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Abstract  

Granular damping has been found to be a robust solution for attenuating noise and vibration 

in difficult operating conditions such as space and aviation applications. However, despite 

its huge potential, it has never been the first design option for enhancing the damping of 

structures in practical applications. The primary reason of this is that the energy dissipation 

behaviour of a granular damper exhibits amplitude and frequency dependent non-linearity. 

The work presented here investigates the link between the non-linear granular energy 

dissipation and dynamic motional behaviour of particles considering a broad range of 

excitation amplitude and frequency. The optimum operating conditions of granular dampers 

are obtained. The most significant factors which control the optimum conditions are 

determined to provide reliable guidance for the efficient design of granular dampers. As an 

extension to the relationship developed between the granular motional phase and energy 

dissipation, the influence of particle shape is systematically studied using a large collection 

of non-spherical particle shapes.  
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1 Introduction  

1.1 Role of Vibration Damping  

Mechanical vibrations are often regarded as undesirable motions in machineries, mechanical 

systems and structural elements because prolonged vibration at a resonance frequency can 

be highly destructive. Therefore, vibrational concerns have been a unignorable part of all 

engineering designs for centuries.  

In order to control and avoid excessive vibrations in structures, the introduction of ‘damping’ 

is necessary. It is a substantial property for structures which results in transforming the 

vibrational energy in a system into the form of heat, sound and wear, depending on the type 

of damping method by generating a resistance force against the velocity of system. The 

relative ratio of the amount of this converted (or dissipated) energy to a structural dissipation 

need (or a maximum achievable level) determines the effectiveness of damping.  

If inherent damping is not sufficient to reduce vibration amplitudes to desired levels, as it is 

the case in most of engineering structures, an additional damping design is implemented. 

Whereas active or semi-active damping techniques have been developed for special 

applications, passive damping methods preserve their popularity. Because they are generally 

cost-effective, require relatively low maintenance, can be used as retro-fit implementations 

and can work in broad environmental and dynamic conditions.  



2 

 

The importance and fundamentals of mechanical vibrations had been first addressed in a 

comprehensive way when Rayleigh published his monumental work “The Theory of Sound” 

in 1894 [1]. Up to date, many passive damping applications have been presented in literature. 

These involve friction dampers, viscoelastic material patches, tuneable liquid and mass 

dampers [2,3], but are not limited to those mentioned. However, all damping methods have 

their own limitations, and, therefore, the type of damper design depends on many factors 

such as operating temperature, number of targeted vibrational modes and excitation 

condition. For example; despite their effectiveness in a variety of applications, viscoelastic 

material applications suffer from several major drawbacks: their damping and stiffness 

properties significantly change with frequency and temperature, they are not suitable under 

both cryogenic and extremely high temperatures, and over time they lose their effectiveness, 

frequently requiring maintenance [4,5].  

1.2 Granular Damping  

The ‘particle damper’ is an alternative damping application where relatively small (typically 

spherical) particles are placed inside one or more cavities created at appropriate positions 

within a vibrating structure (a non-obstructive design) or attached to those locations using 

enclosures as shown in Figure 1.1. As damping particles construct a granular medium, the 

‘granular damper’ term is also used to indicate this damping design.  

One of the earliest granular fill suggestions for vibration damping purposes is mentioned in 

[6]. It has been suggested that if thickness of a granular medium is arranged according to 

wavelengths of resonances high structural damping would be achieved at resonance 

frequencies owing to particle material damping. The validity of this viewpoint has been 

tested and verified for very low vibration amplitudes at which particles have small relative 

motions without slipping with respect to each other and enclosure as a result of tension and 

compression within the particles [7].  
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However, as vibration amplitudes become larger, particles can lose contacts with their 

neighbours over parts of the vibration cycle. When this happens, impact and sliding 

interactions occur with neighbouring particles and with the enclosure inner surface. 

Therefore, friction and contact stiffness become affecting vibrational energy dissipation. 

This thesis is primarily interested in medium to large vibration amplitudes where these 

particle relative motions are observed.  

Clearance 

Damper cavity

Granular medium, 

particles

Main 

structure
Damper 

enclosure

Non-obstructive 

design

Classical 

design

Stiffness of 

main structure

Damping of 

main structure   

Figure 1.1: Granular damper designs implemented in a single-degree-of-freedom (SDOF) 

system.  

Granular dampers normally consist of high-modulus, low-loss metallic particles as they 

dissipate the vibrational kinetic energy by friction and impact. Thus, they have a great 

potential for resulting in an efficient reduction in noise and vibration under severe 

environmental conditions. They do not need to operate at a tuned frequency as they can 

provide damping for a broad frequency range. They do not notably affect the host structure 

stiffness. They can operate for a long time requiring relatively low maintenance unlike 

friction dampers – need to provide appropriate fastener tightness to maintain their operations. 

As a result of these advantages and their potential in the continuously developing aviation 
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and space technologies, the applications and investigations of granular dampers have notably 

accelerated in recent years as can be seen in Figure 1.2.  

  

Figure 1.2: Number of published works per three years related with “granular 

damper/damping” or “particle damper/damping” – sourced from Scopus.  

Despite their many advantages, granular dampers have not reached their potential in the field 

of noise and vibration control applications. Because granular energy dissipation is highly 

non-linear (amplitude and frequency dependent). The predictions shown in literature to 

obtain optimum granular damper design are inconsistent with each other. In addition, there 

is still a debate on how the dissipative performance of granular dampers is affected by design 

properties such as particle size, particle material, particle shape, particle number, particle 

packing and void gap (clearance). Thus, these sometimes cause the false impression that 

granular dampers are unpredictable in practical applications.  

1.3 Thesis Aim and Objectives  

This thesis focuses on the determination of fundamental granular energy dissipation 

mechanisms that drive the non-linear behaviour and control dissipation effectiveness in 

granular dampers. As a result, it aims to address the inconsistent nature of observations and 

conclusions presented in literature and lead to the real potential of granular dampers. 
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The study conducted in this thesis can be divided into two main paths as they are hinted in 

the Research Motivation (Section 2.7) following a broad literature review on granular 

dampers presented in Chapter 2.  

The first one is to outline and conduct a relationship between the motional pattern of 

damping particles (granular phase) and their overall non-linear energy dissipation 

characteristic. Granular phase maps are used to show the variation of granular phases 

depending on vibration amplitude and frequency. The primary work here is to produce phase 

maps and compute corresponding dissipated energies for a broad range of excitation 

conditions using computer models. Based on these results, the physical particle motion 

insights in each motional phase are investigated in detail along with granular energy 

dissipation effectiveness potential of each phase. As a result, it aims to generalise the 

conducted relationship which would provide a great design guidance for effective granular 

damper operations and a valuable understanding on the effect of changes in excitation 

conditions on granular energy dissipation effectiveness. The findings are tested by controlled 

experimental studies for a wide range of excitation conditions to show the validity of 

relationship in real environmental conditions. As briefly, the first objective of this thesis can 

be summarised as:  

Research Objective I. To understand the behaviour and efficiency of the principal 

motional mechanisms that govern granular energy dissipation.  

Secondly, most scientific granular damping studies have been conducted using spherical 

particles. However, particles (even hard ones with high durability) can deviate from being 

perfect spheres in practical applications because of plastic deformation and wear arising 

from excessive impact and friction interactions during vibrations. Moreover, particle shapes 

may be deliberately selected as non-spherical for cost and practical reasons [8,9]. Hence, the 
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recent granular damping literature has began accelerating upon this relatively new research 

field [10–12]. Still, the literature on this topic is quite insufficient, and a systematic 

investigation of non-spherical damping particles is desperately needed.  

The second objective can therefore be written as:  

Research Objective II. To investigate the effect of particle shape on the granular energy 

dissipation behaviour in different motional phases and further 

extend the understanding of the relationship between the granular 

motional behaviour and energy dissipation.  

It should be noted that two different sets of particles are determined for the latter objective 

to comply with the systematic investigation target. First, varying deviation level from a 

perfect sphere is considered by changing its sphericity. This is achieved by employing a 

range of oblate and prolate spheroids at different aspect ratios by altering principal 

dimensions of these particle shapes. The second set is determined to obtain the effect of 

varying hollow level in a damping particle. This is studied by employing a range of circular 

toroids at varying ratio of hole diameter to diameter of circular cross-section.  

Equation Chapter 2 Section 1   
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2 Granular Damping: State of the Art  

2.1 Overview  

This literature review has been conducted to investigate the opportunities and challenges 

associated with the efficient design of granular dampers for vibrational energy dissipation. 

Effort has been focused on work carried out to determine and understand the fundamental 

factors which affect non-linear granular energy dissipation behaviour.  

A brief historical development of granular damping phenomena is presented in Section 2.2, 

including a review of its existing engineering applications for noise and vibration control to 

compare the advantages of granular damping with other technologies. An overview of the 

methods that have been used to determine the dissipated energy achieved by granular 

dampers is presented in Section 2.3. The main characteristic behaviours of granular energy 

dissipation are discussed in Section 2.4. Following this, an emerging area of research, the 

relationship between the motional behaviour of granular medium and granular energy 

dissipation effectiveness, is reviewed in Section 2.5. The effects of different damper design 

properties on granular energy dissipation behaviour are then shown in Section 2.6.  

2.2 Development of Granular Energy Dissipation Approach  

2.2.1 Impact dampers (single configuration)  

An ‘impact damper’, which is the origin of granular dampers, typically consists of a single 

auxiliary mass (impactor) that can move between the end walls of a cavity inside a vibrating 
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system as depicted in Figure 2.1. Vibrational energy is dissipated via inelastic impacts 

between the impactor and the walls of the cavity while momentum transfer at each impact 

maintains the operation of damper.  

Impactor

Cavity 

end walls

Clearance 

Damper cavity

  

Figure 2.1: Impact damper in a SDOF system.  

Despite the simple design of impact dampers, they can efficiently suppress structural 

vibrations [13–15]. As the impactor is typically made of metal materials, the energy 

dissipation effectiveness is relatively insensitive to environmental conditions when 

compared to the traditional vibration damping techniques [14,16]. For example, it has been 

shown that an impact damper design can control harmonic lateral shaft vibrations of rocket 

engine turbopumps in a cryogenic environment [17].  

Impact dampers show significantly non-linear characteristics. They result in linear decaying 

in the amplitude of a system undergoing free vibrations [14] and strong amplitude-dependent 

damping performance in a harmonically forced vibrating system [17]. It should be noted that 

such behaviours do not occur in linearly damped vibrating systems [3,18].  

Exact and approximate analytical solutions of the impactor motion are based on several 

assumptions due to the non-linearity of impact dampers [13,16,19]. These solutions and 

corresponding experimental studies have shown that an optimum damper is obtained if two 

equally spaced impacts occur in each vibration cycle in which the impactor and the walls 

have opposite motions (out of phase) at each impact [13,14,19]. Although this optimum 

condition can be met under harmonic excitation, it may not be possible if the vibrations are 
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non-stationary or random [20]. It has been noted that impact dampers produce low damping 

effect in structures if this motional condition is not provided [17].  

There are several parameters that can affect the performance of impact dampers as well as 

the optimum motional condition. The ‘mass ratio’, defined as the ratio of impactor mass to 

main structure mass, monotonically increases the effect of damping in structures [13], and 

this increasing trend slows down at higher mass ratios [14]. The damper clearance is the 

main parameter that controls the optimum motional condition as the impactor needs to travel 

this distance twice in each vibration cycle for the optimum case [13,14,16]. Therefore, the 

optimum clearance is adjusted according to vibration displacement amplitude exposed [14]. 

Impact dampers can be successfully used for controlling resonant vibrations which require 

tuning the damper to a specific frequency similar to well-known tuned mass dampers. As 

impact dampers dissipate energy through inelastic impacts, the coefficient of restitution 

(COR, see Section 5.5.2 for more details) influences damper effectiveness [13,16,21].  

Several attempts have also been made to reduce vibrations of multi-degrees-of-freedom 

(MDOF) structures by employing impact dampers [22–24]. These studies have concluded 

that properly designed impact dampers can provide efficient damping for several vibration 

modes of MDOF systems.  

A major problem with an impact damper is intensive impacts occurred in each vibration 

cycle. These impacts produce high level of impulsive forces, applied to both the impactor 

and the walls, which may yield distortions (significant plastic deformations) on the surfaces, 

and so that can considerably decrease the damper effectiveness. They also generate 

sequential loud noises. To solve this, several studies reinforce the cavity walls with a softer 

material [21,24], but this can reduce the effectiveness as it alters COR and contact stiffness. 

Another major concern of impact dampers is that their performance strongly depends on 
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both mechanical properties of the impactor and enclosure (stiffness, yield strength and COR) 

and operating parameters (vibration amplitude and frequency). It should be also noted that 

impact dampers are not suitable for broadband frequency applications.  

2.2.2 Multi-unit impact dampers  

To reduce the negative effects of intense impacts, the ‘multi-unit impact damper’ 

configuration which involves multiple impactors and damper cavities has been developed as 

shown in Figure 2.2.  

Impactors

Damper cavities

  

Figure 2.2: Multi-unit impact damper in a SDOF system.  

It has been found that a multi-unit impact damper can provide a damping level as much as 

an equivalent impact damper (with the same damper mass), generating less noise [25,26].  

Nevertheless, many of the unfavourable issues in impact dampers are also valid for multi-

unit impact dampers such as strong dependency to loading conditions. It may also not be 

feasible to create multiple voids in a structure to place many impactors. However, as the 

published literature on multi-unit impact dampers is limited and this type of impact damper 

design can demonstrate a rich dynamic behaviour, it is thought that this field appears to have 

a potential for future investigations.  

2.2.3 Bean-bag impact dampers  

A ‘bean-bag impact damper’ comprises a resilient bag filled with relatively small particles 

as illustrated in Figure 2.3. It can be realised that bean-bag impact dampers are the most 

similar form of impact damper to granular dampers in terms of physical construction (see 
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Figure 1.1). In fact, it has been claimed that a granular damper is a novel derivative of bean-

bag damper impact dampers [27].  

Bean-bag 

impactor

Particles

  

Figure 2.3: Bean-bag impact damper in a SDOF system.  

Apart from reducing noise levels and excessive impact forces, bean-bag impact dampers 

have also been shown to be useful in attenuating vibrations for broadband frequency 

excitations and non-stationary vibrations [20,28]. The effectiveness of bean-bag impact 

dampers has been associated with the flexibility level of bean-bag impactor as it reduces the 

pressure of impacts and helps to distribute impact forces to particles [27].  

As a result of the extraordinary physical model of bean-bag dampers, damping (or vibration 

reduction level) estimations are mainly based on empirical approaches [28] or threshold 

predictions using approximated models [27]. Also, the damper performance is highly 

dependent on the bag material, bag shape and bag tightness [28], which complicate the 

design of these dampers.  

2.2.4 Granular dampers: advantages and practical applications  

In order to reduce both the sensitivity of impact dampers to single impactor material 

properties and the adverse effects of intense impacts, a design has been developed: granular 

dampers [29] – where the impactor of impact dampers is replaced by many small particles 

as previously shown in Figure 1.1. The scientific journey of granular dampers accelerated 

when Panossian [4] successfully employed such dampers to reduce high-frequency 
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vibrations in the liquid oxygen inlet tee of a space shuttle engine. Panossian also identified 

the advantages of granular dampers [4,30]. For clarity, these are listed below:  

• They are applied to structures in a non-obstructive way so changes in host structure 

stiffness and inertial properties are low.  

• The effectiveness of granular dampers is relatively insensitive to working conditions 

and operating durations, so that they do not need extensive maintenance work.  

• Granular dampers can efficiently operate under harsh environmental conditions (e.g., 

oily, extremely hot or cold) where viscoelastic materials, isolators and tuned mass or 

liquid dampers would generally fail to work.  

• De-tuning problems generally encountered in tuned mass dampers or impact dampers 

do not significantly affect the performance of granular dampers as they can be 

designed to provide effective broadband energy dissipation.  

• Granular dampers relatively produce less noise levels and less-intensive impacts 

(smaller impact forces) than any version of impact damper.  

Granular dampers are deployed in a variety of industrial fields to reduce structural vibrations 

[31,32]. This involves the following specific applications: antenna boom [33], 

turbomachinery part [34], circuit board [35,36], automotive oil pan [37,38], gear 

transmission system [39,40], tennis racket [41], additively manufactured machine part [42], 

mechanical system exposing chatter vibrations [43], buildings [44], exterior panels of a 

launch vehicle [45] and automotive steering wheel [46], but not limited with these. Granular 

dampers are not only used for vibration attenuation, but in contrast to impact dampers, they 

can also provide noise reduction in structures. A study has shown that existing noise of a 

desktop banknote processing machine can be decreased to a suitable level for an office 
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environment by placing particles at appropriate points [47]. It has been found that granular 

dampers would considerably attenuate sound pressure levels inside an enclosed cavity 

against both acoustical [45] and mechanical [48] excitations. Many of these different 

engineering applications have been extensively reviewed elsewhere [30,46]. Some of 

granular damper designs are illustrated in Figure 2.4 to show the simple applicability of such 

dampers in a variety of structures.  

(a)

Cylindrical damper 

voids with steel 

particles

(b)

Bottom void filled 

with silicon-based 

particles

Cylindrical 

damper enclosure 

with tungsten 

carbide particles

(c)

  

Figure 2.4: Some of the interesting granular damper practical applications: (a) gear [40], 

(b) automotive oil pan [37] and (c) circuit board [36].  

One application area of granular dampers that has received a particular attention from 

researchers and engineers involves the honeycomb structures generally used in space and 

aircraft parts for stiffer and lightweight design. As honeycomb structures naturally have 

voids and also suffer from low-damping capability, granular dampers are directly integrated 

into these voids to enhance their damping capability [38,49,50]. Although it was considered 

that the employed particles would highly increase the total mass of a honeycomb structure, 

it was found that changes in the natural frequencies stay within a moderate range [49]. This 

is because particles do not behave as a lumped mass. Also, it has been shown that the 
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honeycomb structures enriched with particles are very robust to solve vibro-acoustic 

problems [38].  

As it is not possible to construct a general design procedure for all these applications due to 

the complex nature of granular dampers [51], they remain a rich research area for vibration 

damping and noise attenuation applications. Addressing to the effectiveness and robustness 

of granular dampers for wide temperature range and harsh environments, it is thought that 

these dampers will particularly be the main damping method in space and aviation industries. 

Apart from the shown classical implementations, different granular damper integration 

models may be another future path of these dampers – such as the thrust granular damping 

system in which damping particles are placed in an enclosure to absorb vibrations through a 

piston movement inside damper [52], tuned particle mass damper [44,53,54] and improved 

granular damping by optimising particle movements [55–57] It is believed that active and 

semi-active control of particle movements will also be an exciting research field amongst 

researchers to enhance the performance of granular dampers – e.g., applying controllable 

pressure to granular medium for more energy dissipation than the use of loose particles 

[12,58].  

2.3 Granular Damping Evaluation Methods  

2.3.1 Experimental approaches  

Most publications on granular damping involves an experimental investigation because 

theoretical modelling techniques for granular dampers do not adequately address the 

complexity of particle movements in the damper enclosure. The purposes of experimental 

granular damper investigations have been summarised as [31]:  

• Determine granular energy dissipation behaviour to develop and improve theoretical 

models.  
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• Validate results obtained from models.  

• Enhance the existing understanding of granular energy dissipation.  

• Verify the findings from sensitivity analyses, and, therefore ensure efficient 

application in structures.  

As a result, different experimental approaches have been used to measure the level of 

granular damping achieved. For the free vibration analysis of structures enhanced with a 

granular damper, the dissipated energy for each cycle is determined from the decay in 

amplitude of successive oscillations at the natural frequency [5,59]. For forced vibration, the 

traditional vibration analyses are used for both discrete and continuous systems such as direct 

measurement of amplitude reduction in the time domain [44,60,61], construction of the 

frequency response function (FRF) to obtain either a damping parameter or peak amplitude 

reduction at particular frequencies [8,50,62] and vibration power input methods to detect the 

reduction in the required power to keep the damped system in steady-state [27,63].  

All these methods, however, require a host structure which means that measurement findings 

become specific to the investigated structure. Because of this, the main physical insights of 

granular dampers can be overlooked. Therefore, the most common experimental method 

used for characterising granular dampers is Yang’s structure-independent dissipated energy 

measuring approach [64,65]. As it enables investigations that focus on the physics behind 

the granular damping phenomena, many scholars have used this experimental methodology 

[66–70].  

2.3.2 Theoretical modelling  

There is a need for reliable and cost-effective models to design granular dampers that are 

suitable for specific structures. Since granular dampers show non-linear characteristics and 

the damping particles often follow complex trajectories when vibrated, no inclusive exact 
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analytical approach has been proposed. Instead, several approximated analytical methods 

and numerical tools have been developed to simulate granular dampers.  

One theoretical modelling approach is to represent a granular damper as an equivalent single 

impact damper for which various exact and approximate solutions already exist [44,61,71]. 

It has been reported that this type of modelling provides reasonably accurate estimations 

[61]. This modelling type does not enable particle-level investigations (individual particle 

motions and local dissipations in contacts) in granular dampers which is very important to 

simulate the real physical behaviours of granular dampers.  

A similar approach models all particles as a single compacted mass, and assumes completely 

plastic collective collision between this collection of particles and the two end walls of 

damper enclosure [29]. In this way, dissipated energy is estimated for collisions under 

steady-state harmonic vibrations. This approximate analytical model is improved in another 

work by implementing variable inelasticity level in these collective collisions based on 

empirical data [72]. However, as can be understood, such a modelling approach is limited to 

the case where the granular medium collides with the two end walls during each vibration 

cycle. This method also does not consider the particle-level relative motions and 

dissipations, and it has been demonstrated that it is not applicable for the use of small 

damping particles [73]. However, as this method offers simple and fast solution without 

considering individual particle movements, the author of the thesis believes that such 

theoretical models would be enlarged, and a general theoretical approach based on this 

method can be developed by providing a particular solution for each different motional 

pattern of granular medium.  

Another approximate analytical method is to model a granular damper as a viscous medium 

utilising the multi-phase flow theory where the particles are assumed as gas particles with 
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low Reynold’s number [74,75]. Although this approach ensures low computational 

complexity and has good correlation with experimental results for specific excitation 

conditions [74,75], a particle-level investigation is again not possible and effectively 

working parameter range of this method is scarce as there are a number of assumptions. 

However, as this type of analytical modelling would be a valuable tool to estimate the 

damping level achieved by a granular damper, it is also believed by the author that this 

method can be further improved by future researches to design granular dampers.  

Few attempts have been carried out to characterise non-linear granular dampers as viscous 

dampers by using curve-fitting tools on experimental results [8,70,76], and some authors 

have implemented such models into the Finite Element Method (FEM) to allow low-cost 

dynamic analysis of structures with granular dampers [62,70]. It should be noted that such a 

modelling approach is specific to the damper tested in experiments.  

In addition, several dissipated energy estimation methods have been proposed in literature 

for granular dampers. These methods mainly investigate the predictions of continuous 

engineering structures enriched with granular dampers by utilising modal kinetic energy 

approach [55], modal strain and kinetic energies [34], maximal energy dissipation by 

individual damping mechanisms [27]. Recently, authors has started to develop analytical 

formulas to estimate dissipated energy for some specific motional patterns of damping 

particles [77–82] – showing a great potential for future developments in granular damper 

designs.  

As briefly discussed above, there is no inclusive theoretical approach that accurately 

represents the dynamic behaviour of a granular medium [83]. Therefore, numerical methods 

are typically used to simulate granular medium for comprehensive and reliable simulations 

[84]. The molecular dynamic simulation method, where each particle of granular medium is 
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considered, is the most widely used approach for this task. There are two different methods: 

the event-driven [83] and the Discrete Element Method (DEM) [85]. The event-driven 

method is very useful when the number of inter-particle impacts is low and the typical 

duration of a contact is significantly shorter than the mean time between successive impacts 

of a particle since the algorithm is stimulated by impact events [83].  

On the other hand, DEM is an inclusive numerical tool which provides numerous advantages 

such as applying a wide range of contact models at particle-level and can operate reliably 

with either hard or soft particle types as irrespective of contact durations. As a result, it has 

been found that DEM simulations of granular dampers show remarkable compatibility with 

the experimental results [86–88].  

In addition to these numerical methods, for more complex engineering applications, some 

coupled simulation methods with DEM have recently been employing for granular damper 

designs such as DEM-the multi body dynamics [39] and DEM-FEM [89] where the total 

force and moment generated by damping particles are transferred to FEM from DEM to 

calculate structural response and the motional information at the damper location obtained 

from the structural response is transferred to DEM from FEM at each solution time step. It 

should be noted that this type of methods generally requires a large computational effort.  

2.4 Dissipative Characteristics of Granular Dampers  

2.4.1 Fundamental granular energy dissipation sources  

Granular energy dissipation can be described considering two main operations:  

i) the input vibrational kinetic energy is transmitted to the particles through 

momentum exchanges as the particles and the vibrated damper enclosure interact,  

ii) this energy is dissipated through interactions between particles and between the 

particles and the enclosure.  
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For clarity, the energy dissipated by a granular damper can be formulated as:  

 ( ) ( ) ( )dissipated dissipated dissipated dissipatedPS PP othersources
E E E E= + +  (2.1) 

where (E
dissipated

)
PS

 stands for the total energy dissipated by all the contacts between the 

particles and the enclosure walls and (E
dissipated

)
PP

 represents the total energy dissipated by 

the inter-particle interactions.  

The interactions between the particles and the enclosure walls are the way in which the 

energy flows from the host structure (as the enclosure is rigidly connected to the host 

structure) to the granular medium. They are essential for the operation of granular energy 

dissipation as they provide energy transmission to the granular medium [90]. It has been 

demonstrated in a recent study that inter-particle interactions are responsible for the most of 

the energy dissipated by granular dampers [59], i.e., (E
dissipated

)
PP

 > (E
dissipated

)
PS

.  

Energy dissipation in both interaction types (i.e., the particle-enclosure surface and the inter-

particle) mostly results from friction and inelastic impact. Therefore, supposing that there is 

no other energy dissipation source such as air viscosity, Equation (2.1) can be re-written 

explicitly showing the frictional and impact dissipation components:  

 ( ) ( ) ( ) ( )
friction friction impact impact

dissipated dissipated dissipated dissipated dissipatedPS PP PS PP

friction impact

dissipated dissipatedE E

E E E E E

   
   
   

 + + +  (2.2) 

Even though some theoretical studies have neglected one of these sources (friction) [72,91], 

it has been shown that the existence of both sources is substantially important for realistic 

modelling as granular dampers clearly exhibit the characteristics of both frictional and 

impact losses [27,92]. The role of these dissipation sources changes depending on vibrational 

conditions and contact properties [5,67,90]. It has been noted elsewhere [30] that exploring 
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the insights of these two dissipation sources in both micro-scale (particle-level) and macro-

scale (damper-level) has an importance for accurate granular damper models.  

Typically, the dominant dissipation source (especially for particles with high elastic 

modulus) is friction for granular dampers [8,55]. It has been claimed that friction remains 

dominant as long as the vibration acceleration amplitudes are smaller than 400g where g is 

the gravitational acceleration [5] while its importance can differ depending on the vibration 

amplitude [67]. There is a consensus among the authors that higher volume fill ratio leads 

more energy dissipation through frictional interactions within the granular medium 

[5,88,93]. The importance of frictional dissipation becomes very high when the particle size 

is small [90]. It subsequently decreases with increasing particle size, since larger particles 

result in raising impact forces [90].  

In the view of all studies that have been considered above, it can be realised that the trade-

off between the mentioned granular energy dissipation sources is a subject of very few 

studies. In fact, most of the existing literature on this topic has dealt with only free transient 

vibrations. As a result, these granular dissipation sources are neither well understood nor 

completely explored. Thus, it is believed that further attention to identify any relationship 

between the importance of dissipation sources and the energy dissipation behaviour of 

granular medium would contribute the existing granular damper literature and help to 

improve granular damper designs.  

2.4.2 Granular damping in free vibration  

In the literature, free vibration analysis is one of the methods used to explore granular energy 

dissipation and to measure the effectiveness of granular dampers. It is typically carried out 

by giving an initial perturbation to a structure (such as a beam) as shown in Figure 2.5.  
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As can be seen in Figure 2.6, while the vibrations decay exponentially in the case without 

particles due to the existence of viscous damping in the host structure, they reduce linearly 

when the granular damper is attached, particularly at high amplitude and then exponentially. 

The linear decay implies that the vibrational energy is dissipated within a finite time for high 

amplitudes [91,92], which is a great superiority of granular dampers when comparing with 

the other traditional viscous-based type dampers. 

Beam
Granular 

damper

Initial 

displacement   

Figure 2.5: A beam with a granular damper on the tip subjected to free vibration due to 

initial displacement.  

Time [s]

V
el

o
ci

ty
 [

m
/s

]

  

Figure 2.6: Typical behaviour of a granular damper on a beam in free vibration time 

response [5].  

In order to show the amplitude-dependent nonlinear behaviour of granular dampers and 

measure the damper effectiveness, the ‘specific damping capacity’ is generally employed for 

free vibration analyses:  

 granular dissipated max/E E =  (2.3) 
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where Ẽ
dissipated

 is the energy dissipated over one vibration cycle which can be estimated 

using the velocity amplitudes of subsequent peaks in the vibration signal; and E
max

 is the 

maximum kinetic energy of system that can be calculated using the initial velocity at the 

start of each cycle and the total mass (i.e., mass of particles and effective mass of host 

structure). The specific damping capacity of the same study demonstrated in Figure 2.6 is 

given in Figure 2.7 where the non-dimensional amplitude is typically used in literature to 

represent the vibration amplitude in granular damping results and defined as:  

 Vibration acceleration amplitude / Gravitational acceleration =  (2.4) 
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Figure 2.7: Typical amplitude-dependent damping characteristic of granular dampers 

under free vibration [5].  

As it can be seen in Figure 2.7, granular dampers exhibit an unambiguous vibration 

amplitude dependency, which means that they are highly non-linear [5,59,72,74]. It can be 

seen in Figure 2.7 that there are three different granular damping regions in free vibration 

that depend on amplitude:  
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i. Damping is rather low at the beginning of the free transient vibration (note that the 

vibration amplitude decreases as the time increases), and while Г decreases damping 

increases up to a maximal point at a particular amplitude, Г = Г
peak, free vibration

.  

ii. Damping suddenly drops between Г = Г
peak, free vibration

 and Г ≈ 1.  

iii. For Г < 1, the damping is negligible.  

It has been noticed that these different dissipative regimes are somewhat related with the 

change in the dynamic motional pattern of damping particles at different amplitudes of free 

vibration [5,94].  

2.4.3 Granular damping in forced vibration  

As there is at least one external excitation source for most of the vibrational problems, it is 

generally more useful to investigate the behaviour of granular dampers in forced vibration. 

As shown in Figure 2.8, forced vibration of granular dampers can be investigated in a 

structure by considering generally a single natural mode of structure for simplicity or as free 

of structure (as also discussed in Section 2.3).  

Beam
Granular 

damper

Dynamic 

force

With 

structure

Dynamic 

force

Granular 

damper

Structure-

independent

  

Figure 2.8: Typical granular damper investigation types under a dynamic forcing.  

Granular dampers can exhibit vibration damping and noise attenuation for a wide range of 

excitation frequency [61,71,95]. However, it does not mean that granular dampers are 
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completely insensitive to frequency. In fact, this can be clearly seen in the results of a study 

presented Figure 2.9. Here, the loss factor η
loss

 is computed as:  

 
loss dissipated max/ 2E E =  (2.5) 

where the authors have measured the energy dissipated over a cycle (Ẽ
dissipated

) and the 

maximum kinetic energy stored in a cycle (E
max

) from the experiments on a structure-

independent damper configuration [70]. As shown in Figure 2.9, the granular damping level 

is maximised at a particular frequency, and becomes relatively insensitive to frequency at 

high frequencies.  
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Figure 2.9: Typical granular damping under harmonic excitation [70].  

As can be observed from Figure 2.9, granular dampers produce amplitude-dependent non-

linear characteristic in forced vibration as in the free vibration case. This high non-linearity 

can also be seen in Figure 2.10 where a granular damper attached to a SDOF structure is 

investigated.  
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Figure 2.10: Typical FRFs around a natural mode of a structure enriched with a granular 

damper [8]: dash line is for the original structure response, no. 1 (Г = 0.1) to no. 11 (Г = 

40) indicates increasing amplitude.  

As shown in this plot and explained in the reference study [8], granular dampers decrease 

the system natural frequency at low vibration amplitudes as they behave as solid mass 

attached to the structure. As the amplitude increases, the particles start to move (activation), 

and, accordingly the damping level provided to the structure significantly improves. With 

further increase in the amplitude, the damping level begins to decrease and the natural 

frequency gradually converges to the frequency of the system with no particles.  

2.5 Dynamic Motional Behaviours of Granular Medium  

2.5.1 An overview on principal granular motions  

When a granular medium is subjected to vibration, the particles can follow various 

trajectories, change position, lose contacts, and create new contacts. These operations are 

the main particle behaviours that result in energy dissipation in a granular medium. 

Therefore, it is essential to understand the principles of granular motion [9,32].  

If the granular medium is exposed to periodic vibrations (particularly harmonic excitation), 

the particles generally exhibit similar motional behaviours cycle-to-cycle. As a result, all 
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particles together generate an approximately-periodic motional behaviour [96] – referred as 

a ‘granular motional phase’. The exhibited granular motional phase changes depending on 

the vibration amplitude and frequency [97,98]. Many granular motional phases have been 

observed and named under different vibrational conditions in the literature. In fact, there are 

still some studies which explore novel granular phases [99]. It should be noted that not all 

discovered phases are observed in every study as the occurrence of granular phases also 

depends on the configurations of particles and enclosure [69].  

If the granular medium motion is linked with the granular energy dissipation, 5 different 

principal granular motional phases can be identified. They are explicitly described below – 

for comprehensive visual guidance for motional behaviours see the simulation printouts and 

the representative motion sketches presented in Chapter 6.  

