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Abstract

Energy plays an essential role in our lives. Merging the existing electricity
networks with distributed energy resources and information and communications
technology (ICT) changes how companies and customers generate, distribute, and
consume energy. This integration transforms the legacy electricity networks into
smart systems, or what is currently known as the Smart Grid (SG). Smart grid
infrastructure has been one of the major industrial revolutions that has attracted
widespread adoption across the globe. Therefore, they can be the target of major
security risks as they are not inherently secure. In this sector, sensors’ and meters’
data are the main factors in any decision-making process. This introduces the
need to develop appropriate security mechanisms that ensure data integrity. One
of the main attacks against data integrity in energy networks is energy theft. This
attack can be made by injecting false consumption data into the network. The
consequences of a successful energy theft attack on smart grid systems can be severe
and far-reaching as it can result in power outages and physical damage to equipment
which can be a safety hazard to individuals. Therefore, secure techniques are needed
to detect any anomalies or injection attempts and smart meter data integrity should
be considered and ensured.

In this thesis, we propose three machine learning (ML) based energy theft
detectors that address the existing challenges facing current research in this domain.
In particular, we consider the impact proposed by prosumers in launching new types
of energy thefts and how to detect them. We also show how to fully utilise data from
multiple sources for better detection performance. To decrease the probability of any
privacy breaches caused by the use of customers’ data, privacy-preserving approaches
are proposed. Lastly, we tackle the significant impact on demand management
caused by energy thefts by proposing a combined energy theft detector with demand
management. The findings presented in this thesis show that our approaches can
accurately detect energy thefts, with minimal information leakage. Moreover, the
results are also promising in providing a clear link between reliably managing demand
when energy theft is considered.
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Chapter 1

Introduction

The concept of smart grid (SG) refers to the modernisation of traditional electricity
grids that allows dynamic optimisation of operations and maintains a reliable and
secure electricity infrastructure. SG uses an advanced metering infrastructure (AMI)
that utilises digital information and communication technology (ICT). ICT enables
real-time power demand measurements to be exchanged between all components.
These high-resolution electricity data, provided by modern smart meters, help balance
supply and demand better. New smart grids have also allowed the integration of
renewable energy resources at residential levels, enabling consumers to produce energy
and sell it to the grid. Although these advancements in smart grid technology and
its integration with ICT have brought many advantages, they have also opened up
the system to several vulnerabilities. This is because when ICT was first integrated
into energy networks, defending against intrusions was not a priority. Smart grids
are vulnerable to various types of attacks, including attacks against data integrity,
confidentiality and availability.

One of the main attacks against data integrity in energy systems is energy theft.
This attack involves manipulating smart meters’ fine-grained data through the
network. Energy thefts are one of the major causes of non-technical losses (NTL)
during electricity transmission and distribution [I]. They are defined as any illegal
energy use that violates contract terms. This can be achieved through physical
means, such as using a bypass cable (a shunt), or through digital manipulation
of meter readings. This can lead to paying nothing (or less) for consumed power
or getting paid more for selling to the grid [2]. Globally, energy thefts are the
greatest cause of financial losses in the energy market, and it has been reported that
around $1 to $6 billion dollars are lost yearly in the UK and the US combined due
to these attacks [3].
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Protecting smart grid systems against energy thefts is a serious problem, and
resilience against them is a prerequisite for reliable operation in energy applications.
Our main direction in this thesis is to employ machine learning (ML) techniques to
detect these attacks reliably. Here, we develop detection schemes that can detect
attacks under various theft situations and can simultaneously ensure data privacy
without introducing high communication and communication overheads.

1.1 Aim and Objectives

Energy thefts are one of the most costly attacks launched against smart grids. Hence,
they cause significant concerns for both providers and consumers. They are often
hard to detect, specifically as they can be launched in different forms. Recently,
global electricity consumption has become a burden on energy utilities. This has
pushed power systems operators to introduce more efficient and flexible ways for
sustainable energy, enabling some energy consumers to engage in energy production.
Such customers have become known as “prosumers” (agents that both produce and
consume energy). However, introducing those prosumers has allowed energy thefts
to be launched on either side (consumption and production). Moreover, advances in
smart grid systems have allowed smart metering data to be used in all sorts of energy
management, including the accurate detection of thefts. However, they have also
raised new challenges concerning how data can be transferred and processed without
violating customers’ privacy.

Different detection approaches have been proposed in the literature to detect
existing energy theft attacks in smart grids (as discussed in Chapter . Machine
learning-based techniques are widely used as they offer several advantages over other
techniques, making them a valuable tool for identifying and combating this problem.
However, existing detection approaches address only certain types of consumers’
energy thefts and cannot detect thefts by multiple agents or by prosumers. Moreover,
we have noticed that previous studies have used either a generalised detection model
for all users or a user-specific one. Therefore, opportunities for using data features
from different sources can help to find a balance between the two approaches. This
is done by grouping users into clusters and creating a reference model for each
cluster. This thesis investigates whether having a cluster-based energy theft detection
using ML-based approaches is able to detect different energy theft attacks accurately.
Hence, our first hypothesis is:
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Hypothesis 1: Combining machine learning techniques (clustering and
classification) can enhance the detection of a range of thefts, including prosumers

thefts.

The use of machine learning often requires that data is used in its raw form. However,
due to privacy concerns and some legal constraints (e.g., GDPR in the EU and CCPA
in California), the use of customers’ energy data is subject to strict regulations. These
privacy policies must be followed to ensure data privacy at all times. For realistic
prospects of deployment in real systems, an energy theft detection approach based on
machine learning must be privacy-preserving and avoid using data in its raw form.
This leads us to formulate our second hypothesis:

Hypothesis 2: A privacy-preserving ML technique that suits the smart grid
environment can be developed to accurately and effectively detect energy theft while
preserving the privacy of customers’ data.

Most smart grid operations rely on the availability and integrity of smart meters’
readings, and any manipulation of these readings can affect operational reliability.
Degrading the integrity of such readings may, for example, affect future demand
forecasting, which can, in turn, cause disruption to the energy supply. This may
lead to outages if a system cannot provide adequate supply or even become an
operational safety issue. Thus, an energy theft detection model should be equipped
with post-detection mechanisms that enhance demand-response management. We
argue that a multi-output neural network offers a particularly appropriate approach
to doing this effectively and efficiently. Indeed, we will show that such an approach
can provide both detection and prediction functions in the same network. Therefore,
our final and third hypothesis is:

Hypothesis 3: A multi-output neural network framework can be wused to
simultaneously predict the presence of theft, predict its magnitude, and use that
estimation to make more accurate forecasts.

Upon developing these three hypotheses, our primary aim of ensuring the precise and
effective detection of various forms of energy theft while preserving customers’ privacy
will be investigated.
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1.2 Thesis Contributions

The major contributions of this thesis are as follows:

e The proposal and evaluation of a cluster-based theft detection method that
detects thefts by both consumers and prosumers. The proposed method can
detect thefts from new users without the need for historical data.

e The introduction of new electricity theft scenarios, which we term as balance
attacks. These attacks can balance the amount of electricity stolen from
one meter with manipulated values returned from neighbouring meters. This
scenario can be difficult to detect with existing detection models.

e The production of a dataset that includes both prosumers’ and consumers’
profiles.

e The proposal and evaluation of a privacy-preserving energy theft detection
approach. The proposed detection is based on a newly proposed variant of
split learning, called Three Tier Split Learning, that suits the nature of smart
grid infrastructure.

e The proposal of an energy theft detection approach that not only detects energy
thefts but also takes post-detection actions that help estimate future demand.
The proposed approach is a privacy-preserving scheme that detects energy thefts
and estimates the amount of stolen energy, which is then used to manage future
demand, even in cases of theft.

e The introduction of quantitative analysis metrics to analyse the privacy of
an energy theft detection model using feature inference attacks and distance
correlation.

1.3 Structure of the Thesis

This thesis is conceptually structured as illustrated in Figure in order to address
the aim, objectives and the three hypotheses presented earlier. This includes the
following chapters:

In Chapter 2| [Background and Literature Survey| we outline relevant research
topics in the literature, critically survey the existing work and highlight the gaps that
led to our hypotheses.
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Threat Model

Detection
Methodology

Evaluation Metrics

In Chapter |3, [ML-Based Detection Model in the Presence of Prosumers|
we propose a cluster-based detection model that uses multi-source data features to
detect energy thefts. We apply our proposed model to different energy theft scenarios,
including those that prosumers can launch. The proposed model is empirically tested
using several machine learning algorithms, and results can confirm hypothesis 1.

In Chapter (4} [Privacy-Aware Split Learning Based Energy Theft Detection)]
hypothesis 2 is explored through the implementation of a detection model for energy
thefts that can preserve the privacy of users’ data. This work introduces a new variant
of a privacy-preserving ML approach, which we term Three-Tier Split Learning. This
variant is needed to suit the smart grid’s environment. Moreover, the model’s security

Chapter 1: Introduction

Chapter 2: Background and
Literature Survey

Chapter 3

Chapter 4

Chapter 5

Energy Theft Detection

Privacy-Preserving Energy Theft
Detection

Privacy-Preserving Energy Theft
Detection with Effective Demand-
Response Management

System Model (Three entities: Users, GWs, Server)

Eight Energy Theft Attack J_L
¥

Scenarios (Including Balance
Attacks)

+ Two Privacy Attacks: Poisoning
Attack and Feature Inference
Attack

+ Balance Attack From a Single
User and Three Different Feature
Inference Attack Scenarios

Clustering + Timeseries
Decomposition + Multiple
Supervised ML Approaches

Three Tier Split Learning +
Stacked Auto-Encoder

Three Tier Split Learning +
Multi-Output Neural Network

Detection Performance: Accuracy, | H
Precision, Recall, Error Rate H

g

+ Privacy Performance: E{
Distance Correlation

+ Privacy Performance:
Feature Inference Attack
Successfulness

Chapter 6: Conclusion and Future

Work

Figure 1.1: Qverview of the Thesis Structure

and privacy aspects are evaluated in different scenarios.
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In Chapter [Privacy-Enhanced Energy Theft Detection for Effective]
[Demand Management| we investigate hypothesis 3 by integrating energy theft
detection with demand management. We implement a multi-output system that can
detect energy theft, estimate its magnitude and predict future energy demand. We
also provide a thorough quantitative privacy analysis using two metrics: distance
correlation and feature inference attacks.

