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Abstract

Energy plays an essential role in our lives. Merging the existing electricity
networks with distributed energy resources and information and communications
technology (ICT) changes how companies and customers generate, distribute, and
consume energy. This integration transforms the legacy electricity networks into
smart systems, or what is currently known as the Smart Grid (SG). Smart grid
infrastructure has been one of the major industrial revolutions that has attracted
widespread adoption across the globe. Therefore, they can be the target of major
security risks as they are not inherently secure. In this sector, sensors’ and meters’
data are the main factors in any decision-making process. This introduces the
need to develop appropriate security mechanisms that ensure data integrity. One
of the main attacks against data integrity in energy networks is energy theft. This
attack can be made by injecting false consumption data into the network. The
consequences of a successful energy theft attack on smart grid systems can be severe
and far-reaching as it can result in power outages and physical damage to equipment
which can be a safety hazard to individuals. Therefore, secure techniques are needed
to detect any anomalies or injection attempts and smart meter data integrity should
be considered and ensured.

In this thesis, we propose three machine learning (ML) based energy theft
detectors that address the existing challenges facing current research in this domain.
In particular, we consider the impact proposed by prosumers in launching new types
of energy thefts and how to detect them. We also show how to fully utilise data from
multiple sources for better detection performance. To decrease the probability of any
privacy breaches caused by the use of customers’ data, privacy-preserving approaches
are proposed. Lastly, we tackle the significant impact on demand management
caused by energy thefts by proposing a combined energy theft detector with demand
management. The findings presented in this thesis show that our approaches can
accurately detect energy thefts, with minimal information leakage. Moreover, the
results are also promising in providing a clear link between reliably managing demand
when energy theft is considered.
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Chapter 1

Introduction

The concept of smart grid (SG) refers to the modernisation of traditional electricity
grids that allows dynamic optimisation of operations and maintains a reliable and
secure electricity infrastructure. SG uses an advanced metering infrastructure (AMI)
that utilises digital information and communication technology (ICT). ICT enables
real-time power demand measurements to be exchanged between all components.
These high-resolution electricity data, provided by modern smart meters, help balance
supply and demand better. New smart grids have also allowed the integration of
renewable energy resources at residential levels, enabling consumers to produce energy
and sell it to the grid. Although these advancements in smart grid technology and
its integration with ICT have brought many advantages, they have also opened up
the system to several vulnerabilities. This is because when ICT was first integrated
into energy networks, defending against intrusions was not a priority. Smart grids
are vulnerable to various types of attacks, including attacks against data integrity,
confidentiality and availability.

One of the main attacks against data integrity in energy systems is energy theft.
This attack involves manipulating smart meters’ fine-grained data through the
network. Energy thefts are one of the major causes of non-technical losses (NTL)
during electricity transmission and distribution [1]. They are defined as any illegal
energy use that violates contract terms. This can be achieved through physical
means, such as using a bypass cable (a shunt), or through digital manipulation
of meter readings. This can lead to paying nothing (or less) for consumed power
or getting paid more for selling to the grid [2]. Globally, energy thefts are the
greatest cause of financial losses in the energy market, and it has been reported that
around $1 to $6 billion dollars are lost yearly in the UK and the US combined due
to these attacks [3].

1



CHAPTER 1. INTRODUCTION

Protecting smart grid systems against energy thefts is a serious problem, and
resilience against them is a prerequisite for reliable operation in energy applications.
Our main direction in this thesis is to employ machine learning (ML) techniques to
detect these attacks reliably. Here, we develop detection schemes that can detect
attacks under various theft situations and can simultaneously ensure data privacy
without introducing high communication and communication overheads.

1.1 Aim and Objectives

Energy thefts are one of the most costly attacks launched against smart grids. Hence,
they cause significant concerns for both providers and consumers. They are often
hard to detect, specifically as they can be launched in different forms. Recently,
global electricity consumption has become a burden on energy utilities. This has
pushed power systems operators to introduce more efficient and flexible ways for
sustainable energy, enabling some energy consumers to engage in energy production.
Such customers have become known as “prosumers” (agents that both produce and
consume energy). However, introducing those prosumers has allowed energy thefts
to be launched on either side (consumption and production). Moreover, advances in
smart grid systems have allowed smart metering data to be used in all sorts of energy
management, including the accurate detection of thefts. However, they have also
raised new challenges concerning how data can be transferred and processed without
violating customers’ privacy.

Different detection approaches have been proposed in the literature to detect
existing energy theft attacks in smart grids (as discussed in Chapter 2). Machine
learning-based techniques are widely used as they offer several advantages over other
techniques, making them a valuable tool for identifying and combating this problem.
However, existing detection approaches address only certain types of consumers’
energy thefts and cannot detect thefts by multiple agents or by prosumers. Moreover,
we have noticed that previous studies have used either a generalised detection model
for all users or a user-specific one. Therefore, opportunities for using data features
from different sources can help to find a balance between the two approaches. This
is done by grouping users into clusters and creating a reference model for each
cluster. This thesis investigates whether having a cluster-based energy theft detection
using ML-based approaches is able to detect different energy theft attacks accurately.
Hence, our first hypothesis is:

2



CHAPTER 1. INTRODUCTION

Hypothesis 1: Combining machine learning techniques (clustering and
classification) can enhance the detection of a range of thefts, including prosumers
thefts.

The use of machine learning often requires that data is used in its raw form. However,
due to privacy concerns and some legal constraints (e.g., GDPR in the EU and CCPA
in California), the use of customers’ energy data is subject to strict regulations. These
privacy policies must be followed to ensure data privacy at all times. For realistic
prospects of deployment in real systems, an energy theft detection approach based on
machine learning must be privacy-preserving and avoid using data in its raw form.
This leads us to formulate our second hypothesis :

Hypothesis 2: A privacy-preserving ML technique that suits the smart grid
environment can be developed to accurately and effectively detect energy theft while
preserving the privacy of customers’ data.

Most smart grid operations rely on the availability and integrity of smart meters’
readings, and any manipulation of these readings can affect operational reliability.
Degrading the integrity of such readings may, for example, affect future demand
forecasting, which can, in turn, cause disruption to the energy supply. This may
lead to outages if a system cannot provide adequate supply or even become an
operational safety issue. Thus, an energy theft detection model should be equipped
with post-detection mechanisms that enhance demand-response management. We
argue that a multi-output neural network offers a particularly appropriate approach
to doing this effectively and efficiently. Indeed, we will show that such an approach
can provide both detection and prediction functions in the same network. Therefore,
our final and third hypothesis is:

Hypothesis 3: A multi-output neural network framework can be used to
simultaneously predict the presence of theft, predict its magnitude, and use that
estimation to make more accurate forecasts.

Upon developing these three hypotheses, our primary aim of ensuring the precise and
effective detection of various forms of energy theft while preserving customers’ privacy
will be investigated.

3



CHAPTER 1. INTRODUCTION

1.2 Thesis Contributions

The major contributions of this thesis are as follows:

• The proposal and evaluation of a cluster-based theft detection method that
detects thefts by both consumers and prosumers. The proposed method can
detect thefts from new users without the need for historical data.

• The introduction of new electricity theft scenarios, which we term as balance
attacks. These attacks can balance the amount of electricity stolen from
one meter with manipulated values returned from neighbouring meters. This
scenario can be difficult to detect with existing detection models.

• The production of a dataset that includes both prosumers’ and consumers’
profiles.

• The proposal and evaluation of a privacy-preserving energy theft detection
approach. The proposed detection is based on a newly proposed variant of
split learning, called Three Tier Split Learning, that suits the nature of smart
grid infrastructure.

• The proposal of an energy theft detection approach that not only detects energy
thefts but also takes post-detection actions that help estimate future demand.
The proposed approach is a privacy-preserving scheme that detects energy thefts
and estimates the amount of stolen energy, which is then used to manage future
demand, even in cases of theft.

• The introduction of quantitative analysis metrics to analyse the privacy of
an energy theft detection model using feature inference attacks and distance
correlation.

1.3 Structure of the Thesis

This thesis is conceptually structured as illustrated in Figure 1.1 in order to address
the aim, objectives and the three hypotheses presented earlier. This includes the
following chapters:

In Chapter 2, Background and Literature Survey, we outline relevant research
topics in the literature, critically survey the existing work and highlight the gaps that
led to our hypotheses.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of the Thesis Structure

In Chapter 3, ML-Based Detection Model in the Presence of Prosumers,
we propose a cluster-based detection model that uses multi-source data features to
detect energy thefts. We apply our proposed model to different energy theft scenarios,
including those that prosumers can launch. The proposed model is empirically tested
using several machine learning algorithms, and results can confirm hypothesis 1.

InChapter 4, Privacy-Aware Split Learning Based Energy Theft Detection,
hypothesis 2 is explored through the implementation of a detection model for energy
thefts that can preserve the privacy of users’ data. This work introduces a new variant
of a privacy-preserving ML approach, which we term Three-Tier Split Learning. This
variant is needed to suit the smart grid’s environment. Moreover, the model’s security
and privacy aspects are evaluated in different scenarios.
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In Chapter 5, Privacy-Enhanced Energy Theft Detection for Effective
Demand Management, we investigate hypothesis 3 by integrating energy theft
detection with demand management. We implement a multi-output system that can
detect energy theft, estimate its magnitude and predict future energy demand. We
also provide a thorough quantitative privacy analysis using two metrics: distance
correlation and feature inference attacks.

In Chapter 6, Conclusion and Future Work, we summarise this thesis’s major
findings, restate the contributions achieved and highlight future work.

1.4 Associated Publications

The work reported in this thesis has appeared or submitted to appear in the following
publications:

• Arwa Alromih, John A. Clark, and Prosanta Gope. “Electricity Theft Detection
in the Presence of Prosumers Using a Cluster-based Multi-feature Detection
Model.” In 2021 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), pp. 339-345.
IEEE, 2021. The URL for the electronic version of this publication is https:
//ieeexplore.ieee.org/document/9632322. This work is reported in Chapter 3.

• Arwa Alromih, John A. Clark, and Prosanta Gope. “Privacy-Aware Split
Learning Based Energy Theft Detection for Smart Grids”. In 24th International
Conference on Information and Communications Security (ICICS 2022), pp.
281–300, Springer-Verlag, 2022. The URL for the electronic version of
this publication is https://link.springer.com/chapter/10.1007/978-3-031-15777-
6 16. This work is reported in Chapter 4

• Arwa Alromih, John A. Clark, and Prosanta Gope. “A Privacy-Preserving
Energy Theft Detection Model for Effective Demand-Response Management in
Smart Grids”. This work has been submitted for publication and a preprint
version can be found here https://arxiv.org/abs/2303.13204. Chapter 5 of this
thesis reports on this work.

In addition to these publications, the generated dataset used in this thesis is openly
available in our GitHub repository https://github.com/asr-vip/Electricity-Theft
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Chapter 2

Background and Literature Survey

2.1 Introduction

The term “energy grid” typically refers to the Traditional Grid (TG) system, which
is an infrastructure that supports four essential electricity operations: electricity
generation, long-distance electricity transmission, energy distribution, and end-user
power consumption. In the TG, energy stations dispatch electricity unidirectionally
to distribution substations and finally to the end users. However, this outdated power
infrastructure cannot meet the rising demand for services like demand response (DR),
self-healing, real-time pricing, congestion management, dependability, and security.
It is crucial to concentrate on the newest technologies to satisfy these demands
and deliver safe, dependable, continuous electricity without power system blackouts.
These features are all available in the future grid, commonly known as the Smart
Grid (SG).

The smart grid is an advanced concept proposed at the beginning of the 21st
century [4]. It is the evolutionary step towards reliable and efficient power delivery.
SG networks are advanced technology-enabled electrical grid systems that incorporate
information and communication technology (ICT) with smart meters, metering
communication networks and meter data management systems to collect nearly
real-time big energy usage data with a view to its subsequent analysis [4, 5].
ICT enabled two-way information and electrical flow between the grid’s entities,
facilitating the automatic distribution of electricity delivery. By utilising cutting-edge
information and communication technology, the SG can produce, store and share
energy whenever it is needed, just like we create and share information through
the internet [6, 7]. It is important to note that the system had been made more
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complex by integrating a number of technologies (as shown in Figure 2.1), including
advanced metering infrastructure (AMI), energy supply systems, renewable energy
sources (RESs), electric vehicles (EVs), and energy storage systems (ESS) all with
the help of ICT [4, 8].

While SG has opened up new opportunities for better energy management, it has
also created new potential problems. One of the significant difficulties is the threats to
the system’s security and data privacy. The most common security threats are those
that result in considerable functional and monetary losses for energy utility firms on
a global level, such as energy theft. Energy theft attacks raise serious issues for both
providers and customers. Whether such attacks are carried out on a small or large
scale, by a single user or multiple users, the losses will eventually affect everyone,
including honest users. To maintain SG’s activities, a security mechanism must exist
to defend against them. Otherwise, customers may experience an electrical blackout
that would disrupt daily activities, including the failure of heating systems, the
absence of online payment systems, and many others. Moreover, the modernisation
of the grid has significantly increased the amount of personal information exchanged
in the system. This has created more opportunities for attackers to gain access to
individuals’ information and maliciously utilise it improperly.

Several surveys and reviews, such as [3, 9, 10, 11, 12, 13], have evaluated energy
theft detection algorithms, the issues that occur during the detection functionality and
the existing limitations of each detection category. However, these existing surveys
focus only on the proposed detection mechanisms for energy theft and do not cover
state-of-the-art energy theft attack techniques. They also consider energy theft as
a sole problem and do not consider the implications that are faced either from the
detection approach (such as violating customers’ privacy) or those that arise from the
theft act itself (such as compromising the demand management accuracy). Therefore,
this chapter provides a more comprehensive overview of the different attack types,
their detection strategies proposed in the literature, and a thorough evaluation of their
strengths and weaknesses. This will facilitate further research and help in considering
the existing limitations in this research area. We outline some background related
to the smart grid, its architecture, security requirements and cybersecurity-related
issues. We provide more details about energy theft attacks, outline research efforts
that seek to defend against them and identify to what degree each research achieved
its goals. We also consider evaluation methods, attack scenarios, and datasets used
by other researchers.

The rest of this chapter is organised as follows: Section 2.2 focuses on background
information about SGs’ architecture and components. Sections 2.3 and 2.4 list
the overall security requirements and security threats that are faced in the SG’s
environments. Section 2.5 provides a comprehensive description of energy thefts
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and Section 2.6 highlights their implications over privacy. Section 2.7 discusses
and categorises the algorithms used for energy theft detection systems. Next, the
performance metrics and datasets used in the energy theft research area are described
in Sections 2.8 and 2.9, respectively. Finally, Sections 2.10 and 2.11 present the
existing research gaps, address the identified research questions and formulate the
research’s model.

Figure 2.1: An Overview of Smart Grid’s Components

2.2 SG Architecture and Components

According to the definition of smart grids, an SG is a cyber-physical system (CPS)
that integrates legacy complex power and energy systems with information and
communication technologies (ICTs). Being a CPS, the smart grid system can be
treated as a three-component architecture, as shown in Figure 2.2 [14]. These
components are:

1. A physical layer that comprises the physical infrastructure of electrical power
systems.
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2. A communication model that enables information exchanges between different
elements of the system.

3. A control layer which includes all software managing and controlling the energy
systems.

In the sections that follow, a detailed description of each component is given.

Figure 2.2: An Architecture Reference Model for Smart Grids [15]

2.2.1 Physical Layer

The smart grid’s physical infrastructure comprises several power systems generally
categorised into generation, transmission, and storage systems. The generation
systems integrate renewable energy systems (RESs) along with traditional power
plants to generate electricity to be delivered by the transmission systems to
customers [16].
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2.2.2 Communication Model

The communication network in a smart grid system can be divided into three
subsystems, as shown in Figure 2.3. This network comprises three parts: the Home
Area Network (HAN), the Neighbourhood Area Network (NAN), and the Wide Area
Network (WAN). In the Home Area Network, a group of home appliances distributed
energy resources (such as solar panels or small wind turbines) and energy storage
systems are connected to a smart meter (SM) for basic data collection. Moreover, an
in-home display provides the user with an interactive interface to control and manage
all devices inside the HAN. The SM enables two-way communication to send and
receive information from and to the utility. A NAN connects several HANs together
with a gateway (also known as an aggregator or data concentrator) that resides at
a substation. It is mainly located in the energy distribution domain. Therefore,
it communicates over power-line communication (PLC). Finally, the WAN connects
multiple gateways from different substations together to provide connectivity to the
utility control system [5, 17].

Figure 2.3: Smart Grid’s Data Communication Network [5, 17]
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2.2.3 Control Layer

This layer is responsible for controlling and monitoring the energy elements of the
system. It has one major component, which is the Supervisory Control and Data
Acquisition (SCADA) system. SCADA systems reside at control centres and are used
to facilitate all decision-making processes in the smart grid infrastructure. SCADA
employs various sensors and actuators that sense and send data to remote terminal
units (RTU). These RTUs forward all information to a Master Terminal Unit (MTU)
for further processing and analysis. Other elements exist in this layer, such as the
trading platform, state estimation, prediction and planning, economic dispatch and
demand response. All of these systems rely on data stored in the SCADA system
to be analysed and communicated with different parties through the communication
model.

2.3 Smart Grids Security Requirements

The smart grid’s network is a critical and sensitive network that requires secure
methodologies to deal with the cyber system and the communication infrastructure.
Moreover, the communication model in SG systems handles the process of sending
command information, consumption reports, prices and bids, billing and demand
response controls [5, 15]. Hence, the sensitivity of these communications requires the
SG to provide the following security goals:

• Confidentiality: Confidentiality is the security requirement that ensures that
data are shielded from disclosure to unauthorised users and from eavesdropping.
Confidentiality in itself may be of limited importance to the operation of an
energy system, but it is closely associated with privacy, which is critical to
customers due to the periodic energy usage data communication through the
network. These data can reveal consumers’ life patterns. The importance of
privacy and its issues in energy systems will be discussed later in Section 2.6.

• Integrity: This requirement assures that the data and system commands
are safe from unauthorised modification and alterations. This is particularly
important since falsified and altered data or commands can enable an attacker to
hijack the system and gain sensitive information, manipulate meters’ readings,
escalate privileges or access unauthorised system components.

• Availability: This ensures that all smart grids’ data and systems are available
at all times (or very close to that). The availability of energy systems is crucial
due to the fact that generation and consumption need to be balanced.
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• Authentication: An energy network consists of a large number of different
entities whose identities need to be ensured to prevent user impersonation.
Authentication is the method of ensuring the validity of a user’s identity and
the content of the information sent by the user.

• Non-repudiation: This property ensures that a component cannot deny the
actions that it performed. This ensures that all false actions can be tracked to
a certain individual; for example, an energy thief cannot deny responsibility for
the actions he/she carried out.

• Authorization: This requirement ensures that permissions are given before
any action is carried out. It is essential to share consumption data between
components to determine demand and load management where only authorised
components can read these data.

The importance of these requirements differs across domains; for example, the grid
automation and control systems that ensure the industrial operation would favour
availability and integrity over confidentiality since they are the main drivers for grid
automation, industrial safety and environmental impacts. However, in the smart
metering domain, confidentiality, or more precisely privacy, would be prioritised since
consumption data is the most sensitive for individuals as it can reveal users’ habits [5].
In our work, we give high importance to both integrity and privacy as they are the
most impacted requirements by energy theft attacks.

2.4 Security Threats in Smart Grids

Since a smart grid is considered a complex CPS, complex security challenges have
been revealed in the physical and cyber models of SG [16]. On the one hand, physical
devices, smart meters and bulk power systems can be vulnerable to physical security
threats. On the other hand, there are cyberspace vulnerabilities that affect the privacy
and protection of the communication systems and the information at the software
level [18]. According to the aforementioned factors, attacks on SGs can be categorised
into physical and cyber, as shown in Table 2.1. These categories are discussed in more
depth in the following subsections, with a brief look at the history of cyber attacks
first.
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Table 2.1: Physical and Cyber Attacks Targeting Smart Grids

Attack Type Attack Name

Physical

1. Meter manipulation

2. Physical power lines cutting

3. Natural disasters

Cyber

Integrity
1. False data injection attack (FDIA)

2. Energy thefts

Confidentiality
1. Traffic analysis

2. Release of message contents

Availability
1. Channel jamming

2. Denial of service (DoS)

2.4.1 History of Cyber and Physical Attacks in Smart Grids

Over the past 40 years, several cyber-physical security attacks have been launched
against the energy sector. These attacks had different levels of impact ranging from
unnoticed information loss to losses of millions of dollars. According to the ninth
annual report by Accenture/Ponemon [19], it has been revealed that cybercrimes in
the energy industry have resulted in an average of 13.8 million dollars in losses. This
places the energy sector in the top ten industries that suffer financial losses from
cybersecurity attacks [19]. Cybercrimes against energy systems are not new; they
began in the 1980s. A summary of publicly known attacks can be found in Table 2.2.

In 1982, the first major attack was announced when a massive Siberian gas pipeline
explosion took place due to a trojan horse implemented in the control software
from the United States [12]. The attack was categorised as a malicious update to
firmware that influenced a single substation [20]. In 1994, a hacker managed to
access the computers of the Salt River Project water facility in Arizona, U.S. and
gain complete control of the SCADA system for five hours. During this attack,
the attacker accessed/altered customer financial and personal records that cost the
company around $40,000 [20, 21].

During the following ten years, several security incidents were recorded. Some
were due to insider employee collaboration, such as the Gazprom incident in Russia.
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Table 2.2: Overview of Cyber Attacks in the Energy Sector

Attack Name Year Location
Method of
Operation

Impact

Siberian Pipeline
Explosion [12, 20]

1982 Siberia, Russia Trojan Horse Physical damage

Salt River Project
[20, 21]

1994 Arizona, U.S. Root Compromise
Financial loss &
data disclosure

Gazprom [21] 1999 Russia
Insider & Trojan
Horse

Operation disrupt

Bellingham Gas
Pipeline [21]

1999
Washington,
U.S.

Misuse of
resources

Human loss

Davis-Besse
Nuclear Power
Plan [21]

2003 Ohio, U.S. Worm Operation disrupt

Aurora Attack
[12]

2007 Idaho, U.S.
False data
injection attack

Financial loss

Stuxnet Attack
[21]

2010 Iran zero-day attack Operation disrupt

Blackout [20] 2015 Kiev, Ukraine
False data
injection attack

Operation disrupt
affecting 22.5k
customers

Aramco Malware
[20]

2017 Saudi Arabia Malware injection
Generation and
delivery disrupt

Others were because of failures in the critical infrastructure system, as in the case
of the Bellingham Gas Pipeline misuse incident in Washington, U.S. [21]. In 2007,
the “Aurora” cyber attack was launched against a control system of a test generator.
The attacker injected false commands to switch the circuits on and off, causing a
desynchronization between the mechanical generator and the electrical grid. This
desynchronization resulted in the explosion of the generator leading to a loss of one
million dollars [12]. Following these attacks, the “Stuxnet” attack struck a nuclear
facility in Natanz, Iran, in 2010. Stuxnet had exploited four zero-day vulnerabilities
targeting the Microsoft Windows operating system. The attack changes a centrifuge’s
rotor speed, raising its speed and then lowering it, causing it to fail faster than
normal [21]. Energy systems worldwide experienced more cyber-attacks during the
next 10 years, i.e. between 2010 and 2020. Examples are the often-quoted attack on
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a Ukrainian distribution grid operator in 2015 and the malware targeting industrial
control systems of the Saudi Arabia energy infrastructure in 2017 [20].

Understanding the evolution of cybercrimes against energy systems over time
can assist in the development of new techniques to mitigate their impact. The
investigation of these cyber-physical attacks starts by first identifying their different
types.

2.4.2 Physical Attacks

Physical attacks on energy systems refer to any actions taken to physically damage
or destroy energy infrastructure or a specific area or location. These attacks are
launched in an attempt to disrupt the energy supply. This can include acts such
as bombing a power plant, cutting power lines or vandalising equipment [16]. An
example of this form is the 2013 attack in California where a sniper targeted a Silicon
Valley power substation [22]. These types of attacks can have serious consequences,
such as power outages, equipment damage, and even loss of life. They can also disrupt
the normal functioning of critical services such as hospitals, emergency services, and
transportation systems.

The real challenge is that the infrastructure is geographically spread and
distributed across the land. Thousands of miles of power lines, generators, and
substations are in danger of physical attacks. Likewise, smart meters are installed in
customers’ homes and businesses. For example, a utility cannot prevent a motivated
person from cutting down a transmission line or physically damaging a substation [16].

2.4.3 Cyber Attacks

Cyber-based attacks are attacks delivered through the system’s control layer. They
can be categorised based on the three basic security requirements, confidentiality,
integrity and availability (CIA) [18], as follows:

• Attacks against data confidentiality: Confidentiality attacks are attacks
that try to steal and have access to information that is meant to be secret
within authorised parties. These attacks are also known as attacks against
data privacy. Due to the sensitive nature of information in energy systems and
the multi-hub routing nature of these systems, an adversary can eavesdrop on
communicated reports and analyse traffic patterns. Compared with integrity
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and availability attacks, confidentiality attacks could be seen as lower-risk
attacks as they often do not directly impact the smart grid’s functionalities.
An attacker can sniff or wiretap a communication channel to get personal
information, such as consumption data and bank information, without affecting
the operation of the network. However, collecting this information about the
system is the first step in any attack cycle. Moreover, data privacy is violated
when information is sent in clear text. Privacy has seen more attention in
recent years, especially with the huge amount of customer personal information
revealed in recent leakage incidents [23, 24]. We note, however, that certain
properties of confidentiality must be maintained, e.g. key management must
uphold confidentiality since cryptographic keys often underpin the achievement
of other security requirements.