Solid-like phase:  

For small vibration amplitudes, i.e., Г < Г
fluidisation

 where typically Г
fluidisation

 ≈ 1 (equal to 

gravitational acceleration) and can change depending on frequency, the ‘solid-like’ 

(sometimes called as ‘glass-like’) phase is observed. In this phase, there is principally no 

relative motion between the enclosure and the granular medium which resembles a solid 

mass attached to the bottom surface of the enclosure throughout the vibration cycle. Because, 

the dynamic forces that are generated are not sufficiently large to overcome the sum of inter-

particle static forces (e.g., friction) and gravitational loads under such low-amplitude 

vibrations. Note that there are various studies to determine Г
fluidisation

 [9,100–102] as it 

indicates the threshold of particle activation in the granular medium.  

Fluidisation-based phases:  

When the vibration amplitude exceeds the critical activation threshold, i.e., Г > Г
fluidisation

, 

and there is a sufficient clearance between the upper layer of particles and the enclosure top, 
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the particles partially overcome the force which bonds them together in the solid-like phase, 

and the granular medium produces the fluidisation-based phases. While the definition of 

granular ‘fluidisation’ motion can be different in the literature, it is described here as: the 

particles have relative motions with respect to each other within a vibration cycle, but they 

preserve their overall position and existing contacts at the end of each cycle. The particular 

type of fluidisation-based phase varies depending on the fraction of fluidisation motion 

initiated into the granular medium. There have been different fluidisation-based phases 

named in the literature [44,100,103–105].  

Convection-based phases:  

If the particles exchange their overall positions and generate new contacts while breaking up 

their previous contacts at each cycle apart from their relative motions, the motion is called 

as the granular ‘convection’. When the convective particles dominate the granular medium 

over the fluidised particles (at amplitudes larger than a threshold amplitude, i.e., Г > 

Г
convection

), the granular motional phase turns into a convection-based phase [101,102,106]. 

As the convective particles travel through the granular medium, the particular type of 

convection-based phase is typically identified depending on the dominating particle 

motional pattern [69,103,107,108]. Two of them are demonstrated in Figure 2.11. The 

granular ‘Leidenfrost effect’ phase indicates that a relatively dense packed particle cluster is 

entirely lifted off from the enclosure bottom and supported by a small number of fast-moving 

particles that impacts with the enclosure bottom at each vibration cycle [108]. Even though 

the number of particle layers in the cluster can vary during vibrations, it approximately 

maintains its average height inside the enclosure [69]. Note that this phase is analogous to 

its original definition in thermodynamics, in which a water droplet over a plate is elevated 

on its own vaporized layer if the plate temperature is sufficiently high [109]. As shown in 
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Figure 2.11, the convection rolls phase is defined by upward and downward motions of more 

mobilised small particle clusters.  

Leidenfrost effect

Convection rolls

Gas-like phase

  

Figure 2.11: Examples of granular motional phases [103].  

Gas-like phase:  

When the majority of particles entirely break up any static forces applied and float inside the 

enclosure without generating contacts, the granular motional behaviour is named as the 

granular ‘gas-like’ phase. This phase is demonstrated in Figure 2.11. In this phase, the 

particles can rarely impact with each other and the enclosure walls. This granular phase is 

observed at larger amplitudes than an amplitude i.e., Г > Г
gas-like

.  

Bouncing bed phase:  

As can be realised, the solid-like phase, the fluidisation-based phases, the convection-based 

phases and the gas-like phase can be considered as the equivalent granular analogy of solid-

fluid-convection-gas phase process path in thermodynamics. As a distinctive granular 

motional behaviour from these phases, the ‘bouncing bed’ (sometimes called as ‘collect-

and-collide’) phase can be observed in the granular medium if the vibration displacement 

amplitude is sufficiently large. In this phase, the granular medium forms a compact structure 
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and collectively collides with the both enclosure end walls during a vibration cycle [89,110–

112]. As in single particle case (i.e., impact dampers), the collective collisions periodically 

occur between the granular medium and the enclosure. It should be noted that whilst the 

other onset boundary amplitudes, Г
fluidisation

, Г
convection

 and Г
gas-like

 are generally determined 

by observations of granular medium, the onset amplitude of bouncing bed phase, Г
bouncing bed

 

can be analytically calculated by considering the travel time of the granular medium between 

the enclosure ends [91].  

Some other special formations can also occur in the granular medium such as the 

‘undulations’ where the standing wave patterns are observed perpendicular to the enclosure 

side walls [69]. However, as these formations are encountered for very particular sets of 

physical properties (e.g., granular packing, enclosure geometry and excitation conditions) 

[98,103,106,113–115], no detailed review has been carried out on these formations in this 

thesis.  

2.5.2 Mapping of granular phases, and effect of gravity  

As the observed granular motional phase depends on vibration amplitude and frequency, a 

map which shows the variation of motional phases as a function of vibrational condition is 

a useful tool in granular-related studies [89,99,103]. General variation of the classified 

motional phases is sketched in Figure 2.12. Here, the vertical and the horizontal cases means 

that the gravity direction is parallel and perpendicular to the vibration direction, respectively. 

The approximate onset amplitudes are also identified in these sketches to show the relations 

between the thresholds.  

As demonstrated in Figure 2.12, the number of observed motional phases changes depending 

on the existence of gravity. The granular medium produces only two phases in case of no 
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gravity applied, while it can exhibit all the mentioned principal phases under the effect of 

gravity.  

Although the principal motional behaviours are commonly observed in the vertical and 

horizontal cases, there are some motional differences because of the difference in the gravity-

to-vibration directional orientation. The type of fluidisation-based and convection-based 

phases may differ, as the trajectories of particles are affected by the gravity-to-vibration 

directional orientation. The other main difference between these two orientation cases is the 

onset amplitudes. For example, at between 3 Hz and 15 Hz, it has been found that 1 < 

Г
fluidisation

 < 1.2 for the vertical case whereas 0.8 < Г
fluidisation

 < 0.9 for the horizontal case 

[116].  
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Figure 2.12: General views of phase maps.  

2.5.3 Influence of granular phase on granular damping  

The collective dynamic motional behaviour of particles (granular phase) is a major factor 

that affects granular energy` dissipation. Although the effects of granular motional 

behaviours have been roughly noticed in prior studies [29], it has recently been understood 

that the operating motional phase is the most important criteria when optimising a granular 

damper [32,69,117]. Motional phases are mainly stimulated by the excitation condition 

(amplitude and frequency) which is significantly associated with non-linear granular 

damping characteristics. As a result, more recent literature has begun focusing on 
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determining the efficient and inefficient granular phases to improve granular energy 

dissipation in structures.  

As the particles follow nearly the exact trajectory of enclosure without any relative motion 

in the solid-like phase, granular energy dissipation in this phase has been found insignificant 

[8,55,69,112,118]. The gas-like phase exhibits no notable granular energy dissipation as the 

particles float randomly inside the enclosure and rarely produce dissipative contacts with 

each other in this phase [57,77,91,110].  

It has been reported that the highest effectiveness of granular energy dissipation can be 

accomplished at the transition region between the solid-like phase and a fully convective 

phase [9,12,56,58,119,120]. These studies have explained the reason of this observation by 

stating that the particles slip more intensively (larger friction force and larger relative 

velocity between the particles) in this transition region.  

On the other hand, some works have claimed that the Leidenfrost effect phase is the optimum 

motional behaviour [54,69,99,112,118,121,122], whilst the buoyancy convection has been 

also found as the optimal operating granular phase in a study [111]. Some other studies have 

indicated that the granular energy dissipation effectiveness is maximised at the onset of the 

bouncing bed phase [5,57,72,73,77,89,91,92,110]. As a result, it has been noticed that there 

is still no absolute agreement on the optimum motional phase of a granular medium. This 

can lead to inefficient designs of granular damping.  

2.6 Primary Damper Parameters Affecting Energy Dissipation  

2.6.1 Review approach  

A large volume of the granular damper literature has focused on investigating the effects of 

damper design properties on energy dissipation by conducting a series of numerical or/and 

experimental analyses [67,95,120]. However, because of the significant non-linearities, 
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studies have often reached very different conclusions. Also, as the most of studies have not 

considered the motional behaviour of granular medium while performing these analyses, the 

results can be specific to a particular operating motional condition. Hence, damper 

parameters that may have an effect on granular energy dissipation behaviour are reviewed 

in this section along with the motional analogy (where possible) to clarify these effects and 

detect any lack of understanding in literature.  

2.6.2 Particle mass – in terms of material density  

It has been found that even if a small mass of particles is used, significant damping levels 

can be obtained from granular dampers – e.g., 6% of the host structure mass can produce 

ψ
granular 

= 50% [72]. This shows that granular dampers can offer a mass-efficient damping 

application for structures.  

A number of works has studied the effect of total particle mass on granular damping 

[45,123]. It should be noted that although some have changed total particle volume to alter 

particle mass [124], the studies, which have changed particle density, are considered here in 

order to present solely the effect of particle mass without changing the damper clearance.  

It has been shown that higher particle density indicates more attenuation in vibration 

amplitudes of a structure [61,86,94,120]. However, this positive effect slows down as the 

mass ratio of the particles to the host structure (µ
granular

) increases. Some studies [72,73] 

indeed have reported that it is proportional with the particle mass ratio by the factor of µ
granular

 

/ (1 + µ
granular

)
2
. Also, if the particle mass ratio is increased much, the structure mode that 

needs to be controlled shifts to lower frequencies as effective modal mass grows [60].  

2.6.3 Dissipative and elastic properties of individual contacts  

Even though the coefficient of restitution (COR) and the coefficient of friction (COF) are 

known as the contact properties directly related with granular energy dissipation, the 
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influence of these properties has been found to be limited [39,59,66,67,125]. Nevertheless, 

several studies have investigated the effects of relatively major changes in COR and COF 

on granular dissipative behaviours for some particular conditions [94,95].  

A work has reported that higher COR ensures efficient granular energy dissipation for a 

wider range of excitation levels [120]. Another study has found that COR values smaller 

than 0.9 lead to increase the contribution of impact dissipation source in overall energy 

dissipation [67]. It should be also noted that increasing COR induces a reduction in overall 

energy dissipation in the gas-like phase as the most of dissipated energy arises from inelastic 

impacts in this phase [125].  

Although the majority of findings suggests that changes in COF do not notably affect energy 

dissipation [94,95], it has been claimed by others that high COF values may be detrimental 

for large clearances [59,120].  

The effects of elastic modulus have generally been found very small on granular energy 

dissipation [38,120]. Softer particles (lower elastic modulus) which have high material 

damping can exhibit efficient granular energy dissipation at high frequencies and low 

vibration amplitudes [62,76,126]. However, it should be noted that the dissipation 

performance of granular dampers utilising such materials is not better for Г > Г
fluidisation

 [73]. 

As a result, even though the implementations of low-modulus, high-loss particles reduce 

impact noises and increases damping at low vibration amplitudes, traditional high-modulus, 

low-loss (hard) particle materials are more suitable for both larger vibration amplitudes and 

harsh environmental conditions. Nevertheless; for vibration amplitudes Г ≪ Г
fluidisation

, in 

which the granular medium demonstrates the solid-like phase, soft particle materials (e.g., 

viscoelastic) enhance granular damping as overall energy dissipation would only arise from 

particle material in this phase [6,7,66,76,119,126–131]. This also shows that granular 
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dampers can be efficiently utilised even in the solid-like phase where the granular damper 

actually does not operate.  

Despite all these studies, the effects of COR, COF and elasticity on granular energy 

dissipation change depending on the operating granular motional phase. Thus, it is believed 

that they need granular motional phase-specific analyses to clarify.  

2.6.4 Particle size and total number of particles  

If the mass of particles is a design criterion (which is the case in most of engineering 

applications), particle size and total number of particles are dependent variables. For 

instance; when the particle size of a granular damper is increased, the total number of 

particles decreases accordingly to provide the same total design mass. Also, in the controlled 

studies which explore the effect of particle size (or number of particles), it is important to 

keep total mass of particles as the same to eliminate the effects of other damper parameters.  

For very low numbers of particles, granular energy dissipation can slightly decrease as the 

particles may not touch to each other and float freely [73,86,124] However, it has been 

noticed that the number of particles (sometime expressed as particle size) does not affect 

granular energy dissipation if there are a few particle layers in the damper enclosure 

[35,125].  

Even though it is rare for the effect of particle size (or number of particles), there are also 

some contradictive conclusions amongst researchers as each conducted study has been 

interested in a particular excitation condition which generates a specific motional phase in 

the granular medium. For example, one study has suggested that larger particles can be more 

successful in suppressing low vibration amplitudes (possibly the solid-like phase) [123]. On 

the other hand, it has generally been agreed in the literature that smaller particles (or larger 

number of particles) generally ensure both less sensitivity of damper designs to damper 
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parameters [60,72,73,120,125] and extending the effective working excitation range of 

granular dampers [124].  

2.6.5 Damper enclosure geometry  

Damper enclosure geometry can affect the relative ratio of static and dynamic pressures (by 

changing the particle bed depth) and the clearance (by changing the packing properties of 

particles). The enclosure geometry also affects the directions of particles after enclosure-

particle impacts. As they can affect the motional conditions of particles, the importance of 

enclosure geometry should be considered along with the dynamic motional phase of 

particles. As there are only very few framework studies that investigate the geometric 

properties of the enclosure [70,132], there is no clear conclusion and this field still needs 

more comprehensive works considering the operating motional phase of particles.  

Nevertheless, although rectangular shaped and any other type of damper enclosures have 

been used in several previous studies, cylindrical shaped enclosures are most commonly 

employed for the granular dampers vibrated axially. It is because cylindrical enclosures can 

exhibit better performance rather than rectangular ones by means of reduction in vibration 

amplitudes at the same vibrational conditions [95]. This is probably resulted from which the 

boundaries of cylindrical enclosures can have more particle contacts owing to the lack of 

sharp corners.  

2.6.6 Volume fill ratio – in terms of damper enclosure size  

Volume fill ratio is defined as the ratio of the total volume of all the particles to the internal 

volume of the enclosure. This can be simply arranged by changing the enclosure volume to 

keep the mass of particles and the number of particles the same. As this is directly related 

with the clearance distance in a granular medium, it is one of the most important damper 

design parameters which affect the granular motional phase, and therefore the granular 

energy dissipation.  
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However, as the most of studies on volume fill ratio have not considered the operating 

motional phase of granular dampers, there is no consensus on the effect of volume fill ratio 

on granular energy dissipation. For example, while increasing clearance (or decreasing 

volume fill ratio) has been found to improve the effectiveness of granular dampers in several 

studies [72,73,92,93,123] there are others which show that clearance has an optimum value 

in terms of dissipation effectiveness [29,91,94,120,124]. All these different outcomes can be 

related to the fact that change in clearance can alter the observed motional phase even if the 

excitation remains the same [103].  

2.6.7 Particle shape  

Conventional hard (high elastic modulus) spherical particles used in granular dampers ensure 

efficient working under severe environmental conditions for a long period of time. However, 

over time their shape may deviate from a perfect sphere because of plastic deformation and 

material loss. Manufacturing tolerances can also result in non-spherical particles. In addition, 

non-spherical particles may be deliberately employed for either cost reasons or to address 

practical design limitations such as particle packing in small voids. Furthermore, it has been 

determined in experimental studies that particle shape can change the effective mechanical 

properties of a granular medium (e.g., effective elastic modulus or stiffness against 

compression, effective elastic-plastic force-deformation behaviour, effective yielding stress, 

porosity in granular medium) [133–135]. This showed that particle shape can affect granular 

energy dissipation.  

In one of the pioneering studies on granular damping with non-spherical particles, the effect 

of triangular, square and hexagonal particles was examined using two-dimensional DEM 

simulations, and it was claimed that non-spherical particles do not affect granular energy 

dissipation [11]. However, it should be noted that it has only considered the vibrational 

conditions at which the granular medium never touches the top of enclosure. Another study 
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has investigated the granular dissipative behaviours of non-spherical particles using three-

dimensional DEM simulations under no gravity [10]. The particles investigated had unusual 

geometric shapes formed side-by-side fixing spheres at their surfaces (no overlapping 

between fixed spheres). They have concluded that whilst the particle shape does not notably 

matter in the bouncing bed phase, perfect spherical particles provide higher levels of granular 

energy dissipation than non-spherical ones in the gas-like phase. In another study which 

experimentally investigates active controllability of optimum granular motional activities to 

accomplish higher damping for structures, more realistic non-spherical particle shapes 

(cylindrical and cubic) have been studied [12,58]. It has been reported that cylindrical and 

cubic particles exhibit higher effectiveness over perfect spheres.  

Together the findings of these studies confirm that there is a valuable research field about 

the non-spherical particle usage in granular dampers, and therefore the interest has been fast 

growing. However, the literature focused on non-spherical particles is still very scarce, and 

much uncertainty and questionable results are noticed in the literature. In addition, the 

literature has generally ignored the fact that the effect of particle shape can change depending 

on the operating motional phase of granular dampers. Thus, these issues need to be addressed 

by systematic studies supported by experimental observations.  

2.7 Research Questions  

An overview of granular damping literature has been presented in this chapter. As a result, 

the gaps in the current knowledge have been determined and the key research questions that 

lead to the aims of this thesis have been identified.  

The problems and uncertainties related to the efficient design of granular damper and their 

cost-effective theoretical modelling are associated with the non-linearity in dissipating 

vibrational energy. This non-linear granular energy dissipation is found to be a result of the 
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existence of various dynamic motional patterns (granular phases) that the granular medium 

displays depending on the amplitude and frequency of the excitation. This suggests that there 

is a relationship between the energy dissipation and the operating motional phase for these 

dampers. However, there is no agreement on the most efficient granular phase in the 

literature as each piece of work has indicated a different optimum condition. Therefore, the 

following research question is identified.  

I. What are the fundamental motional phases and mechanisms that drive efficient 

energy dissipation in granular dampers?  

The other problem is to determine the main damper parameters that control the occurrence 

of a particular granular motional phase, and thus the effectiveness of granular energy 

dissipation. The effects of some of these parameters have already been discussed in the 

literature.  

It has been found that the material density, COR, COF and number of particles have a minor 

effect whereas enclosure shape, volume fill ratio and particle shape are significant.  

The effect of volume fill ratio can be obtained by investigating a sensitivity analysis of the 

phase map to the volume fill ratio as in the reference study [103].  

While some works have been done on the effect of enclosure shape, it has generally been 

limited to changes in the volume fill ratio or particle bed depth as these represent the most 

common modifications to damper designs. There is little work on unusually shaped 

enclosures (for example, with non-parallel walls), and it is therefore not known whether 

similar motional phases are observed. Because of this, this subject would be a significant but 

slightly less related piece of work itself, and it is kept outside the scope of this thesis.  

The particle shape may have an influence on the motional phase as it affects the inertia of 

each particle and the way in which they interact with each other. Thus, as a different feature 
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from other damper parameters, the particle shape can have a significant role to change the 

motional phase-dependent dissipative characteristics of granular dampers. However, it has 

been noticed in the review that there is limited work on the effect of particle shape. In 

addition, discussions with one author of the reference work [8] have revealed that the 

particles used in shot blasting (slightly spheroidal rather perfectly spherical) provided better 

dissipative performance than perfect spheres. As a result, the research questions shown 

below are identified.  

II. Why does the particle shape have an effect on the dissipative performance?  

III. In what way does the particle shape affect the operating motional phase of granular 

dampers? 

 

Equation Chapter 3 Section 1 
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3 Fundamentals of Discrete Element Method  

3.1 Overview  

Numerical methods can enable the solution of engineering problems without performing 

physical experiments. They can be used to optimise engineering designs by analysing the 

effects of design parameters without physical limitations. However, the most suitable 

numerical approach should be carefully selected for the investigated problem.  

When studying the dynamics of a granular medium, numerical studies add considerable 

value because it would be very difficult to obtain, via experimental means, information such 

as the motion trajectories and interaction forces relating to individual particles. Sensitivity 

studies relating to parameters such as gravity loading and the coefficients of friction and 

restitution are also much more conveniently achieved using numerical simulation.  

The literature review has shown that it is feasible to use the Discrete Element Method (DEM) 

for the granular damper simulations of this thesis. Unlike a continuum approach where the 

entire medium is represented using constitutive equations, with DEM the medium is 

represented by many individual bodies which can move relative to each other. DEM is a 

numerical computation scheme which explicitly calculates both positions and rotations of 

each body. Determination of three-dimensional motions is based on integrating the equations 

of motions of each body at short discretised time steps which they constitute a full-time 
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simulation history. In this way, DEM is able to accommodate any desired force-deformation 

behaviours right down to contact interactions between individual particles.  

The fundamental theory behind the DEM computational scheme is briefly described in this 

chapter assuming that the granular medium is constructed using perfect spheres. Although a 

three-dimensional DEM algorithm was developed in the MATLAB environment to 

implement the theory presented in this chapter, Altair EDEM commercial three-dimensional 

DEM software [136] was used throughout the thesis because of its calculation speed and 

graphical interface advantages.  

3.2 An Introduction to DEM  

The fundamental principles of DEM were introduced by Cundall and Strack [137]. It has 

since been found applications in a variety of fields such as granular flow analysis, powder 

and rock mechanics, crowd dynamics, pharmaceuticals and grain storage and transport 

[135,138–140]. DEM is particularly attractive in granular damping studies because of its 

capability to control and observe contact parameters at micro-scale and their effects on the 

energy dissipation achieved [67]. Hence, DEM has been extensively adapted for granular 

damper applications and designs [67,68,86,87,141–145].  

There are two different DEM approaches depending on whether contacts are assumed hard 

or soft.[138]. In the hard contact approach, impacts take place instantly and particles are not 

allowed to deform. Particle motions are obtained by solving the impulse-momentum 

relations for each impacting pair of particles. On the other hand, the soft-particle approach 

assumes that deformations take place according to a contact model (often defined using 

spring, viscous damping and Coulomb friction elements) that can represent the physical 

force-deformation relation of the contact. Particle motions are determined by integrating the 

Newton-Euler equations of motions for short but finite time steps. The ability to define a 
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variety of contact conditions has made the soft contact approach in DEM the preferred route 

for most researchers.  

3.3 Contact Kinematics  

Before applying any physical law, the kinematic basics of an interaction between bodies 

should be known. Here, considering perfect spherical geometry that the original work is 

based on [137], particle-particle and particle-arbitrary geometrical surface (enclosure wall) 

contacts are evaluated. In Figure 3.1, these contact types are illustrated along with the 

required vectorial and scalar quantities.  

ωparticle,i 

rparticle,i

x

y

z

rparticle,j

Asurface,k

Bsurface,k

Csurface,k

mparticle,j

Rparticle,j
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Particle-surface contact detail 

in two-dimensional view

  

Figure 3.1: Representation of particle-particle and particle-surface contacts.  

In this figure, the main particle, the contacting particle and the contacting arbitrary surface 

are indexed by i, j and k, respectively. The mass, radius, centre of mass position vector with 

respect to the global xyz cartesian coordinate system whose unit vectors are described by i, 

j and k, and angular velocity of the particles are respectively depicted by m
particle

, R
particle

, 

r
particle

 and ω
particle

. The arbitrary surface is defined by the known three points which belong 

to the surface: A
surface

, B
surface

, and C
surface

. The time is shown by t, and note that all quantities 
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are the functions of time except the global coordinate system unit vectors, particle mass and 

particle radius.  

First, the particle-particle contact is considered. The normal unit vector of particle-particle 

contact, n
PP,ij

, is obtained from the centre of the main particle to the particle-particle contact 

point, PP
ij
.  

 particle, particle,

PP,

particle, particle,

j i

ij

j i

−
=

−

r r
n

r r
  (3.1) 

The deformation along this direction (i.e., normal direction) or the normal overlap, (δ
PP,ij

)
n
 

is determined as given below.  

 ( )PP, particle, particle, particle, particle,

n

ij i j j iR R = + − −r r   (3.2) 

The relative velocity between the particles in contact, v
PP,ij

, can be found as:  

 PP, PP, PP,ij i j= −v v v   (3.3) 

where v
PP,i

 and v
PP,j

 are the velocities of the corresponding particle surfaces at the contact 

point:  

 
( )PP,

PP, particle, particle, particle, PP,
2

n

ij

i i i i ijR
 

 = +  −
 
 

v r ω n   (3.4) 

 
( )PP,

PP, particle, particle, particle, PP,
2

n

ij

j j j j ijR
 

 = +  − +
 
 

v r ω n   (3.5) 

where the superscript dot, ‘˙’ indicates time derivative and ‘×’ shows vectorial product. As 

they are needed separately in DEM, the normal and tangential components of the relative 

velocity can be subtracted from the relative velocity (Equation 3.3) as:  
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 ( )
( )

( )PP,

PP, PP, PP, PP, PP,

n

n ij

ij ij ij ij ij

d

dt


= = v n n n v   (3.6) 

 ( )
( )

( )PP,

PP, PP, PP, PP,

t

t nij

ij ij ij ij

d

dt


= = −v t v v   (3.7) 

where (δ
PP,ij

)
t
 is the tangential deformation or the tangential overlap. The tangential unit 

vector of particle-particle contact is now known by the following simple relation.  

 
( )

( )

PP,

PP,

PP,

t

ij

ij t

ij

=
v

t
v

  (3.8) 

Integrating the tangential relative velocity from the time of contact initiation, t
0
, to the time 

point investigated, the tangential deformation is obtained.  

 ( ) ( )
0

PP, PP,

t
t t

ij ij

t

dt =  v   (3.9) 

In DEM simulations, geometries other than particles are used to create desired boundary 

conditions. In order to model them, geometries are generally divided into small surfaces such 

as A
surface,k

B
surface,k

 C
surface,k

 triangle in Figure 3.1 [85,136,146]. In this way, the contact 

kinematics between a particle and an arbitrary geometry surface can be evaluated by 

generating classical plane equations for each geometry segment.  

For the given three points (a geometry segment) in Figure 3.1, the well-known plane equation 

can be constructed as:  

 surface, surface, surface, surface, surface, 0k k k k kf a x b y c z d= + + − =   (3.10) 

where the coefficients, ɑ
surface,k

, b
surface,k and c

surface,k
, are the corresponding components of 

the surface normal, n
surface,k

, determined by:  
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 ( ) ( )surface, surface, surface, surface, surface,k k k k k= −  −n B A C A  (3.11) 

Note that n
surface,k

 is not a unit vector. As Equation (3.10) is valid through the surface of 

geometry segment, d
surface,k

 can be simply determined using one of the known points on this 

segment.  

The deformation along the normal direction for particle-surface contact, (δ
PS,ij

)
n
 is computed 

as:  

 ( )PS, particle, closest,

n

ik i ikR d = −  (3.12) 

where the closest distance between the main particle centre and the surface, d
closest,ik

 is 

obtained by:  

 
particle, surface, surface,

closest,

surface,

i k k

ik

k

d
d

 +
=

r n

n
 (3.13) 

where the dot, ‘  ’ denotes scalar product. As the closest point on the surface to the main 

particle is PS
ik
, the normal unit vector of particle-surface contact, n

PS,ik
, is defined as:  

 particle,

PS,

closest,

ik i

ik

ikd

−
=

PS r
n   (3.14) 

where:  

 particle, surface, surface,

particle, surface,

surface,

i k k

ik i k

k

d +
= − 

r n
PS r n

n
 (3.15) 

The other kinematic relations for particle-surface contact can be obtained re-arranging the 

equations presented for particle-particle interaction employing the same analogy. The 

relative velocity between the particle and the surface in contact, v
PS,ik

, is determined by:  
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 PS, PP, PS,ik i k= −v v v  (3.16) 

where v
PP,i

 is known from Equation (3.4) and the surface velocity, v
PS,k

 is determined by the 

pre-definitions from the initial conditions in a DEM simulation. The normal and tangential 

components of relative velocity can be respectively found as:  

 ( )
( )

( )PS,

PS, PS, PS, PS, PS,

n

n ik

ik ik ik ik ik

d

dt


= = v n n n v  (3.17) 

 ( )
( )

( )PS,

PS, PS, PS, PS,

t

t nik

ik ik ik ik

d

dt


= = −v t v v  (3.18) 

where (δ
PS,ik

)
t
 is the tangential deformation between the particle and the surface.  

 ( ) ( )
0

PS, PS,

t
t t

ik ik

t

dt =  v  (3.19) 

The tangential unit vector of particle-surface contact is determined as:  

 
( )

( )

PS,

PS,

PS,

t

ik

ik t

ik

=
v

t
v

 (3.20) 

3.4 Contact Detection  

In order to apply any related calculations, contacts created either by two particles or between 

a particle and an enclosure wall should be established at each time step in DEM. However, 

contact detection results in a significant computational load for DEM simulations and is the 

most demanding part of the whole DEM computational procedure. Thus, an improvement in 

this step can provide noticeable reduction in computational times [5,147,148].  

In DEM algorithms, a contact is typically established by checking the distance between two 

distinct bodies. Considering two spherical particles given in Figure 3.1, it can be said that if 
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the distance between the centres of particles is shorter than the sum of their radii this is a 

contact. The described condition is expressed as in the following relation.  

 
particle, particle, particle, particle,i j i jR R−  +r r   (3.21) 

For particle-surface contact detection, the relation becomes:  

 
Particle, particle,i ik iR− r PS  (3.22) 

Since checking each particle with one another particle or enclosure surface in this way 

requires very high computational efforts, an efficient but simple idea called ‘box (sometimes 

called cell) algorithm’ has been typically employed in DEM simulations [5,136,143]. As 

illustrated in Figure 3.2, the simulation environment, which is generally wider than outer 

enclosure geometry, is broken into a series of boxes (or cells). Instead of checking each pair 

in the simulation environment, the cells that intersect with the processed particle are marked 

as ‘active searching area’ (sometimes called as ‘active cells’). The other employed bodies 

which intersect with these active cells are checked whether they shows a contact with the 

processed particle or not according to Equations (3.21) and (3.22) whilst those which are not 

positioned in the active cells are not checked and assigned directly as non-contact pair. In 

this way, the computational complexity which is O(N
sphere

2) without the cell algorithm is 

reduced to O(N
sphere

) at the best case and O(N
sphere

log(N
sphere

)) at the worst case where N
sphere

 

is the total number of spherical particles used in a DEM simulation [147].  
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Figure 3.2: A sketch of cell algorithm approach at a particular time step.  

In this algorithm, the cell grid size affects the computational time as illustrated in Figure 3.3. 

It is suggested to use at least 1.5 times of the smallest particle radius as the cell size to 

adequately detect contacts [5,148]. For DEM simulations of this thesis, 2.5 times of particle 

radius was generally used as the cell size.  

  

Figure 3.3: Computational effect of cell size [148].  

3.5 Governing Equations of Particle Motion  

As the motion of an enclosure surface is typically known by the initial definitions in a DEM 

model, only particle motions need to be evaluated. Therefore, the Newton- Euler equations 
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of motions which govern translational and rotational motions of a rigid body should be 

derived for each particle [149–151]:  

 resultant, particle, particle,i i im=F r   (3.23) 

 

( )

( )

resultant, particle , particle , particle , particle , particle , particle ,

resultant, particle , particle , particle , particle , particle , particle ,

resultant,

x xx x zz yy y z

i i i i i i i

y yy y xx zz x z

i i i i i i i

z z

i

M I I I

M I I I

M I

  

  

= + −

= + −

= ( )particle , particle , particle , particle , particle , particle ,

z z yy xx x y

i i i i i iI I  + −

  (3.24) 

where particle,

xx

iI , particle,

yy

iI  and particle,

zz

iI  are the mass moments of inertia with respect to the 

axes frame fixed at the centre of interested particle whose axes (i.e., xyz ) are principal axes 

of inertia; particle,

x

i , particle,

y

i  and particle,

z

i  are the angular velocity vector components of 

particle with respect to the same axes frame.  

Here, the resultant force imposed by the particle, F
resultant,i

 can be obtained as:  

 ( )
PP, PS,

resultant, particle, PP, PS,

1 1

i iN N

i i ij ik

j k

t m
= =

= + + F g F F   (3.25) 

where g is the gravitational acceleration vector; F
PP,ij

 and F
PS,ik

 represent the interaction force 

vectors acting on the main particle generated by the contacting particles and the contacting 

enclosure surfaces, respectively; N
PP,i

 and N
PS,i

 are respectively the total number of particle 

and surface contacts that the main particle has.  

The moment about the mass centre of particle due to the described forces, whose components 

are resultant,

x

iM , resultant,

y

iM  and resultant,

z

iM , can be found as:  

    
PP, PS,

resultant, PP, PP, PS, PS,

1 1

i iN N

i ij ij ik ik

j k= =

=  +  M d F d F   (3.26) 

where the corresponding moment arms are obtained by the following relations.  
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( )PP,

PP, rarticle, PP,
2

n

ij

ij i ijR
 

 = −
 
 

d n   (3.27) 

 
( )PS,

PS, rarticle, PS,
2

n

ik

ik i ikR
 

 = −
 
 

d n  (3.28) 

3.6 Time Integration  

Equations (3.23) and (3.24) need to be solved to determine the motion of each particle in a 

DEM simulation. To integrate these second order ordinary differential equations, there are 

various numerical methods such as the Euler method (the simplest Runge-Kutta method), 

the Verlet integration methods. As Altair EDEM uses Euler method as the main solver and 

this solution method is computationally simple and fast, it was used for all numerical models 

in the thesis.  

By integrating Equations (3.23) and (3.24) using Euler method, the updated translational and 

angular velocities and positions of main particle are obtained, respectively:  

 
( ) ( ) ( )

( ) ( ) ( )

particle, particle, particle,

particle, particle, particle,

i i i

i i i

t t t t t

t t t t t

+  = + 

+  = + 

r r r

ω ω ω
  (3.29) 

 
( ) ( ) ( )

( ) ( ) ( )

particle, particle, particle,

particle, particle, particle,

i i i

i i i

t t t t t

t t t t t

+  = + 

+  = + 

r r r

θ θ ω
  (3.30) 

where Δt is the time step size defined as the duration between each iteration point in DEM. 

Note that the angular acceleration, velocity and position vectors given in Equations (3.29) 

and (3.30) are with respect to the global xyz cartesian coordinate system.  

Since the accuracy of DEM approach depends on detecting contacts which occur within a 

very short duration and evaluating contact behaviours during such small amount of time, the 

time step size should be sufficiently small. Indeed, the Euler method needs a sufficiently 
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small-time step size for the stability of integration. Hence, it is known that the typical time 

step size in DEM approach is much smaller than the dynamic analyses of Computational 

Fluid Dynamics or FEM.  