In Chapter [6], [Conclusion and Future Work] we summarise this thesis’s major
findings, restate the contributions achieved and highlight future work.

1.4 Associated Publications

The work reported in this thesis has appeared or submitted to appear in the following
publications:

e Arwa Alromih, John A. Clark, and Prosanta Gope. “Electricity Theft Detection
in the Presence of Prosumers Using a Cluster-based Multi-feature Detection
Model.” In 2021 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), pp. 339-345.
IEEE, 2021. The URL for the electronic version of this publication is https:
/ /ieeexplore.ieee.org/document,/9632322. This work is reported in Chapter [3|

e Arwa Alromih, John A. Clark, and Prosanta Gope. “Privacy-Aware Split
Learning Based Energy Theft Detection for Smart Grids”. In 24th International
Conference on Information and Communications Security (ICICS 2022), pp.
281-300, Springer-Verlag, 2022. The URL for the electronic version of
this publication is https://link.springer.com /chapter/10.1007 /978-3-031-15777-
6_16. This work is reported in Chapter

e Arwa Alromih, John A. Clark, and Prosanta Gope. “A Privacy-Preserving
Energy Theft Detection Model for Effective Demand-Response Management in
Smart Grids”. This work has been submitted for publication and a preprint
version can be found here https://arxiv.org/abs/2303.13204. Chapter [5| of this
thesis reports on this work.

In addition to these publications, the generated dataset used in this thesis is openly
available in our GitHub repository https://github.com/asr-vip/Electricity-Theft


https://ieeexplore.ieee.org/document/9632322
https://ieeexplore.ieee.org/document/9632322
https://link.springer.com/chapter/10.1007/978-3-031-15777-6_16
https://link.springer.com/chapter/10.1007/978-3-031-15777-6_16
https://arxiv.org/abs/2303.13204
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Chapter 2

Background and Literature Survey

2.1 Introduction

The term “energy grid” typically refers to the Traditional Grid (TG) system, which
is an infrastructure that supports four essential electricity operations: -electricity
generation, long-distance electricity transmission, energy distribution, and end-user
power consumption. In the TG, energy stations dispatch electricity unidirectionally
to distribution substations and finally to the end users. However, this outdated power
infrastructure cannot meet the rising demand for services like demand response (DR),
self-healing, real-time pricing, congestion management, dependability, and security.
It is crucial to concentrate on the newest technologies to satisfy these demands
and deliver safe, dependable, continuous electricity without power system blackouts.
These features are all available in the future grid, commonly known as the Smart

Grid (SG).

The smart grid is an advanced concept proposed at the beginning of the 21st
century [4]. It is the evolutionary step towards reliable and efficient power delivery.
SG networks are advanced technology-enabled electrical grid systems that incorporate
information and communication technology (ICT) with smart meters, metering
communication networks and meter data management systems to collect nearly
real-time big energy usage data with a view to its subsequent analysis [4, [5].
ICT enabled two-way information and electrical flow between the grid’s entities,
facilitating the automatic distribution of electricity delivery. By utilising cutting-edge
information and communication technology, the SG can produce, store and share
energy whenever it is needed, just like we create and share information through
the internet [6, [7]. Tt is important to note that the system had been made more
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complex by integrating a number of technologies (as shown in Figure , including
advanced metering infrastructure (AMI), energy supply systems, renewable energy
sources (RESs), electric vehicles (EVs), and energy storage systems (ESS) all with
the help of ICT [4, §].

While SG has opened up new opportunities for better energy management, it has
also created new potential problems. One of the significant difficulties is the threats to
the system’s security and data privacy. The most common security threats are those
that result in considerable functional and monetary losses for energy utility firms on
a global level, such as energy theft. Energy theft attacks raise serious issues for both
providers and customers. Whether such attacks are carried out on a small or large
scale, by a single user or multiple users, the losses will eventually affect everyone,
including honest users. To maintain SG’s activities, a security mechanism must exist
to defend against them. Otherwise, customers may experience an electrical blackout
that would disrupt daily activities, including the failure of heating systems, the
absence of online payment systems, and many others. Moreover, the modernisation
of the grid has significantly increased the amount of personal information exchanged
in the system. This has created more opportunities for attackers to gain access to
individuals’ information and maliciously utilise it improperly.

Several surveys and reviews, such as [3], [, [10] 111, 12} 3], have evaluated energy
theft detection algorithms, the issues that occur during the detection functionality and
the existing limitations of each detection category. However, these existing surveys
focus only on the proposed detection mechanisms for energy theft and do not cover
state-of-the-art energy theft attack techniques. They also consider energy theft as
a sole problem and do not consider the implications that are faced either from the
detection approach (such as violating customers’ privacy) or those that arise from the
theft act itself (such as compromising the demand management accuracy). Therefore,
this chapter provides a more comprehensive overview of the different attack types,
their detection strategies proposed in the literature, and a thorough evaluation of their
strengths and weaknesses. This will facilitate further research and help in considering
the existing limitations in this research area. We outline some background related
to the smart grid, its architecture, security requirements and cybersecurity-related
issues. We provide more details about energy theft attacks, outline research efforts
that seek to defend against them and identify to what degree each research achieved
its goals. We also consider evaluation methods, attack scenarios, and datasets used
by other researchers.

The rest of this chapter is organised as follows: Section focuses on background
information about SGs’ architecture and components. Sections and list
the overall security requirements and security threats that are faced in the SG’s
environments. Section [2.5| provides a comprehensive description of energy thefts
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and Section highlights their implications over privacy. Section discusses
and categorises the algorithms used for energy theft detection systems. Next, the
performance metrics and datasets used in the energy theft research area are described
in Sections and respectively. Finally, Sections and present the
existing research gaps, address the identified research questions and formulate the
research’s model.

Energy
Transmission
Systems Electric Vehicles
Energy Storage (Transportation
Systems)
Distributed Information and
Energy Communication
Resources (DER) Technologies

Energy S m a rt

Generation Prosumer

Systems G ri d

Figure 2.1: An Overview of Smart Grid’s Components

2.2 SG Architecture and Components

According to the definition of smart grids, an SG is a cyber-physical system (CPS)
that integrates legacy complex power and energy systems with information and
communication technologies (ICTs). Being a CPS, the smart grid system can be
treated as a three-component architecture, as shown in Figure [14]. These
components are:

1. A physical layer that comprises the physical infrastructure of electrical power
systems.
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2. A communication model that enables information exchanges between different
elements of the system.

3. A control layer which includes all software managing and controlling the energy
systems.

In the sections that follow, a detailed description of each component is given.

Control Layer

Prediction State Trading Economic Demand M i
& Planning Estimation Platform Dispatch Response

Non-
renewable Energy Energy

Energy Storage Transmission

Resources

Renewable

Communication Model

Energy
Resources

Physical Layer

Energy Flow «——
Information Flow <«—»

Figure 2.2: An Architecture Reference Model for Smart Grids [15]

2.2.1 Physical Layer

The smart grid’s physical infrastructure comprises several power systems generally
categorised into generation, transmission, and storage systems. The generation
systems integrate renewable energy systems (RESs) along with traditional power
plants to generate electricity to be delivered by the transmission systems to
customers [16].

10
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2.2.2 Communication Model

The communication network in a smart grid system can be divided into three
subsystems, as shown in Figure This network comprises three parts: the Home
Area Network (HAN), the Neighbourhood Area Network (NAN), and the Wide Area
Network (WAN). In the Home Area Network, a group of home appliances distributed
energy resources (such as solar panels or small wind turbines) and energy storage
systems are connected to a smart meter (SM) for basic data collection. Moreover, an
in-home display provides the user with an interactive interface to control and manage
all devices inside the HAN. The SM enables two-way communication to send and
receive information from and to the utility. A NAN connects several HANs together
with a gateway (also known as an aggregator or data concentrator) that resides at
a substation. It is mainly located in the energy distribution domain. Therefore,
it communicates over power-line communication (PLC). Finally, the WAN connects
multiple gateways from different substations together to provide connectivity to the
utility control system [5, [17].

Home Area Network Neighbourhood Area Wide Area Network
(HAN) Network (NAN) (WAN)

K

Substation

o 6 ﬁ | % Smart Meter ///

Smart Appliances \ /
\ /
\\\ @ //
\
\ /
Smart Meter
Substation

Smad/t Meter

Smart Meter

&9

Substation

5

Control Centre

Energy Storage

Figure 2.3: Smart Grid’s Data Communication Network [5, [17]
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2.2.3 Control Layer

This layer is responsible for controlling and monitoring the energy elements of the
system. It has one major component, which is the Supervisory Control and Data
Acquisition (SCADA) system. SCADA systems reside at control centres and are used
to facilitate all decision-making processes in the smart grid infrastructure. SCADA
employs various sensors and actuators that sense and send data to remote terminal
units (RTU). These RTUs forward all information to a Master Terminal Unit (MTU)
for further processing and analysis. Other elements exist in this layer, such as the
trading platform, state estimation, prediction and planning, economic dispatch and
demand response. All of these systems rely on data stored in the SCADA system
to be analysed and communicated with different parties through the communication
model.

2.3 Smart Grids Security Requirements

The smart grid’s network is a critical and sensitive network that requires secure
methodologies to deal with the cyber system and the communication infrastructure.
Moreover, the communication model in SG systems handles the process of sending
command information, consumption reports, prices and bids, billing and demand
response controls [5l [15]. Hence, the sensitivity of these communications requires the
SG to provide the following security goals:

e Confidentiality: Confidentiality is the security requirement that ensures that
data are shielded from disclosure to unauthorised users and from eavesdropping.
Confidentiality in itself may be of limited importance to the operation of an
energy system, but it is closely associated with privacy, which is critical to
customers due to the periodic energy usage data communication through the
network. These data can reveal consumers’ life patterns. The importance of
privacy and its issues in energy systems will be discussed later in Section

e Integrity: This requirement assures that the data and system commands
are safe from unauthorised modification and alterations. This is particularly
important since falsified and altered data or commands can enable an attacker to
hijack the system and gain sensitive information, manipulate meters’ readings,
escalate privileges or access unauthorised system components.

e Availability: This ensures that all smart grids’ data and systems are available
at all times (or very close to that). The availability of energy systems is crucial
due to the fact that generation and consumption need to be balanced.

