
Classification of high-dimensional

mislabelled data and online algorithms

for high-dimensional streaming data

Peiyun Hu

PHD

UNIVERSITY OF YORK

MATHEMATICS

JUNE, 2023

Abstract

Motivated by extensive discussions and applications of big data, we delve

into the realm of sparse data, specifically high-dimensional data characterised by

a larger number of predictors than sample sizes. The advantages and challenges

associated with high-dimensional data have been thoroughly discussed (Donoho

et al., 2000). Our research primarily focuses on addressing the challenges on

two prevalent domains: Classification with mislabelled data and Online algorithms

for streaming data. To overcome these challenges, we incorporate regularisation

methods and utilise Sure Independence Screening (SIS) and Iteratively Sure

Independence Screening (ISIS) (Fan and Lv, 2008, Fan and Song, 2010).

In Chapter 3, we introduce a two-step estimation method using resampling

for classification with mislabelling, offering enhanced cost-effectiveness over

conventional data cleansing. Simulations reveal that direct training on corrupted

datasets leads classifiers like Logistic Regression (LR) to perform akin to random

guessing. Our method greatly enhances LR classifier efficiency, matching the

performance of classifiers on perfectly labelled datasets. Notably, our method

aligns closely with the performance of the Bayes classifier in diverse contexts.

Real data analysis, using a deliberately mislabelled Framingham Heart Study

dataset, underscores our classifier’s superiority over one trained on raw data

with mislabelling, comparable with one trained on impeccable data.

In Chapter 4, we explore incremental algorithms for streaming data, focusing

on Generalised Linear Models (GLMs). Our methodologies parallel offline tech-

niques in both low and high-dimensional analyses but excel in computational

efficiency. A highlight of our approach is the avoidance of storing specific data,

optimising resources and boosting data security. Analysing data from the Na-

tional Automotive Sampling System Crashworthiness Data System showcases

our method’s superiority in estimation accuracy, variable selection, and model

interpretation. Our technique significantly outperforms those neglecting variable

selection and aligns with conventional offline methods.

2

Contents

Abstract 2

Contents 3

List of Tables 7

List of Figures 15

Acknowledgements 16

Declarations 18

1 Introduction 20

1.1 Research objective 1: Classification with mislabelled data 21

1.1.1 Background and motivation . 21

1.1.2 Contributions of our method . 23

1.2 Research objective 2: Online algorithms for streaming data 24

1.2.1 Background and motivation . 24

1.2.2 Contributions of our method . 26

1.3 Structure of the thesis . 28

1.4 Preliminary notations and assumption of sparsity 28

2 Literature review 30

2.1 Variable selection . 30

2.2 Penalised generalised linear model . 42

2.3 Renewable estimation . 44

2.4 High-dimensional classification . 50

2.5 Classification with imperfect labels . 57

3 Classification with mislabelled data 62

3.1 Methodology . 63

3.1.1 The proposed classifier . 64

3.1.2 Computational algorithm . 66

3.2 Evaluation metrics for simulation study 68

3.3 Mislabelled dataset generation and simulation study set-up 71

3

3.3.1 Resampling for the mislabelled dataset 72

3.3.2 Simulation study . 73

3.4 Determining the tuning parameter for the penalty function in the

presence of mislabelled data . 82

3.4.1 Modified Leave-P-Out Cross-Validation (mLPOCV) 83

3.4.2 Selection of validation data from the unresampled dataset for

second-step estimation . 83

3.4.3 Selection of validation data from the resampled dataset for

second-step estimation . 84

3.4.4 Selection of validation data from resampled and unresampled

datasets for second-step estimation 84

3.4.5 Simulation study . 85

3.5 The order of estimation in the second-step estimation 87

3.5.1 Simulation study . 88

3.6 Estimation using oracle information of flipping probabilities 91

3.6.1 η0 is known . 91

3.6.2 η1 is known . 92

3.6.3 Both η0 and η1 are known . 93

3.6.4 Simulation study . 94

3.7 Classifiers from different ways to cope with mislabelling 96

3.7.1 Estimation on datasets with all labels corrected 96

3.7.2 Estimation on raw datasets . 97

3.7.3 Estimation on combined datasets having resampled and unre-

sampled data without considering flipping probabilities 98

3.7.4 Simulation study . 98

3.8 The mislabelling probabilities are estimated from the mislabelling

ratios obtained from the resampled dataset 105

3.8.1 Methodology . 106

3.8.2 Simulation study . 106

3.9 Estimation with the Independence Screening (IS) method 113

3.9.1 Methodology . 114

3.9.2 Simulation study . 117

3.10 Estimation with the Iterative Independence Screening (IIS) method . . 123

4

3.10.1 Methodology . 124

3.10.2 Simulation study . 128

3.11 Real data analysis . 134

3.11.1 Description of the dataset and how to reclassify the perfect

labels with noise . 135

3.11.2 Detailed analysis . 137

4 Online algorithms for streaming data 152

4.1 Model specification . 153

4.2 Methodology . 155

4.2.1 Offline penalised maximum likelihood estimation algorithm . . 155

4.2.2 Incremental algorithm for penalised maximum likelihood esti-

mation . 156

4.2.3 Simulation study setup . 161

4.2.4 Simulation study . 162

4.3 Determining the tuning parameter for the penalty function in renew-

able estimation . 170

4.3.1 Modified Leave-P-Out Cross-Validation (mLPOCV) for stream-

ing data . 170

4.3.2 Two algorithms of search processes 171

4.3.3 Simulation study: Comparison of two search methods for tun-

ing parameter selection . 173

4.3.4 Simulation study: Comparing the algorithm with SCAD penalty

function to the one without penalty function 180

4.3.5 Simulation study: Tuning parameter selection on different sizes

of validation data in mLpOCV 183

4.4 Iteratively updated tuning parameter 187

4.4.1 Incremental algorithm for penalised maximum likelihood esti-

mation with iteratively updated penalty 188

4.4.2 Simulation study . 190

4.5 The incremental algorithm with Independence Screening (IS) and its

variant approaches . 200

4.5.1 The incremental algorithm with IS 200

5

4.5.2 The incremental algorithm with ISV1: Variant 1 of IS 202

4.5.3 The incremental algorithm with ISV2: Variant 2 of IS 202

4.5.4 Simulation study: Comparative analysis of online algorithms

with SCAD, IS-SCAD, ISV1-SCAD and ISV2-SCAD for the case

of p < nb . 203

4.6 The incremental algorithm with Iterative Independence Screening (IIS)

and its variant approach . 207

4.6.1 The incremental algorithm with IIS 208

4.6.2 The incremental algorithm with IISV1: Variant 1 of IIS 209

4.6.3 Simulation study: Comparative analysis of online algorithms

with IS-SCAD, IS
V1

-SCAD, IIS-SCAD, and IIS
V1

-SCAD for the

cases of nb < p < Nb and p > Nb 210

4.6.4 Simulation study: Comparative analysis of online algorithms

with IIS-SCAD and IIS
V1

-SCAD, along with the offline algo-

rithm with IIS-SCAD for the case of p > Nb 216

4.7 Real data analysis . 224

5 Discussion 238

5.1 Research objective 1: Classification with mislabelled data 238

5.2 Research objective 2: Online algorithms for streaming data 241

References 253

A Appendix: Derivation of estimators for Classification with mislabelled data254

A.1 Two-step estimation method using LQA and Newton-Raphson algorithm254

B Appendix: Tables for Classification with mislabelled data 258

C Appendix: Tables for Online algorithms for streaming data 262

C.1 Simulation study . 262

C.2 Real data analysis . 268

6

List of Tables

3.1 AMRSEs and MMRSEs (in brackets) of β̂s 76

3.2 AMRSEs and MMRSEs (in brackets) of η̂0s 76

3.3 AMRSEs and MMRSEs (in brackets) of η̂1s 76

3.4 SDs and ESEs for non-zero β15×1 coefficient estimates 76

3.5 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 77

3.6 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for η0 77

3.7 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for η1 77

3.8 Excess risks of Cβ̂s . 78

3.9 AMRSEs and MMRSEs (in brackets) of β̂s 79

3.10 AMRSEs and MMRSEs (in brackets) of η̂0s 79

3.11 AMRSEs and MMRSEs (in brackets) of η̂1s 80

3.12 SDs and ESEs for non-zero β coefficient estimates 80

3.13 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 80

3.14 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for η0 81

3.15 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for η1 81

3.16 Excess risks of Cβ̂s . 81

3.17 AMRSEs and MMRSEs (in brackets) of β̂s from methods using differ-

ent validation datasets . 87

7

3.18 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 87

3.19 Excess risks of various classifiers and computing time (in brackets) . . 87

3.20 AMRSEs and MMRSEs (in brackets) of β̂ from the methods employing

different estimation orders for the three unknown parameters 90

3.21 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 90

3.22 Excess risks of Cβ̂s . 91

3.23 AMRSEs and MMRSEs (in brackets) of β̂s, β̂|η0
s, β̂|η1

s and β̂|η0,η1
s. . . 95

3.24 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 96

3.25 Excess risks of various classifiers. 96

3.26 AMRSEs and MMRSEs (in brackets) of estimates of β from different

methods handling mislabelled data using various approaches 101

3.27 SDs and ESEs for non-zero β15×1 coefficient estimates 101

3.28 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 102

3.29 Excess risks of various classifiers . 102

3.30 AMRSEs and MMRSEs (in brackets) of estimates of β from different

methods handling mislabelled data using various approaches 104

3.31 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 104

3.32 Excess risks of various classifiers . 104

3.33 Averaged mislabelling ratios of full-size generated and resampled

datasets. 109

3.34 AMRSEs and MMRSEs (in brackets) of β̂s and β̂|M̂y|0,M̂y|1
s 109

8

3.35 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 109

3.36 Excess risks of classifiers Cβ̂s and Cβ̂
|M̂y|0,M̂y|1

s, and computing time (in

brackets) . 109

3.37 Average mislabelling ratios of full-size generated and resampled datasets112

3.38 AMRSEs and MMRSEs (in brackets) of β̂s and β̂|M̂y|0,M̂y|1
s 112

3.39 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 112

3.40 Excess risks of Cβ̂s and Cβ̂
|M̂y|0,M̂y|1

s . 113

3.41 AMRSEs and MMRSEs (in brackets) of β̂s and β̂ISs 120

3.42 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 120

3.43 Excess risks of Cβ̂s and Cβ̂IS
s, and computing time and memory utli-

sations (in brackets) . 120

3.44 AMRSEs and MMRSEs (in brackets) of β̂ISs and β̂∗
ISs 122

3.45 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 122

3.46 Excess risks of Cβ̂IS
s and Cβ̂∗

IS
s . 122

3.47 AMRSEs and MMRSEs (in brackets) of β̂ISs and β̂IISs 130

3.48 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 130

3.49 Excess risks of Cβ̂IS
s and Cβ̂IIS

s, and computing time and memory

utilisations (in brackets) . 131

3.50 AMRSEs and MMRSEs (in brackets) of β̂IISs and β̂∗
IISs 132

3.51 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 133

3.52 Excess risks of Cβ̂IIS
s and Cβ̂∗

IIS
s . 133

9

3.53 Description of the dataset . 137

3.54 mislabelling ratios of the resampled datasets with varying sizes. 140

3.55 Misclassification rates of various classifiers (in %). 140

3.56 Comparisons of different estimates under the setting of resampled

data with a size of m = 292 . 141

3.57 Comparisons of different estimates under the setting of resampled

data with a size of m = 585 . 142

3.58 Comparisons of different estimates under the setting of resampled

data with a size of m = 877 . 143

3.59 Comparisons of different estimates under the setting of resampled

data with a size of m = 1170 . 144

3.60 Comparisons of different estimates under the setting of resampled

data with a size of m = 1462 . 145

3.61 Averaged mislabelling ratios of full-size generated and resampled

datasets . 147

3.62 Misclassification rates of various classifiers (in %) 147

3.63 Comparisons of different estimates of CASE 1 under the setting of

resampled data with a size of m = 1170 148

3.64 Comparisons of different estimates of CASE 2 under the setting of

resampled data with a size of m = 1170 149

3.65 Comparisons of different estimates of CASE 3 under the setting of

resampled data with a size of m = 1170 150

4.1 AMRSEs and MMRSEs (in brackets) of β̃bs and β̂∗s 165

4.2 SDs and ESEs for non-zero β12×1 coefficient estimates 165

4.3 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 165

4.4 Excess risks of Cβ̃s and Cβ̂∗s, and computing time and memory utili-

sations (in brackets) . 166

4.5 AMRSEs and MMRSEs (in brackets) of β̃bs and β̂∗s 168

4.6 SDs and ESEs for non-zero β150×1 coefficient estimates 169

10

4.7 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 169

4.8 Excess risks of Cβ̃b
s and Cβ̂∗

b
s, and computing time and memory utili-

sations (in brackets) . 169

4.9 AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways 175

4.10 SDs and ESEs for non-zero β coefficient estimates 175

4.11 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 175

4.12 Excess risks of Cβ̃One-Way
s and Cβ̃Two-Way

s, and computing time (in brackets)175

4.13 AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways 177

4.14 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 177

4.15 Excess risks of Cβ̃One-Way
s and Cβ̃Two-Way

s, and computing time (in brackets)177

4.16 AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways 179

4.17 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 179

4.18 Excess risks and computing time (in brackets) 179

4.19 AMRSEs and MMRSEs (in brackets) of β̃s and β̃λ=0s 182

4.20 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 183

4.21 Excess risks of classifiers Cβ̃s and Cβ̃λ=0
s 183

4.22 AMRSEs and MMRSEs (in brackets) of β̃s 185

4.23 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 185

4.24 Excess risks of Cβ̃s and computing time (in brackets) 185

4.25 AMRSEs and MMRSEs (in brackets) of β̃2s and β̃20s 187

11

4.26 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 187

4.27 Excess risks of Cβ̃b
s and computing time (in bracket) 187

4.28 AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s 192

4.29 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 193

4.30 Excess risks of various classifiers and computing time (in brackets) . . 193

4.31 AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s 196

4.32 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 196

4.33 Excess risks of Cβ̃λ
s, Cβ̃λ∗

s and Cβ̂∗s, and computing time (in brackets) 196

4.34 AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s 198

4.35 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 199

4.36 Excess risks of classifiers Cβ̃λ
s, Cβ̃λ∗

s and Cβ̂∗s, and computing time

(in brackets) . 199

4.37 AMRSEs and MMRSEs (in brackets) of β̃SCADs, β̃IS−SCADs, β̃ISV1−SCADs

and β̃ISV2−SCADs . 206

4.38 SDs and ESEs for non-zero β150×1 coefficient estimates 206

4.39 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 207

4.40 Excess risks of various classifiers and computing time (in brackets) . . 207

4.41 AMRSEs and MMRSEs (in brackets) of β̃IS−SCADs, β̃ISV1−SCADs and

β̃IIS−SCADs . 212

4.42 SDs and ESEs for non-zero β350×1 coefficient estimates 212

4.43 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 213

12

4.44 Excess risks of various classifiers and computing time 213

4.45 AMRSEs and MMRSEs (in brackets) of β̃IS−SCADs, β̃ISV1−SCADs, β̃IIS−SCADs

and β̃IISV1−SCADs. 215

4.46 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 215

4.47 Excess risks of various classifiers and computing time 216

4.48 AMRSEs and MMRSEs (in brackets) of β̃IIS−SCADs, β̃IISV1−SCADs and

β̂∗
IIS−SCADs . 219

4.49 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 219

4.50 Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂IIS−SCAD
s, and comput-

ing time and memory utilisations (in brackets) 219

4.51 AMRSEs and MMRSEs (in brackets) of estimates 221

4.52 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 221

4.53 Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂∗
IIS−SCAD

s, and comput-

ing time and memory utilisations (in brackets) 222

4.54 AMRSEs and MMRSEs (in brackets) of estimates 223

4.55 Average numbers of incorrect zero estimates for non-zero coefficients

and incorrect non-zero estimates for zero coefficients, along with the

coverage probabilities (in parentheses) for β 223

4.56 Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂∗
IIS−SCAD

s, and comput-

ing time and memory utilisations (in brackets) 224

4.57 Variable Descriptions . 227

4.58 Comparisons of β̂∗
84,λ=0 and β̃84,λ=0 with β̂∗, β̃84,λ and β̃84,λ∗ 230

4.59 Comparisons of β̂∗
84,λ , β̃84,λ and β̃84,λ∗ 236

B.1 SDs and ESEs for non-zero β120×1 coefficient estimates 258

B.2 SDs and ESEs for non-zero β150×1 coefficient estimates 258

B.3 SDs and ESEs for non-zero β15×1 coefficient estimates 259

B.4 SDs and ESEs for non-zero β15×1 coefficient estimates 259

13

B.5 SDs and ESEs for non-zero β10×1 coefficient estimates 260

B.6 SDs and ESEs for non-zero β10×1 coefficient estimates 260

B.7 SDs and ESEs for non-zero β150×1 coefficient estimates 260

B.8 SDs and ESEs for non-zero β350×1 coefficient estimates 261

B.9 SDs and ESEs for non-zero β3000×1 coefficient estimates 261

B.10 SDs and ESEs for non-zero β coefficient estimates 261

C.1 SDs and ESEs for non-zero β15×1 coefficient estimates 262

C.2 SDs and ESEs for non-zero β15×1 coefficient estimates 262

C.3 SDs and ESEs for non-zero β50×1 coefficient estimates 263

C.4 SDs and ESEs for non-zero βp×1 coefficient estimates 263

C.5 SDs and ESEs for non-zero β100×1 coefficient estimates 264

C.6 SDs and ESEs for non-zero β coefficient estimates 264

C.7 SDs and ESEs for non-zero βp×1 coefficient estimates 265

C.8 SDs and ESEs for non-zero β150×1 coefficient estimates 265

C.9 SDs and ESEs for non-zero β1900×1 coefficient estimates 266

C.10 SDs and ESEs for non-zero β3000×1 coefficient estimates 266

C.11 SDs and ESEs for non-zero β3000×1 coefficient estimates 267

C.12 SDs and ESEs for non-zero β3000×1 coefficient estimates 267

C.13 Comparison of misclassification rates (%) of various classifiers 268

C.14 Comparison of misclassification rates (%) for various classifiers 269

14

List of Figures

4.1 Trace plots for the coefficient estimates of “INTERCEPT”, “YOUNG”,

and “OLD”. 231

4.2 Trace plots for the coefficient estimates of “SEX”, “PARUSE” and “LGT-

COND”. 231

4.3 Trace plots for the coefficient estimates of “DRINKING”, “SPLIMIT”

and “TRCTLFCT”. 232

4.4 Trace plots for the misclassification rates of renewable classifiers and

offline classifiers. 232

4.5 Trace plots for the misclassification rates of two penalised renewable

classifiers and the penalised offline classifier. 237

15

Acknowledgements

Looking back on my PhD journey, there are numerous individuals to whom I am

deeply grateful.

Firstly, I wish to express my profound gratitude to my supervisor, Prof. Wenyang

Zhang, whose invaluable guidance and mentorship have been instrumental. His

proficiency, detailed feedback, and continuous support have been crucial in shaping

my research and propelling me to reach my fullest potential.

I extend my genuine thanks to my Thesis Advisory Panel members, Prof. Degui Li

and Prof. Marina Knight. Engaging in dialogues with them has always been uplifting;

their insightful perspectives, proactive suggestions, and encouragement have been

key assets on my research journey.

I am grateful to my fellow PhD candidates at the Mathematics Department of

the University of York, particularly Álvaro Guinea, Andrew Scoones, David Serrano

Blanco, Diego Vidal, Rutvij Bhavsar, and countless others. Your support, assistance,

and dedicated spirit have inspired me to overcome many obstacles. To my colleagues

in G/N/160, Asma Alalyani, Kuntal Sengupta, and Leiws Wooltorton, I want to

express my gratitude for your wonderful companionship and unwavering support. I

will genuinely miss our daily afternoon tea rituals.

My sincere appreciation also goes to Dr. Ben Powell, who provided valuable help,

engaging discussions, and profound insights while organising the reading group.

This platform offered a wealth of inspiration derived from the diverse viewpoints of

others.

Special acknowledgement goes to the friends I made in York, including Vilasini

Venkatesh, who has not only inspired me but has also provided continuous encour-

agement and support. I would like to express my gratitude to José Almanza Medina

for your kind help and sincere friendship. I am grateful to Sue Anthony and Simon

Anthony, who have always welcomed me and treated me like family. To my film

night group friends, including Roberta Merli, Patrycja Chaba, Lixin Chen, Anne

Williamson, Yajie Gu, and many others, thank you for the delightful evenings and

your steadfast support. To Lois Laurine Folkard and Nicholas Sheridan Folkard,

my first close friends in York, I am truly thankful for the tremendous help, advice,

understanding, and care you have provided. Words cannot adequately express my

16

deep appreciation for these invaluable friendships.

Most notably, my heartfelt thanks go out to my parents Yuanzhang Hu and Qutao

Chen, and to the entire Chen family for their support throughout my life. Their

faith in me, understanding, and unconditional love have been my steady source of

motivation and resilience.

Finally, I want to honour the courage of my past self, who, five years ago, dared to

pursue her dreams. As I embark on the next phase of my journey, I aim to uphold this

courage, bravery, and curiosity, backed by all the love and support I have received.

17

Declarations

I declare that this thesis presents original work and that I am the sole author. The

research conducted in this thesis has been carried out under the supervision of Prof.

Wenyang Zhang and has not previously been submitted for an award at this or any

other university.

The literature review in Chapter 2 provides key ideas related to this thesis, which

include:

• Section 2.1 carefully discusses the methods of variable selection, specifically

“Variable selection via nonconcave penalized likelihood and its oracle proper-

ties” by Fan and Li (2001) and “Sure independence screening for ultrahigh-

dimensional feature space” by Fan and Lv (2008).

• Section 2.2 presents Generalised Linear Models (GLMs) based on the book

“Generalized linear models” by McCullagh (1983), and various variable selection

methods for GLMs in sparse and high-dimensional data, primarily focusing

on “Ultrahigh dimensional feature selection: beyond the linear model” by Fan

et al. (2009) and “Sure independence screening in generalized linear models

with np-dimensionality” by Fan and Song (2010).

• Section 2.3 discusses “Renewable estimation and incremental inference in gen-

eralized linear models with streaming data sets”, as proposed by Luo and Song

(2020).

• In Section 2.4, high-dimensional classification methods are introduced. The

key ideas of our study are primarily based on the variable selection methods

presented in “Sure independence screening for ultrahigh-dimensional feature

space” and by Fan and Lv (2008) and “Sure independence screening in gen-

eralized linear models with np-dimensionality” Fan and Song (2010). These

methods enhance the performance of traditional penalised likelihood methods.

• Section 2.5 explores the topic of classification with mislabelled data and includes

the study on “Classification with imperfect training labels” by Cannings et al.

(2020).

18

I confirm that all the references cited in this declaration are accurate and complete.

Any contributions from other sources have been appropriately referenced.

19

1 Introduction

The advent of advanced technology has revolutionised data collection, giving rise to

the era of big data. Big data analysis has paved the way for transformative analyses

across various industries. It empowers organisations to make informed decisions,

improve operational efficiency, gain insights into consumer behaviour, advance

healthcare practices, optimise management strategies, and foster innovation. Yet new

challenges arise with the abundance of data.

Frequently, the data collected in real-world exhibit a sparse nature, meaning that

they contain a mixture of both relevant and irrelevant features. During the data

collection process, these irrelevant features are often intermixed with the pertinent

ones, and manually identifying and filtering out unimportant information are chal-

lenging and impractical tasks. These insignificant variables can have a non-negligible

adverse impact on estimation accuracy, model interpretability, computing burdens,

and other factors. Moreover, they can lead to failures in the analysis using traditional

methods such as Ordinary Least Squares (OLS) regression (Sirimongkolkasem and

Drikvandi, 2019). Accordingly, we investigate this problem by taking into account the

assumption of sparsity. Our specific focus is on analysing scenarios where the data

comes from sparse models. In this context, a “sparse model” is characterised by the

majority of parameters or variables having zero values, indicating their insignificance

and little relevance in the analysis.

In our study, we focus on two commonly encountered data types: mislabelled

classification datasets and streaming data. Classification problems are extensively

studied in various domains, such as spam email detection, sentiment analysis, and

disease diagnosis. However, in real-world scenarios, collecting mislabelled data is a

common occurrence and can arise due to various factors. Traditional data cleansing

methods, which involve verifying each label in the dataset, are often impractical and

less feasible in such situations. Streaming data refers to data that is continuously

generated and observed over time, and it has become increasingly prevalent in

various domains such as sensor networks, social media platforms, financial markets,

and online transaction records. Unlike traditional static datasets, streaming data is

constantly updated and evolving, reflecting real-time events. As a result, traditional

offline methods are less suitable for analysing this type of data due to their limited

20

ability to handle real-time updates and evolving patterns.

These data types present unique challenges within the realm of big data, pri-

marily stemming from the growing dimensions of datasets. In order to tackle these

challenges, we are driven to develop innovative approaches tailored to each specific

data type. In this chapter, we provide a comprehensive background and motivation

for each topic individually. We aim to highlight the complexity and unique chal-

lenges associated with sparse data in each topic. Furthermore, we present our novel

approaches to effectively address the challenges that have remained unsolved in

previous studies.

1.1 Research objective 1: Classification with mislabelled data

1.1.1 Background and motivation

Classification is pervasive in our daily lives with broad applications such as disease

diagnosis, toxic comment detection, and many others. In disease diagnosis, the aim

is to forecast the presence or absence of a disease based on the results of medical tests,

symptoms, and patient information, thereby facilitating medical decision-making

procedures. Toxic comment identification has gained considerable interest and is a

hot topic of debate among various companies, including TikTok and Instagram, with

the objective of enhancing the moderation of online communities and encouraging

more constructive and respectful dialogues.

For this extensively studied topic, we focus specifically on supervised classifica-

tion, which involves using a training dataset consisting of input samples with known

labels. In our study, we use the term “classification” as a simplified reference to

“supervised classification.”

Large datasets with a substantial number of samples and predictors are now easily

obtainable, ensuring that adequate information and key features are included in the

study. Researchers can benefit from the abundance of information available in their

data, as it enables them to obtain more accurate and interpretable results. However,

in the classification problem, we have identified two main challenges that arise in

the presence of large datasets, which are the curse of growing dimensions and the

presence of mislabelling. These obstacles can adversely affect the analysis. Current

research tends to address these two issues separately.

21

Among the collected features, many may have weak correlations with the re-

sponse variables, yet these are difficult to identify manually because they often

correlate with other important features. With the increase in dimensions, traditional

methods may underperform or even fail when handling high-dimensional datasets.

For high-dimensional classification, conventional and popular classifiers such as

the Naive Bayes classifier, Linear Discriminant Analysis (LDA), the K-th-Nearest-

Neighbor (KNN) classifier, Support Vector Machines (SVM), and Logistic Regression

(LR) struggle to cope. Fan et al. (2011) provide a comprehensive overview of these

commonly used classification methods, explaining in detail the reasons for their

shortcomings in high-dimensional classification problems.

In the process of data collection, mislabelling can occur, and it is a common issue

that is often unavoidable. Several factors can cause mislabelling, including manual

errors, inaccurate data collection methods, noisy or unreliable sources, or incomplete

or insufficient labeling guidelines. mislabelling can disrupt the study and influence

decision-making. Although Cannings et al. (2020) have identified conditions under

which classifiers such as KNN, SVM, and LDA perform consistently when trained on

imperfectly labeled datasets compared to perfectly labeled ones, and they also claim

that the discovery of imperfect labels can enhance efficiency. However, this does not

hold true for all classifiers. If the classifier is trained on the corrupted dataset, as

conducted by Cannings et al. (2020), without addressing the mislabelling issue and

using the raw collected data directly, LR is noticeably impacted by mislabelled data.

In the simulation example presented in the subsequent section, we have observed

that training the LR classifier on a corrupted dataset without handling mislabelling

leads to a performance that is no better than random guessing. While the prevailing

methods for handling mislabelled data involve either correcting them or deleting

them. In this scenario, each label in the dataset must be verified. It should be noted

that on the one hand, it is very costly to check each label in the dataset, especially for

datasets with large sample sizes. On the other hand, the traditional data-cleaning

approaches view mislabels as outliers. However, instead of acting like random

outliers, noisy labels behave remarkably similarly to true labels (Li et al., 2017),

making it more challenging to identify them.

Among the various classification methods available, we specifically focus on

studying the logistic regression (LR) classifier for addressing two-class classification

22

problems. The challenges of increasing dimensions and mislabelled data often occur

concurrently, yet little work has simultaneously discussed these issues. Therefore,

our research interest is in enhancing the performance of LR classifiers specifically for

sparse data with mislabelling.

To make LR functional for sparse data, variable selection must be considered.

Regularisation is a widely used method for variable selection, with several methods

such as Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996),

Smoothly Clipped Absolute Deviation Penalty (SCAD) (Fan and Li, 2001), Minimax

Concave Penalty (MCP) (Zhang, 2010), and adaptive LASSO (Zou, 2006) extensively

discussed. To achieve estimator properties such as unbiasedness, sparsity, conti-

nuity, and oracle property, we incorporate SCAD in our model. To simultaneously

select variables and estimate the unknown parameter in the model, we use the Lo-

cal Quadratic Approximated(LQA) function proposed by Fan and Li (2001) in our

penalised likelihood method.

While the SCAD penalty has shown good performance for low-dimensional sparse

data (Fan and Li, 2001), its effectiveness may not be consistent for high-dimensional

data. Therefore, alternative methods need to be introduced in the context of high-

dimensional data. Fan and Lv (2008) propose Sure Independence Screening (SIS)

and its extension, Iterative Sure Independence Screening (ISIS). These methods are

designed to effectively reduce dimensions and have been successful in handling

high-dimensional or ultra-high-dimensional data. The methods have also shown

improvements on previous regularisation methods such as SCAD, LASSO, and MCP,

particularly in terms of variable selection performance and model interpretability,

especially for high-dimensional data.

1.1.2 Contributions of our method

For corrupted datasets, it is less feasible to scrutinise and correct each label, but it is

possible to inspect a subset of the dataset. Hence, we consider a resampling method

in our study. We explore the problem by considering the estimation of flipping

probabilities. Specifically, our proposed methods involve two-step estimations: the

first step estimates the parameters associated with the LR classifier and the flipping

probabilities using the resampled data. Then, using the estimates obtained from the

23

first step as initial values, the second step employs iterative algorithms to estimate

these unknown parameters, using both resampled and unresampled data.

We employ regularisation methods specifically designed for low-dimensional

sparse data and incorporate SIS or ISIS (Fan et al., 2009, Fan and Song, 2010) into

the penalised likelihood method for sparser or high-dimensional data. Through

simulated examples, we have observed a remarkable improvement in the perfor-

mance of the LR classifier when utilising our proposed method, compared to the

method that ignores mislabelling in the dataset. This improvement is also evident

from the results, where the LR classifier achieves performance that is close to Naive

Bayes classifiers and demonstrates competitive performance with classifiers trained

on fully corrected labeled datasets. We also discuss alternative methods, including

one that resamples part of the data without considering the flipping probabilities

during the estimation process, one that assumes perfect knowledge of the parameters

associated with flipping probabilities, and one that simplifies the estimation of flip-

ping probabilities based on the mislabelling ratios in the resampled datasets. While

some of these methods are easier to implement and some are considered ideal but

unrealistic, our proposed method still demonstrates competitiveness among them, as

demonstrated by the simulation results. Our proposed methods demonstrate robust

performance across various scenarios and excel in variable selection for both low and

high-dimensional datasets with mislabelling. Additionally, a real-data study on coro-

nary heart disease prediction demonstrates the superior accuracy of our classifiers

compared to alternative methods discussed in this context.

1.2 Research objective 2: Online algorithms for streaming data

1.2.1 Background and motivation

Streaming data refers to data that is continuously generated and sequentially ob-

served, a phenomenon that has notably increased in recent years. Examples of

streaming data abound, including COVID test data during the pandemic, data from

social media platforms, e-commerce data, real-time stock data, and more. Streaming

data can provide researchers with real-time information and the ability to update

models in real time for making immediate decisions, such as policy adjustments

or trading actions. However, this availability of streaming data also presents new

24

challenges for traditional offline methods. These challenges involve not only computa-

tional efficiency but also the significant demands on storage space and computational

resources. In traditional offline scenarios, when new observations are continuously

collected, these methods analyse the new data together with the entire historical

dataset, which leads to increased time consumption that can impact decision-making.

Additionally, these methods necessitate significant storage space to retain detailed

information about the observations, placing a considerable burden on resources.

Therefore, traditional offline algorithms that repeatedly analyse the entire dataset are

no longer suitable for streaming data scenarios. As a result, alternative approaches

are required to effectively study streaming data.

To overcome these limitations, online methods have been developed for the

analysis of streaming data. Unlike offline methods that repeatedly analyse the

entire dataset, online methods process the data in a sequential manner. Each new

observation or batch of data is analysed as it arrives and then discarded, leading to

improved computational efficiency and optimal resource utilisation. Additionally,

online methods often rely on summary statistics instead of retaining all the details of

the observations, ensuring the privacy and security of sensitive information.

When the statistical properties align with specific linear structures of the data,

their decomposition and updating with streaming data can be relatively straightfor-

ward. This property is exemplified in the work of Luo and Song (2020), where they

demonstrate it using the example of the sample mean. Specifically, linear regression,

which is a specific case of generalised linear models (GLMs), takes advantage of

these simplifications. Our study specifically focuses on the development of online

algorithms for the more general case of Maximum Likelihood Estimation (MLE).

Unlike statistics that follow linear patterns with data, updating MLEs with non-linear

forms of data can be more challenging, primarily due to the absence of closed-form

solutions. Therefore, our goal is to explore and develop innovative methods for re-

newable MLEs with streaming data. We place emphasis on achieving computational

efficiency without compromising the attainment of sufficient statistics for online

statistical inference.

For renewable MLE, the commonly used online algorithms include the first-order

online algorithm Stochastic Gradient Descent (SGD) and one of its notable variants

known as implicit SGD, proposed by Toulis et al. (2014). Despite the appealing

25

features of SGD and numerous variants, such as computational efficiency and ease of

implementation, these first-order estimation methods fail to provide information for

online statistical inference. Specifically, they lack useful information to approximate

the full Hessian matrix.

Newton-Raphson, a second-order estimation method, is a traditional and exten-

sively utilised offline method for GLM. Like other offline methods, it poses challenges

in terms of computational efficiency and resource demands. Several adaptations have

been proposed to address the issue of computing redundancy, with Quasi-Newton

methods being one of the notable approaches. These methods aim to estimate the

Hessian matrix without the need for calculating the entire matrix at each iteration

of the estimation process. In the context of analysing streaming data, Schraudolph

et al. (2007) have adapted the BFGS algorithm and a variant called limited storage

BFGS. They have named their methods online adapted BFGS (oBFGS) and online

limited storage BFGS (oLBFGS), respectively. Bordes et al. (2009) introduce the Quasi-

Newton SGD (SGD-QN) method, designed to utilise the second-order information

while retaining computational efficiency comparable to SGD. However, all these

methods lack helpful information to estimate the full Hessian matrix.

In order to achieve computational efficiency while preserving important statistical

information, Luo and Song (2020) propose an improved method. They demonstrate

that the summary statistics of their approach are sufficient and result in minimal infor-

mation loss compared to offline methods. Furthermore, their method demonstrates

remarkable computational efficiency, positioning it as a competitive alternative to

the traditional Newton-Raphson algorithm. However, their work solely addresses

low-dimensional dense data, with no provisions for sparsity.

1.2.2 Contributions of our method

Existing methods for high-dimensional streaming data from GLMs are inadequate in

achieving both computational efficiency and sufficient statistical attainment. This gap

in the existing methodologies prompts our interest in extending the advantageous

method of Luo and Song (2020) to a more general case, considering sparse streaming

data and even high-dimensional streaming data problems.

In our study, we introduce several unique approaches. By incorporating regular-

26

isation methods to reduce dimensions and select variables, our proposed method

integrates a penalty term into the model. The LQA function (Fan and Li, 2001) is

applied to the incremental updating penalised likelihood algorithm, which enables

simultaneous online estimation and variable selection. Given the characteristics of

the online method, the approximation for the penalty function with respect to the pa-

rameter can be based solely on historical statistics or on the statistics trained using the

new data currently involved. Based on this consideration, we propose two penalised

online methods. Both methods demonstrate excellent performance in simulation

studies, exhibiting high estimation accuracy comparable to offline MLEs, effective

variable selection capabilities, and the ability to generate more interpretable models

than the offline method. In addition to the proposed penalised online methods, we

also incorporate SIS and ISIS (Fan et al., 2009, Fan and Song, 2010) into the approaches.

Considering the continuous updating nature of streaming data, we have also devel-

oped variants of the screening methods that incorporate historical statistics into the

proposed online methods. These variants take into account the evolving nature of the

data and utilise historical information for improved performance. In general, these

screening methods demonstrate competitive performance in terms of variable selec-

tion within the framework of penalised estimation for high-dimensional streaming

data. They are able to effectively identify relevant variables while achieving accurate

estimation simultaneously.

The capabilities of our proposed methods are evidenced through various simu-

lated scenarios and comparisons with existing techniques. Multiple types of stream-

ing data are examined in this study, including datasets with varying training dataset

sizes, different correlations among covariates, diverse distributions of observations,

and datasets with different dimensions. The practical application of our methods is

further illustrated through the analysis of the real-world dataset from the National

Automotive Sampling System Crashworthiness Data System. Specifically, when

compared with Luo and Song (2020)’s method, our techniques demonstrate enhanced

adaptability in processing various types of data, generating a more interpretable

model. When contrasted with the offline method, which is viewed as a benchmark

in our study due to its capacity to access all detailed information simultaneously

with minimal information loss, our method exhibits competitive performance in esti-

mation, and superior capability in generating concise models for high-dimensional

27

datasets. Most importantly, our approach needs substantially less computational

time and resources to analyse identical datasets.

1.3 Structure of the thesis

In Chapter 2, we conduct an extensive review of the existing literature relevant to the

two research topics investigated in our study. This includes a comprehensive review

of well-known regularisation methods for variable selection, regularisation methods

specifically designed for GLMs, renewable estimation techniques, high-dimensional

classification approaches, and methods for mislabelling in classification problems.

In Chapter 3, we present our research on classification with mislabelled data,

providing a comprehensive explanation of several proposed methods. We showcase

a variety of simulation studies and conduct real data analysis to validate the effective-

ness of these methods. The initial section of Chapter 3 provides a detailed breakdown

of the structure and components of the topic of Classification with mislabelled data.

In Chapter 4, we devote ourselves to an extensive discussion of renewable esti-

mation. This chapter covers detailed methodological descriptions, a wide range of

simulation studies, and real-data analyses. The opening section of Chapter 4 pro-

vides an expanded explanation of the frameworks and structures that are explored

throughout the chapter.

In the concluding chapter, Chapter 5, we reflect on the central findings from our

intensive study across both research domains. Furthermore, we delve into potential

directions for future research within each of these areas.

1.4 Preliminary notations and assumption of sparsity

Notations: In the subsequent discussions, for any p-dimensional parameter a:

• We employ ∥a∥0 to denote the L0 norm, which counts the number of non-zero

components in a and has the form as ∥a∥0 =
∑p

j=1 1{aj ̸= 0};

• ∥a∥1 represents the L1 norm, defined as the sum of the absolute values of the

components of a: ∥a∥1 =
∑p

j=1 |aj|;

• ∥a∥2 signifies the L2 norm, which is the square root of the sum of the squared

components of a: ∥a∥2 =
√∑p

j=1 a
2
i ;

28

• ∥a∥∞ denotes the L∞ norm, which is the maximum absolute value among the

components of a: ∥a∥∞ = max
1⩽j⩽p

|aj|.

Assumption of sparsity: Our study primarily revolves around the concept of sparsity.

Drawing from Fan and Li (2001), the term “sparsity” denotes a model characteristic

wherein only a small subset of the total variables significantly influence the prediction

outcome. This inherent property has given rise to the term “sparse data”, which is a

focal point of our study. Specifically, we term a parameter vector as “sparse” when

only a subset of its components are non-zero. To illustrate, consider p-dimensional

vector a represented as

a =

a1

a2

.

Here, a1 is a d-dimensional vector with 1 ⩽ d < p, containing the non-zero coeffi-

cients. Conversely, a2 is a (p− d)-dimensional vector, where every element is zero,

a2 = 0.

In this thesis, we produce “sparse data” for our simulation studies. In the context

of low-dimensional sparse data settings, the count of zero coefficients of parameters

in the model exceeds that of non-zero coefficients by a factor of more than 5. In

high-dimensional settings, this ratio escalates to over 50 times or even 1000 times the

count of non-zero coefficients. More details can be found in the subsequent sections

of simulation study.

29

2 Literature review

In this section, we provide a comprehensive review of the literature related to our re-

search topic. The references provided below serve as a foundation for the subsequent

sections, where we delve into the details of each study and their contributions to our

research.

Specifically, in Section 2.1, we explore various regularisation methods for variable

selection. We discuss the extensions of regularisation methods for generalised linear

models (GLMs) in Section 2.2. In Section 2.3, we delve into the online algorithms

used for studying streaming data. Section 2.4 provides a list of references related to

high-dimensional classification. Finally, in Section 2.5, we explore the methods used

for classification with mislabelling.

2.1 Variable selection

Variable selection has been increasingly widely discussed in regression analysis.

Thanks to rapid advances in technology, in areas such as finance, medicine, and

genomics, we can collect and store data with larger sample sizes than ever before. In

this section, we start with a simple model and consider the linear regression model

y = XTβ+ ϵ, (2.1)

where y = (y1, · · · ,yN)
T is an N-vector of responses, and X is an p × N random

design matrix and Xi = (x1i, · · · , xpi)T is the predictor variable also referred to as

the covariates in our study, which is a p dimensional vector. Xi, i = 1, · · · ,N, are

independent and identically distributed (i.i.d.). β = (β1, · · · ,βp)
T is a p-vector of

the parameters to be estimated, ϵ = (ϵ1, · · · , ϵN)
T is an N-vector of i.i.d. random

errors. Typically, there are only a few predictor variables in a dataset that contribute

to the response, which we name as significant or important variables. In this way,

it corresponds to the sparsity assumption that β =

β1

β2

, where β1, a d-vector for

1 ⩽ d < p, consists of non-zero coefficients and (β2)(p−d)×1 = 0. In our study, we

refer to predictor variables that have little or no significant impact on the response

as “insignificant” or “unimportant” variables (features). We use the term “sparse

30

data” or “data from a sparse model” to describe this type of data, where the dataset

or model contains a substantial number of such variables with little influence on the

response variables.

The ordinary least square (OLS) estimator is one of the classical regression meth-

ods and is known as the best linear unbiased estimator (BLUE) of β of the following

form:

β̂OLS = argmin
β

N∑
i=1

(yi − XT
i β)

2.

While Ordinary Least Squares (OLS) estimates are typically associated with low bias,

they can be prone to high variance. Specifically, the OLS method is known for its

inability to distinguish between important and non-important predictors, which

can lead to less informative and less explanatory models (Tibshirani, 1996). This

limitation of OLS has also been demonstrated in a simulation study conducted by

Fan and Li (2001).

Collinearity, also known as multicollinearity, is a frequent issue encountered in re-

gression models. It occurs when two or more predictor variables in a statistical model

are linearly related to each other (Dormann et al., 2013). The problem of collinearity

often accompanies sparse models, especially for high-dimensional datasets where

the number of predictor variables is larger than the size of the data. Collinearity has

several negative implications for regression models. Firstly, it reduces the accuracy of

the parameter estimates, as the presence of collinearity makes it difficult to determine

the individual effects of the correlated variables. Secondly, collinearity hampers

the interpretability of the model, as it becomes challenging to isolate the specific

contributions of each predictor variable and causes an overfitting problem. Addition-

ally, collinearity can lead to unstable and unreliable estimates, and it can cause the

classical model, such as OLS, to fail. It is widely acknowledged that the OLS method

is not suitable when dealing with highly correlated variables or high-dimensional

datasets. In such scenarios, ill-posed problems can occur, specifically non-full-rank

matrices, which can result in convergence issues and the failure of the OLS method

(Sirimongkolkasem and Drikvandi, 2019). Therefore, alternative approaches are often

employed to overcome these challenges and obtain more reliable estimates.

Indeed, the limitations of classical methods such as the OLS method underscore

the importance of employing alternative approaches that incorporate variable se-

31

lection techniques. Variable selection methods play a crucial role in mitigating

collinearity issues, reducing noise, mitigating overfitting, and constructing more

interpretable models. By identifying and retaining the most relevant predictors, these

methods improve model accuracy and enhance our understanding of the underlying

relationships in the data. The most commonly studied methods for variable selection

include dimension reduction methods such as Principal Component Analysis (PCA),

subset selection methods like best subset selection, and regularisation methods that

incorporate penalty terms in the model.

PCA is a widely used dimension reduction method that aims to identify linear

combinations of the original variables, known as principal components (PCs), to

reduce the dimensions of the data. By projecting the data onto a lower-dimensional

space spanned by the PCs, PCA can effectively capture the most important patterns

and reduce the complexity of the dataset (Lever et al., 2017). However, PCA has

certain limitations. It does not perform well for non-linear data, struggles with highly

correlated variables, and can result in less interpretable selected models (Lever et al.,

2017, Jolliffe and Cadima, 2016).

Best subset selection stands as a classical approach in variable selection. This

method systematically examines all conceivable combinations of predictors. Within

the framework of best subset selection, the primary objective is to pinpoint the

predictor subset that minimises the subsequent equation:

∥y− XTβ∥22 subject to ∥β∥0 ⩽ p0, (2.2)

where ∥β∥0 =
p∑

j=1

1{βj ̸= 0}. The goal is to find the subset of predictors, denoted as p0,

where 1 ⩽ p0 < p, that minimises the residual sum of squares (Hastie et al., 2017). In

contrast, the forward stepwise method starts with an empty model and iteratively

adds variables that best improve the fit (Hastie et al., 2017), resulting in a subset of

size p0, where 1 ⩽ p0 < p, that minimises the residual sum of squares ∥y−XTβ∥22 in

(2.2).

The major drawback of the two methods is that they are computationally expen-

sive and less accurate because stochastic errors are usually ignored in the process,

which makes their theoretical properties difficult to understand Fan and Li (2001).

In addition, although the best subset selection can select the variables and zero the

32

coefficients, the process is discrete which is unstable even with small variations in

the data (Breiman, 1995, Tibshirani, 1996).

A family of thresholds known as penalised likelihood functions has been proposed,

which addresses the limitations of methods such as PCA, best subset selection, and

stepwise deletion. These penalised likelihood functions offer the advantages of

interpretability and facilitate automatic simultaneous variable selection (Fan and Li,

1999). By applying regularisation methods, these functions generate models that

are both easier to interpret and more effective in variable selection. In the following

context, we outline the most well-known regularisation methods.

Breiman (1995) proposes the non-negative garrote method. The method starts

with OLS and reduces some of the coefficients of the OLS estimates to zero by using

a non-negative garrote shrinking factors c = (c1, · · · , cp). The estimate of the non-

negative garrote shrinking factors can be found by minimising (2.3) and denoted as

ĉ = (ĉ1, · · · , ĉp),

1

2
∥y− XT β̂OLS∥22 + λ

p∑
j=1

cj, s.t. 0 ⩽ cj, j = 1, · · · ,p, (2.3)

where the given λ > 0 is a tuning parameter. The non-negative garrote estimate has

the form of

β̂NNG = ĉβ̂OLS.

Shrinking the dataset, the non-negative garrote method provides more accurate

estimates than the OLS method, and it can also compete with ridge regression (dis-

cussed below) if there are not too many non-zero coefficients in the model (Tibshirani,

1996). However, when analysing datasets with highly correlated variables or high-

dimensional datasets, the non-negative garrote method has the same limitations as

the OLS method due to its reliance on OLS.

Frank and Friedman (1993) introduce bridge regression, one of the classical regu-

larisation methods, also named as the Lq norm penalty function of the form
∑p

j=1 |βj|
q.

Ridge regression proposed by Hoerl and Kennard (1970) and Least Absolute Shrink-

age and Selection Operator (LASSO) proposed by Tibshirani (1996) are both special

cases of Lq norm penalty functions. Ridge regression is a L2 regularisation function

and LASSO is a L1 regularisation function.

33

The ridge regression method has the following form for estimating β:

β̂Ridge = argmin
β

N∑
i=1

(yi − XT
i β)

2 + λ||β||22,

where λ > 0 is a tuning parameter. The main disadvantages of ridge regression are

that the complexity of the regression equation is the same as OLS (Breiman, 1995),

and that ridge regression cannot select variables.

Using LASSO, the estimate of β has the following form:

β̂LASSO = argmin
β

N∑
i=1

(yi − XT
i β)

2 + λ||β||1,

where λ > 0 is a tuning parameter. As can be seen from its form, LASSO does

not explicitly rely on OLS and therefore improves on the shortcomings of the non-

negative garrote method. LASSO also has the beneficial properties of subset selection

and ridge regression (Tibshirani, 1996), which ensure that it finds interpretable models

and produces consistent estimates. Although LASSO has many advantages over

previous methods in terms of computation time, estimation accuracy, and model

interpretations, it cannot analyse highly correlated variables and high-dimensional

datasets (Meinshausen, 2007, Wang et al., 2011).

Since its introduction, LASSO has been widely discussed and has inspired a great

deal of further research. The elastic net approach proposed by Zou and Hastie (2005)

combines the L1 and L2 norm penalty functions, from which the good properties

are derived. Meinshausen (2007) introduces relaxed LASSO with two regularisation

parameters that take care of the variable selection and the shrinkage level respectively

and the results show that relaxed LASSO performs better than LASSO when the

ratio of signal to noise is high, achieving more accurate predictions and sparser

estimates with a less complicated model. Wang et al. (2011) introduces random

LASSO which eliminates highly correlated variables more efficiently and has a more

flexible estimation process than the elastic net, but it is a computationally intensive

method.

Fan and Li (2001) introduce the following three properties for a desirable estimator

derived from a good penalty function:

34

• Unbiasedness: When the true unknown parameters are large, the estimates are

almost unbiased to avoid excessive estimation bias.

• Sparsity: When the true unknown parameters are small, the estimated coeffi-

cients are set to zero to reduce the complexity of the model.

• Continuity: The resulting estimator is continuous to achieve model stability.

Considering the above properties, for bridge regression, the solution is continuous

only if q ⩾ 1. Furthermore, bridge regression cannot select variables when q > 1,

which can cause problems if there are more predictor variables than observations

(Fan and Li, 2001). When q = 1, L1 penalty function known as LASSO produces

biased estimates of the large parameters (Fan and Li, 2001, Zou, 2006). Therefore, no

Lq penalty function can satisfy all three conditions at the same time.

The oracle property, a desirable feature for estimators in high-dimensional settings,

has been studied in the context of penalised likelihood methods by Fan and Li (2001).

An oracle estimator is defined as one derived from a process where the indices of

the non-zero coefficients of the parameter are known a priori. Consider a sparse

parameter vector

β =

β1

β2

p×1

,

where β1 represents the non-zero coefficients of β with a fixed, finite dimension d1

such that 1 ⩽ d1 ≪ p, and β2 = 0.

If β̂ is an estimator obtained without prior knowledge of the non-zero coefficient

indices of β, partitioned as β̂ =

β̂1

β̂2

p×1

, then it possesses the following properties:

• Sparsity: The estimated coefficients for irrelevant predictors are zero, which is

β̂2 = 0;

• Asymptotic normality: As the sample size N grows,
√
N(β̂1 − β1)

D−→ N(0,Σ),

where Σ is the covariance matrix of the true nonzero coefficients in the subset

model.

Zou (2006) and Zhao and Yu (2006) confirm Fan and Li (2001)’s conjecture that

LASSO does not have the oracle property. Zou (2006) gives a necessary condition

35

for the consistency of variable selection of LASSO and Zhao and Yu (2006) prove an

almost necessary and sufficient condition named Irrepresentable Condition which

shows that LASSO has the consistency of model selection when there are less corre-

lated variables.

A nonconcave penalised likelihood method named Smoothly Clipped Absolute

Deviation Penalty (SCAD) proposed by Fan and Li (2001) has unbiased, sparse, and

continuous properties at the same time and it performs as well as oracle estimators.

The estimator by SCAD of the nonzero coefficients of β in (2.1) is

β̂SCAD
1 = argmin

β

N∑
i=1

(yi − XT
i β1)

2 +

d∑
j=1

pSCAD
λ (|βj|),

where the penalty function is

pSCAD(|βj|) =

λ|β| if |β| < λ,

2aλ|β|−β2−λ2

2(a−1)
if λ < |β| < aλ,

λ2(a+1)
2

otherwise,

for some a > 2,

(2.4)

and both a and λ are tuning parameters. For small coefficients, the SCAD penalty

has the same penalisation as LASSO, and for large coefficients, the SCAD penalty

reduces the penalisation continuously and shrinks the estimates less heavily. In this

way, SCAD improves LASSO’s problem of causing biased estimates.

Zou (2006) proposes an adaptive LASSO that is an unbiased, sparse, and continu-

ous penalty function. The estimator of nonzero coefficients of β is

β̂AdaLASSO
1 = argmin

β

N∑
i=1

(yi − XT
i β1)

2 + λ

d∑
j=1

ŵj|βj|,

where λ is the tuning parameter, ||β1||1 = d and ŵ = (ŵ1, · · · , ŵd), is a known weight

vector. Zou (2006) uses the OLS estimator to define the weight vector and other

estimates obtained by LASSO, ridge regression, or other methods can also be used

to define the weight vector. To improve the bias of estimates from LASSO, adaptive

36

LASSO reduces the bias of estimates by introducing the weight vector. It has also

been proved that adaptive LASSO has the oracle property (Zou, 2006). As with SCAD

penalty, Adaptive LASSO has the problem of zero absorbing state (Fan and Lv, 2010)

meaning that once the estimate has been shrunk to zero, it cannot be changed, which

may cause the problem of misjudging the nonzero coefficients to be zeros during the

process and this cannot be corrected later.

Zhang (2010) proposes a nearly unbiased and continuous penalised variable

method that consists of a Minimax Concave Penalty (MCP) and a penalised linear

unbiased selection (PLUS) algorithm and has the advantage of efficient computation.

With a similar approach to the SCAD penalty, the MCP penalty function is

pMCP(|βj|) =

λ(|βj|−

β2
j

2γλ
) if |βj| < λγ,

λ2γ
2

otherwise,

where j = 1, · · · ,p, and γ > 0 and λ > 0 are tuning parameters. Zhang (2010)

proves that MCP provides sparse convexity to the broadest extent by minimising the

maximum concavity and the estimator achieved by the MCP function has the oracle

property.

A solution named Dantzig Selector (DS), L1 regularisation, which minimises the

maximum component of the gradient of the squared error function, is proposed by

Candes and Tao (2007).

β̂DS = argmin
β

∥β∥1 subject to ||X(Y − XTβ)||∞ ⩽ λ,

where λ is a tuning parameter. Uniform uncertainty principles (UUP) is described

in Candes and Tao (2007)’s work. If covariate matrix X meets UUP, X is with unit-

normed columns, and the estimator from the DS method can achieve the ideal risk

which is a loss within a logarithmic factor log(p) of the ideal mean squared error

compared to the oracle estimator.

There are algorithms for variable selections which are frequently used such as

Local Quadratic Approximation (LQA) (Fan and Li, 2001), least angle regression

(LARS) (Efron et al., 2004) and minorize–maximize (MM) algorithm (Hunter and Li,

2005). As for DS, it uses a primal-dual interior point algorithm which is competitive

37

in computing efficiency with other existing methods when the dimension is not

ultra-high (Cai and Lv, 2007).

In addition to its computational advantage, as DS has the property of L1- min-

imisation and compared with all the previous feasible solutions, it can obtain the

“sparsest” solution over the space (Cai and Lv, 2007). Efron et al. (2007) compare the

performance of the regularisation paths, solution paths, and prediction accuracy of

LASSO and DS, and the results show the two methods have identical performance

while LASSO outperforms DS slightly in prediction accuracy. However, Cai and Lv

(2007) mention that the algorithm for DS is sensitive to its initial values and it cannot

work effectively for high-dimensional or ultra-high-dimensional data. The ideal risk

of DS is within a logarithmic factor log(p) but the exact minimax factor was unknown.

Like other L1 regularisations, DS creates biased estimators while adaptive LASSO

adjusts the weights of the penalties. SCAD and MCP, which have flat tail functions,

can achieve unbiased estimators (Fan and Li, 2001, Zou, 2006, Zhang, 2010).

The collinearity and cumulative error problems become more severe with the

addition of dimensions. The previous methods cannot perform as well when dealing

with low-dimensional regression problems and can fail to select variables. In addition,

the process can become computationally expensive as the increase of dimensions.

For example, LASSO and stepwise deletion cannot work well for high-dimensional

or ultra-high-dimensional data. Motivated by Candes and Tao (2007)’s work, Fan

and Lv (2008) highlight some concerns about the flaws of DS and mentioned four

noteworthy problems related to high dimensional data and ultra-high dimensional

data.

• When p > N or p >> N, the computation issue of existing algorithms is always

a problem;

• The ideal loss of the estimator from the DS method is within log(p), which

cannot be ignored and becomes less accurate with the number of dimensions

increasing;

• UUP is hard to verify and guarantee, which is presented in a simulation study

by Fan and Lv (2008);

• The estimator from DS has not been proven to have the oracle property.

38

In consequence, a new variable selection method is needed to solve the problems for

high-dimensional or ultra-high-dimensional data.

In a high dimensional linear regression setting and when considering prediction,

variable selection, and variable ranking, Wang et al. (2020) design a large-scale simu-

lation study to compare the performance of the commonly used variable selection

methods including LASSO, adaptive LASSO, elastic net, ridge regression, SCAD, and

DS. Their conclusion is that there is no outright winner from these discussed methods

in all scenarios and pointed out that the relative performance of each method depends

on many factors and the interests of researchers. However, they do not recommend

DS because its performance is usually inferior or similar to LASSO and it is more

computationally costly for high-dimensional and ultra-high-dimensional data.

Fan and Lv (2008) introduce Sure independence screening (SIS) which is an

extension of the two-sample t-statistic. SIS is a model-free method that does not need

the model structure of the regression function, and it finds the important variables

by correlation learning and only uses the ranking information. SIS is a simple but

efficient method that can shrink the data set from ultra-high dimensions to moderate

models efficiently and accurately. For the linear model (2.1), when all the covariates

are standardised to have a mean of 0 and a standard deviation of 1, we can employ

componentwise regression to obtain a vector z = (z1, · · · , zp)T and rank the marginal

correlations, where

zj = Xjy, for j = 1, · · · ,p,

and Xj = (xj1, · · · , xjN). Then we have a submodel

Mγ = {1 ⩽ j ⩽ p : |zj| is among the first [γN] largest of all},

for any γ ∈ (0, 1),

where M∗ = {1 ⩽ j ⩽ p : |βj| ̸= 0}, is the true sparse model with the size of |M∗| = s.

Sure screening property, a desirable property for variable selections, means that the

important features of the model are contained in the subset with probability tending

to 1 and it is defined as

P(M∗ ∈ Mγ) → 1, as N → ∞. (2.5)

39

Fan and Lv (2008) offer a comprehensive proof asserting that their proposed

SIS method, based on correlation learning, possesses the sure screening property as

defined in (2.5). In contrast, the stepwise deletion method lacks this property (Fan and

Lv, 2008). Saldana and Feng (2018) show that SCAD has the sure screening property

for the designed relatively easy examples. However, SCAD does not perform as well

as SIS or iterative sure independence screening (ISIS) (Fan and Lv, 2008) introduce

below, in estimation errors and model sizes. In both Fan et al. (2009) and Saldana and

Feng (2018)’s simulated examples, LASSO misses the important feature and performs

the worst among other variable selection methods. Zhang et al. (2019) prove that

under reasonable assumptions, even though without the assumption of the marginal

correlation, ISIS still has the sure screening properties.

SIS usually works with other variable selection methods and it can significantly

improve other methods in computational speed and estimation accuracy significantly,

especially for ultra-high dimensional data problems. This process is carried out

in a two-stage process. At first, SIS finds the important features and reduces the

dimensions. Secondly, a penalised likelihood method such as LASSO, SCAD, DS, and

so on is used for the new data set consisting of the selected variables from the first

stage. In Fan and Lv (2008)’s simulated examples, compared with the performance of

LASSO and DS, after using SIS to reduce the dimension at first, both LASSO and DS’s

performance get noticeably improved. The two-stage variable selection process is

named after SIS and the penalised likelihood method. SIS-SCAD outperforms SIS-DS,

SIS-DS-SCAD, and SIS-DS-Adaptive LASSO in Fan and Lv (2008)’s study. Fan and

Lv (2008) also pointed out that when considering the accuracy of estimates, SCAD

has fewer estimation errors than adaptive LASSO. It is worth mentioning that SIS can

not only be applied to analyse high-dimensional and ultra-high-dimensional data

but also can be used for solving low-dimensional data problems.

SIS may fail to find important features when these important features are cor-

related with responses but not marginally related, when less important features

are highly marginally related to some important features, or when the correlation

between predictors is high (Fan and Lv, 2008). ISIS is introduced by Fan and Lv

(2008) to improve the defects of SIS. ISIS uses the joint covariates information and

selects features through a penalised pseudo-likelihood method in the iterative pro-

cess. Introducing the iterative process, ISIS also improves the zero absorbing state

40

problem of SIS to some extent (Fan et al., 2009). Fan et al. (2009) propose variants

of ISIS, that delete features during the iterative process and these variants achieved

lower false selection rates, based on how many unimportant features are selected

when compared with vanilla ISIS.

Fan and Lv (2018) give a comprehensive overview of SIS and ISIS in the context

of the linear model and the generalised linear model. Fan et al. (2009) and Fan and

Song (2010) also extend SIS and ISIS for generalised linear models, which we give

discussion in more detail in the following section.

Since the introduction of SIS and ISIS, numerous methods emerge for variable

screening. Wang (2009) explores the classical method, Forward Regression (FR),

assessing its suitability for variable screening in linear regression contexts. FR consis-

tently identifies variables for screening, yet its predictive accuracy lags behind that of

SIS in real data analysis study (Wang, 2009).

Wang (2012) presents the Factor Profiled Sure Independence Screening (PIS).

This method integrates factor modelling into SIS. By integrating factor modelling,

which accounts for insignificant variables, PIS overcomes a notable limitation of SIS:

overfitting. Through factor profiling, PIS enhances the consistency of SIS in model

selection. Building on this, Naifei et al. (2020) develop a variant of PIS, having a

double decorrelation process, named as preconditioned PIS (PPIS). This procedure

ensures that profiled predictors remain asymptotically uncorrelated. Though both

PIS and PPIS prove effective for high-dimensional datasets with highly correlated

predictors, their sole reliance on predictors for factor profiling and preconditioning

obscures the clarity in interpreting the response variables (Wang, 2012).

He et al. (2013) address nonlinear, high-dimensional, heterogeneous data with

censored responses. They unveil the Quantile-adaptive model-free feature screening

method. After further refining it to address situations where predictors, though

marginally insignificant individually, have a collective influence on the response

variables, they name it QaSIS.

Shao and Zhang (2014) introduce the Martingale difference correlation, an nat-

ural extension of the distance correlation measurement originally presented by

Székely et al. (2007). This metric is designed to identify significant variables in

high-dimensional data. The consistency of its screening properties has been con-

firmed (Shao and Zhang, 2014).

41

Kong et al. (2017) critique the SIS methodology, spotlighting its shortcoming

in detecting variables that, though marginally uncorrelated, show joint correlation

with the response. This gap arises from SIS’s dependence on marginal correlation

learning, which neglects the joint information between the response and the set

of covariates. In response, they propose a technique centred on ranking canonical

correlations, which signify correlations between chosen covariates and the response.

While this method boosts feature selection precision with a more extensive covariate

set, it intensifies computational challenges, given the inherent intricacy of canonical

correlation calculations.

2.2 Penalised generalised linear model

McCullagh (1983) extends the classical linear model to a more general case where the

response variables are assumed to follow an exponential family distribution and the

name of the model is generalised linear model (GLM). A classical linear model has

the assumption of residuals that follow conditional normal distributions while GLM

loosens this restriction and studies distributions from an exponential family where

there are various distributions of residuals and the normal distribution is one special

case. The assumption of response variables of a classical linear model is continuous

while GLM can study continuous data as well as discrete data.

We assume that we have i.i.d. observations (X,y), X = (X1, · · · ,XN), where Xi =

(x1i, · · · , xpi)T , i = 1, · · · ,N, and with a canonical link, the density function of each

component of y, y = (y1, · · · ,yN)
T , taking the form

fY(yi;Xi,β) = exp{(yiX
T
i β− b(XT

i β))/a(ϕ) + c(yi,ϕ)}, (2.6)

where a(·), b(·) and c(·) are known functions, ϕ is a dispersion parameter and β

is the unknown parameter we are interested in. We are looking for the maximum

likelihood estimator (MLE) of β denoted as β̂.

Sparse generalised linear models are widely studied and used. Where the database

has correlated variables or the number of features is larger than the number of

observations, then the classical maximum likelihood estimator (MLE) fails to find

the estimator of β in these cases. In our study, we use penalised likelihood methods

42

to select the important features for generalised linear regressions. And we have the

following form of the penalised MLE,

β̂ = argmin
β

{
ℓ(y,β) −N

p∑
j=1

pλ(|βj|)

}
,

where pλ(·) is a penalty function. The log-likelihood function ℓ(y, β) takes the

following form

ℓ(y,β) =

N∑
i=1

ℓ(yi,β), (2.7)

where

ℓ(yi,β) = yiX
T
i β− b(XT

i β).

LQA is used for the penalty functions that are singular at the origin (Fan and Li,

2001). When βj ̸= 0, j = 1, · · · ,p, we have

[pλ(|βj|)]
′
= pλ(|βj|)sgn(βj) ≈ {pλ(|βj0|)/|βj0|}βj,

for βj ≈ βj0.

When βj0 ≈ 0, we have β̂j = 0, j = 1, · · · ,p.

Using LQA, the iterative processes can be carried out for the penalised log-

likelihood estimations. LQA has the advantage of reducing the computational burden.

The disadvantage associated with this method is that it has zero absorbing state (Fan

and Li, 2001, Fan and Lv, 2010).

We also consider the GLM with ultra-high dimensional data, where p >> N

and SIS and its extension ISIS are applied to study the problem. Based on Fan and

Lv (2008)’s work within the context of linear regressions shown in the previous

section, Fan et al. (2009) and Fan and Song (2010) extend SIS and ISIS for generalised

linear regressions. An independence learning method by ranking the maximum

marginal likelihood estimator or maximum marginal likelihood itself for GLMs is

introduced. The application of the SIS method to GLMs has been demonstrated to

retain the sure screening property (2.5) (Fan and Song, 2010). It also has been proved

that although there exists bias between the marginal models and the joint model,

43

under a mild condition, the marginal model can deliver the non-sparse information

of the joint model (Fan and Song, 2010). In the context of high-dimensional and

ultra-high-dimensional GLMs data analysis, Fan et al. (2009), Fan and Song (2010)

have shown that SIS or ISIS greatly enhance the efficacy of classical regularisation

methods, notably the widely used LASSO and SCAD.

2.3 Renewable estimation

The data that can be observed in a sequence has been extensively studied in recent

years, for example, traffic information, stock market data, e-commerce purchases,

and so on. This type of data which comes in a sequence is called the streaming data

and the estimators renewed with the online learning method are called renewable

estimators in our study. The traditional batch learning or offline learning method is

not well-suited for analysing streaming data. This is due to several reasons. Firstly, it

requires waiting for the entire data to be collected before analysis can begin, which

can be time-consuming and may result in delays in decision-making. Secondly, the

storage requirements for storing the entire dataset can be substantial, especially when

dealing with large volumes of streaming data. Thirdly, analysing the entire training

dataset at once can be computationally expensive, requiring significant computational

resources. Lastly, storing all the details of the collected observations can consume

large amounts of storage space.

Online learning is highly advantageous for analysing streaming data as it effec-

tively tackles the computational and storage burdens associated with offline learning.

Through online learning, the summary statistics are utilised without revisiting previ-

ous data, which allows for the discarding of historical data. This approach enables

more efficient use of computational resources. This not only improves the computa-

tional speed compared to offline methods but also results in notable storage savings.

Additionally, online learning mitigates privacy and confidentiality concerns by lever-

aging historical statistics instead of retaining all detailed data, thus ensuring data

security and protecting sensitive information.

For online algorithms, if the statistics take certain linear functions of data, the

updates can be easily transferred to a function consisting of the summary statistics of

previous data and the new data rather than the historical raw data (Luo and Song,

44

2020). A more general case where the response variables come from the exponential

family distribution and the MLE updated by online learning is more challenging. In

this section, we make the same assumption about the data as the one described in the

model (2.6).

Gradient Descent (GD), one of the traditional offline optimisation methods, has

its estimator at k-th time iteration, where k = 1, · · · , as follows,

β̂GD(k) = β̂GD(k−1) − a∇ℓ(y, β̂GD(k−1),

where a is the learning rate and ℓ(·) is the log-likelihood function. The estimate of β

is obtained when the iteration reaches convergence.

Sakrison (1965) studies the iterative likelihood estimation process using the idea

of stochastic approximation proposed by Robbins and Monro (1951). The method is

named as explicit stochastic gradient descent and is also named as Stochastic Gradient

Descent (SGD) for short. SGD has become one of the most frequently used methods

in machine learning since it was invented. Compared with GD, SGD, an online

method, analyses one or a subset of the data set and has the obvious advantages of

computational simplicity and asymptotic efficiency.

Using SGD, when new observations are collected at the t-th time, where t = 1, . . . ,

the estimator is updated as follows:

β̂SGD
t = β̂SGD

t−1 − at−1∇ℓ(yt, β̂
SGD
t−1), (2.8)

where at−1 is the learning rate and ∇ℓ(y,β) is the first gradient of (2.7) with respect

to β.

In Toulis et al. (2014)’s work, implicit SGD is studied. When new observations are

collected at the t-th time, the estimator is updated according to the following formula,

which involves the estimator at the t-th time on both sides of the equation.

β̂im
t = β̂im

t−1 − at∇ℓ(yt, β̂
im
t), (2.9)

where at is the learning rate.

In comparison to the implicit stochastic gradient descent (SGD) estimator, the

explicit SGD estimator has the advantage of faster convergence. However, the explicit

45

SGD estimator is often less stable when applied to small-scale data and is more

sensitive to the misspecification of the learning rate. As a result, Toulis et al. (2014)

recommend using the implicit SGD estimator over the explicit SGD estimator.

From (2.8) and (2.9), it should be noted that both SGD and implicit SGD update

the model parameters based on the gradient of the log-likelihood from the newest

observation alone. While these approaches offer computational efficiency, challenges

arise, especially in non-stationary data streams. In such scenarios, where the underly-

ing data distribution is dynamic and can shift over time, relying solely on the most

recent observations can be inadequately encapsulate the intricacies of past data.