However, smaller time step size indicates more iterations and therefore longer computational 

times in DEM. To provide both accuracy (and stability) and acceptable computational effort, 

a criterion should be implemented to select time step size. This is generally done by 

calculating the wave travelling time along a particle diameter which is nothing but finding 

the natural frequency of the equivalent one-degree-of-freedom natural frequency of the 

smallest particle in DEM simulation [139]. To prevent propagating disturbances of a particle 

far from away, accurately capture particle deformations and reduce numerical integration 

errors, the Rayleigh time step approximation based on the Rayleigh surface wave 

propagation speed is employed to estimate a critical time step for DEM iterations 

[136,139,140].  

 

particle

particle,min

particle

Rayleigh

particle0.1631 0.8766

R
G

t





 

+
  (3.31) 

Here, ρ
particle

, G
particle

, ν
particle

 and R
particle,min

 denote the particle density, shear modulus, 

Poisson’s ratio and the minimum particle radius, respectively. As can be understood from 

this relation, the critical time step is only a function of particle properties. Hence, in order to 

speed-up DEM simulations researchers often preferred decreasing shear modulus supposing 

that a relatively small deviation in the shear modulus does not affect overall results 

considerably but significantly decrease the overall computational effort [140,152–155].  

The actual simulation time step should be set a bit smaller than the critical time step 

estimation. Generally, it is suggested to use a safety factor, S
f
, for this as:  
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 f Rayleight S t =    (3.32) 

It should be noted that the safety factor is typically between 0.1-0.4 [136,154].  

3.7 Chapter Summary  

As this thesis presents various particle simulation studies utilising DEM, the basic DEM 

theory has been briefly presented in this chapter considering perfect spheres. The DEM 

calculation scheme involves several distinct but inter-related steps to complete a solution for 

a granular medium related problem. Each step has unique properties that need to be 

determined as specific to the problem investigated. In order to easily follow the described 

DEM computation procedure, a flowchart is shown in Figure 3.4. It should be noted that no 

contact force-deformation model (will be discussed in Chapter 5) has been described in this 

chapter whilst the interaction forces are introduced for constructing the equations of motions.  

Determine simulation parameters 

such as time step, material 

properties

Impose motion to enclosure as 

initial conditions at a time point

Generate spherical particles 

within an enclosure

Check and detect contacts of each 

particle using a feasible algorithm 

Integrate motion of particle 

(acceleration, velocity, position)

Finalise simulation

Is this the last time step?
No Repeat for each particle 

employed

Contact mechanics

Newton–Euler 

equations of motions 

and a numerical 

integration method

Calculate resultant force acting on 

processed particle

Yes

  

Figure 3.4: DEM simulation computation flowchart for spherical particles.  
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4 Non-Spherical Particle Generation in DEM  

4.1 Overview  

The most commonly used shapes in DEM are the perfect sphere (in three dimensions) and 

the disc (in two dimensions) based on the original work [137]. Nevertheless, the particle 

shapes encountered in practical applications of granular systems can be non-spherical and 

have a geometry which cannot be modelled by using an equivalent spherical particle shape 

[135,156].  

One of the important properties which defines a particle in a granular medium is its 

geometric shape as it affects the inertial properties of individual particles and so, the dynamic 

behaviour of the whole granular medium. Therefore, non-spherical particles should be 

modelled in DEM simulation environment. Several algorithms have been recently developed 

to generate non-spherical particles employing geometric surface segments [85,146]. 

However, this is computationally complex, and has limited contact detection and contact 

modelling methods when compared to DEM with spherical particles. In addition to such 

drawbacks, the definition of some physical parameters in DEM (such as COR [135,157,158]) 

would be relatively problematic for the non-spherical particle shapes created using this 

approach as they need to be determined depending on contacting surface segments.  

The multi-sphere approach, on the other hand, where two or more intersecting spherical 

particles are allowed to be rigidly joined together to form a non-spherical particle assembly, 
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is commonly used in DEM approaches. The major reason for this is that it has the advantage 

of spherical DEM computations which offer deeply researched and advanced contact models 

and contact detection methods. In addition, the multi-sphere approach allows the use of 

spherical properties as DEM inputs. The multi-sphere approach has been extensively tested 

and found reliable for representing non-spherical particles in DEM [159–161]. Thus, the 

multi-sphere approach has been widely used for granular medium based studies in the 

literature [10,133,134].  

In the multi-sphere approach, the use of larger number of sub-spheres generally results in 

more precise shapes, however, it also causes significant increase in computational effort. 

Therefore, a balance between the computational efficiency and the accuracy of 

representative non-spherical shape should be provided.  

In this chapter, the motion of non-spherical particles created using the multi-sphere approach 

is derived for DEM simulations by re-applying the same principles as in the previous chapter. 

The generation of the multi-sphere particle shapes investigated in this thesis (i.e., oblate 

spheroid, prolate spheroid and circular toroid) is discussed. A novel approach based on the 

multi-sphere method is proposed to generate circular toroid non-spherical particles for DEM 

simulations. The accuracy of generated non-spherical particles as a function of the number 

of sub-spheres used is also investigated by calculating the geometrical errors.  

4.2 Motion of Non-Spherical Particles in DEM  

The kinematics and contact detection for both sphere-sphere and sphere-enclosure surface 

contacts described by Equations (3.1)–(3.22) are also valid for the multi-sphere particles as 

the shape of sub-spheres is still a sphere. However, as the overall particle shape is no longer 

a perfect sphere, the governing equations of motions and the resultant forces and moments 

should be re-written.  
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A non-spherical particle shape indexed by l is illustrated in Figure 4.1 where r
MS,l

 and ω
MS,l

 

are the mass centre position vector and the angular velocity of the non-spherical particle.  

rMS,l(t)

ωMS,l(t)

y

z

x
Multi-sphere 

non-spherical 

particle

  

Figure 4.1: Arbitrary non-spherical particle shape composed of sub-spheres.  

The particle mass is calculated by considering the sub-sphere particle properties (i.e., the 

density that can be determined by the mass, (m
sub-sphere,i

)
l
, and the radius, (R

sub-sphere,i
)
l
, of a 

sub-sphere i which forms the multi-sphere non-spherical particle), and the particle volume 

(V
MS,l

) is found using the outer surface of non-spherical particle:  

 
( )

( )

sub-sphere,

MS, MS,3

sub-sphere,4 / 3

i l
l l

i l

m
m V

R
=   (4.1) 

The mass centre position of non-spherical particle is related with the used sub-spheres:  

 

( ) ( )

( )

MS,

MS,

sub-sphere, sub-sphere,

1
MS,

sub-sphere,

1

l

l

N

i il l
i

l N

i l
i

m

m

=

=

=




r

r   (4.2) 

where N
MS,l

 and (r
sub-sphere,i

)
l
 respectively denote the number of sub-spheres and the position 

of the mass centre of sub-sphere i.  
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For the integration of translational motions, the governing equations (3.23) is re-arranged 

as:  

 MS, MS, MS,l l lm=F r   (4.3) 

where F
MS,l

 is the resultant force arising from all sub-spheres. It can be obtained by applying 

Equation (3.25) for each sub-sphere as:  

 ( )
( )

( )
( )PP, PS,MS,

MS, MS, PP, PS,

1 1 1

i il l l
N NN

l l ij ik ll
i j k

m
= = =

  
= + + 

  
  F g F F   (4.4) 

where (N
PP,i

)
l
 and (N

PS,i
)
l
 are respectively the numbers of total sphere-sphere contacts and 

total sphere-enclosure surface contacts that the sub-sphere i produces; (F
PP,ij

)
l
 and (F

PS,ik
)
l
 

are the interaction force vectors acting on the sub-sphere i generated by the contacting sub-

spheres and the contacting enclosure surfaces, respectively.  

The governing equations of angular motions given in Equation (3.24) can be directly adopted 

for non-spherical particles by only substituting the angular velocities of non-spherical 

particle and calculating the mass moment of inertia terms for non-spherical particles as:  

 

( )

( )

( )

MS,

MS,

MS,

2

MS,

2

MS,

2

MS,

l

l

l

xx

l l

m

yy

l l

m

zz

l l

m

I x dm

I y dm

I z dm

=

=

=







  (4.5) 

where ( )
l

x , ( )
l

y  and ( )
l

z  are the corresponding distances of differential mass element dm 

to the non-spherical particle centre of mass. For the angular motion governing equations, the 

resultant moment about the non-spherical particle mass centre due to all forces acting on 

each individual sub-sphere is calculated by:  
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 ( ) ( ) 
( )

( ) ( ) 
( )PP, PS,MS,

MS, PP, PP, PS, PS,

1 1 1

i il l l
N NN

l ij ij ik ikl ll l
i j k= = =

  
=  +  

  
  M d F d F   (4.6) 

where the corresponding moment distances are:  

 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

PP,

PP, sub-sphere, PP, sub-sphere, MS,

PS,

PS, sub-sphere, PS, sub-sphere, MS,

2

2

n

ij l
ij i ij i ll l l l

n

ik l
ik i ik i ll ll l

R

R





 
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 
 

 
 = − + −
 
 

d n r r

d n r r

  (4.7) 

where (n
PP,ij

)
l
 and (n

PS,ik
)
l
 are respectively the normal unit vectors of sphere-sphere and 

sphere-enclosure surface contacts; (δ
PP,ij

)
n

l
 and (δ

PP,ij
)
n

l
 are the corresponding normal 

overlaps along these vectors.  

The integration scheme is carried out as the same way presented in Equations (3.29) and 

(3.30). The time step obtained by the equation (3.31) is also valid in this case by using the 

smallest sub-sphere radius in the constructed particle.  

4.3 Arbitrarily Shaped Non-Spherical Particles  

In order to create complex non-spherical particle shapes using the multi-sphere approach, 

Altair EDEM [136] provides a simple but useful feature. In this thesis, this non-spherical 

particle generation algorithm is used to create oblate spheroid particles as no analytical 

solution has been found for this type of geometry.  

The geometry of an oblate particle and a multi-sphere representation of it are shown in Figure 

4.2. Here, ɑ
spheroid

 and b
spheroid

 are the principal dimensions of the oblate spheroid particle. As 

ɑ
spheroid

 < b
spheroid

, the particle is flattened. Note that if ɑ
spheroid

 > b
spheroid

 was met, the spheroid 

particle would have an elongated shape which is a prolate spheroid.  
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A basic demonstration of how this algorithm works is presented in Figure 4.3. As a first step, 

a geometry mesh template of the non-spherical particle is introduced. A surrounding grid 

system comprising several squares (or cubic cells) is generated till the exterior boundary of 

the geometry. The cells located inside the particle shape and the cells that involves the shape 

boundaries are separated from each other as shown in Figure 4.3a. The distances from each 

inner cell centre to all boundary cell centres are calculated. For each inner cell, the shortest 

path of those distances is identified, and a sub-sphere whose radius equals the identified 

shortest distance is created at the centre of inner cell as demonstrated in Figure 4.3b. Note 

that similar algorithms based on the multi-sphere approach can be found elsewhere in 

literature [162].  

O

(a) (b)

Original 

geometry 

mesh

x

y

z

bspheroid

bspheroid

bspheroid

bspheroid

ɑspheroidɑspheroid

ɑspheroid<bspheroid
 

Figure 4.2: Axisymmetric oblate spheroid particle shape: (a) original smooth geometry, 

(b) multi-sphere model.  
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(a) (b)

Inner cells

Star-like 

particle 

geometry

Surrounding 

grid system

Boundary 

cells
Created sub-spheres

  

Figure 4.3: A schematic demonstration of geometric mesh-based algorithm: (a) inner and 

boundary cell generation, and (b) placed sub-spheres [136].  

A rock shape example is illustrated in Figure 4.4 to show both the consistency level of this 

algorithm and the effect of the number of sub-spheres on the representative shape. As can 

be seen from this figure, the shape become more precise when the number of sub-spheres 

increases. However, it can also lead the employment of extremely small sub-spheres which 

results in a significant decrease of the iteration time step defined by Equation (3.31). Hence, 

the number of sub-spheres and their minimum radius should be restricted considering both 

the consistency of overall shape and the computational effort in this algorithm.  

Number of 

spheres
835 363 69 22

Smallest 

particle radius 

[mm]

56 75 131 224

  

Figure 4.4: A three-dimensional rock shape generated by the multi-sphere approach 

employing the geometric-mesh based algorithm [136].  

4.4 Analytical Approaches to Model Non-Spherical Particles  

As illustrated in Figure 4.2b and Figure 4.4, the geometric mesh-based algorithm is not able 

to match the surface of non-spherical particles. To address this, analytical approaches have 
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been developed for some specific particle shapes. In this section, the analytical solutions are 

presented for two different particle shapes used in this thesis: prolate spheroid and circular 

toroid.  

4.4.1 Prolate spheroid particle  

An analytical solution for prolate spheroid particle generation in the DEM environment had 

been previously studied employing only four identical sub-spheres [163]. This approach has 

been improved and generalised for the use of an arbitrary number of sub-spheres by 

Markauskas et al. [164]. This analytical method is used in this thesis to create prolate non-

spherical particles and is summarised below.  

The geometry of an axisymmetric prolate spheroid particle shape and the multi-sphere model 

of this are shown in Figure 4.5a and Figure 4.5b.  

(a) (b)

x

yz

O

bspheroid

ɑspheroid

ɑspheroid>bspheroid

bspheroid
bspheroid

bspheroid

ɑspheroid

  

Figure 4.5: Axisymmetric prolate spheroid particle: (a) original smooth geometry, (b) 

multi-sphere model.  

Note that the principal axes and dimensions are defined in the same way presented for the 

oblate spheroid in Figure 4.2. The geometric equation of the prolate spheroid surface can be 

written as:  

 

2 2 2

spheroid

spheroid spheroid spheroid

1 0
x y z

f
a b b

     
= + + − =          

     

  (4.8) 
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Since the prolate spheroid particle is axisymmetric, it is more convenient to consider it in 

this way, as shown in Figure 4.6. Here, the sub-scripts 0, 1, …, i, …, n denote the individual 

sub-sphere. The total number of sub-spheres in the whole particle is 2n + 1. All sub-sphere 

centres coincide with the x  axis. The definitions of the notations used are listed below.  

• R
sub-sphere

 is the sub-sphere radius.  

• sub-spherex  is the x  position of sub-sphere centre.  

• spheroidz  is the z  position of the spheroid particle surface that corresponds to 
sub-sphere,ix  

and it can be obtained from Equation (4.8).  

• conjunctionz  is the z  position of each conjunction points of sub-spheres and it should 

be noticed that there are n – 1 conjunction points.  

• ( )1

sub-sphere
 and ( )2

sub-sphere
 are the horizontal distances of right and left conjunction 

points to spheroidz  of sub-sphere centres, respectively.  
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x

z

ɑspheroid

bspheroid

Rsub-sphere,0

spheroid,0z spheroid,1z

conjunction,1z conjunction,2z

spheroid,iz

conjunction,iz conjunction, 1nz −

spheroid,nz

conjunction, 1iz −

Rsub-sphere,1

Rsub-sphere,i

Rsub-sphere,n
sub-sphere,0x sub-sphere,1x sub-sphere,ix sub-sphere,nx

( )2

sub-sphere,il
( )1

sub-sphere,il

  

Figure 4.6: Two-dimensional half view of prolate spheroid particle shape with sub-

spheres.  

The inter sub-sphere segment is described as the distance between the centres of two 

neighbouring sub-spheres and calculated by the following relation.  

 sub-sphere, sub-sphere, sub-sphere, 1i i id x x −= −   (4.9) 

Note that d
sub-sphere,0

 does not exist. Using the inverse approach, the position of each sub-

sphere centre can be computed as:  

 sub-sphere, sub-sphere,

1

i

i j

j

x d
=

=    (4.10) 

As can be seen from Figure 4.6, the largest sub-sphere is positioned at sub-sphere,0 0x =  and its 

radius R
sub-sphere,0

 = b
spheroid

. Also, spheroid,0 spheroidz b= .  
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Each sub-sphere touches the original geometry surface. At the contact point, the surfaces of 

the particle and the sub-sphere have the same position and gradient. From these conditions, 

the radius is obtained as:  

 
( )2 2 2 2

spheroid spheroid spheroid sub-sphere,

sub-sphere, 2 2

spheroid spheroid

i

i

b a b x
R

a b

− −
=

−
  (4.11) 

Ideally, sub-spheres fill the geometry along the major dimension of the spheroid so the final 

contact point occurs at:  

 sub-sphere, spheroid sub-sphere,n nx a R= −   (4.12) 

where the radius of this sub-sphere can be found substituting the position into the equation 

(4.11).  

 

2

spheroid

sub-sphere,

spheroid

n

b
R

a
=   (4.13) 

In order to achieve this, the half of prolate spheroid major dimension should equal the sum 

of the inter segments and the radius of the smallest sub-sphere:  

 spheroid sub-sphere, sub-sphere,

1

n

i n

i

a d R
=

= +   (4.14) 

If the spacing between sub-sphere centres is related to the relevant distance to the particle 

surface:  

 
spheroid, 1

sub-sphere, 2 sub-sphere, 1

spheroid,

i

i i

i

z
d d

z

+

+ +=   (4.15) 

Therefore, there is only one unknown in Equation (4.14). For a given number of sub-spheres, 

the simultaneous iterative solution of Equation (4.14) along with Equations (4.8), (4.10) and 
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(4.15) provides the positions of each sub-sphere. Subsequently, the radius of each sub-sphere 

is obtained employing Equation (4.11).  

To assess the accuracy of this approach, the area and the perimeter of the multi-sphere prolate 

particle (considering its two-dimensional cross-section shown in Figure 4.6) are computed 

and they are compared with the area and the perimeter of the quarter ellipse geometry.  

The area of the multi-sphere particle is obtained as:  

 
1

prolate,MS sub-sphere,0 sub-sphere, sub-sphere,

1

n

i n

i

A A A A
−

=

= + +   (4.16) 

where the area terms are:  
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  (4.18) 
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  (4.19) 

The perimeter of the multi-sphere particle is similarly calculated as:  

 
1

prolate,MS sub-sphere,0 sub-sphere, sub-sphere,

1

n

i n

i

P P P P
−

=

= + +   (4.20) 

where the perimeter terms are:  
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( )

conjunction,11

sub-sphere,0 sub-sphere,0 1

sub-sphere,1 sub-sphere,1

tan
2

z
P R

d

 −
  
 = −  

  −  

  (4.21) 

 
( ) ( )

conjunction, conjunction, 11 1

sub-sphere, sub-sphere, 1 2

sub-sphere, sub-sphere,

tan tan
i i

i i

i i

z z
P R 

+− −
    
 = − −   

    
    

  (4.22) 

 
( )

conjunction, 11

sub-sphere, sub-sphere, 2

sub-sphere, sub-sphere, 1

tan
n

n n

n n

z
P R

d


−−

−

  
 = −  

  −  

  (4.23) 

The exact area and very close approximation for the perimeter of quarter ellipse geometry 

are determined by:  

 prolate,exact spheroid spheroid / 4A a b=   (4.24) 

 ( ) ( )( ) prolate,exact spheroid spheroid spheroid spheroid spheroid spheroid3 3 3 / 4P a b a b a b + − + +   (4.25) 

The errors arising from the multi-sphere approximation are plotted depending on the number 

of sub-spheres for three different aspect ratios in Figure 4.7. The multi-sphere approach 

underestimates the area whereas it overestimates the perimeter as expected (see Figure 4.6). 

Increasing the number of sub-spheres reduces the error, but with diminishing gains when 

many sub-spheres are used. Higher aspect ratio particles require more sub-spheres to 

maintain accuracy.  
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Figure 4.7: Geometric errors in the approximated multi-sphere prolate spheroid: (a) area 

and (b) perimeter.  

4.4.2 Circular toroid particle  

Utilising a similar approach, an analytical method is developed here to generate circular 

toroidal particles for DEM simulations. A circular toroid is generated by sweeping a circle 

through a circle path which is perpendicular to the sweeping circle. Three-dimensional view 

of a circular toroid geometry with the principal dimensions and a circular toroid particle 

constructed with sub-spheres are illustrated in Figure 4.8. Note that ɑ
toroid

 represents the 

radius of whole circular toroid shape whilst b
toroid

 is the radius of circular tube.  

It is more convenient to consider the circular toroid on a two-dimensional plane to ensure 

geometric simplicity for evaluating the alignment of sub-spheres as the particle geometry is 

radially axisymmetric around the z  axis as shown in Figure 4.9. In the analytical method 

presented here, it is considered that the centre of each sub-sphere coincides with the circular 

axis of toroid geometry which pass through the centre of circular tube cross-section (the z  

coordinate of each sub-sphere is 0) as can be seen in Figure 4.8b and Figure 4.9. The method 
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assumes that the circular toroid shape is filled by a number of identical overlapping sub-

spheres which all touch the tube surface. This means that the radius of each sub-sphere equals 

to the radius of the tube.  

(a) (b)

x

yz
ɑtoroid – btoroid

btoroid

btoroid

ɑtoroid

ɑtoroid + btoroid
  

Figure 4.8: Circular toroid particle shape: (a) original smooth geometry and (b) multi-

sphere model.  

x

y

btoroidɑtoroid

Δφsub-sphere

( )sub-sphere, 1 sub-sphere, 1,i ix y+ +

( )sub-sphere, sub-sphere,,i ix y

φsub-sphere,i

( )sub-sphere,1 sub-sphere,1,x y

  

Figure 4.9: Circular toroid particle shape with sub-spheres on two-dimensional plane.  

The sub-script i indexes the sub-spheres, and it goes up to the total number used n. Note that 

the sub-spheres are aligned from ( ) ( )sub-sphere,1 sub-sphere,1 toroid, ,0x y a=  along the anti-clockwise 

direction.  

The angle of between sub-sphere centres, Δφ
sub-sphere

, determines the number used:  
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sub-sphere

2
n




=


  (4.26) 

If Δφ
sub-sphere

 → 0, n theoretically becomes infinite and this indicates the exact circular 

toroidal particle with the multi-sphere approach.  

There is a limitation for the minimum number of sub-spheres that should be used. This 

condition can be defined assuming that each sub-sphere touches its neighbours. Thus, the 

following criteria must be met.  

 toroid
sub-sphere

toroid

2b

a
    (4.27) 

Satisfying this condition, a sufficient separation angle is provided, and the number of sub-

spheres is determined. Afterwards, the centre positions of each sub-sphere can be determined 

by:  

 
( )

( )

sub-sphere, toroid sub-sphere,

sub-sphere, toroid sub-sphere,

cos

sin

i i

i i

x a

y a





=

=
  (4.28) 

where φ
sub-sphere,i

 is found from the following relation.  

 ( )sub-sphere, sub-sphere 1i i =  −   (4.29) 

Similar to prolate spheroid particle case, the closeness of the approximated particle shape to 

the smooth geometry is investigated. The area and perimeter of multi-sphere toroid particle 

(considering two-dimensional cross section on xy plane – see Figure 4.9) should be obtained 

first. These calculations depend on the intersection distance between two adjacent sub-

spheres. The intersecting distance between two sub-spheres shown in Figure 4.10 is obtained 

as below.  

 ( )intersecting toroid sub-sphere2 sin / 2d a =   (4.30) 
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Δφsub-sphere

btoroid

dintersecting

btoroid

  

Figure 4.10: Two intersecting sub-spheres in a multi-sphere circular toroid particle.  

Using the intersecting distance, the area can be computed by removing the overlapped areas 

from the total area of sub-spheres as:  

 ( )
intersectingtoroid

intersecting intersecting toroid

2

toroid,MS toroid

/2
2

2 2 2

toroid toroid intersecting

/2

intersecting2 2 1
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2
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2
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d d b
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A n b

n b x dx b x d dx

d
n b b d b

b





−

−

=

  
− − + − − 

  

 
= − + 

 

 

2 2

intersecting / 4d
 

−  
 

 (4.31) 

and the surface perimeter of this approximated particle can be similarly obtained by:  

 

(

( )( )

toroid,MS toroid

toroid intersecting toroid intersecting1

toroid

2

2 / 2 / 2
2sin

2

P nb

b d b d

b



−

=

 − +
 −
  

 

  (4.32) 

The area and perimeter of the original smooth circular toroid geometry are known by: 

 toroid,exact toroid toroid4A a b=   (4.33) 

 toroid,exact toroid4P a=   (4.34) 
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The errors in area and perimeter are shown in Figure 4.11 depending the number of sub-

spheres for three different hole ratios. As can be seen, the accuracy is very similar to the 

prolate spheroid particle investigation. The approximated shape underestimates the actual 

area, and it overestimates the perimeter. The error decreases as the number of sub-spheres 

increases. However, the gain with the increase in the number of sub-spheres diminishes for 

large number of sub-spheres. Larger ratio of the hole length to the tube length requires more 

sub-spheres to maintain accuracy.  

  

Figure 4.11: Geometric errors in the multi-sphere circular toroid particle: (a) area and (b) 

perimeter.  

4.5 Chapter Summary and Conclusions  

In this chapter, use of the multi-sphere approach has been shown for modelling non-spherical 

particles. The generation of oblate spheroid, prolate spheroid and circular toroid particles 

has been considered. The governing equations of motions shown for spherical particles in 

Chapter 3 have been re-arranged considering multi-sphere non-spherical particles. In order 

to show the DEM computation scheme with non-spherical particles, the updated version of 

Figure 3.4 flowchart is illustrated in Figure 4.12.  
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Geometric mesh-based algorithms (such as [162]), where a number of sub-spheres are 

employed to fill a provided particle geometry, are used to generate arbitrary shaped particles 

in DEM. One of these approaches was considered for the generation of oblate spheroid 

particles in this chapter. Additionally, two analytical methods (one from literature and one 

novel) have been presented to generate prolate spheroid and toroidal particles, respectively.  

The ability of the analytical approaches to create accurate representations of prolate spheroid 

and toroidal particles has been investigated. It has been found that increasing number of sub-

spheres provides a more accurate representation. However, this increases the computational 

effort of DEM solution and the improvement in shapes is not affected much after a number 

of sub-spheres. Therefore, a number of sub-spheres can be selected to conduct a balance 

between the computational effort and accuracy depending on the geometric error analyses.  

Form non-spherical particles and 

calculate particle properties

Impose motion to enclosure as 

initial conditions at a time point

Generate particles within an 

enclosure

Check and detect contacts of each 

sub-sphere using a feasible 

algorithm 

Integrate motion of particle 

(acceleration, velocity, position)

Finalise simulation

Is this the last time step?
No

Repeat for each non-

spherical particle 

employed

Contact mechanics

Newton–Euler 

equations of motions 

and a numerical 

integration method

Calculate resultant force acting on 

processed non-spherical particle

Yes

Determine simulation parameters 

such as time step, material 

properties

Compute net contact force acting 

on all sub-spheres which forms 

processed non-spherical particle

  

Figure 4.12: DEM simulation computation flowchart for non-spherical particles created 

via the multi-sphere approach.  

Equation Chapter 5 Section 1  
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5 Contact Force-Deformation Model for DEM 

Simulations  

5.1 Overview  

Forces acting on each particle and enclosure surface at a specific time step should be 

evaluated to obtain particle motions in DEM. For numerical granular damper investigations, 

these forces are typically modelled by computing the sum of gravitational and physical 

contact forces acting on each body involved. However, it should be noted that force models 

in DEM can also involve cohesive or adhesive forces, electrostatic forces, magnetic forces 

and fluid-based forces.  

When two bodies (for example, particle-particle or particle-enclosure surface) are in contact, 

an amount of deformation is initiated on both bodies over the contact area which yield a 

mutual contact force acting on both bodies as opposite directions. In order to represent this 

behaviour in a numerical simulation, a force-deformation relation should be identified. As 

impacts in a granular medium tend to be oblique, it is more convenient to consider the force-

deformation relation in two principal directions, i.e., normal and tangential. Thus, the contact 

force resulting from an interaction between two distinct bodies i and j, and acting on the 

body i can be written as:  

 ( ) ( )contact, contact, contact, contact, contact,

n t

ij ij ij ij ijF F= − −F n t   (5.1) 
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where (F
contact,ij

)
n
 is the normal contact force along the normal unit vector of contact n

contact,ij
 

and (F
contact,ij

)
t
 is the tangential contact force along the tangential unit vector of contact 

t
contact,ij

. Note that the superscripts n and t represent normal and tangential directions, 

respectively.  

Contact mechanic theories are addressed to determine the contact forces [165,166]. Utilising 

these theories for perfect spheres, a number of contact models has been developed and 

comprehensively tested in the literature [137,152,167–184].  

This chapter briefly shows two contact theories (one for the normal direction and one for the 

tangential direction) that provide very good approximation for representing physical 

interactions of spheres. A computationally efficient dissipative force model is also presented 

here. Qualitative and quantitative analyses are conducted to show the validity and limitations 

of the used contact model.  

5.2 Hertz Theory for Normal Contact  

The Hertz elastic contact theory is widely employed to represent contacts along normal 

direction in DEM [5,7,57,111]. This non-linear model has been found to be very accurate 

and reliable while remaining computationally efficient [152,168]. Therefore, the Hertz 

contact model is used to represent normal contact behaviours of particle-particle and 

particle-enclosure interactions in DEM simulations.  

Heinrich Hertz [185] originally developed the theory to represent physical normal contact 

problem of two non-conforming smooth elastic surfaces. This contact type is illustrated for 

two perfect spheres in Figure 5.1. Here, m
particle

 and R
particle

 are the mass and the radius of 

individual spheres; (δ
contact,ij

)
n
 and ɑ

contact,ij
 are the normal deformation (i.e. the normal 

overlap) and the radius of the circular contact area, respectively; (F
contact,ij

)
n
 and (F

contact,ji
)
n
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are the normal contact forces which are equal in magnitude and act on particles i and j, 

respectively.  

(a) (b)

(Fcontact,ij)
n
 

(Fcontact,ji)
n
 

mparticle,i

Rparticle,i

mparticle,j

Rparticle,j

(δcontact,ij)
n 

ɑcontact,ij

 

Figure 5.1: Normal contact of two interacting spheres: (a) deformed spheres and (b) 

circular contact area.  

The Hertz theory assumes that:  

i) the contacting surfaces are continuous and frictionless,  

ii) the radius of circular contact area is much smaller than the radii of contacting 

surface curvatures,  

iii) the deformations at any positions of contacting bodies rather than the contact area 

are negligible.  

Under these assumptions, the Hertz theory approximates the pressure applied on the contact 

area as an elliptical distribution [165,166]:  

 ( ) ( )
( )

2

contact, contact,

contact,

; 0; 1ij ij

ij

r
r t t

a t
 

 
= −   

 

  (5.2) 

where r depicts the radial position on the contact area ranging from 0 to ɑ
contact,ij

, t is the time, 

and σ
contact,ij

(0;t) shows the maximum pressure which occurs at the centre of contact area. 
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The relation between the contact area radius and the maximum pressure can be obtained 

considering the elasticity theory of an elastic surface subjected to a normal force [165].  

 ( )contact, contact, eq,

n

ij ij ija R=   (5.3) 

 ( ) eq, contact,

contact,

eq,

2
0;

ij ij

ij

ij

E a
t

R



=   (5.4) 

Here, the equivalent radius and the equivalent elastic modulus can be obtained by:  

 

1

eq,

particle, particle,

1 1
ij

i j

R
R R

−

 
= +  

 

  (5.5) 

 
( ) ( )

1
2 2

particle, particle,

eq,

particle, particle,

1 1i j

ij

i j

E
E E

 
−

 − −
 = +
 
 

  (5.6) 

where E
particle

 and ν
particle

 stand for the elastic modulus and the Poisson’s ratio of individual 

spheres, respectively. Note that if one of the contacting bodies is a flat surface rather than a 

sphere (such as a segment of the enclosure mentioned in Chapter 3), it should be considered 

that the curvature of the relevant body would be zero.  

In order to find out the normal elastic contact force depending on the normal deformation, 

the pressure given in Equation (5.2) is integrated over the whole contact area, and the 

relations provided by Equations (5.3) and (5.4) are substituted into this integral.  

 ( ) ( )( )
contact, 3/2

contact, contact, eq, eq, contact,

0

4
2

3

ija
n n

ij ij ij ij ijF rdr E R  = =   (5.7) 

For two impacting spheres with the normal impact velocity of ( ) ( )contact, 0
n

ij t = , the 

maximum normal deformation that can occur is [165,166]:  



79 

 

 ( ) ( )
( ) ( )( )

2/5
2

eq, contact,

contact, max,def

eq, eq,

15 0

16

n

ij ijn

ij

ij ij

m t

t t
E R




 
= 

= =  
  
 

  (5.8) 

where the equivalent mass is defined as:  

 

1

eq,

particle, particle,

1 1
ij

i i

m
m m

−

 
= +  

 

  (5.9) 

and the time at which the maximum normal deformation is observed, t
max,def

, is found by the 

following relation.  

 

( ) ( )( )

1/5

2

eq,

max,def
2

eq, eq, contact,

1.435
0

ij

n

ij ij ij

m
t

E R t

 
 

=  
= 

 

  (5.10) 

It should be noted that the total contact time is twice that shown in Equation (5.10) for fully 

elastic contacts as a contact involves loading and unloading stages. Note that the estimated 

contact durations utilising the Hertz theory have been shown to give excellent agreement 

with experimental results [174,186].  

As consistent with physical reality of impacts, the contact time is significantly small – 

especially for metallic-like hard materials which have high elastic modulus as can be realised 

from Equation (5.10). Therefore, impacts create large dynamic stresses on contacting bodies, 

and it may induce travelling dilatational waves. As a result, a great amount of impact energy 

can be observed at the positions of impacting bodies away from the contact area which 

conflicts with the Hertz theory. In order to avoid such unwanted phenomenon and sustain 

the validity of the Hertz theory, a limitation criteria is suggested which restricts the impact 

velocity according to the dilatational wave speed [165]:  



80 

 

 ( ) ( )( )( )
1/5

dilatational, contact,c / 0 1
n

i ij t =  (5.11) 

where the dilatational wave speed on the sphere i is determined by:  

 ( ) ( )2

dilatational, particle, particle, particle, particle, particle,c 1 / 1 2i i i i i iE    = − − −  (5.12) 

where ρ
particle,i

 is the density of the sphere material.  

