasks.” The input layer should usually be left with p closer to one, but
this is again a hyperparameter to adjust. [90]
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to select a sufficiently representative subset of the data to train on. In
computational chemistry, generating a large number of molecular struc-
tures is a task that can be easily automated for small systems at lower
levels of theory, but as discussed in Chapter 1, the computational cost
for larger systems at higher levels of theory gets prohibatively large, so
fewer training data can be generated.

As machine learning algorithms cannot accurately extrapolate beyond
what they have been taught, it is important to ensure that the training
set encompasses the extremes of the data to be learned. For example,
extreme bond elongations or contractions, or bond angle changes. On
a related but separate note it is important to check for ‘holes’ in the
training data. Figure 2.7 shows a dataset characterised by two features.
For certain values of these features there is no training data, and a model
predicting the label for a test point in this area may not provide any
meaningful answers. One way to address both of these problems is
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Figure 2.7. A dataset characterised by two features. Blue datapoints
have been selected and placed in the training set. The red datapoints
are missing from the training set. The red ‘unsampled region’
highlights an area of the dataset with no points in the dataset, and
any new predictions made for these values of the features are likely
to be incorrect.

through more intuitive configuration space sampling, which comes in
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the form of active sampling. Farthest point sampling is the method of
choosing the point furthest away from a starting position, adding that
to the training set, then selecting the next furthest point from this new
position and repeating this process until some stopping criteria are met.
While structure-based sampling aims to maximise the Euclidean distance
between points in the training set. [91]

2.3 MACHINE LEARNING IN CHEMISTRY

The last few decades have seen the application of machine learning to
a rising number of problems spanning numerous industries. These
include day to day examples in machine translation, [55] video game
AI, [56] self-driving cars, [92] and recommendations across social media and
video streaming. [93] In the sciences, ML has been applied across many
fields including: medical diagnostics, [94–98] bioinformatics, [99–102] particle
physics, [103] nano-sciences, [104] and robotics. [70,105,106]

In chemistry, machine learning has found use across the whole field,
from simple learning of molecular properties such as toxicity [107] and
reaction rates, [108,109] to thermodynamic property prediction, [110–112] and
drug and materials design. [113,114] For a thorough review of the appli-
cation of machine learning to areas of chemistry separate to PESs, the
interested reader is pointed towards the work of Keith et al. [115]

Machine learned potentials A large body of work surrounds so called
‘machine learned potentials’, [116–119] and it is important to briefly explain
how these differ from ‘potential energy surfaces’, considering the similar
names. These are specifically attempts at replacing the solution of the
Schrodinger equation entirely with a potential trained on a large volume
of ab initio data. A PES does not aim to circumvent the Schrödinger
equation, in fact many thousands of ab initio points of data are needed
to fit one. The aim of an ML potential is to be general enough to be
transferable to a number of different systems.
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A brief note on representation Although important in the wider ap-
plications of machine learning, the representation of the chemistry to
the algorithm is crucial for successful application of ML techniques to
computational chemistry. This might seem simple at first; a molecule
is wholly characterised by the number of electrons and the positions
and charges of the nuclei. This is, however, insufficient to describe the
system for machine learning, as the swapping of two identical atoms
within, or the translation and rotation of the molecule will not give rise
to any changes to properties such as energy and this invariance needs to
be accounted for in the feature vector provided to the machine learning
algorithm. If an insufficient representation is used, then the predicted
energy for two identical molecules, where one is slightly rotated com-
pared to the other, could be wildly different. Even though it is clear that
this should not be the case.

A simple set of bond lengths is insufficient as it contains no angle
or connectivity information, and can lead to several different structures
(a one to many relationship). The use of XYZ coordinates introduces
enough information to give a wholly unique structure, but simply trans-
lating the molecular coordinates in space, or rotating them through space,
numerically gives a completely new representation of a single geometry
with a unique energy, with potentially infinite different representations
of the same molecule (a many to one relationship).

Internal coordinates (or z-matrices) are the simplest form of represen-
tation that is invariant to these operations, characterising atoms relative
to an internally consistent, central origin point, through (r, θ,ω). Where,
r is a bond length, θ is a bond angle, and ω is a dihedral angle. In this
case each set of internal coordinates characterises exactly one molecule
(a one to one relationship). It is also important to think about the system
being explored, as symmetries within the molecule may be able to lead
to reductions in training sets by training for only one component of the
symmetry, or even an increase of the size of the training set with very little
effort by duplicating the dataset for each component of the symmetry.

A more complex representation has been described by Bartók et al.,
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predominantly for use with the mathematical potentials. They pro-
posed a new way to represent chemical environments, which they named
“Smooth Overlap of Atomic Positions” or, SOAP. [120] They showed that
the similarity measure K(q, q ′), where q is a parameter characterising
the local atomic environment, is more important than the geometric de-
scriptor itself. Therefore, SOAP bypasses the descriptor entirely and
instead builds a similarity measure between neighbouring environments
directly. However, for ML-PESs these are not useful, nor necessary, as
they do not contain the granularity in geometry required to build a PES.

2.3.1 POTENTIAL ENERGY SURFACE GENERATION

As outlined in Chapter 1, conventional methods of PES fitting have a
number of downsides. Methods such as RKHS, IMLS, and MSI require
large numbers of expensive ab inito calculations, and to use the DMBE
method an intimate knowledge of the form of the PES is already required.
Chapter 1 also identified three main ways of speeding up PES generation,

1. speed up the ab initio data generation (basis sets),

2. speed up the fitting of the surface (ML algorithm),

3. reduce the amount of data needed to fit/train the surface itself,

and it is worth justifying the use of an ML algorithm to fit the surface, as
per point two. This has been achieved in numerous examples through
the use of machine learning techniques, and specifically, neural networks
have found great success in their application to this field.

Some of the earliest examples of NN PES fitting date back 25 years.
Blank et al. fit a neural network for CO on a nickel surface, introducing
many important ideas surrounding NN PESs, including the choice of
network size, considerations on overfitting, and the quality of the training
data. [121] Brown et al. reported impressive mean errors of 25 cm−1 on
an NN-PES for four atom van der Waals clusters. [122] However, the use
of neural networks was limited, and seen mostly as a computational
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curiosity due to the perceived low accuracy of neural networks, [123] with
Duch et al. going so far as to say “For many problems [. . . ] an attempt
to use neural networks [. . . ] will lead to low accuracy and lengthy
computations”. [124] Many of the problems stemmed from the simplicity
of the neural networks being trained, and the examples presented so far
all used single layer neural networks. However, with the development of
backpropagation (discussed in section 2.2), deep neural networks became
more prevalent and the first multi layer NN-PESs were reported. [125,126]

Other ways to improve the accuracy of these surfaces are to ensure that
the surface follows the symmetry of the system, meaning it is invariant
to the permutation of identical atoms. Prudente et al. were the first to
introduce this idea and implemented it through the use of a symmetrised
hidden layer, [127] while Gassner et al. used symmetrised inputs for H2O –
Al3+ – H2O three body interactions. [128] Lorenz et al. used symmetrised
inputs to model the surface interaction of H2 with the (2 × 2) potassium
covered Pd(1 0 0) surface, [129] while Filho et al. chose to fit only the
symmetrically unique sections of the surface for the H3

+ molecule. [130]

A major breakthrough in the field came from Manzhos et al. where
they showed that it was possible to fit an NN-PES for three and four
atom molecules to levels of accuracy suitable for vibrational analysis. [131]

They report accuracies on the order of 1 cm−1 on the global fit of the test
set for H2O, HOOH, and H2CO. This was achieved by firstly fitting a
rough surface using an NN, followed by a second surface fit by correct-
ing the energy with high accuracy calculation on important fitting points.
Manzhos has continued to work in this field and had recently published
an in-depth review alongside Ihara and Carrington on “Machine learning
for vibrational spectroscopy” [132] covering the use of machine learning
techniques to directly calculate vibrational spectra, improve spectra cal-
culated by other means, and aid with the interpretation of vibrational
spectra.
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2.3.2 SOFTWARE DEVELOPMENTS

Historically, one of the aspects holding ML back has been the complex-
ity of implementation. However, as libraries such as TensorFlow [133] and
Keras [134] have continued to be developed, and the breadth of information
available in the form of easy to understand tutorials has grown, writing
and applying machine learning algorithms to new problems has become
significantly easier. Specifically, in the field of potential energy surfaces,
Abbott et al. recently released ‘PES Learn’, a Python library capable of
training neural networks and gaussian process regression algorithms to
generate potential energy surfaces from datasets of molecular geometry
and energies. [135] The program automatically performs hyperparameter
searches, then fits a model using PyTorch [136] with the best possible hyper-
parameters searched over. It is then presented in an easy to interrogate
model file that makes probing the trained surface very easy.

This ease of access, however, does not come without any down-
sides. In the introduction of their 2021 review titled “Combining Ma-
chine Learning and Computational Chemistry for Predictive Insights Into
Chemical Systems”, Keith et al. highlight four points from a poll they
posed to the scientific community. [115]

1. ML methods are becoming less understood while they are also
more regularly used as black box tools.

2. Many publications show inadequate technical expertise in ML (e.g.,
inappropriate splitting of training, testing, and validation sets).

3. It can be difficult to compare different ML methods and know which
is the best for a particular application or whether ML should even
be used at all.

4. Data quality and context are often missing from ML modelling, and
data sets need to be made freely available and clearly explained.

It is clear that although ML is easier to implement, there is a need for
more careful development and greater understanding.
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The importance of good data In a real test of the field, during the global
pandemic of COVID-19 hundreds of machine learning algorithms were
developed in an attempt to help diagnose or treat the virus. Concerningly,
not a single one of these models had any significant positive impact, as
highlighted by two major studies released since the pandemic began.
Wynants et al. explored 232 algorithms designed to diagnose patients, or
predict the severity of the disease for individuals and found that none of
them were fit for clinical use, while only two showed any real promise for
future work. [137] Similarly, Driggs et al. studied 415 published tools for
diagnosis of COVID-19 from medical imaging, and again found that none
of them were viable for real world use. [138] This sentiment has also been
echoed by The Alan Turing Institute in their 2021 report summarising
workshops held in 2020, concluding that ML tools had very little impact
on the fight against COVID-19. [139]

This apparent failing of the scientific community highlighted some
of the areas of major problems surrounding real world application of
the machine learned chemistry. In their review, Driggs et al. iden-
tify the datasets as some of the largest sources of error. They highlight
problems with ‘Frankenstein’ datasets that have been spliced together, of-
ten containing several duplicates, and issues with feature selection/data
cleaning. [138] For example, many studies unwittingly used lung scans of
children without COVID-19 as examples of non-COVID cases, leading
to algorithms that just identified children, rather than COVID. Some al-
gorithms were found to be picking up on the fonts used in the scans,
linking fonts from hospitals with larger volumes of serious cases to be a
predictor for COVID.

All this highlights that although machine learning has been success-
fully applied to the field of computational chemistry, the advent of new
technologies that make them easier to train and test [135] exacerbates the
need for care to be taken when implementing ML algorithms, and curat-
ing the datasets for them.
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In Chapter 1 it was established that the molecular geometry of a system
can be used in conjunction with the Schrödinger equation to calculate
the electronic energy of the system. The form of this equation, and the
application of various approximations such as the Born-Oppenheimer
approximation are all part of a wider ’electronic structure theory’ that is
essential to many modern methods of computational exploration of the
chemical world. The resulting equations of electronic structure theory
enable the calculation of energies of molecules based on the positions
of the atoms within them. This in turn can lead to the predictions of
molecular geometries, reactivities, and properties, to name a few. In the
context of potential energy surface generation, it is essential that the basis
for these predictions is understood, so that the limitations and drawbacks
of the various theories are taken into account, and where appropriate,
mitigated for.

3.1 THE SCHRÖDINGER EQUATION

The classical world can be described mathematically through Newton’s
laws of motion. Newton’s second law describes the behaviour of a clas-
sical system through time,

FFF = m
d2

dt2
sss

which states that the force acting upon the system, FFF, is equal to the
mass, m, times the second derivative of the position, sss, with respect to

45
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time (acceleration). However, these laws break down when looking at a
quantum mechanical system, and instead the state of a such a system is
described through the use of the time-dependent Schrödinger equation,

i h
∂Ψ(rrr, t)

∂t
= ĤΨ(rrr, t). (3.1)

This equation is a linear partial differential equation, dependent on time,
that operates on the function Ψ. This function, Ψ(rrr, t), is defined to be
a wavefunction; it is a quantum mechanical descriptor of a system that
depends on both position, rrr, and time, t (the form of the wavefunction
will be explored in detail in sections 3.1.2 and 3.3). The Hamiltonian, Ĥ,
is an operator that can be written more fully as,

i h
dΨ(rrr, t)

dt
= −

 h2

2m
∇2Ψ(rrr, t) + V̂Ψ(rrr, t). (3.2)

The term∇2 here is the Laplacian, a sum of the partial second derivatives
with respect to each of the dimensions of rrr. That is, for a vector of
rrrn = x1, x2, . . . , xn,

∇2 =

i∑
i=1

∂2

∂x2n
,

where  h is the reduced Planck constant (h/2π, h = 6.62607015 × 10−34

m2 kg s−1) and m is the mass of the system. The first term in equation
3.2 is a kinetic energy term, and the second a potential energy term, with
V̂ as the potential energy operator. It is possible to use the separation of
variables to develop this equation, such that Ψ(rrr, t) is the product of two
single variable functions,

Ψ(rrr, t) = Ψ(rrr)Φ(t),

whereΦ(t) is a wavefunction dependent only on time. Substitution into
equation 3.2 gives,

i h
dΦ(t)

dt
Ψ(rrr) = −

 h2

2m
∇2Ψ(rrr)Φ(t) + V̂(rrr, t)Ψ(rrr)Φ(t),

and when dividing by Ψ(rrr)Φ(t) this gives,

i h
dΦ(t)

dt

1

Φ(t)
= −

 h2

2m
∇2Ψ(rrr)

1

Ψ(rrr)
+ V̂(rrr, t).
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For potentials that do not depend on time there are two sides to an
equation that each contain only one variable. As it has been stated that
position and time are independent, each side must be equal to a constant,
and this gives two differential equations that can be solved:

i h
dΦ(t)

dt
= EΦ(t), (3.3)

−
 h2

2m
∇2Ψ(rrr) + V̂Ψ(rrr) = EΨ(rrr). (3.4)

The differential equation dependent only on time (equation 3.3), can be
solved such that,

Φ(t) = Ce
−iEt

 h ,

and incorporating the constant C into Ψ(rrr) gives,

Ψ(rrr, t) = e
−iEt

 h Ψ(rrr),

showing that Ψ(rrr, t) is separable. Equation 3.4 is therefore a positional-
dependent differential equation, and is called the time-independent Schrödinger
equation, often written in its iconic form,

ĤΨ = EΨ. (3.5)

This is known as an eigenfunction/eigenvalue equation, where an oper-
ator (Ĥ) acts on an eigenfunction (Ψ), to return the same eigenfunction
multiplied by constant called an eigenvalue (E). [140]

3.1.1 SEPARATION OF THE NUCLEAR AND ELECTRONIC MOTION

As shown in equation 3.4, the Hamiltonian operator, Ĥ, is the sum of
both the kinetic energy (T̂ ) and potential energy (V̂) operators,

Ĥ = T̂ + V̂.

For a system of electrons, i, and nuclei, A, the kinetic energy operator is,

T̂ = −
∑
i

 h2

2me

∇2
i −

∑
A

 h2

2MA

∇2
A, (3.6)
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where me is the mass of an electron, and MA is the mass of nucleus A.
The potential energy operator is,

V̂ =
e

4πε0

(
−
∑
i,A

ZA

riA
+
∑
i>j

1

rij
+

∑
A>B

ZAZB

RAB

)
, (3.7)

in which e is the charge of a proton, Z is nuclear charge, r is a distance
involving electrons, R is a distance involving only nuclei, and ε0 is the
permittivity of free space. It is not possible to solve the Schrödinger
equation exactly for a system with more than one electron, and several
approximations must be made to simplify the problem for larger systems.
The first of which is the Born-Oppenheimer approximation. [8]

The Born-Oppenheimer approximation It is possible to separate a
Hamiltonian into two terms, where the total eigenfunction is a prod-
uct of the individual eigenfunctions, and the total eigenvalue is a sum
of the individual eigenvalues. If we separate the Hamiltonian into its
electronic and nuclear parts, Ĥel and ĤN, the Schrödinger equation can
be expressed as:

ĤΨ(rrr,RRR) = (Ĥel + ĤN)Φel(rrr;RRR)ΦN(RRR),

where ΦN(RRR) is the nuclear wavefunction and Φel(rrr;RRR) is the electronic
wavefunction parametrically dependent on the positions of the nuclei.
That is, Φel(rrr;RRR) depends on the positions of the nuclei, but the nu-
clear positions do not appear explicitly in the wavefunction. It would
be correct to notice that this separation should not be possible, due to
the electron-nuclear potential term, V̂eN = −

∑
i,A

ZA

riA
, in the potential

energy operator (equation 3.7). However, the Born-Oppenheimer ap-
proximation states that due to the very large difference in mass between
electrons and nuclei, and therefore the timescales of their motion, the
movement of electrons can be de-coupled from the nuclear Hamiltonian,
and two separate eigenfunctions can be used.

As T̂N is so much smaller than T̂e due to the large mass difference, ĤN

can be neglected entirely and the expression for the electronic Hamilto-
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nian, or clamped-nucleus Hamiltonian, can be given as:

Ĥel = T̂e(rrr) + V̂eN(r;Rr;Rr;R) + V̂ee(rrr) + V̂NN(RRR).

Which, using atomic units (e ≡ 1, me ≡ 1,  h ≡ 1, 4πϵ0 = 1), can be
expanded to:

Ĥel = −
1

2

∑
i

∇2
i −

∑
i,A

ZA

riA
+
∑
i>j

1

rij
+

∑
A>B

ZAZB

RAB

. (3.8)

From this point forward, all Hamiltonians are assumed to be electronic.

3.1.2 BUILDING A MANY ELECTRONWAVEFUNCTION

The electronic Schrödinger equation is not able to be solved for many
body problems, and exact solutions only exist for one-electron wave-
functions. Therefore, to construct an n-electron wavefunction for a poly-
atomic molecule, it is assumed initially that electrons exist independent
of those around them, and that they can be described by one particle
wavefunctions called spinorbitals. For a single electron, a spinorbital is
defined by the product of both a spatial wavefunction and a spin wave-
function:

ϕ(i) = ϕ(rrri)α(si),

ϕ̄(i) = ϕ(rrri)β(si),

where ϕ is a one particle wavefunction, α and β are spin up (spin mag-
netic quantum number, ms = +1

2
) and spin down (ms = −1

2
), respec-

tively, and si is the spin quantum number (1
2

for an electron). It is not
possible to simply express an n-electron wavefunction as a product of
all one electron spinorbitals due to the Pauli antisymmetry principle, [141]

which states that two wavefunctions must be antisymmetric to the ex-
change of the position of any two electrons.This is achieved by instead
combining orbitals in a sum of all permutations of electrons in orbitals,
and, to build an approximate wavefunction, Φ̃, for a system ofn electrons,
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n spinorbitals are combined in an antisymmetric Slater determinant:

Φ̃(1, 2, ..., n) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(1) ϕ2(1) · · · ϕn(1)

ϕ1(2) ϕ2(2) · · · ϕn(2)
... ... . . . ...

ϕ1(n) ϕ2(n) · · · ϕn(n)

∣∣∣∣∣∣∣∣∣∣∣
.

Here, 1√
n! is a normalisation constant to ensure that,∫

|Φ̃(rrr)|2dτ = 1, (3.9)

where |Φ(r)|2 is the probability density of finding an electron at positionrrr.
When integrating this over all space it is understood that the probability
should be 1. This can be written in a shorthand as,

Φ̃(1, 2, ..., n) = |ϕ1(1)ϕ2(2)...ϕn(n)⟩, (3.10)

where only the principal diagonal elements of the determinant are writ-
ten out, the normalisation is assumed, and the spinorbitals are ϕi(i),
which define electron i as being in orbital ϕi. This, therefore, implies
the Pauli exclusion principle: no two electrons can exist in the same state
at the same time. [141] If two electrons are in the same spin orbital, the
resulting determinant will be zero and the wavefunction vanishes.

Orthonormality [142] For a given operator, Â, if its eigenvalues corre-
spond to observables (that is, the eigenvalues of the Hamiltonian opera-
tor are orbital energies), then those eigenvalues must be real. As such the
operator must be Hermitian, which means that the complex conjugate‡

of the operator (Â†) is equal to the operator itself,

Â† = Â,∫
ψ∗Âψdτ =

∫
(Â†ψ∗)ψdτ, (3.11)

‡The complex conjugate of an imaginary number, x + yi, is x − yi. The complex
conjugate transpose of a matrix reflects the matrix across the principal diagonal, and
replaces each element with its own complex conjugate.
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where here,ψ∗ is the complex conjugate ofψ. To prove this, consider the
following eigenvalue equation and its complex conjugate,

Âψ = aψ, (3.12)

Â†ψ∗ = a∗ψ∗. (3.13)

In this scenario a = a∗ because they are real. Thus by left multiplying
equation 3.12 by ψ∗ and equation 3.13 by ψ, then integrating over all
space gives, ∫

ψ∗Âψdτ = a

∫
ψ∗ψdτ,∫

ψÂ†ψ∗dτ = a

∫
ψψ∗dτ,

and if the eigenfunctions are normalised then
∫
ψ∗ψdτ = 1, which gives

the following, ∫
ψ∗Âψdτ =

∫
ψÂ†ψ∗dτ = a.

Since these functions commute,‡ this can be re-written, and equation 3.11
can be seen to be true, ∫

ψ∗Âψdτ =

∫
(Â†ψ∗)ψdτ.

Returning to equations 3.12 and 3.13, if there are two different eigen-
functions, that is to say,

Âψi = aiψi, (3.14)

Âψj = ajψj, (3.15)

then by taking the complex conjugate of equation 3.14, left multiplying
byψj, left multiplying equation 3.15 byψ∗

i , and integrating over all space,
the following is shown,∫

(Âψi)
∗ψjdτ = ai

∫
ψ∗

iψjdτ,∫
ψ∗

i Âψjdτ = aj

∫
ψ∗

iψjdτ.

‡functions commute if xf(x) = f(x)x
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Recalling equation 3.11, the left hand sides of these equations are equal,
which gives

(ai − aj)

∫
ψ∗

iψjdτ = 0.

If i ̸= j then the integral has to be zero, yielding,∫
ψ∗

iψjdτ = 0,

defining the wavefunctions to be orthogonal, and the two eigenfunctions
are perpendicular to each other. If i = j, then∫

ψ∗
iψjdτ = 1,

as long as the wavefunctions are normalised. This defines them to be
orthonormal, and can be written in terms of the Kronecker delta [143]

∫
ψ∗

iψjdτ = δij =

1, if i = j,

0, if i ̸= j.
(3.16)

A set of orthonormal wavefunctions forms an orthonormal basis, and in
the context of computational chemistry all wavefunctions are assumed
to form this orthonormal basis set.

Bra-ket notation It’s useful here to introduce some mathematical no-
tation called bra-ket notation. [144] Below is an example of a ket. This is a
way of representing a column vector† such that,

|a⟩ =


a1

a2

...
an

 .

The corresponding bra, ⟨a|, is the conjugate transpose of the ket,

⟨a∗| = [a∗
1, a

∗
2, . . . , a

∗
n],

†The wavefunctions of a system are vectors and can be expressed in bra-ket notation.
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and must follow the standard matrix rules for complex conjugates. The
dot product of the two values is expressed as the following,

⟨a∗|a⟩ = [a∗
1, a

∗
2, . . . , a

∗
n]


a1

a2

...
an

 . (3.17)

Equation 3.17 can also be represented in integral form:

⟨a∗|a⟩ =
∫
a∗(x)a(x)dx.

Evaluating the energy If the electronic energy of the system can be
given by the expectation value of the electronic Hamiltonian,

Eel = ⟨Φ|Ĥel|Φ⟩,

then for symmetric energy expressions the true ground state energy is
given by the variational theorem,

Eel =
⟨Φ̃|Ĥel|Φ̃⟩
⟨Φ̃|Φ̃⟩

⩾ E0. (3.18)

By grouping one electron terms in the Hamiltonian together, we can
define a core Hamiltonian, ĥi,

ĥi = −
1

2
∇2

i −
∑
A

ZA

riA
,

which, for a system at a fixed geometry (where V̂NN is constant and hence
implied moving forward), allows us to simplify equation 3.8 to,

Ĥel =
∑
i

ĥi +
∑
i>j

1

rij
. (3.19)

For orbitals that are orthonormal, ⟨Φ̃|Φ̃⟩ = 1 and we can substitute
equation 3.19 into equation 3.18 to get,

Eel = ⟨Φ̃|
∑
i

ĥi +
∑
i>j

1

rij
|Φ̃⟩ ⩾ E0.
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By forming the Schrödinger equation this way, and remembering equa-
tion 3.10, we can now apply the Slater-Condon rules [145,146] to the n-
dimensional system to express the integrals of n-dimensional wavefunc-
tions, Φ̃, as sums over much smaller integrals of, at most, two molecular
orbitals:

Eel =
∑
i

⟨ϕi|ĥi|ϕi⟩+
1

2

∑
ij

(
⟨ϕiϕj|

1

rij
|ϕiϕj⟩− ⟨ϕiϕj|

1

rij
|ϕjϕi⟩

)
.

(3.20)
This means that instead of having to solve a 3n-dimensional integral, we
now just need to solve several integrals of both three and six dimensions.
The above equation can be simplified by defining some terms that also
help gain insight into the nature of the electronic energy:

Jij = ⟨ϕiϕj|
1

rij
|ϕiϕj⟩,

Kij = ⟨ϕiϕj|
1

rij
|ϕjϕi⟩.

Here, Jij is the Coulomb matrix, which governs the repulsion of electrons
as they interact and is an electrostatic interaction. Kij is the exchange
matrix that is an entirely quantum mechanical phenomenon. It can be
interpreted as electrons with the same spin tending to avoid each other.

Using these definitions (and equation 3.20) we can write an equation
that defines the Hartree-Fock energy, [147,148]

EHF =
∑
i

hi +
1

2

∑
ij

(Jij −Kij) ⩾ E0. (3.21)

3.1.3 CALCULATING ORBITAL ENERGIES

As equation 3.21 is ⩾ E0, the Hartree-Fock energy can be found by
minimising EHF using Lagrange’s method of undetermined multipliers.
This is a simple method to find the local minimum within a function
that is subject to one or more constraints. We define the Lagrangian
functional L as

L = EHF −
∑
ij

ϵij (⟨ϕi|ϕj⟩− δij) ,
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where ϵij are the undetermined Lagrange multipliers, ⟨ϕi|ϕj⟩ is the over-
lap matrix, and δij is the Kronecker delta. To minimise this function we
set ∂L/∂ϕi = 0, and by doing so we arrive at the Hartree-Fock equations,

hiϕi +
∑
j ̸=i

(Jij −Kij)ϕi = ϵiϕi. (3.22)

We can see that ϵi are the Hartree-Fock orbital energies, corresponding
to the wavefunctions of electrons i. By introducing a new operator called
the Fock operator,

f̂i = hi +
∑
j

Jij −Kij,

we can simplify equation 3.22 to

f̂iϕi = ϵiϕi (3.23)

where the orbital energies can now clearly be seen as eigenvalues of the
Fock operator.

3.1.4 THE HARTREE-FOCK-ROOTHAAN EQUATIONS

We have shown that by operating on a Slater determinant of molecular
wavefunctions, we can arrive at the orbital energies of the electrons.
For this to work in practice, we would need wavefunctions specific to
the molecular system at hand. Instead of calculating wavefunctions
for all molecules in chemical space, we can approximate the molecular
wavefunction using a linear combination of atomic basis functions,

ϕi =
∑
µ

cµiχµ,

where χµ are atomic basis functions and cµi are variational parameters.
The atomic basis functions are optimised for individual atoms, and we
can combine them to approximate the molecular wavefunction. Intro-
ducing this basis set transformation to equation 3.23 gives,

fi
∑
ν

cνiχν = ϵi
∑
ν

cνiχν,
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which if we left multiply by χ∗µ and integrate over rrr we get,∑
ν

cνi⟨χ∗µ|fi|χν⟩ = ϵi
∑
ν

cνi⟨χ∗µ|χν⟩. (3.24)

Here we can define an overlap matrix S and a fock matrix F,

Sµν = ⟨χ∗µ|χν⟩,

Fµν = ⟨χ∗µ|fi|χν⟩,

simplifying equation 3.24 to:∑
ν

Fµνcνi = ϵi
∑
ν

Sµνcνi,

FcFcFc = ScϵScϵScϵ.

(3.25)

This gives us the Hartree-Fock-Roothaan equations, [149] where an iterative
process of minimising the variational parameters c, and therefore ϕ, is
applied to achieve the ground state orbital energies ϵi, of which the sum
of these energies is equal to EHF.

The computational effort of HF scales with ∼ N4 whereN is related to
the number of electrons. This scaling factor is important to think about in
the context of potential energy surfaces. As systems get larger and larger,
calculations get more expensive, and performing thousands of them for
use in PES fitting becomes challenging.

3.2 CORRELATION ENERGY

The Hartree-Fock (HF) method gives us the best single determinant wave-
function (ΦHF) for a given system. As the theory is variational, the
ground state HF energy will always be greater than or equal to E0, the
true ground state energy (shown in figure 3.1). The difference betweenE0
and EHF is known as correlation energy and it arises due to the approx-
imations made within HF theory, namely the fact that we assume there
is no correlated motion of electrons. Distinction must be made between
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EHF ECEE0

|Ψ⟩
Figure 3.1. On the left hand side are optimised electron orbitals for a
fictitious molecule with wavefunction |Ψ⟩ calculated using Hartree-
Fock (the unoccupied orbitals are virtual orbitals). The right hand
side shows how the resulting energy, EHF is higher in energy than
the true ground state energy ,E0, by a value known as correlation
energy (ECE).

static and dynamic correlation here.† Dynamic correlation describes the
instantaneous motion of electrons in relation to each other, and is named
due to its relation to the electron dynamics. Static correlation appears
when a single determinant is not an accurate descriptor of a system, and
multiple, near degenerate determinants are needed. It is called static
(or non-dynamic) correlation because it has nothing to do with the mo-
tion of electrons, and most commonly appears when calculations involve
bond breaking or formation, radicals, or transition metals. The systems
in which static correlation is important are often called multi-reference
systems.

The simplest way of recovering dynamic correlation energy is through
the configuration interaction (CI) method. [150] HF theory gives rise to a
set of virtual orbitals, which do not contain electrons in the ground state.
Using these orbitals it is possible to construct a number of excited Slater

†It is important to note that there are no formal definitions of the two types of
correlation energy and they tend to be hard to separate. However, they are useful to
describe the different ways that methods aim to recover correlation effects.
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determinants that combine to form the following CI wavefunction, ΨCI,

ΨCI =
∑
I

κIΦI. (3.26)

Here κI are CI expansion coefficients, and ΦI are either Slater deter-
minants or configuration state functions (CSFs). A configuration state
function is a symmetry adapted linear combination of Slater determi-
nants. In CI, ΦI can be a number of excited states, such as single, Φa

i , or
double, Φab

ij excitations etc., which are visualised in figure 3.2. Here i, j
are occupied orbitals, and a, b are virtual orbitals. The complete com-

Φi
a Φ j

b Φij
ab

+ +...

---------------------------

+...

Figure 3.2. Visualisation of excited Slater determinants. Left, single
excitations of electron i into orbital a and electron j into orbital b,
and right, a double excitation of electrons i and j into orbitals a and
b.

bination of every possible excitation is called Full CI, and would return
the limit of the energy for a set of basis functions. To find the ground
state energy, equation 3.26 is minimised with respect to the CI coeffi-
cients in much the same way as Hartree-Fock, using Lagrange’s method
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of undetermined multipliers,†

L =
∑
ij

κ∗iκj⟨Φi|Ĥ|ΦJ⟩− E

(∑
ij

κ∗iκj⟨Φi|Φj⟩− 1

)
,

or utilising the notation for an overlap integral,

L =
∑
ij

κ∗iκjĤij − E

(∑
ij

κ∗iκjSij − 1

)
.