Many variants of the first-order SGD has emerged. Konečnỳ and Richtárik (2013)

propose Semi-Stochastic Gradient Descent (S2GD) which gains the properties of stabil-

ity and the fast convergence from GD and holds the computational efficiency of SGD

(Konečnỳ and Richtárik, 2013). It should be noted that the estimator from S2GD is

unbiased. Polyak and Juditsky (1992) introduce Averaged stochastic gradient descent

(ASGD) and Tran et al. (2015) extend ASGD to averaged implicit stochastic gradient

descent (AISGD) that is more stable than explicit SGD. Fang (2019) introduces the

perturbation-based resampling procedure to fill the gap of Tran et al. (2015)’s work on

the construction of interval estimations for implicit SGD and AISGD. While work by

Luo and Song (2020) that uses simulated examples to show this perturbation-based

resampling procedure fails to achieve statistical efficiency to construct online infer-

ence, which generates less accurate estimated standard errors (ESEs) and shows 0%

coverage probability.

First-order optimisation is simpler to compute because it avoids needing to cal-

culate the inverse of the Hessian matrix at each iteration. However, second-order

methods have faster convergence than first-order methods because of the adaptation

of curvature information. In addition, first-order online methods, such as SGD and

its variants mentioned above, cannot achieve the construction of online inferences

due to the limited information provided by the statistics.

To illustrate online second-order algorithms, we first provide an overview of

the second-order offline method. Newton-Raphson is a classical and widely used

second-order method for offline estimation, known for its advantageous feature of

converging at a quadratic rate (Ypma, 1995). At the k-th iteration, where k = 1, . . .,

46

the estimate takes the following form:

β̂NR(k) = β̂NR(k−1) − [H(β̂NR(k−1))]−1∇ℓ(y, β̂NR(k−1)), (2.10)

where H(β) = ∇2ℓ(y,β), is known as Hessian matrix. The MLE of β is achieved

when the iteration reaches convergence.

In addition to limitations shared by other offline methods, such as the requirement

for large storage spaces and repeated computation of historical data, the Newton-

Raphson method also has a notable drawback. This method involves computing the

inverse of the full Hessian matrix at each iteration, which can lead to computational

inefficiency, particularly when dealing with datasets that have a large number of

predictors.

To mitigate this computational redundancy, Quasi-Newton methods have been

introduced. Quasi-Newton methods are variants of the Newton-Raphson method

that do not compute the full Hessian matrix. Instead, they approximate the inverse

of the Hessian matrix with some other positive definite matrix that ensures a good

approximation to the Hessian matrix (Mishra et al., 2019). This approximation im-

proves computational efficiency. The most well-known Quasi-Newton algorithms are

Broyden’s algorithm and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,

which avoids computing the second derivative of the loss function during the itera-

tion of estimation and improve the computational ability of the Newton-Raphson

method. Although BFGS reduces the computational cost of the Newton-Raphson

method, the need for a large memory is still a significant drawback. To address this,

the limited-memory BFGS algorithm is proposed by Liu and Nocedal (1989).

These Quasi-Newton offline methods have been adapted for online algorithms

due to their computational efficiency. Schraudolph et al. (2007) adapt BFGS and

limited storage BFGS for analysing streaming data, naming their methods online

adapted BFGS (oBFGS) and online limited storage BFGS (oLBFGS). Inspired by

oLBFGS, Bordes et al. (2009) propose the Quasi-Newton SGD (SGD-QN) method,

which is designed to use second-order information and is as computationally effi-

cient as SGD. It should be noted that these methods do not fully explore the exact

information of the Hessian matrix. Specifically, SGD-QN only estimates and updates

the diagonal matrix of the Hessian matrix, and it does not provide useful information

47

for online statistical inference.

In addition, there are other online second-order methods, such as the natural

gradient algorithm (Amari et al., 2000) and the online Newton step (Hazan et al.,

2007), which are efficient in statistical inference as they retain the full information of

the Hessian matrix. However, a drawback of both methods is that they require large

memory spaces to store all the detailed information of matrices during the update

process, which can be a non-negligible disadvantage.

In order to achieve computational efficiency and enable statistical inference in

regression analysis of streaming data, Luo and Song (2020) propose an incremental

updating algorithm within the framework of GLMs to refine existing methods. They

implement this algorithm using the powerful computing platform “Apache Spark”

(Bifet et al., 2015) and introduce a new computing platform called the “rho architec-

ture.” This architecture allows for the accommodation of inference-related statistics

and the renewal of both estimation and inference statistics.

Specifically, Luo and Song (2020) approximate the first derivative of the loss func-

tion by employing a first-order Taylor series expansion centred around the historical

MLEs obtained from the previous batch of streaming data. This approximation helps

in reducing computational complexity while still preserving the necessary informa-

tion for estimation. Additionally, they update the Hessian matrix using only the new

data and the historical Hessian matrix, further enhancing computational efficiency. In

detail, for the method proposed by Luo and Song (2020), in the case of streaming data

generated from GLMs, the estimation process at the k-th iteration, where k = 1, · · · ,

when the b-th data batch is collected, where b = 2, · · · , can be expressed as (2.11). It

is worth mentioning that when the first data batch is observed (b = 1), the estimation

process is the same as the offline method.

β̃
(k)
b = β̃

(k−1)
b − [H̃b(β̃b−1)]

−1

{[
H̃b−1(β̃b−1)

]
(β̃

(k−1)
b − β̃b−1) + Sb(β̃

(k−1)
b)

}
, (2.11)

where Sb(β) = ∇ℓ(yb,β), H̃b(β) =
b∑

l=1

Hl(βl), and (̃·) indicates the estimate is

derived from the incremental algorithm. The renewable estimate of β, denoted as

β̃b, is obtained after the algorithm converges, and the subscript b corresponds to the

number of the collected data batch.

According to Luo and Song (2020), the estimate β̃b obtained from their renewable

48

estimation method approximates the MLE of β obtained from the offline Newton-

Raphson method, with second-order asymptotic errors. They have also demonstrated

that the estimated variance of β̃b yields the same estimated standard error (ESE)

as the MLE obtained from the offline method that analyses all the collective data

at once. Importantly, the renewable estimation method proposed by Luo and Song

(2020) is evidently more time- and resource-efficient compared to the traditional

Newton-Raphson method.

Luo and Song (2020)’s renewable estimation method provides an efficient way

to process data by only maintaining summary statistics from historical data. This

significantly expedites calculations compared to the traditional Newton-Raphson

method. Importantly, they demonstrate that the compromise in estimation efficiency

compared to MLE obtained by the offline method is negligible. Furthermore, the

summary statistics of historical data act as sufficient statistics and can be used for

tasks such as the construction of online confidence intervals. Although the method

proposed by Luo and Song (2020) has shown competitiveness compared to previous

methods, Luo and Song (2020)’s study is confined to the renewable estimation method

for low-dimensional dense data, which is less practical for handling sparse high-

dimensional data.

High-dimensional streaming data has garnered increasing attention and is more

and more prevalent in various fields, presenting unique computational and storage

challenges. Vijayakumar and Schaal (2000) incorporated Locally Weighted Projection

Regression (LWPR) and assert that their proposed method is the first to merge lo-

calised learning with an incremental algorithm for sparse models, thereby facilitating

effective handling of high-dimensional data. Rosasco and Villa (2015) introduced an

iterative regularisation algorithm for least squares, which does not rely on explicit

penalisation. Their method predefines all parameters, with the number of algorithm

iterations controlling the amount of regularisation applied to the model. However, the

methods do not have explicitly addressed the issue of providing enough information

to obtain sufficient statistics.

Losing et al. (2018) offer a comprehensive review of prevalent online algorithms for

studying high-dimensional data. The reviewed algorithms include the Incremental

Support Vector Machine (ISVM), an online approximate SVM known as LASVM,

Online Random Forest (ORF), Incremental Learning Vector Quantisation (ILVQ),

49

an incremental learning algorithm for supervised neural networks proposed by

Fuangkhon and Tanprasert (2009) known as Learn++, as well as adaptations of

Naive Bayes and SGD for online algorithms. The authors illustrate the strengths and

weaknesses of each method through simulated examples.

However, in the context of our research on online algorithms for GLMs, the exist-

ing methods for MLE still have deficiencies in terms of computational redundancy or

inadequate retention of statistical information during updates.

2.4 High-dimensional classification

Classification is one of the trending topics in machine learning being a class of regres-

sion problems with discrete predicted variables (Kotsiantis et al., 2006). According to

the different types of training data, the classification algorithms are categorised as

unsupervised, semi-supervised, and supervised. In our study, we discuss supervised

learning for classification, where the training data set consists of both the input and

output variables. For simplicity, we use “classification” for “supervised classification”

from here on.

In this section, we have a collection of N observations, represented as {(Xi, Yi)}

where i = 1, . . . ,N. In this set, Xi represents the covariates, and Yi denotes the

corresponding response variable. Each of these covariates, Xi, is a p-dimensional

vector. We primarily address a two-class classification problem, with Yi ∈ {0, 1}. For

new observations, the data point is denoted as x, and x ∈ Rp.

It is often more practical to choose a classifier that performs well in specific

conditions, rather than trying to find a single classifier that outperforms others in

all classification problems. In recent years, numerous classification methods have

been studied, each based on different assumptions and goals. While it is not feasible

to list all of them here, we focus on discussing some of the best-known supervised

techniques in this section. These include the Naive Bayes classifier, Fisher Linear

Discriminant Analysis (also known as Linear Discriminant Analysis or LDA), the K-th

Nearest-Neighbor (KNN) classifier, Support Vector Machines (SVM), and Logistic

Regression (LR).

Rish et al. (2001) studies how the characters of data influence the Naive Bayes

classifier. They find that Naive Bayes works the best when the features are completely

50

independent or when the features are functionally dependent. However, in most of

the real data analysis, the assumption of independence is hard to meet and Naive

Bayes has the worst performance between the two extremes.

LDA is a cornerstone in classification methodologies, renowned for its long history

and widespread application. LDA operates by maximising the ratio of between-class

variance to within-class variance in a dataset, aiming to achieve optimal class sepa-

ration (Balakrishnama and Ganapathiraju, 1998). The method identifies a decision

boundary that emphasises the difference between classes. Given the matrices for

between-class scatter SB and within-class scatter SW , LDA determines the direc-

tion w optimising the ratio of the determinants of SB and SW . Bhattacharyya and

Rahul (2013) delve into face recognition employing LDA. Specifically, for any new

observation x, LDA classifies it according to the following rule:

CLDA(x) =

1 if wTx > 0.5

0 otherwise.

PCA is another classical classification method and the details of the history and

applications of PCA can be found in Wold et al. (1987)’s work. Similar to LDA, PCA

finds the linear combinations of the features and explains the datasets. The main

difference between LDA and PCA is that LDA focuses more on data classification

while PCA focuses more on feature classification. In detail, LDA keeps the location

of the original data sets while PCA changes the shape and location of the data sets

(Balakrishnama and Ganapathiraju, 1998). As a result, the data set analysed by PCA

is less interpretable than the one from LDA.

KNN is a distance-based classification method, which is one of the most widely

used methods due to its simplicity and effectiveness. The central assumption of KNN

is that the observations from the same class are close to each other. The parameter K

in KNN is the number of the neighbouring data to be checked. Based on pre-given

distance measurement, KNN classifies a new observation into the class which has the

most members among the K tested observations close to the new data. In detail, given

x in Rp, reorder the training data pairs to produce a sequence (X1, Y1), · · · , (XN, YN)

51

based on the increasing distance from x, such that:

∥X1 − x∥ ⩽ ... ⩽ ∥XN − x∥.

If there are any ties in distance, they are resolved by maintaining the original sequence

of the indices. For any k in the range {1, · · · ,n}, the KNN classifier, denoted as

CKNN(x) is defined as:

CKNN(x) =

1 if 1
k

∑k
i=1 1{Yi = 1} > 0.5

0 otherwise.

One advantage of KNN is its universal consistency. The asymptotic misclassifica-

tion rate of KNN approaches the optimal Bayes misclassification rate when K/N → 0,

where K is the number of nearest neighbours and N is the size of the training dataset

(Stone, 1977). However, KNN also has several limitations and drawbacks. These

include sensitivity to the choice of K (Hassanat et al., 2014); the choice of distance

measurements, which has been studied by Abu Alfeilat et al. (2019); unstable perfor-

mance with outliers (Parvin et al., 2010); high computational demands, especially for

large datasets due to the necessity of calculating distances between new observations

and each training data point.

Since Cortes and Vapnik (1995) introduced SVM, it has become one of the most

extensively used and discussed methods in machine learning. SVM can be used

for both classification and regression problems by maximising the margin between

the training data and the class boundary. Referring to Cannings et al. (2020), SVM

typically denotes classifiers represented as:

CSVM(x) =

1 if f̂(x) ⩾ 0

0 otherwise,

where x ∈ Rp and f̂ is the decision function and determined by:

f̂ ∈ argmin
f∈H

[
1

N

N∑
i=1

L(Yi, f(Xi)) +Ω(λ, ∥f∥H)

]
,

52

here L : R×R → R is a loss function, Ω : R×R → R is a regularisation function with

a tuning parameter λ > 0, and H is a reproducing kernel Hilbert space with norm

∥ · ∥H.

There are four main reasons why SVM is so popular, which are the strong theoret-

ical foundation of SVM’s algorithm, the good performance of dealing with normal-

sized data sets, the flexibility to use, and the accuracy it achieves (Pavlidis et al., 2004).

Cervantes et al. (2020) give a comprehensive review of SVM with its applications,

challenges, and trends. Yet, according to Cervantes et al. (2020)’s research, SVM

has limitations in terms of parameter selection, algorithm complexity, multi-class

datasets, and imbalanced data sets. Furthermore, SVM has a considerable problem

of analysing the data sets of very large sizes. Specifically, training time grows as the

size of the dataset increases, and training and usage become unfeasible due to its

computational power limitations.

There are several implementations of SVMs listed in Cervantes et al. (2020)’s

work. These methods employ the ideas of data reduction, decomposition, sequential

minimal optimisation, shrinking, and working selections to improve the traditional

SVMs’ performance, and reduce the computational complexity of the traditional SVM

classifier for large-scale data sets analysis. However, traditional SVMs cannot study

non-linear or high-dimensional data, so kernel SVMs have been proposed. The most

frequently used kernel SVMs are linear, polynomial, radial, and tangential SVMs

(Salazar et al., 2012).

LR, also known as the logistic model or logit model, is a widely utilised method for

classification problems. LR adopts a maximum likelihood approach, leveraging the

log-odds as its link function. It facilitates the analysis of relationships between discrete

dependent variables and independent variables, which can be either continuous or

categorical. Specifically, the model assumes:

logit{π(Xi)} = XT
i β, for i = 1, · · · ,N,

where β represents a p-dimensional parameter. For a observed data x, if the condition

π(x) =
exp(xTβ)

1+ exp(xTβ)
⩾

1

2
, (2.12)

53

is satisfied, it is classified into the group labelled 1. Thus, the LR classifier can be

defined as:

CLR(x) =

1 if (2.12) holds

0 otherwise.
(2.13)

Due to the nature of LR, it is possible to study two or more classes of classification

problems (McCullagh, 1983). There are a large number of references that discuss LR

and compare it with other methods:

• Morgan and Teachman (1988) show the reasons why LR is superior to OLS

regression. Tu (1996) compare LR with Neural Networks (NN) in predictions of

medical outcomes. They conclude that although NN may be useful when the

goal is for prediction outcomes and important interactions or when the data sets

have complex nonlinearities, LR can look for possible causal relationships be-

tween the independent and dependent variables and the effects of the predictor

variables on the outcome can be easier to understand.

• Ng and Jordan (2001) discuss the performance of LR and Naive Bayes by doing

the repeated experiments, and found that Naive Bayes converged faster than

LR, but the asymptotic error of the Naive Bayes was higher than LR. With the

increase of the training data size, the performance of LR is closer to Naive Bayes

(Ng and Jordan, 2001).

• Pohar et al. (2004) design simulated examples to investigate and compare the

performance of LR and LDA. When the assumption of the normality of the

covariates is satisfied, LDA works well and performs better than LR on small-

size datasets, although the difference in performance between the two classifiers

can be ignored on datasets of size 50 or larger (Pohar et al., 2004). One must

note that when this assumption is not met, LDA clearly does not perform as

well as LR, which in this case is better suited to analysing a larger number of

training data sets and is independent of the distribution.

• Salazar et al. (2012) compare LR with the most used kernel SVMs, which are

linear, polynomial, radial, and tangential SVMs. They discussed the two-class

problem and generated data sets distributed from the Normal, Poisson, and

Exponential distributions. It shows that LR performed better than all SVMs

54

when the sample sizes of the two groups are not the same. Besides, Polynomial

SVM has the highest misclassification rate in Normal and Poisson cases.

• Tsangaratos and Ilia (2016) compare the performance of LR and Naive Bayes

classifiers; Kalantar et al. (2018) compare the performance of LR, SVM, and NN

classifiers; Nhu et al. (2020) study LR, Logistic Model Tree, Naive Bayes, NN,

and SVM classifiers with landslide susceptibility mapping problems.

• Liu (2018) studies LR with real data analysis on breast cancer diagnosis rates,

which shows good performance.

The aforementioned classifiers are widely discussed and applied in the analysis

of high-dimensional data. High-dimensional classification problems are commonly

encountered in various fields such as finance, medicine, genomics, healthcare, image

categorisation, and more. The challenges posed by high-dimensional data, including

the curse of dimensions and the need for effective feature selection, make these

classifiers particularly relevant in addressing these problems. Extensive research has

been conducted to adapt and optimise these classifiers for high-dimensional settings,

leading to valuable insights and advancements in various domains.

Before delving into the solutions and advantages of analysing high-dimensional

data, it is crucial to clarify certain assumptions that guide us in selecting appropriate

methods from the plethora of available approaches. Dobriban and Wager (2018)

outline three key hypotheses: the sparsity hypothesis, neighborhood-based methods

under the manifold hypothesis, and independent features. In our study, we primar-

ily focus on the sparsity hypothesis and independent learning assumption, which

assumes that the features are independent. These assumptions play a significant

role in guiding the choice of methods and algorithms for high-dimensional data

analysis, allowing us to leverage the unique characteristics of the data and tailor our

approaches accordingly.

Donoho et al. (2000) review the curses and blessings of high dimensional data

and explain the theoretical benefits and aspects of issues because of the increase of

dimensions. Bickel and Levina (2004) study the Independence Rule (IR, which is also

known as the Naive Bayes classifier) for high-dimensional classification problems,

and compared the performance of IR with LDA. When dealing with high-dimensional

55

data, LDA affected by diverging spectra performs much worse than IR (Bickel and

Levina, 2004).

The performance of PCA, the most well-known dimension reduction method,

and Random Projection (RP) are discussed and compared by Fan et al. (2014). Com-

pared to RP, PCA is computationally more complex and not feasible for large data

sets. Additionally, it shows that with the increase of the dimension, RPs have more

advantages over PCA. While RP is competitive in terms of computational efficiency,

the new space it generates does not take into account the intrinsic structure of the

collected data set and the new data set is less interpretable. A number of methods

have been proposed to improve the high distortion of RP, but some problems remain

(Xie et al., 2017).

According to Fan and Fan (2008), an important finding suggests that even with

the assumption of feature independence, classifiers can perform poorly when all

features are used. This poor performance is attributed to the accumulation of noise in

estimating population centroids within high-dimensional feature spaces. The study

reveals that both the Independence Rule (IR), which utilises all features assuming

independence, and LDA perform as poorly as random guessing due to noise accumu-

lation. By employing the two-sample t-test, Fan and Fan (2008) identify the conditions

under which the t-statistic can correctly identify all the important features with a

probability of 1. However, it is important to note that the t-statistic is not always the

optimal choice for feature selection, particularly in high-dimensional settings with

increased noise (Fan and Fan, 2008).

Additionally, Fan et al. (2011) provide a comprehensive overview of the most

commonly used classification methods, including distance-based and loss-based

classifiers. They discuss the performance of these methods in the context of high-

dimensional data, specifically LR, LDA, KNN, SVMs, and Naive Bayes classifiers (also

known as IR). The authors provide detailed explanations for why classical classifiers

struggle with high-dimensional data. Furthermore, Fan et al. (2014) review the

challenges posed by big data in statistical and computational aspects. This challenge

highlights the necessity for developing new approaches to overcome the limitations

of traditional classification methods in effectively handling high-dimensional data.

For high-dimensional classification, Fan and Fan (2008) proposed the Features

Annealed Independence Rules (FAIR) method, which effectively selects a subset of

56

important features and reduces the dimensions to solve the problem. This method

takes advantage of both the ideas of IR and the t-statistic. IR avoids the frequent

estimations of the large covariance matrix and the diverging condition number related

to the covariance matrix, and the advantage of the t-statistic is that all significant

features can be found under certain conditions. FAIR shows an oracle property with

the classification error rate and Fan and Fan (2008) give the upper bound of the

classification error of FAIR.

It is also worth mentioning that regularisation methods, as discussed in Section 2.1

and Section 2.2, are another promising approach for handling high-dimensional data

in classification problems. Specifically, under the assumption of sparsity, penalised

likelihood methods such as LR with regularisation can effectively perform feature

selection and estimation simultaneously. The SIS and ISIS methods, introduced by

Fan and Lv (2008) and further discussed and extended by Fan et al. (2009), Fan and

Song (2010), are insightful and natural extensions of the two-sample t-statistics. In

collaboration with SIS and ISIS, the performance of penalised likelihood methods in

the analysis of high-dimensional data has been remarkably improved, resulting in

efficient classification results. More details about SIS and ISIS are provided in Section

2.1 and Section 2.2.

2.5 Classification with imperfect labels

Another challenge of the classification problem, especially for large-scale data, is

that it is difficult to obtain a dataset with all perfect labels, and noise in the labels is

usually unavoidable. Many factors can lead to imperfect labels, such as inadequate

information, misjudgments by researchers, and encoding mistakes to name but three

(Cannings et al., 2020).

The random noise model is first proposed by Angluin and Laird (1988). They have

proposed the random noise model and inspired a series of subsequent studies. There

are several types of label noise that have been studied the most. The simplest setting

is that each label is mislabelled independently with a fixed probability and that the

noise is homogeneous. Class-dependent label noise, also known as label-dependent

noise, refers to the fact that the probability of mislabelling is the same for labels from

the same class. The label noise associated with features is feature-dependent, which

57

is heterogeneous. It is relatively common for label noise to depend on both class and

features (Frénay et al., 2014, Cheng et al., 2020). In our study, we focus on the case

where the noise is both class- and feature-dependent.

Cannings et al. (2020) investigate the classification problem with imperfect labels,

considering noise in the data that is dependent on both the features and the class.

They introduce a novel approach to evaluate the performance of any classifier by

introducing a metric called “excess risk”. This metric allows them to bound the

excess risk of an arbitrary classifier trained with imperfect labels, based on its excess

risk for predicting a noisy label. In detail, if a classifier (Cn) is consistent, it shows

R(Cn) − R(CBayes) → 0 as n → ∞, where n is the number of the test data and R(C) is

the risk of the classifier.

R(C) = P{C(X) ̸= Y}, (2.14)

and Y is the true label of the test data.

Cannings et al. (2020) first identify a condition whereby classifiers are trained

by imperfect labelled datasets that show consistency when classifying fully perfect

labelled test data. Cannings et al. (2020) investigate the performance of widely-used

classifiers—KNN, SVM, and LDA, as discussed in the preceding section—when

applied to mislabelled datasets. They conclude that the convergence rates of excess

risk of KNN and SVM are not affected by label noise, whereas LDA is not consistent

in dealing with imperfect labels unless both classes had the same prior probability.

Contrary to previous studies, Krause et al. (2016) found that label noise does not lead

to adverse effects in the case of fine-grained classification, and Cannings et al. (2020)

claim that they are the first to suggest that imperfect labels can help improve the

performance of KNNs and SVMs under certain conditions. However, in Cannings

et al. (2020)’s work, they do not consider any modifications to the corrupted data set,

but simply ignore the imperfect labels and used the raw data directly as training data,

though this is not appropriate for some classifiers, such as LR, as we discuss in our

study. Furthermore, their work has not included high-dimensional data sets.

Sukhbaatar et al. (2014) and Goldberger and Ben-Reuven (2016) train the deep

neural networks with the data sets having the label noise. They consider an additional

noise channel, also known as a Noisy Layer, and estimate a noise parameter from the

unknown noise distribution.

58

Bootkrajang and Kabán (2012) study the robust Logistic Regression (rLR), which

takes into account estimates of the noise distribution from the raw data collected.

After the introduction of rLR, more models have been proposed. Robust sparse logis-

tic regression consisting of LR and L1 penalty function is introduced by Bootkrajang

and Kabán (2013) and it can be seen as a label-noise robust extension of the Bayesian

logistic regression classifier. Robust sparse logistic regression can be used in the more

general case where the dataset can be high-dimensional with labelled noise. The ker-

nel rLR is investigated by Bootkrajang and Kabán (2014) without trusted verification

sets and with noisy labels. Bootkrajang and Chaijaruwanich (2020) use Gaussian

Mixture Model (GMM) to estimate the mislabelling probabilities and proposed a

model named Gaussian Mixture Model-based Robust Logistic Regression (GMMLR).

GMMLR performs better than rLR when the noise distribution is not uniform and

GMMLR is more flexible for the mixture noise of Gaussian and gamma noise than

rLR.

Although Bootkrajang and Kabán (2013) demonstrate the good performance of

rLR and its extensions to study noisy labels, and mention that robust sparse logistic

regression has an attractive side feature for detecting imperfect labels, there is little

discussion of the statistical properties and gaps in the theoretical contributions.

Frénay et al. (2014) point out that in theory, many existing learning algorithms are

rarely fully robust to noise labels, except for a few simple cases. Also, all of the work

mentioned above uses raw, noisy data to train the model without relabelling any

imperfect labels. We are concerned about how imperfect labels can provide reasonable

information or accuracy of posterior probabilities when training models with very

noisy data sets, both in practice and in theory. An iterative algorithm to correct the

imperfect labels is introduced with the feature-dependent label noise (Zhang et al.,

2021). Nevertheless, when considering the computational cost, it becomes evident

that the process of checking and correcting each label in this iterative algorithm is

both expensive and impractical, especially when working with large datasets or

studying high-dimensional data.

Obtaining a high-quality dataset through the conventional data cleansing process

involves the identification of incorrect labels, the detection of errors, and their subse-

quent correction. Ridzuan and Zainon (2019) demonstrate this process in five phases,

including data analysis, the definition of a transformation workflow and mapping

59

rules, verification, transformation, and the backflow of cleaned data. However, they

also mention that these traditional data cleansing processes can be time-consuming

and are not suitable for situations that require quick analysis results. In their re-

view, Ridzuan and Zainon (2019) critically evaluate the traditional data cleansing

approaches and provide detailed reasons why they are not well-suited for big data.

Additionally, they discuss existing data cleansing methods specifically designed for

big data, namely SCalable Automatic REpairing (SCARE), KATARA Cleanix, and

BigDansing. They compare the features, execution methods, and mechanisms of

each method, outlining their respective advantages and shortcomings. Importantly,

Ridzuan and Zainon (2019) conclude that there are still gaps in current research on

data cleansing techniques, particularly when it comes to addressing the challenges

posed by big data.

Besides this, one must consider the traditional ways to view noisy labels as

statistical outliers. However, for most practical problems, noisy labels rarely behave

like independent random outliers, but rather exhibit the same multi-modal properties

as perfect labels. Detecting imperfect labels is therefore a challenge. More importantly,

if they are removed, some useful information is lost (Li et al., 2017).

Most of the existing work discusses data cleaning, data correction of entire

datasets, and training models from raw data with unknown imperfect labels. As we

have noted, the methods can be computationally expensive, less practical to apply,

or produce less credible results due to unknown information from noisy data. The

concept of “distillation” is later introduced by Hinton et al. (2015) without the need

to detect all the data or delete the noisy labels. The distillation method first studies

a clean data set and uses the predictions to train a corrupted data set. Inspired by

Hinton et al. (2015)’s work, Li et al. (2017) propose a unified distillation framework

that has a different way to leverage clean and noisy labels from Hinton et al. (2015)’s.

The model is trained from a small subset of clean data and then follows a large noisy

data set, suggesting that even with imperfect labels, the performance of the classifier

is improved with the second training step.

Li et al. (2017) compare the distillation method with the previous works such as

the label smoothing and bootstrapping method to reduce the impact of the effects

of the noisy labels. They also compare the distillation method with the Finetuning,

Importance Reweighting, and Noisy Layer which is often used in deep learning liter-

60

ature. All the results show the distillation method outperforms other methods. As Li

et al. (2017)’s work only discuss the general case where there are no specific assump-

tions about the noise distribution, there are still gaps in the theoretical contribution

but the concept of distillation is very illuminating.

61

3 Classification with mislabelled data

This chapter focuses on the classification problem in datasets that are corrupted by

class- and feature-dependent noise. We use logistic regression (LR) for our study on

classification. The arrangement of this chapter is delineated as follows.

Assuming data sparsity and initially focusing on low-dimensional datasets, Sec-

tion 3.1 offers a detailed exposition of our proposed two-step estimation method,

which capitalises on resampling. In Section 3.2, we delineate the metrics used to

assess the performance of the methodologies explored in the simulation study of this

chapter. Section 3.3 provides an in-depth account of how mislabelled datasets are

generated for the simulation study undertaken in this chapter. Through simulated

examples, we scrutinise the efficacy of our approach across a spectrum of mislabelled

datasets.

The cross-validation process for determining a tuning parameter of the penalty

function is expounded in Section 3.4. This section focuses on the examination of

validation data, which consists of diverse types of observations. Section 3.5 explores

different estimation orders on the three unknown parameters of our method. The

simulation study conducted in both Section 3.4 and Section 3.5 demonstrates the

consistent performance of our method across different scenarios. Through a simula-

tion study, we compare the effectiveness of our proposed method with the methods

discussed in Section 3.6 assuming “oracle information”, where prior knowledge of

the parameters associated with flipping probabilities is known.

In Section 3.7, we further explain alternative methods that utilise perfectly la-

belled datasets, ignore incorrect labels, or selectively correct specific labels while

disregarding noise during the estimation process. We conduct various simulated

examples to compare the performance of these methods with our proposed approach.

Importantly, our proposed method exhibits competitive performance compared to

the method that analyses all corrected data, and it noticeably outperforms the method

that neglects imperfect labels and uses corrupted data directly. Furthermore, the

results show that the LR classifier performs no better than random guessing when

trained on raw data directly.

Section 3.8 outlines the strategy utilised to mitigate class- and feature-dependent

label distortion in our model to being solely class-dependent, by approximating

62

the flipping probabilities based on the ratios of mislabels in resampled datasets. A

simulation study is implemented to contrast the effectiveness of the stated method

against our proposed approach, and our method demonstrates competitive outcomes.

Following the discussion on low-dimensional sparse data with mislabelling, we

present the two-step estimation methods designed for high-dimensional mislabelled

data. In Sections 3.9 and 3.10, we elucidate our integration of the Sure Independence

Screening (SIS) method, as proposed by Fan and Lv (2008), Fan and Song (2010). We

term this the Independence Screening (IS) method. Additionally, we incorporate

the Iterative Sure Independence Screening (ISIS) method, put forth by Fan et al.

(2009), which we refer to as the Iterative Independence Screening (IIS) approach.

Additionally, we conduct a simulation study to demonstrate the performance of

our proposed methods and compare them to the estimation process that uses all

corrected data. Our method, which incorporates the IIS method, exhibits superior

performance compared to the method that uses the IS approach. Furthermore, our

method demonstrates more consistent performance across various scenarios.

Finally, in Section 3.11, we present a study on a real dataset concerning coronary

heart disease prediction. The original dataset consisted of all perfect labels, but

we introduce class-dependent noise by manually mislabelling it. We assess the

performance of our method in comparison to alternative approaches, and our method

consistently demonstrates competitive and robust performance.

3.1 Methodology

In this section, we provide a detailed explanation of the algorithm for our proposed

two-step estimation method for low-dimensional sparse mislabelled data.

Suppose we have a sample consisting of i.i.d. observations as (Xi,yi), i = 1, · · · ,n,

where Xi = (x1i, · · · , xpi)T is a p-vector representing the predictor variables, with

x1i ≡ 1, and yi = {0, 1} is a binary response variable for the two-class classification.

In the dataset, some yis are incorrectly labelled and the exact information about the

incorrect labels of the dataset is unknown at the time of data collection. We denote

the unknown correct label of yi as zi, where i = 1, · · · ,n.

63

3.1.1 The proposed classifier

After collecting the corrupted dataset, we randomly resampled a subset of size

m from (Xi, yi), i = 1, · · · , n, and denote the subscripts of the subsample by

D = {i1, · · · , im}. D is a random set. The size of a subsample is smaller than the size

of the dataset and even m ≪ n. We have the assumption that the correct label of the

original data can be known through further study of the subsample. In the following,

the arguments are conditional on that D is given and to avoid replication, we state

the arguments without saying “conditional on that D is given”.

After the resampling, we combine the subsample with the original sample to

obtain a new sample (Xi, zi, yi), i = 1, · · · , n, zi ∈ {0, 1}, yi ∈ {0, 1}. Xi and yi are

the original observations, zi is the perfect label of yi and can only be observed when

i ∈ D. Let

Dc = {1, · · · , n}−D, πz(Xi) = P(zi = 1|Xi), πy(Xi) = P(yi = 1|Xi).

We define the probabilities of a label being mislabelled, also referred to as the “flipping

probabilities”, which are denoted as πy|0(Xi) and 1− πy|1(Xi), where

πy|0(Xi) = P(yi = 1|Xi, zi = 0), πy|1(Xi) = P(yi = 1|Xi, zi = 1).

We assume

logit{πz(Xi)} = XT
i β, logit{πy|0(Xi)} = XT

i η0, logit{πy|1(Xi)} = XT
i η1,

here β, η0, and η1 are all p-dimensional unknown parameters that need to be esti-

mated. In particular, β denotes the regression coefficients that are of primary interest,

while η0 and η1 are related to the flipping probabilities for a label.

It is easy to see

πy(Xi) = E {P(yi = 1|Xi, zi)|Xi} = πy|1(Xi)πz(Xi) + πy|0(Xi)(1− πz(Xi))

= πy|0(Xi) +
{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi).

64

Therefore, we have the following likelihood function of β, η0 and η1:{∏
i∈Dc

πy(Xi)
yi(1− πy(Xi))

1−yi

}
×

∏
i∈D

[{
πy|0(Xi)

yi(1− πy|0(Xi))
1−yi(1− πz(Xi))

1−zi
}1−zi

×
{
πy|1(Xi)

yi(1− πy|1(Xi))
1−yiπz(Xi)

zi
}zi

]
,

and the penalised log-likelihood function is

L(β, η0, η1)

=
∑
i∈Dc

(
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

])
+
∑
i∈D

(1− zi)
{
yi(X

T
i η0) + log(1− πy|0(Xi)) + (1− zi) log(1− πz(Xi))

}
+
∑
i∈D

zi
{
yi(X

T
i η1) + log(1− πy|1(Xi)) + zi log(πz(Xi))

}
−Pλβ

(∥β∥1) − Pλη0
(∥η0∥1) − Pλη1

(∥η1∥1), (3.1)

where Pλ(·) is a penalty function with tuning parameter λ, ∥a∥1 =
p∑

j=1

|aj| for any p

dimensional vector a. Our goal is the find the MLEs of β, η0 and η1 respectively.

The MLEs are maximisers of the log-likelihood function (3.1), which we denote as

(β̂, η̂0, η̂1).

For a new observation X, if

exp(XT β̂)

1+ exp(XT β̂)
⩾

1

2
, (3.2)

and we classify it into the group with z = 1. Namely, the proposed classifier is

denoted as Cβ̂ and we have

Cβ̂(X) =

1 if (3.2) holds

0 otherwise.
(3.3)

65

3.1.2 Computational algorithm

In this section, we illustrate the algorithm of our method, which takes into account

resampling and the estimation of parameters related to the flipping probabilities. The

estimate is denoted as β̂ and the classifier denoted as Cβ̂.

In general, we utilise the Newton-Raphson method to ascertain the MLEs of the

unknown parameters presented in equation (3.1). Given the inherent sensitivity

of the Newton-Raphson method to initial guesses—a factor that can affect both

convergence and estimation accuracy (Casella and Bachmann, 2021)—we first analyse

the resampled data. This preliminary analysis aims to yield more precise estimates,

serving as robust initiators for subsequent estimations, where both resampled and

unresampled data are collectively analysed.

The biggest obstacle to the implementation of the proposed method is the maximi-

sation of L(β, η0, η1), namely (3.1), because there is no closed form for the maximiser

of (3.1). In detail, given the complexity of (3.1), it would be very difficult to apply the

Newton-Raphson method to maximise the penalised log-likelihood function directly.

However, we introduce an iterative algorithm that overcomes this difficulty and

can be easily conducted. The intricacies of the two-step estimation computation are

elaborated upon as follows:

Step 1: Estimation using the resampled data

In the first step, we maximise each of the following log-likelihood functions in (3.4)

with the data from the subsample. Let Dz0 be the set of i such that i ∈ D and zi = 0,

and Dz1 = D −Dz0 . We have |Dz0 | = m0 and |Dz1 | = m1. We can easily obtain the

estimates of the parameters by applying penalised Iteratively Re-weighted Least

Squares estimates to the subsamples {(Xi, zi) : i ∈ D}, {(Xi, yi) : i ∈ Dz0}, and

{(Xi, yi) : i ∈ Dz1} respectively. We denote the maximisers of L(β), L(η0) and L(η1)

shown in (3.4) as β(0), η(0)
0 and η

(0)
1 and they are taken as initial estimates for the

second-step estimation. It is noteworthy that the LAQ method (Fan and Li, 2001) is

utilised in the estimation process.

L(β) =
∑
i∈D

[
zilogit(πz(Xi)) + log(1− πz(Xi))

]
− Pλβ

(∥β∥1),

L(η0) =
∑

i∈Dz0

[
yilogit(πy|0(Xi)) + log(1− πy|0(Xi))

]
− Pλη0

(∥η0∥1),

66

L(η1) =
∑

i∈Dz1

[
yilogit(πy|1(Xi)) + log(1− πy|1(Xi))

]
− Pλη1

(∥η1∥1). (3.4)

Step 2: Estimations using the combined data

After we obtain the initial estimates from the first-step estimation, we estimate

the model using the combined dataset, which consists of the resampled data with

subscripts in D and the data not being scrutinised with subscripts in Dc.

The proposed iterative algorithm starts with estimators of β(0), η(0)
0 and η

(0)
1 .

In the k−th, for k = 1, · · · , iteration, we employ the LQA method to the penalty

functions present in L(β, η0, η1). The specifics of the iterative estimation are detailed

below:

(1) we apply the Newton-Raphson method to maximise L(β(k−1), η0, η
(k−1)
1) with

respect to η0, and denote the maximiser by η
(k)
0 . The tuning parameter λ

η
(k)
0

is

updated and retained for the next estimation step.

(2) we apply the Newton-Raphson method to maximise L(β(k−1), η
(k)
0 , η1) with

respect to η1, and denote the maximiser by η
(k)
1 . The tuning parameter λ

η
(k)
1

is

updated and retained for the next estimation step.

(3) we apply the Newton-Raphson method to maximise L(β, η
(k)
0 , η

(k)
1) with

respect to β, and denote the maximiser by β(k). The tuning parameter λβ(k) is

updated and retained for the next estimation step.

We continue the above iteration until convergence and take the converged (β̂, η̂0, η̂1)

as the maximisers of L(β, η0, η1). We provide a detailed derivation for obtaining the

MLEs of the unknown parameters working with LQA for the two-step estimation.

Further specifics can be found in Appendix A.

In the context of Classification with mislabelled data, we utilise the sandwich formula

proposed by Fan and Li (2001) to obtain the estimated standard error (ESE) of the non-

zero coefficients of the estimates β̂, η̂0 and η̂1. The sandwich formula, introduced

by Fan and Li (2001), serves as an efficient method for accurately estimating the

covariance of an estimate and is crucial for evaluating the significance of estimated

coefficients and constructing confidence ellipsoids.

In the following contexts, our main objective is to estimate the standard error of β̂.

Since the ESEs for η̂0 and η̂1 are the same as that for β̂, we do not provide additional

67

details in this regard. More specifically, equation (3.5) illustrates the estimation of the

covariance matrix for d non-zero coefficients in β, where 1 ⩽ d < p.

ĉov(β̂1) =
{
∇2ℓ(β̂1) − nΣλβ

(β̂1)
}−1

ĉov(ℓ(β̂1))
{
∇2ℓ(β̂1) − nΣλβ

(β̂1)
}−1

, (3.5)

where β̂1 is a d-dimensional vector that consists of non-zero coefficients and repre-

sents the estimate for non-zero coefficients of β. We have

Σλβ
(β̂1) = diag{p ′

λβ
(|(β̂1)1|)/|(β̂1)1|, · · · ,p ′

λβ
(|(β̂1)d|)/|(β̂1)d|},

where pλβ
(·) is the penalty function, λβ is a tuning parameter, and ℓ(·) denotes an

unpenalised log-likelihood function. ESE of β̂j, j = 1, · · · ,d, can be obtained from

the diagonal elements of ĉov(β̂1).

3.2 Evaluation metrics for simulation study

In this chapter’s simulation study, we evaluate the effectiveness of the proposed

methodologies through numerous simulated experiments presented in the subse-

quent sections. In this section, we outline multiple metrics and criteria used to assess

the accuracy of the estimation, variable selection, hypothesis testing capabilities,

classification accuracy, and computational efficiency.

In our simulation study, we conduct 100 repetitions for each experiment. We

implement each experiment using C++ and utilise the computing platform provided

by the Viking computing cluster. Further details about the computing platform can

be found on the website: Viking computing cluster.

We evaluate the estimates derived from different methods based on the criteria

outlined below. In the subsequent formulas, we use β, a p-dimensional unknown

parameter, as a representative example and its estimate β̂ for illustration. It should

be noted that any estimate of the unknown parameter can be substituted into these

formulas to analyse the performance.

(1) For a single trial, we calculate the Mean Relative Squared Error (MRSE) of β̂ as

follows:

MRSE(β̂) =
1

p
× ||β̂− β||22

||β||22
,

68

https://www.york.ac.uk/it-services/services/viking-computing-cluster/

where ∥∥2 represents the L2 norm. The Averaged Mean Relative Squared Errors

(AMRSE) and Median Mean Relative Squared Errors (MMRSE) are the average

and median values of the MRSEs, respectively, computed over the 100 repeti-

tions of a single experiment. AMRSE can measure the overall performance of

the 100 estimates, while MMRSE, being less sensitive to outliers, provides a

more stable and robust measure of performance. According to the definition of

MRSE, the smaller the values of MRSE, AMRSE, and MMRSE, the closer the

estimate is to β.

(2) For the research topic of Classification with mislabelled data, we employ the

sandwich formula (3.5) as detailed in the subsequent sections to obtain the

Estimated Standard Errors (ESEs) of β̂. Additionally, we adhere to the strategy

outlined in Fan and Li (2001) to assess the performance of the standard error

formulas (3.5). Specifically, we compute the median of ESEs from 100 estimates

and denote it as ESEm. To measure the overall performance of the standard

error formula, we divide ESEm by 0.6745 to obtain ESEo. We also compute the

median absolute deviation divided by 0.6745, denoted as SD, to compare with

ESEs.

(3) For a given significance level of α = 0.05, 95% confidence ellipsoids are con-

structed separately for the non-zero coefficients and the zero coefficients of

β. The coverage probabilities (CPs) are then computed and recorded for the

non-zero and zero coefficients respectively.

(4) For the 100-repetition experiment, the averaged number of the incorrect zero

estimates for non-zero coefficients of β and incorrect non-zero estimates for

zero coefficients of β are calculated.

(5) As the binary classification problem is studied, the efficiency of the classifier is

considered to be evaluated with the Bayes classifier. The risk of any classifier

C(X) is defined as

R(C) = P(C(X) ̸= y),

where y = {0, 1} is the correct label of the new observation X. For any classifier,

69

we have

C(X) =

1 if P(y = 1|X) ⩾ 0.5,

0 otherwise.

(3.6)

It is widely acknowledged that the Bayes classifier, represented in our study

as CB(X), possesses the minimum risk. We introduce a specific metric, termed

“Excess Risk”, to evaluate the performance of a classifier. It is defined as:

ER(C) = R(CB)/R(C), (3.7)

where R(CB) denotes the risk associated with the Bayes classifier, and R(C)

signifies the risk of any given classifier C. By this definition, a higher excess

risk value, nearing 1, suggests that the classifier performs comparably to the

Bayes classifier in terms of misclassification rate.

In our simulation study, by utilising the pre-established values of the model’s

unknown parameters, we formulate a classifier. This classifier, informed by

the accurate parameter values, functions in a manner akin to a Bayes classifier,

which is intrinsically designed to reduce classification risk. Specifically, with

reference to equation (3.7), we generate 500 test data points from out-of-sample

data. The misclassification rate of the classifiers is then benchmarked against

the Bayes classifier constructed using the known parameter values.

(6) The computation time for each of the 100 replications are recorded for some

simulation study discussed below and in the format of hours:minutes:seconds.

For regularisation techniques, we incorporate the SCAD penalty function for

simulation studies, with the penalty term Pλ(·) given by equation (2.4). In this

equation, both a and λ serve as tuning parameters acting as thresholds that require

determination. As recommended in Fan and Li (2001), we set a = 3.7. The process of

determining a suitable value for λ is discussed in Section 3.4 for the topic of Classifica-

tion with mislabelled data. Across an experiment with 100 independent repetitions, the

settings for selecting tuning parameters are consistent. This encompasses the same

predetermined search intervals, search step sizes, and sizes of validation data.

70

3.3 Mislabelled dataset generation and simulation study set-up

In this section, we explain how we generate the mislabelled dataset for the simulation

study. For all the simulation examples in Classification with mislabelled data, we first

generate a dataset with all perfect labels and then corrupt the dataset using the

flipping probabilities.

To elaborate, a dataset with a sufficiently large sample size (Xi, zi), i = 1, · · · , N,

is first generated. x1i ≡ 1, and the remaining covariates have a correlation structure

as x[2:p]i∼N(0,V), where V is a (p − 1) × (p − 1) compound symmetry covariance

matrix. zi = {0, 1} is considered a perfect label. We have the index set S0 for the data

labelled as 0 and S1 for label 1, with |S0| = N0, |S1| = N1, and N0 +N1 = N.

Given the parameters η0 and η1 associated with the flipping probabilities, we

corrupt the dataset and obtain the observed labels denoted as yi, i = 1, · · · , N,

according to (3.8) and (3.9),

yi =

1 πy|0(Xi) > ϵ0i

0 otherwise,

for i ∈ S0, (3.8)

yi =

1 πy|1(Xi) > ϵ1i

0 otherwise,

for i ∈ S1, (3.9)

where ϵ0i and ϵ1i are independent varaibles, and ϵ0i
i.i.d.
∼ U(0, 1), and ϵ1i

i.i.d.
∼ U(0, 1), i =

1, · · · ,N.

We now obtain a dataset {(X1, z1,y1), (X2, z2,y2), · · · , (XN, zN,yN)}, where yis can

be imperfect, meaning yi ̸= zi. From the generated dataset, we record the ratios of

the number of imperfect labels in the dataset to the class size, which are

My|0 =
∑
i∈S0

1yi|0

N0

, (3.10)

My|1 =
∑
i∈S1

1yi|1

N1

, (3.11)

71

and 1yi|0 and 1yi|1 are given by

1yi|0 =

1 yi = 1

0 otherwise

for i ∈ S0, 1yi|1 =

1 yi = 0

0 otherwise

for i ∈ S1.

We also record the total mislabelling rate of the dataset, denoted as M and defined as

M =

∑
i∈S0

1yi|0
+

∑
i∈S1

1yi|1

N
. (3.12)

For the analysis, zi is unknown, and Xi and yi = {0, 1} are both observed.

For all simulation studies discussed in the sections on Classification with mislabelled

data, we conduct 100 independent trails for each experiment, with N = 15000 data

points generated for each run. We randomly select n samples (Xi,yi), i = 1, · · · ,n,

from each dataset, where 0 < n < N, to form the full-size training data. For each trial,

we also select 500 data points as the testing data, and their labels are correct. The

testing dataset is independent of the training dataset. Referring to (3.10)-(3.12), the

mean mislabelling rates of the 100 trials for each class and the total datasets with a

size of N = 15000 are presented in some examples of the simulation study below and

denoted as M̄y|0, M̄y|1, and M̄, respectively.

In the following simulation study, we introduce SCAD into the model as the

penalty term. As suggested by Fan and Li (2001), we fix the tuning parameter a = 3.7

in Equation (2.4). For another tuning parameter λ, we modify the classical Leave-P-

Out Cross Validation method to find a desirable value for the tuning parameter λ.

This is explained in detail in Section 3.4, and the validation dataset is set as ncv = 20

unless otherwise specified.

3.3.1 Resampling for the mislabelled dataset

When we collect the dataset with mislabelling (Xi, yi), i = 1, · · · , n, we resample

them to correct the incorrect labels. In detail, we randomly select m, 1 < m < n,

data points and obtain a subsample (Xi, zi, yi), i ∈ D, where zi is the correct label

only known in this subset. We then have two index sets, Dz0 and Dz1 , consisting of

elements which are indices of correct labels zi = 0 and zi = 1, respectively, where

72

i ∈ D, and |Dz0 | = m0 and |Dz1 | = m1.

In the resampled dataset, the ratios of incorrect labels to class size are

M̂y|0 =
∑

i∈Dz0

Iyi|0

m0

, (3.13)

M̂y|1 =
∑

i∈Dz1

Iyi|1

m1

, (3.14)

where

Iyi|0 =

1 yi = 1

0 otherwise

for i ∈ Dz0 , Iyi|1 =

1 yi = 0

0 otherwise

for i ∈ Dz1 .

The mislabelling rate of the resampled dataset is

M̂ =

∑
i∈Dz0

1yi|0
+

∑
i∈Dz1

1yi|1

m
. (3.15)

In our study, as explained, we conduct 100 independent trials for each experiment.

To calculate the average mislabelling rates of the 100 resampled datasets where the

true labels are only known, we use equations (3.13)-(3.15), and denote the resulting

rates of the datasets as ¯̂
My|0,

¯̂
My|1, and ¯̂

M respectively.

3.3.2 Simulation study

In this section, we design two simulation examples to demonstrate the performance

of our proposed method. The low-dimensional mislabelled dataset is discussed

with varying sample and subsample sizes and varying correlated covariates. The

parameter settings for model (3.1) are the same for both examples in this section and

we set p = 15. The details are as follows

β = (0, β2, β3, 0, · · · , 0)Tp×1, β2 = 2, β3 = 1.5;

η0 = (0, η0,2, η0,3, 0, · · · , 0)Tp×1, η0,2 = −0.65, η0,3 = 1.2;

η1 = (0, η1,2, η1,3, 0, · · · , 0)Tp×1, η1,2 = 1.5, η1,3 = −1.

73

Example 1: mislabelled datasets with different sizes. In the first example, we

investigate the impact of mislabels in datasets with varying proportions relative to

the total training sample size, denoted as n, as well as the resample size, denoted as

m. We have the covariance matrix of covariates x[2:p]i, i = 1, · · · ,N, as V14×14, which

is a compound symmetry covariance matrix with the correlation parameter is ρ = 0.2.

Referring to Section 3.3, after generating N = 15000 i.i.d. data points, we select

the training dataset with mislabelling and each of size n. We assess the performance

of our proposed method by resampling each dataset using a subsample size of m,

and the full-size of the training dataset n has a relationship to the resampled size

as n
m

to 2, 3, 4, 5, and 6, respectively. Specifically, we set m to 300, 400, 500. We

estimate the parameters β, η0, and η1 using our proposed method and record the

resulting numerical performance in Tables 3.1-Table 3.8, which summarise the overall

performance across the 100 repeated trials.

The AMRSEs and the MMRSEs of β̂s, η̂0s, and η̂1s are recorded in Table 3.1-3.3

respectively. We can observe consistent trends among the three estimates from the

results presented in the tables. First, as expected, the performance of all estimates

improves when the corrupted dataset maintains the same size while more data is

resampled. Second, it is noticeable that when the resampled data has a fairly large

size and remains fixed at m = 500, the performance of the estimates of β, η0, and

η1 improves with increases in the full training size, indicating a growing size of

corrupted data. However, when the resampled size is m = 300 or 400, all estimates

exhibit enhanced performance when the ratio of the size of the two datasets changes

from 2 to 3, with a more significant improvement in the performance of the estimates,

particularly for the estimates of parameters related to the flipping probabilities, η̂0s

and η̂1s. Nonetheless, the accuracy of estimates increases within a certain range of the

ratio of the sizes of the two datasets and remains at a certain level or decreases slightly

when the ratio exceeds a certain value. This suggests that our method cannot be

indefinitely improved with an increase in the size of the unresampled data, especially

when the size of the resampled dataset is limited. This can be attributed to the lower

accuracy of the first-step estimates when the resampled dataset is small, while the

addition of the unresampled data introduces more mislabels that interfere with the

estimates.

The comparison of the ESEs with respect to β̂s obtained by Equation (3.5) and

74

SDs as the true values are recorded in Table 3.4. As can be seen from the table, in all

cases, the sandwich formula works well even with the increasing number of incorrect

labels in the dataset. We omit the details of ESEs and SDs of η̂0s and η̂1s because of

the similar results which validate that the sandwich formula performs well.

We also present the variable selection performance of our method for the three

parameters in Table 3.5-3.7. The tables present the averaged number of incorrect

zero estimates and non-zero estimates, and the CPs of the non-zero coefficients and

zero coefficients for β, η0, and η1, respectively. In detail, we can see from Table 3.5

that SCAD works very well, as there are no erroneous zero estimates of the non-zero

coefficients of β in all cases. Not surprisingly, when studying the same corrupted

dataset, there are fewer incorrect non-zero estimates of the zero coefficients of β when

the size of the resampled dataset is increased. Meanwhile, the incorrect non-zero

estimates for zero coefficients of β also decrease. It is also noticeable that, with

the resampled dataset fixed, as n increases and more mislabels are involved, there

are fewer incorrect non-zero estimates for zero coefficients of β, and CPs for zero

coefficients increase as well. While when the fixed resampled datasets are fairly large

(m = 500), the CPs for non-zero coefficients of β show a trend of increasing, while for

a smaller size (m = 300 or 400) of resampled datasets, CPs for non-zero coefficients

increase first and then retain at certain levels.

The same trends as in Table 3.5 are also shown in Table 3.6 and Table 3.7 for the

other two estimates. A noticeable phenomenon, slightly different from Table 3.5 in

this example, is that with the fixed small resampled dataset (m = 300) and as the

training datasets increase, there are more significant features of η0 missed, and the

decrease of CPs during the 100 repetitions is more evident. This can be related to the

small size of the data used for the first step estimation, whose estimates join in the

second step estimation as initiators, affecting the final results.

As can be seen from Table 3.8, our classifier exhibits almost the same performance

as the Bayes classifier, shown in the table with all excess risks being close to 1. Specif-

ically, consistent with the findings shown in the tables above, when more resampled

data are available in the same corrupted dataset or when more unresampled data join

the training dataset with the resampled datasets remaining the same, the efficiency of

our classifiers improves, with excess risks increasing and approaching 1.

75

Table 3.1: AMRSEs and MMRSEs (in brackets) of β̂s

m

n
m 2 3 4 5 6

300 2.7410(1.8500) 2.4840(1.3787) 2.3640(1.4867) 2.3280(1.3894) 2.3670(1.4937)

400 1.6150(1.0561) 1.5070(1.0088) 1.4370(0.9797) 1.4880(0.9353) 1.4410(0.8139)

500 1.0690(0.8739) 0.9850(0.6711) 0.9300(0.4653) 0.8900(0.4473) 0.8480(0.4418)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.2: AMRSEs and MMRSEs (in brackets) of η̂0s

m

n
m 2 3 4 5 6

300 10.449(8.8148) 8.466(5.1157) 8.645(3.9888) 8.721(2.4163) 9.464(2.2435)

400 6.975(4.9439) 4.551(2.3797) 3.656(1.4081) 3.829(0.8762) 3.618(0.7508)

500 5.635(3.4819) 3.930(1.7182) 3.049(1.0307) 2.960(0.7218) 2.837(0.4554)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.3: AMRSEs and MMRSEs (in brackets) of η̂1s

m

n
m 2 3 4 5 6

300 7.2850(3.4344) 4.4220(2.2357) 3.5290(2.0771) 4.4560(1.5639) 4.781(1.0401)

400 3.9370(2.2296) 2.4990(1.7209) 1.941(1.2711) 2.468(0.7316) 2.507(0.7993)

500 3.7320(2.0085) 2.353(1.00280) 1.670(0.6747) 1.823(0.6461) 1.286(0.5258)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.4: SDs and ESEs for non-zero β15×1 coefficient estimates

m

n
m 2 3 4 5 6

β2

300 0.241(0.235,0.348) 0.224(0.225,0.303) 0.251(0.220,0.326) 0.285(0.214,0.318) 0.292(0.208,0.308)

400 0.212(0.204,0.303) 0.204(0.195,0.288) 0.218(0.191,0.283) 0.225(0.182,0.270) 0.221(0.176,0.261)

500 0.171(0.180,0.267) 0.169(0.171,0.254) 0.189(0.165,0.245) 0.177(0.159,0.236) 0.193(0.153,0.227)

β3

300 0.153(0.197,0.292) 0.192(0.184,0.273) 0.166(0.178,0.264) 0.176(0.172,0.255) 0.211(0.165,0.245)

400 0.136(0.172,0.254) 0.146(0.161,0.238) 0.140(0.150,0.223) 0.159(0.144,0.214) 0.173(0.139,0.206)

500 0.144(0.151,0.223) 0.133(0.142,0.211) 0.122(0.135,0.200) 0.120(0.128,0.190) 0.113(0.121,0.180)

* For each cell, the value outside the brackets represents Standard Deviation (SD), while the first and

second numbers inside the brackets represent ESEm and ESEo, respectively.

76

Table 3.5: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabili-
ties (in parentheses) for β

m

n
m 2 3 4 5 6

non0
coeff.

300 0(0.9300) 0(0.9350) 0(0.9300) 0(0.9050) 0(0.8950)

400 0(0.9100) 0(0.9050) 0(0.9200) 0(0.8700) 0(0.9100)

500 0(0.9300) 0(0.9300) 0(0.9300) 0(0.9250) 0(0.9200)

0
coeff.

300 2.13(0.8762) 1.38(0.9285) 1.12(0.9485) 0.94(0.9615) 0.87(0.9662)

400 1.6(0.8908) 1.11(0.9331) 0.93(0.9469) 0.84(0.9585) 0.74(0.9700)

500 1.5(0.8877) 0.88(0.9369) 0.55(0.9646) 0.44(0.9746) 0.39(0.9785)

* β15×1 cosists of 2 non-zero coefficients.

Table 3.6: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabili-
ties (in parentheses) for η0

m

n
m 2 3 4 5 6

non0
coeff.

300 0.05(0.7950) 0.07(0.7750) 0.10(0.7250) 0.12(0.6800) 0.11(0.6650)

400 0.03(0.8450) 0.03(0.8500) 0.03(0.8350) 0.05(0.8100) 0.04(0.8050)

500 0.01(0.8750) 0.01(0.8350) 0.01(0.8450) 0.02(0.8250) 0.01(0.8400)

0
coeff.

300 2.49(0.8592) 1.46(0.9138) 1.07(0.9269) 0.84(0.9469) 0.63(0.9538)

400 2.48(0.8631) 1.37(0.9231) 0.95(0.9385) 0.66(0.9569) 0.49(0.9662)

500 2.22(0.8746) 1.15(0.9331) 0.82(0.9462) 0.58(0.9585) 0.49(0.9631)

* (η0)15×1 cosists of 2 non-zero coefficients.

Table 3.7: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabili-
ties (in parentheses) for η1

m

n
m 2 3 4 5 6

non0
coeff.

300 0.01(0.9150) 0.01(0.8800) 0.01(0.8650) 0.04(0.8300) 0.03(0.8000)

400 0(0.9000) 0(0.9050) 0(0.8950) 0(0.8550) 0(0.8650)

500 0(0.8800) 0(0.8950) 0(0.8600) 0(0.8650) 0(0.8600)

0
coeff.

300 2.05(0.8792) 1.29(0.9292) 0.77(0.9608) 0.62(0.9662) 0.51(0.9685)

400 1.82(0.9015) 1.00(0.9469) 0.73(0.9654) 0.51(0.9669) 0.38(0.9754)

500 1.96(0.8992) 1.09(0.9415) 0.63(0.9677) 0.51(0.9677) 0.38(0.9777)

* (η1)15×1 cosists of 2 non-zero coefficients.

77

Table 3.8: Excess risks of Cβ̂s

m

n
m 2 3 4 5 6

300 0.971382 0.974752 0.977862 0.982230 0.982993

400 0.985675 0.987407 0.988179 0.991764 0.991958

500 0.988759 0.992250 0.994299 0.995179 0.994592

* The misclassification rate of the Bayes Classifier is 20.23% across different cases.

Example 2: mislabelled datasets with different correlated covariates. The second

example in this section discusses the performance of our proposed approach when

dealing with different corrupted datasets that consist of various correlated covariates.

Specifically, we have multiple correlation parameters ρ = 0, 0.2, 0.5 for the covariance

matrix V14×14, a compound symmetry covariance matrix. The covariates x[2:p]i
i.i.d.
∼

N(0,V), i = 1, · · · , 15000. We select n = 1000 data points to build the training dataset

and test on different sizes of resampled datasets, which have m = 300, 500, 900.

The comparison of AMRSEs and MMRSEs of β̂s, η̂0s, and η̂1s are presented

respectively in Table 3.9-3.11. Under the settings with the same size of resampled

datasets, it can be observed that when the covariates are more correlated, the accuracy

of all estimates decreases. When ρ = 0.5, the AMRSE, and MMRSE are the largest

among all cases. When m increases, the gaps become smaller among cases with

varying correlated covariates. For the case of ρ = 0.5, having a larger resampled

dataset helps enhance the performance of the estimates, which is consistent with

Example 1.

Table 3.12 records the ESEs from the sandwich formula (3.5) and SDs of β̂s as

true values. Consistent with Example 1 above, the results reveal once again that the

sandwich formula (3.5) performs well in the analysis of mislabelled data. This can be

seen by the fact that the ESEs do not deviate significantly from the true values across

different cases with varying correlated covariates.

The performance of variable selection for the three parameters is recorded in

Table 3.13-3.15. Variable selection performance can be affected by settings such as

search intervals, search sizes, and validation datasets, among others. These details

are discussed in the following section, Section 3.4. Under fair settings for finding the

tuning parameter λs of the penalty function, these numerical results indicate that

78

SCAD performs well in estimation on mislabelled datasets, regardless of whether the

correlations of the observed covariates are low or high. As the results show, there

are no incorrect zero estimates for the non-zero coefficients of β in all cases and only

a few incorrect zero estimates for the non-zero coefficients of η0 and η1 during the

100 repetitions when the resampled data is small, with m = 300. As the covariates

become more correlated, CPs for the non-zero coefficients exhibit a decreasing trend,

but not drastically. With the settings of dataset sizes, the incorrect number of zero

coefficients and CPs for the zero coefficients of the three unknown parameters are

close across different cases. In this case, as the covariates become more correlated,

there are more erroneous non-zero estimates and CPs decrease.

As shown in Table 3.16, our proposed classifier exhibits performance close to that

of the Bayes classifier and also maintains similar efficiency when trained with differ-

ent correlated covariates. In this example, when analysing the same size resampled

datasets and as the correlation parameter becomes larger, the excess risks slightly

decrease, but not substantially.

Table 3.9: AMRSEs and MMRSEs (in brackets) of β̂s

ρ

m
300 500 900

0.00 2.3990(1.3730) 1.2890(1.0517) 0.6570(0.5243)

0.20 2.5600(1.6467) 1.3310(0.9801) 0.8550(0.7461)

0.50 3.3030(2.0069) 1.8310(1.2229) 0.8890(0.5558)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.10: AMRSEs and MMRSEs (in brackets) of η̂0s

ρ

m
300 500 900

0.00 7.682(3.9475) 4.856(2.9494) 3.927(2.2850)

0.20 9.700(5.4233) 5.637(3.5818) 5.678(5.0459)

0.50 13.058(10.0345) 11.137(7.2601) 7.042(5.1153)

* All values recorded in this table multiplied by 10−3 are true values.

79

Table 3.11: AMRSEs and MMRSEs (in brackets) of η̂1s

ρ

m
300 500 900

0.00 5.3190(1.3847) 3.1550(1.8225) 2.553(1.7561)

0.20 5.1260(1.8916) 3.7530(1.8802) 3.4700(2.5394)

0.50 6.2660(2.2727) 4.5260(2.8331) 3.5280(1.9398)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.12: SDs and ESEs for non-zero β coefficient estimates

ρ

m
300 500 900

β2

0 0.206(0.229,0.340) 0.241(0.184,0.273) 0.158(0.144,0.214)

0.2 0.264(0.225,0.334) 0.162(0.181,0.268) 0.146(0.141,0.210)

0.5 0.301(0.234,0.346) 0.195(0.186,0.275) 0.126(0.143,0.212)

β3

0 0.203(0.188,0.279) 0.141(0.154,0.228) 0.113(0.123,0.182)

0.2 0.200(0.185,0.274) 0.142(0.153,0.227) 0.123(0.122,0.180)

0.5 0.213(0.195,0.289) 0.134(0.158,0.235) 0.167(0.125,0.185)

* For each cell, the value outside the brackets represents SD, while the first and second

numbers inside the brackets represent ESEm and ESEo, respectively.

Table 3.13: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

ρ

m
300 500 900

non0
coeff.

0.00 0(0.9250) 0(0.9300) 0(0.9250)

0.20 0(0.9150) 0(0.9350) 0(0.9450)

0.50 0(0.8850) 0(0.9250) 0(0.9350)

0
coeff.

0.00 1.24(0.9331) 1.87(0.8754) 2.78(0.7915)

0.20 1.22(0.9385) 1.96(0.8731) 3.37(0.9138)

0.50 1.54(0.9315) 1.85(0.8962) 2.67(0.8162)

* β15×1 cosists of 2 non-zero coefficients.

80

Table 3.14: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for η0

ρ

m
300 500 900

non0
coeff.

0.00 0.05(0.7500) 0(0.8850) 0(0.9050)

0.20 0.08(0.7000) 0(0.8700) 0(0.9000)

0.50 0.14(0.6300) 0.08(0.6950) 0(0.9000)

0
coeff.

0.00 0.83(0.9423) 2.17(0.8715) 4.93(0.9546)

0.20 0.93(0.9331) 2.16(0.8777) 5.65(0.9469)

0.50 1.63(0.9138) 1.89(0.9008) 2.67(0.9346)

* (η0)15×1 cosists of 2 non-zero coefficients.

Table 3.15: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for η1

ρ

m
300 500 900

non0
coeff.

0.00 0.01(0.8550) 0(0.8850) 0(0.9500)

0.20 0.02(0.8200) 0(0.8850) 0(0.8850)

0.50 0.03(0.8600) 0(0.9100) 0(0.9150)

0
coeff.

0.00 0.60(0.9623) 1.66(0.9038) 4.13(0.9569)

0.20 0.54(0.9646) 1.97(0.9000) 4.74(0.9562)

0.50 1.42(0.9331) 1.65(0.9223) 3.48(0.9246)

* (η1)15×1 cosists of 2 non-zero coefficients.

Table 3.16: Excess risks of Cβ̂s

ρ

m
300 500 900

0.00 0.977204 0.984790 0.991655

0.20 0.977011 0.982707 0.995179

0.50 0.973591 0.981800 0.988152

* The misclassification rates of the Bayes classifiers are 18.776% for the case of ρ = 0, 20.23%

for the case of ρ = 0.2, and 23.52% for the case of ρ = 0.5.

In summary, from the two simulated examples in this section, we can conclude

81

that our proposed method demonstrates good performance for mislabelled low-

dimensional datasets, and our classifiers are very efficient, exhibiting almost the same

efficiency as the Bayes classifiers in all cases. In addition, we find that increasing the

sizes of training datasets within a certain range, even if they contain mislabelled data,

can improve the performance of the estimates and classifiers using our proposed

two-step estimation method. Additionally, our method displays stability when

analysing different sizes of mislabelled datasets with varying sizes of resampled

datasets or varying correlations among covariates in the datasets. Lastly, we find

that the performance of the estimates of the parameters associated with the flipping

probabilities follows the same trend as that of β in the model of most interest across

different cases. Therefore, for simplicity, we omit the detailed results for η̂0 and η̂1

from here on, and focus on the estimation of β, as its accuracy has a more direct

impact on the classifier.

3.4 Determining the tuning parameter for the penalty function in

the presence of mislabelled data

It is undeniable that the performance of variable selection is influenced by the settings

used to determine the values for the tuning parameter of the penalty function. Conse-

quently, in this section, we delve into the settings for tuning parameter selection in the

context of mislabelled data. Specifically, we investigate how our proposed method is

impacted by various sizes and types of validation datasets. In this section, we initially

provide a concise description of the process of selecting the tuning parameters for the

penalty function. Subsequently, we discuss in depth the selection of different types

and sizes of validation data to identify the tuning parameters in our second-step esti-

mation. More specifically, for our proposed two-step estimation method, the first step

estimation only scrutinises data in the subsample, which contains perfectly labelled

data. However, the second estimation step examines a composite dataset composed

of the corrected labels and other potentially imperfect labels. We are hence intrigued

by the prospect of identifying any significant discrepancies when we employ different

types of data for validation and the stability of our approach for various types of

validation datasets. We also conduct tests on validation datasets of different sizes to

ascertain whether the size of the validation dataset exerts a significant influence on

82

the results.

The simulation study conducted in the preceding sections demonstrates that our

proposed method integrates with SCAD. The results obtained from our method for

mislabelling data demonstrate its ability to effectively capture significant features

while successfully filtering out insignificant features. This capability is essential for

constructing accurate and interpretable models.

3.4.1 Modified Leave-P-Out Cross-Validation (mLPOCV)

In this section, we describe the Modified Leave-P-Out Cross-Validation (mLPOCV)

process applied to find a tuning parameter λ of the SCAD penalty function.

The same as the traditional Leave-P-Out Cross-Validation (LPOCV), in mLPOCV,

the dataset with a size of n is divided into two sets, one for training and another for

validation, with the validation dataset of size ncv, 1 ⩽ ncv < n. While unlike LPOCV

testing all validation data at one time, only one data is tested. In detail, at the k−th

time validation, where k = 1, · · · ,ncv, (Xk,yk) is used for validation. After testing,

(Xk,yk) joins in the training dataset for (k+ 1)-th validation, except for the last time

when k = ncv.

3.4.2 Selection of validation data from the unresampled dataset for second-step

estimation

In this section, we describe mLPOCVUR, a method for tuning parameter selection

during the second step of our proposed two-step estimation approach. To construct

the validation dataset, we randomly select ncv, 1 ⩽ ncv ⩽ n−m, observations from

the dataset {(Xi,yi)}, where i ∈ Dc and |Dc| = n −m. Note that in this validation

dataset, some labels are incorrect, and the information about the correct labels is

unknown. Following mLPOCV with a given search interval and search step, we find

a value for λ that maximises the sum of the penalised log-likelihood functions with a

form of
ncv∑
k=1

{ [
yk(X

T
kβ̂k) + log {1− π(Xk)}

]
− Pλβ

(∥β̂k∥1)
}
,

where β̂k is the estimate of β obtained at the k-iteration of mLPOCV, and logit(π(Xk)) =

XT
kβ̂k.