5.3 Mindlin-Deresiewicz Theory for Tangential Contact  

The tangential contact force-deformation relationship is not independent from the normal 

direction. Thus, the normal contact behaviour should be adequately defined for an interaction 

before describing the tangential behaviour. In order to model such contact, the Mindlin-

Deresiewicz (MD) approach has been developed assuming that the normal contact behaviour 

follows the Hertz theory [187].  

The original MD theory considers not only elastic behaviour of a contact in the tangential 

direction but also involves frictional and plastic behaviour. Therefore, a hysteretic non-linear 

force-deformation behaviour occurs as simply shown in Figure 5.2. Since there is frictional 

surface interaction between contacting bodies in the tangential direction, the tangential force 

is limited with a friction-based force determined by the applied normal force. In fact, the 

existence of friction results in a separation in the tangential force-deformation behaviour: 

the sticking stage where the contacting bodies stick each other with a varying mutual 

tangential overlap and contact force up to the friction force limit and the slippage stage where 

the contacting bodies have relative motion with respect to each other in tangential direction 

with a constant tangential contact force which equals to the friction force limit.  
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Figure 5.2: Tangential contact force-deformation relation of two contacting bodies under a 

constant normal force.  

In case of constant normal force (similar to Figure 5.2), MD calculates the tangential contact 

force in the loading case incrementally [152] as shown below for a sphere-sphere contact:  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

contact, contact, eq, eq, contact,

eq, eq, contact, contact,

contact, contact,

contact, contact,

8

16
1

3

t t n

ij ij ij ij ij

n t

ij ij ij ij

n

ij ij

t t

ij ij

F t F t t G R t

G R t t

F t

t t t



 



 


= −  + 



−

− − 

  (5.13) 

where Δt is the time step; (δ
contact,ij

)
t
 is the tangential deformation, µ

contact,ij
 is the coefficient 

of friction, and G
eq,ij

 is the equivalent shear modulus determined by:  

 

1

particle, particle,

eq,

particle, particle,

2 2i j

ij

i j

v v
G

G G

−

 − −
= +  

 

  (5.14) 

being G
particle

 the shear modulus of individual spheres. Note that the superscript t shows the 

tangential direction.  
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For the unloading and the re-loading cases demonstrated in Figure 5.2, Equation (5.13) 

slightly differs (see the reference [152] for more details), but the incremental calculation 

process, which needs the tangential force-deformation history, exists. This requires a large 

computational effort in DEM simulations when many contacts are present at each iteration 

time. As stated before, the demonstrated tangential force-deformation characteristic is only 

a limited version of MD which assumes a constant normal load. The generalised MD model 

considers varying normal load and varying tangential deformation which would cause even 

more complex and computationally more expensive solutions in DEM simulations.  

By applying several subsequent simplification, various improved tangential contact force-

deformation models have been proposed by Vu-Quoc et al. using particular loading cases 

[167,172,173,183]. However, the computational load of tangential contact force-

deformation model for DEM simulations is still significant. Hence, by eliminating the 

inelastic part of MD (i.e., plastic deformation), Tsuji et al. analytically derived a simplified 

and computationally effective elastic tangential force-deformation relationship for DEM 

simulations [179]. In addition to the elastic tangential force, the Coulomb friction model is 

typically implemented into this simplified model to apply the frictional force limit. This 

simple model is shown in the following equation:  

 
( ) ( ) ( ) ( )

( )

contact, contact, eq, eq, contact, contact,

contact, contact, contact,

1 8
t n t

ij ij ij ij ij ij

n

ij ij ij

F G R

F

  

 

= −

+

  (5.15) 

where the coefficient γ
contact,ij

 establishes sticking-slipping stage as:  

 
( ) ( )

( ) ( )

contact, contact, contact,

contact,

contact, contact, contact,

0

1

t n

ij ij ij

ij t n

ij ij ij

if F F

if F F







 

=








 (5.16) 
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It is apparent from Equation (5.15) that the elastic tangential force is linearly proportional to 

the tangential deformation whilst the force non-linearly depends on the normal overlap. 

Similar to the Hertz theory, the simplified MD model is often implemented and reliably used 

for DEM simulations in many different research fields [69,111,112,118,138,139].  

5.4 Contact Force-Deformation Behaviours of Individual Contacts  

To show the validity of the described contact models, a set of numerical investigations was 

carried out using a perfect sphere and the non-spherical particles introduced in Chapter 4. In 

these studies, the contact force-deformation behaviours on individual particles were 

examined. The numerical studies involved the theoretical evaluations from Section 5.2 and 

5.3, DEM simulations implementing the described contact models and FEM analyses. As 

this section considers the contact behaviours of non-spherical particles, it also provides a 

validation of the non-spherical particles generated with the multi-sphere approach.  

FEM is a well-known elasticity theory based numerical approach which discretises a 

continuous structure into many relatively small elements by meshing the original geometry. 

In this section, FEM models were used to show the validity of contact models providing the 

force-deformation relations of investigated contacts with smooth non-spherical particles. 

The fundamental properties (e.g., shape functions) and strain-stress formulations for some 

of the commonly used elements have been derived, validated and even catalogued for many 

years [188–190]. A typical three-dimensional 10-noded quadratic tetrahedral element (i.e., 

C3D10 in the used commercial FEM software library [191]) was used to both sufficiently 

discretise original particle geometries and accurately obtain strains and stresses within the 

elements. In order to adequately model contact areas between contacting bodies in FEM, the 

standard penalty formulation was utilised providing non-linear contact stiffness on contact 

fields [189]. It should be also noted that geometric non-linearities were taken into account 

in each FEM model.  
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First, the contact models were tested on perfect spheres. Since the presented contact models 

had been derived for perfectly spherical surfaces, the accuracy level of contact models should 

be high and, therefore, it is expected that the results from the FEM analyses are very similar 

to the DEM simulations or the theoretical investigations. This would show that the FEM 

model can reliably represent the contact behaviours between individual bodies. Afterwards, 

the contact models were examined on multi-sphere non-spherical particles, and the obtained 

results were compared with the smooth FEM models.  

5.4.1 Spherical particle  

The numerical models for sphere particle analysis are demonstrated in Figure 5.3. The 

material type for all bodies is stainless steel whose properties are shown in Table 5.1. It 

should be noted that the presented configurations and material properties were used for all 

particle investigations in Section 5.4.  

(a)

Base supporting 

plate

Compressing 

plate

Spherical 

particle

(b)

Lateral 

supporting plates

(c)

Mesh size: 

0.01 × Sphere 

diameter

Mesh size away 

from contact: 

0.2 × Sphere 

diameter

Compressing

-shearing 

plate

Base supporting 

plate

Top hemisphere 

surface

  

Figure 5.3: Numerical models for individual spherical particle-surface interaction 

investigation: (a) FEM, (b) DEM for normal contact, and (c) DEM for tangential contact.  

The FEM model involved the half of the particle and a base supporting plate. The model is 

shown in Figure 5.3a as a cut view to demonstrate the mesh variation. Note that the 

compatibility of mesh was checked changing the typical mesh size and conducting re-

analyses with those mesh customisations. The bottom plane of supporting plate was 

restricted to any translational motion to let the particle and the plate deform during contact. 

The investigation of normal contact was achieved imposing axial displacement to the top 
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surface of particle hemisphere. Although the surfaces were modelled as frictionless for the 

normal contact case to ensure the same assumptions as in the Hertz theory, a friction 

coefficient was implemented for the tangential contact investigation to assess the friction 

force limit. For the tangential contact analysis, a constant normal pressure was given to the 

hemisphere top surface to restrict slipping and, therefore, capture the sticking-slipping 

transition region. Then, the shear displacement was applied to the hemisphere top surface as 

perpendicular to the normal pressure.  

Table 5.1: Material and contact properties for individual particle contact investigations.  

Property  Value  

Elastic modulus [GPa] 206  

Poisson’s ratio [-] 0.3  

Density [kg/m3] 7860  

Friction coefficient for 

tangential interactions [-]  

0.4  

  

In the DEM models in Figure 5.3b and Figure 5.3c, the base supporting plate had the similar 

function as in the FEM model. Displacements for the normal and tangential investigations 

were imposed by the upper plates introduced in the DEM models (i.e., compressing and 

compressing-shearing plates) as initial motions or boundary conditions could be specified 

for geometric surfaces much easier than particles in DEM. Because of the same reason, four 

lateral supporting plates were employed in the tangential model to ensure that the required 

boundary conditions were met.  

In Figure 5.4, the particle-surface and particle-particle contact force-deformation results are 

presented for 3 mm diameter spheres. Note that the DEM results mean that the results 

produced using the DEM model created in the commercial DEM software.  

The normal and tangential displacement results are normalised dividing them by 2r
sphere

 

where r
sphere

 is the particle radius. The normalised normal and tangential forces are obtained 

respectively by:  
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where E
material

 is the elastic modulus of used material, G
material

 is the shear modulus that can 

be calculated using the elastic modulus and Poisson’s ratio, δ
n

max
 is the maximum normal 

displacement applied in the test, and δ
n

max
 is the maximum tangential displacement applied 

in the test.  

 

Figure 5.4: Individual contact force-deformation comparisons for a perfect sphere in (a) 

normal and (b) tangential directions.  

For the normal direction, as shown in Figure 5.4a, the DEM particle-surface results exactly 

match with the Hertz as the DEM model uses this contact theory. Nearly perfect agreement 

is observed between the Hertz theory (or the DEM model) and the FEM model for both 

individual interaction types, i.e., particle-surface and particle-particle. It can be seen that the 

particle-particle contact induces smaller force than the particle-surface. However, they 

display similar force-deformation characteristics. Therefore, the particle-particle contact was 

not investigated for non-spherical particles for conciseness.  

As illustrated in Figure 5.4b, the tangential DEM particle-surface results exactly follow the 

simplified MD theory as this theory is used by the DEM model. For the both particle-surface 
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and particle-particle contacts, the simplified MD theory slightly overestimates the exact MD 

theory during the sticking state, and the error increases around the sticking-slipping 

transition region until the friction force limit is initiated. Nevertheless, it can be said that the 

simplified MD is in a good agreement with the exact theory addressing its simplicity and 

huge computational advantage. In addition, it can be seen that the FEM model accurately 

follows the exact MD theory in the both interaction types.  

5.4.2 Oblate spheroid particle  

To assess the accuracy of the contact force-deformation behaviour for oblate spheroid 

particles created by the geometry mesh-based multi-sphere approach, DEM and FEM 

contact analyses were conducted. The investigated oblate particle shape is illustrated in 

Figure 5.5. The major principal dimension of the oblate particle was 3 mm while the minor 

principal dimension was 2.8  mm.  

(a) (b) (c)

Mesh size:

0.01 × Major 

dimension

Mesh size: 

0.2 × Major 

dimension

Original oblate 

geometry mesh 

Fitted sub-spheres

Drawn guideline to 

approximately show the 

intersection ridge of two 

neighbour sub-spheres   

Figure 5.5: Oblate particle: (a) smooth geometry, (b) mesh of smooth geometry for FEM, 

and (c) multi-sphere shape for DEM with original smooth geometry mesh template.  

The smooth particle geometry shown in Figure 5.5a was used for meshing process and, the 

meshed particle hemispheroid was obtained for the FEM investigation. The cut view of the 

model is demonstrated in Figure 5.5b. As shown in Figure 5.5c, the multi-sphere oblate 

particle does not perfectly replicate the original oblate geometry. There was about 3% error 

in the volume.  
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The investigations were conducted using the same testing configurations presented in Figure 

5.3. Note that the minor dimension axis of oblate particle was the normal deformation 

direction. It should be noticed that only particle-surface interaction type was analysed as 

explained in the previous section. The normalisations made by Equation (5.17) and for 

displacements were similarly used for the oblate particle by replacing the sphere radius with 

the half of oblate minor dimension.  

The contact force-deformation results are set out in Figure 5.6. Since the oblate particle was 

generated using the non-analytical multi-sphere algorithm (presented in Section 4.3), the 

alignment order of sub-spheres was not regular within the smooth oblate geometry. 

Therefore, a theoretical contact force-deformation relationship could not be obtained.  

  

Figure 5.6: Individual contact force-deformation comparisons for an oblate spheroid in (a) 

normal and (b) tangential directions.  

It can be said from Figure 5.6a that the multi-sphere oblate particle represents the smooth 

particle behaviour in normal contacts with small differences, and the error seems larger than 

the normal direction for the tangential direction as shown in Figure 5.6b. It should be noted 

that the considered contact configurations are specific and can rarely occur in a vibrated 

granular medium in which comprises many particles.  
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5.4.3 Prolate spheroid particle  

One of the analytical multi-sphere non-spherical particles considered for granular dampers 

in this thesis is the prolate spheroid. The contact force-deformation relationship of this 

particle is investigated here. The particle shape is illustrated in Figure 5.7. The major 

principal dimension of prolate spheroid was 12 mm, and the minor dimension was 6 mm.  

(a) (b) (c)

Mesh size:

0.0075 × Minor 

dimension

Mesh size:

0.33 × Minor 

dimension

Horizontal 

configuration

Vertical 

configuration

  

Figure 5.7: Prolate particle: (a) smooth geometry, (b) mesh of smooth geometry for FEM, 

and (c) multi-sphere shape for DEM with original smooth geometry mesh template.  

For FEM, the smooth geometry (Figure 5.7a) was used for meshing process. Two different 

meshed hemispheroids were obtained. The cut views of these models are shown in Figure 

5.7b. These were separately investigated in terms of contact force-deformation to show the 

effect of contact orientation as hinted in the previous section. In order to show the effect of 

number of used sub-spheres, two multi-sphere particles were generated for DEM: 21 sub-

spheres and 51 sub-spheres. As shown in Figure 5.7c (51 sub-spheres), the analytical multi-

sphere representation of prolate particle almost exactly matched with the original geometry 

mesh template. There were about 0.4% and 0.05% errors in the original particle volume with 

21 sub-spheres and 51 sub-spheres, respectively.  

Note that the minor dimension axis of particle was the normal deformation direction in the 

horizontal configuration whereas the normal deformation direction was the major dimension 

axis for the vertical configuration. The normalisations were done by respectively replacing 
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the sphere radius in Equation (5.17) and for displacements with the halves of minor and 

major dimensions of the prolate spheroid for the horizontal and vertical configurations.  

The normal contact force-deformation comparisons for the prolate spheroid are presented in 

Figure 5.8a. For the horizontal case, the both created particles (21 and 51 sub-spheres) 

provide very consistent contact force-deformation results with the smooth FEM model at 

relatively small deformations. However, the higher number of sub-spheres leads to a more 

successful representation of the particle at larger deformations as the smaller number of sub-

spheres produces lower stiffness than the smooth particle (the FEM model). When the 

normalised deformation exceeds 0.45, the 51 sub-spheres particle surprisingly exhibits 

higher stiffness than the smooth model as can be seen in Figure 5.8a. This is because of the 

indented structure of the multi-sphere particle surface – it has many ripples on the surface. 

In the DEM model, when the normal compression increases, more sub-spheres are involved 

in the contact (due to the deformations of the ripples) which eventually yields a higher 

stiffness than the smooth particle. For the 21 sub-spheres particle, the similar phenomena 

would be encountered at a larger deformation as it has wider overlapping segments (therefore 

higher ripples).  

  

Figure 5.8: Individual contact force-deformation comparisons for a prolate spheroid in (a) 

normal and (b) tangential directions. 
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Differently aligned contacts can occur in a granular medium subjected to vibration as also 

mentioned in the previous section. Thus, one another specific case apart from the horizontal 

configuration, i.e., the vertical configuration shown in Figure 5.7b, was also investigated for 

the prolate particle. The results shown in Figure 5.8a indicate that the multi-sphere particle 

is in a greater agreement with the FEM model than the horizontal case. This finding shows 

that the particularly investigated interaction configurations, which many sub-sphere surfaces 

of the approximated particle are involved, might be the worst scenario for the contact-

deformation accuracy of multi-sphere particles. As a result, as the interactions may occur in 

many different orientations in a granular medium – most-likely a single surface point on the 

particles, the force-deformation would be more accurate in DEM simulations.  

The tangential contact force-deformation comparison is presented in Figure 5.8b. Note that 

they were carried using the horizontal configuration. It is seen that the tangential contact 

behaviour of smooth particle is represented by the multi-sphere particle with the maximum 

of 15% relative error. Increase in errors around the transition between sticking and slipping 

stages can be attributed to the difference between the original and simplified MD models. If 

one analysed the vertical case, the tangential behaviour would be the same as the spherical 

particles provided in Figure 5.4b as only one spherical surface would be in tangential contact 

in this orientation. It implies that the comment made for the normal investigations about the 

accuracy of differently oriented contacts is also valid for tangential contacts.  

5.4.4 Circular toroid particle  

Circular toroid is another analytical multi-sphere particle type investigated for granular 

dampers in this thesis. Individual contact force-deformation behaviours were conducted on 

the toroid particle demonstrated in Figure 5.9. The radius of circular toroid was 3 mm, and 

the tube radius was 1.15 mm.  
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Similar to the prolate particle case, the smooth geometry shown in Figure 5.9a was used to 

generate two different meshed particles for FEM analyses as shown in Figure 5.9b. These 

two configurations were investigated to show the effect of contact orientation for circular 

toroid particles. The multi-sphere circular toroid particle shown in Figure 5.9c was 

constructed using 50 sub-spheres. The error in the volume was about 0.59%.  

Horizontal 

configuration

Vertical 

configuration

Mesh size:

0.08×Tube 

radius

Mesh size:

0.52 × Tube 

radius

(a) (b) (c)

  

Figure 5.9: Circular toroid: (a) smooth geometry, (b) mesh of smooth geometry for FEM 

and (c) multi-sphere shape for DEM with original smooth geometry mesh template.  

As the sub-spheres are regularly aligned along the circular axis of the toroid tube, the 

described contact force-deformation theories (i.e., the Hertz and MD) can be easily adapted 

for the horizontal interaction investigations. In order to obtain the theoretical contact forces, 

the Hertzian force determined by Equation (5.7) and the MD forces computed with 

Equations (5.13) and (5.15) are multiplied by the number of sub-spheres used to construct 

the circular toroid particle. These theoretical and the numerical force-deformation results are 

illustrated in Figure 5.10. Normalisations were done by replacing the sphere radius in 

Equation (5.17) and for displacements with the tube radius for the horizontal configuration 

and with the radius of whole toroid shape for the vertical configuration.  

The horizontal configuration results are shown in Figure 5.10. As the DEM model uses the 

contact theories, the DEM results exactly replicate the theories as seen in the normal contact 

investigation of 50 sub-spheres particle in Figure 5.10a. As expected from the theoretical 

engagement, increasing number of sub-spheres produces stiffer normal contact behaviour.  
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Figure 5.10: Individual contact force-deformation comparisons for a circular toroid in (a) 

normal and (b) tangential directions for horizontal configuration.  

It can be seen from Figure 5.10a, the DEM and Hertz theory results show non-linear 

characteristics as expected, however, the smooth FEM model exhibits rather linear 

relationship. This is because the FEM model has a line contact in the horizontal configuration 

which indicates a linear contact area increasing rate with deformation. Still, it can be said 

that the multi-sphere particle can still approximate the smooth particle if an adequate number 

of sub-spheres is employed. For example, using 50 sub-spheres, a sufficient multi-sphere 

representation can be obtained producing relatively small errors in the normal and tangential 

directions shown in Figure 5.10a and Figure 5.10b.  

When comparing the multi-sphere toroid particle with the smooth one from the FEM model 

in Figure 5.10a, it can be said that higher number of sub-spheres leads to more accurate 

representation of the circular toroid at small deformations (for example smaller than 0.5 in 

Figure 5.10a), but not at large deformations. It increasingly exhibits non-realistic contact 

force-deformation characteristics at relatively large normal deformations providing much 

stiffer contact than the smooth particle.  

This is related to the height of the ripples on the particle surface emerged from the 

overlapping sub-spheres. It is because the normal contact theory fails for the multi-sphere 

toroid particle (in case of the horizontal contact configuration) if the deformation exceeds 
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the height of the ripples. This limit case can be determined considering the indented structure 

on the particle surface. The figure which shows two intersecting neighbour sub-spheres in a 

circular toroid multi-sphere particle is shown in Figure 4.10. It is re-sketched including the 

limit normal deformation (the height of the ripples) in Figure 5.11.  

x

y

dintersecting

Δφsub-sphere

btoroid

btoroid

δn
limit

  

Figure 5.11: Limit normal deformation of a multi-sphere toroid particle.  

Assuming small intersecting angle between two sub-spheres (Δφ
sub-sphere

) or large number of 

used sub-spheres (n), the intersecting distance can be simplified as:  

 
intersecting toroid sub-sphere toroid

2
d a a

n


  =  (5.18) 

where ɑtoroid is the radius of overall toroid shape. The limit of normal deformation for the 

horizontal contact configuration is therefore obtained as:  

 
2

2 toroid
limit toroid toroid

n a
b b

n




 
 − −  

 
  (5.19) 

If one calculates this limit for the use of 50 sub-spheres toroid case whose normal force-

deformation behaviour is demonstrated in Figure 5.10a, the non-dimensional displacement 

limit is obtained about 2.5 × 10
-3

 which approximately estimates the deformation at which 

the multi-sphere particle is no longer valid to represent the smooth particle. It is because its 

stiffness exceeds the actual stiffness (of the smooth particle) for larger deformations than 
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this value – see Figure 5.10a for justification. This particular result shows that the proposed 

multi-sphere approach for generating circular toroid particles in DEM has a maximum 

deformation threshold in a completely horizontal contact configuration and this limitation 

can be accurately estimated by Equation (5.19).  

Equation (5.19) can be re-arranged and a maximum limit can be found for the number of 

sub-spheres as:  

 

( )
toroid

max
2

2

toroid toroid limit

n

a
n

b b







− −

  (5.20) 

The maximum number of sub-spheres in terms of normalised normal displacement is shown 

in Figure 5.12 for different dimensional ratios. Since the limit is larger for lower number of 

sub-spheres, the number of sub-spheres should be accordingly reduced to capture accurate 

behaviour at the interested deformation range. On the other hand, wider hole indicates more 

separated sub-sphere alignments and larger ripples and, thus, it is possible to use more sub-

spheres without exceeding the maximum normal deformation threshold.  

  

Figure 5.12: Maximum number of sub-spheres in multi-sphere circular toroid particle 

depending on normal deformation.  
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As also discussed before, the horizontal contact configuration is a particular interaction type 

which possibly produces the worst estimation scenario for the force-deformation relationship 

of multi-sphere particles. Therefore, the vertical configuration shown in Figure 5.9b was 

proposed for investigation. The FEM and DEM results for the vertical contact configuration 

are shown in Figure 5.13. Since this interaction produces a circular contact for both models 

in contrast to the horizontal case, the force-deformation characteristic of DEM is more 

consistent with the FEM model.  

  

Figure 5.13: Individual contact force-deformation comparison for a circular toroid in 

normal contact for vertical configuration.  

5.5 Inclusion of Impact-Based Dissipative Forces  

In the previous sections, the contact models and numerical investigations have considered 

contact force-deformation behaviour assuming fully elastic impacts. However, impacts are 

never fully elastic in a realistic physical environment – i.e., an amount of energy is dissipated 

during an impact because of material inelasticity. Here, these inelastic events are included 

in the elastic contact models by implementing impact-based dissipative forces. The 

dissipative components of contact forces are considered for perfect spheres only addressing 
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that the non-spherical particles are generated via the multi-sphere approach. Note that 

frictional dissipation is already included in the tangential contact model.  

5.5.1 Damped contact forces and DEM contact modelling  

In the DEM environment, contact regions are modelled as deformable to represent contact 

force-deformation behaviour. Therefore, contact regions are simply represented by spring, 

dashpot and friction elements as illustrated in Figure 5.14.  

Normal Tangential
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mparticle,j

Rparticle,j

mparticle,j

Rparticle,j

mparticle,j
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Rparticle,i
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n (ccontact,ij)

n

(kcontact,ij)
t

 

Figure 5.14: Overall contact model for DEM.  

Utilising this stiffness-dashpot-friction representation, the normal and tangential contact 

forces introduced in Equation (5.1) are obtained as damped, respectively:  

 ( ) ( ) ( ) ( ) ( )contact, contact, contact, contact, contact,

nn n n n

ij ij ij ij ijF k c = +   (5.21) 
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F k c

F

  

 
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  

+

  (5.22) 

where the non-linear normal and tangential stiffness coefficients, (k
contact,ij

)
n
 and (k

contact,ij
)
t
, 

are respectively derived from the Hertz theory (Equation (5.7)) and the simplified MD theory 

(Equation (5.15)) as:  

 ( ) ( )contact, eq, eq, contact,

4

3

n n

ij ij ij ijk E R =   (5.23) 
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 ( ) ( )contact, eq, eq, contact,8
t n

ij ij ij ijk G R =   (5.24) 

It should be noted that all parameter definitions used in the above relations are already 

provided in Section 5.1, Section 5.2 and Section 5.3 except the normal and tangential contact 

damping terms, (c
contact,ij

)
n
 and (c

contact,ij
)
t
, which result from inelastic impacts. The 

determination of these terms is discussed in the subsequent sub-sections.  

5.5.2 Coefficient of restitution  

The inelasticity level of an impact can be associated with the coefficient of restitution (COR) 

[177,178,192–197]. This is a normalised measure of energy dissipated during an impact. 

COR is typically defined between two co-axially impacting (e.g., along normal direction) 

spheres i and j as:  

 
( ) ( )

( ) ( )

contact, final

contact,

contact, initial
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ij n
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
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  (5.25) 

where ( ) ( )contact, initial

n

ij t t =  and ( ) ( )contact, final

n

ij t t =  are the normal relative velocities at 

contact initiation and separation, respectively. For fully elastic impacts, the contact duration 

(i.e., t
final

 – t
initial

) can be approximated by 2t
max,def

 where t
max,def

 is given by Equation (5.10) 

and Equation (5.25) produces 1. However, for inelastic impacts, the contact duration is 

smaller than 2t
max,def

, and COR becomes smaller than 1.  

COR depends on both intensity of impact (i.e., impact velocity) and material properties 

[177,197]. The measurement of COR can be found in the literature for a range of material 

types using a number of different experimental setups [67,135,158,175,195,196,198].  

It has been experimentally demonstrated that COR generally decreases with increasing 

impact velocity which means more energy dissipation for a contact [174,186,199]. As can 
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be seen in Figure 5.15, this decreasing relationship is more apparent after a certain velocity 

whilst COR is nearly constant for the velocities smaller than this threshold. The impact-

based dissipation at the relative velocities smaller than this threshold can be considered as 

viscoelastic dissipation whereas it is mainly plastic dissipation at larger velocities 

[177,199,200].  
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Figure 5.15: COR obtained from the contact between a steel sphere (12.7 mm in diameter) 

and a thick steel block: measured (discrete points) [186] and velocity-dependent 

representative function (flat line) [200].  

This critical velocity is defined as the yield velocity [166,201], and it mostly depends on the 

yield strength of impacting bodies [192,193]. For example, it has been measured as 

approximately 10 m/s for nylon spheres with diameters ranging between 6.35 mm and 25.4 

mm [199], while it has been around 0.3 m/s for the 12.7 mm chrome steel spheres as shown 

in Figure 5.15. The yield velocity can be approximated calculating the maximum pressure 

on the circular contacting area between two contacting surfaces. Employing the Hertz 

contact theory, Johnson [166] presents a relation for this:  

 

3 5

eq, yield,

yield, 4

eq, eq,

107 ij ij

ij

ij ij

R
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
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where σ
yield,ij

 is the yield strength of sphere material and the other parameters are described 

in Section 5.2.  

5.5.3 Contact damping in terms of COR  

If impact velocity is smaller than the yield velocity, the damping ratio of a contact, ζ
contact

 

can be expressed as a function of COR [197] – see Figure 5.15. This can be shown using the 

SDOF system presented in Figure 5.16 which represents a normal impact between a sphere 

and a rigid flat surface. Note that the contact stiffness in this model, k
contact,eq

, is assumed to 

be a constant for simplicity, and the contact initiates at exactly t = 0.  

contact,eqk

particlem

( )y t

( )contact,eq contact,eq contact,eq particle2c k m=

  

Figure 5.16: SDOF representation of a normal contact.  

The equation of motion that governs the impact and the initial conditions are:  

 ( ) ( )particle contact,eq contact,eq impact0; 0 0, 0m y c y k y y y v+ + = = =  (5.27) 

where v
impact

 is the impact velocity at which the contact initiates.  

There are mainly two different approaches to solve this equation of motion depending on the 

estimation of contact end time [197]. The most common one assumes that the contact 

finishes when the contacting bodies are separated from each other [197,202,203], i.e., 

y(t
contact

) = 0 where t
contact

 is the contact duration. The solution of this approach is 

demonstrated in Figure 5.17. In the figure, the contact deformation, velocity and force were 

provided by normalising them as:  
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Figure 5.17: Contact deformation, velocity and force for no deformation case at contact 

end.  

Note that this approach yields the following relation for the contact damping ratio:  

 ( )

( ) 

contact

contact
2 2

contact

ln

ln

e

e





= −

+

 (5.29) 

As can be seen in Figure 5.17, this approach produces an attractive force slightly before the 

end of the contact, i.e., positive contact force. However, it is known that the contact force 

should always be repulsive during the contact as there is no adhesive forces [197]. This 

shows that the contact can end before the initiated deformation is completely restored [180]. 

Therefore, the second solution approach assumes that the contact finishes when the contact 

force is zero [197,204]. In this case, the contact responses are as in Figure 5.18, and the 

relation between the contact damping ratio and COR becomes:  

 ( )
2

contact1contact
contact

2
contactcontact

12
ln tan

1
e





−
 −
 = −
 −  

 (5.30) 



102 

 

  

Figure 5.18: Contact deformation, velocity and force for no force case at contact end.  

Both approaches produce a linear damping coefficient, c
contact,eq, as they are derived by 

supposing linear contact stiffness in the SDOF model provided in Figure 5.16. As a result, 

the contact forces shown in Figure 5.17 and Figure 5.18 are non-zero at the beginning of 

contact. Tsuji et al. [179] used non-linear stiffness as given by Equation (5.23) and proposed 

a non-linear expression for the viscous damping coefficient which ensures that the contact 

force is zero at the start of contact. In this case, the damping ratio is obtained as:  

 ( )

( ) 

contact

contact
2 2

contact

ln5

2
ln

e

e





= −

+

 (5.31) 

The contact damping ratio is shown in Figure 5.19 for each approach presented depending 

on COR. As can be seen in this figure, although the assumptions made in the approaches are 

different there are slight variations between the different approaches for small damping (i.e., 

ζcontact < 0.1).  
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Figure 5.19: COR-dependent contact damping ratio comparisons.  

The approach, developed by Tsuji et al. [179], was used in the contact model used for DEM 

simulations of this thesis. Employing this approach, the normal viscous damping coefficient 

is determined as:  

 ( )
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( ) 
( )contact

contact, contact,
2 2
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e
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and the tangential viscous damping coefficient is similarly obtained as:  
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( )

( ) 
( )contact

contact, contact,
2 2

contact

ln10

3 ln

t t
eq

ij ij

e
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It should be noted here that several research studies have modelled the tangential contact as 

a friction element for granular material simulations [94,95,120,142,143]. However, it has 

been reported that the existence of other elements (i.e., spring and damping) provides more 

accurate representation of tangential interactions [83,182].  

5.5.4 Case studies  

The damped contact model has been extensively compared with experimental results and 

found to agree by different authors in literature [174,180]. As it offers efficient computations 
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in DEM while maintaining accuracy, this verified contact model has been successfully used 

for a variety of numerical granular studies [39,59,68,111,138,170].  

In this section, works were carried out to both understand the validity limit of the non-linear 

impact contact model and provide a general understanding of inelastic impact behaviour of 

particles. To achieve this, normal impact contacts were considered. The experimental and 

elastic-plastic FEM analysis observations obtained in the literature were used as a reference. 

Note that Equation (5.27) with the non-linear contact stiffness (Equation (5.23)) and the non-

linear damping (Equation (5.32)) were used to simulate impact behaviour.  

First, the model is compared with the experimental case study from Mishra et al. [168] in 

Figure 5.20. In this experimental investigation, Mishra et al. measured the contact behaviour 

of a steel particle (the material properties can be found in Table 5.1) dropped on a flat block. 

In this experiment, the particle was 40 mm in diameter, and the impact velocity of particle 

was about 2.4 m/s. The ratio of impact velocity to the yield velocity (can be calculated using 

Equation (5.26) where the yield strength of steel is 1350 MPa) was 8.1. This ratio showed 

that the impact occurred at a velocity larger than the yield velocity. Note that lower this ratio 

(or higher COR) indicates more accurate representation of impact contact with the contact 

model used. Typical COR value of steel balls for this impact velocity is about 0.57 [200].  

As can be seen in Figure 5.20, even at such a large impact velocity, the contact model 

provides a good representation. The contact duration is slightly underestimated, the peak 

force and maximum deformation are obtained with a slight error. The dissipated energy 

(during the contact) calculated by the damped contact model agrees with the experiment – 

0.47 J by the experiment and 0.50 J by the contact model.  
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Figure 5.20: Contact behaviour between a steel ball and a flat rigid surface: (a) contact 

force-duration and (b) contact force-deformation relationships.  

To show the effect of the ratio of impact velocity to the yield velocity, a FEM case study 

conducted by Vu-Quoc’s research team [205] was considered. In this study, an aluminium 

ball impacted on a rigid wall with different velocities. The properties can be found in Table 

5.2.  

Table 5.2: Properties of impact investigations from the reference [205].  

Property  Value  

Elastic modulus [GPa]  70  

Poisson’s ratio [-]  0.3  

Density [kg/m3]  2699  

Yield strength [MPa]  100  

Particle diameter [mm]  200  

Yield velocity [m/s]  0.0016 

Tested impact velocities [m/s]  0.02, 0,20  

Impact velocity/Yield velocity  12.2, 122  

COR values for tested velocities  0.81, 0.56  

The damped contact model is compared with the reference FEM results [205] in Figure 5.21. 