This leads to a matrix equation of the form,

HκHκHκ = EEESκSκSκ

Which can be iterated through to minimise the CI energy.
CISD (including only single and double excitations) scales with N6,

while full CI scales with N factorial. Simply including just single and
double excitations increases the computational cost compared to HF by
a significant amount, and full CI is effectively unobtainable for large
systems.

3.2.1 MCSCF

Related to CI, but focussed on recovering static correlation energy through
the use of multiple determinants, is multiconfigurational self-consistent
field theory (MCSCF). [151,152] The MCSCF wavefunction, ΨMCSCF, is de-
fined in a very similar way to the CI wavefunction,

ΨMCSCF =
∑
I

κIΦI. (3.27)

Here ΦI can either be a set of chosen Slater determinants or configura-
tion state functions. The use of CSFs makes sure that wavefunction is
spin-correct, but the use of Slater determinants leads to simpler matrix
elements within the MCSCF Hamiltonian and the spin can be dealt with

†Note that the Hartree-Fock orbitals that form the base of this are not re-optimised
in the process.
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later. Slater determinants are therefore the most commonly used in mod-
ern programs used to solve the MCSCF equations. In this sectionΦI will
be taken to be Slater determinants, and κI are the CI coefficients used
to weight the contributions of each determinant. The main difference to
CI in MCSCF lies in the optimisation of the orbitals. The CI coefficients
are calculated through the variational principle like in Hartree-Fock, but
they are not optimised to minimise the energy of a single slater deter-
minant, instead they are optimised to minimise the CI energy of the
wavefunction.

The energy can be written as,

E =
∑
IJ

κ∗IκJHIJ, (3.28)

where HIJ is not a Hamiltonian, but the matrix elements between deter-
minantsΦI andΦJ. Slaters rules state that these can be written in terms
of just one and two electron integrals, and so the energy can be re-written
as,

Êpq = a†
pαaqα + a†

pβaqβ. (3.29)

This is the energy expressed in terms of unitary group generators. [153]

Here a†
pα is a creation operator, that represents creating an electron in

orbital pwith spinα. Its counterpartaqα is then an annihilation operator,
for electron q with spin α. The second term is the same, but for β spin.
The full Hamiltonian in terms of equation 3.29 is,

Ĥ =

K∑
pq

(p|h|q)Êpq +
1

2

K∑
pqrs

(pq|rs)(ÊpqÊrs − δqrÊps),

which leads to HIJ = ⟨ΦI|Ĥ|ΦJ⟩ being,

HIJ =
∑
pq

γIJ
pqhpq +

1

2

∑
pqrs

Γ IJpqrs(pq|rs). (3.30)

The coupling coefficients, γ and Γ , are coefficients in front of one and two
electron integrals, and specifically take the forms,

γIJ
pq = ⟨ΦI|Êpq|ΦJ⟩,

Γ IJpqrs = ⟨ΦI|ÊpqÊrs − δqrÊps|ΦJ⟩.
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Substitution of equation 3.30 into equation 3.28 leads to the following
form of the energy,

E =
∑
IJ

κ∗IκJ

[∑
pq

γIJ
pqhpq +

1

2

∑
pqrs

Γ IJpqrs(pq|rs)

]
,

or more simply,

E =
∑
pq

hpqγpq +
1

2

∑
pqrs

Γpqrs(pq|rs),

γpq =
∑
IJ

κ∗IκJγ
IJ
pq,

Γpqrs =
∑
IJ

κ∗IκJΓ
IJ
pqrs,

(3.31)

Formulating the minimisation of the energy like this effectively combines
Hartree-Fock and Configuration Interaction, by not only optimising the
contribution of each excited determinant (as in CI), but also the molecular
spinorbitals themselves (these are optimised in HF, but kept fixed in a CI
calculation).

CASSCF It would follow then that the more CSFs/Slater determinants
included in the description of the wavefunction the more static correla-
tion energy can be recovered. However, due to the nature of combina-
tions the number of determinants can quickly become thousands or even
millions, and some limitations must be imposed to make these methods
computationally feasible for larger systems.

This can be achieved by splitting the orbitals into three sets (shown in
figure 3.3): the core orbitals, the active orbitals, and the virtual orbitals.
Complete active space self-consistent field (CASSCF) theory [154] uses this
orbital separation to reduce the number of CSFs in the calculation. In a
CASSCF calculation, the electrons in the core orbitals are excluded from
the correlation treatment, as they are deemed unlikely to participate in
meaningful interactions with other electrons (for example, the 1s elec-
trons in sulfur are very tightly bound). All electrons in the active orbitals
are subject to a full CI expansion (a complete set of excitations into all of
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Core

Active

Virtual

Figure 3.3. Visualisation of CASSCF orbitals showing the three
spaces: core, active, and virtual. Electrons in the core orbitals
are never included in the correlation treatment, while electrons in
the active orbitals are subject to a complete set of excitations of all
electrons into all active orbitals. The virtual orbitals outside of the
active space are never occupied by any electrons in CASSCF.

the orbitals in the active space). Any virtual orbitals outside the active
space are ignored in the correlation treatment as they are high in energy
and never contain any electrons. This way the number of CSFs in the total
wavefunction are limited, and the computational cost is reduced. The
active space is chosen so that the orbitals and electrons most important
in describing the multi-reference character of the system are included in
the CI expansion of the wavefunction. This requires, therefore, some un-
derstanding and prior knowledge of the system and makes the method
much more involved than a more ’black-box’ CI calculation.

Choosing the active space Some work in recent years has made select-
ing the active space more automated. The Atomic Valence Active Space
(AVAS) technique automatically generates an active space capable of de-
scribing all of the relevant electronic configurations that emerge from
providing it with a set of target orbitals. [155] Sayfutyarova et al. state that,
because it is known that a small set of identifiable atomic valence orbitals
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give rise to strong correlation effects, a set of active molecular orbitals can
be determined by defining them in terms of the important atomic valence
orbitals. They take a single-determinant reference function (such as one
from a Hartree-Fock calculation) and use linear algebra to define simple
mathematical rotations of the occupied and virtual orbitals, maximis-
ing their atomic valence character. It is then possible to automatically
choose only the relevant molecular orbitals to include in the correlation
treatment, removing the need to manually make this selection.

3.2.2 PERTURBATION THEORY

Perturbation theory is a way of finding an approximate solution to a
problem through incremental improvements of a simpler, but related
problem. [156] It can be used to approximate solutions to the Schrödinger
equation, and is particularly useful in recovering the dynamic corre-
lation of a system. The exact solution to the many-electron electronic
Schrödinger equation is not known:

ĤΦ = EΦ.

However, lets assume that the solution to a similar, but simpler, equation
with Hamiltonian, Ĥ(0), is known,

Ĥ(0)Φ(0) = E(0)Φ(0).

The difference then, between Ĥ and Ĥ(0), is known as a perturbation.
The full Hamiltonian can be expressed as a Taylor series expansion with
λ representing the strength of the perturbation, while also representing
the wavefunction and energy in a similar manner,

Ĥ = Ĥ(0) + λĤ(1) + λ2Ĥ(2) + . . . ,

Φ = Φ(0) + λΦ(1) + λ2Φ(2) + . . . ,

E = E(0) + λE(1) + λ2E(2) + . . . .

Here the superscript (1) represents a first order correction to a term, and
(2) represents a second order term, etc. These can be grouped together
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to provide a full expression of the perturbed Schrödinger equation,

Ĥ(0)Φ(0) − E(0)Φ(0)

+ λ{Ĥ(0)Φ(1) + Ĥ(1)Φ(0) − E(0)Φ(1) − E(1)Φ(0)}

+ λ2{Ĥ(0)Φ(2) + Ĥ(1)Φ(1) + Ĥ(2)Φ(0) − E(0)Φ(2) − E(1)Φ(1) − E(2)Φ(0)}

+ · · · = 0.
(3.32)

Note that the orders of each term combine to give the order of the pertur-
bation that is represented by the combination of variables, e.g. Ĥ(1)Φ(1)

is second order. The only way to satisfy equation 3.32 for any arbitrary
value of λ is for the coefficients of each power of λ to be zero. It is then
possible to arrive at the following equations for the various orders of
perturbation,

Ĥ(0)Φ(0) = E(0)Φ(0),

(Ĥ(0) − E(0))Φ(1) = (E(1) − Ĥ(1))Φ(0),

(Ĥ(0) − E(0))Φ(2) = (E(2) − Ĥ(2))Φ(0) + (E(1) − Ĥ(1))Φ(1).

...

From the above, the expression for the first order correction to energy
can be found to be,

E
(1)
i = ⟨Φ(0)

i |Ĥ(1)|Φ
(0)
i ⟩.

This is the expectation value of the first order Hamiltonian in the un-
perturbed system. Following a similar treatment, the expression for the
second order correction to the energy can be found to be,

E
(2)
i = Ĥ

(2)
ii +

∑
i̸=j

Ĥ
(1)
ij Ĥ

(1)
ji

E
(0)
i − E

(0)
j

, (3.33)

where Ĥ(2)
ii = ⟨Φ(0)

i |Ĥ(2)|Φ
(0)
i ⟩, and Ĥ(1)

ij = ⟨Φ(0)
i |Ĥ(1)|Φ

(0)
j ⟩, etc.

CASPT2 CASSCF theory accounts well for static correlation effects, to
improve upon this and include some of the dynamic correlation miss-
ing from the treatment, perturbation theory can be applied along side
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CASSCF. Complete active space with second order perturbation theory
(CASPT2) [157] takes a reference CASSCF calculation and applies a second
order perturbation to the reference state, which could in principle be
hundreds or even millions of CSFs.

The energy for this perturbation is given through equation 3.33,

Ei = E
(0)
i + Ĥ

(2)
ii +

∑
i̸=j

Ĥ
(1)
ij Ĥ

(1)
ji

E
(0)
i − E

(0)
j

, (3.34)

where E(0)i is the CASSCF energy. In principal here, if the wavefunction
is described in such a way that there is just a single CSF, then CASPT2
is a simple MP2 calculation. It is important to remember that CASPT2 is
not variational and Ei could, in principle, go below E0, and the method
works best if the reference is close to the true solution.

3.2.3 COUPLED CLUSTER THEORY

Contrasting CASPT2, in systems where a single reference configuration
is dominant, dynamic correlation can be accounted for in the ’gold stan-
dard’ method of coupled cluster (CC) theory. Originally developed for
nuclear physics, [158,159] it wasn’t until much later that it was applied to
the electron correlation problem of quantum mechanics. [160] In CC theory
the ground state wavefunction ΨCC can be given by,

ΨCC = eT̂Φ0, (3.35)

where Φ0 is a single determinant reference wavefunction (most often a
Hartree-Fock wavefunction) and T̂ is a cluster operator of the form,

T̂ =
∑
i

T̂i.
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Here, T̂i contains the ith excited Slater determinants, generated from the
HF reference,

T̂1Φ0 =
∑
i,a

taiΦ
a
i

T̂2Φ0 =
∑
i>j,
a>b

tabij Φ
ab
ij

. . . ,

where tai are expansion coefficients known as amplitudes, and i, j are
occupied orbitals while a, b are virtual orbitals. Using equation 3.35, the
Schrödinger equation becomes,

ĤeT̂Φ0 = ECCe
T̂Φ0,

with the coupled cluster energy being expressed as,

ECC = ⟨Φ0|Ĥ|e
T̂Φ0⟩,

and the exponential eT̂ can be expanded as a Taylor series to,

eT̂ = 1+ T̂ +
T̂2

2
+
T̂3

3! +
T̂4

4! · · · .

The major difference to CI (as CI aims to recover dynamic correlation
as well), is size extensivity. [161] This means that the coupled cluster energy
scales correctly, in a linear fashion, with the number of electrons.

3.3 BASIS SETS

The form of the molecular wavefunction (Φ) is clearly important, and
although it is well approximated by a Slater determinant of molecular
spinorbitals, ϕ,

Φ(1, 2, ..., n) = |ϕ1ϕ2...ϕn⟩,

for this to work in practiceϕi would need to be a set of molecular spinor-
bitals that are specific to individual molecules (which would require
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molecular wavefunctions for all of chemical space). Instead the molecular
spinorbitals can be further approximated through a linear combination
of atomic basis functions, χ, typically optimised for individual atoms,

ϕi =
∑
µ

cµiχµ. (3.36)

The atomic basis function χ is best described by a Slater type orbital of
the form

χSTO
abc(x, y, z) = Nx

aybzce−ζr

whereN is a normalisation constant, (a, b, c) control the angular momen-
tum, and ζ - known as the exponent - controls the width of the orbital
(a larger ζ leads to a tighter orbital, a smaller ζ leads to a more diffuse
orbital). Figure 3.4 shows the shape of an STO, exhibiting a cusp at the
nucleus and exponential decay. However, integrals over STOs are hard
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Figure 3.4. An STO plotted alongside a GTO showing the difference
in orbital shape, specifically highlighting the lack of a cusp at the
nucleus for the GTO.

to compute and require numerical integration to do so, leading to errors
that are hard to control. Instead, we can use gaussian type orbitals, GTOs,

χGTO
abc(x, y, z) = Nx

aybzce−ζr2
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where all parameters have the same meaning. These lose the cusp at the
nucleus and decay too quickly (also shown in figure 3.4), but integrals
over products of these functions are simpler to compute due to the Gaus-
sian product theorem and are able to be solved analytically. It is also
possible to take a linear combination of GTOs and approximate an STO
while still having a computationally cheaper calculation.

χCGTO
abc (x, y, z) = N

∑
i

xaybzcαie
−ζir

2

In this equationα is a contraction coefficient and controls the contribution
from each GTO. A contracted gaussian type orbital (CGTO) of three GTOs
would take the following form,

χCGTO
abc (x, y, z) = Nxaybzc(α1e

−ζ1r
2

+ α2e
−ζ2r

2

+ α3e
−ζ3r

2

)

Figure 3.5 shows how increasing the number of contracted GTOs leads
to a functional form closer to the more accurate STO.
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Figure 3.5. A 3 function CGTO plotted along side an STO and a
single GTO, showing the improved shape of the 3-GTO.

Sets of these CGTOs are called basis sets, where the number of basis
functions (χ), and values of the exponents (ζ), and contraction coefficients
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(α), are typically optimised for individual atoms and obtained from a pre-
optimised library of basis sets..

3.3.1 CLASSIFICATION OF BASIS SETS

At a bare minimum, an atom requires a single GTO for each atomic
orbital, known as a minimal basis set. For example, carbon has two s
orbitals (1s and 2s) and three p orbitals (2px, 2py, and 2pz), and would
have five basis functions of the form,

χ1s = N1se
−ζr2

χ2s = N2sre
−ζr2

χ2px
= N2px

xe−ζr2

χ2py
= N2py

ye−ζr2

χ2pz
= N2pz

ze−ζr2

In practice, minimal basis sets tend not to be used, and there are several
extra functions that can be added to a basis set to better describe the
orbitals. Recalling equation 3.36,

ϕi =
∑
µ

cµiχµ,

atomic wavefunctions are represented as linear combinations of atomic
basis functions. A simple combination of basis functions for this example
would be two basis functions for each orbital, resulting in ten basis func-
tions for carbon. This is known as a double-ζ basis set. However, each
function added to the basis set adds computational cost to the calculation.
As it tends to be the valence electrons that take part in the chemistry, it
is usually only important for the valence orbitals to be described to high
levels of accuracy. Therefore to keep computational cost to a minimum
a ’split-valence’ basis set can be used. In the example being used here,
a double-ζ split-valence basis set for carbon would contain nine basis
functions: one for the core 1s orbital, and two for each of the valence 2s
and 2px,y,z orbitals.
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In order to describe polarisation effects seen as atoms approach each
other, extra basis functions can be added to the basis set that allow
functions to deform by mixing with one another. An s orbital can polarise
in the x direction if mixed with a px orbital, and p orbitals can polarise
when mixed with d orbitals. In general to polarise a basis function with
angular momentum l, it needs to be mixed with basis functions of angular
momentum l + 1. In the carbon example, this adds the five d functions
to the basis set.

Other important situations requiring extra functions are descriptions
of anions, Rydberg states, and very electronegative atoms (such as fluo-
rine) with a lot of electron density. In these situations a set of diffuse basis
functions (those with small ζ exponents) are added to the basis sets, typi-
cally one basis function for each symmetry level. These are necessary for
accurate polarizabilities or binding energies of van-der-Waals complexes
(bound by dispersion), and calculations of these properties should not
be done without extra diffuse functions.

3.3.2 CORRELATION CONSISTENT BASIS SETS

Correlation consistent basis sets are designed to converge towards the
complete basis set (CBS) limit, and to recover a consistent amount of
correlation energy with increases in basis set size. These were originally
designed by Dunning [162] and have since become a gold standard in basis
set design, with a large body of work resulting in correlation consistent
basis sets being available for almost all of the elements. For the lighter
elements, the s- and p- primitives are first optimised to converge towards
a limit, with the values of ζ being calculated by minimising the energy
while varying their values. Higher angular momentum correlating func-
tions are optimised so as to recover a log-linear amount of correlation
energy as basis set size increases and added to the basis sets in a modular
fashion. This means they can easily be further added to in order to solve
common problems, for example basis sets with extra diffuse functions
have been developed to be used in anion calculations. [163] Typically these
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basis sets are called correlation consistent polarised valence n-zeta basis
sets (cc-pVnZ), where n = D, T, Q, 5, while the aug- prefix is added for
the basis sets augmented with extra diffuse functions.

3.4 EFFECTIVE CORE POTENTIALS

With more advanced methods of solving the Schrödinger equation be-
coming the norm, and chemical systems of interest getting larger, the
number of basis functions in large basis sets can become problematic.
One way of combatting this problem is through the use of an effective
core potential (ECP).

Separating the treatment of core and valence electrons is common
throughout chemistry. The justification for this arises from the idea
that only the valence electrons take part in any meaningful chemistry,
while the core electrons contribute only indirectly by creating an effective
potential in combination with the nucleus. Effective core potentials use
these ideas in an attempt to considerably reduce the cost of a calculation
by removing the explicit computation of core effects. A benefit of this
is that an implicit treatment of relativistic effects can also be included
for heavy atoms where relativity plays a large part in the behaviour
of the core electrons, bypassing the solving of an expensive relativistic
Schrödinger equation.

There are two main branches of ECPs: pseudopotentials (PPs) and
model potentials (MPs). Model potentials aim to model the all electron
Hartree-Fock potential for the valence electrons as accurately as possible,
producing valence orbitals with the correct nodal structure. Pseudopo-
tentials use a formal transformation of valence orbitals to pseudovalence
orbitals with a simplified nodal structure, which leads to savings in the
one electron basis set. Only pseudopotentials will be discussed in detail
in this section as they are largely more popular within computational
chemistry. The terms ECP and PP will be used interchangeably and the
focus will be on the use of ECPs to remove electrons from the calculation
rather than the relativistic benefits. However the interested reader is
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directed to an in depth review from Dolg and Cao [164] for information
on how ECPs have been used to include relativistic effects, along with a
description of the model potential approach.

Importantly, the use of an ECP requires a basis set that has optimised
while using the ECP in question. This adds to the initial developmental
effort, but in theory is offset by the computational cost recovery.

3.4.1 THE VALENCE-ONLY HAMILTONIAN

The first step in formulating ECPs is to define a valence-only Hamiltonian,
where c and v refer to core and valence respectively,

Ĥv =

nv∑
i

ĥv(i) +

nv∑
i<j

ĝv(i, j) + Vcc + V̂CPP

Here, ĥv and ĝv are one- and two- electron operators for nv valence
electrons, while Vcc is the repulsion of all nuclei and cores in the system.
V̂CPP is a core polarisation potential which will be discussed in section
3.4.4. For nonrelativistic ECPs, ĥv and ĝv take the forms,

ĥv(i) = −
1

2
∇2

i + V̂cv(i),

ĝv(i, j) =
1

rij
,

where ∇2
i is the Laplacian, and V̂cv(i) is a Coulomb electron-core op-

erator. This term has to account for all of the interactions of a valence
electron with the missing core electrons and the nucleus. For molecules,
this term is assumed to be a superposition of N atomic contributions,
where N is the number of cores,

V̂cv(i) =

N∑
λ

[
−
Qλ

rλi
+ ∆V̂λ

cv(i)

]
,

and Qλ is the core charge of the atoms. The form of the correction for
orthogonality, ∆V̂λ

cv(i), is the focus of ECP development. The final term
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Vcc is the Coulomb repulsion between the cores or nuclei and takes the
form,

Vcc =

N∑
λ<µ

[
QλQµ

rλµ
+ ∆Vλµ

cc (rλµ)

]
.

The pairwise correction term,∆Vλµ
cc (rλµ), accounts for orthogonality con-

straints and the Pauli-repulsion experienced by electron shells on sepa-
rate cores. The valence only Hamiltonian can therefore be written fully
as,

Ĥv = −
1

2

nv∑
i

ˆ⃗∇2
i +

nv∑
i<j

1

rij
+

nv∑
i

N∑
λ

[
−
Qλ

rλi
+ ∆V̂λ

cv(i)

]
+Vcc+V̂CPP (3.37)

and ECP development focuses on finding the form of∆V̂cv,Vcc, and V̂CPP.
Four approximations are made in the formation of this Hamiltonian:

1. The core-valence separation is an appropriate separation to make.
Where it isn’t, it is accounted for by VCPP where necessary.

2. Assumption that the atomic cores are inert. That is, ECPs are devel-
oped on atoms, we assume the core does not change significantly
in the case of molecules.

3. The atomic one-electron Hamiltonian successfully replaces the core
contributions.

4. Atomic cores do not interact with each other. For large cores this
breaks down, and must be accounted for by additional parameters.

As highlighted by point four above, it is important to select an appro-
priate core size for the use-case in question. Large cores are attractive
because they lead to largely reduced computation times, but smaller cores
lead to more accurate results as more of the electrons are treated explic-
itly. Importantly for relativistic calculations, if the core is too small then
the relativistic effects are not accounted for very well. Therefore, com-
promise between computational savings and accuracy should be made
on a case by case basis.
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3.4.2 ANALYTICAL FORM OF THE PSEUDOPOTENTIAL

From equation 3.37, the form of ∆V̂λ
cv(i) can be written for a given core

λ, as a semi-local pseudopotential, [165,166]

∆V̂λ
cv(i) ≊ ∆V̂λ

PP(i) =

∞∑
l=0

Vλ
l (riλ)P̂

λ
l (i).

P̂λl (i), based on spherical harmonics, is a projection operator of the form,

P̂λl (i) =

l∑
m=−l

|lm, λ⟩⟨lm, λ|,

By defining L − 1 as the highest angular momentum in the core, it is
possible to assume that Vλ

l (riλ) = V
λ
L(riλ) for l ⩾ L, and write,

∆V̂λ
PP(i) = V

λ
L(riλ) +

L−1∑
l=0

[Vλ
l (riλ) − V

λ
L(riλ)]P̂

λ
l (i). (3.38)

This is semi-local under the understanding that equation 3.38 is a sum
of local potentials for all angular momenta up to L − 1, after which a
common local potential acts upon all angular momenta.

3.4.3 PARAMETERISING ECPS

There are really two main ways of parameterising ECPs. The first method
results in energy-consistent ECPs, where the parameters are adjusted to
the all-electron valence energies of a number of many-electron states,
simultaneously. The second adjusts parameters based on a specific refer-
ence state and the shape of valence orbitals in the spatial valence region
of that state, along with orbital energies. This results in an ECP that is
shape-consistent.

Correlation consistent ECPs In order to circumvent the poor perfor-
mance in many-body theories seen with ECPs generated in an effective
one-particle setting [167] Bennett et. al. have developed a new genera-
tion of correlation consistent effective core potentials (ccECPs) for the
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first and second row atoms. [52,168] These ccECPs are energy consistent
and targeted specifically for use in correlated methods while retaining
transferability between atoms and bonded molecules. More recently they
have expanded this method to generate ccECPs for a number of transition
metals. [169] They chose to use the well established form of the ECP given
in equation 3.37 to ensure that these new ccECPs were able to be used in
standard electronic structure packages.

3.4.4 CORE POLARISATION POTENTIALS

The separation of the core and valence electrons necessary for the ap-
plication of ECPs also places limitations on the accuracy of correlated
methods using basis sets employing them. This frozen-core approxi-
mation removes any correlation effects resulting from the interaction of
core with valence electrons. It is necessary then, that these effects are
negligible in the system of interest, but it has been shown that for alkali
metal and alkaline earth compounds the core-valence correlation is al-
most as important as the valence correlation. [170] There have also been
many studies highlighting the importance in core electron correlation in
high-accuracy thermochemistry. [171–174] The physical origin of this core-
valence correlation effect is principally the dynamic polarisation of the
atomic cores by the valence electrons. [175]

In section 3.4.1 the V̂CPP term in equation 3.37 was ignored, but it is
this term that attempts to solve the problem of a lack of core-correlation.
Briefly, this term can be defined as follows:

V̂CPP = −
1

2

∑
λ

αλf2λ,

where fλ is the electric field generated at a core by all other cores and the
valence electrons, i. Thus this equation describes the interaction between
a valence electron and the core, λ, as being proportional to αλ, the core
dipole polarizability. The electric field, fλ, is given by:

fλ =
∑
λ

rλi
r3λi
gλ(rλi) −

∑
µ(̸=λ)

Qµrλµ
r3λµ

gλ(rλµ),
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which introduces a cutoff function, gλ(r), to limit the field inside the core
region:

gλ(r) = [1− exp (−γλnr
2)]n.

The parameter γ is fitted to suitable reference data, has two common
forms, and is dependent on the functional form chosen. This first
is the Fuentealba/Stoll form where n = 1, [176] and the second is the
Müller/Meyer form where n = 2. [177] The development and history of
the CPP approach has been reviewed by Dolg and Cao, [164] based on the
pioneering work of Meyer and co- workers, [177–179] and Fuentealba and
co-workers. [176]
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Chapter 2 highlighted the need for large datasets of high quality labelled
data for supervised learning problems, particularly within the context of
neural networks. Deep neural networks will often overfit if the training
set is not large enough, and this becomes a problem in the application of
these techniques to computational chemistry, principally due to the high
computational cost of the data needed for the training set. As the desired
computational accuracy has grown over the years, generating datasets
of tens of thousands of ab initio calculations has become increasingly
problematic. However, this has not just been a roadblock within the
field of computational chemistry, even industry leaders in data science,
who specialise in data collection, run into problems surrounding data
cleaning and labelling. This process can be time consuming and costly,
and has driven large volumes of research into areas such as unsupervised
learning and active learning.

4.1 ACTIVE LEARNING TECHNIQUES

In the field of active learning, instead of providing a machine learning
algorithm with large volumes of data the algorithm is instead presented
with a smaller dataset, and is able to ask questions about the data. Specif-
ically, it is able to ask questions about the labels of currently unlabelled
data. By asking specific questions, directed by intelligent decision mak-
ing, it is possible to achieve high values of generalisation, and improve
the fit of an algorithm beyond just simply adding more random data to
the training set. Imagining the situation where a regressor was required

77
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to fit a line to a dataset (the grey points in Figure 4.1). Looking at the
full dataset it is clear that some kind of polynomial curve is appropriate,
but that would require knowledge of the whole configuration space, and,
as highlighted by the purple points, only a small section of the dataset
exists within the training set to begin with.

Instead, starting with only a few data points, the model fits a straight
line. There are then two ways of adding more data to the training set. In
the first example (albeit an extreme one), data is added randomly, and the
extra points in the training set are very similar to the pre-existing data.
As a result the algorithm does not perform any better, with the fit curve
failing to capture the nature of the full data. Example two represents
a fictitious active learning algorithm. In this case, the new datapoints
are chosen in a way that samples an area of the configuration space not
currently seen in the training data. By the third iteration the algorithm
has managed to capture the nature of the curve, and continues to improve
with successive iterations.

The end goal of active learning is to provide high accuracy predictions
with as little data as possible. This can be achieved by adding the most
important points of data to the training set, those that the algorithm
is most ‘uncertain’ about. The various methods of active learning all
formulate the definition of ’uncertainty’ in their own way, and for an in
depth review on a number of different types of active learning the reader
is directed towards work by Settles [180] The following are a small number
of examples of these types of algorithm.

Uncertainty sampling [181] This method can be used when the output
of a machine learning model is a probability measure or metric. Once
training is complete, a number of predictions on new datapoints can
be made, and the confidence scores of each prediction can be sorted in
order of most confident to least confident. In this case, the datapoint to be
labelled would be the one which the algorithm has the least confidence
in predicting, the point with the lowest probability score.
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Query by committee [182] This method can be used if the training of the
algorithm is not too computationally expensive. Here, several versions
of the algorithm are trained on the same dataset, and due to the nature of
randomisation within the training, each version will be slightly different.
All the trained models are then asked to predict a set of values, and the
value that is most disagreed upon (the one which is different between the
most trained models) is the point to be labelled and added to the dataset.

The two active learning methods presented here require some way of
quantifying and identifying areas of error in a trained machine learning
algorithm. It could be said that locating areas of high error in a machine
learning algorithm is an optimisation problem, and Chapter 2 covered a
number of common optimisation algorithms. This chapter will introduce
a different set of optimisation algorithms, and adapts one of them for use
in the active learning of a potential energy surface.

4.2 NATURE-INSPIRED OPTIMISATION

Artificial neural networks were inspired in part by the human brain,
and the function of the neurons within it. Scientists today often draw
inspiration from nature, and there are a whole selection of optimisation
algorithms inspired by various aspects of nature, specifically of interest
to this thesis are those inspired by insect swarms. [183,184]

The optimisation algorithms in Chapter 2 are known as deterministic
gradient based methods. They perform well when the search space is
continuous, but fail when there are discontinuities. Methods know as
stochastic algorithms have been developed to combat this, and broadly
speaking fall into two similar, but distinct, categories: heuristic, and
metaheuristic methods. The phrase ‘heuristic’ can be said to mean ’to
find’ or ’to discover by trial and error’, and these methods work under
the assumption that given enough time an optimum solution can be
reached. The prefix ’meta-’ can mean ’beyond’, and is applied in the case
of metaheuristics to imply an improvement to simple heuristic methods.
Although there is no formal distinction between the two, recent trends
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tend to term all stochastic methods involving randomisation and locality,
metaheuristics. [183]

There are two important parts to a metaheuristic algorithm: the ef-
fectiveness of the algorithm in searching the whole objective function,
and the method by which the optimum solution is found (diversification
and intensification, respectively). It is also useful to differentiate between
two separate classes of metaheuristic algorithm; population based algo-
rithms use several ’agents’ to explore the space, while trajectory based
algorithms use a single ’agent’ that moves through the search space ask-
ing at each step what the ’best’ move would be.