83

3.4.3 Selection of validation data from the resampled dataset for second-step

estimation

In this section, we present mLPOCVS, a method for selecting tuning parameters

during the second step estimation of our proposed two-step estimation method,

which uses only the resampled data from the subsample for validation. We randomly

selected ncv, where 1 ⩽ ncv ⩽ m, observations for validation from the subsample

{(Xi, zi)}, i ∈ D and |D| = m. It is worth noting that all labels in the validation dataset

are correct. Following mLPOCV with a given search interval and search step, we find

a value for λ that maximises the sum of the penalised log-likelihood functions with a

form of
ncv∑
k=1

{ [
zk(X

T
kβ̂k) + log {1− π(Xk)}

]
− Pλβ

(∥β̂k∥1)
}
,

where β̂k is the estimate of β obtained at the k-iteration of mLPOCV, and logit(π(Xk)) =

XT
kβ̂k.

3.4.4 Selection of validation data from resampled and unresampled datasets for

second-step estimation

In this section, we introduce a method called mLPOCVCD for tuning parameter

selection at the second step estimation of our method. In mLPOCVCD, the validation

data are selected from both the resampled dataset, {(Xi, zi)}, i ∈ D and |D| = m, and

unresampled datasets {(Xi,yi)}, where i ∈ Dc and |Dc| = n−m.

In detail, we randomly select ncv observations from the resampled dataset {(Xi, zi)},

where i ∈ D and |D| = m, and ncv observations from the unresampled dataset

{(Xi,yi)}, where i ∈ Dc and |Dc| = n−m. We have 1 ⩽ ncv < min(m,n−m). These

observations are then paired to form validation sets denoted by { ((XD)k, zk), ((XDc)k, yk) },

where k = 1, · · · ,ncv. For a given search interval and step and following mLPOCV,

the tuning parameter λ is the one to maximise the sum of the following log-likelihood

functions

ncv∑
k=1

{[
zk((XD)

T
kβ̂k) + log(1− πz((XD)k))

]
+[

yk((XDc)Tkβ̂k) + log(1− πy((XDc)k))
]
− Pλβ

(∥β̂k∥1)
}
,

84

where β̂k is the estimate of β obtained at the k-iteration of mLPOCV, and logit(πz(Xk)) =

(XD)
T
kβ̂k and logit(πy(Xk)) = (XDc)Tkβ̂k.

3.4.5 Simulation study

In this section, we have a simulation example to compare the performance of the

above introduced methods from Section 3.4.2-3.4.4 for the tuning parameter selection

at the second step estimation.

We set the parameters of the model (3.1) in this section as

β = (0,β2, 0, β4, β5, 0,β7 · · · , 0)Tp×1, β2 = 1,β4 = −0.85,β5 = 1,β7 = −0.85;

η0 = (0,η0,2,η0,3, 0, · · · , 0)Tp×1, η0,2 = −0.65,η0,3 = 1.2;

η1 = (0,η1,2,η1,3, 0, · · · , 0)Tp×1, η1,2 = 1.5,η1,3 = −1,

where p = 120. As described in Section 3.3, we initially generate a dataset of N =

15000 data points, where the correlation between xj1i and xj2i is determined by ρ|j1−j2|,

with ρ = 0.2 and j1,2 = 2, · · · , 120.

In this section, we use a fixed training dataset size of n = 1000 and a resampled

dataset size of m = 300. For the validation dataset, we consider different sizes of

ncv, specifically ncv = 10, 20, 30, 40, in this example. We set the step size as 0.15 for

each tuning parameter search process, and the search interval for λ related to β as

[0.05, 0.5], and for both η0 and η1 as [0.065, 0.65]. We denote the results obtained from

the method described in Section 3.4.2 as mLPOCVUR, the results from Section 3.4.3 as

mLPOCVS, and the results from Section 3.4.4 as mLPOCVCD. Table 3.17 to Table 3.19

present the recorded results of the simulation study conducted in this section.

Table 3.17 records the AMRSEs and MMRSEs of the estimates for β. It demon-

strates that, when using the same size of validation dataset, the performance of β̂s

obtained from the three methods is remarkably similar. The β̂s from mLPOCVUR

perform marginally better than the other two in some cases, but the difference is not

substantial. As the size of the validation dataset ncv increases, we notice a trend of

decreasing AMRSEs and MMRSEs for all estimates. When ncv = 40, the estimates in

this example are closest to the true values of β.

Table B.1 lists the ESEs of β̂s obtained from the three methodologies, as well as the

85

true values denoted as SDs. The results once more validate the effective performance

of the sandwich formula (3.5), and all estimates from different methods are closely

aligned. For further details, see Appendix B.

Table 3.18 displays the performance of variable selection by the three methods,

including the numbers of incorrect non-zero and zero estimators and CPs for non-

zero and zero coefficients of β respectively. It can be observed that there are few

or no incorrect zero estimators for non-zero coefficients and small sizes of non-zero

estimators for zero coefficients. The results reaffirm that our proposed method, which

employs SCAD, can identify almost all significant features and filter out the most

insignificant features, thereby contributing to accurate estimation and generating

interpretable models. It is also worth noting that for all tested methods, CPs for

non-zero coefficients tend to increase as the size of the validation dataset grows, with

a notable rise when ncv increases from 10 to 20.

Table 3.19 showcases the excess risks of the classifiers from the three methods and

the computing time under different settings. Firstly, we observe that under identical

settings (with the same ncv), the efficiency of all classifiers and computation time are

very similar across diverse cases. As anticipated, computation time escalates with an

increase in data selected for validation. Moreover, as the size of the validation dataset

expands, fewer labels are misclassified and the classifiers perform more closely to

the Bayes classifier, as evidenced by the excess risks approaching 1. However, the

improvement does not consistently increase with the amount of validation data, as

observed from the numerical results showing a relatively small increase in excess

risks when ncv is increased from 20 to 40.

Based on the simulated example in this section, we can confidently conclude that

our proposed method can maintain consistent performance, regardless of different

types and sizes of data being filtered out for validation. This is evident from the

minimal difference observed when using various types and numbers of data from

the validation set in the second-step estimation to determine the tuning parameters

λ. Nevertheless, to circumvent the problem of overfitting, given that the resampled

data has already been used for validation to find λ in the first step estimation, we

choose to utilise the validation data from the unresampled datasets for the second-

step estimation, as described in Section 3.4.2. Finally, taking into account both the

accuracy and efficiency of the classifier, we have set the validation dataset size to

86

ncv = 20 for the simulation study in other sections’ tuning parameter selection, unless

otherwise specified.

Table 3.17: AMRSEs and MMRSEs (in brackets) of β̂s from methods using different
validation datasets

ncv 10 20 30 40

mLPOCVUR 2.840(1.4940) 2.392(1.1165) 2.410(0.9912) 1.949(0.8526)

mLPOCVS 2.863(1.5500) 2.403(1.1165) 2.422(0.9912) 1.972(0.8702)

mLPOCVCD 2.868(1.5324) 2.395(1.1165) 2.421(0.9912) 1.967(0.8579)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.18: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

ncv 10 20 30 40

non0
coeff.

mLPOCVUR 0.01(0.642500) 0.01(0.722500) 0(0.705000) 0(0.760000)

mLPOCVS 0.02(0.647500) 0.01(0.722500) 0(0.700000) 0(0.752500)

mLPOCVCD 0.02(0.645000) 0.01(0.722500) 0(0.700000) 0(0.752500)

0
coeff.

mLPOCVUR 10.02(0.915172) 12.20(0.896897) 13.07(0.889052) 13.98(0.880603)

mLPOCVS 9.98(0.917069) 12.18(0.897069) 13.03(0.889397) 14.01(0.880345)

mLPOCVCD 10.07(0.916207) 12.13(0.897414) 13.05(0.889224) 14.04(0.880086)

* β120×1 cosists of 4 non-zero coefficients.

Table 3.19: Excess risks of various classifiers and computing time (in brackets)

ncv 10 20 30 40

mLPOCVUR 0.894454(17:14:14) 0.915602(22:54:21) 0.915182(26:15:46) 0.921667(34:11:54)

mLPOCVS 0.892386(16:24:30) 0.915812(23:54:58) 0.915392(24:35:58) 0.920462(30:59:16)

mLPOCVCD 0.892319(16:40:35) 0.915882(18:52:02) 0.915462(26:00:27) 0.920603(29:55:04)

* The misclassification rates of the Bayes classifiers are 23.932%.
* We implemented each experiment with 100 independent trials using C++ and ran them on 1

Intel Xeon 6138 CPUs. For each experiment, we requested 15 cores.

3.5 The order of estimation in the second-step estimation

As described in Section 3.1, the second-step estimation of our method has an iterative

process performed sequentially for estimating η0, η1 and β. Therefore, we would like

87

to explore how stable our method is by testing different estimation sequences for the

three unknown parameters.

In detail, there are six different estimation sequences in total. However, we only

discuss four sequences listed below, as we reckon that the performance of the other

two sequences unlisted to be similar to the sequence Order3 and Order4, which

swaps the order of estimation of η0 and η1.

Order1: η̂0 → η̂1 → β̂.

Order2: η̂1 → η̂0 → β̂.

Order3: η̂1 → β̂ → η̂0.

Order4: β̂ → η̂0 → η̂1.

A simulation study is carried out in the following section with the different

corrupted datasets so we can find out using different estimation sequences in the

second step estimation, how our method performs with corrupted datasets under

different settings.

3.5.1 Simulation study

In this section, we compare the performance of estimates obtained by iterating

through different estimation orders as Order1-Order4, introduced above. It is impor-

tant to note that convergence failures in regression are more likely to occur, especially

when the sample size is small (Allison, 2008). In case of such a failure, at the k-th,

k = 1, · · · , iteration, we set the estimates of η0 or η1 to 0 and proceed to the next

parameter estimation.

Specifically, we test our proposed method, which carries out different sequences of

estimations, on two corrupted datasets. We have the settings of the three parameters

in two cases as follows:

Case 1:

β = (0,β2, 0, β4, · · · , 0)Tp×1, β2 = 2,β4 = −1.5;

η0 = (0,η0,2,η0,3,η0,4,η0,5, · · · , 0)Tp×1, η0,2 = η0,4 = −0.65, η0,3 = η0,5 = 1.2;

η1 = (0,η1,2,η1,3,η1,4,η1,5, · · · , 0)Tp×1, η1,2 = η1,4 = 1.5, η1,3 = η1,5 = −1,

88

where p = 15.

Case 2:

β = (0,β2, 0, β4, · · · , 0)Tp×1, β2 = 2,β4 = −1.5;

η0 = (0,η0,2,η0,3, · · · , 0)Tp×1, η0,2 = −0.65,η0,3 = 1.2;

η1 = (0,η1,2,η1,3, · · · , 0)Tp×1, η1,2 = 1.5,η1,3 = −1,

where p = 150.

The correlation between the generated covariates, xj1i and xj2i, i = 1, · · · , 15000,

is determined by 0.5|j1−j2|, for j1,2 = 2, · · · ,p. We randomly select n = 1000 data

to construct the training dataset and discuss the resampled dataset with sizes of

m = 200, 400. Tables 3.20-3.22 record the performance of the method in this section.

Table 3.20 records AMRSEs and MMRSEs of β̂s from the two-step estimation

method carrying out different estimation sequences of the unknown parameters in

the second step estimation. It shows that studying the same corrupted dataset with

the same resampled data, AMRSEs, and MMRSEs of β̂s are very similar across the

methods testing on the four different sequence estimations. In detail, when p = 15, a

negligible difference among the estimates is observed when m = 200, while for other

cases, the numerical results are strikingly close or identical.

The ESEs of estimates for non-zero coefficients of β from different experiments

and the true values SDs are recorded in Table B.2, which shows the same findings as

the simulation study in the previous sections, and we include it in the Appendix B.

Table 3.21 showcases the performance of variable selection for our proposed

method, carrying out different estimation sequences at the second step estimation. It

is obvious that methods having different iterating orders at the second step estimation

have close performance across various cases, which is evidenced by none of incorrect

zero estimators in most scenarios (except when p = 15 and n = 200, there are

negligible numbers for Order 3 and Order4), and the similar counts of incorrect

non-zero estimators of zero coefficients of β. Additionally, the CPs for non-zero and

zero coefficients are consistent across different cases.

Table 3.22 demonstrates that when studying the same datasets, the classifiers from

our proposed method conducting different sequence estimations at the second step

estimation have almost the same efficiency. Meanwhile, all the classifiers exhibit

89

comparable performance to the Bayes classifiers in all scenarios.

In conclusion, from the simulation example in this section, we observe that our

two-step estimation method, carrying out different orders of estimation in the second

step, has a negligible impact on the simulation results. In this way, the consistency

of our proposed method is demonstrated. In our study, unless otherwise stated, we

chose Order1 as the order of estimation for all simulation studies in other sections.

As explained at the beginning of the section, we would assign 0 to the estimates of

η0 or η1 if the estimation cannot converge during the iterations. In doing so, we aim

to avoid the inaccurate estimations of η0 or η1 affecting the subsequent estimation

process.

Table 3.20: AMRSEs and MMRSEs (in brackets) of β̂ from the methods employ-
ing different estimation orders for the three unknown parameters

Case 1: p = 15 Order1 Order2 Order3 Order4

m = 200 7.561(3.222) 7.201(3.188) 7.186(2.791) 7.450(2.2867)

m = 400 1.369(1.017) 1.363(1.016) 1.341(0.992) 1.340(0.995)

Case 2: p = 150 Order1 Order2 Order3 Order4

m = 200 1.150(0.210) 1.150(0.210) 1.150(0.210) 1.150(0.210)

m = 400 0.422(0.136) 0.422(0.136) 0.416(0.139) 0.405(0.125)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.21: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

Case 1: p = 15 Order1 Order2 Order3 Order4

non0
coeff.

m = 200 0(0.920000) 0(0.925000) 0.01(0.915000) 0.02(0.915000)

m = 400 0(0.995000) 0(0.995000) 0(0.995000) 0(0.995000)

0
coeff.

m = 200 1.54(0.943846) 1.55(0.945385) 1.02(0.967692) 0.74(0.976923)

m = 400 1.25(0.936923) 1.23(0.939231) 1.15(0.942308) 1.01(0.953846)

Case 2: p = 150 Order1 Order2 Order3 Order4

non0
coeff.

m = 200 0(0.820000) 0(0.820000) 0(0.820000) 0(0.820000)

m = 400 0(0.880000) 0(0.880000) 0(0.880000) 0(0.890000)

0
coeff.

m = 200 9.76(0.934459) 9.76(0.934459) 9.76(0.934459) 9.76(0.934459)

m = 400 16.22(0.891622) 16.22(0.891622) 16.22(0.891824) 16.23(0.891824)

* Both β15×1 and β150×1 have 2 non-zero coefficients.

90

Table 3.22: Excess risks of Cβ̂s

Case 1: p = 15 Order1 Order2 Order3 Order4

m = 200 0.952970 0.951931 0.955316 0.955404

m = 400 0.992798 0.992327 0.992609 0.992798

Case 2: p = 150 Order1 Order2 Order3 Order4

m = 200 0.948014 0.947026 0.947111 0.947111

m = 400 0.969124 0.974240 0.975328 0.974693

* The misclassification rates of the Bayes classifiers are 20.716% for both cases where

p = 15 and p = 150.

3.6 Estimation using oracle information of flipping probabilities

In this section, we describe the two-step methods under the assumption that the

parameters related to flipping probabilities are known, which we refer to as “oracle

information” in our study. We explain three different cases where the parameters η0

and η1 are known. The resampling is still considered in all the approaches in this

section, as illustrated in Section 3.3.1.

While the assumption that the parameters associated with the flipping probabili-

ties is known is too idealistic to be true, comparing these methods with our proposed

method through the simulated examples that follow provides support for the validity

of our proposed method.

3.6.1 η0 is known

When only η0 is known, the flipping probability associated with η0 is also known.

Referring to our approach presented in Section 3.1, in the first step, we obtain the

MLEs denoted as β(0) and η
(0)
1 which are maximisers of L(β) and L(η1) in (3.4)

respectively.

When η0 is known, the penalised log-likelihood function for the second step

estimation is

L(β, η1)

=
∑
i∈Dc

{
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]}
91

+
∑
i∈D

(1− zi)
{
yilog(πy|0(Xi)) + (1− yi)log(1− πy|0(Xi))+

(1− zi)log(1− πz(Xi))}

+
∑
i∈D

zi
{
yi(X

T
i η1) + log(1− πy|1(Xi)) + zi log(πz(Xi))

}
−Pλβ

(∥β∥1) − Pλη1
(∥η1∥1), (3.16)

where πy|0(Xi) for i = 1, · · · ,n, are constants.

To begin the iteration of the second step estimation, we use β(0) and η
(0)
1 as initial

values, and then apply the following iterative algorithm: in the k-th, where k = 1, · · · ,

iteration, we use LQA to approximate the log-likelihood penalty function (3.16) as

follows:

(1) we apply the Newton-Raphson method to maximise L(β(k−1), η1) with respect

to η1, and denote the maximiser by η
(k)
1 . The tuning parameter λ

η
(k)
1

is updated

and retained for the next estimation step.

(2) we apply the Newton-Raphson method to maximise L(β, η
(k)
1) with respect to

β, and denote the maximiser by β(k). The tuning parameter λβ(k) is updated

and retained for the next estimation step.

The above iteration stops upon convergence and we then obtain the maximisers

of (3.16) denoted as (β̂|η0
, η̂1|η0

).

3.6.2 η1 is known

When only η1 is known, the estimation process is very similar to the method in

Section 3.6.1 introduced above. For the first step estimation, we obtain maximisers of

L(β) and L(η0) in (3.4), which are denoted as β(0) and η
(0)
0 , respectively.

We have the penalised log-likelihood function for the second step as

L(β, η0)

=
∑
i∈Dc

{
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]}
+
∑
i∈D

(1− zi)
{
yi(X

T
i η0) + log(1− πy|0(Xi)) + (1− zi) log(πz(Xi))

}
92

+
∑
i∈D

zi
{
yilog(πy|1(Xi)) + (1− yi)log(1− πy|1(Xi)) + zilog(πz(Xi))

}
−Pλβ

(∥β∥1) − Pλη0
(∥η0∥1), (3.17)

where πy|1(Xi) = P(yi = 1|Xi, zi = 1), i = 1, · · · ,n, are constants.

To find the maximisation of the penalty function (3.17), we use the following

iterative estimation process. In each of the k iterations, where k = 1, · · · ,

(1) we apply the Newton-Raphson method to maximise L(β(k−1), η0) with respect

to η0, and denote the maximiser by η
(k)
0 . The tuning parameter λ

η
(k)
0

is updated

and retained for the next estimation step.

(2) we apply the Newton-Raphson method to maximise L(β, η
(k)
0) with respect to

β, and denote the maximiser by β(k). The tuning parameter λβ(k) is updated

and retained for the next estimation step.

The above iteration stops until convergence. The MLEs of the unknown parameters,

denoted as (β̂|η1
, η̂0|η1

), are then obtained.

3.6.3 Both η0 and η1 are known

When both parameters η0 and η1 are known, only β in (3.1) is needed to be estimated.

After resampling the dataset, as introduced in Section 3.1, we maximise L(β) in (3.4)

and achieve the maximiser denoted as β(0). β(0) as the initiator joins in the next step

estimation.

In the second step estimation, we aim to find the maximiser of the penalised

log-likelihood function (3.18), and the MLE of the unknown parameter β is denoted

as β̂|η0,η1
. The penalised log-likelihood function has the form as follows

L(β)

=
∑
i∈Dc

{
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]}
+
∑
i∈D

[
zi(X

T
i β) + log(1− πz(Xi))

]
− Pλβ

(∥β∥1), (3.18)

where both πy|0(Xi) and πy|1(Xi) for i = 1, · · · ,n, are constants.

93

3.6.4 Simulation study

In this section, we design a simulated example having different corrupted datasets to

compare the performance of our proposed method with the methods having oracle

information described in Section 3.6.1-3.6.3.

The parameters in model (3.1) are set as follows:

β = (0,β2,β3, 0, · · · , 0)Tp×1, β2 = 2,β3 = −1.5;

η0 = (0,η0,2,η0,3, 0, · · · , 0)Tp×1, η0,2 = −0.65,η0,3 = 1.2;

η1 = (0,η1,2,η1,3, 0, · · · , 0)Tp×1, η1,2 = 1.5,η1,3 = −1,

where p = 15. The correlation between xj1i and xj2i, where i = 1, · · · ,N, is defined

as ρ|j1−j2|, with j1,2 = 2, · · · , 15, and N = 15000 as introduced in Section 3.3. We test

the four methods under three different values of ρ, which are 0, 0.2, and 0.5. The size

of each training dataset is fixed as n = 1000, and the resampled dataset is fixed as

m = 300. Tables 3.23-3.25 present the numerical results for this simulation study.

Table 3.23 reveals that the estimates of the four methods exhibit highly similar

performance when examining the same dataset. This is evidenced by the values of

AMRSEs and MMRSEs of β̂s, β̂|η0
s, β̂|η1

s and β̂|η0,η1
s. This substantiates that our

proposed method exhibits exceptional performance, as there is minimal difference

in estimation accuracy among all the methods. When the covariates are highly

correlated (ρ = 0.5), the accuracy of our proposed method diminishes slightly, yet

the variance in estimation accuracy with the other three methods remains relatively

insignificant.

Table B.3 documents ESEs of these estimates alongside the true values SDs, demon-

strating the robust performance of the sandwich formula (3.5) and the comparable

performance across these four estimates. Detailed results can be found in Appendix

B.

The variable selection performance of the methods is illustrated in Table 3.24.

Our methods perform almost identically to the other methods incorporating oracle

information, as indicated by the near-equal values of CPs for non-zero and zero

coefficients. Once more, the simulation study confirms that the methods integrating

with the SCAD penalty function can identify all significant features. Additionally, in

94

this example, β̂s have fewer incorrect non-zero estimators and higher CPs for the zero

coefficients, albeit the difference is not substantial, compared to other methods with

oracle information. This can be attributed to our method estimating more unknown

parameters than the other three, necessitating more iterations before convergence,

and thus providing more opportunities for variable selection processes.

The excess risk of the classifiers presented in Table 3.25 demonstrates that in all

cases, all classifiers perform remarkably close to the Bayes classifier. This is evidenced

by all numerical results approaching 1 and the similar efficiency across different

scenarios. It is worth noting that our classifier Cβ̂s exhibits nearly identical effi-

ciency to Cβ̂|η0,η1
s, which are derived from the method possessing precise information

concerning both unknown parameters related to flipping probabilities.

In conclusion, the simulation study in this section allows us to compare our pro-

posed method with other methods that have knowledge of the parameters associated

with the flipping probabilities of labels. The almost identical numerical results pro-

vide compelling evidence supporting the effectiveness of our proposed estimation

method. This method, which considers resampling, performs remarkably well when

dealing with mislabelled datasets, even in the absence of exact information about

mislabelling in the dataset.

Table 3.23: AMRSEs and MMRSEs (in brackets) of β̂s, β̂|η0
s, β̂|η1

s and
β̂|η0,η1

s.

ρ 0 0.2 0.5

β̂ 2.399(1.3730) 2.411(1.7196) 3.737(2.0319)

β̂|η0
2.452(1.4024) 2.387(1.5122) 2.502(1.7185)

β̂|η1
2.318(1.4081) 2.254(1.4478) 2.652(1.6394)

β̂|η0,η1
2.344(1.3851) 2.204(1.4481) 2.390(1.4814)

* All values recorded in this table multiplied by 10−3 are true values.

95

Table 3.24: Average numbers of incorrect zero estimates for non-zero
coefficients and incorrect non-zero estimates for zero coefficients, along
with the coverage probabilities (in parentheses) for β

ρ 0 0.2 0.5

non0
coeff.

β̂ 0(0.925000) 0(0.915000) 0(0.890000)

β̂|η0
0(0.905000) 0(0.915000) 0(0.895000)

β̂|η1
0(0.940000) 0(0.935000) 0(0.915000)

β̂|η0,η1
0(0.930000) 0(0.930000) 0(0.910000)

0
coeff.

β̂ 1.24(0.933077) 1.28(0.925385) 1.46(0.920769)

β̂|η0
1.38(0.923077) 1.38(0.920000) 1.56(0.914615)

β̂|η1
1.28(0.927692) 1.39(0.922308) 1.46(0.923077)

β̂|η0,η1
1.63(0.901538) 1.75(0.898462) 1.83(0.897692)

* β15×1 cosists of 2 non-zero coefficients.

Table 3.25: Excess risks of various classifiers.

ρ 0 0.2 0.5

ER(Cβ̂) 0.977204 0.976257 0.970137

ER(Cβ̂|η0
) 0.979141 0.978145 0.978044

ER(Cβ̂|η1
) 0.979038 0.977673 0.977374

ER(Cβ̂|η0,η1
) 0.979958 0.977389 0.975772

* The misclassification rates of the Bayes classifiers are 18.776% for the case of ρ = 0,

20.23% for the case of ρ = 0.2, and 23.52% for the case of ρ = 0.5.

3.7 Classifiers from different ways to cope with mislabelling

In the following sections, we describe three alternative approaches that handle misla-

belling differently from our method. The same corrupted dataset (Xi,yi), i = 1, · · · ,n,

as described in Section 3.1, is discussed.The simulation study has been designed to

compare the performance of these methods with our proposed approach.

3.7.1 Estimation on datasets with all labels corrected

This section describes the estimation method for studying a dataset where all labels

have been corrected. Although it is difficult to correct each label in a real-world

problem, we make an ideal assumption to obtain a fully perfectly labelled dataset,

meaning zi, i = 1, · · · ,n, are observable.

96

We then have the penalised log-likelihood function of β as

L(β) =

n∑
i

[
zi(X

T
i β) + log {1− πz(Xi)}

]
− Pλβ

(∥β∥1). (3.19)

The maximiser of (3.19) can be achieved by penalised Iteratively Re-weighted Least

Squares method. The estimate denoted as β̂∗ is the MLE of β.

For a new observation X, if

exp(XT β̂∗)

1+ exp(XT β̂∗)
>

1

2
, (3.20)

we classify it in the group labelled as 1. The classifier trained by all perfect labelled

datasets is as follows

Cβ̂∗(X) =

1 if (3.20) holds

0 otherwise.

3.7.2 Estimation on raw datasets

In this section, we outline the method that studies raw observations with mislabelling

(Xi, yi), i = 1, · · · ,n, and no perfect label is known. The penalised log-likelihood

function with respect to β is

L(β) =

n∑
i

[
yi(X

T
i β) + log {1− πy(Xi)}

]
− Pλβ

(∥β∥1). (3.21)

We denote the maximiser of (3.21) as β̂R. For a new observation X, if

exp(XT β̂R)

1+ exp(XT β̂R)
>

1

2
, (3.22)

we classify it into the group labelled as 1. Specifically, we have a classifier trained

from the original mislabelled data, as

Cβ̂R
(X) =

1 if (3.22) holds

0 otherwise.

97

3.7.3 Estimation on combined datasets having resampled and unresampled data

without considering flipping probabilities

In this section, the method studies datasets consisting of resampled and unresampled

data. As described in Section 3.3.1, m observations from (Xi, yi), i = 1, · · · ,n, are

randomly selected and resampled. The subsample, (Xi, zi,yi), i ∈ D, has perfect label

zi which can only be observed in this resampled dataset. The method in this section

does not take into account the flipping probabilities and the penalised log-likelihood

function of β is

L(β) =
∑
i∈D

[
zilogit(πz(Xi)) + log(1− πz(Xi))

]
+

∑
i∈Dc

[
yilogit(πy(Xi)) + log(1− πy(Xi))

]
− Pλβ

(∥β∥1).
(3.23)

We denote the maximiser of (3.23) as β̂CD. For a new observation X, if

exp(XT β̂CD)

1+ exp(XT β̂CD)
>

1

2
, (3.24)

we classify it into the group labelled as 1. We denote the classifier that is trained on a

dataset that has been partially corrected, without taking into account the estimation

of flipping probabilities as

Cβ̂CD
(X) =

1 if (3.24) holds

0 otherwise.

3.7.4 Simulation study

In this section, two simulation examples are presented to compare the performance of

our proposed method with three methods that employ different strategies to handle

the mislabelling in the dataset. These methods are discussed in Section 3.7-Section

3.7.3, and also with the method that exclusively studies data from the resampled

dataset of size m.

In this section, we denote the estimate of our proposed method as β̂ and the

estimate trained only by the resampled dataset as β(0). Other estimates are denoted as

98

β̂∗, β̂R, and β̂CD for the methods introduced in Section 3.7-Section 3.7.3, respectively.

In the first example, the training datasets have different sizes while sharing the

same resampled dataset, and in the second example, a fixed-size dataset is paired

with resampled datasets of different sizes. For the two examples in this section, we

maintain the same parameter settings in (3.1) as follows

β = (0,β2,β3,β4,β5, 0, · · · , 0)Tp×1, β2 = 1,β3 = −0.55,β4 = 0.55,β5 = −1;

η0 = (0,η0,2,η0,3, 0, · · · , 0)Tp×1, η0,2 = −0.55,η0,3 = 0.55;

η1 = (0,η1,2,η1,3, 0, · · · , 0)Tp×1, η1,2 = 0.65,η1,3 = −0.5,

where p = 15. We have the covariance matrix of covariates x[2:p]i, i = 1, · · · ,N, as

Σ14×14, a compound symmetry covariance matrix, with the correlation parameter

ρ = 0.2.

Example 1: Datasets of different sizes have the same resampled data. In the

first example, we investigate training datasets of different sizes with the same re-

sampled dataset of size m = 400, and the training datasets with varying sizes as

n = 1000, 1200, 1500 are tested. Table 3.26-Table 3.29 display the performance of the

methods in Example 1.

Table 3.26 records the AMRSEs and MMRSEs of four estimates. It is unsurprising

that β̂∗, trained from all perfectly labelled datasets, is the most accurate. Meanwhile,

considering resampling and utilising the two-step estimation method, β̂s trained by

the datasets with mislabelling outperform the other three estimates. The two methods

that do not account for resampling of mislabelled data perform the worst, with β̂CDs

slightly more accurate than β̂R due to partially corrected information. Moreover, it

is noteworthy that our proposed method achieves the superior performance of β̂s

compared to β(0)s. This improvement in performance underscores our method’s

capacity to enhance the accuracy of estimates obtained from a small clean sample by

utilising supplementary information, even in the presence of an unknown amount

of mislabelled data. In this example, both the performance of β̂∗s and β̂s improves

as the dataset size increases. Conversely, β̂CDs deteriorate as more mislabelled data

is added to the training datasets while the resampled datasets remain constant, and

β̂Rs have similar performance for varying sizes of corrupted datasets.

From Table 3.27, we can observe that the sandwich formula (3.5) performs reason-

99

ably well for β̂∗s, β̂s, and β(0)s, with ESEs of the estimates from Equation (3.5) do not

deviate significantly from SDs in all cases. ESEs of β̂CDs are far from the true values,

SDs, as the estimates are considerably less accurate. We do not provide β̂Rs’ ESE

records because this method fails to identify almost all of the non-zero coefficients

and cannot provide any ESE information on the non-zero coefficients of β.

The performance of variable selection is presented in Table 3.28, including the

averaged incorrect numbers and CPs for the non-zero and zero coefficients, respec-

tively. Almost all significant features can be identified by our proposed two-step

method using SCAD and the methods studying perfectly labelled datasets, which

have estimates β̂∗s and β(0)s. In comparison, the method studying raw data with

mislabelling fails to find the most important features, and the method that corrects

part of the mislabels while ignoring label noise during the estimation process per-

forms better than it. Nonetheless, our proposed method still outperforms the two

methods that disregard label noise to a notable degree. Our method yields higher

CPs for non-zero coefficients compared to the method using only resampled data,

and the method using the full corrected datasets in all cases. In this example, we

observe that compared to β(0)s and β̂∗s, β̂s have fewer incorrect non-zero estimates

for zero coefficients of β and yield higher CPs. Additionally, as the size of the dataset

increases, these differences among the three methods become more pronounced.

The excess risk of the classifiers in Table 3.29 demonstrates that our proposed

classifier is highly efficient, exhibiting performance close to that of the Bayes classifier

and similar efficiency to Cβ̂∗ across different cases. It can also be seen that our

classifier Cβ̂ is superior to the classifier trained only using the resampled data, and

as the size of the corrupted dataset increases with a fixed resampled dataset, the

gaps become larger. This indicates that by employing our proposed method, the

additional mislabelled data can enhance the performance of the classifier. Classifier

Cβ̂R
, obtained by the method using raw data, incorrectly classifies more than half

of the labels. Classifier Cβ̂CD
performs better than classifier Cβ̂R

, but is noticeably

inferior to ours and worsens as the dataset size increases. It is safe to conclude that

the label noise cannot be ignored to train the LR classifier.

100

Table 3.26: AMRSEs and MMRSEs (in brackets) of estimates of β from different
methods handling mislabelled data using various approaches

n 1000 1200 1500

β̂ 5.518(4.4779) 5.441(4.2847) 5.382(3.9351)

β(0) 7.345(5.407) 7.345(5.407) 7.345(5.407)

β̂∗ 2.156(1.5767) 1.616(1.0568) 1.554(0.8334)

β̂R 67.527(66.6715) 67.028(66.6694) 67.682(67.7314)

β̂CD 53.414(63.3681) 53.143(62.3511) 56.090(63.4979)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.27: SDs and ESEs for non-zero β15×1 coefficient estimates

n 1000 1200 1500

β2

β̂ 0.163(0.144,0.214) 0.162(0.141,0.209) 0.165(0.139,0.206)

β(0) 0.160(0.148,0.219) 0.160(0.148,0.219) 0.160(0.148,0.219)

β̂∗ 0.089(0.093,0.138) 0.084(0.084,0.125) 0.072(0.075,0.111)

β̂R - - -

β̂CD 1.431(0.004,0.005) 1.402(0.006,0.009) 1.437(0.004,0.005)

β3

β̂ 0.138(0.131,0.193) 0.147(0.129,0.191) 0.153(0.128,0.189)

β(0) 0.127(0.134,0.199) 0.127(0.134,0.199) 0.127(0.134,0.199)

β̂∗ 0.080(0.084,0.124) 0.076(0.076,0.113) 0.065(0.068,0.101)

β̂R - - -

β̂CD 0.811(0,0) 0.811(0,0) 0.813(0,0)

β4

β̂ 0.150(0.134,0.199) 0.136(0.133,0.196) 0.114(0.133,0.196)

β(0) 0.141(0.135,0.200) 0.141(0.135,0.200) 0.141(0.135,0.200)

β̂∗ 0.076(0.084,0.125) 0.062(0.077,0.114) 0.070(0.068,0.101)

β̂R - - -

β̂CD 0.804(0.008,0.011) 0.803(0.001,0.002) 0.807(0,0)

β5

β̂ 0.158(0.147,0.219) 0.162(0.148,0.219) 0.170(0.146,0.217)

β(0) 0.158(0.148,0.219) 0.158(0.148,0.219) 0.158(0.148,0.219)

β̂∗ 0.104(0.093,0.138) 0.099(0.086,0.127) 0.093(0.075,0.112)

β̂R - - -

β̂CD 1.448(0.014,0.021) 1.436(0.005,0.007) 1.449(0.017,0.026)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* In some of the trials in a 100-repetition experiment, the method that directly uses the corrupted

datasets fails to converge, leading to the inability to generate the SDs, and ESEms and ESEos

of β̂Rs.

101

Table 3.28: Average numbers of incorrect zero estimates for non-zero
coefficients and incorrect non-zero estimates for zero coefficients, along
with the coverage probabilities (in parentheses) for β

n 1000 1200 1500

non0
coeff.

β̂ 0(0.917500) 0.01(0.920000) 0.01(0.920000)

β(0) 0.01(0.877500) 0.01(0.877500) 0.01(0.877500)

β̂∗ 0(0.950000) 0(0.94750) 0(0.937500)

β̂R 2.69(-) 2.45(-) 2.09(-)

β̂CD 0.52(0) 0.48(0) 0.68(0)

0
coeff.

β̂ 4.36(0.954545) 3.65(0.882727) 3.41(0.907273)

β(0) 6.13(0.875455) 6.13(0.875455) 6.13(0.875455)

β̂∗ 5.83(0.842727) 5.76(0.839091) 5.26(0.836364)

β̂R 3.85(-) 4.47(-) 5.31(-)

β̂CD 3.57(0.837273) 4.28(0.805455) 3.99(0.782727)

* β15×1 cosists of 4 non-zero coefficients.
* In some of the trials in a 100-repetition experiment, the method that directly utilises

the corrupted datasets fails to attain convergence, leading to an inability to generate

the ESEs of β̂Rs and the associated coverage probabilities.

Table 3.29: Excess risks of various classifiers

n 1000 1200 1500

ER(Cβ̂) 0.965114 0.965596 0.967876
ER(Cβ(0)) 0.957802 0.957802 0.957802
ER(Cβ̂∗) 0.983068 0.990192 0.992735
ER(Cβ̂R

) 0.547227 0.548403 0.545726
ER(Cβ̂CD

) 0.854796 0.827552 0.763302

* The misclassification rates of the Bayes classifiers is 27.056%.

Example 2: Datasets of the same size with different sizes of resampled datasets In

the second example, the training dataset has a fixed size of n = 1000, and resampled

datasets with different sizes ranging from m = 300, 400, 500 are discussed. Table

3.30-Table 3.32 present the results of Example 2 in this section.

In Table 3.30, the numerical results of AMRSEs and MMRSEs of the estimates

show that the performance of β̂s, β(0)s, and β̂CDs improves when more labels are

checked. However, β̂s have performance closer to β̂∗s and are much more accurate

than the other two estimates, especially when there is less resampled data, m = 300.

It can also be seen that as more data are resampled, with m increasing from 300 to

500, the estimation accuracy of our method has manifestly improved and is closer to

102

that of the method having all corrected labels in the dataset. β̂Rs perform the worst,

which is consistent with the finding in Example 1 in this section.

The results in Table B.4 record ESEs of β̂s from Equation (3.5) and their correspond-

ing true values SDs. We can draw similar conclusions regarding the performance of

the estimator as those in Table 3.27 of Example 1 above. These details are provided in

Appendix B.

Table 3.31 shows the averaged incorrect numbers and CPs for the non-zero and

zero coefficients of β. Our proposed method, similar to the two methods using perfect

labels, is able to identify all important features in almost all cases. The only exception

is when m = 300, where a small number of significant features were missed in 100

repetitions. However, both methods that ignore label noise in the estimation process

miss most of the important features. As more data in the dataset is resampled, CPs of

non-zero coefficients obtained by our method become closer to those of the method

correcting all training data, while CPs of zero coefficients by our method are higher

than those related to β̂∗. Additionally, CPs obtained by our method are always higher

than the method only using a subsample. The method using all raw data has missed

almost all important features and performs the worst. Furthermore, compared to

our method, which does not account for label noise during estimation, the method

that partially corrects mislabelled data misses more important features. The results

again demonstrate that our method has good performance in variable selection for

mislabelled datasets and can find the important features to generate interpretable

models.

As shown in Table 3.32, the performance of our classifier Cβ̂s exhibits similar

efficiency to the Bayes classifier, and as the resampled data size increases in this

example, the performance of Cβ̂s improves, as indicated by the increasing excess

risks approaching 1. Additionally, Cβ̂s also demonstrate performance close to C∗
β̂

s,

which have the best performance among the tested classifiers. It is worth mentioning

that our classifiers outperform Cβ(0)s trained by the subsample in all cases. The

two classifiers of methods ignoring label noise during the estimation perform the

worst, and specifically, as more data are resampled, the efficiency of classifiers Cβ̂CD
s

improves but still remains evidently inferior to our classifiers.

103

Table 3.30: AMRSEs and MMRSEs (in brackets) of estimates of β from different
methods handling mislabelled data using various approaches

m 300 400 500

β̂ 9.1570(6.4227) 5.5180(4.4779) 4.2740(3.5790)

β(0) 14.6730(7.0017) 7.3450(5.4070) 7.1490(4.0363)

β̂∗ 2.1560(1.5767) 2.1560(1.5767) 2.1560(1.5767)

β̂R 67.5270(66.6715) 67.5270(66.6715) 67.5270(66.6715)

β̂CD 56.0620(64.1352) 53.4140(63.3681) 53.6050(63.7611)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.31: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

m 300 400 500

non0
coeff.

β̂ 0.08(0.892500) 0(0.917500) 0(0.945000)

β(0) 0.05(0.797500) 0.01(0.877500) 0(0.872500)

β̂∗ 0(0.950000) 0(0.950000) 0(0.950000)

β̂R 2.69(0) 2.69(0) 2.69(0)

β̂CD 0.76(0) 0.52(0) 0.47(0)

0
coeff.

β̂ 2.19(0.889091) 4.36(0.954545) 4.68(0.951818)

β(0) 5.84(0.877273) 6.13(0.875455) 6.05(0.868182)

β̂∗ 5.83(0.842727) 5.83(0.842727) 5.83(0.842727)

β̂R 3.85(0.6500) 3.85(0.6500) 3.85(0.6500)

β̂CD 4.12(0.778182) 3.57(0.837273) 2.15(0.901818)

* β15×1 cosists of 4 non-zero coefficients.

Table 3.32: Excess risks of various classifiers

m 300 400 500

ER(Cβ̂) 0.953616 0.965114 0.974780

ER(Cβ(0)) 0.938207 0.957802 0.965803

ER(Cβ̂∗) 0.983068 0.983068 0.983068

ER(Cβ̂R
) 0.547227 0.547227 0.547227

ER(Cβ̂CD
) 0.776133 0.854796 0.874128

* The misclassification rate of the Bayes classifiers is 27.056%.

In summary, the simulated examples in this section highlight an important finding:

104

LR classifiers trained on corrupted datasets without accounting for label noise per-

form no better than random guessing. In contrast, our proposed two-step estimation

method, which uses resampling and estimates the unknown flipping probabilities,

greatly improves the performance of LR classifiers in the presence of mislabelling.

The approach that corrects only some of the mislabels without considering label noise

provides limited improvement to the LR classifier, and the performance can worsen

as the mislabels accumulate, making it less practical for real problems. In contrast,

as more data is collected, even if it is incorrectly labelled, our proposed method

can improve the performance of the method that uses small-scale, perfectly labelled

data by leveraging the additional information from the imperfect labels. The results

demonstrate that our method can achieve comparable efficiency to the method that

corrects all training data.

3.8 The mislabelling probabilities are estimated from the misla-

belling ratios obtained from the resampled dataset

From the preceding sections, it has been illustrated through various simulated ex-

amples that mislabels have a profound impact on the results of logistic regression.

Trained using the raw collected dataset, the LR classifier performs no better than a

random guess. Likewise, rectifying part of the mislabels without considering the label

noise during estimation results in limited improvements on LR classifiers. All the

results have consistently demonstrated that our proposed method, which involves

resampling the corrupted dataset and estimating the parameters associated with

label flipping probabilities, can yield significant enhancements for the classifiers. Our

method is designed to handle a general scenario where the label noise depends on

both the class and the features of the data.

In this section, we introduce another alternative estimation method. As described

in Section 3.3.1, the process of resampling the dataset allows us to obtain the number

of mislabelled instances and calculate the ratios of incorrect labels to the size of the

resampled dataset. In the method introduced in this section, the flipping probabilities

are estimated using these ratios and then incorporated into the estimation of β. It

is worth mentioning that in this approach, the estimation of flipping probabilities

is simplified to be class-dependent. This means that for any observation X, the

105

flipping probabilities are treated as constants denoted as M̂y|0 and M̂y|1, as described

in equations (3.13) and (3.14). The ensuing simulation study is conducted to compare

the method with our proposed method estimating three unknown parameters in

Section 3.1.2.

3.8.1 Methodology

In this section, we describe the approach that estimates the flipping probabilities

using the mislabelled information from the resampled dataset. The estimate of this

method is denoted as β̂|M̂y|0,M̂y|1
.

After resampling the dataset and calculating the mislabelling ratios M̂y|0 and M̂y|1,

we first follow the first-step estimation process described in Section 3.1 and obtain an

estimate β(0) from the resampled dataset. Next, we utilise LQA to find the maximiser

denoted as β̂|M̂y|0,M̂y|1
of the penalised log-likelihood function (3.25).

L(β) =
∑
i∈Dc

{
yilogit(M̂y|0 + {M̂y|1 − M̂y|0}πz(Xi))+

log
(
1− (M̂y|0 + {M̂y|1 − M̂y|0}πz(Xi))

)}
+
∑
i∈D

{
zi(Xiβ) + log(1− πz(Xi))

}
− Pλβ

(∥β∥1). (3.25)

3.8.2 Simulation study

Two simulation examples are conducted in this section to compare the effectiveness

of our method, as presented in Section 3.1, with the method of estimating flipping

probabilities using the mislabelling ratios in the resampled dataset. We express the

results of our method as β̂, and those from the latter method, as introduced in Section

3.8.1, as β̂|M̂y|0,M̂y|1
.

More specifically, the first example scrutinises the mislabelling dataset, comprising

the i.i.d. data with covariates from the same distribution. The second example

investigates the performance of the two methods in dealing with different correlated

covariates within the same training dataset. For both examples, as explained in

Section 3.3, we initially generate 100 datasets, each consisting of N = 15000 samples.

Subsequently, we perform resampling on each training dataset, with a sample size

of m. Referring to equations (3.10)-(3.12) and equations (3.13)-(3.15), we calculate

the mislabelling ratios for each full-size generated dataset and resampled dataset. In

106

the simulation, we compute and present the average mislabelling ratios over the 100

experiments, denoted as M̄, M̄y|0, and M̄y|1. Similarly, we calculate and present the

averaged mislabelling ratios for the resampled datasets and denote them as ¯̂
M, ¯̂

My|0,

and ¯̂
My|1.

Example 1: In this example, we establish the parameter settings for model 3.1 as

follows

β = (0,β2,β3, 0,β5, · · · , 0)Tp×1, β2 = 1.8,β3 = −1.15,β5 = 1.8;

η0 = (0,η0,[2:8], 0)
T
p×1, η0,j ′0

= 0.55, j ′0 = 2, 4, 6, 8,η0,j ′′0
= −0.95, j ′′0 = 3, 5, 7;

η1 = (0,η1,[2:6], 0)
T
p×1, η1,j ′1

= −0.85, j ′1 = 2, 4, 6,η1,j ′′1
= 0.6, j ′′1 = 3, 5;

where p = 10. We generate the covariates xj1i and xj2i, i = 1, · · · , 15000, with the

correlation determined by 0.5|j1−j2|, for j1,2 = 2, · · · ,p.

In this example, we resample the same data with a size of m = 300 in each trail and

consider training data with sizes of n = 1000, 2000, 3000, 5000, respectively. Tables

3.33-3.36 present the outcomes of Example 1.

Table 3.33 presents the average mislabelling ratios obtained from 100 full-size

generated datasets, each consisting of N = 15000 samples, as well as the average

mislabelling ratios from resampled datasets with a sample size of m = 300. These

results provide an overall perspective on the mislabelling data in this example. It

is noteworthy that the average mislabelling ratios of the resampled datasets closely

match those of the generated datasets.

Table 3.34 displays the performance of estimates from two methods with values

for AMRSEs and MMRSEs. The results obtained from our proposed method align

with the findings presented in Section 3.3.2. These results indicate that when the

resampled data is kept constant and additional unresampled data with incorrect

labels is introduced, the effectiveness of our proposed method decreases. Similarly,

the method described in Section 3.1 also exhibits poorer performance in this scenario.

However, it is evident that our proposed method, which considers the estimation

of the parameters η0 and η1 associated with flipping probabilities, yields more

precise estimates than the method utilising the mislabelling ratios from the resampled

datasets for estimating flipping probabilities. Particularly when the training dataset

increases, and more unresampled data is involved, β̂|M̂y|0,M̂y|1
s exhibit a notable

107

decline in accuracy compared to β̂s.

The ESEs of estimates for non-zero coefficients of β from both methods and true

values (SDs), are presented in Table B.5 and are available for viewing in Appendix

B. Table 3.35 demonstrates the performance of variable selections for both methods

under different settings for varying training datasets. It includes the incorrect num-

bers of zero and non-zero estimates for β, CPs for non-zero and zero coefficients

of β respectively. From the table, it can be discerned that as n increases, there are

more incorrect zero estimates of β̂|M̂y|0,M̂y|1
s. In contrast, β̂s have fewer incorrect

zero estimators, and the CPs for non-zero coefficients are higher than those from

the method generating β̂|M̂y|0,M̂y|1
s. Both methods using SCAD can filter out most

of the insignificant predictors in the example, which displays a similar number of

incorrect non-zero estimators and close values of CPs for zero coefficients. Our pro-

posed method, considering the estimations for η0 and η1, is less likely to overlook

important features and also produce more parsimonious models than the method

employing the mislabelling ratios of resampled datasets as the flipping probabilities

during estimations.

Table 3.36 illustrates the performance of the classifiers from the two testing meth-

ods compared with the Bayes classifier for 500 testing data and the computation time

for each experiment with 100 independent repetitions. As anticipated, the method

that does not consider estimating the unknown parameters associated with flip-

ping probabilities requires less computation time than our proposed method when

studying the same datasets. However, the decrease in excess risks of the classifiers

Cβ̂
|M̂y|0,M̂y|1

s indicates the limited consistency of the method with increasing unresam-

pled datasets. Conversely, our classifiers perform closely with the Bayes classifier,

having excess risks near 1 and maintaining consistency across different cases.

108

Table 3.33: Averaged mislabelling ratios of full-size generated and resampled
datasets.

M̄y|0 0.521920 ¯̂
My|0 0.521184

M̄y|1 0.577837 ¯̂
My|1 0.574297

M̄ 0.549872 ¯̂
M 0.547933

* This table displays the averaged mislabelling ratios for the generated datasets with a size

of N = 15000 and the resampled datasets with a fixed size of m = 300. The ratios remain

consistent across the training datasets, which vary in size, with n = 1000, 2000, 3000, 5000, as

they have the same resampled datasets.

Table 3.34: AMRSEs and MMRSEs (in brackets) of β̂s and β̂|M̂y|0,M̂y|1
s

n 1000 2000 3000 5000

β̂ 5.716(2.333) 6.858(2.699) 6.219(3.967) 7.409(4.494)
β̂

|M̂y|0,M̂y|1
6.762(2.471) 7.213(2.648) 11.171(4.882) 22.483(7.891)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.35: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

n 1000 2000 3000 5000

non0
coeff.

β̂ 0.03(0.900000) 0.03(0.883333) 0.01(0.873333) 0.01(0.823333)
β̂|M̂y|0,M̂y|1

0.03(0.896667) 0.03(0.863333) 0.13(0.810000) 0.45(0.646667)

0
coeff.

β̂ 0.43(0.948571) 0.23(0.971429) 1.37(0.928571) 1.10(0.947143)
β̂|M̂y|0,M̂y|1

0.54(0.924286) 0.28(0.964286) 1.14(0.932857) 0.80(0.950000)

* β10×1 has 3 non-zero coefficients.

Table 3.36: Excess risks of classifiers Cβ̂s and Cβ̂
|M̂y|0,M̂y|1

s, and computing time (in

brackets)

n 1000 2000 3000 5000
ER(Cβ̂) 0.965396(00:28:48) 0.969185 (00:38:02) 0.965396(01:16:38) 0.961917(02:08:50)
ER(Cβ̂|M̂y|0,M̂y|1

) 0.964077(00:06:28) 0.959953(00:10:50) 0.899290(00:16:36) 0.782878(00:25:56)

* The misclassification rate of the Bayes classifiers is 19.752% in all cases.

Example 2: In this example, we evaluate the efficiency of two methods using the

same training dataset which has different correlated covariates. The parameters of

109

the log-likelihood function (3.1) are set as

β = (0,β2,β3, 0,β5, · · · , 0)Tp×1,

β2 = 1.8,β3 = −1.15,β5 = 1.8;

η0 = (0,η0,2,η0,3, 0,η0,5, · · · ,η0,8,η0,9, · · · , 0)Tp×1,

η0,j ′0
= 0.45, j ′0 = 2, 5, 9,η0,j ′′0

= −1, j ′′0 = 3, 8;

η1 = (0, 0,η1,3,η1,4, 0,η6,η7, · · · , 0)Tp×1,

η1,j ′1
= −0.5, j ′1 = 3, 6,η1,j ′′1

= 0.8, j ′′1 = 4, 7.

where p = 10.

To begin, we elucidate the data generation process for Example 2. We generate

the data in b = 30 sequential batches, each containing 500 i.i.d. data with an identical

correlation parameter denoted as ρl, where l = 1, · · · ,b. Specifically, for the data

in batch Bl, l = 1, · · · , b, the correlation between xj1i and xj2i, for i = 1, · · · ,N, is

ρ
|j1−j2|
l , with j1,2 = 2, · · · , p, and we set

ρl =

0 if l+ 3 (mod 3) ≡ 0,

0.15 if l+ 3 (mod 3) ≡ 1,

0.5 otherwise.

From these N = 15000 generated data, n = 3000 samples are chosen as training

datasets. In this illustration, we consider different sizes of resampled data, where m =

300, 600, 900. To ensure the training datasets contain diverse correlated covariates,

we select the first m data for resampling and the subsequent n −m data from the

generated datasets. We designate the data from the final batch B30 as the out-of-

sample testing data. The numerical results for Example 2 are presented in Table

3.37-Table 3.40.

Table 3.37 records the averaged mislabelling ratios from 100 generated datasets of

size N = 15000 and those from the resampled datasets of different sizes. Similar to

Example 1, the overall ratios obtained from the resampled datasets have close values

to those obtained from the generated datasets.

110

Table 3.38 reports the AMRSEs and MMRSEs of β̂s and β̂|M̂y|0,M̂y|1
s. As evidenced

in the table, β̂s are more precise, particularly when the resampled data size is small

(m = 300), as indicated by the smaller AMRSE and MMRSE. Even though the

performance discrepancy reduces when more data are resampled, our proposed

method still outperforms the method that estimates the flipping probabilities of labels

by the mislabelling ratios of the resampled dataset.

Table B.6 showcases the robust performance of the sandwich formula (3.5), with

the details provided in Appendix B. The variable selection performance in Table 3.39

reveals the number of incorrect non-zero and zero estimates and CPs for non-zero

and zero coefficients of β. This indicates that both methods utilising SCAD can

identify nearly all significant features in the simulation, and they can filter out most

non-essential features, thus aiding in generating interpretable models. Specifically,

we observe that the CPs for the coefficients derived from our method exceed those

from the method using mislabelling ratios to estimate flipping probabilities during

estimation across various cases.

Table 3.40 highlights the excess risks of both classifiers. As the amount of resam-

pled data grows, both classifiers draw closer to the performance of the Bayes classifier,

as the excess risks of each converge to 1. When examining the same datasets, our

method proves to be more efficient than the classifier attained by the method detailed

in Section 3.8.1 in all instances.

111

Table 3.37: Average mislabelling ratios of full-size generated and resampled
datasets

M̄y|0 m
¯̂
My|0

0.405305

300 0.477984
600 0.398556
900 0.411664

M̄y|1 m
¯̂
My|1

0.477984

300 0.482311
600 0.481634
900 0.477210

M̄ m
¯̂
M

0.441488

300 0.438000
600 0.440167
900 0.444544

* This table presents the averaged mislabelling ratios for the generated datasets with a

size of N = 15000 and the resampled datasets with varying sizes of m = 300, 600, 900.

The training datasets have a fixed size of n = 3000.

Table 3.38: AMRSEs and MMRSEs (in brackets) of β̂s and β̂|M̂y|0,M̂y|1
s

m 300 600 900

β̂ 8.021(1.960) 5.179(0.846) 2.108(0.524)
β̂
|M̂y|0,M̂y|1

9.914(4.134) 5.597(1.181) 3.019(0.719)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.39: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

m 300 600 900

non0
coeff.

β̂ 0.05(0.856667) 0.04(0.913333) 0.03(0.923333)
β̂

|M̂y|0,M̂y|1
0.01(0.726667) 0.01(0.863333) 0.03(0.890000)

0
coeff.

β̂ 0.11(0.987143) 0.08(0.988571) 0.18(0.974286)
β̂

|M̂y|0,M̂y|1
0.13(0.984286) 0.13(0.981429) 0.32(0.954286)

* β10×1 has 3 non-zero coefficeints.

112

Table 3.40: Excess risks of Cβ̂s and Cβ̂
|M̂y|0,M̂y|1

s

m 300 600 900

ER(Cβ̂) 0.963642 0.976435 0.983179
ER(Cβ̂

|M̂y|0,M̂y|1

) 0.943856 0.968294 0.977084

* The misclassification rate of the Bayes classifiers is 17.652% across different cases.

In summary, the two simulation examples make it evident that the method, which

estimates probabilities based on observed data grouped into y = 1 using mislabelling

ratios from the resampled datasets, is not as effective as our proposed method. This

observation holds even though there’s a noticeable similarity between the misla-

belling ratios of the resampled datasets and the complete generated datasets. The

former cannot maintain consistent performance, particularly when the corrupted

datasets grow while more incorrect labels involved. In contrast, our proposed two-

step estimation method performs well and remains stable under various circum-

stances. Although the method detailed in Section 3.8.1 requires less computational

time, the precision of the estimations and the efficiency of the classifiers are not as

high as ours. Furthermore, the credibility of the method is compromised as it assumes

that flipping probabilities only depend on the class. However, in many real-world

scenarios, label noise can be related to both the features and the class, which is not

accounted for in this method.

3.9 Estimation with the Independence Screening (IS) method

In the preceding sections, we have discussed methods applied to low-dimensional

mislabelled data and compared the performance of our proposed method with other

alternative methods. Through various examples, the numerical results demonstrate

that our method, when combined with SCAD, consistently performs well. Our

classifier also shows comparable performance with that of the method using all

perfectly labelled training data and has close performance with the Bayes classifier.

Building upon the previous discussions on low-dimensional corrupted data, this

section delves deeper into sparser models, specifically high-dimensional datasets

affected by mislabelling. We denote the index set of non-zero coefficients of an

unknown p-dimensional parameter vector a as M∗. Here, M∗ represents the index

113

set of non-zero coefficients, defined as M∗ = {1 ⩽ j ⩽ p : aj ̸= 0}. The size of this

set is denoted as s = |M∗|. The vector a can be any p × 1 vector and is given by

a = (a1, · · · ,ap)
T . The remaining p− s variables are considered less important and

are set to 0. However, these insignificant features can exhibit correlations with the

response variable through their association with the s significant predictors, making

it challenging to effectively screen them out.

Prior studies conducted by Fan and Lv (2008) and Fan et al. (2011) have provided

evidence that traditional variable selection methods, such as LASSO, SCAD, and DS,

are less effective when applied to high-dimensional data for both variable selection

and parameter estimation. Furthermore, in subsequent simulation studies utilising

high-dimensional mislabelled data (p > n), we observe that the SCAD-only method

fails to converge. Therefore, we incorporate Vanilla Sure Independence Screening,

also known as Sure Independence Screening (SIS) into our two-step estimation

method. SIS has demonstrated its efficacy in effectively reducing dimensions while

simultaneously achieving variable selection and estimation (Fan and Lv, 2008, Fan

and Song, 2010). Our primary focus is to evaluate the performance of our two-step

estimation method when combined with SIS and SCAD on the corrupted dataset. We

refer to the variable selection process as ‘Independence Screening’ (IS).

In the following sections, we begin by explaining how the screening method is

incorporated into our two-step estimation approach. We then proceed to present two

simulation examples. The first example compares the performance of the SCAD-only

method with the method utilising both the Independence Screening (IS) method and

regularisation method for low-dimensional mislabelled data. The second example

applies the IS-SCAD method to study corrupted datasets that contain a larger number

of covariates than the training sample size.

3.9.1 Methodology

We present the two-step estimation method incorporating IS for mislabelled data in

this section, focusing on the same model (3.1).

Similar to the method described in Section 3.1, we continue to employ resampling

on the corrupted datasets for the approach presented in this section. All the notations

and annotations for the samples remain the same as described previously. This

114

section also follows a two-step estimation method. In this section, we maintain the

assumption of an intercept term in the model. The details are as follows:

Step 1: Estimation with IS using resampled data only. In the first step of estimation,

the analysis is performed exclusively on the data within the subsample, denoted as

{(Xi, zi,yi)}, where i ∈ D. As explained in Section 3.1.2, the estimation of the three

parameters is independent during the first step estimation.

The goal is to find the maximisers of the componentwise regressions for the

penalised log-likelihood functions described in (3.4), which are known as Maximum

Marginal Likelihood Estimators (MMLEs), for β, η0, and η1, respectively. The MMLEs

can be expressed as follows:

β̂M
j = (β̂M

j,1, β̂
M
j) = argmax

β1,βj

∑
i∈D

ℓ(β1 + βjxij, zi),

(η̂0)
M
j = ((η̂0)

M
j,1, (η̂0)

M
j) = argmax

(η0)j,1,(η0)j

∑
i∈D0

ℓ((η0)j,1 + (η0)jxij,yi|0),

(η̂1)
M
j = ((η̂1)

M
j,1, (η̂1)

M
j) = argmax

(η1)j,1,(η1)j

∑
i∈D1

ℓ((η1)j,1 + (η1)jxij,yi|1),

(3.26)

for j = 2, · · · ,p, and the log-likelihood function with respect to β has following form

of

ℓ(β1 + βjxij, zi) =
∑
i∈D

{
zilogit(πz(X

M
i,j)) + log(1− πz(X

M
i,j))

}
, (3.27)

where XM
i,j = (1, xij) and logit(π(XM

i,j)) = β1 + βjxij. The log-likelihood functions for

the other two parameters follow similar forms, and specific details are omitted here.

Now, we explain the process of selecting significant features and estimating

β. After ranking the absolute values of the p − 1 MMLEs, denoted as |β̂M
j |1 for

j = 2, · · · ,p, we obtain the index set of selected variables in M̂m and have

M̂m = {2 ⩽ j ⩽ p : |β̂M
j | > σm},

where σm is a given positive constant threshold. We then select dm variables, where

1 ⩽ dm < p, based on the highest ranked absolute-value MMLEs. Subsequently, we

apply penalised likelihood estimation to the updated dataset, which only includes

the selected dm variables. The estimation process is described in Step 1 of Section

3.1.2. The resulting MLE of L(β) in (3.4) is achieved and denoted as β(0).

115

A similar process is followed for the other two parameters, resulting in the MLEs

of η0 and η1, which are denoted as η̂(0)
0 and η̂

(0)
1 , respectively. These estimators are

obtained by maximising the log-likelihood functions L(η0) and L(η1) in (3.4).

Step 2: Estimation with IS using both the resampled and unresampled data. In the

second-step estimation, we describe the method that analyses both the resampled and

unresampled data together. Similar to Step 2 in Section 3.1.2, an iterative algorithm

is applied. In each iteration, denoted by k = 1, · · · , the following details are carried

out.

(1) We apply IS to find d0, where 1 ⩽ d0 < p, top absolute-value MMLEs of

log-likelihood function (3.1) with respect to η0. The index set of important

variables is M̂0 = {2 ⩽ j ⩽ p : |(η̂0)
M
j | > σ0}, σ0 is a threshold. The penalised

Newton-Raphson method is applied to maximise L(β
(k−1)
d0

, (η0)d0 , (η1)
(k−1)
d0

)

with respect to (η0)d0
, the maximiser is denoted as (η0)

(k)
d0

. Then the MLE of η0

is then obtained and denoted as η(k)
0 .

(2) We apply IS to find d1, where 1 ⩽ d1 < p, top absolute-value MMLEs of

log-likelihood function (3.1) with respect to η1. The index set of variables is

M̂1 = {2 ⩽ j ⩽ p : |(η̂1)
M
j | ⩾ σ1}, σ1 is a threshold. The penalised Newton-

Raphson method is applied to maximise L(β
(k−1)
d1

, (η0)
(k)
d1

, (η1)d1
) with respect

to (η1)d1
, the maximiser is denoted as (η1)

(k)
d1

. Then the MLE of η1 is then

obtained and denoted as η(k)
1 .

(3) We apply IS to find d, where 1 ⩽ d < p, top absolute-value MMLEs of log-

likelihood function (3.1) with respect to β, and the index set of variables is

obtained, which is denoted as M̂ = {2 ⩽ j ⩽ p : |β̂M
j | ⩾ σ} , where σ is

a threshold. The penalised Newton-Raphson method is used to maximise

L(βd, (η0)
(k)
d , (η1)

(k)
d) with respect to βd, the maximiser is denoted as β

(k)
d .

Then the MLE of β is obtained and denoted as β(k).

We continue the above iteration until convergence and take the converged (β̂, η̂0, η̂1)

as the maximiser of (3.1).

We provide a more detailed explanation of step (1) in the iterations above. As

for the estimation processes (2) and (3), they follow similar procedures to (1), and

therefore, we do not expand on the details here. To be more specific, in the k-th,

116

where k = 1, · · · , iteration of estimation (1), we obtain the MMLEs of η0, denoted as

follows:

(η̂0)
M
j = ((η̂0)

M
j,1, (η̂0)

M
j)

= argmax
(η0)1,(η0)j

{∑
i∈D0

l((η0)1 + (η0)jxij,yi|0) +
∑
i∈Dc

l((η0)1 + (η0)jxij,yi)

}
,

for j = 2, · · · ,p, and ℓ(·) has the same form as (3.26) for i ∈ D0, and for i ∈ Dc we

have the following form of the log-likelihood function,

ℓ((η0)1 + (η0)jxij,yi) =
∑
i∈Dc

{
yilogit(π((Xi)

M
j)) + log(1− π((Xi)

M
j))

}
. (3.28)

Here, π((Xi)
M
j) = πy|0((Xi)

M
j)+

[
πy|1((Xi)

M
j)−πy|0((Xi)

M
j)

]
πz((Xi)

M
j), where (Xi)

M
j =

(1, xij). Specifically, we have

logit(πz((Xi)
M
j)) = β

(k−1)
1 + β

(k−1)
j xij,

logit(πy|0((Xi)
M
j)) = (η0)1 + (η0)jxij,

logit(πy|1((Xi)
M
j)) = (η1)

(k−1)
1 + (η1)

(k−1)
j xij.

After obtaining the top d0 absolute-value MMLEs of η0 with indices kept in M̂0,

we use the updated dataset to compute the MLE denoted as η̂(k)
0 , for the penalised

log-likelihood function (3.1) with respect to η0.

In this study, we do not delve deeply into determining the thresholds σ, σ0, and σ1

used for variable selection in the IS process. Instead, we predefine certain values for

these thresholds in our simulation studies. This leaves room for further exploration in

future research. We make a conjecture that our two-step estimation method has sure

screening property shown in (2.5). The subsequent simulation study has empirical

evidence while the proof will be left as future work.

3.9.2 Simulation study

In this section, we present two simulation examples. The first experiment aims

to compare the performance of two-step methods that incorporate SCAD and IS-

SCAD, respectively, for low-dimensional sparse data with mislabelling. In the second

example, we do not present the performance of the SCAD-only method because it

117

fails to converge during the first step of estimation for the high-dimensional dataset.

In the second example, we shift our focus to evaluating the performance of the two-

step method using IS-SCAD. We compare its effectiveness with another method that

analyses the same datasets but with all labels corrected.

For both examples, we fix training datasets with a size of n = 1000 and resampled

datasets with a size of m = 300. The shared settings for the parameters to be estimated

are as follows:

β = (0,β2,β3,β4, · · · , 0)Tp×1, β2 = −1.3,β3 = 1.8,β5 = −1.3;

η0 = (0,η0,2,η0,3, · · · , 0)Tp×1, η0,2 = −1.5,η0,3 = 1.2;

η1 = (0,η1,2,η1,3, · · · , 0)Tp×1, η1,2 = 1.15,η1,3 = −0.45.

We generate data having the covariates xj1i and xj2i, i = 1, · · · ,N, with correlation

defined by ρ|j1−j2|, for j1,2 = 2, · · · ,p, and we consider ρ = 0, 0.2, 0.5 for separate

experiments in this section.

Example 1: In this example, we compare estimates obtained from the two-step

estimation method by applying SCAD alone with those obtained from the method

by applying IS-SCAD. As SCAD is employed for both methods, we omit the term

“SCAD” when denoting estimates for simplicity. To elaborate, we denote β̂s from the

method using SCAD for variable selection and β̂IS from the method using IS-SCAD

for variable selection.

We set the size of the feature space to p = 150. The sure screening process in

the first-step estimation identifies ⌊m/(4× log(m))⌋ variables for estimation process

for β, ⌊m0/(2× log(m0))⌋ for η0 and ⌊m1/(2× log(m1))⌋ for η1. In the second step

estimation, the sure screening process selects ⌊N1/(4× log(N1))⌋, N1 = min(m,n−

m), variables in the variable selection process. Tables 3.41-3.43 report the numerical

results for Example 1.

Table 3.41 reveals that when the correlation between the covariates is smaller

(when ρ = 0, 0.2), the two methods do not significantly differ in the accuracy of

their estimates, and β̂s are slightly more precise than β̂ISs. The performance of both

methods deteriorates when the covariates in the dataset are more correlated (when

ρ = 0.5). However, the accuracy of the IS-SCAD estimates noticeably lags behind that

of the SCAD estimates when the covariates are highly correlated. Consistent with the

118

findings in Fan and Lv (2008), our simulation study demonstrates the limitations of

IS in dealing with insignificant covariates that are highly correlated with significant

ones.

Table B.7 presents the ESEs of estimates for non-zero coefficients of β from both

methods and the true values, SDs, which can also be found in Appendix B.

Table 3.42 reveals the variable selection performance of methods utilising different

variable selection approaches. In detail, when the correlation parameter ρ is low

(ρ = 0, 0.2), both methods using SCAD and IS-SCAD are able to identify all the

significant features of β. This is reflected in the fact that there are either no incorrect

zero estimates or only a very small number of them. When ρ = 0 or ρ = 0.2, the CPs

of the non-zero coefficients from the two methods are comparable across different

cases. However, when the correlation of covariates becomes large (ρ = 0.5), both

methods show limitations. In the 100-time repeated experiments, they fail to identify

some important features, leading to incorrect zero estimates. In particular, the IS-

SCAD method exhibits nearly four times as many incorrect zero estimates compared

to the SCAD-only method. In this example, the IS-SCAD method demonstrates better

performance in excluding irrelevant features compared to the SCAD-only method.

This is evident from the lower numbers of incorrect zero estimates and higher CPs for

the zero coefficients in all cases. These results indicate that IS-SCAD has an advantage

in generating more interpretable models by effectively identifying and excluding

irrelevant features.

Table 3.43 indicates that classifiers derived from SCAD or IS-SCAD have similar

efficiency when the correlation between covariates is low (ρ = 0, 0.2), and both classi-

fiers perform nearly as well as the Bayes classifier, as evidenced by the high excess

risks. However, when the correlation between covariates increases, the efficiency of

the classifiers obtained by IS-SCAD diminishes more dramatically than that of the

SCAD-only method. Regarding computation time and memory utilisation for both

methods, there is no discernible pattern. Except for the correlation parameter ρ = 0,

IS-SCAD requires considerably more time to converge. The computing time could

also be affected by the settings used for tuning parameter searches, as discussed in

detail in Section 3.4.

