Oceanic Anoxic Event Conundrums: Reconciling Palaeontology and Geochemistry.

Connor Sean O'Keeffe

Submitted in accordance with the requirements for the

degree of Doctor of Philosophy

University of Leeds, School of Earth and Environment

September, 2023

The candidate confirms that the work submitted is his own and that appropriate credit has been given when reference has been made to the work of others.

Acknowledgments

Writing this thesis has been an incredible 4-year journey, and I could not have made it to the end without the guidance and support of so many amazing tutors and colleagues. First and foremost, I would like to thank my outstanding supervisor Professor Crispin Little. The help that Cris provided, from tutorials on the fossil macrofauna of the Cleveland Basin, to collecting additional samples, and, above all, outstanding comments and criticisms on my chapter drafts, were all vital to the completion of my project. Our many wonderful conversations on earth science, and life at Leeds, have also truly made my project a fantastic experience. I could not possibly thank my wider supervisory team enough, with Dr. Christian März, Dr. Fiona Gill, and Professor Simon Poulton, all going above and beyond to help me reach my full potential. In addition, I would like to sincerely thank Dr. Christopher Vane, who carried out the Rock-Eval analysis of my samples, and Professor Lorenz Schwark, for carrying out the TLE and GCMS analysis, double-checking my TIC peak integrations, and for providing invaluable supervision on organic geochemistry. I also wish to acknowledge Dr. Ian Bull and Dr. Helen Whelton for performing the compound-specific isotopic analysis, Max Page for the acid digestion step of the palynological preparations (and for being a helpful and encouraging lab technician), and Dr. Jim Riding for excellent supervision on lower Jurassic palynology.

The rigorous scientific analysis reported in this thesis required many hours of lab work, none of which would have been possible without the invaluable training and guidance of Dr. Andrew Hobson and Fiona Keay, of the SEE Cohen Laboratories. I would like to thank Stephen Reid for performing the ICPMS/OES analysis for major and trace elements, as well as Richard Walshaw, for much appreciated guidance on SEM operation.

Outstanding encouragement and help was not only provided by my supervisory team, but also the many amazing academic staff and postgraduate researchers from the University of Leeds. Above all, I would like to thank Dr. Jed Atkinson for many stimulating conversations on the British lower Jurassic, driving me to Hawsker Bottoms prior to sampling for a much-appreciated field trip, and for simply being a wonderful friend. I would also like to acknowledge Professor Tianchen He for showing all the amazing work done on the Mochras core and JET project, Associate Professor Satoshi Takahashi for being excellent company on the sample collection field trip, Associate Professor Rob Newton and Professor Paul Wignall for providing brilliant advice on the project, and for being such great company.

Thank you to all my wonderful colleagues for making my time studying at Leeds so exciting and memorable. I would especially like to acknowledge Dr. Bob Jamieson, Dr. Amy McGuire, Amy

I

Shipley, Dr. Andy Mair, Dr. Adam Woodhouse, Dr. Bethany Allen, Grace Lamyman, Francis Procter, Chiara Krewer, Ailsa Roper, and Dr. Yijun "Mark" Xiong.

Special thanks go to Dr. Sam Parsons, Dr. James Woodman, Dr. Dorothy Drayton, Dr. Andy Cooke, Dr. Delia Cangelosi and Bobbie, for welcoming me into office on level 7.

During the project, I had the amazing opportunity to network with a wide range of academics, postgraduate researchers and technical staff at the conferences which I attended. They have also rewarded me with stimulating conversations on earth science, and have made the experience of conference attendance truly sensational. Special thanks go to Dr. Wolfgang Ruebsam, Dr. Bryony Caswell, Dr. Ian Boomer, Dr. Kevin Page, Dr. Clemens Ullmann, Dr. Ricardo Silva, Dr. Calum Fox, Professor Richard Pancost, Dr. Sargent Bray and Professor John Marshall.

Of all the academics I have had the pleasure of working with, I would, above all, like to thank my former masters project supervisor, Dr. Jessica Whiteside, both for staying in touch well after my degree, and for giving me the confidence to become the impassioned young researcher I am today.

Finding a home for my one-month placement at BGS Keyworth, was always going to be stressful, and so I am eternally grateful to Suzanne and Steve Whitling, for providing wonderful accommodation in Keyworth, and for being two of the most hospitable and welcoming people I have ever had the pleasure to meet.

Finally, I would love to thank my parents, brother, auntie, cousins, and all my wonderful family for being unfailing in their love, support, and encouragement, both through this project, and always.

This work is dedicated to the memory of Bernard William Twiddy, and Jenifer Marjorie Twiddy.

Abstract

The lower Jurassic (Toarcian) mudstones of the Cleveland Basin (Yorkshire, UK), record a mass extinction of marine organisms triggered by widespread anoxia (the Toarcian Oceanic Anoxic Event -TOAE). A long history of geochemical study has shown that the black shales of the Whitby Mudstone Formation were deposited under anoxic conditions, and these are widely assumed to have been persistent throughout the section. However, the black shales also contain paleontological features implying deposition under oxygenated conditions. These include thin laminae rich in bivalves (Pseudomytiloides dubius and Bositra radiata), and highly bioturbated intervals. In addition, the underlying sediments of the Cleveland Ironstone Formation contain a decimetre-scale black shale unit called the Lower Sulphur Band (LSB). It is possible that its presence foreshadows the later development of anoxia in the overlying Whitby Mudstone Formation, and that it is also synchronous with an episode of global carbon cycle disruption at the Pliensbachian-Toarcian boundary. To reconcile palaeontology and geochemistry within these intervals, I have employed a high resolution (≤1 cm) multiproxy approach, utilising sedimentological, macropalaeontological, palynological, pyrite framboid, inorganic geochemical, organic geochemical, and isotopic methods. I collected samples from the LSB, and three shell pavements from the Dactyloceras tenuicostatum and Harpoceras serpentinum zones, at Hawsker Bottoms. I subjected samples from all four intervals to palynological preparation, SEM analysis, Fe speciation, total digest, Rock Eval, total lipid extraction, and compound-specific isotopic analyses. I have demonstrated that the LSB was deposited under hydrodynamically restricted conditions (implied by a high degree of Mn enrichment), and marks a 10 - 15 thousand year interval (or half a precession cycle) where the Cleveland Basin was characterised by highly frequent anoxia. This system shift was triggered by an enhanced nutrient flux concomitant with a humid climatic episode, as implied by the presence of a silty lens immediately preceding the interval of maximum organic carbon preservation. The LSB also contains evidence for high energy deposition despite the accumulation of organic matter, and intervals of bioturbation. This was found to shift the values of redox proxies (notably Fe_{HR}/Fe_T), yielding an apparently anoxic signal. This finding has important implications for the high-resolution study of black shales, and implies that in bioturbated and reworked sediments, redox proxies must not be treated as a direct function of redox, but rather as a function of anoxia frequency. I have also demonstrated that the shell pavements are likely to have been formed in situ (due to the presence of pyrite encrustation of the shells), representing brief periods of reoxygenation. I speculate that these periods can be attributed to interannual variability in ocean circulation during the TOAE, possibly driven by episodic declines in the rate of carbon dioxide injection into the earth surface system.

Overall, my work demonstrates the highly dynamic nature of black shale deposition in the lower Jurassic, and highlights the vulnerability of shallow marine ecosystems in hydrographically restricted settings to earth system perturbations.

Table of contents

Acknowledgments I
Abstract III
Table of contentsV
Table of figures XI
Table index XVIII
Chapter 1 – Introduction
1.0 Oxygen depletion in modern coastal waters – an ongoing environmental problem 1
2.0 Oxygen depletion-related terms defined
3.0 Thin black shales
4.0 Oxygen-restricted biofacies
5.0 Previous work on the LSB
6.0 Thin shell pavements 10
7.0 Study aims 17
8.0 Geological setting 18
9.0 Palaeoproxies 19
9.1 Redox 20
9.1.1 Planktonic responses to dysoxia/anoxia
9.1.2 Pyrite Framboids 24
9.1.3 Carbon, Sulphur, and Rock-Eval Pyrolysis
9.1.4 The Fe-speciation proxies
9.1.5 Trace element enrichment
9.1.6 Organic geochemical redox proxies
9.2 Other proxies used
9.2.1 Palynomorph hydrodynamics and palynofacies

9.2.2 Terrestrial plant community shifts
9.2.3 Detrital element ratios
9.2.4 Biomarker proxies for plankton community structure
9.2.5 Biomarker proxies for thermal maturity
9.2.6 Biomarker proxies for palaeoshoreline distance
9.2.7 Compound-specific isotopic analysis
Chapter 2 – Methods (sample collection, preparation and analysis) 40
1.0 Sample collection 40
2.0 Sample preparation 40
3.0 Optical microscopy and SEM analysis 46
4.0 Powder sampling
5.0 Palynofacies analysis60
6.0 Geochemical analyses
6.1 TOC via total combustion in a LECO furnace
6.2 Fe-Speciation
6.3 Total digest for major and trace elements
6.4 Rock-Eval pyrolysis
6.5 Biomarker and isotopic analyses
Chapter 3 – High-resolution inorganic redox proxy, and Rock-Eval analysis of the Lower
Sulphur Band
1.0 Aims
2.0 Results
2.1 Lithofacies
2.2 Bioturbation and macrofossils
2.3 Pyrite framboids
2.4 Sulphur-iron systematics

2.5 Major and trace ele	ments
2.6 Organic geochemis	try 107
3.0 Interpretations	
3.1 Sedimentology	
3.2 Palaeontology	
3.3 Sulphur and iron	
3.4 Detrital element rat	ios 122
3.5 Manganese	
3.6 Molybdenum	
3.7 Other trace element	s 126
3.8 Burrow enrichment	s/depletions 127
3.9 Implications for use	of the Fe-speciation proxies 128
3.10 Rock-Eval pyrolys	sis 129
3.11 Model for LSB for	mation
4.0 Discussion	
4.1 Comparison with the	e black shales of the Whitby Mudstone Formation 136
4.2 Comparison with the	e other Toarcian black shales 137
4.3 Comparison with th	e Kimmeridge Clay 138
4.4 Possible influence of	of interannual climate variability on the LSB139
5.0 Conclusions	
Chapter 4 – Palynology and Palynofa	cies of the Lower Sulphur Band141
1.0 Study aims	
2.0 Results	
2.1 Palynology and pal	ynofacies
3.0 Interpretations	
3.1 Palaeoenvironment	via Palynofacies155

3.2 Biological community structure through the LSB	
3.2.1 Phytoplankton	
3.2.1 Terrestrial environment	
4.0 Discussion	
5.0 Conclusions	
Chapter 5 – An organic geochemical and isotopic study of the Low	er Sulphur Band 165
1.0 Study aims	
2.0 Results	
2.1 Organic geochemistry and biomarkers	
2.1.1 <i>n</i> -Alkanes	166
2.1.2 Hopanes and steranes	
2.1.3 Isorenieratane and aryl isoprenoids	
2.1.4 Other aromatics	
2.2 Compound-specific isotopic analysis (CSIA)	
3.0 Interpretations	
3.1 Migration of biomarkers	
3.2 Palaeoshoreline distance	
3.3 Euxinia	
3.4 Redox	
3.5 Organic matter sulphurisation	196
3.6 Retene and phenanthrene	
3.7 Carbon cycling via CSIA	
4.0 Discussion	
4.1 Implications for model of formation of the LSB	
4.2 Wider implications	
5.0 Conclusions	

Chapter 6 – A multiproxy analysis of thin Shell Pavements from the Whitby Mudstone	
Formation	
1.0 Study aims 210	
2.0 Results 211	
2.1 Lithofacies and macrofossils	
2.2 Pyrite framboids	
2.3 Palynology 229	
2.4 Sulphur-iron systematics	
2.5 Major and trace elements 242	
2.6 Organic geochemistry 246	
2.6.1 Implications for model of formation of the LSB	
2.6.2 <i>n</i> -Alkanes and isoprenoids	
2.6.3 Hopanes and steranes	
2.6.4 Isorenieratane and aryl isoprenoids	
2.6.5 Other aromatics	
2.7 Compound-specific isotope analysis	
2.8 Different shell pavements compared	
3.0 Interpretations	
3.1 Statistical significance	
3.2 Sedimentological and macropalaeontological interpretations	
3.2.1 The association of shell pavements with silty laminae 270	
3.2.2 Pyrite framboids	
3.3 Palynological interpretations	
3.4 Inorganic geochemical interpretations	
3.5 Organic and isotopic geochemical interpretations	
4.0 Discussion	

4.1 Model for shell pavement formation	
4.2 Wider implications for the Lower Toarcian world	293
4.3 Suggestions for future work	298
5.0 Conclusions	299
Chapter 7 – Conclusion	301
References	305
Appendix 1 – ICPMS methods (by Stephen Reid)	
Appendix 2 – Data	354

Table of figures

Chapter 1 – Introduction:

Fig 1.1	
Fig 1.2	6
Fig 1.3	7
Fig 1.4	11
Fig 1.5	23
Fig 1.6	26
Fig 1.7	29
0	

Chapter 2 – Methods (sample collection, preparation and analysis):

Fig 2.1
Fig 2.242
Fig 2.343
Fig 2.444
Fig 2.545
Fig 2.647
Fig 2.7
Fig 2.8
Fig 2.9 50
Fig 2.10 51
Fig 2.11
Fig 2.12
Fig 2.13
Fig 2.14
Fig 2.15 58

Fig 2.1661
Chapter 3 – High-resolution inorganic redox proxy, and Rock-Eval analysis of the Lower
Sulphur Band:
Fig 3.1
Fig 3.2 72
Fig 3.373
Fig 3.4 74
Fig 3.575
Fig 3.6 76
Fig 3.777
Fig 3.8 78
Fig 3.9 79
Fig 3.10
Fig 3.11
Fig 3.12
Fig 3.1385
Fig 3.1486
Fig 3.15
Fig 3.16
Fig 3.1790
Fig 3.1891
Fig 3.1992
Fig 3.2093
Fig 3.2194
Fig 3.2295
Fig 3.2396

Fig 3.2497
Fig 3.25 100
Fig 3.26 101
Fig 3.27102
Fig 3.28103
Fig 3.29104
Fig 3.30105
Fig 3.31 106
Fig 3.32 109
Fig 3.33110
Fig 3.34111
Fig 3.35112
Fig 3.36113
Fig 3.37116
Fig 3.38123
Fig 3.39132
Fig 3.40 133
Fig 3.41 134
Fig 3.42135
Chapter 4 – Palynology and Palynofacies of the Lower Sulphur Band:
Fig. 4.1
Fig. 4.2145
Fig. 4.3146
Fig. 4.4147
Fig. 4.5148
Fig. 4.6149

Fig. 4.7	150
Fig. 4.8	152
Fig. 4.9	153
Fig. 4.10	154
Fig. 4.11	155

Chapter 5 – An organic geochemical and isotopic study of the Lower Sulphur Band:

Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4 170
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20

Fig. 5.21	195
Fig. 5.22	199
Fig. 5.23	200
Fig. 5.24	201
Fig. 5.25	202
Fig. 5.26	203
Fig. 5.27	204

Chapter 6 – A multiproxy analysis of thin Shell Pavements from the Whitby Mudstone Formation:

Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7217
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17

Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32
Fig. 6.33
Fig. 6.34
Fig. 6.35
Fig. 6.36
Fig. 6.37
Fig. 6.38
Fig. 6.39
Fig. 6.40
Fig. 6.41
Fig. 6.42
Fig. 6.43

Fig. 6.44	
Fig. 6.45	
Fig. 6.46	264
Fig. 6.47	
Fig. 6.48	
Fig. 6.49	271
Fig. 6.50	
Fig. 6.51	
Fig. 6.52	

Table index

Chapter 1 – Introduction:
Table 1.1
Chapter 2 – Methods (sample collection, preparation and analysis):
Table 2.160
Chapter 3 – High-resolution inorganic redox proxy, and Rock-Eval analysis of the Lower
Sulphur Band:
Table 3.1
Chapter 6 – A multiproxy analysis of thin Shell Pavements from the Whitby Mudstone
Chapter 6 – A multiproxy analysis of thin Shell Pavements from the Whitby Mudstone Formation:
Formation:
Formation: Table 6.1212
Formation: 212 Table 6.1

Chapter 1 – Introduction

1.0 Oxygen depletion in modern coastal waters – an ongoing environmental problem

One of the many deleterious environmental effects the coastal ocean will experience over the coming decades is the expansion of coastal dysoxia (defined by Tyson & Pearson, 1991, where dissolved water-column oxygen drops below 2.0 mL/L; see 1.2). One of the driving factors behind the expansion of coastal dysoxia is the enhanced anthropogenic nutrient loading of river catchment systems, which is predicted to increase throughout the 21st century (Rabalais et al., 2014; Sinha et al., 2017). Dysoxic conditions generally lead to many adverse effects on the physiology of marine organisms, which often cope by slowing down or ceasing costly metabolic functions such as growth and reproduction (Diaz & Rosenberg, 2008; Rabalais et al., 2010; Breitburg et al., 2018; Galic et al., 2019). The Danish Straits are one example of a shallow marine environment highly sensitive to oxygen depletion (Ærtebjerg et al., 2003, Conley et al., 2009). In 2002, a period of unusually high surface runoff on the surrounding land, followed by a relatively warm, still summer, resulted in the area of the seafloor of the Danish Straits exposed to oxygen concentrations <2 mg/L increasing by 17 % relative to the previous year (Conley et al., 2007). Understanding the impact of coastal dysoxia on marine ecosystems is crucial to planning for the future impact on fish stocks and economically significant marine invertebrate communities. Most of the studies of the response of benthic communities have been conducted over a period of days (e.g. Stachowitsch et al. 2007), and it is unclear whether the results of these studies are representative of the response to persistent dysoxia (decades to centuries in duration). However, multiple periods of extensive oceanic oxygen depletion occurred during the Earth's geological past (notably in the Mesozoic; Jenkyns, 2010), and these provide a vast fossil archive, documenting the response of benthic communities to severe oxygen depletion, albeit over timescales of hundreds of thousands to millions of years.

2.0 Oxygen depletion-related terms defined

It is essential at the outset to clarify terms used in the literature to describe dissolved oxygen content in seawater, and the response of biological communities to oxygen depletion, as these terms will be used frequently throughout this work. Different sets of terms are required to distinguish the oxygen content of marine waters versus the response of the biological community. This is because, historically, bottom water oxygen concentrations were measured 0.5-1.0 m above the sediment/water interface, with later work demonstrating that the actual oxic/anoxic transition (often referred to as the chemocline) is typically very sharp, and confined to the bottom 0.05-0.25 m of the water column (Jørgensen, 1980). If organisms are kept in cages 0.4 m above the sediment/water interface, there is also no net mortality due to oxygen depletion lower in the water column (Arntz & Rumohr, 1986). Furthermore, the terms "oxia, dysoxia, and anoxia" are defined in relation to redox potentials. While seafloor sediments can exceed the redox threshold for oxia, that does not necessarily mean that oxygen penetrates the sediment (i.e. factors limiting diffusion play a more important role) and, therefore, that a biological community can become established there. The oxygen demand of different benthic species also varies greatly, and is dependent on a wide range of physiological and behavioural

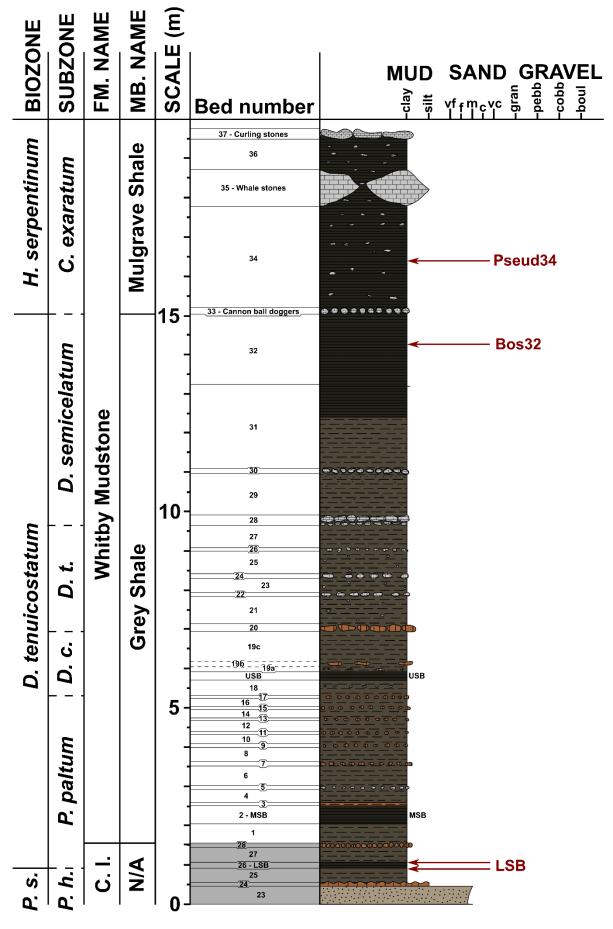

	O ₂ > 2.0 mL/L	O ₂ 2.0-0.2 mL/L	O ₂ 0.2-0.0 mL/L	O ₂ 0.0 mL/L
Water column O ₂ level	Oxic	Dysoxic	Suboxic	Anoxic
Biological community	Aerobic	Dysaerobic	Quasi-anaerobic	Anaerobic
Organism physiology	Normoxic	Нурохіс	Anoxic	
+ sulphide	N/A		Euxinic	

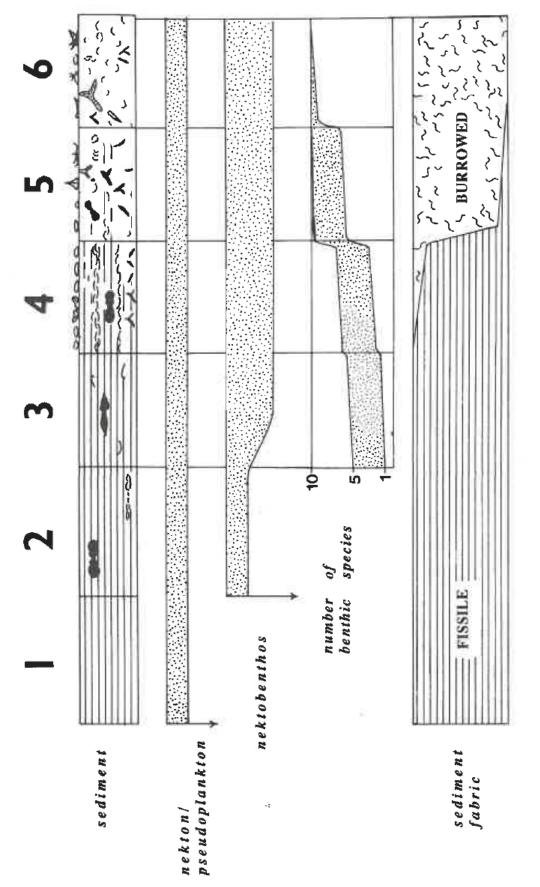
Table 1.1 Definitions of various oxygen depletion-related terms, including those referring to water oxygen content (row 1), and biofacies (row 2). Note that herein, the term "Hypoxia" is restricted to describing responses on the level of an individual organism to oxygen depletion, to avoid the use of a hybrid term when discussing water oxygen content (after Tyson & Pearson, 1991).

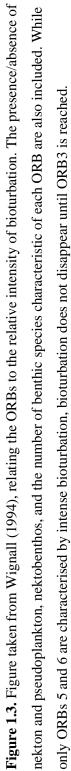
factors (feeding rate, growth rate, reproduction, etc.; Theede *et al.*, 1969; Thomas *et al.*, 2019). These observations led to the realisation that bottom water O_2 measurements do not necessarily reflect the oxygen limitation on the organisms inhabiting the benthic environment, and that a separate set of criteria for defining the biological response to oxygen depletion was required (Tyson & Pearson, 1991). Table 1 summarises the above distinctions.

3.0 Thin black shales

The Toarcian Oceanic Anoxic Event (T-OAE) was a period of widespread oxygen depletion in shallow marine settings, occurring in the Toarcian stage of the Lower Jurassic ca.183 Ma (Ogg et al., 2016). This event has been tied to a disruption of the global exogenic carbon cycle (Hesselbo et al., 2000; French *et al.*, 2014), with proposed sources of ${}^{12}C$ injection ranging from methane hydrate dissociation (Hesselbo et al., 2000; Kemp et al., 2005), to volcanism in the Karoo-Ferrar large igneous province (McElwain et al., 2005; Svensen et al., 2007), to permafrost destabilisation at the end of the preceding Pliensbachian icehouse (Ruebsam et al., 2019; 2020a) – although locally dominant processes such as upwelling often effect the δ^{13} C signature of bulk organic carbon in sediments spanning this event (Küspert, 1982; Sælen et al., 1996; van de Schootbrugge et al., 2013; Suan et al., 2015). Famous black shale successions associated with this event include the Posidonia Shale of Southern Germany (Röhl et al., 2001) and the Mulgrave Shale Member of the Whitby Mudstone Formation in the Cleveland Basin (Yorkshire, UK; Hesselbo & Jenkyns, 1995; Simms et al., 2004). However, three decimetre-scale black shale units within the underlying Grey Shale Member, as well as in the Cleveland Ironstone Formation (in the Cleveland Basin; see the stratigraphic column in Fig. 1.1) remain relatively understudied. One of these is the Lower Sulphur Band (hereafter LSB). It is a black shale unit 0.15 m thick that marks the upper boundary of the Cleveland Ironstone Formation (Pleuroceras spinatum zone, Pleuroceras hawskerense subzone; Howarth, 1973; Powell, 1984). It is bed number 43 of the Hawsker Bottoms section of Howarth (1955 - although the term LSB had not yet been conceived), and bed number 26 of the ironstone series of Howarth (1973). It could also be equivalent to the OMPI P-Toa of Silva et al. (2021). The name "Sulphur Band" is a vernacular term and refers to the sulphurous appearance of the unit when weathered, due to its high pyrite content (see 2.0). The processes responsible for the formation of this unit may foreshadow the later development of more extensive black shale deposition (in the Mulgrave Shale Member), and the

widespread extinctions in the benthic community associated with the T-OAE (Little & Benton, 1995; Danise et al., 2013). Decimetre-scale black shales are by no means limited to the Lower Jurassic of the Cleveland Basin. Similar units are also found, for example, in the Kimmeridgian and Tithonianaged Kimmeridge Clay of the UK and the north coast of France, where TOC can be enriched by up to 52.1 wt.% (the Blackstone Band; Oschmann, 1988; van Kaam-Peters et al., 1998; Atar et al., 2019; 2020). However, in contrast to the Blackstone Band, the LSB reaches 0.15 m in thickness (Howarth, 1973), while the black shales of the Kimmeridge Clay can reach 0.4 - 1 m in thickness (Tribovillard et al., 1994). The palaeoenvironment of the Kimmeridge Clay black shales was also far more laterally extensive, spanning thousands of kilometres rather than just the width of a single basin (Oschmann, 1988). The black shales also occur in regular, orbitally forced cycles (400kyr long eccentricity modulated; Armstrong et al., 2016), rather than at three distinct stratigraphic horizons (as in the Sulphur Bands; Newton, 2001). Oschmann (1988) attributed the formation of these shales to regular variation in chemocline stability, as a consequence of alternating monsoon-driven currents through the North Atlantic Shelf Sea. Later work by Armstrong et al. (2016) suggested that the placement of a Hadley Cell over the European Epicontinental Seaway (hereafter EES) was accompanied by alternating episodes of dry/wet climate, with the black shales being associated with northward migration of the intertropical convergence zone (i.e. monsoons).


The thin black shales of the Kimmeridge Clay are also associated with a change in the marine benthic community. Wignall & Newton (1998) showed how the Kimmeridge Clay is mostly bioturbated, with no lamination, and 4-8 benthic species are typically present. However, periodic fissile/laminated intervals are associated with a decrease in the number of benthic species to between 1 and 4. Occasionally, the fissile intervals indicate anaerobic conditions, with no benthos, for example, in the Blackstone Band.


Figure 1.1 (page 4). Stratigraphic column from the upper part of the Cleveland Ironstone Formation to the top of the Mulgrave Shale Member. Bed numbers are from Howarth (1955; 1962; 1973), with the beds belonging to the Ironstone Series shaded in grey. The locations of the Sulphur Bands, and two of the shell pavements analysed in my study (Chapter 2) are also indicated. Broken lines reflect uncertainty in the positions of the subzones. Abbreviations: C. I. – Cleveland Ironstone Fomration; *P. s. – Pleuroceras spinatum* zone; *P. h. – Pleuroceras hawskerense* subzone; *D. c. – Dactylioceras clevelandicum* subzone; *D. t. – Dactylioceras tenuicostatum* subzone.

									_	
6	upper			ر ال ال ال ال		Grey muds Rare, larg pyrite nod	Most benthic guild groups hs present	11 - 20	As for 3 plus As for 5 plus deposit-feeders chemoautotrophs	SHALE
S	J					Dark grey mudstones with pyrite nodules	Fauna through- Most benthic out sediment, guild groups includes protobranchs present	5 - 10	As for 3 plus deposit-feeders	SHELLY SH
4	0YSAER0B er	m R				As for 1	As for 2 plus Fauna throu abundant layers out sediment, of benthos includes protob	1-5	As for 3	
m	10 Iower	1.7	0	- Corol	C	As for 1	As for 2 plus rare benthos, mostly bivalves	1-4	Scavengers, suspension feeders, grazers	LAMINITE
2	ROBIC		00	مىمى مەرىيىدىرى مەرىيە	040	As for 1	Nektobenthic (?) As for 2 plus cephalopods rare benthos, (ammonites) mostly bivalve	0	Scavengers?	SHELLY
-	ANAEROBIC	10s metres? anoxic bottom waters				Eissile and/or Lithologies laminated shales or limestones	Barren (onły fish)	0		LITHOFACIES Barren laminite
BIOFACIES						L ithologies	Fauna	Number of Benthic Species	Trophic Types	LITHOFACIES

Figure 1.2. Graphical representation of the sedimentological and palaeoecological characteristics of the ORBs. Taken from Wignall & Hallam (1991).

6

4.0 Oxygen Restricted Biofacies

To succinctly describe changes in the marine benthic community, Wignall & Newton (1998) used the Oxygen Restricted Biofacies (ORB) model of shallow marine palaeoecology, originally developed by Wignall & Hallam (1991; their Fig. 7 – reproduced here in Fig. 1.2), and briefly described here. This model relies on the combination of macropalaeontological, sedimentological and ichnological observations of a rock unit, in order to assess how severely the environment was impacted by the lack of dissolved oxygen. Six "biofacies" (here labelled ORB1-6) are defined. ORB 1 is characterised by fissile/laminated shale (or plattenkalk), without bioturbation (Figs 1.2 and 1.3), and with no in situ benthos present (only the fossils of planktonic, and nektonic organisms such as fish are found). The biological community inferred from ORB1 is anaerobic (see Tyson & Pearson, 1991), and it is likely that ORB1 indicates that the anoxic/oxic redox boundary lies 10s of meters above the sediment/water interface. ORB2 is also characterised by finely laminated sediments, but may contain the body fossils of nektobenthic organisms and ammonites. Obligate benthos are nonetheless still absent. The inferred biological community type is also anaerobic, and it is likely that the position of the anoxic/oxic chemocline, while still in the water column, is much closer to the sediment/water interface than it is in ORB1. ORB3 marks the lower limit of the lower dysaerobic biological community and is probably indicative of the point where the anoxic/oxic chemocline drops below the sediment/water interface. While the sediments are still finely laminated, 1-4 species of benthos (occasionally occurring in shell pavements; see 1.6) may be preserved in addition to the nektobenthos. ORB4 sediments are still laminated but contain far more abundant shelly benthos than ORB3 (1 to 5 species) and are associated with a lower dysaerobic biological community. In ORB5, the sediment fabric becomes distorted by bioturbating organisms, and 5-10 benthic species (including deposit feeders) are represented. This biofacies represents the lower limit of the upper dysaerobic biological community. Finally, ORB6 is characterised by intensely bioturbated, massive mudstones, with most benthic groups represented (11-20 species present), and corresponds with the upper limit of the upper dysaerobic biological community.

5.0 Previous work on the LSB

A high-resolution study of the LSB, comparable to that of the Blackstone Band (e.g. Tribovillard, 1994), and of the Toarcian black shales of the Dutch Central Graben (Trabucho-Alexandre *et al.*,

2012), has not yet been performed, and so the comparison between these three deposits remains poorly constrained.

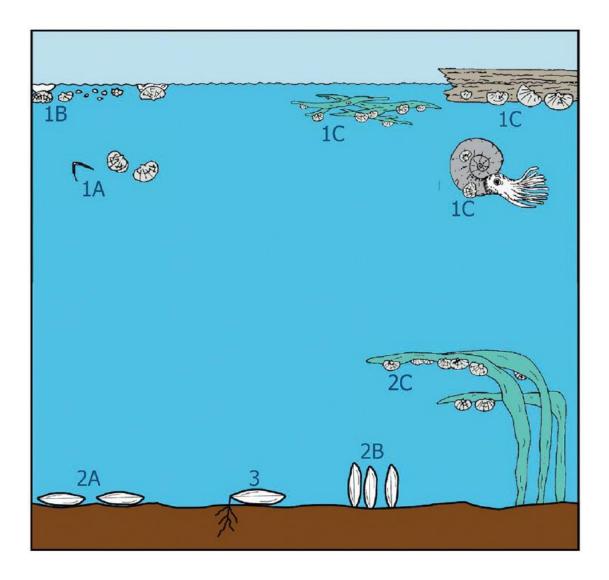
Newton (2001) did much to illuminate the geochemical character of the LSB. Based on low-resolution Fe-redox data, he determined that the Sulphur Bands were formed under anoxic to euxinic conditions (on the basis of Fe_{HR}/Fe_T and TOC/S_{py}), with the relatively high Fe_{HR}/Fe_T signature of the LSB being attributed to the presence of siderite. It was also argued that the LSB was generated partly due to a restriction in the supply of silt to the basin depocentre due to the inundation of deltaic settings by a marine transgression. This explanation is supported by the uniform thickness and lateral continuity of the LSB, which imply that it was deposited under sediment-starved conditions. The LSB also contained high levels of apatite-associated phosphorus, indicative of slow sedimentation rates. However, multiple suggested pathways of highly reactive iron (Fe_{HR}) enrichment were proposed: including infrequent storm events remobilising (possibly unlithified) siderite colloids from the marginal ironstones to the northwest; or (by contrast) background rates of erosion of the marginal facies supplying a steady stream of easily reducible Fe to the shelf, which was subsequently reduced to Fe²⁺ in sediment porewaters, and enriched below the redoxcline via the anoxic shuttle (see 1.8.1.4).

In a subsequent unpublished study, Salem (2013), revealed that the Sulphur Bands, rather than representing episodes of persistent anoxia (as is often assumed for black shales), represented periods of widely oscillating redox conditions in basinal bottom waters, from fully oxic, to fully euxinic (as corroborated by patterns of enrichment and depletion in Mo, and of presence and absence of isorenieratane – a carotenoid biomarker for the presence of brown-coloured green sulphur bacteria, that require both light, and free sulphide; see 1.8.1.6). In the LSB, it was noted that conditions cycled from fully euxinic at the base, to fully oxic, then back to fully euxinic at the top of the unit, all within a stratigraphic height of 0.15 m. The reactive iron redox proxies, and levels of isorenieratane evaluated by Salem (2013), also show significant lateral variation along the Sulphur Bands (i.e. from Port Mulgrave to Hawsker Bottoms), implying that the periods of anoxia they record were localised in bathymetric lows on the basin floor. It was concluded that the deposition of the Sulphur Bands could have been caused by a combination of high basinal restriction, and water column stratification.