As can be observed, the model significantly differs from the FEM results when the impact 

velocity increases in terms of contact deformation. However, the dissipated energy and the 

peak force are very similar. As a result, it can be said that the contact model represents 

physical contacts successfully if the ratio of the impact velocity to the yield velocity is 

sufficiently small.  
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Figure 5.21: Contact force-deformation behaviour between an aluminium ball and a flat 

rigid surface with impact velocities of: (a) 0.02 m/s and (b) 0.2 m/s.  

5.6 Chapter Summary and Conclusions  

In this chapter, two well-tested and widely-used contact models (i.e., the Hertz theory for 

normal contacts and the Mindlin-Deresiewicz theory for tangential contacts) have been 

investigated as the contact model for granular damper simulations in DEM. The contact 

model has been verified using the FEM contact analyses for spherical particles. The model 

has been implemented for the multi-sphere non-spherical particle models. The DEM contact 

force-deformation behaviours have been compared with the FEM contact analysis results 

obtained using smooth non-spherical particle surfaces, and the limitations for the contact 

model have been discussed for non-spherical particles.  

In order to apply impact dissipation into the contact model, a computationally efficient 

method has been addressed with the corresponding detailed explanations. The validity and 

the limitations of this method have been discussed comparing the damped contact model 

with the literature results. It has been demonstrated that the contact model can be reliably 

used as long as the ratio of impact velocity to the particle yield velocity is sufficiently low.  

Equation Chapter 6 Section 1 
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6 Granular Energy Dissipation and Dynamic Motional 

Phase  

6.1 Overview  

This chapter proposes a general relationship between the energy dissipation effectiveness of 

granular dampers and granular medium motional state. This allows understanding the 

dissipative potential of different motional mechanisms, and, as a result, identify efficient and 

inefficient dynamic particle motion types, which directly affect granular damper designs. 

The work is conducted performing numerical simulations of granular dampers (constructed 

using spherical particles) subjected to sinusoidal vibrations over a broad range of frequencies 

and amplitudes. In this way, measurements in any motional phase can be obtained while 

allowing greater control of excitation conditions and parameters than experiments.  

6.2 Modelling approach  

As discussed in Section 2.3, structure-independent modelling of granular dampers was used 

to investigate the granular dampers. Therefore, only the motion and interaction of discrete 

bodies (i.e., particles) and surrounding boundaries (i.e., enclosure walls) had to be described 

in numerical models – see Figure 6.1.  

The DEM approach, whose principles and computational properties were discussed for 

spherical particles in Chapter 3, was utilised to model numerical granular dampers. In this 

work, the DEM damper models were subjected to vibrational excitations. The displacements 
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and rotations of each particle were computed at small discretised time points. In the 

simulations, the deformation of spherical particles was assumed small with respect to the 

diameter – for example; 0.04 mm maximum deformation was observed for 5 mm diameter 

particles under the most intense loading case simulated (i.e., Γ = 100 at 20 Hz). This 

indicated that particles could be considered as perfect spheres when defining properties used 

in the equations of motion and identifying contact with other particles or the walls. It should 

be noted that the theoretical force-deformation model described in Chapter 5 was employed 

for each sphere-sphere or sphere-enclosure wall contact.  

6.2.1 Model  

The granular damper model used in this chapter is illustrated in Figure 6.1. The model 

consisted of a cylindrical enclosure and a number of spherical particles. As the gravity-to-

vibration orientation can affect the granular motional phases, two different model 

configurations were considered in this study: vertical and horizontal.  

Vertical 

case

Horizontal 

case

Damper 

enclosure

Gravity
Vibration

Granular 

medium

Gravity

Vibration

  

Figure 6.1: A granular damper model in vertical and horizontal gravity-to-vibration 

orientation cases.  

In order to investigate the effect of particle size, four different particle diameters were 

simulated as shown in Table 6.1. To allow consistent comparisons, the total particle mass 

(and therefore the total particle volume) was kept constant for each particle diameter. Thus, 

the number of particles were set accordingly.  
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The dimensions of the cylindrical enclosure are also shown in Table 6.1. To analyse the 

effect of volume fill ratio and observe various phases, four different enclosure heights were 

used. Note that the volume fill ratio was described as:  

 particle particle enclosure/N V V =  (6.1) 

where Vparticle is the volume of a particle and Venclosure is the enclosure volume.  

Table 6.1: Damper model and simulation properties.  

Property  Value  

Enclosure diameter [m]  0.040  

Enclosure heights, L [m]  0.040, 0.045, 0.050, 0.055  

Volume fill ratios, υ [-]  0.466, 0.415, 0.373, 0.339  

Particle diameters [mm] 3, 4, 5, 6  

Number of particles, Nparticle [-]  1659, 700, 358, 207  

Dimensionless excitation 

acceleration, Г [-]  

1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40, 

50, 60, 80, 100  

Excitation frequency [Hz]  20, 40, 80, 125, 160, 200, 320, 625, 1024  

Gravitational acceleration, g [m/s2]  9.81  

Rayleigh time step [s]  8.4 × 10
-6

  

Simulation time step, ∆t [s]  1 × 10
-6

  

Pre-simulation step [s]  0.2  

For each configuration, particles were randomly initialised inside the enclosure void and 

allowed settling under the effect of gravity. Afterwards, to apply vibrational motion, the axial 

position of enclosure was changed with time prescribing the motion function as:  

 ( )2
sin

g
u t




=  (6.2) 

where t and ω are the time and the excitation frequency (in rad/s). Wide excitation amplitude 

and frequency ranges were used as given in Table 6.1.  

6.2.2 Material  

Although much harder materials are typically used for granular dampers such as steel, a hard 

polymer material, acrylic polymer produced from polymethyl methacrylate, was deliberately 
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selected for these studies. The typical properties of this material type can be found in Table 

6.2.  

Table 6.2: Typical material properties of acrylic polymer.  

Property  Value  

Elastic modulus [GPa]  3.3  

Poisson’s ratio [-]  0.37  

Density [kg/m3]  1190  

Yield strength [MPa] 125  

The most important practical advantages of using the chosen material are summarised below.  

i. It increases contact durations, and, therefore allows a larger critical time step in DEM 

models as a result of relatively low elastic (and shear) modulus – see Equations (3.31) 

and (5.10) for clarification. This significantly reduces the computational cost of 

simulations.  

ii. Owing to low modulus, the yield velocity becomes larger, see Equation (5.26) for 

justification. This maintains the validity of the contact model for larger collision 

velocities, as discussed in Section 5.5. For example; the yield velocity of sphere-

sphere collision is 3.5 m/s for acrylic whilst it is 0.15 m/s for steel. To verify that the 

ratio of impact velocities to the yield velocity is sufficiently low, the maximum 

particle-particle impact velocity encountered in the simulations was obtained for 5 

mm diameter spheres. The maximum impact velocity was found as 4.3 m/s, and the 

ratio of maximum impact velocity to the yield velocity was therefore 1.2 which can 

be regarded as adequate considering the discussions in Section 5.5.4.  

As discussed in Chapters 3 and 5, contact properties (for example; COR and COF) are 

needed for DEM to model contacts. Therefore, they were determined from the literature 

studies which use the same damper material [86,142]. COR and COF were set as 0.86 and 

0.52, respectively, for all contact types. Note that a constant value for COR was used because 
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the ratio of impact velocity to the yield velocity does not exceed 1 much for contacts in 

simulations – see Figure 5.15 for justification.  

6.2.3 Quantification of granular damping  

As DEM is a time-discretised approach, the total dissipated energy in a period of time can 

be cumulatively computed by summing the dissipation over each time step. Supposing that 

the target is to calculate the total dissipated energy from the start of a simulation (i.e., t = 0) 

to an arbitrary time, t, it is formulated as:  

 ( ) ( )
/

dissipated dissipated

1

t t

k

k

E t E t k t


=

=  =   (6.3) 

where Δt is the simulation time step and t
k
 represents the time points at the end of each time 

step. Assuming that the energy dissipation arises from only the described contact forces, the 

dissipation at each time step, ∆E
dissipated

, can be obtained considering all particles and 

contacts as:  

 ( )
( ) ( ) ( )( )

( ) ( ) ( )( )

particle contact, contact,

dissipated

1 1
contact,

i

nd n n
N N

ij k ij k ij k

k
td t t

i j
ij k ij k ij k

F t t t t
E t

F t t t t

 

 = =

− −  +
 =

− − 
   (6.4) 

where N
contact,i

 is the total number of contacts that particle i has, δ
ij

nd
 and δ

ij

td
 are respectively 

normal and tangential deformation at the contact between particle i and particle (or enclosure 

surface) j, and F
contact,ij

nd
 and F

contact,ij

td
 are the dissipative components of contact forces at 

normal and tangential directions, respectively.  

As Equation (6.4) requires the deformations at a previous time step, it causes significant 

computational load in a simulation. Thus, supposing that the time step is sufficiently small, 

the deformations can be approximated as:  
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where v
rel,ij

n
 and v

rel,ij

t
 are the relative velocities between particles at normal and tangential 

directions, respectively. By writing Equation (6.5) and Equation (6.6) into Equation (6.4), 

the energy dissipated over each time step becomes:  

 ( ) ( ) ( ) ( ) ( ) 
particle contact,

dissipated contact, rel, contact, rel,

1 1

iN N

nd n td t

k ij k ij k ij k ij k

i j

E t F t v t F t v t t
= =

 = +    (6.7) 

In order to provide consistent comparisons for different excitation conditions, a normalised 

damping measure (the damping efficiency) was used to represent the effectiveness of 

granular energy dissipation in this thesis. The definition of the granular damping efficiency 

is the ratio of dissipated energy in a vibration cycle, dissipatedE , to the maximum energy that 

can be dissipated in a vibration cycle, max

dissipatedE .  

 max

granular dissipated dissipated/E E =  (6.8) 

As the energy dissipation is complex and non-linear in granular dampers, the dissipated 

energy differs from one vibration cycle to another even in nominally steady-state conditions. 

Therefore, the dissipated energy in a vibration cycle was obtained as an average value over 

a number of nominally steady-state vibration cycles. This can be expressed as:  

 
( ) ( )dissipated initial dissipated final

dissipated

final initial

2E t E t
E

t t





−
=

−
 (6.9) 
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where t
initial

 and t
final

 are respectively the time at which the steady-state vibration begins and 

the time at which the simulation ends. Note that each excitation condition was simulated 8 

complete vibration cycle and the last 5 of those were considered as the steady-state in the 

simulations of this chapter as it was seen from trial simulations that most of transient effects 

were eliminated within the first 3 cycles.  

For the maximum achievable energy dissipation in Equation (6.8), the definition used by the 

Humboldt university research team [10,77,91,110] was used, which gives:  

 
particle particle

2 2

max

dissipated particle, particle,

1 1

1
2 2 4

2

N N

i i

i i

g g
E m m

 = =

     
= =         

   (6.10) 

where m
particle,i

 is the mass of particle i. The physical explanation for this equation is that  

i. all the particles within the damper move as an agglomerated mass,  

ii. it collides with the both ends of enclosure in a vibration cycle with a velocity which 

is twice that of the enclosure maximum velocity,  

iii. and COR of these collisions is assumed to be 0 which means that the kinetic energy 

is completely dissipated.  

It should be noted that different authors have used alternative expressions for the maximum 

dissipated energy in Equation (6.8) by providing different perspectives [65,78]. However, 

these differ from Equation (6.10) by only a constant scaling factor.  

6.3 Relationship Between Motional Phase Map and Damping 

Effectiveness  

Granular motional phases were identified through both the visual observation of particle 

movements from the recorded simulation animations and the instantaneous particle velocity 

vectors from the stored simulation histories. This was performed for each excitation 
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condition simulated – see Table 6.1. The aim was to name the motional behaviours observed 

as consistent with those already discussed in the literature review (see Section 2.5). It should 

be also mentioned that a phase name assigned for a particular excitation was determined by 

the type of dynamic motion appeared to dominate the granular medium as particle motion 

changes were gradual rather than sudden. Note that the illustration and detailed explanation 

of each particular motional phase observed are provided in Section 6.4.  

The observed motional phases were mapped over the investigated frequency-amplitude 

space. For a particle size, the constructed phase maps are shown in Figure 6.2 and Figure 6.3 

for varying volume fill ratio in the vertical and horizontal cases.  

As can be seen, seven different phases in the vertical case and four different phases in the 

horizontal case were identified. As discussed in Section 2.5, they can be classified as five 

principal phases: solid-like, fluidisation-based, convection-based, gas-like and bouncing 

bed. However, the gas-like phase was not encountered within the investigated excitation 

conditions. Therefore, only the onset amplitude boundaries of bouncing bed, Г
bouncing bed

, 

fluidisation, Г
fluidisation

, and convection, Г
convection

, are approximately shown on the phase 

maps.  

There is no fluidisation onset amplitude boundary shown on the horizontal phase maps 

because of the selection of excitation limits – no solid-like phase was observed at Г = 1 in 

the horizontal case. Apart from that, Figure 6.2 and Figure 6.3 demonstrate the same 

formation of phase variations on the frequency-amplitude space. In both excitation 

orientations, the bouncing bed onset amplitude increases and the bouncing bed region 

becomes narrower as the volume fill ratio decreases.  
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(c) (d)
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Buoyancy convection

Гbouncing bed 

Гfluidisation 

Гconvection   

Figure 6.2: Motional phase maps of 5 mm spheres for vertical case: (a) υ = 0.466, (b) υ = 

0.415, (c) υ = 0.373, and (d) υ = 0.339.  
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Figure 6.3: Motional phase maps of 5 mm spheres for horizontal case: (a) υ = 0.466, (b) υ 

= 0.415, (c) υ = 0.373, and (d) υ = 0.339.  

Energy dissipation performance was also evaluated for the same excitation ranges as the 

phase maps presented by computing the granular damping efficiency as discussed in Section 

6.2.3. The contour plots of the damping efficiency are shown in Figure 6.4 and Figure 6.5 

for both excitation orientations. It should be noted that only a few damping efficiency levels 
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were used in these contour plots to clearly highlight the zones from low to high energy 

dissipation effectiveness.  

(a) (b)

(c) (d)

  

Figure 6.4: Granular damping efficiency contour plots of 5 mm spheres for vertical case: 

(a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  

By comparing Figure 6.4 and Figure 6.5, it can be seen that the vertical and horizontal 

orientation cases have the same form despite minor differences. For each volume fill ratio 

studied, both orientation cases explicitly show two distinguishable areas of high energy 

dissipation effectiveness. These areas can be identified as ridges in the contour plots – i.e., 

yellow zones on the plots where η
granular

 > 0.3. One of those runs diagonally and the other 

one runs across the whole frequency axis as nearly horizontal.  
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(a) (b)

(c) (d)

  

Figure 6.5: Granular damping efficiency contour plots of 5 mm spheres for horizontal 

case: (a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  

Comparison of the phase maps (Figure 6.2 and Figure 6.3) and the damping efficiency maps 

(Figure 6.4 and Figure 6.5) clearly indicates that the different damping efficiency zones arise 

from the different operating motional phases. The diagonal high energy dissipation 

effectiveness ridge occurs when the bouncing bed phase commences for both excitation 

orientation cases. The relatively frequency-independent high energy dissipation 

effectiveness ridge is observed within the global fluidisation for the vertical case and the 

partial fluidisation for the horizontal case. As a result, it can be said that the factors that 

affect the occurrences of these two high damping efficiency zones are different from each 

other.  
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The detailed discussions on the granular energy dissipation effectiveness of each particular 

motional type are conducted in the next section. Whilst the presented figures above are 

obtained for 5 mm spheres, the other particle sizes considered provides similar motional and 

dissipation behaviour on the frequency-amplitude space. Thus, the effect of particle size is 

discussed along with the particular motion type investigation in the next section.  

6.4 Granular Energy Dissipation Behaviour in Different Phases  

The dissipative effectiveness of each particular motional behaviour is studied here in three 

sub-sections. First, the bouncing bed phase, where the most effective energy dissipation is 

observed, is investigated. Then, the solid-like phase, which exhibits insignificant energy 

dissipation, is briefly shown. In the third sub-section, the gradual dissipative and motional 

changes from the fluidisation-based phases to the convection-based phases are discussed.  

6.4.1 Bouncing bed phase  

The bouncing bed phase, sometimes referred as “two-sided bouncing bed” and “collect-and-

collide” in the literature, was observed in low frequency and high amplitude conditions for 

the vertical and horizontal excitations in the simulations conducted as shown in Figure 6.2 

and Figure 6.3. It is stated in the previous section addressing Figure 6.4 and Figure 6.5 that 

this phase creates a diagonal high damping efficiency ridge on the frequency-amplitude 

space.  

As illustrated in Figure 6.6, the damping particles moves together in a closely packed 

arrangement and collectively collide with each end wall of the enclosure in the bouncing bed 

phase. Note that these collective collisions periodically occur in a vibration cycle – twice per 

cycle.  
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Figure 6.6: Bouncing bed motional phase.  

The duration of each collective collision is short in comparison with the period of vibration 

of the enclosure. A large amount of momentum is transferred between the enclosure and the 

body of particles over this short duration. This, therefore, induces large contact forces and 

significant relative motions between the particles during a collective collision. As a result, a 

high level of energy dissipation is observed. Between these collisions, the particles form a 

compact particle bed exhibiting negligible relative motions with respect to each other. The 

cumulative energy dissipation history has a staircase-like shape at which two steps occur in 

a cycle as can be seen in Figure 6.7. Figure 6.7 also shows that each collective collision is 

observed earlier in the cycle and vibrational energy is dissipated over a shorter collisional 

period as the vibration intensity increases in the bouncing bed phase.  



121 

 

  

Figure 6.7: Steady-state granular energy dissipation histories with 5 mm spheres under 

vertical 40 Hz vibration, υ = 0.466.  

The granular damping efficiency results at 20 Hz and 40 Hz, where the bouncing bed phase 

can be observed, are provided in Figure 6.8 and Figure 6.9. In order to be consistent with 

Figure 6.4 and Figure 6.5, η
granular

 = 0.3 level is also shown.  

Comparing these graphs (Figure 6.8 and Figure 6.9) with the corresponding phase maps 

given in Figure 6.2 and Figure 6.3, it is apparent that the damping efficiency reaches a 

maximum in the bouncing bed phase for each volume fill ratio, excitation orientation and 

frequency. Once this optimum is achieved, increasing in the amplitude results in gradual 

decreasing in the damping efficiency. It indicates that the average dissipated energy 

increases with amplitude at a slower rate than max

dissipatedE  beyond the optimum. However, 

the rate of this decrease is lower than the rate of the increase in the damping efficiency just 

before the peak amplitude. This creates a relatively broad excitation amplitude range beyond 

the optimum for effective damper operation – see the diagonal high damping efficiency 

ridges in Figure 6.4 and Figure 6.5. Thus, it can be said that a damper design that operates 

at amplitudes larger than the optimum is more robust to uncertainty.  
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(c) (d)

ηgranular = 0.3

  

Figure 6.8: Granular damping efficiency at 20 Hz and 40 Hz using 5 mm spheres in 

vertical case: (a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  
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(c) (d)

ηgranular = 0.3

  

Figure 6.9: Granular damping efficiency at 20 Hz and 40 Hz using 5 mm spheres in 

horizontal case: (a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  

In the bouncing bed phase, most of the energy dissipated in a cycle comes from the two 

collective collisions between the granular medium and enclosure as shown in Figure 6.7. 

Therefore, it is possible to say that the relative velocity between the particle collection and 

the enclosure just before and during a collective collision directly affects the effectiveness 

of energy dissipation. In order to examine this, the mean velocity of the granular medium 

along the excitation direction is compared with the enclosure velocity for vertical 40 Hz 

excitation in Figure 6.10. One of the presented cases is Г = 20 which is close to the bouncing 

bed onset and the other is Г = 100 where the bouncing bed is developed more (i.e., far away 

from the onset). Note that the change in the granular medium velocity is achieved during a 
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collision and as a result of the gravitational acceleration as the excitation orientation is 

vertical.  

  

Figure 6.10: Steady-state velocity histories of granular damper with 5 mm spheres 

exposing vertical 40 Hz vibration, υ = 0.466.  

By looking at both Figure 6.7 and Figure 6.10, it can be noticed that deformation of granular 

medium, hence energy dissipation, is observed during the collective collisions but only when 

the body of particles move relative to the enclosure. Figure 6.10 also indicates that these 

collisions occur when the enclosure velocity is maximum and the granular medium moves 

in the opposite direction to the enclosure with almost the same velocity amplitude for Г = 20 

case, where the damping efficiency is optimum (see Figure 6.8a). For Г = 100 case when the 

damping efficiency is much lower, the collisions commence earlier in the cycle at a smaller 

enclosure velocity, and the granular medium moves with enclosure longer. As Figure 6.10 

shows, the initial deceleration of granular medium increases with amplitude before it reaches 

the velocity of the enclosure. The faster initial deceleration can be attributed to tighter 

packing of particles which leads an increase in the overall stiffness of the granular medium. 

It means that a lower amplitude in the bouncing bed phase provides a less stiff granular 

medium leading a larger deformation of the granular medium. As a result, it can be said that 
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the most effective granular energy dissipation occurs at the lowest amplitude that the 

bouncing bed phase can exist for a particular frequency: the onset amplitude of bouncing 

bed phase, i.e., Г
optimum

 = Г
bouncing bed

, where Г
optimum

 is the optimum amplitude for granular 

energy dissipation effectiveness. In other words, it can be described that this is the optimum 

condition for the collective collisions for granular dampers.  

Assuming that the granular medium has a constant velocity, which is the maximum 

enclosure velocity, between the two collective collisions in a cycle, Sack et al. [77,110] have 

equated the distances travelled by the granular medium and the enclosure – the condition for 

the bouncing bed onset. This yields the following relationship:  

 

2

clearance
optimum

h

g




 =  (6.11) 

where h
clearance

 is the clearance in the enclosure as depicted in Figure 6.11.  

random close 

packing

hclearance
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L

random loose 

packing
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Figure 6.11: Estimation of clearance in a granular damper.  

As the volume occupied by particles is not continuous, it is inaccurate to determine the 

clearance as the distance between the upper layer of particles and the top end of enclosure. 

Therefore, the relative clearance can be used as a practical measure of clearance [89]:  
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where (N
particle

)
max

 is the maximum number of particles that can be filled within the enclosure 

void. However, since (N
particle

)
max

 varies with packing arrangement and particle size, this 

estimation method produces significant errors when predicting Г
optimum

 [89].  

If the damping particles are filled into an empty enclosure under the effect of gravity without 

any external vibration, the random loose packing arrangement is most likely obtained in the 

enclosure as shown Figure 6.11. The packing density can increase due to vibrational loading 

[206,207]. Therefore, it is reasonable to say that the particles form a tighter arrangement than 

the random loose packing as the granular medium is significantly compressed during the 

collective collisions – i.e., the random close packing arrangement demonstrated in Figure 

6.11. By accounting this effect, a more realistic estimation for the clearance can be made by 

introducing the effective clearance as:  

 effective

clearance

max

1h L




 
= − 

 
 (6.13) 

where υ
max

 is the maximum volume fill ratio that can be achieved by the particles in the 

enclosure volume. This ratio is nominally 0.64 for a random close packing of perfect spheres 

[208–211] and can change with excitation and particle properties [206,211,212]. It should 

be noticed that the method described by Equation (6.12) exhibits the random loose packing 

arrangement. The equivalency of loose packing arrangement condition can be captured using 

Equation (6.13) by assuming υ
max

 = 0.55. Table 6.3 compares the close packing (CP) and 

loose packing (LP) estimations with the DEM simulation results for a granular damper.  
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Table 6.3: Optimum vibration amplitude estimations of granular damper using 5 mm 

spheres.  

20 Hz 40 Hz 80 Hz

DEM-vertical 5.2 19.6 79.9

DEM-horizontal 6.1 19.8 80.0

LP 3.1 12.5 49.9

CP 5.6 22.3 89.2

DEM-vertical 7.6 29.9 >100

DEM-horizontal 8.3 30.0 >100

LP 5.7 22.6 90.6

CP 8.1 32.4 130

DEM-vertical 10.4 41.4 >100

DEM-horizontal 10.7 40.9 >100

LP 8.2 33.0 132

CP 10.7 42.8 171

DEM-vertical 12.9 51.5 >100

DEM-horizontal 13.9 51.6 >100

LP 10.8 43.2 173

CP 13.3 53.0 212

0.373

0.339

0.466

Volume 

filling ratio

0.415

Approach

  

It can be seen from this table and predicted from Equation (6.11) that the optimum (i.e., the 

bouncing bed onset) amplitude becomes larger as the frequency and clearance increases 

whilst the effect of excitation orientation on it stays small for all cases simulated. Table 6.3 

shows that the LP approach significantly underestimates the optimum amplitude as it 

underestimates the clearances. It is apparent that the CP approach results in more accurate 

predictions. Small differences between the CP predictions and the DEM simulations can be 

explained by the variations in the actual maximum achievable volume fill ratio (assumed to 

be 0.64 as default) with vibration. In addition, as the optimum amplitudes are determined 

using the fitted curves at each frequency, there would be a level of uncertainty in the 

simulation results due to logarithmic interpolation.  

The damping efficiency results of different sized particles are provided in Figure 6.12 for 20 

Hz excitation. It shows that there is a small effect of particle size on the optimum amplitude 

– generally decreasing as the particle size grows. This observation may be related to the 
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variability in packing with particle size. The accuracies of estimation methods can also be 

visually compared in Figure 6.12 as the prediction lines are attached on the graphs.  

(a) (b)

  

Figure 6.12: Damping efficiency results of different particle sizes at 20 Hz for (a) vertical 

and (b) horizontal cases where υ = 0.466.  

The effects of material and contact properties on the optimum amplitude were examined by 

conducting a sensitivity analysis employing DEM. The simulated damper was based on the 

volume ratio of υ = 0.466 under 20 Hz vertical excitation. The results of this study are set 

out in Figure 6.13. It can be said that the optimum amplitude is insensitive to material and 

contact properties of granular damper.  

In addition, although the trend of the damping efficiency, which is a result of motional 

phases, is maintained for each property change investigated, the level of damping efficiency 

slightly differs as similarly observed in the literature [94,120]. For example; as can be seen 

in Figure 6.13b, larger elastic modulus provides more effective energy dissipation as it 

exhibits a less dense particle bed by reducing individual contact durations (see Equation 

(5.10) for justification) and thus its tendency to collect tightly. As a result, it creates a more 

deformable granular medium for collective collisions which dissipates more energy for the 

same vibrational condition.  
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(a) (b)

(c) (d)

  

Figure 6.13: Sensitivity of granular damping efficiency to (a) material density, (b) elastic 

modulus, (c) coefficient of restitution and (d) coefficient of friction for 20 Hz vertical 

excitation where υ = 0.466.  

6.4.2 Solid-like phase  

The solid-like phase was observed only for Г = 1 at low frequencies of the vertical case as 

can be seen in Figure 6.2. It was not noticed in the simulations of horizontal case since it can 

occur in the case of Г < 1 for the horizontal case [100].  

In this phase, the particles are like a solid mass fixed onto the enclosure bottom surface and 

moves with the same velocity as the enclosure. As demonstrated in Figure 6.14, there is no 

considerable relative motions amongst the loosely packed particles or relative to the 

enclosure. It is because the inertial forces generated by vibration remain smaller than the 

restraining forces between the entities (particles and enclosure surfaces) from gravity and 
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friction. It should be noted that this phase is therefore not observed in zero-gravity 

environment as there is no restraining force [91].  

Solid-like

Phase t = 0 t = π/ω t = 2π/ω
Characteristic motional

features

From simulation:

1.3gΓ/ω

0

0.6gΓ/ω

• Loosely packed granular 

medium

• No notable relative motions 

between the enclosure and granular 

medium or amongst the particles

 

Figure 6.14: Solid-like motional phase. 

As a result of this motion, granular energy dissipation is negligible as can be clearly seen by 

comparing Figure 6.2 and Figure 6.4. Thus, granular dampers are often considered to operate 

beyond this phase. However, it should also be noted that useful energy dissipation can be 

achieved in this phase by employing a particular configuration of high-loss, low-modulus 

particles which maximises strain within particles [66].  

6.4.3 Fluidisation-based to convection-based phases  

As determined in Section 2.5 while reviewing literature, in this thesis, the “fluidisation” term 

is used to address the condition where contacting particles temporarily lose contacts and 

move relative to each other, then, over a vibration period, approximately maintain their 

average position with respect to the enclosure and existing contacts. On the other hand, the 

“convection” term stands for indicating significant decompaction of particles in a cycle that 

allows the particles to be transported to different locations of the enclosure and lose their 

existing contacts. In addition, the convection motion typically has a noticeable component 
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perpendicular to the excitation direction. These described motion types are simply illustrated 

in Figure 6.15.  

(a) (b)

  

Figure 6.15: Particle relative motion types: (a) fluidisation and (b) convection.  

Excluding the bouncing bed phase, developing and disappearing of the described fluidisation 

and convection motions within the granular medium determine motional phases and control 

phase maps. When the fluidisation motion appears in the granular medium, the solid-like 

phase is replaced by the fluidisation-based phases. By increasing the vibration amplitude 

beyond the solid-like phase, the occurrence of fluidisation motion increases. If the vibration 

amplitude is increased further, convection motions begin replacing the fluidisation motions, 

and they can dominate the granular medium at larger amplitudes leading to the convection-

based phases. Therefore, it is apparent that the three principal phases (i.e., solid-like, 

fluidisation-based and convection-based) are in an inter-related relationship. If the bouncing 

bed phase does not occur, there are gradual changes in the operating phase (Figure 6.2 and 

Figure 6.3) and the granular damping efficiency (Figure 6.4 and Figure 6.5) depending on 

vibration amplitude for both excitation orientation cases.  
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As can be also noticed, the fluidisation motion type has the most capability for energy 

dissipation throughout the solid-fluidisation-convection inter-related process. This is 

because there is no relative motion in the solid-like phase, and within the convection zone, 

the contacts are lost frequently and less severe as a result of the low particle velocity.  

6.4.3.1 Collective collision and energy dissipation  

In contrast to the bouncing bed and solid-like phases, there are some fundamental differences 

between different excitation orientations in the fluidisation-based and convection-based 

phases in terms of both motional behaviour and energy dissipation. This can be seen by 

simply comparing the energy dissipation histories as shown in Figure 6.16.  

  

Figure 6.16: Steady-state granular energy dissipation histories with 5 mm spheres at 40 Hz 

where Г = 3 and υ = 0.466.  

For Г = 3 at 40 Hz, both excitation orientation cases exhibit a fluidisation-based phase as 

can be seen in Figure 6.2 and Figure 6.3. However, the particular phases that they show are 

different: the global fluidisation in the vertical case and the fluidisation/convection phase in 

the horizontal case. This is mainly caused by the behaviour of collective collisions observed 

under different orientations as it affects the way that energy is transferred and therefore the 

motion types that occur.  
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In the vertical fluidisation-based and convection-based phases, there is only one collective 

collision (with the enclosure bottom surface) in a vibration cycle. This may look like the 

bouncing bed collective collisions, but, in fact, its intensity is much lower. Nevertheless, it 

creates a single step within a vibration cycle in the energy dissipation history as shown in 

Figure 6.16 as vibrational energy is transferred and dissipated in this relatively short collision 

duration. In the horizontal case, two collective collisions occur as with the bouncing bed 

phase, but they are much longer and milder than the bouncing bed collisions as can be seen 

in Figure 6.16 as a result of the granular medium layout inside the enclosure. The described 

behaviours can be visually seen in Sections 6.4.3.3 and 6.4.3.4 where the particular phases 

and their energy dissipation potential are discussed.  

6.4.3.2 Optimum energy dissipation in fluidisation  

As can be seen from each result set shown in Figure 6.8 and Figure 6.9, there is a second 

peak around Г = 3 which is smaller than the bouncing bed optimum. This peak is clearly 

shown from the zoom plots of an excitation frequency case for both orientations in Figure 

6.17.  

The peak efficiency is observed in the fluidisation-based phases for both orientations, and it 

occurs when the ratio of fluidised particles is maximised in the granular medium – can be 

called as the fluidisation optimum. The fluidisation optimum condition can occur at each 

frequency which creates the horizontal high damping efficiency ridge as shown in Figure 

6.4 and Figure 6.5. As can be seen in Figure 6.17, this optimum condition provides higher 

peak damping efficiency for the vertical case whereas the horizontal case has a broader range 

in which an effective granular energy dissipation is obtained. 
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(a) (b)

ηgranular = 0.3

  

Figure 6.17: Granular damping efficiency results between Г = 1 and Г = 10 at 40 Hz using 

5 mm spheres in (a) vertical and (b) horizontal cases, υ = 0.466.  

As the dominant motion type (or the ratio of fluidised particles to others) gradually changes 

depending the level of momentum transferred to the granular medium, the described 

fluidisation optimum can be noticed by observing the collective collision (or collisions for 

the horizontal case) in the mean particle velocity history plots. To discuss this, the velocity 

histories of three excitation cases around the fluidisation optimum are plotted in Figure 6.18 

for both excitation orientations.  

(a) (b)

  

Figure 6.18: Steady-state velocity histories of granular damper with 5 mm spheres 

exposing vertical (a) and horizontal (b) 40 Hz vibration, υ = 0.466.  
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Below the optimum condition in the vertical excitation (i.e., Г = 1.5 in Figure 6.18a), the 

granular medium collides with the enclosure base when the enclosure velocity is nearly zero, 

and they move together for approximately half cycle similar to the solid-like phase. This 

induces an insufficient momentum transfer to be able to reach the maximum ratio for the 

fluidisation motion. About the optimum (i.e., Г = 3 in Figure 6.18a), the granular medium 

collides with the enclosure base when the enclosure velocity is around its maximum and the 

granular medium has nearly the same velocity magnitude in the opposite direction. This 

leads the maximum fluidisation providing an efficient momentum transfer to the particles. 

Beyond the optimum (i.e., Г = 4 in Figure 6.18a), as the particles start convecting the mean 

velocity of the granular medium (and the intensity of collective collision) decreases and the 

collective collision occurs at a smaller enclosure velocity. This can initiate as non-periodical 

motion (one collective collision in two cycles or significant difference in the intensity of 

collective collisions). It produces an apparent transition phase at some amplitudes in the 

vertical case (see in the phase map of Figure 6.2) – demonstrated in Figure 6.19. Beyond the 

transition phase (i.e., the convection-based phases), the described reduction in collision 

intensity can be seen for each periodic collective collision.  