119

Table 3.41: AMRSEs and MMRSEs (in brackets) of β̂s and β̂ISs

m = 300, ρ 0 0.2 0.5

β̂ 0.624(0.1737) 0.651(0.1969) 1.174(0.2608)

β̂IS 0.690(0.3016) 0.510(0.1875) 3.269(4.3943)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.42: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

m = 300, ρ 0 0.2 0.5

non0 coeff.
β̂ 0(0.880000) 0(0.883333) 0.12(0.816667)
β̂IS 0(0.863333) 0.02(0.880000) 0.5(0.450000)

0 coeff.
β̂ 11.95(0.918844) 14.29(0.902857) 12.26(0.917075)
β̂IS 7.97(0.946531) 8.30(0.943605) 6.31(0.957075)

* β150×1 has 3 non-zero coeffients.

Table 3.43: Excess risks of Cβ̂s and Cβ̂IS
s, and computing time and memory

utlisations (in brackets)

m = 300, ρ 0 0.2 0.5
ER(Cβ̂) 0.961398(12:49:48,8.46 GB) 0.964249(07:21:00,8.46 GB) 0.921988(06:08:13,8.47 GB)
ER(Cβ̂IS

) 0.939227 (25:48:36,8.45 GB) 0.963347(07:10:40,8.45 GB) 0.786987(05:42:32,8.02 GB)

* The misclassification rates of the Bayes classifiers are 18.422% for the case of ρ = 0,

20.66% for the case of ρ = 0.2, and 25.352% for the case of ρ = 0.5.
* We implemented each experiment with 100 independent trials using C++ and ran them

on 2 Intel Xeon 6138 CPUs. For each experiment, we requested 38 cores.

Example 2: In Example 2, we study sparser data compared to Example 1,

considering p = 350 and the resampled datasets with a size of m = 300. Due to

the high dimensionality of data where m < p, SCAD method is not applicable for

the first-step estimation. Hence, we utilise the IS-SCAD method to analyse both

corrupted datasets and the datasets with all correct labels. The estimates from the

corrupted datasets are denoted as β̂ISs and those from the correctly labelled datasets

are denoted as β̂∗
ISs. Because in practice, it is unlikely to have a perfectly labelled

dataset, β̂∗
IS serves as a benchmark for evaluating the performance of β̂IS. The

numerical simulation results for Example 2 are presented in Tables 3.44-3.46.

120

It should be noted that when datasets are corrupted with unknown mislabelling,

the method integrating IS-SCAD, as elaborated in Section 3.9.1, follows a two-step

estimation process. In the case of analysing datasets with all correct labels, there is

only one unknown parameter to be estimated, which is β in the model (3.7.1). The

estimation process for this case involves a one-step estimation, which is identical to

the procedure described in Step 1 of Section 3.9.1. During the sure screening process,

for the former method, in the first-step estimation, ⌊m/(4× log(m))⌋ variables are

chosen for estimating β, ⌊m0/(2× log(m0))⌋ for η0, and ⌊m1/(2× log(m1))⌋ for η1.

In the second step estimation, the sure screening process chooses ⌊N1/(4× log(N1))⌋,

N1 = min(m,n − m), features in the variable selection process. Whereas, for the

latter method, ⌊n/(10× log(n))⌋ variables are chosen in the screening process for the

estimation process of β.

The AMRSEs and MMRSEs in Table 3.44 mirror the findings from Example 1.

Specifically, our IS-SCAD method demonstrates effective performance in analysing

corrupted datasets with low covariate correlation. The numerical results obtained

are comparable to those obtained from the analysis of perfectly labelled datasets.

Nonetheless, the accuracy of the estimates significantly deteriorates when the correla-

tion of covariates increases (ρ = 0.5).

Table B.8 illustrates the ESEs’ performance from the sandwich formula (3.5) and

standard deviations. Detailed findings can be explored in Appendix B.

In Table 3.45, the results reveal the numbers of incorrectly estimated zero and non-

zero coefficients and CPs for non-zero and zero coefficients of β. When integrating

IS-SCAD into the algorithms, the method analysing the corrupted datasets exhibits

inferiority in finding important features, particularly when the covariates are highly

correlated (ρ = 0.5). Nevertheless, this method shows a similar performance to

the one examining perfectly labelled data when ρ = 0 and ρ = 0.2. The two-step

estimation method studying mislabelled data delivers a more accurate estimation

of zero coefficients than the method analysing perfectly labelled datasets, indicated

by fewer incorrect estimates for zero coefficients across different scenarios. This

advantage is attributable to the two-step estimation algorithm, which involves more

variable selection processes and hence a higher likelihood of excluding unimportant

features.

Finally, the excess risk in Table 3.46 follows the trend observed in the previous

121

example. Using the two-step IS-SCAD estimation method to analyse mislabelled

datasets, we observe that the classifiers perform more efficiently when trained on

data that consists of less correlated covariates. Its efficiency is comparable to the

Bayes classifier and the classifiers trained by perfectly labelled datasets. However,

efficiency notably deteriorates as the covariates become more correlated.

Table 3.44: AMRSEs and MMRSEs (in brackets) of β̂ISs and β̂∗
ISs

m = 300, ρ 0 0.2 0.5

β̂IS 0.282(0.101) 0.377(0.232) 1.415(1.913)
β̂∗

IS 0.146(0.081) 0.227(0.103) 0.291(0.100)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.45: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

m = 300, ρ 0 0.2 0.5

non0 coeff.
β̂IS 0(0.870000) 0.03(0.833333) 0.52(0.433333)
β̂∗

IS 0(0.913333) 0(0.870000) 0(0.866667)

0 coeff.
β̂IS 8.56(0.975389) 9.20(0.973718) 7.32(0.978905)
β̂∗

IS 20.13(0.943631) 20.55(0.942882) 20.28(0.944611)

* β350×1 has 3 non-zero coefficients.

Table 3.46: Excess risks of Cβ̂IS
s and Cβ̂∗

IS
s

m = 300, ρ 0 0.2 0.5

ER(Cβ̂IS
) 0.952435 0.921959 0.781360

ER(Cβ̂∗
IS
) 0.951157 0.965134 0.961250

* The misclassification rates of the Bayes classifiers are 18.422% for the case of ρ = 0, 20.816%

for the case of ρ = 0.2, and 25.352% for the case of ρ = 0.5.

To summarise, the two simulated examples underscore the effectiveness of the

two-step estimation methods in conjunction with SCAD and IS-SCAD. These methods

have demonstrated their capabilities in various facets, including accurate estimation,

variable selection, and generating efficient classifiers for low-dimensional sparse

mislabelled datasets.

122

Our simulation study confirms that the method using SCAD is effective for

low-dimensional sparse mislabelled datasets. However, when applied to high-

dimensional data, SCAD shows limitations and the algorithm fails to converge.

IS offers an effective dimension reduction technique. This approach alleviates the

limitations of traditional regularisation methods such as LASSO, SCAD, DS, and so

forth, when applied to high-dimensional data. Our study integrates the IS-SCAD ap-

proach into a two-step estimation process for mislabelled datasets using resampling

methods. This approach yields promising results, evidenced by accurate estimation,

performance comparable to the method using IS-SCAD on correctly labelled datasets,

and efficiency close to that of the Bayes classifier.

Nevertheless, our method using IS has some limitations when applied to cor-

rupted datasets with highly correlated covariates. In such scenarios, it tends to miss

important features during the variable selection process. Although IS-SCAD has the

advantage of producing parsimonious models, it is not recommended for datasets

with highly correlated covariates. In such cases, the method can overlook important

variables that are essential for accurate results and meaningful interpretation. There-

fore, the use of IS-SCAD should be critically considered, especially in scenarios with

highly correlated variables.

3.10 Estimation with the Iterative Independence Screening (IIS)

method

In this section, we explore the application of the IIS method, an extension of IS, within

the two-step estimation framework to analyse mislabelled data.

IS, while beneficial in many cases, has been recognised to have limitations in

scenarios where important features are correlated with responses but not marginally

related to them, or where unimportant features are highly marginally related to some

important features, or where the correlation between predictors is high (Fan and Lv,

2008). Furthermore, the simulation study in Section 3.9.2 showcases the limitations

of IS in dealing with datasets with highly correlated predictors.

IIS, developed to improve the shortcomings of IS, incorporates joint covariate

information and utilises an iterative feature selection process to enhance performance

(Fan and Lv, 2008, Fan and Song, 2010, Saldana and Feng, 2018). In this section, we

123

elucidate our two-step estimation method that employs IIS for mislabelled datasets

and investigate the efficacy of IIS. The details of the algorithm are provided in

the subsequent section, followed by a simulation study aimed at evaluating the

performance of the method and comparing it with other alternative methods.

3.10.1 Methodology

This section presents a penalised two-step estimation method incorporating IIS to

study datasets with mislabelling. The data is from the model (3.1) and has the

same assumption as explained in the previous section. The index set of non-zero

coefficients of a sparse model is denoted as M∗ = {1 ⩽ j ⩽ p : aj ̸= 0} with the size

of s = |M∗|, where a represents any p-vector and a = (a1, · · · ,ap)
T . The other p− s

variables are less important and assigned values of 0.

As introduced in Section 3.1, after the dataset has been resampled, the true labels

of the observations are known and only known in this subsample, which is denoted

as {(Xi, zi,yi)}, where i ∈ D and |D| = m. Here, zi represents the perfect label, and yi

corresponds to the observation, which can be incorrect. Dz0 is the set of the is such

that i ∈ D and zi = 0, and Dz1 = D−Dz0 . The index of the unresampled labels is in

the set Dc. We uphold the assumption of an intercept in the model throughout this

section.

Step 1: Estimation with IIS using resampled data only.

The first step estimation focuses on analysing the data in the resampled dataset. In

this step, the three parameters are estimated independently. We aim to identify the

most important features for each parameter: β with size dm (where 1 ⩽ dm < p), η0

with size dm0 (where 1 ⩽ dm0 < p), and η1 with size dm1 (where 1 ⩽ dm1 < p).

We first calculate MMLEs of the three parameters in (3.4) using a similar approach

to the IS-based estimation method described in Section 3.9.1. The MMLEs have

the same forms as shown in (3.26). However, unlike the IS method, IIS employs

conditional marginal regressions. We provide the following detailed explanation of

the estimation process for β in the first-step estimation while omitting the process for

η0 and η1 due to their similarity.

Specifically, for the estimation process of β, we start by ranking the absolute

values of the (p− 1) MMLEs of β, excluding the intercept. Then, we select the top k0

124

variables based on the absolute values of their corresponding MMLEs. Here, k0 is a

predetermined value, and 1 ⩽ k0 < dm. The index set of the selected predictors is

denoted as M̂1 = {2 ⩽ j ⩽ p : |β̂M
j | > σk0

}, where σk0
is a positive constant acting as

the threshold. We then compute the conditional MMLEs for the predictors whose

index is not in M̂1. The conditional MMLEs have the following forms

β̂CM
j = (β̂CM

j,1 , β̂CM
j) = argmax

βCM
j,1 ,βCM

j ,β
M̂1

∑
i∈D

ℓ(β1 + βjxij + XT
i,M̂1

βM̂1
, zi), (3.29)

where j ∈ M̂c
1 , Xi,M̂1

= (xij ′)j ′∈M̂1
and βM̂1

= (βj ′)j ′∈M̂1
. In this function, the log-

likelihood function follows

ℓ(β1 + βjxij + XT
i,M̂1

βM̂1
, zi)

=
∑
i∈D

{
zilogit(πz((Xi)

CM
j ,Xi,M̂1

)) + log(1− πz((Xi)
CM
j ,Xi,M̂1

))

}
,

(3.30)

where (Xi)
CM
j = (1, xij) and logit(πz((Xi)

CM
j ,Xi,M̂1

)) = β1 + βjxij + XT
i,M̂1

βM̂1
. By

ranking the absolute values of these conditional MMLEs, we select the top k1 con-

ditional MMLEs and have a subset index denoted as A1 = {j ∈ M̂c
1 : |β̂CM

j | > σk1
},

where σk1 is a constant as a threshold. Applying the penalised likelihood estimation

on the set A1 ∪ M̂1, we obtain a new set M̂2 of the significant features. For the pre-

dictors in M̂c
2 , we again compute the conditional marginal regression as in equation

(3.29) to obtain a subset of the top-ranked k2 covariates, denoted as A2. The penalised

likelihood estimation is applied on the set A2 ∪ M̂2 to find the significant features in a

set denoted as M̂3. The process is repeated until |M̂l| = d, or until M̂l−1 = M̂l, l is

the time of the iteration and l = 2, · · · . Then the estimate of β is achieved, denoted as

β(0).

Step 2: Estimation of combined data using IIS In the second step of estimation,

we analyse the combined data, which includes both the corrected labels and the

unchecked labels that can be imperfect. Our goal is to find the MLEs for β, η0, and η1

in (3.1).

In the k−th, k = 1, · · · , iteration, the following details are carried out.

(1) We utilise IIS in the penalised method to find the maximiser of L(β(k−1), η0, η
(k−1)
1)

with respect to η0, denoted as η(k)
0 .

125

(2) We utilise IIS in the penalised method to find the maximiser of L(β(k−1), η
(k)
0 , η1)

with respect to η1 and denote it as η(k)
1 .

(3) We utilise IIS in the penalised method to find the maximiser of L(β, η(k)
0 , η

(k)
1)

with respect to β and denote it as β(k).

We continue the iteration described above until convergence is achieved, and we

view the converged (β̂, η̂0, η̂1) as the maximisers of (3.1).

Here, we provide detailed explanations of the estimation process described in

step (1) for the above iterations. However, since the estimation process for η1 in step

(2) and β in step (3) is similar, we omit the details of those processes.

At the k-th iteration, we begin by applying IS to the penalised method, as de-

scribed in Step 2 of Section 3.9.1, in order to identify the top k0 predictors with the

highest absolute-value MMLEs for η0. The resulting index set M̂1 = {2 ⩽ j ⩽ p :

|(η̂0)
Mj| ⩾ σk0

} is obtained, where σk0 is a predefined constant threshold. We then

proceed to compute the conditional marginal regressions for the predictors of η0,

with the following form

(η̂0)
CM
j = ((η̂0)

CM
j,1 , (η̂0)

CM
j)

= argmax
(η0)CM

j,1 ,(η0)CM
j ,(η0)M̂1

{ ∑
i∈D0

ℓ((η0)1 + (η0)
CM
j xij + XT

i,M̂1
(η0)M̂1

,yi|0)

+
∑
i∈Dc

ℓ
(
(η0)1 + (η0)

CM
j xij + XT

i,M̂1
(η0)M̂1

,yi

)}
,

(3.31)

where j ∈ M̂c
1 , Xi,M̂1

= (xij ′)j ′∈M̂1
and (η0)M̂1

= ((η0)j ′)j ′∈M̂1
. When i ∈ D0, ℓ(·) has

the same form as the unpenalised log-likelihood function of L(η0) in (3.4), and when

i ∈ Dc the log-likelihood function has the following form,

ℓ
(
(η0)1 + (η0)

CM
j xij + XT

i,M̂1
(η0)M̂1

,yi

)
=

∑
i∈Dc

{
yilogit(π((Xi)

CM
j ,Xi,M̂1

)) + log(1− π((Xi)
CM
j ,Xi,M̂1

))
}
,

(3.32)

where (Xi)
CM
j = (1, xij) for j ∈ Mc

1 , and

π((Xi)
CM
j ,Xi,M̂1

) = πy|0((Xi)
CM
j ,Xi,M̂1

)+[
πy|1((Xi)

CM
j ,Xi,M̂1

) − πy|0((Xi)
CM
j ,Xi,M̂1

)
]
πz((Xi)

CM
j ,Xi,M̂1

).

126

Specifically, we have

logit(πz((Xi)
CM
j ,Xi,M̂1

) = β
(k−1)
1 + β

(k−1)
j xij + XT

i,M̂1
β

(k−1)

M̂1
,

logit(πy|0((Xi)
CM
j ,Xi,M̂1

) = (η0)1 + (η0)jxij + XT
i,M̂1

(η0)M̂1
,

logit(πy|1((Xi)
CM
j ,Xi,M̂1

) = (η1)
(k−1)
1 + (η1)

(k−1)
j xij + XT

i,M̂1
(η1)

(k−1)

M̂1
.

We select the k1 variables from the index set Mc
1 based on their corresponding

highest absolute-value conditional MMLEs, which are calculated using the for-

mula shown in (3.31). We define the index set of the selected predictors as A1 =

j ∈ Mc
1 : |(η̂0)

CM
j | > σk1 , where σk1 is a positive constant threshold. Next, we ap-

ply the Newton-Raphson method to find the maximiser of the following penalised

log-likelihood function with respect to (η0)A1∪M̂1
:

L(β
(k−1)

A1∪M̂1
, (η0)A1∪M̂1

, (η1)
(k−1)

A1∪M̂1
)

=
∑
i∈Dc

{
yilogit(π(Xi,A1∪M̂1

)) + log(1− π(Xi,A1∪M̂1
))

}
+

∑
i∈D

(1− zi)

{
yi(X

T
i,A1∪M̂1

η0) + log(1− πy|0(Xi,A1∪M̂1
))

+(1− zi)log(1− πz(Xi,A1∪M̂1
))

}
+

∑
i∈D

zi

{
yi(X

T
i,A1∪M̂1

η1) + log(1− πy|1(Xi,A1∪M̂1
))

+zilog(πz(Xi,A1∪M̂1
))

}
− Pλη0

(∥(η0)A1∪M̂1
∥1),

where

π(Xi,A1∪M̂1
)) = πy|0(Xi,A1∪M̂1

)) +
[
πy|1(Xi,A1∪M̂1

)) − πy|0(Xi,A1∪M̂1
))
]
πz(Xi,A1∪M̂1

)),

and Pλ(·) is a penalty function with the tuning parameter λ which is updated itera-

tively. The indices of the non-zero estimates are kept in M2, and the index set M1 is

updated. This process is repeated until the l-th, where l = 1, . . ., iteration, |Ml| = d,

or until Ml−1 = Ml. Finally, we obtain the maximiser of the penalised log-likelihood

function (3.1) with respect to η0 for the k-th, k = 1, · · · , iteration, which is denoted as

η̂
(k−1)
0 .

127

3.10.2 Simulation study

In this section, two simulated examples of high-dimensional mislabelled data are

presented. The first example compares the performance of estimates obtained by the

two-step estimation method utilising IS-SCAD and IIS-SCAD respectively. In the

second example, we contrast the performance of the two-step method employing

IIS-SCAD to examine the corrupted datasets with the method utilising IIS-SCAD to

analyse datasets with entirely corrected labels.

The settings for the two examples of parameters of the model (3.1) are as follows

β = (0,β2,β3,β4, · · · , 0)Tp×1, β2 = −1.3,β3 = 1.8,β5 = −1.3;

η0 = (0,η0,2,η0,3, · · · , 0)Tp×1, η0,2 = −1.5,η0,3 = 1.2;

η1 = (0,η1,2,η1,3, · · · , 0)Tp×1, η1,2 = 1.15,η1,3 = −0.45.

Example 1: In this example, we compare the performance of the two-step estimation

method deploying IS-SCAD and IIS-SCAD respectively. For convenience, we denote

the estimates from the two methods as β̂IS and β̂IIS respectively.

Datasets with different dimensions and sizes of resampled datasets are discussed.

Specifically, we have datasets with dimension p = 1010 and resampled datasets

with a size of m = 400, as well as datasets with dimension p = 3000 and m = 300.

Considering the correlation parameter of the covariates, we take ρ = 0, 0.2, 0.5, and

the covariates xj1i and xj2i for i = 1, · · · ,N, and j1,2 = 2, · · · ,p, possess correlation

as ρ|j1−j2|. From the N = 15000 generated data, we randomly select n = 1000 data to

build the training dataset.

During the sure screening process, for the first step estimation, we select

⌊m/(4× log(m))⌋ variables for the estimation process of β, ⌊m0/(2× log(m0))⌋ fea-

tures for η0 and ⌊m1/(2× log(m1))⌋ features for η1. For the second step estimation,

we select ⌊N1/(4× log(N1))⌋, where N1 = min{m,n −m}, features. The simulation

results of Example 1 are recorded in Table 3.47 - Table 3.49.

The AMRSE and the MMRSE in Table 3.47 indicate that when the correlation

between the covariates is small, the estimates obtained by IS-SCAD and IIS-SCAD

are very close, as revealed by the close results of AMRSEs and MMRSEs. However,

when the correlation parameter is larger, when ρ = 0.5, the accuracy of the estimates

128

obtained by the method using IS-SCAD is greatly lower than that of IIS-SCAD.

Especially in the case of increased dimensionality, specifically p = 3000 and ρ =

0.5 in this example, the estimates β̂ISISs demonstrate noticeably higher accuracy

compared to β̂SISs. This reaffirms the conclusion that IS cannot perform optimally

for mislabelled datasets with highly correlated covariates, while IIS can effectively

address this drawback. The estimates β̂IIS consistently exhibit stable performance

and closely approximate the true parameter β across different cases with varying

covariate correlations.

The ESEs and SDs of the estimates from the two methods are cataloged in Table

B.9, located in Appendix B.

The results in Table 3.48 display the variable selection performance of the two

methods, recording the numbers of incorrect non-zero and zero estimates for β and

CPs for non-zero and zero coefficients of β. Implementing IIS, almost no significant

features are missed, except in scenarios where the training datasets have p = 3000

covariates and m = 300 resampled data, wherein a few significant features are missed

in the 100 trails. However, for the two-step estimation method utilising IS-SCAD,

the results align with those displayed in Table 3.42 and Table 3.45. That is, when

the covariates are less correlated (ρ = 0, 0.2), almost all important features can be

identified. However, many important features fail to be detected when the correlation

between the covariates is higher (ρ = 0.5). The CPs from the method employing

IS-SCAD are lower than the method using IIS-SCAD for both non-zero and zero

coefficients. Additionally, the method incorporating IIS exhibits fewer incorrect non-

zero estimates compared to the method employing IS. This also indicates that IIS is a

more effective approach for generating parsimonious models, even in the presence of

unknown mislabelling in the datasets.

The excess risks in Table 3.49 demonstrate that the efficiency of the classifiers

obtained using the two-step method with IS-SCAD and IIS-SCAD is close when

p = 1010 and m = 400 while the covariates are less correlated (ρ = 0, 0.2). However,

when highly correlated covariates are studied, such as in the case of p = 1010 and

m = 400, or when sparser models are studied, such as in the case of p = 3000

and m = 300, the classifiers obtained by IS-SCAD demonstrate significantly lower

efficiency. The performance of the classifier obtained by IIS-SCAD is more stable and

is close to that of the Bayes classifier in all scenarios. In this example, under the same

129

settings for tuning parameter λ selections, the computational time of the method

using IIS-SCAD is less than the method using IS-SCAD across different cases. It is

also noticeable that the method incorporating IIS-SCAD requires fewer computing

resources than the one incorporating IS-SCAD, as shown by lower memory utilisation

across different cases.

Table 3.47: AMRSEs and MMRSEs (in brackets) of β̂ISs and β̂IISs

ρ 0 0.2 0.5

p = 1010,
m = 400

β̂IS 0.053(0.015) 0.091(0.015) 0.518(0.665)
β̂IIS 0.055(0.018) 0.104(0.018) 0.217(0.041)

p = 3000,
m = 300

β̂IS 0.067(0.047) 0.078(0.062) 0.265(0.308)
β̂IIS 0.029(0.007) 0.032(0.008) 0.067(0.014)

* All values recorded in this table multiplied by 10−3 are true values.

Table 3.48: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

ρ 0 0.2 0.5

p = 1010,
m = 400

non0
coeff.

β̂IS 0(0.900000) 0(0.850000) 0.43(0.396667)
β̂IIS 0(0.913333) 0(0.860000) 0(0.740000)

0 coeff.
β̂IS 12.01(0.988083) 12.69(0.987398) 10.65(0.989424)
β̂IIS 10.35(0.989722) 10.91(0.989166) 9.92(0.990149)

p = 3000,
m = 300

non0
coeff.

β̂IS 0(0.853333) 0.05(0.823333) 0.87(0.166667)
β̂IIS 0(0.866667) 0(0.860000) 0.04(0.766667)

0 coeff.
β̂IS 9.25(0.997020) 9.87(0.996753) 10.13(0.996690)
β̂IIS 7.82(0.997391) 8.66(0.997110) 7.73(0.997421)

* βp×1 has 3 non-zero coefficients for both cases where p = 1010 and p = 3000.

130

Table 3.49: Excess risks of Cβ̂IS
s and Cβ̂IIS

s, and computing time and memory
utilisations (in brackets)

ρ 0 0.2 0.5

p = 1010,
m = 400

ER(Cβ̂IS
) 0.972959(09:04:04,8.25 GB) 0.967466(08:06:06,8.00 GB) 0.789438(07:37:57,9.04 GB)

ER(Cβ̂IIS)
0.971522(08:10:27,5.54 GB) 0.964686(08:56:39,6.08 GB) 0.931237(06:18:25,6.01 GB)

p = 3000,
m = 300

ER(Cβ̂IS
) 0.888578(40:53:24,10.40 GB) 0.859171(41:11:04,9.13 GB) 0.641953(48:02:25,7.80 GB)

ER(Cβ̂IIS
) 0.954409(37:43:45,4.39 GB) 0.957410(39:27:56,5.17 GB) 0.914113(40:18:52,5.75 GB)

* The misclassification rates of the Bayes classifiers are 18.422% for the case of ρ = 0, 20.816% for

the case of ρ = 0.2, and 25.352% for the case of ρ = 0.5.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment, we requested 38 cores.

Example 2: In this example, we compare the performance of the two methods using

IIS-SCAD, one studying mislabelled datasets and another studying datasets having

all corrected labels. The estimate from the former method is denoted as β̂IIS and the

latter one is denoted as β̂∗
IIS. We evaluate the effectiveness of our proposed method

by comparing it with a method that assumes all labels are corrected. Since it is often

impractical and costly to obtain all labels corrected in real-world problems, we use

β̂∗
IIS as a benchmark in this example.

Datasets with dimensions p = 350, 1500, 3000 are considered and the correlation

parameter is set to ρ = 0.5. The covariates xj1i and xj2i exhibit correlation as 0.5|j1−j2|

for j1,2 = 2, · · · ,p, and i = 1, · · · ,N. The training datasets have a fixed size of

n = 1000 and m = 300 for resampled datasets.

For the mislabelled data and considering resampling, we employ the two-step

estimation method described in Section 3.10.1. For the perfectly labelled datasets,

only β in the model (3.7.1) needs to be estimated, and the estimation process is the

same as the Step 1 in the estimation process described in Section 3.10.1. During

the screening processes, for the two-step estimation process, ⌊m/(4× log(m))⌋ vari-

ables are selected for the estimation process of β, ⌊m0/(2× log(m0))⌋ features for η0

and ⌊m1/(2× log(m1))⌋ features for η1. For the second step estimation, we select

⌊N1/(4× log(N1))⌋, where N1 = min{m,n−m}, features. For the method analysing

all perfect labels, ⌊n/(10× log(n))⌋ variables are selected for the estimation process

across different cases. The simulation results of Example 2 are recorded in Table 3.50 -

Table 3.52.

Table 3.50 shows the AMRSE and MMRSE for the estimates trained by the cor-

131

rupted datasets with the two-step estimation method and by the perfectly labelled

datasets. As expected, with all labels corrected, β̂∗
IISs are more accurate than β̂IISs in

all cases, but β̂IISs still exhibit stable performance with low AMRSEs and MMRSEs

in all cases, which are close to the true values of β.

The ESEs of the estimates obtained by following the sandwich formula (3.5) and

the true value SDs are presented in Table B.10 and in Appendix B, which exhibits how

well the sandwich formula performs with estimated values close to the true values.

The performance of the variable selection is displayed in Table 3.51. Both methods

incorporating IIS-SCAD can almost identify all the significant features, with very

few missed from the two-step estimation method studying mislabelled data. Both

methods maintain stable performance with the increase in the dimensions of the

datasets, demonstrated by identical CPs and close numbers of incorrect non-zero

estimates and CPs for both non-zero and zero coefficients of β. Intriguingly, our two-

step estimation method yields fewer incorrect non-zero estimates than the method

studying all perfect labels. This can be explained by the algorithm used in the two-

step estimation method, which performs variable selection more times, increasing

the likelihood of screening out the insignificant features.

In Table 3.52, the excess risks are recorded. It is evident that classifiers trained

by all perfect labels perform closer to the Bayes classifiers, although it is typically

challenging to have all data perfectly labelled. Our two-step estimation method

using IIS-SCAD exhibits stable performance across different cases. Despite being

trained by the corrupted dataset and with less than half of the data resampled, the

efficiency of classifiers is relatively commendable compared to the Bayes classifiers,

with approximately one-third of the test data being misclassified.

Table 3.50: AMRSEs and MMRSEs (in brackets) of β̂IISs and β̂∗
IISs

p 350 1500 3000

β̂IIS 0.614(0.366) 0.165(0.091) 0.067(0.014)
β̂∗

IIS 0.276(0.017) 0.059(0.004) 0.033(0.003)

* All values recorded in this table multiplied by 10−3 are true values.

132

Table 3.51: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

p 350 1500 3000

non0
coeff.

β̂IIS 0.02(0.776667) 0.02(0.766667) 0.04(0.766667)
β̂∗
IIS 0(0.866667) 0(0.876667) 0(0.866667)

non0 coeff. β̂IIS 7.69(0.977867) 7.58(0.994937) 7.73(0.997421)
β̂∗
IIS 11.05(0.968156) 11.31(0.992445) 11.49(0.996166)

* βp×1 has 3 non-zero coefficients in all cases.

Table 3.52: Excess risks of Cβ̂IIS
s and Cβ̂∗

IIS
s

p 350 1500 3000

ER(Cβ̂IIS
) 0.906076 0.886124 0.914113

ER(Cβ̂∗
IIS
) 0.980963 0.981646 0.973654

* For all cases where p = 350, 1500, 3000, the Bayes classifiers have the misclassifica-

tion rate as 25.352% in each experiment.

In the two examples presented in this section, we evaluate the performance of our

proposed two-step estimation method using IIS-SCAD. We have compared it with the

two-step estimation method using IS-SCAD, as well as the method using IIS-SCAD

with all perfectly labelled datasets. The numerical results provide strong evidence

in favor of our two-step estimation method using IIS-SCAD. The IIS-SCAD method

significantly outperforms the IS-SCAD method in terms of stability across varying

corrupted datasets with different covariate correlations. It consistently generates more

accurate estimation results, identifies almost all important variables, and constructs

more efficient classifiers.

Compared with the method using IIS-SCAD that analyses all perfectly labelled

data, the two-step IIS-SCAD method maintained competitive performance even when

dealing with corrupted datasets. Specifically, it still exhibits good performance in

terms of accurate estimation results, effective variable selection, and the efficiency of

classifiers. In real-world scenarios, correcting all labels is often very challenging due

to the substantial time and cost associated with the process. Moreover, the existing

techniques are not capable of identifying all the noisy labels, as discussed in Section

2.5. In light of these considerations, our proposed method offers a promising solution

for handling high-dimensional classification problems with mislabelled data. Our

133

proposed method offers several advantages, including its ability to maintain good

performance despite high-dimensional mislabelled data, its applicability in situations

where label correction is not feasible, and it is potential for reduced expenses, time,

and resource requirements.

3.11 Real data analysis

In this section, we apply our proposed method as well as the alternative methods

introduced in the previous sections to analyse a real dataset. The dataset used in this

study is the Framingham Heart Study (FHS) dataset, which provides predictions for

coronary heart disease risk over a 10-year period. The dataset is available for free

download on the Kaggle website: Framingham Heart Study.

In 1948, FHS was initiated with the aim of advancing researchers’ understanding

of the epidemiology of coronary heart disease in the United States. For over 70

years, FHS has been the subject of ongoing investigation, with researchers tirelessly

exploring its extensive dataset. This long-term study has provided valuable insights

into the epidemiology of cardiovascular disease and its related risk factors. A concise

historical overview of selected contributions from previous work, which discusses

the influence of FHS, can be found in the work of Mahmood et al. (2014).

Given the extensive analysis and the widespread use of the Framingham Heart

Study (FHS) dataset by researchers over the years, it is reasonable to presume all

perfect labels in this specific case. Logistic regression (LR) has been a common method

of analysis for the FHS, as shown in previous studies such as Abbott (1985), Wilson

et al. (1987), Ambrish et al. (2022), among others.

In real-world scenarios, acquiring a dataset with completely accurate labels, es-

pecially with large sample sizes, is often challenging. The label noise could be due

to various factors including manual recording errors, unsuitable data collection in-

structions, and missing or misleading predictor information, among other reasons.

Considering more general cases, label noise is both class- and feature-dependent,

which complicates the task of label correction. Moreover, pinpointing mislabelled

instances within the dataset can be unfeasible, particularly when the noisy labels

behave similarly to the true labels rather than as outliers (Li et al., 2017). In contrast,

commissioning experts to verify and correct a subset of the dataset might be a more

134

https://www.kaggle.com/datasets/dileep070/heart-disease-prediction-using-logistic-regression

feasible and cost-effective approach. However, to the best of our knowledge, there is

limited research addressing the challenge of mislabelled datasets in this context.

Motivated by these challenges, we aim to explore the application of our two-step

estimation method, incorporating resampling and using LR, to analyse the FHS

dataset with mislabelling that originates from both class- and feature-dependent

label noise. In this section, we start by presenting an overview of the dataset. We

then introduce predetermined parameters associated with the flipping probabilities

of labels, which we use to introduce label noise into the FHS dataset. The process

of generating mislabelling follows the same methodology discussed in Section 3.3.

Subsequently, in the simulation study, we examine various parameter settings that

can introduce different levels of incorrect labels into the dataset.

3.11.1 Description of the dataset and how to reclassify the perfect labels with

noise

After the exclusion of missing values, we obtain a dataset consisting of 3656 records

and 15 attributes, which are considered potential risk factors. These include demo-

graphic variables, behavioral variables, and historical as well as current medical

treatments. We presume an intercept term to be present in the model. The covari-

ates are denoted by Xi = (x1i, · · · , x18i)T , where i = 1, · · · , 3656, with the intercept

defined as x1i ≡ 1. A detailed description of these factors is provided in Table 3.53.

The collected response variables are denoted as zi = {0, 1}, i = 1, · · · , 3656, with

zis being perfectly labelled. If the expert deems the individual observed to be at risk

of coronary heart disease (CHD), the response variable is labelled as 1, otherwise, it

is 0. All continuous variables in Table 3.53 are standardised prior to the analysis. We

use the logistic regression method to analyse this dataset and assume

logit{πz(X)} = log
πz(X)

1− πz(X)
= XTβ,

where β = (β1,β2, · · · ,β18)
T is the parameter we are interested in and aim to estimate.

For any observation X, we have

C(X) =

1 if πz(X) ⩾ 0.5

0 otherwise,
(3.33)

135

where C(·) represents any classifier.

In our study, we select 80% of the observed data as training data, amounting

to a size of n = 2925, while the remaining 731 data points are utilised for out-of-

sample testing. Given the parameters η0 and η1 in the model (3.1), we can introduce

mislabelling to the dataset following the algorithm described in Section 3.3. The new

dataset is comprised of {(Xi, zi,yi)}, i = 1, · · · ,n, where Xis and yis are observed, yis

may be incorrect, and the perfect labels zis are treated as unknown. In the subsequent

tables, the mislabelling rate obtained from the resampled data is denoted as M̂, the

mislabelling rate for label 0 as M̂y|0, and the mislabelling rate for label 1 as M̂y|1. We

define the misclassification rate for any classifier C on the testing dataset as

MISC =

731∑
t=1

1(C(Xt))

731
,

where t = 1, . . . , 731, and 1 is the indicator function defined as

1(C(Xt)) =

1 if C(Xt) ̸= zt

0 otherwise.

136

Table 3.53: Description of the dataset

Factor Name Description Note

Intercept Equals to 1 x1i

Sex Nominal variable: 1 for male, 0 for female x2i

Education Level

Categorical variable:

- “Graduate or professional degree”: reference group

- “Less than or completed high school” (education1) x3i

- “High School Diploma/GED” (education2) x4i

- “College” (education3) x5i

CurrentSmoker Nominal variable: 1 for current smoker, 0 for non-smoker x6i

BPMeds Nominal variable: 1 for anti-hypertensive medication user, 0 for non-user x7i

PrevalentStroke Nominal variable: 1 for prevalent stroke, 0 for no stroke x8i

PrevalentHyp Nominal variable: 1 for prevalent hypertension, 0 for no hypertension x9i

Diabetes Nominal variable: 1 for diabetes, 0 otherwise x10i

CigsPerDay Continuous variable: number of cigarettes smoked per day (integer values) x11i

Age Continuous variable: age of the subjects (integer values) x12i

TotChol Continuous variable: total cholesterol level (measured in mg/dL) x13i

SysBP Continuous variable: systolic blood pressure (measured in mmHg) x14i

DiaBP Continuous variable: diastolic blood pressure (measured in mmHg) x15i

BMI Continuous variable: body mass index (weight in kg divided by height in meters squared) x16i

HeartRate Continuous variable: heart rate (measured in beats per minute) x17i

Glucose Continuous variable: blood glucose level (measured in mg/dL) x18i

* This table provides a concise description of the potential risk factors denoted as xji, where

i = 1, · · · , 3656, represents the number of observations in the training dataset, and j = 1, · · · , 18,

denotes the index.

3.11.2 Detailed analysis

In this section, we investigate the Framingham Heart Study (FHS) dataset in two

scenarios under different mislabelling conditions. To evaluate the performance of

our proposed two-step estimation method, as described in Section 3.1, we compare it

with several alternative methods in this section. These methods include:

• The method that analyses only the subsampled data, with the corresponding

estimates denoted as β(0).

• The method discussed in Section 3.7.2, which follows the approach proposed

by Cannings et al. (2020) to handle mislabelling using the raw data, and the

estimate results are represented as β̂R.

• The method described in Section 3.7.3, which focuses on correcting the labels

in the resampled dataset without considering the flipping probabilities during

estimation, and the estimate is denoted as β̂CD.

137

• The method outlined in Section 3.8.1, which estimates the flipping probabilities

using the known mislabelling ratios from the subsample, and the estimates are

represented as β̂|M̂y|0,M̂y|1
.

• The method described in Section 3.7.1 is discussed, which scrutinises the dataset

with all corrected labels. The estimate derived from this method is denoted as

β̂∗ and is used as a benchmark for comparison with other estimates.

In the first scenario, we examine the impact of varying amounts of resampled

data on the performance of the tested methods using the same corrupted dataset. The

second scenario explores a different setup where the FHS dataset is corrupted using

a different set of parameters η0 and η1, which are related to flipping probabilities.

This allows us to evaluate the effectiveness and robustness of these methods under

different conditions.

In this section, we also perform the Wald test for each estimate of the coefficient

to test the null hypothesis H0 : βj = 0 against the alternative hypothesis H1 : βj ̸= 0,

where j = 1, · · · , 18. The significance level for the test is set at α = 0.05. The resulting

p-values are presented in the subsequent content.

Scenario 1: In Scenario 1, we set the parameters η0 and η1 related to the flipping

probabilities as

η0 = (0, · · · ,η0,5, · · · ,η0,8,η0,9,η0,10, 0,η0,12,η0,13, · · · ,η0,16, · · · , 0)Tp×1,

η0,5 = η0,8 = η0,9 = η0,10 = 1, η0,12 = η0,13 = −0.55, η0,16 = 0.55;

η1 = (0, · · · ,η1,3,η1,4, 0,η0,6,η0,7, · · · ,η0,12, 0,η0,14,η0,15, · · · , 0)Tp×1,

η1,3 = η1,4 = η0,6 = η0,7 = 1, η0,12 = −0.8, η0,14 = −0.65, η0,15 = 0.8,

where p = 18.

We then analyse different percentages of the training data resampled, ranging

from 10% to 50% in increments of 10%. The corresponding sizes are m = 292, 585, 877,

1170, 1462. It is worth noting that when m = 0, the estimate β̂R is derived using the

corrupted dataset without any modification, and when m = n = 3656, the estimate

β̂∗ can be obtained using the method that corrects all labels in the full training dataset.

Tables 3.54-Table 3.60 showcase the results of Scenario 1.

Table 3.54 lists the mislabelling ratios obtained from various resampled datasets.

138

Interestingly, we observe a close correspondence between the mislabelling rates

obtained from the resampled dataset and those from the full-size dataset, even when

the resampled data is small. This is indicated by the close values observed between

the resampled datasets with varying sizes and the dataset resampled with a size of

m = n = 3656.

The efficiency of classifiers achieved by different methods is recorded in Table 3.55.

It is clear that when directly using the corrupted datasets without any resampling

(when m = 0), the misclassification rates of Cβ̂R
exceeds 50%, indicating that the LR

classifier performs only as good as random guesses or potentially worse. Incorporat-

ing a resampling approach, the efficiency of all other classifiers Cβ(0) , Cβ̂, Cβ̂
|M̂y|0,M̂y|1

and Cβ̂CD
improves and the misclassification rates approach that of Cβ̂∗ . However, for

classifier Cβ̂CD
, when less than 30% of training data is resampled (m = 292, 585, and

877), the classifier performs poorly, essentially matching random guess, despite im-

provements as m increases. Our classifier Cβ̂ performs best and maintains efficiency

closest to Cβ̂∗ across different cases. This result further emphasises the effectiveness of

our approach in leveraging the dataset with mislabelling to enhance the performance

of classifiers trained on small clean datasets. These findings are consistent with the

results of the simulation study discussed in Section 3.7.4. Additionally, Cβ̂
|M̂y|0,M̂y|1

has more misclassified labels than ours when studying the same datasets.

Tables 3.56 to 3.60 provide comprehensive results, including estimates for each

predictor, corresponding p-values, and the absolute difference between the estimates

and β̂∗. The latter serves as a benchmark for comparing the accuracy of the different

estimates. From the results obtained for β̂∗, it is worth noting that the variables

“Sex” (indicating male gender), “cigsPerDay”, “age”, “totChol”, “sysBP”, “diaBP”,

“BMI”, “heartRate”, and “glucose” are identified as important features. Among these,

“totChol”, “diaBP”, “BMI”, and “heartRate” exhibit relatively small numerical values,

suggesting that they may have a weaker predictive power for assessing the risk of

coronary heart disease.

The estimate β̂R, obtained from the method using the raw corrupted data, is

not affected by the varying sizes of the resampled data. However, it is evident that

this method, which does not take mislabelling into account, produces less accurate

estimates, most of which are close to 0. As a result, the resulting model becomes

challenging to interpret. The method that corrects only the labels in the resampled

139

dataset, while ignoring the noise of labels during estimation, having the estimate as

β̂CD which performs similarly to β̂R, with estimates close to 0 across different cases.

The estimate of the method using mislabelling ratios as flipping probabilities also

deviates largely from the method using all corrected data and deems most predictors

insignificant, shown by β̂|M̂y|0,M̂y|1
s having most zero estimates.

As more data is resampled and more labels are corrected, our method’s estimates

(β̂s) become closer to β̂∗s. This can be observed by the closer performance in variable

selection and the trend of decreasing mean absolute difference between β̂ and β̂∗. It

is also noteworthy that in all cases, the mean absolute difference between β̂ and β̂∗ is

the smallest among other estimates, further demonstrating the effectiveness of our

method.

Table 3.54: mislabelling ratios of the resampled datasets with varying sizes.

m 292 585 877 1170 1462 3656(m = n)

M̂y|0 0.573222 0.597938 0.604396 0.602434 0.595488 0.600965
M̂y|1 0.339623 0.370000 0.348993 0.342391 0.348416 0.357631
M̂ 0.530822 0.558974 0.561003 0.561538 0.558140 0.564444

* This table presents the mislabelling ratios for different sizes of resampled datasets. Each

column in the table represents the mislabelling ratios obtained from resampled data. The

percentages indicate the amount of training data that is resampled, ranging from 10% to

50% in increments of 10%. The last column corresponds to the mislabelling ratios when

the entire training dataset, where m = n, is resampled.

Table 3.55: Misclassification rates of various classifiers (in %).

m 0 292 585 877 1170 1462 3656(m = n)

MisC
β(0)

62.9275 16.6895 16.1423 16.1423 16.1423 15.8687 15.5951

MisC
β̂

62.9275 16.4159 16.1423 15.8687 15.8687 15.5951 15.5951

MisC
β̂

|M̂y|0,M̂y|1

62.9275 17.9207 16.2791 16.2791 16.1423 15.7319 15.5951

MisC
β̂CD

62.9275 66.2107 60.6019 48.974 22.2982 16.1423 15.5951

* The same out-of-sample testing dataset consisting of 731 observations is used for all cases.
* In the table, when m = 0, indicating no resampling, all the classifiers are equivalent to Cβ̂R

,

while when m = n = 3656, indicating that all labels are correct, all the classifiers behave

the same as Cβ̂∗ . Therefore, the misclassification rates are identical for all classifiers in

these scenarios.

140

Table 3.56: Comparisons of different estimates under the setting of resampled data with a
size of m = 292

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.211460 0.000014 0.107180 -2.087410 < 0.000001 0.231230 0.001739 < 0.000001 2.320379
sex 0.368468 0.357504 0.066415 0.001245 0.000001 0.433638 1.2035e-05 < 0.000001 0.434871
education1 0.349259 0.342181 0.208465 0 1.000000 0.140794 0 1.000000 0.140794
education2 0 1.000000 0 -0.000026 < 0.000001 0.000026 0 1.000000 0
education3 0.278912 0.570060 0.278912 0.000220 < 0.000001 0.000220 0.000114 < 0.000001 0.000114
currentSmoker -0.534159 0.289591 0.534159 0.000020 < 0.000001 0.000020 3.20467e-05 < 0.000001 0.000032
BPMeds -1.180150 0.240864 1.180150 -1.322270 0.271214 1.322270 0 1.000000 0
prevalentStroke 1.066060 0.384707 0.340873 -2.925030 0.060387 3.650217 0 1.000000 0.725187
prevalentHyp 0.646541 0.043511 0.394860 1.061050 0.002709 0.809369 0.000307 < 0.000001 0.251374
diabetes 0.410849 0.443685 0.410849 0 1.000000 0 0 1.000000 0
cigsPerDay 0.311982 0.145045 0.036637 0.006057 0.017615 0.269288 0 1.000000 0.275345
age 0.493298 0.002495 0.008395 0.475600 0.008313 0.026093 -0.008695 < 0.000001 0.510388
totChol 0.467694 0.003430 0.464350 0.419572 0.012061 0.416228 -0.000688 < 0.000001 0.004032
sysBP 0.000109 < 0.000001 0.328768 0.000034 0.001982 0.328843 0 1.000000 0.328877
diaBP 0 1.000000 0.000021 0.003061 0.001223 0.003082 0.000178 < 0.000001 0.000198
BMI 0 1.000000 0.000253 0.000020 0.023640 0.000233 0.001383 < 0.000001 0.001130
heartRate 0 1.000000 0.000235 -0.000998 0.013277 0.000762 0 1.000000 0.000235
glucose 9.85909e-05 < 0.000001 0.213921 0.000357 0.016576 0.213663 0 1.000000 0.214020

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − (β̂j)CD| Estimates p values

Intercept -2.141820 < 0.000001 0.176820 0 1.000000 2.318640 -2.318640 < 0.000001

sex 0 1.000000 0.434883 0 1.000000 0.434883 0.434883 0.000437
education1 0 1.000000 0.140794 0 1.000000 0.140794 0.140794 0.215942
education2 0 1.000000 0 -1.97378e-05 < 0.000001 0.000020 0 1.000000
education3 0 1.000000 0 0.673898 < 0.000001 0.673898 0 1.000000
currentSmoker 0 1.000000 0 -9.77636e-05 < 0.000001 0.000098 0 1.000000
BPMeds -1.772940 0.101122 1.772940 1.85491e-05 < 0.000001 0.000019 0 1.000000
prevalentStroke -7.582760 0.000017 8.307947 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 0.621115 < 0.000001 0.369434 0.251681 0.100156
diabetes 0 1.000000 0 1.03355e-05 < 0.000001 0.000010 0 1.000000
cigsPerDay 0 1.000000 0.275345 -0.000127 < 0.000001 0.275472 0.275345 < 0.000001

age 1.150930 < 0.000001 0.649237 -0.551358 < 0.000001 1.053051 0.501693 < 0.000001

totChol 0.565858 0.000038 0.562514 -0.026330 < 0.000001 0.029674 0.003344 0.023402
sysBP 0 1.000000 0.328877 0 1.000000 0.328877 0.328877 0.000004
diaBP 0 1.000000 0.000021 0.002551 < 0.000001 0.002572 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.380223 < 0.000001 0.379970 0.000253 0.019268
heartRate 0 1.000000 0.000235 -1.52015e-05 < 0.000001 0.000220 -0.000235 0.014509
glucose 0 1.000000 0.214020 0 1.000000 0.214020 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.254136, between β(0) is 0.435888, between β̂R is

0.289277, between β̂|M̂y|0,M̂y|1
is 0.728643, and between β̂CD is 0.385935.

141

Table 3.57: Comparisons of different estimates under the setting of resampled data with a
size of m = 585

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.478080 < 0.000001 0.159440 -1.741820 < 0.000001 0.576820 0.001739 < 0.000001 2.320379
sex 0.453991 0.111959 0.019108 0.000255 < 0.000001 0.434628 1.2035e-05 < 0.000001 0.434871
education1 0.264500 0.351890 0.123706 0 1.000000 0.140794 0 1.000000 0.140794
education2 0 1.000000 0 0 1.000000 0 0 1.000000 0
education3 0.526044 0.147483 0.526044 0 1.000000 0 0.000114 < 0.000001 0.000114
currentSmoker 0 1.000000 0 0 1.000000 0 3.20467e-05 < 0.000001 0.000032
BPMeds -0.616418 0.402651 0.616418 0 1.000000 0 0 1.000000 0
prevalentStroke -1.649980 0.376160 2.375167 -4.126510 < 0.000001 4.851697 0 1.000000 0.725187
prevalentHyp 0.421953 0.195845 0.170272 0.002600 < 0.000001 0.249081 0.000307 < 0.000001 0.251374
diabetes 0.137252 0.819258 0.137252 0 1.000000 0 0 1.000000 0
cigsPerDay 0.358140 0.003439 0.082795 0.008897 0.000011 0.266448 0 1.000000 0.275345
age 0.652764 0.000008 0.151071 0.703095 < 0.000001 0.201402 -0.008695 < 0.000001 0.510388
totChol 0.437044 0.000698 0.433700 0.025055 0.000098 0.021711 -0.000688 < 0.000001 0.004032
sysBP 0.207689 0.157456 0.121188 0.056038 0.000008 0.272839 0 1.000000 0.328877
diaBP 0 1.000000 0.000021 0.003301 0.000021 0.003321 0.000178 < 0.000001 0.000198
BMI 0.161120 0.188876 0.160867 0.003471 0.000051 0.003218 0.001383 < 0.000001 0.001130
heartRate -0.000732 < 0.000001 0.000496 0 1.000000 0.000235 0 1.000000 0.000235
glucose 0 1.000000 0.214020 0 1.000000 0.214020 0 1.000000 0.214020

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.898450 < 0.000001 0.420190 -0.007813 0.000018 2.310827 -2.318640 < 0.000001

sex 0 1.000000 0.434883 -0.002010 0.000001 0.436893 0.434883 0.000437
education1 0 1.000000 0.140794 -0.000119 < 0.000001 0.140913 0.140794 0.215942
education2 0 1.000000 0 -0.039413 0.000001 0.039413 0 1.000000
education3 0 1.000000 0 0.514151 < 0.000001 0.514151 0 1.000000
currentSmoker 0 1.000000 0 -0.009510 0.000001 0.009510 0 1.000000
BPMeds 0 1.000000 0 0.228630 0.358405 0.228630 0 1.000000
prevalentStroke -7.665740 0.231450 8.390927 -0.566465 0.347402 1.291652 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 0.257896 0.003806 0.006215 0.251681 0.100156
diabetes 0 1.000000 0 0.250032 0.342450 0.250032 0 1.000000
cigsPerDay 1.27308e-05 1.000000 0.275332 -0.000231 0.003878 0.275576 0.275345 < 0.000001

age 1.024450 < 0.000001 0.522757 -0.366415 < 0.000001 0.868108 0.501693 < 0.000001

totChol 0.000107 < 0.000001 0.003237 -0.174139 0.000033 0.177483 0.003344 0.023402
sysBP 0 1.000000 0.328877 -7.12042e-05 < 0.000001 0.328948 0.328877 0.000004
diaBP 0 1.000000 0.000021 0.140292 0.004312 0.140313 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.358322 < 0.000001 0.358069 0.000253 0.019268
heartRate 0 1.000000 0.000235 -0.001832 0.002821 0.001597 -0.000235 0.014509
glucose 0 0.214020 0.214020 -0.001546 0.000606 0.215566 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.293976, between β(0) is 0.402012, between β̂R is

0.289277, between β̂|M̂y|0,M̂y|1
is 0.610178, and between β̂CD is 0.421883.

142

Table 3.58: Comparisons of different estimates under the setting of resampled data with a
size of m = 877

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.164560 < 0.000001 0.154080 -1.736330 < 0.000001 0.582310 0.001739 < 0.000001 2.320379
sex 0.378506 0.091350 0.056377 0.00178333 < 0.000001 0.433100 1.2035e-05 < 0.000001 0.434871
education1 0 1.000000 0.140794 0 1.000000 0.140794 0 1.000000 0.140794
education2 0 1.000000 0 0 1.000000 0 0 1.000000 0
education3 0.276016 0.291961 0.276016 2.55513e-05 < 0.000001 0.000026 0.000114 < 0.000001 0.000114
currentSmoker 0 1.000000 0 0.000558 < 0.000001 0.000558 3.20467e-05 < 0.000001 0.000032
BPMeds -0.400312 0.435766 0.400312 0 1.000000 0 0 1.000000 0
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0 1.000000 0.725187
prevalentHyp 0.391514 0.140840 0.139833 0.007785 < 0.000001 0.243896 0.000307 < 0.000001 0.251374
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000 0
cigsPerDay 0.289124 0.003991 0.013779 0.032504 0.000012 0.242841 0 1.000000 0.275345
age 0.539559 0.000001 0.037866 0.560815 < 0.000001 0.059122 -0.008695 < 0.000001 0.510388
totChol 0.208652* 0.059147* 0.205308 0.004265 0.000154 0.000921 -0.000688 < 0.000001 0.004032
sysBP 0.269873 0.019704 0.059004 0.141940 0.004379 0.186937 0 1.000000 0.328877
diaBP 0 1.000000 0.000021 0.001568 < 0.000001 0.001588 0.000178 < 0.000001 0.000198
BMI 9.03052e-05 < 0.000001 0.000163 0.008607 0.000183 0.008354 0.001383 < 0.000001 0.001130
heartRate -4.85764e-05 < 0.000001 0.000187 -9.68837e-05 0.000021 0.000139 0 1.000000 0.000235
glucose 0.001610 < 0.000001 0.212410 0.005399 0.000047 0.208621 0 1.000000 0.214020

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.821960 < 0.000001 0.496680 -0.000210 < 0.000001 2.318430 -2.318640 < 0.000001

sex 0 1.000000 0.434883 0 1.000000 0.434883 0.434883 0.000437
education1 0 1.000000 0.140794 0 1.000000 0.140794 0.140794 0.215942
education2 0 1.000000 0 -1.55477e-05 < 0.000001 0.000016 0 1.000000
education3 0 1.000000 0 2.75924e-05 < 0.000001 0.000028 0 1.000000
currentSmoker 0 1.000000 0 -1.28153e-05 < 0.000001 0.000013 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 6.80266e-05 < 0.000001 0.251613 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0.000182 < 0.000001 0.275163 0 1.000000 0.275345 0.275345 < 0.000001

age 0.820463 < 0.000001 0.318770 -0.002465 < 0.000001 0.504158 0.501693 < 0.000001

totChol 0 1.000000 0.003344 -0.000238 < 0.000001 0.003582 0.003344 0.023402
sysBP 0.000396 < 0.000001 0.328481 7.27173e-05 < 0.000001 0.328804 0.328877 0.000004
diaBP 0 1.000000 0.000021 0.001130 < 0.000001 0.001151 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.006565 < 0.000001 0.006312 0.000253 0.019268
heartRate 0 1.000000 0.000235 0 1.000000 0.000235 -0.000235 0.014509
glucose 0 1.000000 0.214020 0 1.000000 0.214020 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.134519, between β(0) is 0.157466, between β̂R is

0.289277, between β̂|M̂y|0,M̂y|1
is 0.177195, and between β̂CD is 0.289143.

143

Table 3.59: Comparisons of different estimates under the setting of resampled data with a
size of m = 1170

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.218800 < 0.000001 0.099840 -1.687260 < 0.000001 0.631380 0.001739 < 0.000001 2.320379
sex 0.389353 0.037147 0.045530 0.000139 < 0.000001 0.434744 1.2035e-05 < 0.000001 0.434871
education1 0 1.000000 0.140794 3.53468e-05 < 0.000001 0.140759 0 1.000000 0.140794
education2 0 1.000000 0 -3.63295e-05 < 0.000001 0.000036 0 1.000000 0
education3 0 1.000000 0 0 1.000000 0 0.000114 < 0.000001 0.000114
currentSmoker 0 1.000000 0 3.08897e-05 < 0.000001 0.000031 3.20467e-05 < 0.000001 0.000032
BPMeds -0.323604 0.467661 0.323604 0 1.000000 0 0 1.000000 0
prevalentStroke 0.602492 0.341943 0.122695 0 1.000000 0.725187 0 1.000000 0.725187
prevalentHyp 0.285392 0.202582 0.033711 0.002462 < 0.000001 0.249219 0.000307 < 0.000001 0.251374
diabetes 0.495262 0.164316 0.495262 0 1.000000 0 0 1.000000 0
cigsPerDay 0.242178 0.004091 0.033167 0.002030 < 0.000001 0.273315 0 1.000000 0.275345
age 0.479056 < 0.000001 0.022637 0.065963 < 0.000001 0.435731 -0.008695 < 0.000001 0.510388
totChol 0.225585 0.007793 0.222241 0.004317 < 0.000001 0.000973 -0.000688 < 0.000001 0.004032
sysBP 0.294279 0.002168 0.034598 0.0659473 < 0.000001 0.262930 0 1.000000 0.328877
diaBP 0 1.000000 0.000021 0.004994 < 0.000001 0.005014 0.000178 < 0.000001 0.000198
BMI 1.34427e-05 < 0.000001 0.000239 0.002991 < 0.000001 0.002738 0.001383 < 0.000001 0.001130
heartRate -0.000788 < 0.000001 0.000553 0 1.000000 0.000235 0 1.000000 0.000235
glucose 0 1.000000 0.214020 0.000771 < 0.000001 0.213249 0 1.000000 0.214020

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.884990 < 0.000001 0.433650 -0.005358 < 0.000001 2.313282 -2.318640 < 0.000001

sex 0 1.000000 0.434883 -2.48346e-05 < 0.000001 0.434908 0.434883 0.000437
education1 0 1.000000 0.140794 -2.95232e-05 < 0.000001 0.140824 0.140794 0.215942
education2 0 1.000000 0 -0.000141 < 0.000001 0.000141 0 1.000000
education3 0 1.000000 0 0 1.000000 0 0 1.000000
currentSmoker 0 1.000000 0 -6.34966e-05 < 0.000001 0.000063 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 0 1.000000 0.251681 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0 1.000000 0.275345 1.0515e-05 < 0.000001 0.275334 0.275345 < 0.000001

age 0.749713 < 0.000001 0.248020 -0.000592 < 0.000001 0.502285 0.501693 < 0.000001

totChol 2.72758e-05 < 0.000001 0.003317 -5.36505e-05 < 0.000001 0.003398 0.003344 0.023402
sysBP 0.002222 < 0.000001 0.326655 0 1.000000 0.328877 0.328877 0.000004
diaBP 0 1.000000 0.000021 0.000396 < 0.000001 0.000417 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.004197 < 0.000001 0.003944 0.000253 0.019268
heartRate 0 1.000000 0.000235 0 1.000000 0.000235 -0.000235 0.014509
glucose 0 1.000000 0.214020 0 1.000000 0.214020 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.099384, between β(0) is 0.187530, between β̂R is

0.289277, between β̂|M̂y|0,M̂y|1
is 0.169670, and between β̂CD is 0.288589.

144

Table 3.60: Comparisons of different estimates under the setting of resampled data with
a size of m = 1462

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.219140 < 0.000001 0.099500 -1.852040 < 0.000001 0.466600 0.001739 < 0.000001 2.320379
sex 0.351653 0.035817 0.083230 0.000185 < 0.000001 0.434698 1.2035e-05 < 0.000001 0.434871
education1 0 1.000000 0.140794 0 1.000000 0.140794 0 1.000000 0.140794
education2 0 1.000000 0 0 1.000000 0 0 1.000000 0
education3 0 1.000000 0 0 1.000000 0 0.000114 < 0.000001 0.000114
currentSmoker 0 1.000000 0 0.000040 < 0.000001 0.000040 3.20467e-05 < 0.000001 0.000032
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000 0
prevalentStroke 0.779235 0.187353 0.054048 0.923963 0.281815 0.198776 0 1.000000 0.725187
prevalentHyp 0.282824 0.179188 0.031143 0.000438 < 0.000001 0.251243 0.000307 < 0.000001 0.251374
diabetes 0.932592 0.011117 0.932592 0 1.000000 0 0 1.000000 0
cigsPerDay 0.236242 0.001608 0.039103 0.002084 < 0.000001 0.273261 0 1.000000 0.275345
age 0.502532 < 0.000001 0.000839 0.557206 < 0.000001 0.055513 -0.008695 < 0.000001 0.510388
totChol 0.002526 < 0.000001 0.000818 0.000439 < 0.000001 0.002905 -0.000688 < 0.000001 0.004032
sysBP 0.295916 0.001131 0.032961 0.110056 < 0.000001 0.218821 0 1.000000 0.328877
diaBP 0 1.000000 0.000021 0.001478 < 0.000001 0.001499 0.000178 < 0.000001 0.000198
BMI 0.000019 < 0.000001 0.000234 0.000725 < 0.000001 0.000472 0.001383 < 0.000001 0.001130
heartRate -0.000572 < 0.000001 0.000337 0 1.000000 0.000235 0 1.000000 0.000235
glucose 0.000922 < 0.000001 0.213098 0.006676 0.000004 0.207344 0 1.000000 0.214020

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.911890 < 0.000001 0.406750 -0.010916 < 0.000001 2.307724 -2.318640 < 0.000001

sex 0 1.000000 0.434883 -0.000036 < 0.000001 0.434919 0.434883 0.000437
education1 0 1.000000 0.140794 0 1.000000 0.140794 0.140794 0.215942
education2 0 1.000000 0 -0.000056 < 0.000001 0.000056 0 1.000000
education3 0 1.000000 0 0 1.000000 0 0 1.000000
currentSmoker 0 1.000000 0 -0.000115 < 0.000001 0.000115 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0.738087 0.383907 0.012900 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 0 1.000000 0.251681 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0.000012 < 0.000001 0.275333 0 1.000000 0.275345 0.275345 < 0.000001

age 0.705260 < 0.000001 0.203567 -0.000017 < 0.000001 0.501710 0.501693 < 0.000001

totChol 0 1.000000 0.003344 0 1.000000 0.003344 0.003344 0.023402
sysBP 0.000876 < 0.000001 0.328001 0.000056 < 0.000001 0.328821 0.328877 0.000004
diaBP 0 1.000000 0.000021 0.000039 < 0.000001 0.000060 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.000957 < 0.000001 0.000704 0.000253 0.019268
heartRate 0 1.000000 0.000235 0 1.000000 0.000235 -0.000235 0.014509
glucose 0.000032 < 0.000001 0.213988 0 1.000000 0.214020 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.090484, between β(0) is 0.125122, between β̂R is

0.289277, between β̂|M̂y|0,M̂y|1
is 0.126208, and between β̂CD is 0.288040.

Scenario 2: In this scenario, we test the methods mentioned at the beginning of

this section in different scenarios involving various mislabelled data. Specifically,

we preset different settings for parameters η0 and η1 as outlined in CASE 1-CASE 3,

which corrupt the FHS dataset differently.

CASE 1:

η0 = (0, · · · ,η0,4,η0,5, · · · ,η0,10, · · · ,η0,13, · · · ,η0,17,η0,18)
T
p×1,

η0,4 = η0,5 = η0,10 = 1, η0,13 = 0.55, η0,17 = η0,18 = −0.55;

η1 = (0, · · · ,η1,12, · · · ,η1,15,η1,16, · · · , 0)Tp×1,

η1,12 = −0.5, η0,15 = −0.35, η1,16 = 0.65;

145

CASE 2:

η0 = (0, 0,η0,3, · · · ,η0,6,η0,7, · · · , 0)Tp×1,

η0,3 = −0.65, η0,6 = 0.5, η0,7 = −0.55;

η1 = (0, · · · ,η1,13,η1,14, · · · , 0)Tp×1,

η1,13 = 0.5, η1,14 = 0.85;

CASE 3:

η0 = (0,η0,[2:4], · · · ,η0,8, · · · ,η0,12, · · · ,η0,15, · · · ,η0,18)
T
p×1,

η0,2 = η0,3 = η0,4 = 1,η0,12 = 0.65, η0,15 = −0.75, η0,18 = 0.5;

η1 = (0, · · · ,η1,4, · · ·η1,8, · · · ,η1,12,η1,16, · · · , 0)Tp×1,

η1,4 = η1,8 = 1, η1,12 = 0.65, η1,16 = −0.85,

where p = 18. We fix the resampled datasets as m = 1170 for each case, representing

40% of the training data resampled. Table 3.61-Table 3.65 display the results of

Scenario 2.

As shown in Table 3.62, the mislabelling ratios of the resampled datasets with 40%

of the training data checked are very close to those from the resampled datasets of

the same size as the training datasets.

Table 3.62 showcases the performance of the classifiers from different methods.

As shown in the table, our classifier Cβ̂s have the closest performance to classifier Cβ̂∗

and even the same misclassification rate in CASE 2, outperforming other classifiers

in all cases. It is noted that Cβ̂R
, trained by the raw corrupted data, performs worst,

with more than half of the testing data misclassified. Another noteworthy point is

the unstable performance of Cβ̂CD
s across different cases, derived from the method

that corrects the labels in the resampled dataset while ignoring noisy labels during

estimation. Our classifier clearly outperforms both Cβ(0) and Cβ̂
|M̂y|0,M̂y|1

, with fewer

testing data misclassified.

Table 3.63-Table 3.65 display the details of the estimates, p-values from the Wald

test, and the difference between the estimates from different methods compared to

the method using all corrected data. Consistent with the performance in Scenario

1, other methods generate estimates, namely β̂Rs, β̂|M̂y|0,M̂y|1 and β̂CD, close to 0,

rendering the models less interpretable. On the other hand, β̂s closely resemble β̂∗

146

across different cases, performing well in variable selection and having the least mean

absolute difference.

Table 3.61: Averaged mislabelling ratios of full-size generated and resampled
datasets

resample size m = 3656 (m = n) m = 1170

CASE 1

M̂y|0 0.617056 0.611562

M̂y|1 0.555809 0.543478

M̂ 0.607863 0.600855

CASE 2

M̂y|0 0.497586 0.492901

M̂y|1 0.398633 0.396739

M̂ 0.482735 0.477778

CASE 3

M̂y|0 0.706758 0.701826

M̂y|1 0.405467 0.380435

M̂ 0.661538 0.651282

* This table displays the mislabelling ratios for two sets of resampled datasets. The first set

consists of datasets with the same size as the training dataset, which is m = n = 3656. The

second set includes datasets with a size of m = 1170, representing 40% of the training dataset.

Table 3.62: Misclassification rates of various classifiers (in %)

m = 1170 MisC
β(0)

MisC
β̂

MisC
β̂

|M̂y|0,M̂y|1

MisC
β̂CD

MisC
β̂R

MisC
β̂∗

CASE 1 16.1423 15.7319 16.1423 17.3735 64.2955 15.5951

CASE 2 16.1423 15.5951 16.1423 16.1423 59.5075 15.5951

CASE 3 16.1423 16.0055 16.1423 39.8085 74.4186 15.5951

* The same out-of-sample testing dataset consisting of 731 observations is used for all cases.

147

Table 3.63: Comparisons of different estimates of CASE 1 under the setting of resampled
data with a size of m = 1170

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.175710 < 0.000001 0.142930 -1.687370 < 0.000001 0.631270 0.000237 < 0.000001 2.318877
sex 0.353969* 0.069658* 0.080914 0.000141 < 0.000001 0.434742 -0.000049 < 0.000001 0.434932
education1 0 1.000000 0.140794 0.000035 < 0.000001 0.140759 0 1.000000 0.140794
education2 0 1.000000 0 -0.000037 < 0.000001 0.000037 0.787064 < 0.000001 0.787064
education3 0 1.000000 0 0 1.000000 0 0.862666 < 0.000001 0.862666
currentSmoker 0.000013 < 0.000001 0.000013 0.000031 < 0.000001 0.000031 0 1.000000 0
BPMeds -0.000013 < 0.000001 0.000013 0 1.000000 0 0 1.000000 0
prevalentStroke 0.405505 0.739303 0.319682 0 1.000000 0.725187 0 1.000000 0.725187
prevalentHyp 0.288291 0.210789 0.036610 0.002476 < 0.000001 0.249205 -0.000219 < 0.000001 0.251900
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000 0
cigsPerDay 0.268030 0.002448 0.007315 0.002050 < 0.000001 0.273295 -0.000158 < 0.000001 0.275503
age 0.510372 < 0.000001 0.008679 0.066495 < 0.000001 0.435198 -0.008797 < 0.000001 0.510490
totChol 0.209548 0.021641 0.206204 0.004340 < 0.000001 0.000996 0.393077 < 0.000001 0.389733
sysBP 0.272608 0.008622 0.056269 0.066453 < 0.000001 0.262424 -0.000901 < 0.000001 0.329778
diaBP -0.000016 < 0.000001 0.000005 0.005003 < 0.000001 0.005023 -0.000027 < 0.000001 0.000006
BMI 0.000904 < 0.000001 0.000651 0.003006 < 0.000001 0.002753 0.000466 < 0.000001 0.000213
heartRate -0.000312 < 0.000001 0.000077 0 1.000000 0.000235 -0.458471 < 0.000001 0.458236
glucose 0.000264 < 0.000001 0.213756 0.000776 < 0.000001 0.213244 -0.086379 < 0.000001 0.300399

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.675890 < 0.000001 0.642750 -0.006872 < 0.000001 2.311768 -2.318640 < 0.000001

sex 0 1.000000 0.434883 -0.000167 < 0.000001 0.435050 0.434883 0.000437
education1 0 1.000000 0.140794 -0.000209 < 0.000001 0.141003 0.140794 0.215942
education2 0 1.000000 0 -0.000025 < 0.000001 0.000025 0 1.000000
education3 0 1.000000 0 0 1.000000 0 0 1.000000
currentSmoker 0 1.000000 0 -0.000055 < 0.000001 0.000055 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 -0.000024 < 0.000001 0.251705 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0 1.000000 0.275345 0 1.000000 0.275345 0.275345 < 0.000001

age 0.004722 < 0.000001 0.496971 0 1.000000 0.501693 0.501693 < 0.000001

totChol 0 1.000000 0.003344 0.003217 < 0.000001 0.000127 0.003344 0.023402
sysBP 0.004694 < 0.000001 0.324183 0 1.000000 0.328877 0.328877 0.000004
diaBP 0.000023 < 0.000001 0.000044 0 1.000000 0.000021 -0.000021 0.000527
BMI 0 1.000000 0.000253 0.000069 < 0.000001 0.000183 0.000253 0.019268
heartRate 0 1.000000 0.000235 -0.002674 < 0.000001 0.002438 -0.000235 0.014509
glucose 0 1.000000 0.214020 -0.000099 < 0.000001 0.214119 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.067440, between β(0) is 0.187467, between β̂R is

0.43254, between β̂|M̂y|0,M̂y|1
is 0.194983, and between β̂CD is 0.288200.