Sediment starvation through the Cleveland Basin during the deposition of the LSB is supported by the LSB's lateral continuity and uniform thickness throughout the Cleveland Basin (14 – 26 cm over 18.75 km; Newton, 2001). However, the sedimentary architecture contains features typically associated with higher energy deposits (e.g. scour marks and hummocky cross-stratification – HCS). Ghadeer & McQuaker (2011, 2012) proposed a higher-energy formation mechanism for organic-rich mudstones in the Cleveland Basin, remarking on the similarity of the HCS-lamination-bioturbation triplet (seen in the LSB as well as in thin sections of the Whitby Mudstone Formation) to the "lam-scram" style textures of some turbidites (Goldring *et al.*, 1991). The authors suggest that such units

9

within the Cleveland Ironstone Formation and the Grey Shale Member of the Whitby Mudstone Formation can be explained by episodes of shelf-to-basin transport, followed by the rapid development of a laminated mud profile, and a spell of brief benthic colonisation prior to emplacement of the next turbidite. In this model, elevated TOC within the laminated muds is a consequence of enhanced primary production in surface waters (i.e. not necessarily due to enhanced preservation under anoxic conditions; MacQuaker *et al.*, 2010). However, the extent to which these processes are responsible for the deposition of the LSB has not yet been studied in detail, and therefore, the presence of high-energy sedimentary structures in the LSB has not yet been reconciled with its apparent lateral continuity.


6.0 Thin shell pavements

The early Toarcian-aged Grey Shale, and Mulgrave Shale members of the Whitby Mudstone Formation, despite showing paleontological (Little & Benton, 1995) and geochemical (Raiswell & Berner, 1985; Pearce *et al.*, 2008; French *et al.*, 2014) evidence for frequent oxygen depletion, contain frequent, mm-scale beds of in situ (no evidence of fracture or imbrication) bivalves (hereafter referred to as shell pavements; Caswell & Coe, 2013). Frequent occurrences of bivalve-rich shelly laminae have been noted from the Whitby Mudstone Formation, including as many as five occurrences in the *C. exaratum* subzone – corresponding with black shales that yield between 4.0-8.0 wt.% Sulphur (mainly pyrite-hosted; Raiswell & Berner, 1985; Danise *et al.*, 2013), Mo content up to 15.57 ppm (Pearce *et al.*, 2008), and an isorenieratane content of up to 17.54 µg/gTOC (French *et al.*, 2014).

The bivalve species found in these pavements are *Pseudomytiloides dubius* (hereafter *P. dubius*) and *Bositra radiata* (hereafter *B. radiata*), which both possess valves 59 – 104 mm², and 166 – 298 mm² in area, respectively (Caswell & Coe, 2013), that generally appear flat in hand specimen. In *P. dubius*, the umbone is located near the hinge line (at the anterior), and the valves have a trigonal "teardrop" outline. While often found flattened, the valves were originally strongly convex (Oschmann 1993). *B. radiata*, by contrast, has a much shorter hinge line (narrower than the shell width), and a less pronounced umbone. The shells also show a circular outline and concentric circular ribs, with a second set of very thin ribs (often only visible in well-preserved specimens) radiating from the umbone (Conti and Monari 1992, Jefferies & Minton, 1965).

While *P. dubius* is stratigraphically limited to the lower to middle Jurassic of Europe, and the genus *Bositra* extends from the Triassic to the end of the Albian (early Cretaceous; Pan *et al.*, 2014; Palaeobiology Database, 2022), many bivalve and brachiopod genera from the Mesozoic, and Paleozoic, show strong morphological similarity and are assumed to have shared similar

palaeoecology (i.e., these disparate organisms demonstrate convergent evolution; Wignall, 1994). The palaeoecology of thin-shelled bivalves of Paleozoic/Mesozoic age (often described as "paper pectens", or "flat clams" - even though the morphology was not restricted to the Pectinidae or even to bivalves; Wignall, 1994), has been a subject of intense debate, and over the decades, multiple modes of life have been suggested for these organisms (summarised in Fig. 1.4). This debate has been exacerbated by the apparent lack of modern analogues for the paper pectens. The extant bivalves

Figure 1.4. Proposed modes of life for the paper pectens. Taken from Del Piero *et al.* (2020) – modified after Wignall (1994) and Schatz (2005): 1A – nektonic; 1B – holoplanktonic; 1C – pseudoplanktonic; 2A – epibenthic recliners; 2B – mudstickers; 2C – attached to benthic macroalage; 3 – chemosymbiotic.

Amygdalum anoxicolum, and *Placuna palacenta*, have been likened to the paper pectens due to their thin shells and occasional occurrence in oxygen-depleted marine environments (Yonge, 1977; Oliver, 2001; Del Piero *et al.*, 2020). However, unlike the paper pectens, these bivalves do not form monospecific pavements that cover the sediment-water interface.

The paper pectens were probably primarily benthic organisms (Fig. 1 4, 2A). The thin profile and wide surface area of the shells would have made the organisms well adapted to a sessile palaeoecology – particularly on a fine-grained, soupy substrate, where the shells would have acted as snowshoes, keeping the animal from sinking into the substrate (Wignall, 1994). If indeed, paper pecten pavements were developed in situ, in the benthic environment, a sediment-stabilisation effect could occur once the pavement reached sufficient lateral coverage: as more paper pectens appear on the sediment-water interface, and as their mean shell diameter grows, a greater area of the sea floor becomes covered by the hard, calcified surfaces of their valves, rather than the softer, less cohesive substrate. This is a preferable growing surface for more bivalves - both the pavement-forming bivalves, and other bivalves that share a commensalistic relationship with the pavement-former. This initiates a positive feedback loop, in which a greater area of seafloor covered by bivalves, leads to a greater rate of increase in the coverage of the seafloor by bivalves. Doyle & Witham (1991) have argued that pavements of the posidoniid bivalve genus *Aulacomyella*, could make the sediment/water interface stable enough to support the growth of larger benthos such as *Buchia* sp.

Savrda & Bottjer (1987) documented shell pavements of the bivalve Anadara montereyana in the Miocene Monterey formation of California. Based on the location of these pavements (of intact, nonfractured shells) on the boundaries between laminated, and *Chondrites*-rich sediments, they argued that this bivalve grew in situ on the sediment/water interface. Given that these pavements were limited to between the lower dysaerobic/anaerobic divisions of the oxygen-restricted biofacies (where calcification was believed to be impossible; Rhoads & Morse, 1971), the workers further suggested that in situ accumulations of Anadara montereyana characterised a new oxygen-restricted biofacies, distinct from lower dysaerobic, and anaerobic – the "exaerobic" biofacies. Savrda & Bottjer (1991) later expanded on this concept, distinguishing exaerobic facies from quasi-anaerobic due to the presence of in situ benthic macrofauna, and from lower dysaerobic due to the absence of bioturbation. However, this biofacies requires the close juxtaposition of oxia and anoxia, since all benthic macrofauna require at least some oxygen, and the lack of bioturbation in sediments belonging to this biofacies implies accumulation under conditions too harsh to support diverse benthic communities. Savrda & Bottjer (1991) suggested that the exaerobic biofacies, therefore, was characterised by the oxic/anoxic chemocline being positioned precisely on the sediment/water interface, allowing for dysaerobic benthos to survive, whilst discouraging the development of a more biodiverse oxygenrestricted biofacies. It was further suggested that exearobic biofacies are characterised by the growth of benthic microbial mats: these thin layers of glutinous material would have acted as a barrier to

12

diffusion of oxygen and sulphide across the sediment/water interface, and might have offered a stable growing surface for epifaunal benthos due to a substrate-stabilising effect. The close proximity of oxic and euxinic environments suggested by this model would be particularly favourable to the growth of microbial mats, since strains of mat-forming bacteria such as *Beggiatoa* and *Thioploca* require both oxygen (supplied from the water column in this case) and sulphide from the sediment (Williams & Reimers, 1983).

Despite the evidence supporting a primarily benthic mode of life for paper pectens, some of these bivalves (P. dubius in particular) were also clearly facultative pseudoplankton (Fig. 14, 1C), as demonstrated by the frequent close association with macrofossil wood, particularly in the Posidonia Shale of the SW German Basin (Röhl et al., 2001). Some workers have argued, however, that the wide distribution of abundant paper pecten valves, demonstrates that attachment of these organisms to floating wood, ammonites, macroalgae, or floating fragments of algal mats (Duff, 1975; McRoberts & Stanley, 1989) was the rule rather than the exception. However, this ignores that, with the notable exception of the filamentous red limestones of the Rosso Amonitico Formation (central Italy) – where Bositra buchi occurs within a succession of clayey marls and limestones, occasionally showing redeposition (Conti & Monari, 1992) - paper pectens are only found on fine-grained siliciclastic substrates (i.e. in shales). If paper pectens were truly obligate pseudoplankton, there would be no such facies control on their distribution (Kauffman, 1982). Oschmann (1993) went further, speculating that the small size and thin shells of paper pectens indicate a holoplanktonic mode of life (Fig. 14, 1B). While this mode of life is, in fact, unlikely for the adult forms of paper pectens (since they are calcified), it is almost certain (as also suggested by Oschmann, 1993) that the spat of bivalves such as P. dubius and B. radiata were planktonic, possessing a thinner, proteinaceous shell like that of the modern Planktomya henseni (Allen & Scheltema, 1972). However, no extant holoplanktonic bivalve has been discovered (see review in Del Piero et al., 2020), and the assumption that the palaeoenvironment inhabited by P. dubius and B. radiata suffered anoxia persistently enough to necessitate this mode of life is questionable (see below). It has even been suggested that Bositra buchi and *B. radiata* were capable of free-swimming and had a primarily nektonic mode of life (Jefferies & Minton, 1965; Fig. 14, 1A). While free-swimming is observed in the extant bivalve Argopecten irradians (Winter & Hamilton, 1985), this bivalve is nonetheless predominantly sessile, resorting to free swimming (a very energetically demanding activity; Chih & Ellington 1983) only when threatened. This hypothesis is, therefore, incapable of explaining the wide distribution of paper pectens, and, again, does not address the clear facies control.

In addition to macrofossil wood, *P. dubius* is occasionally found growing on the shells of ammonites. The occurrence of many such examples in the Posidonia Shale led Kauffman (1978, 1982) to formulate a controversial hypothesis for the palaeoenvironment of the formation. In this model, anoxia was limited to the sediment, or, at the very most, the lower few cm of the water column.

13

Therefore, while most of the sediment-water interface was uninhabitable, the flat-lying, seafloorparallel shells of dead ammonites acted as "benthic islands", with bivalves colonising only the upper surface, which protruded above the chemocline. However, the ammonites preserved in the Posidonia Shale have been subject to a high degree of compaction, so it is often difficult to tell which side of the conch the *P. dubius* shells grew from. Furthermore, Schmid-Röhl & Röhl (2003) documented ammonite specimens appearing to show *P. dubius* growing on both sides of the conch – an observation inconsistent with Kauffman's model, and one that implies the bivalves were pseudoplankton, and grew on the ammonite while it was alive.

In some well-preserved specimens of paper pectens such as *Halobia* sp., a small hole can be found along the hinge line. It has frequently been suggested that this marks a byssal attachment site (Campbell, 1985), although the function of the byssus (if present), has also been a matter of debate. Some workers have argued that the byssus would have facilitated shell pavement formation (Hollingworth & Wignall, 1992), while proponents of a pseudoplanktonic mode of life have suggested that the byssus was used to anchor the bivalve to macroalgae (Fig. 14, 2C; McRoberts & Stanley, 1989). The few fossil examples of the latter mode of life, however, are assemblages of multiple bivalve species, and the bedding-parallel pavements of paper pectens are frequently monospecific (for example in the Cleveland Basin). This, again, implies that even though many of these bivalves are clearly facultative pseudoplankton, they could also adopt a distinct benthic recliner mode of life.

In the Carboniferous (Namurian) aged Edale Shales formation (central England), specimens of *Posidonia* sp. are frequently found, and not strongly associated with macrofossil wood. Anita & Wood (1977), being sceptical of Jefferies & Minton's (1965) free-swimming mode of life, argued it was just as likely (based on the same observations; occasional vertical orientation in the sediment, and the possible presence of a nonplanar commissure) that these paper pectens were mudstickers – protruding their open valves just perpendicular to the sediment-water interface (Fig. 14, 2B). The flat, circular morphology of paper pectens, however, is very atypical of mudstickers, and so this hypothesis is also highly unlikely for the mode of life of the majority of the paper pectens (Wignall, 1994).

The close association between many thin-shelled bivalves and black shales, has also led some workers to suggest that these organisms harboured symbionts capable of sulphide chemosynthesis. Seilacher (1990), for example, has argued that the hole located on the hinge line of the shells of the Triassic paper pecten *Halobia* (see above), accommodated a tube foot capable of burrowing into sulphidic sediment, and thus directing free sulphide towards chemosymbionts located within the valves (Fig. 14, 3). Such a strategy can be observed in the modern Thyasiridae (Dufour & Felbeck, 2003). However, sulphide farmers need a ready supply of dissolved oxygen, in order for their chemosymbionts to quickly carry out the oxidation of the sulphide, before this incredibly toxic

chemical endangers the host. As such, chemosymbiosis is far less likely to have been utilised in ancient ORBs than in more oxic environments (e.g. hydrothermal vent communities; Wignall, 1994).

As the above review demonstrates, several non-benthic modes of life have been suggested for the paper pectens, even though many such models are poorly supported by evidence. A key assumption held by palaeoecologists who argue against a primarily benthic mode of life for P. dubius and B. radiata is that the sediments in which they are found were deposited under persistent anoxia, with no fluctuations back to oxic conditions, and therefore, no opportunities for dysoxia-intolerant organisms to colonise the benthic environment (Oschmann 1993). However, multiple lines of evidence suggest that this assumption is incorrect. Firstly, in modern environments, persistently anoxic conditions are very rarely observed (apart from in the Black Sea). Oxygen-depletion can occur across a wide range of spatial and temporal scales (Rabalais et al., 2010), and, in many shallow marine settings, is mediated by seasonal changes in stratification and primary productivity (Tyson & Pearson, 1991; Testa et al., 2018). Secondly, even the thinnest black shale sequences (Oschmann 1988; Chapter 3 of this volume) represent extensive periods of time, particularly in condensed sequences. The LSB, for example, encompasses a period of time sufficiently long to include multiple episodes of reoxygenation, despite being a thin black shale. I will consider two established age models for the Cleveland Basin (where the LSB is located). One age model is from McArthur et al. (2000), which, relies on the ⁸⁷Sr/⁸⁶Sr value of seawater, and the sedimentation rate remaining constant. This model implies that the tenuicostatum zone has a duration of 300 kyr. This is in poor agreement with the estimate of 1.74 Myr based on the average biozone durations of Page (1995, 2004), and implies that the two assumptions of the model are questionable. The sedimentation rate in the Cleveland Basin is unlikely to have remained constant over 300 kyr, and the occurrence of thin silty laminations within the upper Grey Shale and Mulgrave Shale members indicate that (for brief periods) it, in fact, did not. This, in fact, undermines the formation of any age model with sub-kyr precision for the mudrocks of the Cleveland Basin. In a modelling study constrained with sedimentological data from the upper Grey Shale member, Kemp et al. (2018) argue that the mm-scale scours described by MacQuaker et al. (2011; 2012) are accompanied by hiatuses, and consequently impose a lower limit of 2 kyr on the temporal resolution of cm-scale studies on this lithology. Furthermore, changes in the rate of continental weathering through the T-OAE (Cohen et al., 2004) would have delivered large quantities of ⁸⁷Sr to the oceans, meaning that the ⁸⁷Sr/⁸⁶Sr composition of seawater was not in a steady state. An alternative age model is based on the length of the T-OAE CIE, as deduced from spectral analysis (see discussion in Chapter 3, section 4.3). Using an estimate of 561 – 1500 kyr for the duration of the T-OAE CIE (Huang & Hesselbo, 2014; Boulila & Hinnov, 2017; Thibault et al., 2018), encompassing around 10.75 m of the Whitby Mudstone Formation, this yields a sedimentation rate of 7.17×10^{-3} – 0.02 mm/yr. While it is unlikely that this sedimentation rate would have remained constant throughout the underlying grey shales formation (especially since the D. tenuicostatum and H. sperpentinum

zones are characterised by a transgression; Hesselbo, 2008; Thibault *et al.*, 2018), an estimate for the duration of the LSB using this age model (8 - 20 Ka), roughly agrees with an estimate using the biozone durations of Page (1995, 2004; ~30 Ka), and with the estimate of duration for the same unit using the McArthur *et al.* (2000; 2008) model (5 - 10 Ka, note that post-depositional compaction was not factored into either of these calculations). If, indeed, oxygen depletion occurred on a cyclic, seasonal basis during the deposition of the LSB (as I will argue in Chapters 3, 4 and 5), then the environment (despite generally being harsh), would have offered many opportunities for colonisation, particularly by organisms already adapted to low oxygen conditions. Even though the absolute durations of the beds in question cannot be accurately quantified, various age models all imply that the LSB was deposited over a period of time on the order of 10 kyr in duration.

If paper pecten shell pavements indeed grew in situ, then their presence within black shales implies that brief oxic to dysoxic episodes occurred, in an interval generally characterised by anoxia. The causes of such oxic episodes are, however, poorly understood, with some workers suggesting a link with variability in ocean current regimes, driven by climate. Röhl et al. (2001), for example, presented a climate-driven model for the formation of the Inoceramenbank (a shell pavement in the Toarcian aged Posidonia Shale of SW Germany), involving a strong meridional atmospheric circulation system with pronounced seasonality. The high contrast in temperature and moisture levels of the atmosphere over the continent of Pangea led to the strengthening of the trade and monsoon winds. This resulted in two distinct seasonal circulation regimes in the SW German Basin. In summer, a more humid climate with greater surface runoff resulted in the emplacement of a low salinity surface layer, and, therefore, strong water column stratification. Corg fixed by new production in the surface layer was exported below the chemocline, and resulted in very reducing conditions in the benthic environment. During winter, by contrast, an enhanced flux of saline water from more oceanic localities to the south destroyed the stratification and allowed for brief oxygen entrainment into the benthic environment. This would have been particularly pronounced during sea-level highstands, which would have made the basin more hydrographically connected to the wider EES and allowed a greater degree of water column ventilation during the winter. The critical piece of evidence used to support this climate/sealevel mediated mechanism for reoxygenation during deposition of the Inoceramenbank, was a high degree of covariation between sedimentological (lamination, silt content) and geochemical (TOC, δ^{13} C, δ^{18} O, pristine/phytane, aryl isoprenoid ratio) variables through the studied section.

7.0 Study aims

In this project, I aim to integrate ichnological (trace fossil), iron speciation, and trace element redox proxies through the LSB, to reconcile the preservation of labile Corg with the presence of bioturbating organisms, and of coarse-grained, silt horizons (that imply periods of high bottom water energy not typically associated with black shales). An attempt to evaluate change in sea level (via organic geochemical and palynological analysis) through the LSB will also be made since the model of Fe_{HR} enrichment due to remobilisation of Fe-enriched sediments from proximal settings requires at least a minor transgression. Moreover, evidence for a transgression during the emplacement of the LSB (if indeed present), needs to be reconciled with the trace element data of McArthur et al. (2008) and McArthur (2019), implying hydrological restriction. Finally, a combined redox proxy approach is required to better constrain potential pathways for Fe_{HR} enrichment, including trace element, pyrite framboid, and biomarker data. The framboid distribution of the LSB has previously been studied (Wignall & Newton, 1998; Agbi et al., 2015): Wignall & Newton (1998) documented two distinct "populations" of framboid diameters, implying frequent changes in the redox regime. It is, however, also likely that the larger framboid populations are associated with coarser lithologies from the LSB; previous framboid studies on the LSB have not evaluated changes in the framboid distribution against stratigraphic height on a cm-mm scale, and the present study aims to address this.

I address these outstanding questions by employing a high-resolution (≥ 1 samples per cm) multiproxy geochemical approach. I suggest that poor constraints on palaeoenvironmental changes through the LSB and shell pavements result from low sampling resolution (this is especially true for previous pyrite framboid and biomarker studies). My study combines classic descriptive sedimentology and Feredox geochemistry, with TOC/Total S, pyrite framboid and trace element proxies. My study also includes complementary Rock-Eval pyrolysis, palynological, biomarker and compound-specific isotopic (CSIA) analyses. This will better constrain the nature of the organic matter preserved, the relation of organic matter preservation to oxygen depletion/productivity, the impact of oxygen depletion on the marine community, and the relation of all these changes (or lack thereof) to climate change. I also propose that episodic shifts to a dysoxic-oxic state (from an anoxic state) during the deposition of the upper Grey Shale, and Mulgrave Shale Members, were the principal palaeoenvironmental mechanism responsible for the formation of the shell pavements of the Cleveland Basin. Further, I propose that the Inoceramenbank – a shell-rich band in the Posidonia Shale of the SW German basin (Röhl et al., 2001) – is a probable analogue for the shell pavements of the Cleveland Basin. I will employ a similar technique to that of Röhl et al. (2001) in my study of the thin shell pavements of the Cleveland Basin, utilising the same proxy suite as I will use for the LSB.

This is the most extensive, high-resolution study of Lower Jurassic black shales to date and reaches the limit of sampling resolution that can be attained without using, e.g., XRF scanning equipment.

8.0 Geological setting

The lower Toarcian succession in the Cleveland Basin consists of 105 m of laminated and massive mudstone, with frequent calcareous concretions (Hesselbo & Jenkyns, 1995; Simms et al., 2004; Powell, 2010), and is coeval with the Lower Jurassic mudstones of the Southwest German Basin (Röhl et al., 2001). The upper Pliensbachian to lower Toarcian Cleveland Ironstone Formation conformably underlies the Whitby Mudstone Formation, and consists of mudstones and bands of sideritic oolite, which have been described as showing orbital cyclicity (van Buchem et al., 1992). The lower Toarcian Grey Shales Member overlies the Cleveland Ironstone Formation (Fig. 1. 1), and consists mostly of structureless, intensely bioturbated shales, deposited under oxic conditions. Overlying the Grey Shales Member is the Mulgrave Shale Member (a.k.a. the Jet Rock), which (along with most the uppermost two beds of the Grey Shale Member – bed32 and part of bed 31) is laminated and organic carbon-rich (TOC up to 12 wt.%; French et al., 2014). The lower Toarcian Grey Shales and Jet Rock form a fining-upward cycle terminating at the base of the overlying Alum shale (Thibault et al., 2018), and were deposited during a major transgression (Hallam, 1997; Hesselbo, 2008). Enrichment in δ^{98} Mo, and the presence of isorenieratane (Pearce *et al.*,2008; French et al., 2014) imply that photic zone euxinia (PZE) was at least periodically attained within the Mulgrave Shale Member. The Grey Shales and Jet Rock encompass the Dactylioceras tenuicostatum, and the lower part of the Harpoceras serpentinum ammonite zones. These zones are further subdivided, with the most anoxic facies of the Jet Rock belonging to the Cleviceras exaratum subzone. Bed-by-bed descriptions of these formations are available in Howarth (1955), Howarth (1962) and Howarth (1973), and the bed numbers from these works are adopted here. The LSB was first described by Chowns (1968), who suggested that the Sulphur Band (LSB being a later term for the same unit, introduced by Newton, 2001) represents the basal, transgressive unit within the D. tenuicostatum zone. The LSB was also observed to become increasingly ferruginous to the northwest of the Cleveland Basin, where the upper Lias oversteps the underlying main seam of the Cleveland Ironstone Formation (for example, at Upleatham Mine; Chowns, 1968). Here, the black shale facies laterally grades into a highly pyritised oolitic ironstone, from which the vernacular term "Sulphur Band" was first derived. This difference has led some workers to criticise grouping these two deposits under the same term (Howard, 1985). Regardless, the wide distribution (at least throughout the Cleveland Basin), and relatively constant thickness of the LSB is of great chronostratigraphic

importance, and has led many workers to suggest a lateral equivalence between the LSB, and the Tafelfleins/Seegrasschiefer, of the Posidonia Shale of Southern Germany (Little, 1995; Newton, 2001). However, direct comparison is hindered by the presence of two other thin black shale units within the Grey Shale member, for a total of three (only two thin black shales occur in the Southwest German Basin). These additional units occur 1.45 m (0.53 m thick), and 5.09 m (0.10 m thick) above the upper boundary of the Cleveland Ironstone Formation (beds 2 and 19a of Howarth (1973), respectively). Newton (2001) later designated these the "Middle" and "Upper Sulphur Band", based on their sedimentological similarity to the LSB. McArthur et al. (2008) asserted the presence of a fourth Sulphur Band 8.41 m above the boundary with the Cleveland Ironstone Formation (0.05 m thick; bed 26). However, this relies on a redefinition of a "Sulphur Band" as simply any unit in the Grey Shale Member with high pyrite content and is not adopted here. This is because many concretion horizons, which bear little palaeoenvironmental affinity to the Sulphur Bands, also show elevated pyrite levels due to the presence of "knotted" pyrite nodules (Howarth, 1973). TOC for the LSB reaches up to 5.89 wt.% (Littler et al., 2010), which stands in contrast to a baseline TOC level for the Grey Shale Member, not exceeding 1.5-2.0 wt.% (McArthur et al., 2008; Salem, 2013, p.76). The LSB is also distinguished from most Lower Jurassic black shale units by the presence of Hummocky-Cross-Stratification (HCS) in its lower part (Howard, 1984), and a high density of trace fossils in its upper part (Chondrites and Rhizocorallium; Wignall, 1994, p.92; Little, 1995). The Sulphur Bands are mostly devoid of body fossils, except rare Dactylioceras fragments and P. dubius (in the Middle Sulphur Band; Newton, 2001).

The LSB, and the shell pavements of the Whitby Mudstone Formation are exposed at many points along the Yorkshire coast, but I decided to collect the samples for this project from Hawsker Bottoms (Chapter 2, Fig. 2.5). This locality was chosen for sample collection, because it is closer to the depocenter of the basin than more proximal sites (e.g. Kettleness and Upleatham mine), as implied by the more bituminous lithofacies of the LSB, and the lack of sedimentary structures indicating reworking in marginal settings (e.g. pyritised chamosite ooids; Chowns, 1968). The processes that are recorded in the LSB at this locality, are therefore less likely to be impacted with interfering processes from marginal settings (e.g. sulphate depletion).

9.0 Palaeoproxies

This project utilises 13 palaeontological, 4 pyrite framboid, 54 inorganic geochemical, 31 organic geochemical, and 6 isotopic geochemical proxies, both for high-resolution redox reconstruction, and in constraining the mechanisms responsible for redox change. What follows is a concise review of

these proxies, starting with the redox-sensitive proxies, and then discussing other proxies of palaeoenvironmental utility.

9.1 Redox

Three of the main methods I will employ when evaluating redox change through the intervals of interest will be an assessment of their sedimentary structures (types present, size, frequency, mineral content. etc.), macrofossil content (species present, abundance, size, etc.), and quantification of the extent of bioturbation. All of these factors taken in combination (as described in 1.4) help to define the Oxygen Restricted Biofacies of a particular bed, and correlating this with a wide variety of geochemical proxies will provide invaluable insight into the biogeochemical processes in operation at each of these stages of oxygen restriction.

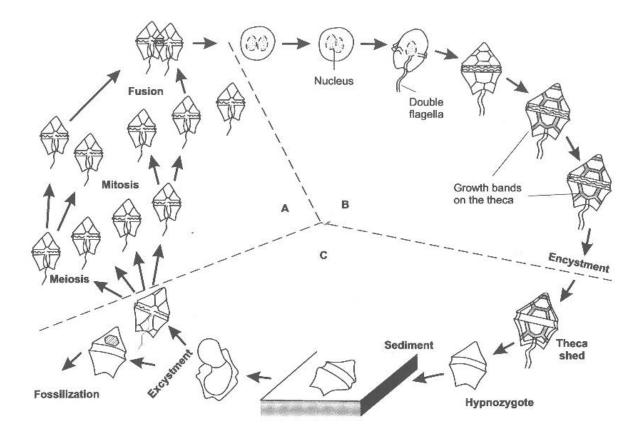
It should be noted that the method of bioturbation assessment I will employ (described in Chapter 2, section 2.0) is only an estimate of the true bioturbation intensity, since I will be working with sections cut perpendicular to bedding and evaluating the proportion of this cut surface that is bioturbated. This does not account for the fact that burrows are three-dimensional structures, and a measure of the unit volume, rather than the unit cross-sectional area, that is bioturbated, would be an accurate measure of bioturbation intensity. This method can be carried out either by preparing a large series of thin sections through the sample volume (and scanning these), or by use of XCT scanning (which produces a series of 2D orthoslices). In either case, a 3D model is built from the 2D slice data, and the volume of features of interest is measured. In order to carry out a clean XCT scan, however, the sample cannot be very dense (i.e. large), and ideally needs to be cylindrical to avoid beam-hardening effects (example in Bam *et al.*, 2016 – their Fig.4). Given that the sample blocks to be used in this project (see Chapter 2, section 2.0) are very large and dense, and have an uneven, non-cylindrical shape, I have decided not to employ this method, and instead, employ a wider range of geochemical proxies, which I predict will add greater precision to redox state reconstruction (one of the main aims of this project).

9.1.1 Planktonic responses to dysoxia/anoxia

Dinoflagellates are a group of (mostly) autotrophic protists, whose first appearance dates to, at least, the mid-Triassic (MacRae *et al.*, 1996). They are widely used as a palaeoecological and biostratigraphic tool. In the Lower Jurassic, dinoflagellates became increasingly diverse and

widespread, with diversification being driven by a long-term eustatic sea level rise (van de Schootbrugge *et al.*, 2005).

Dinoflagellates reproduce during the motile (planktonic), haploid stage of their life cycle (illustrated in Fig. 15), with two dinoflagellates fusing to form a motile, diploid cell. At the next stage in the life cycle, the dinoflagellate grows, developing a theca and two flagella, before becoming non-motile and sinking to the sediment/water interface. The encystment stage begins, with the theca being shed, and the dormant cyst lying in the sediment for days to years. During this time, the first meiotic division of the cell occurs, and when the hibernation stage is over, these are excysted, and meiosis continues, producing the motile haploid forms again. The abandoned cyst may then become preserved in the fossil record. In modern environments, the dormant stage of the dinoflagellate life cycle occurs during the winter, with excystment coinciding with the spring bloom (Armstrong & Brasier, 2005).


Given that dinoflagellate encystment requires that the benthic environment contains sufficient oxygen for the encased cells to germinate (Anderson et al., 1987), the presence of dinoflagellate cysts in marine sediments can be used as a micropalaeontological proxy for bottom-water oxygenation: It can be argued that if anoxia persisted at the sediment/water interface for a period exceeding the upper limit of cyst survival, the dinoflagellate life-cycle would be interrupted, with no new cysts being produced until bottom water redox improved (a "dinocyst blackout"). However, viable dinoflagellate cysts are often found in organic matter-rich sulphidic sediments (Anderson et al., 1982), and dinoflagellate "red tides" are commonly associated with eutrophic conditions in modern dysoxic environments (Pitcher & Jacinto, 2019). Therefore, it is more likely that prolonged bottom-water oxygen depletion impacts the diversity of dinoflagellate cysts preserved in the resulting black shale (with specific dinoflagellate genera being hit particularly hard), and not necessarily their overall dominance of the phytoplankton community (Pross, 2001). Another important factor to consider is that dinoflagellate dominance is a function of more environmental parameters than just bottom water redox state. Temperature, salinity, and nutrient loading are all known to strongly influence dinoflagellate ecology, depending upon the genera in question (Tyson, 1995, pp. 285 - 298). In the PETM, for example, the genus Apectodinium becomes more dominant in palynological assemblages from shallow marine settings (Sluijs & Brinkhuis, 2009). This was driven mainly by temperature, however, the eutrophication of the marine environment and the lowering of salinity due to enhanced runoff during the PETM, also influenced the spread of Apectodinium sp.

Prasinophytes are a group of non-cellulosic, green flagellate algae, with most species being holoplanktonic (although some show rhythmic settling behaviour; Griffin & Aken, 1993). Given that prasinophytes inhabit the photic zone of the water column, along with dinoflagellates, the two phytoplankton groups are brought into competition. This results in changes in the plankton community composition, since the two groups do not compete for the same nutrient resources at the

21

same rates: dinoflagellates are better competitors for dissolved nitrate (NO₃⁻) than prasinophytes, but prasinophytes vastly outcompete dinoflagellates for dissolved ammonium (NH₄⁺; Litchman *et al.*, 2006). Therefore, it can be predicted that prasinophytes (while not wholly excluded from NH₄⁺ -free waters), will dominate the phytoplankton community when dissolved NH₄⁺ becomes abundant. Such is the case under "nitrogenous" conditions, where increased rates of dissimilatory NO₃⁻ reduction, and ammonification of organic matter-hosted nitrogen (both observed in modern OMZs; Lam & Kuypers, 2011), lead to a higher dissolved NH₄⁺ inventory. Nitrogenous conditions are associated with dysoxic to suboxic marine conditions, i.e., where dissolved oxygen is depleted (below 2.0 mL/L; Tyson & Pearson, 1991), but not to the point of anoxia (no oxygen; Quan *et al.*, 2008).

Despite the apparent resilience of dinoflagellates as a whole (irrespective of specific genera) to marine oxygen depletion, there is much empirical evidence from the geological record indicating that during periods of black shale deposition, the dinoflagellate cyst content of the palynological assemblage can drop dramatically, even to zero. For example, Bonis *et al.* (2010) noted a drop in the relative contribution of dinocysts, to the palynological assemblage of the sediments at St. Audrie's Bay (Somerset, UK; A boundary section for the Tr/J), of ~90% (although this was driven principally by a single species – *Rhaetogonyaulax rhaetica*). They also noted a subsequent sharp increase in the abundance of prasinophytes, together with acritarchs - an operationally defined group consisting of organic-walled microfossils of unknown (possibly algal) affinity. In the lower Toarcian, a sharp drop in the abundance of the dinoflagellate *Luehndea spinosa* has been documented in the Lusitanian Basin (Portugal; Correia *et al.*, 2017). This was coeval with the lower boundary of the *Hildaites levisoni* zone, and the base of the Carbon Isotope Excursion (CIE) associated with the T-OAE. *Mancodinium semitabulatum* also disappeared from the assemblage, but this species gradually declined in abundance through the *Dactylioceras polymorphum* zone. In the Cleveland Basin, an absence of dinoflagellate cysts has also been observed, starting at the base of the T-OAE CIE, and persisting

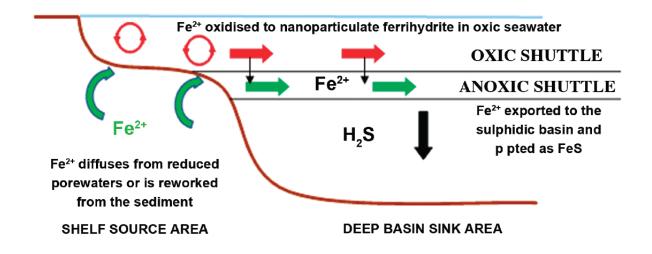
Figure 1.5. The life cycle of a meroplanktonic dinoflagellate (taken from Armstrong & Brasier, 2005). Note that if the benthic environment becomes inhospitable during the hibernation stage, the dormant dinoflagellate might be killed before excystment – in which case the life cycle would be interrupted.

through the succession until the mid *Harpoceras serpentinum* zone (Slater *et al.*, 2019 – but compare with Hesselbo & Jenkyns, 1995 for the biozones omitted from their figures). This was accompanied by a considerable increase in the dominance of sphaeromorph acritarchs, and, for a brief interval, the occurrence of the prasinophyte genus *Tasmanites*. While many of these trends in dinoflagellate predominance are driven by the disappearance of one or two species (that made up the majority of the assemblage to start with), the good correlation of these trends with geochemical data from the same sections indicating a marked decrease in oxygen (e.g. Jaraula *et al.*, 2013; Thibault *et al.*, 2018), still supports the use of dinoflagellate species to oxygen depletion, the influence of other paleoenvironmental factors known to effect dinoflagellate populations, and of time averaging in the samples used to derive palynological proxy records should be accounted for.