• Attacks against integrity: Data reports and commands are one of the main
factors in the control and decision-making process that is taken by the SCADA
system at the control centre. Any false measurements or malicious commands
can lead to catastrophic results. These false measurements are called false
data injection attacks, and they are one of the major integrity attacks in
smart grids. Several false data injection attack incidents have been reported
in energy systems, such as the “Aurora” cyber attack and the Ukrainian energy
distribution system attack, which were discussed previously in Section 2.4.1.
Different types of data are communicated between components in the SG
system. These data can all be vulnerable to manipulation and are listed below:

1. Smart meter data.

2. Power injection requests and bids.

3. Price signals from the utility.

4. Electrical data of the grid that represent real and reactive power flows,
demand response capacity and voltage.

5. Event messages data, such as outage alerts.

When customers falsify smart meter readings in the system, this is referred to
as an “energy theft attack”, where the attacker’s intention is likely to steal
energy. Section 2.5 defines this type of attack in detail. In order to defend
against integrity attacks, integrity needs to be provided using any integrity
mechanism such as digital signing or hashing. However, these mechanisms alone
are not sufficient as a compromised node could forge malicious reports along
with the correct signature or hash. Another misconception about the defensive
mechanisms against these attacks is that they can be solved using encryption.
This is not entirely true, as confidentiality does not equate to data authenticity.

17



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

• Attacks against availability: Any disruption to the system’s availability,
such as in the case of denial-of-service (DoS) or distributed DoS (DDoS) attacks,
may lead to significant economic losses (and further losses in critical domains).
In these attacks, attackers typically send a large volume of packets to flood
the network, which causes legitimate data packets to be lost. Jamming attacks
also target the availability of the system. They aim to cause noise in wireless
communication networks so that smart meters (edge devices) cannot connect
to the energy infrastructure network. Such attacks result in packet loss. We
also note the existence of more subtle forms of denial of service, e.g. low rate
denial of service attacks, where a server’s request buffer is maintained at a full
level, causing service requests to be dropped, but where there is no “swamping”
with requests. Attackers only need to keep a server 100 per cent busy to effect
a DoS attack; they do not need to overload it many times. As mentioned
in Section 2.3, availability is generally considered the most important cyber
security requirement for power systems. Thus, effective defences should be
made against these attacks. Traffic filtering, anomaly detection and channel
hopping are some solutions [23].

2.5 Energy Theft Attacks

Energy theft can be defined as the illegal use of energy from electric providers without
a valid contract or any act that leads individuals to not pay their electricity bills or pay
less than they should due to meter reading manipulation. The quantity of electrical
usage relies on the amount of power consumed for a certain duration of time. The
amount of power consumed, i.e. real power, is the product of voltage, current, and
power factors. Once at least one of these three factors is altered by dishonest clients,
meters may be measured, recorded, or charged incorrectly. As stated before, energy
thefts are a type of false data injection attack where an attacker manipulates the
meter’s measurements to make a change in the value reported. This manipulation of
data can be done by a compromised sensor meter in the smart grid in various ways,
such as: (1) a compromised customer’s meter purposely forges its own sensed reading;
(2) an en-route meter forges the report it is relaying to its parent; or (3) an aggregator
meter modifies or drops the aggregated value it is passing to the base station.

Energy theft attacks can be launched for different durations of time. They can
be launched as a one-off attack (interim) or for a continuous time. In an interim
energy theft attack, the duration of the attack is a short time interval. This attack
aims to inflict maximum damage in the shortest possible time. Such attacks can
be detected by statistical anomaly-based detectors [25]. In the case of a continuous
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attack, the attack is continuous, which means that once the attack starts, all the
sensor readings are compromised from that point onwards. This attack is more
interested in compromising and manipulating the system over a long period while
avoiding detection. Such attacks are difficult to uncover with anomaly-based detectors
alone. To defend against such continuous attacks, secure communication protocols
could be a solution [25, 26].

Energy theft attacks can be one of the most critical and serious attacks launched
against energy systems [27]. Therefore, the development of techniques that can
protect and counter such attacks is essential to secure the operations of smart grid
systems [28].

2.6 Energy Thefts and Privacy Issues

As defined previously, energy theft refers to any deviations between the actual
electricity usage and the amount billed to a customer. The issue of privacy comes
into play because energy companies may use various methods to detect energy theft,
such as installing smart meters that can track usage in real time. The use of these
technologies raises concerns about potential invasions of privacy. This is because these
data can include private information about customers’ energy consumption and billing
information. These data can be vulnerable to breaches and misuse, and can be used
without customers’ knowledge or consent. To avoid these concerns, energy companies
can implement various privacy-preserving techniques, such as data anonymization,
data encryption, data aggregation, and access controls. These techniques can help
protect sensitive personal information while still allowing it to be used for legitimate
purposes, such as detecting energy theft. However, these techniques can also hinder
the detection performance in the sense that the data is altered, thus making it harder
to detect. This can be viewed as follows:

• Data Anonymization: Anonymizing personal data, such as removing names,
addresses, and other identifying information, can make it more difficult to detect
patterns of suspicious activity that are specific to individual customers. This
can limit the ability to detect the theft’s source.

• Differential Privacy: Differential privacy is a perturbation and
randomization-based technique that relies on sanitising the data by adding
noise before they are sent. The disadvantage of differential privacy is that it
can only provide privacy to a certain level before it can lower the detection
performance.
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• Encryption-based Techniques: These techniques use encryption, such as
homomorphic encryption or multiparty computation (MPC), to encrypt
personal data. They could be utilised to analyse consumption patterns
and detect energy theft from encrypted data. Unfortunately, those
cryptographic-based techniques increase the computation and communication
costs dramatically.

• Data Aggregation: Aggregating data from multiple customers can help protect
individual privacy, but it can also make it difficult to detect the theft’s source.

• Access Controls: Giving limited access to the data reduces the energy company’s
ability to detect thefts.

Therefore, finding an acceptable balance between energy theft detection and
customer privacy protection is important. This balance is not an easy task,
but it is essential in order to maintain trust and build a long-term relationship
with customers. Moreover, some privacy techniques, such as differential privacy,
homomorphic encryption and secure multiparty computation, can be combined and
used to find the right balance between privacy and performance. Still, these can
increase the complexity of the system.

In the next section, we will review the different categories of energy theft detection
approaches proposed in the literature, including those that address privacy concerns.

2.7 Energy Theft Detection Techniques

In the literature, different strategies have been developed with the goal of detecting
energy theft attacks. While these strategies differ, they can be divided into two
main categories: non-machine learning-based methods and machine learning and deep
learning-based methods [9, 29, 30]. It is worth noting that these methods are not
mutually exclusive and can be combined to form a hybrid energy theft detection
system. In this section, we will provide a detailed survey of these methods.

2.7.1 Non-Machine Learning Based Detection Methods

There are several non-machine learning energy theft detection schemes that can be
used to detect energy theft. These schemes include game theory-based techniques,
hardware-based techniques, and state estimation techniques.
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Game Theory Techniques

Game theory is a widely used defence technique against cyber-physical attacks. In
this technique, active attackers and reactive defenders are seen as the two players in
the game [29]. Game theory provides powerful mathematical models and techniques
for modelling and analysing the interactions between defenders and attackers. In the
context of energy theft detection, energy thieves (the attackers) can use game theory
to maximise the benefits of different types of energy theft without being caught, while
energy providers (the defenders) use it to analyse the costs and benefits of different
security measures over time in response to each theft.

Based on the game theory assumptions, Cárdenas et al. [31] proposed a Nash
equilibrium-based game theory strategy to detect energy thefts. In this game, the
goal of the attacker is to find the maximum amount of electricity to be stolen while
minimising the expected likelihood of being detected. The goal of the utility is to
maximise the probability of detecting thieves while lowering the operational cost of
the detection algorithm. They also proposed a privacy-preserving demand response
as a control theory problem that is solved with the goal of maximising the level
of privacy by selecting the maximum sampling interval for smart meters. However,
their proposed privacy-preserving control system cannot be combined with energy
theft detection and is only applicable under many unrealistic constraints. Amin
et al. [32] proposed another game-theory-based energy theft detection with the same
previous two players in the system. The proposed scheme considers pricing and
investment decisions by the utility, the amount of stolen energy, and the probability
of being caught by the thief. Wei et al. [33] proposed a Stackelberg game theory-based
model to identify energy thieves. A Stackelberg game is formulated between a single
leader (the utility) and multiple followers (thieves) to characterise and analyse the
interactions between them. The two actors in this game have opposite goals, i.e.,
the utility aims to maximise theft detection probability while limiting false positives.
Whereas from the thieves’ perspective, the strategy is to interact with one another in
a non-cooperative manner to steal the optimal amounts of electricity without being
detected. After formulating the game’s equilibrium, a likelihood ratio test (LRT) is
used to detect potentially fraudulent meters.

Game theory-based techniques are not very well-known in the energy theft
detection research community. This is because they are based on the assumption
that the number of players in a game is finite [9]. Another reason is that it is
challenging to construct the utility’s optimisation function as there is a number of
trade-offs between all the required parameters that need to be taken into account
when designing it [2, 34].
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Hardware-Based Techniques

In hardware-based detection techniques, special types of physical equipment are
installed at different places in the energy infrastructure to allow the identification
of any theft activities [35]. These techniques range from simple physical security
measures, such as locking each meter in a secure box, to more complex ones such
as replacing traditional meters with special ones. These special devices are used
to measure the current, voltage, magnitude and phase angle at fixed intervals from
multiple locations to be analysed for any inconsistencies [2]. In Grewal et al. [36], the
authors proposed a metering-based theft detection that works by deploying enhanced
prepaid energy meters in customer premises. This hardware-based theft detection
system monitors the power consumption with respect to the load where two current
transformers are connected before and after the energy meter for theft detection.
If any change exists between the two current readings, an alarm is sent, indicating
possible power theft. A prototype of this proposed scheme was developed to test its
applicability and efficiency, and preliminary results showed that the detection rate
(alarm rate) was almost 90%. The main drawback of this work is that it was tested
in a small circuit; therefore, it is unclear whether it can scale to large systems. A
similar approach was also proposed by the authors in [37], [38], and in [39], where
two sensors are placed to measure the amount of current at both ends of the energy
meter. When a difference between the two values occurs, energy theft is identified.

Hardware-based detection methods are simple and have the ability to detect
any illegal behaviour in consumption. However, the cost of deploying extra pieces
of equipment around the whole network is expensive. Therefore, it is necessary
to strategically choose the right number of these physical devices along with their
appropriate deployment place [2].

State Estimation Techniques

State estimation is a technique that uses mathematical algorithms, such as Kalman
filter, to estimate the current state of the system at various points. Energy
thefts are detected by comparing the estimated state variables with the actual
measurements. Therefore, estimating system states accurately is crucial for
the correct decision-making in energy networks. These estimates rely purely
on measurements taken from various sensors in the transmission lines, which
include: active/reactive power injections (P/Q), branch power flows (S), and voltage
angle/magnitudes (θ/V). The relationship between these measurements and the state
variables to be estimated is expressed as follows:

z = h(x) + e (2.1)
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where z is the measurement vector (known), including active and reactive power
flows (P and Q), and x is the system state vector (unknown quantities) for which the
equation must be solved, and it includes the voltage magnitudes and phase angles
(V and θ). e denotes the noise vector, which has a Gaussian distribution, and h(x)
denotes the mapping matrix between measurements and state variables. The precise
form of h(x) is determined by the grid structure and line parameters. To estimate
the new state of the system, equation 2.1 can be solved using a weighted least squares
(WLS) method. In this method, the vector of estimated state variables x is obtained
by solving the following optimisation problem:

min J(x) =
1

2
(z − h(x))T W (z − h(x)) (2.2)

where W is a diagonal matrix represented as W = diag(σ2
i , 0) and σ2

i is the variance
of the measurement errors associated with the i-th meter. Estimating the system
state requires a large number of measurements which can be susceptible to errors and
faults. Therefore, bad data detection (BDD) is one of the essential functions in state
estimation that is implemented to detect and eliminate these bad data [2, 34].

When an energy theft attack is crafted against state estimation, it is important
to manipulate the right state measurements so that the bad data detection module
is not triggered. This means that an energy theft attacker should manipulate the
measurements and state estimation data of several buses and lines in a coordinated
manner [40]. One important aspect of constructing a valid energy theft attack without
being detected is if the attacker has sufficient knowledge of the target system. By
knowing the system configuration and state parameters, the attacker can craft an
undetectable false measurement that is injected into the system [2, 34].

A great number of state estimation techniques and BDDs have been proposed
to detect energy thefts. Huang et al. [41] have proposed a detection technique for
detecting electricity thefts using state estimation. It consists of two phases: the
first one is to estimate the system state measurements using the WLS method.
After that, the normalised residuals (difference between estimates and actual meter
measurements) are used to localise the area where anomalous usage occurred. In the
second phase, an analysis of variance (ANOVA) is used along with the customers’
historically validated usage to detect suspected energy thieves. ANOVA was also
used as the last step to identify energy thieves by the authors in [42]. However,
in their proposed scheme, the authors used semi-definite programming to get the
state estimation solution. This helps in finding the global optimal solution for the
system’s state rather than the local one (which is obtained from the WLS). After
estimating the state of the system, the residuals are considered and combined with
a historical analysis of a customer to detect electricity thefts. The two proposed
techniques could successfully identify energy thefts; however, the proposed scheme
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in [41] can only detect an individual malicious meter at a time and the work in [42]
was only tested to detect up to two malicious meters. In [43], the authors proposed a
model-based technique to detect and localise data theft attacks in microgrids. They
used a stochastic Petri Net (SPN) to model the system’s operation with three modes
and transitions. Any disturbance in the electrical resistance will trigger an alert
where suspected smart meter readings are forwarded to a Meter Data Management
System (MDMS) for detection and localization. In the MDMS, Singular Value
Decomposition is used to detect and localise data theft with an accuracy of 98%. This
technique minimises transferring data to the MDMS in order to protect customer data
privacy. However, as with most state-estimation techniques, the implementation and
maintenance costs are high.

With regard to privacy-preservation, Salinas et al. [44] introduced a
privacy-preserving state estimation-based detection system in 2013. In fact, their
work is considered the first to study the issue of privacy in energy theft detection.
The authors designed three distributed privacy-preserving approaches to identify
fraudulent users based on two well-known decomposition algorithms: LU and QR
factorization. These algorithms, just like WLS, can solve a linear system of equations
corresponding to the consumers’ energy consumption data (i.e., a data matrix) that
must agree with the total load consumption measured by the collector at each time
interval. Although this was the first work to look at privacy in energy theft detection,
the work did not consider the issue of technical losses. Following their work, Salinas
and Li [45] have also proposed another privacy-preserving energy theft detection based
on state estimation. In their proposed work, the authors introduce a decomposed,
loosely coupled version of the Kalman filter that can hide energy measurements and
preserve users’ privacy. However, this proposed loosely coupled filter can only be
employed in small-scale microgrids since the complexity would increase as the size of
the grid increases. In addition, according to [46], the proposed scheme can only detect
continuous thefts with consecutive reduction reads (i.e. when the meter readings
show a consistent decrease in consumption over a period of time), while as we saw
in Section 2.5, energy thefts can be of different types including interim ones. The
energy theft detection scheme proposed in [47] is yet another state estimation-based
detection system that preserves privacy. The authors use a recursive filter based on
state estimation to estimate energy consumption for all users and compare it with the
true reading. If the difference is larger than a predefined threshold, then the reading
is flagged as abnormal. In their work, the authors used the Number Theory Research
Unit (NTRU) algorithm to encrypt users’ data and preserve users’ privacy. The
simulation results show that their algorithm achieves an accuracy of more than 92%.
However, the scheme introduces communication and computation overhead. Another
weakness of this proposed scheme is the assumption that aggregators are trusted
entities which is not always the case. Most aggregators are third-party companies
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that are not governed by any authority.

State estimation techniques are the second most widely used method for energy
theft detection [34], after ML-based approaches. This is because they achieve a
higher detection rate compared to other detection approaches without the need
for large historical data [2, 34]. However, these methods suffer from the following
limitations [2, 34]:

• State estimation-based techniques require the detailed topology and parameters
of the energy network, which is usually hard to get and update regularly.

• Most techniques can only localise the region of the energy theft and cannot
pinpoint a particular customer.

• Most of these techniques were only evaluated in terms of detection rate and
some were not evaluated at all. This can hinder the ability to compare their
performance with other proposed energy theft detection approaches.

2.7.2 Machine Learning Based Detection Methods

With the rapid development of machine learning (ML) algorithms, several
contributions have employed them as effective ways to detect anomalies. By using
machine learning techniques, patterns of normal electricity usage are generated
and the real-time operation and data of the system are monitored in order to
detect any anomalies. These algorithms are increasingly being used because of
their ability to be scaled to large systems and their low computational costs [48].
Machine learning approaches such as supervised learning, semi-supervised learning,
unsupervised learning, especially deep learning and reinforcement learning have all
been brought to bear.

We start by reviewing some work that used supervised machine-learning
techniques to detect anomalous data in electricity usage. Gunturi and Sarkar [49]
proposed to use a supervised machine learning algorithm to detect non-technical
losses based on ensemble ML techniques. Ensemble ML models combine multiple
ML approaches into one predictive model to boost the detection rate and lower
the error rate. In their study, the authors found that a bagging-type ensemble
ML approach, which takes the average result of several independent MLs, performs
better than a boosting one. A special type of boosting ensemble ML called extreme
gradient boosting (XGBoost) was used in Buzau et al. [50] to detect energy thefts.
XGBoost is a scalable implementation of a decision tree boosting system that works
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by combining multiple decision trees to create a more powerful model. In this study,
the authors used two types of data as inputs to their ML model: smart meter data
along with contextual (auxiliary) data. Results showed that the XGBoost model is
robust when the dataset is imbalanced. Another recent study [51] also used XGBoost.
The study tested the proposed model with both balanced and imbalanced datasets
and the results showed that the proposed method achieves good performance in both
scenarios. The study, however, had multiple assumptions, such as the availability
of honest readings for a long period of time, that restrict its real-world application.
Other gradient-boosting classifiers were used and compared in [52]. The authors
used three different classifiers: XGBoost, categorical boosting (CatBoost) and light
gradient boosting method (LightGBM). In this work, the authors focused on the
feature engineering part to improve detection performance as well as time complexity.

Authors in [53] proposed an electricity theft detection that is based on artificial
neural networks. They proposed a wide and deep convolutional neural network (CNN)
that consists of two major components: the wide component uses one-dimensional
(1D) consumption data to calculate the output, and the deep CNN component
transforms the 1D consumption data into two-dimensional data based on the 7 days
of the week. The deep component has several connected layers that analyse data.
This technique was evaluated against conventional ML techniques where it showed
better AUC results. However, the paper did not investigate the appropriate choice
of the number of neurons, number of filters and number of epochs. Another work
also employed CNN in their electricity theft detection. In [54], the authors used it
to automate feature extraction, combined with a long-short-term memory (LSTM)
model to detect energy thieves. Their work achieved a plausible accuracy rate of 89%
but a lower detection rate (recall) of around 87%.

Supervised machine learning techniques are the easiest and most accurate of
the three categories of machine learning. However, they require the use of labelled
datasets which is usually hard to acquire in anomaly detection domains. Hence, the
use of semi-supervised ML methods represents a more practical setting for energy
theft detection. Taking this into account, Hu et al. [55] suggested the use of a
semi-supervised technique to address the issue of depending on a huge number
of labelled data to train a classifier. The proposed work uses both labelled and
unlabelled samples to train a feature extraction network (FEN) model to handle
high-dimensional data and extract features, and a denoising auto-encoder (DAE) to
detect energy thefts.

As discussed before, the lack of labelled data and the imbalanced distribution
between anomalous and real samples in energy theft datasets have introduced the
need to use unsupervised ML instead of semi-supervised or supervised learning.
Unsupervised learning algorithms do not rely on labelled data and can be used to
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discover patterns to identify anomalies in an adaptive and flexible manner, even
in the presence of missing or corrupted values. Several types of unsupervised
learning algorithms exist, such as clustering techniques, one-class classifiers,
dimensionality reduction techniques and auto-encoders. Zanetti et al. [56] proposed a
detection system that uses unsupervised clustering algorithms to construct short-lived
consumption patterns. These short-lived patterns represent the consumer’s profile for
a short period. They are then used to detect any anomalies in the current consumption
rates. The advantage of using short-term periods instead of long-term ones is that
natural consumption rates change quickly and collecting short-term data reduces the
vulnerability of violating data privacy. The detection system starts by tuning itself
to the most suitable pattern duration (ranging from 1 day to 2 weeks). Then it starts
the validation process using three unsupervised learning algorithms: fuzzy C-means
(FCM), K-means and self-organising map (SOM). The results show that there is
a trade-off between maximising the theft detection rate and minimising the false
positive rate which costs more to handle than the theft itself. Therefore, maximising
the F-measure is a better approach if we would like to improve the utility profit.
Another clustering-based algorithm was used by Zheng et al. [57]. In their work,
Zheng et al. used a density-based clustering algorithm with a distance matrix to
identify unusual consumer profiles. The authors used a synthetic dataset in which
abnormal load profiles for six malicious types of energy thefts. They tested their work
using the following evaluation metrics: Area under ROC Curve (AUC), accuracy and
F1-score, and results showed that the proposed density-based clustering technique
outperformed other well-known clustering models in detecting electricity theft. A
dimensionality reduction unsupervised ML technique, called principal component
analysis (PCA), was used in [58]. The PCA-based detection technique was used
to identify three attack scenarios of electricity theft by extracting critical features
that can explain variations in the data monitored. After that, an anomaly score
threshold is calculated using historical data. The results of this method indicate an
average detection accuracy of 89.2% of all different attack scenarios. The work can
be improved by optimising the choice of threshold values.

Privacy Preserving Machine Learning

Typical ML methods use vast amounts of data without any consideration for data
privacy. However, there has been a recent introduction to a special type of ML
technique, called Privacy-Preserving Machine Learning (PPML), that aims to protect
privacy. The main idea of PPML is to allow ML models to be trained without the
need to disclose private data in its clear form [59]. The PPML approaches fall largely
into two sub-categories: cryptographic-based ML approaches and distributed-based
ML [60]. In cryptographic-based ML approaches, traditional privacy-preserving
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Figure 2.4: Federated Learning

techniques, such as differential privacy methods and encryption techniques that
were introduced in Section 2.6, are added to typical machine learning algorithms
in order to make them privacy-friendly [59]. However, they either provide privacy to
a certain level or increase the computation and communication costs dramatically.
An alternative to these techniques is the use of decentralised or distributed-based ML
algorithms where training is done collaboratively between the system’s entities [60].
Two major methods were introduced in this category: federated learning [61] and
split learning [62].

Federated learning (FL) is a distributed machine learning algorithm that was
introduced in 2016 by Google researchers [61]. The idea of federated learning is to
build a global model based on clients’ local models without the need to access their
raw data. As illustrated in Figure 2.4, federated learning starts by sending an initial
model to the clients where each client updates it based on its private data. After that,
the weights of the update are sent to the server, where they are aggregated together
to form an updated set of weights. Clients then download the updated weights and
this process repeats until the model reaches convergence.

Another framework for distributed learning is split learning (SL), also known as
split neural networks. This framework was developed by MIT to offer decentralised
training for a model without sharing raw data by the clients [63]. In the basic form
of split learning, a neural network model W is split into two parts Wc and WS as
shown in Figure 2.5. This aims to provide privacy protection for the client whilst
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Figure 2.5: Split Learning Setup Showing the Distribution of Layers Across Clients and a
Server

minimising the computational load. The first part of the network, Wc, resides on
the client system and the remaining part WS resides on the server side. These parts
are called the client-side network and the server-side network respectively. Both the
clients and the server train their part of the model separately where the process
starts at t = 0 with the client data as the input layer, and then proceeds until the
split layer is reached. The output of the split layer at client k, called activations Ak,t,
is forwarded to the server to continue the training process. The server completes a
full round of forward propagation to obtain the set of activations of the last layer
AS,t. The server now starts a backpropagation round from the last layer up to the
cut layer where the gradients at the cut layer ∇ℓ(AS,t;WS,t) are sent back to clients.
At the client side, the remainder of backpropagation is completed where Wc weights
are updated for t + 1. This process is continued without the need for the parties
to exchange raw data until the distributed split learning network converges. The
complete algorithm of split learning can be found in Appendix B. Split learning is
fairly new, and has not been applied in the context of smart grid security.