12
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e Authentication: An energy network consists of a large number of different
entities whose identities need to be ensured to prevent user impersonation.
Authentication is the method of ensuring the validity of a user’s identity and
the content of the information sent by the user.

e Non-repudiation: This property ensures that a component cannot deny the
actions that it performed. This ensures that all false actions can be tracked to
a certain individual; for example, an energy thief cannot deny responsibility for
the actions he/she carried out.

e Authorization: This requirement ensures that permissions are given before
any action is carried out. It is essential to share consumption data between
components to determine demand and load management where only authorised
components can read these data.

The importance of these requirements differs across domains; for example, the grid
automation and control systems that ensure the industrial operation would favour
availability and integrity over confidentiality since they are the main drivers for grid
automation, industrial safety and environmental impacts. However, in the smart
metering domain, confidentiality, or more precisely privacy, would be prioritised since
consumption data is the most sensitive for individuals as it can reveal users’ habits [5].
In our work, we give high importance to both integrity and privacy as they are the
most impacted requirements by energy theft attacks.

2.4 Security Threats in Smart Grids

Since a smart grid is considered a complex CPS, complex security challenges have
been revealed in the physical and cyber models of SG [16]. On the one hand, physical
devices, smart meters and bulk power systems can be vulnerable to physical security
threats. On the other hand, there are cyberspace vulnerabilities that affect the privacy
and protection of the communication systems and the information at the software
level [18]. According to the aforementioned factors, attacks on SGs can be categorised
into physical and cyber, as shown in Table[2.1] These categories are discussed in more
depth in the following subsections, with a brief look at the history of cyber attacks
first.

13
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Table 2.1: Physical and Cyber Attacks Targeting Smart Grids

Attack Type Attack Name

1. Meter manipulation

Physical 2. Physical power lines cutting
3. Natural disasters
, 1. False data injection attack (FDIA)
Integrity 5 & thoft
Cyber . Energy thefts
1. Traffi lysi
Confidentiality ratiic analysis
. Release of message contents
Availability 1. Channel jamming

. Denial of service (DoS)

2.4.1 History of Cyber and Physical Attacks in Smart Grids

Over the past 40 years, several cyber-physical security attacks have been launched
against the energy sector. These attacks had different levels of impact ranging from
unnoticed information loss to losses of millions of dollars. According to the ninth
annual report by Accenture/Ponemon [19], it has been revealed that cybercrimes in
the energy industry have resulted in an average of 13.8 million dollars in losses. This
places the energy sector in the top ten industries that suffer financial losses from
cybersecurity attacks [19]. Cybercrimes against energy systems are not new; they
began in the 1980s. A summary of publicly known attacks can be found in Table [2.2]

In 1982, the first major attack was announced when a massive Siberian gas pipeline
explosion took place due to a trojan horse implemented in the control software
from the United States [12]. The attack was categorised as a malicious update to
firmware that influenced a single substation [20]. In 1994, a hacker managed to
access the computers of the Salt River Project water facility in Arizona, U.S. and
gain complete control of the SCADA system for five hours. During this attack,
the attacker accessed/altered customer financial and personal records that cost the
company around $40,000 [20, 21].

During the following ten years, several security incidents were recorded. Some
were due to insider employee collaboration, such as the Gazprom incident in Russia.

14
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Table 2.2: Ouverview of Cyber Attacks in the Energy Sector

Attack Name Year Location MethOd. of Impact
Operation
Siberian Pipeline _— . . .
Explosion [12, 20] 1982 Siberia, Russia ~ Trojan Horse Physical damage
Salt River Project . . Financial loss &
120, 21] 1994  Arizona, U.S. Root Compromise data disclosure
Gazprom [2]] 1999 Russia Insider & Trojan Operation disrupt
Horse
B'elhr%gham Gas 1999 Washington, Misuse of Human loss
Pipeline [21] U.S. resources
Davis-Besse
Nuclear Power 2003 Ohio, U.S. Worm Operation disrupt
Plan [21]
Aurora Attack 2007 Idaho, U.S. ?Faflse d ata Financial loss
[12] injection attack
[S;EXHet Attack 2010 Iran zero-day attack Operation disrupt
Operation disrupt
Blackout [20] 2015  Kiev, Ukraine ‘Faflse d ata affecting 22.5k
injection attack
customers
Aramco Malware 2017 Saudi Arabia Malware injection Gel'rleratlo%n and
[20] delivery disrupt

Others were because of failures in the critical infrastructure system, as in the case
of the Bellingham Gas Pipeline misuse incident in Washington, U.S. [21]. In 2007,
the “Aurora” cyber attack was launched against a control system of a test generator.
The attacker injected false commands to switch the circuits on and off, causing a
desynchronization between the mechanical generator and the electrical grid. This
desynchronization resulted in the explosion of the generator leading to a loss of one
million dollars [12]. Following these attacks, the “Stuxnet” attack struck a nuclear
facility in Natanz, Iran, in 2010. Stuxnet had exploited four zero-day vulnerabilities
targeting the Microsoft Windows operating system. The attack changes a centrifuge’s
rotor speed, raising its speed and then lowering it, causing it to fail faster than
normal [2I]. Energy systems worldwide experienced more cyber-attacks during the
next 10 years, i.e. between 2010 and 2020. Examples are the often-quoted attack on
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a Ukrainian distribution grid operator in 2015 and the malware targeting industrial
control systems of the Saudi Arabia energy infrastructure in 2017 [20].

Understanding the evolution of cybercrimes against energy systems over time
can assist in the development of new techniques to mitigate their impact. The
investigation of these cyber-physical attacks starts by first identifying their different

types.

2.4.2 Physical Attacks

Physical attacks on energy systems refer to any actions taken to physically damage
or destroy energy infrastructure or a specific area or location. These attacks are
launched in an attempt to disrupt the energy supply. This can include acts such
as bombing a power plant, cutting power lines or vandalising equipment [16]. An
example of this form is the 2013 attack in California where a sniper targeted a Silicon
Valley power substation [22]. These types of attacks can have serious consequences,
such as power outages, equipment damage, and even loss of life. They can also disrupt
the normal functioning of critical services such as hospitals, emergency services, and
transportation systems.

The real challenge is that the infrastructure is geographically spread and
distributed across the land. Thousands of miles of power lines, generators, and
substations are in danger of physical attacks. Likewise, smart meters are installed in
customers’ homes and businesses. For example, a utility cannot prevent a motivated
person from cutting down a transmission line or physically damaging a substation [16].

2.4.3 Cyber Attacks

Cyber-based attacks are attacks delivered through the system’s control layer. They
can be categorised based on the three basic security requirements, confidentiality,
integrity and availability (CIA) [18], as follows:

e Attacks against data confidentiality: Confidentiality attacks are attacks
that try to steal and have access to information that is meant to be secret
within authorised parties. These attacks are also known as attacks against
data privacy. Due to the sensitive nature of information in energy systems and
the multi-hub routing nature of these systems, an adversary can eavesdrop on
communicated reports and analyse traffic patterns. Compared with integrity
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and availability attacks, confidentiality attacks could be seen as lower-risk
attacks as they often do not directly impact the smart grid’s functionalities.
An attacker can sniff or wiretap a communication channel to get personal
information, such as consumption data and bank information, without affecting
the operation of the network. However, collecting this information about the
system is the first step in any attack cycle. Moreover, data privacy is violated
when information is sent in clear text. Privacy has seen more attention in
recent years, especially with the huge amount of customer personal information
revealed in recent leakage incidents [23, 24]. We note, however, that certain
properties of confidentiality must be maintained, e.g. key management must
uphold confidentiality since cryptographic keys often underpin the achievement
of other security requirements.

e Attacks against integrity: Data reports and commands are one of the main
factors in the control and decision-making process that is taken by the SCADA
system at the control centre. Any false measurements or malicious commands
can lead to catastrophic results. These false measurements are called false
data injection attacks, and they are one of the major integrity attacks in
smart grids. Several false data injection attack incidents have been reported
in energy systems, such as the “Aurora” cyber attack and the Ukrainian energy
distribution system attack, which were discussed previously in Section [2.4.1]
Different types of data are communicated between components in the SG
system. These data can all be vulnerable to manipulation and are listed below:

Smart meter data.
Power injection requests and bids.

Price signals from the utility.

- W =

Electrical data of the grid that represent real and reactive power flows,
demand response capacity and voltage.

5. Event messages data, such as outage alerts.

When customers falsify smart meter readings in the system, this is referred to
as an “energy theft attack”, where the attacker’s intention is likely to steal
energy. Section defines this type of attack in detail. In order to defend
against integrity attacks, integrity needs to be provided using any integrity
mechanism such as digital signing or hashing. However, these mechanisms alone
are not sufficient as a compromised node could forge malicious reports along
with the correct signature or hash. Another misconception about the defensive
mechanisms against these attacks is that they can be solved using encryption.
This is not entirely true, as confidentiality does not equate to data authenticity.
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e Attacks against availability: Any disruption to the system’s availability,
such as in the case of denial-of-service (DoS) or distributed DoS (DDoS) attacks,
may lead to significant economic losses (and further losses in critical domains).
In these attacks, attackers typically send a large volume of packets to flood
the network, which causes legitimate data packets to be lost. Jamming attacks
also target the availability of the system. They aim to cause noise in wireless
communication networks so that smart meters (edge devices) cannot connect
to the energy infrastructure network. Such attacks result in packet loss. We
also note the existence of more subtle forms of denial of service, e.g. low rate
denial of service attacks, where a server’s request buffer is maintained at a full
level, causing service requests to be dropped, but where there is no “swamping”
with requests. Attackers only need to keep a server 100 per cent busy to effect
a DoS attack; they do not need to overload it many times. As mentioned
in Section [2.3] availability is generally considered the most important cyber
security requirement for power systems. Thus, effective defences should be
made against these attacks. Traffic filtering, anomaly detection and channel
hopping are some solutions [23].

2.5 Energy Theft Attacks

Energy theft can be defined as the illegal use of energy from electric providers without
a valid contract or any act that leads individuals to not pay their electricity bills or pay
less than they should due to meter reading manipulation. The quantity of electrical
usage relies on the amount of power consumed for a certain duration of time. The
amount of power consumed, i.e. real power, is the product of voltage, current, and
power factors. Once at least one of these three factors is altered by dishonest clients,
meters may be measured, recorded, or charged incorrectly. As stated before, energy
thefts are a type of false data injection attack where an attacker manipulates the
meter’s measurements to make a change in the value reported. This manipulation of
data can be done by a compromised sensor meter in the smart grid in various ways,
such as: (1) a compromised customer’s meter purposely forges its own sensed reading;
(2) an en-route meter forges the report it is relaying to its parent; or (3) an aggregator
meter modifies or drops the aggregated value it is passing to the base station.