148

Table 3.64: Comparisons of different estimates of CASE 2 under the setting of resampled
data with a size of m = 1170

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.152810 < 0.000001 0.165830 -1.684130 < 0.000001 0.634510 0.075844 0.939544 2.394484
sex 0.329969* 0.064563* 0.104914 0.000097 < 0.000001 0.434786 0.000132 0.999895 0.434751
education1 0 1.000000 0.140794 0.000029 < 0.000001 0.140765 -0.511621 0.608916 0.652415
education2 -0.000052 < 0.000001 0.000052 -0.000029 < 0.000001 0.000029 0.000422 0.999664 0.000422
education3 0 1.000000 0 0 1.000000 0 0.000212 0.999831 0.000212
currentSmoker 0 1.000000 0 0.000020 < 0.000001 0.000020 0.239774 0.810505 0.239774
BPMeds -0.000029 < 0.000001 0.000029 0 1.000000 0 -0.000031 0.999975 0.000031
prevalentStroke -0.190789 0.817819 0.915976 0 1.000000 0.725187 0 1.000000 0.725187
prevalentHyp 0.276169 0.191386 0.024488 0.001953 < 0.000001 0.249728 0.000528 0.999579 0.251153
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000 0
cigsPerDay 0.264991 0.001289 0.010354 0.001378 < 0.000001 0.273967 0.000103 0.999918 0.275242
age 0.454063 < 0.000001 0.047630 0.048939 < 0.000001 0.452755 -0.000021 0.999983 0.501714
totChol 0.250813 0.002257 0.247469 0.003424 < 0.000001 0.000080 0.003050 0.997567 0.000294
sysBP 0.278914 0.003344 0.049963 0.049088 < 0.000001 0.279789 0.003312 0.997357 0.325565
diaBP 0 1.000000 0.000021 0.004475 < 0.000001 0.004495 0.013260 0.989420 0.013281
BMI 0.001127 < 0.000001 0.000874 0.002413 < 0.000001 0.002160 0.000024 0.999980 0.000228
heartRate -0.001607 < 0.000001 0.001371 0 1.000000 0.000235 0.000028 0.999977 0.000264
glucose 0.011130 < 0.000001 0.202890 0.000605 < 0.000001 0.213415 0.000316 0.999748 0.213704

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.753630 < 0.000001 0.565010 -0.008818 < 0.000001 2.309822 -2.318640 < 0.000001

sex 0 1.000000 0.434883 -0.000122 < 0.000001 0.435005 0.434883 0.000437
education1 0 1.000000 0.140794 -0.002420 < 0.000001 0.143214 0.140794 0.215942
education2 0 1.000000 0 -0.000089 < 0.000001 0.000089 0 1.000000
education3 0 1.000000 0 0 1.000000 0 0 1.000000
currentSmoker 0 1.000000 0 -0.000245 < 0.000001 0.000245 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 -0.000013 < 0.000001 0.251694 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0 1.000000 0.275345 0.000056 < 0.000001 0.275289 0.275345 < 0.000001

age 0.000843 < 0.000001 0.500850 0 1.000000 0.501693 0.501693 < 0.000001

totChol 0.000014 < 0.000001 0.003330 0.000045 < 0.000001 0.003299 0.003344 0.023402
sysBP 0.006068 < 0.000001 0.322809 0.000053 < 0.000001 0.328824 0.328877 0.000004
diaBP 0.000180 < 0.000001 0.000200 0.000047 < 0.000001 0.000068 -0.000021 0.000527
BMI 0.000023 < 0.000001 0.000230 0 1.000000 0.000253 0.000253 0.019268
heartRate 0 1.000000 0.000235 0 1.000000 0.000235 -0.000235 0.014509
glucose 0 1.000000 0.214020 0 1.000000 0.214020 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.106259, between β(0) is 0.189551, between β̂R is

0.334929, between β̂|M̂y|0,M̂y|1
is 0.190810, and between β̂CD is 0.288274.

149

Table 3.65: Comparisons of different estimates of CASE 3 under the setting of resampled
data with a size of m = 1170

β̂ β(0) β̂R

Estimates p values |β̂∗
j − (β̂j)| Estimates p values |β̂∗

j − (βj)
(0)| Estimates p values |β̂∗

j − ((β̂j)R|

Intercept -2.264560 < 0.000001 0.054080 -1.684130 < 0.000001 0.634510 0.000840 < 0.000001 2.319480
sex 0.326881 0.114527 0.108002 0.000097 < 0.000001 0.434786 0.574608 < 0.000001 0.139725
education1 0 1.000000 0.140794 0.000029 < 0.000001 0.140765 0.682697 < 0.000001 0.541903
education2 0 1.000000 0 -0.000029 < 0.000001 0.000029 0.974995 < 0.000001 0.974995
education3 0.196783 0.408666 0.196783 0 1.000000 0 0 1.000000 0
currentSmoker 0.173442 0.512922 0.173442 0.000020 < 0.000001 0.000020 0 1.000000 0
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000 0
prevalentStroke -0.909521 0.363250 1.634708 0 1.000000 0.725187 0 1.000000 0.725187
prevalentHyp 0.266303 0.272021 0.014622 0.001953 < 0.000001 0.249728 -0.001543 < 0.000001 0.253224
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000 0
cigsPerDay 0.226704 0.082813 0.048641 0.001378 < 0.000001 0.273967 -0.000219 < 0.000001 0.275564
age 0.504207 < 0.000001 0.002514 0.048939 < 0.000001 0.452755 0.452599 < 0.000001 0.049094
totChol 0.200689 0.035571 0.197345 0.003424 < 0.000001 0.000080 0 1.000000 0.003344
sysBP 0.304353 0.003379 0.024524 0.049088 < 0.000001 0.279789 -0.049510 < 0.000001 0.378387
diaBP -0.000155 < 0.000001 0.000134 0.004475 < 0.000001 0.004495 -0.172146 < 0.000001 0.172125
BMI 0.000513 < 0.000001 0.000260 0.002413 < 0.000001 0.002160 -0.014739 < 0.000001 0.014992
heartRate -0.000242 < 0.000001 0.000006 0 1.000000 0.000235 -0.000023 < 0.000001 0.000212
glucose 0.000863 < 0.000001 0.213157 0.000605 < 0.000001 0.213415 0.000825 < 0.000001 0.213195

β̂|M̂y|0,M̂y|1
β̂CD β̂∗

Estimates p values |β̂∗
j − (β̂j)|M̂y|0,M̂y|1

| Estimates p values |β̂∗
j − ((β̂j)CD| Estimates p values

Intercept -1.700110 < 0.000001 0.618530 -0.000361 < 0.000001 2.318279 -2.318640 < 0.000001

sex 0 1.000000 0.434883 0 1.000000 0.434883 0.434883 0.000437
education1 0 1.000000 0.140794 0 1.000000 0.140794 0.140794 0.215942
education2 0 1.000000 0 0 1.000000 0 0 1.000000
education3 0 1.000000 0 0 1.000000 0 0 1.000000
currentSmoker 0 1.000000 0 0 1.000000 0 0 1.000000
BPMeds 0 1.000000 0 0 1.000000 0 0 1.000000
prevalentStroke 0 1.000000 0.725187 0 1.000000 0.725187 0.725187 0.194834
prevalentHyp 0 1.000000 0.251681 0 1.000000 0.251681 0.251681 0.100156
diabetes 0 1.000000 0 0 1.000000 0 0 1.000000
cigsPerDay 0 1.000000 0.275345 0 1.000000 0.275345 0.275345 < 0.000001

age 0.002970 < 0.000001 0.498723 0.009925 < 0.000001 0.491768 0.501693 < 0.000001

totChol 0.000016 < 0.000001 0.003328 0.000099 < 0.000001 0.003245 0.003344 0.023402
sysBP 0.002629 < 0.000001 0.326248 -0.000032 < 0.000001 0.328909 0.328877 0.000004
diaBP 0.000039 < 0.000001 0.000060 -0.000244 < 0.000001 0.000223 -0.000021 0.000527
BMI 0.000010 < 0.000001 0.000242 0 1.000000 0.000253 0.000253 0.019268
heartRate 0 1.000000 0.000235 -0.000039 < 0.000001 0.000196 -0.000235 0.014509
glucose 0 1.000000 0.214020 0.000052 < 0.000001 0.213968 0.214020 0.000006

* The mean absolute difference between β̂∗ and β̂ is 0.156056, between β(0) is 0.189551, between β̂R is

0.336746, between β̂|M̂y|0,M̂y|1
is 0.193849, and between β̂CD is 0.288040.

To conclude, from the analysis of the FHS dataset in this section, we consistently

observe that mislabelling can have a substantial impact on the performance of the LR

classifier, confirming the findings from the simulation study discussed in Section 3.7.4.

Ignoring them can have severe consequences, with the trained classifier performing

no better than a random guess. Correcting a subset of imperfect labels without

addressing mislabelling during estimation has limited impact on improving the

classifier’s performance. Particularly, when the size of the resampled data is small,

the classifier tends to perform at a level comparable to random guessing. We also

made several important findings when comparing our approach with alternative

methods. First, by considering resampling and using our proposed method, we can

still utilise the corrupted dataset and extract valuable information. Resampling is

150

practical and requires less time and cost for researchers to scrutinise a subsample

of the dataset and the combined datasets. Leveraging the small clean dataset with

the unresampled, mislabelled data can improve the classifier’s efficiency. Second,

although the mislabelling ratios of the resampled dataset are close to those obtained

from the full-size training dataset, the method that estimates flipping probabilities

by these ratios generates coefficient estimates close to 0, which is less interpretable.

This approach treats the class- and feature-dependent label noise as class-dependent

only, making the model less credible. Lastly, our approach demonstrates strong

performance with low misclassification rates, similar to those of the classifier trained

with perfectly labelled data. Our approach is more practical and efficient, saving

more time and costs in real-world applications.

151

4 Online algorithms for streaming data

This chapter centres around the discussion of online algorithms for sparse streaming

data. We propose online methods tailored for scrutinising streaming data in the

context of sparse GLMs, which include both low-dimensional sparse streaming data

and high-dimensional streaming data. The architecture of this chapter is articulated

as follows.

Initially, in Section 4.1, we provide a detailed description of the model that we

study for this research topic. Commencing with the introduction of the offline

penalised likelihood approach, we then offer comprehensive descriptions of our

proposed incremental algorithm for sparse low-dimensional streaming data in Section

4.2. Subsequently, we present the procedure for defining the tuning parameter of

the penalty function in Section 4.3, which encompasses two distinct algorithms

for selecting the tuning parameter, and various simulation studies are executed.

The results have demonstrated our proposed method’s stability and competitive

performance. Specifically, in the simulation study in Section 4.3.4, we compare our

method with Luo and Song (2020)’s approach, which disregards variable selections.

The comparison demonstrates that their technique experiences convergence issues

when applied to sparse datasets, while our method performs more effectively.

Section 4.4 introduces a method that incorporates an iteratively updated penalty

term during the estimation process. This method shows comparable performance to

the method introduced in Section 4.2, which keeps the penalty term constant, but it

demonstrates superiority in feature selection by effectively identifying and excluding

insignificant features. As a result, it generates more parsimonious models.

Building on the methodology delineated in Section 4.2 for low-dimensional sparse

streaming data, we extend our approach to cater to high-dimensional streaming

scenarios. To realise this, we incorporate the Sure Independent Screening (SIS) and

Iterative Sure Independent Screening (ISIS) techniques (Fan and Song, 2010, Fan et al.,

2009), which we subsequently term as ‘Independence Screening’ (IS) and ’Iterative

Independence Screening’ (IIS) respectively. These integrated methods, designed

especially for streaming data, are detailed in Sections 4.5 and 4.6. We supplement our

explanations with a variety of simulation studies, underscoring the efficacy of our

proposed approaches.

152

Section 4.7 is devoted to the analysis of real-world data, specifically the National

Automotive Sampling System Crashworthiness Data, wherein the monthly crash

incidents are treated as streaming data. In this section, we perform a comparative

evaluation of the performance between our proposed methods described in Section

4.2 and Section 4.4, and the traditional offline estimation method. We also assess the

efficiency of the method suggested by Luo and Song (2020), which excludes variable

selection procedures, using the same dataset they have analysed. By comparing the

outcomes obtained from alternative methods with the performance of our proposed

methods, we can confidently conclude that our methods offer advantages in terms

of estimation accuracy, model interpretability, and resource efficiency for streaming

data analyses.

4.1 Model specification

Streaming data, in our study, means that the data is generated continuously and

can be observed sequentially. We have a sample (Xi, yi), i = 1, · · · , Nb, where

Xi = (x1i, x2i, · · · , xpi)T is a random p-dimensional vector and yi is the response

variable. The subset of observations in a sequence is stored in different batches,

denoted as B1 = {X1, y1}, · · · , Bl = {Xl, yl}, · · · , Bb = {Xb, yb}, where 1 ⩽ l ⩽ b

and b, b = 2, · · · , is the number of observed data batches, and Bl has a size of nl and

the total size of all the observed data is Nb =
b∑

l=1

nl. Xl and yl are the notations of the

observed covariates and the response variables in batch Bl, and X = X1, · · · , XNb
,

and y = y1, · · · , yNb
, are the notations of all observations.

In our streaming data analysis, we hold the assumption that the data either

follows a consistent distribution or exhibits only minor variations between different

distributions. Delving deeper into our methodology, the simulation studies in the

subsequent sections generate i.i.d. data from a single distribution, or in cases where

they differ, the covariates Xi, i = 1, · · · ,Nb, display varied correlations.

Linear models or statistics based on linear functions of data can be easily updated

or decomposed in the context of streaming data (Luo and Song, 2020). While we

discuss a more general case the MLE, with a non-linear function of data. We assume

that the observations are independently generated according to the distribution

f(y;X,β0,ϕ0), where β0 ∈ Rp represents the true parameter of interest and ϕ0 is the

153

true value of a dispersion parameter. With reference to Jorgensen (1997), the GLM

has the log-likelihood function in the form of an exponential dispersion model,

ℓ(β, ϕ) =

Nb∑
i=1

[
yiθi − b(θi)

ai(ϕ)
+ c(yi,ϕ)

]
,

where β is the unknown parameter to be estimated, ϕ is the dispersion parameter,

θi is the canonical parameter for observation i and θi = g(µi) = Xiβ, where g(·) is a

known link function and µi = E(yi|Xi) refers to the mean parameter. Additionally,

ai(·), bi(·) and ci(·) are all known functions and notably, c(yi,ϕ) is a known function

that only depends on yi and ϕ.

Under the assumption of sparsity, we partition β into β1 ∈ Rd and β2 ∈ Rp−d,

where β1 consists of d, 1 ⩽ d ⩽ p, non-zero coefficients and β2 consists of zero

coefficients. Our goal is to obtain the MLE of the unknown p-dimensional parameter

vector β by fitting a penalised log-likelihood function with the following form,

L(X, y; β) = ℓ(X, y; β) − Pλ(∥β∥1),

where ℓ(X, y; β) is a log-likelihood function and ℓ(X, y; β) =
Nb∑
i=1

ℓ(yi,Xi;β). Pλ(·)

is a penalty function and ∥β∥1 =
p∑

j=1

|βj|, and λ is a threshold of the penalty function.

The above equation is abbreviated as equation (4.1) for simplicity.

L(β) = ℓ(β) − Pλ(∥β∥1). (4.1)

In the following context of this study, we use the tilde symbol to denote a quantity

obtained by the incremental algorithm. For example, β̃b is the renewable MLE of

β, obtained using the incremental algorithm with new arrivals in Bb and historical

statistical inferences. The hat symbol denotes estimates obtained using the traditional

offline maximum likelihood estimation method. We use β̂b to denote the MLE of β

obtained from the data only in batch Bb, and β̂∗
b to denote the MLE obtained from

all observations in the b collected data batches Bl, l = 1, . . . ,b, using the traditional

offline maximum likelihood estimation method. In the following context, the terms

“renewable estimates” and “renewable MLE” are used mutually.

154

4.2 Methodology

In this section, we provide a detailed description of our method for studying stream-

ing data generated from sparse models. We begin by explaining the offline algorithm

for penalised maximum likelihood estimation. Next, we introduce our incremental

algorithms with penalty functions. Finally, we present a simulation study that com-

pares the performance of our incremental method with the offline method in two

examples. The first example involves a different full-size training dataset, while the

second example considers varying sizes of streaming data.

4.2.1 Offline penalised maximum likelihood estimation algorithm

The offline algorithm analyses all observed data all at once. For streaming data

observed in different batches, Bl, l = 1, · · · ,b, and b ⩾ 2, it retains each observation

and waits for the collection of Nb observations to be completed before starting the

analysis. However, this approach requires large amounts of storage space, and when

new data joins, the analysis must be restarted using previously trained data with the

new data, which can be both computationally time-consuming and expensive.

We employ the Newton-Raphson method along with LQA to derive the MLE of β

in (4.1). In detail, at each iteration k, where k = 1, · · · , the estimator takes the form of

a non-zero d-dimensional vector, where 1 ⩽ d ⩽ p. Specifically,

β̂(k) = β̂(k−1) − (
∂2L(β)

∂β∂βT
)−1

∣∣∣
β=β̂(k−1)

∂L(β)

∂β

∣∣∣
β=β̂(k−1)

,

which can be expressed in the form

β̂(k) = β̂(k−1) −
{
H(β̂(k−1)) −NbP

′′
λ(∥β̂(k−1)∥1)

}−1 [
S(β̂(k−1)) −NbP

′
λ(∥β̂(k−1)∥1)

]
,

(4.2)

when the iterations converge, we get the MLE of β denoted as β̂∗
b. Here, S(β)

and H(β) are respectively the unit score function and the Hessian matrix of the

log-likelihood function ℓ(β) in (4.1). Specifically,

S(β) =
∂ℓ(β)

∂β
, H(β) = ∇S(β) =

∂2ℓ(β)

∂β∂βT
.

Furthermore, employing the LQA, the second derivative of the penalty function can

155

be expressed as:

P ′′
λ(∥β̂(k−1)∥1) = Σλ(β̂

(k−1)) = diag{p ′
λ(|β̂

(k−1)
1 |)/|β̂

(k−1)
1 |, · · · ,p ′

λ(|β̂
(k−1)
d |)/|β̂

(k−1)
d |},

(4.3)

and

P ′
λ(∥β̂(k−1)∥1) = P ′′

λ(∥β̂(k−1)∥1)β̂(k−1).

The derivation process, incorporating both the LQA and Newton-Raphson al-

gorithm, serves to approximate the log-likelihood function and the penalty term.

This approach is consistent with the methodology elaborated upon for the first-step

estimation in Section A. Consequently, the iterative estimation equation presented as

(A.5) mirrors that of (4.2) introduced above in this section.

For the non-zero estimates of β, we have the estimated variance matrix as

ĉov((β̂∗
1)b) = −

[
H((β̂∗

1)b) −NbΣλ((β̂
∗
1)b)

]−1

, (4.4)

where (β̂∗
1)b consisting of the non-zero components of β̂∗ that is obtained by the

offline algorithm and Σλ(·) is the second derivative of the penalty function Pλ(·) and

has the form shown in (4.3).

4.2.2 Incremental algorithm for penalised maximum likelihood estimation

In this section, we outline our approach to the renewable estimation method. Specifi-

cally, we approximate the penalty function anchored around the previously estab-

lished renewable MLE. This ensures that the resultant penalty function retains its

consistency across all stages of the iterative estimation process. In a subsequent

section, we unveil an alternative model that offers dynamic updates to the penalty

function throughout the estimation iterations, further detailed in Section 4.4.1.

Building on the offline algorithm of the previous section, we now present the

incremental algorithm and start with the simplest case, where the data in B1,2 are

observed sequentially. When the first batch of data is collected at B1, the calculation

algorithm is the same as the offline algorithm, and the MLE of β is denoted as β̂1.

156

The estimation of the dispersion parameter ϕ is

ϕ̂1 =
1

n1 − p

∑
i∈B1

(yi − µ̂i)
2

v(µ̂i)
,

where µ̂i is the estimation of the mean parameter µi and v(µ̂i), i ∈ B1, is the estima-

tion of the variance parameter.

When the data in B2 is collected, we first refer to the offline algorithm with the

iterative estimation process shown in (4.2). At the k-th iteration, where k = 1, · · · ,

the offline estimation of β is expressed as:

β̂
(k)
2 = β̂

(k−1)
2 −

{
H̃2(β̂

(k−1)
2) −N2P

′′
λ∗
2
(∥β̂(k−1)

2 ∥1)
}−1 [

S̃2(β̂
(k−1)
2) −N2P

′
λ∗
2
(∥β̂(k−1)

2 ∥1)
]
,

where S̃2(β) = S1(B1;β) + S2(B2;β), H̃2(β) = H1(B1;β) + H2(B2;β) and Pλ(·) is

the penalty function with the tuning parameter λ. When the iterations converge, we

obtain the MLE of β using the offline algorithm and it is denoted as β̂∗
2 .

By virtue of the properties of MLE, the β̂1 derived from the data in B1 satisfies

the unit score equation for the penalised log-likelihood function, as articulated in

equation (4.1):

S1(B1; β̂1) − n1P
′
λ1
(∥β̂1∥1) = 0. (4.5)

Similarly, β̂∗
2 trained by the data in both B1 and B2 also satisfies the condition, as

given by

S1(B1; β̂
∗
2) + S2(B2; β̂

∗
2) −N2P

′
λ∗
2
(∥β̂∗

2∥1) = 0. (4.6)

Drawing from the discussion in Section 4.1, we assume that the data in B1 and B2

either share the same distribution or come from distributions with slight variations.

As a result, β̂1, derived from dataset B1, is expected to be closely aligned with β̂∗
2 ,

derived from both B1 and B2. Given this alignment and the smooth characteristics of

the estimation function around β̂1, we adopt the first-order Taylor approximation.

This yields the expression for the first and last terms in (4.6):

S1(B1; β̂
∗
2) = S1(B1; β̂1) +H1(B1; β̂1)(β̂

∗
2 − β̂1) + Op(∥β̂∗

2 − β̂1∥2), (4.7)

N2P
′
λ∗
2
(∥β̂∗

2∥1) = N2P
′
λ∗
2
(∥β̂1∥1) +N2P

′′
λ∗
2
(∥β̂1∥1)(β̂∗

2 − β̂1)

+Op(∥β̂∗
2 − β̂1∥2), (4.8)

157

where Op(·) is the error term and can be asymptotically ignored, and λ1 represents

the tuning parameter of the penalty function derived from the previous data batch,

whereas λ∗
2 corresponds to the tuning parameter obtained from the combined data of

the two batches.

Given the proximity of the streaming data in the two data batches, and of β̂1 to

β̂∗
2 , equation (4.8) can be expressed as:

N2P
′
λ∗
2
(∥β̂∗

2∥1) ≈ n1P
′
λ1
(∥β̂1∥1) + n2P

′
λ∗
2
(∥β̂1∥1) +N2P

′′
λ∗
2
(∥β̂1∥1)(β̂∗

2 − β̂1). (4.9)

Taking into account both Equation (4.7) and Equation (4.9), and after discarding

the error terms from (4.7) as well as the zero term evident in (4.5), Equation (4.6) can

be reformulated as:

[
H1(B1; β̂1) −N2P

′′
λ2
(∥β̂1∥1)

]
(β̃2 − β̂1) + S2(B2; β̃2) − n2P

′
λ2
(∥β̂1∥1) = 0, (4.10)

where β̃2 can be viewed as a second-order asymptotic approximation for β̂∗
2 and λ2,

obtained from B2, serves as an approximation for λ∗
2 .

Using the unit score function given by equation (4.10), we can deploy the Newton-

Raphson algorithm to determine its solution. To be sepcific, at the k-th, k = 1, · · · ,

iteration, the estimator then takes the form as

β̃
(k)
2 = β̃

(k−1)
2 −

[
H1(B1; β̂1) +H2(B2; β̃

(k−1)
2) −N2P

′′
λ2
(∥β̂1∥1)

]−1

×
{[

H1(B1; β̂1) −N2P
′′
λ2
(∥β̂1∥1)

]
(β̃

(k−1)
2 − β̂1)

+S2(B2; β̃
(k−1)
2) − n2P

′
λ2
(∥β̂1∥1)

}
,

and H2(B2; β̃
(k−1)
2) can be replaced by H2(B2; β̂1). In this way, it avoids the need to

update the Hessian matrix at each iteration and speed up the iterations (Luo and

Song, 2020). Therefore, the estimator at the k-th, k = 1, · · · , iteration has the following

form:

β̃
(k)
2 = β̃

(k−1)
2 −

[2∑
l=1

Hl(β̂1) −N2P
′′
λ2
(∥β̂1∥1)

]−1

×
{[

H1(β̂1) −N2P
′′
λ2
(∥β̂1∥1)

]
(β̃

(k−1)
2 − β̂1)

158

+S2(β̃
(k−1)
2) − n2P

′
λ2
(∥β̂1∥1)

}
. (4.11)

After the iterations in (4.11) converge, the estimate of β is obtained as β̃2. We refer to

this estimate as the renewable MLE.

To update the previous statistics, we renew β̂1 by β̃2. Concurrently, the Hessian

matrix is updated as H̃2, where H̃2(β̃2) = H1(β̂1)+H2(β̃2). In addition, the unbiased

estimate of the variance parameter ϕ in the GLM is updated by computing ϕ̃2 (Luo

and Song, 2020)

ϕ̃2 =
n1 − p

N2 − p
ϕ̂1 +

n2 − p

N2 − p
ϕ̂2,

ϕ̂2 =
1

n2 − p

∑
i∈B2

(yi − µ̂i)
2

v(µ̂i)
,

where N2 =
2∑

l=1

nl.

The estimated covariance matrix for the non-zero estimates of β is

c̃ov((β̃1)2) = −ϕ̃2

[
H̃2((β̃1)2) −N2Σλ2

((β̃1)2)
]−1

,

where (β̃1)2 is the renewable estimate consisting of non-zero elements of β̃2 and Σλ(·)

refers to the second derivative of the penalty function with the explicit form given in

(4.3).

From our outlined estimation process, it is evident that only specific historical

statistical quantities, namely β̂1 and H1(B1), are utilised to update the statistics as

new data from B2 becomes available. Notably, the details of observations in B1 are

not required.

It is important to highlight that the tuning parameter, initially denoted as λ1 and

derived from the streaming data in B1, is continuously updated with the introduction

of new data from B2, and is subsequently denoted as λ2. A comprehensive approach

to updating the tuning parameter with each fresh data batch is provided in Section

4.3.

We now describe a more general situation where streaming data comes in two

or more data batches, and the last observed data batch is denoted as Bb for b ⩾ 2.

The previous statistical inferences have been obtained and saved using the previous

159

batches of data and are denoted with the subscript b − 1. When new data in Bb is

collected, at the k−th, k = 1, · · · , iteration, the estimator takes the form of:

β̃
(k)
b = β̃

(k−1)
b −

[
H̃b(β̃b−1) −NbP

′′
λb
(∥β̃b−1∥1)

]−1

×
{[

H̃b−1(β̃b−1) −NbP
′′
λb
(∥β̃b−1∥1)

]
(β̃

(k−1)
b − β̃b−1)

+Sb(β̃
(k−1)
b) − nbP

′
λb
(∥β̃b−1∥1)

}
, (4.12)

where λb corresponds to the tuning parameter obtained from data in Bb.

In this more general situation, the renewable MLE of β is denoted as β̃b, obtained

by iterating the online algorithm of (4.12) until convergence is achieved. Then, β̃b−1

and H̃b−1(β̃b−1) are updated using β̃b and H̃b(β̃b) respectively. To update the

unbiased estimates of ϕ with the data in Bb, we use the following equation (Luo and

Song, 2020):

ϕ̃b =
Nb−1 − p

Nb − p
ϕ̃b−1 +

nb − p

Nb − p
ϕ̂b,

ϕ̂b =
1

nb − p

∑
i∈Bb

(yi − µ̂i)
2

v(µ̂i)
, (4.13)

where Nb =
b∑

l=1

nl, µ̂i is the estimation of the mean parameter and µi = E(yi|Xi) and

v(µ̂i), i ∈ Bb, is the estimation of the variance parameter. The estimated covariance

matrix for the non-zero estimates of β is

c̃ov((β̃1)b) = −ϕ̃b

[
H̃b((β̃1)b) −NbΣλb

((β̃1)b)
]−1

, (4.14)

where (β̃1)b is the renewable estimate consisting of non-zero elements of β̃b.

As is evident from our incremental algorithm, only the crucial statistics are re-

tained and used in the estimation process instead of using and storing the detailed

streaming data. These include the renewable MLE of β, the corresponding renewed

Hessian matrix, the renewable estimate of dispersion parameter ϕ, and the cumula-

tive number of the trained observations. This distinction underscores the efficiency

of our online algorithm in conserving storage space, offering a computational advan-

tage over offline methods. Furthermore, the online inferences, particularly online

confidence intervals, can be shaped using the estimated covariance matrix (4.14).

160

4.2.3 Simulation study setup

Model specification: For this study, we conduct 100 separate and independent runs

of an experiment, with a full-size dataset consisting of Nb independent observations

used for training in each run. In addition, we use an independent set of 500 observa-

tions for testing in each run. Each data point in the dataset consists of p covariates,

Xi = (x1i, x2i, · · · , xpi)T . The first covariate, x1i, represents the intercept term and is

fixed at 1. The remaining p − 1 covariates, denoted as x[2:p]i, are generated from a

multivariate normal distribution with mean vector 0 and a (p−1)×(p−1) compound

symmetry covariance matrix, denoted as Σp−1, with correlation parameter ρ. We

specify the covariance matrix Σp−1 for each simulation using different examples.

Unless otherwise noted, we assume that the data for each experiment are identically

independently distributed (i.i.d.).

In this study, the logistic model, a specific type of GLM, is the focus of our

simulation study. We assume that the binary response variable yi ∈ {0, 1}, i =

1, · · · , Nb, and

πy(Xi) = P(yi = 1|Xi), logit{πy(Xi)} = XT
i β,

where β is a p-dimensional parameter vector to be estimated. We continue with

the assumption of sparsity in β that the parameter vector β consists of d non-zero

coefficients, where 1 ⩽ d ⩽ p, and p − d zero coefficients. The mean parameter µi

is equal to πy(Xi) in the logistic model and the dispersion parameter ϕ = 1 in the

logistic model. For the i-th observation, the log-likelihood function is

ℓ(β) = yilogit(πy(Xi)) − log(1− πy(Xi)).

We incorporate the SCAD penalty function into our model, and the penalty term

Pλ(·) in Equation (4.1) is defined by Equation (2.4), with a fixed value of a = 3.7. The

process of determining a desirable value for λ is discussed in Section 4.3.

Additionally, we adopt the method outlined in (Rodrı́guez, 2007, p. 10) to handle

the problem of zero-one data that often occurs when analysing binary response vari-

ables. To achieve this, for every simulation, we transform the response variable, and

the estimator of β is adjusted accordingly, but this transformation is only performed

161

for the first iteration. The transformations are as follows

β̂
(0)
1 = (XXT)−1Xy∗,

where, y∗
i = log(

yi + 0.5

1.5− yi

), i = 1, · · · ,Nb. (4.15)

During the penalised iterative estimation process for the unknown parameter β,

if the absolute value of an estimate at the current iteration satisfies the condition

|β̂j| < σ0, (4.16)

for j = 1, · · · ,p, we set the estimate to zero. This rule applies to both the offline

method, denoted by β̂∗
b, and the online method, denoted by β̃b, where b = 1, · · ·

represents the batch number of the observed streaming data.

Evaluation metrics for simulation study: The criteria and metrics employed to

assess performance in this chapter’s simulation study are delineated in Section 3.2.

In addition to procuring the Estimated Standard Errors (ESEs) within the context of

Online algorithms for Streaming Data, we utilise (4.4) to compute the ESEs of β̂ when

implementing the offline method. In contrast, for the renewable MLE, we resort to

(4.14) to obtain the ESEs. Detailed explanations are provided in the corresponding

sections.

4.2.4 Simulation study

In this section, we have two simulation examples designed to investigate the perfor-

mance of our renewable estimation method under different experimental settings.

Moreover, we compare our method with the traditional offline method to evaluate

its effectiveness. The first example studies the performance of renewable estimates

using different sizes of streaming data. The second example compares the renewable

estimates obtained with various full-size training datasets.

For both examples, we set the parameter vector in the model to be

β = (0,β2, 0,β4,β5, 0, · · · , 0)Tp×1,

β2 = 1, β4 = −2, β5 = 1.5.

162

The value of p is different between the following two examples and is specified

separately in each case.

Example 1: Different batch sizes nb. In the first example, we study datasets with

p = 12 covariates, where x[2:12]i are distributed as N(0, Σ11), i = 1, · · · , Nb, and Σ11

is a compound symmetry covariate matrix with correlation ρ = 0.5. We use streaming

data of size nb, which remain fixed for each run, and we perform trials with various

batch sizes of nb = 200, 500, 1000. Our method is tested on two different full-size

training datasets with Nb = 2000 and Nb = 10000 in the first example. The numerical

results are presented in Table 4.1 to Table 4.4. When nb = Nb, the estimates are

obtained using the offline method.

Table 4.1 reports the AMRSEs and MMRSEs of the 100 estimates. The table shows

that, for each case with the same full-size training datasets, there is no pronounced

difference between the β̃s trained using different streaming data sizes, especially

when the batch sizes are large (nb = 500, 1000). However, when the data batch size is

small (nb = 200), the renewable estimates are slightly less accurate than those trained

using larger streaming data sizes (nb = 500, 1000). In each case of the same training

data, the β̃s exhibit very close performance with the β̂s, and our method produces

accurate estimates for β.

Table 4.2 displays SDs, ESEm, and ESEo for the non-zero coefficients of β, which

are calculated using two different methods for estimating variance. Specifically, we

used (4.4) to estimate the variance of the offline estimates and (4.14) to estimate the

variance of the online estimates. The close agreement between the estimated values

and the true values, observed across different cases with varying streaming data sizes

and full training data sizes, indicates that both variance formulas are effective in

practice. The 100 estimates of the standard errors are used to construct confidence

ellipsoids for the non-zero coefficients of β in each run, and the resulting values are

recorded in Table 4.3.

Table 4.3 shows the numbers of incorrect non-zero and zero estimates, as well as

the CPs for the non-zero and zero coefficients. The CP values for the non-zero and

zero coefficients of β are similar between the renewable and offline estimates when

trained on the same dataset. In this example, the offline estimates exhibit the highest

CP values of 1 for zero coefficients in both cases with different sizes of training data,

and the renewable estimates have values that are very close across different cases. On

163

the other hand, the CP values for the non-zero coefficients of β are similar between

the renewable and offline estimates when the size of the streaming data is sufficiently

large (when nb = 500 or 1000). Specifically, in the case where the full-size training

data is Nb = 2000 and the streaming data has a size of nb = 500, the renewable

method achieves slightly higher CP than the offline method. We also observe that

in all cases with 100 replications, both our penalised renewable estimation method

and the penalised offline method using SCAD do not miss any important features. It

should be noted that both methods produce some incorrect non-zero estimates for the

zero coefficients of β. The offline method has the least number of incorrect estimates

when Nb = 10000, while there are slightly more incorrect non-zero estimates of β̂s

than β̃s for different trials with various streaming data sizes when Nb = 2000. We

provide a detailed discussion of the variable selection results, including the effects

of the search intervals, search step sizes, and validation data sizes, in Section 4.3.

Despite these factors, the renewable method demonstrates stable performance for

variable selection, regardless of the size of the streaming data.

Table 4.4 records the excess risks of the classifiers, the computing time, and the

memory utilisations. The memory utilisation shows the memory required for one

experiment including 100 independent runs during its execution. From the results

of excess risks of the renewable classifiers trained with different sizes of streaming

data, we observe that the classifiers perform similarly. It is also noticeable that all

the renewable classifiers exhibit similar performance to the Naive Bayes classifier,

as evidenced by the excess risk values close to or equal to 1 in the table. It is clear

that when trained by the same datasets, the renewable classifiers have almost no

difference in efficiency from the traditional classifier of the offline method. Thus, the

renewable estimation has obvious advantages over the offline method in terms of

computing efficiency, requiring less time and memory to train on the same dataset.

To conclude, our method performs similarly regardless of batch size. When the

streaming data is sufficiently large, the size of stream batches has less influence on the

estimation outcomes. Our classifier performs similarly to the Bayes classifier and is

almost as efficient as the offline classifier. It should be noted that our method requires

much fewer computing resources and time to conduct the analysis, as revealed by

the recorded results, and also requires less space to store the details of observations.

164

.
Table 4.1: AMRSEs and MMRSEs (in brackets) of β̃bs and β̂∗s

nb 200 500 1000 Nb

Nb = 2000 0.780(0.398) 0.476(0.365) 0.617(0.452) 0.434(0.216)
Nb = 10000 0.131(0.064) 0.075(0.055) 0.081(0.058) 0.062(0.046)

* All values recorded in this table multiplied by 10−3 are true values.
* For the cases where nb = 200, 500, 1000, the renewable estimation method produces estimates β̃bs,

while for the case where nb = Nb, the offline method produces estimates β̂∗s.

Table 4.2: SDs and ESEs for non-zero β12×1 coefficient estimates

nb 200 500 1000 Nb

β2

Nb = 2000 0.0825(0.0798,0.1183) 0.0752(0.0799,0.1185) 0.0766(0.0802,0.1189) 0.0655(0.0784,0.1163)

Nb = 10000 0.0359(0.0349,0.0518) 0.0294(0.0350,0.0519) 0.0287(0.0351,0.0521) 0.0290(0.0349,0.0517)

β4

Nb = 2000 0.1321(0.0995,0.1475) 0.1204(0.1008,0.1494) 0.1218(0.1016,0.1507) 0.1139(0.0994,0.1474)

Nb = 10000 0.0611(0.0440,0.0652) 0.0550(0.0442,0.0656) 0.0542(0.0444,0.0658) 0.0506(0.0441,0.0653)

β5

Nb = 2000 0.1068(0.0883,0.1309) 0.0935(0.0889,0.131) 0.1072(0.0894,0.1325) 0.1152(0.0874,0.1296)

Nb = 10000 0.0531(0.0388,0.0576) 0.0517(0.0391,0.0579) 0.0486(0.0392,0.0581) 0.0506(0.0390,0.0578)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside

the brackets represent ESEm and ESEo, respectively.
* For the cases where nb = 200, 500, 1000, the ESEs of the renewable estimates β̃bs are obtained using

Equation (4.14), while for the cases where nb = Nb, the ESEs of β̂∗ are obtained using equation

Equation (4.4).

Table 4.3: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

nb 200 500 1000 Nb

Nb = 2000
non0 coeff. 0(0.900000) 0(0.936667) 0(0.923333) 0(0.926667)

0 coeff. 3.18(0.976667) 2.70(0.980000) 2.84(0.968889) 3.83(1.000000)

Nb = 10000
non0 coeff. 0(0.856667) 0(0.910000) 0(0.903333) 0(0.926667)

0 coeff. 2.11(0.992222) 1.75(0.995556) 1.78(0.992222) 0.95(1.000000)

* β12×1 cosists of 3 non-zero coefficients.

165

Table 4.4: Excess risks of Cβ̃s and Cβ̂∗s, and computing time and memory utilisa-
tions (in brackets)

nb 200 500 1000 Nb

Nb = 2000
0.998162
(00:02:45; 0.33 GB)

1.000000
(00:10:14; 0.48 GB)

1.000000
(00:33:48; 1.08 GB)

1.000260
(01:43:13; 3.37 GB)

Nb = 10000
0.998061
(00:06:01; 0.39 GB)

0.998413
(00:13:44; 0.56 GB)

0.998501
(00:36:23; 1.17 GB)

0.998413
(39:24:16; 75.50 GB)

* For the 100 replications, when Nb = 2000, the misclassification rate of the Bayes classifier is
22.940%; When Nb = 10000, the misclassification rate of the Bayes classifier is 22.652%.

* Excess risks are reported outside of the brackets, the first value in the brackets represents the
computing time, and the second value in the brackets represents the memory utilisations.

* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment, we requested 35 cores.

Example 2: Different training data sizes. In the second example, we set p = 150,

which is more than 10 times the number of insignificant features in Example 1. We

test the data with covariates xj1i and xj2i, i = 1, · · · ,Nb, j1,2 = 2, · · · , 150, that have a

correlation of ρ|j1−j2|, where ρ = 0.5. For the same trail, the streaming data is observed

in sequential batches of the same size nb, where we consider two different batch sizes

nb = {200, 300}. We record the performance of renewable estimations for b-th data

batches with b = 2, 6, 20, as well as the offline estimation analyses the same training

data as the renewable estimation method in b = 20 stream batches.

The performance of methods can be affected by the tuning parameter search, as

explained in detail in Section 4.3. In this example, to find desirable values for the

tuning parameter λ in the renewable estimation process, we set the search step size

for all trials as 0.15. For the case where nb = 200, the search interval is [0.05, 0.5], and

for the case where nb = 300, the search interval is [0.05, 0.65]. For the offline method,

we have a search interval of [0.035, 0.2] and a search step size of 0.2 for the case where

nb = 200, and a search interval of [0.05, 0.2] and a search step size of 0.35 for the case

where nb = 300. The numerical results for this example are reported in Table 4.5 to

Table 4.8.

The AMRSEs and MMRSEs of the renewable estimates, β̃bs, b = 2, 6, 20, and the

offline estimates, β̂∗
20s, are recorded in Table 4.5. As expected, the performance of our

renewable estimation method improves as more information is collected. Specifically,

when b = 2, the accuracy of renewable estimates is the lowest. With the observation

of more stream batches, the performance improves and approaches β̂∗
20. Notably, the

166

most accurate renewable estimates are obtained with β̃20s in each case.

Table 4.2 provides a comparison of the ESEs obtained using equations (4.14) and

(4.4) with the true values, represented by SDs. In general, are found to be close to the

true values. Specifically, for smaller batch sizes (nb = 200) and fewer data batches

studied (b = 2), the ESEs from the renewable estimation deviate more from the SDs.

Thus as more data batches are observed, the ESEs get closer to the SDs.

Table 4.7 presents the performance of variable selection, including the numbers

of incorrectly estimated non-zero and zero coefficients and the CPs for non-zero

and zero coefficients. The results indicate that our method identifies almost all

significant variables with only one missed significant variable in each experiment,

across all cases with 100 repetitions. With a fixed size of streaming data, we find

that the number of incorrect zero estimates remains the same while the CPs of non-

zero coefficients are similar, regardless of the number of batches of streaming data.

From the online penalised method explained in Section 4.2.2, the penalty term is

approximated and related to the renewable estimates from the previous data batch.

The zero-absorbing state of SCAD (Fan and Lv, 2010) can result in missed important

features in subsequent data batches.

Under the fair settings for the tuning parameter search introduced above, the

renewable estimation method produces estimates with far fewer incorrect non-zero

estimates compared to the estimates from the offline method. In consequence, the

number of incorrect non-zero estimates decreases as more stream data batches are

studied. However, the β̂∗
20 estimates assign non-zero values to more than half of the

zero coefficients, indicating worse interpretability of the selected models compared

to our renewable estimation method. This suggests that under the same settings for

computing and the same threshold for assigning a 0 value to insignificant features,

the offline method performs less satisfactorily than our proposed method in terms of

the interpretability of the selected model. Our online algorithm has an advantage

over the offline algorithm, as it can scrutinise important features and screen out

non-important ones more often with streaming data.

It can be seen in Table 4.7 that the CPs for both non-zero and zero coefficients

are similar across the different numbers of stream data batches used to train the

renewable estimates, with CP values for zero coefficients close to 1, indicating accurate

estimation of the insignificant variables. Notably, when nb = 300, the CP values for

167

non-zero coefficients from the renewable estimates is significantly higher than the

CPs from the offline method. This suggests that our method is better at identifying

the significant variables in this example.

Table 4.8 presents the excess risks of the classifiers from our renewable estimation

method and the offline method, as well as the computing time and memory usage

for each experiment with 100 replications. Cβ̂∗
20

s from the offline method have the

highest efficiency, performing slightly better than the Bayes classifier. On the other

hand, the efficiency of renewable classifiers becomes similar to that of the traditional

classifiers trained using the same training dataset when b = 20. Also, the renewable

classifiers approach the Bayes classifier in terms of performance, with their excess

risks increasing and approaching 1. Nonetheless, the offline algorithm requires

significantly more time and computing resources compared to renewable algorithms.

In conclusion, the efficiency of our renewable classifiers improves with the collec-

tion of more stream data batches, allowing for more accurate and timely classification.

The results of this example demonstrate that our renewable estimation method

achieves higher accuracy as more data batches are analysed, due to the continual

refinement of the parameter estimates with the streaming data. Furthermore, even in

the presence of sparse models with many zero coefficients, our incremental algorithm

can select all the important features and outperforms the offline method in scruti-

nising unimportant features. This is consistent with Example 1 in this section and

shows that our renewable method outperforms the offline method, requiring much

less time and storage space while being more efficient in computation.

Table 4.5: AMRSEs and MMRSEs (in brackets) of β̃bs and β̂∗s

β̃2 β̃6 β̃20 β̂∗
20

nb = 200 1.844(0.278) 1.291(0.085) 0.581(0.027) 0.022(0.017)

nb = 300 1.044(0.102) 0.599(0.023) 0.320(0.007) 0.025(0.015)

* All values recorded in this table multiplied by 10−3 are true values.

168

Table 4.6: SDs and ESEs for non-zero β150×1 coefficient estimates

nb = 200 β̃2 β̃6 β̃20 β̂∗
20

β2 0.4544(0.1439,0.2133) 0.2041(0.0845,0.1253) 0.0897(0.0465,0.0690) 0.0673(0.0471,0.0698)

β3 0.4796(0.1988,0.2948) 0.2694(0.1167,0.1731) 0.1689(0.0651,0.0966) 0.1394(0.0661,0.0980)

β5 0.3003(0.1755,0.2602) 0.2166(0.1034,0.1533) 0.1242(0.0573,0.0850) 0.1092(0.0575,0.0852)

nb = 300 β̃2 β̃6 β̃20 β̂∗
20

β2 0.1436(0.1255,0.1860) 0.0739(0.0719,0.1065) 0.0501(0.0392,0.0581) 0.0605(0.0385,0.0570)

β3 0.2212(0.1777,0.2634) 0.1375(0.1006,0.1492) 0.0659(0.0551,0.0817) 0.1300(0.0541,0.0802)

β5 0.1813(0.1533,0.2273) 0.1159(0.0876,0.1299) 0.0599(0.0479,0.0711) 0.1111(0.0469,0.0696)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table 4.7: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

nb = 200 β̃2 β̃6 β̃20 β̂∗
20

non0 coeff. 0.01(0.570000) 0.01(0.563333) 0.01(0.580000) 0(0.78)

0 coeff. 19.59(0.999728) 8.46(0.999592) 2.51(0.999660) 116.97(0.999796)

nb = 300 β̃2 β̃6 β̃20 β̂∗
20

non0 coeff. 0.01(0.806667) 0.01(0.813333) 0.01(0.816667) 0(0.693333)

0 coeff. 26.02(0.995850) 12.68(0.992653) 4.83(0.992925) 97.53(1.00000)

* β150×1 cosists of 3 non-zero coefficients.

Table 4.8: Excess risks of Cβ̃b
s and Cβ̂∗

b
s, and computing time and memory utilisa-

tions (in brackets)

ER(Cβ̃2
) ER(Cβ̃6

) ER(Cβ̃20
) ER(Cβ̂∗

20
)

nb = 200
0.886210
(00:40:19; 3.42 GB)

0.909440
(00:53:47; 3.43 GB)

0.973003
(01:30:02; 3.44 GB)

1.00104
(41:15:07; 17.31 GB)

ER(Cβ̃2
) ER(Cβ̃6

) ER(Cβ̃20
) ER(Cβ̂∗

20
)

nb = 300
0.949502
(01:56:28; 3.44 GB)

0.957117
(40:32:10; 3.44 GB)

0.985448
(40:25:45; 3.45 GB)

1.00069
(45:00:32; 33.92 GB)

* For the 100 replications, in the case where nb = 200, the misclassification rate of the Bayes
classifier is 22.994%, while in the case where nb = 300, the misclassification rate of the Bayes
classifier is 23.160%.

* We implemented each experiment with 100 independent trials using C++ and ran them on 2 Intel
Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores, while for
each experiment of the offline method, we requested 40 cores.

169

4.3 Determining the tuning parameter for the penalty function in

renewable estimation

In this section, we focus on determining an optimal value for the tuning parameter of

the penalty function in the incremental algorithm. To accomplish this, we introduce

the modified Leave-P-Out Cross-Validation (mLpO CV) algorithm, which aids in the

selection of the appropriate tuning parameter. Subsequently, we present simulated

examples in separate sections to illustrate the effectiveness of our approach.

In the first section, we introduce two algorithms with different searching processes

to find the tuning parameters of the penalty function in the model and design a

simulation study to compare their performance. In the second section, we compare

our incremental algorithm which uses the SCAD penalty function with the method

that lacks variable selection (Luo and Song, 2020) and provide a simulated example.

In the last section, we discuss the use of validation datasets of varying sizes in our

incremental method to find the tuning parameter for the penalty function in the model.

We demonstrate the stable performance of our method to find tuning parameters by

examining its performance across different sizes of observations removed from the

training dataset.

4.3.1 Modified Leave-P-Out Cross-Validation (mLPOCV) for streaming data

In our study, Modified Leave-P-Out Cross-Validation (mLPOCV) process is used to

find a tuning parameter of the penalty function for the penalised methods.

Similar to classical Leave-P-Out Cross-Validation (LPOCV), we randomly split

the newly arrived data in Bb, b = 1, · · · , into two datasets: one for training and

another for validation. The validation dataset has a size of ncv, where 1 ⩽ ncv < nb.

However, unlike LPOCV where the model is trained only once and tested on all

validation data together, in our modified approach we validate the model on one

pair of data at a time. After the k-th iteration of validation, where k = 1, · · · ,ncv − 1,

the validated pair of data (Xk,yk) is added to the training dataset for the (k+ 1)-th

validation, except when k = ncv. This modified approach enables us to train the

model multiple times, which can lead to improved accuracy in selecting the tuning

parameter.

170

4.3.2 Two algorithms of search processes

In this section, we present two algorithms for searching the optimal tuning parameter

of the penalty function in mLPOCV, and compare their performance through a

simulation study.

Before commencing the computation, the search interval, denoted as [a,b], which

contains the desired values for the tuning parameter, and the step size for searching

are predetermined.

Algorithm 1: One-Way search. We initiate the search process from one end of

the specified interval and set the maximum value of (a,b) as the initial testing value,

denoted as λ1 = b. The step size for this One-Way search is represented as s1, where

0 < s1 < 1.00. Additionally, we test three other neighbouring values, λ2, λ3, and λ4, in

addition to λ1. The values for these neighbouring testing points are given as follows:

λ2 = λ1 −
(λ1 − a)

3.00
× s1,

λ3 = λ1 −
(λ1 − a)

3.00
× 2.00× s1,

λ4 = λ1 − (λ1 − a)× s1, (4.17)

and a ⩽ λ4 < λ3 < λ2 < λ1 ⩽ b.

After performing mLPOCV to validate the model using the testing point λv for

v = 1, 2, 3, 4, we obtain the sum of the log-likelihoods,
ncv∑
k=1

log L(Xk,yk, (β̃b)k|λv),

where (β̃b)k is the renewable estimate of β obtained from the training dataset at

the k-th iteration in mLPOCV. During the search process, we update λ1 with its

neighbouring value that has the maximum sum of log-likelihoods, and then we

renew the other testing points using the formula (4.17). We continue the search

until either the sum of the log-likelihoods associated with λ1 is maximised, or until

λ4 = a. The value of the tuning parameter that generates the maximum sum of

log-likelihoods is selected.

Algorithm 2: Two-way search. The Two-Way search method is another way

to find the optimal value of the tuning parameter λ in a given interval [a,b]. This

method starts at two ends of the interval and searches towards the middle, using a

predetermined step size which is denoted as s2, 0 < s2 < 1, and two candidates to be

tested denoted as λT1
and λT2

, such that a ⩽ λT1
< λT2

⩽ b.

171

In detail, following the mLPOCV process, the Two-Way search proceeds as follows:

the ncv data are first validated using λT1
and λT2

as testing points. The sums of the

conditional log-likelihoods are then obtained.

If
ncv∑
k=1

L(Xk,yk, (β̃b)k|λT1
) >

ncv∑
k=1

L(Xk,yk, (β̃b)k|λT2
), we update the testing points

as λT1
= λT1

,

λT2
= λT2

− (λT2
− λT1

)× s2.

(4.18)

On the other hand, if
ncv∑
k=1

L(Xk,yk, (β̃b)k|λT1
) <

ncv∑
k=1

L(Xk,yk, (β̃b)k|λT2
), we update

the testing points as λT1
= λT1

+ (λT2
− λT1

)× s2,

λT2 = λT2 .

(4.19)

Or if the sums of likelihoods are equal and (λT2 − λT1) > ϵ, where ϵ > 0 is a

predetermined small constant, we have:

λT1
= λT1

+ (λT2
− λT1

)× s2,

λT2 = λT2 − (λT2 − λT1)× s2.

(4.20)

The search continues until (λT2
− λT1

) < ϵ. The optimal value of the tuning parameter

λ is set to the testing point with the larger sum of the conditional log-likelihoods.

It can be seen from the algorithm that testing every point in the given interval may

not be feasible, and may result in missing the optimal tuning parameter, particularly

when the interval [a,b] is large and so is the step size s2. However, a smaller step

size may lead to longer search times. Therefore, to balance estimation accuracy and

computing efficiency, it is necessary to carefully select an appropriate search interval

and step size. To mitigate this issue, we propose reducing the step size s2 by half

when either |λT1
− λT2

| > 0.5 or |λT1
− λT2

| < 0.1 during the Two-Way search process.

This can prevent stepping too far and potentially missing desirable values, especially

in cases where the search interval is large or the step size is too large.

172

4.3.3 Simulation study: Comparison of two search methods for tuning parameter

selection

In the following context, we design three simulated examples and compare the

performance of the two algorithms introduced above. We denote the renewable

estimate from One-Way search as β̃One-Way and the one from Two-Way search as

β̃Two-Way. Note that the simulation study in this section exclusively considers online

methods, and as such, the term “renewable” is occasionally omitted when referring

to the estimates produced by our proposed online method.

The first example compares the performance of the algorithms under different

sizes of search steps, the second example studies the effect of different search intervals,

and the last example demonstrates the performance of the two search algorithms

with varying sizes of streaming data. For the three examples, the true coefficient

vector β is set as follows:

β = (0,β2, 0, · · · , β5, 0, · · · , 0)Tp×1, β2 = 1, β5 = −1.1,

and p = 15. For all simulation experiments in this section, we use full-size training

datasets consisting of Nb = 1000 data. The correlation between xj1i and xj2i, i =

1, · · · ,Nb, is ρ|j1−j2|, where j1,2 = 2, · · · , 15, and ρ = 0.5. The size of the validation

dataset is fixed as ncv = 20 for all tuning parameter search processes in this section.

Example 1: In the first example, we have the streaming data batches with a size

of nb = 200 and the given search interval is [0.005, 0.65]. We test different step sizes

s1,2 = 0.15, 0.25, 0.5, for the two search methods separately. Table 4.9- Table 4.12

record the results for Example 1.

Based on Table 4.9, we can see that β̃Two-Ways consistently outperform the β̃One-Ways

in terms of both lower AMRSEs and MMRSEs across all three step sizes tested. This

suggests that the Two-Way search method is generally more effective in finding the

optimal tuning parameter values for λ than the One-Way search method. With the

same search interval, it is expected that the Two-Way search is more likely to miss a

desirable value for the tuning parameter and produce less accurate estimates when

using a large step size. In spite of this, the pattern of the One-Way search is difficult

to identify as the step size changes. With the same search interval, when using a

larger step size for searching, it is expected that the Two-Way search method can be

173

more likely to miss the optimal tuning parameter value, resulting in less accurate

estimates. However, it is difficult to identify the pattern of the One-Way search as the

step size changes.

The ESEs and the true values (SDs) of the estimates from Equation (4.14) are

recorded in Table 4.10. It consistently shows the trend observed in the mean relative

squared errors in Table 4.9, that the more accurate renewable estimates, β̃Two-Ways,

also have more accurate ESEs. In contrast, the ESEs of β̃One-Ways are not close to the

SDs.

Table 4.11 displays the CPs for the coefficients of β based on the confidence

ellipsoids constructed using the ESEs of both the One-Way and Two-Way search

methods, along with the variable selection performance. Even though the table

shows that both methods do not miss any significant feature in all experiments, the

One-Way search method produces the estimates with lower accuracy, as shown by

the CPs, which are either equal to 0 or close to 0 across all cases, for the non-zero

coefficients of β. On the other hand, the Two-Way search method yields higher

CPs for the non-zero coefficients under the given significance level of α = 0.05. For

zero coefficients, the One-Way search method achieves slightly higher CPs than the

Two-Way search method and fewer incorrect numbers of non-zero estimates. In

consideration of this, we note that the estimates values of the zero coefficients from

the Two-Way search method are small and have less impact. Overall, considering

the estimation accuracy of the significant features, which is a crucial aspect of the

estimation, the One-Way search method fails to work well.

Table 4.12 presents the computing time of the experiments each with 100 indepen-

dent replications, and the excess risks of the renewable classifiers from both search

methods to find a tuning parameter. We observe that as the step size increases from

0.15 to 0.25 in the Two-Way search method, the computing time decreases as expected.

However, when the step size is set to a large value of s2 = 0.5, the experiment takes

the most time. We assume that this is because setting the step size too large can

result in missing the optimal value and requiring more time to converge to the best

value, which in turn necessitates more iterations for estimation due to less satisfactory

tuning parameters being introduced into the model. In this example, both renewable

classifiers Cβ̃One-Way
and Cβ̃Two-Way

have efficiencies close to that of the Bayes classifier

across different cases. In consequence, based on the estimation accuracy shown in

174

the tables above, the One-Way search method is not recommended.

Table 4.9: AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways

s1,2 0.15 0.25 0.50

β̃One-Way 25.160(24.164) 25.296(24.347) 19.727(22.505)
β̃Two-Way 3.563(1.807) 3.701(1.952) 4.233(2.290)

* All values recorded in this table are multiplied by 10−3 and represent true values.

Table 4.10: SDs and ESEs for non-zero β coefficient estimates

s1,2 0.15 0.25 0.50

β̃One−Way

β2 0.9159(0.0654,0.0969) 0.9177(0.0654,0.0969) 0.8714(0.0657,0.0975)

β5 0.9648(0.0659,0.0977) 0.9671(0.0659,0.0977) 0.9212(0.0661,0.0980)

β̃Two−Way

β2 0.0955(0.0921,0.1365) 0.0965(0.0919,0.1363) 0.1012(0.0923,0.1368)

β5 0.1255(0.0976,0.1448) 0.1176(0.0973,0.1443) 0.1252(0.0977,0.1449)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table 4.11: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

s1,2 0.15 0.25 0.50

β̃One−Way

non0 coeff. 0(0.000000) 0(0.00000) 0(0.150000)
0 coeff. 3.11(1.000000) 3.12(1.000000) 4.05(0.996923)

β̃Two−Way

non0 coeff. 0(0.825000) 0(0.810000) 0(0.785000)
0 coeff. 9.56(0.985385) 9.61(0.983846) 9.69(0.983077)

* β15×1 cosists of 2 non-zero coefficients.

Table 4.12: Excess risks of Cβ̃One-Way
s and Cβ̃Two-Way

s, and computing time (in
brackets)

s1,2 0.15 0.25 0.50

ER(Cβ̃One-Way
) 0.985373(00:02:56) 0.984956(00:01:55) 0.991539(00:01:35)

ER(Cβ̃Two-Way
) 0.991186(00:03:38) 0.991116(00:02:09) 0.962937(00:08:41)

* For the 100 replications, the misclassification rate of the Bayes classifier is 27.89% across all

cases.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores.

175

Example 2: The simulation results for Example 2 are presented in Tables 4.13–

4.15, where we test the two search methods with different search intervals of length

[0.005, 0.65], [0.01, 0.35], and [0.01, 0.25], while fixing the step size as s1,2 = 0.15 and

the stream batch size as nb = 200.

Table 4.13 displays the AMRSEs and MMRSEs of the renewable estimates. It is

evident that β̃Two-Ways are much more accurate than β̃One-Ways in all cases. The trend

in this example for both methods is that smaller intervals lead to more accurate

estimates. This can be explained by the algorithms of both search methods, where

using reasonable search steps, but large predetermined intervals can still result

in testing points that vary too much and miss the desired values of the tuning

parameters.

The ESEs and SDs of the renewable estimates obtained using both search methods

are presented in Table C.1, which has been included in Appendix C.1. The table

shows that more accurate estimates correspond to ESEs that are closer to the true

values of SDs, and this trend is similar to what was observed in Table 4.10 of Example

1 above. Hence, we omit the details here.

Table 4.14 displays the performance of two search methods in terms of variable

selection and the corresponding CPs for the coefficients of β, obtained using varying

search intervals denoted by [a,b]. Both methods successfully identify all important

features, and decreasing search interval widths lead to increased CPs for non-zero

coefficients. However, the Two-Way search method achieves much higher CPs than

the One-Way search method, which remains consistently low. Specifically, when

[a,b] = [0.005, 0.65], the One-Way search method generates a CP of 0. We also

observe that decreasing search interval width led to a larger number of incorrect non-

zero estimates for β̃One−Ways. The Two-Way search method shows greater stability

in the number of incorrect non-zero estimates as the search interval decreases, in

comparison to the One-Way search method.

Table 4.15 indicates that both classifiers, Cβ̃One−Way
s and Cβ̃Two−Way

s, perform

similarly under the same search interval setting, and both classifiers approach the

performance of the Bayes classifier across all cases. As the search interval width de-

creases, the Two-Way search method requires less computing time, which is expected.

It should be noted that the computing time pattern for the One-Way search method is

not as clear, as it is more likely to stop at local optimal values that cannot be detected

176

prior to the search.

Table 4.13: AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways

[a,b] [0.005, 0.65] [0.01, 0.35] [0.01, 0.25]

β̃One−Way 25.160(24.164) 11.825(13.352) 5.698(6.089)

β̃Two−Way 3.563(1.807) 2.717(1.459) 1.983(1.334)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.14: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

[a,b] [0.005, 0.65] [0.01, 0.35] [0.01, 0.25]

β̃One−Way

non0 coeff. 0(0.000000) 0(0.175000) 0(0.340000)
0 coeff. 3.11(1.000000) 5.34(0.997692) 5.87(0.997692)

β̃Two−Way

non0 coeff. 0(0.825000) 0(0.830000) 0(0.870000)
0 coeff. 9.56(0.985385) 9.31(0.983077) 9.51(0.982308)

* β15×1 cosists of 2 non-zero coefficients.

Table 4.15: Excess risks of Cβ̃One-Way
s and Cβ̃Two-Way

s, and computing time (in
brackets)

[a,b] [0.005, 0.65] [0.01, 0.35] [0.01, 0.25]

ER(Cβ̃One−Way
) 0.985373(00:02:56) 0.994509(00:05:02) 0.995147(00:04:31)

ER(Cβ̃Two−Way
) 0.991186(00:03:38) 0.992103(00:03:12) 0.992385(00:03:08)

* For the 100 replications, the misclassification rate of the Bayes classifier is 27.89% across

all cases.
* We implemented each experiment with 100 independent trials using C++ and ran them

on 2 Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we requested

35 cores.

Example 3: The third example in this section examines the performance of the two

search methods with different sizes of streaming data batches for the same training

dataset. For this example, we use the same training dataset with a size of Nb = 1000,

but consider streaming data of sizes nb = 100, 200, and 500, which correspond to

b = 10, 5, and 2 data batches, respectively. The search interval for all experiments is

set to [a,b] = [0.01, 0.35] with the same step size of s1,2 = 0.15. The simulation results

for Example 3 are presented in Table 4.16-Table 4.18.

177

Table 4.16 records the AMRSEs and MMRSEs of the estimates from the different

search methods for tuning parameter λ. Consistently with the previous two examples,

the results show that β̃One-Ways perform worse than β̃Two-Ways in each case. We also

observe that in this example, as the size of the streaming data increases while the

number of data batches decreases, which in turn leads to a decrease in the number of

tuning parameter searches. This reduction in the tuning parameter search can lead to

the selection of an undesirable value for λ in the analysis of the data while having

less chance to calibrate it, which can ultimately affect the accuracy of the estimation

results. Despite this, the numerical results clearly show that β̃Two-Ways are more stable

than β̃One-Ways as the number of the stream data batches changes.

Table C.2 records the ESEs and the corresponding true values (SDs) in Appendix

C.1. The performance of variable selection and the CPs for coefficients of β are

displayed in Table 4.17. Both methods produce an identical number of incorrect zero

estimates for the non-zero coefficients of β in all cases. Furthermore, as the size of the

streaming data, denoted as nb, increases while the number of stream data batches,

denoted as b, decreases, both methods exhibit an enhancement in the CPs for the

non-zero coefficients. As is the case in the previous two examples, the CPs for the

non-zero coefficients obtained from the One-Way search method are much lower

than those obtained from the Two-Way search method. The One-Way search method

generates fewer incorrect non-zero estimates for β compared to the Two-Way method,

while the CPs for zero coefficients obtained from both methods are very close to each

other. Therefore, in this example, as the streaming data size increases, the number

of streaming data batches decreases, and we observe an increase in the number of

incorrect non-zero estimates for both methods.

Table 4.18 presents the computation time and excess risks of the classifiers ob-

tained using two different search methods to find λs. In this example, as the size of

the streaming data batches decreases for the same training dataset, both methods

require more computation time. Additionally, as observed in the previous examples,

both classifiers perform similarly and have nearly the same efficiency as the Bayes

classifier in all cases. It is important to note that based on the estimation accuracy

displayed in the tables above, the One-Way search method is not recommended.

178

Table 4.16: AMRSEs and MMRSEs (in brackets) of β̃One-Ways and β̃Two-Ways

b 10 5 2

β̃One−Way 6.560(5.948) 11.825(13.352) 35.977(45.433)

β̃Two−Way 2.703(1.508) 2.717(1.459) 4.905(1.985)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.17: Average numbers of incorrect zero estimates for non-zero coeffi-
cients and incorrect non-zero estimates for zero coefficients, along with the
coverage probabilities (in parentheses) for β

b 10 5 2

β̃One−Way

non0 coeff. 0.01(0.155000) 0(0.175000) 0(0.200000)
0 coeff. 4.89(1.000000) 5.34(0.997692) 5.79(0.999231)

β̃Two−Way

non0 coeff. 0.01(0.675000) 0(0.830000) 0(0.875000)
0 coeff. 7.38(0.987692) 9.31(0.983077) 10.12(0.961538)

* β15×1 cosists of 2 non-zero coefficients.

Table 4.18: Excess risks and computing time (in brackets)

b 10 5 2

ER(Cβ̃One−Way
) 0.996071(00:03:46) 0.994509(00:05:02) 0.965653(00:16:24)

ER(Cβ̃Two−Way
) 0.989990(00:02:45) 0.992103(00:03:12) 0.986698(00:10:44)

* For the 100 replications, the misclassification rate of the Bayes classifier is 27.89%.
* We implemented each experiment with 100 independent trials using C++ and ran

them on 2 Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we

requested 35 cores.

To conclude, in this subsection, we explain the two algorithms for finding desirable

values of the tuning parameter λ in the penalty function of our model. We designed

three simulations to investigate the factors related to the width of search intervals,

the size of search steps, and the number of stream batches for a fixed training dataset.

Our simulations demonstrate that the One-Way search method is more susceptible

to varying search step sizes, search intervals, and stream data batches than the

Two-Way search method. Although testing every point in the given intervals is not

feasible for either method, both may converge to a local optimum and fail to identify

the global optimum. The One-Way search method is more prone to stopping at

179

a local optimum and overlooking better values in the untested region. However,

our designed algorithm for the Two-Way search method allows testing more points,

which reduces the risk of missing the global optimum. Therefore, we recommend

and employ the Two-Way search method in our study to find desirable values for

the tuning parameter λ. To balance both the accuracy of estimation and computing

efficiency, a fair and large search interval and a fair and small step size should be

considered for conducting the analysis.

4.3.4 Simulation study: Comparing the algorithm with SCAD penalty function

to the one without penalty function

In this section, we compare our proposed method using the SCAD penalty function

(as introduced in Section 4.2.2) with the unpenalised method described by Luo and

Song (2020). The following simulation presented in this section demonstrates that

our proposed method using the SCAD penalty function (introduced in Section 4.2.2)

achieves higher accuracy estimates than the unpenalised method, particularly for

highly sparse models. The effect of the penalty term on the model is especially

pronounced when the model sparsity is high.

For the simulation study, we use different datasets with a full size training dataset

of Nb = 1200 and streaming data in each data batch of size nb = 300. We set

β = (0,β2, 0,β4,β5, 0, · · · , 0)Tp×1,

β2 = 1, β4 = −2, β5 = 1.5.

We consider two values of p, p = 15 and p = 50, seperately. The correlation between

xj1i and xj2i, i = 1, · · · ,Nb, is determined by ρ|j1−j2|, where ρ takes on the values of 0,

0.2, and 0.5, respectively. We denote the renewable estimate from our algorithm as β̃

and the renewable estimate from the algorithm not using a penalty function as β̃λ=0.

Table 4.19-Table 4.21 present the numerical results for this example.

Table 4.19 shows the AMRSE and MMRSE of β̃s and β̃λ=0s. It should be noted that

in the case where p = 50 and ρ = 0 or 0.2, the unpenalised method fails to converge

during the iterative estimation process in some of the 100 independent replications.

In such cases, we set the estimate values to 0s. Except for these non-converging

180

situations, the numerical results reveal that for datasets with the same number of

covariates, both β̃s and β̃λ=0s become less accurate as the covariates become more

correlated. Nonetheless, in all cases, the estimates obtained using our penalised

renewable method are more accurate and less sensitive to changes in the correlation

among covariates than those obtained using the unpenalised renewable method.

Specifically, in this example, our proposed method yields considerably superior

estimates compared to the ones from the unpenalised method.