Transition before 

Leidenfrost effect

Phase t = 0 t = π/ω t = 2π/ω
Characteristic motional

features

• Does not complete its 

motion in a vibration period

• Fluidisation and convection 

motions

• Momentum transfer from 

the enclosure base once in two 

cycles

1.0 × ωgΓ

0

0.5 × ωgΓ

From simulation:

t = 3π/2ω t = 4π/ω

  

Figure 6.19: Transition motional phase.  
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As there are two collective collisions in each cycle for any motional phase of the horizontal 

case, the momentum is transferred from both collisions periodically and the transition phase 

does not develop. The granular medium velocity reduces with increasing amplitude as it 

detaches from the enclosure ends at a lower enclosure velocity as shown in Figure 6.18b. 

However, it does not mean that the relative velocity at the collisions becomes smaller. 

Therefore, this relative velocity should be estimated observing both the granular medium 

velocity and the phase angle between the granular medium and enclosure velocities. When 

the relative velocity reaches its maximum value and provides efficient momentum transfer 

(i.e., Г = 3 in Figure 6.18b), the maximum fluidisation ratio (i.e., the optimum fluidisation 

condition) is obtained.  

6.4.3.3 Vertical case  

As can be seen in Figure 6.2, as the vibration intensity grows in the vertical case, the granular 

phase first turns into the local fluidisation after the solid-like phase. In this phase, the 

granular medium moves to the opposite direction of gravity as a result of momentum transfer 

by the collective collision. As the deceleration of enclosure is greater than that of the granular 

medium (or gravity), the body of particles lifts relative to the enclosure base resulting in 

decompactions and therefore relative motions – the fluidisation motion, particularly near the 

uppermost particle layers at which the particles are least restrained. This motional behaviour 

occurs periodically as illustrated in Figure 6.20. It should be stated that the local fluidisation 

is regarded as the first vertical motional phase in which considerable granular energy 

dissipation can be obtained as the momentum exchange is essential for the operation of 

granular dampers.  

When the level of momentum transferred to the particles increases to a sufficient level at the 

collective collision, the fluidisation motion spreads from the top particle layers to the deep 

particle layers. This granular motional behaviour is addressed as the global fluidisation 
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phase, and it is also demonstrated in Figure 6.20. It should be noticed that the maximum 

fluidisation ratio in the granular medium is achieved in this phase, and few particles can 

begin exhibiting the convection motion as the vibration amplitude increases.  

Phase t = 0 t = π/ω t = 2π/ω
Characteristic motional

features

Local 

fluidisation

Global 

fluidisation

• Decompaction near the free 

surface

• Relative movement between 

particles where decompaction 

occurs

• Particle positions and contacts 

maintained from cycle-to-cycle

• Similar to local fluidisation but 

decompaction spreads to all 

particles

1.3gΓ/ω

0

0.65gΓ/ω

From simulation:

1.3gΓ/ω

0

0.65gΓ/ω

From simulation:

  

Figure 6.20: Vertical fluidisation-based phases.  

As the vibration intensity further increases, the granular medium first demonstrates the 

transition phase as a result of non-periodic reduction in the intensity of collective collision 

as discussed before. Afterwards, the convection motion replaces the fluidisation motion 

more and densifies within the granular medium. Therefore, it dominates the granular 

medium at a larger amplitude than Г
convection

, resulting the vertical convection-based phases 
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referred as the Leidenfrost effect and the buoyancy convection whose motional patterns are 

demonstrated in Figure 6.21.  

Phase t = 0 t = π/ω t = 2π/ω
Characteristic motional

features

Leidenfrost 

effect

Relatively fast, colliding 

particles that provide 

momentum transfer:

Buoyancy 

convection

• Cloud of loosely packed particles elevated 

above the enclosure base

• Small number of relatively fast-moving 

particles that transfer momentum from the 

enclosure

• Little horizontal movement in the particle 

cloud

0.64ωgΓ

0

0.32ωgΓ

From simulation:
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granular medium

Estimated particle 

velocity vectors, 

downwards:

Estimated particle 

velocity vectors, 

upwards:

• Cloud of loosely packed particles elevated 

above the enclosure base

• Small number of relatively fast-moving 

particles that transfer momentum from the 

enclosure

• Significant horizontal movement within 

the cloud

0.4ωgΓ

0

0.2ωgΓ
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momentum transfer:
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granular medium

Estimated particle 

velocity vectors, 

circulating motion:

Estimated particle 

velocity vectors, 

upwards:

  

Figure 6.21: Vertical convection-based phases. 

The Leidenfrost effect is the most observed convection-based phase in the phase maps of 

Figure 6.2 over the amplitude range of 12 < Γ < 80 and the frequencies generally above 40 
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Hz. In this phase, a group of particles forms a loosely packed cloud that is elevated from the 

enclosure base and remains at a steady height relative to the enclosure base during a cycle. 

This cloud consists of slow-moving particles, and it is suspended by a small number of fast-

moving particles underneath which provides the momentum transfer by colliding with the 

enclosure base.  

As the horizontal component of particle convection motions increases at larger vibration 

amplitudes, the particles exhibit circulating motions in the granular medium where the 

Leidenfrost effects gives way to the buoyancy convection. Due to the transverse and rolling 

particle motions, the granular medium expands, and a curved shape is observed on the upper 

particle surface rather than an approximate flat surface in this phase.  

To show the granular energy dissipation-phase relationship for the fluidisation-based and the 

convection-based phases, a close inspection of Figure 6.4 with the related phase amplitude 

ranges is provided in Figure 6.22 for varying volume fill ratio. The sensitivity of the results 

to particle size are also shown in the graphs. To show the effect of frequency, the results at 

different frequencies are also presented in Figure 6.23 for a volume fill ratio.  

As can be seen from Figure 6.22 and Figure 6.23, the damping efficiency grows with 

amplitude in the local fluidisation phase as the number of fluidised particles increases in the 

solid-like body of particles, and this increase continues until a maximum level (i.e., the 

maximum fluidisation) observed in the global fluidisation. Beyond this peak, in the global 

fluidisation, as convection gradually develops, the damping efficiency start decreasing. 

However, it can be said that a significant energy dissipation effectiveness is evident up to 

the end of transition phase (or the beginning of the convection-based phases, the Leidenfrost 

effect). It is because the ratio of fluidised particles to the particles exhibiting the convection 

motion still remains relatively high. It can also be noticed in the transition phase that the 
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damping efficiency fluctuates more than the other phases. The most-likely reason is that the 

collective collision differs in intensity from one cycle to another, and therefore, the number 

of cycles used to evaluate the average energy dissipated is inadequate to eliminate this 

uncertainty in the transition phase. The damping efficiency is lower in the convection-based 

phases, i.e., the Leidenfrost effect and the buoyancy convection, as the intensity of particle 

contacts and the efficiency of momentum transfer decreases with increase in the occurrence 

of convective motions. This is an inevitable result of the low potential of convection motion 

for energy dissipation.  

(a) (b)

(c) (d)
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BC: Buoyancy convection

  

Figure 6.22: Granular damping efficiency results of different particle sizes at vertical 160 

Hz excitation for: (a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  
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Figure 6.23: Granular damping efficiency results of different particle sizes for υ = 0.466 at 

vertical excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 

1024 Hz.  

It can be noticed from Figure 6.22 and Figure 6.23 that the energy dissipation behaviour is 

not notably affected by particle size in the vertical fluidisation-based and convection-based 
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phases. However, this may not be valid if an insufficient number of particle layers is used 

inside the enclosure void as these phases cannot be obtained. In addition, in contrast to the 

bouncing bed phase, the damping efficiency level and the optimum fluidisation condition 

are insensitive to volume fill ratio as shown in Figure 6.22. It is because the momentum 

transfer is independent from the clearance in these phases as the collective collision occurs 

only with the enclosure bottom.  

Figure 6.2 shows that the global fluidisation lower boundary shifts towards smaller vibration 

amplitude as the excitation frequency increases. As a result, the fluidisation optimum is 

obtained at a smaller vibration amplitude for a higher frequency in the vertical case (and the 

peak damping efficiency becomes higher) as demonstrated in Figure 6.23. This is because 

the required momentum level to fluidise the majority of particles is lower for higher 

frequencies. However, as the rate of this frequency-dependent change is slow, effective 

granular energy dissipation can be achieved over a broad frequency range utilising the 

vertical fluidisation-based phases, particularly the global fluidisation phase.  

6.4.3.4 Horizontal case  

The fluidisation and convection motions also occur for the horizontal excitation of granular 

dampers. However, as the excitation and gravity are perpendicular to each other and the 

momentum transmission occurs from both ends of the enclosure, the particular motional 

patterns of particles are somewhat different from those of the observed in the vertical case.  

As the fluidisation motion can initiate at a relatively low amplitudes because of the particles 

restrained less in the horizontal case, the fluidisation-based phases are observed at lower 

amplitudes than the vertical case. Therefore, the first phase observed for the amplitude of Г 

= 1 is one of the horizontal fluidisation-based phases in Figure 6.3: the partial fluidisation. 

In this phase, the gravity ensures that the body of particles rests on the enclosure side wall 
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and creates a free surface parallel to the excitation direction. As a result of this relatively 

large free surface area (compared to the vertical case), the upper particle layers generate the 

convection motion as well as the fluidisation motion. It is because the free surface 

accommodates the particles that has less restraining force than the other positions of the 

granular medium. On the other hand, the deep particle layers (near the contact of granular 

medium with the enclosure) exhibit a similar motion to that can be seen in the solid-like 

phase. The described motional phase is illustrated in Figure 6.24.  

Phase 
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t = π/ω

t = 2π/ω
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• Momentum transfer from 

both ends of the enclosure
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near the free surface

• Relative motion, 

including some convection 

in decompacted zones

• Similar to partial 

fluidisation but 

decompaction spreads 

to all particles

1.3ωgΓ

0
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1.0ωgΓ

0
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From simulation: From simulation:

  

Figure 6.24: Horizontal fluidisation-based phases.  

Figure 6.24 also shows the fluidisation/convection phase which is the second horizontal 

fluidisation-based phase observed at larger amplitudes than the partial fluidisation. In this 

phase, as the vibration amplitude increases, the number of fluidised particles becomes 

higher, but the ratio of these in the whole body of particles reduces. Because, the convection 

motion zones extend deeper into the particle layers more rapidly with amplitude. Therefore, 
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it can be estimated that the maximum fluidisation ratio in the granular medium is obtained 

when the operating phase is the partial fluidisation in the horizontal case.  

If the vibration amplitude is increased more, most of particles undergo the convection motion 

and the convection phase occurs in the horizontal case which can be identified for large 

amplitudes at high frequencies in Figure 6.3. As can be seen in Figure 6.25, significant 

decompaction is seen throughout the granular medium, and fast-moving particles (which 

provides the momentum transfer) occur at both boundaries of slow particle cloud.  

Phase 

t = 0

t = π/ω

t = 2π/ω

Characteristic 

motional
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1.0ωgΓ
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Figure 6.25: Horizontal convection phase.  

Similar to the vertical case, the granular energy dissipation-phase relationship for the 

horizontal fluidisation-based and convection-based phases is discussed using the close 

inspection of Figure 6.5 with the related phases shown in Figure 6.3. The results are set out 

in Figure 6.26 and Figure 6.27.  

As estimated while defining the motional features of horizontal fluidisation-based phases, 

the fluidisation optimum is achieved in the partial fluidisation phase. As can be realised by 
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comparing both orientation cases (e.g., Figure 6.22 and Figure 6.26), the damping efficiency 

is smaller in the horizontal case around the fluidisation optimum amplitude. It is because the 

ratio of fluidised particles is smaller in the horizontal case as a result of the initiation of 

convection motion into the granular medium at relatively lower vibration amplitudes. 

Beyond the optimum amplitude, the damping efficiency gradually decreases and becomes 

very low as the convection motion increases within the granular medium.  
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Figure 6.26: Granular damping efficiency results of different particle sizes at horizontal 

160 Hz excitation for: (a) υ = 0.466, (b) υ = 0.415, (c) υ = 0.373, and (d) υ = 0.339.  
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Figure 6.27: Granular damping efficiency results of different particle sizes for υ = 0.466 at 

horizontal excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and 

(f) 1024 Hz.  

As shown in Figure 6.26 and Figure 6.27, although there is no clear effect of particle size on 

the granular damping efficiency in the horizontal fluidisation-based and convection phases, 
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the employment of insufficient number of particle layers can cause change in the damping 

efficiency levels as mentioned for the vertical case. It can be noticed in Figure 6.26 that the 

fluidisation optimum amplitude slightly decreases as the volume fill ratio reduces in the 

horizontal case. Note that this is a different observation from the vertical case. The main 

reason for this is that larger clearance creates a shallower particle bed and therefore a less 

restrained particle collection by the gravity-induced pressure, which allows the development 

of fluidisation and convection motion at smaller amplitudes.  

As the excitation frequency increases, the optimum fluidisation shifts to smaller amplitudes 

and the peak damping efficiency becomes larger (see Figure 6.27) because of the reduction 

in the required momentum level to stimulate the fluidisation motion as similarly observed in 

the vertical case.  

6.5 Importance of Dissipation Sources  

As identified in Section 2.4.1, vibrational energy is dissipated in granular dampers in 

different ways. The relative importance of these dissipation mechanisms for different 

motional phases is investigated in this section. It should be noted υ = 0.466 fill ratio damper 

configuration under the vertical 40 Hz and 160 Hz vibrations was considered in this work as 

this included all the significant phases observed (see Figure 6.8 and Figure 6.22). The other 

configurations showed similar outcomes to those shown here.  

The total damping efficiency can be simply de-composed into the dissipation sources 

involved using the same analogy of Equation (2.2) as given below.  

 ( ) ( ) ( ) ( )
friction friction impact impact

granular granular granular granular granularPS PP PS PP

friction impact

granular granular 

    

   
   
   

 + + +  (6.14) 
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Note that the sub-script PS represents particle-enclosure surface interaction components, the 

sub-script PP stands for inter-particle interaction components and the detailed explanations 

of terms can be found in Section 2.4.1.  

At the considered frequencies, the contribution of inter-particle interactions (as opposed to 

particle-enclosure interactions) to the damping efficiency is shown in Figure 6.28 depending 

on the vibration amplitude and particle size. The optimum fluidisation and bouncing bed 

onset amplitudes identified in the figures were determined from Figure 6.8 and Figure 6.22.  

(a) (b)

Bouncing 

bed onset

Optimum 

fluidisation

Optimum 

fluidisation

  

Figure 6.28: Inter-particle dissipation contribution at: (a) 40 Hz and (b) 160 Hz.  

The inter-particle contribution consistently decreases with increasing particle size since the 

ratio of the number of inter-particle contacts to the number of particle-enclosure contacts 

decreases. It should be also noticed that that the inter-particle contribution would be zero 

when a single equivalent particle is employed, i.e., the impact damper. Figure 6.28 indicates 

that the vibrational energy is mostly dissipated between damping particles in granular 

dampers – exhibiting a contribution level larger than 60% in any motional phase. This 

contribution is significantly high (above 80%) up to the optimum fluidisation amplitude 

(from the solid-like phase, Г ≤ 1). For larger amplitudes than the optimum fluidisation 

amplitude, it gradually decreases as the prevalence of fluidisation motion decreases (and the 

convection motion increases) – see the amplitude range between the optimum fluidisation 
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and bouncing bed onset in Figure 6.28a and the amplitudes larger than the optimum 

fluidisation Figure 6.28b. As a result of the bouncing bed initiation, the inter-particle 

contribution increases (as the effect of convection motions is removed) and stays 

approximately constant about a level generally larger than 80% beyond the bouncing bed 

onset amplitude as can be seen in Figure 6.28a.  

For the same damper configuration and excitation conditions, the frictional contribution and 

its inter-particle component are provided in Figure 6.29 as a function of vibration amplitude 

and particle size.  

(a) (b)

Bouncing 

bed onset

Optimum 

fluidisation

Optimum 

fluidisation

(c) (d)

Bouncing 

bed onset

Optimum 

fluidisation
Optimum 

fluidisation

 

Figure 6.29: Frictional dissipation contribution at: (a) 40 Hz and (b) 160 Hz, and inter-

particle frictional contribution at: (a) 40 Hz and (b) 160 Hz.  

As shown in Figure 6.29a and b, the frictional contribution generally decreases as the particle 

size increases, especially when the convection motion appears in the granular medium. It is 
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because the tangential contact activities (i.e., slipping-sliding) are much less within the 

convective zones of the granular medium, and, therefore a decrease in the number of particles 

causes decreases in the frictional contribution. Figure 6.29a and Figure 6.29b demonstrate 

that the dominant dissipation source is friction for granular dampers regardless of operating 

motional phase, and this mainly arises from inter-particle frictions as can be seen in Figure 

6.29c and Figure 6.29d. The frictional contribution rapidly reduces as the fluidisation motion 

increases within the granular medium from lower amplitudes to the optimum fluidisation. It 

is because the relative motion in the fluidisation has more impact dissipation than the solid-

like behaviour (see Figure 6.15 for the motional definition). As a result of decrease in the 

tangential contact activities (i.e., slipping-sliding) in the convection zones, the frictional 

contribution continues to decrease beyond the optimum fluidisation as the vibration 

amplitude increases. Although the bouncing bed phase generates two intensive collective 

collisions with the enclosure ends, the frictional dissipation significantly dominates the 

energy dissipation in this phase reaching about 80%.  

6.6 Chapter Summary and Conclusions  

In this chapter, a link between the granular motional phase map and energy dissipation 

effectiveness has been demonstrated by employing simulations using the DEM approach. 

This relationship has been explained by showing how different granular motional behaviours 

affect dissipation characteristics. It has been shown that the developed understanding is 

consistent regardless of excitation orientation, particle size, material and contact properties.  

The dissipative performance of granular dampers is controlled by two principal motional 

mechanisms: collective collision and particle fluidisation. Optimum performance can be 

achieved for each mechanism, but optimum conditions are different for each mechanism 

because the motional behaviour differs.  
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The most effective performance occurs when there are two collisions per vibration cycle, 

between the granular medium and the alternate enclosure ends. It is referred to the bouncing 

bed phase, and the optimum is found about the onset of this phase. This phase provides the 

most efficient granular energy dissipation for a broad amplitude range, which is a significant 

advantage for the deployment of amplitude-dependent granular dampers. However, efficient 

granular energy dissipation is obtained over a narrow excitation frequency range as the 

optimum condition depends on the flight time during which the clearance is travelled by the 

granular medium. As the clearance changes depending on the arrangement of the particle 

group within the enclosure void, it has been shown that the accurate estimation of the 

effective clearance is important to accurately predict the optimum condition in this phase.  

It has been shown that the solid-fluid-convection behaviours of granular medium form an 

inter-related phase transition process, and they are independent from the bouncing bed phase. 

Amongst them, fluidisation is the most effective motion for dissipating energy. Therefore, it 

has been shown that the key factor is the ratio of the fluidised particles to the other particles 

(which exhibit solid-like or convection motion) for the optimum condition. This is primarily 

controlled by the activation level of particles which depends on the relative level of dynamic 

and static forces. The optimum is achieved when the maximum ratio of the fluidised particles 

to the other particles is obtained. It has been shown by comparing different excitation 

orientation cases that the quality of the fluidisation optimum depends on the level of this 

maximum ratio. The optimum is relatively insensitive to frequency compared to the 

bouncing bed phase and provides efficient energy dissipation for a broad frequency range. 

This significant design feature of the fluidisation optimum condition can be utilised for low-

amplitude vibrations.  
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7 Experimental Measurement of Granular Energy 

Dissipation  

7.1 Overview  

To demonstrate the validity of the simulation model used to evaluate the general relationship 

between granular energy dissipation and dynamic motional behaviour in Chapter 6, this 

chapter presents equivalent physical measurements. Since 3D printed particles (which have 

relatively high level of surface roughness) are used for non-spherical particle investigations 

in the next chapter, it is also aimed to explore the effect of particle surface roughness in this 

chapter.  

7.2 Spherical Particles  

For experimental measurements of granular energy dissipation, 5 mm diameter spherical 

acrylic particles with properties matching with those used in the simulations were used. Note 

that this diameter was selected from one of particle sizes used in the simulations in Chapter 

6. Two particle types (namely smooth and non-smooth) were used to understand the energy 

dissipation performance of different particle surface types and recognise any significant 

change depending on particle surface. These particles are shown in Figure 7.1a and Figure 

7.1b. The smooth particles were moulded whilst the non-smooth ones were manufactured 

using 3D printing.  
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(a) (b)

(c) (d)

  

Figure 7.1: Spherical particles: (a) smooth and (b) non-smooth, and surface textures: (c) 

smooth and (d) non-smooth.  

In order to quantify the surface characteristics of particle types, a set of surface roughness 

measurements was carried out using an Alicona InfiniteFocus optical surface roughness 

measurement machine. The particle images scanned by the machine are illustrated in Figure 

7.1c and Figure 7.1d. As can be seen from the figures, there are periodic parallel (printing) 

ridges and small defects on these ridges on the non-smooth particle surface whereas the 

smooth particle surface has slight roughness. The average mean roughness parameter (Ra) 

is calculated to compare the particle surface types using the equation:  

 ( )
path

path

path 0

1
Ra

L

z x dx
L

=   (7.1) 

where z
path

(x) is the depth profile function of a selected path line on surface and L
path

 is the 

total length of this selected path line. As the curvature of particles could affect z
path

(x), L
path

 

was selected sufficiently small for each measurement to minimise the effect of curvature on 

results.  
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The directional orientation of path selections with respect to the alignment direction of the 

printing ridges significantly changes results for the non-smooth particle. Therefore, two 

principal path orientations were separately measured for the non-smooth particle as 

described in Figure 7.2.  

zpath(x) 

x

x

Periodic relatively 

deeper depths 

between printing 

ridges

The path 

perpendicular to 

ridges

The path on a 

ridge

zpath(x) 

  

Figure 7.2: Path orientations on non-smooth printed particle surface.  

In measurements, 5 different specimens were used for each particle type to measure the 

average surface roughness. To show the variation in the surface roughness depending on the 

selected path position, 4 different lines were constructed on each specimen surface and an 

average surface roughness value was obtained from these paths for each specimen.  

The measurement results are provided in Table 7.1. The smooth particle surface roughness 

level is notably lower than the non-smooth particle. The surface roughness of non-smooth 

particle is significant when the perpendicular path orientation is considered. However, it 

should be also noted that the ratio of the maximum non-smooth particle surface roughness 

to the nominal sphere diameter (i.e., 5 mm) is about 0.2%. This indicates that the overall 
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particle sphericity level is not significantly affected by the printing ridges of the non-smooth 

particle.  

Table 7.1: Surface roughness measurement results of spherical particles.  

Particle no  
Smooth particle, 

Ra [µm]  

Non-smooth particle – 

perpendicular to ridges, 

Ra [µm]  

Non-smooth 

particle – on ridge, 

Ra [µm]  

1  0.15 ± 0.02 11.22 ± 0.58 0.34 ± 0.04 

2  0.16 ± 0.02 12.47 ± 0.24 0.34 ± 0.03 

3  0.17 ± 0.04  11.66 ± 1.04  0.38 ± 0.02  

4  0.15 ± 0.02  11.56 ± 0.80  0.35 ± 0.05  

5  0.17 ± 0.01  12.96 ± 0.69  0.33 ± 0.04  

Average  0.16  11.97  0.35  

7.3 Simple Measurement of Coefficient of Restitution  

To reveal the difference between the individual contact damping levels of the smooth and 

non-smooth particles, a simple drop test rig was proposed as shown in Figure 7.3. This test 

aimed to measure the coefficient of restitution (COR) between a particle specimen and a flat 

surface.  

(1) Personal Computer (PC)

(2) Signal conditioner

(3) Oscilloscope analyser

(4) Force transducer

(5) Acrylic cylindrical base plate 

(1)

(4)

(2)
(3)

(5)
  

Figure 7.3: Individual particle drop test rig.  

The measurement was performed by releasing a particle onto the cylindrical base plate from 

an arbitrary height. Afterwards, the particle was allowed to generate several successive 

impacts (at least 3) with the plate in a measurement sequence. The force signal was captured 

by the force transducer mounted between the plate and the fixed ground. The force history 
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of each measurement was then stored in PC by the ways of the signal conditioner and the 

oscilloscope analyser.  

A measurement example is presented in Figure 7.4. It shows 3 successive impacts of the 

smooth particle at which the force magnitudes are significant compared the non-impact 

times. A simple algorithm was used in Matlab to automatically identify impacts. In this way, 

the time gaps between subsequent impacts, i.e., T
1-2

 and T
2-3

, were also captured for each 

measurement. It should be noted that the sampling rate of the force signal was 200 kHz for 

all drop tests in order to capture impacts accurately.  

Impact 1
Impact 2

Impact 3

T1-2 T2-3

  

Figure 7.4: A sample force measurement showing 3 successive impacts.  

Considering Impact 2 of the three successive impacts shown in Figure 7.4, COR can be 

defined as:  

 contact impact-2 impact-2
/e v v− +=  (7.2) 

where v
impact-2

+ and v
impact-2

- are the impact velocity at the beginning of Impact 2 and the 

leaving velocity at the end of Impact 2, respectively. Supposing that the energy of particle is 
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only dissipated by inelasticity during contact, the impact velocity of Impact 2 is determined 

as:  

 1 2impact-2
/ 2v T g+ −=  (7.3) 

As v
impact-2

- is equal to the impact velocity of Impact 3, it is similarly expressed as:  

 2 3impact-2
/ 2v T g− −=  (7.4) 

Thus, COR is re-written in terms of the time gaps between the impacts as:  

 contact 2 3 1 2/e T T− −=  (7.5) 

In this experimental method, the sampling rate and the base plate vibration after the 

separation with the particle are the most significant factors that can affect accuracy by 

changing the duration of a contact. However, as the time gaps are much larger than the 

contact durations, it is reasonable to assume that this method is relatively insensitive to these 

issues. It should be also noted that different models and measurement techniques can be 

found in the literature [135,178,195,196,198,202–205,213,214].  

Measurements were performed by releasing the particles from various heights, and COR was 

calculated applying Equation (7.5) for each test. The results are set out depending on the 

impact velocity of Impact 2 in Figure 7.5. The results indicate that COR values are 

independent of the impact velocity – approximately a horizontal distribution. This is because 

the impact velocities are smaller than the yield velocity of particles. The mean COR value is 

0.91 for the smooth particle and 0.83 for the non-smooth particle. This shows that rougher 

surfaces indicate lower COR (i.e., higher impact dissipation) as similarly reported the in 

literature [215,216]. It should be also noticed that the COR value used in the DEM 

simulations (i.e., 0.86) is consistent with the physical measurement results shown in Figure 

7.5.  
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Figure 7.5: Measured COR depending on impact velocity.  

7.4 Energy Dissipation Measurement: Model and Method  

7.4.1 Damper model  

A granular damper model was proposed for experimental investigations as illustrated in 

Figure 7.6. The vertical case, where the excitation direction is parallel to the gravity 

direction, was considered in this experimental model. It should be noted that the horizontal 

case was not attempted as this work aimed to validate the numerical damper model used in 

Chapter 6. In addition, Chapter 6 shows that there is the main characteristics of granular 

energy dissipation are independent from the vibration-to-gravity directional orientation.  

(1)   Enclosure lid

(2)   Securing ring

(3)   Main damper enclosure

(4a) Granular medium having 

smooth particles

(4b) Granular medium having 

non-smooth particles

(1)

(2)

(3)

(4a)

(4b)

  

Figure 7.6: Experimental granular damper model.  
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To be able to use experimental results for the validation of the DEM simulations conducted, 

the enclosure was manufactured as consistent with the DEM model presented in Chapter 6. 

The enclosure inner diameter was therefore set to 40 mm, and the height of enclosure void 

was designed to be adjustable to achieve any volume fill ratio. In experiments, one of the 

simulated volume fill ratios in Chapter 6, υ = 0.466 was considered. This was obtained by 

filling the enclosure inner void with 358 particles and arranging the enclosure height as 40 

mm.  

Experiments were carried out for all the excitation frequencies previously shown for the 

DEM model in Table 6.1. However, the acceleration amplitude had to be smaller than 12 g 

at 20 Hz and smaller than 40 g for the other frequencies because of the peak-to-peak 

displacement limit on the shaker. Note that g is the gravitational acceleration.  

To match the rigid enclosure assumed for the DEM model, the enclosure was designed to 

keep any of its vibration modes at frequencies beyond the expecting range for testing. The 

detailed sketches of manufactured damper enclosure showing all dimensions and eigen-

frequency analysis results (i.e., natural frequencies) can be found in Appendix-B.  

7.4.2 Experimental setup and testing method  

In order to measure the energy dissipated by the granular damper model presented in Figure 

7.6, an experimental test rig was prepared as shown in Figure 7.7. This testing rig follows 

the approach used by Yang [64], and the dissipated energy measurement depends on 

simultaneous acquisition of acceleration and force signals while the damper undergoes 

harmonic excitations.  
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(1) Granular damper

(2) Shaker

(3) Accelerometer

(4) Force transducer

(5) Forced air cooling

(6) Signal conditioner unit

(7) Digital oscilloscope

(8) Power amplifier 

(9) PC

(1)

(2)

(4)

(3)

(5)

(6) (7)

(8)

(9)

  

Figure 7.7: Granular energy dissipation measurement test rig.  

In this test rig, first, the excitation signal was generated by PC setting the excitation 

conditions (i.e., amplitude and frequency):  

 ( )2
sin

g
u t




=  (7.6) 

where ω is the excitation frequency, Г is the non-dimensional acceleration amplitude, and t 

is the time. This was sent to the electro-magnetic shaker by the way of the digital-analogue 

converter of the oscilloscope analyser and the power amplifier. As the damper was mounted 

to the shaker, it underwent the pre-described vibrational excitation. When the granular 

medium reached a steady-state condition (i.e., periodically generating a specific motional 

phase), the accelerometer and force transducer captured analogue data during a time period, 
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i.e., from t = 0 to t = T
measurement

. These data sets were conditioned by the signal conditioner 

and digitised by the analyser. These were then converted to the acceleration, a(t), and force, 

f(t), signals using the associated transducer sensitivities, and a(t) and f(t) were stored in PC. 

Note that each steady-state measurement was carried out for 5 seconds using 40 kHz 

sampling rate (f
sampling

). This eased data processing at different frequencies and provided to 

eliminate possible uncertainties that can occur in a single vibration period as many cycles 

were considered.  

To be consistent with the DEM simulations in Chapter 6 and therefore allow comparisons, 

the damping efficiency described by Equation (6.8) is similarly used for the experimental 

damper model as:  

 experimental experimental max

granular dissipated dissipated/E E =  (7.7) 

where the maximum dissipated energy that can be achieved in a vibration cycle, max

dissipatedE

, is determined using Equation (6.10) as in the simulations.  

The main difference between Equation (7.7) and Equation (6.8) is the calculation of average 

energy dissipated in a vibration cycle, i.e., experimental

dissipatedE . It can be expressed using the 

power dissipated by the granular damper in experiments, P
dissipated

experimental
:  

 
experimental experimental

dissipated dissipated2 /E P =  (7.8) 

The dissipated power is obtained by calculating the real part of average transmitted power 

to the damper enclosure in a measurement as:  

 
measurement sampling 1

experimental *

dissipated

0

real / 2

T f

k k

k

P

−

=

 
=   

 
 F V  (7.9) 
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where F
k
 is the complex force at the frequency point k, V

k
 is the complex velocity at the 

same frequency point, and the superscript star represents complex conjugate manipulation.  

The complex force and velocity are respectively determined by applying the discrete Fourier 

transform for the measured time-domain signals as:  

 ( ) ( )
measurement sampling

measurement samplingj2 / 1

0

f

T f
ki T f

k i

i

t e
− −

=

= F  (7.10) 

 ( ) ( )
measurement sampling

measurement samplingj2 / 1

0

a / j

T f
ki T f

k i k

i

t e



− −

=

= V  (7.11) 

where t
i
 is the discrete time points, ω

k
 is the kth discretised frequency, and j is the imaginary 

number.  

Alternatively, Equation (7.9) can be explicitly expressed by introducing the phase angles of 

the kth complex force (φFk
) and the velocity (φVk

) as:  

 ( )
measurement sampling 1

experimental

dissipated

0

1
cos

2 k k

T f

k k

k

P  
−

=

= − F V
F V  (7.12) 

Equation (7.12) should indicate that there is no dissipative source other than damping 

particles in experiments. This means that the phase angle between the acceleration and force 

signals should be exactly π (π/2 if the velocity is considered) if the empty enclosure is tested. 

A sample measurement of the empty enclosure is shown in Figure 7.8, where m
enclosure

 is the 

mass of the enclosure.  
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Figure 7.8: Acceleration and force histories of empty enclosure measurement for Г = 20 

excitation at 40 Hz.  

Although it may not be apparent in Figure 7.8, the phase angle between these signals was 

not exactly π, i.e., there was an initial phase angle error. This can come from several 

uncertainties in experiments:  

i. flexibility in the connections between different parts such as force transducer-shaker, 

enclosure-shaker, enclosure-accelerometer, enclosure-enclosure lid,  

ii. other dissipative sources such as air viscosity,  

iii. high frequency noise arisen from the forced cooling of the shaker,  

iv. ground vibrations,  

v. electrical current issues.  

In order to keep the initial error small and consistent for each measurement case, the testing 

assembly was constructed using sufficiently large torque levels at connections, and was the 

unchanged until all measurements were completed. In the testing assembly, the enclosure lid 
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was the only assembly part of granular damper that was removed during experiments to 

replace particles inside the enclosure void. In order to reduce the possible effect of this 

particle empty-fill process on measurements, the accelerometer was fixed onto the outer 

bottom surface of the enclosure.  

Any remaining phase angle error between the velocity and force was determined for various 

vibration amplitudes at each frequency investigated as shown in Figure 7.9 to subtract it 

from Equation (7.12) for each measurement case. As can be seen from this figure, the initial 

phase angle error is very small and similar for different excitation conditions as targeted. It 

should be noted that the initial phase angle error was frequently measured before and after a 

damper test with particles to verify that it stayed at similar levels.  