Some of the earliest examples of these algorithms date back to 1962
with the development of genetic algorithms by Holland and collabora-
tors. [185] These are search methods that take the ideas presented in Dar-
winian evolution and represent them in a mathematical manner, bringing
ideas of mutation, fitness, and survival of the fittest to the optimisation
world. These algorithms, although some of the earliest to be developed,
have formed the basis for a number of algorithms solving a number of
modern problems. [186–190] Along the same lines, Rechenberg and Schwe-
fel developed an evolutionary strategy for solving optimisation prob-
lems within aerospace engineering. [191] The work of both Holland and
Rechenberg has formed the groundwork for a whole discipline called
evolutionary algorithms [192–194]

The next major step in metaheuristics came with pioneering work on
simulated annealing by Kirkpatrick et al., [195] a trajectory based process
that was inspired by the annealing process in metals. The system starts
out hot and a new point is generated at a distance from the current point,
proportional to a probability distribution that scales with temperature
(essentially, the distance can be large when the temperature is high). If
the new point lowers the objective function then it is accepted 100% of the
time, however, if the point increases the objective function it is accepted
based on a set probability. This allows the algorithm to escape local
minima. Over time the temperature is lowered on a set schedule and the
search space gets reduced, eventually converging to a minimum.
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Dorigo introduced one of the first insect-based algorithms in his PhD
thesis on optimisation and natural algorithms. [196–198] This technique was
inspired by the swarming behaviour of ants resulting from pheromone
communication. In a related step, Kennedy and Eberhart developed par-
ticle swarm optimisation (PSO), this time inspired by the swarming be-
haviour of birds, fish, and even humans. [199,200] In PSO multiple agents, or
particles, are free to move throughout the search space, communicating
the current and global ’best’ solutions. A particle’s movement is dictated
by its own knowledge of the locally best solutions, and by the globally
best solution, allowing the agents to locate both local and global min-
ima. Many variants of PSO have since been developed, [201–205] and have
been applied to the traveling salesman problem, [206] and task scheduling
problems. [207,208]

Geem developed a harmony search algorithm that aims to mimic
musicians and improvisation. [209–211] At each step in this algorithm three
things can happen: a previously chosen pitch can be played by the mu-
sician (a previous value from memory is selected); a neighbouring pitch
can be played (neighbouring value); or a random pitch is played that falls
within the scope of the piece (a random value is chosen from within the
scope of the problem). [211]

Returning to nature, Nakrani and Tovey aimed to optimise dynamic
server allocation within internet hosting centres through the develop-
ment of a honey bee algorithm. [212] Building upon these ideas, Pham et
al. proposed the novel bee colony, [213] inspired by the natural swarming
behaviour of honey bees. In the bee colony a number of bees are sent to
’scout’ the objective function and they recruit nearby bees to explore the
local neighbourhood. The ’best’ bee is chosen for each neighbourhood,
and acts as the scout for the second cycle of searches. Building on these
ideas further, Karaboga developed the artificial bee colony (ABC). [214]

Reaching the focus of this chapter, Yang developed the firefly algo-
rithm, based on the swarming behaviour of fireflies, which has been
found to outperform genetic algorithms and even particle swarm opti-
misation in some cases. [183,215,216]
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4.3 THE FIREFLY ALGORITHM

The firefly algorithm (FA) is a population based metaheuristic optimi-
sation algorithm, inspired by the flashing and swarming behaviour of
fireflies, developed by Yang. [183] Their rhythmic flashing is a process of
bioluminescence used to attract mates and even prey. The rhythm, rate,
and time between flashes all form the communication between sexes,
bringing female fireflies towards males of the same species. Certain
species of tropical fireflies even form awe-inspiring synchronised flashes
within communities, exhibiting interesting biological self-organised be-
haviour.

The behaviour of fireflies can be simplified to develop a firefly-inspired
algorithm. The following rules distil the core concepts of firefly be-
haviour:

1. All fireflies are attracted to all other fireflies, that is to say that sex
is ignored.

2. For two fireflies of differing brightness, the less bright firefly will al-
ways move towards the brighter firefly (if there is no brighter firefly
then the firefly in question will move randomly). This movement
will be controlled by the attractiveness of a firefly, which will be
proportional to both the brightness of said firefly and the distance
between them.

3. The objective function will directly determine the brightness of a
firefly.

These rules are realised as the pseudocode shown in Algorithm 1 be-
low (which is adapted from Nature-inspired metaheuristic algorithms,
Chapter 10), [183] outlining the general form of a firefly algorithm, finding
the global optimum value ggg∗.
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Algorithm 1 The firefly algorithm (adapted from Nature-inspired meta-
heuristic algorithms, Chapter 10) [183]

1: Objective function f(xxx), xxx = (x1, . . . , xd)
T

2: Generate initial population of fireflies xxxi (i = 1, 2, . . . , n)
3: Light intensity Ii at xxxi is determined by f(xxxi)
4: Define light absorption coefficient γ
5: while (t <MaxGenerations) do
6: for i = 1 : n all n fireflies do
7: for j = 1 : n all n fireflies (inner loop) do
8: if (Ii < Ij) then
9: Move firefly i towards j

10: end if
11: Vary attractiveness with distance r via exp[−γr]
12: Evaluate new solutions and update light intensity
13: end for j
14: end for i
15: Rank the fireflies and find the current global best ggg∗
16: t++
17: end while

4.3.1 FORMULATING FIREFLY MOVEMENT

From Algorithm 1 there are two important parameters to define: the
light intensity of each firefly; and its subsequent attractiveness to its
neighbours. It is assumed that the intensity (or brightness) of each firefly
is directly related to the objective function [f(xxx)] being explored. There-
fore, f(xxx) gives Iwhich in turn gives β, where I is the intensity and β the
attractiveness. Let’s assume that the light intensity I(r) varies according
to the inverse square law,

I(r) =
Is

r2
, (4.1)

where Is is the intensity at r = 0. By defining a light absorption co-
efficient, γ, the light intensity I varies with the distance r, shifted by a
constant, γ,

I(r) = I0e
−γr, (4.2)

where I0 is the light intensity at the position of the firefly. From equation
4.1 it is clear that there would be problems involving a singularity at
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r = 0. To avoid this, the following Gaussian function is used as an
approximation to equation 4.2,

I(r) = I0e
−γr2.

By defining attractiveness, β, as proportional to light intensity, the attrac-
tiveness of each firefly as seen by its neighbours is

β = β0e
−γr2, (4.3)

where β0 is the attractiveness at r = 0. Exponentials as in equation 4.3
can be slow to calculate, and a function of the form 1/(1 + r2), that is
faster to calculate, can be used instead to approximate the attractiveness
as

β =
β0

1+ γr2
. (4.4)

Ifxxxi is a vector of Cartesian coordinates for firefly i, then the Cartesian
distance, rij, between two fireflies i and j is defined by

rij = ||xxxi − xxxj|| =

√√√√ d∑
k=1

(xi,k − xj,k)2,

here xi,k is a single component of the spatial coordinates xxxi of firefly i.
In the 3-D case this equation expands to

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

By combining the above, an expression defining the movement of
fireflies towards brighter (and therefore more attractive) fireflies can be
written,

xxxi ← xxxi + β0e
−γr2ij(xxxj − xxxi) + αϵi. (4.5)

The second term is the attraction due to brightness, controlled by the
distance between the two fireflies, rij, and the light absorption coeffi-
cient, γ. The third term is a randomisation, with ϵi being a vector of
numbers drawn from either a Gaussian distribution or a uniform distri-
bution. The extent of randomisation is controlled by α. In general β0,
the attractiveness at r = 0, is set to 1 and α ∈ [0, 1].
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4.3.2 USING A FIREFLY ALGORITHM AS AN ACTIVE LEARNING TECHNIQUE

In this work, the general firefly algorithm, Algorithm 1, is modified to
be used as an active learning technique for neural network generation
of potential energy surfaces. If the intensity is defined as the error in
the prediction of the energy at the position of the firefly, the algorithm
will cluster fireflies to points on the potential energy surface that are
badly fit (a graphical example of this is shown in Figure 4.2). The ability

4 2 0 2 4
Feature, x

0.0

0.1

0.2

0.3

0.4

La
be

l,
y

True function

Firefly
Predicted function

Figure 4.2. Example of firefly clustering behaviour on a machine
learning predicted surface. The predicted function (red) can be
seen to have a large fitting error for two major regions of the true
function (blue). The fireflies (yellow) have clustered in these areas
and lead to new training data being chosen in useful regions.

for the firefly algorithm to explore the global space, and hone in on a
particularly badly fit section of the surface makes it a useful optimisation
technique that can augment any machine learning problem. This way, a
guided method of selecting data to add to the training data is applied,
and by controlling the initial number of fireflies, the number of cycles of
the algorithm, and the various hyperparameters within the algorithm,
it is possible to maximise the accuracy of the surface while minimising
the number of training points. In order to apply the firefly algorithm
as an active learning technique for a machine learned potential energy
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surface it must be modified somewhat. Theses modifications are shown
in Algorithm 2, followed by a diagram showing the general flow of the
program (Figure 4.3), but the main differences are as follows:

1. Intensity, I, is defined by the difference between the neural network
predicted energy and the ab initio calculated energy, which defines
the error of the surface at a particular point.

2. The objective function is updated after a set number of generations,
defined by the ‘retrain counter’ g. A generation is defined to be
one loop of firefly intensity calculation and positional update. The
value of g should be high enough that fireflies can cluster, but small
enough to allow for a new network to be trained and the new fit to
be evaluated. The act of retraining the neural network and defining
a new objective function defines a cycle.

3. A cutoff value c is defined, so that if the error/intensity for all
fireflies is less than the cutoff the algorithm stops. This minimises
the number of cycles to further reduce the number of additional
training points.

Figure 4.3 is a flow diagram outlining the general logic of the modified
firefly algorithm. Starting with a trained neural network, the fireflies are
initialised randomly on the PES and the NN is probed to acquire the
predicted energy, Ẽ. The current position is sent to an electronic structure
package input file (here this will be a Molpro input file) to calculate the
true energy, E. Both of these energies are used to calculate the intensity
I = E − Ẽ. The intensity is used to update the positions of all of the
fireflies based on their attractiveness, through equation 4.5 from section
4.3.1,

xxxi ← xxxi + β0e
−γr2ij(xxxj − xxxi) + αϵi.

The updated position is again passed to Molpro to re-calculate E for this
position, and I is updated. If the retrain limit has been reached, the
NN is re-trained and the new objective function is used to calculate all
new intensities. If at any point all values for I are less than c, the cutoff
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Algorithm 2 Adapted firefly algorithm for active learning of PESs
1: Objective function: f(xxx) = E(xxx) − Ẽ(xxx), xxx = (r, θ, ϕ)
2: Define a light absorption coefficient γ
3: Define a cutoff value c
4: Generate initial population of fireflies xxxi (i = 1, 2, . . . , n)
5: Evaluate Ẽ(xxxi) at each xxxi
6: if E(xxxi) does not exist then
7: Calculate E(xxxi) using an electronic structure package
8: end if
9: Light intensity Ii at xxxi is determined by E(xxxi) − Ẽ(xxxi)

10: while t <MaxGen, any Ii > c do
11: for k = 1 : g do ▷ If g = 2 then f(xxx) is updated after 2 generations
12: for i = 1 : n all n fireflies do
13: for j = 1 : n all n fireflies (inner loop) do
14: if (Ii < Ij) then
15: Move firefly i towards j based on attractiveness β
16: end if
17: Evaluate Ẽ(xxxi) at new positions
18: if E(xxxi) does not exist then
19: Calculate E(xxxi) using an electronic structure pack-

age
20: end if
21: Update Ii for new position
22: end for j
23: end for i
24: t++
25: end for g
26: Re-train the neural network and update the objective function f(xxx)
27: Re-calculate Ii for all fireflies using new Ẽ(xxxi)
28: end while

value, then the program stops, a NN is trained, and the final PES is
presented. Otherwise, this loop continues until the maximum number
of generations is reached, to avoid the algorithm running forever in the
case that the PES never reaches the accuracy requested.

The fireflies will cluster in the areas of the surface that are not well
fit as the error between the predicted energy and the true energy will be
greatest at these points. As more data is added to the training set, and
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the network is retrained, these sections of the surface should improve
in their fit, and the light intensities of the fireflies will drop. Eventually
all fireflies should have I < c and the PES will have reached the user-
defined level of accuracy. In theory, this limit is reached using less data
than might otherwise have been necessary by simply using a larger initial
training set.

Figure 4.3. A flowchart outlining the general principle behind the
application of a firefly algorithm as an active learning technique.
Colours indicate the program/code that the step takes place in:
purple is the neural network code, orange is the firefly algorithm,
red is an ab inito electronic structure calculation carried out in Mol-
pro in this case.

4.4 APPLICATION TO THEWATER POTENTIAL ENERGY SURFACE

The potential energy surface for water has been extensively studied, [217–223]

and this section does not aim to improve upon the established literature.
Instead the water surface is used because high level calculations on the
system are fast, and this allows for iterations of the firefly algorithm for
finetuning in the development process.

The general implementation of a FA shown in Algorithm 1 is modified
to define the firefly brightness as a function of the predicted energy from
a neural network and the true energy of an ab initio calculation. The full
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code for this algorithm can be found in Appendix A, and is available to
download from GitHub (github.com/an-hill/ml-firefly-algorithm).

4.4.1 TECHNICAL DETAILS

The full dataset for this H2O surface consists of 1331 ab initio single point
calculations at the CCSD(T)/aug-cc-pVTZ level, calculated using the
Molpro package of programs. [224,225] H2O has three degrees of freedom:
the angle, θ; and the two bond lengths, r1 and r2. To ensure sufficient
coverage of the configuration space of the surface, the dataset consists of
single point calculations of combinations of 11 points along each degree
of freedom. The ranges for these 11 points are: 0.1 Å increments between
0.5 Å and 1.5 Å for the bond lengths; and 10◦ increments between 50◦

and 150◦ for the angle.
A deep neural network (DNN) was chosen to fit the PES for water,

using internal co-ordinates as an input vector and calculated energies
as the data labels. The Python library PES-Learn [135] was used to fit
the DNN using the PyTorch machine learning library as a backend [136].
This library employs hyperparameter optimisation through the use of
Hyperopt [226], employing both tree of parzen estimators (TPE) [227] and
random search algorithms.

Before applying the firefly algorithm to the neural network three
surfaces were fit to provide reference data for comparison purposes.
The first was a surface fit using all 1331 points of data, to achieve a
theoretical maximum performance threshold. Next a surface was fit
using a randomly selected set of 300 points, leading to a less accurate
surface with space for improvement. The third surface was based on the
second, and used the 300 points of data already selected, while adding a
second, randomly selected set of 300 points to the dataset. This resulted
in 600 total points of data, chosen randomly. All training runs were
initialised using the same set of parameters unless otherwise specified:
the maximum number of hyperparameter search iterations was set to
20; the global minimum was forced into the training dataset (include

https://github.com/an-hill/ml-firefly-algorithm
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global minimum in training dataset: True); and the trial hidden layers
for the neural network were [32], [32,32], [64], [16,16,16], [64,64]. Here the
number of entries in each set of square brackets indicates the number of
layers, and the value of each entry indicates the number of nodes in that
layer. For example, [64,64] denotes a neural network with two hidden
layers, with each layer consisting of 64 nodes.

To ensure tests were fair the random seed for the hyperparameter
search was set to a consistent value of 42 across all tests, and the trial
hidden layer options were kept constant. To achieve the highest accuracy
possible for the ’theoretical maximum performance’, the network trained
on all 1331 points of data used a structure based search function to select
the training set. This means that datapoints are added so that the distance
between them is maximised, theoretically adding a reasonable spread of
data from all areas of the surface. However to assess how well the firefly
algorithm performed at selectively improving a bad fit, random searching
was used to select the training set for the low data surfaces to allow for
the potential of sections being underrepresented.

For the firefly algorithm itself, 40 fireflies were used and allowed
to move for four generations. This added 160 extra datapoints to the
dataset, approximately 15% of the total training set. This meant that
the dataset grew at a reasonable pace, while its minimal size was still
maintained. The value of the light absorption coefficient, γ, was set to 3
as testing revealed that this allowed the fireflies to cluster in about four
generations. The extent of random movement in the fireflies, α, was set
to 0.2.

4.4.2 THEORETICAL MAXIMUM PERFORMANCE

To generate the best surface possible with the data already generated, all
1331 points were passed to PES-Learn, which chose the training/validation/testing
sets in a 75 / 12.5 / 12.5 split, using structure based searching. After hy-
perparameter tuning the network had the following architecture:

• Layers - [64,64],
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• Activation function - tanh,

• Learning rate - 0.4.

The feature vectors ([θ, r1, r2]) were standardised to have a mean of
zero and standard deviation of one to improve training. The labels
were also standardised. Training took 1695 epochs before early stop-
ping was triggered. Figure 4.4a shows the error distribution and train-
ing/validation loss for the trained network. All errors on the dataset are
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Figure 4.4. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of the
neural network generated PES of H2O, trained using the full 1331
point dataset. The blue line is training set loss, while the orange
line is the validation set loss.

within ±50 cm−1, with a maximum absolute error of 49.39 cm−1. The
training/validation loss graph shows a smooth convergence towards the
final RMSE values, with no evidence of overfitting. Training loss is 10.42
cm−1 while validation loss is 13.50 cm−1. The final RMSE value on the
test set is 12.69 cm−1, with a RMSE across the full dataset (or a stan-
dard deviation) of 11.18 cm−1. This is a reasonable accuracy, but as a
comparison, a recent H2O surface developed by Mizus et al. for ab ini-
tio spectroscopy [223] has an RMSE as low as 0.011 cm−1, three orders of
magnitude smaller.†

†Note, this surface was produced starting from an ab initio PES and refined using
empirical rovibrational energy levels, thus is is unlikely that a purely computational
surface will reach these levels of accuracy. However, it poses as a good example of the
desired accuracy for spectroscopic calculations.
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It is clear from Figure 4.4a that the dataset contains significantly less
data at higher energies (> 2 × 105 cm−1, see horizontal axis) and as a
result the average error for these high energy points is larger. Generally
however the errors are equally distributed across all energies, suggesting
that the surface is well fit across the whole space. Figure 4.5a shows a
contour plot of a slice of the predicted PES for water. The plot shows a
cut of the PES scanning the angle and keeping each bond the same length
(r1 = r2). A plot of the same surface with slightly smaller bounds is also
shown in Figure 4.5b, to capture the nature of the minimum a little better
(as the full surface colour spread is dominated by the high energy, short
bond length, structures). The predicted values for the global minimum

0.6 0.8 1.0 1.2 1.4
Bond Lengths / Å

60

80

100

120

140

A
ng
le
/

76.32

76.12

75.92

75.72

75.52

75.32

75.12

74.92

74.72

74.52
E / Hartree

(a)
Bond Lengths / Å

80

85

90

95

100

105

110

115

A
ng
le
/

76.3375

76.3250

76.3125

76.3000

76.2875

76.2750

76.2625

76.2500

76.2375
E / Hartree

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

(b)

Figure 4.5. A predicted potential energy surface for H2O trained on
the full dataset training set of 998 datapoints, showing (a) a contour
plot of the surface spanning the coordinates of the full dataset,
and (b) a limited data range contour plot. The colour scale for the
full data range is dominated by the high energy structures (where
θ = 50◦ and ri = 0.5 Å, i = 1, 2), so these have been removed in (b)
to reveal the low energy contour.

ground state geometry and energy are shown in Table 4.1, along side the
optimised CCSD(T)/aug-cc-pVTZ values. Prediction of the equilibrium
geometry by the NN fit is reasonable, with bond lengths being under-
predicted by 0.0025 Å and 0.0012 Å and the angle being over-predicted
by 0.28◦. However, as can be seen, the network predicts that the optimum
geometry does not have equal bond lengths as calculated by CCSD(T),
which is also chemically known to be the case. One downside to a
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Table 4.1. Predicted ground state equilibrium geometry and energy
of water resulting from training with 1331 points of data, along side
the optimised CCSD(T)/aug-cc-pVTZ values

1331 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9591 0.9616
R2 / Å 0.9604 0.9616
θ / ◦ 104.46 104.18
E / a.u. −76.342331 −76.342326

machine learned surface is, that unless the neural network is trained
with symmetry information, there will be no such considerations when
determining the minima on the surface. The energy prediction of the
global ground state is very good however, with an error of 0.000005
Hartree (1.10 cm−1).

4.4.3 TRAINING ON A SMALLER DATASET

300 point surface. From the full 1331 point dataset, 300 points were
randomly sampled and used as a starting point for a train-test split.
The 300 point dataset was randomly split into training, validation, and
testing sets in a 75 : 12.5 : 12.5 ratio. After hyperparameter optimisation
the architecture of the network was as follows:

• Layers - [16,16,16],

• Activation function - tanh,

• Learning rate - 0.8.

The labels and features were scaled again using standardisation and
training took 394 epochs before early stopping was triggered. Figure
4.6 shows the prediction errors and loss graph for the resulting 300 point
surface. The maximum error for this surface is, as expected, much higher,
reaching 1524.13 cm−1 for one high energy structure with a relative en-
ergy of around 2×105 cm−1. However, excluding this, the errors all fall
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Figure 4.6. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of the
neural network generated PES of H2O, trained using a 300 point
dataset. The blue line is training set loss, while the orange line is
the validation set loss.

within ∼500 cm−1. Similarly to the full 1331 surface, the majority of the
datapoints fall within the 2×105 cm−1 range, however Figure 5a suggests
that this network predicts the energies of extremely high energy struc-
tures very well (although there are not very many of them), and most of
the error comes from the mid-energy structures.

Figure 4.6b shows that the training loss and validation loss appear to
be diverging as the training came to an end, suggesting that the surface
may be over fit to the training data. This is reinforced by the particu-
larly large RMSE on the test set, 363.70 cm−1, compared to the training
set, 41.40 cm−1. The test set RMSE is also significantly larger than the
validation set RMSE (111.68 cm−1) which suggests that the training data
has holes in specific areas of the configuration space, which the model
has not learnt how to deal with, and the validation and test sets contain
points in these areas. This explains why the very high energy structures
were very well predicted. Looking at the test set, the maximum energy
found in the dataset is −75.4217027 Hartree, the training set however has
structures with energies of−74.7062416 Hartree. As the network appears
to have been overfit, it is safe to assume that these high energy structures
are only predicted well due to overfitting and their lack of appearance in
the validation and testing datasets.
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Table 4.2 shows that the ground state geometry is predicted similarly
to the 1331 point surface (errors of 0.0007 Å, 0.0005 Å, 0.35◦), however the
error in energy prediction is 0.00011 Hartree, an factor of twenty larger
than the full 1331 surface.

Table 4.2. Predicted ground state equilibrium geometry and energy
of water resulting from training with 300 points of data, along side
the optimised CCSD(T)/aug-cc-pVTZ values

300 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9623 0.9616
R2 / Å 0.9611 0.9616
θ / ◦ 103.83 104.18
E / a.u. −76.342216 −76.342326

600 point surface, randomly selected. Starting with the dataset from
the 300 point surface, 300 additional points were randomly selected
from the remaining pool of training data. These were added to the
total dataset for a total of 600 datapoints, and randomly split into train-
ing/validation/testing sets at the same ratio as previous runs. After
hyperparameter optimisation the neural network architecture for this
surface was:

• Layers - [32],

• Activation function - tanh,

• Learning rate - 0.5,

with features and labels being standardised as before. Training con-
cluded after 564 epochs.

The error and loss graphs immediately show improvements over the
300 point surface (Figure 4.7b). The absolute maximum error has been re-
duced to 462.98 cm−1 for a single high energy point (> 3.5×105 cm−1), and
if ignored then the prediction errors on the dataset are all less than 400
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cm−1. Comparing the loss values between datasets shows significant im-
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Figure 4.7. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of the
neural network generated PES of H2O, trained using a 600 point
dataset, randomly improved from the 300 point dataset. The blue
line is training set loss, while the orange line is the validation set
loss.

provements over the 300 point surface, with the test set RMSE dropping to
80.19 cm−1. However, the training set RMSE shows little to no improve-
ment at 40.49 cm−1. This suggests that the extra data predominantly
helped combat the overfitting, and improved the train/validation/test
split so that more of the structure space was covered in the training set.
There is possibly still some overfitting present as the validation set RMSE
is slightly higher at 68.39 cm−1, but errors in the high energy region in-
dicate that the particularly high energy structures are no longer overfit.

The global minimum energy and geometry predictions for this surface
are shown in Table 4.3. This is a very similar performance to the 300 point
surface, with slight improvement to the energy prediction (the error is
down to 0.000063 Hartree, a factor ∼ 1

2
) and minor geometry changes.

This is expected however, as the accuracy of the low level regions of the
surface, where the equilibrium geometry is found, did not improve with
the additional datapoints.

Randomly selecting new data to improve the surface seems to have
worked, so next the firefly algorithm was employed to assess what effect
a more direct approach to new data selection would have on the accuracy
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Table 4.3. Predicted ground state equilibrium geometry and energy
of water resulting from training with 600 points of data, along side
the optimised CCSD(T)/aug-cc-pVTZ values

600 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9623 0.9616
R2 / Å 0.9615 0.9616
θ / ◦ 103.82 104.18
E / a.u. −76.342263 −76.342326

of the machine learned surface.

4.4.4 APPLICATION OF THE FIREFLY ALGORITHM

By default the fireflies only have one set of geometric limits to keep
them within the bounds of the trained surface, and they are free to move
anywhere on said surface. For a surface with clearly identifiable min-
ima/maxima this works and several clusters of fireflies are seen. [183,215,216]

However, in the case of the water PES, there is only one clearly identi-
fiable ’maximum’ but there area several areas in the surface that could
be better fit with more training data. Therefore the algorithm can be
improved by splitting the fireflies into several groups. This is done by
giving the fireflies minimum and maximum geometric limits that they
are restricted to. By creating multiple groups with different limits, sev-
eral distinct regions of the surface can be explored independently. This
has the effect of forcing the fireflies to find several optima, and helps
improve the spread of data added to the training set.

460 point surface, selected by the firefly algorithm. Starting with the
trained 300 point surface, 40 fireflies were initialised into four groups,
with four sets of geometric limits. The limits for each group are shown
in Table 4.4. Ten fireflies were placed randomly within the limits for each
group and their brightness calculated through I = Etrue− Ẽ, where Etrue is
the calculated energy from a CCSD(T)/aug-cc-pVTZ calculation and Ẽ is
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Table 4.4. Geometric limits for each group of fireflies (θ/◦, r1/Å,
r2/Å)

Minimum limits Maximum limits
Group θ r1 r2 θ r1 r2

1 50 0.50 0.50 100 1.00 1.00
2 101 1.01 1.01 150 1.50 1.50
3 50 1.01 0.50 100 1.50 1.00
4 101 0.50 1.01 150 1.00 1.50

the energy predicted by the current PES. Every time a value of Etrue was
calculated, it was added to the 300 point dataset along with the current
geometry. The fireflies were allowed to move according to their relative
brightness and equation 4.5 for four iterations, at which point the neural
network was re-trained with the new 460 point dataset.

Hyperparameters after optimisation were:

• Layers - [64,64],

• Activation function - tanh,

• Learning rate - 0.5,

and training concluded after 839 epochs. After only 160 extra datapoints
the maximum absolute error is down to 280.32 cm−1, less than the 462.98
cm−1 of the random 600 point surface. Most errors are less than 150 cm−1,
showing improvement over the 600 point surface (most errors less than
200 cm−1). However, looking at the loss graph in figure 4.8 indicates
overfitting on the training set with the divergence of the training and
validation losses. The RMSE values also reveal this is likely to be true
with the validation and testing RMSE values being approximately twice
that of the training set loss (train = 37.87, test = 87.10, validation = 76.55
[all in cm−1]). Generally however, the performance seems impressive,
and the PES has reached the same levels of accuracy with just over half
the extra datapoints as the 600 point surface.

The prediction of the global minimum is much improved from the
300 and 600 point surfaces (shown in Table 4.5), notably, the predicted
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Figure 4.8. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of
the neural network generated PES of H2O, trained using a 460
point dataset, improved from the 300 point dataset using the firefly
algorithm. The blue line is training set loss, while the orange line
is the validation set loss.

ground state equilibrium geometry for this surface has almost identical
bond lengths (0.9626 Å and 0.9627 Å) which is predicted by CCSD(T),
but missing from the previous surfaces. The ground state energy is also
well predicted with an error of 0.000038 Hartree.

Table 4.5. Predicted ground state equilibrium geometry and energy
of water resulting from training with 460 points of data (160 chosen
by the firefly algorithm), along side the optimised CCSD(T)/aug-
cc-pVTZ values

460 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9626 0.9616
R2 / Å 0.9627 0.9616
θ / ◦ 104.07 104.18
E / a.u. −76.342362 −76.342326

620 point surface, further selected by the firefly algorithm. In order to
assess the performance that could be achieved with a similar number of
points as the 600 point surface, another four firefly cycles were run using
the 460 point dataset. The fireflies started from the same points they
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finished at in the 460 point run and were allowed to move for four more
iterations, after which the network was re-trained. After hyperparameter
tuning and training for 1323 epochs, the neural network architecture was
as follows:

• Layers - [32],

• Activation function - tanh,

• Learning rate - 0.5,

and the errors and RMSE graphs are plotted in Figure 4.9. The RMSE
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Figure 4.9. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of the
neural network generated PES of H2O, trained using a 620 point
dataset, further improved from the 460 point dataset, generated by
the firefly algorithm. The blue line is training set loss, while the
orange line is the validation set loss.

on the training set has gone up slightly (to 47.73 cm−1), however the
validation and testing set RMSE values are 48.72 cm−1 and 46.01 cm−1

respectively, approximately half those in the 460 and 600 point runs.
The similar values between the three datasets also suggests a lack of
overfitting (also indicated by the shape of the graph). The maximum
absolute error is 248.71 cm−1, improved from the 460 point firefly surface
a little, and about 70% of the maximum absolute error of the 600 point
surface.

The equilibrium geometry prediction (Table 4.6) is slightly worse with
the bond lengths no longer being equal, and the angle prediction being
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smaller. The energy prediction is equally impacted, having an error of
0.000053 Hartree (vs the 0.000032 Hartree of the previous surface). The
implication here is that the network has sacrificed some of the accuracy
at the lower energies to improve the overall fit of the surface. This is not
unexpected as the minimum energy structure is forced into the training
set in the train-test split that PES Learn employs. Therefore when the
surface is less overfit to the training data, it would be expected that its
prediction on points within that set are worse.

Table 4.6. Predicted ground state equilibrium geometry and energy
of water resulting from training with 620 points of data (320 chosen
by the firefly algorithm), along side the optimised CCSD(T)/aug-
cc-pVTZ values

620 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9610 0.9616
R2 / Å 0.9629 0.9616
θ / ◦ 103.75 104.18
E / a.u. −76.342379 −76.342326

The clustering of the fireflies can be seen in Figure 4.10. It is clear that
by four iterations (Figures 4.10a - 4.10d) of the algorithm (the first pass,
and 460 datapoints), the fireflies have managed to cluster in the area of
highest error for each of the four limits imposed on the algorithm. It is
also clear that the largest source of error in this model is the region of the
surface surrounding very short bond lengths. It is interesting that even
though the second pass of the algorithm (Figures 4.10e - 4.10h) does not
add much more in the way of varied data, the extra points in these high
energy regions have reduced the overfitting and general performance of
the surface.

Resetting firefly position. As the fireflies had clustered by four iter-
ations any further points added to the dataset in the 620 point firefly
algorithm surface had very similar geometries and did not add much in
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Figure 4.10. (a)-(h) Generations 0 - 7 of the fireflies showing the po-
sitional updates of r1 and r2 throughout the training. The brighter
the firefly, the larger the prediction error. Generation 0 is the initial
random placement of the fireflies. The clustering behaviour can be
seen, showing four distinct clusters within the four defined regions.

the way of varied information to the training set. It would be expected
that a greater improvement in the surface would be seen if the fireflies
were able to reset their positions, and then re-optimise to new maxima
appearing after the objective function has been updated. Therefore an-
other firefly cycle was run, but with the positions of the fireflies re-set
before starting. After training for 795 epochs the hyperparameters for
this model were:

• Layers - [32,32],

• Activation function - tanh,
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• Learning rate - 0.8.

Figure 4.11 shows that the fireflies have clustered in new regions of the
surface, with the previous high error region surrounding 0.5 Å bond
lengths being ignored entirely. The performance of the network is also
improved (Figure 4.12). The RMSE on the training set is 11.06 cm−1,
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Figure 4.11. (a)-(d) Generations 0 - 3 of the fireflies after having
their positions reset, showing the positional updates of r1 and θ
throughout the training.

almost reaching as low as the training RMSE of the full 1331 dataset
(10.42 cm−1) and the validation and test set RMSEs are the lowest of all the
trained networks (34.77 cm−1 and 34.01 cm−1, respectively). However,
the maximum error is still approximately three times that of the full
1331 dataset model, being 181.89 cm−1 compared to 49.39 cm−1.† The
full dataset RMSE is 19.69 cm−1 suggesting that generally the model
performs almost as well as the full 1331 dataset.

The predicted ground state equilibrium geometry and energy are
reported in Table 4.7. The bond lengths are symmetric, with errors

†The structure of this point is quite strained with some very short bond lengths
(θ = 150.0 r1 = 0.8 r2 = 0.5), it also resides in a region of the surface that the fireflies
had clustered around, so it is unsurprising that the prediction error is high.
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Figure 4.12. (a)(a)(a) Prediction errors and (b)(b)(b) the ln(Loss) values of the
neural network generated PES of H2O, trained using a 620 point
dataset, further improved from the 460 point dataset, generated by
the firefly algorithm after resetting the firefly positions and updat-
ing the objective function. The blue line is training set loss, while
the orange line is the validation set loss.

of 0.0011 Å, and a bond angle error of 0.46◦, when compared to the
calculated CCSD(T)/aug-cc-pVTZ geometry. The error in the energy
prediction is 20% that of the 620 point surface, being 0.00001 Hartree. It
is clear that by re-training the network (thus regenerating the objective
function), and resetting the firefly positions, the firefly algorithm has
performed better than simply running for eight generations, achieving
almost the same level of accuracy as the 1331 surface, with half as many
datapoints in the training set.