Table C.3 in Appendix C.1 presents the ESEs of the renewable estimates for the

non-zero coefficients, β1, along with their true values, SDs. To obtain the ESEs for our

penalised method, we use Equation (4.14). For the unpenalised method, we estimate

the covariance using the formula c̃ov((β̃1)b) = −
[
H̃b((β̃1)b))

]−1

.

Table 4.20 displays the variable selection and CPs for the coefficients of non-

zero and zero coefficients of β, comparing the performance of the penalised and

unpenalised methods. The results show that the SCAD method successfully identifies

all the important features for all cases with different correlated covariates when

p = 15 and misses only a few features when p = 50 and ρ = 0 or 0.2. Our method

also demonstrates good performance in recognizing most of the insignificant features,

and its efficiency becomes more apparent as the number of insignificant features

increases with p = 50. In contrast, the unpenalised method is unable to identify any

insignificant feature due to its inability to select variables. While the unpenalised

method does not miss any important feature, CPs for the non-zero coefficients from

the unpenalised method are noticeably lower than those from our method, which

demonstrates that the estimation accuracy is lower than our method. This conclusion

is consistent with that from Table 4.19. Moreover, without variable selection, the

generated model is difficult to understand.

Table 4.21 presents the excess risks of Cβ̃s and Cβ̃λ=0
s. Studying the same dataset,

our method outperforms the unpenalised method, with a classifier that is closer to the

Bayes classifier, as indicated by the numerical results closer to 1 in each case. As well

as this, as the model becomes sparser, the difference between the classifiers generated

by the two methods becomes larger, highlighting the superior performance of our

classifier.

To summarise, the simulation results in this subsection confirm the effectiveness

of our penalised incremental algorithm over the non-penalised method in the context

181

of sparse models. The non-penalised approach suffers from the inability to perform

variable selection and may fail to converge when many insignificant features are

involved, as demonstrated in this example. In contrast, our penalised renewable

estimation approach produces more accurate estimates and performs effective vari-

able selection, resulting in more interpretable models. The use of the SCAD penalty

function in our model provides benefits by enabling both estimation and variable

selection simultaneously. Thus, the simulation results emphasise the significance of

incorporating penalty functions into incremental algorithms for studying streaming

data generated from sparse models.

Table 4.19: AMRSEs and MMRSEs (in brackets) of β̃s and β̃λ=0s

ρ 0 0.2 0.5

p = 15
β̃ 0.677(0.606) 0.680(0.564) 0.793(0.692)
β̃λ=0 1.136(1.094) 1.129(1.072) 1.431(1.339)

p = 50
β̃ 0.319(0.1640) 0.352(0.1341) 0.656(0.215)
β̃λ=0 > 105(5.015) > 105(1.699) 3.963(1.491)

* All values recorded in this table multiplied by 10−3 are true values.
* When p = 50, the non-penalised algorithm fails to converge during the iterative processes 39 times

in the case of ρ = 0, 20 times for ρ = 0.2, and 6 times for ρ = 0.5. When the incremental algorithm

fails to converge for the l-th batch, where 1 ⩽ l < b, our computing algorithm is designed to use 0

as the estimate and proceed to the (l+ 1)-th stream data batch. However, this approach results in a

loss of information as it discards the information from the previous batch.

182

Table 4.20: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

p = 15, ρ 0 0.2 0.5
non0
coeff.

β̃ 0(0.920000) 0(0.903300) 0(0.910000)
β̃λ=0 0(0.930000) 0(0.936667) 0(0.923333)

0
coeff.

β̃ 5.43(0.980800) 5.54(0.983300) 5.58(0.977500)
β̃λ=0 12(0.951667) 12(0.954167) 12(0.955000)

p = 50, ρ 0 0.2 0.5
non0
coeff.

β̃ 0(0.883300) 0(0.866667) 0(0.840000)
β̃λ=0 0.09(0.583333) 0.09(0.650000) 0(0.780000)

0
coeff.

β̃ 9.29(0.9936) 7.65(0.9972) 11.02(0.9885)
β̃λ=0 45.59(0.871277) 45.59(0.894255) 47(0.947447)

* βp×1 has 3 non-zero coefficients.
* When p = 50 and ρ = 0, 0.2, the non-penalised algorithm fails to converge for studying the last

stream batch in some of the 100 repetitions. In such cases, we set the estimated coefficient vector

β̃λ=0 to 0.

Table 4.21: Excess risks of classifiers Cβ̃s and Cβ̃λ=0
s

ρ 0 0.2 0.5

p = 15
ER(Cβ̃) 0.996839 0.991110 0.989591
ER(Cβ̃λ=0

) 0.985663 0.982180 0.986058

p = 50
ER(Cβ̃) 0.992511 0.988613 0.986645
ER(Cβ̃λ=0

) 0.828486 0.864634 0.935026

* For both p = 15 and p = 50, the misclassification rates of the Bayes classifiers are 18.288% for

the case of ρ = 0, 19.622% for the case of ρ = 0.2, and 23.198% for the case of ρ = 0.5.

4.3.5 Simulation study: Tuning parameter selection on different sizes of valida-

tion data in mLpOCV

This section tests the sensitivity of our incremental algorithm to the size of the data,

partitioned from the training data, used for validation during the tuning parameter

selection process, and how the size of the validation data affects the estimation results.

Through two simulated examples, one with two models of different sparsity and

another with two different sizes of training datasets, we examine the performance of

our method under varying amounts of validation data.

In this section, all stream data batches have a fixed size of nb = 200. The parameter

183

settings for the model are

β = (0,β2, 0,β4,β5, 0, · · · , 0)Tp×1,

β2 = 0.85, β4 = 1, β5 = −1,

and the correlation between xj1i and xj2i, i = 1, · · · ,Nb, is 0.5|j1−j2|, j1,2 = 2, · · · , p.

The validation data, with ncv = 10, 20, 30, 40, 50 observations, are tested indepen-

dently in each experiment.

Example 1: In this example, we evaluate the performance of our method on two

sparse models with parameter dimensions of p = 10 and p = 100, where the full-size

training datasets have a size of Nb = 4000. The numerical results for Example 1 are

presented in Table 4.22-Table 4.24.

Table 4.22 records the AMRSEs and MMRSEs of the renewable estimates. It shows

the trend that with more data extracted from the training data for validation, the

renewable estimates are more accurate. Specifically, there is a noticeble improvement

when the size of validation increases from 10 to 20, while the improvement is less

obvious after that as the increase of the validation data. The improvements from

increasing the size of the validation dataset are unlikely to be sustainable, and as the

validation data is extracted from the training data, attention also needs to be paid to

the size of the training dataset, which can affect the accuracy of the estimates.

ESEs and true values, SDs, for estimates of non-zero coefficients are shown in

Table C.4. Confidence ellipses for non-zero and zero coefficients are constructed

separately from the ESE obtained from (4.14). Table 4.23 shows the CPs for the non-

zero and zero coefficients, and the numbers of incorrect non-zero and zero estimates

for different sizes of validation data. As for the performance of variable selection, our

method of introducing SCAD finds almost all important features, while when the

data are relatively sparse (p = 100), few features are missed during the 100 iterations

of the experiments. As more data is extracted from the training data as validation,

the performance of variable selection improves in some cases. In this example, ncv

increases from 10 to 40, with CPs for both non-zero and zero coefficients tending to

increase for two models with different numbers of covariates. However, it shows

that for models with p = 100 covariates, the CP of the non-zero coefficient decreases

184

significantly as ncv increases from 40 to 50.

The computational times of experiments with different sizes of validation data

and the excess risks of our classifier are recorded in the Table 4.24. In these cases,

for p = 10, the classifiers show little difference in efficiency, trained from the same

training data while having different sized validation datasets to find the tuning

parameter lambdas. Although for p = 100 there is an improvement it is not great

when ncv increases from 10 to 40, though there is a decrease when ncv changes from

40 to 50. As expected, more time is needed as more data is used for validation in

mLOPCV.

Table 4.22: AMRSEs and MMRSEs (in brackets) of β̃s

ncv 10 20 30 40 50

p = 10 1.062(0.340) 0.526(0.344) 0.484(0.340) 0.473(0.346) 0.490(0.333)
p = 100 1.305(0.087) 1.147(0.081) 1.001(0.081) 0.293(0.032) 0.918(0.131)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.23: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

ncv 10 20 30 40 50

p = 10
non0 coeff. 0.01(0.8667) 0(0.8800) 0(0.9067) 0(0.9167) 0(0.9100)

0 coeff. 1.80(0.9743) 2.00(0.9800) 2.11(0.9671) 2.23(0.9714) 2.28(0.9686)

p = 100
non0 coeff. 0.05(0.5033) 0.06(0.5267) 0.04(0.5167) 0(0.7033) 0.04(0.4733)

0 coeff. 3.86(0.9975) 3.25(0.9988) 2.87(0.9991) 3.15(0.9996) 2.21(0.9996)

* βp×1 has 3 non-zero coefficients.

Table 4.24: Excess risks of Cβ̃s and computing time (in brackets)

ncv 10 20 30 40 50

p = 10 0.9937(00:01:32) 0.9948(00:02:51) 0.9952(00:04:02) 0.9962(00:05:25) 0.9962(00:06:09)
p = 100 0.9666(00:29:33) 0.9710(00:42:11) 0.9753(01:00:27) 0.9981(01:19:22) 0.9781(01:36:20)

* For both p = 10 and p = 100, the misclassification rate of the Bayes classifiers is 27.56% across

all cases.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores.

185

Example 2: In the second example, we compare the performance of our method

on training data of different sizes and validation data of different sizes. In detail,

βp×1 and p = 100, and the performance of renewable estimates from the collected

b = 2 and b = 20 stream data batches are recorded and discussed. Table 4.25-Table

4.27 record the numerical results for Example 2 in this subsection.

Table 4.25 displays the AMRSEs and MMRSEs (in brackets) of both β̃2s and β̃20s.

It can be seen that the performance of both the β̃2s and the β̃20s improves as more

training data is divided up for validation.More specifically, for b = 20, there is a

consistent improvement in the accuracy of the estimates as ncv increases, while for

b = 2, AMRSEs and MMRSEs become smaller as ncv increases from 10 to 30 and

larger as ncv increases from 30 to 50. We can see that the estimation accuracy of our

method is less susceptible to differences in the size of the validation data when there

is more observed training data.

ESEs and SDs of the non-zero coefficients of β̃2s and β̃20s on β are recorded in

Table C.5, which is provided in Appendix C.1. The performance of variable selection

and CPs for non-zero and zero coefficients at the same preset search interval and step

size settings for the search tuning parameter λs is shown in Table 4.26. Table 4.26

reveals that, except for the case where ncv = 40, both β̃2s and β̃20s exhibit similar

numbers of incorrect zero estimates and CPs for non-zero estimates in all cases. It

should be noted, β̃20s have significantly fewer incorrect zero estimates than β̃2s across

different cases with the same size validation data. These findings are consistent with

the simulation study presented in Section 4.2.4. In addition it can be observed that the

variation in the size of the validation data has a negligible impact on the performance

of both β̃2s and β̃20s.

Table 4.27 records the excess risk and computation time for the two classifiers Cβ̃2
s

and Cβ̃20
for different validation data size cases, as well as the computation time. We

can see that, following the same trend as in Example 1 above, the computation time

increases as ncv increases, while the effectiveness of Cβ̃2
s or Cβ̃20

s has not changed

noticeably.

186

Table 4.25: AMRSEs and MMRSEs (in brackets) of β̃2s and β̃20s

ncv 10 20 30 40 50

b = 2 4.335(2.437) 4.114(2.044) 3.938(1.795) 4.450(3.980) 4.318(3.483)
b = 20 1.305(0.087) 1.147(0.081) 1.001(0.081) 0.293(0.032) 0.918(0.131)

* All results are the numbers in the table ×10−3.

Table 4.26: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabili-
ties (in parentheses) for β

ncv 10 20 30 40 50

b = 2
non0 coeff. 0.05(0.5100) 0.06(0.5167) 0.04(0.5200) 0.04(0.4367) 0.04(0.4433)
0 coeff. 16.08(0.9937) 16.28(0.9974) 16.69(0.9986) 15.34(0.9995) 15.48(0.9991)

b = 20
non0 coeff. 0.05(0.5033) 0.06(0.5267) 0.04(0.5167) 0(0.7033) 0.04(0.4733)
0 coeff. 3.86(0.9975) 3.25(0.9988) 2.87(0.9991) 3.15(0.9996) 2.21(0.9996)

* β100×1 has 3 non-zero coefficients.

Table 4.27: Excess risks of Cβ̃b
s and computing time (in bracket)

ncv 10 20 30 40 50

ER(Cβ̃2
)s 0.9125(00:16:12) 0.9071(00:20:55) 0.9114(00:30:09) 0.9002(00:37:53) 0.9075(00:46:17)

ER(Cβ̃20
)s 0.9666(00:29:33) 0.9710(00:42:11) 0.9753(01:00:27) 0.9981(01:19:22) 0.9781(01:36:20)

* The misclassification rate of the Bayes classifiers is 26.433%.

From the two simulated cases described in this section, it can be concluded that

our incremental approach responds less sensitively in terms of to the fair quantities of

data that are detached from the training data for validation in the tuning parameter

search process. By increasing the size of the validation data, the performance of

our approach is improved, but the improvement is not constant as the validation

data size increases. An appropriate size of validation dataset needs to be considered,

taking into account estimation accuracy, classifier effectiveness, and processing time.

Except as otherwise noted, the validation dataset for our study is set to have a size of

ncv = 20.

4.4 Iteratively updated tuning parameter

In this section we first introduce an incremental algorithm that iteratively updates

the penalty term during iterative estimation process. The algorithm in Section 4.2.2

187

approximates the penalty term using the estimates from previous data batches, so the

penalty term remains constant throughout the iterations. The following simulation

study is designed to compare the method introduced in Section 4.2.2 with the method

described below in Section 4.4.1, and also with the penalised offline estimation

method.

4.4.1 Incremental algorithm for penalised maximum likelihood estimation with

iteratively updated penalty

In this section, we provide a detailed explanation of the algorithm with an iteratively

updated penalty function. We start by investigating the simplest scenario, where two

streaming data batches, B1 and B2, arrive in order.

As explained in Section 4.2.2, the MLE of β, obtained from the offline penalised

method and denoted as β̂∗
2 , can satisfy Equation (4.6). Referring to (4.7) and removing

the error terms, we can rewrite (4.6) as

S1(B1; β̂1) − n1P
′
λ1
(∥β̂1∥1) +H1(B1; β̂1)(β̃2 − β̂1)

+S2(B2; β̃2) −N2P
′
λ2
(∥β̃2∥1) + n1P

′
λ1
(∥β̂1∥1) = 0, (4.21)

where β̃2 can be interpreted as a second-order asymptotic approximation for β̂∗
2 , and

λ1 represents the tuning parameter derived from B1, while λ2, obtained from B2.

Since β̂1 satisfies Equation (4.5), we can obtain the following equation:

H1(B1; β̂1)(β̃2 − β̂1) + S2(B2; β̃2) −N2P
′
λ2
(∥β̃2∥1) + n1P

′
λ1
(∥β̂1∥1) = 0. (4.22)

Utilising the unit score function shown as Equation (4.22), we employ the Newton-

Raphson algorithm to find its solution. This method essentially provides a second-

order asymptotic approximation for the offline estimate β̂∗
2 . Specifically, during the

k-th iteration, where k = 1, 2, · · · , the estimator takes the form:

β̃
(k)
2 = β̃

(k−1)
2 −

[
2∑

l=1

Hl(β̂1) −N2P
′′
λ2
(∥β̃(k−1)

2 ∥1)

]−1

×
{
H1(β̂1)(β̃

(k−1)
2 − β̂1) + S2(β̃

(k−1)
2)

188

−N2P
′
λ2
(∥β̃(k−1)

2 ∥1) + n1P
′
λ1
(∥β̂1∥1)

}
, (4.23)

Upon convergence of the iterative process detailed in Equation (4.23), we obtain the

renewable MLE for β, denoted as β̃2,λ∗ .

Compared to the method elucidated in Section 4.2.2, the iterative estimation

method introduced in this section requires the retention of additional quantities.

Specifically, during the estimation process, we use historical statistical estimates such

as β̂1 and H1(β̂1), in conjunction with the size of the streaming data in B1, denoted

as n1. Additionally, the first derivative of the penalty function with respect to β̂1,

represented by P ′
λ1
(∥β̂1∥1), is also used in the iterative estimation process.

The aforementioned historical metrics are then updated using β̃2,λ∗ , H̃2(β̃2,λ∗), and

P ′
λ2
(∥β̃2,λ∗∥1). Both the volume of previously accumulated streaming data, denoted

as n1, and the size of the current training data, N2, are retained. The estimate of

dispersion parameter, denoted as ϕ̃2, and the estimated covariance matrix are derived

in line with equations (4.13) and (4.14), respectively.

Now we discuss a more general case where b, b ⩾ 2, data batches are observed

sequentially. At the k-th iteration, when the data in Bb is studied, we have the

renewable estimate of β in the iteration as follows

β̃
(k)
b = β̃

(k−1)
b −

[
H̃b(β̃b−1) −NbP

′′
λb
(∥β̃(k−1)

b ∥1)
]−1

×
{
H̃b−1(β̃b−1)(β̃

(k−1)
b − β̃b−1) + Sb(β̃

(k−1)
b)

−NbP
′
λb
(∥β̃(k−1)

b ∥1) +Nb−1P
′
λb−1

(∥β̃b−1∥1)
}
. (4.24)

When the above iteration converges, the renewable estimate denoted as β̃b,λ∗ is

obtained.

The previous statistics are then updated using β̃b,λ∗ , H̃b(β̃b,λ∗), and P ′
λb
(∥β̃b,λ∗∥1).

Additionally, the estimate for ϕ is refreshed according to equation (4.13). The esti-

mated covariance matrix is revised in line with (4.14). Both the size of the previously

collected streaming data, Nb−1, and the volume of the current training data, Nb, are

preserved.

189

4.4.2 Simulation study

In this section, we present three simulation examples designed to compare the per-

formance of the penalised offline method in Section 4.2.1, the incremental algorithm

described in Section 4.2.2 with a constant penalty term during the estimation itera-

tions, and the algorithm in Section 4.4.1 that has an iteratively updated penalty term.

We denote the estimates obtained from the offline method as β̂s, the estimates from

the renewable method in Section 4.2.2 as β̃λs, and the estimates from the method

introduced in Section 4.4.1 as β̃λ∗s.

In the first simulated example, different sizes of streaming data are studied in

the same experiment; in the second simulation example, non-identical streaming

data stored in separate data batches is discussed; and the third simulated example

explores non-identical data that is gathered in the same data batch. As explained in

Equation (4.16) in Section 4.2.3, we establish a threshold σ0 = 10−5 and assign values

to the estimator when its absolute value is less than σ0 during the iterations of the

penalised estimation.

We have the parameter set as follows for the three simulated examples in this

section:

β = (0, β2, β3, · · · , β6, β7, · · · , β11, 0,β13, · · · , 0)Tp×1,

β2 = 0.85, β3 = −0.9, β6 = 1.15, β7 = 0.85, β11 = −0.9, β13 = 1.15,

Example 1: In the first example, we study i.i.d. streaming data of different sizes.

The size of the full training dataset is Nb = 2400 and we examine two models with

different dimensions seperately, where p = 15 and p = 100. The correlation between

xj1i and xj2i, i = 1, · · · ,Nb, is 0.5|j1−j2| where j1,2 = 2, · · · , p. The streaming data

sizes are set as follows

nl =

200 if l+ 2 (mod 3) ≡ 0,

300 if l+ 2 (mod 3) ≡ 1,

400 otherwise,

where l = 1, · · · ,b − 1, and for the last observed data batch Bb, it has a size of

190

nb = Nb −
b−1∑
l=1

nl. The simulation results are displayed in Table 4.28-Table 4.30.

As illustrated in Section 4.3, the settings of intervals and step size for searching

the tuning parameter λ of SCAD can affect the estimation results. In this section,

we set a consistent step size of 0.15 for all experiments to ensure fair comparisons.

With regard to the search intervals, for both renewable estimation methods, when

p = 15, the search interval is set to [0.005, 0.15], and when p = 100, the search interval

is set to [0.015, 0.3]. We test the offline method on different width intervals. For

p = 15, we first set the interval for offline method to be the same as for renewable

estimation methods and note the results as C1, and we also test the offline method on

a different interval, [0.035, 0.35] and denote the results as C2; when p = 100, we first

use the same setting as renewable estimation methods, which is [0.015, 0.3] and we

also test the offline method on a larger interval, [0.015, 0.5], which has a larger upper

bound and is more likely to have larger values of λs. By testing two different widths

of intervals, we aim to minimise the influence of the predetermined intervals that

may not contain desirable values for the tuning parameter and to avoid coincidental

outcomes as far as possible.

The AMRSEs and MMRSEs of the renewable estimates from two online methods

and the estimates from the offline method are presented in Table 4.28. We notice

that β̃λs and β̃λ∗s have the similar performance when they are trained by the same

dataset which has streaming data coming in different sizes. Moreover, when p = 15,

the two renewable estimation methods outperform the offline method in different

cases. Thus, when the dataset has a larger number of covariates (p = 100), making it

sparser, the offline method exhibits better performance when the covariates are more

correlated (ρ = 0.5) while the difference between renewable estimates and the offline

estimates get smaller as ρ becomes smaller.

The ESEs and SDs of the estimates are presented in Appendix C.1, specifically

in Table C.6. The performance of variable selections and CPs of non-zero and zero

coefficients are shown in Table 4.29. Across all cases, it can be observed that the

penalised renewable estimation methods and the penalised offline method, which

incorporate SCAD into the model, can identify all important features, as evidenced by

the 0 incorrect zero estimates in all experiments. It is important to note that β̃λ∗s con-

sistently have the fewest incorrect non-zero estimates for zero coefficients of β, which

191

is substantially lower than both β̃λs and β̂s. Even with the larger search interval in C2,

the offline method still generates the estimates with the highest number of incorrect

non-zero estimates when p = 100. In this table, we can draw the same conclusion as

in Example 2 in Section 4.2.4, which is that under an equivalent computing setting

where there is the same threshold for assigning a 0 value to insignificant features, the

offline method is less effective than the renewable estimation methods in identifying

insignificant features. Between the two renewable estimation methods, the one that

uses an iteratively updated penalty term during the estimation iterations holds an

advantage over the other method that uses a constant penalty term during iteration,

in terms of generating more interpretable models.

Table 4.30 displays the efficiency of the classifiers and the computing time for

each 100-replication experiment. As seen from the table, both renewable classifiers

have very close efficiency with the Bayes classifier. When p = 15 and ρ = 0.2, C(β̃λ∗)s

perform slightly better than the Bayes classifier with the excess risks over 1. Both

renewable classifiers also perform closely with the offline classifier across different

cases. It is worth noting that the renewable estimation method with an iteratively

updated penalty term in the model requires more computing time compared to the

renewable method that does not update the penalty term during the estimation

iterations, and in some cases, it requires a far longer time than the offline method.

Table 4.28: AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s

p = 15, ρ 0 0.2 0.5
β̃λ 0.874(0.679) 0.806(0.666) 1.158(0.891)
β̃λ∗ 0.734(0.648) 0.694(0.552) 0.982(0.756)
C1:β̂∗ 1.338(0.533) 1.342(0.527) 2.723(0.660)
C2:β̂∗ 2.724(0.263) 3.0617(0.257) 2.449(0.284)

p = 100, ρ 0 0.2 0.5
β̃λ 0.307(0.118) 0.423(0.160) 1.044(0.467)
β̃λ∗ 0.361(0.121) 0.461(0.153) 1.303(0.465)
C1:β̂∗ 0.202(0.093) 0.137(0.131) 0.318(0.149)
C2:β̂∗ 0.304(0.102) 0.326(0.132) 0.326(0.149)

* All values recorded in this table multiplied by 10−3 are true values.

192

Table 4.29: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

p = 15, ρ 0 0.2 0.5

non0
coeff.

β̃λ 0(0.838333) 0(0.853333) 0(0.830000)
β̃λ∗ 0(0.886667) 0(0.881667) 0(0.861667)
C1:β̂∗ 0(0.930000) 0(0.933333) 0(0.906667)
C2:β̂∗ 0(0.911667) 0(0.900000) 0(0.910000)

0
coeff.

β̃λ 6.79(0.947778) 6.57(0.951111) 6.44(0.94111)
β̃λ∗ 2.96(0.927778) 2.74(0.940000) 2.81(0.927778)
C1:β̂∗ 6.85(0.955556) 6.74(0.963333) 6.66(0.950000)
C2:β̂∗ 3.76(0.998889) 3.53(1.000000) 3.23(0.998889)

p = 100, ρ 0 0.2 0.5

non0
coeff.

β̃λ 0(0.678333) 0(0.581667) 0.02(0.455000)
β̃λ∗ 0(0.701667) 0(0.631667) 0.04(0.463333)
C1:β̂∗ 0(0.953333) 0(0.956667) 0(0.943333)
C2:β̂∗ 0(0.935000) 0(0.936667) 0(0.941667)

0
coeff.

β̃λ 40.44(0.997979) 39.84(0.997979) 40.74(0.997766)
β̃λ∗ 1.94(0.995319) 1.98(0.994787) 1.59(0.996064)
C1:β̂∗ 68.15(0.984468) 69.07(0.978191) 69.12(0.975745)
C2:β̂∗ 67.37(0.984362) 68.11(0.978617) 68.81(0.975745)

* βp×1 has 6 non-zero coefficients.

Table 4.30: Excess risks of various classifiers and computing time (in brackets)

p = 15, ρ 0 0.2 0.5

ER(Cβ̃λ
) 0.991703(00:05:15) 0.992933(00:06:24) 0.990700(00:05:47)

ER(Cβ̃λ∗) 0.991505(00:08:05) 1.002210(01:29:09) 0.993462(00:54:33)

C1:ER(Cβ̂∗) 0.980821(04:36:54) 0.990961(04:27:25) 0.975916(04:24:25)

C2:ER(Cβ̂∗) 0.982472(05:03:30) 0.983051(05:03:51) 0.976377(04:55:50)

p = 100, ρ 0 0.2 0.5

ER(Cβ̃λ
) 0.993789(01:23:57) 0.990370(01:25:43) 0.962821(01:11:45)

ER(Cβ̃λ∗) 0.980627(02:36:27) 0.987527(37:57:31) 0.953141(26:45:14)

C1:ER(Cβ̂∗) 0.986281(17:41:49) 0.993823(20:19:27) 0.984376(20:32:05)

C2:ER(Cβ̂∗) 0.983446(21:29:19) 0.989192(21:48:59) 0.982878(21:17:42)

* The misclassification rates of the Bayes classifiers for both p = 15 and p = 100 models are

identical: 19.842%, 19.952%, and 20.666% for ρ = 0, ρ = 0.2, and ρ = 0.5, respectively.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores.

While for the experiments of the offline method, we requested 35 cores when p = 15 and 40

cores when p = 100.

Example 2: The second example in this section studies the streaming data which

193

have i.i.d. observations in the same stream data batch while can be not identical

distributed among different data batches. The streaming data batches have the same

size as nb = 300 and two models which have number of covaraites as p = 15 and

p = 150 are studied separately. The estimates trained by b = 4 and b = 8 stream data

batches are recorded.

Specifically, for the data batch Bl, l = 1, · · · , b, the correlation between xj1i and

xj2i, i = 1, · · · ,Nb, is ρ|j1−j2|
l , j1,2 = 2, · · · , p, and we set

ρl =

0 if l+ 3 (mod 3) ≡ 0,

0.2 if l+ 3 (mod 3) ≡ 1,

0.5 otherwise.

Table 4.31-Table 4.33 record the numerical results for Example 2.

In this example, we set the step size for tuning parameter λ search in all tested

methods as 0.15, and we use fair width intervals that can contain desirable values for

λ. Specifically, for p = 15, we set the search interval as [0.015, 0.25] for all methods,

and for p = 150, the search interval is [0.015, 0.35] for all methods.

Table 4.31 displays AMRSEs and MMRSEs of the estimates obtained from different

methods. It is evident that the overall performance of the offline method is inferior

than the renewable estimation method with iteratively updated λs, shown in the

table that AMRSEs and MMRSEs of β̂s are much higher than those of β̃λ∗s in each

case, except only for the case where p = 150 and b = 8, the AMRSE and MMRSE

of β̂s are slightly lower than those of β̃λs and β̃λ∗s. In this example, the estimation

accuracy of β̃λs and β̃λ∗s is closer when the model is sparser (i.e., p = 150), while

β̃λ∗s demonstrate better overall performance, exhibiting lower AMRSEs than β̃λs

when p = 15.

Table C.7 records ESEs and SDs of the three estimates for the non-zero coefficients

of β and can be seen in Appendix C.1. The performance of variable selection and the

CPs for the coefficients of β are displayed in Table 4.32. Once again, both renewable

penalised methods using SCAD perform well in identifying significant features, with

only one important feature missed in all cases where 100 repetitions are run for each

experiment. The two renewable estimation methods also have close values of CPs

194

for the non-zero and zero coefficients across different cases. Consistent with the

findings in Example 1 in this section, β̃λ∗s have the least incorrect non-zero estimates

than both β̃λs and β̂∗s. Furthermore, in all experiments, β̂∗s have more than half

of their non-zero estimates incorrect. The comparison once again demonstrates

that the incremental algorithms, which perform more variable selections during the

estimation process, have an advantage over the offline method in generating a more

interpretable model.

The Excess risks and computing time are recorded in Table 4.33. Both renewable

classifiers have very close performance to the Bayes classifier and with more stream

data batches are observed, the efficiency of both renewable classifiers improves. In

this example, the two renewable classifiers are more efficient than the offline classifier

while require less computing time when studying the same dataset. The method in

4.4.1 which updates the penalty term during the iterations needs much more time

than the method in Section 4.2.2 that has a consistent penalty term during the iterative

estimations. In addition, when the model has more covariates or more streaming data

is collected, the gaps between the computing time of the two renewable methods

is larger as expected. However, in this example, where non-identical stream data

batches are studied, both incremental algorithms take much less time than the offline

method.

195

Table 4.31: AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s

β̃λ β̃λ∗ β̂∗

p = 15
b = 4 2.065(0.806) 1.067(0.809) 1.743(0.953)

b = 8 1.069(0.336) 0.527(0.328) 2.841(0.370)

p = 150
b = 4 0.330(0.093) 0.459(0.110) 0.523(0.216)

b = 8 0.175(0.042) 0.155(0.048) 0.142(0.026)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.32: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

p = 15 β̃λ β̃λ∗ β̂∗

b = 4
non0 coeff. 0.01(0.905000) 0.01(0.923333) 0(0.930000)

0 coeff. 3.62(0.970000) 1.86(0.966667) 6.32(0.955556)

b = 8
non0 coeff. 0.01(0.895000) 0.01(0.920000) 0(0.913333)

0 coeff. 3.16(0.981111) 0.58(0.983333) 5.69(0.956667)

p = 150 β̃λ β̃λ∗ β̂∗

b = 4
non0 coeff. 0.01(0.800000) 0.01(0.803333) 0(0.885000)

0 coeff. 16.51(0.999444) 14.20(0.991319) 104.48(0.969167)

b = 8
non0 coeff. 0.01(0.788333) 0.01(0.798333) 0(0.908333)

0 coeff. 10.2(0.999444) 1.71(0.995347) 74.27(1.00000)

* βp×1 has 6 non-zero coefficients.

Table 4.33: Excess risks of Cβ̃λ
s, Cβ̃λ∗

s and Cβ̂∗s, and computing time (in brackets)

ER(Cβ̃λ
) ER(Cβ̃λ∗) ER(Cβ̂∗)

p = 15
b = 4 0.983202(00:06:15) 0.984636(00:07:50) 0.982058(01:10:01)

b = 8 0.992718(00:06:57) 0.995740(00:09:28) 0.974777(04:40:52)

p = 150
b = 4 0.977130(01:08:55) 0.960539(01:37:03) 0.952497(08:49:48)

b = 8 0.996346(01:22:08) 0.993522(02:09:15) 0.996144(14:57:53)

* The misclassification rates of the Bayes classifiers are obtained by testing on different datasets

separately for the cases where b = 4 and b = 8. Specifically, for both models with dimensions

p = 15 and p = 150, the misclassification rate is 20.252% when b = 4, and 19.632% when b = 8.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2 Intel

Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores. While

for the experiments of the offline method, we requested 35 cores when p = 15 and 40 cores when

p = 150.

196

Example 3: The last example in this section discusses streaming data that consists

of independent but not identically distributed observations within the same data

batch.

We explain how to generate the data for Example 3. For generating the covariates,

we first generate the data in the set denoted as B0
l ′ , l

′ = 1, · · · ,b ′. The data in the

same set B0
l ′ is i.i.d. and the covariates consisting of xi1 = 1 and the other p − 1

covariates have the correlation as ρ|j1−j2|
l , where i ∈ B0

l ′ and j1,2 = 2, · · · ,p. The first

b ′ − 1 data batches have the size of 73 data respectively, and the last data batch B0
b ′

has a size of nb ′ = Nb ′ − 73 × (b ′ − 1) data. The correlation parameter ρl can be

different among different data batches B0
l ′ . In detail, the correlation between the

covariates in the same set B0
l ′ is set as

ρl ′ =

0 if l ′ + 3 (mod 3) ≡ 0,

0.2 if l ′ + 3 (mod 3) ≡ 1,

0.5 otherwise.

Subsequently, we take Nb, where Nb < Nb ′ , data from the generated Nb ′ data

and study the streaming data coming with a fixed size of nb = 300, which is packed

in stream data batch denoted as Bl, l = 1, · · · , b. In this way, the simulation ensures

that the observed data in the same data batch Bl are not identically distributed, with

different correlated covariates. We take 500 independent data from the generated

dataset for testing.

In this example, We set the dimension of βp×1 as p = 150 and record the perfor-

mance of estimates trained by b = 8 and b = 20 stream data batches respectively.

For the selection of tuning parameter λs in mLOPCV, we set the step size for the

renewable estimation process as 0.15 and the search interval as [0.015, 0.35]; for the

offline estimation process, we set the search step size as 0.25 and the search interval

is [0.015, 0.065]. Table 4.34-Table 4.36 records the numerical results.

The AMRSEs and MMRSEs of the estimates are recorded in Table 4.34. In this

example, the three estimation methods have similar performance. Specifically, when

trained by the same training dataset, β̂s have the best overall performance compared

with β̃λs and β̃λ∗s, while the renewable estimates have very close or even smaller

197

MMESEs compared to the offline estimates for both cases. β̃λ∗s have slightly better

performance than β̃λs in each case.

ESEs and SDs of the three estimates for the non-zero coefficients of β can be seen

in Appendix C.1, Table C.8. Table 4.35 displays the performance of variable selection

of the three methods and the CPs for the coefficients of β. The results show the

same conclusions as the previous two examples. These are: Firstly that both two

renewable penalised methods with SCAD have good performance in finding the

significant features, with only 1 important feature missed in the 100 repetitions in

all cases. Secondly that hugely outperform the offline method in diagnosing the

insignificant features. It is also noted that the two renewable estimation methods

have close values of CPs for the non-zero and zero coefficients across different cases.

It should be taken into account that β̃λ∗s have far fewer incorrect non-zero estimates

than β̃λs, and it is noticeable when 20 stream data batches are collected, as there is

only 1 incorrect non-zero estimates of β̃λ∗ in the 100 replication experiment.

The excess risks of the classifiers in Table 4.36 shows again that the renewable

classifiers have almost the same efficiency as the Naive Bayes classifier. In this

example, Cβ̃λ
s and Cβ̃λ∗

s have very close misclassification rates while the computing

time of the incremental algorithm with the updated tuning parameter during the

iteration is longer. Moreover, the two renewable classifiers have similar performance

and are even slightly better than the classifiers of the offline method. Besides, the two

incremental methods have obvious advantages over the offline method in requiring

less computing time and storage space.

Table 4.34: AMRSEs and MMRSEs (in brackets) of β̃λs, β̃λ∗s and β̂∗s

β̃λ β̃λ∗ β̂∗

b = 8 0.170(0.042) 0.167(0.046) 0.114(0.082)

b = 20 0.063(0.015) 0.052(0.013) 0.017(0.013)

* All values recorded in this table multiplied by 10−3 are true values.

198

Table 4.35: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

β̃λ β̃λ∗ β̂∗

b = 8
non0 coeff. 0(0.773333) 0(0.776667) 0(0.940000)

0 coeff. 10.73(0.998889) 1.27(0.997292) 104.34(0.981389)

b = 20
non0 coeff. 0(0.795000) 0(0.821667) 0(0.943333)

0 coeff. 5.44(0.999444) 0.01(0.999583) 95(0.998472)

* β150×1 has 6 non-zero coefficients.

Table 4.36: Excess risks of classifiers Cβ̃λ
s, Cβ̃λ∗

s and Cβ̂∗s, and computing time
(in brackets)

ER(Cβ̃λ
) ER(Cβ̃λ∗) ER(Cβ̂∗)

b = 8 0.994320(01:21:40) 0.988705(02:04:39) 0.981822(12:32:46)

b = 20 0.995778(01:59:19) 0.995678(03:12:39) 0.990104(111:44:50)

* The misclassification rates of the Bayes classifiers are obtained by testing on different datasets

separately for the cases where b = 8 and b = 20. Specifically, when b = 8 the misclassification

rate is 20.308% when b = 20, it is 19.81%.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. For each experiment of renewable estimations, we requested 35 cores

and for the experiments of the offline method, we requested 35 cores too.

To conclude, from the three simulated examples with different types of streaming

data, we see the stability of our introduced incremental algorithms. The two renew-

able methods have stable performance with varying sizes of streaming data, and

different correlated streaming data. Moreover, both of them outperform the offline

method in estimation accuracy and generate more interpretable models, which can be

explained by the algorithms with more rounds to select variables with the streaming

data coming in different data batches. The renewable method with an iteratively

updated penalty term is more capable of detecting insignificant features than the

renewable method with a constant penalty term during the iterative estimation. That

said, it requires much more time to update the penalty term in each iteration, espe-

cially when the sizes of data batches are large or the number of covariates is large.

The choice of methods depends therefore on the specific case and the need to consider

the computing efficiency or the interpretation of the generated models.

199

4.5 The incremental algorithm with Independence Screening (IS)

and its variant approaches

In this section, we examine five penalised incremental algorithms designed for sparse

streaming data, with a focus on high-dimensional streaming data. When obser-

vations originate from sparse models, particularly when covariate correlations are

strong, obtaining precise estimation results becomes more challenging. Based on the

simulation study outlined in earlier sections, the numerical findings indicate that

SCAD is efficient in analysing low-dimensional sparse streaming data. However, our

subsequent simulation study reveals that the incremental algorithm with SCAD does

not converge during the estimation iterations for high-dimensional streaming data,

where the number of covariates exceeds the size of the streaming data.

We initially introduce the IS algorithm for studying streaming data from the

GLM and then present two algorithms implementing variants of IS. The following

simulation study compares the performance of the renewable method using SCAD,

IS-SCAD, and two variants of IS-SCAD in studying sparse streaming data. Subse-

quently, we present the IIS algorithm for analysing streaming data, along with an

adaptation of IIS for online algorithms. One simulation study is designed to com-

pare the performance of IS-SCAD with IIS-SCAD and their respective variants for

high-dimensional streaming data. Another simulation study aims to compare the

performance of online algorithms with IIS-SCAD, the variant of IIS-SCAD with the

offline algorithm employing IIS-SCAD.

In this section, we represent the index set of non-zero coefficients of β as M∗ =

{1 ⩽ j ⩽ p : βj ̸= 0}, which has a size of s = |M∗|. We maintain the assumption that

the intercept term of the model (4.1) is present.

4.5.1 The incremental algorithm with IS

Upon observing the data in the first batch B1, the estimation procedure is identical

to the offline method with IS (Fan et al., 2009). When the stream data batch Bb with

the size of nb, b = 2, · · · , comes, we first calculate MMLEs of β denoted as β̂M
j ,

200

j = 2, · · · , p, using the observations in Bb,

β̂M
j = (β̂M

j,1, β̂
M
j) = arg max

β1,βj

nb∑
i=1

ℓ(β1 + βjXji, yi). (4.25)

We rank the absolute values of the MMLEs, excluding the intercept, based on their

magnitudes. The indices of the selected estimates are kept in the index set denoted as

M̂ = {2 ⩽ j ⩽ p : |β̂M
j | ⩾ σ}, (4.26)

where σ > 0 is a given constant as a threshold and d, 1 ⩽ d < p, and estimates

that have the highest ranked absolute values are achieved. The variables not chosen,

which have the indices in M̂c, are seen as insignificant variables.

Referring to the algorithm introduced in Section 4.2.2, at the k-th, k = 1, · · · ,

iteration, we have the estimator of βM̂ as

(β̃M̂)
(k)
b = (β̃M̂)

(k−1)
b −

[
H̃b((β̃M̂)b−1) −NbP

′′
λb
(∥(β̃M̂)b−1∥1)

]−1

×
{ [

H̃b−1((β̃M̂)b−1) −NbP
′′
λb
(∥(β̃M̂)b−1∥1)

]
×((β̃M̂)

(k−1)
b − (β̃M̂)b−1) + Sb((β̃M̂)

(k−1)
b) − nbP

′
λb
(∥(β̃M̂)b−1∥1)

}
,

where (β̃M̂)b−1 = {(β̃j)b−1}j∈M̂. Once the aforementioned iteration converges, the

renewable MLE, denoted as β̃b, is obtained. Similarly to the previous renewable

penalised estimation, we update the corresponding historical statistics from the

previous b− 1 data batches, and free up storage space for the data details.

In this study, we do not explore the threshold σ used for variable selection during

the IS process. Rather, we assign threshold values manually in the ensuing simulation

studies. This area presents an avenue for further exploration in future research. We

posit that our renewable estimation method exhibits the sure screening property as

delineated in (2.5) when applied to streaming data. Empirical evidence from subse-

quent simulation studies supports this conjecture, though a formal proof remains a

topic for future exploration.

201

4.5.2 The incremental algorithm with ISV1: Variant 1 of IS

In this section, we explain one variant of IS used for the incremental algorithm, which

considers the historical information for the calculation of MMLEs when b, b ⩾ 2,

data batches are collected. We denote the extension of IS in this section as ISV1.

In detail, for calculating renewable MMLEs, we introduce the historical statistics

from the previous data batches. At the k-th, k = 1, · · · , iteration, for (βb)
M
j =

((βb)1, (βb)j)
T , the renewable estimator has the form of

(β̃j)
M(k)
b = (β̃j)

M(k−1)
b −

[
H̃b−1((β̃j)b−1) +Hb((β̃j)

M(k−1)
b)

]−1

×

{
H̃b−1((β̃j)b−1)×

[
(β̃j)

M(k)
b − (β̃j)b−1

]
+Sb((β̃j)

M(k−1)
b)

}
, (4.27)

where (β̃j)b−1 = ((β̃1)b−1, (β̃j)b−1)
T . When the iteration converges, we get the

estimates as (β̃j)
M
b = ((β̃j,1)

M
b , (β̃j)

M
b)T , where j = 2, · · · ,p. We name it renewable

MMLEs. After ranking the absolute values of the p− 1 renewable MMLEs, the index

set containing the d, 1 ⩽ d < p largest absolute values estimates is got which is

M̂V1
b = {2 ⩽ j ⩽ p : |(β̃j)

M
b | ⩾ σ},

where σ > 0 is a given constant. Then, by following the incremental algorithm

introduced in the previous section, the renewable estimate of β can be obtained, and

the historical statistics are updated accordingly.

4.5.3 The incremental algorithm with ISV2: Variant 2 of IS

In this section, we propose an additional extension of IS for the incremental algorithm

and denote it as ISV2. When the data in Bb, b ⩾ 2 is observed, we follow the same

procedure outlined in Section 4.5. First, through the screening process, we identify d

predictors, where 1 ⩽ d < p, with the highest ranked absolute values of the MMLEs.

We obtain the index set denoted as M̂b. Next, we verify whether the non-zero indices

of β̃b−1 are contained in M̂b, and a new index set is acquired with the following form:

M̂V2
b = M̂b ∪ {1 ⩽ j ⩽ p : (β̃j)b−1 ̸= 0}.

202

Analysing the selected variables with indices in M̂V2
b , the incremental algorithm with

a penalty function introduced in the previous section is applied. Consequently, the

renewable estimate of β can be obtained, and the historical statistics are updated

accordingly.

4.5.4 Simulation study: Comparative analysis of online algorithms with SCAD,

IS-SCAD, ISV1-SCAD and ISV2-SCAD for the case of p < nb

In this subsection, we compare the performance of online algorithms with SCAD,

IS-SCAD, ISV1-SCAD, and ISV2-SCAD using a simulated example. In this section,

when we mention the names of the renewable estimation methods, we simplify them

and use the names of variable selection methods such as SCAD, IS-SCAD, ISV1-SCAD,

and ISV2-SCAD. For the screening processes of estimators using IS-SCAD, ISV1-SCAD,

and ISV2-SCAD, we select d = ⌊nb/(2× log(nb))⌋ variables in each screening process

while analysing the data in Bb, where Bb represents a batch of stream data with a

size of nb. Here, b, b = 1, · · · , denotes the observed batch number. In all tuning

parameter selection processes to find λs, the search interval is defined as [0.025, 0.35]

with a step size of 0.15.

The total size of the training dataset is Nb = 1200 and there are nb = 300 ob-

servations in each stream data batch. The correlation between xj1i and xj2i, where

i = 1, · · · ,Nb, is given by ρ|j1−j2|, with j1,2 = 2, · · · , p. We test ρ = 0, 0.2, 0.5,

respectively. The parameter β is set as

β = (0, β2, β3, · · · , β6, β7, 0 · · · , 0)Tp×1,

β2 = −0.8, β3 = 1, β6 = −0.8, β7 = 1,

where p = 150. Table 4.37-Table 4.40 record the numerical results of different variable

selection methods.

The AMRSEs and MMRSEs of various renewable estimates are documented in

Table 4.37. When the covariates exhibit lower correlation (ρ = 0 or 0.2), all tested

methods produce renewable estimates with similar performance. As the correlation

parameter increases (when ρ = 0.5), a consistent trend emerges where all estimates

exhibit reduced accuracy, as indicated by the increasing values of both AMRSEs

203

and MMRSEs across all estimates. Given this observation, it is notable that β̃SCADs

outperform other estimates obtained through IS and its variants in terms of estimation

accuracy. The three methods utilising IS exhibit similar performance overall. For

the case of ρ = 0.5, however, IS-SCAD and ISV2-SCAD show similarity in their

performance, while ISV1-SCAD, which incorporates historical statistics during the

screening process, demonstrates slightly superior performance compared to the other

two methods.

Table 4.38 presents the ESEs and SDs of the four estimates across different cases.

For all estimation methods, ESEs are close to SDs when ρ = 0 or ρ = 0.2. However, it

is noteworthy that in this example, when ρ = 0.5, the estimation methods employing

IS and its extensions fail to capture the non-zero coefficients in some of the 100-

replication experiments. This leads to the ESE being denoted as 0, signifying that

the non-zero coefficient is missed. The missed significant features are also evident in

Table 4.39, which records the performance of variable selection for the methods.

Table 4.39 showcases the performance of variable selection, including the numbers

of incorrect non-zero and zero estimates and CPs for non-zero and zero coefficients.

As the correlation parameter ρ increases, CPs for non-zero coefficients decrease across

all methods. However, the methods employing IS-SCAD and its extensions show a

more pronounced decrease compared to the method using SCAD, particularly for

IS-SCAD and ISV1-SCAD. When analysing the same datasets, the method aligned

with ISV1-SCAD demonstrates higher CPs for non-zero coefficients compared to the

other two methods that incorporate IS into their algorithms. The results demonstrate

that the renewable estimation method using SCAD alone can identify all important

features in all cases. When the covariates are uncorrelated (ρ = 0), the renewable

methods utilising IS-SCAD and its two variants can identify all important features,

with only a few being missed when the covariates are moderately correlated (ρ =

0.2). However, in the case of higher correlation (ρ = 0.5), two important features

are nearly missed in the 100 replication simulation. Among the three IS methods,

ISV1-SCAD exhibits a lower number of missed non-zero coefficients compared to

the other two methods in the same scenario across the 100 trials. Furthermore, it

is noteworthy that, when using the same computing setting of σ0 to screen out

insignificant features in Equation (4.16), the renewable estimation method solely

employing SCAD demonstrates a lower capability to detect insignificant features

204

compared to other renewable methods that combine SCAD with IS or its extensions.

Table 4.40 presents the excess risks of the classifiers and the computation time for

different methods. When studying less correlated data, the four renewable classifiers

have similar efficiency and are all close to the Bayes classifiers. When the correlation

parameter is larger (ρ = 0.5), the incremental method employing IS-SCAD and its

extensions is inferior to the classifiers trained by the method using SCAD alone.

However, the classifiers of the method using ISV1-SCAD perform slightly better than

those of IS-SCAD and ISV2-SCAD, displaying higher numerical values of excess

risks across different cases. It should be noted that, under the same settings for

choosing a tuning parameter, it is evident that the method using SCAD alone requires

significantly more computation time than the methods adopting IS-SCAD and its

extensions for variable selection. This highlights the advantage of IS in reducing the

dimensions of a model and accelerating the computation efficiently.

Table 4.40 provides the excess risks of the classifiers and the computation time for

different methods. When analysing less correlated data, the four renewable classifiers

demonstrate similar efficiency, closely approaching the performance of the Bayes

classifier. However, as the correlation parameter increases (ρ = 0.5), the incremental

method utilising IS-SCAD and its extensions shows inferior performance compared to

the classifiers trained by the method using SCAD alone. Nevertheless, the classifiers

obtained through the method using ISV1-SCAD perform slightly better than those

obtained through IS-SCAD and ISV2-SCAD, exhibiting higher numerical values of

excess risks across different cases. It is worth noting that, when the same tuning

parameter selection settings are applied, the method using SCAD alone requires

significantly more computation time than the methods incorporating IS-SCAD and

its extensions. This highlights the advantage of IS in reducing the dimensionality of a

model and efficiently accelerating computation.

In conclusion, this example highlights the limitations of IS when dealing with

highly correlated data. Specifically, when analysing low-dimensional sparse stream-

ing data, the renewable estimation method incorporating SCAD demonstrates strong

performance in terms of estimation accuracy and classifier efficiency across different

scenarios with varying correlated covariates. However, this method requires sig-

nificantly more computation time compared to the renewable estimation methods

utilising IS-SCAD and its variants in this example. Nonetheless, the example also

205

showcases the inherent shortcomings of IS in effectively handling highly correlated

covariates. While variants of IS-SCAD, such as ISV1-SCAD, which considers historical

statistics from previous stream data, offer some improvement to the performance of

IS-SCAD, the enhancement remains limited. During the 100 repetition experiments, a

notable number of important features are still missed, underscoring the significance

of this limitation.

Table 4.37: AMRSEs and MMRSEs (in brackets) of β̃SCADs, β̃IS−SCADs, β̃ISV1−SCADs
and β̃ISV2−SCADs

ρ β̃SCAD β̃IS−SCAD β̃ISV1−SCAD β̃ISV2−SCAD

0.5 1.618(0.2359) 3.434(3.310) 2.327(1.831) 3.361(3.232)

0.2 0.569(0.087) 0.695(0.070) 0.708(0.081) 0.700(0.079)

0 0.383(0.084) 0.484(0.063) 0.530(0.073) 0.490(0.066)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.38: SDs and ESEs for non-zero β150×1 coefficient estimates

ρ β̃SCAD β̃IS−SCAD β̃ISV1−SCAD β̃ISV2−SCAD

0.5

β2 0.2161(0.0792,0.1175) 1.1861(0,0) 0.1286(0.0796,0.1180) 1.1861(0,0)
β3 0.2250(0.0846,0.1254) 0.6223(0.0690,0.1023) 0.2916(0.0817,0.1211) 0.5568(0.0697,0.1033)
β6 0.1600(0.0814,0.1207) 1.1861(0,0) 1.1861(0,0) 1.1861(0,0)
β7 0.1704(0.0844,0.1251) 0.6079(0.0693,0.1027) 0.5550(0.0704,0.1044) 0.5998(0.0693,0.1028)

0.2

β2 0.0982(0.0780,0.1156) 0.1055(0.0802,0.1189) 0.0944(0.0806,0.1195) 0.1058(0.0802,0.1189)
β3 0.1178(0.0826,0.1225) 0.0981(0.0844,0.1252) 0.1050(0.0846,0.1255) 0.1005(0.0845,0.1252)
β6 0.1093(0.0783,0.1161) 0.1096(0.0806,0.1196) 0.1061(0.0810,0.1202) 0.1076(0.0807,0.1197)
β7 0.1186(0.0826,0.1225) 0.1056(0.0847,0.1256) 0.1080(0.0850,0.1259) 0.1053(0.0848,0.1257)

0

β2 0.1065(0.0799,0.1185) 0.0872(0.0831,0.1232) 0.0922(0.0832,0.1233) 0.0841(0.0831,0.1232)
β3 0.1072(0.0838,0.1242) 0.0973(0.0862,0.1278) 0.1033(0.0863,0.1279) 0.0986(0.0859,0.1274)
β6 0.0868(0.0795,0.1179) 0.0926(0.0823,0.1221) 0.0892(0.0824,0.1221) 0.0960(0.0822,0.1219)
β7 0.1044(0.0834,0.1237) 0.1007(0.0865,0.1282) 0.1029(0.0866,0.1284) 0.1011(0.0864,0.1281)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively;

206

Table 4.39: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

ρ β̃SCAD β̃IS−SCAD β̃ISV1−SCAD β̃ISV2−SCAD

0.5
non0 coeff. 0(0.527500) 1.75(0.145000) 1.19(0.440000) 1.70(0.157500)

0 coeff. 87.32(0.999247) 0.39(0.999795) 0.51(0.998630) 0.76(0.999452)

0.2
non0 coeff. 0(0.762500) 0.09(0.815000) 0.28(0.832500) 0.09(0.812500)

0 coeff. 87.15(0.999247) 0.40(0.999795) 0.53(0.998767) 0.66(0.999589)

0
non0 coeff. 0(0.795000) 0(0.840000) 0.12(0.840000) 0(0.840000)

0 coeff. 86.78(0.998904) 0.45(0.999795) 0.58(0.998630) 0.85(0.999315)

* β150×1 has 4 non-zero coefficients.

Table 4.40: Excess risks of various classifiers and computing time (in brackets)

ρ ER(Cβ̃SCAD
) ER(Cβ̃IS−SCAD

) ER(Cβ̃ISV1−SCAD
) ER(Cβ̃ISV2−SCAD

)

0.5 0.941705(02:03:38) 0.807212(00:10:52) 0.853721(00:11:32) 0.812438(00:11:01)

0.2 0.981736(01:16:43) 0.965509(00:11:31) 0.946228(00:11:24) 0.965291(00:11:44)

0 0.986102(01:47:00) 0.983837(00:11:48) 0.973295(00:11:35) 0.982788(00:11:56)

* The misclassification rates of the Bayes classifiers are 29.368%, 25.586% and 23.982% for

ρ = 0.5, ρ = 0.2, and ρ = 0, respectively.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. 35 cores were requested for each experiment.

4.6 The incremental algorithm with Iterative Independence Screen-

ing (IIS) and its variant approach

In this section, we describe the algorithm of the online method incorporating IIS for

variable selection.

In the previous section, we have found that compared to the renewable estimation

algorithm with SCAD, the method introducing IS for variable selection is more com-

putationally efficient. These shortcomings of IS have been discussed (Fan et al., 2009),

as it does not take into account the joint effects between predictor variables. Therefore,

IIS, using marginal regressions, has been developed to address the limitations of

IS (Fan et al., 2009). In this section, we outline how we employ the IIS method in

conjunction with the penalty function within the framework of an online algorithm

for analysing streaming data.

207

4.6.1 The incremental algorithm with IIS

We aim to find d, 1 ⩽ d < p, variables through the iterative screening process.

When the streaming data in the data batch Bb, b ⩾ 2, is collected, firstly, the MMLEs

of β, denoted as β̂M
j , j = 2, · · · ,p, are calculated following (4.25). We then rank the

absolute values of the estimates, excluding the intercept, and obtain the index set of

the selected variables as:

M̂1 = {2 ⩽ j ⩽ p : |β̂M
j | ⩾ σ1},

where σ1 > 0 is a given constant. We then obtain r1 variables, where 1 ⩽ r1 < p, based

on the highest ranked absolute values of the MMLEs. To ensure that the selection

process takes at least two iterations, r1 is typically smaller than p. For the variables

whose indices are in M̂c
1 , the conditional marginal regressions proceed as follows:

β̂CM
j = (β̂CM

j,1 , β̂CM
j) = arg max

βCM
j,1 ,βCM

j ,β
M̂1

∑
i∈Bb

ℓ(β1 + βCM
j Xji + XT

i,M̂1
βM̂1

,yi),

where j ∈ M̂c
1 .

We then rank the absolute values of these conditional MMLEs, excluding the

intercept, and preserve the indices of the d− r1 variables having top-ranked MMLEs

in a set denoted as A1, with |A1| = d− r1. The incremental algorithm introduced in

Section 4.2.2 can be applied to the selected dataset, and at the k-th iteration, k = 1, · · · ,

the estimator takes the form as

(β̃A1∪M̂1
)
(k)
b = (β̃A1∪M̂1

)
(k−1)
b −

[
H̃b((β̃A1∪M̂1

)b−1) −NbP
′′
λb
(∥(β̃A1∪M̂1

)b−1∥1)
]−1

×
{ [

H̃b−1((β̃A1∪M̂1
)b−1) −NbP

′′
λb
(∥(β̃A1∪M̂1

)b−1∥)
]

×
(
(β̃b)

(k−1)

A1∪M̂1
− (β̃b−1)A1∪M̂1

)
+Sb((β̃A1∪M̂1

)
(k−1)
b) − nbP

′
λb
(∥(β̃A1∪M̂1

)b−1∥1)
}
, (4.28)

where (β̃A1∪M̂1
)b−1 = ((β̃j)b−1)j∈(A1∪M̂1)

. When the iteration converges, we obtain

the estimate (β̃A1∪M̂1
)b. M̂1 is then updated to M̂2, where M̂2 = {j ∈ A1 ∪ M̂1 :

|(β̃j)b| > 0}. The screening process continues until the l-th iteration, l = 1, · · · , when

M̂l−1 = M̂l or |M̂l| = d. With the selected dataset, the renewable estimates can be

208

obtained following the penalised incremental algorithm in Section 4.2.2.

4.6.2 The incremental algorithm with IISV1: Variant 1 of IIS

In this section, we present a variant of IIS, referred to as IISV1, for analysing streaming

data, which takes historical inferences into account during the screening process.

When the stream data batch Bb is observed, we aim to find d, 1 ⩽ d < p, significant

variables.

The renewable MMLEs of β, denoted as (β̃
CM

j)b = ((β̃CM
j,1)b, (β̃

CM
j)b)

T , j =

2, · · · ,p, are calculated following (4.27). The absolute values of the renewable

MMLEs are ranked, and the index set containing the r1 selected variables, where

1 ⩽ r1 < p, is formed as

M̂1 = {2 ⩽ j ⩽ p : |(β̃j)
M
b | ⩾ σ1},

where σ1 > 0 is a given constant as a threshold to select r1 variables. The conditional

renewable MMLEs are calculated for the variables whose indices are in M̂c
1 and

follows

(β̃j)
CM(k)
b

= ((β̃j)
CM(k−1)
b , (β̃M̂1

)b) −

[
H̃b−1((β̃j)b−1, (β̃M̂1

)b−1) +Hb((β̃j)
CM(k−1)
b , (β̃M̂1

)b)

]−1

×

{
H̃b−1((β̃j)b−1, (β̃M̂1

)b−1)×
[
((β̃j)

CM(k−1)
b , (β̃M̂1

)b) − ((β̃j)b−1, (β̃M̂1
)b−1)

]
+Sb((β̃j)

CM(k−1)
b , (β̃M̂1

)b)

}
,

where (β̃M̂1
)b−1 = ((β̃j)b−1)j∈M̂1

and (β̃M̂)b = ((β̃j)b)j∈M̂.

After ranking the absolute values of the conditional MMLEs and identifying the

top-ranked variables’ indices, a set denoted as A1 is obtained, with |A1| = d − r1.

The penalised incremental method introduced in Section 4.2.2 is then applied to the

dataset containing the variables whose indices are in A1 ∪ M̂1, and the computation

process follows (4.28). The non-zero estimates of β are found, and M̂1 is updated to

M̂2, with M̂2 = {j ∈ A1 ∪ M̂1 : |(β̃j)b| > 0}. At the l-th iteration, l = 1, · · · , when

M̂l−1 = M̂l or |M̂l| = d, we stop the screening process. When M̂l is obtained, the

209

penalised incremental algorithm introduced in Section 4.2.2 can be employed for the

chosen dataset to obtain the renewable MLEs.

4.6.3 Simulation study: Comparative analysis of online algorithms with IS-SCAD,

IS
V1

-SCAD, IIS-SCAD, and IIS
V1

-SCAD for the cases of nb < p < Nb and

p > Nb

In this section, we conduct two designed examples to examine different sizes of

high-dimensional streaming data and compare the performance of online algorithms

utilising IS-SCAD, ISV1-SCAD, IIS-SCAD, and IISV1-SCAD. In this section, as we only

focus on the online algorithms, we simplify the names of the methods as IS-SCAD,

ISV1-SCAD, IIS-SCAD, and IISV1-SCAD. Additionally, it is worth mentioning that the

method employing SCAD fails to converge when analysing the high-dimensional

streaming data in this example. As a result, its performance is not recorded in this

section. Similarly, based on the findings from the previous simulation study in Section

4.5.4, it has been observed that the performance of online algorithms utilising IS-

SCAD and ISV2-SCAD is very similar. Therefore, we have decided to omit conducting

experiments on the method with ISV2-SCAD.

For the two simulated examples in this section, the parameter is set as

β = (0, β2, β3, · · · , β6, β7, 0 · · · , 0)Tp×1,

β2 = −0.8, β3 = 1, β6 = −0.8, β7 = 1.

The correlation between the two covariates xj1i and xj2i, where i = 1, · · · , Nb, and

j1,2 = 2, · · · , p, is ρ|j1−j2|, and we consider ρ = 0, 0.2, 0.5.

Example 1: High-dimensional streaming data with nb < p < Nb. In the first

example, we set the full-size training dataset with Nb = 1200 data and the streaming

data arriving in a size of nb = 300. The dimension of the vector βp×1 is p = 350.

We select d = ⌊nb/(4 × log(nb))⌋ in each screening process. Table 4.41-Table 4.44

presents the performance of the three methods.

Table 4.41 presents the AMRSEs and MMRSEs of estimates obtained from the

three methods. The table illustrates that the AMRSEs of all estimates increase as the

covariates become more correlated. Specifically, when analysing the same datasets,

210

ISV1-SCAD exhibits superior performance compared to IS-SCAD, which is consistent

with the trend observed in the simulation study discussed in Section 4.5.4. Across

different cases, IIS-SCAD can generate more accurate renewable estimates than the

methods using IS-SCAD and ISV1-SCAD. As the data becomes more correlated,

the gaps between the estimated coefficients β̃IIS−SCADs, β̃IS−SCADs, and β̃ISV1−SCADs

widen. The numerical results indicate that β̃IIS−SCADs consistently exhibit stable

performance across various correlated covariates, as evidenced by the close MMRSEs

of β̃IIS−SCADs observed across different cases.

Table 4.42 presents the ESEs calculated using (4.14) and the SDs of the estimates

obtained from the three methods. The table reveals a similar phenomenon to the

simulation study discussed in Section 4.5.4, wherein the methods utilising IS and its

variant denoted as ISV1, can miss significant features when the covariates are highly

correlated. However, in the case of estimates obtained through the renewable method

with IIS-SCAD, the ESEs calculated using Equation (4.14) perform well and closely

match the SDs in all cases.

Table 4.43 records the performance of the online algorithms with IS-SCAD, ISV1-

SCAD, and IIS-SCAD, considering the incorrect non-zero and zero estimates and

CPs for non-zero and zero coefficients of β when studying datasets with different

correlated covariates. The table clearly demonstrates that the methods using IS cannot

find the important features when the data is more correlated, as shown in the table

by the increasing incorrect zero estimates with the increase in ρ. As the correlation

parameter ρ increases, the values of CPs for non-zero coefficients from IS-SCAD

and ISV1-SCAD approach zero, indicating less accurate estimation results. However,

in the 100 repeated simulations, IIS-SCAD demonstrates noticeably fewer missed

important features. This highlights the advantage of IIS over IS in variable selection,

particularly when dealing with data that has highly correlated covariates.

The excess risks of classifiers presented in Table 4.44 demonstrate a consistent

trend, indicating that as the correlation of the covariates increases, the efficiency

of all classifiers decreases. However, the classifier Cβ̃IIS−SCAD
exhibits more stable

performance compared to the other two classifiers trained using the methods em-

ploying IS-SCAD and its variant across different cases. Furthermore, the excess risks

of Cβ̃IIS−SCAD
s remain stable and close to 1. In addition, Cβ̃IIS−SCAD

s also exhibit very

close efficiency to the Bayes classifiers across all cases. On the other hand, Cβ̃IS−SCAD
s

211

and Cβ̃ISV1−SCAD
s show a noticeable decrease in efficiency as ρ increases. However,

when trained on the same datasets, Cβ̃ISV1−SCAD
s consistently outperform Cβ̃IS−SCAD

s.

It is worth noting that the online algorithm with IIS-SCAD, which involves additional

screening processes for the conditional MMLEs, requires more time to study the same

dataset compared to the algorithms utilising IS-SCAD and its variant.

Table 4.41: AMRSEs and MMRSEs (in brackets) of β̃IS−SCADs, β̃ISV1−SCADs
and β̃IIS−SCADs

ρ β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCADs

0.5 1.786(1.636) 1.264(1.471) 0.201(0.025)
0.2 0.402(0.568) 0.205(0.031) 0.097(0.030)
0 0.100(0.024) 0.089(0.022) 0.066(0.026)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.42: SDs and ESEs for non-zero β350×1 coefficient estimates

ρ β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCAD

0.5

β2 1.1861(0,0) 1.1861(0,0) 0.0851(0.0859,0.1273)
β3 0.8326(0.0652,0.0966) 0.7594(0.0671,0.0995) 0.1041(0.0899,0.1333)
β6 1.1861(0,0) 1.1861(0,0) 0.0864(0.0869,0.1288)
β7 0.7291(0.0663,0.0983) 0.6896(0.0679,0.1007) 0.0939(0.0902,0.1337)

0.2

β2 0.1358(0.0789,0.1170) 0.1002(0.0803,0.1191) 0.0888(0.0825,0.1223)
β3 0.1385(0.0825,0.1223) 0.1090(0.0845,0.1252) 0.1016(0.0875,0.1297)
β6 0.1425(0.0786,0.1165) 0.0958(0.0809,0.1200) 0.1059(0.0830,0.1230)
β7 0.1459(0.0816,0.1210) 0.1150(0.0843,0.1250) 0.1028(0.0874,0.1295)

0

β2 0.0756(0.0823,0.1220) 0.0790(0.0823,0.1220) 0.0831(0.0847,0.1255)
β3 0.0848(0.0861,0.1276) 0.0833(0.0864,0.1280) 0.1011(0.0891,0.1321)
β6 0.0843(0.0821,0.1217) 0.0857(0.0823,0.1220) 0.0946(0.0846,0.1254)
β7 0.0975(0.0859,0.1273) 0.0871(0.0859,0.1274) 0.1039(0.0884,0.1310)

* For each cell, the value outside the brackets represents SD, while the first and second

numbers inside the brackets represent ESEm and ESEo, respectively.

212

Table 4.43: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

ρ β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCAD

0.5
non0 coeff. 2.27(0.015000) 1.52(0.230000) 0.11(0.875000)

0 coeff. 0.70(0.999595) 1.01(0.999422) 0.56(0.999740)

0.2
non0 coeff. 0.56(0.690000) 0.25(0.835000) 0.01(0.902500)

0 coeff. 0.58(0.999740) 0.64(0.999624) 0.55(0.999682)

0
non0 coeff. 0.08(0.910000) 0.09(0.930000) 0(0.922500)

0 coeff. 0.51(0.999827) 0.51(0.999855) 0.61(0.999855)

* β350×1 has 4 non-zero coefficients.

Table 4.44: Excess risks of various classifiers and computing time

ρ ER(Cβ̃IS−SCAD
) ER(Cβ̃ISV1−SCAD

) ER(Cβ̃IIS−SCAD
)

0.5 0.771421(00:29:04) 0.832238(00:28:44) 0.978803(00:40:00)

0.2 0.923349(00:29:03) 0.960508(00:28:49) 0.986962(00:37:32)

0 0.979017(00:29:08) 0.979897(00:28:30) 0.988867(00:37:02)

* The misclassification rates of the Bayes classifiers are 29.368%, 25.586% and 23.982% for

ρ = 0.5, ρ = 0.2, and ρ = 0, respectively.
* We implemented each experiment with 100 independent trials using C++ and ran them on

2 Intel Xeon 6138 CPUs. 35 cores were requested for each experiment.

Example 2: High-dimensional streaming data with p > Nb. In Example 2,

we evaluate the efficiency of incremental algorithms that employ varying variable

selection techniques including IS-SCAD, ISV1-SCAD, IIS-SCAD, and IISV1-SCAD.

Each dataset comprises p = 1900 predictors, with a training dataset size of Nb =

1800. The streaming data is recorded in data batches of size nb. This example

examines two scenarios, one with nb = 300 and the other with nb = 600. In the

screening process, for the case of nb = 300, ⌊nb/(3× log(nb))⌋ variables are chosen,

and for nb = 600, ⌊nb/(4× log(nb))⌋ variables are chosen. The numerical results for

this example are shown in Tables 4.45 through 4.47.

The AMRSEs and MMRSEs of the estimates obtained from the four different

variable selection methods are presented in Table 4.45. The results confirm similar

conclusions as in Example 1, indicating that as the correlation parameter of the

covariates increases, the estimation accuracy of all tested methods decreases. When

213

analysing the same streaming data, it is important to note that in each case, β̃IIS−SCADs

and β̃IISV1−SCADs consistently outperform β̃IS−SCADs and β̃ISV1−SCADs, with only a

slight exception observed when nb = 300 and ρ = 0. Furthermore, as the correlation

of the covariates increases, the differences between the estimates of the renewable

methods using IS and those using IIS become more pronounced. In this example,

β̃IISV1−SCADs demonstrate either comparable or better performance than β̃IIS−SCADs

across different cases. Additionally, it is worth noting that for the same full-size

training datasets, increasing the streaming data size improves the performance of all

tested methods, although the improvement in the algorithm using IISV1-SCAD is less

significant compared to the others. Overall, the performance of IISV1-SCAD exhibits

greater stability across different training datasets.

The ESEs obtained using (4.14) and the corresponding SDs of the renewable

estimates are presented in Table C.9 in Appendix C.1. The performance of variable

selection and the CPs for the coefficients of β are shown in Table 4.46. Similar to

Example 1, the results indicate that datasets with more correlated covariates lead to

poorer performance for IS-SCAD and ISV1-SCAD. This is evidenced by a remarkable

increase in incorrect zero estimates and a notable decrease in CPs for non-zero

coefficients, approaching zero, especially when the size of the streaming data is small.