  

Figure 7.9: Initial phase angle error between velocity and force.  

7.5 Energy Dissipation Measurement: Results  

The granular damping efficiencies of smooth and non-smooth particle types measured using 

the experimental model are shown Figure 7.10 and Figure 7.11 for various vibration 

amplitudes at each frequency considered. The DEM results related to these sets of 
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experiments (having the same volume fill ratio and particle size) are included in these figures 

for comparisons.  

(c)

S: Solid-like

BB: Bouncing bed

LF: Local fluidisation

GF: Global fluidisation

T: Transition

LE: Leidenfrost effect

BC: Buoyancy convection

(a) (b)

S

GF T BB

GF T LELF T

BB

LF

S

GF BBLF

  

Figure 7.10: Granular damping efficiency comparisons using υ = 0.466 for excitation 

frequencies of: (a) 20 Hz, (b) 40 Hz and (c) 80 Hz.  

The presented results show that the smooth and non-smooth particles provide very similar 

granular damping efficiency levels for all excitation conditions tested despite the measured 

difference in their surface characteristics. Slightly higher damping efficiency levels were 

achieved by the smooth particle in most of the excitation conditions. This results from a 

higher COR value of the smooth particle (see Figure 7.5). Note that this explanation can be 

supported by the sensitivity analysis results demonstrated in Figure 6.13.  



167 

 

(a) (b)

(c) (d)

(e)

GF T LE BC

(f)

GF T LE BC

GF

T LE BC

GF

T LE

BC

LF

GF T LE

BC

GF T LELF

  

Figure 7.11: Granular damping efficiency comparisons using υ = 0.466 for excitation 

frequencies of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz.  

The motional phase amplitude ranges determined in Chapter 6 employing the DEM 

simulations are also illustrated in Figure 7.10 and Figure 7.11. These ranges were same in 

the experiments since the same volume fill ratio was used in both simulation and experiment. 

As a result, the most important amplitude and frequency dependent granular energy 
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dissipation characteristics (e.g., locations of collective collision and fluidisation optimums) 

captured by the DEM model greatly matches with the experimental observations by both 

particle types. In addition, the damping efficiency levels of DEM are in a consistent 

agreement with the experiments even though the DEM generally overestimates the 

experiments. These small overestimations change with excitation conditions and can be 

attributed to the approximations made in the DEM model (e.g., contact model and dissipated 

energy calculation), relatively small number of cycles computed in the DEM simulations to 

reach steady-state conditions, discrepancy in material properties and typical uncertainties in 

experiments. 

7.6 Signs of Granular Motional Phases in Measured Signals  

Indications of collective collisions can be seen in the acceleration and force signals measured 

using the experimental granular damper model. Therefore, to both briefly re-emphasise the 

effect of collective collisions on the granular energy dissipation effectiveness using the 

experimental data and broaden the understanding on collective collisions for enabling future 

research, the time-dependent signals recorded around the bouncing bed and fluidisation 

optimum amplitudes are investigated in this section. In this investigation, an excitation 

frequency of 40 Hz is considered as it exhibits both optimum conditions – see Figure 7.10b.  

Figure 7.12 shows the measured signals for Γ ≈ 20 which is close to the bouncing bed 

optimum amplitude. Note that m
total

 is the total mass of the enclosure and the particles. As 

can be seen from this figure, the collective collisions are observed twice in a cycle – i.e., 

with the enclosure base and top. Similar to the observation noticed in the simulation study, 

these collisions occur when the acceleration signal is almost zero – i.e., maximum enclosure 

velocity. As discussed before, this creates most effective energy transmission mechanism to 

the damping particles and stimulates intensive particle relativity within the body of particles.  
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Figure 7.12: Measured acceleration and force signals at 40 Hz for Γ ≈ 20.  

At larger amplitudes than the bouncing bed optimum, the enclosure acceleration at which 

the collisions occur is away from zero as shown in Figure 7.13. This means that the collision 

velocities are smaller than the enclosure maximum velocity in the cycle. It therefore reduces 

the relative intensity of collisions – see comparing the acceleration signal amplitude of 

collisions in Figure 7.12 and Figure 7.13.  

  

Figure 7.13: Measured acceleration and force signals at 40 Hz for Γ ≈ 37.  
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The signals measured for three different amplitude cases around the fluidisation optimum 

condition are respectively shown in Figure 7.14, Figure 7.15 and Figure 7.16.  

  

Figure 7.14: Measured acceleration and force signals at 40 Hz for Γ ≈ 1.5.  

  

Figure 7.15: Measured acceleration and force signals at 40 Hz for Γ ≈ 3.  
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Figure 7.16: Measured acceleration and force signals at 40 Hz for Γ ≈ 4.5.  

Before the fluidisation optimum condition (Figure 7.14), the collective collision with the 

enclosure base is relatively weak as the granular medium collides with the enclosure at large 

enclosure acceleration amplitudes (i.e., small enclosure velocity amplitudes). Near the 

optimum (Figure 7.15), the collision occurs at smaller enclosure accelerations (i.e., larger 

enclosure velocities) – yielding stronger collective collision which increases fluidised 

particles and therefore granular energy dissipation performance. As the vibration amplitude 

increases above the optimum (Figure 7.16), the flight time of granular medium increases 

much introducing convective motions in a vibration cycle. This induces the collective 

collision of subsequent cycle at a larger acceleration amplitude. Therefore, this results in 

non-periodic collective collisions cycle-to-cycle and reduces the intensity of one collision in 

two cycles. As a result, the granular energy dissipation effectiveness decreases.  

7.7 Chapter Summary and Conclusions  

This chapter has presented physical experimental results to validate the findings of Chapter 

6. It has been shown that the dissipated energies and dynamic motional behaviours predicted 
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using the numerical damper model of Chapter 6 match with the experimental measurements. 

Investigating the experimental time data obtained about the optimum damper amplitudes, it 

has been shown that the explanations related to the operating conditions of different 

optimums are valid.  

In the experiments, the effect of particle surface roughness has been also examined by 

measuring the surface conditions of two different spheres whose surface characteristics are 

different from each other. The granular damping efficiency and motional differences 

between the particle types have been found small although the deviation in the individual 

collisional properties has been apparent because of surface roughness. Therefore, it has been 

concluded that there is negligible effect of surface roughness on the energy dissipation 

effectiveness and the amplitude-frequency dependent characteristics of granular dampers if 

particle surface roughness does not create a distinct particle shape. This result points the 

second main objective of this thesis, “What would it be observed if the particle shape 

deviates from being a perfect sphere?”. Equation Chapter 8 Section 1 
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8 Influence of Non-Spherical Particle Shapes on 

Granular Energy Dissipation  

8.1 Overview  

The relationship between operating motional phase and non-linear energy dissipation 

behaviour of granular dampers have been described in Chapter 6 employing perfectly 

spherical particles. This chapter extends the understanding of this relationship by 

investigating non-spherical particles in granular dampers. The aim is to discover the effect 

of particle shape on the energy dissipation behaviour of granular dampers for particular 

motional phases and detect any change in the conditions that stimulate motional phases. This 

investigation is carried out using both controlled experimental and validated simulation 

models for a wide range of excitation conditions to comprise as many as possible motional 

phases identified in Chapter 6. Two distinct particle geometries are considered for this study: 

spheroids and circular toroids. A broad collection of principal dimensions is used for both 

geometry types to provide a systematic investigation.  

8.2 Particle Shapes  

8.2.1 Spheroids  

The first particle shape change follows the spheroid path to observe dissipative and motional 

changes in granular dampers depending on the deviation level from a perfect sphere. This 

group of particles consists of sphere, oblate and prolate shapes. A spheroid shape is obtained 
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by revolving an ellipse around one of its principal axes as shown in Figure 8.1. These 

spheroid shapes can be defined by the aspect ratio described as α
spheroid

 = ɑ
spheroid

/b
spheroid

. 

When α
spheroid

 < 1, a flattened spheroid (i.e., oblate) is obtained whilst α
spheroid

 > 1 provides 

an elongated spheroid (i.e., prolate). Note that α
spheroid

 = 1 represents a perfect spherical 

shape.  

bspheroid  < ɑspheroid  

(a)

z

x

(b)

z

x

ɑspheroid ɑspheroid

bspheroid

bspheroid

bspheroid

bspheroid

bspheroid  > ɑspheroid  

ɑspheroidɑspheroid

  

Figure 8.1: Ellipse geometries of (a) oblate and (b) prolate spheroids created by rotation 

around the x-axis.  

For a comprehensive analysis, a collection of spheroid particles providing an aspect ratio 

range of 0.70 to 3.00 was used. To allow consistent comparisons, it was aimed to generate 

identical particles in terms of volume. This required the definition of the principal spheroid 

dimensions of generated particles depending on the aspect ratio as:  

 spheroid spheroid spheroida b=  (8.1) 

 
1/3

spheroid spheroid spheroidb r −=  (8.2) 

where r
spheroid

 is the radius of perfect sphere whose volume is the reference for all generated 

spheroid particles.  
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The aspect ratios of the generated spheroid particles are shown Table 8.1 and illustrations of 

3 different particles are provided in Figure 8.2. The particle material and its properties are 

equivalent to those provided in Chapter 6 and Chapter 7. It should be noted that r
spheroid

 was 

set to approximately 3.8 mm for the spheroid particles generated.  

Table 8.1: Spheroid particles for experimental and simulation study.  

Aspect ratio Sphericity Experimental DEM: multi-sphere 

0.70 0.977 + + 

0.75 0.985 - + 

0.80 0.991 - + 

0.85 0.995 + + 

0.90 0.998 - + 

1.00 1.000 + + 

1.25 0.992 - + 

1.50 0.973 + + 

2.00 0.929 + + 

2.50 0.885 - + 

3.00 0.846 + + 

0.70

Experimental

3.00

DEM: multi-sphereAspect ratio

1.00

  

Figure 8.2: Example pictures of spheroid particles.  

Note that the sphericity values of spheroids are also included in Table 8.1 using the true 

sphericity parameter [217,218]:  

 ( )
2

33
sphere particle= 36 4 / 3 /r S   (8.3) 
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where r
sphere

 is the radius of a sphere which has the same volume as the considered particle 

(note that r
sphere

 = r
spheroid

 in this case) and S
particle

 is the surface area of this particle.  

As shown in Table 8.1, 6 of the aspect ratios presented were considered for experimental 

studies. The production process resulted in some surface defects on particle surfaces as can 

be seen in Figure 8.2. The average surface roughness due to these defects was about 11.3 

µm which was 0.2% of the reference particle diameter. It has been discussed in Chapter 7 

that such a surface roughness level does not affect overall particle shapes. In addition, Figure 

8.3 shows that these defects did not change the default volume of particles significantly 

exhibiting an error level being below 2% for each experimental particle.  

  

Figure 8.3: Volume inconsistencies in generated spheroid particles with respect to the 

exact volume of reference sphere.  

All of the aspect ratios in Table 8.1 were numerically constructed for simulation studies. As 

broadly discussed in Chapter 4, the multi-sphere method was employed to generate non-

spherical particles for numerical granular damper models in order to exploit the advantages 

of spherical DEM computations.  
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The prolate particles in Table 8.1, i.e., where α
spheroid

 > 1, were generated implementing the 

analytical multi-sphere approach described in Section 4.4.1. In Figure 4.7, it has been shown 

that the use of 51 sub-spheres provides a high level of accuracy in the volume of represented 

non-spherical particle for aspect ratios smaller than 6. Thus, it was decided to use 51 sub-

spheres for all numerical prolate particles as this case delivered a reasonable compromise 

between the accuracy and computational effort. As can be seen in Figure 8.3, the generated 

prolate particles represented the exact volume very accurately by producing small errors.  

However, as there was no such analytical approach for oblate shapes, the aspect ratios which 

yielded oblate spheroids, i.e., α
spheroid

 < 1, were obtained using the built-in multi-sphere 

optimisation tool of EDEM commercial software (explained in Section 4.3). It was 

determined by trial in this algorithm that 9 sub-spheres provided the most-satisfactory 

volume consistency and computational load. The most flatted oblate particle (i.e., α
spheroid

 = 

0.7) was obtained first, and the other oblates were generated scaling it according to the 

related dimensions. This non-analytical method produced large volume inconsistencies in 

the form of surface ridges and troughs and over-flattened oblate particles as can be seen in 

Figure 8.2. The volume differences between the generated oblates and the exact value were 

therefore relatively large producing volume errors reaching up to 10% as shown in Figure 

8.3. This error was considered large enough to alter results in the numerical investigation of 

oblate particles. Nevertheless, they were tested to show both the limitation of multi-sphere 

method and notice this limitation in granular energy dissipation analyses when compared 

with experiments.  

8.2.2 Circular toroids  

The second particle change path is circular toroids. This aims to investigate the effect of hole 

level in a particle on granular energy dissipation behaviours. A circular toroid shape is 
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formed by sweeping a circle (whose radius is b
toroid

) through a circular trajectory (whose 

radius is ɑ
toroid

). A two-dimensional view of toroid geometry is given in Figure 8.4. A circular 

toroid can be described by its hole ratio as h
toroid

 = (ɑ
toroid

 – b
toroid

)/(ɑ
toroid

 + b
toroid

). When 0 < 

h
toroid

 < 1, a circular toroid is obtained.  

y

x

ɑtoroid

btoroid btoroid

  

Figure 8.4: Two-dimensional view of circular toroid geometry.  

A range of circular toroid particles whose hole ratios are between 0 and 0.33 was considered 

for investigations. For consistent comparisons, each was generated having identical volume. 

This created a relationship between the principal circular toroid dimensions as:  

 ( )
1/3

toroid toroid toroid toroid3 / 2b a b r
−

=  (8.4) 

where r
toroid

 is the radius of equivalent perfect sphere volume for circular toroid particles.  

The generated circular toroid particles are listed in Table 8.2, and some of those generated 

are demonstrated in Figure 8.5. Note that r
toroid

 was about 3.5 mm for dimensioning, and the 

same material and its properties (mentioned for the spheroid particles) were used.  

In experiments, 4 of the hole ratios shown in Table 8.2 were manufactured. As they are 

visible in Figure 8.5, there were a level surface roughness on the particle surfaces (about 

13.15 µm), and the produced circular toroid particles seemed more flatted on the top and 
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bottom surfaces than the original geometries targeted. These created an amount of volume 

error between the produced particles and the reference sphere reaching up to about 5% as 

demonstrated in Figure 8.6. 

Table 8.2: Circular toroid particles for experimental and simulation study.  

Hole ratio Sphericity Experimental DEM: multi-sphere 

0 1.000 + + 

0.05 0.867 + + 

0.11 0.831 - + 

0.20 0.782 + + 

0.27 0.743 - + 

0.33 0.710 + + 

1.00

Experimental

0.33

DEM: multi-sphereHole ratio

0.20

  

Figure 8.5: Example pictures of circular toroid particles.  

The circular toroid particles in Table 8.2 were numerically generated applying the analytical 

multi-sphere approach presented in Section 4.4.2. Using the curves shown in Figure 4.11, it 

was found sufficient to employ 50 sub-spheres for all numerical circular toroid particles 

considering the trade-off between the accuracy of representative non-spherical particle shape 

and computational load. As can be seen in Figure 8.6, the constructed numerical particles 

had reasonable agreement with the reference exact volume.  
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Figure 8.6: Volume inconsistencies in generated circular toroid particles with respect to 

the exact volume of reference sphere.  

8.3 Approach and Model Properties  

In this chapter, the effect of particle shape on granular damping behaviours were examined 

using a parallel investigation. This meant that both experimental and numerical studies were 

carried out together for each particle shape change path to obtain reliable results, detect any 

discrepancy and discover possible reasons behind quantative observations. In addition, the 

simulation study provided a better observation of particle motions at any excitation condition 

and allowed to conduct a sensitivity analysis by altering a single material property at a time. 

It was also possible to test more particle shapes in the simulation study as demonstrated in 

Section 8.2.  

As in Chapter 6 and Chapter 7, the structure-independent damper model was employed to 

allow consistent particle shape comparisons to be made over different excitation conditions 

without involving the dynamics of host structures. The model is illustrated in Figure 8.7 for 

a particular particle shape.  
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u
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enclosure

  

Figure 8.7: Granular damper involving prolate spheroid particles for different vibration-to-

gravity orientations: (a) conceptual, (b) experimental and (c) simulation models.  

To understand the effect of vibration orientation with respect to gravity, the vertical and 

horizontal cases were considered as shown in Figure 8.7 similar to Chapter 6 and 7. For both 

loading directions, the enclosure motion is described as:  

 ( )2
sin

g
u t




=  (8.5) 

where g is the gravitational acceleration, ω is the excitation frequency, and t stands for the 

time. As also mentioned before, Γ is the non-dimensional acceleration amplitude, defined as 

the amplitude of acceleration experienced by the damper enclosure divided by the 

acceleration due to gravity.  

The cylindrical enclosure, whose material and geometric properties was provided in Chapter 

6 and Chapter 7, was used as the damper enclosure. As the effect of volume fill ratio was 

determined in Chapter 6, only one enclosure height, i.e., 40 mm, was considered in the 

presented models. For the spheroidal particle investigation, the number of particles 
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employed was 90 for each spheroid particle (Table 8.1) which provided approximately the 

volume fill ratio of 0.41. It was about 0.38 for the circular toroid particle investigation by 

using 110 particles for each toroid presented in Table 8.2.  

8.4 Experimental and Simulation Methodologies  

For experimental and simulation studies, the energy dissipation effectiveness of granular 

dampers was determined by computing the damping efficiency, defined by Equation (6.8) 

and re-written in Equation (8.6).  

 
max

granular dissipated dissipated/E E =  (8.6) 

where dissipatedE  is the dissipated energy in a vibration cycle; 
max

dissipatedE  is the maximum 

energy that can be dissipated in the cycle that can be calculated using Equation (6.10). This 

damping measure allowed consistent comparisons for different particle shapes at various 

excitation conditions.  

For the experimental investigations of all particle arrangements, the dissipated energy per 

cycle was measured by applying the same methodology described in Section 7.4.2. Note that 

the used experimental configurations (e.g., sampling frequency, excitation ranges) were also 

same as the provided ones in Section 7.4.2.  

As sub-spheres were used to model numerical non-spherical particles as shown in Figure 

8.8, the numerical DEM damper models comprising non-spherical particles were simulated 

applying the same computational procedures (e.g., contact model, excitation ranges) used in 

Chapter 6. However, the method to calculate the dissipated energy per cycle in simulations 

of non-spherical particles slightly differed from those of presented in Section 6.2.3 as a 

number of sub-spheres were used to construct a non-spherical particle.  
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Figure 8.8: Two contacting sub-spheres.  

The total dissipated energy in a numerical granular assembly was cumulatively calculated 

using the same equation (Equation (6.3)):  

 ( ) ( )
/

dissipated dissipated

1

t t

k

k

E t E t k t


=

=  =   (8.7) 

where Δt was the simulation time step and t
k
 was the time points at the end of each time step. 

Considering the simple illustration shown in Figure 8.8, the energy dissipation at each time 

step, ∆E
dissipated

, can be written accounting all the sub-spheres used in the simulation and 

initiated contacts as:  

 ( )
( ) ( )

( ) ( )

particle sub-sphere, contact, contact,
contact, rel,

dissipated

1 1 1 1 contact, rel,

I Ii IiJ
nd nN N N N

IiJj k IiJj k

k td t
I i J j IiJj k IiJj k

F t v t
E t t

F t v t= = = =

 +
  = 
 
 

     (8.8) 

where N
contact,IiJ

 is the number of contacts that the sub-sphere i of the particle I has with the 

sub-spheres of particle J, N
contact,Ii

 is the number of contacts of the particle I has with the 

other particles, N
sub-sphere,I

 is the number of sub-spheres that constructs the particle I, N
particle

 

is the number of particles used in the simulation, F
contact,IiJj

nd
 and F

contact, IiJj

td
 are the 
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dissipative components of contact forces between the corresponding sub-spheres at normal 

and tangential directions, respectively, v
rel,IiJj

n
 and v

rel,iJj

t
 are the relative velocities between 

corresponding sub-spheres at normal and tangential directions, respectively.  

To obtain the dissipated energy per cycle, the average of total dissipated energy (Equation 

(8.7)) was evaluated as:  

 
( ) ( )dissipated initial dissipated final

dissipated

final initial

2E t E t
E

t t





−
=

−
 (8.9) 

where t
initial

 and t
final

 are respectively the times at which the steady-state vibration begins and 

the simulation ends. It should be noted that each excitation condition was simulated 18 

complete vibration cycles, and the last 15 of those were considered as the steady-state in the 

simulations of this chapter.  

8.5 Results and Discussions  

As presented in Chapter 6, there are two principal motional mechanisms that control the 

effectiveness of granular dampers: collective collision and fluidisation. It has been shown 

that each has an optimum condition for granular energy dissipation. Therefore, in this 

chapter, the effect of particle shape is investigated by focusing on two main granular phase 

regions which the operation of granular dampers is efficient and practical: the bouncing bed 

phase where the collective collisions can be optimised and the inter-related fluid-convection 

based phased where the fluidisation motion can be optimised.  

8.5.1 Particle shape effect in the bouncing bed phase  

As described in Section 6.4.1, the initiation of bouncing bed phase, in which two collective 

collisions are observed in a vibration cycle, depends on the distance that the granular medium 

can travel between two boundaries of the enclosure. As a result, to develop, it needs larger 

excitation displacement amplitudes than the other phases. Depending on packing achieved, 
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this condition is generally met at low frequencies. In this work, the bouncing bed phase was 

only observed at two lowest frequencies considered:20 Hz and 40 Hz.  

Figure 8.9 and Figure 8.10 show the simulated and measured damping efficiency curves at 

these frequencies for the spheroid particle types α
spheroid

 = 1.00, α
spheroid

 = 1.50 and α
spheroid

 = 

3.00 in the vertical and horizontal excitation cases, respectively. As discussed before, the 

highest peak amplitude of each curve is the onset amplitude of the bouncing bed motional 

phase, i.e., the optimum energy dissipation condition.  

(a) (b)

(c) (d)

  

Figure 8.9: Effect of particle shape on damping efficiency in the vertical bouncing bed 

phase: (a) 20 Hz – simulation, (b) 20 Hz – experiment, (c) 40 Hz – simulation and (d) 40 

Hz – experiment.  
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(a) (b)

(c) (d)

  

Figure 8.10: Effect of particle shape on damping efficiency in the horizontal bouncing bed 

phase: (a) 20 Hz – simulation, (b) 20 Hz – experiment, (c) 40 Hz – simulation and (d) 40 

Hz – experiment.  

As can be noticed in Figure 8.9 and Figure 8.10, the maximum damping efficiency observed 

seems relatively insensitive to particle shape, vibration frequency and excitation orientation. 

However, it is apparent that the bouncing bed onset amplitude changes considerably 

depending on particle shape regardless of vibration frequency and excitation orientation.  

When the presented prolate particles (i.e., α
spheroid

 = 1.50 and α
spheroid

 = 3.00) are compared 

with the perfect sphere shape (i.e., α
spheroid

 = 1.00), it can be seen that they increase the 

bouncing bed onset amplitude in granular dampers. As a related outcome, the presented 
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prolate particles provides higher granular damping efficiency at any operating amplitudes 

larger than their bouncing bed onset amplitudes, e.g., Г > 8 at 20 Hz and Г > 35 at 40 Hz.  

The resulting bouncing bed amplitude shift indicates two important observations that are 

directly related to the practical design of a granular damper. First, if a granular damper is 

developed to operate at its optimum amplitude (i.e., the bouncing bed onset amplitude) 

supposing perfect spheres as the damping particles, its energy dissipation effectiveness can 

dramatically decrease in case of particle shape deviation from a perfect sphere. For an 

example, the damping efficiency drop as a result of non-spherical particles can be seen for 

Г ≈ 20 in Figure 8.9c. Secondly, if there is a length restriction in the designed granular 

damper void such that the bouncing bed phase onset cannot be achieved under the anticipated 

operating conditions, the problem can be overcome by using non-spherical particles. This 

can be clearly seen from the damping efficiency results of Г > 8 at 20 Hz and Г > 30 at 40 

Hz in Figure 8.9 and Figure 8.10.  

As a brief conclusion, it is clear that the particle shape has an important role in granular 

dampers operating in the bouncing bed phase. Thus, the extent of this effect should be 

determined by characterising the bouncing bed onset amplitude shift depending on particle 

shape parameter, and the reasons that stimulate this shift should be addressed to provide a 

deep understanding on the use of non-spherical particles in granular dampers.  

8.5.1.1 Characterisation of the onset amplitude shift  

The characteristic change of bouncing bed onset amplitude (i.e., Г
optimum

) depending on the 

spheroid particle aspect ratio is presented in Figure 8.11. It should be noted that the precise 

onset amplitude values were determined from the damping efficiency curves fitted to the 

measured and simulated damping efficiency datapoints.  
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(a) (b)

  

Figure 8.11: Variation of bouncing bed onset amplitude depending on spheroid particle 

aspect ratio: (a) 20 Hz and (b) 40 Hz.  

As can be seen from Figure 8.11, the experimental study of the spheroid particles shows a 

consistent trend with respect to the aspect ratio regardless of excitation frequency or 

orientation. This particle shape-dependent Г
optimum

 behaviour has two apparent zones: i) a v-

shaped trough between α
spheroid

 = 0.70 and α
spheroid

 = 1.50 having a minimum at α
spheroid

 = 

1.00, and ii) an almost constant level between α
spheroid

 = 1.50 and α
spheroid

 = 3.00. It can be 

noticed that the left edge of v-shaped trough (i.e., α
spheroid

 = 0.70) has a similar Г
optimum

 value 

to that of the constant zone. The nearly identical rises from α
spheroid

 = 1.00 to α
spheroid

 = 0.70 

and α
spheroid

 = 1.50 can be attributed having the same sphericity levels in the left side of v-

shaped trough (i.e., 0.70 < α
spheroid

 < 1.00) and the right side of v-shaped trough (i.e., 1.00 < 

α
spheroid

 < 1.50) as given in Table 8.1. As briefly stated before, this characteristic clearly 

shows that Г
optimum

 of a granular damper is shifted to larger vibration amplitudes by 

introducing non-spherical spheroid particles. However, it can be noticed that the level of this 

shift becomes insensitive to the aspect ratio for 1.50 < α
spheroid

 3.00.  

Figure 8.11 shows that the simulation results mostly agree with the observation of physical 

measurements. With the additional aspect ratios (i.e., α
spheroid

 = 1.25 – an intermediate aspect 
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ratio at the right side of v-shaped trough and α
spheroid

 = 2.50 – an aspect ratio in the constant 

level region), the simulation verifies the described characteristic. However, the left side of 

v-shaped trough is not clearly visible in the simulation results as can be seen in Figure 8.11. 

The likely explanation for this is that the numerically generated oblate spheroids are not able 

to represent the actual oblate geometries, i.e., the generated oblate spheroid particles do not 

indicate a perfect oblate geometry because of relatively large surface ridges, troughs and 

over-flattened structure in the overall geometry as demonstrated in Figure 8.2. Therefore, it 

can be deduced that the employed multi-sphere-based optimisation algorithm (see Section 

4.3) may not be reliable to create some particle shapes for granular-based simulations.  

Using the same methodology, the particle shape-dependent Г
optimum

 was also determined for 

the circular toroids from the experiments and simulations as shown in Figure 8.12, with 

respect to the circular toroid particle hole ratio. As in the v-shaped trough of the spheroid 

particle characteristic, similar increase in Г
optimum

 can be seen from the perfect sphere (i.e., 

h
toroid

 = 0) to h
toroid

 = 0.05 in the experimental result sets regardless of excitation frequency 

or orientation. However, rather than a constant region, they present a consistent decrease in 

Г
optimum

 between h
toroid

 = 0.05 and h
toroid

 = 0.33, nearly reaching the level obtained by the 

perfect sphere. The simulation results follow the experimental trend. The relatively large 

difference between the experiments and simulations at some hole ratios (see h
toroid

 = 0.35 

results in Figure 8.12) may result from the slight over-flattened structure on the bottom and 

top surfaces of manufactured experimental circular toroids.  
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(a) (b)

  

Figure 8.12: Variation of bouncing bed onset amplitude depending on circular toroid 

particle hole ratio: (a) 20 Hz and (b) 40 Hz – note that data points at h
toroid

 = 0 are instead 

those for perfect spheres.  

In order to generalise the observed shift in the bouncing bed onset due to particle shape, the 

results presented in Figure 8.11 and Figure 8.12 are re-plotted in Figure 8.13 and Figure 8.14 

depending on the sphericity of particles which represents how close a geometric shape is to 

a perfect sphere. Note that the oblate particle results are not included as they have the same 

sphericity levels as the prolate particles of 1.50 < α
spheroid

 3.00, and the numerically generated 

oblates are not able to represent actual oblate geometries as mentioned before.  

(a) (b)

  

Figure 8.13: Variation of bouncing bed onset amplitude depending on particle sphericity 

for spheroids: (a) 20 Hz and (b) 40 Hz.  
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(a) (b)

  

Figure 8.14: Variation of bouncing bed onset amplitude depending on particle sphericity 

for circular toroids: (a) 20 Hz and (b) 40 Hz.  

By considering the results shown in Figure 8.13 and Figure 8.14 together, it can be concluded 

that Г
optimum

 first increases when the particle shape deviates from a perfect sphere, and, 

afterwards it approximately reaches a maximum level between the sphericity levels of 0.97 

and 0.95. Then, it stays nearly constant between the sphericity levels of 0.95 and 0.85. From 

about the sphericity level of 0.85 to 0.70, Г
optimum

 has a decreasing trend reaching a level 

smaller than the perfect sphere around 0.70.  

8.5.1.2 Explanation for the onset shift characteristic  

The observed characteristic of Г
optimum

 shift presented in Section 8.5.1.1 is associated with 

the combination of two physical reasons:  

I. Particle geometry affects the (volume) packing ratio of particles in a void (or the 

porosity of granular medium). Non-spherical particle shapes may have the ability to 

pack more closely than perfect spheres exhibiting less porosity. This creates a larger 

apparent clearance in a damper enclosure, which causes a higher Г
optimum

 as also 

indicated by the bouncing bed onset amplitude estimation relation for perfect 

spheres, i.e., Equation (6.12).  
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For example; α
spheroid

 = 1.50 produces the maximum random packing ratio of 0.71 

[219], whilst it is 0.64 for α
spheroid

 = 1.00. According to Equation (6.12), this means 

that Г
optimum

 of α
spheroid

 = 1.50 should be approximately 18% higher. However, as 

shown in Figure 8.11, the increase in Г
optimum

 is over 50% for this condition. This 

indicates that there is at least one additional physical cause for the particle shape-

dependent characteristic of Г
optimum

.  

II. Significant local shear deformations occur in a granular medium during collective 

collisions with enclosure walls. Thus, in order to initiate the bouncing bed phase, it 

is needed to provide a vibration amplitude at which sufficient shear deformations are 

achieved to create approximately same collision intensity at both ends of enclosure. 

As rotational degrees-of-freedom of a non-spherical particle are generally restricted 

more in a granular medium than an equivalent perfect sphere, the use of non-

spherical particles is likely to create a granular medium that is more resistant to shear 

deformations. This means that the vibration amplitude required to achieve the perfect 

bouncing bed phase onset needs to be higher.  

In order to test these explanations, the normal and shear force-displacement behaviours of 

prolate spheroid and circular toroid particle collections were analysed conducting quasi-

static DEM simulations. The simulation model used for this investigation is illustrated in 

Figure 8.15. The simulation model involved two identical cylindrical containers whose 

diameters and heights were 40 mm and 20 mm (half of the used damper enclosure), 

respectively. As can be seen in Figure 8.15, the bottom container was fixed onto the 

motionless ground along the gravity direction (i.e., vertical or normal) as its opening looked 

upward, and the top container was placed along the same axis as its opening looked against 

the fixed container. Particles (100 pcs for each particle shape investigated) were randomly 
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generated within the void between the containers. There was a relatively small gap (0.5 mm) 

between the containers to allow the motion of top container perpendicular to the vertical 

direction (i.e., horizontal or shear) whereas its vertical motion was suspended. Thus, to be 

able to apply compressive normal displacements to the body of particles, a disc shaped table, 

whose diameter was 19.9 mm, was assembled to the top container.  

Fixed cylindrical bottom 

container

Granular medium

Cylindrical top container

Disc shaped normal loading 

table

Normal pre-load, Ftest,0

Normal displacement, ztest + ztest,0

Shear displacement, xtest

Gap between two containers 

to allow relative shear 

motion between them

Shear reaction force, Ftest,x

Normal reaction force, Ftest,z + Ftest,0

  

Figure 8.15: Force-displacement simulation model.  

In the normal force-displacement simulations, first, a constant normal pre-load, Ftest,0 (10 N) 

was applied by the loading table to avoid excessive and sudden particle movements (e.g., 

slips because of initial contacts with the loading plate) during tests. The initial normal 

displacement exerted by the loading table due to the pre-load, ztest,0 was recorded for each 

particle shape. After the steady-state was achieved for the loading plate, the testing normal 

displacement, ztest was applied to the granular medium by providing a constant vertical 

velocity to the loading plate, and the resulting reaction force on the fixed container base due 

to the compression test, Ftest,z was determined.  
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For the shear force-displacement simulations, the normal pre-load of 50 N was applied in 

the first step. When the steady-state condition was met for the loading table, the testing shear 

displacement, xtest was applied by giving a constant horizontal velocity to the top container. 

The resulting shear force, Ftest,x was obtained by measuring the experienced horizontal 

reaction force on the fixed container walls by the granular medium.  

The force-displacement results for the normal and shear testing are provided in Figure 8.16, 

Figure 8.17, Figure 8.18 and Figure 8.19 for prolate spheroid and circular toroid particle sets. 

These results could be affected by initial placements of particles inside the void as a result 

of random packing. Thus, it was determined that the uncertainty level did not significantly 

affect the presented stiffness order of particle types by running the simulation several times 

for a particle type– see Appendix-D.  