4.5 CONCLUSIONS

The firefly algorithm has been introduced as an optimisation algorithm,
and has been adapted to work as an active learning technique for use
in machine learning. A reference potential energy surface for water has
been fit using a neural network trained on a dataset of 1331 different ge-
ometries of water and their associated CCSD(T)/aug-cc-pVTZ energies.
To determine the efficacy of the the firefly algorithm a low data surface
was trained on a random sample of 300 datapoints from the full dataset,
and the firefly algorithm used to incrementally select new data to add to
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Table 4.7. Predicted ground state equilibrium geometry and energy
of water resulting from training with 620 points of data (320 cho-
sen by the firefly algorithm), after having reset the firefly position
after the first 160 points, along side the optimised CCSD(T)/aug-
cc-pVTZ values

620 points Prediction
from PES

CCSD(T)
optimised
geometry

R1 / Å 0.9605 0.9616
R2 / Å 0.9605 0.9616
θ / ◦ 103.72 104.18
E / a.u. −76.342316 −76.342326

the dataset.
Table 4.8 shows a summary of all the trained networks in this chapter.

There is a clear improvement in training/validation/testing loss values
when using the firefly algorithm over a random data selection method.
For example, the test set RMSE for the randomly selected 600 point surface
is 80.18 cm−1, whereas if data was selected by the firefly algorithm, with
620 points in the dataset the test set RMSE is 34.01 cm−1, just a factor of
three larger than the full 1331 surface. For this system, it has been shown
that resetting the firefly positions after four generations helps the fireflies
identify new areas on the objective function that could be improved, and
results in an improved model (with full dataset RMSE values of 47.65
cm−1 for the first version of the algorithm, compared 19.69 cm−1 after
having reset the firefly positions after the first cycle). This performance
increase is seen due to the successful clustering behaviour of the fireflies
seen in Section 4.4.4.
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5 | Basis set development

Work from this chapter has been published as Correlation Consistent
Basis Sets and Core Polarization Potentials for Al–Ar with ccECP Pseudopo-
tentials, J. Phys. Chem. A 2022, 126, 34, 5853-5863. [53]

In Chapter 1 three methods of speeding up PES generation were high-
lighted: use a machine learning algorithm to reduce fitting complexity;
use an active learning technique to reduce the number of datapoints
needed in the training set; and speed up the ab initio data generation in
some way. Chapter 4 outlined a new method of reducing the number
of ab initio datapoints themselves through the use of a firefly algorithm,
and Chapter 3 introduced effective core potentials as a way of removing
core electrons from the calculation, inherently reducing calculation time.
Bennett et al. have developed correlation consistent ECPs (ccECPs) for
first and second row atoms, [52,168] and more recently for a selection of
heavy elements (I, Te, Bi, Ag, Au, Pd, Ir, Mo, and W). [169] These ccECPs
are designed to be specifically paired with the correlation consistent style
of basis sets, to ensure smooth convergence towards the complete basis
set limit. As such, new correlation consistent basis sets for the second
row atoms (Al–Ar) to be used with the neon-core correlation consistent
effective core potentials (ccECPs) have been developed in this work. The
basis sets, denoted cc-pV(n+d)Z-ccECP (n = D, T, Q), include the “tight” d
functions that are known to be important for second row elements. Sets
augmented with additional diffuse functions are also reported. Also
highlighted in Chapter 3 was the importance of core-valence correlation
in certain systems. However, it can be prohibitively expensive to include,

109
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and usually requires the use of specifically optimised basis sets, such as
core-valence basis sets (cc-pCVnZ), to properly account for these effects.
An alternative method of including the effects of this correlation was
highlighted in Chapter 3, called core polarisation potentials (CPPs). Pa-
rameters for these potentials have been adjusted for the same elements
as the basis sets and two different forms of the CPP cut-off function have
been analysed.

The accuracy of both the basis sets and the CPPs is assessed through
benchmark calculations at the coupled-cluster level of theory for atomic
and molecular properties. Agreement with all-electron results is much
improved relative to the basis sets that originally accompanied the ccECPs,
moreover, the combination of cc-pV(n+d)Z-ccECP and CPPs is found to
be a computationally efficient and accurate alternative to including core
electrons in the correlation treatment.

5.1 INTRODUCTION

The use of ab initio quantum chemistry methods to investigate the proper-
ties, thermochemistry and reactivity of molecules relies on the expansion
of the wave function in products of one-electron orbitals, which are typ-
ically expressed in the basis of a linear combination of Gaussian-type
functions. The choice of this basis set dictates both the accuracy and
computational efficiency of quantum chemical calculations and has been
the subject of a number of reviews. [228–230] The correlation consistent (cc)
basis sets were originally developed by Dunning to systematically ap-
proach the complete basis set (CBS) limit. [162] A large body of work over
the last three decades has resulted in cc basis sets available for almost all
of the elements in the periodic table, with consistency in the exponents
being energy optimised and using a general contraction scheme. They
are typically denoted cc-pVnZ (correlation consistent polarized valence
n-zeta) basis sets, where n = D, T, Q, 5,. . . and are designed in a modu-
lar fashion. This allows for the addition of functions to address common
problems. For example, augmenting with diffuse functions (denoted
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aug-cc-pVnZ) gives a better description of anions, produces significantly
better results for electron affinities of atoms, and is important in calcu-
lating molecular properties such as polarizabilities and intermolecular
interactions. [163]

Correlation consistent basis sets for the second row elements Al–Ar
were originally published in 1993. [231] However, a later investigation by
Bauschlicher and Partridge reported that the aug-cc-pVnZ basis sets pro-
duced unacceptably large errors for the atomization energy of SO2. [232]

Careful evaluation of the performance of these basis sets showed that
the addition of large exponent (tight) d functions led to major improve-
ments in these benchmarks. Further analysis by Martin revealed that
tight d functions can also have a large effect on the Hartree-Fock ener-
gies of molecules containing second-row elements in a high oxidation
state, with the involvement of 3d functions in the bonding orbitals and
a suggested term of “inner polarization functions” for basis functions of
this type. [233,234] As a result of the highlighted basis set deficiencies, a
new generation of cc-pV(n+d)Z basis sets were developed by Dunning
et al. [235] It has been recommended that for second row p-block elements
only these newer “plus d” sets should be used, since the minor increase
in the total number of basis functions is typically offset by the increased
accuracy. However, with the need for generating thousands of ab initio
datapoints for machine learning training sets, and the desire to generate
potential energy surfaces on ever larger molecules, there are substantial
benefits to minimising the number of basis functions while still retaining
acceptable computational accuracy.

As discussed in Chapter 3, effective core potentials (ECPs) reduce
the computational effort of a given calculation relative to an equivalent
all-electron treatment. It was shown that they achieve this by separating
the core and valence electrons, an idea common throughout chemistry.
The most popular ECPs within molecular quantum chemistry follow the
pseudopotential (PP) approach which was described in detail in the same
chapter, and there will continue to be no distinction made between ECPs
and PPs herein. Instead, the interested reader is again directed toward
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the detailed review of Dolg and Cao. [164] Recent developments in the
calculation of integrals over ECPs have further reduced computational
cost, making their use even more attractive. [236–238] While they are often
used to incorporate scalar-relativistic effects for heavier elements without
the need for relativistic Hamiltonians, ECPs also offer a partial solution
to the problem of large basis sets. Replacing the core electrons with
a potential field removes the need for basis functions to describe these
electrons. Hence, this reduces the overall size of the basis set. However,
the accompanying basis set will need to be specifically paired to a given
ECP, increasing the development work required. Within the cc family
of basis sets, those paired to small-core ECPs are denoted cc-pVnZ-PP
and have been developed for a number of heavier elements, including
transition metals, [239,240] alkali metals and alkaline earths, [241] and some
of the actinides. [242] Where lighter elements of the periodic table are
concerned, correlation consistent basis sets for H and B–Ne, denoted cc-
pVnZ-CDF, have been developed for use with the CASINO Dirac-Fock
average relativistic pseudopotentials. However, these sets are intended
for applications in quantum Monte Carlo calculations. [243]

Chapter 3 also introduced a new generation of correlation consistent
effective core potentials (ccECPs), developed by Bennett et al. for first
and second row atoms, [52,168] and more recently transition metals. [169]

These are designed specifically for use in correlated electronic struc-
ture methods while retaining transferability between atoms and bonded
molecules. They use a many-body approach to the construction of the
ECPs to circumvent the poor performance for many-body theories seen
with ECPs generated in an effective one-particle setting. [167] To ensure
that these new ccECPs could be used in standard electronic structure
packages, they chose a commonly used and well established form of the
ECP: [244,245]

VI
ECP(i) = V

I
loc(rIi) +

lmax∑
l=0

VI
l (rIi)P̂

I
l (5.1)

where VI
ECP(i) is the effective core potential that supplements the elec-

tronic Hamiltonian, with i indexing the electrons, I the nuclei, and rIi the
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radial distance of electron i from the origin of nucleus I. This potential is
angular momentum dependent withVI

loc(rIi) accounting for core-valence
repulsion and VI

l (rIi)P̂
I
l accounting for core-valence orthogonality. Here,

P̂Il is a projection operator defined as

P̂Il =

l∑
m=−l

|Ylm⟩⟨Ylm| (5.2)

To ensure orthogonality lmax in equation 5.1 should be equal to the highest
angular momentum present in the core.

To be used in quantum chemical calculations, these ECPs require
specific basis sets that have been optimised for the valence electrons while
using the ECP. Thus, basis sets, denoted ccECP-nZ (n =D–5) herein, were
developed in the same work alongside the new ccECPs (large, neon-
core) by minimizing the CCSD(T) ground state atomic energies using an
even-tempered progression of exponents. [52] In addition to optimising all
exponents at the CCSD(T) level, the ccECP-nZ basis sets include a number
of design elements that differ from the established cc methodology. For
example, the same set of s- and p-type primitives and contractions were
used across all zeta-levels, which is not seen in the current generation of
cc basis sets. More significantly, for the second row elements Al–Ar the
additional tight-d functions demonstrated to be vital for accurate results
are not included, and the sets fail to sufficiently capture the nature of the
existing all-electron cc basis sets as the s- and p-type functions do not
follow a systematic convergence towards the CBS limit. Despite this, the
ccECP-nZ construction produces accurate results for excitation energies
to low-lying electronic states and equilibrium bond lengths of several
diatomic molecules. Short polar bonds, such as those in AlO or SiO, tend
to be over-bound by ccECP-nZ. However, this appears to be relatively
common across a number of Ne-core pseudopotentials. [52] As the ccECPs
hold the promise of accurate results at a reduced computational cost, the
need for new correlation consistent basis sets paired to the ccECPs for the
elements Al–Ar is clear, with potential applications in the computation
of extended potential energy surfaces, quantum Monte Carlo or ab initio
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molecular dynamics simulations. These ECPs will also then be used
in Chapter 6 to help reduce the computational cost of calculations on a
sulfur containing compound, HSO2.

The same assumption that motivates the use of ECPs in quantum
chemistry, namely the separation of core and valence electrons, also
places limitations on the ultimate accuracy of correlated wave function
methods. The so-called frozen-core approximation, where only the va-
lence electrons enter the correlation treatment, neglects intershell corre-
lation effects to reduce computational cost, but relies on said effects being
negligible. The effect of core-valence correlation on molecular properties
was first studied systematically by Meyer and Rosmus in 1975. [170] Their
work showed that core-valence effects could be nearly as important as
valence-correlation effects for alkali metal and alkaline earth compounds.
Many subsequent investigations have demonstrated that even for main
group elements the core electrons must be correlated in, for example,
high-accuracy thermochemistry. [171–174]

In addition to including the correlation of more electron pairs, ac-
curately capturing the core-valence effect requires larger basis sets that
have been augmented with tight functions, such as the cc-pCVnZ corre-
lation consistent sets. [246] Optimizing additional functions on the energy
difference between correlating all electrons and only correlating valence
electrons, addresses both the intrashell (core-core) and intershell (core-
valence) correlation effects. Subsequent analysis and benchmarking has
found that biasing the optimisation towards core-valence correlation,
known as weighted core-valence or cc-pwCVnZ, results in basis sets that
converge more rapidly towards the CBS limit for core correlation. [247] It
is noted that for the second row elements it is common practice to ex-
clude the low-energy 1s electrons from the correlation treatment, even
in “core-valence” calculations. Indeed, the cc-pCVnZ and cc-pwCVnZ
basis sets have been optimised under this assumption.

As mentioned in Chapter 3, it is principally the dynamic polarization
of the atomic cores by the valence electrons that is the physical origin
of this core-valence correlation effect. [175] This means that these effects,
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along with static polarization of the cores in the molecular environment,
can be accounted for with a core polarization potential (CPP). The devel-
opment and history of the CPP approach has been reviewed by Dolg and
Cao, [164] based on the pioneering work of Meyer and co-workers, [177–179]

and Fuentealba and co-workers. [176] Chapter 3 showed that the interac-
tion between a valence electron and the core, λ, is proportional to αλ, the
core dipole polarizability, leading to:

VCPP = −
1

2

∑
λ

αλf2λ (5.3)

where fλ is the electric field generated at a core by all other cores and the
valence electrons, i. This electric field is given by:

fλ =
∑
λ

rλi
r3λi
gλ(rλi) −

∑
µ( ̸=λ)

Qµrλµ
r3λµ

gλ(rλµ) (5.4)

where a cutoff function, gλ(r), has been introduced to limit the field to
the core region:

gλ(r) = [1− exp (−γλnr
2)]n (5.5)

The parameter γ is fitted to suitable reference data. Two common forms
of the cutoff function are used, one is the Fuentealba/Stoll form where
n = 1, [176] and the other the Müller/Meyer form where n = 2. [177] The
value of γ is dependent on the functional form chosen.

There have been a small number of investigations where CPPs have
been used in conjunction with an all-electron model. [248–251] Perhaps,
the most notable work was by Nicklass and Peterson, [252] where it was
demonstrated that the core-valence effect on the spectroscopic constants
of first-row diatomic molecules can be accurately reproduced with a CPP.
However, there has been considerably more interest in using CPPs along-
side the ECP approximation, where the core electrons have been removed
from the system. This combination promises the attractive proposition
of accurate and efficient calculations that take into account core-valence
correlation effects, without having to add large numbers of additional
functions to the basis sets or significantly increasing the number of cor-
related electrons.
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The goal of the present work is to develop new correlation-consistent
basis sets for the second row elements Al–Ar specifically matched to
the ccECPs of Bennett et al. The resulting basis sets, denoted (aug-
)cc-pV(n+d)Z-ccECP (n = D, T, and Q), follow the established cc basis
set design principles and include the tight-d functions required for ac-
curate properties of molecules containing second row elements. It is
noted that only basis sets up to quadruple-ζ have been developed, as
the CPP code in Molpro does not support orbital angular momentum
shells above g. [224,225,253] Benchmark calculations on several homonuclear
and heteronuclear diatomic molecules are presented to validate the per-
formance of these ECP-based basis sets relative to existing all-electron
basis sets. New CPP parameters for Al–Ar have also been optimised and
benchmark calculations carried out to demonstrate their efficacy in the
computation of core-valence correlation effects.

5.2 COMPUTATIONAL DETAILS

All electronic structure calculations in this work were carried out in
the Molpro [224,225,253] package of programs. The BFGS or simplex algo-
rithms [75] were used for parameter optimisation during basis set devel-
opment. For the primitive Hartree-Fock (HF) sets, exponents were opti-
mised in symmetry-equivalenced HF calculations, whereby contraction
coefficients were extracted from Molpro following the general contrac-
tion method of Raffenetti. [254] For all correlating exponents, optimizations
were at the coupled-cluster with single and double excitations (CCSD)
level. For open-shell species the Molpro implementation of UCCSD
methods, which are spin-unrestricted in the CCSD calculations, but use
restricted open-shell HF (ROHF) orbitals, was used.

All benchmarking calculations on the new ccECP basis sets, denoted
(aug-)cc-pV(n+d)Z-ccECP, were carried out at the coupled-cluster with
single, double, and perturbative triple excitations [CCSD(T)] [255] level and
were compared to equivalent all-electron calculations. All atomic corre-
lated calculations used symmetry-equivalenced HF reference orbitals,
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and electron affinities were calculated using diffuse-augmented basis
sets. Atomistic benchmarks of the ionisation energy were calculated by
subtracting the total energy of the neutral atom from the total energy
of the cation, while electron affinities were calculated by subtracting the
total energy of the anion from the total energy of the neutral atom. For di-
atomic molecules the equilibrium bond length (Re), harmonic frequency
(ωe), and dissociation energy (De) were calculated from a seven-point
polynomial fit (Dunham analysis). [256]

5.3 METHODS

The initial basis set development of the present work closely follows that
of the cc-pVnZ sets for Al–Ar by Woon and Dunning [231], albeit with the
ccECP replacing the Ne core. Briefly, Hartree-Fock optimised primitives
are developed for double-, triple-, and quadruple-ζ basis sets. Following
this, correlation-consistent polarization functions are determined and
added to the HF primitives. Additional tight-d correlating functions [235]

were also optimised, and diffuse-augmented functions were optimised
for the lowest energy states of the anions. Initially, a full family of (aug-
)cc-pV(n+d)Z-ccECP basis sets (where n = D, T, and Q) were developed
for sulfur, which were subsequently used as guidelines for the rest of the
row.

5.3.1 HARTREE-FOCK PRIMITIVE SETS

The largest difference between the ECP-based basis sets of this work and
the all-electron cc-pVnZ sets is a decrease in the number of primitive s
and p functions due to the removal of the core electrons. As the ccECPs
selected for this work define a large Ne-core, the primitive sets can be
significantly reduced from the (12s8p), (15s9p) and (16s11p) of the analo-
gous DZ, TZ and QZ all-electron sets. However, the principles dictating
the choice of primitive set remain the same; a systematic decrease in the
basis set incompleteness error in atomic HF calculations and maintaining
the qualitative nature of the outermost exponents. The resulting primi-
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tive set sizes of (6s5p), (8s7p) and (9s8p) smoothly converge towards the
HF/CBS limit. The HF primitive sets were then generally contracted to
[1s1p] using atomic orbital coefficients from symmetry-equivalenced HF
calculations on the electronic ground states of the atoms.

5.3.2 CORRELATING FUNCTIONS

The number of correlating functions to add to the contracted primitive
sets was determined by following the familiar cc approach of using an
even-tempered expansion to investigate the incremental lowering of the
correlation energy. The resulting cc groupings of functions match those
of the analogous all-electron sets and are depicted for sulfur in Figure
5.1. The even-tempered exponents were subsequently used as starting

d
f
g
h

|In
cr

em
en

ta
l c

or
re

la
tio

n 
en

er
gy

| (
m
E h

)

0.1

1

10

100

Number of functions
1 2 3 4 5

Figure 5.1. Contribution of d–h angular momentum functions to
the UCCSD correlation energy for the electronic ground state of the
S atom. A set of uncontracted (9s8p) functions were used as a base
for these calculations.

points for unconstrained optimisation of a 1d function for the DZ basis
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set, 2d1f functions for the TZ basis set, and 3d2f1g functions for the QZ
basis set.

The work of Blaudeau et al, Christiansen, and Peterson has indicated
that single s-type primitives are poor correlating functions in basis sets
designed for use with ECPs. [257–259] To establish whether this also ap-
plies to ccECPs, and whether it also affects p-type angular momentum
functions for the second row elements, the correlation energy for sulfur
obtained at the UCCSD level by adding successive s and p functions
is shown in Figure 5.2. These functions were added to the contracted
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Figure 5.2. Contribution of s and p correlating functions to the
UCCSD correlation energy for the electronic ground state of the S
atom. All-electron (all-e) results use the [3s2p]+(3d2f1g) functions
from the cc-pVQZ basis set as a base.

QZ HF primitives developed above, along with the QZ higher angular
momentum correlating functions to form a [1s1p]+(3d2f1g) base. The re-
sults from analogous all-electron calculations, using the [3s2p]+(3d2f1g)
taken from the cc-pVQZ set, are also shown.

Focusing initially on p-type functions, it can be seen that both the
ECP-based and all-electron functions produce a smooth decrease in in-
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cremental correlation energy as successive functions are added, and that
the correlation energy recovered is similar for both cases. In contrast, for
s-type functions the second ECP-based function recovers a larger amount
of correlation energy than the first. After which, subsequent functions
proceed to smoothly decrease incremental correlation energy. This is
even more striking when comparing to the all-electron case as the first
s-type all-electron function recovers roughly twice as much correlation
energy as the ECP-based equivalent. An analysis of the exponents indi-
cates that the first ECP-based function has a relatively diffuse exponent,
confirming the work of Christiansen. [258] Given Figure 5.2 it would ap-
pear logical to include (2s1p) correlating functions for a DZ basis set,
(3s2p) for TZ and (4s3p) for QZ. However, initial testing, shown in Table
5.1, demonstrated that inclusion of the additional s-type correlating func-
tions tends to cancel for relative energies (making negligible difference
to the resulting spectroscopic constants). For example, the dissociation
energy for S2 at the QZ level is 99.91 kcal mol−1 and 99.75 kcal mol−1 for
the 4s4p and 5s4p ECP basis sets, respectively, and for Al2 the analogous
values are identical (32.65 kcal mol−1). It seems that these extra functions
are most important in smaller basis sets, as the ionisation potential and
electron affinity for S differs by closer to ±1 kcal mol−1 at the DZ level;
the IP for DZ with 2s2p functions is 222.49 kcal mol−1, and for DZ with
3s2p functions it is 221.57 kcal mol−1. While the EA for DZ is 39.78 kcal
mol−1 and 40.70 kcal mol−1 with 2s2p and 3s2p functions, respectively.
However, in general the values benchmarked are not greatly affected by
the addition of an extra s function, and thus, the decision was taken to re-
tain the standard cc groupings of s and p correlating functions of (1s1p),
(2s2p) and (3s3p) for DZ–QZ, respectively. This keeps the number of
contracted functions as small as possible. As is common practice for cc
basis sets, the final s and p correlating functions were uncontracted from
the HF sets.
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Table 5.1. Spectroscopic constants (DE / kcal mol−1, Re / Å, ωe
/ cm−1), ionisation energies (kcal mol−1), and electron affinities
(kcal mol−1) of sulfur and aluminium comparing three families of
basis sets: the ccECP basis sets developed here; those same sets
with an extra correlating s-function; and the equivalent all electron
basis set.

s & p Functions Basis set DE Re ωe IP EA
S/S2 2s2p cc-pV(D+d)Z-ccECP 85.21 1.9169 712.69 222.49 39.78

3s3p cc-pV(T+d)Z-ccECP 96.46 1.8983 725.66 231.47 44.33
4s4p cc-pV(Q+d)Z-ccECP 99.91 1.8929 728.16 235.13 46.56

3s2p cc-pV(D+d)Z-ccECP 85.74 1.9158 709.91 221.57 40.70
4s3p cc-pV(T+d)Z-ccECP 95.29 1.9011 718.86 231.79 44.48
5s4p cc-pV(Q+d)Z-ccECP 99.75 1.8932 727.00 235.18 46.56

cc-pV(D+d)Z 85.33 1.9189 709.80 222.27 41.04
cc-pV(T+d)Z 95.47 1.9057 718.80 232.81 44.97
cc-pV(Q+d)Z 100.13 1.8969 728.69 236.14 47.02

Al/Al2 2s2p cc-pV(D+d)Z-ccECP 27.92 2.7476 277.56 137.99 7.71
3s3p cc-pV(T+d)Z-ccECP 31.89 2.7056 285.66 137.43 9.64
4s4p cc-pV(Q+d)Z-ccECP 32.65 2.7041 285.04 137.64 9.94

3s2p cc-pV(D+d)Z-ccECP 28.19 2.7484 277.02 135.42 8.30
4s3p cc-pV(T+d)Z-ccECP 31.61 2.7065 285.34 137.31 9.68
5s4p cc-pV(Q+d)Z-ccECP 32.65 2.7043 285.48 137.64 9.94

cc-pV(D+d)Z 28.33 2.7472 279.61 134.82 8.42
cc-pV(T+d)Z 31.75 2.7220 285.01 137.00 9.84
cc-pV(Q+d)Z 32.67 2.7139 284.96 137.54 10.09
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5.3.3 ADDITIONAL TIGHT-D FUNCTIONS

An additional tight-d function was added to each of the DZ, TZ, and QZ
basis sets to avoid the problems previously noted in studies of molecules
containing second-row elements. [232,234,260] For TZ and QZ the exponents
of the d functions were fixed, and a tighter exponent was optimised at the
(U)CCSD level. The tight-d function was then fixed and the remaining d-
type exponents allowed to relax in a subsequent (U)CCSD optimisation.
For the DZ set the new tight-d exponent was determined through a scaling
of the TZ exponent by a ratio of ζ2(TZ)/ζ3(QZ), following Ref. [235]
(where ζ2 is the second most diffuse function in the TZ basis, and ζ3 is
the third most diffuse function in the QZ basis).

The resulting composition of the cc-pV(n+d)Z-ccECP sets are shown
in Table 5.2, along with the analogous ccECP-nZ and all-electron cc-
pV(n+d)Z sets. It can be seen that the basis sets developed in this work
have significantly fewer primitive functions than either of the alterna-
tives, and, as one would expect, fewer contracted functions than the
all-electron cc-pV(n+d)Z. This comparison also highlights the lack of
tight-d functions in the ccECP-nZ sets. The exponents for all of the basis
sets developed for Al–Ar can be found in Appendix B.

5.3.4 DIFFUSE AUGMENTING FUNCTIONS

To improve the results for calculations on anions, electron affinities and
polarizabilities, additional diffuse functions were optimised for each ba-
sis set to produce aug-cc-pV(n+d)Z-ccECP sets. An additional function
was added to each angular momentum shell present in the standard
basis, and the exponents were energy-optimised for the anion of the re-
spective element, such as the 2Pu state of the sulfur anion. The tight-d
functions were excluded from the basis set for this optimisation in keep-
ing with standard methods. Diffuse s and p functions were optimised
at the Hartree-Fock level, while higher angular momentum polarization
functions were optimised at the (U)CCSD level.
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Table 5.2. Composition of the valence correlating ccECP based
correlation consistent basis sets developed in this work for Al–Ar.
The ccECP-nZ [52] and all-electron cc-pV(n+d)Z [235] sets are shown
for comparison.

Basis set Composition
cc-pV(D+d)Z-ccECP (6s5p2d)/[2s2p2d]
cc-pV(T+d)Z-ccECP (8s7p3d1f)/[3s3p3d1f]
cc-pV(Q+d)Z-ccECP (9s8p4d2f1g)/[4s4p4d2f1g]

ccECP-DZ (11s11p1d)/[2s2p1d]
ccECP-TZ (12s12p2d1f)/[3s3p2d1f]
ccECP-QZ (13s13p3d2f1g)/[4s4p3d2f1g]

cc-pV(D+d)Z (12s8p2d)/[4s3p2d]
cc-pV(T+d)Z (15s9p3d1f)/[5s4p3d1f]
cc-pV(Q+d)Z (16s11p4d2f1g)/[6s5p4d2f1g]

5.4 CORE POLARIZATION POTENTIALS

The adjustment of the CPPs follows the method outlined by Nicklass and
Peterson, [252] although a 1s2s2p core was chosen during the adjustment
to reflect the heavier elements of the current work. A second notable
deviation from the earlier work is that while Nicklass and Peterson ad-
justed their B–F CPPs to reproduce experimental ionization energies,
the decision was made to reproduce CCSD/CBS limit estimates of the
first ionization energy. More specifically, the aim was to reproduce the
core-valence effect on the ionization energy (∆IECBS

core). This is computed
as ∆IECBS

core = IECBS
CV − IECBS

Val , where IECBS
CV is the ionization energy assem-

bled from the HF energies, the core-valence correlation energies, and
the valence-valence correlation energy (that is, excluding the core-core
correlation energy that cannot be recovered using a CPP). The IECBS

Val term
is constructed from the HF energies and the valence-valence correlation
energy in the usual way. Each of these energetic terms are extrapolated
to the CBS limit using the Karton-Martin extrapolation formula for HF
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energies, [261] and the formula of Helgaker and co-workers for correlation
energies. [262,263] All extrapolations used cc-pCV5Z and cc-pCV6Z basis
set results. [247,264]

The γ parameters (see equation 5.5) were subsequently adjusted to re-
produce ∆IECBS

core for Al–Cl based on the (U)CCSD/cc-pV(Q+d)Z valence-
only ionization energies. Separate γ parameters were determined for
both the n = 1 and n = 2 forms of the cutoff function. The values of
these parameters are given in Table 5.3, along with the core dipole polar-
izabilities, α, reproduced from Johnson et al. [265] It can be seen that the γ
values for the n = 2 cutoff function are significantly larger than n = 1,
which is consistent with the observations of Nicklass and Peterson for
B–F. [252]

Table 5.3. Core polarization potential cutoff parameters (γ,
see equation 5.5) for the atoms Al–Cl, adjusted for both the
Fuentealba/Stoll (n = 1) and the Müller/Meyer (n = 2) forms
of the cutoff function. Also presented are the core dipole polariz-
abilities (α), with respect to the neon isoelectronic series, obtained
from Ref. [265].

γ(n=1) (a−2
0 ) γ(n=2) (a−2

0 ) α

Al 1.5324 4.7998 0.2649
Si 1.7544 5.4614 0.1624
P 1.9926 6.1635 0.1057
S 2.5742 7.8453 0.07205
Cl 2.7965 8.5214 0.05093

To identify which form of the cutoff function to use, the sensitivity
of the (U)CCSD/cc-pV(Q+d)Z/CPP first ionization energy of sulfur to
the values of γ is quantified through the absolute change in ionization
energy (|∆IE|) as γ is varied from γopt − 1 to γopt + 1, where γopt are the
optimised values of Table 5.3. The resulting plot in Figure 5.3 clearly
demonstrates that the Müller/Meyer form (n = 2) of the cutoff function
is much less sensitive to the value of γ, thus it is preferred herein.
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Figure 5.3. The absolute change in ionization energy (|∆IE|) for the
first ionization energy of sulfur at the (U)CCSD/cc-pV(Q+d)Z/CPP
level, where the value of the cutoff parameter (γ) is varied from
γopt − 1 to γopt + 1. |∆IE| is plotted for both the Fuentealba/Stoll
(n = 1) and Müller/Meyer (n = 2) forms of the cutoff function.

5.5 RESULTS & DISCUSSION

5.5.1 BASIS SET BENCHMARKS

Atomistic benchmarks

For the elements Al–Cl, ionization energies and electron affinities have
been calculated using the basis sets developed in this work, and subse-
quently compared with those calculated using the cc-pV(n+d)Z sets of
Dunning and co-workers and the PP-based ccECP-nZ basis sets of Ben-
nett et al. [52] The calculated ionization energies are presented in Table 5.4,
where it can be seen that all three basis set families perform approxi-
mately equally. The newly developed basis sets slightly outperform the
ccECP-nZ basis sets at all levels with mean average deviations of −1.84
kcal mol−1 at the DZ level, 0.22 kcal mol−1 at TZ, and 0.15 kcal mol−1 at
QZ (compared to −4.14, −0.63, and −0.34 kcal mol−1 at the DZ, TZ, and
QZ level for the ccECP-nZ basis sets). For the all electron calculations,
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Table 5.4. Ionisation energies (kcal mol−1) at the CCSD(T) level of
theory for the atoms Al–Cl.