Energy theft attacks can be launched for different durations of time. They can
be launched as a one-off attack (interim) or for a continuous time. In an interim
energy theft attack, the duration of the attack is a short time interval. This attack
aims to inflict maximum damage in the shortest possible time. Such attacks can
be detected by statistical anomaly-based detectors [25]. In the case of a continuous
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attack, the attack is continuous, which means that once the attack starts, all the
sensor readings are compromised from that point onwards. This attack is more
interested in compromising and manipulating the system over a long period while
avoiding detection. Such attacks are difficult to uncover with anomaly-based detectors
alone. To defend against such continuous attacks, secure communication protocols
could be a solution [25] 26].

Energy theft attacks can be one of the most critical and serious attacks launched
against energy systems [27]. Therefore, the development of techniques that can
protect and counter such attacks is essential to secure the operations of smart grid
systems [28].

2.6 Energy Thefts and Privacy Issues

As defined previously, energy theft refers to any deviations between the actual
electricity usage and the amount billed to a customer. The issue of privacy comes
into play because energy companies may use various methods to detect energy theft,
such as installing smart meters that can track usage in real time. The use of these
technologies raises concerns about potential invasions of privacy. This is because these
data can include private information about customers’ energy consumption and billing
information. These data can be vulnerable to breaches and misuse, and can be used
without customers’ knowledge or consent. To avoid these concerns, energy companies
can implement various privacy-preserving techniques, such as data anonymization,
data encryption, data aggregation, and access controls. These techniques can help
protect sensitive personal information while still allowing it to be used for legitimate
purposes, such as detecting energy theft. However, these techniques can also hinder
the detection performance in the sense that the data is altered, thus making it harder
to detect. This can be viewed as follows:

e Data Anonymization: Anonymizing personal data, such as removing names,
addresses, and other identifying information, can make it more difficult to detect
patterns of suspicious activity that are specific to individual customers. This
can limit the ability to detect the theft’s source.

e Differential Privacy: Differential privacy is a perturbation and
randomization-based technique that relies on sanitising the data by adding
noise before they are sent. The disadvantage of differential privacy is that it
can only provide privacy to a certain level before it can lower the detection
performance.
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e Encryption-based Techniques: These techniques use encryption, such as
homomorphic encryption or multiparty computation (MPC), to encrypt
personal data. They could be utilised to analyse consumption patterns
and detect energy theft from encrypted data. Unfortunately, those
cryptographic-based techniques increase the computation and communication
costs dramatically.

e Data Aggregation: Aggregating data from multiple customers can help protect
individual privacy, but it can also make it difficult to detect the theft’s source.

e Access Controls: Giving limited access to the data reduces the energy company’s
ability to detect thefts.

Therefore, finding an acceptable balance between energy theft detection and
customer privacy protection is important. This balance is not an easy task,
but it is essential in order to maintain trust and build a long-term relationship
with customers. Moreover, some privacy techniques, such as differential privacy,
homomorphic encryption and secure multiparty computation, can be combined and
used to find the right balance between privacy and performance. Still, these can
increase the complexity of the system.

In the next section, we will review the different categories of energy theft detection
approaches proposed in the literature, including those that address privacy concerns.

2.7 Energy Theft Detection Techniques

In the literature, different strategies have been developed with the goal of detecting
energy theft attacks. While these strategies differ, they can be divided into two
main categories: non-machine learning-based methods and machine learning and deep
learning-based methods [9, 29, B30]. It is worth noting that these methods are not
mutually exclusive and can be combined to form a hybrid energy theft detection
system. In this section, we will provide a detailed survey of these methods.

2.7.1 Non-Machine Learning Based Detection Methods

There are several non-machine learning energy theft detection schemes that can be
used to detect energy theft. These schemes include game theory-based techniques,
hardware-based techniques, and state estimation techniques.
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Game Theory Techniques

Game theory is a widely used defence technique against cyber-physical attacks. In
this technique, active attackers and reactive defenders are seen as the two players in
the game [29]. Game theory provides powerful mathematical models and techniques
for modelling and analysing the interactions between defenders and attackers. In the
context of energy theft detection, energy thieves (the attackers) can use game theory
to maximise the benefits of different types of energy theft without being caught, while
energy providers (the defenders) use it to analyse the costs and benefits of different
security measures over time in response to each theft.

Based on the game theory assumptions, Cardenas et al. [31] proposed a Nash
equilibrium-based game theory strategy to detect energy thefts. In this game, the
goal of the attacker is to find the maximum amount of electricity to be stolen while
minimising the expected likelihood of being detected. The goal of the utility is to
maximise the probability of detecting thieves while lowering the operational cost of
the detection algorithm. They also proposed a privacy-preserving demand response
as a control theory problem that is solved with the goal of maximising the level
of privacy by selecting the maximum sampling interval for smart meters. However,
their proposed privacy-preserving control system cannot be combined with energy
theft detection and is only applicable under many unrealistic constraints. Amin
et al. [32] proposed another game-theory-based energy theft detection with the same
previous two players in the system. The proposed scheme considers pricing and
investment decisions by the utility, the amount of stolen energy, and the probability
of being caught by the thief. Wei et al. [33] proposed a Stackelberg game theory-based
model to identify energy thieves. A Stackelberg game is formulated between a single
leader (the utility) and multiple followers (thieves) to characterise and analyse the
interactions between them. The two actors in this game have opposite goals, i.e.,
the utility aims to maximise theft detection probability while limiting false positives.
Whereas from the thieves’ perspective, the strategy is to interact with one another in
a non-cooperative manner to steal the optimal amounts of electricity without being
detected. After formulating the game’s equilibrium, a likelihood ratio test (LRT) is
used to detect potentially fraudulent meters.

Game theory-based techniques are not very well-known in the energy theft
detection research community. This is because they are based on the assumption
that the number of players in a game is finite [9]. Another reason is that it is
challenging to construct the utility’s optimisation function as there is a number of
trade-offs between all the required parameters that need to be taken into account
when designing it [2], 34].
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Hardware-Based Techniques

In hardware-based detection techniques, special types of physical equipment are
installed at different places in the energy infrastructure to allow the identification
of any theft activities [35]. These techniques range from simple physical security
measures, such as locking each meter in a secure box, to more complex ones such
as replacing traditional meters with special ones. These special devices are used
to measure the current, voltage, magnitude and phase angle at fixed intervals from
multiple locations to be analysed for any inconsistencies [2]. In Grewal et al. [36], the
authors proposed a metering-based theft detection that works by deploying enhanced
prepaid energy meters in customer premises. This hardware-based theft detection
system monitors the power consumption with respect to the load where two current
transformers are connected before and after the energy meter for theft detection.
If any change exists between the two current readings, an alarm is sent, indicating
possible power theft. A prototype of this proposed scheme was developed to test its
applicability and efficiency, and preliminary results showed that the detection rate
(alarm rate) was almost 90%. The main drawback of this work is that it was tested
in a small circuit; therefore, it is unclear whether it can scale to large systems. A
similar approach was also proposed by the authors in [37], [38], and in [39], where
two sensors are placed to measure the amount of current at both ends of the energy
meter. When a difference between the two values occurs, energy theft is identified.

Hardware-based detection methods are simple and have the ability to detect
any illegal behaviour in consumption. However, the cost of deploying extra pieces
of equipment around the whole network is expensive. Therefore, it is necessary
to strategically choose the right number of these physical devices along with their
appropriate deployment place [2].

State Estimation Techniques

State estimation is a technique that uses mathematical algorithms, such as Kalman
filter, to estimate the current state of the system at various points. Energy
thefts are detected by comparing the estimated state variables with the actual
measurements.  Therefore, estimating system states accurately is crucial for
the correct decision-making in energy networks. These estimates rely purely
on measurements taken from various sensors in the transmission lines, which
include: active/reactive power injections (P/Q), branch power flows (S), and voltage
angle/magnitudes (6/V). The relationship between these measurements and the state
variables to be estimated is expressed as follows:

z="h(z)+e (2.1)
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where z is the measurement vector (known), including active and reactive power
flows (P and Q), and z is the system state vector (unknown quantities) for which the
equation must be solved, and it includes the voltage magnitudes and phase angles
(V and #). e denotes the noise vector, which has a Gaussian distribution, and h(x)
denotes the mapping matrix between measurements and state variables. The precise
form of h(x) is determined by the grid structure and line parameters. To estimate
the new state of the system, equation can be solved using a weighted least squares
(WLS) method. In this method, the vector of estimated state variables z is obtained
by solving the following optimisation problem:

min  J(x) = %(z — (@) Wz — h()) (2.2)
where W is a diagonal matrix represented as W = diag(c?,0) and o? is the variance
of the measurement errors associated with the i-th meter. Estimating the system
state requires a large number of measurements which can be susceptible to errors and
faults. Therefore, bad data detection (BDD) is one of the essential functions in state
estimation that is implemented to detect and eliminate these bad data [2, [34].

When an energy theft attack is crafted against state estimation, it is important
to manipulate the right state measurements so that the bad data detection module
is not triggered. This means that an energy theft attacker should manipulate the
measurements and state estimation data of several buses and lines in a coordinated
manner [40]. One important aspect of constructing a valid energy theft attack without
being detected is if the attacker has sufficient knowledge of the target system. By
knowing the system configuration and state parameters, the attacker can craft an
undetectable false measurement that is injected into the system [2], 34].

A great number of state estimation techniques and BDDs have been proposed
to detect energy thefts. Huang et al. [4I] have proposed a detection technique for
detecting electricity thefts using state estimation. It consists of two phases: the
first one is to estimate the system state measurements using the WLS method.
After that, the normalised residuals (difference between estimates and actual meter
measurements) are used to localise the area where anomalous usage occurred. In the
second phase, an analysis of variance (ANOVA) is used along with the customers’
historically validated usage to detect suspected energy thieves. ANOVA was also
used as the last step to identify energy thieves by the authors in [42]. However,
in their proposed scheme, the authors used semi-definite programming to get the
state estimation solution. This helps in finding the global optimal solution for the
system’s state rather than the local one (which is obtained from the WLS). After
estimating the state of the system, the residuals are considered and combined with
a historical analysis of a customer to detect electricity thefts. The two proposed
techniques could successfully identify energy thefts; however, the proposed scheme
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in [41] can only detect an individual malicious meter at a time and the work in [42]
was only tested to detect up to two malicious meters. In [43], the authors proposed a
model-based technique to detect and localise data theft attacks in microgrids. They
used a stochastic Petri Net (SPN) to model the system’s operation with three modes
and transitions. Any disturbance in the electrical resistance will trigger an alert
where suspected smart meter readings are forwarded to a Meter Data Management
System (MDMS) for detection and localization. In the MDMS, Singular Value
Decomposition is used to detect and localise data theft with an accuracy of 98%. This
technique minimises transferring data to the MDMS in order to protect customer data
privacy. However, as with most state-estimation techniques, the implementation and
maintenance costs are high.