9.1.2 Pyrite Framboids

When free sulphide generated by sulphate reduction reacts with highly reactive Fe, a monosulphide is formed, which then reacts with partly oxidised sulphur species to form Fe_3S_4 (greigite). This mineral is ferrimagnetic, and the particles are attracted together into spherical aggregations (called framboids due to their resemblance to raspberries; Wilkin et al. 1996; 1997). The greigite is converted into pyrite in the presence of free sulphide and mildly oxidised sulphur species. When formed in the sediment, the size these framboids attain is limited by the availability of the reactants, and the range of the magnetic attraction of the greigite microcrystals. However, if these framboids form in the water column, they sink as soon as they reach 6µm in diameter (Muramoto et al., 1991), since greigite is a very dense mineral. A greater amount of pyrite framboids are generated under these conditions, (in the water column), and if the oxic-euxinic chemocline extends high enough into the water column, partially oxidised sulphur species can be precluded from even reaching the sediment, preventing framboids from being formed here (and hence growing to large sizes; Wilkin et al., 1996). Therefore, the distribution of the sizes of pyrite framboids in sediments accumulating beneath a euxinic water column is much narrower (and with a lower mean), than those accumulating under dysoxic/oxic water columns where pyrite formation was limited to the sediment. This proxy has been calibrated against a wide range of modern environments (Wilkin et al., 1996), and has previously been applied (at low resolution) to the thin black shales of the Kimmeridge Clay and the LSB (Wignall & Newton, 1998).

9.1.3 Carbon, Sulphur, and Rock-Eval Pyrolysis


In the absence of oxygen, the microbiota of the water column can become dominated by bacteria that utilise the sulphate reduction respiratory pathway in place of oxygenic respiration. These bacteria produce aqueous sulphide as a by-product. As described in 1.8.1.2, this leads to the water column precipitation of greigite, which is later converted to pyrite. As such, the amount of pyrite generated is limited either by the amount of organic carbon remineralised, the level of available reactive Fe, or the level of sulphate (reduced to sulphide; Berner, 1970). Total organic carbon (TOC), and pyrite-hosted sulphur are also usually positively correlated in marine sediments –especially under varying degrees of oxygen limitation (Raiswell & Berner, 1985; Algeo & Maynard, 2004) – however, the cause of this relationship is still an active area of research. Deviations from this trend are usually characteristic of highly sulphate-limited environments such as rivers. It can therefore be inferred that a high pyrite content of the sediment, especially when correlated with a high TOC content, implies oxygen limitation occurred in the overlying water column whilst the sediments were being deposited.

24

However, for sulphate reduction to occur, organic carbon has to be of a bioavailable, labile form, that can easily be remineralised and thereby deplete oxygen levels. Non-bioavailable, recalcitrant organic matter is often associated with organic macerals such as wood particles or dinosporin. While this cannot be metabolised easily, it can make up a large proportion of the sediment C_{org} (for example, in proximal settings; Tyson, 1995 and references therein). Analysis for TOC via total combustion cannot distinguish between these two types of carbon, so to evaluate the extent to which the organic carbon content of the sediment could influence pyrite formation, a different method is needed. Rock-Eval pyrolysis can discriminate between easily and poorly combustible sedimentary C_{org} by applying a ramped heating program to a powdered sediment sample in an inert atmosphere. By analysing the CO_2 and CO content of the gases generated through the analysis, the quantities of labile, and recalcitrant C_{org} present in the sample can be calculated (Hazra *et al.*, 2019).

9.1.4 The Fe-speciation proxies

Previous workers on the LSB have used the iron speciation proxies, the most up-to-date versions of which are described by Poulton (2021). Essentially, these proxies rely on the fact that under sulphidic conditions, easily reducible Fe (oxyhydr)oxides (that would otherwise make a minor contribution to the local sediment Fe content; Raiswell & Canfield, 2012) are subjected to reductive dissolution below the chemocline (via the reduction of surface-complexed sulphides, and the release of Fe²⁺ cations; Poulton et al., 2004), leading to syngenetic pyrite formation in the euxinic water column. This leads to an increase in the ratio of pyrite-hosted Fe (Fe_{Py}) compared to the sum total of highly reactive Fe-species (Fe_{HR}). Meanwhile, under anoxic (but not euxinic) conditions, Fe_{HR} can be enriched by precipitation of Fe-carbonates (Fe_{Carb}), Fe (oxyhydr)oxides (Fe_{Ox}), and (occasionally) magnetite (Fe_{Mag}) , although the exact mechanisms of many of these enrichment pathways are active areas of research. Fe_{HR} enrichment can be further quantified by the ratio of Fe_{HR} compared with total Fe (Fe_T), which can be used to distinguish euxinic from anoxic ferruginous (i.e. reactive Fe-rich) environments (Poulton & Canfield, 2011). In these settings, the delivery flux of Fe_{HR} outweighs that of sulphide, and if the former outweighs the latter by a factor of at least 2 (the ratio of Fe to S in pyrite), the entire sulphide inventory is sequestered in pyrite, with excess Fe_{HR} being left to accumulate (Raiswell & Canfield, 2012). One possible mechanism for Fe_{HR} enrichment in the sediments under these conditions (of high Fe_{HR} activity but low sulphide activity) is the phototropic oxidation of ferrous

Figure 1.6. A schematic of the shelf-to-basin shuttle (taken from Raiswell & Canfield, 2012). Transport of nanoparticulate ferrihydrite (a highly reactive Fe-bearing mineral phase) under oxic conditions is shown by the red arrows, the aqueous Fe^{2+} shelf flux is shown by the green arrows, and the precipitation of insoluble Fe sulphides is shown by the black arrow.

iron by green sulphur bacteria – a process observed in the ferruginous Lake Matano (Sulawesi, Indonesia; Crowe et al., 2008). The overall pathway of highly reactive Fe species being transported from the basin margins to the depocenter, where drawdown by sulphide then occurs, has been termed the "iron shuttle", or the "shelf-to-basin shuttle" (Illustrated in Fig. 16; Wijsman et al., 2001; Raiswell & Anderson, 2005; Lyons & Severmann, 2006). The iron shuttle may additionally be augmented by a flux of aqueous Fe²⁺ species from anoxic porewaters, directly into the anoxic water column. Innershore environments frequently act as a trap for Fe_{HR} supplied by rivers (particularly those with high rates of chemical weathering in the catchment system; Poulton & Raiswell, 2002), and therefore, an increase in the initial amount of Fe_{HR} transported from the basin margins can also raise Fe levels in the distal basin. It is for this reason that the normalisation of He_{HR} to Fe_{T} is essential. It is also important to stress that the aforementioned Fe mineral "pools" are operationally defined by their ease of extraction by various reagents (Poulton & Canfield, 2005), and, therefore, should not necessarily be taken as diagnostic for the enrichment of any given Fe mineral phase. Finally, due to the diagenetic remobilisation of Fe during clay mineral formation, and masking by rapid changes in sedimentation rate, there is no distinct threshold value of the Fe_{HR}/Fe_T, and Fe_{Py}/Fe_{HR} ratios that can be used to distinguish distinct redox regimes. Instead, each proxy has an equivocal zone - 0.22-0.38 for Fe_{HR}/Fe_T, and 0.6-0.8 for Fe_{Pv}/Fe_{HR} - that separates unequivocally oxic and anoxic, and ferruginous and euxinic values, respectively (Anderson & Raiswell, 2004; Poulton & Canfield, 2011; Poulton, 2021).

9.1.5 Trace element enrichment

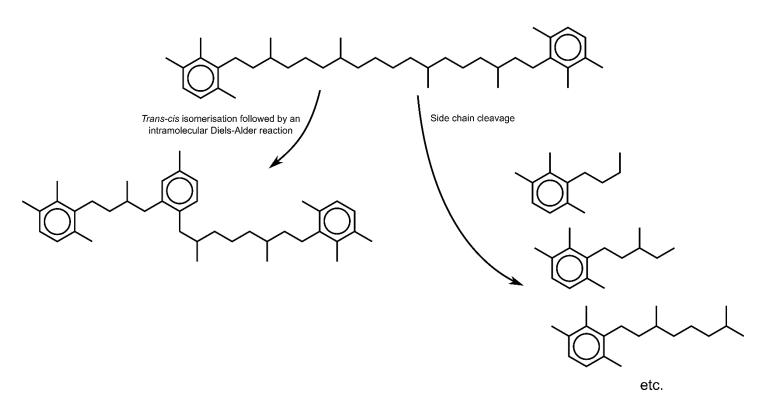
Some metals that are present in trace amounts in seawater are reduced into insoluble states under anoxic conditions and precipitate in marine sediments (Brumsack 2006; Tribovillard *et al.*, 2006). Under euxinic conditions, some trace elements are also incorporated into the crystal lattice of syngenetic pyrite, and are therefore enriched in the sediment. These include As, Co, Cu, Ni, Pb and Zn (Huerta-Diaz and Morse, 1992).

Mo, U and V enrichments are characteristic of euxinic depositional settings, and their co-occurrence is particularly diagnostic (Tribovillard *et al.*, 2006). Mo is readily incorporated into Fe and Mn oxyhydroxides (Adelson *et al.*, 2001; Algeo & Maynard, 2004) and, as such, is drawn down in settings with a strong Fe shuttle. However, Mo is also very strongly scavenged by organic matter that has been sulphurised in a euxinic water column, and the generation of this material has been likened to a geochemical switch that initiates quantitative Mo drawdown (Helz *et al.* 1996). U⁶⁺ is present in oxic seawater as uranyl ions, and becomes reduced to insoluble U⁴⁺ under the same conditions that induce Fe reduction, although its biogeochemistry is independent from that of Fe or sulphide (Algeo and Maynard, 2004; McManus *et al.*, 2005). However, U can be easily remobilised from anoxic sediments subjected to episodic reoxygenation, and through bioturbation (Zheng *et al.*, 2002; McManus *et al.*, 2005). V drawdown is strongly mediated by absorption onto Fe and Mn oxides, and incorporation into Fe sulphides has also been reported (Wehrli & Stumm, 1989; Wanty & Goldhaber, 1992).

When Mn is reduced from Mn^{3+} or Mn^{4+} to Mn^{2+} , it becomes soluble, so Mn loss from sediments is often characteristic of oxygen-depleted environments (Klinkhammer & Bender, 1980; Calvert & Pedersen, 1993; Huckriede & Meischner, 1996). For example, in Loch Etive (Scotland, UK), dissolved Mn increased to over 0.5 μ M when dissolved oxygen dropped below 40 μ M in April 1999 (Overnell *et al.*, 2002). However, if the environment is highly restricted, Mn²⁺ can also become incorporated into carbonates during early diagenesis (Jenkyns *et al.*, 1991; Maynard, 2010).

Other trace elements like Co, Cu, Ni and Zn are relatively enriched in organic matter and can therefore be used as crude proxies for productivity (Saito *et al.*, 2002; Algeo and Maynard, 2004; Naimo *et al.*, 2005). However, these elements are also all readily incorporated into syngenetic pyrite (Huerta-Diaz and Morse, 1992; Tribovillard *et al.*, 2006), and so resolving the relative influence of productivity verses sulphide generation on their enrichments is often not straightforward, especially in settings with high primary production, and free sulphide.

Many of these elements are also supplied from detrital sources. To rule out this competing influence, it is common to normalise the concentrations of redox-sensitive trace elements to detrital, redox-


insensitive elements such as Al and Ti (Calvert & Pedersen, 2007). However, it is important to note that comparing different normalised proxies can introduce spurious correlations (Van der Weijden, 2002). In this work I intend, therefore, to limit the use of Al-normalised data to determine the relative enrichment of major and trace elements compared to a standard shale value, sans the effect of detrital influence (a valid use of Al normalisation).

Depletion of aqueous Mo in restricted anoxic settings leads to a secular decrease in the ratio of Mo to TOC (the reservoir effect; Algeo and Lyons, 2006), and therefore, Mo/TOC is a proxy for basinal restriction in some circumstances. Normalisation to TOC does, however, assume a TOC dominated by marine organic matter – if there is a mixed source, the Mo/TOC ratio attained will underestimate the true value.

9.1.6 Organic geochemical redox proxies

The ratio of Pristane/Phytane preserved in marine sediments is partly a function of redox changes: Both compounds can be derived from the cleavage of phytol, which is derived from chlorophyll, or bacteriochlorophyll (Brooks *et al.*, 1969; Powell & McKirdy, 1973). Under reducing (low oxygen) conditions, the phytyl side chain of chlorophyll is cleaved, and the resulting phytol is subsequently reduced to phytane via dihydrophytol. However, under oxidising conditions, phytol is instead oxidised to phytenic acid, which undergoes decarboxylation to yield pristene, and then reduction to pristane (Peters *et al.*, 2005). Dihydrophytol, however, is also produced by the breakdown of the cell walls of archaea, which tend to colonise anoxic marine environments (Chappe *et al.*, 1982). Despite its sensitivity to redox change, many other factors influence the pristane/phytane ratio, and complementary redox proxies are widely considered essential when presenting pristane/phytane data (Peters *et al.*, 2005). For example, Methyltrimethyltridecylchromans – which often occur in marine sediments and are believed to derive from eubacteria and archaea – can also generate pristene during early diagenesis (Li *et al.*, 1995). Variations in source input (particularly excess input from higher plant material), high thermal maturity (Koopmans, 1999), and possible co-elution with other aliphatic compounds during GCMS (Peters *et al.*, 2005) have also been documented.

Bacteriohopanol (along with other C_{35} hopanes) is common in prokaryotes (see 1.3), and during diagenesis under oxic conditions, is oxidised to a C_{32} carboxylic acid, followed by decarboxylation to a C_{31} compound. The decarboxylation step is, however, limited under suboxic to dysoxic conditions,

Figure 1.7. Bond-line formulae of Isorenieratane and some of its catagenetic breakdown products. During early diagenesis, isorenieratane can undergo *trans-cis* isomerisation followed by an intramolecular Diers-Alder reaction to form a biphenylic derivative (shown above; Koopmans *et al.*, 1996). The isoprenoid side chain can also be cleaved at multiple points to form aryl isoprenoids (Schwark & Frimmel, 2004). Structures shown are adapted from Koopmans *et al.* (1996).

resulting in more of the C_{32} acid being preserved and less of the C_{31} product being generated (Peters *et al.*, 2005). Under anoxic conditions, the oxidation step is also limited, and more of the original C_{35} hopane is preserved (Peters & Moldowan, 1991). Thus, the percentage contribution of C_{35} homohopane to the pool of C_{31-35} homohopanes (i.e. the homohopane index) is a proxy for reducing conditions in the sediment. The frequent co-occurrence of high homohopane indices with elevated HIvalues seems to support this. However, the proxy can also be influenced by increased thermal maturity, through processes such as the cleavage of Sulphur-bound C_{35} hopanes (Köster *et al.*, 1997). If excess C_{35} hopanes are released in this way, additional C_{31} homologs are produced, resulting in an apparently oxic signal in the resulting C_{35} -homohopane index. For this reason, like with pristine/phytane, the homohopane index must be used as part of a multiproxy study when determining palaeoredox through organic geochemistry.

Certain strains of brown-coloured green sulphur bacteria (Chlorobiaceae) produce the carotenoid biomarker isorenieratene (Summons & Powell, 1987). These bacteria require both light, and the presence of free sulphide in the water column in order to metabolise organic matter via the reverse

tricarboxylic acid cycle (Sirevåg et al., 1977). When they die, the cell walls of these bacteria are buried in marine sediment, and begin to break down. The isorenieratene is then catagenetically converted to isorenieratane (Koopmans et al., 1996). Therefore, the presence of isorenieratane in a black shale strongly implies that PZE was present (at some point) in the water column during its formation. However, Isorenieratane can also be produced by some sponges (Yamaguchi, 1958; Liaaen-Jensen et al., 1982) and Actinomycetales (Krügel et al., 1999). This group of bacteria is common in both terrestrial and marine environments, and their contribution to sedimentary isorenieratane throughout the geological record is poorly constrained. In addition, the presence of isorenieratane does not by itself indicate that free sulphide existed in the water column – only that Chlorobiaceae were present. They could have been planktonic, or mat-forming, in which case any euxinia is restricted to the sediment-water interface. Isorenieratane has been detected in the upper Grey Shale, and Mulgrave Shale Members of the Whitby Mudstone Formation (beds 31 to 41; French et al., 2014), along with Chlorobactane (produced by green-pigmented Chlorobiaceae; Grice & Eiserbeck, 2014) and Okenane (produced exclusively by the *Chromatiaceae* – a family of purple sulphur bacteria; Brocks & Schaeffer, 2008). These data imply that during the T-OAE, euxinia extended into the upper 12 m of the water column, and that the water column was (at least at the points where carotenoids were detected - which are separated from each other by a stratigraphic distance of 0.3-2.0 m) highly redox stratified. It is also possible, however, that the Okenane detected within the black shales of the Mulgrave Shale member was derived from a mat-forming bacterium on the (photic zone) sediment/water interface, especially since modern water-column Okenane production is highly spatiotemporally limited. Wavy lamination within the Mulgrave Shale Member (O'Brien 1990) implies that this is also a potential source for the carotenoid biomarkers as planktonic sulphur-reducers. However, the wavy lamination could also be the remnants of shell pavements that have otherwise been destroyed by compaction. Furthermore, assuming the derivation of carotenoids from an in-situ benthic microbial mat imposes an upper limit on the depth of the water column of, at most, 12 m. This is around 17 times the limit of photosynthesis in clear, oligotrophic waters (200 m). It is highly unlikely that water depth in the Cleveland Basin was persistently shallower than 12 m throughout the deposition of the Mulgrave Shale member, especially given the evidence for a transgression through this interval (Hesselbo 2008; Thibault et al., 2018) – a phenomenon also observed in time-equivalent successions across Europe (for example in Poland; Hesselbo & Pieńkowski, 2011).

The Aryl Isoprenoid Ratio (AIR) proxy was first developed by Schwark & Frimmel (2004), who applied it to the Lower Toarcian-aged black shales of the Southwest German Basin: Given that a major source of Isorenieratane is the post-mortem breakdown of the cell walls of *Chlorobiaceae*, a greater contribution of *Chlorobiaceae*-derived biomass to the organic matter assemblage would lead to higher levels of isorenieratane. Assuming no change in the preservation potential of the sediment

30

during its accumulation, increases in the contribution of this biomass can be tentatively linked to enhanced productivity of *Chlorobiaceae* (possibly related to enhanced nutrient availability or stratification). The longer the conditions favourable to enhanced *Chlorobiaceae* biomass production last, the more of the resulting sediments contain high levels of isorenieratane. Since Isorenieratane can become cleaved into short chain aryl isoprenoids during catagenesis (illustrated in Fig. 17; Koopmans *et al.*, 1996), intervals with a greater starting proportion of isorenieratane would (by wt.%), be less degraded into aryl isoprenoids than intervals where the starting concentration is lower. In other words, the proportion of the aryl isoprenoids that have been fully broken down is lower in intervals characterised by more persistent isorenieratane production (i.e. more persistent PZE), than in intervals characterised by less persistent isorenieratane production. This does, however, assume that the degradation process remains constant throughout the accumulation of the sediment pile, and that none of the molecular distributions are effected by mineral-matrix interactions.

Phenanthrenes are a class of polycyclic aromatic hydrocarbons (PAHs) based on three fused benzene rings. Some phenanthrenes have been correlated with the occurrence of secohopanoids and their derivatives in oil shales, implying some influence of bacterial degradation of organic matter on their formation (Killops, 1991). PAHs (especially phenanthrenes) are also derived from fossil fuel combustion, and their abundance and geographic distribution have been used to track air quality in modern urban settings (Lehndorff & Schwark, 2004; 2009). This can be done since PAHs are scavenged by epicuticular waxes on the surface of pine needles. Phenanthrene is also enriched relative to other PAHs in weathered, terrestrially derived, sedimentary organic matter (e.g. macrofossil wood; Marynowski et al., 2011). This is because more labile PAHs such as benzopyrene and perylene are extensively broken down with increasing thermal maturity, via processes such as the formation, and cyclisation of phenyl derivatives. Phenanthrene concentration is also a factor in the methylphenanthrene index (MPI-1) for thermal maturation: the lower the phenanthrene concentration, the higher the thermal maturity (Bishop & Abbott, 1995). MPI-1 scales linearly with vitrinite reflectivity (R_0) up to 1.35%, after which the correlation turns negative (Radke & Welte, 1983). However, this relationship only holds within one organic matter kerogen type (typically type III). Both R₀ and MPI-1 also increase in sedimentary Corg exposed to dyke intrusion (Bishop & Abbott, 1995). While phenanthrene (being a PAH) in the sedimentary C_{org} record has been attributed to wildfires, the competing influence of bacterial degradation has hampered its utility as a direct proxy (Jiang et al., 1998). The degradation pathway of phenanthrene is unknown, although sulphate reduction is likely to play a role (Coates et al., 1996).

Dibenzothiophene is a sulphur-containing aromatic compound, composed of two benzene rings bonded to a central thiophene ring. The ratio of dibenzothiophene to phenanthrene, when combined with the pristane/phytane ratio is a powerful tool for distinguishing the depositional environment of petroleum source rocks (Huges *et al.*, 1995). This is because while the concentration of

dibenzothiophene increases in more carbonate-rich settings, the concentration of phenanthrene varies independently and can be used as a normalisation factor. Dibenzothiophene, and its alkylated analogues (e.g. methydibenzothiophenes – MDBTs), are also key markers for sedimentary C_{org} exposed to highly sulphidic conditions (e.g. below a frequently, to periodically euxinic water column; van Kaam-Peters & Sinninghe Damsté, 1997; van Kaam-Peters *et al.*, 1998).

9.2 Other proxies used

9.2.1 Palynomorph hydrodynamics and palynofacies

Between their source and site of deposition, palynodebris behave like clastic particles and can be used to reconstruct paleocurrent processes within sedimentary successions (Tyson, 1995, and references therein). This is a powerful tool in palaeoenvironmental analysis, and can be used to assess the relative distance to land and bottom water energy (Wallace *et al.*, 1982; Syvitski *et al.*,1990). For example, Muller (1959) showed how both pollen and leaf cuticle debris becomes more frequent in deltaic sediments closer to the mouth of the Orinoco river, and Heusser & Balsam (1977) found that the pollen concentration in marine sediment cores was highly sensitive both to riverine flux, and the composition of the plant community on the nearby continent.

Based on his palynological work on the Piper and Kimmeridge Clay Formations, Tyson (1989) devised a phytoclast-AOM-palynomorph ternary diagram for palynofacies discrimination. He noted how the ternary diagram had a remarkable ability to distinguish between 10 distinct palynofacies and derived key transport pathways through this diagram, originating from the phytoclast pole. This approach has since been widely adopted in the literature (e.g. Rodrigues *et al.*, 2020; Bang *et al.*, 2022).

9.2.2 Terrestrial plant community shifts

Shifts in climate, and consequently, shifts in the ambient temperature, moisture and nutrient budget of terrestrial ecosystems exert a profound effect on the structure of higher plant communities (e.g. Feeley *et al.*, 2020). These shifts are also accompanied by a change in the assemblage of spores and pollen in the environment, and, if preserved in depositional settings, this can be used as a palaeoproxy for ecological change in the terrestrial environment. Some distinct groups of pollen/spore producers are

also particularly diagnostic for specific environmental changes. For example, fern spikes are often detected in palynological assemblages that post-date mass extinctions, such as the K/Pg (Vajda *et al.*, 2001).

Bryophytes, lycophytes and ferns, all reproduce by releasing male and female (haploid) spores into the environment. If water is present, then the male spore releases a sperm cell, which fertilises the female gametophyte (released from the female spore under wet conditions), leading to the growth of a (diploid) sporophyte, and subsequently, an adult plant (Armstrong & Brasier, 2005). Key to this life cycle is the presence of liquid water during the haploid stage, and so bryophytes, lycophytes and ferns are limited to wet environments, or, at the very least, environments which become wet at predictable times. In these environments, the plants may adapt by producing thicker-walled spores that can lie dormant until wet conditions return (e.g. in bracken; Conway, 1949)

Conifers belong to the gymnosperms, produce bisaccate pollen, and have a different life-cycle than bryophytes, lycophytes and ferns (one that does not require the presence of liquid water). The male haploid pollen grain is produced in male cones, and is equipped with two air-filled sacs (hence bisaccate), that allow it to be carried off the male cone by the wind. It then settles on a female (haploid) cone, leading to fertilisation, and the production of a seed, which later falls out of the mature cone and germinates. While cycads are also gymnosperms (that do not require liquid water for the dispersal of sex cells) and also produce bisaccate pollen, their life cycle is somewhat different (not in the least because the sporophyte is dioecious; Jones, 1993).

Significant shifts in the terrestrial plant community are commonly associated with mass extinctions, and provide invaluable information on palaeoenvironmental changes in terrestrial environments concomitant with those in proximal marine settings. In the Qubuerga and Kangshare formations of Southern Tibet, for example, a major turnover in the terrestrial plant community concomitant with the P/Tr (distinguished by a strong negative $\delta^{13}C_{org}$ excursion of -4‰; Shen *et al.*, 2006) is indicated by a sharp decline in bisaccate pollen producers, followed by a peak in the abundance of trilete spores (produced by quillwort and spike moss disaster taxa; Liu *et al.*, 2020). This further implies that the interval was characterised by an abrupt shift in climate, from cool and dry, to warm and humid.

In addition to evaluating changes in the plankton community through the T-OAE in the Cleveland Basin, Slater *et al.* (2019) also reconstructed change in the terrestrial plant community for the same interval. The number and diversity of higher plant genera suffered sharp declines concomitant with the CIE. The hotter, more seasonal climate (inferred from the co-occurrence of dry-adapted flora, and geochemical evidence for enhanced runoff; Cohen *et al.*, 2004) also led to a growth in the dominance of Cerebropollenites producers (an unknown gymnosperm genus possibly related to the extant *Tsuga*; Shang & Zavada, 2003), and of Cheirolepidaceae, at the expense of bisaccate pollen producers and ferns. The post-CIE terrestrial environment was also palynologically distinct from the pre-CIE

33

environment, even though the marine plankton community had recovered (i.e. the terrestrial impact of the climate shift concomitant with the T-OAE was long-lasting). These results provide further evidence for a major disruption of the global carbon cycle during/immediately preceding the T-OAE. However, no such study has been carried out for the LSB.

9.2.3 Detrital element ratios

Since Zr is a relatively dense element, mineral grains containing it (such as Zirconium and Titanite; Siefert & Kramer, 2003; Deer et al., 2013) tend to settle out in the coarse sediment fraction (Pedersen et al., 1992). Zr/Al and Zr/Rb ratios are therefore sensitive to the relative contribution of continentally derived silt (along with Si/Al; Schnieder et al., 1997; Govin et al., 2012; Thibault et al., 2018), and can be used as rough indicators for palaeoshoreline distance. Likewise, Rb is more concentrated relative to K in micas, and vice versa for feldspars: the greater radius of the Rb⁺ ion compared with the K⁺ ion means it is less easily accommodated within the framework silicate structure, and accumulates in mineral phases such as micas, that are typical of late stage magmas(Heier & Adams, 1963; Lange et al., 1966). The ratio of K/Rb is therefore also correlated with grain size (since micas tend to be more associated with the fine sediment fraction) and has been used frequently as a grain size proxy in lieu of Al or Ti data (Matthewson et al., 1995; Dypvik & Harris, 2001). The K/Al and Rb/Al ratios are sensitive to the clay mineral composition of the sediment, with cation-depleted clay minerals such as kaolinite having lower values than more cation-rich minerals such as montmorillonite. They are, therefore, not a proxy for palaeoshoreline distance, but can be used to infer concomitant climatic conditions in the source region of the analysed sediment (Pastouret et al., 1978; Schneider et al., 1997; Calvert & Pedersen, 2007; März et al., 2010, 2011).

9.2.4 Biomarker proxies for plankton community structure

Both prokaryotes (e.g. algae) and eukaryotes (e.g. bacteria) can dominate phytoplankton communities, and the relative contributions of both domains to the phytoplankton can be assessed by measuring the concentrations of hopanes and steranes within a total lipid extraction (TLE). While eukaryotes frequently utilise steroids (the precursor to steranes) in the lipid membranes of their cells, prokaryotes prefer to use hopanoids (the precursor to hopanes; summonslab.com, 2022). Changes in the proportions of these two classes of molecules have been tied to episodes of significant restructuring of

phytoplankton communities, with prokaryotes outcompeting eukaryotes under hostile (low redox, high sulphide) conditions (Kasprak *et al.*, 2015)

Different steroids can also be linked to different algal groups; therefore, the concentrations of the resulting steranes in the TLE can be taken as a crude proxy for the predominance of that group in the palaeoenvironment. C₂₇ steranes are derived from C₂₇ sterols (e.g. cholesterol), which are produced by marine zooplankton (after grazing on C₂₈ and C₂₉ steroid producers; Huang & Meinschein, 1979), although they are also strongly associated with Rhodophyte algae, Glaucocystophyta (Kodner et al., 2008), and some (such as epicholestanol) have been observed to be produced by anaerobic microbes in seasonally stratified lakes (Mermoud et al., 1985). They are absent from leaf wax cuticle (Rieley et al., 1991). C_{28} steranes are strongly associated with green algae such as prasinophytes (Huang & Meinschein, 1979; Schwark & Empt, 2008), although these can also produce high amounts of C₂₉ steranes (Kodner et al., 2008). C₂₈ steranes are also associated with a wider range of phytoplankton groups, the appearance of which has led to a general increase in the C_{28}/C_{29} (sterane) ratio of oils through geological time (Grantham & Wakefield, 1988). C29 steranes reflect the input of terrestriallyderived organic matter – since they are produced by higher plants – and alongside C_{27} steranes, exert the most significant control on the sterane composition of sediments (Huang & Meinschein, 1979; Czochanska et al., 1988; Rieley et al., 1991; Dahl et al., 1994). They are, however, also produced by the classes Charophyceae and Ulvophyceae (Kodener et al., 2008), and high amounts of C₂₉ sterane are often found in rocks older than the Devonian (e.g. in Precambrian crude oils from Oman; Grantham, 1986) – probably derived from an algae in these instances. C_{29} sterane is also more resistant to biodegradation than shorter chain steranes, and so can come to predominate in recalcitrant organic matter (Peters et al., 2005). Pelagophyceae – a class of marine chromophyte algae – are the only organisms (apart from the foraminifer Allogromia laticollaris; Grabenstatter et al., 2013) able to synthesise 24(E)-24-propylidene-cholesterol (Giner & Djerassi, 1991; Rohrssen et al., 2015). This is a precursor to C₃₀ sterane, and so the concentration of C₃₀ steranes broadly tracks the occurrence of Palagophyceae. Indeed, the first occurrence of C_{30} sterane in the geological record is in agreement with the age of radiation of the Palagophyceae as predicted by molecular genetics (Brown & Sorhannus, 2010). The above discussion demonstrates that while downcore trends in the contributions of different steranes can be of great palaeoenvironmental utility, a given sterane can rarely ever be taken as a direct proxy for the dominance of any given organism since it is often produced by many. The association of C₂₇ steranes with marine organic matter, and of C₂₉ steranes with terrigenous organic matter can, however, be tested by correlation with the terrestrial/aquatic ratio for the same samples (see Chapter 5, section 2.1.2; French et al., 2019; Kong et al., 2020).

9.2.5 Biomarker proxies for thermal maturity

During early diagenesis, the methyl group at the 17 position of 17α -22,29,30-trisnorhopane (Tm) can be moved to the 18 position, resulting in the formation of 18α -22,29,30-trisnorhopane (Ts – a neohopane; Seifert & Moldowan, 1978). The demethylation/methylation of Tm to Ts is enhanced by increased heat, and the activation energy for the reaction is lowered by the presence of clay minerals (Peters *et al.*, 2005). This transformation, therefore, takes place exclusively during diagenesis and never in living organisms. The ratio Ts/(Ts+Tm) is, therefore, widely utilised as a thermal maturity proxy.

9.2.6 Biomarker proxies for palaeoshoreline distance

n-alkanes are commonly produced both by marine algae and higher plants. However, the requirement for hydrophobicity of epicuticular leaf wax in higher plants means that the *n*-alkanes they produce are typically long (C_{17-35} ; Jeffree, 2006). Marine algae do not possess leaves, so no such barrier is required to maintain equilibrium between water uptake and loss. Therefore, most *n*-alkanes produced by these organisms are comparatively shorter (most commonly nC_{17} ; Giger *et al.*, 1980). Bourbonniere & Meyers (1996) used these principles to derive the terrigenous/aquatic ratio (otherwise referred to as the terrestrial-aquatic ratio – TAR), to determine the relative contributions of *n*-alkanes, derived from these two pools, to the sediments of Lake Erie. TAR is defined as:

TAR =
$$\frac{(nC_{27} + nC_{29} + nC_{31})}{(nC_{15} + nC_{17} + nC_{19})}$$

where the terms in the numerator and denominator are the relative abundances of C_{27-31} *n*-alkanes, and C_{15-19} *n*-alkanes, respectively. This ratio has since been applied to the deeper geological record and a rise in the TAR can be attributed to an increase in the relative contribution of leaf wax-derived *n*-alkanes, either as a consequence of closer shoreline distance (e.g. Song *et al.*, 2014), or an enhanced flux of terrestrially-derived organic matter (e.g. Adegoke *et al.*, 2015; Mathews *et al.*, 2020).

9.2.7 Compound-specific isotopic analysis

 δ^{13} C excursions have long been used to tie palaeoenvironmental marker horizons (black shales in particular), to global carbon cycle perturbations. The T-OAE, for example, is associated with a

prominent negative δ^{13} C excursion in bulk organic carbon ($\delta^{13}C_{org}$) of -5 to -6‰, lasting 0.5 to 1.5 Myr (Thibault *et al.*, 2018). When first discovered in Tethyan systems in Southern Europe (Jenkyns, 1988) the negative CIE was attributed to the localised upwelling of ¹²C depleted waters (Küspert, 1982; see also Sælen *et al.*, 1996; Wignall *et al.*, 2005). In a classic study of the Whitby Mudstone Formation, and of the upper Bagå Formation (south-western Bornholm, Denmark), Hesselbo *et al.* (2000), found concomitant negative δ^{13} C excursions in both bulk TOC, and macrofossil wood particles (Jet, in the Whitby Mudstone Formation), strongly implying a wider carbon-cycle influence on the T-OAE CIE. While it is now widely recognised that the T-OAE CIE was partly forced by a perturbation in the global carbon cycle, the ultimate source of the injected ¹²C remains a matter of debate, with suggestions ranging from methane hydrates (Hesselbo *et al.*, 2000; Kemp *et al.*, 2005; Izumi *et al.*, 2018), to thermogenic methane produced by Karoo-Ferrar volcanism (McElwain *et al.*, 2005; Svensen *et al.*, 2007), to permafrost destabilisation at the close of a tentative Pliensbachian Icehouse (Ruebsam *et al.*, 2019; 2020a).