In the context of PPML, several works have been proposed for energy theft
detection. In [64], the Paillier crypto-system was used to preserve the privacy of their
proposed energy theft detector. Euclidean distances between energy readings over
a day were used to detect abnormalities and frauds without revealing any valuable
information. Another Paillier-based privacy system was introduced by Yao et al. [65].
In their security and privacy analysis, the authors state that the proposed detection
algorithm achieves confidentiality, integrity, and data privacy by using encryption
and digital signing. However, it is known that this is entirely dependent on the
encryption mechanism strength. Nabil et al. [66] proposed a secure multiparty
computation-based energy theft detection to preserve the privacy of energy readings.
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The scheme uses secret-sharing techniques to allow smart meters to send masked
data. Moreover, the use of secret sharing allowed the aggregation of data before
sending them to the system operator. The detection of energy thefts is done online,
where the smart meter and the system operator need to run a CNN model. Although
the results suggested an accuracy of over 90% using different CNN architectures, the
use of cryptographic techniques to preserve privacy introduces high communication
and computation overheads. To overcome the need for running the detection model
in both parties in parallel, the authors in [67] used a functional encryption (FE)
algorithm to encrypt energy readings where energy theft detection is done without
revealing the individuals’ readings. Functional encryption is a relatively efficient
cryptosystem that allows performing computations on encrypted data without the
need to decrypt it. Although FE is assumed to be efficient in terms of communication
and computation, it requires an extra step where a key distribution centre needs to
generate and distribute keys for all participants in the system.

Wen et al. [68] have designed a federated learning-based energy theft detector
with multiple local detection stations trained in a federated fashion. The model is
then used to detect energy thefts from local users. To preserve the privacy of the
local users’ data, a local differential privacy algorithm is used to distribute the energy
usage data of the grid’s users. While this federated approach can preserve privacy,
it introduces additional communication and computation complexity. Additionally,
the scheme requires installing additional detection stations in the system. Another
federated learning solution was introduced recently in [69], where a novel federated
voting classifier, namely ensemble learning, is used. This scheme assumes that
the use of federated learning preserves privacy. However, it has been proven that
FL on its own cannot guarantee high levels of privacy and is very vulnerable to
poisoning attacks, feature leakage or reconstruction, model extractions, and label
inference attacks [70, 71, 72]. Recently, a blockchain-based privacy-preserving energy
theft detection was proposed in [73]. Energy thefts are detected by comparing the
aggregated consumption reports with the energy supplied. Users share their energy
consumption privately using energy contracts in a ledger.

2.7.3 Hybrid Solutions

A hybrid-based energy theft detector combines techniques and algorithms that fall
under two different categories. The use of multiple methods and techniques improves
the accuracy and reliability of energy theft detection, however, it can increase the
cost and complexity of the system [35].
An integrated system for detecting energy theft attacks was proposed by Messinis
et al. [74]. This scheme uses two techniques: (1) a supervised ML method, SVM,
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is used to detect energy thefts with minimal data; and (2) a state estimation-based
technique that is based on voltage sensitivity analysis is further used in an attempt
to estimate the time and extent of the thefts. The next study, [75], combined state
estimation with machine learning in a two-step energy theft detection scheme. The
first step is to detect energy thefts using a static state estimation technique that
uses root squared percentage error as the residuals to be compared with the actual
measurements. Whenever the percentage of error is above 10%, that specific region is
further analysed to detect energy theft consumers. The next step uses the consumers’
data from the suspected region to form Self-Organising Maps (SOM) that are used as
inputs to a neural network-based detection model. The main weakness of the study
is the inability to identify and localise the origin of the attack.

2.8 Evaluation Metrics

Evaluating the performance of an energy theft detector is a crucial step when
proposing it. Different detection methods are evaluated using different measures,
however, the most dominant evaluation metrics are those that evaluate the proposed
model as a type of classifier. The performance of classifiers or anomaly-based detectors
is usually calculated using a confusion matrix. Table 2.3 shows the definition of
confusion matrix where True Positive (TP) is the number of intrusions that are
correctly identified as anomalies. The False Positive (FP) denotes the number of
normal records that are incorrectly identified as intrusions. The True Negative (TN)
is the number of normal records that are correctly identified as normal and finally, the
False Negative (FN) denotes the number of intrusions that are incorrectly identified
as normal.

Table 2.3: Confusion Matrix

Predicted

Normal Attack

Actual
Normal TN FP

Attack FN TP

Derived from the confusion matrix, there is a great number of well-known
evaluation metrics that are used to evaluate the detection model. Table 2.4 presents a
list of these widely used metrics along with their notations. Out of all these evaluation
metrics, accuracy is the most known criterion. It calculates how many samples were
classified correctly out of the total sample population. It is the simplest metric to
evaluate and interpret because it is a single number that summarises the model’s

31



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

capability. However, it is not a good performance measure for imbalanced datasets
where class distributions are severely skewed. This is because it does not distinguish
which class was correctly classified and it gives equal importance to false positives
and false negatives [35]. In such situations, recall, precision, false positive rate (FPR),
and F1-score are more popular metrics to use as they are more informative.

The recall, also known as detection rate (DR), sensitivity, or true positive rate
(TPR), calculates the ratio between the number of correctly detected attacks to
the total number of attacks. It is one of the most widely used metrics to evaluate
and compare energy theft detectors. Precision and FPR are the other two reported
metrics for energy theft detection. Precision reports the number of correctly detected
attacks divided by the number of total detections. FPR, also known as false
acceptance rate (FAR), is another important metric which calculates the number
of falsely classified attacks over the total number of normal records. The F-score or
F1-score is an evaluation metric that is used to evaluate systems that have binary
classification. F1-score calculates the balance between precision and recall and thus
can be considered as the harmonic mean of the two. It is mostly useful in cases of
imbalanced data sets. Other metrics, such as error rate, the area under the curve
(AUC), and mean average precision (MAP), have also been used to evaluate the
performance of detectors in energy theft research. AUC, in particular, is a commonly
used metric that provides the overall performance of a detector using a single value
measuring the area under the receiver operating characteristic (ROC) curve, which
plots the TPR against the FPR at various threshold settings [2].

A good detection model should have a high detection rate (DR) and a low FPR.
This is because it is usually expensive to deal with false detections as they require
technicians to have onsite inspections.

The above were the metrics used to evaluate the performance of energy theft
detection. In addition, it is important to evaluate the privacy of the energy theft
detection schemes, especially as privacy preservation is a challenging issue that was
addressed in many proposed schemes. In the privacy-preserving energy theft detection
domain, most of the literature analyses privacy theoretically and does not measure it
by quantitative measures. This is because it is a complex and multifaceted concept
that is evaluated differently in different domains. Privacy is usually measured by
the properties or the parameters of the privacy-preserving technology used (e.g., the
k in k-anonymity and the ϵ in differential privacy)[76]. On the other hand, the
success of privacy attacks, such as feature inference, model extraction, and label
inference attacks, is usually used as a privacy measure when PPML approaches are
applied [77, 78]. However, these privacy parameters and privacy attacks cannot
always be used as measures for every privacy-preserving technique. For example,
model extraction and label inference attacks are difficult to launch and impractical in
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Table 2.4: List of Performance Metrics Used to Evaluate Energy Theft
Detectors

Metric Name Definition
Representative

References

Accuracy
(TP + TN)

(TP + TN + FP + FN)

[43, 45, 47, 54, 57, 58, 65, 66,
67, 68, 69, 73, 74]

Recall - DR -
Sensitivity - TPR

TP

(TP + FN)

[36, 49, 51, 52, 54, 55, 56, 58,
66, 67, 69, 74, 75]

Precision
TP

(TP + FP )
[49, 51, 54, 69]

FPR - FAR
FP

(FP + TN)

[51, 52, 55, 56, 58, 66, 67, 74,
75]

F1-score 2× (Precision×Recall)

(Precision+Recall)
[49, 54, 56, 57, 64, 69]

Error Rate
(FP + FN)

(TP + TN + FP + TN)
[36]

AUC The area under the ROC curve
[33, 49, 50, 51, 53, 57, 66, 67,
68, 74]

MAP The mean average precision for each class [53]

a split learning architecture [79]. Therefore, they cannot be used as privacy measures.
The issue of finding a unified privacy measure is highlighted in Section 2.10 as one
of the limitations and open problems of the current energy theft detection literature.
It is important to assess and measure privacy using unified numerical and statistical
methods as it helps to objectively evaluate the privacy level provided by different
privacy technologies and to identify areas for improvement [76].

It is worth mentioning that detection performance and privacy preservation degree
are antagonistic metrics where the improvement in one of the two metrics will result
in the reduction of the other. Thus it is important for the implementer (the energy
utility) to choose the perfect balance.

2.9 Datasets and Energy Simulators

Due to privacy concerns, there are only a few public datasets that provide energy
consumption and real energy theft incidents. Electric companies are unable to
publicly provide detailed information and energy consumption statistics of energy
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thieves, making it difficult for academics to collect genuine data to study. Many of
the public datasets include only honest (real) consumption samples and do not have
any malicious ones. Therefore, several existing works of literature have followed the
same design approach of Jokar et al. [46] where data theft scenarios are synthetically
added to a dataset in order to use them for training and evaluating their detection
model. Table 2.5 summarises the most well-known energy consumption datasets,
including the number of customers, reporting frequency and type of data included.

The first and most widely used dataset is the one released by the Irish Commission
for Energy Regulation (CER) Smart Metering load profiles [80], which contains the
consumption data of over 5000 residential and enterprise users. The consumption is
reported at half-hourly intervals during 2009 and 2010. A downside of this dataset
is that it contains only honest profiles and reports only the consumed real power at
a half-hourly rate. The second widely used dataset is the State Grid Corporation
of China (SGCC) (the largest electricity utility in China) [53]. This dataset is the
first to include realistic labelled data, where each user is labelled as honest or a thief.
The dataset contains the consumption data of 42,372 users from 1 January 2014 to
31 October 2016. However, the consumption is reported only once a day, making it
difficult to identify the exact time of theft [81].

There are other datasets that are not as popular as the previous two. One is
the UMass Smart∗ Project [82], which reports the electricity usage data for 443
anonymous homes located in a microgrid in Western Massachusetts. The data were
collected every minute for the period of one day. However, the data from three
homes were collected for the duration of a whole year in 2012. The last dataset is
the Low Carbon London Smart Meter Trials Dataset [83], which contains half-hourly
consumption data of 5567 houses. This data was collected between November 2011
and February 2014.

The drawback of these real datasets is that most of them lack the contextual data
that might affect the consumption of a user, such as the floor area of the residency,
location and weather conditions. Moreover, one of the drawbacks that led us to create
our own dataset is the lack of a dataset that includes both prosumers and consumers.

As stated, previous studies that aimed to detect energy theft have mainly focused
on analysing consumption reports only and finding periodical patterns for every
customer. However, with the introduction of prosumers as a new actor into the
electrical system, we require more data from other sources to be analysed in order
to detect abnormalities. For example, there is a clear correlation between each
prosumer’s energy output and the DER’s geographical location. Other correlations
between the time of the day, the type of DER, its size and the amount of generated
energy should be taken into consideration. This is why we need to have data from
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Table 2.5: Summary of the Reviewed Public Datasets

Dataset
Number of
Customers

Report
Frequency

Includes
Real
Thefts

Includes
Prosumers

Representative
References

Irish Smart
Energy Trial
Dataset

5000+
residential and
enterprise
customers

Half-hourly ✗ ✗
[49, 51, 52, 55,
56, 57, 58, 66, 67,
74, 75]

SGCC Dataset
42372
customers

Daily ✓ ✗
[47, 53, 54, 65,
68, 69]

UMass Smart∗

Project Dataset
443 customers Minute-level ✗ ✗ -

Low Carbon
London Smart
Meter Trials
Dataset

5567 customers Half-hourly ✗ ✗ -

multiple sources. The following is the possible set of different sources for data that
can be used to aid the detection of energy theft attacks:

• Consumption Data: Smart meters monitor and report a number of different
electrical parameters. Electrical parameters are classified into basic parameters
and derived parameters. The basic parameters are voltage (V), current (I), and
frequency (Hz), while derived parameters are active/real power (P), reactive
power (Q), apparent power (S), displacement power factor (dPF), apparent
power factor (aPF), active/real energy (Pt), reactive energy (Qt) and apparent
energy (St). Table 2.6 lists all of these parameters and their equations. Previous
research that is done to identify energy theft only considered the consumed
real energy. However, having access to different power parameters at no extra
cost opens the opportunity for us to use different measurement types and their
relationships to increase the possibilities of theft identification as Laughman
et al. [84] argues that merging different type measurements to analyse power
can give higher accuracy in regards to event detection in general.

• Generation Data: As with consumption data, different types of electrical
parameters are reported to the system. All of these parameters along with
their relationships are to be monitored as a time series in order to identify if
abnormal high values are present.

• Geographical Data: these include the address of the customer and his/her GPS
location coordinates
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Table 2.6: Smart Meter Multidimensional Data and Their Description

Parameter Name Description Unit Equation

Voltage (V)
The difference between two points in a circuit.
In most countries, it is equal to 220 volts.

V N/A

Frequency (f)
The number of cycles per second that voltage
cycles at.

Hz N/A

Current (I)
The movement of the electric charge through
a region.

A N/A

Real Power (P) The net transferred energy in one direction. W P = S × cos(θ)

Reactive Power (Q)
The rate at which the power is stored and
released back by components such as
capacitors and inductors.

VAR Q = S × sin(θ)

Apparent Power (S) The combination of voltage and current. VA S =
√

P 2 +Q2

Real Energy (Pt) The real power consumed in a specific time. Wh Pt = P/time

Reactive Energy (Qt)
The amount of reactive power in a specific
time.

VARh Qt = Q/time

Apparent Energy (St)
The amount of apparent power consumed in a
specific time.

VAh St = S/time

Displacement Power
Factor (dPF)

The cosine of phase angles between the
current and voltage

ratio dPF = cos(θ)

Apparent Power Factor
(aPF)

The ratio of real power to apparent power. ratio aPF = P/S

• Weather Data: This includes temperature, wind speed, air density and solar
radiation.

• DER Related Data: different types of distributed energy resources have different
parameters that can influence the amount of energy that is generated. For
example, solar panel output can be influenced by four parameters. These include
the DC rating, array type, orientation of the panels on the rooftop, and the DC
to AC derate factor. Whereas wind turbines are characterised by the following
parameters: rotor diameter, swept area of blades and hub height.

• Users’ Contextual Data: These are static information about the customer taken
at the time of the registration and include: property type, property age, number
of tenants, floor area and many more.

Taking into account the drawbacks of the available public datasets and the need
for including data from multiple data sources, one solution to consider is the use
of simulators to generate a complete set of multi-source data that can be used
to evaluate energy theft detection solutions. There exist different types of energy
simulation tools ranging from small appliance simulators to whole energy grid system
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simulators. Moreover, various programs differ in terms of flexibility and capabilities
and hence, it is important that the researcher studies these capabilities and be aware
of the limitations in order to select the most appropriate simulator for their intended
objective. To be able to study the issue of energy theft attacks in a modernised
smart grid system with full regard to all possible scenarios, we take into account the
following criteria in choosing the simulator:

• The simulator should simulate end users’ consumption usage.

• The simulator should allow end users to use on-site generations and should
simulate generation profiles.

• The simulations should be dynamically influenced by weather data.

• The simulations should be influenced by static contextual data such as the floor
area of the residency and location.

• The simulator should be able to report different electricity data from each smart
meter.

According to the above criteria, we have reviewed six of the most well-known
simulators in the smart grid’s community. These simulators are listed in Table 2.7
along with the criteria that they fulfil. Another important criterion that we needed to
investigate in these simulators is their ability to report different electricity parameters
and not only the consumed or generated real power. Table 2.8 lists out the electrical
parameters (mentioned in Table 2.6) that these simulators report.

Based on our review of the above criteria, we can say that GridLAB-D is the
most comprehensive simulator that can provide all of the necessary functionalities for
studying energy theft attacks.

2.10 Discussion and Open Problems

In this chapter, we analysed the current state-of-the-art energy theft detections
in terms of the detection techniques used, evaluation metrics and datasets. We
specifically analysed 32 recently published work that uses both ML-based and
non-ML-based detection techniques. Table 2.9 lists a summary of these detection
research work and their properties. As can be observed, we noticed that none have
studied the impact of having distributed energy resources on customer premises and
being a prosumer on energy thefts. This is because the prosumer concept has only
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Table 2.7: Comparative Table on Available Energy Grid Simulators

Simulator
End User

Load
Simulation

Prosumers

Meter’s
Multi-

Dimensional
Electricity

Data

Weather Coverage

GridLAB-D [85] ✓ ✓ ✓ ✓ Whole smart grid

RAPSim [86] ✓ ✓ ✓ ✓ Microgrids

OpenDSS [87] ✗ ✗ ✓ ✗ Whole smart grid

SRLS [88] ✓ ✓ ✗ ✓
Residential
buildings

LoadProfileGenerator
[89]

✓ ✓ ✗ ✓
Residential
buildings

EnergyPlus [90] ✓ ✓ ✓ ✓
Commercial &
residential
buildings

now started to play a leading role in the energy sector [91]. This new actor creates
new challenges with regard to detecting energy theft in electricity systems. Current
prosumers report the amount that they consume from the grid and the surplus amount
that they inject into the grid. With these figures reported, a prosumer can report
fake figures in order to steal electricity from the grid or steal money.

Moreover, most of the existing work for detecting energy theft does not take
into consideration data features from different sources. Research should exploit the
possibility of using different electricity parameters reported by the smart meter (other
than consumed real power) to detect abnormalities and also, the possibility of using
multiple data sources. Much research aimed at detecting energy thefts using machine
learning uses defined datasets, which limits the variability of features that can be
included in the detection.

Another challenge that faces energy theft detection is customers’ privacy. It was
noted that most of the existing detection methods access users’ raw energy data
without any concerns for their privacy. However, many concerns have been raised
by customers as the disclosure of their real-time and fine-grained power consumption
can reveal personal private information [11, 24, 92]. This introduces a challenge to
propose a privacy-preserving detection technique. However, research on this subject
is still very limited, especially using ML-based techniques [2, 10]. In addition, privacy
needs to be evaluated and quantified; yet, this was overlooked by researchers in the
field. Therefore, we regard addressing it in our proposed work.
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Table 2.8: Electrical Parameters of the Load Simulators

Simulator
Electrical Parameter*

V f I dPF aPF P Q S Pt Qt St

GridLAB-D ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - -

RAPSim ✓ - ✓ - - ✓ ✓ - ✓ - -

OpenDSS ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ - -

SRLS ✓ - ✓ - - ✓ - - ✓ - -

LoadProfileGenerator - - - - - - - ✓ ✓ - -

EnergyPlus ✓ ✓ ✓ - - ✓ - - ✓** - -

* V: Voltage; f: Frequency; I: Current; dPF: Displacement power factor; aPF: Apparent power factor;
P: Real power; Q: Reactive power; S: Apparent power; Pt: Real energy; Qt: Reactive energy; and St:
Apparent energy.

** in Joules.

Lastly, an important aspect which is usually overlooked in energy theft detection
is the post-detection part. The focus of energy theft detection solutions has only
been on the detection part, but it is important to take action beyond that. This
includes determining the amount of stolen energy and incorporating it into future
energy demand forecasting.

Table 2.9: Summary of Energy Theft Detection Research Work

Reference
Energy Theft

Detection Approach
Privacy Preserving

Approach

Supported Features

F1* F2* F3* F4* F5* F6* F7* F8* F9*

Cárdenas et al. [31] Game Theory N/A ✗a - ✗ ✗ ✗ ✓ ✗ ✗ ✗

Amin et al. [32] Game Theory N/A ✗ - ✗ ✓ ✗ ✗ ✗ ✗ ✗

Wei et al. [33] Game Theory N/A ✗ - ✗ ✓ ✗ ✗ ✗ ✓ ✗

Grewal et al. [36] Hardware-Based N/A ✗ - ✗ ✓ ✓ ✓ ✗ ✗ ✗

Saad et al. [37] Hardware-Based N/A ✗ - ✗ ✓ ✓ ✓ ✗ ✗ ✗

Sathyapriya and
Jeyalakshmi [38]

Hardware-Based N/A ✗ - ✗ ✓ ✓ ✓ ✗ ✗ ✗

Gill et al. [39] Hardware-Based N/A ✗ - ✗ ✓ ✓ ✓ ✗ ✗ ✗

Huang et al. [41] State Estimation N/A ✗ - ✗ ✓ ✓ ✗ ✗ ✗ ✗

Su et al. [42] State Estimation N/A ✗ - ✗ ✓ ✓ ✗ ✗ ✗ ✗

Tariq and Poor [43] State Estimation N/A ✗b - ✗ ✗ ✓ ✓ ✗ ✗ ✗

Continued on next page
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Table 2.9: Summary of Energy Theft Detection Research Work
(Continued)

Reference
Energy Theft

Detection Approach
Privacy Preserving

Approach

Supported Features

F1* F2* F3* F4* F5* F6* F7* F8* F9*

Salinas et al. [44] State Estimation
Decomposition
Algorithms

✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Salinas and Li [45] State Estimation
Decomposed Kalman
Filter

✓ ✗** ✗ ✓ ✓ ✗ ✗ ✓ ✗

Wen et al. [47] State Estimation NTRU Cryptosystem ✓ ✗** ✗ ✓ ✓ ✗ ✗ ✓ ✗

Gunturi and Sarkar
[49]

Supervised ML
(Ensemble Learning)

N/A ✗ - ✗ ✓ ✗ ✗ ✗ ✓ ✗

Buzau et al. [50]
Supervised ML
(XGBoost)

N/A ✗ - ✗ ✓ ✓ ✗ ✓ ✗ ✗

Yan and Wen [51]
Supervised ML
(XGBoost)

N/A ✗ - ✗ ✓ ✓c ✗ ✗ ✓ ✗

Punmiya and Choe
[52]

Supervised ML
(XGBoost, CatBoost,
LlightGBM)

N/A ✗ - ✗ ✓ ✓c ✗ ✗ ✓ ✗

Zheng et al. [53]
Supervised ML (Wide
and Deep CNN)

N/A ✗ - ✗ ✓ ✗ ✗ ✗ ✗ ✗

Hasan et al. [54]
Supervised ML
(CNN+LSTM)

N/A ✗ - ✗ ✓ ✗ ✗ ✗ ✗ ✗

Hu et al. [55]
Semisupervised ML
(FENs+DAE)

N/A ✗b - ✗ ✓ ✓d ✗ ✗ ✓ ✗

Zanetti et al. [56]
Unsupervised ML
(FCM)

N/A ✗b - ✗ ✓ ✓c,d ✗ ✗ ✓ ✗

Zheng et al. [57]
Unsupervised ML
(Density Cluster)

N/A ✗ - ✗ ✗ ✗ ✗ ✗ ✓ ✗

Singh et al. [58]
Unsupervised ML
(PCA)

N/A ✗ - ✗ ✓ ✓d ✗ ✗ ✓ ✗

Richardson et al. [64]
Unsupervised ML
(Clustering)

Paillier Cryptosystem ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Yao et al. [65] Supervised ML (CNN) Paillier Cryptosystem ✓ ✗** ✗ ✓ ✗d ✗ ✗ ✗ ✗

Nabil et al. [66] Supervised ML (CNN)
Secure Multiparty
Computation

✓ ✗** ✗ ✓ ✗c ✗ ✗ ✓ ✗

Ibrahem et al. [67] Supervised ML (FNN) Functional Encryption ✓ ✗** ✗ ✓ ✗d ✗ ✗ ✓ ✗

Wen et al. [68] Supervised ML (TCN)
Federated Learning and
Local Differential
Privacy

✓ ✗** ✗ ✓ ✗ ✗ ✗ ✗ ✗

Ashraf et al. [69]
Supervised ML
(Ensemble Learning)

Federated Learning ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Continued on next page
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Table 2.9: Summary of Energy Theft Detection Research Work
(Continued)

Reference
Energy Theft

Detection Approach
Privacy Preserving

Approach

Supported Features

F1* F2* F3* F4* F5* F6* F7* F8* F9*

Muzumdar et al. [73]
Difference between
energy supply and
consumption

Bloackchain ✓ ✗** ✗ ✓ ✓ ✗ ✗ ✗ ✗

Messinis et al. [74]
Hybrid Solution (State
Estimation +
Supervised ML)

N/A ✗ - ✗ ✗ ✗ ✗ ✓ ✓ ✗

de Souza et al. [75]
Hybrid Solution (State
Estimation +
Supervised ML)

N/A ✗b - ✗ ✓ ✓ ✓ ✓ ✗ ✗

* F1: Privacy preservation; F2: Privacy quantitative analysis; F3: Detecting prosumers’ thefts; F4: Pinpointing a
thief; F5: Pinpointing time of theft; F6: No requirement for historical data; F7: Usage of multi-source data; F8:
Detecting multiple energy thefts; and F9: Considering demand-response management after the detection.
** The study only provides qualitative privacy analysis, not a quantitative one.
a Only at the demand model.
b Only assumed from reducing the frequency of the readings.
c Only the day of stealing is identified.
d Only the week of stealing is identified.

2.11 Research Model

In this thesis, we have conducted three empirical studies that complement each
other for developing energy theft detectors. In these studies, we took into account
the aforementioned limitations and problems of the current literature. Each study
addresses one of the following research hypotheses in a separate chapter:

• Hypothesis 1: Combining machine learning techniques (clustering and
classification) can enhance the detection of a range of thefts, including
prosumers thefts.

• Hypothesis 2: A privacy-preserving ML technique that suits the smart grid
environment can be developed to accurately and effectively detect energy theft
while preserving the privacy of customers’ data.

• Hypothesis 3: A multi-output neural network framework can be used to
simultaneously predict the presence of theft, predict its magnitude, and use that
estimation to make more accurate forecasts.
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The first hypothesis is addressed in Chapter 3 which develops a cluster-based
ML energy theft detection model. In this work, we consider eight different energy
theft scenarios as part of our threat model. These scenarios include a new type of
attack that we propose which we refer to as balance attack. The detection is done
in three phases, starting with clustering the users, decomposing the time series and
lastly classifying each point as theft or not using different well-known ML classifiers.
The performance of the proposed energy theft detector here is evaluated using four
evaluation metrics.