With regard to privacy-preservation, Salinas et al. [44] introduced a
privacy-preserving state estimation-based detection system in [2013. In fact, their
work is considered the first to study the issue of privacy in energy theft detection.
The authors designed three distributed privacy-preserving approaches to identify
fraudulent users based on two well-known decomposition algorithms: LU and QR
factorization. These algorithms, just like WLS, can solve a linear system of equations
corresponding to the consumers’ energy consumption data (i.e., a data matrix) that
must agree with the total load consumption measured by the collector at each time
interval. Although this was the first work to look at privacy in energy theft detection,
the work did not consider the issue of technical losses. Following their work, Salinas
and Li [45] have also proposed another privacy-preserving energy theft detection based
on state estimation. In their proposed work, the authors introduce a decomposed,
loosely coupled version of the Kalman filter that can hide energy measurements and
preserve users’ privacy. However, this proposed loosely coupled filter can only be
employed in small-scale microgrids since the complexity would increase as the size of
the grid increases. In addition, according to [46], the proposed scheme can only detect
continuous thefts with consecutive reduction reads (i.e. when the meter readings
show a consistent decrease in consumption over a period of time), while as we saw
in Section energy thefts can be of different types including interim ones. The
energy theft detection scheme proposed in [47] is yet another state estimation-based
detection system that preserves privacy. The authors use a recursive filter based on
state estimation to estimate energy consumption for all users and compare it with the
true reading. If the difference is larger than a predefined threshold, then the reading
is flagged as abnormal. In their work, the authors used the Number Theory Research
Unit (NTRU) algorithm to encrypt users’ data and preserve users’ privacy. The
simulation results show that their algorithm achieves an accuracy of more than 92%.
However, the scheme introduces communication and computation overhead. Another
weakness of this proposed scheme is the assumption that aggregators are trusted
entities which is not always the case. Most aggregators are third-party companies
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that are not governed by any authority.

State estimation techniques are the second most widely used method for energy
theft detection [34], after MI-based approaches. This is because they achieve a
higher detection rate compared to other detection approaches without the need
for large historical data [2, [34]. However, these methods suffer from the following
limitations [2, [34]:

e State estimation-based techniques require the detailed topology and parameters
of the energy network, which is usually hard to get and update regularly.

e Most techniques can only localise the region of the energy theft and cannot
pinpoint a particular customer.

e Most of these techniques were only evaluated in terms of detection rate and
some were not evaluated at all. This can hinder the ability to compare their
performance with other proposed energy theft detection approaches.

2.7.2 Machine Learning Based Detection Methods

With the rapid development of machine learning (ML) algorithms, several
contributions have employed them as effective ways to detect anomalies. By using
machine learning techniques, patterns of normal electricity usage are generated
and the real-time operation and data of the system are monitored in order to
detect any anomalies. These algorithms are increasingly being used because of
their ability to be scaled to large systems and their low computational costs [48].
Machine learning approaches such as supervised learning, semi-supervised learning,
unsupervised learning, especially deep learning and reinforcement learning have all
been brought to bear.

We start by reviewing some work that used supervised machine-learning
techniques to detect anomalous data in electricity usage. Gunturi and Sarkar [49]
proposed to use a supervised machine learning algorithm to detect non-technical
losses based on ensemble ML techniques. Ensemble ML models combine multiple
ML approaches into one predictive model to boost the detection rate and lower
the error rate. In their study, the authors found that a bagging-type ensemble
ML approach, which takes the average result of several independent MLs, performs
better than a boosting one. A special type of boosting ensemble ML called extreme
gradient boosting (XGBoost) was used in Buzau et al. [50] to detect energy thefts.
XGBoost is a scalable implementation of a decision tree boosting system that works
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by combining multiple decision trees to create a more powerful model. In this study,
the authors used two types of data as inputs to their ML model: smart meter data
along with contextual (auxiliary) data. Results showed that the XGBoost model is
robust when the dataset is imbalanced. Another recent study [51] also used XGBoost.
The study tested the proposed model with both balanced and imbalanced datasets
and the results showed that the proposed method achieves good performance in both
scenarios. The study, however, had multiple assumptions, such as the availability
of honest readings for a long period of time, that restrict its real-world application.
Other gradient-boosting classifiers were used and compared in [52]. The authors
used three different classifiers: XGBoost, categorical boosting (CatBoost) and light
gradient boosting method (LightGBM). In this work, the authors focused on the
feature engineering part to improve detection performance as well as time complexity.

Authors in [53] proposed an electricity theft detection that is based on artificial
neural networks. They proposed a wide and deep convolutional neural network (CNN)
that consists of two major components: the wide component uses one-dimensional
(1D) consumption data to calculate the output, and the deep CNN component
transforms the 1D consumption data into two-dimensional data based on the 7 days
of the week. The deep component has several connected layers that analyse data.
This technique was evaluated against conventional ML techniques where it showed
better AUC results. However, the paper did not investigate the appropriate choice
of the number of neurons, number of filters and number of epochs. Another work
also employed CNN in their electricity theft detection. In [54], the authors used it
to automate feature extraction, combined with a long-short-term memory (LSTM)
model to detect energy thieves. Their work achieved a plausible accuracy rate of 89%
but a lower detection rate (recall) of around 87%.

Supervised machine learning techniques are the easiest and most accurate of
the three categories of machine learning. However, they require the use of labelled
datasets which is usually hard to acquire in anomaly detection domains. Hence, the
use of semi-supervised ML methods represents a more practical setting for energy
theft detection. Taking this into account, Hu et al. [55] suggested the use of a
semi-supervised technique to address the issue of depending on a huge number
of labelled data to train a classifier. The proposed work uses both labelled and
unlabelled samples to train a feature extraction network (FEN) model to handle
high-dimensional data and extract features, and a denoising auto-encoder (DAE) to
detect energy thefts.

As discussed before, the lack of labelled data and the imbalanced distribution
between anomalous and real samples in energy theft datasets have introduced the
need to use unsupervised ML instead of semi-supervised or supervised learning.
Unsupervised learning algorithms do not rely on labelled data and can be used to
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discover patterns to identify anomalies in an adaptive and flexible manner, even
in the presence of missing or corrupted values. Several types of unsupervised
learning algorithms exist, such as clustering techniques, one-class classifiers,
dimensionality reduction techniques and auto-encoders. Zanetti et al. [56] proposed a
detection system that uses unsupervised clustering algorithms to construct short-lived
consumption patterns. These short-lived patterns represent the consumer’s profile for
a short period. They are then used to detect any anomalies in the current consumption
rates. The advantage of using short-term periods instead of long-term ones is that
natural consumption rates change quickly and collecting short-term data reduces the
vulnerability of violating data privacy. The detection system starts by tuning itself
to the most suitable pattern duration (ranging from 1 day to 2 weeks). Then it starts
the validation process using three unsupervised learning algorithms: fuzzy C-means
(FCM), K-means and self-organising map (SOM). The results show that there is
a trade-off between maximising the theft detection rate and minimising the false
positive rate which costs more to handle than the theft itself. Therefore, maximising
the F-measure is a better approach if we would like to improve the utility profit.
Another clustering-based algorithm was used by Zheng et al. [57]. In their work,
Zheng et al.| used a density-based clustering algorithm with a distance matrix to
identify unusual consumer profiles. The authors used a synthetic dataset in which
abnormal load profiles for six malicious types of energy thefts. They tested their work
using the following evaluation metrics: Area under ROC Curve (AUC), accuracy and
F1-score, and results showed that the proposed density-based clustering technique
outperformed other well-known clustering models in detecting electricity theft. A
dimensionality reduction unsupervised ML technique, called principal component
analysis (PCA), was used in [58]. The PCA-based detection technique was used
to identify three attack scenarios of electricity theft by extracting critical features
that can explain variations in the data monitored. After that, an anomaly score
threshold is calculated using historical data. The results of this method indicate an
average detection accuracy of 89.2% of all different attack scenarios. The work can
be improved by optimising the choice of threshold values.

Privacy Preserving Machine Learning

Typical ML methods use vast amounts of data without any consideration for data
privacy. However, there has been a recent introduction to a special type of ML
technique, called Privacy-Preserving Machine Learning (PPML), that aims to protect
privacy. The main idea of PPML is to allow ML models to be trained without the
need to disclose private data in its clear form [59]. The PPML approaches fall largely
into two sub-categories: cryptographic-based ML approaches and distributed-based
ML [60]. In cryptographic-based ML approaches, traditional privacy-preserving
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Figure 2.4: Federated Learning

techniques, such as differential privacy methods and encryption techniques that
were introduced in Section [2.0] are added to typical machine learning algorithms
in order to make them privacy-friendly [59]. However, they either provide privacy to
a certain level or increase the computation and communication costs dramatically.
An alternative to these techniques is the use of decentralised or distributed-based ML
algorithms where training is done collaboratively between the system’s entities [60].
Two major methods were introduced in this category: federated learning [61] and
split learning [62].

Federated learning (FL) is a distributed machine learning algorithm that was
introduced in 2016 by Google researchers [61]. The idea of federated learning is to
build a global model based on clients’ local models without the need to access their
raw data. As illustrated in Figure federated learning starts by sending an initial
model to the clients where each client updates it based on its private data. After that,
the weights of the update are sent to the server, where they are aggregated together
to form an updated set of weights. Clients then download the updated weights and
this process repeats until the model reaches convergence.