While analysing organic carbon-rich sedimentary rocks for their $\delta^{13}C_{org}$ value is straightforward, interpreting the causal factors behind $\delta^{13}C_{org}$ excursions is often complicated by multiple palaeoenvironmental processes, and the final signature recorded in organic matter (and carbonate, to an extent) might not necessarily be the direct reflection of a perturbation to the global carbon cycle (van de Schootbrugge *et al.*, 2013). In the case of the T-OAE CIE, Küspert (1982) explained the pronounced negative $\delta^{13}C_{org}$ excursion in the Posidonia Shale as being the result of prolonged water column stratification: as ¹²C depleted organic matter – originally fixed by marine phytoplankton – is exported below the chemocline, the lack of oxygen leads to its accumulation (rather than remineralisation), and this drives the $\delta^{13}C$ signature of the sub-chemocline water mass more negative. When this water mass upwells, the fresh supply of ¹²C to the surface layer can also drive $\delta^{13}C_{carb}$ more negative, since calcification does not fractionate $\delta^{13}C$ to nearly the same extent as carbon fixation. The T-OAE CIE in marine organic matter, combined with a concomitant (muted) CIE in carbonate, could simply indicate a period of high stratification on a local scale, combined with episodic upwelling.

In addition, marine extinctions associated with the T-OAE not only show diachroneity between Tethyan and Boreal localities, but pre-date the onset of the T-OAE CIE ($\delta^{13}C_{org}$; evident, for example, in the Cleveland Basin; Wignall *et al.*, 2005). This further implies that the $\delta^{13}C_{org}$ excursion was not in sync with the environmental kill mechanisms responsible for the extinctions, and that local processes often affected the final preserved signal.

The presence of multiple carbon pools within the depositional environment, each bearing a distinct δ^{13} C signature, is another factor worth considering. If the C_{org} content of a black shale is derived solely from marine matter, then the δ^{13} C_{org} signal would be equivalent (notwithstanding any effects in the circulation regime of the basin) to that of the primary marine carbon fixers. However, organic

matter derived from different (e.g. terrestrial) sources, was often in sync with a different δ^{13} C reservoir at the time it formed. If, therefore, plant material makes a significant contribution to the sediment C_{org}, the resulting δ^{13} C_{org} signature would be shifted away from the value of marine organic . This is compounded by the fact that terrestrial plants fractionate ¹²C to a greater degree than marine organisms (-20 - -37% as opposed to -18 - -25%; Popp *et al.*, 1998; Hayes, 2001; Kohn, 2010). However, this difference in fractionation was smaller prior to the Neogene, and the reasons for this are currently poorly understood (although the evolutionary rise of C4 plants, and a long-term decline in atmospheric *p*CO₂ over the Cenozoic are possible contributory factors; Tyson, 1995, pp. 414 – 415).

Resolving the influence of earth-system scale carbon-cycle changes on a system subject to the frequent addition of depleted carbon, and/or the presence of multiple carbon pools can be difficult. However, an assessment of exogenic carbon cycle perturbation can still be achieved by separating the carbon pool into marine, and terrestrially derived fractions, and targeting the $\delta^{13}C$ analysis to these independent fractions. Hesselbo et al. (2000), demonstrated that the T-OAE CIE in marine organic matter was accompanied by a negative CIE in contemporaneous macrofossil wood particles, indicating that the event was accompanied by the injection of isotopically light carbon into the earth surface system. While it has been argued that the diagenesis of wood particles in sediment dominated by marine C_{org} can alter their isotopic signature (Küspert, 1982), it is likely that the excursion truly tracks a change in atmospheric δ^{13} C, since the trend of Hesselbo *et al.* (2000) is corroborated by compound-specific isotopic analysis (CSIA; French et al., 2014): C₂₇, C₂₈ and C₂₉ *n*-alkanes are derived mostly from terrestrial plants, being a significant component of epicuticular leaf wax. The plant initially sequestered the carbon used in the growth of epicuticular wax via C3 photosynthesis. It can be assumed, therefore, that the δ^{13} C signal of leaf wax cuticles derived from these plants was in sync with the δ^{13} C signal of the atmosphere in which the plant grew. If the leaf wax is subsequently lost from the plant, and accumulates in a distal sedimentary environment, this can provide an archive of ¹²C sequestration in the contemporaneous terrestrial environment. However, there are competing factors that can influence this signal. For example, under persistently arid, or fluctuating wet/arid conditions, the δ^{13} C of C3 plant tissues is positively shifted from the atmospheric value. This is due to a decrease in stomatal conductance, depressing the ratio of the plant's internal pCO_2 to ambient (i.e. external) pCO₂ (Schubert & Jahren, 2012; Cernusak et al., 2013). Therefore, a negative isotopic shift in the δ^{13} C of plant tissues could be interpreted as the result of a secular shift to a wetter climate, at constant atmospheric pCO_2 (Kohn, 2010).

During the early Toarcian, the Cleveland Basin was situated in a humid climate belt (Rees *et al.*, 2000; Ruebsam *et al.*, 2020a), and as Schubert & Jahren (2012) have demonstrated, the δ^{13} C of C3 plants grown under persistently humid conditions is a function of changes in *p*CO₂ of the ambient air. Furthermore, the effect of atmospheric *p*CO₂ on plant δ^{13} C is more pronounced in gymnosperms than

38

in angiosperms and animals, and of greater magnitude than the effect of precipitation change (Hare *et al.*, 2018). Given that angiosperms were absent in the Toarcian, and the assumption that the contribution of animal-derived *n*-alkanes to the fraction is low, δ^{13} C of long-chain *n*-alkanes in the sample can be taken as roughly equivalent to the δ^{13} C of gymnosperm-derived organic carbon. In other words, changes in δ^{13} C of long-chain *n*-alkanes are a function of atmospheric ¹²C content, and the level of aridity of the terrestrial environment.

French *et al.* (2014), applied this approach to the black shales of the Mulgrave Shale Member, and found excursions in the δ^{13} C of C₂₇₋₂₉ *n*-alkanes of around -4‰ (concomitant with excursions of similar magnitude in short-chain, marine-derived *n*-alkanes). This not only corroborated the macrofossil wood data of Hesselbo *et al.* (2000; wrt. exogenic carbon cycle perturbation), but the onset of the δ^{13} C excursion in *n*- C₂₇₋₂₉ occurred within bed 31 (Howarth, 1962; 1973) – at about the same stratigraphic level of the main pulse in marine extinctions, as described by Wignall *et al.* (2005).

Littler *et al.* (2010), reported two $\delta^{13}C_{org}$ excursions similar to the main T-OAE CIE in the upper *P*. spinatum, and lower D. tenuicostatum zones, with a magnitude of ~-2.5‰, to -28.5‰. Limited $\delta^{13}C_{wood}$ data corroborated the observed trend. The first of these excursions shows a broad decrease starting in the middle of bed 42 of the Cleveland Ironstone Formation, approaching a sharp minimum in the LSB, before sharply returning to a background signal in the overlying bed. The second excursion spans the MSB, and shows two distinct peaks at its base and top respectively, with an intermediate 'saddle' in-between. Conspicuously, there is no $\delta^{13}C_{org}$ excursion co-incident with the USB – sampling resolution was, however, lower in this interval. By comparison of the $\delta^{13}C_{org}$ profile to a similar dataset from Peniche (Portugal; Hesselbo et al., 2007), it was suggested that the excursions were caused by an event that affected at least the western EES, and that the excursion might serve as a stratigraphic marker for the Pl-To boundary. Possible causes of the invoked carbon cycle were discussed. The suggested causes were identical to those suggested by Kemp et al. (2005) and Svensen et al. (2007) for the T-OAE CIE, and this was justified based on the stratigraphical proximity of the excursions. This CIE was later detected in the Amellago section, in the High Atlas Rift Basin of Morocco (Bodin et al., 2010), leading those authors to suggest time-equivalence of the CIE to the Pl-To, and that the event was marked by local bottom water deoxygenation. However, unlike the main T-OAE CIE, a compound-specific isotopic analysis of the δ^{13} C record through the LSB has not yet been resolved. I aim to carry out such an analysis (Chapter 5), and test whether the $\delta^{13}C_{org}$ excursion of Littler *et al.* (2010) can be attributed to local water mass changes, a carbon cycle perturbation, or, perhaps, both processes working in concert.

Chapter 2 – Methods (sample collection, preparation and analysis)

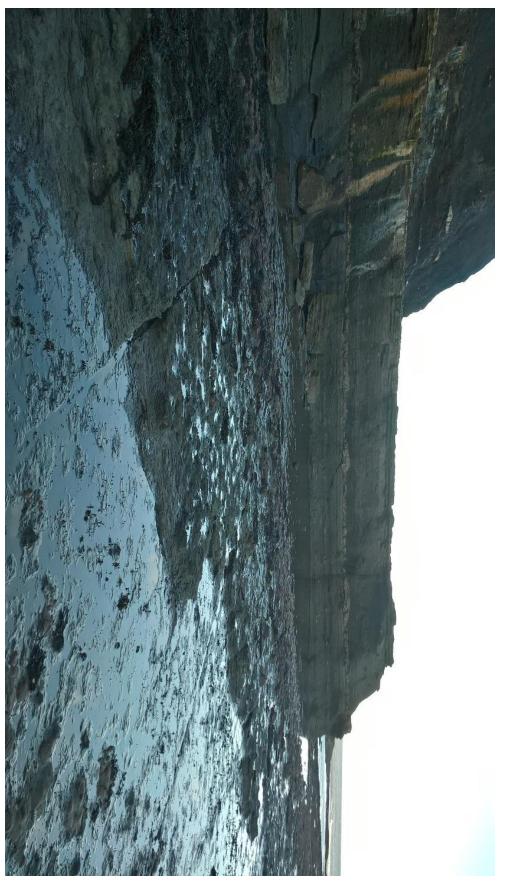
1.0 Sample collection

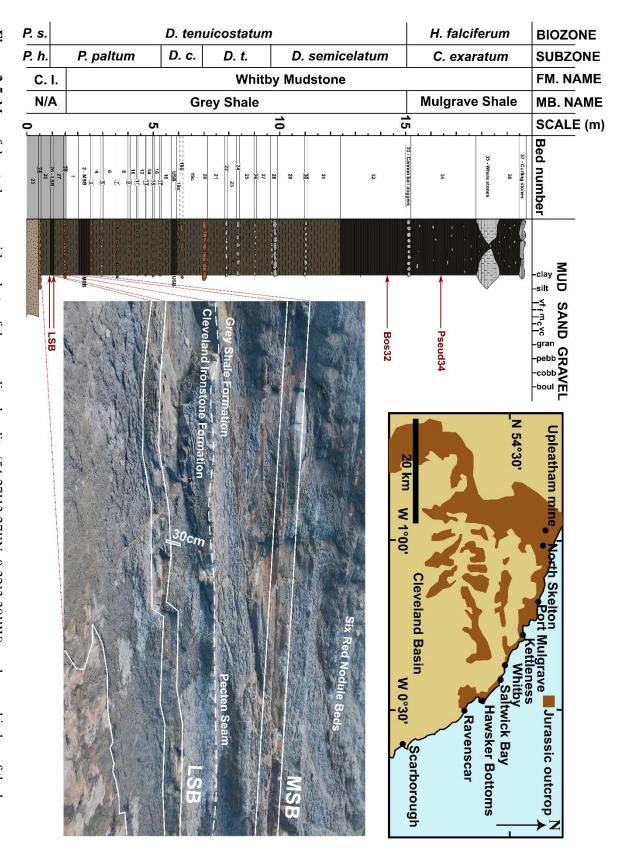
On 03/2019, six blocks of the LSB, and a block encompassing a *Bositra radiata* pavement (bed 32 of Howarth, 1955, 1962, 1973), were collected from a wave-cut platform at Hawsker Bottoms (6.28 km to the SW of Whitby; sampling locations $54^{\circ}27'13.27"N$, $0^{\circ}32'3.38"W$ and $54^{\circ}27'20.59"N$, $0^{\circ}32'20.12"W$, respectively; see Figs. 2.1 - 2.5). On 08/2020, Dr. Crispin Little collected additional samples from two *Pseudomytiloides dubius* pavements (beds 34 and 41), at 54° 27' 24.33"N, 0° 32' 20.41" W and 54° 27' 27.53"N, 0° 32' 24.91"W.

2.0 Sample preparation

Five of the six blocks (coded LSB1 to LSB6) of the LSB were used in this project, since together they span the width of the LSB, and some of the underlying sediments of the Cleveland Ironstone Formation (Fig. 2.6; LSB4 did not encompass enough stratigraphic height to be useful). These were subsequently cut perpendicular to bedding using a circular blade rock saw at the University of Leeds. The fresh, bedding-perpendicular surfaces were then scanned using an office scanner (with a ruler for scale), and 600 dpi .jpg images inspected for bioturbation.

LSB samples were collected just to the south of the location of the two figures on the left. Figure 2.1. Cliff exposure of the Grey Shales Formation, and the lower part of the Mulgrave Shale Member (towards the top).


Figure 2.2. Sampling locality for the LSB. At thispoint, the cliff meets a wave cut platform formed from bed 42 (Howarth, 1955). The LSB is exposed at the foot of the cliff.

the Cleveland Ironstone Formation. Figure 2.3. A view of the wave cut platform from ~15m to the south of the sampling locality. The platform is formed from the upper part of

Figure 2.4. LSB samples wrapped in aluminum foil immediately after collection.

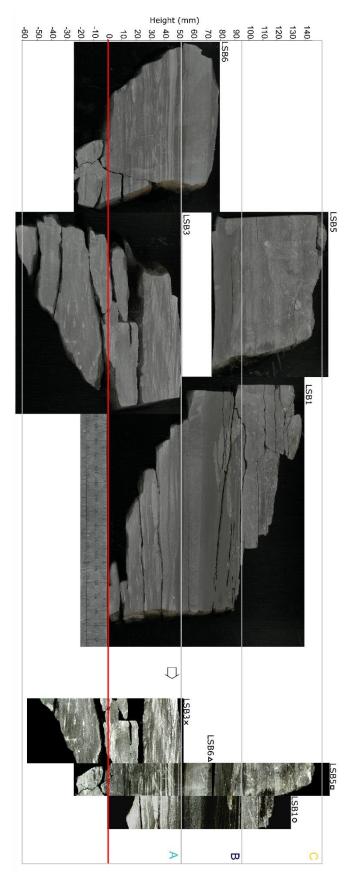
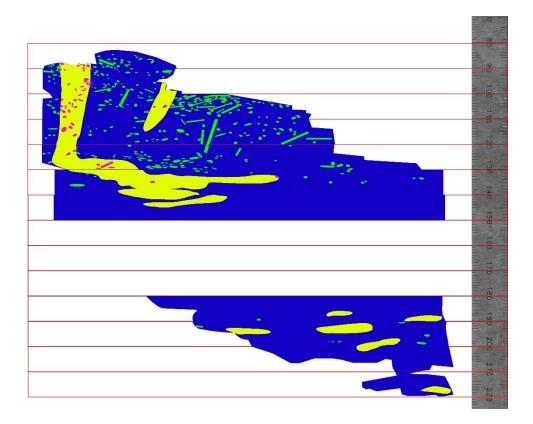

biozone names: P.hwskrn - Pleuroceras haswskerense; D. Clvlndcm - Dactylioceras clevelandicum; D.tstatm – Dactylioceras tenuicostatum Toarcian mudstones. The LSB and Middle Sulphur Band (MSB) are highlighted in the figure (along with other stratigraphically important Figure 2.5. Map of the study area, with a photo of the sampling locality (54°27'13.27", 0°32'3.38", W), and a graphic log of the lower Abbreviations of formation names: Clv. Inst. - Cleveland Ironstone Formation features), and their corresponding positions on the log are indicated. Map adapted from Caswell et al. (2009). Abbreviations of ammonite

Fig. 2.6 shows a photomosaic of the scanned images of the LSB, oriented such that their stratigraphic heights are in agreement. Zero datum is indicated by the red line. Note that all stratigraphic height figures mentioned hereafter were measured relative to this line, with measurements taken lower in the stratigraphy being negative with respect to zero datum (these heights have negative values). For all downcore plots of the LSB shown hereafter, this figure is simplified into the photomosaic shown to the right, with enhanced contrast to allow the sedimentary structures to be better discerned. Fig. 2.6 shows scans of the four most extensively sampled blocks, properly oriented with respect to the stratigraphy. Trace fossils, and the surrounding matrix, were manually segmented from the scans in CorelDraw, and total area of each burrow type was measured from the segmented image using Fiji ImageJ (example in Fig. 2.7). Scan images of the shell pavement bedding plane surfaces were also generated using this method, and these are shown in Figs. 2.8 - 2.10. Unlike the LSB samples, bedding-perpendicular scans of the pavements could not be made, due to the thin profile of the samples. I do not, however, consider this to be a major drawback, since bedding-perpendicular thin sections were still made, and for all of the shell pavement samples, the rock texture was finely laminated, with no (macro)bioturbation present (ORB1-4; see chapter 1, section 1.4).


The maximum lengths (umbone to shell edge) of shells in the scanned images were also measured in Fiji ImageJ (with reference to a ruler). Only shells with a visible umbone and shell edge were measured. When possible, the maximum width between each shell was also measured using the same method (albeit from shell edge to shell edge). The data obtained via this method are presented in Appendix 3.

3.0 Optical microscopy and SEM analysis

Six uncovered thin sections (35 µm thick) from the LSB samples, two from the *B. radiata* pavement and *P. dubius* pavement from bed 34, and one from the *P. dubius* pavement from bed 41, were prepared for optical mineralogy and framboid analysis. The portions of the LSB blocks taken for slide preparation are shown by the yellow boxes in Fig. 2.12. The slide material was extracted from the samples with a Dremel 8100 with a diamond-coated cutting wheel attachment, prior to lapping down to 35 µm thickness with circular-blade, water-lubricated saws, sanding

in all up-section plots. with the red line indicating zero datum (the base of the block coded LSB1). The contrast-enhanced photomosaic on the right is included Figure 2.6. Scans of the blocks of the LSB taken from Hawsker Bottoms. The blocks are properly oriented with respect to stratigraphy,

Figure 2.7. Example of a manually segmented image of bioturbation in the LSB (block LSB1 shown). Blue – matrix; Yellow – *Rhizocorallium/Planolites*; Green – *Chondrites*; Purple – *Chondrites* penetrating *Rhizocorallium*. Note that no bioturbation was found between 4–7 cm in this sample, as so here, no segmentation was required.

plates, and aluminium oxide powder. The slides were then mounted on glass slides using Epo-Tek resin, and allowed to dry prior to storage. The slides were coated with graphite prior to back-scattered scanning electron microscopy using a Tescan VEGA3 XM Scanning Electron Microscope (SEM) with a colour filtered CL system – at the Leeds electron microscopy and spectroscopy centre (LEMAS), in the School of Earth and Environment (SEE), at the University of Leeds. When counting framboids, I started from the bottom left corner of each slide, and then collected 20 pictures from a left-to right transect, parallel to bedding, with a width of view of 100 – $300 \,\mu\text{m}$. I determined that 20 pictures captured enough framboids for accurate measurement of mean and standard deviation of framboid diameter ($\gg100$ framboids). After each line of 20 images was taken, I moved back to the far left, and moved up 5 mm, to repeat the same data collection for a point 5 mm higher in the stratigraphy. Theoretically, a much higher resolution

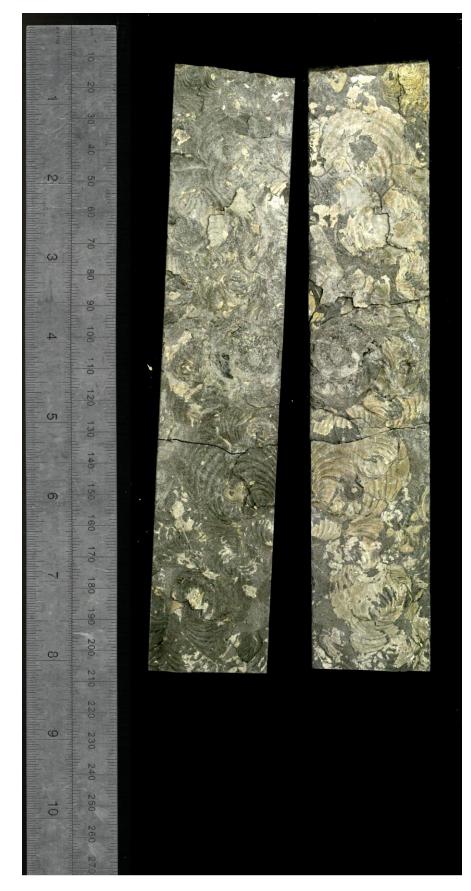
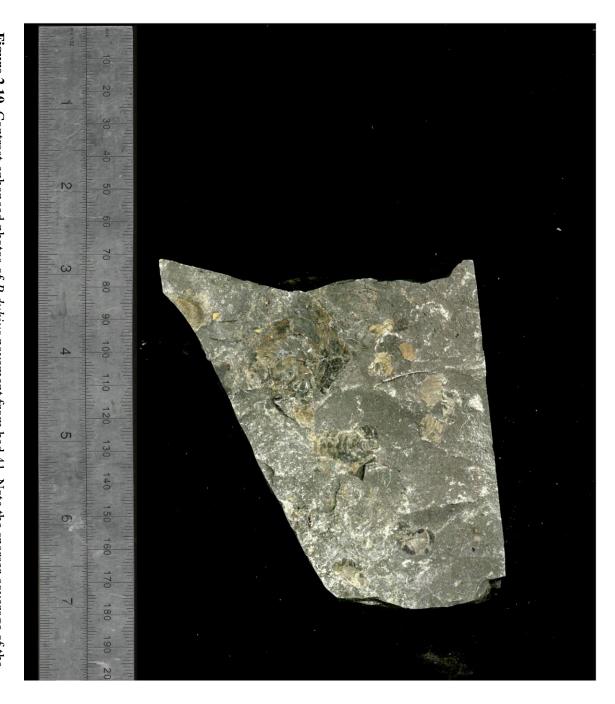



Figure 2.8. Contrast-enhanced photo of *B. radiata* pavement from Bed 32. The total exposed area is approximately 72 cm².

samples from this pavement. and contain less material than Bos32 and Pseud41, and as such I did not generate palynological and biomarker Figure 2.9. Contrast-enhanced photo of *P. dubius* pavement from bed 34. These samples are more fragmented,

pavement surface by shells. While one side of this pavement was marked with a permanent marker (to keep track of way up), the marked area of the pavement surface was not sampled. Figure 2.10. Contrast-enhanced photos of *P.dubius* pavement from bed 41. Note the sparser coverage of the

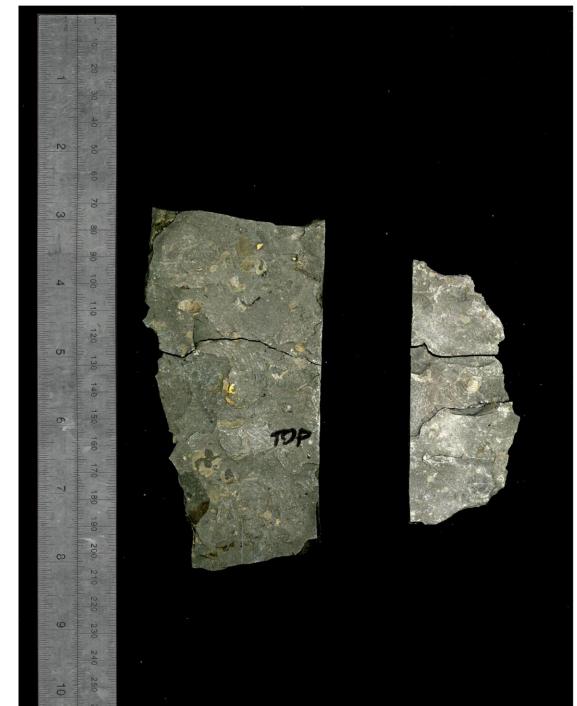
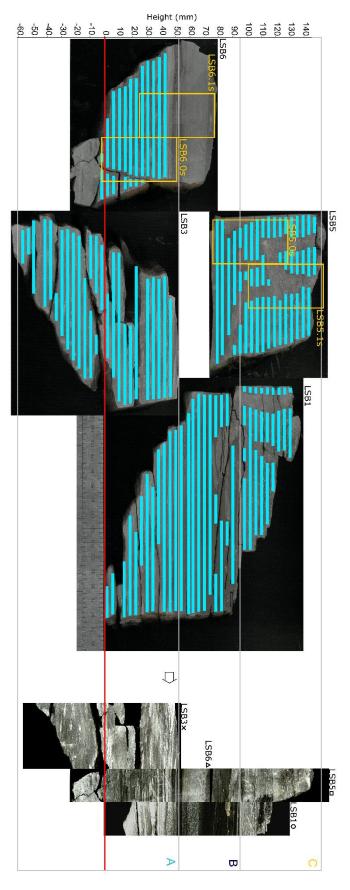


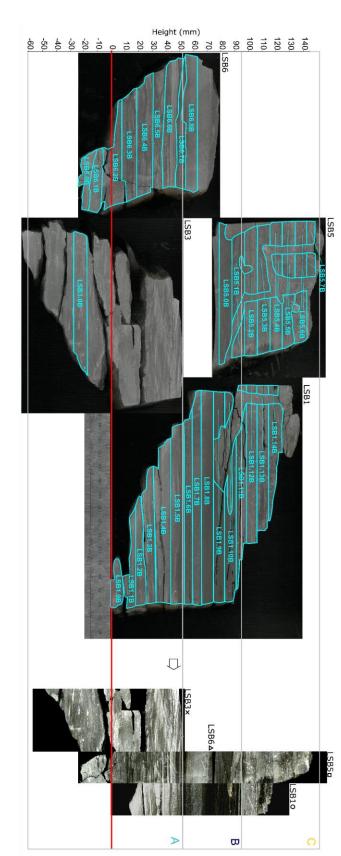
Figure 2.10. continued

study can be achieved (to a minimum of the chosen width of view $-100-300 \ \mu$ m), but 5 mm was chosen so that the framboid and inorganic geochemical data points were at the same resolution. Ten lines were measured from LSB6.0s and LSB6.1s, and 5 lines were measured from LSB5.0s. Three lines were also measured from each shell pavement (on the pavement, and 2 mm above and below). Framboid diameters were measured from the images taken during SEM microscopy, using Fiji ImageJ. Full-colour photomicrographs (300 dpi) of key features of the LSB and shell pavements were also taken, using a camera-mounted desk microscope.


4.0 Powder sampling

To generate the powdered sample needed for the geochemical analysis of the samples (specifically total combustion, Fe-speciation, bulk pyrite extraction, total digest, and Rock-Eval pyrolysis), a Dremel 8100 with a 2 mm wide (although wider 3.5 mm drill bits were often used) diamond-tipped bit was drawn along a fresh surface, on LSB1, 3, 5 and 6, in straight, beddingparallel lines, with an interval of ~0.5 cm (and along *Rhizocorallium* trace fossils from LSB1 and LSB2; Figs. 2.6-7). For the shell pavements, samples were taken from the pavement surface (using the side of the drill bit), and bedding-parallel lines 2 mm above and below the pavement were also sampled. Given the discrete, stratigraphically constrained nature of the pavements, and the fact that the enclosing sediments have been very well-characterised geochemically (Pearce et al., 2008; McArthur et al., 2008; French et al., 2014; Thibault et al., 2018), it was determined that three samples from each pavement (directly below, concomitant, and directly above) was sufficient to capture all of the noteworthy variability across the shell pavement. Fig. 2.11 shows an example of a sampled block of the LSB, whereas Fig. 2.12 shows the locations of each sample, and Fig. 2.13 shows the locations of each of the Rhizocorallium samples. Powder weights required for the various analyses are presented in Table 2.1. The resulting powder from the drill lines was transferred using clean paper to a glass vial for inorganic geochemical analysis, and aluminium foil for organic geochemical analysis. For some areas of the samples, avoiding the fine, and highly abundant Chondrites trace fossils was essentially impossible. The powders generated from these sections are therefore highly suspected to be bearing a mixed signal of matrix and trace fossil chemistry. Drilling at finer width and spacing generates a higher detail proxy record, however, greater depth is required to yield enough sample for the geochemical analyses (required sample weights presented in Table 2.1), and therefore, there is a risk of drilling

53


example of the glass vials used for powder storage is also included. Figure 2.11. LSB3 being sampled for high-resolution (sample spacing ~0.5 cm) geochemical analysis, with a Dremal 8100. An

thin sections (and their codes) are also included. of the high-resolution geochemical samples indicated with blue lines (sample codes omitted for clarity). The locations of the uncovered Figure 2.12. Scans of block of the LSB, oriented such that their stratigraphic heights are in agreement (as in Fig. 2.6), with the locations

with orange lines (sample codes included). Figure 2.13. Scans of LSB1 and LSB2, with the locations of the geochemical samples of the *Rhizocorallium* burrows indicated

(as in Fig. 2.6), with the locations – and corresponding sample codes – of the TLE samples indicated with blue boxes. Figure 2.14. Scans of block of the LSB taken from Hawsker Bottoms, oriented such that their stratigraphic heights are in agreement

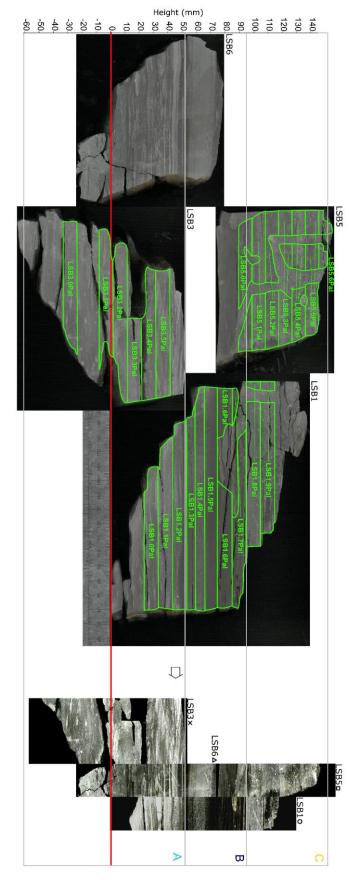
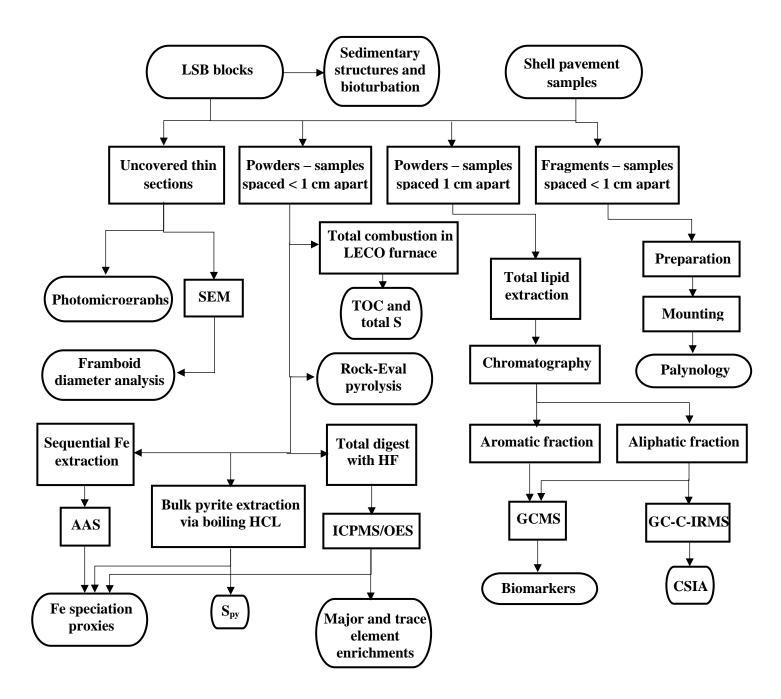


Fig. 2.6), with the locations – and corresponding sample codes – of the palynology samples indicated with green boxes. Figure 2.15. Scans of block of the LSB taken from Hawsker Bottoms, oriented such that their stratigraphic heights are in agreement (as in

into an unseen trace fossil – leading to an averaged geochemical proxy signal, and hence, inaccurate results. At wider spacing and line width, a greater volume of sample can be generated from a given depth, and large trace fossils can more easily be avoided. However, for greater line widths and spacing, resolution of the resulting geochemical records decreases. A line width of 2 mm, with a spacing of 4 mm was used, to strike a fair balance between resolution, accuracy, and sample volume. The LSB samples were coded according to what block of the LSB they were taken from, and then numbered from zero, with zero being the lowest stratigraphically and the highest number being the highest (e.g. LSB1.17 – the 18th sample from the block coded LSB1). The shell pavement samples were coded according to the characteristic genus of the pavement, the bed number, and were numbered from one, with one being the lowest – stratigraphically – and three being the highest (e.g. Pseud34.3 – the 3rd sample [+2 mm] from the *P. dubius* pavement from bed 34).

Given the variable TOC content of the samples (0.185-8.36 wt.%), the sampling procedure employed for the total combustion, Fe-speciation, bulk pyrite extraction, total digest, and Rock-Eval pyrolysis analyses, could not be used for the total lipid extract (TLE) analysis. For an efficient TLE, at least 6.67g of sample (TOC 3.0 wt.%) is needed (Table 2.1). This placed a constraint on the vertical resolution of the required samples of about 1 cm, although due to extensive fracturing in some of the sample blocks, smaller samples were sometimes taken. Rather than running a straight bit along the rock surface, a diamond-coated cutting wheel was instead attached to the Dremel, and ~1 cm wide tiles of rock extracted. The locations of these tiles with respect to the LSB blocks is shown in Fig. 2.14. These were then crushed into a fine powder by hand in a mortar and pestle. In the case of the shell pavements, the higher required sample weight meant that only Bos32 and Pseud41 could be sampled (Pseud34 was too small to be accurately sampled). The greater sample weight also affected the vertical resolution of the biomarker samples -1 cm thick tiles were taken 5 mm below, and 5 mm above the shell pavement. The sample concomitant with the shell pavement itself could be generated the same way as for the high-resolution analyses, although more of the pavement surfaces needed to be powdered. To minimise contamination from organic matter, all the sampling implements were cleaned thoroughly with a 2:1 mix of dichloromethane (DCM) and methanol. The resulting powders were then transferred, using aluminium foil, to glass vials that had been sterilised by baking at 450°C overnight. These samples were then coded in the same manner as the thinly-spaced samples, but with the suffix "B" (for biomarker; e.g. LSB6.2B – the 3rd biomarker sample from the block coded LSB6, and Bos32.2B – the 2nd biomarker sample from the *B.radiata* pavement in bed 32).