Building on this work, we develop a privacy-preserving energy theft detector to
address the second hypothesis in Chapter 4. In the threat model, we consider the
same set of energy theft scenarios as the one proposed in Chapter 3 with additional
two privacy attacks: poisoning attack and feature inference attack. As stated in the
hypothesis, the detection methodology needs to be privacy-aware, and therefore we
propose a new variant of an ML architecture called three-tier split learning that suits
the nature of smart grids. The proposed model uses a stacked auto-encoder as the
underlying detection methodology. Adding privacy on top of energy theft detection
requires us to evaluate the privacy gain of the proposed model. Hence, we use a
metric called distance correlation to evaluate the privacy aspect of the model.

For our third and last hypothesis, we develop a multi-output neural network
and enhanced-privacy preserving model that uses a masking approach and a noisy
layer neural network to evaluate the hypothesis. We show how detecting thefts and
estimating their magnitudes can actually help in estimating future demand. Our
threat model here is expanded to include a more comprehensive set of feature inference
attacks along with another privacy metric to evaluate the success level of these attacks.

The way these hypotheses are addressed by our proposed studies, and how the
evolution of these studies is handled, can be seen in Figure 2.6.
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Chapter 3

ML-Based Detection Model in the
Presence of Prosumers

Data-driven approaches have been widely employed in recent years to detect energy
thefts. Although many techniques have been proposed in the literature, they mainly
focus on energy thefts by power grid consumers. Existing studies do not consider
energy thefts by prosumers, who act as both producers and consumers in the energy
system. This is of great importance as inaccurate reports of prosumers’ behaviours
can disrupt power system operations. This chapter examines the prosumers’ role
in subverting the energy system and proposes a novel means of detecting such
malfeasance. Moreover, we introduce new energy theft attack scenarios called balance
attacks, where an attacker concurrently modifies his readings along with neighbouring
meters in an attempt to balance the total aggregated reading. Such attacks can
be difficult to detect by existing solutions that reach detection decisions based on
aggregated readings. Existing approaches use either a single model for all users
across the system or else a model for each user. Here, we adopt a halfway house
approach and propose a cluster-based detection model. For users in a cluster, we
decompose the power time series data into trend, cyclical and residual components.
Residual data, along with different features from multiple data sources, are fed into
an ML classification algorithm to detect anomalous readings. Simulations have been
conducted using a newly generated dataset, and results have shown that the proposed
model can detect energy theft with high detection and low error rates. The results
also show that the model can detect thefts by new users with great accuracy.
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3.1 Introduction

Recently, the incorporation of distributed energy resources (DERs) in a user’s
premises, allowing a user to generate, store and supply electricity, has received
significant attention. Here, the stakeholder is generally called a “prosumer”
(producer-consumer). This actor was overlooked by scholars in the energy theft
research area since it is a new participant in the grid. However, considering the
role of prosumers is important as their number is increasing rapidly; according to the
European Renewable Energies Federation [93], the UK had almost 1 million prosumers
in 2015 and will likely have 24 million by 2050. Prosumer theft can be carried out by
manipulating consumption and generation data; and as pointed out in Section 2.10,
the existing research has not studied this impact (represented as F3 in Table 2.9).
Prosumers are different from traditional consumers as they not only use energy but
also generate and store or transfer surplus energy to the grid. This allows malicious
prosumers to manipulate data regarding their generation and consumption, which
can introduce an imbalance in the overall grids’ data. Moreover, prosumer thefts can
disrupt the energy supply to a region, cause grid instability or deny energy access
to other users in that area [94, 95]. Hence, the detection of prosumers’ attacks is of
great importance. To manage prosumers, it is critical to understand their generation
and consumption behaviours [94]. The analysis of all factors of prosumer behaviour
helps to build and plan for the proper balance of energy demand and supply.

Moreover, some existing energy theft detection research do not identify which
user is the thief (represented as F4 in Table 2.9), and many other detection methods
classify each user as either thief or honest but do not identify the time of theft
(represented as F5 in Table 2.9). Additionally, most recent studies have not availed
themselves of data features from different sources (represented as F7 in Table 2.9).
Machine learning approaches usually consider a single electrical feature (consumed
power), while smart meters report more than ten different electrical parameters [96].
This abundance of unused data is an opportunity.

The last limitation is that most existing solutions use one of two approaches: a
generalised model or a user-specific model. In the generalised model, a single honest
reference model is created using data from all users. This can result in a detection
scheme with low accuracy. On the other hand, user-specific models, where a separate
model is developed for each user using their data, can become difficult to scale.
Therefore, a cluster-based detection model can be the ideal combination of the two
approaches.
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3.1.1 Our Contribution

This work addresses all the above limitations where the specific contributions are:

• The first theft detection method to be based on the use of user clustering (with
reference models built for each cluster) and the first to address theft by both
consumers and prosumers. The approach has further desirable properties, e.g.,
the ability to detect thefts from new users without the need for historical data.

• The introduction of new energy theft scenarios, which we term balance attacks,
that can balance the amount of electricity stolen at one meter with manipulated
values returned from other neighbouring meters. This scenario can be hard to
detect by existing detection models.

• The production of a benchmark dataset that includes examples of an extensive
range of data injection attacks (including balance attacks).

• An evaluation of the use of various ML techniques for the classification of
customers’ behaviours.

The rest of this chapter is organised as follows: Section 3.2 provides the system
architectural model and the threat model. Section 3.3 describes how the proposed
detection system is designed. Sections 3.4 and 3.5 detail the experimental setup and
results. Section 3.6 discusses threats to the validity of our study, and how they have
been mitigated. Finally, Section 3.7 gives concluding remarks and directions for the
next chapter.

3.2 System Model and Threat Model

3.2.1 System Model

We consider a typical smart grid system model, shown in Figure 3.1. It consists of
three major entities: a set of clients, a set of substation gateways (GWs), and a server
at a control centre. Specifically, each entity has the following roles in the system:

• Clients are homeowners with smart meters that send data to the substation
gateways at fixed intervals (e.g. every 15 minutes). A client can be either a
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consumer (who consumes electricity from the grid) or a prosumer (who both
supplies and consumes electricity to/from the grid). Prosumers generate their
own electricity using a dedicated distributed energy resource (DER) such as
solar panels or wind turbines. A consumer, i, is equipped with one smart meter
that is responsible for collecting energy consumption data (CSMi), whereas a
prosumer j is equipped with an additional smart meter for energy production
data (PSMj).

• Substation gateways are third-party components that facilitate the
communication and electricity flow between the control centre and clients.
Each gateway is responsible for periodically collecting the energy measurement
data of a group of clients in a geographical location, called a neighbourhood
area network (NAN), and sending them to the utility server.

• The server is the utility control centre responsible for distributing electricity to
all clients. It also uses all system data to manage the electricity demand for the
next period and maintain the balance between power generation and demand.
Abnormalities in either consumption or generation reports are detected at the
server.

3.2.2 Threat Model

Energy theft can be carried out by manipulating the reported energy readings. In
our threat model, we allow an adversary (a malicious client) to change their meter
readings to pay a lower consumption bill or get paid for electricity that they did
not generate. An adversary can manipulate consumption and production readings
at any point in the system as shown in Figure 3.1. The adversary can inject false
measurements by manipulating the configuration of a smart meter or attacking the
communication channels, either physically or through cyber attacks. Therefore, our
threat model considers two types of adversaries:

• An External Adversary: who may try to tamper with the readings of SMs
either physically or through cyber-attacks. The external adversary is also able
to intercept readings and change them during communication.

• An Internal Adversary: who can be an insider that can change the readings at
either the substation or control centre where data resides.

Both external and internal adversaries can modify the meter readings of a
consumption SM (CSM) or a production SM (PSM) using different attack scenarios
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Figure 3.1: System Model Showing Some of the Possible Attack Points (Not All Attack
Points are Shown) [97]
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as listed in Table 3.1. In our threat model, we consider eight different energy theft
attack (ETA) scenarios that can be launched by the two adversaries mentioned
before. The first four of these attacks have been developed with the help of the
widely used mathematical model defined in [46]. The additional four scenarios
have considered attacks where one reported consumption is maliciously increased
to balance a malicious decrease in another. By this, the attacker is either stealing
from another client (if they have the same tariff) or collaborating with another client
to steal from the grid (if they have different tariffs). Our model incorporates such
attacks, and we refer to them as balance attacks. We assume these attacks can be
launched by either a single attacker or collaboratively using collusive attacks. In
general, our attacks can be viewed in four categories: consumer thefts, prosumer
thefts, consumer balance thefts and prosumer balance thefts. Each attack category
is described below and is summarised in Table 3.1.

• In consumer thefts (attack scenarios #1 and #2), a user i (either a consumer or
a prosumer) may wish to reduce their consumption smart meter reading CSMi

by either a constant value l or a percentage k for a period of time T .

• In prosumer thefts (attack scenarios #3 and #4), a prosumer i may wish to
increase their production smart meter reading PSMi by a constant value l or a
percentage k for a period of time T .

• In consumer balance thefts (attack scenarios #5 and #6), a user i (either
consumer or prosumer) may wish to reduce their reported consumption smart
meter reading CSMi by a constant value l or a percentage k for a period of time
T and increase another user’s reported consumption CSMj by the same energy
amount. This is done to maintain the total energy consumed and reported by
the two users. We refer to this as a “balance attack”.

• In prosumer balance thefts (attack scenarios #7 and #8), a prosumer imay wish
to increase their production smart meter reading PSMi by a constant value l or
a percentage k for a period of time T and decrease another prosumer’s reported
production PSMj by the same energy amount. This is done to maintain the
total energy produced and reported by the two users. This is also a balance
attack in terms of production.

3.3 Proposed Detection Model

Figure 3.2 shows the three phases of our proposed detection approach. The phases
are described below.
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Table 3.1: Overview of Attack Scenarios

Attack Type Attack Scenario

Consumers Thefts
Attack #1 CSM ′

i = CSMi − l

Attack #2 CSM ′
i = CSMi − (CSMi × k/100)

Prosumers Thefts
Attack #3 PSM ′

i = PSMi + l

Attack #4 PSM ′
i = PSMi + (PSMi × k/100)

Consumers Balance
Thefts

Attack #5
CSM ′

i = CSMi − l and
CSM ′

j = CSMj + l

Attack #6
CSM ′

i = CSMi − (CSMi × k/100) and

CSM ′
j = CSMj + (CSMi × k/100)

Prosumers Balance
Thefts

Attack #7
PSM ′

i = PSMi + l and
PSM ′

j = PSMj − l

Attack #8 PSM ′
i = PSMi + (PSMi × k/100) and

PSM ′
j = PSMj − (PSMi × k/100)

Balance
Attacks
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Figure 3.2: Overview of the Detection System

3.3.1 User Clustering

Two detection mechanisms have been proposed by researchers: generalised models
and user-specific models [98]. Generalised detection models, as illustrated in
Figure 3.3a, are built using all users’ data, meaning a single model for all users
is used to detect energy thefts. User-specific detection models are specific models
that are built using only the dataset of that user, which means that a system has n
models for n users as shown in Figure 3.3c. Generalised models have the advantage
of detecting thefts by new users; however, as these models use the average of all
users, they might suffer from low accuracy. User-specific models are generally more
accurate but encounter significant scaling issues. Our approach offers a halfway house:
it clusters users and develops a reference model for each cluster.

Users can be clustered based on their electricity consumption profiles. This
approach has already been used in [57] and [99]. Another option is to cluster the
users based on their geographical location and user residence characteristics. We
have adopted this approach. Users who share the same geographical location and
residence physical characteristics are likely to have a similar pattern of consumption
and generation. According to Eurostat [100], people in the same neighbourhood are
more likely to have similar incomes, which in turn, affects the physical characteristics
of their building and the types of equipment and appliances that they use. Hence,
their consumption and generation patterns will typically be similar, whilst users in
different clusters can have different usage and generation profiles. Therefore, Our first
phase of the proposed model is to cluster the users using 14 static features (reported
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Figure 3.3: Detection Model Types

in Table 3.2) representing the residential characteristics of a client’s property. We
start by first preprocessing the feature set and then clustering them to partition users
in each NAN. This has been tested using different unsupervised clustering algorithms:
K-means, hierarchical clustering, density-based spatial clustering and agglomerative
clustering. Clusters were then visualised and two of the best clustering algorithms
that have been applied can be seen in Figure 3.4. From the figure, it can be seen that
agglomerative clustering creates more distinct clusters than K-means. The number
of clusters in each NAN is chosen based on minimising the total within-cluster sum
of square (WSS) (Elbow method). The data from each cluster is then processed
individually in the next phase.

3.3.2 Time-series Decomposition

We assume that energy theft points are identified as outliers from usual behaviour
time-series data. Finding outliers in time-series data can be done using time-series
decomposition. A time-series data Y at time t is composed of three components:
a trend component Tt, a seasonal/cyclical component St and a residual (remainder)
component Rt. These components are either added or multiplied together to form
the original signal as follows:

Yt = Tt ∗ St ∗Rt or Yt = Tt + St +Rt (3.1)

To automatically decompose a time series into its components, different
methods have been proposed, such as seasonal-trend decomposition using regression
(STR) [101], singular spectrum analysis (SSA) [102], or decomposition of time series
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Figure 3.4: Clustering of Customers Using Agglomerative and K-means Clustering
Methods

by Loess (STL) [103]. In this work, the additive STL decomposition method is used
to decompose the users’ consumption and generation series. This is because STL
can handle any type of seasonality/cyclicity. In particular, it can handle the daily
cycle apparent in our data. For each cluster, the average consumption/generation of
all users is computed and then decomposed to obtain the cyclical (here daily) and
trend components (see Figure 3.5). For each user, those components are removed
from his/her data to obtain the residuals. We found that obtaining the residuals
from removing the cluster’s trend and daily components creates more distance
between normal and anomalous data points than removing all users’ trend and daily
components. This increase in distance, as shown in Figure 3.6, creates a separation
between normal and anomalous data.

3.3.3 Classification

Our final phase classifies a vector of 15 features (both dynamic and weather features
reported in Table 3.2) as either an anomaly or a normal point. In the training
phase, a balanced dataset of equally normal and anomalous data points is used. The
dataset involves multiple features along with the residuals obtained from the previous
phase. As each data point consists of a vector of features with different value ranges,
these features are first normalised using the StandardScalar [104]. Different machine
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Figure 3.5: Decomposition of Consumed Power for a Cluster

Figure 3.6: Residuals of (a) Honest User, (b) Electricity Thief After Removing the Trend
and Daily Components of Cluster’s Users, and (c) Electricity Thief After Removing the
Trend and Daily Components of All Users
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learning algorithms are then applied to this normalised data to make the decision.
After training the model, the model is used to detect data thefts in unseen data
points. At the end of this phase, the system will have a single detection model for
each cluster of users.

3.4 Experimental Setup

3.4.1 Dataset Generation

In order to study the energy theft scenarios that are carried out by both consumers
and prosumers, we need a dataset that includes the electricity usage of users from
both types. In Chapter 2, we have reviewed the public energy usage datasets used by
the current literature. The review showed that these datasets lack some important
features that we require in our proposed model. None has provided energy usage
records for both consumers and prosumers. The datasets also lack contextual data
that might affect the consumption and generation of a user, e.g. the floor area of the
residency, its location and prevailing weather conditions.

Due to these limitations, we have generated our own dataset using
“GridLab-D” [85], which is a powerful simulation tool that simulates power flows
between the grid’s entities. GridLab-D is very flexible as it allows reporting both
production and consumption data that are dynamically influenced by weather data.
It was chosen since it achieves all the necessary criteria, listed in Section 2.9, that
help in studying different scenarios of energy theft attacks.

We used the taxonomy distribution feeder, R1-12.47-2, developed by Pacific
Northwest National Laboratory (PNNL) [105] to produce a detailed distribution
feeder model in GridLab-D format for use in generating the dataset for our work.
This distribution feeder represents a moderately populated suburban and rural
area composed of 1594 residential users with varying loads and physical properties,
where 49 of those users are prosumers with solar panels. Our dataset not only
contains consumption and generation profiles of both consumers and prosumers, but
also reports multiple electrical parameters every 15 minutes. It contains weather
conditions and users’ static residence characteristics. The script provided by PNNL
has been modified to allow the reporting of all features listed in Table 3.2 every 15
minutes for every user. To allow research reproducibility, the original dataset (without
any injection of attacks) along with a description of each feature has been published
in our GitHub repository1.

1https://github.com/asr-vip/Electricity-Theft
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Table 3.2: Features of the Dataset

Feature Description Unit Data Type

S
ta
ti
c
P
a
ra
m
et
er
s

Floor area Home conditioned floor area sf Integer

Stories Number of stories in the home - Integer

Ceiling height Average ceiling height ft Integer

Roof’s R-value
A value that represents the
effectiveness of insulating material
and heat flow across the roofs

degF.sf.h/Btu Float

Wall’s R-value
A value that represents the
effectiveness of insulating material
and heat flow across the walls

degF.sf.h/Btu Float

Floor’s R-value
A value that represents the
effectiveness of insulating material
and heat flow across the floors

degF.sf.h/Btu Float

Door’s R-value
A value that represents the
effectiveness of insulating material
and heat flow across the doors

degF.sf.h/Btu Float

Glazing layers
Number of glass layers in each
window

- String

Glass type
The type of window glass used
(LOW E GLASS, GLASS, OTHER)

- Category

Glazing treatment
The treatment type used for exterior
windows (HIGH S, LOW S, REFL,
ABS, CLEAR, OTHER)

- Category

Window frame

The type of window frame
(INSULATED, WOOD,
THERMAL BREAK, ALUMINUM,
NONE)

- Category

Heating system
Heating mechanism for house
(RESISTANCE, HEAT PUMP,
GAS, NONE)

- Category

Cooling system
Cooling mechanism for house
(HEAT PUMP, ELECTRIC, NONE)

- Category

Solar panel size Area of the solar panel ft Integer

Continued on next page
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Table 3.2: Features of the Dataset (Continued)

Feature Description Unit Data Type

D
y
n
a
m
ic

P
ar
a
m
et
er
s

Real power
Measurement of the consumed real
portion of the power flowing through
the meter at time stamp

watt Float

Voltage
Measurement of the voltage of the
meter

volts Float

Real energy
Measurement of the real energy
(accumulation of the real power) that
has flowed through the meter

watt-hour Float

Reactive power
Measurement of the reactive portion
of the power flowing through the
meter at a single timestamp

volt-amperes Float

Reactive energy
Measurement of the reactive energy
(accumulation of the reactive power)
that has flowed through the meter

VA-hours Float

Current
Measurement of the current of the
meter at a single timestamp

amperes Float

Apparent power
Measurement of the apparent power
(active power + reactive power) that
has flowed through the meter

volt-amperes Float

Solar Value
Measurement of the generated power
generated by the solar panel at a
single timestamp

watt Float

W
ea
th
er

P
ar
am

et
er
s

Temperature
(Dry-Bulb)

Dry bulb temperature at the time
indicated

deg C Float

Pressure Station pressure at the time indicated mbar Float

RHum
Relatitudeive humidity at the time
indicated

percent Float

TotCld
Amount of sky dome covered by
clouds or obscuring phenomena at
time stamp

tenths of sky Float

GHI
Direct and diffuse horizontal
radiation received during 60 minutes
prior to timestamp

Wh/m2 Float

Continued on next page
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Table 3.2: Features of the Dataset (Continued)

Feature Description Unit Data Type

W
ea
th
er

P
ar
a
m
et
er
s

ETR
Extraterrestrial horizontal radiation
received during 60 minutes prior to
timestamp

Wh/m2 Float

GHillum
Avg. total horizontal illuminance
received during the 60 minutes prior
to timestamp

lx float

Zenithlum
Avg. luminance at the sky’s zenith
during the 60 minutes prior to
timestamp

cd/m2 Float

Wx

The x component of wind direction
and wind speed at the time indicated.
This is calculated as Wx= wind
speed *cos(wind direction in radian)

- Float

Wy

The y component of wind direction
and wind speed at the time indicated.
This is calculated as Wy=wind speed
*sin(wind direction in radian)

- Float

3.4.2 Attack Modes Simulation

We modified the generated profiles in our dataset as they contain only honest (real)
readings and implemented the set of theft scenarios that were considered in our
attack model. This practice in energy theft detection research, where data theft
scenarios are synthetically created and used for training and evaluating the detection
model, was first presented in [46] and is now a common practice in the research
literature [49, 51, 52, 55, 56, 57, 58, 66, 67, 74, 75].

We created 9 different datasets: one for every attack scenario presented in the
threat model and one dataset with all 8 attacks combined. Each attack dataset is
balanced where one-half of the readings are theft and the other half are benign. The
combined dataset is also balanced with each attack type making up approximately 1/8
of the combined attacks. In our experiments, the values of l and k, defined in the
attack scenarios in Table 3.1, were set to 500 and 40 respectively.
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3.4.3 Simulation Environment

The proposed detection model is tested using several well-known benchmark ML
algorithms which include: decision tree (DT), K-nearest neighbour (KNN), logistic
regression (LR), Naive Bayes (NB), multilayer perceptron neural network (NN), and
support vector machine (SVM). These ML algorithms were trained and tested using
scikit-learn [104] in the Anaconda3 environment using Python [106]. For each ML
algorithm, we used the default hyper-parameters provided by scikit-learn. These
hyper-parameters are provided in Table 3.3.

For preprocessing the dataset features, we used one-hot encoding for the
categorical features and normalised numerical features using the StandardScalar [104]
technique. One-hot encoding allows machine learning methods to treat categorical
features as numerical ones [107]. The use of one-hot encoding rather than other
encodings, such as label encoding, helps in highlighting the presence/absence of
features rather than introducing artificial ordering among the categories [108]. The
dataset is split into 80% training and 20% testing where the model is trained
with 10-fold cross-validation with the underlying optimization score being accuracy.
In the first phase, clustering phase, the set of static parameters shown in Table 3.2
are used, whereas the remaining set of parameters, along with the residuals from the
second phase, are used in the classification phase.

3.4.4 Evaluation Metrics

As discussed in Section 2.8, several metrics can be used to evaluate an energy theft
detector. Here, we use accuracy, recall (also known as detection rate (DR)), precision
and error rate to report our results. Other metrics such as F1-score can be easily
calculated from the reported metrics. Our motivation is to obtain high accuracy
and recall (detection rate) with a low error rate. In this work, theft data points are
denoted as the positive class and benign data points as the negative class.

In Section 3.4.3, we explain that the evaluation used to derive the results is
by maximising accuracy in the 10-fold cross-validation. The above indicates what
evaluation metrics are used to report the performance of the final ML models obtained.
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Table 3.3: The Default Hyper-parameters of Scikit-learn Classifiers

ML Modela Default Hyper-parameters

DT

criterion=’gini’, splitter=’best’, max depth=None,
min samples split=2, min samples leaf=1,
min weight fraction leaf=0.0, max features=None,
random state=None, max leaf nodes=None,
min impurity decrease=0.0, class weight=None,
ccp alpha=0.0

KNN
n neighbors=5, weights=’uniform’, algorithm=’auto’,
leaf size=30, p=2, metric=’minkowski’,
metric params=None, n jobs=None

LR

penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit intercept=True, intercept scaling=1, class weight=None,
random state=None, solver=’lbfgs’, max iter=100,
multi class=’auto’, verbose=0, warm start=False,
n jobs=None, l1 ratio=None

NB priors=None, var smoothing=1e-09

NN

hidden layer sizes=(100,), activation=’relu’, solver=’adam’,
alpha=0.0001, batch size=’auto’, learning rate=’constant’,
learning rate init=0.001, power t=0.5, max iter=200,
shuffle=True, random state=None, tol=0.0001,
verbose=False, warm start=False, momentum=0.9,
nesterovs momentum=True, early stopping=False,
validation fraction=0.1, beta 1=0.9, beta 2=0.999,
epsilon=1e-08, n iter no change=10, max fun=15000

SVM

C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0,
shrinking=True, probability=False, tol=0.001,
cache size=200, class weight=None, verbose=False,
max iter=-1, decision function shape=’ovr’,
break ties=False, random state=None

a DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural
Network; and SVM: Support Vector Machine.
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3.5 Results and Discussion

We evaluate the following aspects of our detection system:

• Impact of different types of attacks.

• Impact of using clustering and time series decomposition on detection
performance.

• Detecting theft from new users.

• Impact of changing the percentage of thieves within a cluster.

• Impact of stealing different magnitudes of electricity.

These points are discussed in the following subsections.

3.5.1 Impact of Different Attacks

We tested the overall detection performance for each of the attack scenarios discussed
in Section 3.2.2. Table 3.4 shows the accuracy, recall (detection rate), precision and
error rate of these different attack scenarios. As indicated above, the results reported
are the average of 10-fold cross-validation over a balanced dataset. We also tested
the detection of attacks in the combined dataset.