Another framework for distributed learning is split learning (SL), also known as
split neural networks. This framework was developed by MIT to offer decentralised
training for a model without sharing raw data by the clients [63]. In the basic form
of split learning, a neural network model W is split into two parts W, and Wy as
shown in Figure 2.5] This aims to provide privacy protection for the client whilst
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minimising the computational load. The first part of the network, W,., resides on
the client system and the remaining part Wg resides on the server side. These parts
are called the client-side network and the server-side network respectively. Both the
clients and the server train their part of the model separately where the process
starts at ¢ = 0 with the client data as the input layer, and then proceeds until the
split layer is reached. The output of the split layer at client k, called activations Ay,
is forwarded to the server to continue the training process. The server completes a
full round of forward propagation to obtain the set of activations of the last layer
Agy. The server now starts a backpropagation round from the last layer up to the
cut layer where the gradients at the cut layer V/{(Ag;; Ws,) are sent back to clients.
At the client side, the remainder of backpropagation is completed where W, weights
are updated for ¢ + 1. This process is continued without the need for the parties
to exchange raw data until the distributed split learning network converges. The
complete algorithm of split learning can be found in Appendix Split learning is
fairly new, and has not been applied in the context of smart grid security.

In the context of PPML, several works have been proposed for energy theft
detection. In [64], the Paillier crypto-system was used to preserve the privacy of their
proposed energy theft detector. Euclidean distances between energy readings over
a day were used to detect abnormalities and frauds without revealing any valuable
information. Another Paillier-based privacy system was introduced by Yao et al. [65].
In their security and privacy analysis, the authors state that the proposed detection
algorithm achieves confidentiality, integrity, and data privacy by using encryption
and digital signing. However, it is known that this is entirely dependent on the
encryption mechanism strength. Nabil et al. [66] proposed a secure multiparty
computation-based energy theft detection to preserve the privacy of energy readings.
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The scheme uses secret-sharing techniques to allow smart meters to send masked
data. Moreover, the use of secret sharing allowed the aggregation of data before
sending them to the system operator. The detection of energy thefts is done online,
where the smart meter and the system operator need to run a CNN model. Although
the results suggested an accuracy of over 90% using different CNN architectures, the
use of cryptographic techniques to preserve privacy introduces high communication
and computation overheads. To overcome the need for running the detection model
in both parties in parallel, the authors in [67] used a functional encryption (FE)
algorithm to encrypt energy readings where energy theft detection is done without
revealing the individuals’ readings. Functional encryption is a relatively efficient
cryptosystem that allows performing computations on encrypted data without the
need to decrypt it. Although FE is assumed to be efficient in terms of communication
and computation, it requires an extra step where a key distribution centre needs to
generate and distribute keys for all participants in the system.

Wen et al. [68] have designed a federated learning-based energy theft detector
with multiple local detection stations trained in a federated fashion. The model is
then used to detect energy thefts from local users. To preserve the privacy of the
local users’ data, a local differential privacy algorithm is used to distribute the energy
usage data of the grid’s users. While this federated approach can preserve privacy,
it introduces additional communication and computation complexity. Additionally,
the scheme requires installing additional detection stations in the system. Another
federated learning solution was introduced recently in [69], where a novel federated
voting classifier, namely ensemble learning, is used. This scheme assumes that
the use of federated learning preserves privacy. However, it has been proven that
FL on its own cannot guarantee high levels of privacy and is very vulnerable to
poisoning attacks, feature leakage or reconstruction, model extractions, and label
inference attacks [70, [71, [72]. Recently, a blockchain-based privacy-preserving energy
theft detection was proposed in [73]. Energy thefts are detected by comparing the
aggregated consumption reports with the energy supplied. Users share their energy
consumption privately using energy contracts in a ledger.

2.7.3 Hybrid Solutions

A hybrid-based energy theft detector combines techniques and algorithms that fall
under two different categories. The use of multiple methods and techniques improves
the accuracy and reliability of energy theft detection, however, it can increase the
cost and complexity of the system [35].

An integrated system for detecting energy theft attacks was proposed by Messinis
et al. [T4]. This scheme uses two techniques: (1) a supervised ML method, SVM,
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is used to detect energy thefts with minimal data; and (2) a state estimation-based
technique that is based on voltage sensitivity analysis is further used in an attempt
to estimate the time and extent of the thefts. The next study, [75], combined state
estimation with machine learning in a two-step energy theft detection scheme. The
first step is to detect energy thefts using a static state estimation technique that
uses root squared percentage error as the residuals to be compared with the actual
measurements. Whenever the percentage of error is above 10%, that specific region is
further analysed to detect energy theft consumers. The next step uses the consumers’
data from the suspected region to form Self-Organising Maps (SOM) that are used as
inputs to a neural network-based detection model. The main weakness of the study
is the inability to identify and localise the origin of the attack.

2.8 Evaluation Metrics

Evaluating the performance of an energy theft detector is a crucial step when
proposing it. Different detection methods are evaluated using different measures,
however, the most dominant evaluation metrics are those that evaluate the proposed
model as a type of classifier. The performance of classifiers or anomaly-based detectors
is usually calculated using a confusion matrix. Table shows the definition of
confusion matrix where True Positive (TP) is the number of intrusions that are
correctly identified as anomalies. The False Positive (FP) denotes the number of
normal records that are incorrectly identified as intrusions. The True Negative (TN)
is the number of normal records that are correctly identified as normal and finally, the
False Negative (FN) denotes the number of intrusions that are incorrectly identified
as normal.

Table 2.3: Confusion Matriz

Predicted
Normal Attack
Normal TN FP
Attack FN TP

Actual

Derived from the confusion matrix, there is a great number of well-known
evaluation metrics that are used to evaluate the detection model. Table|2.4] presents a
list of these widely used metrics along with their notations. Out of all these evaluation
metrics, accuracy is the most known criterion. It calculates how many samples were
classified correctly out of the total sample population. It is the simplest metric to
evaluate and interpret because it is a single number that summarises the model’s
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capability. However, it is not a good performance measure for imbalanced datasets
where class distributions are severely skewed. This is because it does not distinguish
which class was correctly classified and it gives equal importance to false positives
and false negatives [35]. In such situations, recall, precision, false positive rate (FPR),
and F1l-score are more popular metrics to use as they are more informative.

The recall, also known as detection rate (DR), sensitivity, or true positive rate
(TPR), calculates the ratio between the number of correctly detected attacks to
the total number of attacks. It is one of the most widely used metrics to evaluate
and compare energy theft detectors. Precision and FPR are the other two reported
metrics for energy theft detection. Precision reports the number of correctly detected
attacks divided by the number of total detections. FPR, also known as false
acceptance rate (FAR), is another important metric which calculates the number
of falsely classified attacks over the total number of normal records. The F-score or
F1-score is an evaluation metric that is used to evaluate systems that have binary
classification. F'l-score calculates the balance between precision and recall and thus
can be considered as the harmonic mean of the two. It is mostly useful in cases of
imbalanced data sets. Other metrics, such as error rate, the area under the curve
(AUC), and mean average precision (MAP), have also been used to evaluate the
performance of detectors in energy theft research. AUC, in particular, is a commonly
used metric that provides the overall performance of a detector using a single value
measuring the area under the receiver operating characteristic (ROC) curve, which
plots the TPR against the FPR at various threshold settings [2].

A good detection model should have a high detection rate (DR) and a low FPR.
This is because it is usually expensive to deal with false detections as they require
technicians to have onsite inspections.

The above were the metrics used to evaluate the performance of energy theft
detection. In addition, it is important to evaluate the privacy of the energy theft
detection schemes, especially as privacy preservation is a challenging issue that was
addressed in many proposed schemes. In the privacy-preserving energy theft detection
domain, most of the literature analyses privacy theoretically and does not measure it
by quantitative measures. This is because it is a complex and multifaceted concept
that is evaluated differently in different domains. Privacy is usually measured by
the properties or the parameters of the privacy-preserving technology used (e.g., the
k in k-anonymity and the e in differential privacy)[76]. On the other hand, the
success of privacy attacks, such as feature inference, model extraction, and label
inference attacks, is usually used as a privacy measure when PPML approaches are
applied [77,[78]. However, these privacy parameters and privacy attacks cannot
always be used as measures for every privacy-preserving technique. For example,
model extraction and label inference attacks are difficult to launch and impractical in
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Table 2.4: List of Performance Metrics Used to Evaluate Energy Theft

Detectors
Metric Name Definition Representative
References
(TP +TN) [43, 45, 47, 54, 57, (8, 65, 66
Accuracy
(TP +TN + FP +FN) 67, 68, 169, 73, [74]
Recall - DR - TP 136, 49, 5T, 52, 54, 55, 56, 58],
Sensitivity - TPR (TP £ FN) 66, (67, [69, 74, [75]
Precision __re 149, 51, 54, 69
(TP + FP)
FPR - FAR FP 51, 52, 55, 56, 53, [66, (67, [74]
(FP+TN) 75)
Fl-score o  (Precision x Recall) 49, 54, 56, 57, [64. 69
(Precision + Recall)
Error Rate (FP + FN) [36]
(TP+TN + FP+TN)
AUC The area under the ROC curve [33, 19, B0, 1) B3, 57, 66, 67,
68, [74]
MAP The mean average precision for each class  [53]

a split learning architecture [79]. Therefore, they cannot be used as privacy measures.
The issue of finding a unified privacy measure is highlighted in Section as one
of the limitations and open problems of the current energy theft detection literature.
It is important to assess and measure privacy using unified numerical and statistical
methods as it helps to objectively evaluate the privacy level provided by different
privacy technologies and to identify areas for improvement [76].

It is worth mentioning that detection performance and privacy preservation degree
are antagonistic metrics where the improvement in one of the two metrics will result
in the reduction of the other. Thus it is important for the implementer (the energy
utility) to choose the perfect balance.

2.9 Datasets and Energy Simulators

Due to privacy concerns, there are only a few public datasets that provide energy
consumption and real energy theft incidents. Electric companies are unable to
publicly provide detailed information and energy consumption statistics of energy
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thieves, making it difficult for academics to collect genuine data to study. Many of
the public datasets include only honest (real) consumption samples and do not have
any malicious ones. Therefore, several existing works of literature have followed the
same design approach of Jokar et al. [46] where data theft scenarios are synthetically
added to a dataset in order to use them for training and evaluating their detection
model. Table summarises the most well-known energy consumption datasets,
including the number of customers, reporting frequency and type of data included.