In contrast, although the performance of IIS-SCAD and IISV1-SCAD deteriorates as

the covariates become more correlated, they still outperform IS-SCAD and its variant,

with fewer missed important features and less variation in the CPs for non-zero

coefficients. The results in the table consistently support the conclusion of Table 4.45:

when studying the same training dataset, increasing the size of the streaming data

improves the performance of variable selection methods, albeit with less pronounced

effects on IIS-SCAD and IISV1-SCAD compared to IS-SCAD and ISV1-SCAD.

Table 4.47 shows the excess risks of the classifiers and the computation time of the

estimation processes. It is observed that all classifiers trained on more correlated data

exhibit lower efficiency compared to those trained on less correlated data. Consistent

with Example 1, the methods utilising IIS-SCAD generate more efficient classifiers

compared to those using IS-SCAD and its extensions. Notably, the classifiers obtained

through IISV1-SCAD outperform those obtained through IIS-SCAD, particularly

when the size of the streaming data is smaller (nb = 300). In terms of computation

time, there is no noticeable deviation among the estimation methods in this section.

214

However, the methods employing IIS-SCAD and its variant generally require slightly

more time compared to IS-SCAD and ISV1-SCAD. Considering classifier efficiency,

we recommend utilising IIS or its extension for studying high-dimensional data with

an incremental algorithm.

Table 4.45: AMRSEs and MMRSEs (in brackets) of β̃IS−SCADs, β̃ISV1−SCADs,
β̃IIS−SCADs and β̃IISV1−SCADs.

ρ β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCAD β̃IISV1−SCAD

nb = 300

0.5 0.389(0.399) 0.291(0.293) 0.097(0.004) 0.053(0.003)

0.2 0.194(0.210) 0.065(0.007) 0.039(0.003) 0.037(0.003)

0 0.078(0.005) 0.019(0.003) 0.042(0.004) 0.029(0.004)

nb = 600

0.5 0.299(0.264) 0.200(0.146) 0.070(0.004) 0.070(0.004)

0.2 0.054(0.004) 0.055(0.003) 0.043(0.004) 0.043(0.004)

0 0.030(0.003) 0.031(0.003) 0.018(0.005) 0.018(0.005)

* All values recorded in this table multiplied by 10−3 are true values.

Table 4.46: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

ρ nb = 300 β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCAD β̃IISV1−SCAD

0.5
non0 coeff. 2.65(0.010000) 2.05(0.070000) 0.55(0.770000) 0.29(0.835000)

0 coeff. 0.74(0.999794) 0.32(0.999984) 0.64(0.999842) 0.45(0.999921)

0.2
non0 coeff. 1.53(0.275000) 0.50(0.667500) 0.12(0.815000) 0.17(0.830000)

0 coeff. 0.30(0.999989) 0.44(0.999953) 0.30(0.999963) 0.30(0.999963)

0
non0 coeff. 0.39(0.757500) 0.10(0.900000) 0.19(0.825000) 0.12(0.855000)

0 coeff. 0.24(0.999989) 0.44(0.999931) 0.32(0.999958) 0.33(0.999958)

ρ nb = 600 β̃IS−SCAD β̃ISV1−SCAD β̃IIS−SCAD β̃IISV1−SCAD

0.5
non0 coeff. 1.73(0.082500) 1.65(0.352500) 0.15(0.787500) 0.24(0.795000)

0 coeff. 0.18(1.000000) 0.55(0.999863) 0.30(0.999963) 0.28(0.999958)

0.2
non0 coeff. 0.09(0.820000) 0.30(0.822500) 0.05(0.807500) 0.11(0.815000)

0 coeff. 0.22(0.999984) 0.23(0.999979) 0.25(0.999963) 0.26(0.999958)

0
non0 coeff. 0.01(0.880000) 0.12(0.880000) 0(0.817500) 0.02(0.825000)

0 coeff. 0.33(0.999979) 0.33(0.999979) 0.39(0.999979) 0.39(0.999979)

* β1900×1 has 4 non-zero coefficients.

215

Table 4.47: Excess risks of various classifiers and computing time

ρ ER(Cβ̃IS−SCAD
) ER(Cβ̃ISV1−SCAD

) ER(Cβ̃IIS−SCAD
) ER(Cβ̃IISV1−SCAD

)

nb = 300

0.5 0.727892(12:30:29) 0.783857(12:39:28) 0.924820(14:13:02) 0.958311(13:18:13)
0.2 0.807983(12:46:00) 0.924423(13:00:58) 0.973545(13:20:51) 0.971095(13:08:24)
0 0.926730(11:56:05) 0.976220(12:14:38) 0.962050(13:16:24) 0.972061(12:43:13)

ρ ER(Cβ̃IS−SCAD
) ER(Cβ̃ISV1−SCAD

) ER(Cβ̃IIS−SCAD
) ER(Cβ̃IISV1−SCAD

)

nb = 600

0.5 0.796841(12:51:50) 0.791976(12:44:38) 0.961801(15:31:57) 0.960212(14:18:27)
0.2 0.997623(12:54:15) 0.947678(12:43:03) 0.979989(16:10:55) 0.975784(14:24:43)
0 0.983911(12:37:26) 0.968806(12:19:14) 0.991145(15:31:23) 0.988255(14:02:25)

* When ρ = 0.5, the misclassification rate of Bayes classifier is 29.056%; when ρ = 0.2, the misclassifi-

cation rate of Bayes classifier is 25.466%; when ρ = 0 the misclassification rate of Bayes classifier is

23.728%.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2 Intel

Xeon 6138 CPUs. 35 cores were requested for each experiment.

In conclusion, the simulated examples in this section highlight the improved per-

formance of IIS-SCAD and its variants, IISV1-SCAD, which incorporates conditional

marginal regressions, when applied to high-dimensional streaming data. IIS has been

proven that it can improve the limitations of IS (Fan and Lv, 2008, Fan and Song,

2010). The simulation study of our study also demonstrates that the online algorithm

utilising IIS-SCAD or IISV1-SCAD consistently exhibits stable estimation accuracy

across varying correlated covariates and streaming data sizes, achieving comparable

efficiency to the Bayes classifier. In addition, the computing time of IIS-SCAD or

IISV1-SCAD does not exhibit a substantial increase compared to the online methods

employing IS-SCAD or ISV1-SCAD. The renewable estimation method employing

IISV1-SCAD demonstrates slightly superior performance compared to the method

utilising IIS-SCAD in terms of variable selection. It exhibits fewer incorrect non-zero

and zero estimates and achieves higher CPs for coefficients. However, it should be

noted that the difference between the two methods is not substantial.

4.6.4 Simulation study: Comparative analysis of online algorithms with IIS-

SCAD and IIS
V1

-SCAD, along with the offline algorithm with IIS-SCAD

for the case of p > Nb

In this section, we employ several simulated examples to compare the effectiveness of

online algorithms that integrate IIS-SCAD and IISV1-SCAD with an offline algorithm

216

that utilises IIS-SCAD. In this section, we denote the estimates of the two online

methods as β̃IIS−SCADs and β̃IISV1−SCADs and the estimate of the offline method as

β̂∗
IIS−SCADs. These comparisons are performed on various types of high-dimensional

streaming data.

To be more specific, the first example focuses on covariates exhibiting different

levels of correlation. The second example investigates the impact of varying sizes of

streaming data. Lastly, the third example explores the performance across different

full-size training datasets. All examples share the same parameter set, which is set as

β = (0, β2, β3, · · · , β6, β7, 0 · · · , 0)Tp×1,

β2 = −0.8, β3 = 1, β6 = −0.8, β7 = 1,

and we set p = 3000. The correlation between the two covariates xj1i and xj2i, where

i = 1, · · · , Nb, and j1,2 = 2, · · · , p, is ρ|j1−j2|.

Example 1: varying correlated covariates. In Example 1, we study different

datasets where the correlation parameter of covariates varies, testing ρ = 0, 0.2, 0.5

respectively.

We have each full-size training dataset with a size of Nb = 2500 and the streaming

data comes in a fixed size of nb = 500. For the iterative screening process, both the

incremental algorithms select ⌊nb/(5× log(nb))⌋ variables, and the offline method

selects ⌊Nb/(20 × log(Nb))⌋ variables. Table 4.48-4.49 record the numerical results

for Example 1.

In Table 4.48, the results show that, when trained on the same datasets, the

renewable estimates, β̃IIS−SCADs and β̃IISV1−SCADs, exhibit better overall performance

than the β̂∗
IIS−SCADs of the offline method. Specifically, the AMRSEs of β̃IIS−SCADs and

β̃IISV1−SCADs are much smaller than those of β̂∗
IIS−SCADs. While the MMRSEs of all the

estimates are close. In this example, the performance of β̃IIS−SCADs and β̃IISV1−SCADs

show little difference. The numerical results indicate that the varying correlation of

covariates has minimal influence on the performance of the incremental algorithms

incorporating IIS-SCAD and its extension. These algorithms consistently yield similar

outcomes regardless of the correlation present in the data.

Table C.10 displays the ESEs and SDs of the estimates obtained from the renewable

217

and offline estimation methods, respectively, as given in (4.14) and (4.4). These results

can be found in Appendix C.1. Table 4.49 displays the performance of variable

selection for the three tested methods. It is evident that when compared with the

two renewable estimation methods using IIS-SCAD or its variant, the offline method

using IIS-SCAD has the highest number of incorrect estimates for zero coefficients

across different cases, and CPs from the offline method for non-zero coefficients of β

are the lowest in this example. On the contrary, as the data becomes more correlated,

the online algorithms only miss a few significant features, and the CPs for the nonzero

coefficients of β from both online algorithms remain consistent, whereas the CPs

from the offline method exhibit a noticeable decrease. This phenomenon can be

attributed to the advantage that online methods have in analysing streaming data.

These methods have more time for the screening process, which enables them to

effectively select variables that are better suited for the data. Based on these findings,

we conclude that our proposed methods outperform the offline method in terms of

variable selection for highly correlated high-dimensional streaming data.

Table 4.50 presents the computing time and memory usage for each experiment

comprising 100 trials, as well as the efficiency of the classifiers trained by the three

methods. In this example, the efficiency of both renewable classifiers is higher than

that of the offline method in all cases. Additionally, Cβ̃IIS−SCAD
s and Cβ̃IISV1−SCAD

s

perform very close to the Naive Bayes classifier. Consistent with the previous simula-

tion study, the offline method requires more time than both incremental algorithms

under the same computation settings. Another advantage that has been once again

demonstrated in this example is that online methods require noticeably less time

and computing resources (as indicated by memory utilisation) compared to offline

methods when studying the same datasets. Both incremental algorithms exhibit

similar computing times for different correlated data. However, the online algorithm

incorporating IISV1-SCAD requires slightly less time and utilises fewer computing

resources compared to the online method using IIS-SCAD.

218

Table 4.48: AMRSEs and MMRSEs (in brackets) of β̃IIS−SCADs, β̃IISV1−SCADs and
β̂∗

IIS−SCADs

ρ β̃IIS−SCAD β̃IISV1−SCAD β̂∗
IIS−SCAD

0.5 0.011(0.001) 0.011(0.001) 0.046(0.001)

0.2 0.003(0.001) 0.004(0.001) 0.043(0.001)

0 0.003(0.001) 0.003(0.002) 0.044(0.001)

* All values recorded in this table multiplied by 10−3 are true values.
* Each training dataset consists of Nb = 2500 data. In the renewable estimation experiments,

each data stream batch has a size of nb = 500.

Table 4.49: Average numbers of incorrect zero estimates for non-zero coefficients and
incorrect non-zero estimates for zero coefficients, along with the coverage probabilities
(in parentheses) for β

ρ β̃IIS−SCAD β̃IISV1−SCAD β̂∗
IIS−SCAD

0.5
non0 coeff. 0.04(0.890000) 0.07(0.905000) 0(0.820000)
0 coeff. 0.53(0.999993) 0.52(0.999997) 11.33(0.999997)

0.2
non0 coeff. 0(0.932500) 0.01(0.937500) 0(0.840000)
0 coeff. 0.61(0.999987) 0.61(0.999987) 10.70(0.996429)

0
non0 coeff. 0(0.920000) 0.01(0.922500) 0(0.920000)
0 coeff. 0.46(0.999977) 0.46(0.999977) 11.63(0.997553)

* β3000×1 has 4 non-zero coefficients.

Table 4.50: Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂IIS−SCAD
s, and computing time

and memory utilisations (in brackets)

ρ ER(Cβ̃IIS−SCAD
) ER(Cβ̃IISV1−SCAD

) ER(Cβ̂IIS−SCAD
)

0.5 0.992128(33:13:48,5.11 GB) 0.991111(31:42:22,3.72 GB) 0.965880(51:29:53,22.19 GB)

0.2 0.995260(33:11:43,5.49 GB) 0.994004(31:23:55,3.57 GB) 0.980925(50:02:57,22.88 GB)

0 0.999661(32:41:44,5.80 GB) 0.998224(30:50:31,3.57 GB) 0.963828(44:29:02,17.63 GB)

* When ρ = 0.5, the misclassification rate of Bayes classifier is 28.988%; when ρ = 0.2, the misclassifi-

cation rate of Bayes classifier is 25.198%; when ρ = 0, the misclassification rate of Bayes classifier is

23.608%.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2 Intel

Xeon 6138 CPUs. 40 cores were requested for each experiment.
* For each cell in the table, the value outside the brackets represents the excess risk of the classifier.

The first and second numbers inside the brackets denote the computing time of each experiment

consisting of 100 trials and the memory utilisation, respectively.

219

Example 2: varying streaming data sizes In the second simulated example,

we investigate how different streaming data sizes affect the performance of the

renewable methods. Since the training datasets are the same with a fixed size of

Nb = 2000, the performance of the offline method remains constant in this example.

Specifically, for the renewable estimation methods, we test the sizes of the streaming

data, nb = 400, 500, 1000. We examine covariates with strong correlation and set the

correlation parameter ρ = 0.5. In the screening process, for the renewable estimation

methods, ⌊nb/(4× log(nb))⌋, ⌊nb/(5× log(nb))⌋ and ⌊nb/(9× log(nb))⌋ variables are

selected for the case where the streaming data comes in sizes of nb = 400, 500, 1000

respectively, while for the offline method, ⌊nb/(10× log(nb))⌋ variables are selected.

Table 4.51-Table 4.53 record the outcomes for this case.

In Table 4.51, the results show the performance of β̃IIS−SCADs, β̃IISV1−SCADs, and

β̂∗
IIS−SCADs. Presetting fair settings for searching the tuning parameters λs of SCAD

guarantees that desirable values of the λs can be achieved and have a less negative

influence on the results. Clearly, β̃IIS−SCADs and β̃IISV1−SCADs outperform β̂∗
IIS−SCADs.

Trained by the same datasets, the performance of β̃IIS−SCADs and β̃IISV1−SCADs are

almost the same in this case. The accuracy of the renewable estimates is less affected

by the size of the streaming data batches, as evidenced by the similar MMRSEs and

close AMRSEs in all cases.

Table C.11 records the ESEs and SDs and can be found in Appendix C.1. The

performance of variable selection for each method is presented in Table 4.52. The

offline method using IIS-SCAD finds all the important features while it performs the

worst with the largest numbers of incorrect non-zero estimates for zero coefficients

of β and with the lowest CPs for non-zero coefficients when compared with other

renewable estimates. Both renewable estimation methods have few numbers of

incorrect zero estimates and non-zero estimates across different cases. Specifically,

when nb = 400, β̃IISV1−SCAD has the highest number of missing significant features,

while with the increase in the size of the streaming data, the improvement is evident.

β̃IISV1−SCADs have the least incorrect non-zero estimates, which shows the renewable

estimation method using IISV1-SCAD generates better interpretable models compared

with the other two methods.

The excess risks of the three classifiers, as well as the corresponding computing

time and memory utilisation, are recorded in Table 4.53. As for the two incremental

220

algorithms, when studying the same datasets, their computing time is very close

to each other. In this example, the renewable classifiers perform closely to the

Naive Bayes classifier and are more efficient than the traditional offline classifiers.

Both renewable classifiers have stable performance with the change in sizes of the

streaming data.

The most noticeable difference among the three methods is that, compared with

both renewable estimation methods, the offline method needs more than twice the

time to study the same datasets even if more computing resources are allocated.

Table 4.51: AMRSEs and MMRSEs (in brackets) of estimates

nb β̃IIS−SCAD β̃IISV1−SCAD β̂∗
IIS−SCAD

400 0.014(0.002) 0.015(0.002) 0.065(0.056)

500 0.012(0.002) 0.011(0.002) 0.065(0.056)

1000 0.012(0.002) 0.012(0.002) 0.065(0.056)

* All values recorded in this table multiplied by 10−3 are true values.
* The size of full training data is Nb = 2000.

Table 4.52: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

nb β̃IIS−SCAD β̃IISV1−SCAD β̂∗
IIS−SCAD

400
non0 coeff. 0.08(0.910000) 0.11(0.912500) 0(0.790000)
0 coeff. 0.67(0.999977) 0.67(0.999977) 22.76(0.995441)

500
non0 coeff. 0.04(0.917500) 0.07(0.922500) 0(0.790000)
0 coeff. 0.58(0.999983) 0.55(0.999983) 22.76(0.995441)

1000
non0 coeff. 0.01(0.897500) 0.01(0.892500) 0(0.790000)
0 coeff. 1.03(0.999930) 0.78(0.999930) 22.76(0.995441)

* β3000×1 has 4 non-zero coefficients.

221

Table 4.53: Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂∗
IIS−SCAD

s, and computing
time and memory utilisations (in brackets)

nb ER(Cβ̃IIS−SCAD
) ER(Cβ̃IISV1−SCAD

) ER(Cβ̂IIS−SCAD
)

400 0.985517(32:16:05,4.53 GB) 0.982977(31:18:03,3.21 GB) 0.923126(52:19:39,22.36 GB)

500 0.988947(33:03:17,5.06 GB) 0.987330(31:35:39,3.66 GB) 0.923126(52:19:39,22.36 GB)

1000 0.991857(35:35:47,8.66 GB) 0.992944(34:24:24,6.76 GB) 0.923126(52:19:39,22.36 GB)

* The misclassification rate of Bayes classifier is 28.988%
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. 40 cores were requested for each experiment.
* For each cell in the table, the value outside the brackets represents the excess risk of the classifier.

The first and second numbers inside the brackets denote the computing time of each experiment

consisting of 100 trials and the memory utilisation, respectively.

Example 3: varying training data sizes. In the last example of this section,

we compare our renewable estimation methods with the offline method by using

different sizes of training datasets. Specifically, the full-size training datasets with

sizes of Nb = 1000, 1500, 2000, 2500, are studied separately. The streaming data

comes in a fixed size of nb = 500 and the correlation parameter is set as ρ = 0.5.

In the screening process, for the renewable estimation methods, ⌊nb/(5× log(nb))⌋

variables are selected, and for the offline estimation methods, ⌊nb/(9 × log(nb))⌋,

⌊nb/(13×log(nb))⌋, ⌊nb/(15×log(nb))⌋ and ⌊nb/(20×log(nb))⌋ variables are selected

for the training datasets with a size of Nb = 1000, 1500, 2000, 2500, respectively.

Under this setting of the offline method, the numbers of selected variables are close

across different cases. Table 4.54-Table 4.56 record the numerical results for this case.

Table 4.54 presents the AMRSEs and MMRSEs of the renewable estimates and

the estimates from the offline method. The results show that the accuracy of all

estimates improves when the size of the training data increases, which can be seen

by the decrease of MMRSEs of the estimates. As observed in the previous examples,

Example 1 and Example 2, both renewable estimates demonstrate substantially

better overall performance than the offline estimates, with much lower AMRSEs,

when trained by the same datasets. When the training data size increases, the

difference between the offline method and the renewable methods becomes smaller,

but the renewable methods still exhibit noticeably better performance than the offline

method.

222

Table C.12 records the ESEs and SDs from the three estimation methods and is in-

cluded in Appendix C.1. As seen in Table 4.55, all methods exhibit good performance

in variable selection. In detail, the incorrect zero estimates of β̂s are lower than those

of β̃IIS−SCADs and β̃IISV1−SCADs. However, the difference is not substantial, and for

both renewable estimation methods, only a few significant features are missed in 100

repetitions. Moreover, CPs of β̂s for the non-zero coefficients are notably lower than

those of β̃IIS−SCADs and β̃IISV1−SCADs. The outcomes are consistent with the previous

two simulated examples in this section, β̂s in that they have visibly more incorrect

non-zero estimates than β̃IIS−SCADs and β̃IISV1−SCADs. The two renewable estimation

methods have similar performance in variable selections.

Excess risks of the classifiers and the computing time are shown in Table 4.56.

The table demonstrates that, with different size training datasets, both renewable

classifiers behave almost the same as the Naive Bayes classifiers, as indicated by the

excess risks being close to 1 in various situations. Both renewable classifiers make

fewer mislabels in this example than the classifier of the offline method. In addition,

the renewable estimation methods once again display obvious advantages over the

offline method with significantly reduced computing time and resources.

Table 4.54: AMRSEs and MMRSEs (in brackets) of estimates

Nb 1000 1500 2000 2500

β̃IIS−SCAD 0.019(0.005) 0.014(0.003) 0.012(0.002) 0.011(0.001)
β̃IISV1−SCAD 0.020(0.006) 0.013(0.003) 0.011(0.002) 0.011(0.001)
β̂∗

IIS−SCAD 0.053(0.008) 0.071(0.003) 0.065(0.056) 0.046(0.001)

* All results are the numbers in the table ×10−3.

Table 4.55: Average numbers of incorrect zero estimates for non-zero coefficients
and incorrect non-zero estimates for zero coefficients, along with the coverage
probabilities (in parentheses) for β

Nb 1000 1500 2000 2500

β̃IIS−SCAD
non0 coeff. 0.04(0.887500) 0.04(0.892500) 0.04(0.917500) 0.04(0.890000)
0 coeff. 0.89(0.999930) 0.65(0.999963) 0.58(0.999983) 0.53(0.999993)

β̃IISV1−SCAD
non0 coeff. 0.07(0.887500) 0.07(0.902500) 0.07(0.922500) 0.07(0.905000)
0 coeff. 0.88(0.999883) 0.59(0.999970) 0.55(0.999983) 0.52(0.999997)

β̂∗
IIS−SCAD

non0 coeff. 0.01(0.832500) 0(0.752500) 0(0.790000) 0(0.820000)
0 coeff. 12.50(0.999663) 11.50(0.999893) 22.76(0.995441) 11.33(0.999997)

* β3000×1 has 4 non-zero coefficients.

223

Table 4.56: Excess risks of Cβ̃IIS−SCAD
s, Cβ̃IISV1−SCAD

s and Cβ̂∗
IIS−SCAD

s, and computing
time and memory utilisations (in brackets)

Nb 1000 1500 2000 2500

ER(Cβ̃IIS−SCAD
)

0.979060
(32:16:35,4.25 GB)

0.983978
(32:43:56,4.24 GB)

0.988947
(33:03:17,5.06 GB)

0.992128
(33:13:48,5.11 GB)

ER(Cβ̃IISV1−SCAD
)

0.976158
(31:37:43,3.59 GB)

0.981646
(31:46:50,3.62 GB)

0.987330
(31:35:39,3.66 GB)

0.991111
(31:42:22,3.72 GB)

ER(Cβ̂∗
IIS−SCAD

)
0.957648
(36:05:31,7.16 GB)

0.959423
(40:20:13,11.69 GB)

0.987330
(31:35:39,22.36 GB)

0.923126
(52:19:39,22.19 GB)

* We have the same 500 out-of-sample testing data for each case. The misclassification rate of

Bayes classifier is 28.988%.
* We implemented each experiment with 100 independent trials using C++ and ran them on 2

Intel Xeon 6138 CPUs. 40 cores were requested for each experiment.
* For each cell in the table, the value in the first row outside the brackets represents the excess risk

of the classifier. The first and second numbers inside the brackets denote the computing time of

each experiment consisting of 100 trials and the memory utilisation, respectively.

In summary, we conduct three simulated examples with datasets consisting of

high-dimensional data with more covariates than the total sample sizes (p > Nb).

The simulation study compares the renewable estimation methods using IIS-SCAD

and IISV1-SCAD with the offline method using IIS-SCAD. We have found that our

renewable estimation methods using IIS-SCAD and its variant can generate accurate

estimates, identify the important features, and also have efficient classifiers with

performance comparable to Bayes classifiers. The renewable estimates are stable with

changes in the correlation of the covariates, the sizes of the streaming data batches,

and the sizes of the total training data. Furthermore, the advantages of the two

renewable estimation methods over the offline method are that they generate more

interpretable models and require less time in computing. We demonstrate that our

proposed renewable methods can work well for high-dimensional datasets and are

less computationally expensive than the traditional offline method.

4.7 Real data analysis

In this section, we explore the practical application of our proposed penalised renew-

able estimation methods. We conduct the analysis on data obtained from the National

Automotive Sampling System Crashworthiness Data System. Monthly accident data

have been compiled to generate streaming data for a seven-year period, from January

224

2009 to December 2015. We treat the streaming data collected during the same month

as a “data batch” and denote it as Bb, b = 1, · · · , 84, with a total of 84 data batches

as training datasets available.

The “Fatality” resulting from a crash serves as the dependent variable and is

denoted as yi = {0, 1}, i = 1, · · · , Nb, where Nb represents the size of the entire

training dataset for these seven years. Following Luo and Song (2020)’s work, we

encode the three age groups in our analysis using dummy variables as well, with the

middle-aged group serving as the reference. Table 4.57 provides detailed explanations

for the variables studied in this section of the datasets. We have the observations

denoted as Xi, i = 1, · · · ,Nb, and we represent the predictor variables as Xi =

(x1i, · · · , xpi)T , which is a p-vector, while p denotes the number of predictor variables

in the dataset. There is an intercept term in our model, so x1i ≡ 1, i = 1, · · · ,Nb.

We assume that

πy(Xi) = P(yi = 1|Xi), logit{πy(Xi)} = XT
i β,

where β is a p-dimensional vector that represents the coefficients associated with the

predictor variables.

We examine two datasets with various predictor factors (predictor variables)

using logistic regression analysis to investigate the relationship between fatality in

an accident and these predictor variables. Assuming sparsity, there are unimportant

factors involved.

We aim to find the MLEs of the unknown parameter β using our proposed

iterative estimation methods introduced in Section 4.2.2 and Section 4.4.1. In addition,

we apply the offline estimation method described in Section 4.2.1 to study the entire

training dataset with a sample size of Nb. The offline method assumes access to

all data at once and serves as a benchmark for comparing the performance of the

iterative estimation methods. We integrate the SCAD penalty function into the models

that have a penalty term, which can accomplish estimation and variable selection

simultaneously. We assign the value of parameter a as 3.7 in the penalisation function

(2.4). For the process of selecting the tuning parameter λ of the SCAD penalty function,

we employ mLPOCV process described in Section 4.3.1, with a fixed cross-validation

sample size of ncv = 20. In this section, we use preset search intervals and steps with

225

appropriate sizes for the analysis. To avoid the zero absorbing state as far as possible,

we set the threshold σ0 in Equation (4.16) to 10−10 when analysing the monthly data

for the years 2009-2011, and to 10−2 for the later years. To implement the penalised

offline method, we define a threshold of σ0 = 10−2 for the estimate of βj, j = 1, · · · ,p,

to reach 0 during the estimation process iterations.

We perform the Wald test for the final renewable estimate β̃84 and also the offline

MLE β̂∗. Our null hypothesis is H0 : βj = 0, against H1 : βj ̸= 0, j = 1, · · · , 9, with

a significance level of α = 0.05. The p values for each estimate are recorded in the

following tables.

Referring to (3.6), we can test the efficiency of the classifiers. Specifically, we use

the next month’s data batch Bb+1 as the out-of-sample testing data for the estimates

β̃b, b = 1, · · · , 83. Consequently, there are 83 testing data batches. The reason for

choosing the following monthly data batch is that data collected in different batches

may not be identically distributed, and significant features can change over time.

Therefore, we believe that predictions on more recent data can more effectively

measure the performance of renewable estimates. We also use the same 83 data

batches Bb+1, b = 1, · · · , 83, to evaluate the efficiency of the offline classifier. It

should be noted that this constitutes an in-sample test for the offline classifier. The

misclassification rates of the offline classifiers serve as a benchmark for comparing

the performance of the renewable classifiers in this section.

226

Table 4.57: Variable Descriptions

Variables Data Type Description

Dependent (y)

fatality Nominal
1 for there is death case and
0 for otherwise (in the data “FATAL” AND “FATAL-RULED DISEASE”).

Independent (X)

AGE Categorical
Driver’s age categorized as YOUNG(< 21), OLD(⩾ 65),
and Reference group(21 ⩽ age < 65).

SEX Nominal Gender of the driver (1 for Male, 0 for Female).

PARUSE Nominal Police-reported seat belt use (1 for Used, 0 for Not Used).

LGTCOND Nominal
Daylight condition at the time of the crash
(0 for Daylight, 1 for Not Daylight).

DRINKING Nominal Police-reported alcohol involvement (1 for Yes, 0 for No).

FOURWHDR Nominal
Four-wheel drive status of the vehicle
(1 for Four-wheel Drive, 0 for Not Four-wheel Drive).

TRCTLFCT Nominal
Traffic control device functioning properly at the time of the crash
(1 for Functioning Properly, 0 for Not Functioning Properly).

DRGINV Nominal
Drug involvement reported for any involved driver
(1 for Yes, 0 for No).

ALIGNMNT Nominal
If a roadway which has a curvature of a roadway, left or right, it is 1
or there is no perceptually determined curvature is 0.

CLIMATE Nominal
The clear atmospheric condition is 0
and other conditions are denoted as 1.

SURCOND Nominal
The precrash environment data presented in the location.
The variable is 0 if it is dry or the variable is 1 with other cases.

TRAFFLOW Nominal
The variable is 0 if it is one-way traffic
or no divided in the road, and it is 1 for other cases.

VEHNO Continuous The number of cars get involved in the crash.

OCUPANTS Continuous The number of occupants structured into the case for this vehicle.

LANES Continuous Roadway-number of travel lanes.

SPLIMIT Continuous Identified speed limits for crash scene locations.

VEHAGE Continuous The age of the vehicle in the crash.

WEIGHT Continuous The driver’s weights.

HEIGHT Continuous The driver’s heights.

Case 1: For the first analysis in this section, we study the same dataset as Luo

and Song (2020). Specifically, seven features—“Age”, “Sex”, “PARUSE”, “LGT-

COND”, “DRINKING”, “SPLIMIT”, and “TRCTLFCT”—are selected for the dataset

as predictor variables, and the observations are denoted as xji, where i = 1, · · · ,Nb,

j = 2, · · · ,p, and p = 9. After removing missing values, the full-size training data we

employ consists of Nb = 23184 observations which are kept in b = 84 data batches.

We compare Luo and Song (2020)’s renewable estimation approach not considering

variable selections and denote the estimates as β̃b,λ=0, with our proposed penalised

incremental algorithms in Section 4.2.2 and Section 4.4.1, denoted as β̃b,λ and β̃b,λ∗

227

respectively. In addition, we apply the unpenalised offline method and the penalised

offline method for keeping consistency with the online unpenalised method and

the online penalised method, and the estimates of β are denoted as β̂∗
b,λ=0 and β̂∗

b

respectively.

Table 4.58 presents the estimated coefficients and p-values from the aforemen-

tioned renewable estimation methods and also the offline estimation methods. All

unpenalised and penalised renewable estimation methods perform very close to

the corresponding offline methods, which is shown by the small difference between

β̂∗
84,λ=0 and β̃84,λ=0, and between β̂∗

84 and β̃84,λ and between β̂∗
84 and β̃84,λ∗ . For the re-

sults of unpenalised offline and online methods, we have the same conclusion as Luo

and Song (2020). In detail, from the recorded p-values of the Wald test, the variable

YOUNG is not significantly associated with the dependent variable at a significance

level of α = 0.05, while the other predictors exhibit significant associations. More-

over, both the small numerical results of β̃84,λ=0 and β̂∗
84,λ=0 reveal that the predictor

variables for SEX, LGTCOND, and TRCTLFCT have a weaker impact, which also

corroborates the claim made by Luo and Song (2020) that these variables are the weak-

est predictors. In comparison, the penalised offline method and both our proposed

approaches, which can perform estimation and variable selection simultaneously,

explicitly identify that the predictor variable YOUNG associated with the driver’s

age which is under 21 is insignificant. Besides, the offline penalised method and the

renewable estimation with constant penalty term during the iterations show that the

predictor variables of gender, the variable SEX, has minimal influence on accident

fatalities, while β̃84,λ gives non-zero value to the predictor variable related to gender.

For the weak predictor variable LGTCOND, both the penalised offline method and

the renewable method with iterative penalty term view it as an insignificant feature

however, the value of β̃84,λ shows the opposite conclusion. We note that the penalised

offline method evaluates the variable TRCTLFCT as an insignificant feature while

both two renewable estimation methods have different conclusions, although the

values of the estimates are small, the p values are much less than α = 0.05 and the

null hypothesis is rejected under the given significance level.

The 95% pointwise confidence intervals for βj, j = 1, · · · , 9, are illustrated in

Figure 4.1-Figure 4.3. The two offline estimates (β̂∗
λ=0)j and β̂∗

j , j = 1, · · · , 9, are

incorporated in the plots corresponding to the unpenalised renewable estimates and

228

the penalised renewable estimates separately. The plots demonstrate that the perfor-

mance of the incremental algorithms is comparable to that of the offline methods in

terms of efficacy. Figure 4.1 provides a clear visualization that, in the SCAD-based

methods, the predictor variable YOUNG has no significant effect on the dependent

variable. In particular, in the estimation process with either a constant penalty term or

the iterative penalty term through iterations, the renewable estimates associated with

this predictor gradually approach 0 and become exactly zero around the monthly

data collected in December 2011. The estimate of the predictor from the penalised

offline method is also 0. However, the methods that do not consider variable selection

still provide estimates for the predictor variable YOUNG, but the confidence intervals

obtained from both methods show that the interval includes the value 0.

Figure 4.2 and Figure 4.3 demonstrate that the offline penalised method clearly

shows that the predictors associated with gender, light condition, and traffic control

function have no impact on accident fatalities. Likewise, the trace plots of the renew-

able method with constant penalty term during iteration show the exact same trace as

the offline penalised estimation method. However, the trace plot of the renewable es-

timation with the iterative penalty term indicates a different trend with the increasing

trend values of the variable SEX. For the predictor variable LGTCOND, the estimation

process with iterative penalty term is consistent with the penalised offline method,

as shown by the estimated value being 0 at the end of the year 2010; In contrast, the

estimation process with constant penalty term differs from the offline estimation

process, displaying an increasing trend of the varaible LGTCOND. Although the

two penalised renewable methods indicate different conclusions compared to the

penalised offline method, which reject the null hypothesis and give non-zero values to

the estimates for the predictor variables SEX, LGTCOND, and TRCTLFCT, the given

values are small. It is worth noting that the estimates for the three predictors that are

assigned non-zero values by both the penalised renewable methods are similar to

those of the unpenalised offline and online methods.

In this analysis, we also observe that the misclassification rates of all classifiers

are identical. Figure 4.4 depicts the misclassification rates of the classifiers, which

exhibit precisely the same trend when tested on 83 monthly data batches. Table C.13

in Appendix C.1 records the details of the size of each testing data batch and the

misclassification rates of classifiers of unpenalised methods, which are Cβ̂∗
λ=0

and

229

Cβ̃b,λ=0
, and the classifiers of the penalised methods, which are Cβ̂∗

b
, Cβ̃b,λ

, and Cβ̃b,λ∗
,

where b = 1, · · · , 83. For all the tested classifiers, the averaged misclassification rate

for the 83 testing data batches is identical, which is 3.3707%.

In summary, both unpenalised and penalised online algorithms are adept at pro-

ducing estimates that closely resemble the values obtained from their respective

unpenalised and penalised offline counterparts. Moreover, the penalised renewable

estimation methods generate more comprehensible models, which can aid in de-

vising policies aimed at effectively mitigating fatal crash outcomes. For example,

this could involve confidently implementing checks for drivers over the age of 65,

while avoiding the allocation of extra effort to check young drivers under 21, thus

conserving resources.

Table 4.58: Comparisons of β̂∗
84,λ=0 and β̃84,λ=0 with β̂∗, β̃84,λ and β̃84,λ∗

Unpenalised methods Intercept YOUNG OLD SEX PARUSE LGTCOND DRINKING SPLIMIT TRCTLFCT

β̂∗
84,λ=0

Estimates -3.078550 -0.052275 0.888406 0.318312 -1.084010 0.393369 0.861523 0.381774 -0.285487

p values < 10−6 0.679512 < 10−6 0.000061 < 10−6 0.000002 < 10−6 < 10−6 0.001196

β̃84,λ=0

Estimates -3.037070 -0.0536644 0.887480 0.313039 -1.101370 0.392372 0.856984 0.381366 -0.295664

p values < 10−6 0.687054 < 10−6 0.000056 < 10−6 0.000002 < 10−6 < 10−6 0.000662

|(β̂∗
j)84,λ=0 − (β̃j)84,λ=0| 0.041478 0.001389 0.000926 0.005273 0.017362 0.000997 0.004539 0.000408 0.010177

penalised methods Intercept YOUNG OLD SEX PARUSE LGTCOND DRINKING SPLIMIT TRCTLFCT

β̂∗
84

Estimates -2.822521 0 0.819037 0 -1.141305 0 1.106345 0.444160 0

p values < 10−6 1.000000 < 10−6 1.000000 < 10−6 1.000000 < 10−6 < 10−6 1.000000

β̃84,λ

Estimates -2.854330 0 0.900608 0 -1.124860 0.433900 0.854183 0.374177 -0.283943

p values < 10−6 1.000000 < 10−6 1.000000 < 10−6 < 10−6 < 10−6 < 10−6 0.000900

|β̂∗
84,j − (β̃j)84,λ| 0.03181 0 0.081571 0 0.01645 0.4339 0.252157 0.069983 0.283943

β̃84,λ∗

Estimates -2.904430 0 0.777164 0.341383 -1.048210 0 1.021490 0.358074 -0.311303

p values < 10−6 1.000000 < 10−6 0.000007 < 10−6 1.000000 < 10−6 < 10−6 0.000188

|β̂∗
84,j − (β̃j)84,λ∗ | 0.081910 0 0.041873 0.341383 0.0931 0 0.084850 0.086086 0.311303

* β̂∗
84,λ=0 denotes the results obtained from the offline method without variable selection, while β̃84,λ=0

represents the results obtained from the renewable estimation method without variable selection. On

the other hand, β̂∗
84,λ denotes the results obtained from the offline method incorporating SCAD, while

β̃84,λ and β̃84,λ∗ represent the results obtained from the penalised renewable estimation methods

introduced in Section 4.2.2 and Section 4.4.1, respectively.
* The mean absolute difference between β̂∗

84,λ=0 and β̃84,λ=0 is 0.009172, the mean absolute difference

between β̂∗
84 and β̃84,λ is 0.129979, and the mean absolute difference between β̂∗

84 and β̃84,λ∗ is

0.115612.

230

Figure 4.1: Trace plots for the coefficient estimates of “INTERCEPT”, “YOUNG”, and “OLD”. The
blue lines represent the 84 monthly renewable estimates, and the areas between the two red lines
denote their 95% pointwise confidence zones. The black lines correspond to the estimates from the
offline methods, with their values marked on the plots, while the green shaded areas indicate the
95% confidence intervals. The three plots in the first row display estimates for the online and offline
methods without the penalty function, and the three plots in the second row depict estimates for the
online and offline methods using SCAD. The blue dotted lines serve as reference lines for 0 values.

Figure 4.2: Trace plots for the coefficient estimates of “SEX”, “PARUSE” and “LGTCOND”. The
blue lines represent the 84 monthly renewable estimates, and the areas between the two red lines
denote their 95% pointwise confidence zones. The black lines correspond to the estimates from the
offline methods, with their values marked on the plots, while the green shaded areas indicate the
95% confidence intervals. The three plots in the first-row display estimates for the online and offline
methods without the penalty function, and the three plots in the second row depict estimates for the
online and offline methods using SCAD. The blue dotted lines serve as reference lines for 0 values.

231

Figure 4.3: Trace plots for the coefficient estimates of “DRINKING”, “SPLIMIT” and “TRCTLFCT”.
The blue lines represent the 84 monthly renewable estimates, and the areas between the two red lines
denote their 95% pointwise confidence zones. The black lines correspond to the estimates from the
offline methods, with their values marked on the plots, while the green shaded areas indicate the
95% confidence intervals. The three plots in the first-row display estimates for the online and offline
methods without the penalty function, and the three plots in the second row depict estimates for the
online and offline methods using SCAD. The blue dotted lines serve as reference lines for 0 values.

Figure 4.4: Trace plots for the misclassification rates of renewable classifiers and offline classifiers.
The testing data batches are Bb+1, where b = 1, · · · , 83. The blue lines represent the misclassification
rates of renewable classifiers, while the black dotted lines correspond to the classifiers from offline
methods. The top plot displays the renewable classifier Cβ̃b,λ=0

and Cβ̂∗
λ=0

; the middle plot showcases
the renewable classifier Cβ̃b,λ

and Cβ̂∗ ; the bottom plot features the renewable classifier Cβ̃b,λ∗ and
Cβ̂∗ , where b = 1, · · · , 83.

Case 2: In the second real data analysis in this section, we examine more predictor

variables in the dataset compared to Case 1. It is more practical to include additional

232

predictor variables when conducting an analysis, as researchers typically collect data

on numerous factors. By considering a broader range of factors, we avoid overlooking

any potentially important ones. However, many factors might be insignificant, and it

can be difficult to manually determine their correlation with the response variable.

To address this issue, we employ the SCAD penalty function for variable selection to

identify the essential features.

In detail, the dataset comprises incidents that occurred between January 2009 and

December 2015, with 84 monthly data batches, each considered as a single streaming

data batch Bb, b = 1, · · · , 84. We include the categorical variable “AGE”, and similar

to Case 1, we use dummy variables and separate drivers with different ages into

three groups. In addition to the predictor variables considered in Case 1 (“Age”,

“Sex”, “PARUSE”, “LGTCOND”, “DRINKING”, “SPLIMIT”, and “TRCTLFCT”), we

incorporate 12 extra factors into the dataset and p = 21, denoted as “OURWHDR”,

“DRGINV”, “ALIGNMNT”, “CLIMATE”, “SURCOND”, “TRAFFLOW”, “VEHNO”,

“OCUPANTS”, “LANES”, “WEIGHT”, and “HEIGHT”. After removing missing

values, the full-size training dataset consists of Nb = 11884 observations.

For this dataset, Luo and Song (2020)’s method without variable selection fails

to converge; therefore, we only present the numerical results of the methods incor-

porating the SCAD penalty function. These methods include the offline penalised

estimation method and the renewable penalised estimation methods introduced in

Section 4.2.2 and 4.4.1. For simplicity, we omit the term ”penalised” in the follow-

ing context when referring to both the offline and online estimation methods using

SCAD.

Table 4.59 displays the estimated values of the coefficients for the three methods,

the p-values from the hypothesis tests, and the absolute values of the differences

between the estimates from the offline method and the renewable estimation methods.

Similar to Case 1, both renewable estimation methods exhibit performance closely

aligned with the offline estimation method, as evidenced by the small values of

the absolute differences between the estimates of (β̂j)
∗
b and (β̃j)b,λ, and (β̃j)b,λ∗ , for

j = 1, · · · , 21. Furthermore, all results indicate that factors coded as OLD, PARUSE,

DRINKING, and SPLIMIT are significant features, as demonstrated by the non-

zero values of the estimates and p-values less than 0.05, consistent with Case 1.

Additionally, among the added features, the offline method selects factors related

233

to drug use (DRGINV), roadway curvature (ALIGNMNT), and identified speed

limits at crash scene locations (SPLIMIT) as significant features as well. For other

features, the offline method considers them insignificant and assigns 0 values to them.

It is worth mentioning that the renewable estimation method, which incorporates

iterative penalty terms during iterations, considers factors SEX, LGTCOND, and

TRCTLFCT as insignificant features. These factors are assigned 0 values and yield

different conclusions compared to Case 1. In contrast, for β̃b,λ, a non-zero value

is assigned to SEX, but the hypothesis test does not reject the null hypothesis, and

LGTCOND is still regarded as a significant feature.

It is apparent that the renewable estimation method with the iterative penalty

term demonstrates a performance closer to the offline method in variable selection.

For the significant features, the renewable estimation method with the iterative

penalty term identifies almost the same important features as the offline estimation

method. However, the renewable estimation method employing a constant penalty

term during iteration selects a larger number of features. For the insignificant features,

β̃84,λ∗ also displays a performance more aligned with β̂∗
84, meaning that for features

considered as insignificant by the methods, the assigned values are 0s, whereas β̃84,λ

allocates non-zero values to the features, even when the p-values are considerably

higher than α = 0.05, suggesting no rejection of the null hypothesis.

Figure 4.5 illustrates the misclassification rates of Cβ̂∗
b
, Cβ̃b,λ

, and Cβ̃b,λ∗
, where

b = 1, · · · , 83, and the testing data is in batch Bb+1. Table C.14 in Appendix C.1

documents the details of the size of each testing data batch and the misclassification

rates of each classifier. The overall performance and trend of the three classifiers are

similar. Specifically, the average misclassification rate for the 83 classifiers of Cβ̂∗
b

is

3.9660%, for Cβ̃b,λ
s is 3.8926%, and for Cβ̃b,λ∗

s is 3.9365%, where b = 1, · · · , 83. The

overall performance of the classifiers from the renewable estimation method with

a constant penalty term is marginally better than both the offline method and the

renewable estimation method using an iterative penalty term during iterations.

In summary, when more features are involved in the collected dataset, the renew-

able estimation method that does not consider variable selection fails to perform

effectively. As such, the method not considering variable selection is not recom-

mended due to its limited analytical capabilities. Both proposed penalised renewable

estimation methods incorporating SCAD work well in achieving low misclassification

234

rates for out-of-sample validations and demonstrate a performance close to the offline

method. However, the offline method has well-known disadvantages, including the

ideal assumption of having access to the entire training dataset and the extensive

resources required for storage and computation. Our proposed incremental algo-

rithms offer significant advantages over the offline method in terms of computational

efficiency and resource savings. The renewable estimation with the iterative penalty

term can generate more interpretable models than the renewable estimation method

using a constant penalty term, which can be explained by their algorithms introduced

in Section 4.2.2 and Section 4.4.1. More specifically, the renewable estimation with the

iterative penalty term includes an additional penalty term related to the estimator

of the iteration, while the method using the constant penalty term is based on the

historical estimate.

235

Table 4.59: Comparisons of β̂∗
84,λ , β̃84,λ and β̃84,λ∗

β̂∗
84,λ β̃84,λ β̃84,λ∗

Estimates p values Estimates p values |β̂∗
j − (β̃j)84,λ| Estimates p values |β̂∗

j − (β̃j)84,λ∗ |

Intercept -2.952385 < 10−6 -3.126050 < 10−6 0.173660 -2.952450 < 10−6 0.000060

YOUNG 0 1.000000 0 1.000000 0 0 1.000000 0

OLD 1.095510 < 10−6 1.146640 < 10−6 0.051130 1.127080 < 10−6 0.031570

SEX 0 1.000000 0.0871726 0.452506 0.087173 0 1.000000 0

PARUSE -1.416917 < 10−6 -1.333950 < 10−6 0.082970 -1.388820 < 10−6 0.028100

LGTCOND 0 1.000000 0.386738 0.000935 0.386738 0 1.000000 0

DRINKING 0.490140 0.001469 0.356169 0.038865 0.133971 0.491575 0.002413 0.001435

FOURWHDR 0 1.000000 -0.127282 0.323737 0.127282 0 1.000000 0

TRCTLFCT 0 1.000000 0 1.000000 0 0 1.000000 0

DRGINV 1.634611 < 10−6 1.602850 < 10−6 0.031760 1.638770 < 10−6 0.004160

ALIGNMNT 0.423420 0.000171 0.332916 0.005479 0.090504 0.394359 0.000688 0.029061

CLIMATE 0 1.000000 0 1.000000 0 0 1.000000 0

SURCOND 0 1.000000 -0.113413 0.404823 0.113413 0 1.000000 0

TRAFFLOW 0 1.000000 0 1.000000 0 0 1.000000 0

VEHNO 0 1.000000 0.079532 0.154801 0.079532 0 1.000000 0

OCUPANTS 0 1.000000 0.081675 0.109400 0.081675 0.120591 0.011061 0.120591

LANES 0 1.000000 0.402179 0.021799 0.128336 0 1.000000 0

SPLIMIT 0.433783 < 10−6 0.383206 < 10−6 0.050577 0.402179 < 10−6 0.031604

VEHAGE 0 1.000000 0.230883 0.000004 0.230883 0.225579 0.000007 0.225579

WEIGHT 0 1.000000 0.191136 0.000344 0.191136 0 1.000000 0

HEIGHT 0 1.000000 0 1.000000 0 0 1.000000 0

Computing time 02:58:31 00:07:04 00:11:57

Memory Utilised 1.08 GB 13.34 MB 13.31 MB

* β̂∗
84,λ denotes the results obtained from the offline method incorporating SCAD, while β̃84,λ and

β̃84,λ∗ represent the results obtained from the penalised renewable estimation methods introduced

in Section 4.2.2 and Section 4.4.1, respectively.
* The mean absolute difference between β̂∗

84 and β̃84,λ is 0.0971773 and the mean absolute difference

between β̂∗ and β̃84,λ∗ is 0.02248381.
* We implemented each experiment using C++ and ran them on 1 Intel Xeon 6138 CPUs. For each

experiment of renewable estimations, we requested one core.

236

Figure 4.5: Trace plots for the misclassification rates of two renewable classifiers and the offline
classifier. The testing data batches are Bb+1, where b = 1, · · · , 83. The blue lines represent the
misclassification rates of renewable classifiers, while the black dotted lines correspond to the classifier
from the offline method. The top plot displays the renewable classifier Cβ̃b,λ

and Cβ̂∗ ; the bottom plot

shows the renewable classifier Cβ̃b,λ∗ and C(β̂∗), where b = 1, · · · , 83.

237

5 Discussion

In this chapter, we encapsulate our main conclusions relating to classification with

mislabelling and online algorithms for streaming data. Both topics are approached

within a wide range of applications, particularly in the context of sparse datasets,

including those that are high-dimensional. These scenarios present notable challenges

and necessitate the use of specialised techniques and methodologies. We also discuss

potential areas for further exploration in these two research domains.

5.1 Research objective 1: Classification with mislabelled data

We propose novel methods for addressing binary classification problems in the

presence of mislabelling, which is a prevalent issue in real-world problems. In our

study, the dataset under investigation contains incorrect labels, and the correct labels

for each observation are unknown. Our study explores a versatile scenario where

label noise exhibits dependencies on both the class and the features.

To tackle this challenge, we adopt the resampling approach, which provides

practicality, cost-effectiveness, time efficiency, and ease of implementation compared

to traditional data cleansing methods. Consequently, our argument relies on the

condition that the resampled dataset is provided. In detail, our proposed method

consists of a two-step estimation process that incorporates regularisation methods, as

described in Section 3.1 of Chapter 3, which is designed to handle mislabelling in low-

dimensional sparse datasets. Specifically, three unknown parameters, corresponding

to the LR classifier and the flipping probabilities, necessitate estimation in our iterative

algorithm. Additionally, we introduce methods using IS and IIS, which are presented

in Section 3.9 and Section 3.10 respectively. By incorporating IS and IIS into the

method described in Section 3.1, we broaden the applicability of the method to

sparser data, specifically in the context of high-dimensional mislabelled datasets.

We execute a comprehensive simulation study encompassing both low-dimensional

and high-dimensional datasets with mislabelling under various scenarios. Our

method incorporates the SCAD regularisation technique, as proposed by Fan and

Li (2001). Drawing inspiration from the insights of Cannings et al. (2020), who have

pioneered a potent measure for contrasting classifiers against the Bayes benchmark,

our comparisons consistently reflect a performance strikingly analogous to that of

238

the Bayes classifier. For our study’s purposes, the Bayes classifier is constructed

using a classifier with pre-established known values of the unknown parameters,

mirroring the Bayes classifier’s quintessential trait of minimising risk. However,

it is noteworthy to highlight that while the Bayes classifier is universally lauded

for its optimal classification capabilities, it is not devoid of challenges. It typically

necessitates rigorous assumptions concerning class distributions, can be vulnerable

to mislabelling in the training dataset, and at times, might pose computational chal-

lenges. In contrast, the LR classifier, derived from our proposed two-step estimation

method, champions computational feasibility and demonstrates resilience against

mislabelling in the training dataset.

In Section 3.7, we explore alternative methods that handle mislabelling in different

ways. These include utilising the raw corrupted dataset directly, following the

approach used by Cannings et al. (2020), correcting all labels in the dataset, and

correcting only a subset of the data while disregarding label noise during estimation.

We have performed simulation studies using diverse corrupted datasets to compare

our method with the aforementioned alternative methods, as well as with a method

that exclusively utilised the small clean data from the resampled dataset.

Notably, the results demonstrate the significant superiority of our proposed

method over the two methods that do not consider the estimation of flipping proba-

bilities. Importantly, it validates the fact that the LR classifier performs no better than

a random guess when ignoring the imperfectly labelled data. Correcting only a subset

of the dataset without considering flipping probabilities during estimation results in

only minimal improvement in performance. Moreover, our method outperforms the

approach that solely analyses the small clean dataset, demonstrating its effectiveness

in leveraging imperfectly labelled data and enhancing the classifier’s performance

trained on the small resampled data. Furthermore, the comparable performance be-

tween our method and the approach that utilises all corrected data further confirms

the effectiveness of our proposed approach. Considering real-world applications, our

method offers additional advantages such as practicality, time efficiency, cost savings,

and more.

Based on the discussions surrounding the aforementioned classification problem

with mislabelling and low-dimensional data, we have expanded the application of

our method by integrating IS and IIS to address more complex scenarios, including

239

high-dimensional datasets. IS and IIS are widely recognised as effective techniques

for dimensionality reduction, significantly improving the performance of traditional

regularisation methods such as SCAD, particularly in high-dimensional data settings

(Fan and Lv, 2008, Fan and Song, 2010).

In our simulation study involving various high-dimensional datasets with misla-

belling, our proposed method utilising IS-SCAD and IIS-SCAD and studying misla-

belled dataset consistently perform competitively with the methods that incorporate

IS or IIS while studying perfectly labelled datasets. Moreover, our classifier achieved

performance levels comparable to the Bayes classifier. Based on these results, we

can confidently conclude that IS and IIS remain effective even in high-dimensional

datasets with mislabelling. However, a formal proof of this efficacy remains unex-

plored and is earmarked for future investigation.

Indeed, it is crucial to mention that previous studies, including the works by Fan

and Lv (2008), Fan and Song (2010), Saldana and Feng (2018), have highlighted the

limitations of IS when dealing with data that includes irrelevant features that are

marginally associated with significant features. These limitations are also observed

in our simulation study, corroborating the findings from prior research. Therefore,

we strongly recommend adopting the two-step estimation method with IIS. By doing

so, we can effectively address the challenges arising from high-dimensional data and

mislabelling in various scenarios. The inclusion of IIS helps overcome the limitations

associated with IS, ensuring robust performance even in the presence of highly

marginally related insignificant features.

The real data analysis conducted on the FHS study in Section 3.11 demonstrates

the competitive performance of our proposed method compared to the other methods

mentioned, in terms of both model interpretation and classification accuracy.

After summarising the main findings of our study, we would like to discuss

potential extensions for future research. Firstly, our research concentrated on two-

class supervised classification issues for simplicity. However, our proposed method

possesses the potential to address multi-class classification problems and even ex-

tend to unsupervised classification settings. Future studies might consider these

as compelling areas for exploration. Secondly, a significant assumption in most of

our simulated scenarios is that the observations are independent and identically

distributed (i.i.d.). Nevertheless, real-world data often exhibit dependencies, evident

240

in time series data, image data for classification, and text classification. Therefore, an

investigation into the performance of our method on various types of mislabelled

datasets employing novel approaches could provide a fascinating direction for fu-

ture research. Lastly, the extension of our proposed method to more advanced and

adaptable models, such as semi-parametric models, is worth consideration. For in-

stance, generalised additive models (GAMs) can effectively capture both the known

relationships between variables and the potential complexity inherent within the

data. Additionally, non-parametric models, such as Decision Trees, Support Vector

Machines (SVM), K-Nearest Neighbors (KNN), and Neural Networks (NN), can be ex-

plored. These extended applications provide a wider perspective for understanding

and interpreting complex data structures.

5.2 Research objective 2: Online algorithms for streaming data

The challenges posed by streaming data have captured our interest due to its per-

vasive presence in real-world problems and its growing significance in academic

research. Indeed, traditional offline methods are frequently unsuitable for analysing

streaming data due to their high computational demands and resource requirements.

Additionally, offline methods are less preferable for real-time analysis.

Luo and Song (2020) offers a compelling approach to the analysis of streaming

data. Compared to previous methods, their work attains computational efficiency

and loses little information compared to offline methods, enabling the construction

of online references such as confidence intervals. However, considering Luo and

Song (2020)’s work does not extend to the more general case where streaming data is

sparse and potentially high-dimensional, our study focuses on sparse streaming data.

We detail a method in Section 4.2.2 that incorporates a penalty function for the

analysis of low-dimensional streaming data from sparse models. Given the charac-

teristics of renewable estimation, we present another method in Section 4.4. Unlike

the one in Section 4.2.2, which approximates the penalty term around the historical

statistic, this method iteratively updates the penalty term during estimation. Simula-

tion results indicate comparable performance between the two methods in terms of

estimation accuracy. However, the latter excels in eliminating irrelevant features.

Extensive simulation studies have been conducted in our study. Notably, in

241

comparison to the offline method, our method exhibits competitive performance.

Our approach closely resembles the offline method in estimating the accuracy of

unknown parameters and calculating the standard errors of the parameters in various

streaming data scenarios. As our study primarily focuses on logistic regression (LR),

the efficiency of our classifier competes favourably with the traditional offline method

and performs closely to the Bayes classifier. We also compare our proposed method

using SCAD with the method proposed by Luo and Song (2020), which does not

consider variable selection for low-dimensional sparse streaming data, in a simulation

study detailed in Section 4.3.4. Our proposed method noticeably outperforms the

latter in different criteria, including estimation accuracy, variable selection, and

classification efficiency. It is worth noting that Luo and Song (2020)’s method fails to

analyse sparser models, evidenced by inconclusive results.

To apply our method in broader scenarios, such as for sparser and high-dimensional

data, we incorporate IS and IIS into our model, described in Section 4.5 and Section

4.6. Given the nature of streaming data, and considering the historical statistics, the

extensions of IS and IIS in incremental algorithms are discussed. Due to IS’s limita-

tion in analysing data with insignificant features correlated with significant ones, we

recommend using IIS, which is supported by our simulation results. Compared with

the offline method using IIS-SCAD in the simulation study, our method achieves

similar performance in estimation accuracy, variable selection, and classification

efficiency. More importantly, it uses considerably fewer computing resources and

less time. A rigorous proof affirming the sure screening property (2.5) in the context

of our proposed method integrated with IS and IIS has yet to be delineated. We have

designated this topic for in-depth investigation in future research.

Our proposed methods also yield promising results in the real data analysis using

LR on the National Automotive Sampling System Crashworthiness Data System.

When comparing our method to Luo and Song (2020)’s method using the same

dataset, our approach demonstrates superior efficiency, effectiveness, and, most

importantly, interpretable model. We have observed that the method proposed

by Luo and Song (2020) faces challenges when analysing datasets that involved

more predictors. The results once again demonstrate that our methods maintain

comparable performance to the offline method, which serves as the benchmark.

The misclassification rates closely resemble those of the offline method, and the

242

variable selection performance is on par, ensuring the interpretability of the resulting

model. Importantly, our method is more practical, providing timely analysis without

requiring extensive storage for data details, thereby saving resources and preserving

privacy.

Our study has successfully charted several promising avenues for further inves-

tigation. Firstly, our focus primarily resides on logistic regression (LR) applied to

sparse and high-dimensional streaming data. However, our model’s application is

not strictly limited to LR. It holds the potential for generalisation to include other

generalised linear models (GLMs), thereby broadening its utility and relevance across

a more diverse range of data structures. Secondly, in Section 4.4.2, we delve into

the analysis of heterogeneous streaming data, which consists of independent but

non-identically distributed observations. However, there are still numerous other

intriguing data types that warrant further exploration. Examples include, but are not

limited to, dependent streaming data, data streams with incorrect labels, and streams

containing missing values. In future research, it would be valuable to extend the

applicability of our method to a wider range of common applications and investigate

its effectiveness in handling diverse data types. Engaging in such studies would

undoubtedly make a substantial contribution to advancing our understanding and

utilisation of streaming data analysis methods. These efforts would provide us with

more nuanced insights into the robustness and adaptability of the model, while also

identifying areas that may require further enhancement. Lastly, it is worth discussing

the potential application of semi-parametric and non-parametric models in the con-

text of streaming data analysis. By exploring these models, we could gain additional

insights into the strengths and potential improvements of our method in handling

complex and diverse data streams.

243

References

Abbott, R. D. (1985). Logistic regression in survival analysis. American journal of

epidemiology 121(3), 465–471.

Abu Alfeilat, H. A., A. B. Hassanat, O. Lasassmeh, A. S. Tarawneh, M. B. Alhasanat,

H. S. Eyal Salman, and V. S. Prasath (2019). Effects of distance measure choice on

k-nearest neighbor classifier performance: a review. Big data 7(4), 221–248.

Allison, P. D. (2008). Convergence failures in logistic regression. In SAS Global Forum,

Volume 360, pp. 11.

Amari, S.-i., H. Park, and K. Fukumizu (2000). Adaptive method of realizing natural

gradient learning for multilayer perceptrons. Neural computation 12(6), 1399–1409.

Ambrish, G., B. Ganesh, A. Ganesh, C. Srinivas, K. Mensinkal, et al. (2022). Logistic

regression technique for prediction of cardiovascular disease. Global Transitions

Proceedings 3(1), 127–130.

Angluin, D. and P. Laird (1988). Learning from noisy examples. Machine Learning 2(4),

343–370.

Balakrishnama, S. and A. Ganapathiraju (1998). Linear discriminant analysis-a brief

tutorial. Institute for Signal and information Processing 18(1998), 1–8.

Bhattacharyya, S. K. and K. Rahul (2013). Face recognition by linear discriminant

analysis. International Journal of Communication Network Security 2(2), 31–35.

Bickel, P. J. and E. Levina (2004). Some theory for fisher’s linear discriminant func-

tion,naive bayes’, and some alternatives when there are many more variables than

observations. Bernoulli 10(6), 989–1010.

Bifet, A., S. Maniu, J. Qian, G. Tian, C. He, and W. Fan (2015). Streamdm: Advanced

data mining in spark streaming. In 2015 IEEE International Conference on Data

Mining Workshop (ICDMW), pp. 1608–1611. IEEE.

Bootkrajang, J. and J. Chaijaruwanich (2020). Towards instance-dependent label

noise-tolerant classification: a probabilistic approach. Pattern Analysis and Applica-

tions 23(1), 95–111.

244

Bootkrajang, J. and A. Kabán (2012). Label-noise robust logistic regression and its

applications. In Joint European conference on machine learning and knowledge discovery

in databases, pp. 143–158. Springer.

Bootkrajang, J. and A. Kabán (2013). Classification of mislabelled microarrays using

robust sparse logistic regression. Bioinformatics 29(7), 870–877.

Bootkrajang, J. and A. Kabán (2014). Learning kernel logistic regression in the

presence of class label noise. Pattern Recognition 47(11), 3641–3655.

Bordes, A., L. Bottou, and P. Gallinari (2009). Sgd-qn: Careful quasi-newton stochastic

gradient descent. Journal of Machine Learning Research 10, 1737–1754.

Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technomet-

rics 37(4), 373–384.

Cai, T. T. and J. Lv (2007). Discussion: The dantzig selector: statistical estimation

when p is much larger than n. The Annals of Statistics 35(6), 2365–2369.

Candes, E. and T. Tao (2007). The dantzig selector: Statistical estimation when p is

much larger than n. The annals of Statistics 35(6), 2313–2351.

Cannings, T. I., Y. Fan, and R. J. Samworth (2020). Classification with imperfect

training labels. Biometrika 107(2), 311–330.

Casella, F. and B. Bachmann (2021). On the choice of initial guesses for the newton-

raphson algorithm. Applied Mathematics and Computation 398, 125991.

Cervantes, J., F. Garcia-Lamont, L. Rodrı́guez-Mazahua, and A. Lopez (2020). A

comprehensive survey on support vector machine classification: Applications,

challenges and trends. Neurocomputing 408, 189–215.

Cheng, J., T. Liu, K. Ramamohanarao, and D. Tao (2020). Learning with bounded

instance and label-dependent label noise. In International Conference on Machine

Learning, pp. 1789–1799. PMLR.

Cortes, C. and V. Vapnik (1995). Support-vector networks. Machine learning 20(3),

273–297.

245

Dobriban, E. and S. Wager (2018). High-dimensional asymptotics of prediction: Ridge

regression and classification. The Annals of Statistics 46(1), 247–279.

Donoho, D. L. et al. (2000). High-dimensional data analysis: The curses and blessings

of dimensionality. AMS math challenges lecture 1(2000), 32.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz,

B. Gruber, B. Lafourcade, P. J. Leitão, et al. (2013). Collinearity: a review of methods

to deal with it and a simulation study evaluating their performance. Ecography 36(1),

27–46.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. The

Annals of statistics 32(2), 407–499.

Efron, B., T. Hastie, and R. Tibshirani (2007). Discussion: The dantzig selector:

Statistical estimation when p is much larger than n. The Annals of Statistics 35(6),

2358–2364.

Fan, J. and Y. Fan (2008). High dimensional classification using features annealed

independence rules. Annals of statistics 36(6), 2605.

Fan, J., Y. Fan, and Y. Wu (2011). High-dimensional classification. In High-dimensional

data analysis, pp. 3–37. World Scientific.

Fan, J., F. Han, and H. Liu (2014). Challenges of big data analysis. National science

review 1(2), 293–314.

Fan, J. and R. Li (1999). Variable selection via penalized likelihood. Department of

Statistics UCLA.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American statistical Association 96(456), 1348–1360.

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional

feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 70(5), 849–911.

Fan, J. and J. Lv (2010). A selective overview of variable selection in high dimensional

feature space. Statistica Sinica, 101–148.

246

Fan, J. and J. Lv (2018). Sure independence screening. Wiley StatsRef: Statistics

Reference Online.

Fan, J., R. Samworth, and Y. Wu (2009). Ultrahigh dimensional feature selection:

beyond the linear model. The Journal of Machine Learning Research 10, 2013–2038.

Fan, J. and R. Song (2010). Sure independence screening in generalized linear models

with np-dimensionality. The Annals of Statistics 38(6), 3567–3604.

Fang, Y. (2019). Scalable statistical inference for averaged implicit stochastic gradient

descent. Scandinavian Journal of Statistics 46(4), 987–1002.

Frank, L. E. and J. H. Friedman (1993). A statistical view of some chemometrics

regression tools. Technometrics 35(2), 109–135.

Frénay, B., A. Kabán, et al. (2014). A comprehensive introduction to label noise. In

ESANN. Citeseer.

Fuangkhon, P. and T. Tanprasert (2009). An incremental learning algorithm for

supervised neural network with contour preserving classification. In 2009 6th Inter-

national Conference on Electrical Engineering/Electronics, Computer, Telecommunications

and Information Technology, Volume 2, pp. 740–743. IEEE.

Goldberger, J. and E. Ben-Reuven (2016). Training deep neural-networks using a

noise adaptation layer.

Hassanat, A. B., M. A. Abbadi, G. A. Altarawneh, and A. A. Alhasanat (2014). Solving

the problem of the k parameter in the knn classifier using an ensemble learning

approach. arXiv preprint arXiv:1409.0919.

Hastie, T., R. Tibshirani, and R. J. Tibshirani (2017). Extended comparisons of

best subset selection, forward stepwise selection, and the lasso. arXiv preprint

arXiv:1707.08692.

Hazan, E., A. Agarwal, and S. Kale (2007). Logarithmic regret algorithms for online

convex optimization. Machine Learning 69(2), 169–192.

He, X., L. Wang, and H. G. Hong (2013). Quantile-adaptive model-free variable

screening for high-dimensional heterogeneous data.

247

Hinton, G., O. Vinyals, J. Dean, et al. (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 2(7).

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics 12(1), 55–67.

Hunter, D. R. and R. Li (2005). Variable selection using mm algorithms. Annals of

statistics 33(4), 1617.

Jolliffe, I. T. and J. Cadima (2016). Principal component analysis: a review and recent

developments. Philosophical transactions of the royal society A: Mathematical, Physical

and Engineering Sciences 374(2065), 20150202.

Jorgensen, B. (1997). The theory of dispersion models. CRC Press.

Kalantar, B., B. Pradhan, S. A. Naghibi, A. Motevalli, and S. Mansor (2018). As-

sessment of the effects of training data selection on the landslide susceptibility

mapping: a comparison between support vector machine (svm), logistic regression

(lr) and artificial neural networks (ann). Geomatics, Natural Hazards and Risk 9(1),

49–69.

Konečnỳ, J. and P. Richtárik (2013). Semi-stochastic gradient descent methods. arXiv

preprint arXiv:1312.1666.

Kong, X.-B., Z. Liu, Y. Yao, and W. Zhou (2017). Sure screening by ranking the

canonical correlations. Test 26(1), 46–70.

Kotsiantis, S. B., I. D. Zaharakis, and P. E. Pintelas (2006). Machine learning: a review

of classification and combining techniques. Artificial Intelligence Review 26(3), 159–

190.

Krause, J., B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and L. Fei-Fei

(2016). The unreasonable effectiveness of noisy data for fine-grained recognition.

In European Conference on Computer Vision, pp. 301–320. Springer.

Lever, J., M. Krzywinski, and N. Altman (2017). Points of significance: Principal

component analysis. Nature methods 14(7), 641–643.

248

Li, Y., J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li (2017). Learning from noisy labels

with distillation. In Proceedings of the IEEE International Conference on Computer

Vision, pp. 1910–1918.

Liu, D. C. and J. Nocedal (1989). On the limited memory bfgs method for large scale

optimization. Mathematical programming 45(1), 503–528.

Liu, L. (2018). Research on logistic regression algorithm of breast cancer diagnose

data by machine learning. In 2018 International Conference on Robots & Intelligent

System (ICRIS), pp. 157–160. IEEE.

Losing, V., B. Hammer, and H. Wersing (2018). Incremental on-line learning: A review

and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274.

Luo, L. and P. X.-K. Song (2020). Renewable estimation and incremental inference in

generalized linear models with streaming data sets. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 82(1), 69–97.

Mahmood, S. S., D. Levy, R. S. Vasan, and T. J. Wang (2014). The framingham heart

study and the epidemiology of cardiovascular disease: a historical perspective. The

lancet 383(9921), 999–1008.