The results in Table 3.4 show that our detection model has a good performance in
detecting all attack types. From Table 3.4, attacks #1 #2, #3 and #4 are detected
with a detection rate of 99.9%, 99.7%, 99.9% and 98.1% respectively using a neural
network ML model. Attacks #5, #6, #7 and #8 are detected with a detection rate of
above 92% using a decision tree ML model. In the combined dataset AllAttacks, our
NN-based detection model can detect any attack type with a detection rate of 96.7%.
These results show that the proposed model can detect different attacks with high
detection probability when using either the DT or NN classifiers. We can also see
that the model performance in attacks #5, #6, #7 and #8 is lower than the other
types which indicates that balance attacks can be slightly more difficult to detect,
perhaps due to the intrinsic property of zero overall theft. This is very evident in
cases of LR and SVM ML models where the two models exhibit similar performance.
This supports the claims given by [109] which states that the results of the two ML
models are often the same because of the similarities between their loss functions.
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Table 3.4: Experimental Results of the Proposed Model Under Different Attacks

Metric Method* Attack Scenario

#1 #2 #3 #4 #5 #6 #7 #8
All

Attacks

Accuracy

DT 0.998 0.991 0.997 0.978 0.993 0.950 0.989 0.928 0.953

KNN 0.981 0.961 0.959 0.887 0.985 0.878 0.975 0.867 0.842

LR 0.958 0.922 0.578 0.508 0.962 0.846 0.520 0.515 0.768

NB 0.880 0.716 0.711 0.607 0.923 0.820 0.859 0.788 0.579

NN 0.999 0.995 0.999 0.986 0.994 0.906 0.991 0.885 0.973

SVM 0.953 0.921 0.577 0.507 0.961 0.846 0.523 0.518 0.770

Recall
(DR)

DT 0.998 0.991 0.997 0.977 0.993 0.949 0.988 0.925 0.952

KNN 0.967 0.937 0.927 0.798 0.976 0.809 0.954 0.780 0.726

LR 0.954 0.925 0.493 0.367 0.970 0.800 0.255 0.252 0.720

NB 0.951 0.962 0.478 0.416 0.914 0.714 0.833 0.691 0.447

NN 0.999 0.997 0.999 0.981 0.995 0.900 0.990 0.857 0.967

SVM 0.949 0.925 0.494 0.380 0.970 0.792 0.261 0.269 0.718

Precision

DT 0.998 0.990 0.997 0.978 0.993 0.950 0.989 0.929 0.954

KNN 0.994 0.983 0.990 0.965 0.994 0.939 0.994 0.940 0.945

LR 0.962 0.918 0.601 0.513 0.954 0.882 0.521 0.515 0.797

NB 0.853 0.671 0.822 0.723 0.931 0.905 0.874 0.850 0.597

NN 0.999 0.993 0.999 0.990 0.994 0.911 0.991 0.905 0.980

SVM 0.957 0.917 0.598 0.510 0.954 0.888 0.527 0.520 0.799

Error
Rate

DT 0.002 0.009 0.003 0.022 0.007 0.050 0.011 0.072 0.047

KNN 0.019 0.039 0.041 0.113 0.015 0.122 0.025 0.133 0.158

LR 0.042 0.078 0.422 0.492 0.038 0.154 0.480 0.485 0.232

NB 0.120 0.284 0.289 0.393 0.077 0.180 0.141 0.212 0.421

NN 0.001 0.005 0.001 0.014 0.006 0.094 0.009 0.115 0.027

SVM 0.047 0.079 0.423 0.493 0.039 0.154 0.477 0.482 0.230

* DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural
Network; and SVM: Support Vector Machine.
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3.5.2 Impact of Using Clustering and Time Series
Decomposition

This section compares our proposed model with a simpler version where clustering and
time series decomposition are not used. The first model, which we will refer to as the
proposed model, implements the three phases presented in Section 3.3. The second
model, the non-cluster and non-time-series decomposition model, only implements
the third phase, which is classification.

The results of the comparison are shown in Table 3.5. As can be seen from the
table, the proposed model with clustering and time-series decomposition outperforms
the non-cluster and non-time-series decomposition model on all four metrics. This
suggests that the use of clustering and time-series decomposition enhances the
detection model performance. This was also reflected in Figure 3.6 where we showed
that the use of clustering increases the distance between theft and non-theft data
points.

3.5.3 Impact of Thefts From New Users

Here we evaluate our detection model in terms of detecting thefts from new users. We
trained the classifier using the combined dataset AllAttacks that includes samples
of all attack types. After that, we used a test dataset of users that have not been
included during the training phase to evaluate our model. Table 3.6 shows how well
the detection model works in detecting thefts from new users. We can observe that
the best performance in terms of accuracy, recall, precision and error rate was given
by the neural network classifier. Our model can detect thefts from new users without
the need for historical data with a detection rate of 93.2% and only a 7.1% error rate.

3.5.4 Impact of Different Percentages of Thieves

This setting analyses the effect of the percentage of thieves that exists in a single
cluster. As this is an important factor to take into consideration which can show how
well the detection algorithm works in cases of low numbers of thieves. We conducted
our experiment using the combined dataset AllAttacks which contains all attack
types. In this setting, we first trained the model using 10-fold cross-validation and
then tested the model using a completely unseen and unbalanced dataset.

Table 3.7 shows the results where we randomly changed the percentage of thieves
in a cluster to range from 2% to 20%. The results indicate that our method actually
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Table 3.5: Performance of the Detection Model With and Without Clustering and
Time-series Decomposition

Metric Method* Proposed
Model

Non-cluster and
Non-time-series
Decomposition

Model

Percentage of
Improvement

Accuracy

DT 0.954 0.802 18.9

KNN 0.791 0.603 31.2

LR 0.747 0.605 23.5

NB 0.634 0.612 3.69

NN 0.976 0.820 19.1

SVM 0.742 0.603 23.2

Recall (DR)

DT 0.961 0.797 20.6

KNN 0.622 0.369 68.7

LR 0.708 0.632 12.0

NB 0.527 0.857 -38.6

NN 0.972 0.657 47.9

SVM 0.719 0.644 11.7

Precision

DT 0.948 0.800 18.5

KNN 0.941 0.796 18.2

LR 0.789 0.618 27.5

NB 0.741 0.619 19.7

NN 0.980 0.826 18.6

SVM 0.756 0.607 24.6

Error Rate

DT 0.046 0.198 76.7

KNN 0.209 0.397 47.4

LR 0.253 0.395 35.9

NB 0.366 0.388 5.82

NN 0.024 0.180 86.9

SVM 0.258 0.397 35.2

* DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural
Network; and SVM: Support Vector Machine.
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Table 3.6: Performance of the Detection Model on Thefts from New Users

ML Modela Accuracy Recall (DR) Precision Error Rate

DT 0.883 0.885 0.780 0.117
KNN 0.715 0.660 0.763 0.285
LR 0.771 0.929 0.708 0.229
NB 0.628 0.396 0.667 0.372
NN 0.929 0.932 0.999 0.071
SVM 0.809 0.889 0.964 0.191

a DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural
Network; and SVM: Support Vector Machine.

achieves an excellent detection rate and minimal error rates with varying percentages
of thieves. Our model shows an average detection rate of above 94% when 20% of
the cluster users are thieves using decision trees and neural network classifiers.

3.5.5 Impact of Stealing Different Magnitudes of Electricity

In this final setting, we study how well our detection model behaves in cases where
the stolen electricity amount ranges between low, medium and high levels. We
consider that the stolen energy is low if it is below the 25% percentile of the overall
consumed/generated energy. While we consider a stolen value to be high when
it is above 75% percentile and the medium level is anything in between. In our
experiments, “Low” is considered to be 300 and 100 watts in attacks #1, #3, #5,
and #7 and to be 20% and 10% in attacks #2, #4, #6, and #8. In attacks #1, #3,
#5, and #7, we choose the amount stolen to be between 500 and 900 watts in the case
of “Medium” and to be between 1100 to 1500 watts in the case of “High”. Whereas in
attacks #2, #4, #6, and #8, we consider a percentage ranging between 30% to 50%
and between 60% to 80% for “Medium” and “High” cases respectively. The results
in Table 3.8 show that our detection model (using a neural network classifier) has
an accuracy of 88.2% and a detection rate of 84.1% if the stolen electricity level is
low. The model accuracy and detection rate increases to around 96% if the level of
electricity theft is within the medium range. These results are typically expected as it
would be easier for a detector to identify dramatic changes in the reported readings.
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Table 3.7: Performance of the Detection Model Under Different Percentages of Thieves

Metric Method* Percentage of Thieves in a Cluster

2% 5% 10% 20%

Accuracy

DT 0.947 0.967 0.947 0.943

KNN 0.943 0.937 0.941 0.917

LR 0.800 0.811 0.755 0.781

NB 0.829 0.732 0.604 0.672

NN 0.984 0.980 0.980 0.976

SVM 0.783 0.804 0.775 0.795

Recall (DR)

DT 0.947 0.935 1.000 0.927

KNN 0.579 0.717 0.720 0.703

LR 0.526 0.729 0.667 0.725

NB 0.526 0.596 0.641 0.611

NN 0.947 0.936 0.936 0.957

SVM 0.684 0.681 0.638 0.694

Precision

DT 0.427 0.695 0.780 0.883

KNN 0.122 0.266 0.427 0.635

LR 0.085 0.194 0.310 0.453

NB 0.032 0.100 0.135 0.376

NN 0.617 0.812 0.895 0.950

SVM 0.430 0.706 0.828 0.877

Error Rate

DT 0.027 0.023 0.029 0.028

KNN 0.148 0.141 0.137 0.121

LR 0.222 0.212 0.223 0.239

NB 0.097 0.179 0.280 0.235

NN 0.013 0.012 0.012 0.011

SVM 0.027 0.022 0.025 0.066

* DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN:
Neural Network; and SVM: Support Vector Machine.
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Table 3.8: Performance of the Detection Model Under Different Theft Magnitudes

Metric Method* Theft Magnitude Level

Low Medium High

Accuracy

DT 0.793 0.935 0.971

KNN 0.628 0.806 0.900

LR 0.612 0.729 0.757

NB 0.584 0.633 0.700

NN 0.882 0.963 0.983

SVM 0.616 0.733 0.760

Recall (DR)

DT 0.798 0.932 0.967

KNN 0.405 0.674 0.825

LR 0.581 0.689 0.729

NB 0.310 0.508 0.559

NN 0.841 0.958 0.971

SVM 0.597 0.700 0.715

Precision

DT 0.800 0.939 0.974

KNN 0.706 0.917 0.970

LR 0.627 0.760 0.769

NB 0.670 0.695 0.790

NN 0.919 0.968 0.994

SVM 0.619 0.761 0.785

Error Rate

DT 0.207 0.065 0.029

KNN 0.372 0.194 0.100

LR 0.388 0.271 0.243

NB 0.416 0.367 0.300

NN 0.118 0.037 0.017

SVM 0.384 0.267 0.240

* DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; NB: Naive Bayes; NN: Neural
Network; and SVM: Support Vector Machine.
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3.6 Threats to Validity

This section discusses the threats to the validity of the proposed approach. This
means that we consider all factors or aspects in the research design that could
potentially compromise the accuracy, reliability, or generalisability of the results.
These threats could arise from various sources, such as limitations in the research
design, biases in data collection, sample characteristics, measurement errors, or
external influences.

The first threat concerns the creation of our dataset. The simulation may not fully
capture the complexities and nuances of the real-world data, and thus the model’s
performance on actual data may differ significantly. To minimize this threat, we
carefully selected our simulation tool and used a moderate-size taxonomy distribution
feeder that outlines real-world characteristics. Another source of bias is the simulation
of attacks chosen in our threat model. We had to focus on the attacks that are
commonly used in the energy theft research area. Moreover, to avoid any bias in the
generation of theft scenarios, we used the well-known mathematical model from [46].
We also randomly modified 50% of each user’s data to reflect possible theft points.
This can ensure the variability and generalisability of the attack scenarios as our
dataset has almost 1600 users. Another potential bias arises in the selection of the
theft magnitudes (values of l and k). In order to mitigate this, the experiment in
Section 3.5.5 was added to reflect the validity of the proposed scheme when energy
thieves steal different magnitudes of electricity.

While we acknowledge these threats to the validity of our study, we believe that
we have sought plausibly to mitigate them and our results remain valuable and
informative.

3.7 Summary

In this chapter, we proposed a data-driven energy theft detection mechanism in the
presence of prosumers attacks. The detection approach is designed to detect different
energy theft attacks from both consumers and prosumers by analysing reported SM
readings in a cluster-based manner. Moreover, we introduced balance attacks which is
a new attack scenario where attackers try to conceal their theft by balancing the total
net of consumed or generated power. Simulations are carried out using a generated
dataset comprising both prosumers’ and consumers’ generation and consumption
profiles along with data from multiple data sources. Results show that the proposed
model has a high detection performance for each type of attack and an overall 96%
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detection rate. The detection model is also tested when different percentages of
thieves are in a cluster. Results show that the proposed method achieves a good
detection rate when the data tested is imbalanced. Although the obtained results
support the first hypothesis, our proposed work here uses smart meter data without
any considerations for user privacy. Fine-grained smart meter data may trigger
serious privacy concerns, such as revealing users’ presence/absence in their houses, or
even their detailed daily habits at home. Therefore in the next chapter, we extend our
proposed approach so that it can analyse data without compromising user privacy.
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Chapter 4

Privacy-Aware Split Learning
Based Energy Theft Detection

Effective detection of energy thefts is very important and must be implemented to
comply with laws and regulations that govern users’ privacy. Current detection
approaches rely on significant amounts of raw fine-grained smart meter data and
generally do not consider privacy. On the other hand, most privacy-preserving
machine learning (PPML) approaches, such as homomorphic ML and federated
learning (FL), are not well suited to the smart grid environment due to their
processing complexity and communication overheads. Therefore, our contributions
in this work are twofold: first, we propose a privacy-preserving detection model for
energy thefts using the concept of split learning (SL). Subsequently, since classical
split learning cannot be directly applied in the smart grid (SG) environment due to its
communication overheads, we introduce a new variant of split learning, which we term
as Three-Tier Split Learning (3TSL). This variant is more communication-efficient
and suits the smart grid environment. The proposed model has two advantages
over the existing techniques. First, the use of split learning enables the training
of a detection model without the need to share raw data. This helps in achieving
data privacy. Second, the splitting of the detection model allows the system to be
more robust against honest-but-curious adversaries. Our evaluations show that the
proposed detection model can ensure better privacy protection and communication
efficiency, which are essential for smart grids, without compromising detection
accuracy.
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4.1 Introduction

Recently in the literature, several approaches have been proposed for the detection of
energy thefts in the smart grid. However, as seen from our review in Section 2.7, very
few have considered users’ privacy in this regard (represented as F1 in Table 2.9),
especially ML approaches [11, 34]. These approaches access users’ raw energy data
without any concerns for their privacy and ignore the fact that users’ private data
are governed by privacy policies such as GDPR. Using raw energy data creates new
privacy vulnerabilities associated with what these data could reveal. For example,
the disclosure of real-time, fine-grained power consumption can reveal the identity
of an individual or information about his/her financial, social, physical or health
characteristics [66]. In particular, high power consumption may reveal that people
are in the house, while low readings may indicate that the house is empty. Hence,
this creates the need to develop new mechanisms to be able to build energy theft
detectors without violating users’ privacy.

Moreover, our review revealed that research using privacy-preserving machine
learning (PPML) in energy theft detection is still very limited and primarily
relies on complicated cryptographic functions such as homomorphic encryption and
MPC [11]. These methods are computationally and communicationally expensive
and unsuited for smart meters, which are often computationally restricted [110].
Furthermore, the use of such cryptographic techniques alongside ML introduces
additional processing and communication costs and would rely entirely on the strength
of the key management mechanisms [59]. Moreover, distributed learning approaches
to PPML, such as federated learning (FL) and split learning (SL), allow multiple
parties to collaboratively train models without sharing their raw data. However,
these techniques also have weaknesses. Recent research has shown that FL is
prone to privacy attacks such as model extraction, membership-inference attacks,
feature-inference attacks and label inference attacks [111]. This is especially true
in an environment where aggregators and servers are considered honest-but-curious
entities. An honest-but-curious entity is a type of adversary that is commonly used in
the analysis of privacy properties. It is a legitimate participant of the system who will
exactly follow the protocol defined but will attempt to learn all possible information
from legitimately received communication [112]. Moreover, works that are based on
using federated learning suffer from the following weaknesses:

• Communication is a critical bottleneck in the federated learning architecture.
This is because it involves communicating a large amount of data between clients
and the server in every round, where every message contains the complete model
parameters.
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• Each client in the federated learning approach needs to have a large storage
capacity and high computational and communication capabilities to run a
complete model. However, this is not the case in the smart meter environment,
as devices will generally be resource-limited.

• Finally, privacy is often a major concern in federated learning. Sharing model
updates (i.e. gradient information) instead of the raw data can reveal sensitive
information to an eavesdropper or the system entities. This is a major problem
faced in federated learning approaches, giving rise to what are typically referred
to as “inference attacks”.

Another limitation in the privacy-preserving energy theft detection research area is
the lack of any quantitative analysis of that privacy (represented as F2 in Table 2.9).
None appear to have addressed whether the privacy protection of an energy theft
detector can be quantified. Whenever a privacy-preserving approach is used, such
as encryption-based schemes and differential privacy, it is implicitly assumed that
it provides strong privacy protection. On the other hand, differential privacy-based
schemes suffer from a privacy-accuracy trade-off; and the privacy gained by these
schemes is often proven using strict mathematical proofs. Whereas it has been shown
that they are vulnerable to many privacy attacks [113, 114].

4.1.1 Our Contribution

In this work, we first propose an enhanced privacy-aware energy theft detection
scheme which ensures users’ privacy using the concept of split learning (SL). The
classical SL approach has the advantage over FL in protecting users’ data from
reconstruction and feature inference attacks [62] since in SL, only the model updates
of the split layer are sent rather than the whole model updated in the case of FL.
SL is also less susceptible to model extraction and label inference attacks. However,
SL cannot be directly applied to the environment of smart grids. This is because
it introduces large communication overheads. Hence, we propose a new variant
of SL called “Three-Tier Split Learning (3TSL)”. In this variant, aggregators are
intermediate entities in the system between clients and the central server. This
architecture helps reduce the communication overhead of the system. It also makes
the detection approach more suitable for smart grids where aggregators and energy
suppliers are considered to be honest-but-curious entities. We also consider the issue
of feature inference attacks in SL that has been studied in [115] and propose a
defensive mechanism. We can summarise the contributions of this work as follows:
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1. We propose an energy theft detection system which preserves the privacy of
the users’ data using split learning. The detection model combines stacked
auto-encoders along with split learning to detect anomalies. This is the first
work that applies split learning in energy theft detection.

2. We propose a new variant of split learning, called Three-Tier Split Learning
(3TSL), that suits the nature of the smart grid infrastructure. This enhanced
version adds aggregators to the system and splits the overall ML model into
three parts (clients, aggregators, server) rather than two (clients, server).
Moreover, we introduce a means of minimising the communication overhead
by aggregating the updates from the split layers.

3. We evaluate our detection model with a range of different energy theft scenarios.
This is also investigated in cases where malicious clients are involved in the
training phase and a possible solution is discussed.

4. We analyse the privacy of the proposed model in terms of feature inference
attacks and a metric called distance correlation.

In a nutshell, the major aim of our proposed scheme is to demonstrate how to
achieve high-accuracy detection results while preserving privacy. The remainder
of this chapter is organised as follows: some preliminary knowledge is defined in
Section 4.2. We introduce the system and threat models in Section 4.3. In Section 4.4,
we present our proposed privacy-preserving energy theft detection scheme. We detail
our experimental setup in Section 4.5, while Section 4.6 gives the results. The threats
to validity are discussed in Section 4.7, followed by a summary of this chapter in
Section 4.8. All important notations used throughout this chapter are defined in
Table 4.1.

4.2 Preliminaries

In this section, we briefly define distance correlation and indicate its usage. We used
it as a quantitative evaluation metric for our privacy-preserving scheme. We also give
some background information on the use of auto-encoders as anomaly detectors.

4.2.1 Distance Correlation

Distance correlation (dCor) is a statistical measure of dependence that was first
introduced in [116]. This measure tests the joint independence between two random
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Table 4.1: Notations

Symbol Definition

CSMi The consumption smart meter reading of client i

PSMi The production smart meter reading of client i

W The system’s complete ML model function

d Sample data point

d̄ Reconstructed data point of d

d̂ Modified sample data point (poisoned data)

y Label of the sample data point d (benign or malicious)

oi Outputs (activations) of client i

oa Outputs (activations) of the aggregator

W−1 An attacker’s inference model

vectors X and Y with arbitrary dimensions (lengths). Distance correlation captures
linear and nonlinear relationships between the variables, making it a good measure of
independence in our case. Specifically, we aim to quantify the dependency between
the split layer outputs and the original readings. Unlike the classical definition
of correlation, in distance correlation, we get a value between 0 and 1 where zero
indicates total independence between the two vectors. Distance correlation can be
calculated by dividing the distance covariance of the two variables by the product of
their distance standard deviations. This makes the distance correlation between two
random variables X and Y equals to:

dCor(X, Y ) = dCov2(X, Y )/
√
dV ar(X) dV ar(Y ) (4.1)

where dCov(X, Y ) is the distance covariance between X and Y and dV ar(X) is the
distance covariance between X and itself, i.e. dCov(X,X). The distance covariance
dCov(X, Y ) is the square root of the average of the product of the double-centred
pairwise Euclidean distance matrices and can be calculated as:

dCov2(X, Y ) :=
1

n2

n∑
i=1

n∑
j=1

D(xi, xj)D(yi, yj) (4.2)

where the D(xi, xj) is the “centred” Euclidean distance between the ith and jth
observations and can be calculated as:

D(xi, xj) = ||xi − xj|| − āi. − ā.j + ā.. (4.3)

where āi. is the ith row mean of the distance matrix of X, ā.j is the jth column mean
of the distance matrix of X and ā.. is its grand mean.
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4.2.2 Anomaly Detection Using Auto-Encoders

An auto-encoder (AE) is a special type of neural network that has mainly two parts,
an encoder part and a decoder part. (Refer to Appendix A for more details about
how a neural network works.) The encoder compresses the input features to produce
a latent representation that is then decoded by the decoder to reconstruct the input
features [117]. Auto-encoders are trained to minimise the difference between the
reconstructed data and the original input where the model learns the relationships
among features of the input set. This difference between the original input d and the
reconstructed data d̄ is called the reconstruction error (RE). It can be measured using
any measurement of error such as the absolute error RE = ||d−d̄|| or the squared error
RE = ||d − d̄||2 [118]. After the model has converged, the reconstruction error can
be used to detect anomalies. Auto-encoders are best suited for anomaly detection in
environments with high-volume data streams such as smart grids. They can be trained
to learn the representation of a single ‘normal’ class. Attacks (or at least anomalies)
can be detected without labelling by observing the magnitude of the reconstruction
error [119]. Reconstruction errors for normal data points are minimised by the
auto-encoder whereas anomaly-input data result in higher reconstruction errors. A
suitable threshold is required to assess if the errors are high enough for that data to be
termed anomalous [119]. Stacked autoencoders (SAEs) are constructed by stacking
several AEs together. The first AE maps the input to a first latent representation.
After training the first autoencoder, its decoder layer is discarded and then replaced
by a second autoencoder, which has a smaller latent vector dimension. This process
is repeated depending on the depth of the SAE. The depth of stacked autoencoders
helps in learning more abstract features from the extracted ones [117].

4.3 System Model and Threat Model

4.3.1 System Model

As we mentioned in Chapter 3, we consider a classical smart grid model with three
entities: clients, substation gateways (aggregators) and the control centre (server).
Here, the gateways act as aggregators which are responsible for processing the clients’
data before sending them to the server Moreover, the data sent between the three
entities (smart meters, aggregators and server) are in the form of model updates,
i.e. activations and gradients rather than raw SM readings since we are employing
a variant of split learning to our system model. Further details are explained in the
proposed theft detection model section.
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4.3.2 Threat Model

In this work, we consider a practical threat model with multiple security and privacy
attacks where all external and internal entities can act maliciously. The system
assumes that aggregators and the server are honest but curious entities (semi-honest),
i.e. they do not tamper with the system’s instructions but they may try to infer
information about users’ behaviours. External adversaries may eavesdrop on the
activations sent between the system’s entities in an attempt to learn individuals’
private data. We also assume that participating clients have the ability to modify
and manipulate their smart meter readings or their neighbours’ readings in an attempt
to gain financial advantage. These attacks can be viewed as follows:

• Energy Theft Attacks : These attacks occur when a user (either a consumer or
a prosumer) tries to modify the reported smart meter’s readings. We consider
the same set of attack scenarios explained in our previous work in Chapter 3.
In total, we consider eight different attack types of energy thefts.

• Poisoning Attacks : These can be carried out only by internal clients that
can modify the smart meter data. The goal of this attack is to compromise
the performance of the detection model W and to cause it to make incorrect
predictions by using crafted data points d̂. Let W be an ML function which
maps D to Y , W (d) = y where y is the correct label and d is a real unpoisoned
data point. When the model W is trained using a set of poisoned data points
D̂, W diverts from its normal behaviour and produces wrong outputs Ŷ . In
practice, energy theft attacks discussed before (including balance attacks) are
types of poisoning attacks.