Basis Al Si P S Cl
cc-pV(D+d)Z-ccECP 137.99 186.13 238.85 222.49 285.31
cc-pV(T+d)Z-ccECP 137.43 187.21 241.58 231.47 292.45
cc-pV(Q+d)Z-ccECP 137.64 187.79 242.51 235.13 296.43

ccECP-DZ 138.67 187.37 240.81 225.69 289.72
ccECP-TZ 137.74 187.78 242.26 232.63 293.94
ccECP-QZ 137.65 188.00 242.92 235.85 297.56

cc-pV(D+d)Z 134.82 183.42 236.23 222.27 284.82
cc-pV(T+d)Z 137.00 187.01 241.24 232.81 293.16
cc-pV(Q+d)Z 137.54 187.59 242.13 236.14 296.87

Experiment [266–270] 138.04 187.99 241.83 238.91 299.05

a convergence with basis set towards a maximum value is seen for all
atoms. This is mostly seen for both of the ECP basis sets, with the excep-
tion of Al, which has a much higher DZ value than would be expected
in both cases (Al with ccECP-nZ actually trends downwards towards a
minimum). The DZ to TZ increment is largest for sulfur for all three
families of basis sets (+6.94 kcal mol−1 for ccECP-nZ, +8.98 kcal mol−1

for cc-pV(n+d)Z-ccECP, and +10.54 kcal mol−1 for cc-pV(n+d)Z). Overall,
the agreement with experiment is good and the error introduced by the
use of an ECP appears to be minimal.

Table 5.5 shows the electron affinities for Al-Cl. These have all been
calculated using basis sets augmented with additional diffuse functions
as it is well known that such functions are necessary for the correct
description of anions. [163] From Table 5.5, it is clear that the aug-cc-
pV(n+d)Z-ccECP basis sets lead to smaller values of the electron affinities
than the corresponding aug-cc-pV(n+d)Z basis sets, although there is rel-
atively good agreement throughout. This effect becomes smaller as the
basis set size is increased, with a mean average deviation of −1.04 kcal
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Table 5.5. Electron affinities (kcal mol−1) at the CCSD(T) level of
theory for the atoms Al–Cl.

Family nZ Al Si P S Cl
aug-cc-pV(n+d)Z-ccECP DZ 7.71 28.95 6.63 39.78 78.07

TZ 9.64 31.84 13.43 44.33 80.51
QZ 9.94 32.34 15.30 46.56 83.03

aug-ccECP-nZ DZ 4.09 24.11 −6.12 27.55 65.47
TZ 9.63 31.88 13.39 44.36 80.51
QZ 9.03 32.32 12.89 43.89 80.44

aug-cc-pV(n+d)Z DZ 8.42 29.72 8.15 41.04 79.01
TZ 9.84 32.07 14.17 44.97 80.92
QZ 10.09 32.45 15.90 47.02 83.29

Experiment [271–274] 9.98 32.04 17.22 47.90 83.31

mol−1 at the DZ level, −0.44 kcal mol−1 at the TZ level, and −0.32 kcal
mol−1 at the QZ level. The convergence of the aug-cc-pV(n+d)Z-ccECP
results with basis set is generally smooth. However, there is a more sig-
nificant DZ to TZ increment for P than for any of the other elements,
similar to what is observed with the all-electron aug-cc-pV(n+d)Z sets.
Experimental electron affinities are presented in Table 5.5 to provide con-
text for the CCSD(T) values calculated in this work. However, it is note
there are significant post-CCSD(T) effects, [275] including scalar relativis-
tic and spin-orbit splitting, that we do not include in calculated values
of Table 5.5. The all-electron aug-cc-pV(n+d)Z results should instead be
considered as the “ground-truth” values that the ECP-based sets aim to
reproduce.

Comparing the newly-developed aug-cc-pV(n+d)Z-ccECP with the
aug-ccECP-nZ sets that use the same ECPs, it can be seen that the new
sets offer a significant improvement at both the DZ and QZ levels, relative
to the all-electron results. Indeed, the mean average deviation between
aug-ccECP-nZ and aug-cc-pV(n+d)Z of−10.24 kcal mol−1 at the DZ level,
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−0.44 kcal mol−1 at the TZ level, and −2.04 kcal mol−1 at the QZ level
highlights significant convergence problems with the aug-ccECP-nZ sets
as the TZ results are closer to the limiting value than the QZ results. It
should also be noted that the electron affinity of P with CCSD(T)/aug-
ccECP-DZ is −6.12 kcal mol−1, with the neutral atom predicted to be
lower in energy than the anion. Further analysis indicates this is due
to the augmenting “diffuse” p exponent of Bennett et al. being too tight;
replacing this with the analogous diffuse exponent from aug-cc-pVDZ
results in an electron affinity of the correct sign (+6.55 kcal mol−1).

Diatomic molecule benchmarks

Dissociation energies, equilibrium bond lengths, and harmonic frequen-
cies were calculated for the homonuclear diatomic molecules Al2–Cl2
as well as for sulfur oxide (SO) using the basis sets developed in this
work, as well as with the cc-pV(n+d)Z and ccECP-nZ sets for compari-
son purposes. These spectroscopic constants were calculated through a
seven-point polynomial fit (Dunham analysis [256]) for the ground state of
each dimer. The ground state of Al2 is 3Πu so the CCSD(T) calculation
used symmetry-equivalenced reference orbitals. [276]

Table 5.6 shows the dissociation energies for all six molecules, where
it can be seen that the new ECP-based sets lead to smaller values of
the dissociation energy, compared to the equivalent all-electron cc-pVnZ
basis, at the DZ and QZ level, but a higher value at the TZ level. However,
the absolute difference is typically within 1 kcal mol−1 (except for P2/cc-
pV(D+d)Z-ccECP, where it is 1.24 kcal mol−1), and the mean average
deviations are −0.55, +0.48 and −0.27 kcal mol−1 at the DZ, TZ and
QZ level, respectively. The convergence with basis set is smooth and
follows the general trend of the all-electron sets. In contrast, the mean
average deviation between ccECP-nZ and cc-pV(n+d)Z sets are 10.45
kcal mol−1 at the DZ level, 2.28 kcal mol−1 at the TZ level, and 0.91
kcal mol−1 at QZ level. Comparing the mean average deviations of the
new cc-pV(n+d)Z-ccECP sets with the ccECP-nZ sets shows that there
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Table 5.6. Dissociation energies (kcal mol−1) at the CCSD(T) level
of theory for the diatomic molecules Al2–Cl2 and SO.

Family nZ Al2 Si2 P2 S2 Cl2 SO
cc-pV(n+d)Z-ccECP DZ 27.92 61.58 91.15 85.21 43.69 100.05

TZ 31.89 71.28 105.63 96.46 53.70 118.35
QZ 32.65 73.92 111.09 99.91 56.51 122.39

ccECP-nZ DZ 24.65 52.29 75.81 71.32 36.38 89.73
TZ 31.08 69.16 102.47 92.53 50.84 114.68
QZ 32.48 73.36 110.41 98.91 55.55 121.53

cc-pV(n+d)Z DZ 28.33 62.33 92.39 85.33 43.76 100.74
TZ 31.75 70.98 105.37 95.47 53.51 117.35
QZ 32.67 74.00 111.67 100.13 57.04 122.20

Experiment [276–278] 31.70 75.60 117.20 102.90 59.70 126±1

are significant improvements for all basis set qualities.

Calculated equilibrium bond lengths for all six diatomic molecules
are presented in Table 5.7. Comparing the newly-developed sets to the
all-electron results again shows that the use of an ECP leads to shorter
bond lengths. This effect is greatest for the TZ basis sets, as shown by the
mean average deviation across all six dimers: −0.0030 Å at the DZ level,
−0.0102 Å at the TZ level, and −0.0054 Å at the QZ level. Comparing the
dimers themselves, the deviation is larger for the two lighter atom pairs,
Al2 and Si2. If the mean average deviation is calculated for only these
two diatomic molecules then the results are −0.0057 Å for the DZ level,
−0.0162 Å for the TZ level, and −0.0088 Å for the QZ level. The best
agreement occurs for SO, with values of −0.0000, −0.0016, and −0.0024
Å for DZ, TZ, and QZ calculations, respectively. Generally, the new basis
sets converge in a similar manner to the all-electron sets.

As mentioned previously, Ne-core ECPs are known to produce shorter
bond lengths than all-electron calculations, [52] which is consistent with
the results of Table 5.7. The SO equilibrium bond length having the
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Table 5.7. Equilibrium bond lengths (Å) at the CCSD(T) level of
theory for the diatomic molecules Al2–Cl2 and SO.

Family nZ Al2 Si2 P2 S2 Cl2 SO
cc-pV(n+d)Z-ccECP DZ 2.7464 2.2787 1.9222 1.9169 2.0266 1.5150

TZ 2.7028 2.2494 1.9021 1.8983 1.9959 1.4900
QZ 2.7043 2.2462 1.8968 1.8929 1.9934 1.4838

ccECP-nZ DZ 2.8410 2.3644 1.9833 1.9887 2.0999 1.5527
TZ 2.7223 2.2640 1.9115 1.9117 2.0157 1.4976
QZ 2.7087 2.2497 1.8980 1.8957 1.9964 1.4855

cc-pV(n+d)Z DZ 2.7472 2.2831 1.9247 1.9189 2.0350 1.5150
TZ 2.7220 2.2625 1.9097 1.9057 2.0079 1.4916
QZ 2.7139 2.2542 1.9019 1.8969 1.9966 1.4862

Experiment [276–278] 2.701 2.246 1.8934 1.8892 1.9879 1.4811

smallest deviation from all-electron results adds extra evidence to this;
the oxygen atom does not use an ECP, thus the over-binding effect is
smaller. This may also explain why the lighter second-row elements
have the greatest over-binding, as a larger proportion of the electrons are
replaced by an ECP. Table 5.7 also shows that the ccECP-nZ sets produce
bond lengths that are systematically too short as the size of the basis
tends towards the limit. Conversely, at the DZ and TZ level the bonds
lengths are too long, relative to the all electron calculations, leading to
poor convergence with basis set size.

Table 5.8 shows the calculated harmonic frequencies for all six molecules
across the three basis set families. Comparing the cc-pV(n+d)Z-ccECP
sets with cc-pV(n+d)Z sets reveals good agreement throughout, with
better agreement as the zeta-level increases. The absolute mean average
deviation is 3.7 cm−1 at the DZ level, 3.3 cm−1 at the TZ level, and 0.8
cm−1 at the QZ level. Convergence with the basis set size is generally
smooth, except for Al2 which has a larger harmonic frequency at the
TZ level than the QZ level. However, this is consistent with the all-
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Table 5.8. Harmonic frequencies (cm−1) at the CCSD(T) level of
theory for the diatomic molecules Al2–Cl2 and SO.

Family nZ Al2 Si2 P2 S2 Cl2 SO
cc-pV(n+d)Z-ccECP DZ 279.3 498.0 762.3 712.7 519.1 1077.5

TZ 287.1 513.6 775.0 725.7 552.3 1153.0
QZ 285.6 515.4 782.3 728.1 555.6 1154.2

ccECP-nZ DZ 263.3 463.4 707.1 659.6 492.6 1023.9
TZ 281.2 505.2 767.9 711.4 541.9 1138.8
QZ 284.5 513.1 780.8 725.9 555.0 1151.6

cc-pV(n+d)Z DZ 279.6 497.6 764.6 709.8 512.9 1087.8
TZ 285.0 511.4 773.5 718.8 549.1 1149.3
QZ 285.0 514.8 783.2 728.7 557.4 1154.3

Experiment [276–278] 285.8 510.98 780.77 725.65 559.70 1149.22

electron calculations. Comparing the new cc-pV(n+d)Z-ccECP sets with
the ccECP-nZ sets, it can be seen that the new basis sets offer significant
improvements across the board, with large improvements observed with
small basis sets. This is particularly striking for ccECP-DZ, which has a
mean average deviation, relative to the all-electron calculation, of −40.4
cm−1.

Overall, it can be seen that the (aug-)cc-pV(n+d)Z-ccECP basis sets
developed in this work produce results that are significantly closer to
those from the all-electron (aug-)cc-pV(n+d)Z sets than the (aug-)cECP-
nZ sets that use the same ECPs. This is particularly evident at the DZ
level, but remains significant even at QZ. The new basis sets converge
smoothly with basis set size and in the vast majority of cases agree well
with (aug-)cc-pV(n+d)Z results at the QZ level, implying that any error
introduced by the use of the ECPs is small when combined with appro-
priate basis sets. However, for the lighter elements equilibrium bond
lengths are underestimated. As cc-pV(n+d)Z-ccECP and ccECP-nZ ap-
pear to tend towards the same limits for bond lengths, this indicates that
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the error is likely to be related to the use of a large-core ECP.

5.5.2 CPP BENCHMARKS

As CPPs account for both core-valence effects and the static polarization
of atomic cores by the molecular environment, the comparison of the
effect of core-valence correlation (that is, the difference between a given
property in valence-only and core-valence correlating calculations) be-
tween all-electron and ECP with CPP-based calculations, as usually done
with correlation consistent basis sets for core-valence correlation, is not
a fair one. Instead, to validate the performance of the combination of
the basis sets and CPPs developed in this work, we compared the com-
puted spectroscopic properties of the homonuclear diatomic molecules
Al2–Cl2 computed with the all-electron cc-pCVnZ basis sets with those
from cc-pV(n+d)Z-ccECP/CPP. All calculations were carried out with
the CCSD(T) method on the electronic ground state of the molecule
and all-electron calculations used a 1s frozen core. In the cc-pV(n+d)Z-
ccECP/CPP calculations, all electrons not replaced by the ECP were
correlated and the Müller/Meyer form of the CPP cutoff function was
used. In keeping with methods employed by Peterson and Dunning, [247]

atomic calculations carried out for dissociation energies were not per-
formed using symmetry-equivalenced reference orbitals.

Tables 5.9, 5.10 and 5.11 display the calculated dissociation energies,
equilibrium bond lengths and harmonic frequencies, respectively, of the
five homonuclear diatomic molecules. Focusing initially on the disso-
ciation energies in Table 5.9, it can be seen that the combination of the
cc-pV(n+d)Z-ccECP basis and CPP reproduces the all-electron cc-pCVnZ
results well. The agreement between the two approaches increases with
basis set size and, fortuitously, the cc-pV(n+d)Z-ccECP/CPP results tend
to be slightly closer to the basis set limit than the equivalent cc-pCVnZ.
The dissociation energies computed with the CPP approach also converge
smoothly towards the basis set limit. However, as with the all-electron
results, there is a large difference between DZ and TZ results.
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Table 5.9. Dissociation energies (kcal mol−1) at the CCSD(T) level
of theory for the homonuclear diatomic molecules Al2–Cl2, includ-
ing core-valence correlation effects.

Family nZ Al2 Si2 P2 S2 Cl2
cc-pV(n+d)Z-ccECP/CPP DZ 28.61 62.77 92.65 86.53 44.47

TZ 32.21 72.08 106.92 97.54 54.23
QZ 32.74 74.49 112.15 100.87 57.01

cc-pCVnZ DZ 28.37 61.82 90.82 83.19 42.76
TZ 31.66 71.03 105.95 95.76 53.65
QZ 32.60 74.24 112.54 100.67 57.13
5Z 32.90 75.22 114.71 102.39 58.53
6Z 33.02 75.65 115.66 103.14 59.10

Experiment [276–278] 31.70 75.60 117.20 102.90 59.70

Table 5.10. Equilibrium bond lengths (Å) at the CCSD(T) level of
theory for the homonuclear diatomic molecules Al2–Cl2, including
core-valence correlation effects.

Family nZ Al2 Si2 P2 S2 Cl2
cc-pV(n+d)Z-ccECP/CPP DZ 2.7177 2.2596 1.9095 1.9063 2.0157

TZ 2.6795 2.2338 1.8909 1.8885 1.9871
QZ 2.6823 2.2313 1.8862 1.8836 1.9853

cc-pCVnZ DZ 2.7525 2.2909 1.9329 1.9331 2.0465
TZ 2.7162 2.2580 1.9054 1.9027 2.0045
QZ 2.7018 2.2458 1.8952 1.8913 1.9914
5Z 2.6992 2.2431 1.8922 1.8880 1.9874
6Z 2.6979 2.2422 1.8913 1.8868 1.9859

Experiment [276–278] 2.701 2.246 1.8934 1.8892 1.9879
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Table 5.11. Harmonic frequencies (cm−1) at the CCSD(T) level of
theory for the homonuclear diatomic molecules Al2–Cl2, including
core-valence correlation effects.

Family nZ Al2 Si2 P2 S2 Cl2
cc-pV(n+d)Z-ccECP/CPP DZ 281.9 502.3 769.3 719.3 526.8

TZ 289.4 517.4 781.2 732.1 556.3
QZ 286.0 518.8 788.4 733.7 558.7

cc-pCVnZ DZ 278.7 494.5 759.3 703.4 512.5
TZ 283.7 511.2 777.0 720.5 551.8
QZ 286.8 516.9 788.4 732.3 560.0
5Z 286.0 517.5 790.6 734.6 564.1
6Z 286.4 518.1 791.9 736.0 565.1

Experiment [276–278] 285.8 511.0 780.8 725.7 559.7

The equilibrium bond lengths presented in Table 5.10 are an interest-
ing set of results. The agreement between the two approaches for any
given basis set zeta-level is less than ideal, with the CPP-based approach
underestimating the all-electron bond length in all cases. The agreement
does increase with zeta-level and typically the agreement is also better for
the heavier elements under consideration, the latter of which is consistent
with the trend for valence-only results in Table 5.7. The consistently too-
short bond lengths does lead to some fortuitous error cancellation, with
cc-pV(D+d)Z-ccECP/CPP producing bond lengths roughly equivalent
to the considerably more expensive cc-pCVTZ results. The cc-pV(T+dZ-
ccECP/CPP) lengths are also similar to those of cc-pCV5Z, although by
this point the Al2 and Si2 bonds are already shorter than the cc-pCV6Z
results and potentially beyond the all-electron basis set limit. This acts
as another reminder that large-core ECPs for these elements can lead to
bond lengths that are too short.

Trends similar to those observed for the dissociation energies are also
seen for the harmonic frequencies in Table 5.11. The agreement between
the approaches is relatively good and improves with basis set size. Again,
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the cc-pV(D+d)Z-ccECP/CPP result is better than the cc-pCVDZ result
and approaches that of the cc-pCVTZ result. This extends to other zeta-
levels, such that cc-pV(n+d)Z-ccECP/CPP gives results roughly equiv-
alent to cc-pCV(n+1)Z. Thus, due to the use of ECP, the lack of core-
correlating basis functions, and because fewer electrons are entering the
correlation treatment, a considerable saving of computational effort is
achieved.

5.5.3 TIMING BENCHMARKS

The savings in computational cost are demonstrated in Tables 5.12 and
5.13, which present the CPU times for single point CCSD(T) energy
evaluations on pentathiolane (S5). The timings are broken down into the
components of the calculation, such as time spent in integral evaluation,
HF etc. All of the calculations were carried out in C1 symmetry and the
timings are taken as the mean average of three individual calculations
that were all performed on a single core of an Intel i7-8700 CPU with 16
GB of RAM. The exception to this is the cc-pCVQZ calculation in Table
5.13, where the value is for a single run due to the very-long runtime.

Table 5.12 compares the time taken for valence-only calculations with
the new cc-pV(n+d)Z-ccECP sets against cc-pV(n+d)Z, hence it shows any
reduction in computational cost from the use of an ECP and the basis sets
developed in this work. As percentages relative to the total time taken
for the analogous cc-pV(n+d)Z calculation, cc-pV(n+d)Z-ccECP takes
68% of the time at the DZ level, 83% at TZ, and 85% at QZ. Individually,
the largest percentage time reductions are seen for the Hartree-Fock step,
with the cc-pV(n+d)Z-ccECP calculation taking 33% of the time at the DZ
level, 51% at TZ, and 68% at QZ. The perturbative-triples calculation is
effectively the same at the TZ and QZ levels (97% at DZ, 100% at TZ, and
101% at QZ), which is unsurprising as the same number of electrons are
being correlated. The largest magnitude of time reduction is seen for the
CCSD step, with 9.2 s (60%) at the DZ level, 45.7 s (72%) at TZ, and 334.5
s (68%) at QZ. Although, this is only due to the relative length of time
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Table 5.12. CPU timing breakdown (s) for a valence-only single
point CCSD(T) energy evaluation on pentathiolane. Total time
is broken down into integrals (Int.), Hartree-Fock (HF), integral
transformation (Trans.), coupled cluster with single and double
excitations (CCSD), and perturbative triples [(T)].

Family nZ Int. HF Trans. CCSD (T) Total
nZ-ccECP DZ 0.6 0.6 0.3 14.2 10.8 26.7

TZ 5.4 7.7 3.6 115.8 155.9 288.6
QZ 57.3 75.9 32.9 722.7 1363.1 2252.0

cc-pV(n+d)Z DZ 1.6 1.8 0.7 23.8 11.1 39.2
TZ 10.6 15.0 5.6 161.5 155.4 348.3
QZ 88.5 112.2 44.4 1057.2 1349.4 2651.8

these take compared to the integrals, HF, and integral transformation
calculations.

Table 5.13 shows that significantly more impressive gains in com-
putational efficiency are observed when a CPP is used for core-valence
correlation rather than the conventional approach using a cc-pCVnZ ba-
sis. Again, as percentages relative to the time taken for the analogous
cc-pCVnZ calculation (with a 1s frozen core), cc-pV(n+d)Z-ccECP/CPP
takes 4% at the DZ level, 2% at the TZ level and 1% at QZ. Crucially,
cc-pV(T+d)Z-ccECP/CPP takes less than half the CPU time of the cc-
pCVDZ calculation, and cc-pV(Q+d)Z-ccECP/CPP is almost an order
of magnitude faster than the lower zeta-level cc-pCVTZ. Breaking these
timings down shows the opposite trend in terms of where the largest
gains are found, with the perturbative-triples taking 3%, 1%, and 1% of
the time for DZ, TZ, and QZ respectively (reflecting the number of elec-
trons correlated), while the HF calculations take 9%, 5%, and 4% of the
time. Comparing Table 5.13 with Table 5.12 indicates that the calculation
using the CPP can be marginally faster than the analogous calculation
without it. The timing breakdowns indicate that this is primarily due to
a reduction in the time taken for HF self-consistent field convergence.
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5.6 CONCLUSIONS

Correlation consistent basis sets for the second row elements Al–Ar, de-
noted cc-pV(n+d)Z-ccECP, have been developed for use with the large-
core correlation consistent ECPs of Bennett et al. [52] The new basis sets
are designed as a replacement for the sets that were provided with these
ECPs, ensuring that the resulting basis sets follow the established cor-
relation consistent design philosophy and include the tight-d functions
that are known to be important for the second row. The basis sets are ac-
companied by newly-adjusted CPPs to recover the effects of core-valence
correlation, moreover it is found that the n = 2 (Müller/Meyer) form
of the CPP cutoff function is least sensitive to the value of the cutoff
parameter.

Benchmarking of the new basis sets at the CCSD(T) level on atomic
ionization energies and electron affinities, and on the dissociation en-
ergy and harmonic frequencies of diatomic molecules, demonstrates that
the new cc-pV(n+d)Z-ccECP sets produce results significantly closer to
those from the all-electron cc-pV(n+d)Z, when compared to the ccECP-nZ
provided with the ECPs. In fact, the new basis sets reproduce the all-
electron benchmark well and any deviations decrease with basis set size.
It also follows that the new cc-pV(n+d)Z-ccECP sets converge smoothly
towards the basis set limit, as expected for a correlation consistent ba-
sis. Analysis of computed equilibrium bond lengths for homonuclear
diatomic molecules reveals that they are underestimated with both the
cc-pV(n+d)Z-ccECP and ccECP-nZ sets, and that the underestimation
increases for the lighter elements. As both of the ECP-based basis sets
appear to be converging towards the same limit, it appears that this
overbinding is likely due to the ECP, rather than the basis set. However,
it is unclear whether this could be addressed by further adjustment of
the ECPs, or that it is unavoidable when using a large-core ECP for the
second row elements.

Although the time gains are not particularly large for the use of ECPs
(approximately 15% faster), over the course of thousands/tens of thou-
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sands of calculations, even small decreases in computation time add up.
For systems containing second row atoms, the use of these ECP basis sets
could be used to reduce ab initio calculation time and speed up dataset
generation for machine learning fit potential energy surfaces.

The CPPs are benchmarked on the spectroscopic properties of homonu-
clear diatomic molecules and calibrated against the all-electron core-
valence cc-pCVnZ results. For dissociation energies and harmonic fre-
quencies, the cc-pV(n+d)Z-ccECP/CPP approach produces accurate val-
ues with minimal computational expense compared to extensive calcu-
lations with large numbers of correlated electrons. As with the valence-
only cc-pV(n+d)Z-ccECP calculations, equilibrium bond lengths are un-
derestimated for the lighter elements. For all of the spectroscopic prop-
erties, at a given zeta-level the CPP-based results are slightly closer to the
basis set limit than the equivalent cc-pCVnZ. This is most pronounced
for DZ, where cc-pV(D+d)Z-ccECP/CPP results are roughly comparable
to cc-pCVTZ. In general, the accuracy and low computational expense
of the CPP approach here is a continuation of what was observed by
Nicklass and Peterson for B–F [252] and is an under-explored tool for large
molecular systems or high-throughput computation/benchmarking.
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To further test the capabilities of machine learned potential energy sur-
faces it is helpful to explore a system with a more varied surface than
H2O, in particular the four atom system HSO2 will be considered. The
addition of an extra atom gives six internal degrees of freedom, which is
a considerable jump in complexity for the potential energy surface and its
fitting. As a result, the double many body expansion (DMBE) method be-
comes significantly more complex, and as a consequence machine learn-
ing seems to be a better alternative. However, ML is not a ‘free-lunch’
in this regard, in particular, a larger structural space means more data
is needed in the training set to sufficiently cover the important regions.
To do this as efficiently as possible, data was chosen in a smarter way,
first running a selection of cheaper CASSCF/aug-cc-pV(T+d)Z-ccECP
calculations to identify areas of the surface that are very high in energy
(greater than 1000 kJ mol−1 above the lowest energy structure), then
excluding these from the higher level CASPT2/aug-cc-pV(T+d)Z-ccECP
dataset generation. The sulfur aug-cc-pV(n+d)Z-ccECP basis sets [53] de-
veloped in Chapter 5 were also used instead of all-electron equivalent
sets, in an effort to speed up the generation of thousands of ab initio data
points. Finally the firefly algorithm developed in Chapter 4 was used
in conjunction with PES Learn [135] to attempt to minimise the number of
datapoints needed to fit an accurate surface.
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6.1 THE HISTORY OF THE HSO
2
SURFACE

HSO2 is known to play an important part in both atmospheric and com-
bustion chemistry. [279,280] It was first reported experimentally by McDow-
ell et al., who detected the molecule using electron paramagnetic reso-
nance spectroscopy and reported the structure as a symmetric σ radical
of HSO2. [281] It has since been subject to a number of experimental stud-
ies, [280,282–287] with most of the focus on calculating kinetic information
about the system under various conditions. It has been shown to inhibit
CO oxidation, where SO2 reacts with O to form SO3 under the presence of
NO, [279] moreover, it has been shown by Alzueta et al. to both inhibit and
promote the oxidation of fuels, depending on the specific stoichiometric
ratios of SO2. [280]

It is therefore clear that the specific behaviour of this molecule is
complex, and a better understanding of its electronic structure could
lead to experimental insights. As a consequence, the HSO2 system has
been the focus of many theoretical explorations of its properties and
behaviour through the use of ab initio calculations. Initially, Boyd et al.
performed HF/STO-3G∗ calculations (where the ∗ indicates that this basis
set includes d-type polarisation functions on second row atoms) on six
sulfonyl radicals attempting to predict geometries, describe the behaviour
of the radical, and calculate bond energies. [288] They report a strong
preference for a staggered HOSO conformation with a dihedral angle
of 81.9◦ (an example of this structure calculated at the CASPT2/aug-cc-
pV(5+d)Z level of theory is shown in Figure 6.1). This structure was
reported to be 170 kJ mol−1 lower in energy than the HSO2 structure
(which is also shown in Figure 6.1). Impressively, the qualitative nature
of these conclusions holds true today, with only the values of specific
bond lengths, angles, and energies having been improved with higher
levels of theory. The use of potential energy surfaces has been a major
contributor to these improvements, and there have been several efforts
to study the kinetics, reaction mechanisms, and dynamics of the system
through surfaces with varying levels of theory and coverage. [41,42,289–307]
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Figure 6.1. The structures of (a) HOSO and (b) HSO2, showing
the staggered nature of the equilibrium ground state minimum in
HOSO (ω = 44.79◦). Calculated at the CASPT2/aug-cc-pV(5+d)Z
level of theory.

Binns and Marshall reported a potential energy surface for H+SO2, [290]

using HF/3-21G(∗) and MP2/3-21G(∗) calculations to find stationary
points on the surface,† and MP4/6-31G∗ to calculate optimised geom-
etry energies of HOSO and HSO2. They report that a similarly skewed
HOSO structure (dihedral angle 59.5◦) is more stable than HSO2 by 145
kJ mol−1, in qualitative agreement with Boyd et al.. Some efforts have
been made to characterise the system using DFT optimised structures,
but at the B3LYP/6-31+G(d) level HOSO presents a planar cis- geometry,
rather than a skewed structure, [296] in contrast to much of the previous
work.

A study on the kinetics of SH + O2 + Ar by Goumri et al. reports
MP2(full)/6-31G(d) geometry optimisations for new configurations of
this system, HSOO and SOO. They also used the QCISD(T) method
(quadratic configuration interaction with single, double, and perturba-
tive triple excitations, which can be described as an approximation to a

†The 3-21G(∗) basis sets are “3-21G basis sets with the addition of a complete set
of six second order Gaussian primitives”. These basis sets “should not be viewed as
a full-polarized basis set; rather it is best seen as a representation that, in as simple
manner as possible, is able to account for the participation of d-symmetry functions in
the bonding about second-row atoms.” [308]
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higher cost CCSD(T) calculation), along with the 6-311+G(3df,3p) basis
sets to carry out single point energy calculations for the optimised ge-
ometries. [293] These structures start to identify a different, yet important,
section of the potential energy surface that is much higher in energy,
and Zhou et al. reported a “Computational Study of the Reaction SH +
O2” [300] that strongly highlights that there are two distinct regions of this
potential energy surface (shown in Figure 6.2). A higher energy region
described by the HS + O2 and HSO + O limits, containing isomers of
HOOS. The second is a low energy region, which contains the ground
state geometry, HOSO, and describes the OH + SO and H + SO2 limits.
This is shown in Figure 6.2.
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Figure 6.2. Visualisation of the high and low energy regions of the
HSO2 PES. Calculated at the CASPT2/aug-cc-pV(Q+d)Z level.

The low energy region of the surface has been described at a high
level of theory, with CCSD(T)/aug-cc-pV(T+d)Z results being reported
by Rodrígues-Linares et al. [304] A van der Waals structure, H···SO2 is
shown as part of the surface, confirming work by Varandas, [41,42] but due
to the nature of the CCSD(T) method employed, the full dissociation lim-
its of the surface were not explored as the method cannot fully describe
bond dissociation [309]. They do report the skewed HOSO structure as
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the ground state equilibrium geometry with a dihedral angle of 24.57◦.
Unfortunately, but perhaps not surprisingly, the high energy region has
received significantly less attention, with only a few studies covering
solely this section of the surface. [293,297,300] The high energy nature of the
structures in this region results in them containing more multi-reference
character than the lower energy region, which requires the use of compu-
tational methods capable of accounting for this (CASPT2 for example).
Resende et al. show that SH + O2 −−→ HSOO is thermodynamically un-
favourable by 25.40 kJ mol−1 through multi-reference MP2 calculations,
and Zhou et al. use MRCI calculations to identify a number of stationary
points between the SH + O2 and SO + OH limits.