59

5.0 Palynofacies analysis

In an identical manner to the sampling for the TLE, ~1 cm thick tiles of sample were collected from the LSB and shell pavements, but were then crushed into pea-sized fragments (see Fig. 2.15 for the locations of these tiles with respect to the LSB blocks). This was achieved by wrapping the tile in aluminium foil and hammering until sufficiently crushed. Again, Pseud34 contained insufficient material, and only Bos32 and Pseud41 were sampled (at 5 mm-scale resolution). These samples were then coded in the same manner as the geochemical samples, but with the suffix "Pal" (for palynology; e.g. LSB5.5Pal – the 6th palynology sample from the block coded LSB5, and Pseud41.1Pal – the 1st palynology sample from the *P.dubius* pavement from bed 41). The samples were then transferred to clean glass vials, and shipped to the headquarters of the British Geological Survey (BGS) – at Keyworth, near Nottingham, UK – for palynological preparation.Carbonate and silicate removal of the samples was then carried out by Max Page at BGS. This involved testing the reactivity of the samples with a few drops of 37% hydrochloric acid (HCl), which was very weak for the majority of the samples.

Analysis technique	Typical weights required for
	analysis
Plynolological preparation	20g
TOC and total S via combustion in LECO furnace	1.3 g (1.0g decarbonated + 0.3g
	original)
Sequential Fe extraction	0.07 – 0.1g
Bulk pyrite extraction	0.1g
Total digest	0.10 – 0.12g
Rock-Eval pyrolysis	0.7g
Total lipid extraction (TLE)	6.67g (at 3.0 wt.% TOC)

Table 2.1 Required sample weights for the analyses techniques employed in this project. Note how palynological perpetration and total lipid extraction require about an order of magnitude more sample than the other (mostly inorganic) geochemical techniques.

Figure 2.16. Flowchart detailing how samples were treated, what analysis methods were used, and what proxies were derived from the samples during the project.

For all samples that showed a reaction, 50 mL of RO water, plus 20 mL of 37% HCl was added, and the reaction flask was then swirled 3 to 4 times with 1 hour intervals, before being left overnight. This was repeated until further reaction ceased. After dilution, settling, and supernatant decantation of all samples, Max Page then added enough 40% hydrofluoric acid (HF; with full PPE and safety precautions in place) to cover the samples to a depth of 5-6 cm. The samples were

left to react with the HF for two days, and were swirled twice daily. After this, the supernatant was carefully decanted onto sodium carbonate (Na₂CO₃), and the sample was then diluted and allowed to settle. This process was repeated until no further reaction with the Na₂CO₃ occurred. The samples were then stored in RO water until I arrived at BGS Keyworth to perform the remaining steps of the preparation. I then filtered the samples (suspensions of organic matter at this point) using 10µm nylon mesh and an excess of RO water. Following filtration, the organic material was then transferred to glass vials, which are stored at the BGS HQ. A small amount of each sample was then pipetted onto glass slides, along with 2-3 drops of polyvinyl alcohol for decoagulation (thoroughly stirred prior to application), and allowed to dry overnight. The following day, cover slips were mounted to the slides using Elvacite resin. The slides were then labelled appropriately and were shipped to SEE for optical microscopy.

6.0 Geochemical analyses

A wide variety of geochemical procedures was applied to the samples, and a flowchart presenting these is shown in Fig. 2.16. For all geochemical procedures except the TLE, intra-sample variability was checked by analysing LSB1.17, LSB3.22, LSB5.1, or Bos32.1 in triplicate.

6.1 TOC via total combustion in a LECO furnace

Finely powered samples (weighing approximately 1.0g each) were decarbonated with an excess of 10% HCl for 24 hours prior to being rinsed 4-5 times with deionised water. The wet samples were then dried in an oven at 60°C for 48 hours. After reweighing of samples to quantify mass loss, ~0.3 g of each was transferred to ceramic crucibles and combusted in a LECO SC-144DR Carbon/Sulphur analyser at the Cohen Laboratories, in SEE, at the University of Leeds, and %C was measured. Unless otherwise stated, I carried out all the analyses in this project, and where I did not carry out the analysis, I will mention the name of the person who did. Additional finely powdered samples were combusted via the LECO, without first being decarbonated, in order to evaluate %C (total) and %S. TOC was then calculated by multiplying %C from the decarbonated run with the appropriate mass loss coefficient. In addition to the three repeats, a standard derived

from Brush Creek Shale (USGS SBC-1) was included in the runs. High C soil and ZnS calibration standards (part numbers 502-814 and 502-085, respectively), were also included (~0.05, 0.1, 0.2, 0.3, and 0.4g). Ninety-five percent confidence intervals were 2.0 - 2.95 wt.%, and 0.95 - 6 wt.% for TOC and TIC (respectively) via LECO, with Total C and TIC deviating from the Bush Creek standard (SBC-1) by 0.29 - 0.86 wt.%, and 0.14 - 0.15 wt%, respectively (Appendix 3).

6.2 Fe-Speciation

Reactive Fe was extracted (at the University of Leeds Cohen Laboratories) using a version of the Poulton & Canfield (2005) sequential procedure modified for ancient sediments. Fe_{Carb} was extracted from finely powdered samples with a 1M Na-acetate solution, buffered at pH=4.5 with acetic acid: 10 mL of this solution was added to 15mL polypropylene centrifuge tubes, which were already filled with 70-100 mg of the finely powdered sample. Samples were run in batches of 40 at a time, including three repeats of a selected sample, a blank, and a standard derived from the Whitby mudstone (characterisation by Alcott et al., 2020). After 10 mL of the Na-acetate solution was added to the centrifuge tubes, they were placed on a shaker table set at 100rpm and 50° C, for 48 hr. The samples were briefly taken off the shaker table at +6 hr and +24 hr, to vent any evolved CO₂. After 48 hr, the samples were centrifuged at 4000 rpm for 4 min, with 5 mL of the resulting supernatant being retained. A 0.5 mL measure of the supernatant was then added to 9.5 mL of MilliQ water, resulting in a x20 dilution of each sample (including repeats, standards, and blanks), prior to analysis. The remaining undiluted supernatant still in the centrifuge tube was safely disposed of, and any lingering drops carefully knocked out. The above extraction was then repeated with a freshly prepared Na-dithionite (50 g/L) / 0.25 M acetic acid / 0.2 M tri-Na-citrate solution (targeting Fe_{Ox}). This time the samples were shaken at 100 rpm, at room temperature, for 2 hr. Finally (a day later), 10 mL a 0.2 M ammonium oxalate / 0.17 M oxalic acid solution was added to the centrifuge tubes (targeting Fe_{Mag}), prior to placement on the shaker table at 100 rpm, and room temperature, for 6 hr. Six matrix-matched standards of each of the 3 extracting solutions with 0, 1, 3, 5, 7, and 10 ppm of Fe added (1000 ppm $Fe(NO_3)^3$ in 0.5 M NO₃ stock), were also prepared prior to analysis. Analysis of the x20 diluted samples was performed on a Thermo Scientific iCETM 3300 AAS Atomic Absorption Spectrometer (AAS) at the University of Leeds Cohen Laboratories. The previously prepared standard solutions were included in the runs,

for calibration. Any sample registering >11 ppm Fe was discarded, and the original supernatant diluted twice to yield a x400 solution, which was later analysed instead. Ninety-five percent confidence intervals were 0.09 - 0.22 for Fe_{HR}/Fe_T, and 0.01 - 0.05 for Fe_{Py}/Fe_{HR}, with Fe_{Carb}, Fe_{Ox}, Fe_{Mag} and Fe_T deviating from the Whitby Mudstone standard by 0.002 - 0.1 wt.%, 0.001 - 0.01 wt.%, 0.03 - 2.3 wt.%, and 0.07 - 0.11 wt.%, respectively (Appendix 3).

Fe_{Py}, meanwhile, was extracted via reduction with acidified Chromous (II) chloride (after Canfield et al., 1986). At least 0.1 g of the sample was added to a 100 mL, three-necked reaction bulb fitted to a reflux condenser, circulated with a 10°C solution of 20% propylene glycol. A nitrogen gas line was also fed into the reaction bulb to purge oxygen, and the remaining fitting was stoppered off. All fittings were well-coated in high temperature grease to ensure an airtight seal. The exit end of the reflux condenser was fitted to a syringe placed in a test tube filled $\sim 2/3$ full with a $1ML^{-1}$ solution of silver nitrate (AgNO₃). Twelve such setups were run in parallel (in a fume hood), with up to 12 samples being processed in each run. Since this is a bulk extraction methodology, no calibration standard was required. ~8mL of 50% HCl was added to the reaction bulb and was quickly stoppered off, prior to steadily heating the reaction bulb, in order to drive off any acid-volatile-sulphide (AVS) present in the sample into the AgNO₃ trap. In no run was any AVS detected. If a silver chloride precipitate (milky white in colour) was detected in any of the traps, the sample was discarded (to be repeated later), and the reflux column thoroughly washed with deionised water (after turning off the heat). The sample was allowed to reflux with hot 50% HCl for 10 minutes. Then, ~15 mL of a 3.37 M solution of Chromous(II) chloride in 50% HCl was added to the reaction bulb. Again, the stoppered inlet was quickly opened and then closed to do this. For the majority of the samples, a significant volume of silver sulphide (Ag₂S) precipitate appeared in the traps. A 1ML⁻¹ AgNO₃ solution was added in 5 mL increments to the trap if the solution turned dark, to ensure $AgNO_3$ was constantly in excess. Once the solution was clear, the sample was left to reflux with acidified Chromous(II) chloride for 45 min - 1 hr. After this, the traps were disconnected, the heat was turned off, and the reaction bulbs allowed to cool to room temperature prior to disassembly. The solutions containing the Ag₂S precipitate were then passed through a vacuum-filter onto pre-weighed 45 μ m fibreglass filters, and thoroughly rinsed with MilliQ water. After being left for 24-72 hr (or until completely dry), the filters were re-weighed and the mass difference recorded. The original pyrite content of the samples was then calculated stoichiometrically from these values. The Ag₂S precipitate was then carefully transferred to glass vials for storage. The 95% confidence interval of S_{py} was 0.6 - 1.9 wt.%.

6.3 Total digest for major and trace elements

Trace element proxies for sediment accumulation rate (e.g. Zr/Rb; Schneider et al., 1997; Thibault et al., 2018) aid greatly in testing the proposed formation mechanisms in Chapter 1, Section 7.0, and so I subjected the LSB samples to a total digest followed by ICPMS/OES analysis. This was chosen in preference to x-ray fluorescence (XRF) of sample pellets, due to the lower cost, and increased accuracy of concentration values (at the expense of the inability to quantify Si). The finely powdered sample was added to ceramic crucibles (100-120 mg), and ashed overnight in a Carbolite® AAF ashing furnace ($t = 550^{\circ}$ C, ramp = 10 min, dwell = 8 hr), to remove organic and volatile components. The contents of the ceramic crucibles were then transferred into Teflon pots with 5x1mL washes of concentrated 69% nitric acid. 2mL of concentrated, 40% HF was then carefully added to each pot, with full PPE and safety precautions in place. Three to four drops of 70% perchloric acid were added to each pot, before they were left on a hotplate set at 70°C, overnight in a sealed fumehood with scrubbers on. The next day, the dried samples were reconstituted with 2mL of 50g/L boric acid, before being returned to the hotplate, and again, left at 70°C overnight. The dried samples were then reconstituted with another 5x1 mL washes of concentrated 69% nitric acid and heated until fully dissolved. Nitric acid – as opposed to hydrochloric – was chosen for the reconstitution, since the former leads to an interference effect with P (which I did not intend to measure), while the latter leads to an interference effect with V (which I did intend to measure). The samples were then each made up to 100mL, with MQ water, in small volumetric flasks. A 13-15 mL aliquot of this solution was retained for analysis. Four mL of the solution was diluted with 5.9 mL of MQ in 15 mL centrifuge tubes, with 0.1 mL of a 100 ppm Y, 200 ppb Rh internal standard added to each. Major and trace element extracts were analysed on a Thermo Scientific iCAPQc ICP-MS, by Steven Reid, at the University of Leeds Cohen Laboratories. (see Appendix 2 for detailed methodologies - document prepared by Stephen Reid). Ninety-five percent confidence intervals were 0.5 - 0.9wt.% for Al, 0.2 – 1.6 ppm/wt.% for Cu, and 0.0007 – 0.008 ppm/wt.% for Cd (full list in Appendix 3), with deviations from the Bush Creek standard ranging between 0.0002 wt.%/wt.% (K), and 6.3 ppm/wt.% (Zn; Appendix 3).

6.4 Rock-Eval pyrolysis

0.7g of each powdered sample was transferred to a glass vial and analysed using a Rock-Eval6 analyser configured in standard mode (pyrolysis and oxidation as a serial procedure) at BGS in 02/2020, by Dr. Christopher Vane. Samples (60.5 mg /dry wt) were isothermally heated at 300°C (hold for 3 min) to release free hydrocarbons and then heated from 300 to 650°C (hold for 3 min) at 25°C/min to crack non-volatile organic matter (kerogen) in an inert atmosphere of N₂. The residual carbon was then oxidized from 300°C to 850°C at 20°C/min. Hydrocarbons released during the two stage pyrolysis were measured using a flame ionization detector (FID) and CO and CO₂ measured using an IR cell. The instrument performance was checked against the accepted values of the Institut Français du Pétrole (IFP) standard (IFP 160 000, S/N15-081840). Ninety-five percent confidence intervals were 14.8 – 18 for HI, 1.3 – 1.5 for OI, 0.79 – 2.1 °C for T_{max}, and 0.02 – 0.07 wt.% for Inorganic C, with these proxies deviating from the IFP standard by 9 – 10, 1, 2 – 40°C, and 0.13 – 0.14 wt.%, respectively (Appendix 3).

6.5 Biomarker and isotopic analyses

The powdered samples intended for the TLE were shipped to professor Lorenz Schwark at the Christian-Albrecht University of Kiel (Germany). Extraction was carried out using a Büchi Speed Extractor E914 pressurized solvent extractor, with a 93:7 mix of DCM and methanol, at 75°C and at a pressure of 50 bar. Bitumen extracts were separated in an LCTECH automated SPE system into aliphatic, aromatic, and polar fractions via silica gel-column chromatography (6 mL SPE column, 2.8 g Silica 60, 25–40 μ m). Aliphatic hydrocarbons were eluted with n-hexane. Aromatic hydrocarbons were eluted using a 3:2 v/v mixture of n-hexane and DCM. Polar compounds were eluted with a 1:1 v/v mixture of DCM and methanol. Activated copper turnings were added to the aliphatic hydrocarbon fraction for the removal of elemental sulphur. The aliphatic fraction was spiked with two internal standards; A 0.1 mg/g extract of D50 tetracosane (for quantification of acyclic compounds such as n-alkanes and isoprenoids), and a 0.025 mg/g extract of D4 cholestane (for quantification of cyclic compounds such as hopanes and steranes). Similarly, the aromatic fraction was spiked with an internal standard – a 0.1 mg/g extract of D12 pyrene (for quantification of carotenoids and other aromatic biomarkers).

Gas chromatograph mass spectrometry (GCMS) analysis of the aliphatic fraction was carried out on an Agilent 7890 gas chromatograph (GC) coupled to a Chromtech Evolution mass spectrometer (MS), by Lorenz Schwark. The GC was fitted with a DB-1MS capillary column (Agilent DB1-HT; 30 m length, 0.25 mm inner diameter, 0.25 µm film thickness), and helium was used as the carrier gas (flow rate of 1.2 mL/min). Aliphatic hydrocarbons were constituted to a concentration of 1 mg/mL, and 1 μ L was injected by a COMBI PAL liquid autosampler into a split/splitless injector operated in splitless mode at a temperature of 310 °C. The GC oventemperature program used was: a 5-minute isothermal hold at 70°C, followed by a 10°C/min increase to 140 °C, then a 3 °C/min increase to 325 °C, and finally a 15-minuite isothermal hold at 325 °C. The MS was operated in EI mode with an ionization energy of 70 eV and a scanning range from m/z = 50 to m/z = 600. The ion source was maintained at 300 °C and the transfer line at 320 °C. The quadrupole mass spectrometer was operating in full scan mode in the 50 - 750 m/zrange at an energy of 70 eV. GCMS analysis of the aromatic fraction was carried out on an Agilent 7890 GC coupled to an Agilent 5977 quadrupole MS, by Lorenz Schwark. The GC was fitted with a DB-5 capillary column (30 m length, 0.25 mm inner diameter, 0.25 µm film thickness), and helium was used as the carrier gas (flow rate of 1.2 mL/min). Samples were injected splitless at 300 °C. The GC oven-temperature program used was: a 5-minuite isothermal hold at 70 °C, followed by a 10 °C/min increase to 120 °C, then a 3 °C/min increase to 325 °C, and finally a 12-minuite isothermal hold at 325 °C. Integration of peak areas from the resulting chromatograms was carried out both by myself (using the Agilent Chemstation software), and by Lorenz Schwark (using the Agilent Masshunter software), for verification of compound identifications and peak area data.

Following the TLE, the aliphatic fraction was shipped to the National Environmental Isotope Facility (NEIF; Bristol, UK) for compound-specific isotopic analysis via gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). The GC-C-IRMS analysis was conducted using an Agilent Industries 7890A gas chromatograph coupled to an IsoPrime 100 mass spectrometer by Helen Whelton and Ian Bull (at NEIF). Samples were introduced via a split/splitless injector in splitless mode (purge time 2, purge flow 15) onto a 50 m × 0.32 mm fused silica capillary column coated with a HP-1 stationary phase (100% polysiloxane, Agilent, 0.17 μ m). The GC oven temperature program was set to hold at 50 °C for 2 min, followed by a gradient increase to 300 °C at 5 °C min⁻¹ followed by an isothermal hold for 10 min. Helium was used as a carrier gas and maintained at a constant flow of 2 mL min⁻¹. The combustion chamber was maintained at 850°C, and consisted of a quartz tube packed with copper oxide pellets. An external FAME standard mixture (C₁₁, C₁₃, C₁₆, C₂₁, and C₂₃), of known isotopic composition was included in the runs. δ^{13} C values are determined from the 12 C/ 13 C data, as compared with the Vienna Pee Dee Belemnite (VPDB) and calibrated against a CO₂ reference gas of known isotopic composition. Instrument error was \pm 0.3 ‰. Data processing was carried out using Ion Vantage software (version 1.6.1.0 IsoPrime).

Chapter 3 - High-resolution inorganic redox proxy, and Rock-Eval analysis of the Lower Sulphur Band

1.0 Aims

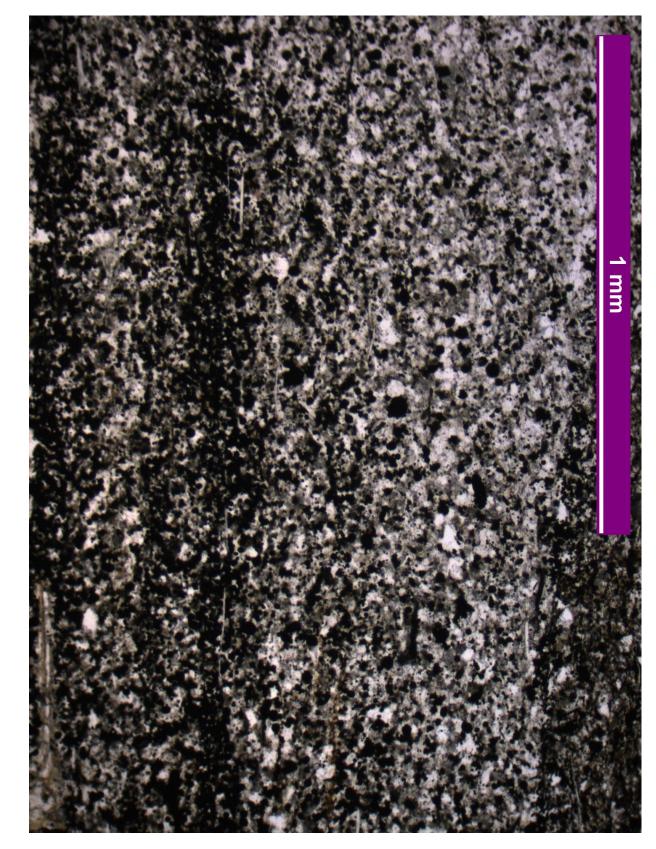
This chapter aims to integrate ichnological (trace fossil), iron speciation, and trace element redox proxies through the LSB, to reconcile the preservation of labile Corg with the presence of bioturbating organisms, and of horizons of silty to fine-grained material (that imply periods of high bottom water energy not typically associated with black shales). Additionally, a combined redox proxy approach is required to better constrain potential pathways for Fe_{HR} enrichment, including trace element, pyrite framboid, and biomarker data. The framboid distribution of the LSB has previously been studied (Wignall & Newton, 1998; Agbi et al., 2015): Wignall & Newton (1998) documented two distinct "populations" of framboid diameters, implying a frequent changes in the redox regime. It is, however, also likely that the larger framboid populations are associated with coarser lithologies from the LSB; previous framboid studies on the LSB have not evaluated changes in the framboid distribution against stratigraphic height on a cm-mm scale, and the present study aims to address this. Here, I address these outstanding questions by employing the high resolution (>1 samples per cm) multiproxy geochemical approach detailed in Chapter 2. This is the most extensive, high-resolution study of a Lower Jurassic black shale to date and reaches the limit of sampling resolution that can be attained without the use of, e.g., XRF scanning equipment.

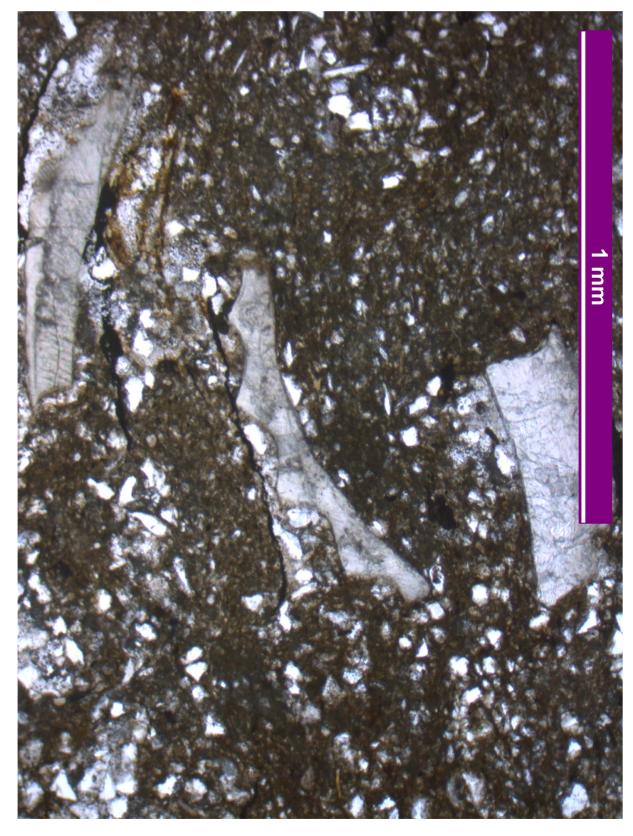
2.0 Results

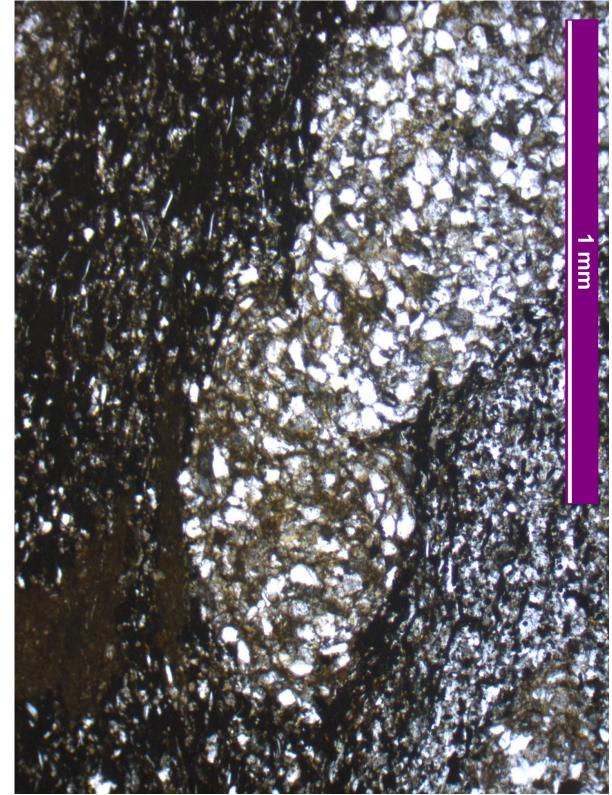
2.1 Lithofacies

Investigation of the LSB in hand specimen revealed three distinct Lithofacies, which were stratigraphically ordered, and are hereafter termed Lithofacies A, B and C (with A being the lowest stratigraphically, and C the highest). Points on cross plots of geochemical data are colour coded with respect to which of these Lithofacies they were taken from (A – teal, B – dark blue, C – yellow). The base of the block of the LSB coded "LSB1" was taken as zero datum. Lithofacies A extends from -66 mm to 52 mm and is characterised by the presence of sedimentary structures indicative of sediment reworking. In the lower 66 mm of this lithofacies, bioturbation exceeds 75%, with relict primary depositional structures visible (see Chapter 2, Fig. 2.6).

Between -10 and 20 mm, bioturbation begins to decline (see 2.2), and this allows for the preservation of ripple-scale sedimentary structures akin to hummocky cross-stratification, that would have otherwise been destroyed. The hummocks are on average ~22 mm long, by ~3 mm deep. The hummocks have sharp bases, and sometimes contain thin (on average ~38 μ m) organic laminae, particularly at the top (Fig. 3.1). Towards the top of Lithofacies A (at ~40 mm), the hummocks give way to wavy, silty units, with a lateral extent of 5-10 mm, and sharp, erosional bases. The thicknesses of these show considerable lateral variability across the LSB, ranging from 7.7 mm in LSB1, to 1.2 mm in LSB3. LSB6 and LSB3 also show a organic-rich 'parting', 4 mm wide at ~48 mm. Thinner organic-rich partings occur intermittently in these units, with thicknesses of 40 μ m to 1.72 mm. Viewing the silty units under cross-polarised light (Fig. 3.8) reveals that the sediment is texturally mature, composed of subangular, well-sorted, very fine quartz grains (~90%), with minor muscovite (5%), plagioclase feldspar (3%), and glauconite (~1%), without significant contribution from lithic fragments. This is consistent with a continental sediment source (Dickinson, 1988).

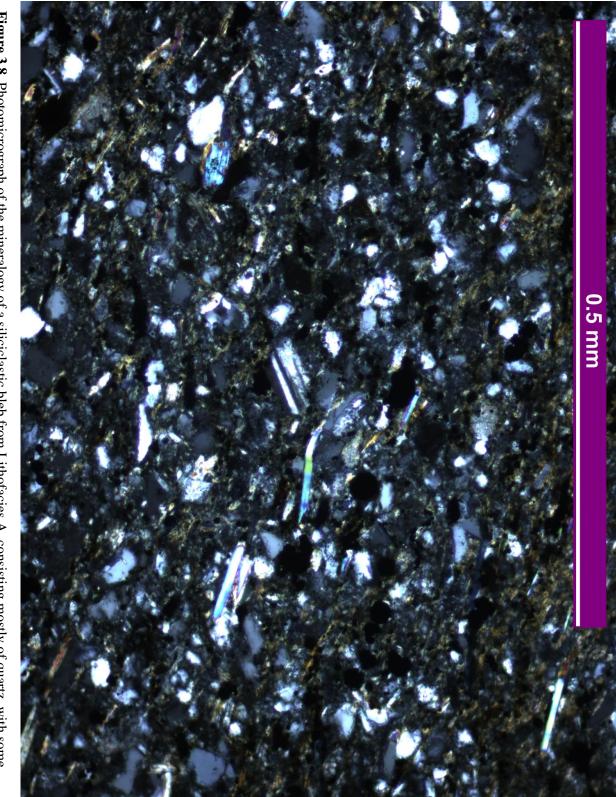




Fig. 2.12). Note the presence of thin C_{org} -containing laminae near the top of the predominantly silty bedform. Figure 3.1. Photomicrograph of Hummocky Cross-Stratification from Lithofacies A. From slide number LSB6.0s (see Chapter 2,

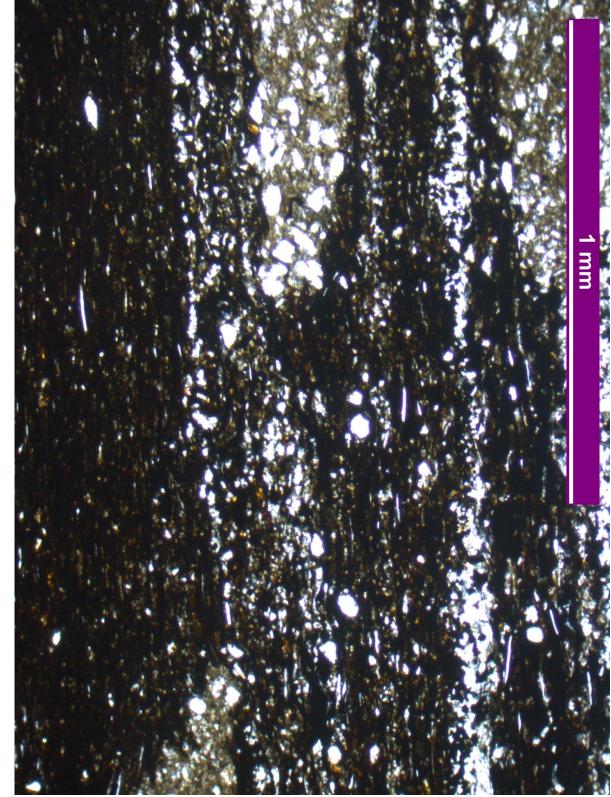

Chapter 2, Fig. 2.12). Figure 3.2. Photomicrograph of thin silty laminae in the uppermost, TOC-rich part of Lithofacies A. From slide number LSB6.0s (see

spots). From slide number LSB6.1s (see Chapter 2, Fig. 2.12). Figure 3.3. Photomicrograph of the large silty lens in the lower part of Lithofacies B, containing "lags" of pyrite framboids (small dark


number LSB5.0s (see Chapter 2, Fig. 2.12). Figure 3.4. Photomicrograph of shell fragments included in the burrow fill of a *Rhizocorallium* trace from Lithofacies C. From slide


of burrowing. From slide number LSB5.0s (see Chapter 2, Fig. 2.12). Figure 3.5. Photomicrograph of one *Chondrites* traces cutting across another, indicating the presence of at least two generations

generation of Chondrites. From slide number LSB5.0s (see Chapter 2, Fig. 2.12). Burrows are highlighted with the pistachio green lines. Figure 3.6. Photomicrographs of a Rhizocorallium burrow cutting across a Chondrites burrow, which is in turn, overprinted with a later


3.19). From slide number LSB5.0s (see Chapter 2, Fig. 2.12). blebs of organic matter (this point corresponds with the highest production index (PI; see section 2.6) value of the section – see Fig. Figure 3.7. Photomicrograph of a Chondrites burrow in the lowest part of lithofacies C, enclosed by sediment composed of large

minor plagioclase and mica (cross-polorised light). From slide number LSB6.0s (see Chapter 2, Fig. 2.12). Figure 3.8. Photomicrograph of the mineralogy of a siliciclastic bleb from Lithofacies A, consisting mostly of quartz, with some

organic matter in the former, and the lack of framboids in the latter). From slide number LSB5.0s (see Chapter 2, Fig. 2.12). Figure 3.9. Photomicrograph of *Chondrites* penetrating both organic-rich sediment, and siliciclastic sediment (note the presence of

of the lithofacies, where some mm-scale siliciclastic laminae are preserved. From slide number LSB5.0s (see Chapter 2, Fig. 2.12). Figure 3.10. Photomicrograph of *Chondrites* burrows penetrating the organic-rich sediments of Lithofacies B – this is from near the top

At 52 mm, the complex sedimentary architecture of Lithofacies A abruptly gives way to the organic-rich, laminated, Lithofacies B. This interval extends from 52 mm to 94 mm and is devoid of primary bioturbation – the only traces present penetrate from the more intensely bioturbated Lithofacies C above (see 2.2). The lamination is a result of platy clay mineral and organic matter deposition, with no rhythmic lamination present. In thin section, the organic matter is visible as elongate, platy blebs 14.4 µm wide by 79.3 µm long (see Fig. 3.10), with minor (<5%) siliciclastic grains. At 60 mm, this Lithofacies is abruptly cut by a silty lens, with a sharp, erosional base. Like in the preceding Lithofacies, the thickness of this lens varies (from 13 mm in LSB1, to 18 mm in LSB6), but unlike its older counterparts, displays few, if any, organic-rich partings (no thicker than 0.68 mm when present). It also contains abundant pyrite framboids that sometimes form dense accumulations (composing up to \sim 50% of the sediment; see photomicrograph in Fig. 3.3) $\sim 200 \,\mu m$ thick. In the uppermost 2 mm of this Lithofacies (as bioturbation intensity begins to recover), very thin (0.27 - 0.50 mm thick) silty laminae are visible (Fig. 3.2). They are continuous across both LSB1 and LSB5, and their thicknesses show very little lateral variability (although they are anastomosing). Between these thin laminae, the organic matter forms large (139 µm) anisotropic blebs in thin section (Fig. 3.7).

Lithofacies C extends from 94 mm to 145 mm and is characterised by its abundance of *Chondrites* traces (further discussed in 3.2). In between the traces, some primary depositional structures are present: the matrix remains organic-rich, with two further silty units observed at 103 mm (9.34 - 13.1 mm thick), and at 120 mm (4.98 - 5.31 mm thick). These contain frequent, very thin (less than 0.21 mm thick) organic-rich partings. Above 130 mm, the sheer intensity of bioturbation makes investigation of depositional features difficult, but some patches of organic-rich sediment are still visible, particularly in thin section.

2.2 Bioturbation and macrofossils


Trace fossils identified in the LSB (*Chrondrites*, *Rhizocorallium*, *Zoophycos and Planolites*) are either clearly visible as light silty patches against the dark rock matrix (Figs. 2.6; 3.5, 3.6; 3.9; 3.10), or discernable only by disruption of the sedimentary fabric. Table 3.1 shows the disgnostic criteria used to identify the various trace fossils, along with their distribution throughout Lithofacies A, B and C. The *Chondrites* traces are limited almost exclusively to the upper 5 cm of

Trace fossil	Diagnostic criteria	Distribution through LSB
Chondrites	A high density of thin,	High density in Lithofacies C,
	circular to semicircular	with possible occurrences in
	burrows, that form a	Lithofacies A.
	branching network in three	
	dimensions	
Rhizocorallium	A wide, equilibrichnia-style	Frequent in Lithofacies C,
	burrow, with a sharp turn (as	penetrating down into
	opposed to the straight	Lithofacies B.
	equilibrichnia-style burrow	
	of Diplocraterion.	
Zoophycos	An inclined burrow, with a	Rare occurrences restricted to
	layered internal texture.	Lithofacies A.
	Forms a spiraling conical	
	structure in three dimensions.	
Planolites	An isolated thin, circular to	Rare occurrences restricted to
	semicircular burrow.	Lithofacies A.