• Feature Inference Attack : This attack compromises the privacy of the users’
readings and can be launched by external or internal adversaries. In our
system, we consider the server to be a trusted organisation (e.g. the National
Grid in the United Kingdom), whereas most clients and all aggregators are
honest-but-curious parties. We call these honest-but-curious entities as passive
adversaries since they correctly follow the steps of the proposed model but try to
passively perform feature inference attacks on data outputs that other clients
send. The goal of the attack is to guess the values of the sensitive features
of a data point given only the activations sent by the client (i.e. its model
component’s split layer activations). A formal definition of the attack in the
context of split learning is as follows:
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Figure 4.1: Proposed Theft Detection Model

Definition (Feature Inference): Let d be an input data point with a set of features
d1, d2, ..dn where d = (d1, d2, ..dn) ∈ D, and let Wc be a client model that maps D to
O, W (di) = oi where di is the input data of client i and oi is this client’s activations
or outputs from the split layer. To launch a feature inference attack, the attacker
tries to find a function W−1 that can infer di from oi, W

−1(oi) = di. The goal is to
have an exact inference. However, in practice, useful inference can be approximate.

Feature Inference Attacks (FIAs) have caught the attention of privacy and security
researchers after the widespread adoption of collaborative machine learning models in
different applications. It has been studied in [120, 121, 122, 123] and by many others
in the machine learning community. However, it has not been studied or considered
in the area of privacy-preserving machine learning energy theft detection.

4.4 Proposed Theft Detection Model

In this section, we explain the “Three-Tier Split Learning (3TSPL)” approach, which
is the newly proposed variant of split learning and describe the theft detection model.
Figure 4.1 shows how the proposed detection model works.

78



CHAPTER 4. PRIVACY-AWARE SPLIT LEARNING BASED ENERGY THEFT DETECTION

4.4.1 Three-Tier Split Learning (3TSL)

Our Three-Tier Split Learning architecture follows the system design of the
state-of-the-art split learning system but adds one new component which is an
aggregator between the clients and the server. The newly added aggregator makes
the split learning framework more applicable to the context of smart grids. We also
introduce a way to calculate the intermediate updates by averaging the activations
received from the clients for each client-aggregator pair before sending the results to
the server. This makes the process more parallel than sequential. In our extension of
split learning, the learning model W is split into 3 different parts, Wc at the client
side, Wa at the aggregator and Ws at the server side. The procedure of the 3TSL
method starts as follows: each client c trains the Wc part of the network and sends
the activations of the split layer to the aggregator a. Each aggregator a waits until it
receives all activations from its clients and computes the average of these activations
and uses it to complete a forward pass on its part of the modelWa. After completing a
forward pass, the aggregator sends the activations of the last layer of its model to the
server. As in the aggregator, the server waits for the activations from all aggregators
and computes their average to be used as input for its part of the model Ws. After the
completion of the forward pass, the server generates the gradients for the final layer
and back-propagates the error to its cut layer of WS. The gradients are then passed
to the aggregators who perform a back-propagation and send their gradients to the
clients. The rest of the back-propagation is completed by the clients. This process is
continued until the model converges. Algorithm 1 provides detailed instructions for
the “Three-Tier Split Learning”.

4.4.2 Energy Theft Detection Approach

The aim of this work is to explore how split learning can be used to train an anomaly
detector to detect energy thefts without violating clients’ privacy. We do so by
combining the previously explained 3TSL method with a stacked auto-encoder. The
stacked auto-encoder (SAE), as an unsupervised ML algorithm, enables us to train
the detection model without the need for data labels, and the 3TSL provides privacy
assurance as clients will not need to send their private raw data.

The architecture of our energy theft detection model is shown in Figure 4.1. A
stacked auto-encoder (SAE) model is split between the system’s entities, one part is
at the client’s side, the second part is at the aggregator’s side and the third part is
at the server’s side. The server part consists of 4 layers, while we use varying depths
for the client’s and aggregator’s parts (details can be found in Table 4.3). Next, each
client collects a set of features that includes consumption, generation and weather
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Algorithm 1 Three-Tier Split Learning (3TSL) Algorithm with Averaging

function Server ▷ executes at round t ≥ 0
for epoch e do

At ← []
for agg a ∈ aggregatort do

Aa,t ← Aggregator(a, t)
At[c]← Ac,t

end for
At.avg ← sum(At)/len(St)
Complete forward propagation with At.avg to get AS,t

Calculate Loss
WS,t+1 ← WS,t − η∇ℓ(WS,t;At.avg) ▷ Back propagation part of the server
ClientBackprop(c, t,∇ℓ(At.avg;WS,t)) ▷ k here is the last client

end for
end function

function Aggregator(a,t) ▷ executes at round t ≥ 0
for epoch e do

At ← []
for client c ∈ St do

Ac,t ← ClientUpdate(c, t)
At[c]← Ac,t

end for
At.avg ← sum(At)/len(St)
Complete forward propagation with At.avg to get Aa,t

send Aa,t to Server
end for

end function

data at regular intervals (usually every 15-20) minutes. And given the nature of
time-series data, a sliding window of multiple data points is considered as an input to
the client’s part of the model. This helps capture the correlation between consecutive
data points. After that, the vector of features is fed to the client’s part of the SAE and
the latent representation (client’s output) is sent to the aggregator. Each aggregator
uses the average of all the outputs of its clients as an input to its part of the SAE.
The output of the aggregator, which is the second latent representation, is sent to
the server, which also uses the average of all the aggregators’ outputs as the input to
its part of the SAE. This process is repeated until the model converges.
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To detect energy thefts, the server computes a threshold which is used as a
bound to detect those energy thefts. Any data point that causes a reconstruction
error exceeding this predefined threshold would be considered as an anomaly. Here,
mean squared error (MSE) is used as the reconstruction error function. To estimate
the detection threshold, we use the same procedure as in [117] where the server
calculates the reconstruction errors of its part of the SAE for the whole training
dataset. Then, the threshold value is estimated by the mean and standard deviation
of those reconstruction errors; it can be described as:

threshold =
1

x

x∑
i=1

REi +

√√√√1

x

x∑
i=1

(REi −
1

x

x∑
i=1

REi)2 (4.4)

where RE is the reconstruction error of the server’s part of the model (the difference
between the server’s input and output), and x is the number of training elements that
the server uses.

4.5 Experimental Setup

In this section, we give details about how we conducted our experiments, such as the
dataset used, the formation of the energy theft attacks, the simulation environment,
neural network parameters, and evaluation metrics.

4.5.1 Dataset

In this work, we have reused the dataset from Chapter 3. The dataset includes the
energy profiles of 1596 clients, 49 of whom are solar panel prosumers. Every client
reported 17 different dynamic parameters and 13 physical parameters of each client’s
property every 15 minutes. In this work, we used a sliding window of 16 data points
(4 hours) as input to the client’s part of the model. This means that each sample is
a vector of 285 features ([17 dynamic features * 16 data points] + 13 static features).
These data samples are split into 70% for training and 30% for testing. The rationale
behind employing a 70-30 train/test ratio instead of 80-20 is primarily due to the
use of the sliding window concept. This greatly increased the number of features in
each data point, from 16, as seen in Chapters 3 and 5, to 285. By incorporating time
series windowing, the quantity of data points available for evaluation was reduced.
Therefore, a larger portion (30% as opposed to 20%) of the dataset had to be allocated
for performance testing purposes.
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4.5.2 Energy Theft Attacks

Since all readings in our dataset are unmanipulated (normal) points, they were
modified using the same approach described in Section 3.4.2. In this work, the value of
l is chosen to be 400 which is approximately one-third (1

3
) of the mean of all readings.

While the value of k is set to 40 which is less than half (1
2
) of the reading.

4.5.3 Simulation Environment

The proposed 3TSL detection model is implemented using PyTorch [124]. PyTorch is
a Python-based machine learning library that enables access to every computational
node in an ML model. This allowed us to split the whole detection model into three
splits.

4.5.4 Neural Network Parameters

In our experiments, the SAE model consists of a total of ten neural network layers.
In our approach, clients had three layers, aggregators had three layers, and the server
had four layers; however, varying neural network depths were used for the client and
aggregators in the experiment in Section 4.6.3. In every experiment, the mean squared
error (MSE) is used as the model loss function. The training phase iterated over the
samples for a total of 20 epochs with a batch size of 96. The Adam optimiser [125]
is used with its default hyper-parameters as the model optimization algorithm in all
components.

4.5.5 Evaluation Metrics

To evaluate the performance of the proposed model in terms of energy theft detection,
we consider accuracy, recall (also known as detection rate (DR)), and precision. These
basic metrics allow the calculation of other metrics using them, such as F1 or F2
scores [126]. We also used distance correlation as a metric for evaluating the privacy
preservation level gained by our proposed model. These are the metrics that we
report. However, we used MSE as our RE and loss function to derive these results.
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4.6 Results and Discussion

In this section, we analyse the security and privacy of our proposed model against
the threat model and provide computational and communication analysis.

4.6.1 Detection of Energy Thefts Attacks

Here, we evaluate how well the SAE works in our “Three-Tier Split Learning” setting
in terms of energy theft detection. For this purpose, we have also trained the same
SAE in two other settings: a centralised setting and a federated learning setting.
In the centralised setting, the global model of the SAE along with all client data is
available at the server side. This setting is the basic setting where privacy is not
considered. In the federated learning setting, the SAE model is trained locally at
each client and a shared model is averaged at the server side.

Figure 4.2 compares the performance of our proposed model with the centralised
version and the federated learning approach in terms of accuracy, recall and precision.
It is clear from the figure that the results of our proposed approach are highly
comparable to the other two settings. This shows clearly that our approach achieves
excellent results in detecting energy thefts while preserving privacy compared to the
centralised approach. The results are also very similar to the federated learning
approach with the advantage of having lower communication overhead (discussed
in Section 4.6.7). In all three settings, the training is taking place repeatedly over
different batches of data and therefore the results are not linearly improving.

4.6.2 Resilience Against Poisoning Attacks

As explained in Section 4.3.2, poisoning attacks are attacks that can be launched
whenever a collaborative ML algorithm is involved. In our approach, these attacks
are possible because clients are involved in training the detection model. In this
experiment, we have tested how well our detection approach works in the event of
having poisoned training data. We tested this using different percentages of poisoned
training data ranging from 0% (which means that all clients are honest and there is
no poisoning attack) to 20% (which means that each client poisons 20% of their data).
Our results in Table 4.2 show that the more poisoned data is used to train the system,
the worse our detection results are. When only 20% of the data is poisoned, then the
detection rate decreases by almost 15%. Therefore, we had to find a way to overcome
this. We adopt a simple solution where we randomly drop 10% of the training updates
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Figure 4.2: Results of the Detection Model Using Three-Tier Split Learning (Proposed
Work), Centralised Detection, and Federated Learning

received from the clients. As can be seen in the last record of Table 4.2, this simple
random dropping improves the detection results and make it comparably close to the
normal case where no poisoned data are injected.

4.6.3 Privacy Analysis via Distance Correlation and Feature
Inference Attack

In order to analyse the privacy aspect of our model, we explored the feature inference
attack where we analyse the correlation between the activations sent in the system and
how much they leak the original raw data. Several metrics can be used to quantify
the correlation between variables, such as Pearson’s correlation, Spearman’s rank
correlation, distance correlation and Phi coefficient. In this context, we use distance
correlation as explained in Section 4.2.1. This is because distance correlation is one
of the few statistical measures that can test the dependence of two arbitrary length
vectors (e.g. raw data and the split layer’s activations). It can also show both
linear and nonlinear associations, which makes our evaluation more comprehensive.
Distance correlation was used in [127] and [128] as part of their privacy assessment
frameworks. It takes a value between 0 and 1, where lower values indicate greater
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Table 4.2: Detection Results with Poisoned Data

Percentage of Poisoned
Training Data

Accuracy Recall (DR) Precision

0% (No attack) 0.946 0.905 0.970

5% 0.945 0.901 0.969

10% 0.933 0.891 0.973

15% 0.870 0.760 0.974

20% 0.870 0.762 0.973

20% with random 10% dropping 0.933 0.903 0.979

independence of the two vectors. Our goal here is to make the distance correlation
value less than 0.5.

Table 4.3 shows the distance correlation dCor between the outputs (activations)
sent by the client oi and the real raw input data di. It also shows the dCor between
the outputs sent by the aggregator oa and the raw input data. In the first setting,
both the client and the aggregator have 3 hidden layers with no dropout layers in
between and as the results show, the distance correlation between the raw data and
the output sent by the clients is high (0.74). This actually suggests that it would be
easy for the attacker to infer the raw data back from those activations. One possible
defence was to employ dropout [129], and another one was to increase the number of
hidden layers. In neural networks, Dropout is a well-known regularisation technique
that is used to overcome overfitting [130]. The basic idea of dropout is to randomly
deactivate neurons’ activations with a probability between 0 to 1. This random
dropout of activations will make it harder for the attacker to build a robust system
that can infer the raw data from the activations as the attacker will be observing a
different activations list each time [129]. As you can see in Table 4.3, after adding some
dropout layers and increasing the number of hidden layers the distance correlation is
decreasing and at the same time this does not affect the theft detection rate (recall)
in any way. Briefly, we can say that our 3TSL approach can protect against feature
inference attacks, defined in Section 4.3.2.

Protection Against Feature Inference Attacks: Suppose an adversary obtains the
set of outputs sent from the client to the aggregator oi. He/She needs a function
W−1 that can infer the original raw data di from oi, W

−1(oi) = di. However, our
results show that the average dCor(di, oi) is less than 0.5 with only 4 layers and
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Table 4.3: Feature Inference Analysis

Model Used dCor(di, oi) dCor(di, oa)
Recall
(DR)

Client: 3, Agg: 3, No Dropout 0.740 0.369 0.937

Client: 3, Agg: 3, 1 Dropout 0.620 0.359 0.945

Client: 3, Agg: 3, 2 Dropout 0.557 0.366 0.935

Client: 4, Agg: 4, No Dropout 0.665 0.342 0.937

Client: 4, Agg: 4, 2 Dropout 0.490 0.340 0.934

dropout at the client model. This implies that the probability of finding W−1 with
good accuracy for any probabilistic polynomial time adversary A is negligible, i.e.,
AdvleakA (di, oi) ≤ ϵ.

4.6.4 Analysis of Detecting Different Magnitudes of
Electricity Theft

In this set of experiments, we tested the performance of our energy theft detector in
detecting different magnitudes of stolen energy. The results are shown in Table 4.4.
In these experiments, we tested our model with different values of stolen electricity l
and k such that l ranged between 700 to 100 and k ranged between 0.7 and 0.1, where
l = 700 and k = 0.7 indicates a high volume of stolen electricity and when l = 100 and
k = 0.1, it indicates a very low volume of stolen electricity. The results demonstrate
that our detector is able to detect energy thefts even in low volumes (as low as 200
Watts). However, it fails to detect lower volumes of energy thefts (100 Watts). There
will always be a threshold below which thefts cannot be detected reliably without
significant false positives. Stealing 100 watts hours every 15 minutes will cost only
around 20 pence per hour (according to current UK energy prices in 2023) [131] and
it would take a thief around seven months (5,000 hours) to steal £1000. Though this
is not a trivial sum, in practice thieves are decidedly constrained.
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Table 4.4: Analysis of the Detection of Different Intensities of Energy Thefts

Theft Intensity Accuracy Precision Recall F1 Score

l=700 AND k=0.7 0.96 0.92 1.00 0.96

l=600 AND k=0.6 0.95 0.92 0.99 0.96

l=500 AND k=0.5 0.95 0.92 0.99 0.95

l=400 AND k=0.4 0.95 0.92 0.98 0.95

l=300 AND k=0.3 0.93 0.92 0.94 0.93

l=200 AND k=0.2 0.83 0.90 0.74 0.81

l=100 AND k=0.1 0.57 0.73 0.23 0.35

4.6.5 Trade-off Between Privacy and Detection Accuracy

We experiment with the trade-off between minimising the distance correlation
(improving privacy level) and maximising the detector’s accuracy. In this experiment,
we modified the objective function of our ML model to be:

min(MSE + α ∗ dCor) (4.5)

where the value of α corresponds to the degree of privacy that we want to achieve.

Table 4.5 shows the results when we set α to different levels ranging from 0 to 1.
When alpha is set to 0, it means that the model is trained without any consideration
for privacy, while if it is set to 1, it means that we are trying to minimise the dCor level
between the client’s output and the original inputs as much as possible. As can be
seen from the results in the table, there is a clear trade-off between privacy and energy
theft detection performance. The higher we aim for privacy (by minimising dCor)
the lower the accuracy of our detection model. After experimenting with different
values of α ranging between 0 to 1, we can see that a good balance is given when α
is set to 0.01. It gives excellent energy theft detection performance and an excellent
reduction of the dCor level compared to the original results (where α = 0).

4.6.6 Computational Overhead

One main objective of applying split learning instead of federated learning is to ensure
that the proposed model does not introduce much computational overhead on the
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Table 4.5: Analysis of the Trade-off Between Detection and Privacy

α Accuracy Precision Recall F1 Score AVG dCor

0 0.93 0.90 0.96 0.93 0.893

0.01 0.91 0.90 0.93 0.92 0.234

0.05 0.79 0.83 0.70 0.70 0.233

0.1 0.66 0.79 0.44 0.57 0.146

1 0.49 0.46 0.09 0.15 1e−7

resource-constrained smart meters. In this experiment, we investigated the proposed
model overhead in terms of computation time and compared it with the federated
learning approach (as it is the closest scheme to ours in providing security and privacy
properties). We computed the computational time of a single round carried out in
a smart meter. The experiments were repeated multiple times to ensure statistical
significance, and the average execution time for each model was presented.

It can be seen from Table 4.6 that the computational times for computing a single
round of 3TSL and federated learning in a smart meter are 0.0029 and 0.0163 seconds,
respectively. This means that the federated learning scheme executes five times slower
than our proposed one. This can be attributed to the fact that in federated learning,
the smart meter is responsible for computing the whole model instead of only part of
it as in the case of three-tier split learning. Therefore, the results here confirm the
advantage of using split learning in lowering the computational overhead at the client
side.

Table 4.6: Computational Overhead

Method
Computational

Time (in seconds)

Three-Tier Split Learning (Ours) 0.0029

Federated Learning 0.0163
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4.6.7 Communication Analysis

The objective of the proposed 3TSL theft detector is not only to ensure privacy and
non-thefts by the smart meters but also to ensure that the communication overhead is
minimised. In this section, we compare the communication overhead of the proposed
scheme with the classical split learning approach (where aggregators are assumed to
only forward clients’ communications to the server without any averaging) and with
the federated learning approach (as it is the closest scheme for providing security
and privacy properties to the system). To do so, we analyse the amount of data
transferred by every client and the total data transferred between parties in the
system. We use the following notation to mathematically measure communication
efficiency. Notation: K= # clients, L= # aggregators, N= size of the complete
model parameters (neurons), Sc= size of the split layer at the client, and Sa= size of
the split layer at the aggregator. Here K > L and N ≫ Sc + Sa.

In Table 4.7, we can see that the communication cost, for the same neural network
model, in the three-tier split learning approach is less than that of both the classical
split learning and the federated learning approach. In the 3TSL, every client sends the
updated activations from their split layer Sc and receives the updated gradients from
the aggregator with size Sc, which totals 2Sc. The same number of communication
applies for every aggregator which makes the total communication of one round
equal to K × (2Sc) + L × (2Sa). In the classical split learning approach, when
averaging is not implemented, the aggregator would act as a repeater, forwarding
every communication between the server and the client. This will make the clients’
updates and the gradients’ updates be sent twice in the network making the total
communication in classical split learning greater than our proposed three-tier split
learning. By aggregating the model updates at the aggregator side in the proposed
3TSL scheme, we are reducing the communication to the server. Thus protecting
it from various attacks such as denial of service. On the other hand, clients in the
federated learning approach send the full network updates to the server and the
full gradients are then forwarded from the server to all clients. This makes the
total communication of one round equal to 2KN which is significantly more than
K × (2Sc) + L× (2Sa).

4.6.8 Summary of Comparison

In summary, our results show that the proposed approach outperforms existing ones
in terms of detection, privacy and communication overhead. This comparison is
outlined in Table 4.8. Our 3TSL approach can detect energy thefts with high recall,
precision, and accuracy. It also preserves the privacy of users’ data as compared to the
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Table 4.7: Communication Analysis

Method
Communication

Per Client
Total Communication

Three-Tier Split Learning (Ours) 2Sc K × (2Sc) + L× (2Sa)

Classical Split Learning 2Sc K × (2Sc) +K × (2Sc)

Federated Learning 2N 2KN

centralised approach. In terms of resilience against poisoning attacks, all three models
can detect poisoning attacks with the help of an additional procedure (for instance, in
our case by adding dropout layers and randomly dropping 10% of the training data).
Moreover, it is more challenging to infer features from only the split layer’s activations
than from the whole model updates [111]; hence our proposed model provides stronger
resilience against feature inference attacks than the federated learning approach.

Furthermore, our computational and communication analysis (provided in
Sections 4.6.7 and 4.6.6) shows that the proposed approach has lower computational
overhead and higher communication efficiency than the federated approach. It should
be noted that the communication efficiency of our model would also be better than
the centralised approach when the feature set is larger than the split layer size, which
is true in most cases.

4.7 Threats to Validity

In this section, we discuss the possible validity threats for our developed work. The
first thing to note is that the threats to the validity of our proposed work outlined
in Chapter 3 still hold here and their mitigation measures were also applied in this
work. A new threat to validity arises here from the choice of privacy evaluation
measurement. This choice may fail to accurately capture the intended concepts.
Quantifying privacy poses challenges, as it may not be applicable to all types of data
or systems. In our work, we chose a metric that is objective and can be applied to
different domains.
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Table 4.8: Comparison

Property
Centralised
Approach

Federated
Learning
Approach

Three-Tier
Split

Learning
(Ours)

Energy theft detection ✓ ✓ ✓

Privacy preservation ✗ ✓ ✓

Resilience against poisoning
attacks

✓ ✓ ✓

Stronger resilience against
feature inference attacks

✗ ✗ ✓

Lower computational overhead - ✗ ✓

Higher communication
efficiency

✗ ✓

✓: True. ✗: False. : This may not be true in some cases.

4.8 Summary

This work proposed an approach that supports our second hypothesis. We have
presented a new variant of split learning, Three-Tier Split Learning, as a private
collaborative machine learning algorithm to tackle the challenge of preserving users’
privacy, where it trains a detection model for energy thefts without the need to share
raw data. It is tested on a dataset that contains malicious readings generated from
various cyber-attacks, including consumer thefts, prosumer theft and balance attacks.
Our experiments showed that it gives a 94.6% accuracy, 90.5% recall (detection
rate) and 97.0% precision. Moreover, even in the case of poisoning attacks, simply
dropping 10% of the model updates can provide comparable results to those with no
poisoned data. The model demonstrates good privacy preservation where the distance
correlation between the updates sent from the clients/the aggregator and the raw data
is low, making it difficult for attackers to infer the raw data from those updates. There
is also a significant reduction in the number of messages sent and received to/from the
server. Thus, our proposed model ensures privacy preservation and communication
efficiency. When both privacy and energy theft detection are achieved, effort is
needed for post-detection procedures that ensure reliable management of other grid
operations. Our next chapter of this thesis will propose a combined energy theft
detection and demand management scheme with stronger privacy levels than what is
achieved here.
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Chapter 5

Privacy-Enhanced Energy Theft
Detection for Effective Demand
Management

The detection of energy thefts is vital for the safety of the whole smart grid system.
However, the detection alone is not enough since energy thefts can crucially affect the
electricity supply leading to some blackouts. Moreover, as pointed out in the previous
chapter, privacy is one of the major challenges when dealing with clients’ energy
data. However, it is often overlooked as most current detection techniques rely on
raw, unencrypted data, which may potentially expose sensitive and personal data. In
Chapter 4, we explored the use of an enhanced version of split learning to detect energy
theft. Here, we extend the idea and present a more privacy-preserving energy theft
detection technique with effective demand management. To make our model more
privacy-preserving, we employ a second layer of privacy that masks clients’ outputs
to prevent inference attacks. Another privacy-enhanced version of this mechanism is
also proposed here. It provides an additional layer of privacy protection by training
a randomisation layer at the end of the client-side model. This makes the output
as random as possible without compromising the detection performance. For the
energy theft detection part, we design a multi-output machine learning model to
detect energy thefts, estimate their volume, and effectively predict future demand.
Finally, we use a comprehensive set of experiments to test our proposed scheme. The
results show that our scheme achieves high detection accuracy and greatly improves
privacy preservation.
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5.1 Introduction

Energy thefts have non-financial consequences. For instance, they were the cause
of 15 different blackout incidents in the US in 2017 alone [132]. Moreover, energy
thefts can severely affect demand management, leading to mis-forecasting of future
electricity supply. As a result of underestimating the supply, some grid regions
will experience blackouts. Overestimating the supply may give rise to extreme and
typically infeasible storage requirements. Such storage (typically via batteries) may
also be very expensive. Despite these consequences, solutions to the energy theft
problem generally focus solely on detection measures.

Over recent decades, several works have been proposed in the literature on
demand-response management in smart grids, such as [133, 134, 135]. Authors
in [110, 136] had also considered privacy-preserving approaches for their solutions.
However, all of these solutions assumed that the data supplied by the clients were
genuine. None has considered when energy thefts are present in the system and to
what degree these thefts would impact demand-supply management. Similarly, most
proposed energy theft detection techniques do not consider privacy and use energy
usage data in its raw form. However, since such use of data can lead to privacy
risks, there was a need to address privacy in energy theft detection research. A few
papers have addressed privacy-preserving ML-based (PPML) energy theft detection
in SG; these have been discussed in Section 2.7.2. We divided them into two broad
categories: the first use cryptographic-based methods, while the others are based on
distributed machine learning techniques.