There have been several efforts to characterise pathways between the
two regions, with Laakso et al. identifying HOOS as an intermediate con-
necting the two regions, [291] and Gourmi et al. outlining a full pathway
from H + SO2→ cis–HOSO→HSO2→HSOO→ SH + O2. [295] Varandas
et al. have been successful in using the double many-body expansion
(DMBE) method to build a global potential energy surface (DMBE-PES)
using CASSCF/aug-cc-pVTZ data. [41,42] A concern here is that the orig-
inal correlation consistent basis sets for second row atoms (in this case
the sulfur atom) require additional tight d-type functions in order to
accurately describe the electronic structure, [260] and a few reports have
highlighted the specific sensitivity of the geometry of this molecule to
basis set size and method. [299,310] Wheeler and Schaefer showed specifi-
cally that the dihedral angle in HOSO is very sensitive to basis set size,
and changing the basis set from cc-pV(D+d)Z to cc-pV(T+d)Z changed
the ground state geometry from a planar-cis configuration to a skewed-
cis configuration with a dihedral angle of 24.2◦. As well as the issue of
basis set sensitivity, it has been seen that the high energy region of the
surface has significant multi-reference character [293,297,300] and CASSCF
calculations are not sufficient for this task, failing to treat the dynamic
correlation needed. In support of this, Zhou et al. report a failure to
identify the HSO···O van der Waals structure identified by Varandas et
al. at the CASSCF level. [300]
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In light of this, Garrido et al. carried out a study on the major sta-
tionary points of the HSO2 DMBE-PES, at the CASPT2/aug-cc-pV(T+d)Z
level, [51] reporting an updated electronic ground state geometry and iden-
tifying three new stationary points on the surface that help define new
reaction pathways for SH + O2 −−→ H + SO2 and SH + O2 −−→ OH + SO.
Importantly, this study improves on the DMBE-PES by using a multi-
reference method capable of accounting for dynamic correlation and a
basis set of sufficient size including tight-d functions for sulfur. Freitas
et al. have also identified a transition state between HSOO on the high
energy region and HSO2 on the low energy region at the CCSD(T)/aug-
cc-pV(T+d)Z and CASPT2/aug-cc-pV(T+d)Z levels, further highlighting
the need for an improved global PES. [302]

Some of the most recent work on this system, and particularly perti-
nent to this thesis, is by Qin et al. [306,307] They report a CCSD(T)-F12a/aug-
cc-pVTZ potential energy surface for the lower energy region of the
system (OH + SO −−→ H + SO2) fit using permutation invariant polyno-
mials (PIPs) as inputs for a deep neural network (referred to as PES-2019
herein). Their work was motivated in part by the shortcomings of the
global DMBE-PES outlined by Pires et al. [303] Comparing the computed
rate coefficients of OH + SO −−→ H + SO2 at 500 K to the experimental
values of Blitz et al. [286] shows two different outcomes. Where experiment
shows a sudden drop in rate constant as temperature is increased above
500 K the DMBE-PES predicts no such change.

PES-2019 was fit using 39,200 CCSD(T)-F12a/aug-cc-pVTZ calcula-
tions, alarmingly not employing the use of the aug-cc-pV(n+d)Z basis sets
that have been shown to be of vital importance for second row atoms. [260]

The inputs to the hidden layer are low order permutation invariant poly-
nomials (up to a maximum order of 3), “symmetrised monomials of
Morse-like variables of internuclear distances,” [306]

G = Ŝ

4∏
i<j

p
lij
ij ,

where pij = e
−rij
α (α = 1.0 Å and r is internuclear distance), and Ŝ is
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the symmetrisation operator. The neural network architecture itself is
two hidden layers of between 40 and 100 neurons, with two different
activation functions between the layers, however the form of these func-
tions is not specified by the authors. Weights and biases were updated
to minimise the root mean squared error (RMSE) between the predicted
energy and the calculated energy. Training, validating, and testing set
ratios were 90:5:5 and the final RMSEs reported were 0.72, 0.98, 1.13,
and 0.76 kJ mol−1 for the training, validation, testing, and total sets, re-
spectively, with a maximum deviation of 13.51 kJ mol−1. Analysis of
the dynamic mechanisms resulting from this surface showed significant
differences between PES-2019 and DMBE-PES, with major differences in
trajectories of H + SO2 collisions. PES-2019 showed that there were four
possible mechanisms for collision: direct, involving just the HOSO well,
involving just HSO2 well, and involving both. Meanwhile the DMBE-PES
showed only two possible pathways involving the HOSO well and the
HSO2 well (overwhelmingly dominated by the HOSO pathway at 86%).
These differences are largely thought to be caused by the DMBE-PES
overestimating the energy barrier of the transition state between HOSO
and HSO2 (299.15 kJ mol−1 for DMBE-PES, 219.91 kJ mol−1 for PES-2019).

Further to this, Qin et al. report an updated UCCSD(T)-F12a/aug-
cc-pVTZ PES (herein referred to as PES-2020) [307] attempting to address
issues surrounding the higher energy OH + SO entrance channel of the
PES-2019 surface. Although technically lying on the ’low-energy’ re-
gion of the global PES, this species is high enough in energy that multi-
reference methods are important for its accurate description. Qin et al.
report that the UCCSD(T)-F12a/aug-cc-pVTZ successfully describes this
section of the surface, but one wonders if this is simply coincidence, con-
sidering UCCSD(T)-F12a is not a multi-reference method and the plus-d
basis set still has not been used. Regardless, PES-2020 is a newly fit PIP-
NN surface in which care has been taken to attempt to properly describe
the electronic structure of the entrance channel. Starting with the PES-
2019 surface, an iterative process of adding training points was employed
to improve the fit in badly described regions of the surface. Eventually



148 | THE HSO
2
POTENTIAL ENERGY SURFACE

44,700 points of ab initio UCCSD(T)-F12a/aug-cc-pVTZ are used to train
a PIP-NN in an identical way to PES-2019. Concerningly, the reported
ground state equilibrium geometry of HOSO has a dihedral angle of 0◦

for the level of theory employed, contradicting all current understanding
of the global minimum.

PES-2020, while being reasonably high level and appearing to de-
scribe the reaction of OH + SO −−→ H + SO2 fully, still only covers the
low energy region of the PES. If a new, high level, global potential energy
surface (analogous to DMBE-PES) is to be developed, then the higher
energy region must be included. In this region, multi-reference methods
such as CASPT2 must be employed to properly describe the electronic
structure of the geometries (shown by Garrido et al.). [51] Unfortunately,
CASPT2/aug-cc-pV(T+d)Z calculations are expensive, and thousands of
ab initio points of data are required to build an accurate PES at this level
(PES-2019 used 39,200). It is therefore important to find a way of reducing
the cost of this surface generation through both reducing the number of
calculations, and the level of theory they are run at, while still being able
to sufficiently describe the important chemistry. The ccECPs developed
in Chapter 5 offer a means of reducing computational cost, and as ma-
chine learning has been shown to successfully generate potential energy
surfaces of many different systems, [115,121–132] specifically being shown to
be successful within the HSO2 system already, [306,307] it offers a way of
fitting a global surface that should, in theory, need less ab initio data.

This chapter is split into two distinct sections: the benchmarking of
methods and basis sets to establish a minimum level of theory to build a
potential energy surface; and the training of a deep neural network using
the firefly algorithm (from Chapter 4) to build these surfaces.

6.2 METHOD AND BASIS SET EXPLORATION

The global surface developed by Varandas et al. was computed at the
CASSCF/aug-cc-pVTZ level of theory, and has been shown to be insuffi-
cient to fully describe the behaviour of HSO2, being further improved by
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a number of CASPT2/aug-cc-pV(T+d)Z calculations by Garrido et al. [51]

The aim of this section is to show the importance of the tight-d functions
in the aug-cc-pV(n+d)Z basis sets, and the effect that using CASPT2 has,
by benchmarking a number of stationary points identified by Garrido
et al. [51] (shown in Figure 6.3). The geometries of some of these points
were re-optimised using a number of different basis sets and methods and
compared to best estimate structures to assess what effect the method and
basis set has on these structures. The performance of each method/basis
set pair was established through relative energies to HOSO as it has been
well established as the global minimum, [41,42,289–307] and the root mean
squared deviations (RMSDs) to best estimate geometries.

HOSO

HS + O2

H + SO2

HSO + O
OH + SO

HSOO

HOOS

HSO2

Figure 6.3. Structures of stationary points identified by Garrido
et al. on the HSO2 potential energy surface, chosen to benchmark
different methods and basis sets. The top row are a number of
important minima on the surface and the bottom row are the dis-
sociative limits.

An aspect of this surface that has been identified as particularly im-
portant is the electronic ground state equilibrium geometry of HOSO,
specifically surrounding the dihedral angle. [299] Therefore, frozen scans
of the dihedral angle in HOSO were carried out to determine the effects
of basis set and method on this value.
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6.2.1 TECHNICAL DETAILS

All calculations were carried out in the Molpro package of programs [224,253]

(version 2021.2). Both the CASSCF and CASPT2 methods were used
along with the following basis sets: aug-cc-pVnZ [231] (aVnZ), aug-cc-
pV(n+d)Z [235] (aVnZ+d), and aug-cc-pV(n+d)Z-ccECP [53] (aVnZ-ccECP,
developed in Chapter 5), where n = D, T, and Q. For the low energy
region of the surface, extra aVnZ+d calculations were carried out at the
quintuple-ζ level to act as a ‘best estimate’ for geometry optimisations.
For each of these calculations the active space was selected through the
use of the atomic valence active space (AVAS) [155] method within Mol-
pro, where the target orbitals for all-electron calculations were: 3s, 3p
for sulfur, 2s, 2p for both oxygens, and 1s for hydrogen. The resulting
active space was 19 electrons in 13 active orbitals, with 7 closed orbitals
for all-electron calculations and 2 closed orbitals for ccECP calculations
(as 5 of the core orbitals have been replaced by the ECP).

Relative energies were calculated by subtracting the total energy of
a geometry from the total energy of the equivalent HOSO equilibrium
geometry calculation at the same computational level. The high energy
region of this system contains a number of structures surrounding the
stationary points shown in figures 6.2 and 6.3 that are similar in energy,
and make large regions of the surface flat. [51] As such it is very difficult
to optimise the geometry of these points using the routines found within
Molpro, in fact these points were identified by Garrido et al. through the
analysis of the final fitted surface, and were not calculated beforehand. [51]

As such, the relative energy calculations in this benchmarking section
are carried out using single point energy calculations on the geometries
reported by Garrido et al. Optimised geometries of the lower region how-
ever, were compared to best estimates calculated at the CASPT2/aV5Z+d
level. To establish how well a method/basis pair performed, the root
mean squared deviation (RMSD) of the cartesian coordinates, compared
to the best estimate geometry, was calculated for each geometry. This was
done using the RMSD program by Charnley. [311] Firstly the two molecules



6.2 METHOD AND BASIS SET EXPLORATION | 151

are translated to the origin, then a Kabsch algorithm [312] is used to find the
best rotation of the two molecules. This minimizes the RMSD between
the two structures, providing the best possible comparison.

Dihedral angle (ω) scans were also calculated for HOSO at the same
levels of theory as the geometry optimisations. The molecule was frozen
at its optimised geometry and the dihedral angle incrementally changed
from 0◦ to 180◦, 10◦ at a time, with a CAS calculation carried out at each
step.

6.2.2 SINGLE POINT RELATIVE ENERGIES

Figure 6.4 is an energy level diagram showing the relative energies of the
stationary points shown in Figure 6.3 for both the all electron basis sets
with tight-d functions, and the ccECP basis sets. The diagram is plotted at
the quadruple-ζ level for both sets of values, while the relative energies
of the triple- and double-ζ basis sets are shown in green and purple
respectively. In both cases HOSO is set as the global minimum as it has
been shown to be the most stable structure for this system. [41,42,289–307]

The aVnZ-ccECP basis sets recreate the all-electron relative energies
to within the widely accepted ‘chemical accuracy’ of 4 kJ mol−1 across
all stationary points with the largest discrepancies appearing for the
dissociation limits of the high-energy region of the surface. The aVnZ-
ccECP basis sets perform similarly as basis set size increases, with the
average deviation across all points being 1.67, 2.70, and 1.32 kJ mol−1

for the DZ, TZ, and QZ basis sets, respectively. The triple-ζ basis set
appears to perform the worst in comparison to the all-electron energies,
but actually maintains the 4 kJ mol−1 accuracy. In general, the lower
energy region of the surface is recreated more accurately by the aVnZ-
ccECP basis sets than the upper energy region, with the average deviation
of the upper region being 2.35 kJ mol−1, while the lower region is 1.00 kJ
mol−1 at the QZ level, leading to an average deviation of 1.67 kJ mol−1,
as noted above.

Most importantly, the overall ordering of stationary points is main-
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Figure 6.4. Stationary points on the CASPT2 surface for (a) the
aVnZ+d basis set and (b) the aVnZ-ccECP basis sets, at the DZ
(purple), TZ (green), and QZ (black) level.
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tained when employing the use of an ECP, and the same diverging be-
haviour of the upper and lower regions of the surface is seen as basis set
size increases; that is, increasing the basis set size decreases the relative
energies of the lower energy region, and increases the relative energies
of the higher energy region. It is imperative that the nZ-ccECP basis sets
exhibit the same behaviour as the all-electron equivalents if an accurate
PES is to be developed using these new basis sets.

The importance of tight-d functions and dynamic correlation. In Chap-
ter 5 the vital importance of extra tight-d functions in the correlation con-
sistent basis sets was highlighted, [232–235] and subsequently the basis sets
developed in that chapter included such functions. [53] The lack of the use
of these basis sets in the DMBE-PES is reason enough for a second look
at a global surface, ignoring the need for a multi-reference method such
as CASPT2. Furthermore, the absence of these basis sets in PES-2019 and
PES-2020 is both concerning and unexplained, calling into question the
accuracy of these surfaces.

Figure 6.5a shows the single point relative energies of CASPT2 calcu-
lations with both aVTZ+d and aVTZ basis sets. It is clear that the tight-d
functions have a significant effect on all values of the relative energies, for
example the relative energy of HSO2 is over estimated by 21.32 kJ mol−1.
The general ordering of energies is the same, however. Conversely, Fig-
ure 6.5b shows the effect of using CASSCF over CASPT2. Here it can
be seen that the lack of dynamic correlation drastically affects the rela-
tive energies of the system, particularly for the high-energy region and
the dissociation limits. The relative energy of HSOO is underestimated
by 124.21 kJ mol−1 and is actually lower in energy than the SH + O2,
switching the order of their relative energy in the surface. It is clear
that both plus-d basis sets, and a method capable of recovering dynamic
correlation are important for an accurate PES.
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Figure 6.5. Stationary points on the HSO2 surface for (a) the
CASPT2 method with both the aVTZ+d basis sets (green) and the
aVTZ basis sets (black), highlighting the need for tight-d func-
tions, and (b) the CASPT2 (green) and CASSCF(black) methods,
both with the aVTZ+d basis sets, highlighting the importance of
dynamic correlation.
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6.2.3 OPTIMISED GEOMETRIES

As well as recreating the general order of stationary points, any method
used to generate the PES needs to recreate the geometry of this sys-
tem accurately, particularly the much debated ground state equilibrium
geometry.

HOSO The RMSD values in Figure 6.6 are calculated as the difference
to the optimised CASPT2/aV5Z+d geometry of HOSO. For all three fam-
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Figure 6.6. CASPT2 RMSD relative to the CASPT2/aV5Z+d ground
state optimised geometry of HOSO.

ilies of basis sets, the deviation decreases as basis set size increases. This
is entirely expected when the concepts introduced in Chapter 3 (Elec-
tronic structure theory) are considered. The larger the number of basis
functions, the more accurately the electronic orbitals are modelled and
the more accurate the calculations. The aVnZ-ccECP calculations per-
form very similarly to the aVnZ+d calculations, with the RMSD values
of the triple-ζ basis sets being identical (0.0101 Å), and narrowly outper-
forming the all electron tight-d sets by 0.0004 Å at the quadruple-ζ level.
In contrast, the aVQZ optimisations perform worse than the triple-ζ cal-
culations of the other two sets (0.0165 Å vs. 0.0101 Å), and the aVTZ
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RMSD is over twice as large, further highlighting the need for tight-d
functions. The double-ζ RMSDs are larger for all three basis set families,
but the aVDZ RMSD is significantly worse, at approximately four times
more than the other two families (0.0362 Å, 0.0466 Å, and 0.1699 Å for
aVDZ+d, aVDZ+d-ccECP, and aVDZ respectively).

Figure 6.7 breaks down the error in the six degrees of freedom to
show which aspects contribute to the RMSD the most. Generally, the
errors decrease as basis set size increases, which is not unexpected when
considering Figure 6.6. The errors are also larger for the aVnZ basis sets
than the aVnZ-ccECP basis sets.

For bond lengths (Figure 6.7a), the aVnZ+d and aVnZ+d-ccECP basis
sets have very similar magnitudes of error, while the aVnZ basis sets
have larger bond errors, though this is to be expected based on the RMSD
values in Figure 6.6. At the triple-ζ level, the bond errors for the aVTZ+d
and aVTZ+d-ccECP basis sets are ∆RSO = 0.0078 Å, ∆RSO(H) = 0.0100 Å,
∆ROH = 0.0027 Å, and ∆RSO = 0.0069 Å, ∆RSO(H) = 0.0103 Å, ∆ROH =

0.0026 Å, respectively, showing very good agreement with each other.
The SO(H) bond length consistently has the largest error across all basis
set sizes and families (except for aVQZ where the SO bond error is larger
at 0.0081 Å verses 0.0077 Å for aVTZ), accounting for approximately 50%
of the total error in all cases bar one. In the case of the the aVnZ+d-ccECP
basis sets the SO(H) bond length error grows from 0.0035 Å (90%) at the
QZ level to 0.0103 Å(52%) at the TZ level.

The errors in the bond angles (Figure 6.7b) show similar trends in
terms of the errors between the aVnZ+d and aVnZ+d-ccECP basis sets,
having almost identical QZ and TZ errors. At the QZ level all bond angle
errors are less than 0.5◦, with essentially no difference to the aV5Z+d
geometry. At the TZ level the dihedral angle error (∆ω) is 1.74◦ and 1.80◦

for the two basis sets respectively. In fact, generally, across all basis sets,
the dihedral angle is the largest source of error for the bond angles alone,
while the error in the SOH bond angle (ϕ) is only significant at the DZ
level. That said, the bond angle errors for the TZ and QZ basis sets of
the aVnZ+d and aVnZ+d-ccECP families are very small, and most of the
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Figure 6.7. (a) Bond length errors and (b) bond angle errors of
HOSO compared to the CASPT2/aV5Z+d ground state optimised
geometry. For the bond lengths the separate errors are differenci-
ated by three colours, teal for the rSO bond, red for the rSO(H) bond,
and blue for the rOH bond, and the full bar represents to total bond
error. Similarly, the separate bond angle errors are represented by
blue for the dihedral angle, ω, purple for the SOH angle, ϕ, and
green for the OSO angle, θ.
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RMSD error comes from the bond lengths.

It is promising that for both the triple-ζ and quadruple-ζ basis sets
that the ccECP basis sets predict the geometry in very similar ways to the
all-electron tight-d basis sets.

Dihedral angle scans of HOSO The relative energy of four dihedral
scans of HOSO at both the CASSCF and CASPT2 levels of theory for
the aVTZ+d and aVTZ+d-ccECP basis sets are shown in Figure 6.8. The
lowest energy structure is set to 0 kJ mol−1 and all other energies are
plotted relative to that.
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Figure 6.8. Dihedral angle scans of HOSO using the CASSCF
and CASPT2 methods with the aVTZ+d and aVTZ-ccECP basis
sets. This shows the skewed nature of the CASPT2/aVTZ+d and
CASPT2/aVTZ-ccECP structures, while also revealing the fact that
the use of an ECP breaks the symmetry of the CASSCF structure.

It can be seen that at the triple-ζ level, both of the CASPT2 calculations
show preference for the skewed HOSO structure, with minima at around
±50◦ compared to the relative energies of the flat structure; 0.88 kJ mol−1

and 0.92 kJ mol−1 for the all electron and ccECP basis sets, respectively
(for comparison the CASPT2/aV5Z+d ground state dihedral angle is
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±44.79◦). The all-electron CASSCF calculations predicts a flat structure
with a minimum at 0◦, while interestingly, the CASSCF/aVTZ-ccECP
calculation predicts a skewed structure with minima at around ±20◦ and
the flat structure having a relative energy of 0.8 kJ mol−1. The use of an
ECP appears to break the symmetry of the CASSCF calculation.

HSO2 Figure 6.9 shows the RMSD values for the HSO2 structure. Gen-
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Figure 6.9. CASPT2 RMSD relative to the CASPT2/aV5Z+d ground
state optimised geometry of HOSO.

erally the RMSD values are about a factor of two smaller than for HOSO,
suggesting that there is less ambiguity in the structure of HSO2. The
same trends between basis set families are seen, with the aVnZ basis sets
performing worst, while the aVnZ+d and aVnZ+d-ccECP perform very
similarly. Again, the CASPT2/aVnZ+d-ccECP calculations predict the
geometry well enough to replace the all-electron equivalents.

The accuracy/cost trade off. The geometries of the system are important
to get correct, and it is clear from the RMSD values, the bond length and
angle errors, and the dihedral angle scans, that using the CASPT2 method
with the aVnZ+d-ccECP basis sets successfully recreates the all-electron
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geometries. As the aVTZ-ccECP basis sets perform well, they appear
to be a reasonable accuracy-to-cost trade off for use in generating a new
global PES for the HSO2 system.

6.3 BUILDING A POTENTIAL ENERGY SURFACE

It is clear that CASSCF/aug-cc-pVTZ is not a sufficient level of theory to
accurately describe this system. A new global potential energy surface at
the CASPT2/aug-cc-pV(T+d)Z level, to replace the DMBE-PES, may help
to reveal new transition states and new pathways between the upper and
lower regions of the system. Chapter 4, as well as work such as that by
Qin et al., [306,307] has shown that a machine learning algorithm is a suitable
replacement for surface fitting methods such as DMBE, but their use does
not come without drawbacks. With six degrees of freedom in a four atom
system, the structural space that needs to be covered is still very large,
and if a machine learning algorithm is to be useful it needs a reasonably
large dataset (∼10,000 points) of high level ab initio calculations spanning
the full space. There are, however a few ways to keep this training set
size as small as possible, and minimise the computational effort needed
to generate it.

To reduce the computational cost of the ab initio calculations them-
selves, they can be run using the aug-cc-pV(n+d)Z-ccECP basis sets
benchmarked in Section 6.2. This section showed that the ccECP ba-
sis sets can accurately reproduce the features of the all-electron data, and
timing benchmarks in Chapter 5 show a 15% increase in speed. Due
to the nature of the data generation (described in Section 6.3.1) a large
number of extreme, or unusual geometries could be initially chosen for
the ab initio data generation. In order to reduce the number of failed cal-
culations, and therefore wasted computational effort, a set of lower level
(CASSCF) calculations will be run. Then only the successful calculations
that are less than 1000 kJ mol−1 above the ground state HOSO geometry
will be chosen for the CASPT2 calculations. This way a number of expen-
sive CASPT2 calculations that are either not important in the dynamics
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(too high in energy) or unlikely to converge will be skipped over, saving
considerable amounts of computational time. Further to this, using ac-
tive learning techniques, such as the firefly algorithm in Chapter 4, can
reduce the overall size of the dataset for the machine learning algorithm.
The initial training dataset can be much more sparse, and the fireflies will
fill the sections with the largest fitting error with new ab initio data, rather
than calculating lots of values in areas of the surface that are not impor-
tant. The ability for the firefly algorithm to explore the global space, and
then hone in on a particularly badly fit section of the surface makes it a
useful addition to any machine learning problem.

6.3.1 TRAINING DATA GENERATION

The HSO2 molecule has six degrees of freedom, three bond lengths and
three angles. To generate a starting dataset spanning the whole config-
uration space, ten different points along each degree of freedom were
chosen. The bond lengths spanned from from 0.5 Å to 3.5 Å, and the
bond angles were varied from 0◦ to 180◦. This resulted in 1,000,000
geometries generated, spanning the whole configuration space, which
were reduced down to 50,000 points through filtering method based on
the Euclidean distances between structures. The method takes a grid of
geometries (the 1,000,000 points in this case) and creates an evenly spaced
subgrid containing a user specified number of points (50,000 here) and
generates these points instead. This was achieved through the use of
the PES Learn python library, [135] which employs a scheme similar to the
structure-based sampling of Dral et al.. [91] To further reduce the dataset,
any structure that had any internuclear distance of less than 0.5 Å af-
ter being generated was removed, as these are likely to be very high in
energy and not especially interesting in a quantum molecular dynamics
calculation. This resulted in a total of 49,260 structures.

CASSCF/aug-cc-pV(T+d)Z-ccECP calculations were run on every
structure in this dataset and any calculation that failed to converge, or
had a ∆E > 0.4 Hartree (1050 kJ mol−1) above the ground state energy
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of HOSO (−160.964757 Hartree) was removed from the dataset. This re-
sulted in 20,601 different geometries, for which a CASPT2/aVTZ-ccECP
calculation was run for each one. Any calculation that failed to converge
was removed from the dataset, and the final dataset consisted of 6,815
CASPT2/ aug-cc-pV(T+d)Z-ccECP energies with their respective geome-
tries. This large drop in dataset size seems to be due to the CASPT2 cal-
culation failing to converge, even with an increased number of iterations.
Finally, the stationary points and optimised geometries from Section 6.2
were added into the dataset to seed the NN with important stationary
points. Due to the nature of the data generation, the dihedral angle for
all calculations lay between 0 ◦ and 180 ◦; as the geometry/energy of
HSO2 is symmetric around the dihedral angle, the whole dataset was
duplicated and dihedral angle for this second set was multiplied by −1.
This has the effect of doubling the size of the training dataset for free,
resulting in 13,640 datapoints. Once the full dataset had been generated,
it was separated into training, validation, and testing sets at a ratio of
7.5:1.25:1.25 through PES learn’s smart random sampling method, where
datapoints are chosen to produce training and testing sets that match the
energy distribution of the original dataset as close as possible. [135]

6.3.2 MODEL TRAINING

Similarly to the potential energy surface for water in Chapter 4, a deep
neural network was chosen to fit a PES for this system. The six degrees of
freedom were used as the input vector for the network and the calculated
ab initio energies were the labels. To fit the surface the same python
library, PES Learn, [135] was used to perform a hyperparameter search
and train the neural network. The maximum number of hyperparameter
search iterations was set to 50 to allow for a larger number of combinations
of hyperparameters to be tested. This gives a higher probability that the
‘best’ hyperparameters are found. The number of points in the training
set was chosen as 75% of the full dataset, resulting in 10,230 datapoints.
The global minimum energy was forced into the training set, and the
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set of trial layers was defined as: [16,16,16], [32], [32,32], [64], [64,64],
[64,64,64] (similarly to Chapter 4 the number of entries in each set of
square brackets indicates the number of hidden layers, and the value of
each entry indicates the number of nodes in that layer). There was no
random seed set for the hyperparameter search.

6.3.3 INITIAL SURFACE

After PES learn had performed the hyperparameter search, the trained
network had the following architecture:

• Layers - [32,32,32],

• Activation function - tanh,

• Learning rate - 0.8,

• Feature scaling - standardised to have a mean and standard devia-
tion of 1.

• Label scaling - standardised to have a mean and standard deviation
of 1.

Training took 510 epochs, at which point early stopping was triggered.
Figure 6.10 shows the error distribution and training/validation loss for
the trained network. The maximum prediction error is 611.20 kJ mol−1

(Figure 6.10a), and the total loss on the whole dataset (also the standard
deviation of the dataset) is 38.41 kJ mol−1. This is obviously far from
the accuracy required of a PES for use in quantum molecular dynamics
calculations (chemical accuracy is 4 kJ mol−1) and Figure 6.10b shows
clear overfitting to the training data, with loss values of 29.57 kJ mol−1

and 57.40 kJ mol−1 on the training and validation sets, respectively. The
dataset does show good coverage of all relative energies, with only one
distinct hole in the data at a relative energy of 1500–2000 kJ mol−1. Fig-
ure 6.10a reveals that although high energy structures were removed
from the dataset after a CASSCF calculation, further energy calculations
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Figure 6.10. (a) Prediction errors of the full dataset calculated as
Epred − Ecalc, and (b) the ln(Loss) of the model as it trained, the
training set loss is in blue and the validation loss is in orange.

at the CASPT2 level have re-introduced high energy structures to the
dataset (∼2000 structures), highlighting that further data curation could
have potentially been employed. However, with an already small dataset,
removing more datapoints from the training set is perhaps undesirable
(especially since the expensive CASPT2 calculations has already been car-
ried out). Extracting a number of examples of the high error structures
(⩾ ±250 kJ mol−1) reveals that the OH + SO dissociation limit energy is
being over predicted, while the energy of the particularly strained struc-
ture OHSO is underpredicted. This is not unsurprising as the strained
OHSO has a relative energy of +1017.44 kJ mol−1, meaning similar struc-
tures were likely removed from the dataset at the CASSCF step of data
generation. As a result the training set likely contains very few examples
of these high energy strained structures.

Impressively, the model can evaluate 270,000 points in approximately
four minutes, allowing for a simple brute force algorithm (implemented
by the Python library SciPy [313]) to determine minima in the model. This
algorithm will be used to find local minima throughout the surface.
Figure 6.13a shows the predicted energies of the stationary points bench-
marked in Section 6.2 (relative to HOSO, as before). Although this model
performs poorly from a loss perspective, the qualitative nature of the of
the predicted stationary points matches that as expected from Section 6.2,
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Figure 6.11. (a)-(e) Geometries of calculations with a prediction
error of ⩾ ±250 kJ mol−1

with the HOSO structure correctly being predicted as the lowest energy
structure, and the average absolute error across all eight stationary points
being 36.26 kJ mol−1. The relative energy of HSO2 is predicted the worst,
with an error of +99.56 kJ mol−1. This is because the pre-calculated sta-
tionary point was not present in the training set, and instead was present
in only the test set. This could be avoided by forcing the pre-calculated
stationary points into the training dataset, rather than just adding them
dataset as a whole before the train/test split is performed. Figure 6.13b
shows the stationary points predicted by the model. Here there is also
moderate agreement with qualitative nature of the surface, and the net-
work predicts that the minima around the HSO2 structure as having a
relative energy of 62.63 kJ mol−1. Importantly again, HOSO is predicted
as the minimum energy structure of the system.

However, this performance improvement is only true within the limits
of the surface. As the molecule reaches the higher energy dissociation
limits such as SH + O2, OH + SO, and HSO + O the relative energies drop,
instead of reaching a plateau. It would be important for QMD to ensure
that these limits are correctly identified as plateaus. Another problem
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Figure 6.13. Stationary points on the HSO2 PES. (a) Neural network
predicted energies of benchmark stationary points , and (b) Minima
predicted by the NN itself.
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with the current surface is that it isn’t completely symmetric around the
dihedral, despite being seeded as such. The energy profile of the ground
state HOSO structure was shown to be completely symmetric in Section
6.2, but Figure 6.12 reveals that this is not the case in the predicted surface
(E at −58◦ = −160.97065623 Hartree, E at 58◦ = −160.97367159 Hartree).
There are four major problems with the dihedral scan: the location of the
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Figure 6.12. A dihedral angle scan of HOSO using the NN fit PES.
The predicted ground state equilibrium geometry was used as a
base, and the dihedral angle was varied from −180 ◦ to 180◦ while
the rest of the molecule remained frozen.

minima is symmetric in terms of the angle it appears at, but predicted
energies are different, there is a local minima around −20◦ which is not
present in the calculated dihedral scan, the maxima at 0◦ is much too
high, and the limits are not equal in energy.

It is clear that there is room for improvement in the predicted surface,
and this model was subsequently used as a starting point for the firefly
algorithm developed in Chapter 4

6.3.4 THE APPLICATION OF THE FIREFLY ALGORITHM

Starting with the trained model, 100 fireflies were initialised into a single
group with minimum limits of [1.2, 1.2, 0.9, 0, 0, −180] and maximum
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limits of [4.2, 4.6, 3.0, 130, 130, 0] for [rSO, rSO(H), rOH, θ, ϕ, ω], respec-
tively. These limits were chosen based on the minimum and maximum
values of each degree of freedom in the benchmarking data. The value
of γ was set to 3 and α = 0.2. To assess the performance of the network
while keeping computational costs low, the algorithm was run for eight
generations and the neural network was retrained, updating the objective
function, after 4 generations (defining one cycle = four generations).