McCullagh, P. (1983). Generalized linear models. Routledge.

Meinshausen, N. (2007). Relaxed lasso. Computational Statistics & Data Analysis 52(1),

374–393.

Mishra, S. K., B. Ram, S. K. Mishra, and B. Ram (2019). Quasi-newton methods.

Introduction to Unconstrained Optimization with R, 245–289.

Morgan, S. P. and J. D. Teachman (1988). Logistic regression: Description, examples,

and comparisons. Journal of Marriage and Family 50(4), 929–936.

Naifei, Z., X. Qingsong, T. Man-Lai, J. Binyan, C. Ziqi, and W. Hong (2020). High

dimensional variable screening under multicollinearity [j]. Stat 9(1).

Ng, A. and M. Jordan (2001). On discriminative vs. generative classifiers: A compari-

son of logistic regression and naive bayes. Advances in neural information processing

systems 14.

249

Nhu, V.-H., A. Shirzadi, H. Shahabi, S. K. Singh, N. Al-Ansari, J. J. Clague, A. Jaafari,

W. Chen, S. Miraki, J. Dou, et al. (2020). Shallow landslide susceptibility mapping:

A comparison between logistic model tree, logistic regression, naı̈ve bayes tree,

artificial neural network, and support vector machine algorithms. International

journal of environmental research and public health 17(8), 2749.

Parvin, H., H. Alizadeh, and B. Minati (2010). A modification on k-nearest neighbor

classifier. Global Journal of Computer Science and Technology.

Pavlidis, P., I. Wapinski, and W. S. Noble (2004). Support vector machine classification

on the web. Bioinformatics 20(4), 586–587.

Pohar, M., M. Blas, and S. Turk (2004). Comparison of logistic regression and linear

discriminant analysis: a simulation study. Metodoloski zvezki 1(1), 143.

Polyak, B. T. and A. B. Juditsky (1992). Acceleration of stochastic approximation by

averaging. SIAM journal on control and optimization 30(4), 838–855.

Ridzuan, F. and W. M. N. W. Zainon (2019). A review on data cleansing methods for

big data. Procedia Computer Science 161, 731–738.

Rish, I. et al. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, Volume 3, pp. 41–46.

Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals of

mathematical statistics, 400–407.

Rodrı́guez, G. (2007). Chapter 3: Logit models for binary data. Lecture Notes on

Generalized Linear Models.

Rosasco, L. and S. Villa (2015). Learning with incremental iterative regularization.

Advances in Neural Information Processing Systems 28.

Sakrison, D. J. (1965). Efficient recursive estimation; application to estimating the

parameters of a covariance function. International Journal of Engineering Science 3(4),

461–483.

Salazar, D. A., J. I. Vélez, and J. C. Salazar (2012). Comparison between svm and

logistic regression: Which one is better to discriminate? Revista Colombiana de

Estadı́stica 35(SPE2), 223–237.

250

Saldana, D. F. and Y. Feng (2018). Sis: An r package for sure independence screening

in ultrahigh-dimensional statistical models. Journal of Statistical Software 83, 1–25.

Schraudolph, N. N., J. Yu, and S. Günter (2007). A stochastic quasi-newton method

for online convex optimization. In Artificial intelligence and statistics, pp. 436–443.

PMLR.

Shao, X. and J. Zhang (2014). Martingale difference correlation and its use in

high-dimensional variable screening. Journal of the American Statistical Associa-

tion 109(507), 1302–1318.

Sirimongkolkasem, T. and R. Drikvandi (2019). On regularisation methods for analy-

sis of high dimensional data. Annals of Data Science 6(4), 737–763.

Stone, C. J. (1977). Consistent nonparametric regression. The annals of statistics,

595–620.

Sukhbaatar, S., J. Bruna, M. Paluri, L. Bourdev, and R. Fergus (2014). Training

convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080.

Székely, G. J., M. L. Rizzo, and N. K. Bakirov (2007). Measuring and testing depen-

dence by correlation of distances.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological) 58(1), 267–288.

Toulis, P., E. Airoldi, and J. Rennie (2014). Statistical analysis of stochastic gradient

methods for generalized linear models. In International Conference on Machine

Learning, pp. 667–675. PMLR.

Tran, D., P. Toulis, and E. M. Airoldi (2015). Stochastic gradient descent methods for

estimation with large data sets. arXiv preprint arXiv:1509.06459.

Tsangaratos, P. and I. Ilia (2016). Comparison of a logistic regression and naı̈ve

bayes classifier in landslide susceptibility assessments: The influence of models

complexity and training dataset size. Catena 145, 164–179.

Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks

versus logistic regression for predicting medical outcomes. Journal of clinical epi-

demiology 49(11), 1225–1231.

251

Vijayakumar, S. and S. Schaal (2000). Locally weighted projection regression: An

o (n) algorithm for incremental real time learning in high dimensional space. In

Proceedings of the seventeenth international conference on machine learning (ICML 2000),

Volume 1, pp. 288–293. Morgan Kaufmann.

Wang, F., S. Mukherjee, S. Richardson, and S. M. Hill (2020). High-dimensional

regression in practice: an empirical study of finite-sample prediction, variable

selection and ranking. Statistics and computing 30(3), 697–719.

Wang, H. (2009). Forward regression for ultra-high dimensional variable screening.

Journal of the American Statistical Association 104(488), 1512–1524.

Wang, H. (2012). Factor profiled sure independence screening. Biometrika 99(1), 15–28.

Wang, S., B. Nan, S. Rosset, and J. Zhu (2011). Random lasso. The annals of applied

statistics 5(1), 468.

Wilson, P. W., W. P. Castelli, and W. B. Kannel (1987). Coronary risk prediction in

adults (the framingham heart study). The American journal of cardiology 59(14),

G91–G94.

Wold, S., K. Esbensen, and P. Geladi (1987). Principal component analysis. Chemomet-

rics and intelligent laboratory systems 2(1-3), 37–52.

Xie, H., J. Li, and H. Xue (2017). A survey of dimensionality reduction techniques

based on random projection. arXiv preprint arXiv:1706.04371.

Ypma, T. J. (1995). Historical development of the newton–raphson method. SIAM

review 37(4), 531–551.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave

penalty. The Annals of statistics 38(2), 894–942.

Zhang, N., W. Jiang, and Y. Lan (2019). On the sure screening properties of iteratively

sure independence screening algorithms.

Zhang, Y., S. Zheng, P. Wu, M. Goswami, and C. Chen (2021). Learning with feature-

dependent label noise: a progressive approach. arXiv preprint arXiv:2103.07756.

252

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. The Journal of

Machine Learning Research 7, 2541–2563.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

statistical association 101(476), 1418–1429.

Zou, H. and T. Hastie (2005). Regularization and variable selection via the elastic net.

Journal of the royal statistical society: series B (statistical methodology) 67(2), 301–320.

253

A Appendix: Derivation of estimators for Classification

with mislabelled data

A.1 Two-step estimation method using LQA and Newton-Raphson

algorithm

In this section, we provide a thorough derivation for the two-step estimation process

outlined in Section 3.1.2. Given the similarities in the estimation procedures for β

and those for η0 and η1, our exposition focuses on the estimation process for the

p-dimensional unknown parameter β, omitting the latter two for conciseness.

For the first-step estimation, analysing the resampled data {(Xi, zi) : i ∈ D} with

|D| = m, we aim to find the MLE of β in (3.4), represented as

LD(β) =
∑
i∈D

[
zilogit(πz(Xi)) + log(1− πz(Xi))

]
− Pλβ

(∥β∥1),

which, for simplicity, we express as a combination of the unpenalised log-likelihood

function and the penalty term:

LD(β) = ℓD(β) − Pλβ
(∥β∥1). (A.1)

Utilising the Newton-Raphson algorithm, the standard update formula for optimising

equation (A.1) during the k-th iteration, for k = 1, · · · , is given by:

β̂k = β̂(k−1) −
[
∇2LD(β̂

(k−1))
]−1

∇LD(β̂
(k−1)), (A.2)

where ∇LD(β̂
(k−1)) = ∂LD(β̂(k−1))

∂β
and ∇2LD(β̂

(k−1)) =
∂L2

D(β̂(k−1))

∂β∂βT .

Assuming the smoothness of the log-likelihood function ℓ(β), its two partial

derivatives with respect to β remain continuous. Given an estimate of β denoted as

β0 which is close to β, the LQA application yields

ℓD(β) ≈ ℓD(β0) +∇ℓD(β0)(β− β0)
T +

1

2
(β− β0)∇2ℓD(β0)(β− β0)

T , (A.3)

where ∇ℓD(β0) =
∂ℓD(β0)

∂β
and ∇2ℓD(β0) =

∂ℓ2D(β0)

∂β∂βT .

Referring to Fan and Li (2001), we employ the LQA method to approximate the

254

penalty function Pλβ
(∥β∥1). For coefficients βj0, j = 1, · · · ,p, close to 0, the estimate

of βj is set to 0. Otherwise we have the approximation as

[pλ(|βj|)]
′ = p ′

λ(|βj|)sgn(βj) ≈ {p ′
λ(|βj0|)/|βj0|}βj,

where pλ(·) is the penalty function with λ as a tuning parameter. For βj ̸= 0, we then

have

pλ(|βj|) ≈ pλ(|βj0|) +
1

2
{p ′

λ(|βj0|)/|βj0|} (β
2
j − β2

j0). (A.4)

We denote the d, 1 ⩽ d ⩽ p, non-zero coefficients of β0 as

Σλ(β0) = diag{p ′
λ(|β10|)/|β10|, · · · ,p ′

λ(|βd0|)/|βd0|}.

Considering equations (A.3) and (A.4), and after omitting constant terms, the

optimisation of (A.1) simplifies to maximising the following equation:

ℓD(β0) +∇ℓD(β0)(β− β0)
T +

1

2
(β− β0)∇2ℓD(β0)(β− β0)

T −
1

2
mβΣλ(β0)β

T .

Subsequently, referring to the update formula by Newton-Raphson algorithm (A.2),

in the k-th iteration, where k = 1, · · · , the estimator takes the form:

β̂k = β̂(k−1)−

{
∇2ℓD(β̂

(k−1))−mΣλ(β̂
(k−1))

}−1{
∇ℓD(β̂

(k−1))−mΣλ(β̂
(k−1))β̂(k−1)

}
,

(A.5)

and the iteration halts upon convergence. The MLE of β, denoted as β(0). Among

the components β(0)
j , where j = 1, · · · ,p, those with non-zero coefficients satisfy the

condition
∂ℓD(β

(0))

∂βj

−mp ′
λ(|β

(0)
j |)sgn(β

(0)
j) = 0.

In the second-step estimation, we concurrently analyse both resampled and unre-

sampled data, represented as {(Xi,yi, zi)}, i = 1, · · · ,n. It is pertinent to note that the

true label of observation yi, denoted as zi, is only identifiable within the resampled

dataset, that is when i ∈ D. We aim to find the maximisers of (3.1).

As illustrated in Section 3.1.2, during each k-th iteration, where k = 1, · · · , once

steps (2) and (3) have been executed, we obtain the estimates η
(k)
0 and η

(k)
1 , along

with their associated tuning parameters λ
η

(k)
0

and λ
η

(k)
a

. The focus then shifts to step

255

(3) of the second-step estimation, aimed at identifying the MLE of β in L(β, η0, η1).

L(β, η
(k)
0 , η

(k)
1)

=
∑
i∈Dc

(
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

])
+
∑
i∈D

(1− zi)
{
yi(X

T
i η

(k)
0) + log(1− πy|0(Xi)) + (1− zi) log(1− πz(Xi))

}
+
∑
i∈D

zi

{
yi(X

T
i η

(k)
1) + log(1− πy|1(Xi)) + zi log(πz(Xi))

}
−Pλβ

(∥β∥1) − Pλ
η
(k)
0

(∥η0∥1) − Pλ
η
(k)
1

(∥η1∥1). (A.6)

Given the known values of η(k)
0 , η(k)

1 and πy|0(·), πy|1(·), Pλ
η
(k)
0

(∥η0∥1) and Pλ
η
(k)
1

(∥η1∥1),

the equation for L(β, η(k)
0 , η

(k)
1) simplifies to:

L(β) = ℓ(β) − Pλβ
(∥β∥1) − C,

where C is a constant and C = Pλ
η
(k)
0

(∥η0∥1) + Pλ
η
(k)
1

(∥η1∥1).

Here

ℓ(β) = ℓDc(y,β) + ℓD(z,β),

and

ℓDc(y,β) =
∑
i∈Dc

ℓ(yi,β)

=
(
yilogit

[
πy|0(Xi) +

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

]
+

log
[
1− πy|0(Xi) −

{
πy|1(Xi) − πy|0(Xi)

}
πz(Xi)

])
ℓD(z,β) =

∑
i∈D

ℓ(zi,β)

= (1− zi)
{
yi(X

T
i η

(k)
0) + log(1− πy|0(Xi)) + (1− zi) log(1− πz(Xi))

}
+zi

{
yi(X

T
i η

(k)
1) + log(1− πy|1(Xi)) + zi log(πz(Xi))

}
.

Analogous to the first-step estimation, we use LQA to approximate both ℓ(β) and

Pλβ
(∥β∥1). Applying the Newton-Raphson algorithm, in the k-th iteration, k = 1, · · · ,

256

the estimator for β is given by

βk = β(k−1) −

{
∇2ℓ(β(k−1)) − nΣλ(β

(k−1))

}−1{
∇ℓ(β(k−1)) − nΣλ(β

(k−1))β(k−1)

}
,

once the iteration achieves convergence, we obtain the MLE for β is obtained and

denoted as β̂(k). The components of β̂(k) are denoted as β̂(k)
j , for j = 1, · · · ,p. Among

these, the non-zero components fulfil the condition

∂ℓ(β̂
(k)
j)

∂βj

− np ′
λ(|β̂

(k)
j |)sgn(β̂

(k)
j) = 0,

where ℓ(β̂
(k)
j) = ℓDc(β̂

(k)
j) + ℓD(β̂

(k)
j).

257

B Appendix: Tables for Classification with mislabelled

data

Table B.1: SDs and ESEs for non-zero β120×1 coefficient estimates

ncv 10 20 30 40

β2

mLPOCVUR 0.3415(0.1574,0.2334) 0.3037(0.1605,0.2380) 0.2802(0.1614,0.2393) 0.2539(0.1651,0.2447)
mLPOCVS 0.3371(0.1581,0.2344) 0.3037(0.1605,0.2380) 0.2795(0.1615,0.2394) 0.2363(0.1651,0.2447)
mLPOCVCD 0.3312(0.1574,0.2334) 0.3037(0.1605,0.2380) 0.2795(0.1615,0.2394) 0.2271(0.1651,0.2447)

β4

mLPOCVUR 0.3427(0.1615,0.2395) 0.2741(0.1620,0.2401) 0.2435(0.1643,0.2436) 0.2506(0.1633,0.2420)
mLPOCVS 0.3059(0.1620,0.2402) 0.2804(0.1621,0.2403) 0.2557(0.1643,0.2436) 0.2587(0.1630,0.2417)
mLPOCVCD 0.3000(0.1620,0.2402) 0.2813(0.1621,0.2403) 0.2557(0.1643,0.2436) 0.2587(0.1630,0.2417)

β5

mLPOCVUR 0.2832(0.1739,0.2578) 0.2627(0.1772,0.2627) 0.2817(0.1750,0.2594) 0.2425(0.1744,0.2586)
mLPOCVS 0.2962(0.1737,0.2575) 0.2651(0.1775,0.2632) 0.2872(0.1750,0.2594) 0.2485(0.1738,0.2577)
mLPOCVCD 0.3008(0.1731,0.2566) 0.2651(0.1775,0.2632) 0.2872(0.1761,0.2611) 0.2485(0.1738,0.2577)

β7

mLPOCVUR 0.3174(0.1624,0.2408) 0.2344(0.1682,0.2494) 0.2502(0.1640,0.2432) 0.2345(0.1655,0.2454)
mLPOCVS 0.3347(0.1633,0.2422) 0.2584(0.1686,0.2500) 0.2531(0.1640,0.2432) 0.2417(0.1655,0.2454)
mLPOCVCD 0.3333(0.1633,0.2422) 0.2584(0.1686,0.2500) 0.2531(0.1640,0.2432) 0.2417(0.1655,0.2454)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* The outcomes obtained from the method described in Section 3.4.2 are denoted as mLPOCVUR,

those from Section 3.4.3 as mLPOCVS, and the results from Section 3.4.4 as mLPOCVCD.

Table B.2: SDs and ESEs for non-zero β150×1 coefficient estimates

Case 1: p = 15 Order1 Order2 Order3 Order4

β2

m = 200 0.3578(0.3222,0.4778) 0.3786(0.3333,0.4941) 0.3646(0.3322,0.4925) 0.3438(0.3167,0.4696)
m = 400 0.2235(0.2605,0.3862) 0.2248(0.2633,0.3904) 0.2209(0.2633,0.3904) 0.2124(0.2628,0.3897)

β4

m = 200 0.3740(0.2765,0.4100) 0.2952(0.2815,0.4174) 0.2965(0.2792,0.4139) 0.3432(0.2738,0.4059)
m = 400 0.1926(0.2136,0.3167) 0.1954(0.2134,0.3164) 0.1951(0.2131,0.3159) 0.1895(0.2129,0.3157)

Case 2: p = 150 Order1 Order2 Order3 Order4

β2

m = 200 0.3695(0.2890,0.4284) 0.3695(0.2890,0.4284) 0.3695(0.2890,0.4284) 0.3695(0.2890,0.4284)
m = 400 0.2912(0.2261,0.3352) 0.2931(0.2261,0.3351) 0.2875(0.2223,0.3295) 0.2812(0.2208,0.3273)

β4

m = 200 0.3905(0.2486,0.3685) 0.3905(0.2486,0.3685) 0.3905(0.2486,0.3685) 0.3905(0.2486,0.3685)
m = 400 0.2261(0.1907,0.2827) 0.2278(0.1907,0.2827) 0.2213(0.1901,0.2818) 0.2277(0.1873,0.2777)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

258

Table B.3: SDs and ESEs for non-zero β15×1 coefficient estimates

ρ 0 0.2 0.5

β2

β̂ 0.206(0.229,0.340) 0.245(0.224,0.332) 0.312(0.335,0.496)
β̂|η0

0.219(0.229,0.339) 0.226(0.222,0.329) 0.099(0.333,0.493)
β̂|η1

0.209(0.231,0.343) 0.208(0.225,0.333) 0.095(0.338,0.500)
β̂|η0,η1

0.219(0.232,0.344) 0.210(0.223,0.330) 0.096(0.332,0.492)

β3

β̂ 0.203(0.188,0.279) 0.200(0.181,0.268) 0.244(0.192,0.284)
β̂|η0

0.196(0.191,0.283) 0.200(0.183,0.271) 0.234(0.190,0.282)
β̂|η1

0.197(0.188,0.278) 0.200(0.184,0.273) 0.226(0.194,0.288)
β̂|η0,η1

0.246(0.190,0.282) 0.219(0.185,0.274) 0.227(0.191,0.283)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table B.4: SDs and ESEs for non-zero β15×1 coefficient estimates

m 300 400 500

β2

β̂ 0.211(0.166,0.247) 0.163(0.144,0.214) 0.138(0.129,0.192)

β(0) 0.238(0.174,0.258) 0.160(0.148,0.219) 0.122(0.131,0.194)

β̂∗ 0.089(0.093,0.138) 0.089(0.093,0.138) 0.089(0.093,0.138)

β̂R - - -

β̂CD 1.442(0.004,0.006) 1.431(0.004,0.006) 1.439(0.003,0.004)

β3

β̂ 0.151(0.151,0.223) 0.138(0.131,0.193) 0.113(0.117,0.173)

β(0) 0.205(0.154,0.229) 0.127(0.134,0.199) 0.119(0.120,0.179)

β̂∗ 0.080(0.084,0.124) 0.080 (0.084,0.124) 0.080(0.084,0.124)

β̂R - - -

β̂CD 0.815(0,0) 0.811(0,0) 0.812(0,0)

β4

β̂ 0.181(0.154,0.229) 0.150(0.134,0.199) 0.138(0.119,0.177)

β(0) 0.206(0.157,0.233) 0.141(0.135,0.200) 0.141(0.121,0.179)

β̂∗ 0.076(0.084,0.125) 0.076(0.084,0.125) 0.076(0.084,0.125)

β̂R - - -

β̂CD 0.810(0,0) 0.804(0.001,0.001) 0.808(0,0)

β5

β̂ 0.211(0.171,0.253) 0.158(0.147,0.219) 0.149(0.134,0.198)

β(0) 0.212(0.173,0.256) 0.158(0.148,0.219) 0.150(0.135,0.200)

β̂∗ 0.104(0.093,0.138) 0.104(0.093,0.138) 0.104(0.093,0.138)

β̂R - - -

β̂CD 1.456(0.002,0.004) 1.448(0.003,0.004) 1.444(0.003,0.004)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* In some of the trials in a 100-repetition experiment, the method that directly uses the corrupted

datasets fails to converge, leading to the inability to generate the SDs, and ESEms and ESEos of

β̂Rs.

259

Table B.5: SDs and ESEs for non-zero β10×1 coefficient estimates

n 1000 2000 3000 5000

β2

β̂ 0.2902(0.2475,0.3670) 0.3254(0.2484,0.3683) 0.3760(0.2476,0.3670) 0.3701(0.2314,0.3430)
β̂|M̂y|0,M̂y|1

0.2977(0.2532,0.3753) 0.3078(0.2520,0.3736) 0.3345(0.2491,0.3693) 0.4733(0.2397,0.3553)

β3

β̂ 0.2564(0.2148,0.3184) 0.2587(0.2149,0.3186) 0.2643(0.2115,0.3136) 0.3208(0.2093,0.3103)
β̂|M̂y|0,M̂y|1

0.2776(0.2221,0.3293) 0.2931(0.2187,0.3242) 0.3111(0.2188,0.3243) 0.3519(0.2080,0.3084)

β5

β̂ 0.3357(0.2449,0.3631) 0.3374(0.2422,0.3591) 0.3106(0.2371,0.3516) 0.3514(0.2312,0.3428)
β̂|M̂y|0,M̂y|1

0.2945(0.2345,0.3477) 0.3340(0.2322,0.3442) 0.4118(0.2383,0.3533) 0.6075(0.2326,0.3448)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* The experiments utilise the same resampled datasets with a fixed size of m = 300 while the

sizes of the training datasets vary and are denoted by n.

Table B.6: SDs and ESEs for non-zero β10×1 coefficient estimates

m 300 600 900

β2
β̂ 0.3692(0.2426,0.3596) 0.1779(0.1746,0.2589) 0.1490(0.1411,0.2092)
β̂|M̂y|0,M̂y|1

0.2841(0.2261,0.3352) 0.1681(0.1698,0.2518) 0.1447(0.1399,0.2074)

β3
β̂ 0.2164(0.1866,0.2767) 0.1366(0.1427,0.2115) 0.1127(0.1188,0.1762)
β̂|M̂y|0,M̂y|1

0.5799(0.1959,0.2904) 0.2419(0.1421,0.2107) 0.1362(0.1182,0.1753)

β5
β̂ 0.2602(0.2422,0.3590) 0.1871(0.1704,0.2527) 0.1449(0.1368,0.2029)
β̂|M̂y|0,M̂y|1

0.2635(0.2248,0.3332) 0.1667(0.1635,0.2424) 0.1684(0.1345,0.1995)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* The experiments utilise the same training datasets with a fixed size of n = 3000 while the

sizes of the resampled datasets vary and are denoted by m.

Table B.7: SDs and ESEs for non-zero β150×1 coefficient estimates

m = 300, ρ 0 0.2 0.5

β2

β̂ 0.2836(0.2023,0.2999) 0.2313(0.1976,0.2930) 0.2485(0.1990,0.2950)

β̂SIS 0.2917(0.1866,0.2767) 0.2271(0.1810,0.2684) 0.9149(0.1349,0.2000)

β3

β̂ 0.3439(0.2348,0.3481) 0.2992(0.2338,0.3467) 0.2984(0.2448,0.3629)

β̂SIS 0.3055(0.2229,0.3304) 0.2595(0.2180,0.3233) 2.6684(0,0)

β4

β̂ 0.2309(0.2017,0.2991) 0.2462(0.2021,0.2996) 0.2453(0.1979,0.2935)

β̂SIS 0.2480(0.2000,0.2965) 0.2359(0.1920,0.2847) 1.1188(0.1380,0.2047)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

260

Table B.8: SDs and ESEs for non-zero β350×1 coefficient estimates

m = 300, ρ 0 0.2 0.5

β2

β̂SIS 0.2642(0.1880,0.2787) 0.2887(0.1906,0.2825) 0.9086(0.1337,0.1982)

β̂∗
SIS 0.1163(0.1144,0.1696) 0.1296(0.1109,0.1644) 0.1380(0.1116,0.1654)

β3

β̂SIS 0.3172(0.2271,0.3367) 0.3303(0.2296,0.3404) 2.6686(0,0)

β̂∗
SIS 0.1744(0.1329,0.1971) 0.1606(0.1294,0.1919) 0.1646(0.1372,0.2034)

β4

β̂SIS 0.2496(0.2020,0.2995) 0.2697(0.2016,0.2990) 1.0293(0.1420,0.2105)

β̂∗
SIS 0.1213(0.1154,0.1712) 0.1230(0.1108,0.1643) 0.1642(0.1123,0.1664)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table B.9: SDs and ESEs for non-zero β3000×1 coefficient estimates

ρ 0 0.2 0.5

p = 1010,
m = 400

β2
β̂SIS 0.2058(0.1592,0.2360) 0.2040(0.1576,0.2336) 1.1019(0.1131,0.1676)
β̂ISIS 0.2232(0.1646,0.2440) 0.2171(0.1607,0.2383) 0.2570(0.1584,0.2348)

β3
β̂SIS 0.2562(0.1951,0.2892) 0.2671(0.1931,0.2863) 2.6679(0,0)
β̂ISIS 0.2705(0.2027,0.3004) 0.2761(0.1944,0.2882) 0.2953(0.2033,0.3014)

β4
β̂SIS 0.1682(0.1696,0.2514) 0.2117(0.1665,0.2469) 1.1331(0.1173,0.1739)
β̂ISIS 0.1963(0.1746,0.2589) 0.2232(0.1677,0.2487) 0.2599(0.1665,0.2469)

p = 3000,
m = 300

β2
β̂SIS 0.3026(0.2119,0.3141) 0.2962(0.2033,0.3014) 1.2831(0.1471,0.2181)
β̂ISIS 0.2552(0.1986,0.2945) 0.2065(0.1923,0.2851) 0.3066(0.1977,0.2931)

β3
β̂SIS 0.3639(0.2562,0.3798) 0.3377(0.2428,0.3599) 2.6686(0,0)
β̂ISIS 0.3514(0.2322,0.3443) 0.3050(0.2310,0.3425) 0.3887(0.2449,0.3631)

β4
β̂SIS 0.3013(0.2194,0.3253) 0.2718(0.2114,0.3134) 1.3154(0.1454,0.2155)
β̂ISIS 0.2232(0.2003,0.2970) 0.2355(0.1965,0.2914) 0.2530(0.1968,0.2918)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table B.10: SDs and ESEs for non-zero β coefficient estimates

p 350 1500 3000

β2
β̂ISIS 0.3845(0.2026,0.3004) 0.3538(0.2053,0.3044) 0.3066(0.1977,0.2931)
β̂∗
ISIS 0.1274(0.1099,0.1630) 0.1172(0.1097,0.1626) 0.1285(0.1094,0.1622)

β3
β̂ISIS 0.4188(0.2578,0.3822) 0.4106(0.2525,0.3743) 0.3887(0.2449,0.3631)
β̂∗
ISIS 0.1537(0.1341,0.1988) 0.1493(0.1339,0.1985) 0.1565(0.1335,0.1979)

β4
β̂ISIS 0.3284(0.2090,0.3098) 0.3072(0.2049, 0.3037) 0.2530(0.1968, 0.2918)
β̂∗
ISIS 0.1437(0.1096,0.1625) 0.1417(0.1096,0.1625) 0.1381(0.1092,0.1619)

* For each cell, the value outside the brackets represents SD, while the first and second

numbers inside the brackets represent ESEm and ESEo, respectively.

261

C Appendix: Tables for Online algorithms for streaming

data

C.1 Simulation study

Table C.1: SDs and ESEs for non-zero β15×1 coefficient estimates

[a,b] (0.005, 0.65) (0.01, 0.35) (0.01, 0.25)

β̃one−way

β2 0.9159(0.0654,0.0969) 0.6733(0.0678,0.1005) 0.4326(0.0715,0.1060)

β5 0.9648(0.0659,0.0977) 0.7283(0.0682,0.1011) 0.4341(0.0729,0.1080)

β̃two−way

β2 0.0955(0.0921,0.1365) 0.0875(0.0913,0.1354) 0.0845(0.0912,0.1353)

β5 0.1255(0.0976,0.1448) 0.1170(0.0950,0.1409) 0.1151(0.0948,0.1406)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table C.2: SDs and ESEs for non-zero β15×1 coefficient estimates

b 10 5 2

β̃one−way

β2 0.4444(0.0714,0.1059) 0.6733(0.0678,0.1005) 1.2666(0.0643,0.0954)

β5 0.4609(0.0725,0.1074) 0.7283(0.0682,0.1011) 1.3036(0.0647,0.0959)

β̃two−way

β2 0.1741(0.0877,0.1300) 0.0875(0.0913,0.1354) 0.0984(0.0913,0.1354)

β5 0.1494(0.0915,0.1357) 0.1170(0.0950,0.1409) 0.1027(0.0962,0.1426)

* For each cell, the value outside the brackets represents SD, while the first and second

numbers inside the brackets represent ESEm and ESEo, respectively.

262

Table C.3: SDs and ESEs for non-zero β50×1 coefficient estimates

p = 15, ρ 0 0.2 0.5

β2

β̃ 0.0845(0.0963,0.1428) 0.0913(0.0935,0.1386) 0.0900(0.0911,0.1351)

β̃λ=0 0.0840(0.0970,0.1438) 0.0899(0.0959,0.1422) 0.1013(0.0977,0.1448)

β3

β̃ 0.1406(0.1278,0.1895) 0.1373(0.1269,0.1881) 0.1435(0.1276,0.1891)

β̃λ=0 0.1331(0.1292,0.1916) 0.1441(0.1286,0.1907) 0.1326(0.1327,0.1968)

β5

β̃ 0.1343(0.1098,0.1628) 0.1219(0.1085,0.1608) 0.1225(0.1107,0.1641)

β̃λ=0 0.1269(0.1110,0.1645) 0.1268(0.1111,0.1647) 0.1518(0.1181,0.1751)

p = 50, ρ 0 0.2 0.5

β2

β̃ 0.0991(0.0962,0.1427) 0.0919(0.0930,0.1379) 0.1039(0.0892,0.1322)

β̃λ=0 0.3056(0.1505,0.2231) 0.2081(0.1163,0.1725) 0.1694(0.1057,0.1567)

β3

β̃ 0.1328(0.1293,0.1916) 0.1454(0.1255,0.1860) 0.1526(0.1254,0.1858)

β̃λ=0 0.6621(0.2486,0.3686) 0.3737(0.1643,0.2436) 0.2325(0.1435,0.2128)

β5

β̃ 0.1460(0.1099,0.1630) 0.1293(0.1076,0.1596) 0.1398(0.1093,0.1620)

β̃λ=0 0.4427(0.1981,0.2937) 0.3137(0.1381,0.2047) 0.2385(0.1308,0.1940)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.

Table C.4: SDs and ESEs for non-zero βp×1 coefficient estimates

p = 10, ncv 10 20 30 40 50

β2 0.0442(0.0434,0.0643) 0.0646(0.0435,0.0645) 0.0401(0.0435,0.0646) 0.0393(0.0435,0.0645) 0.0396(0.0435,0.0645)

β3 0.0660(0.0498,0.0739) 0.0739(0.0499,0.0740) 0.0630(0.0499,0.0740) 0.0617(0.0500,0.0741) 0.0622(0.0500,0.0742)

β5 0.0578(0.0495,0.0734) 0.0733(0.0494,0.0732) 0.0529(0.0494,0.0732) 0.0538(0.0496,0.0735) 0.0553(0.0496,0.0735)

p = 100, ncv 10 20 30 40 50

β2 0.1249(0.0414,0.0613) 0.0950(0.0417,0.0619) 0.0905(0.0418,0.0620) 0.0703(0.0431,0.0638) 0.0858(0.0410,0.0608)

β3 0.1239(0.0481,0.0713) 0.1206(0.0482,0.0715) 0.1388(0.0480,0.0712) 0.0787(0.0446,0.0661) 0.2028(0.0458,0.0679)

β5 0.1515(0.0469,0.0695) 0.1308(0.0470,0.0696) 0.1501(0.0469,0.0695) 0.0742(0.0447,0.0662) 0.2073(0.0445,0.0660)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside

the brackets represent ESEm and ESEo, respectively.

263

Table C.5: SDs and ESEs for non-zero β100×1 coefficient estimates

b = 2, ncv 10 20 30 40 50

β2 0.4290(0.1279,0.1896) 0.3313(0.1310,0.1942) 0.3173(0.1313,0.1947) 0.4536(0.1270,0.1883) 0.4748(0.1258,0.1865)

β3 0.3876(0.1486,0.2202) 0.3953(0.1490,0.2209) 0.3742(0.1495,0.2216) 1.0245(0.1259,0.1867) 0.7394(0.1346,0.1996)

β5 0.4918(0.1432,0.2122) 0.4880(0.1459,0.2163) 0.5303(0.1460,0.2165) 1.1041(0.1164,0.1726) 1.1553(0.1271,0.1885)

b = 20, ncv 10 20 30 40 50

β2 0.1249(0.0414,0.0613) 0.0950(0.0417,0.0619) 0.0905(0.0418,0.0620) 0.0703(0.0431,0.0638) 0.0858(0.0410,0.0608)

β3 0.1239(0.0481,0.0713) 0.1206(0.0482,0.0715) 0.1388(0.0480,0.0712) 0.0787(0.0446,0.0661) 0.2028(0.0458,0.0679)

β5 0.1515(0.0469,0.0695) 0.1308(0.0470,0.0696) 0.1501(0.0469,0.0695) 0.0742(0.0447,0.0662) 0.2073(0.0445,0.0660)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside the

brackets represent ESEm and ESEo, respectively.

Table C.6: SDs and ESEs for non-zero β coefficient estimates

p = 15 β2 β3 β6 β7 β11 β13

ρ = 0

β̃λ 0.0767(0.0628,0.0931) 0.0742(0.0636,0.0943) 0.0938(0.0675,0.1000) 0.0676(0.0627,0.0929) 0.0937(0.0636,0.0942) 0.1096(0.0676,0.1002)
β̃λ∗ 0.0857(0.0631,0.0936) 0.0922(0.0635,0.0941) 0.1042(0.0684,0.1014) 0.0850(0.0633,0.0939) 0.0752(0.0639,0.0947) 0.0831(0.0680,0.1008)
C1:β̂∗ 0.0645(0.0629,0.0932) 0.0766(0.0637,0.0945) 0.0742(0.0679,0.1006) 0.0629(0.0629,0.0932) 0.0830(0.0637,0.0944) 0.0738(0.0683,0.1013)
C2:β̂∗ 0.0622(0.0626,0.0928) 0.0695(0.0635,0.0941) 0.0760(0.0675,0.1000) 0.0620(0.0626,0.0929) 0.0798(0.0635,0.0941) 0.0735(0.0681,0.1009)

ρ = 0.2

β̃λ 0.0774(0.0637,0.0945) 0.0781(0.0646,0.0958) 0.0967(0.0688,0.1019) 0.0830(0.0640,0.0948) 0.0846(0.0640,0.0948) 0.0870(0.0679,0.1007)
β̃λ∗ 0.0934(0.0641,0.0950) 0.0803(0.0646,0.0958) 0.0797(0.0693,0.1028) 0.0740(0.0644,0.0955) 0.0776(0.0641,0.0950) 0.0986(0.0682,0.1011)
C1:β̂∗ 0.0934(0.0641,0.0950) 0.0803(0.0646,0.0958) 0.0797(0.0693,0.1028) 0.0740(0.0644,0.0955) 0.0776(0.0641,0.0950) 0.0986(0.0682,0.1011)
C2:β̂∗ 0.0709(0.0634,0.0941) 0.0686(0.0644,0.0955) 0.0834(0.0686,0.1017) 0.0593(0.0636,0.0943) 0.0706(0.0635,0.0941) 0.0812(0.0677,0.1003)

ρ = 0.5

β̃λ 0.0667(0.0694,0.1029) 0.0946(0.0721,0.1069) 0.1198(0.0756,0.1121) 0.0875(0.0707,0.1049) 0.1002(0.0690,0.1023) 0.1069(0.0715,0.1060)
β̃λ∗ 0.0889(0.0697,0.1033) 0.0910(0.0717,0.1064) 0.0976(0.0757,0.1123) 0.0729(0.0706,0.1047) 0.0833(0.0665,0.0986) 0.0853(0.0706,0.1046)
C1:β̂∗ 0.0601(0.0697,0.1033) 0.0773(0.0707,0.1049) 0.0819(0.0742,0.1100) 0.0551(0.0700,0.1037) 0.0695(0.0646,0.0958) 0.0845(0.0692,0.1026)
C2:β̂∗ 0.0622(0.0689,0.1022) 0.0798(0.0703,0.1042) 0.0818(0.0737,0.1093) 0.0520(0.0695,0.1030) 0.0685(0.0640,0.0949) 0.0808(0.0684,0.1014)

p = 100 β2 β3 β6 β7 β11 β13

ρ = 0

β̃λ 0.1051(0.0611,0.0906) 0.1095(0.0622,0.0922) 0.1186(0.0658,0.0975) 0.1105(0.0611,0.0905) 0.1280(0.0622,0.0922) 0.1260(0.0658,0.0975)
β̃λ∗ 0.1100(0.0618,0.0916) 0.1043(0.0623,0.0923) 0.1193(0.0662,0.0982) 0.1050(0.0614,0.0911) 0.0950(0.0624,0.0925) 0.1074(0.0661,0.0979)
C1:β̂∗ 0.0613(0.0626,0.0928) 0.0618(0.0635,0.0942) 0.0795(0.0674,0.1000) 0.0560(0.0629,0.0932) 0.0739(0.0634,0.0940) 0.0677(0.0682,0.1011)
C2:β̂∗ 0.0636(0.0626,0.0927) 0.0618(0.0635,0.0941) 0.0794(0.0673,0.0997) 0.0559(0.0628,0.0931) 0.0752(0.0634,0.0940) 0.0680(0.0682,0.1011)

ρ = 0.2

β̃λ 0.1510(0.0606,0.0899) 0.1626(0.0613,0.0909) 0.1354(0.0654,0.0970) 0.1283(0.0615,0.0911) 0.1538(0.0607,0.0900) 0.1633(0.0639,0.0947)
β̃λ∗ 0.1496(0.0614,0.0911) 0.1288(0.0624,0.0925) 0.1235(0.0667,0.0990) 0.1155(0.0621,0.0921) 0.1167(0.0615,0.0912) 0.1468(0.0643,0.0953)
C1:β̂∗ 0.0678(0.0637,0.0944) 0.0676(0.0648,0.0960) 0.0742(0.0687,0.1019) 0.0537(0.0639,0.0947) 0.0645(0.0636,0.0943) 0.0740(0.0680,0.1009)
C2:β̂∗ 0.0683(0.0635,0.0941) 0.0700(0.0647,0.0960) 0.0793(0.0687,0.1018) 0.0537(0.0637,0.0945) 0.0645(0.0635,0.0942) 0.0782(0.0679,0.1007)

ρ = 0.5

β̃λ 0.3055(0.0624,0.0926) 0.3000(0.0625,0.0926) 0.2209(0.0682,0.1011) 0.1886(0.0633,0.0938) 0.2090(0.0589,0.0873) 0.1957(0.0622,0.0923)
β̃λ∗ 0.2770(0.0613,0.0909) 0.2841(0.0616,0.0914) 0.1861(0.0687,0.1019) 0.1707(0.0639,0.0947) 0.1948(0.0588,0.0871) 0.2249(0.0614,0.0910)
C1:β̂∗ 0.0601(0.0697,0.1033) 0.0773(0.0707,0.1048) 0.0819(0.0742,0.1099) 0.0558(0.0700,0.1037) 0.0695(0.0645,0.0957) 0.0829(0.0691,0.1025)
C2:β̂∗ 0.0601(0.0697,0.1033) 0.0772(0.0707,0.1048) 0.0819(0.0742,0.1099) 0.0558(0.0700,0.1037) 0.0695(0.0645,0.0957) 0.0829(0.0691,0.1025)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside the

brackets represent ESEm and ESEo, respectively.

264

Table C.7: SDs and ESEs for non-zero βp×1 coefficient estimates

p = 15 β2 β3 β6 β7 β11 β13

b = 4

β̃λ 0.1037(0.0906,0.1344) 0.0863(0.0927,0.1375) 0.1075(0.0977,0.1449) 0.0886(0.0915,0.1357) 0.1156(0.0909,0.1347) 0.1033(0.0975,0.1445)
β̃λ∗ 0.0950(0.0908,0.1347) 0.0845(0.0925,0.1372) 0.1028(0.0978,0.1449) 0.0824(0.0915,0.1356) 0.1161(0.0905,0.1342) 0.0983(0.0972,0.1441)
β̂∗ 0.0989(0.0912,0.1352) 0.1047(0.0928,0.1375) 0.0975(0.0984,0.1458) 0.0822(0.0920,0.1363) 0.1089(0.0905,0.1342) 0.1006(0.0973,0.1443)

b = 8

β̃λ 0.0742(0.0644,0.0955) 0.0686(0.0654,0.0970) 0.0911(0.0690,0.1022) 0.0610(0.0648,0.0960) 0.0737(0.0633,0.0938) 0.0715(0.0679,0.1007)
β̃λ∗ 0.0732(0.0644,0.0955) 0.0659(0.0652,0.0967) 0.0909(0.0690,0.1022) 0.0650(0.0646,0.0957) 0.0726(0.0630,0.0935) 0.0716(0.0678,0.1005)
β̂∗ 0.0775(0.0642,0.0951) 0.0731(0.0652,0.0967) 0.0838(0.0694,0.1029) 0.0615(0.0643,0.0954) 0.0771(0.0629,0.0933) 0.0737(0.0679,0.1007)

p = 150 β2 β3 β6 β7 β11 β13

b = 4

β̃λ 0.1206(0.0897,0.1330) 0.1061(0.0902,0.1338) 0.1177(0.0957,0.1419) 0.1137(0.0894,0.1326) 0.1238(0.0877,0.1300) 0.1239(0.0949,0.1406)
β̃λ∗ 0.1210(0.0903,0.1338) 0.0981(0.0908,0.1347) 0.1167(0.0964,0.1429) 0.1139(0.0894,0.1325) 0.1248(0.0876,0.1298) 0.1230(0.0951,0.1409)
β̂∗ 0.1169(0.0929,0.1377) 0.1108(0.0942,0.1396) 0.1174(0.0999,0.1482) 0.0968(0.0928,0.1376) 0.1089(0.0916,0.1359) 0.0994(0.0988,0.1464)

b = 8

β̃λ 0.0889(0.0632,0.0938) 0.0812(0.0639,0.0947) 0.0973(0.0677,0.1004) 0.0867(0.0632,0.0938) 0.0891(0.0617,0.0914) 0.0970(0.0664,0.0984)
β̃λ∗ 0.0949(0.0637,0.0944) 0.0863(0.0645,0.0956) 0.0974(0.0680,0.1008) 0.0870(0.0637,0.0945) 0.0948(0.0619,0.0918) 0.0971(0.0666,0.0988)
β̂∗ 0.0694(0.0639,0.0947) 0.0681(0.0649,0.0963) 0.0797(0.0690,0.1024) 0.0570(0.0641,0.0950) 0.0724(0.0627,0.0930) 0.0702(0.0674,0.0999)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside the

brackets represent ESEm and ESEo, respectively.

Table C.8: SDs and ESEs for non-zero β150×1 coefficient estimates

β2 β3 β6 β7 β11 β13

b = 8

β̃λ 0.0936(0.0626,0.0928) 0.0796(0.0629,0.0933) 0.0793(0.0669,0.0991) 0.1195(0.0625,0.0927) 0.0875(0.0623,0.0923) 0.0995(0.0662,0.0981)
β̃λ∗ 0.0962(0.0627,0.0929) 0.0818(0.0629,0.0933) 0.0803(0.0670,0.0993) 0.1193(0.0624,0.0925) 0.0887(0.0625,0.0926) 0.0992(0.0664,0.0985)
β̂∗ 0.0572(0.0643,0.0953) 0.0639(0.0647,0.0959) 0.0653(0.0689,0.1022) 0.0772(0.0639,0.0948) 0.0549(0.0633,0.0939) 0.0704(0.0678,0.1005)

b = 20

β̃λ 0.0483(0.0396,0.0588) 0.0438(0.0401,0.0594) 0.0466(0.0425,0.0630) 0.0619(0.0394,0.0584) 0.0520(0.0393,0.0583) 0.0577(0.0418,0.0620)
β̃λ∗ 0.0519(0.0396,0.0588) 0.0442(0.0401,0.0595) 0.0491(0.0425,0.0631) 0.0575(0.0395,0.0586) 0.0579(0.0393,0.0583) 0.0575(0.0419,0.0621)
β̂∗ 0.0354(0.0402,0.0596) 0.0418(0.0408,0.0604) 0.0370(0.0432,0.0641) 0.0379(0.0401,0.0594) 0.0340(0.0398,0.0590) 0.0449(0.0425,0.0630)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside the

brackets represent ESEm and ESEo, respectively.

265

Table C.9: SDs and ESEs for non-zero β1900×1 coefficient estimates

ρ nb = 300 β̃SIS−SCAD β̃SISV1−SCAD β̃ISIS−SCAD β̃ISISV1−SCAD

0.5

β2 1.1861(0,0) 1.1861(0,0) 0.1032(0.0705,0.1045) 0.0900(0.0709,0.1052)
β3 1.4708(0.0117,0.0173) 0.8028(0.0531,0.0787) 0.1341(0.0741,0.1099) 0.1072(0.0744,0.1104)
β6 1.1861(0,0) 1.1861(0,0) 0.0964(0.0712,0.1055) 0.0874(0.0714,0.1058)
β7 0.7399(0.0539,0.0799) 0.7129(0.0542,0.0803) 0.1058(0.0744,0.1103) 0.0841(0.0746,0.1106)

0.2

β2 1.1861(0,0) 0.1147(0.0649,0.0963) 0.0824(0.0684,0.1015) 0.0872(0.0684,0.1014)
β3 0.2831(0.0629,0.0933) 0.1175(0.0683,0.1013) 0.1056(0.0728,0.1079) 0.1025(0.0727,0.1078)
β6 1.1861(0,0) 0.1207(0.0650,0.0964) 0.0860(0.0687,0.1018) 0.0846(0.0687,0.1019)
β7 0.2788(0.0630,0.0935) 0.1313(0.0679,0.1006) 0.0953(0.0723,0.1071) 0.0913(0.0723,0.1071)

0.0

β2 0.0982(0.0667,0.0989) 0.0882(0.0672,0.0996) 0.0943(0.0703,0.1042) 0.0915(0.0703,0.1043)
β3 0.0933(0.0700,0.1038) 0.0818(0.0708,0.1049) 0.0895(0.0746,0.1105) 0.0971(0.0746,0.1106)
β6 0.1087(0.0662,0.0981) 0.0882(0.0672,0.0997) 0.1074(0.0705,0.1045) 0.0989(0.0705,0.1045)
β7 0.0866(0.0697,0.1034) 0.0813(0.0704,0.1044) 0.0946(0.0744,0.1103) 0.0939(0.0743,0.1102)

ρ nb = 600 β̃SIS−SCAD β̃SISV1−SCAD β̃ISIS−SCAD β̃ISISV1−SCAD

0.5

β2 1.1861(0,0) 0.2746(0.0635,0.0941) 0.0846(0.0707,0.1048) 0.0828(0.0708,0.1050)
β3 0.6157(0.0555,0.0823) 0.3696(0.0655,0.0971) 0.1097(0.0745,0.1105) 0.1038(0.0746,0.1106)
β6 1.1861(0,0) 1.1861(0,0) 0.0823(0.0718,0.1065) 0.0795(0.0718,0.1064)
β7 0.6813(0.0560,0.0831) 0.6636(0.0568,0.0841) 0.1084(0.0749,0.1111) 0.1084(0.0750,0.1111)

0.2

β2 0.0859(0.0659,0.0978) 0.0871(0.0659,0.0978) 0.1008(0.0681,0.1009) 0.1008(0.0681,0.1010)
β3 0.1085(0.0694,0.1029) 0.1068(0.0694,0.1029) 0.1139(0.0717,0.1064) 0.1132(0.0718,0.1064)
β6 0.0769(0.0662,0.0981) 0.0756(0.0662,0.0982) 0.0975(0.0687,0.1019) 0.0930(0.0687,0.1019)
β7 0.0879(0.0696,0.1032) 0.0851(0.0697,0.1033) 0.1014(0.0722,0.1070) 0.0961(0.0721,0.1070)

0.0

β2 0.0767(0.0676,0.1002) 0.0758(0.0676,0.1002) 0.0926(0.0708,0.1050) 0.0899(0.0706,0.1047)
β3 0.0768(0.0708,0.1049) 0.0768(0.0707,0.1049) 0.1067(0.0742,0.1100) 0.1037(0.0742,0.1100)
β6 0.0844(0.0672,0.0996) 0.0840(0.0672,0.0996) 0.0976(0.0703,0.1042) 0.0933(0.0703,0.1042)
β7 0.0849(0.0713,0.1057) 0.0844(0.0713,0.1057) 0.1147(0.0741,0.1099) 0.1147(0.0740,0.1097)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside

the brackets represent ESEm and ESEo, respectively.

Table C.10: SDs and ESEs for non-zero β3000×1 coefficient estimates

ρ β̃ISIS−SCAD β̃ISISV1−SCAD β̂ISIS−SCAD

0.5

β2 0.0631(0.0595,0.0882) 0.0646(0.0595,0.0882) 0.0854(0.0576,0.0854)
β3 0.0659(0.0625,0.0929) 0.0629(0.0627,0.0930) 0.0896(0.0605,0.0896)
β6 0.0674(0.0600,0.0889) 0.0688(0.0600,0.0889) 0.0859(0.0582,0.0863)
β7 0.0665(0.0626,0.0928) 0.0672(0.0626,0.0928) 0.0894(0.0604,0.0896)

0.2

β2 0.0640(0.0574,0.0851) 0.0640(0.0574,0.0851) 0.0807(0.0549,0.0814)
β3 0.0773(0.0610,0.0905) 0.0776(0.0610,0.0904) 0.0857(0.0577,0.0856)
β6 0.0608(0.0577,0.0856) 0.0608(0.0577,0.0856) 0.0815(0.0550,0.0816)
β7 0.0686(0.0608,0.0902) 0.0686(0.0608,0.0902) 0.0856(0.0579,0.0859)

0

β2 0.0574(0.0585,0.0867) 0.0574(0.0584,0.0867) 0.0843(0.0572,0.0848)
β3 0.0714(0.0615,0.0912) 0.0714(0.0615,0.0912) 0.0894(0.0602,0.0892)
β6 0.0690(0.0585,0.0867) 0.0658(0.0585,0.0867) 0.0846(0.0574,0.0850)
β7 0.0600(0.0617,0.0914) 0.0600(0.0617,0.0914) 0.0896(0.0604,0.0895)

* For each cell, the value outside the brackets represents SD, while the first and second numbers

inside the brackets represent ESEm and ESEo, respectively.
* Each training dataset consists of Nb = 2500 data. In the renewable estimation experiments, each

data stream batch has a size of nb = 500.

266

Table C.11: SDs and ESEs for non-zero β3000×1 coefficient estimates

nb β̃ISIS−SCAD β̃ISISV1−SCAD β̂ISIS−SCAD

400

β2 0.0629(0.0672,0.0996) 0.0635(0.0672,0.0996) 0.1009(0.0681,0.1009)
β3 0.0895(0.0707,0.1047) 0.0860(0.0707,0.1047) 0.1070(0.0720,0.1068)
β6 0.0823(0.0676,0.1003) 0.0823(0.0677,0.1004) 0.1023(0.0687,0.1019)
β7 0.0798(0.0709,0.1050) 0.0805(0.0708,0.1050) 0.1076(0.0724,0.1073)

500

β2 0.0729(0.0667,0.0989) 0.0741(0.0667,0.0989) 0.1009(0.0681,0.1009)
β3 0.0787(0.0703,0.1042) 0.0742(0.0705,0.1045) 0.1070(0.0720,0.1068)
β6 0.0740(0.0676,0.1002) 0.0721(0.0676,0.1002) 0.1023(0.0687,0.1019)
β7 0.0787(0.0703,0.1042) 0.0828(0.0703,0.1042) 0.1076(0.0724,0.1073)

1000

β2 0.0743(0.0668,0.0991) 0.0741(0.0669,0.0991) 0.1009(0.0681,0.1009)
β3 0.0809(0.0703,0.1042) 0.0765(0.0702,0.1040) 0.1070(0.0720,0.1068)
β6 0.0808(0.0675,0.1001) 0.0802(0.0674,0.0999) 0.1023(0.0687,0.1019)
β7 0.0805(0.0705,0.1045) 0.0835(0.0701,0.1039) 0.1076(0.0724,0.1073)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside

the brackets represent ESEm and ESEo, respectively.
* Each training dataset consists of Nb = 2000 data.

Table C.12: SDs and ESEs for non-zero β3000×1 coefficient estimates

Nb β̃ISIS−SCAD β̃ISISV1−SCAD β̂ISIS−SCAD

1000

β2 0.1164(0.0971,0.1439) 0.1197(0.0973,0.1442) 0.1346(0.0925,0.1371)
β3 0.1476(0.1024,0.1517) 0.1476(0.1024,0.1517) 0.1407(0.0964,0.1430)
β6 0.1020(0.0982,0.1456) 0.1114(0.0983,0.1457) 0.1362(0.0930,0.1378)
β7 0.1309(0.1023,0.1517) 0.1244(0.1022,0.1515) 0.1411(0.0964,0.1429)

1500

β2 0.0846(0.0778,0.1154) 0.0848(0.0779,0.1155) 0.1086(0.0743,0.1102)
β3 0.0984(0.0820,0.1216) 0.0949(0.0820,0.1216) 0.1145(0.0783,0.1161)
β6 0.0793(0.0786,0.1166) 0.0819(0.0787,0.1166) 0.1101(0.0752,0.1115)
β7 0.0804(0.0821,0.1217) 0.0812(0.0820,0.1215) 0.1146(0.0778,0.1154)

2000

β2 0.0729(0.0667,0.0989) 0.0741(0.0667,0.0989) 0.1009(0.0681,0.1009)
β3 0.0787(0.0703,0.1042) 0.0742(0.0705,0.1045) 0.1070(0.0720,0.1068
β6 0.0740(0.0676,0.1002) 0.0721(0.0676,0.1002) 0.1023(0.0687,0.1019)
β7 0.0787(0.0703,0.1042) 0.0828(0.0703,0.1042) 0.1076(0.0724,0.1073)

2500

β2 0.0631(0.0595,0.0882) 0.0646(0.0595,0.0882) 0.0854(0.0576,0.0854)
β3 0.0659(0.0625,0.0929) 0.0629(0.0627,0.0930) 0.0896(0.0605,0.0896)
β6 0.0674(0.0600,0.0889) 0.0688(0.0600,0.0930) 0.0859(0.0582,0.0863)
β7 0.0665(0.0626,0.0928) 0.0672(0.0626,0.0928) 0.0894(0.0604,0.0896)

* For each cell, the value outside the brackets represents SD, while the first and second numbers inside

the brackets represent ESEm and ESEo, respectively.
* In the renewable estimation experiments, each data stream batch has a size of nb = 500.

267

C.2 Real data analysis

Table C.13: Comparison of misclassification rates (%) of various classifiers

Testing Batch: Bb+1

(b+ 1) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Batch size 351 424 398 443 387 418 409 407 461 367 384 416 363 386 380 374 396

C
β̂∗

b,λ=0
5.4131 2.8302 2.5126 4.7404 2.5840 2.1531 3.6675 1.2285 3.2538 2.7248 4.1667 0.7212 2.4793 2.8497 2.8947 2.1390 1.2626

Cβ̃b,λ=0
5.4131 2.8302 2.5126 4.7404 2.5840 2.1531 3.6675 1.2285 3.2538 2.7248 4.1667 0.7212 2.4793 2.8497 2.8947 2.1390 1.2626

C
β̂∗

b
5.4131 2.8302 2.5126 4.7404 2.5840 2.1531 3.6675 1.2285 3.2538 2.7248 4.1667 0.7212 2.4793 2.8497 2.8947 2.1390 1.2626

Cβ̃b,λ
5.4131 2.8302 2.5126 4.7404 2.5840 2.1531 3.6675 1.2285 3.2538 2.7248 4.1667 0.7212 2.4793 2.8497 2.8947 2.1390 1.2626

Cβ̃b,λ∗ 5.4131 2.8302 2.5126 4.7404 2.5840 2.1531 3.6675 1.2285 3.2538 2.7248 4.1667 0.7212 2.4793 2.8497 2.8947 2.1390 1.2626

Testing Batch: Bb+1

(b+ 1) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Batch size 351 364 340 295 251 281 358 312 318 319 266 206 307 348 353 353 297

C
β̂∗

b,λ=0
4.5584 2.7473 4.1176 4.0678 2.7888 3.9146 0.5587 2.2436 2.5157 6.5831 3.0075 3.3981 1.3029 2.5862 1.1331 5.0992 1.3468

Cβ̃b,λ=0
4.5584 2.7473 4.1176 4.0678 2.7888 3.9146 0.5587 2.2436 2.5157 6.5831 3.0075 3.3981 1.3029 2.5862 1.1331 5.0992 1.3468

C
β̂∗

b
4.5584 2.7473 4.1176 4.0678 2.7888 3.9146 0.5587 2.2436 2.5157 6.5831 3.0075 3.3981 1.3029 2.5862 1.1331 5.0992 1.3468

Cβ̃b,λ
4.5584 2.7473 4.1176 4.0678 2.7888 3.9146 0.5587 2.2436 2.5157 6.5831 3.0075 3.3981 1.3029 2.5862 1.1331 5.0992 1.3468

Cβ̃b,λ∗ 4.5584 2.7473 4.1176 4.0678 2.7888 3.9146 0.5587 2.2436 2.5157 6.5831 3.0075 3.3981 1.3029 2.5862 1.1331 5.0992 1.3468

Testing Batch: Bb+1

(b+ 1) 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Batch size 286 371 281 309 231 219 234 216 191 181 259 216 223 260 220 242 242

C
β̂∗

b,λ=0
3.4965 1.0782 1.4235 2.5890 4.3290 6.8493 4.7009 4.6296 3.6649 8.2873 3.8610 6.4815 2.6906 1.9231 0.9091 2.8926 1.6529

Cβ̃b,λ=0
3.4965 1.0782 1.4235 2.5890 4.3290 6.8493 4.7009 4.6296 3.6649 8.2873 3.8610 6.4815 2.6906 1.9231 0.9091 2.8926 1.6529

C
β̂∗

b
3.4965 1.0782 1.4235 2.5890 4.3290 6.8493 4.7009 4.6296 3.6649 8.2873 3.8610 6.4815 2.6906 1.9231 0.9091 2.8926 1.6529

Cβ̃b,λ
3.4965 1.0782 1.4235 2.5890 4.3290 6.8493 4.7009 4.6296 3.6649 8.2873 3.8610 6.4815 2.6906 1.9231 0.9091 2.8926 1.6529

Cβ̃b,λ∗ 3.4965 1.0782 1.4235 2.5890 4.3290 6.8493 4.7009 4.6296 3.6649 8.2873 3.8610 6.4815 2.6906 1.9231 0.9091 2.8926 1.6529

Testing Batch: Bb+1

(b+ 1) 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

Batch size 256 225 241 269 237 236 210 190 203 178 216 206 218 209 210 207 206

C
β̂∗

b,λ=0
2.3438 3.5556 3.3195 1.4870 5.9072 4.2373 6.1905 4.7368 3.4483 3.9326 3.2407 3.3981 3.6697 5.7416 4.2857 3.3816 2.9126

Cβ̃b,λ=0
2.3438 3.5556 3.3195 1.4870 5.9072 4.2373 6.1905 4.7368 3.4483 3.9326 3.2407 3.3981 3.6697 5.7416 4.2857 3.3816 2.9126

C
β̂∗

b
2.3438 3.5556 3.3195 1.4870 5.9072 4.2373 6.1905 4.7368 3.4483 3.9326 3.2407 3.3981 3.6697 5.7416 4.2857 3.3816 2.9126

Cβ̃b,λ
2.3438 3.5556 3.3195 1.4870 5.9072 4.2373 6.1905 4.7368 3.4483 3.9326 3.2407 3.3981 3.6697 5.7416 4.2857 3.3816 2.9126

Cβ̃b,λ∗ 2.3438 3.5556 3.3195 1.4870 5.9072 4.2373 6.1905 4.7368 3.4483 3.9326 3.2407 3.3981 3.6697 5.7416 4.2857 3.3816 2.9126

Testing Batch: Bb+1

(b+ 1) 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Batch size 218 209 206 201 157 208 194 219 142 180 182 164 165 172 178

C
β̂∗

b,λ=0
4.5872 3.8278 0.9709 3.4826 3.1847 2.4038 3.0928 5.9361 7.0423 2.7778 4.9451 3.6585 2.4242 2.9070 1.6854

Cβ̃b,λ=0
4.5872 3.8278 0.9709 3.4826 3.1847 2.4038 3.0928 5.9361 7.0423 2.7778 4.9451 3.6585 2.4242 2.9070 1.6854

C
β̂∗

b
4.5872 3.8278 0.9709 3.4826 3.1847 2.4038 3.0928 5.9361 7.0423 2.7778 4.9451 3.6585 2.4242 2.9070 1.6854

Cβ̃b,λ
4.5872 3.8278 0.9709 3.4826 3.1847 2.4038 3.0928 5.9361 7.0423 2.7778 4.9451 3.6585 2.4242 2.9070 1.6854

Cβ̃b,λ∗ 4.5872 3.8278 0.9709 3.4826 3.1847 2.4038 3.0928 5.9361 7.0423 2.7778 4.9451 3.6585 2.4242 2.9070 1.6854

* C∗
β̂b,λ=0

denotes the results obtained from the offline method without variable selection, while C
β̃b,λ=0

represents the results obtained

from the renewable estimation method without variable selection. On the other hand, C∗
β̂b

denotes the results obtained from the

offline method incorporating SCAD, while C
β̃b,λ

and C
β̃b,λ∗ represent the results obtained from the penalised renewable estimation

methods introduced in Section 4.2.2 and Section 4.4.1, respectively. The misclassification rates of each classifier remain the same across

all cases.

268

Table C.14: Comparison of misclassification rates (%) for various classifiers

Testing Batch: Bb+1

(b+ 1) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Batch size 191 243 202 246 212 234 211 231 251 214 210 235 216 221 208 223 241

C
β̂∗

b
5.7592 3.7037 1.9802 4.4715 1.4151 1.7094 3.7915 0.8658 3.5857 3.7383 3.8095 0.8511 2.7778 4.5249 4.3269 1.3453 0.4149

Cβ̃b,λ
6.2827 4.9383 1.4851 3.6585 1.4151 1.7094 3.3175 0.8658 3.5857 2.8037 3.8095 0.8511 2.7778 3.6199 4.3269 1.3453 0.4149

Cβ̃b,λ∗ 6.2827 4.9383 1.4851 3.6585 1.4151 1.7094 3.3175 0.8658 3.5857 2.8037 3.8095 0.8511 2.7778 3.6199 4.3269 1.3453 0.4149

Testing Batch: Bb+1

(b+ 1) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Batch size 210 215 199 159 143 159 196 165 147 169 150 122 153 194 177 182 152

C
β̂∗

b
3.8095 3.7209 3.0151 3.7736 4.1958 5.0314 1.0204 2.4242 2.0408 2.9586 3.3333 4.0984 0.6536 3.0928 1.1299 6.0440 0.6579

Cβ̃b,λ
3.8095 3.7209 3.0151 3.7736 4.1958 4.4025 1.0204 1.8182 2.0408 2.9586 3.3333 4.0984 0.6536 3.0928 1.1299 5.4945 0.6579

Cβ̃b,λ∗ 4.2857 3.7209 3.0151 4.4025 4.1958 5.0314 1.0204 1.8182 2.0408 2.9586 3.3333 4.0984 0.6536 3.0928 1.1299 5.4945 0.6579

Testing Batch: Bb+1

(b+ 1) 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Batch size 163 222 145 143 85 73 98 77 71 70 100 83 100 109 85 107 116

C
β̂∗

b
3.0675 1.3514 1.3793 3.4965 7.0588 10.9589 5.1020 6.4935 1.4085 17.1429 5.0000 8.4337 3.0000 1.8349 1.1765 5.6075 2.5862

Cβ̃b,λ
3.0675 1.3514 1.3793 2.7972 7.0588 10.9589 5.1020 6.4935 1.4085 17.1429 5.0000 7.2289 3.0000 2.7523 1.1765 5.6075 2.5862

Cβ̃b,λ∗ 3.0675 1.3514 1.3793 2.7972 7.0588 10.9589 5.1020 6.4935 1.4085 17.1429 5.0000 8.4337 3.0000 1.8349 1.1765 5.6075 2.5862

Testing Batch: Bb+1

(b+ 1) 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

Batch size 123 111 114 132 116 116 104 92 99 90 106 95 114 99 103 112 98

C
β̂∗

b
2.4390 6.3063 4.3860 0.7576 5.1724 2.5862 9.6154 6.5217 6.0606 4.4444 2.8302 2.1053 5.2632 7.0707 5.8252 4.4643 2.0408

Cβ̃b,λ
2.4390 6.3063 4.3860 0.7576 5.1724 2.5862 9.6154 6.5217 6.0606 4.4444 1.8868 2.1053 5.2632 7.0707 4.8544 5.3571 3.0612

Cβ̃b,λ∗ 3.2520 6.3063 4.3860 0.7576 5.1724 2.5862 9.6154 6.5217 6.0606 4.4444 1.8868 2.1053 6.1404 7.0707 4.8544 4.4643 3.0612

Testing Batch: Bb+1

(b+ 1) 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Batch size 110 99 105 96 74 97 78 91 65 78 85 76 77 70 86

C
β̂∗

b
5.4545 4.0404 0.9524 7.2917 4.0541 2.0619 3.8462 5.4945 7.6923 3.8462 5.8824 5.2632 3.8961 2.8571 3.4884

Cβ̃b,λ
5.4545 4.0404 0.9524 7.2917 2.7027 2.0619 3.8462 5.4945 6.1538 3.8462 5.8824 5.2632 3.8961 4.2857 3.4884

Cβ̃b,λ∗ 6.3636 4.0404 0.9524 7.2917 4.0541 2.0619 3.8462 5.4945 6.1538 3.8462 5.8824 5.2632 3.8961 2.8571 3.4884

* C∗
β̂b

denotes the results obtained from the offline method incorporating SCAD, while Cβ̃b,λ
and Cβ̃b,λ∗

represent the results obtained from the penalised renewable estimation methods introduced in Section

4.2.2 and Section 4.4.1, respectively.

269

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Declarations
	Introduction
	Research objective 1: Classification with mislabelled data
	Background and motivation
	Contributions of our method

	Research objective 2: Online algorithms for streaming data
	Background and motivation
	Contributions of our method

	Structure of the thesis
	Preliminary notations and assumption of sparsity

	Literature review
	Variable selection
	Penalised generalised linear model
	Renewable estimation
	High-dimensional classification
	Classification with imperfect labels

	Classification with mislabelled data
	Methodology
	The proposed classifier
	Computational algorithm

	Evaluation metrics for simulation study
	Mislabelled dataset generation and simulation study set-up
	Resampling for the mislabelled dataset
	Simulation study

	Determining the tuning parameter for the penalty function in the presence of mislabelled data
	Modified Leave-P-Out Cross-Validation (mLPOCV)
	Selection of validation data from the unresampled dataset for second-step estimation
	Selection of validation data from the resampled dataset for second-step estimation
	Selection of validation data from resampled and unresampled datasets for second-step estimation
	Simulation study

	The order of estimation in the second-step estimation
	Simulation study

	Estimation using oracle information of flipping probabilities
	 is known
	 is known
	Both and are known
	Simulation study

	Classifiers from different ways to cope with mislabelling
	Estimation on datasets with all labels corrected
	Estimation on raw datasets
	Estimation on combined datasets having resampled and unresampled data without considering flipping probabilities
	Simulation study

	The mislabelling probabilities are estimated from the mislabelling ratios obtained from the resampled dataset
	Methodology
	Simulation study

	Estimation with the Independence Screening (IS) method
	Methodology
	Simulation study

	Estimation with the Iterative Independence Screening (IIS) method
	Methodology
	Simulation study

	Real data analysis
	Description of the dataset and how to reclassify the perfect labels with noise
	Detailed analysis

	Online algorithms for streaming data
	Model specification
	Methodology
	Offline penalised maximum likelihood estimation algorithm
	Incremental algorithm for penalised maximum likelihood estimation
	Simulation study setup
	Simulation study

	Determining the tuning parameter for the penalty function in renewable estimation
	Modified Leave-P-Out Cross-Validation (mLPOCV) for streaming data
	Two algorithms of search processes
	Simulation study: Comparison of two search methods for tuning parameter selection
	Simulation study: Comparing the algorithm with SCAD penalty function to the one without penalty function
	Simulation study: Tuning parameter selection on different sizes of validation data in mLpOCV

	Iteratively updated tuning parameter
	Incremental algorithm for penalised maximum likelihood estimation with iteratively updated penalty
	Simulation study

	The incremental algorithm with Independence Screening (IS) and its variant approaches
	The incremental algorithm with IS
	The incremental algorithm with ISV1: Variant 1 of IS
	The incremental algorithm with ISV2: Variant 2 of IS
	Simulation study: Comparative analysis of online algorithms with SCAD, IS-SCAD, ISV1-SCAD and ISV2-SCAD for the case of p<nb

	The incremental algorithm with Iterative Independence Screening (IIS) and its variant approach
	The incremental algorithm with IIS
	The incremental algorithm with IISV1: Variant 1 of IIS
	Simulation study: Comparative analysis of online algorithms with IS-SCAD, ISV1-SCAD, IIS-SCAD, and IISV1-SCAD for the cases of nb<p<Nb and p>Nb
	Simulation study: Comparative analysis of online algorithms with IIS-SCAD and IISV1-SCAD, along with the offline algorithm with IIS-SCAD for the case of p>Nb

	Real data analysis

	Discussion
	Research objective 1: Classification with mislabelled data
	Research objective 2: Online algorithms for streaming data

	References
	Appendix: Derivation of estimators for Classification with mislabelled data
	Two-step estimation method using LQA and Newton-Raphson algorithm

	Appendix: Tables for Classification with mislabelled data
	Appendix: Tables for Online algorithms for streaming data
	Simulation study
	Real data analysis