Investigating the existing literature on both demand management and energy theft
detection research areas reveals two major issues: (i) Although several works have
been proposed in demand management for smart grids, they have yet to consider
the issue of managing the demand in cases where energy thefts exist. Instead, the
existing research has always assumed that all clients are honest and would report
reliable readings, which is not always true. (ii) On the other hand, although several
solutions have been developed for energy theft detection, all the research in this area
has focused solely on the detection part and has not gone beyond that. However,
it is essential to act upon detecting energy theft, including estimating the amount
of stolen energy and considering it while forecasting the future energy demand. In
fact, Ofgem1 had set some rules for tackling electricity theft, one of which requires all
energy suppliers in the UK to “make accurate estimates of the volume of electricity
stolen following detection” [137]. This is an essential post-detection step that no one

1Ofgem is the Office of Gas and Electricity Markets and it is the energy regulator for Great
Britain.
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has considered before, as indicated in our literature survey in Table 2.9. To the best
of our knowledge, we are the first to propose such a step.

Moreover, solutions that aim to achieve privacy in energy theft detection
using cryptographic methods or federated learning have their weaknesses that were
highlighted previously in Section 4.1.

5.1.1 Our Contribution

To address all the limitations mentioned above, we now propose a privacy-preserving
energy theft detection model that can effectively predict energy demand. Our
proposed model not only detects energy thefts of different types but also helps to
reliably manage the power demand even in the event of thefts. This is the first
work to develop a solution that bridges the gap between the energy theft detection
and demand management research areas. In this work, we first propose an energy
theft detection system that preserves users’ privacy by using split learning as the
architecture of our machine learning approach. This approach detects energy thefts,
estimates the amount of stolen energy and manages the future demand even in cases
of thefts. Moreover, to avoid the issue of feature leakage, we utilise a lightweight
masking approach to lower the chances of any inference attacks. An enhanced
privacy-preserving approach is also proposed by using an added neural network layer
that is trained to randomise the outputs of the client’s part of the model. In both
proposed designs, users’ data are kept private while the system can still detect energy
thefts.

The remainder of this chapter is organised as follows. In Section 5.3, we explain the
details of the system and threat models employed in this work. In Section 5.4, we give
a detailed description of the proposed privacy-preserving energy theft detector with
the demand-management model. In Sections 5.5 and 5.6, we present our experimental
setup and results indicating both the detection abilities of the proposed approach
and its privacy properties. We discuss threats to validity in Section 5.7. Finally, we
conclude the chapter in Section 5.8.

5.2 Preliminaries

In this section, we provide an overview of the pseudorandom number generator
(PRNG) algorithm and the quantisation process to be used in the proposed model.
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5.2.1 Pseudorandom Number Generation

A Pseudorandom Number Generator (PRNG) algorithm produces a sequence of
numbers that appear to be random but are generated using a deterministic process.
Unlike true random number generators, PRNGs start with an initial value and use
mathematical operations to produce a sequence of numbers that, while not truly
random, exhibit properties of randomness. Linear congruential generators (LCGs)
are commonly used PRNG algorithms with sequences generated using the formula
Xn+1 = (A(Xn)+C) mod M , where Xn is the current number, A is a multiplier, C is
an increment, and M is the modulus. The choice of parameters significantly affects
the quality of the generated sequence.

5.2.2 Quantisation

Quantisation is a process used to represent continuous values (floats) with discrete,
quantised values. It involves dividing the range of continuous values into a finite set
of discrete levels or intervals. Specifically, it is done by mapping the min/max of
the continuous values with a chosen min/max threshold of the integer range [−β, β].
This transformation introduces a trade-off between accuracy and data storage or
transmission efficiency, where higher precision, or bigger β numbers, provides more
accurate representation but requires more bits to store or transmit the data.

5.3 System Model and Threat Model

In this section, we first describe the system model of the proposed scheme and then
explain the threat model considered.

5.3.1 System Model

Our system model includes three main entities as explained in Chapters 3 and 4:
clients, aggregators, and a server. In this work, clients are the entities of our proposed
system whose data privacy we aim to protect.
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5.3.2 Threat Model

In our threat model, we consider a set of threats that includes several possibilities for
energy theft attacks and feature inference attacks.

Energy Theft Attacks (ETA)

In these attacks, we consider that a percentage of clients may modify their
consumption/generation data with the goal of gaining a monetary advantage. This
means that an energy theft attack can be launched by either increasing the generation
readings to earn extra money or decreasing the consumption readings to lower the bill.
Therefore, any deviation from the actual value of both generation and consumption
readings is considered energy theft. This type of attack not only causes monetary
losses but also greatly affects the safety and accuracy of the whole system’s operations.
A great number of demand management approaches rely on the data sent by the
clients. If there is an energy theft of any kind, it will affect the accuracy and reliability
of any estimated future demand.

We consider the four types of energy theft attacks introduced previously in
Chapter 3, which are: consumer thefts, prosumer thefts, consumers balance thefts
and prosumers balance thefts. We also consider an additional case where a balance
attack is achieved by a single client. In this case, a prosumer may wish to reduce their
reported consumption by a constant value or percentage for a period of time T and
increase their own reported production by the same value. This is a new variant of
the balance attack concept launched by a single user and we refer to it as single-client
balance thefts.

Feature Inference Attacks (FIA)

As explained in Chapter 4, in a feature inference attack, the adversary tries to find
attributes that are close to their actual values with a success rate significantly greater
than a random guess. In this chapter, we extend the definition of FIA to include three
different scenarios where passive adversaries try to build an inference model that maps
the split layer outputs to the original raw readings of the client. In particular, the
adversary follows these steps to perform the feature inference attack: 1) The adversary
builds a dataset that contains their raw readings as targets and the split layer’s output
as features of this dataset. 2) The adversary builds an inference model W

(−1)
c that

has the opposite structure of the client’s proposed model Wc and trains it to map the
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Figure 5.1: Illustration of the Feature Inference Attack

client’s outputs oi to their original raw data di. 3) A victim smart meter i reports
their model’s outputs oi (i.e., the output of the split layer via running the forward
pass of the victim’s model) to the aggregator. 4) The adversary captures those data
and tries to infer the original features from the split layer outputs using W−1

c , the
previously built inference model from step 2. The steps of this attack are illustrated
in Figure 5.1.

As stated before, we study this attack under the following three sets of
assumptions:

• Case 1 (FIA1): In this adversary setting, we assume that the adversary is
a client with a dataset that comes from the same distribution as the victim’s
training data. Also, since both the victim and the adversary are clients, they
have the same model structure. The adversary can use this to their advantage
to build the inference model. This is the most strict but realistic attack setting
out of the three FIAs.
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• Case 2 (FIA2): For this setting, we assume that two or more clients collude
with each other in an attempt to train a more robust inference model. The
inference model is then used to infer features from the split layer outputs
of other victims. This adversary setting is more powerful than the previous
one as it involves training the inference model with more data, allowing faster
convergence.

• Case 3 (FIA3): This is another collision attack that includes the aggregator
along with the clients. In this setting, the colluding clients train the inference
model using their joint datasets, and the aggregator helps to guess the mask as
it already knows the sum of all clients’ masks.

Note that the proposed feature inference attack can be performed during the training
or deployment phases of the proposed model.

5.4 Proposed Privacy-Preserving Scheme

Our proposed privacy-preserving scheme is a multi-output neural network model that
takes every client’s reading at time t and outputs three results: an indication of
whether theft is suspected or not; an estimation of the energy theft value, i.e. the
deviation from the actual reading (either an increase or a decrease in the production or
consumption reading); and the estimated demand of the next period t+1. In this part,
we show how we use split learning along with masking as privacy protection measures
to protect the privacy of the client’s energy data in the multi-output model. To
protect clients’ privacy from semi-honest aggregators and eavesdroppers, we employ
split learning as the first layer for privacy protection. Moreover, we add an extra
privacy-preserving measure, i.e. masking, to split learning to protect the privacy of
the client’s level outputs and prevent feature-inference attacks. We propose to use a
masking-based privacy-preserving scheme that uses pseudorandom number generators
to generate masking matrices that mask the clients’ outputs of the split layer. We
assume that the masking process is done in a trusted execution environment at the
client device. This can ensure that the client cannot manipulate the stored random
parameters and compromise the integrity and security of the system. The proposed
scheme consists of three phases: initialization, mask generation and verification, and
privacy-preserving energy theft detection and demand estimation phase. A summary
of the notations is provided in Table 5.1. For simplicity, we omit the subscript k for
every timestamp t as all operations are done in a single timestamp.

99



CHAPTER 5. PRIVACY-ENHANCED ENERGY THEFT DETECTION FOR EFFECTIVE
DEMAND MANAGEMENT

Table 5.1: Notations

Notation Description

SMi Smart meter i
Agi Aggregator i
M System’s modulus

Ai
The multiplier for the pseudorandom number generator algorithm of
smart meter i

Ci
The increment for the pseudorandom number generator algorithm of
smart meter i

m # of split layer outputs of a client
n # of smart meters in a cluster
ri The vector of random numbers used by smart meter i
rji A random number to mask the jth output of smart meter i
di The readings (data) of smart meter i
oi The outputs of the split layer of smart meter i

o1−n The sum of clients 1 to n outputs
oa The output of the aggregator
ôi Masked outputs of smart meter i
h(.) A hash function
h∗(.) A homomorphic hash function

5.4.1 Initialization Phase

This phase consists of the following steps:

Step I1: During the initialization of the system operations, the server chooses a
modulus M ≫ 0 to be used during all system operations. Moreover, each client’s
smart meter SMi is initialised with random parameters Ai and Ci to be used
in the pseudorandom number generator algorithm, where the multiplier Ai should
be 0 < Ai < M and the increment Ci should satisfy 0 ≤ Ci < M . These random
parameters are stored on the server side and should be unique for every client. This
is because we want to reduce the possibility of generating the same random numbers
and recovering the original information in cases where passive adversaries intercept
the communication.

Step I2: The server initialises each smart meter SMi with a vector of random
numbers of size 1 × (m × t) to be used to mask the m outputs of the split layer
for t timestamps. This random vector is also stored at the server side for every SMi,
which makes the server store a (n× (m× t)) matrix at its side. Each random number
in the matrix is denoted as rji for each j ∈ 1...m and i ∈ 1...n. The value of the
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Figure 5.2: Masking Matrix

random numbers should be much larger than the outputs of each neuron to ensure
that sensitive information is not leaked. The full matrix stored on the server side can
be seen in Figure 5.2, where each row belongs to a single smart meter. We assume
that these random numbers cannot be manipulated by the clients. This is because
the manipulation of these parameters could potentially lead to the compromise of the
whole masking approach.

Step I3: The server sends the summation of all random masks∑n
i=1 rji , ∀j ∈ 1...m to the aggregator using a secure channel to be used later

in the unmasking process.

Step I4: The multi-output model is split between the system’s entities, where
every smart meter and every aggregator has a copy of the initialised version of its
part. The proposed model is built as a stacked autoencoder (SAE), which is built
by stacking multiple autoencoders to extract features layer by layer to obtain deeper
and more abstract features that transform sensitive information into non-sensitive
abstract data [138, 139]. SAEs have also been proven to be better at producing
features than the traditional deep auto-encoders [140]. The distinct splits of the
clients, aggregators and server can be seen in Figure 5.3.
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Figure 5.3: The Multi-Output NN Model Architecture

5.4.2 Mask Generation and Verification Phase

After t timestamps, the mask vectors and matrix get updated when all the random
numbers are used. This is done during the mask generation and verification phase
following these steps:

Step M1: Each SM uses its pseudorandom generator parameters Ai and Ci along
with the linear congruential generator (LCG) algorithm to generate a new vector of
random masks as follows: r∗ji = (Ai(rji) + Ci) mod M) , ∀j ∈ 1...m and ∀i ∈ 1...n,
where r∗ji refers to the new random mask.

Step M2: At the server side, each client’s vector is updated using the LCG
algorithm and each client’s unique pseudorandom parameters.

Step M3: The client calculates a hash integrity output vi = h(r∗ji | t |SMid) using
a one-way hash function and sends vi to the server to acknowledge that they have the
same set of random numbers.

Step M4: The server validates its sets of random numbers and sends an
acknowledgement to the clients to confirm the new set.

Step M5: The summation of each new random mask
∑n

i=1 r
∗
ji , ∀j ∈ 1...m is sent

by the server to the aggregator using a secure channel.
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5.4.3 Privacy-Preserving Energy Theft Detection and
Demand Estimation Phase

This is the main phase of the proposed model, where the proposed multi-output model
is trained in a privacy-preserving approach. This phase consists of the following steps:

Step P1: After the client and the server approve the masking matrix, each client
uses their smart meter’s energy reading for timestamp t to train their part of the
model up to the split layer where they get the outputs oi.

Step P2: To protect the privacy of these outputs, the client uses the random
vector ri to mask them. However, since the masking is carried out in the integer
domain and the client outputs are of floating point numbers, the client needs to
quantise the outputs first before masking them. Quantisation, as discussed in
Section 5.2.2, is mainly done to map floats to integers. Here, it is done by mapping the
min/max of the outputs (weights or activations) with a chosen min/max threshold of
the integer range [−β, β]. Therefore, the outputs of the split layers oi are first mapped
to an integer in the [−β, β] domain by performing the following: oi = truncate(oi×β)
and then masked with the random vector using ôi = (oi + ri)modM . To ensure the
validity of the masked data during transmission, the client calculates a verifier message
vi using a homomorphic hash function h∗ and sends it, along with the masked data,
to the aggregator. This is done as vi = h∗(oi + ri).

Step P3: After receiving the masked data and verifier messages from its set
of clients, the aggregator aggregates the masked data

∑n
i=1 ôi. Subsequently, the

aggregator needs to unmask the aggregated data by subtracting the summation of
the masks. This is done to obtain the unmasked outputs by o1−n = (

∑n
i=1 ôi −∑n

i=1 ri) mod M . Next, the aggregator needs to verify that the obtained unmasked
output is correct and that the clients did not manipulate the masking process. Since
the aggregator knows the summation of all random masks, it can calculate the verifier
as v∗ = hash∗(o1−n +

∑n
i=1 ri) mod M and compare it with the aggregated verifiers∑n

i=1 vi. If the two values are equal, the obtained output is deemed correct. Next,
the average of the obtained outputs Avg(o1−n) = o1−n ÷ n needs to be dequantised
using the opposite quantisation operation to use the average of the clients’ outputs
in the rest of the model.

Step P4: After that, the aggregator completes its part of the model to get its
output oa and sends these outputs to the server.

Step P5: Upon receiving all aggregators outputs at the server side, the server
aggregates all received outputs and completes training the ML model. The final
output of the server consists of mainly three outputs: (a) whether each client’s input
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Figure 5.4: Representation of the Privacy-Preserving Energy Theft Detection and Demand
Estimation Phase Steps

is an energy theft or not. (b) An estimation of the energy theft value. This output
estimates how much the reported consumed or produced energy deviates from the
actual ones. (c) And the final output estimates the energy demand for the next
timestamp (t+ 1). The steps of this phase are illustrated in Figure 5.4

Privacy-Enhanced Energy Theft Detection and Demand
Estimation Scheme

We expand our privacy-preserving multi-outputs model (shown in Section 5.4.3) and
propose a more enhanced privacy scheme that trains an additional noisy layer at the
client side. The trained client’s part of the SAE extracts abstract features from the
user’s raw data. A small perturbation is added to these abstract features to maximise
the independence between these abstract features and the raw data. This is done by
training an extra layer at the end of the client’s part of the model that takes the
client’s output as input and outputs the client’s output with added Gaussian noise.
The loss function of this noisy layer is the distance correlation dCor between the raw
data and the noisy output, and the training objective is to minimise it as much as
possible. The steps of this scheme are as follows:
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Step PE1: Define a noisy neural network layer with an input and output size
of m, the same size as the output of the client’s split layer.

Step PE2: Process the client’s raw data through the client’s model up to the
split layer to obtain oi.

Step PE3: Generate a set of Gaussian noise values and input it to the noisy layer
to get a set of noise values added to oi before they are masked.

Step PE4: Train the noisy layer to add Gaussian noise to the client’s output
in a way that minimises the dCor between the raw data and the noisy outputs. In
the training phase, two loss functions are calculated and a weighted combination is
determined: the first loss function L1 is the original loss of the SAE at the server
side that is responsible for accurately detecting energy thefts and estimating the
theft’s amount and energy demand, while the second loss function L2 minimises the
dCor value between the raw data and the noisy outputs. Since the two losses have
conflicting objectives (accuracy vs. privacy), we need to combine the losses into one
total loss. The total loss function can be calculated as follows: LossFunction =
L1 + αL2, where α weights the trade-off between accuracy and privacy. The rest of
the scheme is performed in a similar way to those in Section 5.4.3 Step P2.

5.5 Experimental Setup

To evaluate our proposed scheme, we built our multi-output neural network using
multiple Python 3 [106] libraries: Pandas [141], PyTorch [124] and Optuna [142].
We used Pandas for preprocessing the data, PyTorch for implementing the three-tier
split learning architecture, and Optuna was used as a hyperparameter optimization
framework to automate the search for the optimal hyperparameters for our proposed
scheme. The search space included four different hyperparameters, including the
number of hidden layers (between 6 and 20 inclusive), each hidden layer size
(between 4 nodes and 128 nodes inclusive), the learning rate (between 1e−1 to 1e−5

inclusive), and the optimizer algorithm (either Adam, SGD or RMSprop). This
search space was evaluated with a multi-objective function trading off maximising
the accuracy of energy theft detection with minimising the mean squared error of
both the estimated energy theft and the estimated demand. Preliminary trials using
Optuna furnished us with the following effective hyperparameters used throughout our
experiments: 10 hidden layers of sizes [65, 91, 33, 89, 72, 33, 76, 30, 56, 44], a learning
rate of 1e−4 and with the Adam optimizer. The ten hidden layers are split between
the three tiers: client, aggregator, and server, as three layers, three layers, and four
layers, respectively.
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For our experiments, we reused our own developed dataset from Chapter 3 which
includes energy readings of 1596 clients, 49 of which are prosumers with solar panels.
For each client, 14 physical features along with 16 dynamic features are reported
every 15 minutes. Since the readings in this dataset are all true (normal) readings,
we mathematically changed 50% of them to be malicious data points. The attack
scenarios described in Section 5.3.2 are used to produce these malicious points where
constant deviations l are randomly chosen between 100 and 400 watts, and percentage
deviations k are also randomly chosen between 10% and 40% of the actual reading.
The dataset was split into 80% training and 20% testing with a batch size of 128. All
input features were normalised using the Min-Max scaler using the default range [0,1].
We also extracted each reading’s minute, hour, month, day, day of the year, and day
of the week as extra features from the timestamp.

5.6 Results and Discussion

We conducted several experiments to cover the two broad threats identified in our
threat model. In the first set of experiments, we evaluate the accuracy of our proposed
model in detecting energy thefts and estimating theft values and energy demand. This
set of experiments highlights results in cases of the five different energy theft attacks
explained in our threat model. In the second part of this section, we evaluate the
privacy of our proposed model and the privacy-enhanced version in terms of distance
correlation and the successfulness of the three feature inference attacks (FIA1 to
FIA3 ) explained in our threat model. Results of the above two sets of experiments are
presented in Section 5.6.1 and Section 5.6.2, respectively. Furthermore, we analysed
the proposed scheme’s computational overhead to ensure its applicability in real-world
scenarios. Finally, in Section 5.6.4, we compare the proposed privacy-preserving
approach with state-of-the-art approaches to give a fair view of where our proposed
scheme stands.

5.6.1 Energy Theft Detection Experiments

The results of our energy theft attack detection and energy theft value and demand
estimations are promising. We evaluated the performance of our system using several
metrics, including accuracy, precision, recall (detection rate DR), and F1 score. We
also used the coefficient of determination r2 and the symmetric mean absolute error
SMAPE with a 95% confidence level to evaluate how good our estimations are for
both estimating the theft value and the demand for the next timestamp (t+1). These
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results are shown in Table 5.2, where we reported the results of every energy theft
attack type presented in Section 5.3.2 on a single column. Then all attack types are
presented together in a single dataset in the last column, “All Theft Types” column.
The table also shows the r2 and SMAPE results for our two output estimations.

From the results in Table 5.2, we can see that our detection model performs
exceptionally well in detecting all types of energy theft attacks. The overall
performance is very good in the case of “All Theft Types” with an accuracy and F1
score of about 94% for both, a precision of 96.19%, and a detection rate of 92.17%.
Moreover, our model performs well in estimating the energy theft values and the
demand for (t + 1), which is also illustrated in Figure 5.5. The table shows that
the r2 of the estimated theft value and the demand t + 1 ranged between 0.99
and 0.82, indicating good performance. The SMAPE values from the table show
the percentages of the mean absolute error for our two estimates. We can see that
the average percentage of error in estimating the theft value of “All Theft Types” is
equal to 8.83%±0.56 with a 95% confidence level. In particular, in the event when
all theft types are present in the dataset, our theft value estimates are between (the
actual value - 8.83%) and (the actual value + 8.83%), i.e. Actual value − 8.83% ≤
Predicted value ≤ Actual value + 8.83%. The table also shows that the SMAPE of
estimating the theft value of prosumers’ balance thefts is higher than the other results.
This can be due to the specific characteristics of electricity production. Produced
energy data, unlike consumption data, are sparse and irregular. For example, where
solar panels are concerned, energy is produced only during daylight, and is zero
otherwise. Moreover, energy production is extremely affected by weather conditions.
Irregularity in the data and having gaps can lead to inaccurate estimations and thus
skew the SMAPE value.

Furthermore, the estimates of the future demand for (t + 1) are better with an
absolute percentage error of 8.10% for the “All Theft Types” case. These results
are also confirmed in Figure 5.5a and Figure 5.5b, where the actual values of theft
(fraudulent deviation of consumed/produced energy) and demand are plotted against
the predicted ones. From the two sub-figures, we can see that the model is performing
well. The predicted values are significantly close to the regression line (i.e., the actual
values), indicating low percentages of error.

To support our main motivation, which states that managing the demand-response
of energy needs to take energy theft detection and estimation into account, we
performed an experiment where we compared the performance of our demand
estimation output in two cases: (a) taking theft detection and theft value estimation
outputs into account and (b) in the case where the previous two outputs do not
contribute to the demand (t + 1) estimation output. The results of the two cases
can be seen in Figure 5.6, where it is observable that considering theft detection and
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Table 5.2: Numerical Results of the Proposed Scheme for Different
Energy Theft Attacks

Consumer

Thefts

Prosumer

Thefts

Consumers

Balance

Thefts

Prosumers

Balance

Thefts

Single-

Client

Balance

Thefts

All Theft

Types

Accuracy 99.99 99.86 99.83 99.01 99.67 94.46

Precision 99.99 99.85 99.79 98.97 99.34 96.19

Recall (DR) 99.98 99.86 99.85 98.95 99.99 92.17

F1 Score 99.99 99.85 99.82 98.96 99.66 94.14

r2 (Theft Value) 0.99 0.99 0.99 0.99 0.95 0.92

r2 (Demand t + 1) 0.86 0.84 0.82 0.85 0.85 0.84

SMAPE (Theft Value) 2.48±0.04 2.89±0.14 3.89±0.07 26.63±0.64 8.39±0.13 8.83±0.56
SMAPE (Demand

t + 1)
7.57±0.07 7.60±0.05 8.30±0.07 7.87±0.05 7.91±0.07 8.10±0.06

theft value estimation when estimating future demand has a great advantage. There
is an improvement of around 7.7% in how well our estimator estimates the actual
demand values (i.e. r2 value) and a significant decrease in the symmetric mean
absolute percentage error (SMAPE) of the demand’s estimates from 17.77 ±0.11
to 8.10 ±0.06. This confirms that taking theft detection and the estimated theft
values into consideration in demand-response management is beneficial and justified.

Remark. It is important to consider thefts and their values in managing the future
demand for an energy system.