Table 3.1. Diagnostic criteria and distribution of trace fossils identified in the LSB.

the LSB and are the defining feature of Lithofacies C. *Rhizocorallium* penetrates further down the section than *Chondrites* (down to 84 mm; Fig. 3.16), but never reaches the abundance that *Chondrites* shows in the upper 5 cm (up to ~30.8%). The *Chondrites* burrows are on average 1.5 mm in diameter, with the *Rhizocorallium* burrows showing an average diameter of 8 mm. The *Chondrites* burrows are not circular in cross-section when viewed end-on, indicating that post-depositional compaction has taken place. The average horizontal width of the *Chondrites* burrows is 1.5 mm, and the average vertical width is 0.75 mm.

In the lower 60 mm of the sampled interval (i.e. the lower part of Lithofacies A), bioturbation of the sediment varies between 71% and 94% (Fig. 3.16). Occasional *Zoophycos*, isolated *Planolites*, and possible *Chondrites* are preserved within this interval. However, between 0 mm and 20 mm, total bioturbation intensity drops from 80% to around 10%. Bioturbation intensity continues to

a small Pseudopecten. Figure 3.11. A fossiliferous assemblage from the very top of Lithofacies C ca. 145 mm. Ribbed shell indicated by the white arrow is

Figure 3.12. A small external mould of *P. dubius* (10 mm in diameter), from 52 mm. This is near the top of Lithofacies A. The sediment here is characterised by a lack of bioturbation, and the preservation of HCS.

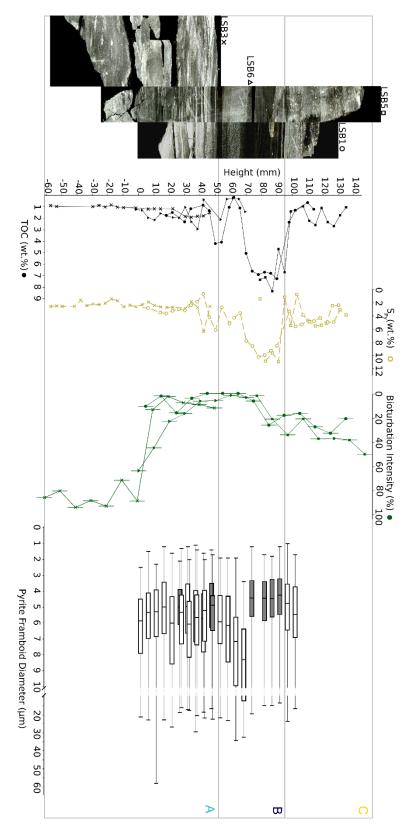
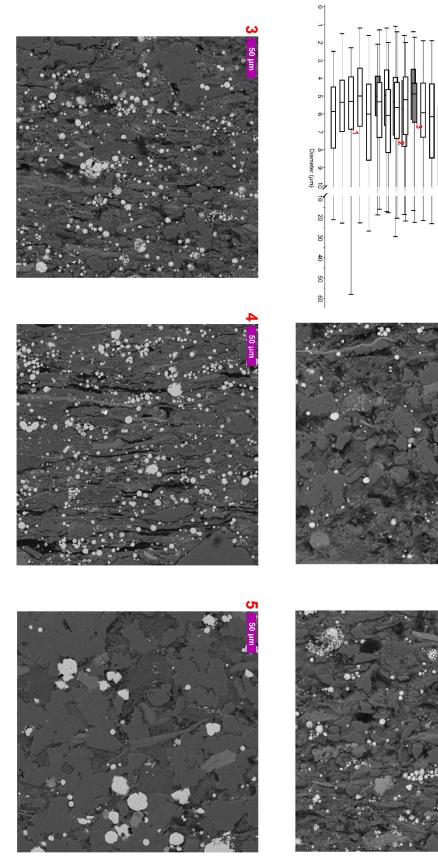

Figure 3.13. Three P. dubius fossils from Lithofacies A (-58 mm), with little compaction discernible.

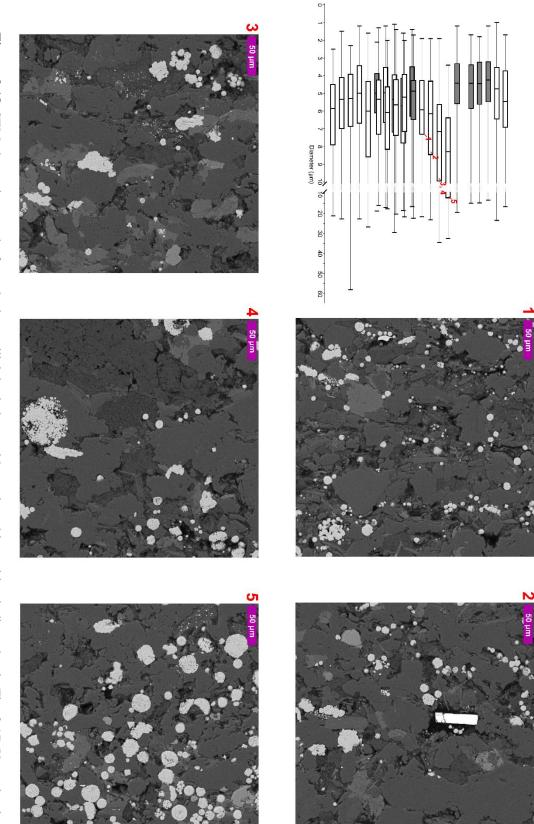
Figure 3.14. Two belemnite rostra found at 145 mm (upper part of lithofacies C).

the top of the image).

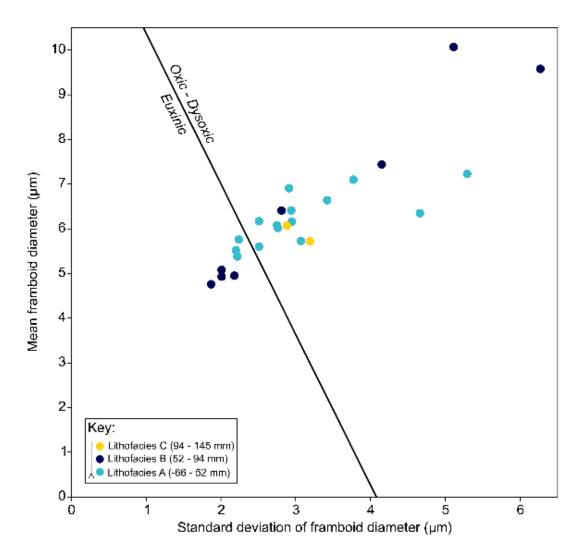
of scanned photos of the LSB (enhanced contrast and with block codes) is also included. Circles indicate data taken from LSB1, with the colours of the data points in Figs. 3.4, 3.8, 3.12, 3.21, 3.22, 3.23 and 3.25 crosses from LSB3, squares from LSB5, and triangles from LSB6. The vertical bars on the bioturbation plot indicate that the data 2.1 & Fig. 3), and box-and-whisker plots of pyrite framboid diameters (arranged by stratigraphic height) of the LSB. A photomosaic the Wilkins plot (Fig. 3.19). Lithofacies A, B and C are indicated by the large grey boxes, with colour-coded letters corresponding point is an average over 10.0 mm. Dark boxes indicate pyrite framboid data that plot to the left of the euxinic/oxic-anoxic boundary in Figure 3.16. TOC, pyrite Sulphur (S_{py}; included in all plots but see 4.3), bioturbation intensity (by percentage cross-sectional area; see gently decline, reaching a minimum of 0-3% at ~60 mm. Essentially all bioturbation in this interval is composed of *Rhizocorallium* traces. From ~65 mm to the top of the section (i.e. from the middle of Lithofacies B, through Lithofacies C), bioturbation intensity increases precipitously (at an average of 6% per cm), to a maximum of 50%. This is driven predominantly by *Chondrites*, although *Rhizocorallium* traces are present within this interval as well. Slight deviations from the upward trend are seen at 104 mm, and at 134 mm (both by ~20%). These decreases correspond with the two silty horizons. The occasional interpenetration of *Chondrites* traces are also found penetrating *Rhizocorallium* traces (Fig. 3.6). Traces within this interval are generally light grey in colour, although some brown staining is visible in some of the burrows.


An isolated *Pseudomytiloides dubius* fossil, 1.0 cm in maximum shell length, was found at 52 mm (Fig. 3.12). Three other *P. dubius* fossils 1.2 cm, 1.1 cm and 0.4 cm in maximum shell length were also found at -58 mm (Fig. 3.13). No other macrofossils were found until 143 mm, where the fabric becomes dominated by shell fragments, and small *Pseudopecten* (Fig. 3.11). Two belemnite rostra (Fig. 3.14), and a large shell fragment (probably belonging to *Pseudopecten* sp.), were also found at this interval (Fig. 3.15).

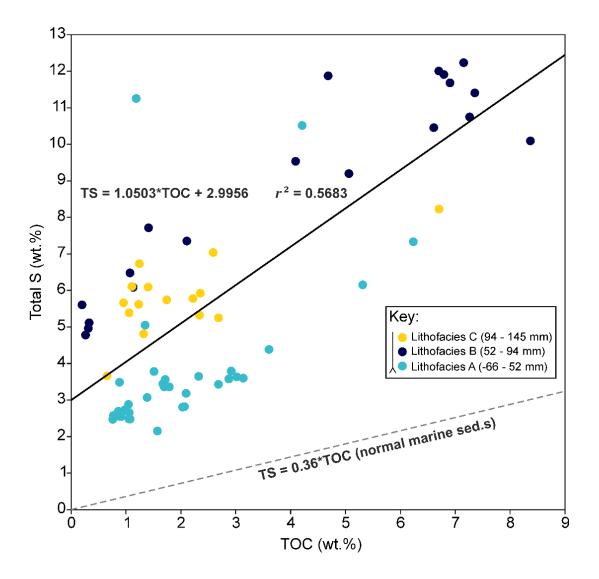
2.3 Pyrite framboids


The most common pyrite framboids in the LSB are composed of uniformly sized microcrysts, closely packed into spherical aggregations, with rarer examples of less densely packed aggregations ("Type 1" and "Type 2" framboids of Wignall & Newton [1998], respectively; Fig. 3.17; proportions of each type were not measured). Occasionally, poly-framboids (usually aggregations of Type 1 framboids) are observed (e.g. Fig. 3.18, SEM photomicrograph 4).

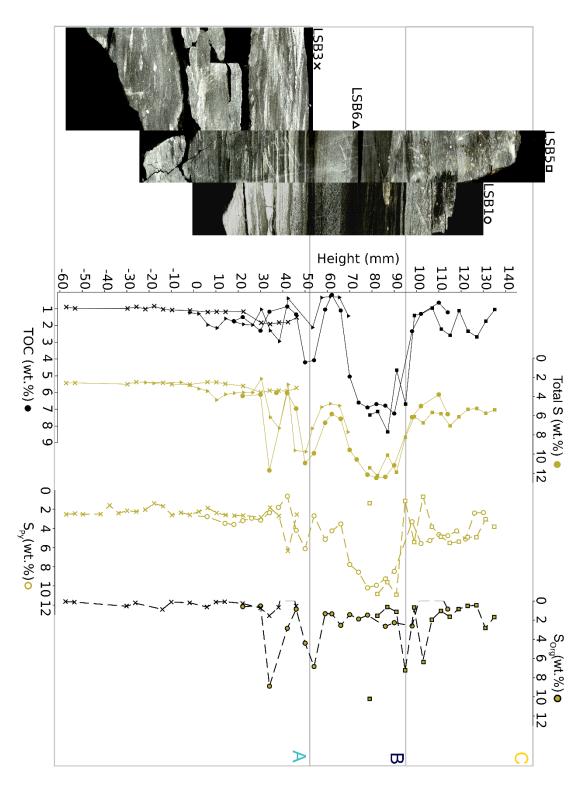
Euhedral, non-framboidal pyrite crysts ~0.5-10 μ m in diameter were also found, sometimes forming irregular, framboid-sized accumulations. The pyrite framboids are often composed of these euhedral microcrysts (Fig. 3.18, SEM photomicrograph 1). It is assumed that these framboids were diagenetically recrystallised, and their diameters are therefore not included in the plots. The silty intervals often contain large grains of heavy minerals, sometimes with euhedral form (see Fig. 3.18, SEM photomicrograph 2). Small (<10 μ m) framboids and euhedral


and other heavy minerals are much brighter than the surrounding, less dense matrix. From slide numbers LSB6.0s, LSB6.1s and LSB5.0s (see Chapter 2, Fig. 2.12) in all images is right to left. Photomicrograph 1 is stratigraphically lowest, and photomicrograph 5 is stratigraphically highest. Framboids Figure 3.17. SEM photomicrographs of the LSB, with positions in the plot of pyrite framboid diameters from Fig. 3.16 indicated. Younging

N



number LSB6.1s (see Chapter 2, Fig. 2.12) all images is right to left. Photomicrograph 1 is stratigraphically lowest, and photomicrograph 5 is stratigraphically highest. From slide Figure 3.18. SEM photomicrographs from the large siliciclastic lens, with stratigraphic position indicated as in Fig. 3.17. Younging in


Figure 3.19. Wilkins plot comparing the mean and standard deviation of framboid diameters through the LSB. The regression line (after Wilkin *et al.*, 1996) separates conditions characterised by the growth of pyrite framboids in the sediment (on the right), and in a sulphidic water column (on the left).

microcrysts sometimes occur in lags and irregular accumulations of a variety of sizes especially in the lower part of the silty lens at 62 mm (Fig. 3.3). No siderite rhombs overgrowing pyrite framboids are found in the LSB – this contrasts with evidence of such overgrowth in the LSB from Kettleness, 14.7 km to the NW of Hawsker Bottoms (Newton, 2001). In the lower, intensely bioturbated part of Lithofacies A, pyrite framboids are infrequent, and show a wide

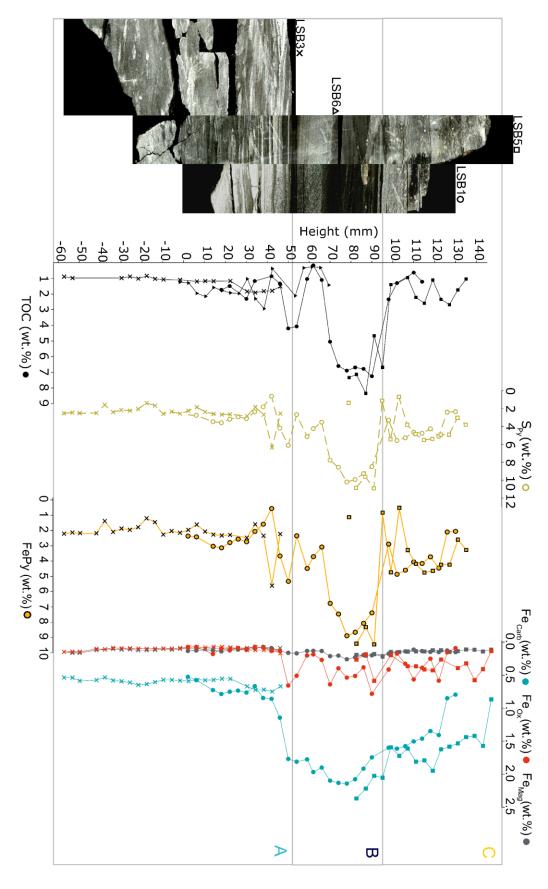
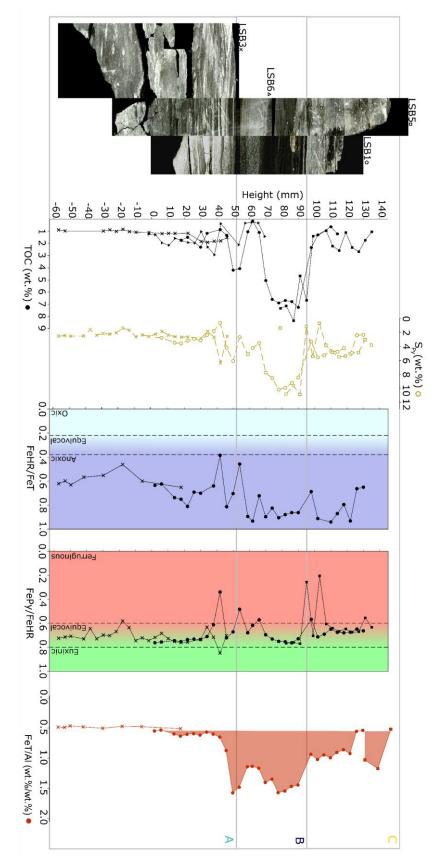
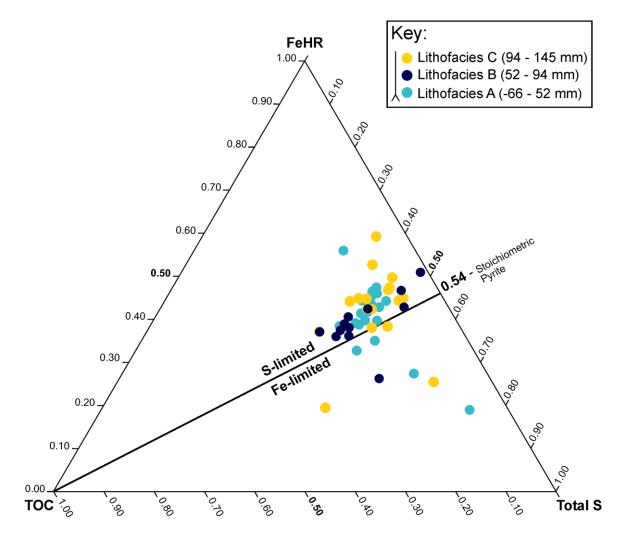


Figure 3.20. Cross-plot of TOC and TS, with least-squares regression line displayed (and corresponding R^2). Normal marine regression line is taken from Berner (1984).


range of sizes (median $5.29 - 5.86 \mu m$). In the upper part of Lithofacies A (characterised by HCS and silty units) the distribution of pyrite framboid diameters varies more widely, with the median size ranging from $4.79 - 6.10 \mu m$ (Fig. 3.16). Three samples from this interval plot in the euxinic field of the Wilkins plot (Fig. 3.19) – these are within the thin, organic-rich partings between the HCS and silty lenses (the latter showing comparatively higher median and maximum framboid diameters). The 13 - 18 mm wide silty lens at the base of Lithofacies B shows a coarsening-upward trend in pyrite framboid diameters (Figs. 3.16 and


between Total S and S_{py} (but see 4.3 for a critique of this method). Figure 3.21. S_{py} and organic-matter hosted sulphur S_{org} of the LSB, with TOC and total S included. S_{org} is defined as the difference

phases, Fe (oxyhydr)oxides, and magnetite, respectively (see Chapter 1, section 9.1.4). Figure 3.22. Fe_{Py}, Fe_{Carb}, Fe_{Ox}, and Fe_{Mag} of the LSB. These operationally defined reactive Fe pools roughly correspond with Fe-carbonate

Wedepohl (1971; 2004). indicated with dashed vertical lines, and background colour. Shaded areas indicate enrichment relative to the standard shale value of Anoxic, and Ferruginous-Equivocal-Anoxic fields of Anderson & Raiswell (2004), Poulton & Canfield (2011) and Poulton (2021), towards sulphide (Chapter 1, section 9.1.4), and Fe_{Py}/Fe_{HR} is the proportion of this Fe that is in pyrite. Thresholds for the Oxic-Equivocal-Figure 3.23.Fe_{HR}/Fe_T, Fe_{Py}/Fe_{HR} and Fe_T/Al of the LSB. Recall that Fe_{HR}/Fe_T is the proportion of sedimentray Fe that is highly reactive

Figure 3.24. Ternary plot comparing TOC, TS and Fe_{HR} for the LSB, with the regression line for stoichiometric pyrite indicated. Note that in the S-limited zone, S is assumed to be derived from sulphate reduction in anoxic sediments (see text).

3.18), with the median diameter increasing from 5.95 μ m at the base, to 8.34 μ m at the top. The 1st and 3rd quartiles of framboid width also increase through this interval from 4.27 μ m to 6.38 μ m, and from 7.30 μ m to 12.1 μ m, respectively (i.e. the interquartile range of framboid diameters increase from 3.03 μ m to 5.73 μ m). At 73 mm, the median framboid diameter sharply drops to ~4 μ m, and remains relativity constant for the rest of Lithofacies B. All four samples that record this trend plot in the euxinic field of the Wilkins plot (Fig. 3.19). In the lower part of Lithofacies C, the median framboid diameter begins to increase, up to 5.56 μ m at 102 mm (Fig. 3.16).

2.4 Sulphur-iron systematics

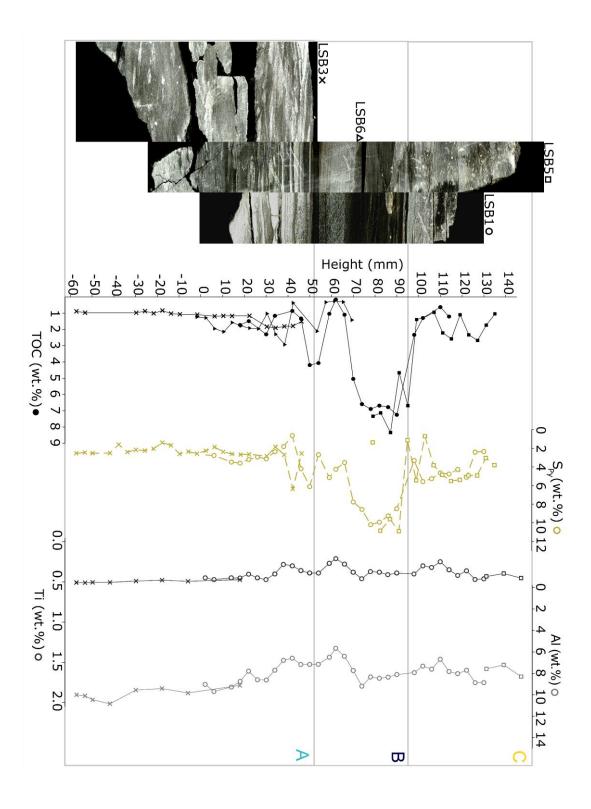
Total S (TS, as determined by combustion) mostly varies as a function of TOC, excepting slight lateral heterogeneity in the upper part of Lithofacies A, and a smoother excursion in the upper part of Lithofacies B (Fig. 3.16).

The S_{py} trend broadly tracks both TOC and TS. S_{py} remains at a background level of 2.62 wt.% up to 42.0 mm, where it reaches 6.33 wt.%. S_{py} then varies between 0.65 – 6.33 wt.% until 70.0 mm, where it increases to 7.77 wt.%, giving a "stepped" appearance to the S_{py} profile (Fig. 3.21). After reaching a maximum of 10.7 wt.% at 91.0 mm – in Lithofacies B – S_{py} abruptly drops at 94.0 mm (the upper boundary of Lithofacies B), varying between 0.64 – 5.41 wt.% for the rest of the section.

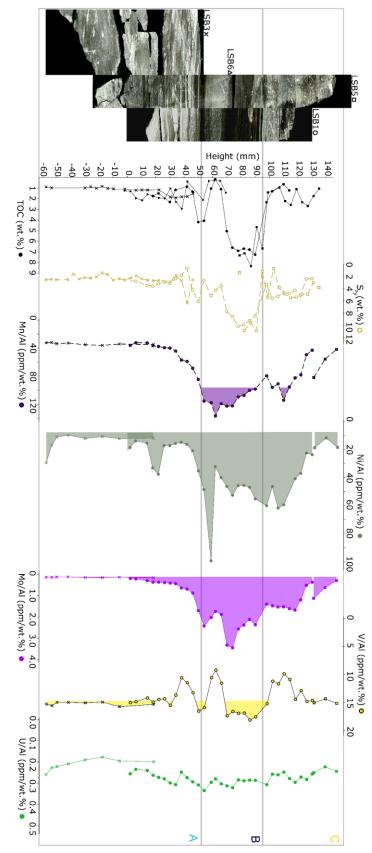
Organic-matter hosted Sulphur (S_{org}) can be defined as the difference between Total S and S_{py} (Tribovillard *et al.*, 2019; but see 4.3). For most of the LSB, S_{org} values are constant, and at background level (around 0.34 wt.%; Fig. 3.21). However, significant deviations from this trend occur between 30-60 mm, and again between 90-110 mm. In both intervals, a bimodal peak in S_{org} occurs, reaching a maximum value of 8.88 wt.% at 34 mm, and 7.15 wt.% at 94 mm. The first of these intervals of S_{org} enrichment occurs in the upper part of Lithofacies A, where HCS is present and undisturbed by bioturbation, and where TOC ranges between 0.881 – 6.71 wt.%. The second of the S_{org} enrichment intervals occurs at the base of Lithofacies C, where TOC abruptly drops from 7.35 wt.% to 1.52 wt.%, and *Chondrites* traces start to become more predominant.

Below 42 mm, all reactive Fe pools show stable, relatively low values (Fe_{Carb} 0.61 wt.%, Fe_{Ox} 0.11 wt.%, and Fe_{Mag} 0.11 wt.%; Fig. 3.22), with no significant changes in enrichment. At 50 mm, Fe_{Carb} shows a sharp increase to 1.77 wt.%, before gradually increasing to a maximum of 2.37 wt.% at 82.5 mm (in Lithofacies B). Fe_{Carb} remains > 1.40 wt.% until 122 mm (in Lithofacies C), where it begins to decline. The height and magnitude of this decline varies between different blocks of the LSB, with Fe_{Carb} declining by 0.56 wt.% at 126.0 mm (LSB1), and by 0.70 wt.% at 147 mm (LSB5). In addition to the sharp enrichment in Fe_{Carb} at 50.0 mm, the Fe_{Ox} baseline is elevated from 0.11 wt.% to 0.09 - 0.78 wt.% at this point. This higher baseline of Fe_{Ox} is maintained for the rest of the section. Fe_{Mag} is never significantly enriched above the initial background value. Fe_{Py} is derived from S_{py} by a stoichiometric calculation, and therefore follows the same trend, but with all values multiplied by a factor of ~0.87.

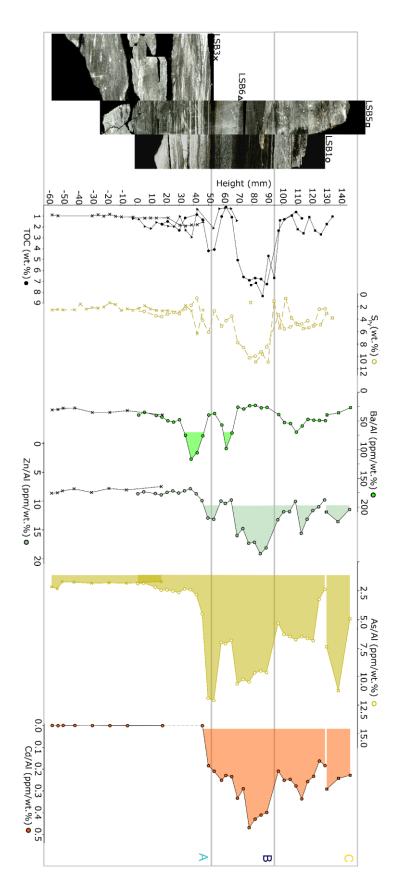
The Fe_{HR}/Fe_T profile varies between 0.39 - 0.94 for the entire section (Fig. 3.23). There is a gentle upward trend in the data from 0.46 at -18 mm, to a maximum of 0.94 at 110 mm, but only one data point (LSB1.9 at 42 mm) plots near the equivocal field. In addition, Fe_{Py}/Fe_{HR} varies between 0.58 - 0.77 for most of the section, reaching 0.77 in the interval of maximum Fe_{Py}. However, between 38 - 59 mm, and 94 - 107 mm, the Fe_{Py}/Fe_{HR} value varies more widely (between 0.21 - 0.84), and distinctly lower than the baseline value for the section.

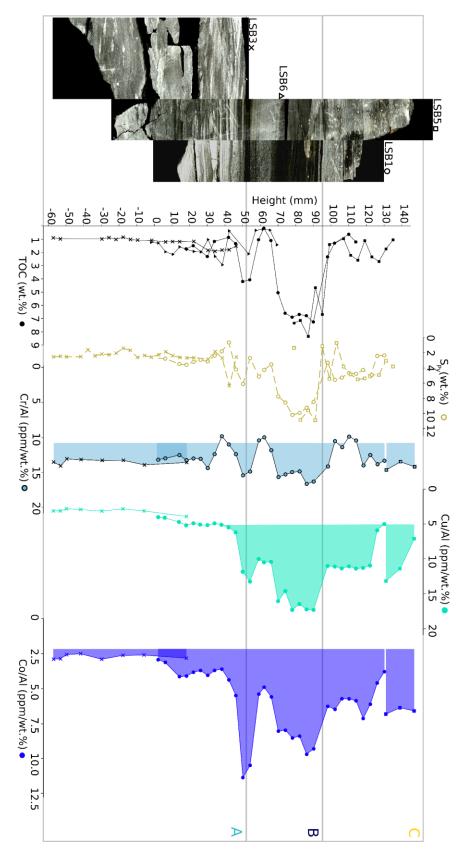

The trend for Fe_T/Al sharply increases at 50 mm, tripling from a background value of ~0.59 wt.%/wt.% to 1.57 wt.%/wt.% (Fig. 3.23). Fe_T/Al then stays relatively constant through Lithofacies B, excepting a small decrease of 0.33 wt.%/wt.% coeval with the large silty lens. After a drop of 0.45 wt.%/wt.% at 94 mm, values vary between 0.53 - 1.17 wt.%/wt.% for the rest of the section.

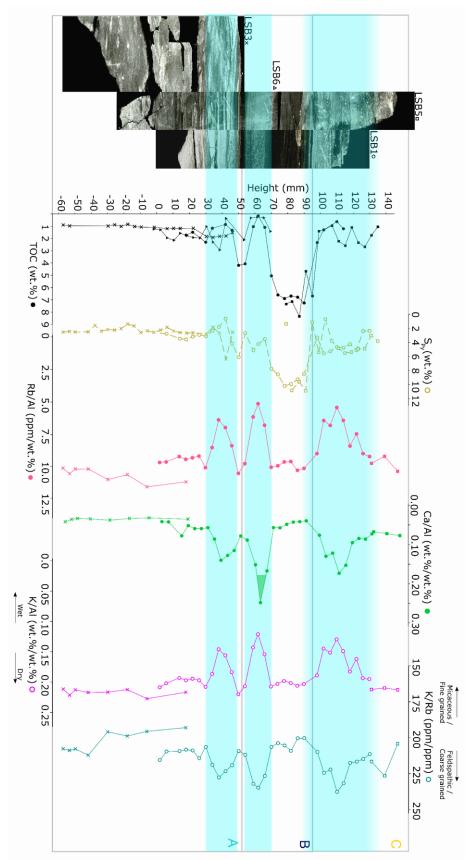
Pyrite formation in the LSB was predominantly S-limited, with most of the data plotting above the compositional Fe-S ratio of stoichiometric pyrite (Fig. 3.24). The points plotting below this line roughly correspond with the interval of Fe limitation in the upper part of Lithofacies A.

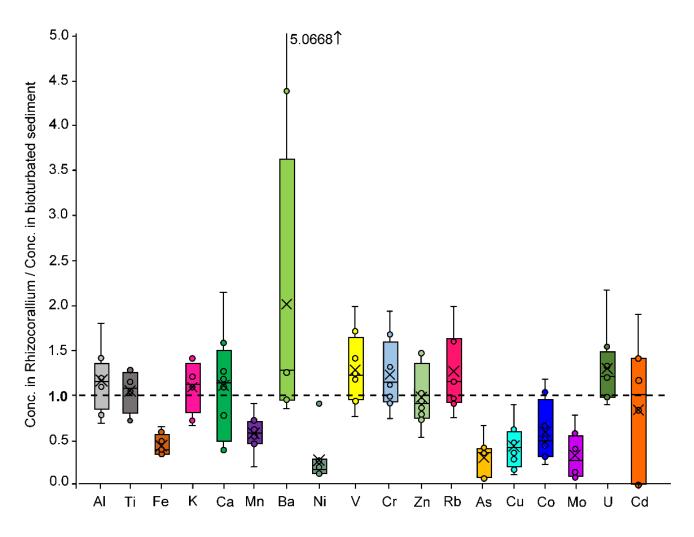

2.5 Major and trace elements

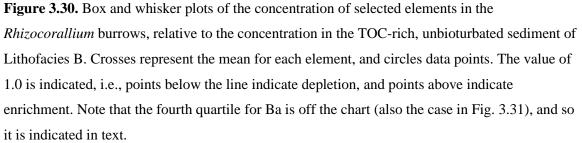
Aluminium content does not show extreme variation through the LSB (Fig. 3.25), with values ranging between 5.67 - 10.8 wt.%. The only prominent increase is found between 62 - 74 mm, coeval with a large silty lens in the lower part of Lithofacies B. The same trend is reflected in Ti, and I therefore consider Al-snormalisation of element contents valid for this section.


Major and trace element profiles tend to follow one of three patterns – either elevated levels in pyrite-rich intervals (As, Cd, Co, Cu, Fe, Mo, Zn), or background levels outside of the silty lenses - where they show either depletion (Cr, K, Rb, V) or enrichment (Ba, Ca; Figs. 3.26 – 3.29). Mn/Al is also enriched within the LSB and shows a smooth increase from background values of 34.0 ppm/wt.% (starting at 14 mm), up to a maximum of 137 ppm/wt.% at 64 mm (within the silty lens; Fig. 3.14). The trend then gradually decreases to 79.7 ppm/wt.% at 98 mm, before briefly increasing again (to 114 ppm/wt.% at 110 mm), and then decreasing at the top of the section to 42.1 ppm/wt.%. In addition, Ni/Al is enriched to a strangely high degree, reaching a

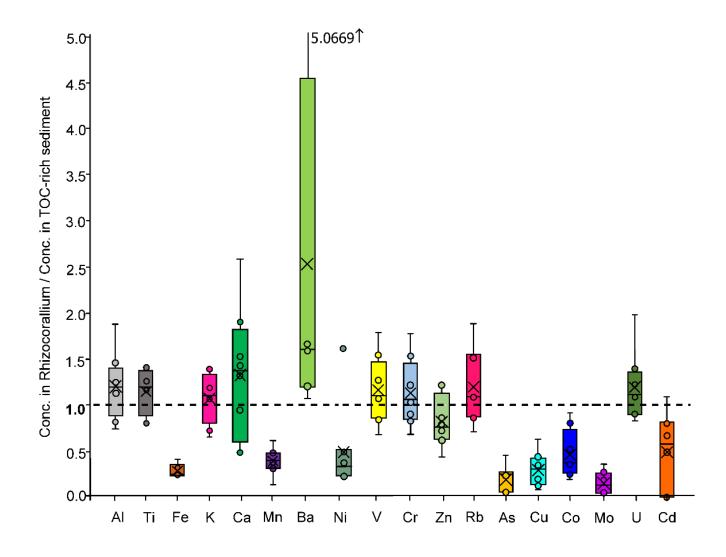

(1971; 2004). Given the reletivley muted variability of Al, I decided to use its concentration as a normalization factor. Figure 3.25. Plot of Ti (wt.%) and Al (wt.%) for the LSB. Note that neither shows enrichment relative to the standard shale values of Wedepohl


relative to the standard shale value of Wedepohl (1971; 2004). Figure 3.26. Plot of Mn/Al, Ni/Al, Mo/Al, V/Al and U/Al for the LSB (all in ppm/wt.%). As in Fig.3.23, shaded areas indicate enrichment


As in Fig.3.23, shaded areas indicate enrichment relative to the standard shale value of Wedepohl (1971; 2004). Figure 3.27. Plot of Ba/Al, Zn/Al, As/Al and Cd/Al for the LSB (all in ppm/wt.%). Dotted grey line indicates values are below the detection limit.



standard shale value of Wedepohl (1971; 2004). Figure 3.28. Plot of Cr/Al, Cu/Aland Co/Al for the LSB (all in ppm/wt.%). As in Fig.3.23, shaded areas indicate enrichment relative to the



carbonates in this section, since TIC is low for the entire LSB (see section 2.6 and data in Appendix 2). are indicated by blue shading, along with interpretations of the K/Al and K/Rb traces. Note that Ca does not indicate a greater occurrence of Figure 3.29. Plot of Rb/Al (ppm/wt.%), Ca/Al (wt.%/wt.%), K/Al (wt.%/wt.%) and K/Rb (ppm/ppm) for the LSB. Inferred humid "pulses"

maximum of 99.5 ppm/wt.% at 59 mm, but also never falling below 22.4 ppm/wt.% between 50 – 130 mm (Fig. 3.26). Mo/Al gradually increases from a background value of 0.14 ppm/wt.%, from 2 mm to 74 mm, where it reaches a maximum of 3.43 ppm/wt.% (excepting a small negative inflection in the silty lens) it then gradually declines to 0.29 ppm/wt.% at the top of the

Figure 3.31. Box and whisker plots of the concentration of selected elements in the *Rhizocorallium* burrows, relative to the concentration in the bioturbated sediment of Lithofacies C. As in Fig. 3.30, crosses represent the mean for each element, and circles data points. The value of 1.0 is indicated, i.e., points below the line indicate depletion, and points above indicate enrichment. Note that – as in Fig. 3.30 – the fourth quartile for Ba is off the chart, and so it is indicated in text.

section (Fig. 3.26). Note that here I do not apply the Mo/TOC proxy, since the provenance of the organic matter within the LSB is most likely of a mixed origin (see 3.10), and therefore the Mo/TOC trend could not be indicative of the quantitative drawdown of Mo associated with highly

restricted settings (McArthur *et al.*, 2008). U/Al is depleted within the LSB and shows muted variability between 0.18 - 0.34 ppm/wt.% (Fig. 3.26).