As shown in Figure 8.16 and Figure 8.17, regardless of particle type, significant stiffening 

occurs with increasing in the normal load as particles pack together more tightly (i.e., 

porosity decreases and granular medium approaches to a continuum formation). The prolate 

spheroid aspect ratio or the circular toroid hole ratio apparently affects the normal stiffness 

of granular medium (or effective elastic modulus). It is lowest for perfect spheres, rises to a 

maximum and then reduces again as the prolate spheroid aspect ratio or the circular toroid 

hole ratio increases. Note that the observed particle shape effect on the modulus of a granular 

medium is consistent with literature [133,134,156]. The normal stiffness of a granular 

medium is in a direct correlation with its porosity level [156]. This means that better packing 

produces higher normal stiffness. Therefore, if the explanation I was the only factor that 

yields the particle-shape dependent Г
optimum

 shift, the particle order seen in Figure 8.16 and 

Figure 8.17 would have exactly represented the Г
optimum

 characteristics presented by Figure 

8.11 and Figure 8.12, but they do not.  
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Figure 8.16: Normal force-displacement curves of prolate spheroid particle sets.  

  

Figure 8.17: Normal force-displacement curves of circular toroid particle sets.  

Figure 8.18 and Figure 8.19 show that the shear behaviour of a granular medium is different 

from the normal behaviour. As the shear displacement increases, the shear stiffness 

decreases as a result of macro slip behaviour in the granular medium. Note that individual 

particle slips are also visible and can be identified from the zig-zag force-displacement 

formations in the presented curves. More details can be found in the literature on the 

fundamental shear behaviour of granular materials [134,156,220,221].  
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Figure 8.18: Shear force-displacement curves of prolate spheroid particle sets.  

  

Figure 8.19: Shear force-displacement curves of circular toroid particle sets.  

As can be seen in Figure 8.18, the non-spherical spheroid particles create a stiffer granular 

medium than perfect spheres against shear deformations. The results show that the force-

displacement curves for α
spheroid

 > 1.00 are approximately the same. This observation has the 

same trend as the particle shape-dependent Г
optimum

 characteristics demonstrated by Figure 

8.11. Similarly, the shear stiffness is higher for the circular toroids than perfect spheres for 

h
toroid

 ≤ 0.20 and nearly the same as can be seen in Figure 8.19. However, for h
toroid

 > 0.20, 
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it decreases and drops to a level which is similar to perfect spheres (or even smaller, h
toroid

 = 

0.33). This was not noticed for the investigated prolate spheroids as discussed for Figure 

8.18. Thus, this can be attributed to smaller sphericity levels of h
toroid

 > 0.20 circular toroid 

particles than the investigated prolate spheroids. Nevertheless, it should be noted that the 

observed particle shape-dependent shear stiffness order of circular toroids represents Г
optimum

 

characteristics shown in Figure 8.12. As a result, it is justified that the explanation II is a 

major factor that controls the condition of bouncing bed phase initiation in a granular 

medium.  

8.5.1.3 Sensitivity of the onset shift to contact and material properties  

As reviewed in Section 2.6 and investigated in Section 6.4.1 using perfect spheres that the 

bouncing bed onset amplitude and amplitude-frequency-dependent energy dissipation 

characteristic of a granular damper is independent from contact and material properties 

whilst the level of damping efficiency curves can slightly change – see Figure 6.13 for more 

detail. In this section, the sensitivity of the observed particle shape-dependent Г
optimum

 

characteristic to material and contact properties was examined by using the prolate particles.  

For this study, the same changes in density, elastic modulus, coefficient of restitution (COR) 

and coefficient of friction (COF) as in Section 6.4.1 were considered. It should be noted here 

that the rate of damping efficiency reduction with the increase in vibration amplitude beyond 

the bouncing bed onset amplitude (i.e., Г > Г
optimum

) is not significantly affected by particle 

shape as demonstrated in Figure 8.9 and Figure 8.10. Thus, it is possible to say that the 

highness of damping efficiency level at a specific amplitude in the zone of bouncing bed 

phase is an indicator of Г
optimum

. This can be clearly seen by comparing the curve of default 

case in Figure 8.20 and the α
spheroid

 ≥ 1.00 part of curves in Figure 8.11b. As a result, to 

reduce computational efforts, a single excitation condition (i.e., horizontal vibrations at 40 
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Hz having vibration amplitude of Γ = 35) was simulated for each property change as this 

excitation results in the bouncing bed phase for all particle types – see Figure 8.11b. The 

results of sensitivity analysis simulations are provided in Figure 8.20.  

(a) (b)

(c) (d)

  

Figure 8.20: Sensitivity of particle-shape dependent granular damping efficiency to: (a) 

density, (b) elastic modulus, (c) COR and (d) COF using DEM simulations of Γ = 35 

horizontal excitations at 40 Hz.  

As also observed in Figure 6.13b, in the bouncing bed phase, Figure 8.20a shows that the 

granular damping efficiency slightly decreases as the density increases. This slight effect 

may be related to changes in the deformation of whole particle bed during each collective 

collision. As can be seen in Equation (5.10), an increase in the density increases individual 

contact durations and yields more compact granular medium during collective collisions 

(i.e., lower bed deformation is observed as individual particles translate less) which reduces 
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particle relative motions and energy dissipation. This effect is observed for each particle 

type, thus, does not change the particle shape-dependent Г
optimum

 characteristic.  

As opposite to the influence of density, Figure 8.20b and c show that higher elastic modulus 

or higher COR provides higher damping efficiency for each particle type in the bouncing 

bed phase. Because, particles with higher modulus (or higher COR) exhibits a less compact 

particle bed as a higher modulus means shorter individual contact duration (as also discussed 

in Section 6.4.1 by addressing Equation (5.10)) and a higher COR also results in larger post-

impact velocities for individual particles by reducing energy lost in individual inter-particle 

impacts. As these effects are valid for each particle type, the particle shape-dependent 

Г
optimum

 characteristic is not affected by elastic modulus of COR changes.  

As mentioned above, the changes in density, elastic modulus and COR affect overall 

stiffness of granular medium, and this can be observed for any particle shape. However, COF 

significantly alters the ratio of shear stiffness to normal stiffness of granular medium [156]. 

This is basically similar to what the particle shape does as shown in Section 8.5.1.2. Thus, 

as shown in Figure 8.20d, a reduction in COF increases the sensitivity of Г
optimum

 to particle 

shape – particularly it can be seen by a larger increase between α
spheroid

 = 1.00 and α
spheroid

 = 

1.50. It can be also noticed that an increase in COF causes a decrease in this sensitivity.  

8.5.2 Particle shape effect in the fluidisation-based and convection-based phases  

For the vertical case, the simulation and experimental damping efficiency results at the high 

frequencies, at which the fluidisation-based and convection-based phases are observed but 

the bouncing bed phase is not apparent, are given in Figure 8.21-Figure 8.26. Figure 8.21 

and Figure 8.22 show the results of prolate spheroid particles; Figure 8.23 and Figure 8.24 

show the results of circular toroid particles; and Figure 8.25 and Figure 8.26 show the results 

of oblate spheroid particles. Note that the results of the horizontal case are not presented here 
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for clarity as they indicate the same conclusions as the vertical case, but they are provided 

in Appendix-E.  

As discussed in detail in Section 6.4.3, the peak in these result sets corresponds to the 

fluidisation optimum in which the number of fluidised particles (Figure 6.15a) reaches its 

maximum in the granular medium. As the excitation frequency increases, the damping 

efficiency level of this peak increases and its location in the amplitude axis shifts towards 

lower values. From the smaller amplitudes to the peak amplitude, the damping efficiency 

increases as the particle fluidisation densifies by replacing the solid-like motions. Beyond 

the peak amplitude, the damping efficiency decreases as a result of the increase in the 

occurrence of particle convection motion. If the bouncing bed phase develops at an 

amplitude larger than the fluidisation peak, the decrease in the damping efficiency stops and 

a significant increase is observed in the damping efficiency plot – see the second peaks in 

Figure 6.8 and Figure 6.9 for examples.  

As similarly noticed in Section 7.5, it can be realised by comparing the simulations (Figure 

8.21, 8.23 and 8.25) and the experiments (Figure 8.22, 8.24 and Figure 8.26) that the 

simulations overestimate the damping efficiency in the fluidisation-based and the 

convection-based phases for all particle types, especially at low amplitudes and high 

frequencies. However, the main amplitude and frequency dependent damping efficiency 

characteristics observed in the simulations and the experiments match with each other.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.21: Granular damping efficiency results of different prolate spheroids at vertical 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

– simulation.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.22: Granular damping efficiency results of different prolate spheroids at vertical 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

– experiment.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.23: Granular damping efficiency results of different toroids at vertical excitations 

of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz – 

simulation.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.24: Granular damping efficiency results of different toroids at vertical excitations 

of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz – 

experiment.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.25: Granular damping efficiency results of different oblate spheroids at vertical 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

– simulation.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure 8.26: Granular damping efficiency results of different oblate spheroids at vertical 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

– experiment.  
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As shown in Figure 8.21-Figure 8.26, the particle shape does not shift the optimum 

fluidisation amplitude. This is different from what has been observed for the bouncing bed 

optimum amplitude where the particle shape affects the condition of bouncing bed phase 

onset. The amplitude and frequency dependent energy dissipation behaviour is maintained 

regardless of the particle shape used. The small variations observed in the damping 

efficiency level depending on the particle shape do not follow a consistent trend, and this 

can be attributed to the uncertainty due to the random packing of particles within the 

enclosure void.  

It can be surprising that the numerical oblate particles (Figure 8.25) also show the same 

observations even though it has been shown in Section 8.5.1 that they do not represent the 

actual intended oblate geometries. This indicates an important conclusion: the fluidisation-

based and the convection-based phases are independent from the particle shape. It should be 

noted here that this verifies the hypothesis proposed by Sanchez et. al [11] using only the 

two-dimensional numerical simulations of a few particle types where the granular medium 

does not produce the bouncing bed phase.  

The main explanation of the particle shape independency in those phases mentioned is that 

the fluidisation-based and the convection-based phases are dominated by the individual 

particle decompaction from the body of particles and decompacted free transportation within 

the enclosure void as discussed in Section 6.4.3. It indicates that the resistance level of a 

particle to rotate within the granular medium, which is found to be sensitive to the particle 

shape, is unimportant in these phases. As shown elsewhere [58], the major factor that 

controls the decompaction and therefore changes the energy dissipation behaviour in these 

phases is the ratio of dynamic pressure to static pressure which the particles of a granular 

damper experience. Therefore, as an overall result, it can be said that the change in particle 

shape does not alter the conditions of fluidisation and convection motion initiations.  
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8.6 Chapter Summary and Conclusions  

This chapter has investigated the influence of particle shape on the energy dissipation of 

granular dampers using both numerical simulations and physical experiments. This study 

has been conducted using a broad range of oblate spheroids, prolate spheroids and circular 

toroids to provide a systematic analysis and therefore obtain general conclusions. It has been 

shown that the effect of particle shape on the dissipative behaviour of granular dampers 

differs depending on the operating motional behaviour of granular medium. It has been 

demonstrated that the particle shape effects observed in this chapter are not affected by the 

changes in material and contact properties or the vibration-to-gravity orientation.  

It has been found that the bouncing bed onset amplitude at which the granular energy 

dissipation performance is maximised changes depending on particle shape whereas the peak 

energy dissipation effectiveness at the optimum condition and the damping efficiency 

behaviour beyond the optimum amplitude are approximately maintained. It has been 

determined that the particle shape-dependent shift of the bouncing bed onset amplitude has 

an apparent trend related to the sphericity level of particles. This shifting behaviour is clearly 

in a correlation with the variation in the overall resistance of granular medium against shear 

deformations (or rotational resistance of a single particle within the granular medium) 

depending on the sphericity level of particles used: higher shear stiffness, larger bouncing 

bed phase onset amplitude.  

For the inter-related fluidisation and convection phases, the dissipative behaviour and 

performance of granular dampers have been found to be insensitive to the particle shape. 

This is explained by the motional characteristics of particle fluidisation and convection 

described in Chapter 6. As these motions are basically described by the decompaction of a 

particle from the whole body of particles and the translational motion of a decompacted 
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particle, the shear stiffness of granular medium and therefore the particle shape have no 

influence on the granular relative motions and particle dissipations.  

The practical importance of this chapter is that it demonstrates the sensitivity of the two 

different optimum operating conditions of granular dampers (i.e., the optimum bouncing bed 

and the optimum fluidisation) to the shape of damping particles. As a result, it extends the 

understanding on the proposed motional phase-energy dissipation relationship and therefore 

provides a reliable guide to the designer to exploit the efficient energy dissipation behaviours 

of these two operating conditions.  
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9 Conclusions and Future Research  

This thesis has focused on explaining the fundamental dissipative phases and mechanisms 

that generate the amplitude and frequency-dependent non-linear energy dissipation 

behaviour in granular dampers. The work has considered harmonically vibrated granular 

dampers whose loading directions are both parallel and perpendicular to gravity. The 

investigation of dampers has been carried out using validated numerical models (utilising 

the Discrete Element Method) and physical experiments. This study has not only considered 

the employment of spherical particles in granular dampers but also involved a systematic 

investigation of non-spherical particles.  

Towards the thesis objectives provided in Section 1.3, the major conclusions determined are 

provided in this chapter. The explanation of how the first objective of the thesis has been 

met is shown in Section 9.1. The practical applicability of the findings of the first objective 

is discussed in Section 9.2. Lastly, the primary conclusions obtained when achieving the 

second objective of the thesis are presented in Section 9.3.  

9.1 Motional Phase Dependent Granular Damping  

The link between the motional phase map and energy dissipation effectiveness for granular 

dampers has been investigated over a wide range of vibrational excitation conditions. As this 

relationship has been fragmented (and little known) in the literature until now, it has caused 

various inconsistent even conflicting results in granular dampers. Thus, addressing this 
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problem in this thesis has been a significant contribution for both granular-based practical 

damper designs and scientific studies on dissipative properties of granular materials.  

The main conclusions from this activity are listed below.  

• There are two distinct motional mechanisms that control the effectiveness of energy 

dissipation in granular dampers:  

i. Collective collision, in which particles collect together and collide with the 

enclosure end walls.  

ii. Particle fluidisation, in which particles in contact have relative motion with 

respect to each other during a vibration cycle but return back to their initial 

position and maintain their existing contacts at the end of cycle.  

• Each motional mechanism can be optimised for energy dissipation, but the factors 

and design parameters involved are different.  

• The most efficient collective collision regime is the bouncing bed phase where 

collisions occur with alternate end walls of the enclosure resulting in two collisions 

per vibration cycle. This operating motional phase provides the highest energy 

dissipation effectiveness. However, the optimum condition occurs for a narrow 

excitation range as it is obtained around the onset of the bouncing bed phase, and the 

effectiveness of granular energy dissipation gradually reduces as the vibrational 

intensity increases. This produces a diagonal ridge on a frequency-amplitude 

damping efficiency map.  

• The optimum (or onset) condition of the bouncing bed phase can be accurately 

predicted by determining the effective clearance in the damper void as it depends on 

the link between flight time of the particles within the enclosure void and the motion 
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of enclosure. The random close packing is the most accurate way to represent the 

packing at the collective collision times and thus provides the best estimation for the 

effective clearance, therefore the optimum condition.  

• Solid-fluidisation-convection motions produce inter-related motional phases whose 

presence depends on the level of particle activation. The optimum condition is 

achieved when the majority of particles exhibit fluidisation motion but have not 

started to convect. This occurs at relatively small vibration amplitudes and changes 

depending on the relative level of dynamic and static forces that the particles 

experience. The sensitivity of fluidisation optimum to the excitation frequency is low 

which produces a relatively broad frequency range for efficient energy dissipation, 

resulting in a horizontal ridge on a frequency-amplitude damping efficiency map. 

Moving away from the optimal fluidisation condition either towards the solid-like 

phase or towards the convection-based phases the effectiveness of the granular 

energy dissipation reduces.  

• Particle size does not significantly affect the energy dissipation effectiveness and 

behaviour of granular dampers in any motional phase. However, this observation 

only holds where there are enough particles to allow their distribution to be described 

in averaged terms and parameters such as bed depth and packing ratio are 

meaningful.  

• The orientation of excitation with respect to gravity is found to be insignificant in 

terms of the relationship between motional phase and energy dissipation. (This is not 

to be confused with the fact that gravity usually provides the static loading that 

controls the phase changes in the solid-fluidisation-convection mechanism.).  
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9.2 Practical Application Design Guides  

One significance of this thesis work which has resulted in the above conclusions is that it 

simplifies the design procedure of granular dampers for practical applications. The designer 

is presented with the choice of two different optimum conditions for an application. A phase 

map of the designed granular damper can be used to assess the outcomes of potential changes 

without the need for further investigations which greatly reduces the effort spent.  

To design an efficient damper for a practical application, it is needed to consider host 

structure dynamics and external loading conditions. Thus, it can be said that a damper which 

is highly efficient in attenuating the vibrations of one structure is not necessarily be efficient 

when implemented to a different structure as the success of design depends not only on 

having an adequate damper mass but on ensuring that the design maintains to function 

efficiently. The effective functioning of a granular damper is assessed by the motional phase 

of damping particles when subjected to vibrations. Therefore, achieving a suitable motional 

phase (optimal motional condition if possible) is critically significant in the design of 

granular dampers. To provide a simple but powerful guidance to overcome the difficulties 

related to the non-linear energy dissipation behaviours of granular dampers, the following 

general design rules are defined for the practical implementation of granular dampers based 

on the results of thesis work:  

I. If the expected operating excitation conditions of the application location on the 

considered structure are well-defined and the excitation frequency range is 

relatively narrow, the bouncing bed phase would present the highest damping 

level for the structure over a relatively broad amplitude range. As explained in 

Section 6.4.1, the key design consideration is to predict the optimum operating 

amplitude based on the effective clearance employed. To set the optimum 

operating amplitude somewhere within the range of excitation, the effective 
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clearance can be arranged by changing either the enclosure size or the maximum 

packing ratio of particles. It should be also noted that this is the most (and only) 

effective phase for no gravity conditions [77,110].  

II. For a wide frequency range application at relatively low (and narrow) excitation 

amplitudes, the fluidisation-based phases (global fluidisation for the vertical case 

and partial fluidisation in the horizontal case) would provide the best damping 

performance in the structure. As shown in Section 6.4.3, the optimum amplitude 

decreases slightly with increasing frequency – nearly frequency-independent 

granular damping operation. The amplitude for the optimum performance can be 

adjusted within a relatively narrow range by altering the static pressure field for 

example, by making the particle bed deeper and narrower [8,9,89].  

III. If the excitation amplitudes are beyond the highest-amplitude optimum zone that 

can be achieved for the fluidisation-based phases, the transition phase (in the 

vertical case) and fluidisation/convection (in the horizontal case) can be utilised, 

although the damping achieved for the structure would be somewhat relatively 

lower.  

9.3 Observations on Particle Shape Effect in Granular Damping  

The influence of particle shape on the energy dissipation of granular dampers has been 

determined for both collective collision and particle fluidisation. The work has provided two 

major contributions to the existing literature. The first is the determination of the influence 

of particle shape on the granular energy dissipation performance which is an important 

aspect in practical applications as particles can deviate from being true spheres. Secondly, 

the understanding on the granular phase-energy dissipation relationship (Section 9.1) has 

been extended as a result of the systematic investigation of one of the factors that can affect 

this relationship.  
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The main conclusions of this study are listed below.  

• A reduction in the particle sphericity shifts the bouncing bed onset amplitude, i.e., 

the conditions for optimal energy dissipation, whilst retaining the shape of the curve. 

The shift depends on particle sphericity. This is associated with two parameters that 

depend on the particle shape: i) maximum packing ratio that can be achieved and ii) 

overall shear resistance of granular medium. It has been shown that the shear 

resistance is the major factor that causes this shift.  

• Particle shape does not significantly affect the solid-fluidisation-convection process.  

• The particle shape effects observed have slight sensitivity to the changes in material 

and contact properties.  

9.4 Future Work  

The work presented in this thesis has helped to identify several interesting lines for research 

for future study. These are identified below.  

i. This thesis has not addressed the numerical prediction of vibration response for an 

engineering structure with attached granular dampers. This is an important capability 

that an engineer needs when employing granular dampers to address practical 

vibrational problems. As the dynamics of the host structure should be included, the 

analysis is generally required to employ a computationally expensive coupled DEM-

FEM simulation approach. To reduce this cost and to allow efficient structural 

design, a simple analytical dissipative force model which represents the main 

characteristics of granular dampers should be developed considering the motional 

phase analogy presented in this thesis.  

ii. This thesis indicates that the estimation of onset excitation conditions (i.e., amplitude 

and frequency) for some particular granular motional events (such as the onset of the 
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bouncing bed phase) is an important task for the design of granular dampers. The 

analytical estimations of these can significantly ease the design effort by allowing 

the construction of phase maps without DEM simulations. Thus, another study can 

provide analytical estimations for both: where the particle activation starts (i.e., end 

of the solid-like phase) and where the maximum ratio of fluidised particles is 

achieved.  

iii. The amplitudes, at which the fluidisation optimum and the bouncing bed optimum 

are achieved, are distinct and thus this creates an amplitude spacing between two 

damping efficiency peaks – can be seen in Figure 6.8 and Figure 6.9. As shown in 

the thesis, this spacing can be altered by adjusting the damper properties, but it also 

changes the damping efficiency levels of peaks. To provide both a sufficiently broad 

operating amplitude range and efficient energy dissipation, an optimisation study can 

be carried out for determining the most effective amplitude locations of peaks for 

specific applications.  

iv. When a granular medium is shaken, an amount of acoustic energy is radiated to 

surrounding areas as a result of collisional and frictional interactions. This could be 

a significant concern for some practical applications. Thus, it could be needed to 

evaluate the noise level variation in granular dampers depending on the operating 

motional phase, and some designs can be proposed to reduce noises for the optimal 

operating phases without losing the damping efficiency.  

v. One issue that needs to be addressed is that the dissipative performance and 

optimisation of granular dampers have generally been studied under steady-state 

single harmonic excitations. More complex loadings (such as multi-harmonic, 

random and arbitrary-transient) may produce different characteristic behaviours. It is 
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believed that the best performance under these conditions can be obtained by 

achieving the fluidisation optimum as a wide range of excitation frequency is 

involved. However, it is necessary to justify this hypothesis and identify the 

parameters that can change the conditions of fluidisation optimum for these loading 

cases.  

vi. The granular motional phase-energy dissipation relationship proposed in this thesis 

is specific to single-directional translational vibrations of granular dampers. Thus, 

this relationship can be modified for torsional and bi-directional vibrational 

excitations to both broaden the understanding of the motional phase-granular energy 

dissipation relationship and show the effectiveness of granular dampers for such an 

excitation condition.  

vii. As identified in Section 2.7, changes to the damper enclosure (such as non-parallel 

enclosure walls, multiple voids in the enclosure) may fundamentally alter the 

motional phases. Therefore, this can be explored in another future work.  
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Appendices  

Appendix-A  

Dynamic Mechanical Analysis measurements of the acrylic rectangular prism specimen 

(produced from the particles used in the experiments of the thesis – related to Chapters 7).  

The dimensions of specimen: 12.8 mm × 3.0 mm × 3.7 mm  

The loading type: axial compressive sinusoidal (after the application of the pre-load)  

The nominal static strain applied: 0.05  

The nominal dynamic strain amplitude applied: 0.001  

  

Figure A.1: Elastic modulus and loss factor of acrylic rectangular prism specimen as a 

function of temperature and frequency.   
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Appendix-B  

80 mm

40 mm

4 mm

Enclosure inner 

diameter

12 mm

Enclosure 

base thickness

Enclosure cavity 

height

Enclosure main body design: 

35 mm

Enclosure wall 

thickness

Thread length

*Screw thread for the threaded steel 

stud which connects the enclosure base 

to the force transducer:  diameter, 

length (up to 8 mm leaving 4 mm wall 

thickness) and pitch should be consistent 

with force transducer – 10-32 UNF 

mounting screw thread connection

Adjustable lid design: 

Thread length

15 mm

45 mm

5 mm

5 mm

40 mm

Securing ring design: 

Inner diameter: 48 

mm which is 

consistent with the 

enclosure body

Ring depth: 5 mm 

Ring thickness: 4 

mm 

Adjustable lid

Securing ring 

Enclosure main body

Force transducer

Threaded steel stud which 

connects the enclosure and 

the force transducer

Adjustable clearance that 

can be arranged by the lid: 

40 mm was used in this 

thesis experiments

Assembled enclosure design: 

40 mm

  

Figure B.1: Geometric details of the damper enclosure used in experiments – related to 

Chapter 7.  
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3432 Hz (sym.)
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4962 Hz

5178 Hz (sym.)

Enclosure 

dynamics

Enclosure main 

body:

3363 Hz (sym.)

3887 Hz (sym.)

3977 Hz 

5148 Hz

5495 Hz (sym.)

Assembly without 

force transducer:

40 

mm

1355 Hz (sym.)

1575 Hz

2428 Hz

2890 Hz (sym.)

3546 Hz (sym.)

Assembly with 

force transducer:

40 

mm

Force 

transducer

Natural modes: 

  

Figure B.2: Vibration mode frequencies of the damper enclosure used in experiments – 

related to Chapter 7.  
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Appendix-C  

Hand calibrator:

generates sine signal at 159.15 Hz 

having 10 m/s2 acceleration amplitude 

for a typical  accelerometer

 

Figure C.1: Calibration of the accelerometer used in experiments – related to Chapter 7.  

The resulting graph shows that there is no need to change the specified sensitivity of the used 

accelerometer.  
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Appendix-D  

 

Figure D.1: Normal force-displacement results of the body of α
spheroid

 = 3.00 particles via 

DEM simulations, each colour represents a different test obtained using a different particle 

settlement in the enclosure void – related to Chapter 8.  

  

Figure D.2: Shear force-displacement results of the body of α
spheroid

 = 3.00 particles via 

DEM simulations, each colour represents a different test obtained using a different particle 

settlement in the enclosure void – related to Chapter 8.  
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Appendix-E  

(c) (d)

(e) (f)

(a) (b)

 

Figure E.1: Granular damping efficiency results of different prolate spheroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(simulation) – related to Chapter 8.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure E.2: Granular damping efficiency results of different prolate spheroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(experiment) – related to Chapter 8.  
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(c) (d)

(e) (f)

(a) (b)

 

Figure E.3: Granular damping efficiency results of different toroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(simulation) – related to Chapter 8.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure E.4: Granular damping efficiency results of different toroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(experiment) – related to Chapter 8.  



244 

 

(c) (d)

(e) (f)

(a) (b)

  

Figure E.5: Granular damping efficiency results of different oblate spheroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(simulation) – related to Chapter 8.  
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(c) (d)

(e) (f)

(a) (b)

  

Figure E.6: Granular damping efficiency results of different oblate spheroids at horizontal 

excitations of: (a) 125 Hz, (b) 160 Hz, (c) 200 Hz, (d) 320 Hz, (e) 625 Hz and (f) 1024 Hz 

(experiment) – related to Chapter 8.  



246 

 

 

 

 

 



247 

 

Publications From Thesis  

Journal Papers:  

Terzioglu F, Rongong J.A, Lord C.E, Motional phase maps for estimating the 

effectiveness of granular dampers, Mechanical Systems and Signal Processing, 188 

(2023), pp. 110038. doi: 10.1016/j.ymssp.2022.110038.  

Terzioglu F, Rongong J.A, Lord C.E, Influence of particle sphericity on granular dampers 

operating in the bouncing bed motional phase, Journal of Sound and Vibration, 554 

(2023), pp. 117690, doi: 10.1016/j.jsv.2023.117690.  

Conference Papers:  

Terzioglu F, Rongong J.A, Lord C.E, The dissipative characteristics of oblate particles in 

granular dampers, Proceedings of International Conference on Structural Dynamic – 

EURODYN, 2020, vol. 2, pp. 4851-4866, Athens, Greece, doi: 10.47964/1120.9393.20452.  

Terzioglu F, Rongong J.A, Lord C.E, Construction of motional phase maps for granular 

dampers, INTER-NOISE and NOISE-CON Congress and Conference Proceedings – 

INTER-NOISE, 2022, vol. 265(7), pp. 128-139, Glasgow, United Kingdom, doi: 

10.3397/in_2022_0025.  



248 

 

Terzioglu F, Rongong J.A, Lord C.E, The effect of particle surface roughness on granular 

energy dissipation performance, Proceedings of International Congress on Acoustics – 

ICA, 2022, Gyeongju, South Korea.  

Data Sets:  

Terzioglu F, Rongong J.A, Lord C.E, Experimental and simulation damping efficiency 

results of a granular damper, for various particle aspect ratios, 2023, doi: 

10.15131/shef.data.21931647.  

Terzioglu F, Rongong J.A, Lord C.E, Experimental data sets of a granular damper, 2022, 

doi: 10.15131/shef.data.21273282.v2.  

Collaboration Publication:  

Lord C.E, Rongong J.A, Kiley, A, Terzioglu F, Retro-fit particle dampers for panels in 

space structures, Proceedings of European Conference on Spacecraft Structures 

Materials and Environmental Testing – ECSSMET, 2023, Toulouse, France.  

 

 

 


	Acknowledgements
	Abstract
	List of Contents
	List of Symbols
	Declaration
	1 Introduction
	1.1 Role of Vibration Damping
	1.2 Granular Damping
	1.3 Thesis Aim and Objectives

	2 Granular Damping: State of the Art
	2.1 Overview
	2.2 Development of Granular Energy Dissipation Approach
	2.2.1 Impact dampers (single configuration)
	2.2.2 Multi-unit impact dampers
	2.2.3 Bean-bag impact dampers
	2.2.4 Granular dampers: advantages and practical applications

	2.3 Granular Damping Evaluation Methods
	2.3.1 Experimental approaches
	2.3.2 Theoretical modelling

	2.4 Dissipative Characteristics of Granular Dampers
	2.4.1 Fundamental granular energy dissipation sources
	2.4.2 Granular damping in free vibration
	2.4.3 Granular damping in forced vibration

	2.5 Dynamic Motional Behaviours of Granular Medium
	2.5.1 An overview on principal granular motions
	2.5.2 Mapping of granular phases, and effect of gravity
	2.5.3 Influence of granular phase on granular damping

	2.6 Primary Damper Parameters Affecting Energy Dissipation
	2.6.1 Review approach
	2.6.2 Particle mass – in terms of material density
	2.6.3 Dissipative and elastic properties of individual contacts
	2.6.4 Particle size and total number of particles
	2.6.5 Damper enclosure geometry
	2.6.6 Volume fill ratio – in terms of damper enclosure size
	2.6.7 Particle shape

	2.7 Research Questions

	3 Fundamentals of Discrete Element Method
	3.1 Overview
	3.2 An Introduction to DEM
	3.3 Contact Kinematics
	3.4 Contact Detection
	3.5 Governing Equations of Particle Motion
	3.6 Time Integration
	3.7 Chapter Summary

	4 Non-Spherical Particle Generation in DEM
	4.1 Overview
	4.2 Motion of Non-Spherical Particles in DEM
	4.3 Arbitrarily Shaped Non-Spherical Particles
	4.4 Analytical Approaches to Model Non-Spherical Particles
	4.4.1 Prolate spheroid particle
	4.4.2 Circular toroid particle

	4.5 Chapter Summary and Conclusions

	5 Contact Force-Deformation Model for DEM Simulations
	5.1 Overview
	5.2 Hertz Theory for Normal Contact
	5.3 Mindlin-Deresiewicz Theory for Tangential Contact
	5.4 Contact Force-Deformation Behaviours of Individual Contacts
	5.4.1 Spherical particle
	5.4.2 Oblate spheroid particle
	5.4.3 Prolate spheroid particle
	5.4.4 Circular toroid particle

	5.5 Inclusion of Impact-Based Dissipative Forces
	5.5.1 Damped contact forces and DEM contact modelling
	5.5.2 Coefficient of restitution
	5.5.3 Contact damping in terms of COR
	5.5.4 Case studies

	5.6 Chapter Summary and Conclusions

	6 Granular Energy Dissipation and Dynamic Motional Phase
	6.1 Overview
	6.2 Modelling approach
	6.2.1 Model
	6.2.2 Material
	6.2.3 Quantification of granular damping

	6.3 Relationship Between Motional Phase Map and Damping Effectiveness
	6.4 Granular Energy Dissipation Behaviour in Different Phases
	6.4.1 Bouncing bed phase
	6.4.2 Solid-like phase
	6.4.3 Fluidisation-based to convection-based phases
	6.4.3.1 Collective collision and energy dissipation
	6.4.3.2 Optimum energy dissipation in fluidisation
	6.4.3.3 Vertical case
	6.4.3.4 Horizontal case


	6.5 Importance of Dissipation Sources
	6.6 Chapter Summary and Conclusions

	7 Experimental Measurement of Granular Energy Dissipation
	7.1 Overview
	7.2 Spherical Particles
	7.3 Simple Measurement of Coefficient of Restitution
	7.4 Energy Dissipation Measurement: Model and Method
	7.4.1 Damper model
	7.4.2 Experimental setup and testing method

	7.5 Energy Dissipation Measurement: Results
	7.6 Signs of Granular Motional Phases in Measured Signals
	7.7 Chapter Summary and Conclusions

	8 Influence of Non-Spherical Particle Shapes on Granular Energy Dissipation
	8.1 Overview
	8.2 Particle Shapes
	8.2.1 Spheroids
	8.2.2 Circular toroids

	8.3 Approach and Model Properties
	8.4 Experimental and Simulation Methodologies
	8.5 Results and Discussions
	8.5.1 Particle shape effect in the bouncing bed phase
	8.5.1.1 Characterisation of the onset amplitude shift
	8.5.1.2 Explanation for the onset shift characteristic
	8.5.1.3 Sensitivity of the onset shift to contact and material properties

	8.5.2 Particle shape effect in the fluidisation-based and convection-based phases

	8.6 Chapter Summary and Conclusions

	9 Conclusions and Future Research
	9.1 Motional Phase Dependent Granular Damping
	9.2 Practical Application Design Guides
	9.3 Observations on Particle Shape Effect in Granular Damping
	9.4 Future Work

	References
	Appendices
	Publications From Thesis