Cycle one. After four generations of the FA, PES learn [135] was used to
retrain the neural network using the new dataset (keeping all the same
options for PES Learn). Training took 640 iterations before early stopping
was triggered, and the hyperparameters after training were:

• Layers - [64,64],

• Activation function - tanh,

• Learning rate - 1.0,

• Feature scaling - standardised to have a mean and standard devia-
tion of 1.

• Label scaling - standardised to have a mean and standard deviation
of 1.

Figure 6.14a shows the prediction errors across the whole dataset and
immediately reveals that the firefly algorithm has successfully clustered
the fireflies, but they have clustered around a very high energy structure
(pictured in Figure 6.14b) with a relative energy of > 80, 000 kJ mol−1.
In fact, all of the datapoints with a relative energy of > 20, 000 kJ mol−1

have a very similar structure. In the initial model, the predicted energy of
this structure is −418426.45 kJ mol−1, while the calculated value during
the firefly algorithm is −338964.31 kJ mol−1, giving a prediction error of
−79462.14 kJ mol−1 (it is a little surprising that this calculation managed
to converge). An analysis of the points added to the dataset by the firefly
algorithm reveals that almost all of the points identified by the fireflies are
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these high energy structures, and there were very few datapoints added
to the useful region of the PES beyond the first generation of fireflies
(the random initialisation of positions). This analysis also revealed that
only 129 new datapoints were added to the dataset, out of a possible 400.
This is due to a large number of the CASPT2/auc-cc-pV(T+d)Z-ccECP
calculations failing to converge, thus not adding any new data to the
model. As well as the very high relative energy energy datapoints, Figure
6.14a also shows a singe very high prediction error datapoint. This is in
the validation set, is the SH + O2 structure seeded by the benchmarking,
and it is hard to see why the model predicts this geometry so badly.

On a positive note, the fireflies have successfully clustered around
a high error point, but it is unfortunately not a particularly useful one.
This highlights an important improvement that needs to be made to the
firefly algorithm. It is imperative that a ‘sanity’ check is added to the
firefly positions to ensure that only valid chemical structures are added
to the dataset.
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Figure 6.14. (a) Prediction errors of the full dataset calculated
as Epred − Ecalc, and (b) the average geometry of the high energy
datapoints added to the dataset by the firefly algorithm.

For completeness, Figure 6.15 shows the loss graph of the trained net-
work, as well as a slice of the error plot, showing datapoints with relative
energies of< 2, 000 kJ mol−1 and predictions errors of< 2, 000 kJ mol−1.
The loss graph (Figure 6.15b) looks very similar to the original models
loss graph, with the same overfitting up until 439 epochs. At which point
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the validation error begins to increase drastically while the training er-
ror has mostly plateaued. The final values for the train, validation, and
test set losses are 37.34 kJ mol−1, 107.26 kJ mol−1, and 66.51 kJ mol−1,
respectively, with a full dataset RMSE of 55.11 kJ mol−1. The unusually
high validation set loss is due to the large prediction error of the OH +
SO datapoint. It seems that early stopping has not triggered, and this
highlights another area for improvement. Although PES Learn is a very
helpful tool, allowing for very fast data generation and model training, it
is partially a ‘black-box’, and there is little room to develop the machine
learning model itself. Chapter 2 highlighted that the choice of model,
and the architecture of said model, can be just as important as the data
provided for a machine learning problem. For example, as the model
trained is a neural network, applying dropout [90] could solve some of the
overfitting problems that have plagued this surface.
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Figure 6.15. (a) Prediction errors of datapoints with relative en-
ergies of < 2, 000 kJ mol−1 and predictions errors of < 2, 000 kJ
mol−1, calculated as Epred − Ecalc, and (b) ln(Loss) of the model as
it trained, the training set loss is in blue and the validation loss is
in orange.

If the model had stopped training after 439 epochs the training set loss
would be 41.0 kJ mol−1, and the validation loss, 66.51 kJ mol−1 (it can be
seen that the training set loss did not change much with further training
cycles, another argument for the training to have stopped). However, if
these values are compared to the original surface RSME values (29.57 kJ
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mol−1 and 57.40 kJ mol−1, training and validation loss, respectively), it is
clear that the model actually performs worse after having had more data
included in its dataset. This is likely due to all of the data being added in
these extremely high energy regions, leading to the network sacrificing
accuracy in the low energy regions to compensate for the new datapoints.
This is reinforced by comparing the RMSE of the datapoints with relative
energies < 2000 kJ mol−1 (mostly the just the original dataset), with the
RMSE of the total dataset in the original model: 41.48 kJ mol−1 vs 38.41
kJ mol−1.

Figure 6.16 shows both the predicted relative energies of the bench-
mark stationary points, and the predicted relative energies of the minima
identified by the model. For the benchmarked stationary points the av-
erage error has slightly risen to 38.33 kJ mol−1 (excluding the prediction
error of 3454.66 kJ mol−1 for SH + O2), showing much the same perfor-
mance as the initial model. However the relative energy of HOOS has
dropped to 234.89 kJ mol−1, now lower in energy than the OH + SO
limit at 240.09 kJ mol−1. The benchmarked stationary points are pre-
dicted better for the lower energy regions than those that lie on the high
energy region. The drop in relative energy for HOOS within the station-
ary points predicted by the model itself, continues, dropping below the
relative energy of HSO2 (41 kJ mol−1 vs 135.68 kJ mol−1, respectively),
further reinforcing the idea that the lower energy region is better fit. Fi-
nally, as was seen in the original surface, the dissociation limits continue
to massively drop in energy, instead of plateauing.

Cycle two. Although cycle one shows some serious problems, the al-
gorithm was run for eight generations, resulting in two cycles, and two
newly trained models. For cycle two the same training options were used,
and after the hyperparameter search the network had the following ar-
chitecture:

• Layers - [16,16,16],

• Activation function - tanh,
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Figure 6.16. Stationary points on the HSO2 PES. (a) The neural
network predicted energies of the structures used in the bench-
marking of of methods and basis sets, and (b) the relative energies
of the minimum energy structures predicted by the neural network,
for each of the structures in the benchmarking set.
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• Learning rate - 0.6,

• Feature scaling - standardised to have a mean and standard devia-
tion of 1.

• Label scaling - standardised to have a mean and standard deviation
of 1.

Figure 6.17 shows both the error graph and the loss graph for this model,
and it is immediately obvious that the model performs worse than cycle
one. From Figure 6.17a it is clear that the firefly algorithm has again
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Figure 6.17. (a) Prediction errors of datapoints with relative en-
ergies of < 2, 000 kJ mol−1 and predictions errors of < 2, 000 kJ
mol−1, calculated as Epred − Ecalc, and (b) ln(Loss) of the model as
it trained, the training set loss is in blue and the validation loss is
in orange.

clustered around extremely high energy structures, interestingly finding
the same geometry as before, even after the firefly positions had been
reset. The validation loss also oscillates wildly, never stabilising, and
eventually diverging from the training loss as the model gets more overfit.
By calculating the loss on the datapoints with relative energies of< 2000
kJ mol−1 (the original dataset, like for cycle one), it can be seen that
the model now performs much worse than the original PES, with an
RMSE just under three times higher (92.93 kJ mol−1). There is obviously
improvement to be had here, as the firefly algorithm has actively reduced
the accuracy of the PES.
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6.4 CONCLUSIONS

The HSO2 system has been benchmarked for both the CASSCF and
CASPT2 methods, using the aug-cc-pVnZ, aug-cc-pV(n+d)Z, and aug-
cc-pV(n+d)Z-ccECP basis sets. It was shown that the aug-cc-pV(n+d)Z-
ccECP basis sets developed in Chapter 5 successfully recreate the qualita-
tive nature of the stationary points in the HSO2 system, with the average
deviation across all points being 1.67 kJ mol−1, 2.70 kJ mol−1, and 1.32 kJ
mol−1 for the DZ, TZ, and QZ basis sets, respectively. It was also shown
that generally the lower region of the surface is better recreated than the
upper, higher energy, region, with the average deviation of the upper
region being 2.35 kJ mol−1, while the lower region is 1.00 kJ mol−1 at the
QZ level. It was also shown that both not using the so called ‘plus-d’
basis sets, or a method capable of recovering dynamic correlation, such
as CASPT2, leads to significantly less accurate potential energy surfaces
when compared to CASPT2/aVTZ+d calculations. In fact, the use of
CASSCF over CASPT2 led to a slight re-ordering of the stationary points,
with HSOO dropping lower in energy than SH + O2 (271.95 kJ mol−1

vs 273.97 kJ mol−1 respectively). This benchmarking lead to the conclu-
sion that neither the PES developed by Varandas et al. (DMBE-PES) [41]

or the NN fitted potential energy surfaces of Qin et al. (PES-2019 and
PES-2020) [306,307] use a sufficient method/basis pair, and there is space
for a new CASPT2/aVTZ-ccECP global PES for HSO2.

An initial dataset of ∼13,000 CASPT2/aVTZ-ccECP calculations was
generated, and used as the dataset in the training of a neural network
through PES Learn. Analysis of this initial surface revealed moderate
performance, though considering how few datapoints it was trained on,
the performance was higher than expected. The qualitative nature of
stationary points was mostly recovered, however the total RMSE across
the whole dataset was 38.41 kJ mol−1, much higher than the desired
‘chemical accuracy’ of 4 kJ mol−1.

The firefly algorithm developed in Chapter 4 was then applied to the
model for two cycles, or eight generations. The network trained at the
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end of cycle one was analysed and revealed that the fireflies had success-
fully clustered around a point with very high error (-79462.14 kJ mol−1),
however this structure was not chemically valid (containing overlapping
oxygen atoms) and had an incredibly high relative energy compared to
the ground state HOSO (> 80, 000 kJ mol−1). This highlighted the need
for a sanity check surrounding the data added to the model through the
firefly algorithm. As the majority of the fireflies clustered around this
high energy structure there was minimal change in the RMSE of the sur-
face for the data surrounding the benchmarked stationary points. The
RMSE for the initial surface was 38.41 kJ mol−1, while the surface after
cycle one of the firefly algorithm had an RMSE of 41.48 kJ mol−1. This
shows that the model now performs worse having had more data added
to the dataset, which is obviously undesirable. Finally, the model trained
at the end of cycle two is briefly analysed, revealing many of the same
conclusions as cycle one. The firefly algorithm successfully clusters the
fireflies, but they are outside the useful bounds of the PES, and thus do
not improve the surface quality at all. In fact, in the case of the second
FA cycle the surface accuracy is actively reduced by the addition of extra
data to the dataset (92.93 kJ mol−1 verses 38.41 kJ mol−1).

It is clear that the firefly algorithm can be improved, and Chapter 7
will highlight some ways in which the FA could be modified to avoid
some of the issues highlighted in this chapter.





7 | Conclusions & future work

In this thesis I investigated three ways of reducing the computational cost
of generating potential energy surfaces through modern machine learn-
ing techniques and ab initio quantum chemistry. Chapter 1 introduced
the concept of potential energy surfaces and highlighted the great com-
putational cost of calculating all energies within a configuration space,
and how even direct dynamics is prohibitively expensive for anything
other than small molecules. Interpolation between a set of predefined
geometries and their energies is proposed as an alternative route to PES
fitting and a number of interpolation methods were introduced. Ulti-
mately however, they were found to be very time-consuming, required
a lot of ab initio calculation in their evaluation, or demanded prior, inti-
mate knowledge about the system and its functional forms (particularly
DMBE). At this point, three core questions were asked, highlighting areas
for improvement, and formed the basis for the rest of the thesis:

1. Can the fitting process be simplified or streamlined?

2. Can the volume of required ab initio data be reduced?

3. Can the data generation be made computationally cheaper?

To answer question one, I looked towards machine learning and the
methods within as a way of making the fitting process more ‘black-box’.

Chapter 2 explored the field of machine learning, first introducing
core concepts such as the loss function, optimisation methods, and hy-
perparameters, then highlighting the success of many ML models within
chemistry and the wider STEM community. Finally the focus narrowed

177
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in on the applications of machine learning to potential energy fitting,
importantly showing that it was possible to fit a PES using a neural
network, and achieve the levels of accuracy needed for vibrational anal-
ysis. [131] This chapter also highlighted the importance of good quality
training data, through a discussion on the impact of machine learning
on the COVID-19 pandemic. [137–139]

To address question number three above, it is important to have a
good understanding of electronic structure theory, and the methods and
limitations within. Working through the derivation of the energy of the
Schrödinger equation in Chapter 3 ultimately led to a discussion on the
importance of static and dynamic correlation and the ways to recover
them. While an introduction to basis sets and the representation of the
wavefunction gave rise to a method of removing core electrons from a
system to avoid treating them explicitly (in the form of effective core
potentials), opening an avenue towards reducing the computational cost
of ab initio calculations. Core polarisation potentials were also introduced
as another way of approximating important interactions within atoms.

The use of a machine learning algorithm to fit a PES already addresses
question number two to an extent, but a concept called active learning
pushes the point even further. Chapter 4 introduced the concept of active
learning as well as highlighting a number of nature inspired optimisation
algorithms. Within this discussion, the firefly algorithm was specifically
called out, and chosen to be adapted into a novel active learning technique
specifically for machine learned potential energy surfaces. Subsequently,
a firefly algorithm, specifically formulated to work with a potential en-
ergy surface generated by PES Learn [135] was developed in Python and
tested on a very simple system: water.

A dataset of 1331 datapoints was generated at the CCSD(T)/aug-cc-
pVTZ level of theory and used as the training data for a neural network.
The RMSE of the fitted surface was 0.13 kJ mol−1, which is impressive for
the little effort it took to generate data and train the model, and almost
certainly lends credence to machine learning being able to simplify the
surface fitting process. However, this could perhaps be considered a
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large error when compared to a surface generated for use in ab initio
spectroscopy. Mizus et al. [223] report fitting errors as low as 0.00013 kJ
mol−1 for their H2O surface, albeit for a higher level of theory and with
relativistic effects taken into account.

In order to test the firefly algorithm, another model was trained, this
time on 300 points of data randomly sampled from the full set. This was
expectedly less accurate, having a full dataset RMSE of 1.66 kJ mol−1

which allowed room for improvement. To have something to compare
to, first another 300 points of data were randomly sampled from the
remaining dataset, and a model was trained on the 600 datapoints. Then,
the firefly algorithm was run for two cycles (eight generations). The first
cycle added 160 datapoints to the dataset and improved the model fit
from 1.66 kJ mol−1 to 0.63 kJ mol−1, compared to the extra 300 points
of randomly sampled data, the firefly algorithm had an almost identical
performance (RMSE for the 600 point surface was 0.61 kJ mol−1). This
was already promising, and after cycle two the network had improved
slightly to an error of 0.57 kJ mol−1. Analysis of the firefly positions
revealed that by generation four, all of the fireflies had clustered together
and did not explore the surface much in further generations. Therefore,
the firefly positions were re-set and the algorithm run one more time.
After resetting their positions, the fireflies clustered in new regions of
the 460 point surface, and the final RMSE on the 620 point surface was
0.24 kJ mol−1, almost reaching the accuracy of the 1331 point surface
with half as much data.

An important aspect of the firefly algorithm are the hyperparameters
within that can be adjusted to alter the behaviour. In this case the values of
γ and αwere chosen through trial and error so that the fireflies clustered
in about four generations. This decision was mostly arbitrary and was
only possible due to the short computation times of water. For a more
complicated system, trial and error will not be possible, and it would
be worth assessing if these values of γ and α are transferable, or if they
need to be determined system to system. Training a number of different
complexities of system with various values of γ and α would hopefully
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give a good idea as to weather or not they need to be system specific.
These results were promising, but it is important to note that this

is a very simple PES, and water is not a particularly complex molecule.
It was important to test the FA on a more complicated PES landscape,
and in a situation where the ab initio data is not so easy to generate. A
molecule that meets these criteria is HSO2, having a history of discussion
surrounding the exact shape and form of its PES. However, calculations
on HSO2 are significantly more expensive (it has 33 electrons compared to
water’s 10), and its high energy structures contain a lot of multireference
character, requiring a method capable of recovering dynamic correlation
(CASPT2 in this case). As a result, question three from above became
pertinent to think about.

Chapter 3 introduced an option for reducing the computational cost
of a calculation, through the use of an ECP. Recently, Bennet et al. [52,169]

developed a new generation of correlation consistent ECPs (ccECPs) for
second row atoms (sulfur etc.) for use with the correlation consistent
family of basis sets. They provided basis sets to use with these ccECPs,
however benchmarking revealed that the provided basis sets do not per-
form particularly well, performing especially badly for calculations on
anions. Therefore, in Chapter 5 I developed a new set of correlation
consistent basis sets for use with the ccECPs, using methods consistent
with previous work in the field, for the atoms Al–Ar [(aug)-cc-pV(n+d)Z-
ccECP]. [53]

One of the contributing factors to the poor performance of the original
ccECP basis sets was the lack of tight-d correlating functions that have
been shown to be of vital importance to second row atoms; [232–235]this
will become important to remember as the HSO2 system is explored in
Chapter 6.

These new basis sets perform very well, with mean average devia-
tions of dissociation energy, from the all-electron equivalent basis sets,
of −2.30, +2.01 and −1.13 kJ mol−1, at the DZ, TZ, and QZ levels, re-
spectively. The performance on bond length is a little worse, with ECPs
leading to shorter bond lengths on average (−0.0030 Å at the DZ level,
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−0.0102 Å at the TZ level, and −0.0054 Å at the QZ level). However,
the error in their benchmarking is made up for in the 15% cost reduction
seen in the timing benchmarks for these basis sets. Although 15% is not
a large time saving, over the many thousands of calculations required for
a PES, this 15% adds up.

Core polarisation potentials are relatively easy to pair with ECPs,
therefore I also parameterised a set of CPPs for the second row atoms Al–
Ar. In combination with the ccECPs these CPPs can accurately recreate
the effects of very large and expensive cc-pCVnZ calculations. They
also lead to very large time savings when compared to doing a full
core-valence calculation (taking 4% of the time at the DZ level, 2% at
the TZ level and 1% at QZ level). Crucially, cc-pV(T+d)Z-ccECP/CPP
takes less than half the CPU time of the cc-pCVDZ calculation, and cc-
pV(Q+d)Z-ccECP/CPP is almost an order of magnitude faster than the
lower zeta-level cc-pCVTZ.

Having now developed a way of reducing the computational cost
for a sulfur containing molecule through the use of a ccECP and its
associated basis set the HSO2 system was explored in depth. The system
was benchmarked for both the CASSCF and CASPT2 methods, using the
aug-cc-pVnZ, aug-cc-pV(n+d)Z, and aug-cc-pV(n+d)Z-ccECP basis sets,
showing that the basis sets developed in Chapter 5 successfully recreate
the qualitative nature of the stationary points in the HSO2 system,

At the time of writing the only global potential energy surface for HSO2

was the double many body expansion surface described in Chapter 1,
developed by Varandas et al. This surface was fit using CASSCF/aug-cc-
pVTZ data and neither uses a tight-d basis set nor a method capable of
recovering dynamic correlation. It was improved by Garrido et al. using
CASPT2/aVTZ+d calculations, but the underlying surface is still too low
of a level of theory. More recently, and of particular interest to this thesis,
Qin et al. fit a CCSD(T)-F12a/aug-cc-pVTZ PES for the low energy region
of the surface using a neural network, and representing the geometries as
permutational invariant polynomials. Concerningly for such a modern
work, this surface does not use the plus-d basis sets. Qin et al. further
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attempted to improve their surface using UCCSD(T)-F12a/aug-cc-pVTZ
calculations to address issues surrounding the high energy OH + SO
limit due to its multi-reference character, however they still fail to use the
plus-d basis sets, and UCCSD(T)-F12a is not a multi-reference method,
so one wonders if any performance gains seen were merely coincidence.
Therefore it is clear that a new, global, CASPT2/aug-cc-pV(T+d)Z-ccECP
could reveal new information about the dynamics of this system.

A set of 13,000 CASPT2/cc-pCV(T+d)Z-ccECP calculations was suc-
cessfully generated for this dataset, however this was the result of ar-
tificially doubling the data through the symmetry around the dihedral
angle. Only 6815 of the original 50,000 generated geometries managed
to converge and return an energy at the CASPT2/cc-pCV(T+d)Z-ccECP
level. This is due to the way the data was generated (selecting 10 points
equally along each degree of freedom). Had the original dataset curation
kept molecular geometries within the regions of the reactive parts of the
PES, then one would expect that more of the calculations would be suc-
cessful. This would also simply aid training, by having more data in the
regions of the surface where the interesting chemistry happens. There
was an attempt to perform a little bit of data curation, by first perform-
ing a CASSCF calculation, and only continuing to the more expensive
CASPT2 calculation if the first succeeded. But is is clear from the error
graphs in Chapter 6 that after the high energy CASSCF calculations were
removed, a number of the resulting CASPT2 calculations have similarly
large relative energies. The problem with needing a more directed data
generation step is that it makes some knowledge of the surface/system
necessary before a PES is able to be fit, which reduces the transferability
of the method, and contradicts the idea that ML PESs are useful because
they are more hands off.

Using PES Learn [135] Before applying the firefly algorithm, a NN was fit
to the data, and analysed. Qualitatively the model performs reasonably
well, recreating the order of stationary points from the benchmarking
section, but the RMSE on the whole dataset is 38 kJ mol−1, far from a
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desired accuracy.† This is where the use of PES Learn as a tool has some
downsides. Although the the training of a neural network through PES
Learn is very easy, there are currently limited options when it comes to
dealing with overfitting. Dropout [90] has been shown to combat over-
fitting well, and one wonders how well the model might perform if it
were applied (although it does seem possible to modify the code to in-
clude it). The loss graph in Section 6.3 also highlights a downfall of
using such a program, in this case early stopping seems to have failed, as
the validation set reaches a minimum RMSE and then begins to climb.
The model trains for 200 more epochs before it stops. These kinds of
problems are hard to troubleshoot and explain with a more commercial,
black-box program. Finally the dataset should have manually been split
into a training and testing set, as one of the important seeded stationary
points was placed in the validation set for the first cycles model. This
meant that one of the points expected to be reasonably well predicted had
the largest error in the whole dataset. This would also stop the model
from choosing a different train/test split every time the firefly algorithm
finished a cycle, which in theory should not be a problem as the split
should be representative, but with so few datapoints it can be hard to
generate a representative sample.

Ultimately, developing a custom-built machine learning architecture
specifically for use with a firefly algorithm could lead to more accurate
models, as it would also be possible to update a model, rather than entirely
retrain it with a whole new set of hyperparameters, every time the dataset
is updated.

The firefly algorithm The performance of the firefly algorithm on the
HSO2 surface is discussed in detail in Chapter 6, but briefly, its inclusion
as an active learning technique seems to have only made the model per-
form worse, particularly by the end of cycle two, where the full dataset

†Once this process has been improved, it would be best to assess the performance
of a machine learned model through the running of a quantum molecular dynamics
calculation using the model to probe the surface. It is important that the surface
performs well for QMD as well as recreating the stationary points.
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loss had risen to 92.93 kJ mol−1 from 38.41 kJ mol−1. A large part of
this performance drop is due to the fireflies clustering around exceed-
ingly high energy points of the surface that correspond to chemically
impossible structures. One method of combatting this would be to add
a weighting to the brightness of a firefly that reduces the brightness of a
firefly proportionally to its energy difference from the global ground state
minimum energy. This would have the effect of punishing a firefly that
is too high in energy, and keeping the fireflies within a more chemically
interesting region.

It would be useful to test the performance of the FA against simply
training two neural networks and generating new data points in the
regions where they disagree the most. The hyperparameters of the firefly
algorithm (γ and α) are hard to optimise in the HSO2 model because the
algorithm requires expensive CASPT2 calculations in its execution. The
time investment compared to just training two networks is significantly
more, and unless the performance of the firefly algorithm is significantly
higher, one wonders if the cost is worth it.

It is also possible that the algorithm would perform better if it took
longer for the fireflies to cluster. In both cycles of the HSO2 surface there
seems to be only one cluster point. Too large of a step size might lead
to the fireflies moving significantly in the first generation, putting them
very close to the current brightest firefly. This would have the effect of
almost immediately locking all fireflies into one cluster point.

Conclusion Returning to the three core questions that were asked at the
start this chapter: PES Learn, and machine learning in general, seems to
successfully streamline the fitting of a potential energy surface. Although
hard to test, the model prediction errors were likely due to the initial
dataset quality, rather than a downfall of the ML. The new basis sets,
although not returning a lot of time, show that the ab initio data generation
certainly can be made cheaper without a loss of computational accuracy.
Finally, Chapter 4 suggests that the firefly algorithm has the potential
to succeed as an active learning technique. However, in light of the
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performance on the HSO2 surface, in its current state more work is needed
to improve its performance before it can be said that the use of a firefly
algorithm resulted in a model accurately trained on a minimum volume
of data.

If an accurate global PES could be generated for HSO2 the next steps
would be to run some quantum molecular dynamics simulations on the
system to determine reaction pathways and to compare predicted reac-
tion observables to experiment. If successful, an attempt to carry out the
whole process – data generation to the application of the firefly algorithm
– on a new, less well known system would reveal how transferable this
method is, and whether or not it has the potential to reveal meaningful
insight into the chemistry of important molecules.
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the firefly algorithm

A.1 THE FIREFLY CLASS

class Firefly:

def __init__(self, ffnumber):

self.group = None

self.generation = 0

self.ffnumber = ffnumber

self.limits = None

self.position = None

self.pred_e = 0

self.true_e = 0

self.alpha = 0.2

self.beta0 = 1

self.gamma = 3

# ID

@property

def id(self):

return f'{self.group}-{self.generation}-{self.ffnumber}'

xi
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def generate_calc_string(self, template):

calc_str = template.format(*self.position)

return calc_str

# BRIGHTNESS

@property

def brightness(self):

return abs(self.pred_e-self.true_e)

# POSITION UPDATE

def update_position(self, brighter_ff_position):

starting_position = self.position.copy()

normed_position = (np.array(self.position)

- np.array(self.limits['min_limits'])) \

/ (np.array(self.limits['max_limits'])

- np.array(self.limits['min_limits']))

normed_brighter = (np.array(brighter_ff_position)

- np.array(self.limits['min_limits'])) \

/ (np.array(self.limits['max_limits'])

- np.array(self.limits['min_limits']))

# r = sqrt[(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2]

distance = np.sum(np.square(normed_position - normed_brighter))

beta = self.beta0 * np.exp(-self.gamma * distance)

randomness = self.alpha*(random.uniform(0, 1)-0.5)

print(f'r: {distance}, B: {beta}, aE: {randomness}')

normed_position += (beta * (normed_brighter-normed_position))

+ randomness

self.position = (

normed_position * (np.array(self.limits['max_limits'])

- np.array(self.limits['min_limits']))
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+ np.array(self.limits['min_limits']))

# Limit position to within self.limits

for i in range(len(self.position)):

if self.position[i] > self.limits['max_limits'][i]:

self.position[i] = self.limits['max_limits'][i]

if self.position[i] < self.limits['min_limits'][i]:

self.position[i] = self.limits['min_limits'][i]

print("Updated ", starting_position, " to ", self.position)

print("----------------------")

def random_walk(self, area):

self.position = np.array(

[random.uniform(cord-area, cord+area)

for cord in self.position])

print(np.array([random.uniform(cord-area, cord+area)

for cord in self.position]))

for i in range(len(self.position)):

if self.position[i] > self.limits['max_limits'][i]:

self.position[i] = self.limits['max_limits'][i]

if self.position[i] < self.limits['min_limits'][i]:

self.position[i] = self.limits['min_limits'][i]

print(f'Brightest firefly is {self.id}:{self.brightness},

random walk to {self.position}')

print("----------------------")

A.2 THE VISUALISER CLASS

class Visualiser:

def __init__(self, **kwargs):

self.generation = kwargs.get("generation", [])

self.positions = kwargs.get("positions", [])
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self.brightnesses = kwargs.get("brightnesses", [])

def add_firefly(self, firefly):

self.generation.append(firefly.generation)

self.positions.append(firefly.position)

self.brightnesses.append(firefly.brightness)

print("Adding to plot...")

print("Generation" , firefly.generation)

print("Position" , firefly.position)

print("Brightness" , firefly.brightness)

print("----------------------")

@property

def num_generations(self):

return set(self.generation)

A.3 GENERAL FUNCTIONS

def gen_ff(i, j, limits):

ff = Firefly(ffnumber=i)

ff.group = j

ff.limits = limits

ff.position = [random.uniform(i,j) for i, j in

zip(ff.limits['min_limits'],ff.limits['max_limits'])]

return ff

def generate_input_file(template, ff):

input_str = ff.generate_calc_string(template)

filename = ff.id

with open(f'{filename}.inp', 'w') as inp_file:

inp_file.write(input_str)

return filename

def read_output_file(ff,energy_line_pattern):

filename = ff.id
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with open(f'{filename}.out', 'r') as outfile:

lines = outfile.readlines()

for line in lines:

if energy_line_pattern in line:

true_energy = float(line.strip().split(' ')[-1])

return true_energy

from compute_energy import pes

def probe_surface(ff):

predicted_energy = pes(ff.position, cartesian=False)

return predicted_energy

A.4 THE FIREFLY ALGORITHM

def firefly_algorithm(num_fireflies, max_generations,

limits, calc_template, qsub_template, energy_line_pattern,

ml_input_string, retrain_limit=2):

# Initialise the fireflies

# The number of max/min limits you give the FA

# defines the number of groups

# group-generation-firefly is a unique ID.

num_groups = int(len(limits['max_limits']))

fireflies = []

for i in range(num_groups):

lims = [list_of_values[i] for list_of_values in limits.values()]

group_limits = {'min_limits': lims[0], 'max_limits': lims[1]}

for j in range(int(num_fireflies/num_groups)):

fireflies.append(gen_ff(j, i, group_limits))

# Initialise the visualiser

visualiser = Visualiser()
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cutoff = False

c = 0.000015 # Hartree

retrain_limit = retrain_limit

retrain_counter = 0

number_of_retrains = 0

additional_data = []

current_dataset_path = 'path/to/PES.dat'

G = 0

# if the cutoff not reached, run FA

while cutoff == False and G < max_generations:

print(f'Current genreration: {G}')

# Generate the input files

print('----- GENERATING INPUT FILES -----')

file_list = f'gen-{fireflies[0].generation}-filelist.txt'

for f in fireflies:

filename = generate_input_file(calc_template,f)

with open(f'{file_list}', 'a') as list_file:

print(f'{filename}.inp', file=list_file)

# Generate qsub script

print('----- GENERATING QSUB SCRIPT -----')

with open(f'submit_generation_{fireflies[0].generation}.sh',

'w') as queue_file:

print(qsub_template.format(len(fireflies),file_list),

file=queue_file)

# Run the input files (on sol, via SGE)

# This SHOULD wait for the qsub command to end

print('----- RUNNING SOL SCRIPT -----')

os.system(f"ssh $USER@$SERVER 'cd ~/path/to/directory &&

qsub -sync y
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submit_generation_{fireflies[0].generation}.sh' && exit")

# Read the input files and probe the neural network

print('----- READING AND PREDICTING ENERGIES -----')

for f in fireflies:

f.true_e = read_output_file(f, energy_line_pattern)

f.pred_e = probe_surface(f)

# Add current generation of fireflies to visualiser here

print('----- ADDING CURRENT GEN TO VISUALISER -----')

for i in range(len(fireflies)):

visualiser.add_firefly(fireflies[i])

# Generate a csv of new data,

# to be added to the training dataset later

print('----- CREATEING CSV FROM CURRENT DATA -----')

generation_dataset = [[*f.position,f.true_e] for f in fireflies]

generation_dataframe = pd.DataFrame(generation_dataset)

generation_dataframe.to_csv(

f'generation-{fireflies[0].generation}.csv',

index=False, header=False)

# Update the positions WITHIN GROUPS based on brightness

print('----- UPDATING POSITIONS -----')

for k in range(num_groups):

for i in fireflies:

if i.group == k:

for j in fireflies:

if j.group == k:

if i == j:

print("Same firefly, nothing to do.")

print("----------------------")

elif i.brightness < j.brightness:

i.update_position(j.position)

else:
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print("Firefly is dimmer, not moving.")

print("----------------------")

for i in fireflies:

i.generation += 1 # THE GENERATION IS INCREMENTED IN THIS STEP

# Random walk the brightest firefly

print('----- RANDOM WALKING BRIGHTEST FIREFLY -----')

current_brightest = max(fireflies, key=attrgetter('brightness'))

current_brightest.random_walk(0.1)

# Check brightness of all fireflies

print('----- CHECKING BRIGHTNESS FOR CUTOFF -----')

all_b = [f.brightness for f in fireflies]

cutoff = all(i <= c for i in all_b) # True if all all_b < c

if cutoff == True:

print('Energy cutoff reached, exiting after next train')

# Retrain the network on the new dataset,

# if the re-train limit is reached

print('----- CHECKING RETRAIN LIMIT -----')

retrain_counter += 1

print(f'Retrain counter = {retrain_counter}')

print('----- ADDING DATA TO ADDITIONAL DATA DF -----')

for row in generation_dataset:

additional_data.append(row) # add new data to a growing list

if retrain_counter == retrain_limit:

print('----- RETRAINING ML ALGORITHM -----')

current_dataset = pd.read_csv(current_dataset_path)

columns = current_dataset.columns

new_dataset = current_dataset.append(pd.DataFrame(additional_data,

columns=columns),

ignore_index = True).copy()

new_dataset.to_csv('modified_dataset.csv', index=False)
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current_dataset_path = 'modified_dataset.csv'

len_training_set = (0.75 * len(new_dataset))

input_string = ml_input_string.format(

len_training_set=int(len_training_set))

input_obj = peslearn.InputProcessor(input_string)

nn = peslearn.ml.NeuralNetwork(current_dataset_path, input_obj)

nn.optimize_model()

number_of_retrains += 1

os.system(f'mv train_val_loss.csv

train_val_loss_model{number_of_retrains}.csv')

# for this to work there must be NO previous PES Learn models in

# the current directory, at least not named 'modeln_data'

print(f'Getting model{number_of_retrains}_data files.')

os.system(f'cp model{number_of_retrains}_data/PES.dat .')

os.system(f'cp model{number_of_retrains}_data/model.pt .')

os.system(f'cp model{number_of_retrains}_data/compute_energy.py .')

retrain_counter = 0 # reset the retrain counter

additional_data = [] # reset additional data list

G += 1

print('Firefly algorithm exited successfully? Nice.')

return fireflies,visualiser
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All of the following basis sets must be used in conjunction with the
ccECPs of Bennett et al., J. Chem. Phys. 149, 104108 (2018).