The first and most widely used dataset is the one released by the Irish Commission
for Energy Regulation (CER) Smart Metering load profiles [80], which contains the
consumption data of over 5000 residential and enterprise users. The consumption is
reported at half-hourly intervals during 2009 and 2010. A downside of this dataset
is that it contains only honest profiles and reports only the consumed real power at
a half-hourly rate. The second widely used dataset is the State Grid Corporation
of China (SGCC) (the largest electricity utility in China) [53]. This dataset is the
first to include realistic labelled data, where each user is labelled as honest or a thief.
The dataset contains the consumption data of 42,372 users from 1 January 2014 to
31 October 2016. However, the consumption is reported only once a day, making it
difficult to identify the exact time of theft [81].

There are other datasets that are not as popular as the previous two. One is
the UMass Smart* Project [82], which reports the electricity usage data for 443
anonymous homes located in a microgrid in Western Massachusetts. The data were
collected every minute for the period of one day. However, the data from three
homes were collected for the duration of a whole year in 2012. The last dataset is
the Low Carbon London Smart Meter Trials Dataset [83], which contains half-hourly
consumption data of 5567 houses. This data was collected between November 2011
and February 2014.

The drawback of these real datasets is that most of them lack the contextual data
that might affect the consumption of a user, such as the floor area of the residency,
location and weather conditions. Moreover, one of the drawbacks that led us to create
our own dataset is the lack of a dataset that includes both prosumers and consumers.

As stated, previous studies that aimed to detect energy theft have mainly focused
on analysing consumption reports only and finding periodical patterns for every
customer. However, with the introduction of prosumers as a new actor into the
electrical system, we require more data from other sources to be analysed in order
to detect abnormalities. For example, there is a clear correlation between each
prosumer’s energy output and the DER’s geographical location. Other correlations
between the time of the day, the type of DER, its size and the amount of generated
energy should be taken into consideration. This is why we need to have data from
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Table 2.5: Summary of the Reviewed Public Datasets

Includes

Number of Report Includes Representative
Dataset Customer Fr n Real Prosumer Referen
ustomers equency Thefts osumers eferences
Irish Smart fggggmal and [49, 511, 52, (5,
Energy Trial enterprise Half-hourly X X 56L 57, 58], 1661, (67,
Dataset P 4, [75]
customers
42372 . [47, 53, 54, [65]
SGCC Dataset customers Daily v X 63, [69]
UMass Smart* .
Project Dataset 443 customers ~ Minute-level X X -
Low Carbon
London Smart 5567 customers Half-hourly X X -

Meter Trials
Dataset

multiple sources. The following is the possible set of different sources for data that
can be used to aid the detection of energy theft attacks:

e Consumption Data: Smart meters monitor and report a number of different
electrical parameters. Electrical parameters are classified into basic parameters
and derived parameters. The basic parameters are voltage (V), current (I), and
frequency (Hz), while derived parameters are active/real power (P), reactive
power (Q), apparent power (S), displacement power factor (dPF), apparent
power factor (aPF), active/real energy (Pt), reactive energy (Qt) and apparent
energy (St). Table[2.6|lists all of these parameters and their equations. Previous
research that is done to identify energy theft only considered the consumed
real energy. However, having access to different power parameters at no extra
cost opens the opportunity for us to use different measurement types and their
relationships to increase the possibilities of theft identification as Laughman
et al. [84] argues that merging different type measurements to analyse power
can give higher accuracy in regards to event detection in general.

e Generation Data: As with consumption data, different types of electrical
parameters are reported to the system. All of these parameters along with
their relationships are to be monitored as a time series in order to identify if
abnormal high values are present.

e Geographical Data: these include the address of the customer and his/her GPS
location coordinates
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Table 2.6: Smart Meter Multidimensional Data and Their Description

Parameter Name Description Unit Equation
The difference between two points in a circuit.
Voltage (V) In most countries, it is equal to 220 volts. v N/A
Frequency (f) The number of cycles per second that voltage Hz N/A
cycles at.
Current (I) The r.novement of the electric charge through A N/A
a region.
Real Power (P) The net transferred energy in one direction. W P =5 X cos(9)
The rate at which the power is stored and
Reactive Power (Q) released back by components such as VAR Q =S x sin(0)
capacitors and inductors.
Apparent Power (S) The combination of voltage and current. VA S =+/P24+Q?
Real Energy (Pt) The real power consumed in a specific time. Wh Pt = P/time
Reactive Energy (Qt) ;Ii‘rhneeamount of reactive power in a specific VARh Ot = Q/time
Apparent Energy (St) The amount of apparent power consumed in a VAh St = S/time
pp &y specific time. -
Displacement Power The cosine of phase angles between the . _
Factor (dPF) current and voltage ratio dPF = cos(6)
Apparent Power Factor The ratio of real power to apparent power. ratio aPF = P/S

(aPF)

e Weather Data: This includes temperature, wind speed, air density and solar
radiation.

e DER Related Data: different types of distributed energy resources have different
parameters that can influence the amount of energy that is generated. For
example, solar panel output can be influenced by four parameters. These include
the DC rating, array type, orientation of the panels on the rooftop, and the DC
to AC derate factor. Whereas wind turbines are characterised by the following
parameters: rotor diameter, swept area of blades and hub height.

e Users’ Contextual Data: These are static information about the customer taken
at the time of the registration and include: property type, property age, number
of tenants, floor area and many more.

Taking into account the drawbacks of the available public datasets and the need
for including data from multiple data sources, one solution to consider is the use
of simulators to generate a complete set of multi-source data that can be used
to evaluate energy theft detection solutions. There exist different types of energy
simulation tools ranging from small appliance simulators to whole energy grid system
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simulators. Moreover, various programs differ in terms of flexibility and capabilities
and hence, it is important that the researcher studies these capabilities and be aware
of the limitations in order to select the most appropriate simulator for their intended
objective. To be able to study the issue of energy theft attacks in a modernised
smart grid system with full regard to all possible scenarios, we take into account the
following criteria in choosing the simulator:

e The simulator should simulate end users’ consumption usage.

e The simulator should allow end users to use on-site generations and should
simulate generation profiles.

e The simulations should be dynamically influenced by weather data.

e The simulations should be influenced by static contextual data such as the floor
area of the residency and location.

e The simulator should be able to report different electricity data from each smart
meter.

According to the above criteria, we have reviewed six of the most well-known
simulators in the smart grid’s community. These simulators are listed in Table
along with the criteria that they fulfil. Another important criterion that we needed to
investigate in these simulators is their ability to report different electricity parameters
and not only the consumed or generated real power. Table lists out the electrical
parameters (mentioned in Table that these simulators report.

Based on our review of the above criteria, we can say that GridLAB-D is the
most comprehensive simulator that can provide all of the necessary functionalities for
studying energy theft attacks.

2.10 Discussion and Open Problems

In this chapter, we analysed the current state-of-the-art energy theft detections
in terms of the detection techniques used, evaluation metrics and datasets. We
specifically analysed 32 recently published work that uses both ML-based and
non-ML-based detection techniques. Table lists a summary of these detection
research work and their properties. As can be observed, we noticed that none have
studied the impact of having distributed energy resources on customer premises and
being a prosumer on energy thefts. This is because the prosumer concept has only
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Table 2.7: Comparative Table on Available Energy Grid Simulators

Meter’s
End User Multi-
Simulator Load Prosumers Dimensional Weather Coverage
Simulation Electricity
Data
GridLAB-D [85] v v v v Whole smart grid
RAPSim [86] v v v v Microgrids
OpenDSS [87] X X v X Whole smart grid
Residential
SRLS [8§] v v X v buildings
LoadProfileGenerator v v X v Re.s 1dgnt1al
buildings
[89]
Commercial &
EnergyPlus [90] v v 4 v residential

buildings

now started to play a leading role in the energy sector [91]. This new actor creates
new challenges with regard to detecting energy theft in electricity systems. Current
prosumers report the amount that they consume from the grid and the surplus amount
that they inject into the grid. With these figures reported, a prosumer can report
fake figures in order to steal electricity from the grid or steal money.

Moreover, most of the existing work for detecting energy theft does not take
into consideration data features from different sources. Research should exploit the
possibility of using different electricity parameters reported by the smart meter (other
than consumed real power) to detect abnormalities and also, the possibility of using
multiple data sources. Much research aimed at detecting energy thefts using machine
learning uses defined datasets, which limits the variability of features that can be
included in the detection.

Another challenge that faces energy theft detection is customers’ privacy. It was
noted that most of the existing detection methods access users’ raw energy data
without any concerns for their privacy. However, many concerns have been raised
by customers as the disclosure of their real-time and fine-grained power consumption
can reveal personal private information [11], 24] [92]. This introduces a challenge to
propose a privacy-preserving detection technique. However, research on this subject
is still very limited, especially using ML-based techniques [2, 10]. In addition, privacy
needs to be evaluated and quantified; yet, this was overlooked by researchers in the
field. Therefore, we regard addressing it in our proposed work.
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Table 2.8: FElectrical Parameters of the Load Simulators

Electrical Parameter*

Simulator
vV f I dPF aPF P Q S Pt Qt St
GridLAB-D v v v / v v v vV /- -
RAPSim - - - VA - -
OpenDSS v v v/ - v /- - -
SRLS - - - - - - -
LoadProfileGenerator - - - - - - - v/ - -
EnergyPlus v v v - - oo - R -

* V: Voltage; f: Frequency; I: Current; dPF: Displacement power factor; aPF: Apparent power factor;
P: Real power; Q: Reactive power; S: Apparent power; Pt: Real energy; Qt: Reactive energy; and St:
Apparent energy.

** in Joules.

Lastly, an important aspect which is usually overlooked in energy theft detection
is the post-detection part. The focus of energy theft detection solutions has only
been on the detection part, but it is important to take action beyond that. This
includes determining the amount of stolen energy and incorporating it into future
energy demand forecasting.