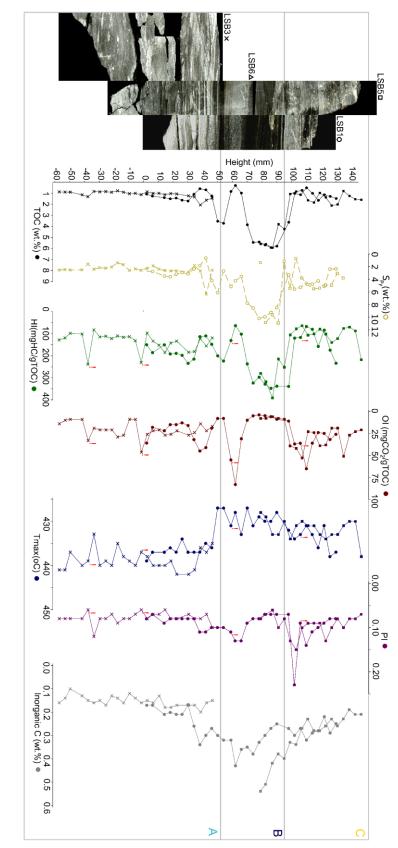
In contrast to the redox-sensitive metals, K/Al stays roughly constant (0.20 - 2.22 wt.%/wt.%;Fig. 3.29) outside of three intervals: between 30 - 48 mm, K/Al is depleted by 0.06 wt.%/wt.%, as well as between 53 - 70 mm (0.09 wt.%/wt.%), and between 94 - 132 mm (0.05 wt.%/wt.%). Ca/Al is anti-correlated with this trend, with background values of 0.03 - 0.08 wt.%/wt.%, and three peaks in enrichment (up to 0.25 wt.%/wt.%) exactly coinciding with the negative peaks in K/Al, and silty lenses within the LSB (Fig. 3.29). Mg/Al remains essentially constant throughout the LSB (varying between 0.09 - 0.12 wt.%/wt.%), implying only a minor contribution of CaCO₃ to the sediment geochemistry (see Appendix 3).

K/Rb shows peaks concomitant with troughs in K/Al and Rb/Al, ranging between 21.4 - 28.4 in size (Fig. 3.29). The second peak in K/Rb, likewise, shows exact correspondence with the large silty lens at the base of Lithofacies B. The *Rhizocorallium* traces show enrichment in Ba/Al and depletion in redox-sensitive elements (particularly As/Al; Fig. 3.27), more-or-less regardless as to whether the burrow elemental composition is normalised to that the of the TOC rich sediment of Lithofacies B, or the sediment of Lithofacies C. Detrital elements such as K/Al are mostly unaffected.

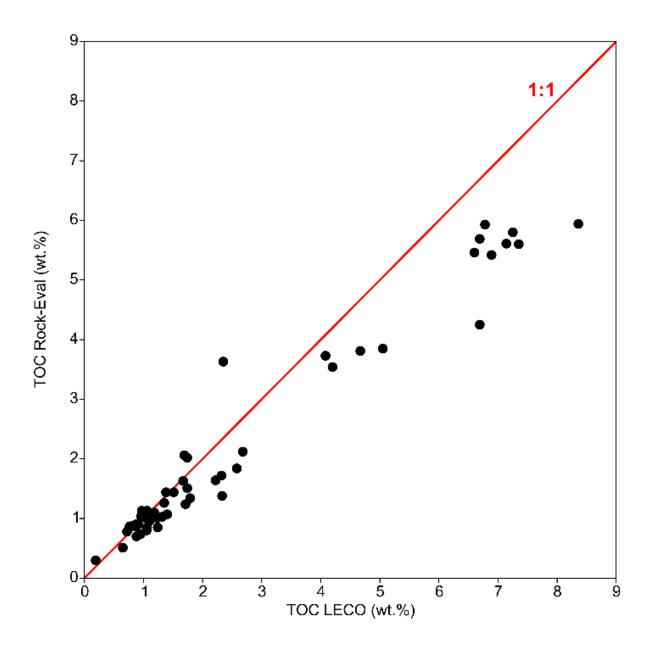
2.6 Organic geochemistry

From -60 mm to 0 mm, TOC varies between 0.77 - 0.95 wt.% (Fig. 3.16), with no significant fluctuations. Between 0 and 62 mm, the TOC profile shows considerable lateral variability, but nonetheless, an increase in TOC relative to the underlying sediments is discernable (between 0.881 - 6.71 wt.%, with a mean of 2.21 wt.%). All sampled sections of the LSB indicate that between 60 - 64 mm, TOC values drop to near zero (lower than between -60 mm to 0 mm). This sharp drop is concomitant with the silty lens of Lithofacies B. Immediately after this negative shift, TOC levels rise sharply (by ~7.38 wt.%) and remain between 4.67 - 8.36 wt.% for the rest of Lithofacies B. At 94 mm, the TOC value drops sharply, almost to background levels. Two further positive TOC excursions are recorded, with peaks at 115 mm and 127 mm. These are 12 mm and 16 mm wide, respectively, and reach peak values of 2.58 wt.% and 2.68 wt.%, respectively. These roughly correlate with more organic-rich horizons in Lithofacies C (barely visible through the thorough chondrites bioturbation).

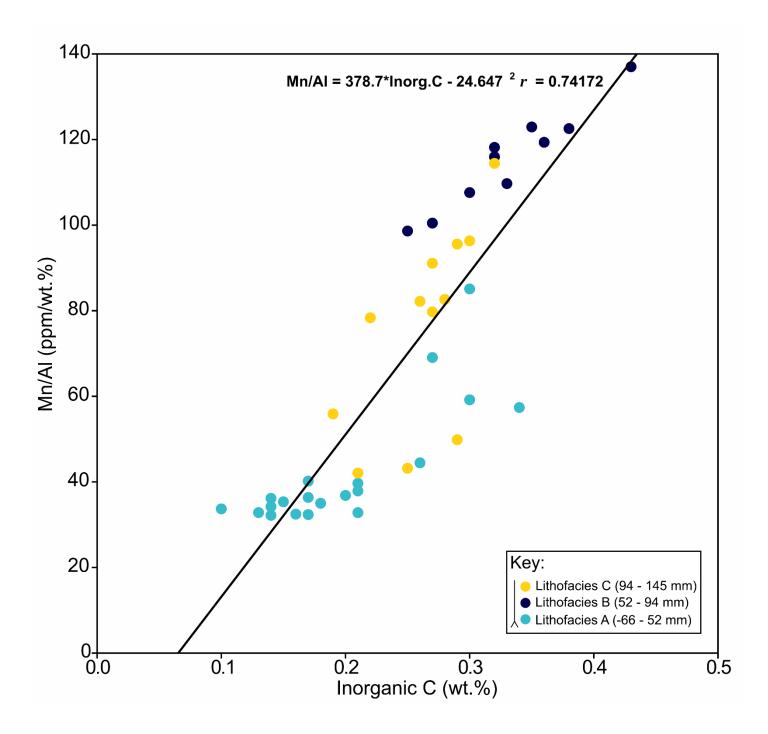
The TOC profile generated from rock eval pyrolysis closely mirrors that generated through total combustion (Fig. 3.32), although for values >1.5 wt.%, TOC via rock eval underestimates TOC via total combustion (Fig. 3.33). It is hereafter assumed that the TOC through total combustion better reflects the true TOC: highly recalcitrant C_{org} might have escaped combustion in the rock eval process, the HCl decarbonation preceding the LECO analysis might have opened pores and caged moites, and the IR cell of the rock eval might have been oversaturated by high levels of CO₂ from the combustion.

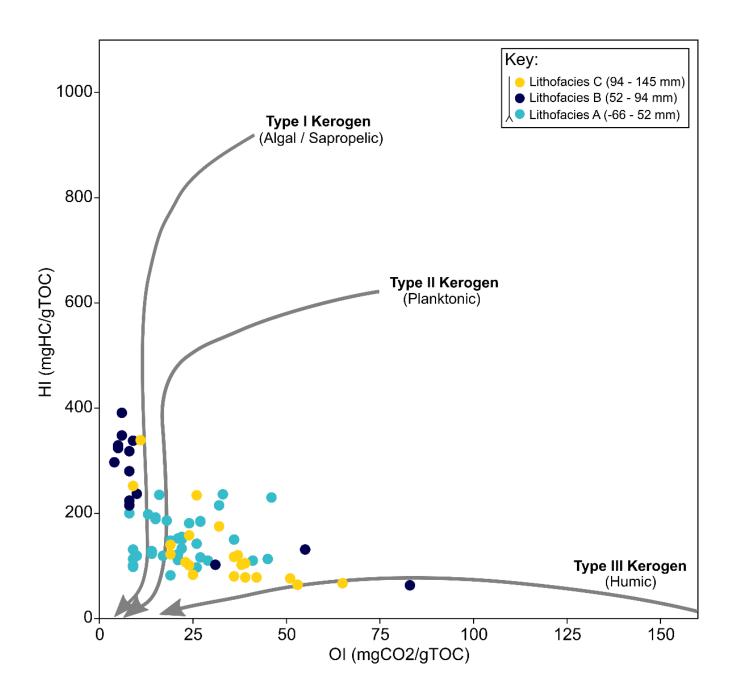

HI values broadly track TOC, reaching values of up to 391 mgHC/gTOC in the upper part of Lithofacies B (Fig. 3.32). Two points (at -38 mm and -2 mm) deviate from this trend, showing slight increases of HI (236 mgHC/gTOC and 230 mgHC/gTOC, respectively), with a negligible increase in TOC. The pyrograms at show bimodal S2 peaks at these points. Bimodal peaks are also detected at 59 mm, and 106 mm.

OI is for the most part an anticorrelate of HI, with values ranging between $9.0 - 16 \text{ mgCO}_2/\text{gTOC}$ (Fig. 3.32), apart from sharp peaks at 62 mm (83 mgCO₂/gTOC), 110 mm (65 mgCO₂/gTOC), and at -38 mm (33 mgCO₂/gTOC) and -2 mm (46 mgCO₂/gTOC). The latter two peaks are concomitant with the small peaks in HI, from samples with bimodal S2 peaks. The highest peaks in OI (and the lowest peaks in HI) correspond with intervals that are higher in silty content, and that show deficits in K/AI, and enrichments in K/Rb (Fig. 3.29).


 T_{max} remains reletivley constant for the lower 106 mm of the studied section (between 433 – 442°C), before abruptly dropping at 50 mm to 427°C (Fig. 3.32). It then gradually recovers, reaching 438°C at the top of the studied section. This sudden drop is 2 mm below the point where HCS disappears, ~40 mm above the point where bioturbation rapidly drops and is roughly coeval with reactive Fe (in the Fe_{Carb} pool), and Mn enrichment.

PI is relatively constant though the studied section (around 0.1), with a single, sharp peak at 102 mm (0.23), followed by steady decay to background values over an interval of 20 mm (Fig. 3.32). This peak corresponds with the base of the sharp drop in TOC, the increase in the density of *Chondrites*, and the occurrence of the thick, anisotropic blebs described in section 2.1 (Figs. 3.7 and 3.16).


Inorganic C shows a broad peak through the studied section, from a background of between 0.1-0.2 wt.%, reaching a maximum of 0.54 wt.% at 79 mm (Fig. 3.32). This increase is largely concomitant with TOC (apart from in the silty intervals where it does not show sharp drops like TOC does), S_{py} , and reactive Fe and Mn enrichment (Figs. 3.16; 3.21; 3.23; 3.26).


(°C), PI and Inorganic C (wt.%) of the LSB. Samples with bimodal S2 peaks are indicated with red exclamation points. Figure 3.32. TOC (from Rock-Eval), total Sulphur (LECO), and the Rock-Eval parameters HI (mgHC/gTOC), OI (mgCO₂/gTOC), T_{max}

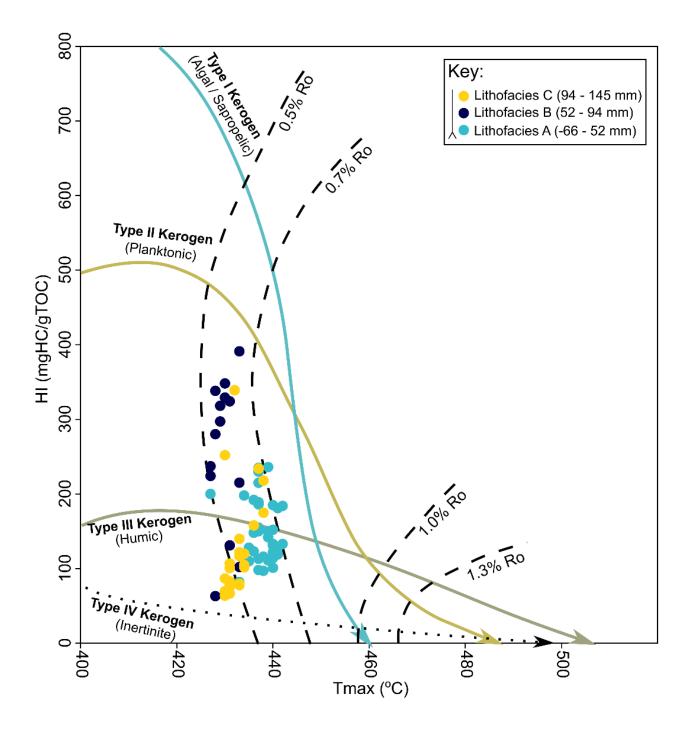

Figure 3.33. Cross plot comparing TOC measurements via LECO with TOC measurements via Rock-Eval. The red line indicates an idealised 1:1 correspondence. Beyond approximately 2 wt.%, the TOC measurements via Rock-Eval pyrolysis drift away from the TOC measurements of the same samples via total combustion in a LECO furnace.

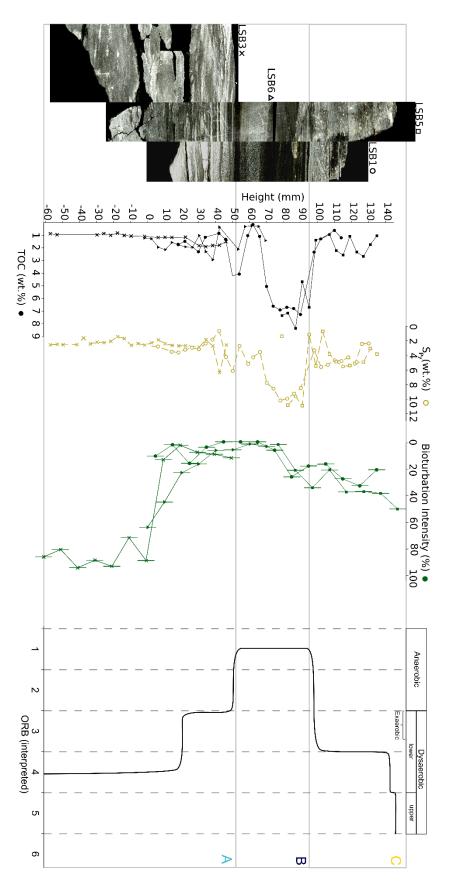
Figure 3.34. Cross-plot of Inorganic C (from Rock-Eval) and Mn/Al(ppm/wt.%), with least-squares regression line displayed (and corresponding R²). Note that the regression line has a negative y-axis intercept, implying that at 0 ppm/wt.% Mn/Al, some carbonate should be present.

Figure 3.35. Van-Krevelen-style plot of OI vs. HI for the LSB. Note the relatively wide spread of the data points, which intersect the evolution trends of all kerogen types.

Figure 3.36. HI vs. T_{max} , with kerogen evolution trends from Cornford *et al.* (1998). Note the restriction of the data points to R_0 values between 0.5 - 0.7%.

An OI HI cross plot (Fig. 3.35) shows that the samples from the LSB generally cluster between OI = 12-55, and HI = 100-250. However, several outliers occur, with one group of low OI and high HI values (OI = 12, HI = 200 - 400), and another of high OI and low HI values (OI = 50-80, HI = 100).

3.0 Interpretations


My study of the LSB encompasses a total of 211 mm of stratigraphic height. This interval includes the entirety of the LSB, but also includes 61 mm of sediments from the underlying bed 25 of the Cleveland Ironstone series (Howarth, 1973). Little, if any, sediment from the overlying bed 27 was sampled. The sediments here had poor consolidation due to exposure to air and were, therefore difficult to sample using the petrol-driven rock saw – they broke apart before they could be collected. I also decided not to attempt to sample this interval with a hammer and chisel, since it would have been difficult to obtain a precise stratigraphic control on the location of any collected samples within bed 27. Sampling using the petrol-driven rock saw also meant that only the upper 61 mm of bed 25 could be sampled, with lower sediments being too deep for the rock saw to reach. The sampling methodology employed allowed me to extract the entire 150 mm of the LSB itself, and sample the resulting blocks (in a lab environment) at cub-cm scale resolution. However, alternate methods should have been employed to capture proxy variability over a wider stratigraphic range. In other words, my sampling methodology prioritised resolution over completeness. As a consequence of these practical limitations of the sampling methodology, it is possible that some key variability in the paleoenvironmental proxies of interest has been missed. This might be the case for the Fe speciation proxies, which (as discussed in sections 3.3 and 3.9) show lower variability than initially expected. However, as also discussed in sections 3.3 and 3.9, there are alternative explanations for the low variability in Fe_{HR}/Fe_T and Fe_{PV}/Fe_{HR} , that have important implications, not only for the interpretation of the palaeoenvironment of the LSB, but for the study of bioturbated black shale sequences in general.

3.1 Sedimentology

The absence of HCS above 40 mm (Chapter 2; Fig. 2.6) implies a change in bottom water energy occurred at this point. Since HCS is typically produced by bidirectional waves with a period of 9.4-10.5 seconds (Dumas *et al.*, 2005), it is also possible that its disappearance indicates the movement of the fair-weather wave base above the sediment-water interface. The erosion of fine material necessary for the formation of the scour marks observed in Lithofacies A also means that small-scale hiatuses are created. While both features can be attributed to a transgression through the LSB, a water depth increase cannot be directly inferred from the disappearance of HCS, and sea level changes cannot be directly inferred without an investigation of time-equivalent deposits from the basin margins (i.e. to determine whether the LSB oversteps underlying Ironstones in the Cleveland Ironstone Formation). Near North Skelton, and at Upleatham Mine (two such marginal settings), the LSB contains pyritised ooids that where probably reworked from the underlying main seam of the Cleveland Ironstone Formation. Chowns (1968) suggested that this was due to reworking of the Cleveland Ironstone Formation during a marine transgression, and subsequent incorporation into the LSB. It is, therefore, possible that the disappearance of HCS at ~40 mm was due to greater water depth, but complementary proxies for the distance of the environment from the palaeo-shoreline (e.g. palynofacies), are needed to test this (see chapters 4 and 5).

3.2 Palaeontology

Up to 0 mm, bottom water oxygen levels were sufficient to sustain actively bioturbating organisms (ORB 4/5; Wignall, 1994; Fig. 3.37). The *Pseudomytiloides dubius* individuals occasionally observed in Lithofacies A (Figs. 3.12 - 3.13) would have required a relatively stable bottom water redox state, at least for the geologically brief interval of time they were alive (years to decades; Röhl *et al.*, 2001; Caswell & Coe, 2013). In the modern deep marine dysoxic environment off southern Baja California, bivalves have been found capable of tolerating oxygen

with major changes in bioturbation intensity. Figure 3.37. Interpreted up-sectionplot of ORB for the LSB. The bioturbation plot is also included. Note how jumps in the ORB correspond

concentration as low as 0.05 mL/L (*Jupiteria callimene*; Hendrickx *et al.*, 2016). *P. dubius* might have been able to tolerate similar redox conditions. Additionally, the presence of fodichnical (feeding) traces (*Zoophycos* and *Planolites*) in the interval below 0-20 mm implies oxygen levels were high enough to support active burrowing and feeding behaviour, which is typically reduced at oxygen levels below 0.5 mL/L (Tyson & Pearson, 1991; Hagerman, 1998; Thomas *et al.*, 2019). These palaeoecological constraints mean that for the lower 112 mm of the section, the dysoxic/anoxic redoxcline was below the sediment-water interface most of the time, however the redoxcline may have occasionally risen into the water column (see 3.6). For the lower 60 mm of the section, any dysoxia present was either not frequent, nor intense enough to exclude shallow infaunal organisms. Over time, however (up to 52 mm), dysoxic episodes increased in frequency and/or severity, progressively excluding the shallow infauna. Conditions at the sediment-water interface became barely hospitable to epifaunal *P. dubius* (ORB 3), until even this species became excluded, with the establishment of a very frequently anoxic regime above 52 mm (ORB 1/2).

The decline in bioturbation at 0-20 mm, ~30 mm below the rise in TOC (Fig. 3.16) implies bottom waters became less hospitable before significant organic carbon (C_{org}) preservation occurred, but the enrichment in TOC can be tied to a reduction in oxygen availability (see section 3.3). To reconcile this, I suggest that the brief interval between 20-52 mm represents a period where the oxic-anoxic redox boundary fluctuated rapidly across the sediment-water interface (Kauffman, 1978). The brief, highly frequent periods of anoxia would have "sterilised" the benthic environment (Tyson & Pearson, 1991; Newton, 2001), but the intervening brief oxic episodes would have allowed for the re-oxidation of any labile C_{org} that had accumulated. Given that HCS does not disappear until 40 mm, the interval between 20-40 mm could therefore be representative of the original texture of the upper Cleaveland Ironstone Formation, prior to bioturbation.

As bottom water oxygen levels began to improve (starting during the deposition of Lithofacies C), bioturbating organisms began to colonise the substrate (Fig. 3.37). The preference of *Chondrites* for the TOC rich sediments could be indicative of sulphide-farming behaviour (Baucon *et al.*, 2020). This is seen in modern thyasirid bivalves, which are known to colonise a wide range of modern reducing environments (although they are also found in entirely oxic settings; Dando & Southward, 1986; Dubilier *et al.*, 2008). Although no thyasirids have been found in the section, the niche for sulphide farming is nonetheless present, and so it is possible that an unidentified organism carried out the same behaviour from ~94 mm upwards. However, the *Chondrites* trace-maker could have just been a deposit feeder adapted to dysaerobic

conditions, and was targeting the organic matter rich sediments with its burrowing behaviour. The relative depth of the *Rhizocorallium* traces implies they were formed after 140 mm (and penetrated down from above), but clearly before at least one of the generations of *Chondrites*, since some of these interpenetrate the *Rhizocorallium* traces (Fig. 3.6). This implies that from 94 mm, bottom water redox conditions returned to a state capable of supporting a low diversity benthic community (ORB 4; Fig. 3.37). *Chondrites* is often observed in black shale successions and is widely interpreted as a marker for low diversity dysaerobic communities, developed under relatively stable bottom water dysoxia (Wignall, 1994). Incidentally, bioturbation caused by thyasirid bivalves frequently occurs in modern low diversity sediment ichnofabrics (Dando & Southward, 1986). The appearance of *Rhizocorallium* implies further improvement of bottom water conditions (ORB 5), with the appearance of a shelly fossil assemblage at 145 mm (Fig. 3.11) indicating a return to normal bottom-water conditions (ORB 6/Oxic).

3.3 Sulphur and iron

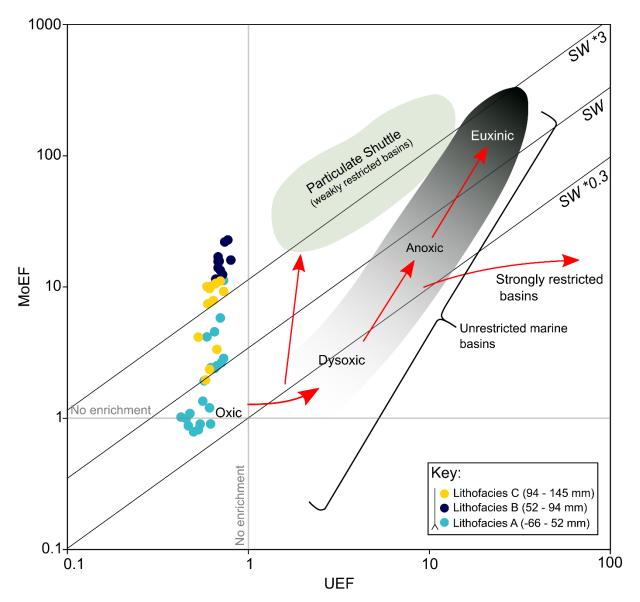
The difference between total S and S_{py} , taken at face value, implies the presence of other Sbearing phases in the samples. Since fresh surfaces were selected for geochemical samples, and no lithological evidence for evaporitic processes was found, it is was assumed that any S in the LSB not associated with pyrite was associated with sulphurised organic matter (Tribovillard et al. 2019). The high levels of S_{py} between 30-110 mm (Fig. 3.21) indicates sulphide generation was occurring in this interval; however, between 30-60 mm and 90-110 mm, High levels of S_{org} (difference between total S by combustion, and S_{py}) also occur (Fig. 3.21). The lack of correlation between Mo/Al and Sorg (compare Figs. 3.21 and 3.26) could indicate that S-bearing organic matter was not transported from the basin margins (sensu Tribovillard et al., 2019), and that Sorg levels were a function mainly of authigenic Corg-mediated S sequestration (Vandenbroucke & Largeau, 2007). However, the values of the Sorg trend at these points are much higher than would be expected if the sulphur were indeed hosted in organic matter, and not in sulphur-bearing evaporite minerals (which are indeed absent from the section). At LSB1.7, for example, TOC is 1.18 wt.%, and "Sorg" is 8.89 wt.% (Fig. 3.21), implying the presence of a sedimentary organic compound that is 88.2 atom% sulphur, and only 11.7 atom% carbon. No such compounds exist in nature. It is, therefore, likely that the total S data is corrupted at these points, possibly from using contaminated ceramic sample boats during TOC and total S analysis on the LECO (note these are

not the same ceramic crucibles used during the total digest for major and trace elements, i.e. the contamination only affects the total S dataset). It is unlikely that the S_{py} data is an underestimate of true pyrite sulphur, since S_{py} was evaluated by reflux with boiling HCl, and it is very likely that this method libeated all pyrite sulphur in the samples. The " S_{org} " data will, therefore, not be discussed any further, and it is for this reason that all downcore plots are compared with TOC and S_{py} (as opposed to total S).

The silty lenses preserved within Lithofacies B and C stand in contrast to the Corg-rich mudstone that makes up the rest of these lithofacies and imply episodes of high bottom-water energy. They are difficult to attribute to episodes of shoaling, since HCS does not return to the LSB after 40 mm (Chapter 2, Fig. 2.6). The intervals are also accompanied by peaks in OI (Fig. 3.32), implying brief re-oxidation of labile Corg. Furthermore, the framboid lags, and coarsening-upward trend within the large silty lens at 60 mm (Figs. 3.3 and 3.16) imply that this interval was associated with reworking of previously deposited sulphidic sediments. Decreases in K/Al, Rb/Al, and concomitant increases in K/Rb (Fig. 3.29) are also observed in the silty intervals, and S_{py} is suppressed relative to the higher levels attained in the C_{org} -rich units (Fig. 3.16). Given the lack of conclusive evidence for significant freshwater input, and of any change in seawater sulphate concentration, pyrite formation within the LSB can reasonably be assumed to be limited either by the presence of Fe_{HR} or of laible C_{org} (and the sulphide generated by its degradation in anoxic sediments). The low TOC values within the silty intervals (Fig. 3.16) imply that relatively little sulphide was generated here. Outside of these intervals, where Fe_{HR} was abundant, sulphide, as generated by the anaerobic decay of organic matter, was the limiting factor on pyrite formation. This is indicated by the positive correlation between Total S and TOC for the section (Fig. 3.20).

The Fe_{HR}/Fe_T data (Fig. 3.23) shows values persistently higher than 0.4 for the entire section (even in the silty intervals), which implies a persistent operation of the shelf-to basin shuttle (and, apparently, persistent bottom-water anoxia). The Fe_{Py}/Fe_{HR} trend lies almost entirely in the equivocal field throughout the LSB, and Fe_{Py} makes up the largest part of Fe_{HR} throughout the section (Fig. 3.22). It is therefore, probable, that one of the predominant mechanisms for the enrichment of Fe_{HR}/Fe_T was capture of nanoparticulate Fe (oxyhydr)oxides by free sulphide (i.e. under euxinic conditions). However, given the relatively low concentration of Mo below 40 mm (Fig. 3.26), whatever euxinia occurred during the deposition of Lithofacies A was likely episodic, although common enough for the sequestration of a large amount of Sulphur in syngenetic pyrite (enough to raise S_{py} to around 2%; Fig. 3.16).

Persistently anoxic (and commonly euxinic) bottom-water conditions during the deposition of Lithofacies A, also conflicts with the presence of bioturbation (Fig. 3.16), and of in situ benthic fauna (all of which require at least minimal oxygen levels to survive; Figs. 3.12 and 3.13; Diaz & Rosenburg, 2008), as well as the lack of small framboid size populations in the lower part of Lithofacies A (Fig. 3.16). As alluded to in 4.2, I cannot rule out the possibility of fluctuations in redox state giving an apparently anoxic signal when sampled at a rate of 1 sample per 0.5 cm, especially in Lithofacies A. This alone could reconcile the presence of the *Pseudomytiloides dubius* fossils and the high Fe_{HR}/Fe_T values: the shells only need years to decades to grow (see 3.2), whilst an estimate for the duration of the LSB of around 10 Kyr et al. implies that the sampling intervals are on the order of centuries in duration. Additionally, the high bioturbation levels in the lower part of Lithofacies A have the potential to shomogenise redox proxy signals (Poulton, 2021). In non-bioturbated successions, very high resolution (up to 0.2 mm with core scanning XRF) can deconvolve time averaged redox signals (Dahl et al., 2019). In Lithofacies A, however, the intense bioturbation, and the high lateral variability of the fabric precludes this analysis from effectively resolving the redox proxy signal. The Fe_{HR}/Fe_T and Fe_{Pv}/Fe_{HR} records for Lithofacies C might also have been impacted by the presence of bioturbation; however, since the trace-metal content of the *Rhizocorallium* burrows is still distinct from that of the Lithofacies C samples (Fig. 3.31), it is speculated that the effect on the overall Fe speciation interpretation is small (see below). In other words, the bioturbation occurring in the lower part of the LSB (-62 -52 mm), was far more pervasive than that which occurred in the upper part (94 - 145 mm). The *Chondirites* trace makers alone evidently did not disturb the sediment profile enough to rehomogenise the Fe_{HR}/Fe_T signal, whereas the Zoophycos and Planolites trace-makers did. This further implies that the biofacies associated with Lithofacies A was capable of sustaining more energetically demmanding modes of life than that associated with Lithofacies C, and that through the LSB, the benthic environment became less habitable, becoming uninhabitable to all benthos in Lithofacies B. Taken together, these lines of evidence imply that the LSB contains a record of frequently changing redox state in the Cleveland Basin, rather than (necessarily) a record of persistent oxygen depletion of varying severity. The frequency of anoxic events was sufficiently low in Lithofacies A as to not exclude bioturbating organisms entirely, but nonetheless frequent enough to facilitate the drawdown of Fe_{HR}. The absence of bioturbation in Lithofacies B (together with higher Fe_{HR}/Fe_T and Mo enrichment), implies that an increase in the frequency of anoxic events occurred prior to the emplacement of this lithofacies. I will discuss this further in section 3.11.


Enrichment of Fe_{HR} was also a nearly persistent characteristic of the Cleveland Basin during the deposition of the LSB, as indicated by the fact that pyrite growth was mainly sulphide-limited (Fig. 3.24). Continental runoff is a possible means for the delivery of a high Fe_{HR} flux, since the generally hot, humid climate of the Lower Jurassic (Rees *et al.*, 2000) could have facilitated the development of laterite profiles on the surrounding hinterlands (although no remnants of these soils have been found in the British Jurassic). The occurrence of high continental weathering rates in the British Lower Jurassic is supported by the presence of detrital Fe-rich chlorite in the coeval Llanbedr core (Mochras, Cardigan Bay basin; Xu *et al.*, 2018). However analysis of the δ^{18} O of belemnites from the Cleveland Basin (Korte & Hesselbo, 2011; Korte *et al.*, 2015) imply that surface water temperatures around the time of the PI-To were between 15 – 25°C (cooler than that typically seen in climates associated with laterite formation).

The dominance of small framboids between 70-94 mm (Figs. 3.16 and 3.19) indicates that this interval (in Lithofacies B) was euxinic (at least in bottom waters). While pyrite framboid frequency per unit area was not quantified, Figs. 3.17 and 3.18 clearly show how Lithofacies B also contains a greater number of framboids than the underlying Lithofacies A. The majority of these framboids are less than 5 μ m in diameter (section 2.3), and so the decrease in mean framboid diameter in Lithofacies B can be attributed to an expansion of bottom water euxinia. It is unlikely that the framboids outside of this interval were exclusively produced in the water column under euxinic conditions, and then grew to larger sizes in the sediment: under euxinic conditions, pyrite framboids form near the chemocline (where some oxidised sulphur species are present) before sinking to the sediment, where they cannot grow any larger due to a sudden lack of oxidised sulphur species. It is, however, possible that some resumed growth of pyrite framboids occurred if the chemocline fluctuated between the sediment and the water column frequently enough, since this could have introduced fresh oxidised sulphur species into the sediment porewater environment. While the deposition of buoyant plumes associated with turbidity currents takes weeks to months (Stow & Wetzel, 1990), and framboids ~5 µm in diameter take only ~3 days to form (Rickard, 2019), the sheer number found in Lithofacies B implies that it is very unlikely to be a turbidity deposit.