B.1 CC-PV(D+D)Z-CCECP

s,Al, 9.467632E+00, 5.626780E+00, 2.011750E+00, 1.153557E+00, 1.680911E-01, 6.127412E-02

c,1.6, 2.106000E-03, -5.525000E-03, 6.608500E-02, -2.884150E-01, 6.652750E-01, 4.728490E-01

c,6.6, 1.0

p,Al, 5.086488E+00, 3.178563E+00, 1.986886E+00, 1.961017E-01, 5.681130E-02

c,1.5, -5.667000E-03, 1.819200E-02, -2.883900E-02, 4.918900E-01, 6.154460E-01

c,5.5, 1.0

d,Al, 1.308217E+00, 1.832422E-01

s,Si, 1.108664E+01, 6.688456E+00, 2.621138E+00, 1.512618E+00, 2.341472E-01, 8.553995E-02

c,1.6, 2.178000E-03, -5.499000E-03, 8.033500E-02, -3.226790E-01, 6.862160E-01, 4.647370E-01

c,6.6, 1.0

p,Si, 6.598755E+00, 4.126387E+00, 2.581579E+00, 2.886592E-01, 8.597700E-02

c,1.5, -5.591000E-03, 2.022600E-02, -3.687200E-02, 5.193070E-01, 5.869270E-01

c,5.5, 1.0

d,Si, 1.738470E+00, 2.675427E-01

s,P,1.238236E+01,7.485122E+00,3.082440E+00,1.926247E+00,3.056385E-01,1.119803E-01

c,1.6,2.195000E-03,-5.501000E-03,1.094400E-01,-3.638660E-01,6.998080E-01,4.593350E-01

c,6.6,1.0

p,P,8.332862E+00,5.213576E+00,3.265010E+00,3.917816E-01,1.186369E-01

c,1.5,-5.202000E-03,1.989200E-02,-4.200200E-02,5.369650E-01,5.687700E-01

c,5.5,1.0

d,P,2.161064E+00,3.604973E-01

s,S,1.371939E+01,8.361204E+00,3.780862E+00,2.363702E+00,3.851312E-01,1.408929E-01

c,1.6,2.159000E-03,-6.249000E-03,1.213550E-01,-3.861230E-01,7.155840E-01,4.512290E-01

c,6.6,1.0

p,S,1.075098E+01,6.729523E+00,4.218423E+00,5.045883E-01,1.473090E-01

c,1.5,-4.307000E-03,1.663900E-02,-3.974800E-02,5.441890E-01,5.668270E-01

c,5.5,1.0

d,S,2.624970E+00,4.600632E-01

s,Cl,1.468532E+01,9.081676E+00,4.517516E+00,2.823726E+00,4.726501E-01,1.727413E-01

xxi
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c,1.6,3.796000E-03,-1.095200E-02,1.279250E-01,-3.953880E-01,7.245830E-01,4.471770E-01

c,6.6,1.0

p,Cl,1.328317E+01,8.318690E+00,5.220721E+00,6.312944E-01,1.821076E-01

c,1.5,-3.718000E-03,1.493300E-02,-3.997300E-02,5.513830E-01,5.617710E-01

c,5.5,1.0

d,Cl,3.195709E+00,5.780413E-01

s,Ar,1.561888E+01,9.399571E+00,5.294684E+00,3.311215E+00,5.648221E-01,2.065069E-01

c,1.6,1.705000E-03,-2.509000E-03,1.186860E-01,-4.024230E-01,7.324230E-01,4.447530E-01

c,6.6,1.0

p,Ar,1.648115E+01,1.031973E+01,6.477514E+00,7.679845E-01,2.212524E-01

c,1.5,-2.576000E-03,1.244000E-02,-3.908600E-02,5.569660E-01,5.563190E-01

c,5.5,1.0

d,Ar,3.640558E+00,7.022656E-01

B.2 CC-PV(T+D)Z-CCECP

s,Al,8.212835E+00,4.555659E+00,2.241051E+00,1.298574E+00,6.706170E-01,2.208360E-01,

9.829919E-02,4.356435E-02

c,1.8,2.969000E-03,-1.335600E-02,7.908900E-02,-2.317920E-01,-9.787600E-02,4.101350E-01,

5.783300E-01,1.869940E-01

c,7.7,1.0

c,8.8,1.0

p,Al,8.744620E+00,5.193068E+00,2.982244E+00,1.387771E+00,2.586180E-01,9.758792E-02,

3.679630E-02

c,1.7,9.110000E-04,-5.434000E-03,9.921000E-03,-3.063100E-02,2.871910E-01,5.444390E-01,

3.013670E-01

c,6.6,1.0

c,7.7,1.0

d,Al,1.814977E+00,3.198831E-01,1.079784E-01

f,Al,2.899838E-01

s,Si,9.665766E+00,5.482739E+00,2.775639E+00,1.643690E+00,8.488039E-01,3.097429E-01,

1.385535E-01,6.089588E-02

c,1.8,2.722000E-03,-1.138100E-02,9.174100E-02,-2.748170E-01,-9.523000E-02,4.248530E-01,

5.844440E-01,1.850260E-01

c,7.7,1.0

c,8.8,1.0

p,Si,9.981886E+00,6.178782E+00,3.676271E+00,1.953541E+00,3.720789E-01,1.446960E-01,

5.503535E-02

c,1.7,1.540000E-03,-7.908000E-03,1.617000E-02,-4.200400E-02,3.158970E-01,5.424010E-01,

2.731420E-01

c,6.6,1.0

c,7.7,1.0

d,Si,2.391269E+00,4.580241E-01,1.552119E-01

f,Si,3.692667E-01
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s,P,1.122502E+01,6.369909E+00,3.337544E+00,1.973366E+00,9.581721E-01,4.051031E-01,

1.809439E-01,7.953374E-02

c,1.8,2.402000E-03,-9.789000E-03,9.596100E-02,-3.140620E-01,-8.159000E-02,4.443610E-01,

5.855890E-01,1.805490E-01

c,7.7,1.0

c,8.8,1.0

p,P,1.181951E+01,6.805271E+00,4.141216E+00,2.587294E+00,4.999773E-01,1.978731E-01,

7.557219E-02

c,1.7,1.329000E-03,-9.122000E-03,2.398700E-02,-5.448600E-02,3.332890E-01,5.401530E-01,

2.575540E-01

c,6.6,1.0

c,7.7,1.0

d,P,3.026100E+00,6.204295E-01,2.107737E-01

f,P,4.771697E-01

s,S,1.271740E+01,7.211320E+00,4.108071E+00,2.297170E+00,1.100207E+00,4.758254E-01,

2.126538E-01,9.413496E-02

c,1.8,1.735000E-03,-8.089000E-03,8.814300E-02,-3.418750E-01,-4.562200E-02,5.034010E-01,

5.565790E-01,1.457610E-01

c,7.7,1.0

c,8.8,1.0

p,S,1.390646E+01,8.407031E+00,5.255629E+00,3.286285E+00,6.403901E-01,2.485725E-01,

9.175393E-02

c,1.7,1.974000E-03,-1.109000E-02,2.356400E-02,-5.335700E-02,3.470450E-01,5.322760E-01,

2.592810E-01

c,6.6,1.0

c,7.7,1.0

d,S,3.607259E+00,7.800180E-01,2.638650E-01

f,S,5.634499E-01

s,Cl,1.390166E+01,8.099804E+00,4.560530E+00,2.737296E+00,1.194114E+00,5.845004E-01,

2.595187E-01,1.134861E-01

c,1.8,2.569000E-03,-7.665000E-03,1.012690E-01,-3.692210E-01,-4.401400E-02,5.185750E-01,

5.588800E-01,1.388690E-01

c,7.7,1.0

c,8.8,1.0

p,Cl,1.638099E+01,1.024131E+01,6.404853E+00,4.006446E+00,7.985489E-01,3.084952E-01,

1.121782E-01

c,1.7,2.486000E-03,-1.178300E-02,2.182600E-02,-5.337800E-02,3.565500E-01,5.285790E-01,

2.568250E-01

c,6.6,1.0

c,7.7,1.0

d,Cl,4.382079E+00,9.824805E-01,3.297425E-01

f,Cl,7.101264E-01

s,Ar,1.489270E+01,8.737185E+00,4.922859E+00,3.075375E+00,1.497732E+00,6.819138E-01,
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3.112818E-01,1.381357E-01

c,1.8,-9.380000E-04,1.646700E-02,6.215900E-02,-3.759580E-01,-1.241600E-02,5.160160E-01,

5.453520E-01,1.439860E-01

c,7.7,1.0

c,8.8,1.0

p,Ar,1.937247E+01,1.210980E+01,7.575727E+00,4.739667E+00,9.657799E-01,3.737167E-01,

1.352415E-01

c,1.7,2.327000E-03,-9.304000E-03,1.331000E-02,-4.765200E-02,3.643430E-01,5.258920E-01,

2.519590E-01

c,6.6,1.0

c,7.7,1.0

d,Ar,4.947375E+00,1.198435E+00,4.003559E-01

f,Ar,8.956061E-01

B.3 CC-PV(Q+D)Z-CCECP

s,Al,7.949914E+00,4.529029E+00,2.432129E+00,1.498216E+00,8.078694E-01,4.166727E-01,

1.939421E-01,8.995064E-02,4.109861E-02

c,1.9,4.006000E-03,-1.946100E-02,8.612900E-02,-1.601450E-01,-1.811080E-01,5.199000E-02,

4.505290E-01,5.295550E-01,1.531160E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Al,9.876031E+00,5.669519E+00,3.471873E+00,1.009537E+00,3.966336E-01,1.728821E-01,

7.330786E-02,3.065228E-02

c,1.8,3.550000E-04,-2.650000E-03,2.661000E-03,-4.195600E-02,1.123410E-01,3.727120E-01,

4.744470E-01,1.917390E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Al,1.808743E+00,4.437953E-01,1.953366E-01,7.965274E-02

f,Al,4.429014E-01,1.741183E-01

g,Al,3.991464E-01

s,Si,1.000301E+01,5.840344E+00,3.100974E+00,1.915116E+00,1.108635E+00,4.398912E-01,

2.578032E-01,1.248379E-01,5.743548E-02

c,1.9,3.791000E-03,-1.650600E-02,8.843000E-02,-1.625180E-01,-1.976540E-01,8.836700E-02,

4.405530E-01,5.132750E-01,1.497040E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Si,1.098641E+01,6.385523E+00,3.886146E+00,1.600543E+00,4.555836E-01,2.091416E-01,

9.417660E-02,4.141521E-02

c,1.8,6.460000E-04,-4.084000E-03,6.136000E-03,-4.316700E-02,1.934680E-01,4.180540E-01,

4.034270E-01,1.267590E-01

c,6.6,1.0
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c,7.7,1.0

c,8.8,1.0

d,Si,2.496123E+00,6.300131E-01,2.729389E-01,1.126100E-01

f,Si,5.618072E-01,2.150865E-01

g,Si,4.981687E-01

s,P,1.144594E+01,6.702436E+00,3.643314E+00,2.230657E+00,1.278947E+00,4.990009E-01,

2.941025E-01,1.542838E-01,7.338672E-02

c,1.9,3.636000E-03,-1.631400E-02,1.016420E-01,-2.236860E-01,-1.711240E-01,1.998080E-01,

4.185340E-01,4.581190E-01,1.328930E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,P,1.238219E+01,7.179106E+00,4.380560E+00,2.051358E+00,6.334161E-01,3.006345E-01,

1.361396E-01,5.897863E-02

c,1.8,6.610000E-04,-4.157000E-03,5.708000E-03,-5.113500E-02,1.859600E-01,4.147800E-01,

4.097020E-01,1.329160E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,P,3.273202E+00,8.687763E-01,3.732263E-01,1.540900E-01

f,P,7.321927E-01,2.818867E-01

g,P,6.303479E-01

s,S,1.304422E+01,7.527028E+00,4.217795E+00,2.548020E+00,1.440352E+00,6.091360E-01,

3.388140E-01,1.790031E-01,8.751556E-02

c,1.9,2.456000E-03,-1.244500E-02,1.062420E-01,-2.807790E-01,-1.395360E-01,2.534480E-01,

4.626390E-01,4.018840E-01,1.061460E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,S,1.371753E+01,8.019559E+00,4.884424E+00,2.754758E+00,7.559207E-01,3.478529E-01,

1.550598E-01,6.663373E-02

c,1.8,1.109000E-03,-6.752000E-03,1.034900E-02,-5.156400E-02,2.331750E-01,4.287970E-01,

3.736230E-01,1.132400E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,S,3.776298E+00,1.071908E+00,4.629455E-01,1.902392E-01

f,S,8.914082E-01,3.265297E-01

g,S,7.092373E-01

s,Cl,1.407461E+01,8.237384E+00,4.734507E+00,2.858994E+00,1.509973E+00,6.958753E-01,

3.820075E-01,2.194034E-01,1.095167E-01

c,1.9,2.929000E-03,-1.088200E-02,1.051570E-01,-3.325820E-01,-9.824000E-02,3.335220E-01,

4.255470E-01,3.602330E-01,1.135250E-01

c,7.7,1.0
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c,8.8,1.0

c,9.9,1.0

p,Cl,1.475695E+01,8.897799E+00,5.560378E+00,3.474530E+00,9.358483E-01,4.292111E-01,

1.895415E-01,8.042236E-02

c,1.8,1.752000E-03,-1.041900E-02,1.703400E-02,-5.707600E-02,2.443960E-01,4.313190E-01,

3.658380E-01,1.107200E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Cl,4.531908E+00,1.347215E+00,5.809417E-01,2.378593E-01

f,Cl,1.121156E+00,4.158898E-01

g,Cl,8.543884E-01

s,Ar,1.499224E+01,8.819630E+00,5.336511E+00,3.329262E+00,1.474522E+00,8.804411E-01,

4.500511E-01,2.669738E-01,1.336571E-01

c,1.9,5.600000E-04,4.352000E-03,9.420400E-02,-3.560670E-01,-1.407840E-01,3.887130E-01,

4.359850E-01,3.452360E-01,1.224840E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Ar,1.646851E+01,1.026891E+01,6.415053E+00,4.009512E+00,1.132865E+00,5.202681E-01,

2.293103E-01,9.671475E-02

c,1.8,2.358000E-03,-1.051600E-02,9.491000E-03,-5.125700E-02,2.507430E-01,4.332380E-01,

3.605570E-01,1.087320E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Ar,4.977088E+00,1.628626E+00,7.053144E-01,2.878835E-01

f,Ar,1.408786E+00,5.409325E-01

g,Ar,1.023726E+00

B.4 AUG-CC-PV(D+D)Z-CCECP

s,Al,9.467632E+00,5.626780E+00,2.011750E+00,1.153557E+00,1.680911E-01,6.127412E-02,

2.088086E-02

c,1.6,2.106000E-03,-5.525000E-03,6.608500E-02,-2.884150E-01,6.652750E-01,4.728490E-01

c,6.6,1.0

c,7.7,1.0

p,Al,5.086488E+00,3.178563E+00,1.986886E+00,1.961017E-01,5.681130E-02,1.477338E-02

c,1.5,-5.667000E-03,1.819200E-02,-2.883900E-02,4.918900E-01,6.154460E-01

c,5.5,1.0

c,6.6,1.0

d,Al,1.308217E+00,1.832422E-01,5.296992E-02

s,Si,1.108664E+01,6.688456E+00,2.621138E+00,1.512618E+00,2.341472E-01,8.553995E-02,

3.051215E-02
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c,1.6,2.178000E-03,-5.499000E-03,8.033500E-02,-3.226790E-01,6.862160E-01,4.647370E-01

c,6.6,1.0

c,7.7,1.0

p,Si,6.598755E+00,4.126387E+00,2.581579E+00,2.886592E-01,8.597700E-02,2.459099E-02

c,1.5,-5.591000E-03,2.022600E-02,-3.687200E-02,5.193070E-01,5.869270E-01

c,5.5,1.0

c,6.6,1.0

d,Si,1.738470E+00,2.675427E-01,8.004663E-02

s,P,1.238236E+01,7.485122E+00,3.082440E+00,1.926247E+00,3.056385E-01,1.119803E-01,

3.879193E-02

c,1.6,2.195000E-03,-5.501000E-03,1.094400E-01,-3.638660E-01,6.998080E-01,4.593350E-01

c,6.6,1.0

c,7.7,1.0

p,P,8.332862E+00,5.213576E+00,3.265010E+00,3.917816E-01,1.186369E-01,3.398252E-02

c,1.5,-5.202000E-03,1.989200E-02,-4.200200E-02,5.369650E-01,5.687700E-01

c,5.5,1.0

c,6.6,1.0

d,P,2.161064E+00,3.604973E-01,1.116762E-01

s,S,1.371939E+01,8.361204E+00,3.780862E+00,2.363702E+00,3.851312E-01,1.408929E-01,

4.709953E-02

c,1.6,2.159000E-03,-6.249000E-03,1.213550E-01,-3.861230E-01,7.155840E-01,4.512290E-01

c,6.6,1.0

c,7.7,1.0

p,S,1.075098E+01,6.729523E+00,4.218423E+00,5.045883E-01,1.473090E-01,4.041793E-02

c,1.5,-4.307000E-03,1.663900E-02,-3.974800E-02,5.441890E-01,5.668270E-01

c,5.5,1.0

c,6.6,1.0

d,S,2.624970E+00,4.600632E-01,1.449989E-01

s,Cl,1.468532E+01,9.081676E+00,4.517516E+00,2.823726E+00,4.726501E-01,1.727413E-01,

5.666529E-02

c,1.6,3.796000E-03,-1.095200E-02,1.279250E-01,-3.953880E-01,7.245830E-01,4.471770E-01

c,6.6,1.0

c,7.7,1.0

p,Cl,1.328317E+01,8.318690E+00,5.220721E+00,6.312944E-01,1.821076E-01,4.898700E-02

c,1.5,-3.718000E-03,1.493300E-02,-3.997300E-02,5.513830E-01,5.617710E-01

c,5.5,1.0

c,6.6,1.0

d,Cl,3.195709E+00,5.780413E-01,1.901646E-01

s,Ar,1.561888E+01,9.399571E+00,5.294684E+00,3.311215E+00,5.648221E-01,2.065069E-01,

6.623105E-02

c,1.6,1.705000E-03,-2.509000E-03,1.186860E-01,-4.024230E-01,7.324230E-01,4.447530E-01

c,6.6,1.0

c,7.7,1.0
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p,Ar,1.648115E+01,1.031973E+01,6.477514E+00,7.679845E-01,2.212524E-01,5.755607E-02

c,1.5,-2.576000E-03,1.244000E-02,-3.908600E-02,5.569660E-01,5.563190E-01

c,5.5,1.0

c,6.6,1.0

d,Ar,3.640558E+00,7.022656E-01,2.353302E-01

B.5 AUG-CC-PV(T+D)Z-CCECP

s,Al,8.212835E+00,4.555659E+00,2.241051E+00,1.298574E+00,6.706170E-01,2.208360E-01,

9.829919E-02,4.356435E-02,1.670994E-02

c,1.8,2.969000E-03,-1.335600E-02,7.908900E-02,-2.317920E-01,-9.787600E-02,4.101350E-01,

5.783300E-01,1.869940E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Al,8.744620E+00,5.193068E+00,2.982244E+00,1.387771E+00,2.586180E-01,9.758792E-02,

3.679630E-02,1.155016E-02

c,1.7,9.110000E-04,-5.434000E-03,9.921000E-03,-3.063100E-02,2.871910E-01,5.444390E-01,

3.013670E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Al,1.814977E+00,3.198831E-01,1.079784E-01,3.499576E-02

f,Al,2.899838E-01,9.958119E-02

s,Si,9.665766E+00,5.482739E+00,2.775639E+00,1.643690E+00,8.488039E-01,3.097429E-01,

1.385535E-01,6.089588E-02,2.487397E-02

c,1.8,2.722000E-03,-1.138100E-02,9.174100E-02,-2.748170E-01,-9.523000E-02,4.248530E-01,

5.844440E-01,1.850260E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Si,9.981886E+00,6.178782E+00,3.676271E+00,1.953541E+00,3.720789E-01,1.446960E-01,

5.503535E-02,1.962433E-02

c,1.7,1.540000E-03,-7.908000E-03,1.617000E-02,-4.200400E-02,3.158970E-01,5.424010E-01,

2.731420E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Si,2.391269E+00,4.580241E-01,1.552119E-01,5.475022E-02

f,Si,3.692667E-01,1.367250E-01

s,P,1.122502E+01,6.369909E+00,3.337544E+00,1.973366E+00,9.581721E-01,4.051031E-01,

1.809439E-01,7.953374E-02,3.594531E-02

c,1.8,2.402000E-03,-9.789000E-03,9.596100E-02,-3.140620E-01,-8.159000E-02,4.443610E-01,

5.855890E-01,1.805490E-01
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c,7.7,1.0

c,8.8,1.0

p,P,1.181951E+01,6.805271E+00,4.141216E+00,2.587294E+00,4.999773E-01,1.978731E-01,

7.557219E-02,2.629990E-02

c,1.7,1.329000E-03,-9.122000E-03,2.398700E-02,-5.448600E-02,3.332890E-01,5.401530E-01,

2.575540E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,P,3.026100E+00,6.204295E-01,2.107737E-01,7.798817E-02

f,P,4.771697E-01,1.716984E-01

s,S,1.271740E+01,7.211320E+00,4.108071E+00,2.297170E+00,1.100207E+00,4.758254E-01,

2.126538E-01,9.413496E-02,3.685113E-02

c,1.8,1.735000E-03,-8.089000E-03,8.814300E-02,-3.418750E-01,-4.562200E-02,5.034010E-01,

5.565790E-01,1.457610E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,S,1.390646E+01,8.407031E+00,5.255629E+00,3.286285E+00,6.403901E-01,2.485725E-01,

9.175393E-02,3.191429E-02

c,1.7,1.974000E-03,-1.109000E-02,2.356400E-02,-5.335700E-02,3.470450E-01,5.322760E-01,

2.592810E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,S,3.607259E+00,7.800180E-01,2.638650E-01,1.045166E-01

f,S,5.634499E-01,2.180021E-01

s,Cl,1.390166E+01,8.099804E+00,4.560530E+00,2.737296E+00,1.194114E+00,5.845004E-01,

2.595187E-01,1.134861E-01,4.329746E-02

c,1.8,2.569000E-03,-7.665000E-03,1.012690E-01,-3.692210E-01,-4.401400E-02,5.185750E-01,

5.588800E-01,1.388690E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Cl,1.638099E+01,1.024131E+01,6.404853E+00,4.006446E+00,7.985489E-01,3.084952E-01,

1.121782E-01,3.891738E-02

c,1.7,2.486000E-03,-1.178300E-02,2.182600E-02,-5.337800E-02,3.565500E-01,5.285790E-01,

2.568250E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Cl,4.382079E+00,9.824805E-01,3.297425E-01,1.371921E-01

f,Cl,7.101264E-01,3.135908E-01

s,Ar,1.489270E+01,8.737185E+00,4.922859E+00,3.075375E+00,1.497732E+00,6.819138E-01,
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3.112818E-01,1.381357E-01,4.594268E-02

c,1.8,-9.380000E-04,1.646700E-02,6.215900E-02,-3.759580E-01,-1.241600E-02,5.160160E-01,

5.453520E-01,1.439860E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

p,Ar,1.937247E+01,1.210980E+01,7.575727E+00,4.739667E+00,9.657799E-01,3.737167E-01,

1.352415E-01,4.591860E-02

c,1.7,2.327000E-03,-9.304000E-03,1.331000E-02,-4.765200E-02,3.643430E-01,5.258920E-01,

2.519590E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

d,Ar,4.947375E+00,1.198435E+00,4.003559E-01,1.698676E-01

f,Ar,8.956061E-01,4.091794E-01

B.6 AUG-CC-PV(Q+D)Z-CCECP

s,Al,7.949914E+00,4.529029E+00,2.432129E+00,1.498216E+00,8.078694E-01,4.166727E-01,

1.939421E-01,8.995064E-02,4.109861E-02,1.578828E-02

c,1.9,4.006000E-03,-1.946100E-02,8.612900E-02,-1.601450E-01,-1.811080E-01,5.199000E-02,

4.505290E-01,5.295550E-01,1.531160E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0

p,Al,9.876031E+00,5.669519E+00,3.471873E+00,1.009537E+00,3.966336E-01,1.728821E-01,

7.330786E-02,3.065228E-02,1.017416E-02

c,1.8,3.550000E-04,-2.650000E-03,2.661000E-03,-4.195600E-02,1.123410E-01,3.727120E-01,

4.744470E-01,1.917390E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

d,Al,1.808743E+00,4.437953E-01,1.953366E-01,7.965274E-02,2.922625E-02

f,Al,4.429014E-01,1.741183E-01,6.441994E-02

g,Al,3.991464E-01,1.661437E-01

s,Si,1.000301E+01,5.840344E+00,3.100974E+00,1.915116E+00,1.108635E+00,4.398912E-01,

2.578032E-01,1.248379E-01,5.743548E-02,2.365888E-02

c,1.9,3.791000E-03,-1.650600E-02,8.843000E-02,-1.625180E-01,-1.976540E-01,8.836700E-02,

4.405530E-01,5.132750E-01,1.497040E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0
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p,Si,1.098641E+01,6.385523E+00,3.886146E+00,1.600543E+00,4.555836E-01,2.091416E-01,

9.417660E-02,4.141521E-02,1.635956E-02

c,1.8,6.460000E-04,-4.084000E-03,6.136000E-03,-4.316700E-02,1.934680E-01,4.180540E-01,

4.034270E-01,1.267590E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

d,Si,2.496123E+00,6.300131E-01,2.729389E-01,1.126100E-01,4.818720E-02

f,Si,5.618072E-01,2.150865E-01,8.743436E-02

g,Si,4.981687E-01,2.263078E-01

s,P,1.144594E+01,6.702436E+00,3.643314E+00,2.230657E+00,1.278947E+00,4.990009E-01,

2.941025E-01,1.542838E-01,7.338672E-02,3.293226E-02

c,1.9,3.636000E-03,-1.631400E-02,1.016420E-01,-2.236860E-01,-1.711240E-01,1.998080E-01,

4.185340E-01,4.581190E-01,1.328930E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0

p,P,1.238219E+01,7.179106E+00,4.380560E+00,2.051358E+00,6.334161E-01,3.006345E-01,

1.361396E-01,5.897863E-02,2.262816E-02

c,1.8,6.610000E-04,-4.157000E-03,5.708000E-03,-5.113500E-02,1.859600E-01,4.147800E-01,

4.097020E-01,1.329160E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

d,P,3.273202E+00,8.687763E-01,3.732263E-01,1.540900E-01,6.591598E-02

f,P,7.321927E-01,2.818867E-01,1.080602E-01

g,P,6.303479E-01,2.562073E-01

s,S,1.304422E+01,7.527028E+00,4.217795E+00,2.548020E+00,1.440352E+00,6.091360E-01,

3.388140E-01,1.790031E-01,8.751556E-02,3.551585E-02

c,1.9,2.456000E-03,-1.244500E-02,1.062420E-01,-2.807790E-01,-1.395360E-01,2.534480E-01,

4.626390E-01,4.018840E-01,1.061460E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0

p,S,1.371753E+01,8.019559E+00,4.884424E+00,2.754758E+00,7.559207E-01,3.478529E-01,

1.550598E-01,6.663373E-02,2.636426E-02

c,1.8,1.109000E-03,-6.752000E-03,1.034900E-02,-5.156400E-02,2.331750E-01,4.287970E-01,

3.736230E-01,1.132400E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0



xxxii | BASIS SETS IN MOLPRO FORMAT

c,9.9,1.0

d,S,3.776298E+00,1.071908E+00,4.629455E-01,1.902392E-01,8.418609E-02

f,S,8.914082E-01,3.265297E-01,1.370203E-01

g,S,7.092373E-01,3.057057E-01

s,Cl,1.407461E+01,8.237384E+00,4.734507E+00,2.858994E+00,1.509973E+00,6.958753E-01,

3.820075E-01,2.194034E-01,1.095167E-01,4.335384E-02

c,1.9,2.929000E-03,-1.088200E-02,1.051570E-01,-3.325820E-01,-9.824000E-02,3.335220E-01,

4.255470E-01,3.602330E-01,1.135250E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0

p,Cl,1.475695E+01,8.897799E+00,5.560378E+00,3.474530E+00,9.358483E-01,4.292111E-01,

1.895415E-01,8.042236E-02,3.189509E-02

c,1.8,1.752000E-03,-1.041900E-02,1.703400E-02,-5.707600E-02,2.443960E-01,4.313190E-01,

3.658380E-01,1.107200E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

d,Cl,4.531908E+00,1.347215E+00,5.809417E-01,2.378593E-01,1.063254E-01

f,Cl,1.121156E+00,4.158898E-01,2.159381E-01

g,Cl,8.543884E-01,3.787343E-01

s,Ar,1.499224E+01,8.819630E+00,5.336511E+00,3.329262E+00,1.474522E+00,8.804411E-01,

4.500511E-01,2.669738E-01,1.336571E-01,5.071317E-02

c,1.9,5.600000E-04,4.352000E-03,9.420400E-02,-3.560670E-01,-1.407840E-01,3.887130E-01,

4.359850E-01,3.452360E-01,1.224840E-01

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

c,10.10,1.0

p,Ar,1.646851E+01,1.026891E+01,6.415053E+00,4.009512E+00,1.132865E+00,5.202681E-01,

2.293103E-01,9.671475E-02,3.742817E-02

c,1.8,2.358000E-03,-1.051600E-02,9.491000E-03,-5.125700E-02,2.507430E-01,4.332380E-01,

3.605570E-01,1.087320E-01

c,6.6,1.0

c,7.7,1.0

c,8.8,1.0

c,9.9,1.0

d,Ar,4.977088E+00,1.628626E+00,7.053144E-01,2.878835E-01,1.284648E-01

f,Ar,1.408786E+00,5.409325E-01,2.948560E-01

g,Ar,1.023726E+00,4.517628E-01
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