5.6.2 Privacy Experiments

To assess how much our proposed model enhances the privacy aspect of the detection
approach, we used two different sets of evaluation metrics. The first is by using
distance correlation, defined in Section 4.2.1, and the other is by measuring the
inference error of an inference attack. The inference error shows the degree of accuracy
in inferring the private raw features, where higher errors indicate a lower likelihood
of successfully launching a feature inference attack. These two metrics are assessed
in the following two subsections.
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(a) Fraudulent Deviation of Consumed/
Produced Energy (b) Demand (t+ 1)

Figure 5.5: Actual vs. Predicted Values of the Model’s Two Outputs: Demand (t+1) and
Theft Value (Fraudulent Deviation of Consumed/Produced Energy)

Privacy Analysis Using Distance Correlation

We evaluate the distance correlation dCor between the users’ inputs and the outputs
that they send to the aggregator in an attempt to measure both linear and non-linear
dependencies between the two. The aim is to lower this dependence as much
as possible so that it would be difficult for an attacker to launch a successful
feature inference attack. The first part of Table 5.3 compares the results between
the non-privacy-preserving approach and the proposed privacy-preserving one using
different masking levels. Each row indicates a different case where we used different
values for β, which is the quantisation limit. As can be seen from the table, the dCor
value in the non-privacy approach is equal to 0.801, which is high, indicating a strong
dependency between the private SM’s inputs and the sent outputs. Then when we
apply the privacy-preserving approach, the dCor value decreases to 0.612, improving
the privacy levels of the client’s private reading by about 23%. Also, when setting β
to the maximum level, we get almost the same detection performance results as the
non-masking case, with a huge reduction (around 23% decrease) of the dCor value
between the user’s input data and the outputs sent to the aggregator. The table
also shows that the detection performance is unreliable when we set β to values less
than 10e3. The reason is that quantising a float to an integer with small ranges results
in a huge precision loss which leads the model to be unable to learn how to detect
theft accurately. Therefore, we adopt the value of β = 10e8 for all future experiments
where we apply our proposed privacy-preserving approach.
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(a) Performance of estimating demand (t + 1)
taking theft detection and theft value estimation
into account

(b) Performance of estimating demand (t + 1)
without taking theft detection and theft value
estimation into account

Figure 5.6: Performance of Demand-Response Management Part of the System in Two
Cases: (a) Taking Theft Detection and Theft Value Estimation into Consideration, and (b)
Without Taking Them into Consideration

The second part of Table 5.3, shows distance correlation results when the
privacy-enhanced version of our proposed scheme is used. As described in
Section 5.4.3, we add a noisy layer to the proposed approach to help conceal the users’
inputs. The table shows how adding this noisy layer with different α values improves
the distance correlation results. However, we also see that by setting α too large, the
detection performance decreases as the machine learning model tries to optimise the
distance correlation more. Setting α to a small value of 0.0001 will still give the same
detection performance with increased privacy preservation of around 35% compared
to the non-privacy approach.

Remark. There is a clear trade-off between privacy and detection performance. The
better privacy degree we achieve from lowering the dCor, the worse the results are in
terms of detection accuracy.

Privacy Analysis Using Inference Error

In this set of experiments, we evaluate the attacker(s)’ abilities to launch a successful
feature inference attack (FIA) against our proposed schemes. We compare how good
the attacker is in inferring the victims’ original data after building an inference model
where these experiments are done as follows: the attacker(s) build an inference model
W−1

c by training an inverted version of the client’s original model Wc. This inference
model W−1

c takes the split layer outputs oi or the masked output ôi as inputs and
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Table 5.3: Performance of Different Masking Levels β and Different
Noisy Layer Training Levels α

Scheme Used Accuracy Precision
Recall
(DR)

F1-
Score

dCor

Non-privacy-preserving
approach (no masking)

93.00 92.75 92.73 92.74 0.802

Privacy-preserving
proposed scheme
(with masking)

β = 10e8 94.46 96.19 92.17 94.14 0.612 (-23%)

β = 10e7 93.44 93.56 92.79 93.17 0.613

β = 10e6 93.05 93.19 92.35 92.77 0.613

β = 10e5 92.28 90.48 93.88 92.15 0.613

β = 10e4 91.86 91.11 92.10 91.60 0.667

β = 10e3 89.36 86.81 91.92 89.29 0.692

β = 10e2 57.53 53.36 94.91 68.31 0.797

β = 10e1 55.39 52.08 94.25 67.08 0.801

Privacy-enhanced
proposed scheme
(with masking &
noisy layer)

β = 10e8
α = 0.01

77.45 75.33 80.24 77.42 0.238 (-70%)

β = 10e8
α = 0.005

86.23 90.13 82.45 85.21 0.241 (-70%)

β = 10e8
α = 0.001

88.64 93.75 82.11 88.30 0.295 (-63%)

β = 10e8
α = 0.0005

89.66 95.13 82.43 88.29 0.289 (-64%)

β = 10e8
α = 0.0001

91.14 95.41 90.33 89.23 0.525 (-35%)

trains the model to map them to their original data di. The inference model is trained
using the attacker(s)’ own data, which means that the more clients that collude to
train the inference model, the more powerful it is. The model is tested to infer other
victims’ data from the outputs they send where these victims’ data are not part of
the training phase. After that, the mean squared error (MSE) between what has
been inferred and the actual data is measured to assess the feature inference attack
accuracy rate, where lower values of MSE indicate higher chances of attack success.

FIA1 Experiment In our first experiment, we look at the first type of feature
inference attacks, FIA1, where one attacker builds an inference model and tries to
infer other victims’ original data. In Figure 5.7, we measured the average MSE of the
inference model built in three cases: when the non-privacy-preserving approach (no
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masking) is used, when the proposed privacy-preserving approach (with masking)
is used, and finally when the proposed privacy-enhanced approach (with masking
and noisy layer) is used. As we can see from the figure, the inference error is
much less when the non-privacy-preserving approach is applied. The error is an
average of

√
0.022 = 0.14, which is significantly lower than the error in cases where

one of our proposed privacy-preserving approaches is applied. With the proposed
privacy-preserving and the privacy-enhanced approaches, the error is big in the first
training rounds with an average value of

√
0.2 = 0.44. This means that the inferred

values have a mean error of 0.44, which is very high considering that all of our
original raw feature values are normalised in a range between [0-1]. At later stages of
the training, after 50 epochs, the error drops to around

√
0.051 = 0.22, which is still

double the error of the non-privacy-preserving approach.

Remark. Using one of the proposed privacy-preserving approaches doubles the error
of the feature inference attack making the attack less successful.

Figure 5.7: Inference Error of Inference Attack FIA1 Using the Non-Privacy-Preserving
Approach, the Proposed Privacy-Preserving Approach and the Proposed Privacy-Enhanced
Approach

FIA2 Experiment In the second experiment, we assess the inference error in case
two or more clients collude with each other, which we refer to as (FIA2). In this
attack, the colluding attackers will train an inference model using their joint datasets.
The built model is used to infer other victims’ original data (those clients who did
not participate in the training). Figure 5.8 shows the results of the inference error in
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terms of MSE in three cases: (a) using the non-privacy-preserving approach; (b) using
the proposed privacy-preserving approach; (c) using the proposed privacy-enhanced
approach; and finally (d) a summary figure comparing the three approaches together.
In all cases, there were 49 clients in the same cluster, and we tested with different
percentages of colluding clients. The first thing we notice from these figures is that
as the number of colluding attackers increases, the inference error drops faster. This
confirms the basics of any machine learning where having more data in training results
in faster convergence and more accurate models [143].

Looking at Figure 5.8a, we can see the results of performing an FIA2 attack in
the case where the non-privacy-preserving approach is used. Once again, we can
see that the inference model converges faster and gives better results as the number
of colluding clients increases. Moreover, in all the cases of different colluding client
numbers, the MSE of the inference attack is at around 0.022, which is almost half
the error in cases where either the proposed privacy-preserving approach (shown in
Figure 5.8b) is used or when the privacy-enhanced version (shown in Figure 5.8c) is
used. To summarise these results, the last sub-figure, Figure 5.8d, shows a comparison
between the inference error of attack FIA2 using the non-privacy-preserving approach
and the two proposed privacy-preserving approaches. In this figure, the MSE is
used for this comparison after training the model for 100 epochs. We can see that
the inference error of the proposed privacy-preserving approaches is more than the
non-privacy approach for all different numbers of colluding clients. It is double the
error in all these cases, indicating an added advantage of using the proposed schemes
over the non-privacy one and making it difficult for attackers to launch accurate
feature inference attacks even when they collide.

Remark. An increased number of colluding attackers in an FIA allows those
attackers to get a more accurate inference model faster.

FIA3 Experiment In this experiment, we evaluate the attackers’ ability to perform
the last feature inference attack, FIA3. In this attack, a group of malicious
clients collude with an aggregator. We performed this attack in case our proposed
privacy-preserving approach is used and compared it with the results of FIA2. From
Figure 5.9, we see that there is not much advantage of having the aggregator as a
collaborator in this attack. This proves that splitting our proposed privacy-preserving
scheme between the system’s entities improves the system’s privacy even with
honest-but-curious aggregators.
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(a) Non-privacy-preserving approach (b) Privacy-preserving approach

(c) Privacy-enhanced approach
(d) Summary comparison between the three
approaches

Figure 5.8: Inference Error of FIA2 Using the Non-Privacy-Preserving Approach, the
Proposed Privacy-Preserving Approach, and the Privacy-Enhanced One
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Figure 5.9: Inference Error of FIA3 vs. FIA2 Using the Proposed Privacy-Preserving
Approach

5.6.3 Computational Overhead

In this section, we present the analysis conducted to evaluate the performance of
our proposed models in terms of computational time. We do so by computing the
time needed to complete the execution of one round at the client’s smart meter.
This analysis provides valuable insights into the efficiency of a model. Here, we
compare three models: the privacy-preserving proposed scheme (with masking), the
privacy-enhanced proposed scheme (with masking & noisy layer), and the federated
learning scheme.

The results in Table 5.4 reveal significant differences among the three schemes.
The privacy-preserving proposed model has the shortest execution time, as expected,
due to its simplicity in providing privacy using masking and because only part of
the model is executed on the client’s side. The federated learning scheme exhibited
the longest execution time of the three models. The fact that the complete model
needs to be run in the smart meter resulted in more extensive calculations leading
to longer execution times. Surprisingly, our privacy-enhanced proposed model has
almost doubled the execution time of the privacy-preserving scheme. This indicates
that the addition of only a single layer can lead to a notable increase in execution
time.
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Table 5.4: Computational Overhead

Scheme
Computational

Time (in seconds)

Privacy-preserving proposed scheme (with
masking)

0.0049

Privacy-enhanced proposed scheme (with
masking & noisy layer)

0.0090

Federated Learning 0.0163

5.6.4 Comparison with Other Privacy-Preserving Schemes

To give a fair evaluation of our proposed model against state-of-the-art energy theft
detectors, we compared our work with the previously reviewed privacy-preserving,
federated-learning-based approaches: FedDetect [68] and FedDP [69]. Similar to
these approaches, we used the State Grid Corporation of China (SGCC) dataset [53].
In particular, Table 5.5 shows the results of the three models in terms of accuracy,
precision, recall, and F1-score. Note that the authors of FedDetect [68] report only
the accuracy. As we can see from this table, the performance of the three approaches
is relatively the same but with a great increase in the recall (detection rate) result
from our proposed scheme. Therefore, we can argue that our approach gives better
results in terms of energy theft detection. Moreover, although the performance of
our proposed scheme is almost the same as [68] and [69] in terms of energy theft
detection, these two schemes lack some important features, as discussed previously
in Section 2.10 and Table 2.9. Both [68] and [69] do not provide functionalities
for estimating the energy theft value, estimating the future demand, and preserving
privacy with minimal communication and computation overheads.

5.7 Threats to Validity

In this section, we address threats to the validity of our multi-output energy theft
detection scheme. These threats required careful consideration and discussion. One
threat to validity concerns the architecture and hyperparameter settings of the
multi-output NN model employed here. It is possible that other architecture choices,
such as the depth of the NN model and the number of neurons in each layer, could
produce different results than those reported here. This has been mitigated by our
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Table 5.5: Comparison of Previous Literature with the Proposed Scheme
in Terms of Accuracy, Precision, Recall, and F1 Score

Scheme Accuracy Precision Recall F1 Score

FedDetect [68] 91.90 - - -

FedDP [69] 91.67 89.03 91.67 88.72

Our Proposed
Scheme

91.63 88.18 96.14 91.99

use of a hyperparameter optimisation tool that facilitated such choices. We used
Optuna to conduct extensive model selection and hyperparameter tuning, allowing
us to find very high-performing models for our simulation dataset. Another threat
to the validity of our study arises from the simplifying assumptions made about the
security of the masking process. This assumption is reasonable and can be easily
implemented in real-world scenarios with the help of trusted execution environments.

There are threats to the generalisation of the proposed model’s findings to
real-world practice. To mitigate such threats and to provide unbiased and impartial
results, we tested our proposed work using the real-world energy dataset (SGCC)
and compared the results with two state-of-the-art models. Although this does not
ensure the generality of our results, it is significant evidence that the outcomes are
likely applicable to other datasets in the same field.

5.8 Summary

This chapter investigated the possibility of achieving our third hypothesis by proposing
a privacy-preserving energy theft detection scheme joined with demand-response
management for smart grid systems. The proposed scheme is the first to bridge the
gap between the two issues. The accuracy of the proposed scheme’s theft detection is
analysed to confirm its robustness against five types of energy theft attacks. Moreover,
the performance of the demand forecasting is also analysed in two settings and
results suggest that considering thefts’ magnitudes when forecasting future demand
provides better results. In addition, two sets of privacy metrics are proposed and
evaluated to ensure that the scheme provides individual meter readings’ privacy. The
overall conclusion of all the experiments shows that the results confirm the third
hypothesis. The proposed scheme outperforms the existing privacy-preserving energy
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theft detectors in terms of detection rate and has significantly greater capabilities
than other approaches as it can estimate the amount of theft along with the future
demand with high accuracy.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarise the main findings of this thesis work. The thesis
hypotheses, provided in Chapter 1, are also revisited to highlight how the research
conducted in this study supports them. Finally, open issues and future work are
discussed.

6.1 Summary of Experiments

Energy theft attacks are considered one of the crucial attacks against smart grids.
Small alterations in the sensed data measurements can severely disrupt these sensitive
networks. Therefore, it is very important to employ defence schemes that counter
them. Several attempts have been made to design such schemes, but significant
limitations remain. The major problems with existing mechanisms for energy theft
detection systems are:

• Different research groups tackle the problem of energy thefts from different
perspectives. Electrical engineering academics deal with the problem using
theoretical approaches such as state estimation techniques that rely heavily
on sensor data from electrical grids. However, as we have seen from our
literature review in Section 2.7, these techniques are complex, unscalable and
do not consider the security of the communication networks. On the other
hand, methods used by computer scientists, such as secure communication and
encryption, can be resource-intensive.
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• Existing solutions focus on a single type of attack scenario launched by
consumers. However, in Section 3.1, we saw how the number of prosumers
has risen significantly in recent years. The introduction of prosumers as new
actors who participate in electrical grid operations must now be taken into
consideration.

• The modernisation of the traditional electrical grids into sensor-based energy
systems has expanded the scale of the produced data from different sources.
However, existing work for detecting energy theft does not fully exploit these
features.

• Privacy of customers’ data is often overlooked. Even when considered, the
privacy level of a solution is not evaluated. This has been highlighted in detail
in Section 2.8.

• It has been shown from our review in Section 2.7 that the research in energy
theft has focused solely on the detection part and has not extended beyond
that. The effect of energy thefts on other functionalities of grids has not been
studied.

To address these limitations, we develop three experimental studies and rigorously
evaluate their performance. Our main objective for this work was to be able to detect
a diverse range of energy thefts accurately and efficiently while preserving customers’
privacy.

Machine learning and deep learning approaches are examined as a means of
anomaly detection in this thesis. The first experimental study in Chapter 3 presented
a cluster-based detector that is able to detect various energy theft attacks from both
consumers and prosumers. We also developed the notion of a balance attack, a novel
attack scenario in which attackers attempt to hide their thefts by balancing the entire
net consumed and generated power. The simulations use a generated dataset that
includes prosumers’ and consumers’ energy usage, as well as data from numerous data
sources. The implementations and findings of this work were able to show a robust
capability in detecting all of the eight considered energy theft scenarios launched
by the two types of customers. The developed model was tested using different ML
approaches in different scenarios, and all results showed high detection rates. This can
confirm what we presented in hypothesis 1 “Combining machine learning techniques
(clustering and classification) can enhance the detection of a range of thefts, including
prosumers thefts”.

Chapter 4 considered the problem of preserving privacy in an ML-based energy
theft detection context. We introduced Three-Tier Split Learning as a private
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collaborative machine learning method for detecting energy thefts without the
requirement to utilise raw data. Our experiments showed that our proposed model
outperformed non-private ones, even in the presence of poisoning attacks. The
approach exhibits strong privacy preservation, which was quantified by the distance
correlation metric, without introducing much communication overhead. Hence,
it provides both effective communication and privacy preservation. Hypothesis 2
“A privacy-preserving ML technique that suits the smart grid environment can be
developed to accurately and effectively detect energy theft while preserving the privacy
of customers’ data” is thus supported with the results in Chapter 4.

The integration between energy theft detection and demand management topics
is then studied in Chapter 5. The work developed is the first to provide a solution
for both problems. We developed a privacy-preserving multi-output model that is
able to detect energy thefts, estimate their magnitudes and use them to aid demand
estimation management. Energy theft detection capabilities, the accuracy of future
demand estimations and privacy preservation level were all tested. The results from
our sets of experiments confirm and support our third hypothesis “A multi-output
neural network framework can be used to simultaneously predict the presence of theft,
predict its magnitude, and use that estimation to make more accurate forecasts”.

6.2 Future Directions

The research of effective detection and defence strategies against energy thefts seems
to be an endless path. In this thesis, we have provided evidence for the specific
hypotheses given in Section 1.1. Future investigation on the following points may
fruitfully extend and build on the contributions made in this thesis:

Exploration of New Threats: In this thesis, we focused on a certain set of
energy theft and privacy attacks. Further research is necessary to analyze and
investigate other attacks. In future, it would be interesting to address ML-enabled
threats, where attackers use machine learning to evade or manipulate the detection
system. Attackers may use various techniques, such as adversarial attacks and
generative adversarial networks (GANs), to deceive the detection system. Adversarial
examples generated by ML-enabled threats can mimic the behaviour of normal
energy consumption and thus evade detection. Moreover, it is crucial to develop
countermeasures to mitigate these threats and ensure the security and reliability of
energy systems.
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Variation in Theft Strategy: Throughout this thesis, we adopted a straightforward
but meaningful attack strategy for energy thefts where we had scenarios of different
attack types and others with different magnitudes of thefts. However, the future
direction can examine more sophisticated types of attack where attackers can vary
their attack pattern over time. When to perform the attack and how often, the
attack’s duration, the theft’s magnitude, and the type of theft can all be varied over
time. An attacker may avail themselves of such flexibility to behave more stealthily
and avoid detection. Widening the attack space in this way facilitates the examination
of so-called advanced persistent threats (APTs) in smart grids. We believe that
the introduction of such novel attack strategies in SGs requires considering the
corresponding countermeasures. We also note that ML-enabled strategies (see above)
may well be developed to make optimal use of available attack flexibility.

Privacy Attacks: In this thesis, particularly in Chapters 4 and 5, we considered two
privacy attacks: poisoning attacks and feature inference attacks. However, as stated
in Section 2.8, there are other ML-based privacy attacks that could be used to extract
sensitive information from machine learning models, such as model extraction, model
stealing, and label inference attacks. It is worth studying their applicability to smart
grids.

Privacy Metrics: A privacy metric aims to measure the level of privacy gained
in a system by applying a privacy-preserving technique. Despite the large number
of metrics in the literature, quantifying privacy in energy theft research remains
unstudied. In Chapters 4 and 5, we focused on a single metric. It would be interesting
to examine the use of other measures of information leakage and formally structure
a unified one that could be used for the evaluation of other privacy-preserving
techniques.

Attack Response and Recovery: The primary focus of our research has been on
the detection aspects of energy theft attacks by generating alerts. However, there
is a trend in intrusion detection research to take active responses to effectively stop
current threats, prevent future attacks and restore normal operations. In the energy
theft detection research, this has not been discussed thoroughly and is a potential
direction for future research. A developed response-aware system has to consider
each situation’s factors and constraints. This includes modelling the cost of response
actions, considering factors such as time and resource constraints, as well as the degree
of autonomy and human involvement.

Energy Theft Prevention: Our approach assumes that users are able to misreport,
and we leave the mechanisms by which this is achieved unspecified. (This allows us to
investigate detection approaches independent of the actual means of attack.) Clearly,
making such misreporting more difficult, and preferably impractical, would be a major

122



CHAPTER 6. CONCLUSION AND FUTURE WORK

advance. This will inevitably involve the development of tamper-resistant hardware
in the grid systems (particularly at the user’s end). The use of machine learning, in
particular, to detect attacks on such hardware seems largely uninvestigated.

Adaptive Detection System: A limitation that most offline ML-based detection
mechanisms face (including ours) is that customers’ energy behaviours can fluctuate
over time which makes the ML-based system susceptible to model drift. Model drift
refers to the situation where the model predictions are degrading over time due to
changes in the environments or consumption/production behaviour. Such change
in the environment requires the model to be updated using online and adaptive
learning processes. This is an important issue that needs full investigation in future
research. The suggested approach is that instead of halting the learning process after
the training phase, the algorithms should continue learning during the operation of
the system. This enables the system to learn from the misclassified cases. By doing
so, the system can reduce the occurrence of false positives and adapt to changing
environments.

Development of a Real Comprehensive Dataset: Having a real-world and
comprehensive energy dataset is an important area of research that can provide
valuable insights into smart grid research in general and energy theft detection
research in particular. Our approaches could be tested using such a dataset to ensure
that the models are accurate, reliable, and effective in real-world scenarios. It also
helps to ensure that the models are robust, generalize well, and can be used safely
and ethically in practice.

Wider Exploration of the ML Pipelines: We have made specific choices with
respect to the ML pipelines adopted in this thesis. There is likely benefit to be gained
from adopting a wider set of techniques within the pipeline. For example, there are
many data preprocessing and feature engineering approaches that could be adopted.
A wider exploration of the ML pipeline involves considering the different approaches
in these stages to identify opportunities that improve the overall process. In the
data preprocessing stage, we can investigate different data cleaning and normalizing
techniques. In the feature engineering stage, feature reduction techniques might
explore and select features that are most relevant to the problem being solved.
Another possibility in this direction is to develop a probabilistic classification model,
which gives the attack’s probability, rather than a straightforward (attack, not attack)
one. This can aid the process of choosing the appropriate response for a detected
attack based on that likelihood.

Finding the Perfect Balance Between False Negatives and False Positives:
Most energy theft detection work seeks to optimise either the detection rate or
accuracy of the detector. Neither guarantees that the number of false positives
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or false negatives is sufficiently low to make a system practical. Having high false
positive rates in an energy theft detector results in an increased number of unnecessary
inspections that eventually will reduce the economic return of the theft detection. On
the other hand, false negatives vary in their importance; larger theft magnitudes will
generally be of more concern than small ones. Therefore, finding a practical balance
between the two in the detection approaches should be investigated.
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Appendix A

Neural Networks

Neural networks (NN), like any other network or graph, are networks that are
composed of nodes (neurons) and edges (weights). The nodes or neurons are arranged
into layers starting from the input layer, followed by one or more hidden layers and
finally the output layer. Each neuron is a computational unit that takes the inputs
from the preceding layer and outputs the weighted sum of these inputs (plus a bias).
The output of each neuron can be restricted using activation functions. The most used
activation functions are Rectified Linear Unit (ReLu), hyperbolic Tangent function
(Tanh) and Sigmoid. These activation functions limit the output value within a
specified range, i.e., ReLu output is from 0 to +infinity, Tanh output is from -1 to
1 and Sigmoid output ranges between 0 and 1. Therefore, each neuron n in layer l
calculates its output zln as:

zln = Al
z(

s∑
j=1

(il−1
j × wl

j) + bn) (A.1)

where A is the activation function, il−1
j is the jth output from the preceding layer, wl

j

is the jth weight of that output and bn is the bias of this neuron. There are two passes
in each round (epoch) of training a neural network: a forward propagation pass and
a backward propagation pass (backpropagation). In the forward pass, the input data
are propagated to the input layer, then proceed to the hidden layer(s), measuring the
network’s predictions up to the output layer where the network outputs the prediction
ŷ. This makes ŷ equals to:

ŷ = AL(WLAL−1(WL−1....A2(W 2A1(W 1X))...)) (A.2)

where L is the total number of layers, W i is the weights vector of layer i and X
is the input vector. This is first done using initial weights and bias (weights and

143



APPENDIX A. NEURAL NETWORKS

bias are initialised randomly). The outputs of all neurons of the same layer are called
activations. The network’s error (loss) is calculated based on the output of the forward
pass prediction ŷ and the desired output y. The loss function is computed for every
output of the neural network as follows: loss = L(ŷ, y). In the backpropagation pass,
the weights and biases of the network are adjusted in proportion to how much they
contribute to the overall error (loss). These adjustment values are called gradients
and they are sent back to along the network to update the neurons weights and bias
where the updated value for each weight w will be: wnew = wold − α(∂loss

∂w
), where α

is a learning rate that controls how much we are adjusting the weights with respect
the loss gradient and ∂ is the derivative of the loss in respect to the that weight w.
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Split Learning Algorithm

This appendix provides a brief description of the three main functions in the Split
Learning algorithm.

Algorithm 2 Split learning algorithm

function Server ▷ executes at round t ≥ 0
for client c ∈ St do

Ac,t ← ClientUpdate(c, t)
Complete forward propagation with Ac,t to get AS,t

Calculate Loss
WS,t+1 ← WS,t − η∇ l(WS,t;AS,t) ▷ Back propagation part for the server
ClientBackprop(c, t,∇ℓ(AS,t;WS,t)))

end for
end function

function ClientUpdate(c, t)
Ac,t ← ϕ
if Client c is first client in t = 0 then

Wc,t ← randominitialize
else

Wc,t ← ClientBackprop(Wc−1,t−1)
end if
for local epoch e do

for batch b ∈ B do
Forward propagation on the client part
Concatenate the activations of cut layer to Ac,t

end for
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end for
send Ac,t to Server

end function

function ClientBackprop(c, t,∇ℓ(AS,t;WS,t))
for batch b ∈ B do

Backpropagation on client part with η∇(AS,t;WS,t)
end for
Update model weights Wc,t+1 and send to next client

end function
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