Table 2.9: Summary of Energy Theft Detection Research Work

Supported Features
F1"F2" F3" F4" F5" F6" F7" F8" F9~

Energy Theft
Detection Approach

Privacy Preserving

Reference Approach

Cérdenas et al. [31] Game Theory N/A Xe - X X Xx v X X
Amin et al. [32] Game Theory N/A X - X v X X X X
Wei et al. [33] Game Theory N/A X - X v X X X
Grewal et al. [36] Hardware-Based N/A X - x v v / X X
Saad et al. [37] Hardware-Based N/A X - x v v / X X
Sathyapriya and

Jeyalakshmi [38] Hardware-Based N/A X - X v v vV X X X
Gill et al. [39] Hardware-Based N/A X - X v vV J X X X
Huang et al. [41] State Estimation N/A X - X v v X X X
Su et al. [42] State Estimation N/A X - v /X X X
Tariq and Poor [43] State Estimation N/A X - X X v /X X X

Continued on next page
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Table 2.9:

Summary of Energy Theft Detection Research Work

(Continued)
Energy Theft Privacy Preserving Supported Features
Reference Detoction A h A h —
etection Approac pproac F1"F2" F3" F4" F5" F6™ F7" F8" F9
Salinas et al. [44] State Estimation Decorpposmlon v X o X X o x v X
Algorithms
Salinas and Li [45] State Estimation Eﬁzgnposed Kalman voxT v /X X VX
Wen et al. [47] State Estimation NTRU Cryptosystem voox v /X X v/ X
Gunturi and Sarkar Supervised ML
[49] (Ensemble Learning) N/A X X KX /KX
Supervised ML
Buzau et al. [50] (XGBoost) N/A X - v /X /X X
Supervised ML .
Yan and Wen [5]] (XGBoost) N/A X - A4 S SERA {
. Supervised ML
El;?mlya and Choe (XGBoost, CatBoost, N/A X - KA S SRR 1
Llight GBM)
Supervised ML (Wide
Zheng et al. [53] and Deep CNN) N/A X - o X X X X X
Supervised ML
Hasan et al. [54] (CNN-+LSTM) N/A X - o X X X X X
Semisupervised ML b d
Hu et al. [55] (FENs+DAE) N/A X0 - v /X X /X
. - Unsupervised ML b d
Zanetti et al. [56] (FCM) N/A X - A0 S SRR 1
Unsupervised ML
Zheng et al. [57] (Density Cluster) N/A X - X X Xx x v X
. Unsupervised ML d
Singh et al. [58] (PCA) N/A X - AN S SRR 1
. . Unsupervised ML -
Richardson et al. [64] (Clustering) Paillier Cryptosystem v X v /v 7/ X X X
Yao et al. [65] Supervised ML (CNN) Paillier Cryptosystem ooxT ooxt o x o ox o x X
Nabil et al. [66] Supervised ML (CNN) Secure Multiparty S OXTX /X X X /X
Computation
Ibrahem et al. [67] Supervised ML (FNN)  Functional Encryption voxT voxtx o x v X
Federated Learning and
Wen et al. [68] Supervised ML (TCN) Local Differential X o X X X X X
Privacy
Ashraf et al. [69] Supervised ML Federated Learning v X vV X X X X X

(Ensemble Learning)

Continued on next page
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Table 2.9: Summary of FEnergy Theft Detection Research Work

(Continued)
Energy Theft Privacy Preserving Supported Features
Reference .
Detection Approach Approach F1*F2* F3* F4* F5" F6* F7* F&* F9*
Difference between
Muzumdar et al. [(3] energy supply and Bloackchain OXTXx v/ X X X X
consumption

Hybrid Solution (State
Messinis et al. [74] Estimation + N/A X - X X x X v J/ X
Supervised ML)

Hybrid Solution (State
de Souza et al. [75)] Estimation -+ N/A X - x v v vV VO X X
Supervised ML)

* F1: Privacy preservation; F2: Privacy quantitative analysis; F8: Detecting prosumers’ thefts; F4: Pinpointing a
thief; F5: Pinpointing time of theft; F6: No requirement for historical data; F7: Usage of multi-source data; F8:
Detecting multiple energy thefts; and F9: Considering demand-response management after the detection.

** The study only provides qualitative privacy analysis, not a quantitative one.

% Only at the demand model.

b Only assumed from reducing the frequency of the readings.

¢ Only the day of stealing is identified.

@ Only the week of stealing is identified.

2.11 Research Model

In this thesis, we have conducted three empirical studies that complement each
other for developing energy theft detectors. In these studies, we took into account
the aforementioned limitations and problems of the current literature. Each study
addresses one of the following research hypotheses in a separate chapter:

e Hypothesis 1: Combining machine learning techniques (clustering and
classification) can enhance the detection of a range of thefts, including
prosumers thefts.

e Hypothesis 2: A privacy-preserving ML technique that suits the smart grid
environment can be developed to accurately and effectively detect energy theft
while preserving the privacy of customers’ data.

e Hypothesis 3: A multi-output neural network framework can be used to

simultaneously predict the presence of theft, predict its magnitude, and use that
estimation to make more accurate forecasts.
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The first hypothesis is addressed in Chapter [3| which develops a cluster-based
ML energy theft detection model. In this work, we consider eight different energy
theft scenarios as part of our threat model. These scenarios include a new type of
attack that we propose which we refer to as balance attack. The detection is done
in three phases, starting with clustering the users, decomposing the time series and
lastly classifying each point as theft or not using different well-known ML classifiers.
The performance of the proposed energy theft detector here is evaluated using four
evaluation metrics.

Building on this work, we develop a privacy-preserving energy theft detector to
address the second hypothesis in Chapter [} In the threat model, we consider the
same set of energy theft scenarios as the one proposed in Chapter 3| with additional
two privacy attacks: poisoning attack and feature inference attack. As stated in the
hypothesis, the detection methodology needs to be privacy-aware, and therefore we
propose a new variant of an ML architecture called three-tier split learning that suits
the nature of smart grids. The proposed model uses a stacked auto-encoder as the
underlying detection methodology. Adding privacy on top of energy theft detection
requires us to evaluate the privacy gain of the proposed model. Hence, we use a
metric called distance correlation to evaluate the privacy aspect of the model.

For our third and last hypothesis, we develop a multi-output neural network
and enhanced-privacy preserving model that uses a masking approach and a noisy
layer neural network to evaluate the hypothesis. We show how detecting thefts and
estimating their magnitudes can actually help in estimating future demand. Our
threat model here is expanded to include a more comprehensive set of feature inference
attacks along with another privacy metric to evaluate the success level of these attacks.

The way these hypotheses are addressed by our proposed studies, and how the
evolution of these studies is handled, can be seen in Figure [2.6]
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Chapter 3

ML-Based Detection Model in the
Presence of Prosumers

Data-driven approaches have been widely employed in recent years to detect energy
thefts. Although many techniques have been proposed in the literature, they mainly
focus on energy thefts by power grid consumers. Existing studies do not consider
energy thefts by prosumers, who act as both producers and consumers in the energy
system. This is of great importance as inaccurate reports of prosumers’ behaviours
can disrupt power system operations. This chapter examines the prosumers’ role
in subverting the energy system and proposes a novel means of detecting such
malfeasance. Moreover, we introduce new energy theft attack scenarios called balance
attacks, where an attacker concurrently modifies his readings along with neighbouring
meters in an attempt to balance the total aggregated reading. Such attacks can
be difficult to detect by existing solutions that reach detection decisions based on
aggregated readings. Existing approaches use either a single model for all users
across the system or else a model for each user. Here, we adopt a halfway house
approach and propose a cluster-based detection model. For users in a cluster, we
decompose the power time series data into trend, cyclical and residual components.
Residual data, along with different features from multiple data sources, are fed into
an ML classification algorithm to detect anomalous readings. Simulations have been
conducted using a newly generated dataset, and results have shown that the proposed
model can detect energy theft with high detection and low error rates. The results
also show that the model can detect thefts by new users with great accuracy.
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3.1 Introduction

Recently, the incorporation of distributed energy resources (DERs) in a user’s
premises, allowing a user to generate, store and supply electricity, has received
significant attention.  Here, the stakeholder is generally called a “prosumer”
(producer-consumer). This actor was overlooked by scholars in the energy theft
research area since it is a new participant in the grid. However, considering the
role of prosumers is important as their number is increasing rapidly; according to the
European Renewable Energies Federation [93], the UK had almost 1 million prosumers
in 2015 and will likely have 24 million by 2050. Prosumer theft can be carried out by
manipulating consumption and generation data; and as pointed out in Section [2.10]
the existing research has not studied this impact (represented as F3 in Table .
Prosumers are different from traditional consumers as they not only use energy but
also generate and store or transfer surplus energy to the grid. This allows malicious
prosumers to manipulate data regarding their generation and consumption, which
can introduce an imbalance in the overall grids’ data. Moreover, prosumer thefts can
disrupt the energy supply to a region, cause grid instability or deny energy access
to other users in that area [94], 95]. Hence, the detection of prosumers’ attacks is of
great importance. To manage prosumers, it is critical to understand their generation
and consumption behaviours [94]. The analysis of all factors of prosumer behaviour
helps to build and plan for the proper balance of energy demand and supply.

Moreover, some existing energy theft detection research do not identify which
user is the thief (represented as F4 in Table [2.9)), and many other detection methods
classify each user as either thief or honest but do not identify the time of theft
(represented as F5 in Table . Additionally, most recent studies have not availed
themselves of data features from different sources (represented as F7 in Table [2.9).
Machine learning approaches usually consider a single electrical feature (consumed
power), while smart meters report more than ten different electrical parameters [96].
This abundance of unused data is an opportunity.

The last limitation is that most existing solutions use one of two approaches: a
generalised model or a user-specific model. In the generalised model, a single honest
reference model is created using data from all users. This can result in a detection
scheme with low accuracy. On the other hand, user-specific models, where a separate
model is developed for each user using their data, can become difficult to scale.
Therefore, a cluster-based detection model can be the ideal combination of the two
approaches.
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3.1.1 Owur Contribution

This work addresses all the above limitations where the specific contributions are:

e The first theft detection method to be based on the use of user clustering (with
reference models built for each cluster) and the first to address theft by both
consumers and prosumers. The approach has further desirable properties, e.g.,
the ability to detect thefts from new users without the need for historical data.

e The introduction of new energy theft scenarios, which we term balance attacks,
that can balance the amount of electricity stolen at one meter with manipulated
values returned from other neighbouring meters. This scenario can be hard to
detect by existing detection models.

e The production of a benchmark dataset that includes examples of an extensive
range of data injection attacks (including balance attacks).

e An evaluation of the use of various ML techniques for the classification of
customers’ behaviours.

The rest of this chapter is organised as follows: Section provides the system
architectural model and the threat model. Section describes how the proposed
detection system is designed. Sections and detail the experimental setup and
results. Section discusses threats to the validity of our study, and how they have
been mitigated. Finally, Section gives concluding remarks and directions for the
next chapter.

3.2 System Model and Threat Model

3.2.1 System Model

We consider a typical smart grid system model, shown in Figure It consists of
three major entities: a set of clients, a set of substation gateways (GWs), and a server
at a control centre. Specifically, each entity has the following roles in the system:

e Clients are homeowners with smart <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>