3.4 Detrital element ratios

The changes in detrital element ratios (Fig. 3.29) within the silty intervals could additionally imply a change in continental weathering regime, resulting in a shift in the clay mineral assemblage of the LSB. Under more humid climatic conditions, cations such as K and Rb are more effectively leached by chemical weathering, leading to the generation of kaolinite clay profiles on the hinterlands, as opposed to more cation-enriched clays such as montmorillonite. The fluvially-derived siliciclastic component of the LSB, therefore, might reflect this change in the clay mineral assemblage (Calvert & Pedersen, 2007; März et al., 2010, 2011). More humid climatic conditions are also associated with episodic mega-monsoons over the European Epicontinental Seaway (EES) – events accompanied by storms, which would raise bottom-water energy levels for brief intervals of time. These intervals might have also induced transportation of shelfal sediments to the basin, which could account for the subtle grading in some of the silty units, as well as the framboid lags (Fig. 3.3). Mega-monsoons over the EES have been invoked to explain the development of anoxic conditions in the Posidonia Shale, due to enhanced nutrient flux and salinity stratification (Röhl et al., 2001). This does not, however, preclude the possibility of episodes of bottom water re-oxygenation against a predominantly anoxic background. Similar structures in a prodelta succession from the Cenomanian-aged Dunvegan Formation (Alberta, Canada), and from an early Ordovician mudstone in Newfoundland, have been attributed to fluid mud remobilisation associated with storm winds (Plint, 2013; Harazim & McIlroy, 2015).

It should be noted, however, that in and of themselves, these excursions cannot be tied to a shift in the clay mineral assemblage without a complementary crystallographic analysis (which was not carried out in this study). The SEM work carried out was also focused on determining pyrite framboid diameter, and no observations on the structure of clay minerals were made. However, there is sufficient precedent from similar studies of Toarcian mudrock successions from the British Isles (Thibault *et al.*, 2018; Hollaar *et al.*, 2023) to support the correlation of the intervals of K/Al depletion and K/Rb enrichment (at least tentatively) with sediment changes related to hydrodynamics. There is also independent proxy evidence from the LSB (in the form of palynology and biomarker distributions; Chapters 4 and 5) from which to argue the occurrence of humid climate episodes concomitant with the intervals of depleted K/Al and enriched K/Rb.

Figure 3.38. Uranium enrichment factor (UEF) vs. Molybdenum enrichment factor (MoEF) plot for the LSB. Trendlines and annotations adapted from Algeo & Tribovillard (2009).

3.5 Manganese

Enrichment of Mn/Al (Fig. 3.26) implies that the depositional system was highly restricted. Mn²⁺ is liberated from sediments under anoxic conditions (Klinkhammer & Bender, 1980; Calvert & Pedersen, 1993; Huckriede & Meischner, 1996). Due to being trapped in the basin by redox cycling at the anoxic/oxic interface, aqueous Mn²⁺ was incorporated into carbonate phases

generated by microbially-mediated C_{org} degradation during early diagenesis (Fig. 3.34; Calvert and Pedersen, 1996). Rhodochrosite is likely to be the carbonate mineral phase hosting Mn in the LSB (Jenkyns et al., 1991; Maynard, 2010), given the presence of Na-acetate extractable Fe (Section 2.4), and the fact that appreciable quantities of siderite have been detected in the LSB at Kettleness (a more marginal depositional environment than Hawsker Bottoms; Newton, 2001). Siderite and Rhodochrosite lie at opposite ends of a solid solution, and it is reasonable to suggest that a high proportion of the sedimentary Mn content of the LSB became incorporated into diagenetic siderite. Mn can also become incorporated into carbonate phases such as Kutnohorite and as a replacement after Ca in calcite (Deer et al., 2013). The low Mg content of the LSB (Appendix 2), however, implies that dolomatisation was not pervasive in this unit (i.e. Kutnohorite content is probably low), and no major carbonate clasts (mineral or biogenic) were observed in thin section. An XRD analysis would be required to conclusively determine the mineral host of Mn within the LSB, but regardless of the specific mineral host, the positive correlation between Mn/Al and Inorganic C (from Rock Eval; Fig. 3.34) supports the presence of a Mn-containing carbonate mineral phase within the LSB. In addition, the high basinal restriction and low oxygen levels (when below 5 μ M) might have resulted in direct water column precipitation of MnCO₃ (Wittkop et al., 2020). However, relatively low levels of pelagic carbonate were introduced to the sedimentary environment (see TIC data in Appendix 3, as well as Fig. 3.32), and so if carbonate saturation was indeed elevated in sub-chemoclinal waters, the required dissolved inorganic carbon would have been supplied either through sulphate reduction, or possibly by an elevated shelf flux (e.g. Dekov et al., 2020). In any case, the presence of Mnbearing carbonate phases is supported by my combined trace element and Rock-Eval analysis, and furthermore, the presence of strong redoxcline is supported by the small framboid size distribution found in Lithofacies B (Figs. 3.16 and 3.19). Mn flux to the sediments could therefore have been particularly high when the sediment-water interface intersected with a fluctuating redox boundary.

3.6 Molybdenum

Mo/Al closely tracks Mn/Al (Fig. 3.26), implying delivery to the sediment primarily through capture by Mn oxyhydroxides (Tribovillard et al., 2006), and by sulphides/sulphurised OM during the brief interval of euxinia in Lithofacies B. Mo is therefore likely to be hosted either in syngenetic pyrite, or within authigenic Mn mineral phases (Algeo & Maynard, 2004; Algeo & Tribovillard, 2009). The Mo enrichment implies anoxic conditions were developed in bottom waters (particularly in Lithofacies B), but the values are depleted relative to those from persistently euxinic environments such as the Black Sea (maximum Molybdenum enrichment factor – MoEF = 22.8, as opposed to $MoEF \sim 50$; Algeo & Tribovillard 2009 and references therein; Fig. 3.38). Given that the Cleveland Basin was highly restricted (as indicated by Mn enrichment), if sulphide-mediated drawdown of Mo took place, the level of Mo enrichment by this pathway was likely intrinsically limited (Algeo & Lyons, 2006). Similarly, in their work on the Mo geochemistry of the Toarcian sediments of the Cleveland Basin, McArthur et al. (2008) argued that their value of the Mo/TOC regression curve (rsMo/TOC) in the Sulphur Bands (rsMo/TOC = 17 ppm/wt.%) was indicative of a small reservoir of Mo. They argued that this could have been due to either a limited Mo inventory within a moderately restricted basin, or oceanic Mo depletion (i.e. a non-restricted setting with access to the Tethyan realm). They further argued that since the rsMo/TOC values were correlated with geochemical proxies for oxygen depletion (such as DOP-T and δ^{98} Mo), and since assuming an oceanic drawdown of Mo during the T-OAE necessitates an unrealistically high average Mo value of lower Toarcian black shales, McArthur et al. (2008) conclude that the Cleveland Basin was restricted. Furthermore, it was argued that increased Mo enrichment, at relatively constant TOC was indicative of an expansion of a euxinic water mass (i.e. chemocline shoaling), encompassing a larger Mo inventory, which was then drawn down. So even if bottom waters were euxinic during the deposition of the LSB, the height of the anoxic-euxinic chemocline within the water column could have affected the amount of Mo drawn down, in addition to the basin reservoir effect. To test the relative influence of these two factors, further proxy constraints on the height of the anoxic-euxinic chemocline (e.g. the biomarker isorenieratane), are needed. A further study by McArthur (2019), found that the Sulphur Bands were also enriched in Mn and Cd (notwithstanding occasional dilution by the high pyrite content). On the basis of CoEF x MnEF, it was concluded that both the Sulphur Bands, and the overlying Mulgrave Shale Member, were deposited under restricted conditions. The emerging picture of a restricted Cleveland Basin has recently led to the assertion that the

Cleveland Basin was partly freshwater/brackish, based on poorly constrained B/Ga and S/TOC data (Ramirez & Algeo, 2020a; see also comment by Hesselbo *et al.* (2020), and reply by Ramirez & Algeo, (2020b)).

The assertion that a limited Mo inventory in the Cleveland Basin was due to high basinal restriction has, however, been challenged. Based on assessment of detrital element ratios, Thibault *et al.* (2018) have argued that a broad transgression occurred during the deposition of the Whitby Mudstone Formation, and that Mo drawdown occurs on a much larger scale during OAEs. In addition, the sluggish oceanic currents across the EES would have also afforded many opportunities for the depletion of the Mo inventory of water masses moving into the Cleveland Basin from the Tethyan realm (Baroni *et al.*, 2018). While the hydrographic regime concomitant with the deposition of the Mulgrave Shale Member remains a matter of debate, the LSB is nonetheless associated with both a lower sea level than the overlying Mulgrave Shale Member (Thibault *et al.*, 2018), and a short-lived regressive-transgressive couplet near the Pliensbachian-Toarcian boundary (Wignall & Bond, 2008). Therefore, the co-occurrence of oxygen depletion with (short-lived) high basinal restriction remains plausible (at least for this unit), although an independent analysis of sea level is needed to test this (see Chapter 5).

3.7 Other trace elements

Low U levels (Figs. 3.26 and 3.38) could be indicative of either a highly restricted system (a limited aqueous U inventory), or possible re-oxygenation of bottom waters leading to the reoxidation of authigenic U hosted in carbonates (e.g. Zheng *et al.*, 2002; Tribovillard *et al.*, 2006). Re-oxygenation, however, is difficult to reconcile with the persistently high levels of Fe_{Py} through the section (Fig. 3.23), little evidence of pyrite framboid recrystallisation, and the lack of bioturbation within Lithofacies B (Fig. 3.16). Despite this, the re-oxidation of U by bioturbation is still a viable depletion pathway for the bioturbated portions of Lithofacies A and C (just as with Fe). A MoEF vs UEF cross-plot (Fig. 3.38) implies that the system was dominated by a particulate shuttle, due to the trend observed (albeit shifted left due to the uniform U depletion). This further indicates Mn cycling was present at the oxic-anoxic redox boundary, and that Mo was incorporated into authigenic Mn mineral phases (Algeo & Tribovillard, 2009).

Some of the highest trace element enrichments encountered in the LSB are for elements that associate very readily with Fe and Mn (oxyhydr)oxides, such as As (Fig. 3.27; Tribovillard, 2020), Cu (Fig. 3.28; Fernex et al., 1992), Ni (Fig. 3.26; Peacock & Sherman, 2007), and Mo (Fig. 3.26; Bertine & Turekian, 1973; Brumsack, 2006; Tribovillard et al., 2006;). Alongside the high values of Fe_{HR}/Fe_T (particularly in Lithofacies B; Fig. 3.23), and the very low U content (Fig. 3.26), this implies a strong operation of the Fe shuttle in the basin. A large flux of (potentially hinterland-derived) highly reactive iron might have been in operation, moving from a proximal shelf environment to the basin depocentre. When the expansion of anoxic conditions brought the anoxic/euxinic chemocline into contact with this flux, colloidal Fe_{HR} was then reduced into FeS, which was then converted to Fe_3S_4 (Wignall & Newton, 1998). This then sank out of the water column. Many of these trace elements were subsequently reduced in the euxinic environment (closer to the sediment/water interface), and incorporated into syngenetic pyrite when the level of Fe_{HR} was high (Tribovillard *et al.*, 2006). The strong Fe shuttle may also have been accompanied by a Mn shuttle - Large amounts of Mn oxides (primarily hosted in particle coatings; Tribovillard et al., 2006) would have been titrated during episodes of chemocline expansion, raising the dissolved Mn inventory of sub-chemoclinal waters. This dissolved Mn²⁺ would have then been confined to be basin by strong Mn cycling at the chemocline. Precipitation of Mn-oxides above the oxic-anoxic chemocline would have additionally acted as a sink for Co, Cu, Mo, Ni and Zn. The high Ni enrichment (Fig. 3.26) was possibly due to incorporation into sulphides, although high values of Ni/Al in Lithofacies C (up to 62.0 ppm/wt.%), where pyrite levels are in decline, remains enigmatic.

3.8 Burrow enrichments/depletions

The relative element enrichments of the *Rhizocorallium* burrows (Fig. 3.30) implies that they resulted mostly in a remobilisation of redox-sensitive elements. This was due to exposure of sulpidic sediments to oxygenated water circulating in the newly opened burrows, leading to the local oxidation of pyrite. The lack of significant changes in detrital element ratios implies simple mechanical reworking of the local sediment, rather than replacement. The slight increase in Zr relative to the host sediment could have been enriched due to transport of resuspended sediment by traction and saltation: reworked sediment from intense bioturbation becomes funnelled into the burrows by turbulent flow at the sediment-water interface (Fustic *et al.*, 2021). Ba is highly enriched in the *Rhizocorallium* burrows (both when normalised to local sediment and high TOC

sediment; Figs. 3.30 and 3.31), and may partly reflect substitution of the K^+ ion for the Ba²⁺ ion in the alkali feldspars – a common component of the silty lithologies of the LSB. However, given the low Ba content of the surrounding sediments (Fig. 3.27), the elevated Ba signatures may be nothing more than normalisation artefacts.

The distinct difference in elemental composition between the burrows, and the sediments they penetrate implies that the sediment samples from Lithofacies C (notwithstanding minor contribution from *Chondrites* traces), are still broadly representative of the original signal. However, due to the small size, and indistinct boundaries of the traces preserved in Lithofacies A, a similar analysis could not be carried out. It is, therefore, impossible to rule out the possibility of a mixed geochemical signal for this interval. Indeed, the presence of Fe_{HR}/Fe_T values apparently inconsistent with the macropalaeontological evidence indicating habitable bottom water conditions (Figs. 3.16 and 3.23; see section 3.2), strongly implies that this is the case.

3.9 Implications for use of the Fe-speciation proxies

The difficulty in resolving accurate geochemical redox proxy records for the bioturbated sediment of Lithofacies A, should serve as a warning that sampling of bioturbated sediments for geochemical analysis should be carried out with care, to minimise the chance of drawing erroneous palaeoenvironmental interpretations. Given the high Fe_{Pv}/Fe_{HR} values associated with this interval (Fig. 3.23), despite the relatively low Fe_T/Al values (around 0.5 wt.%), it is probable that redox conditions frequently fluctuated from fully oxic, to fully euxinic. Additionally, Fe_T/Al values may have initially been much higher in Lithofacies A, with excess Fe_{HR} becoming remobilised into the water column, during early diagenesis under an anoxic ferruginous water column (Poulton & Canfield, 2011, Poulton 2021). This process has been invoked to explain low Fe_T/Al values associated with Devonian-aged black shales in Western Canada (Li 5, 2022), and requires rapidly fluctuating redox conditions. If this process indeed operated during the deposition of the LSB, then given a sample spacing of 0.5 cm (and that the 15 cm-thick LSB represents 10 kyr of sedimentation; Chapter 1, section 6.0), the frequency of these fluctuations would be, at most, on the order of centuries. Bioturbation associated with high Fe_{HR}/Fe_T and Fe_{Py}/Fe_{HR} can also be found in the Rhaetian-Hettangian aged sediments of the Bristol Channel basin (He et al., 2022), and again, is likely indicative of benthic colonisation during brief oxic intervals, with a duration of insufficient length to be captured by the sample resolution of the iron proxies. These

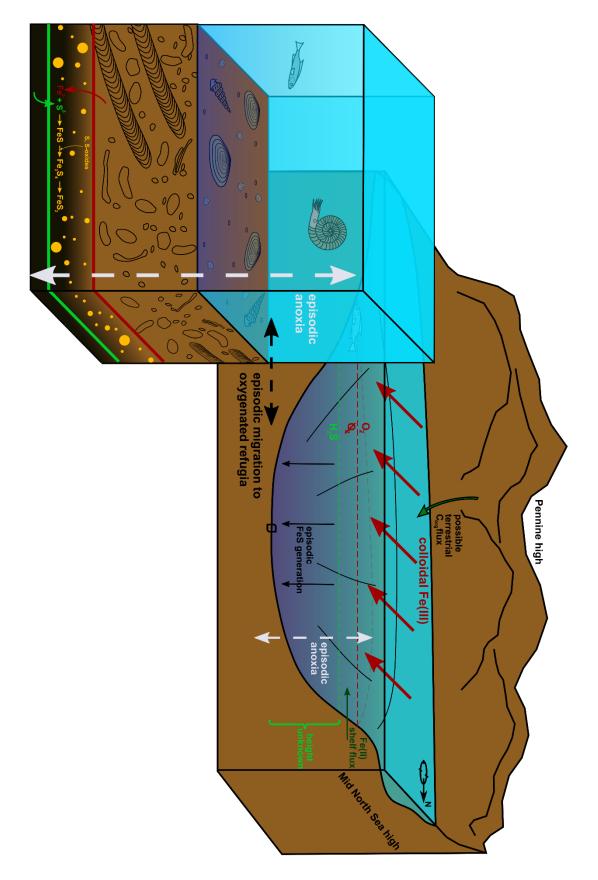
observations in no way undermine the utility of the Fe_{HR}/Fe_{T} and Fe_{PV}/Fe_{HR} proxies, which have been well calibrated over a wide range of modern environments, and have time and again accurately resolved palaeoredox state in multiproxy studies of palaeoenvironments ranging from the Precambrian to the Quaternary (Raiswell & Canfield, 1998; Wisjman et al., 2001; März et al., 2008; Poulton et al., 2010; Raiswell et al., 2018; Poulton, 2021). Rather, they demonstrate the remarkable variability of redox state in black shale sequences, beyond those traditionally assumed. These deposits are likely characterised by frequent redox shifts, allowing for the shortlived recolonisation of the benthic environment, especially by dysoxia-tolerant animals. In modern environments, dysoxia/anoxia occur over a wide range of spatial and temporal scales (Rabalais et al, 2010), and show annual growth/reduction in many shallow marine settings (mediated by factors such as enhanced nutrient loading during the spring bloom; Tyson & Pearson, 1991; Li et al., 2016). This fine redox variability can be preserved in laminated sediments, and even resolved with high-resolution XRF (Dahl et al., 2019); however, the high level of bioturbation in Lithofacies A means that such mm-scale variations cannot be resolved here. Even in modern nearshore settings with high sediment accumulation rates, sediments typically spend on the order of 10-100 yr in the mixed layer, and so sedimentary signals that take place on a shorter timescale than this (with the exception of short-lived, non-steady state events such as storm deposits) are unlikely to be preserved intact in bioturbated sediments (Wheatcroft & Drake, 2003).

3.10 Rock-Eval pyrolysis

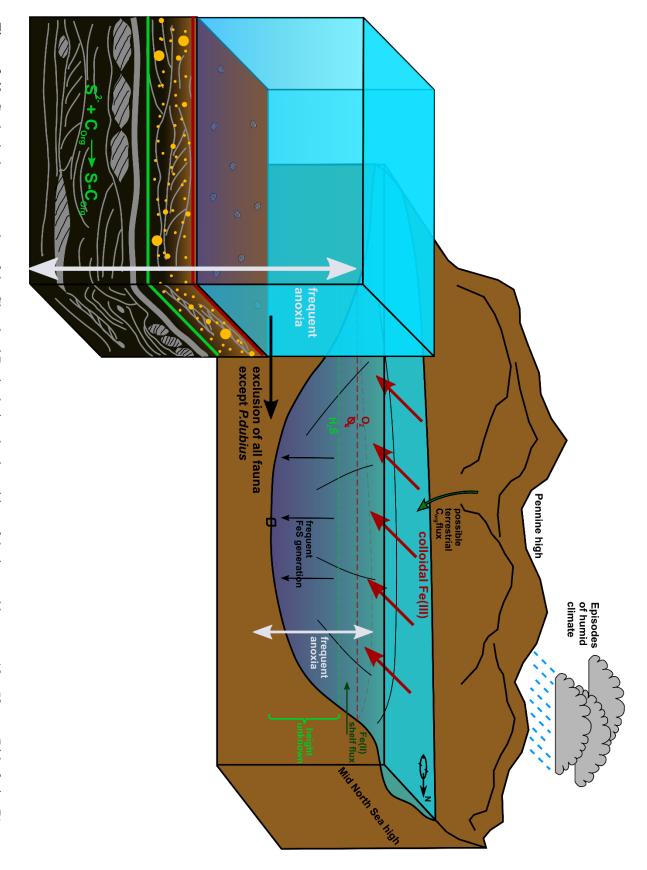
Given that redox proxies (e.g. Fe_{Py}, Mo/Al, and framboid diameter; Figs. 3.16; 3.22; 3.26) correlate with TOC (positively in the case of Fe_{Py} and Mo/Al and negatively in the case of framboid diameter), and that the redox proxies reach low values along with TOC, I interpret increased TOC to be a consequence of enhanced preservation: as sub-chemoclinal waters expanded during the deposition of the LSB (as implied by the peak in Mn/Al; Fig. 3.26), C_{org} accumulating in the Cleveland Basin depocentre was more protected from oxidation. Exceptions to this are the brief periods of higher bottom-water energy, marked by the silty units, where anticorrelation in the HI and OI trends (Fig. 3.35) implies that previously deposited organic matter was oxidised, consistent with bottom-water oxygenation. This is not to say that episodes of enhanced productivity did not occur, or even that (if present) they did not further accelerate oxygen consumption. The isolated nature of the basin, and subsequent long deep-water renewal

times (Baroni *et al.*, 2018), however, mean that invoking high productivity levels is not required. Furthermore, invoking productivity enhancement carries an additional burden of proof, and therefore requires additional proxy evidence to validate/disprove. In Chapters 4 and 5, I employ palynological and biomarker proxies to further investigate these questions.

A large proportion of the organic matter preserved in the LSB is marine in origin (HI values of up to 318 mgHC/gTOC; Fig. 3.32), however, bimodal S2 peaks imply the presence of two intermixing organic matter pools (Newell et al., 2016). One of these could have been derived from an algal source, and another from a humic source. This is also implied by the HI and OI data. While the relatively close clustering of the data points on the HI vs OI plot (Fig. 3.35), approaching the origin, is typical of ancient organic rich sediments that have undergone slight thermal maturation, the clustering also implies the organic matter is most likely a mixture of algal and humic material. It is possible that some organic matter is derived from a planktonic source (particularly in Lithofacies A), however, the data points at the base of the Type II kerogen evolution line could just as easily represent a mixture of highly matured type I and type III kerogen. It has, however, been noted by Cornford et al. (1998) that Fe_{Carb} rich samples might give false OI signals due to thermal decomposition of siderite during Rock-Eval analysis. The authors recommend that in these cases, HI vs T_{max} plots (e.g. Fig. 3.36) are to be preferred over HI vs OI plots, when discussing kerogen properties of the section under investigation. A plot of HI vs T_{max} also shows how my data do not fit along any single kerogen-type trend (Fig. 3.36), and that the sediments of the LSB have been subjected to a moderate degree of thermal maturation (R_0 between 0.5-0.7%). To further discriminate the relative influence of these carbon pools, a palynological analysis is required (Chapter 4). Rock-Eval pyrolysis only provides information on the bulk organic properties of the sediment, although the presence of prominent S2 and S3 peaks can be tentatively attributed to the presence of both marine, and terrestrially-derived organic matter (Carrie et al., 2012).

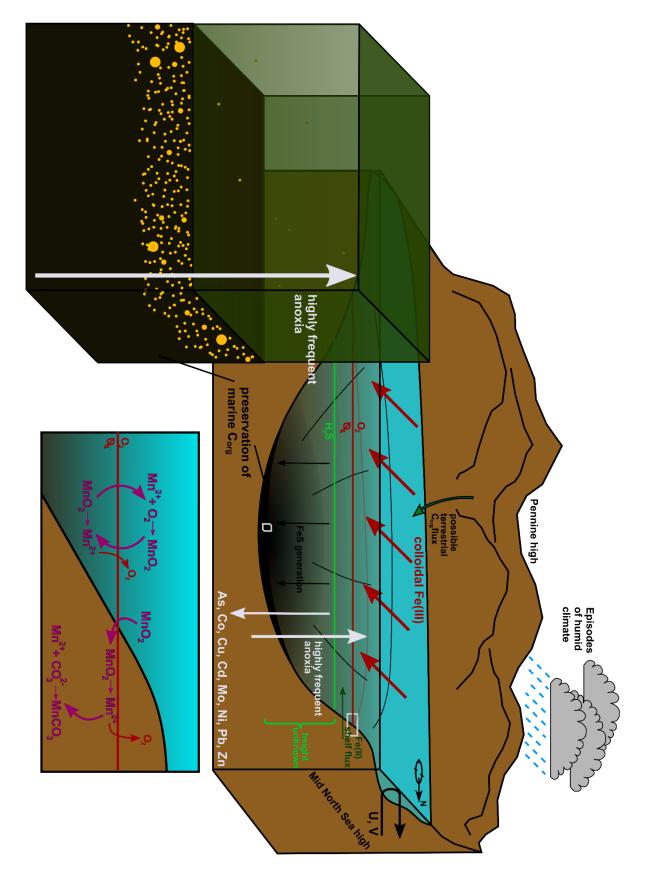

The T_{max} versus HI plot (Fig. 3.36) shows how the samples do not fall along any of the defined trends for kerogen types I-III, further implying a mixed signal. The spread of points also falls between R₀ values of 0.5% and 0.7%, indicating that the samples have been thermally matured. Some of the samples (mostly from Lithofacies A) show T_{max} values exceeding 435°C (Fig. 3.32), plotting in the oil generation window on the T_{max} /HI plot. Any future study on the organic geochemistry of the LSB should therefore account for the probable migration of short-chain compounds within the pore space (see Chapter 5).

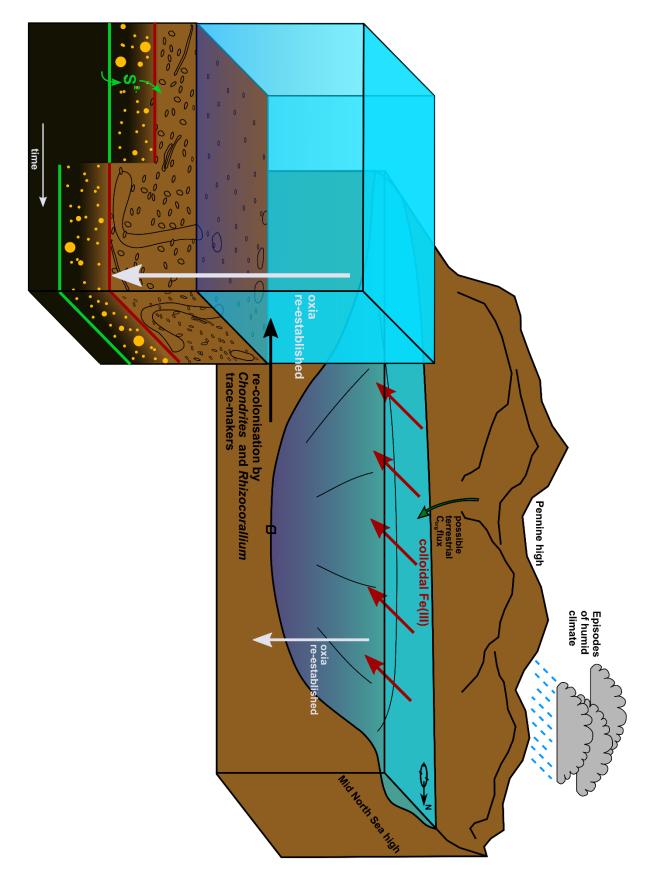
3.11 Model for LSB formation


The Cleveland Basin was highly restricted, and small changes in continental weathering regime, temperature, organic carbon export, etc., greatly affected the redox state (like the modern Danish Straits; see Chapter 1, section 1.0). It should be noted, however, that during the early Jurassic the Cleveland Basin was probably more restricted than the Danish Straits (as implied by the small Mo inventory of the basin; McArthur *et al.*, 2008; Baroni *et al.*, 2018) and was situated in a winter-wet temperate climate as opposed to a cool temperate climate (Rees *et al.*, 2000; Ruebsam *et al.*, 2020a).

As recorded in the lower 112 mm of the section (Fig. 3.39), many episodic fluctuations into a dysoxic to anoxic state occurred, as implied Fe_{HR}/Fe_T ratios exceeding 0.38. However, oxic intervals were sufficiently long to allow for recolonisation of the benthic environment. The high levels of bioturbation effectively homogenised redox signals in the lower 100 mm of the section (see 3.9), and so establishing the lengths, durations, and the frequency of these alternate redox states is very difficult.

Above 10 mm, redox conditions might have fluctuated at a higher rate (Fig. 3.40), which precluded most epifaunal benthic organisms, and all large infauna (although the possibility of meiofauna continuing to create microbioturbation during periods of intense dysoxia remains Savrda & Bottjer 1991, Tyson & Pearson, 1991; Levin, 2002; Schieber & Wilson, 2021). The only organisms that remained were either tolerant towards prolonged dysoxia (but not anoxia), or had reproduction and growth rates sufficiently high that they could become established during the increasingly brief oxic spells. The exclusion of bioturbating infauna resulted in the preservation of the original sediment fabric.




burrowers. Pyrite framboids (orange circles), could only form below the sediment-water interface, where both oxygen and free sulphide A). Periods of dysoxia/anoxia were episodic, allowing for the development of a low diversity benthic community, which included active Figure 3.39. Geological reconstruction of the Cleveland Basin during the deposition of the lower part of the LSB (-60 – 10 mm – Lithofacies

HCS (grey blebs) is preserved due to the lack of bioturbation, and the increased sulphide content initiates organic matter sulphurisation. periods of dysoxia/anoxia become increasingly frequent, precluding burrowing behaviours, and most benthic organisms (except P. dubius). Figure 3.40. Geological reconstruction of the Cleveland Basin during the deposition of the interval between 10 - 52 mm (Lithofacies B).

pyrite. in the water column (euxinia), intense Mn cycling at the chemocline (panel in bottom right), and the sequestration of trace elements in syngenetic (between 52 – 94 mm, Lithofacies B), and the accumulation of labile Corg. This interval is also characterised by the formation of pyrite framboids Figure 3.41. Geological reconstruction of the Cleveland Basin during the deposition of the interval charcaterised by highly frequent anoxia

first colonise the sediment (left of reconstruction), with Rhizocorallium trace-makers arriving later (right of reconstruction). Dysoxic/anoxic periods become far less frequent/severe, allowing for a phased recovery of the benthic community. Chondrites trace makers Figure 3.42. Geological reconstruction of the Cleveland Basin during the deposition of the sediments above 94 mm (Lithofacies C).

Above 52 mm, the crossing of some environmental threshold shifted the system into a very frequently anoxic, redox-stratified state (Fig. 3.41), which allowed laible C_{org} to become buried in the basin depocentere, forming the LSB. The production of sulphide by the anaerobic decay of organic matter, and possibly by sulphate reduction in the water column, led to the generation of large quantities of sygenetic pyrite, leading, eventually, to the characteristically high sulphur content of the LSB.

Above 94 mm, the redox state of the basin gradually shifted into a dysoxic-oxic state (Fig. 3.42), with levels of pyrite formation decreasing, and (presumably) with column stratification becoming increasingly weak. The improvement in bottom-water conditions allowed for colonisation of the sediment by a dysoxia-tolerant animal(s). This trace maker(s) created burrow networks (possibly for the purpose of sulphide farming), and in so doing produced *Chondrites* trace fossils. Sometime after this, with continued bottom water oxygenation, a *Rhizocorallium* producer appeared, and gradually, organisms with more energetically demanding life modes re-joined the benthic community.

4.0 Discussion

4.1 Comparison with the black shales of the Whitby Mudstone Formation

The LSB pre-dates the Mulgrave Shale Member, occurring in the *Protogrammoceras paltum* subzone, rather than the *Cleviceras exaratum* subzone (Howarth, 1973; Hesselbo & Jenkyns, 1995; Simms *et al.*, 2004). This demonstrates that the Cleveland Basin became highly susceptible to the development of dysoxia (or anoxia), due to hydrographic restriction, at least 1.7 Myr before the carbon cycle perturbation at the T-OAE (based on the biozone durations of Page, 1995, 2004). Indeed, moderate oxygen restriction was likely an episodic occurrence in the Cleveland Basin as early as the Hettangian (Atkinson *et al.*, 2020). The high level of basinal restriction is likely to have limited the supply of oxygen from the Tethys Ocean. However, my work implies that significant oxygen depletion could only occur in this setting when an additional condition is met – one that results in a system shift in the oxygenation regime, accompanied by chemocline expansion and stabilisation. The causal mechanism behind this cannot be inferred from the data presented here, however, insofar as similar conditions existed during the later *C. exaratum*

subzone (McArthur *et al.*, 2008), and in the south-west German basin (Posidonia Shale; Röhl *et al.*, 2001), enhanced nutrient flux may have played a role. A shift to a more humid, monsoonal climate during the deposition of the LSB may also be a symptom of higher northern-hemisphere temperatures during a disturbance of the global carbon cycle. Evidence for a negative $\delta^{13}C_{\text{Org}}$ excursion in the LSB (Littler *et al.*, 2010) could reflect this, and so an investigation of the $\delta^{13}C_{\text{Terrestrial}}$ trend (e.g. French *et al.*, 2014) in the LSB would be worthwhile. $\delta^{13}C_{\text{Org}}$ excursions coeval with (or at least near to) the PI-To are by no means limited to the Cleveland Basin, with similar excursions observed in Peniche, Portugal (Hesselbo *et al.*, 2007), and to varying degrees across north-western Europe (van de Shootbrugge *et al.*, 2013). It is possible that these CIEs are related to brief periods of volcanic activity (on the basis of Hg/TOC spikes; Them *et al.*, 2019 – their fig. 5), and, additionally, some workers have suggested a connection with permafrost destabilisation during the close of the Pliensbachian icehouse (Ruebsam *et al.*, 2019; 2020a).

4.2 Comparison with the other Toarcian black shales

Trace element enrichment and pyrite framboid distributions indicative of anoxia, concomitant with sedimentological evidence for high bottom water energy, have also been documented from the Toarcian-aged black shales of the Dutch Central Graben (Trabucho-Alexandre *et al.*, 2012). Like in the LSB, organic matter accumulation was accompanied by frequent erosion and reworking of the sediment, probably by storm activity.

Thin black shales in the lowermost Toarcian are seen in other sedimentary basins, notably the Posidonia Shale of southern Germany. However, the carbon isotope excursions associated with these basins often show inconsistencies between sites, and are not present at all in more Tethyan, and Pacific localities (van de Schootbrugge *et al.*, 2013 – their fig. 8). This points to some short-lived climatic event in the lowermost Toarcian, that induced a brief period of chemocline expansion in more northerly EES localities – environments with redox states that were far more sensitive than the Tethys to small changes in climate, due to the weakening of an anticlockwise gyre by the rough bathymetry of the EES (Baroni *et al.*, 2018).

4.3 Comparison with the Kimmeridge Clay

The LSB shares some features in common with the thin black shales of the Kimmeridge Clay, notably the presence of erosive sedimentary structures (Oschmann, 1988; Atar, 2020), and relatively depleted levels of U and V (Tribovillard *et al.*, 1994). Both black shales also reflect the combined influence of the local marine environment, and interannual climate variability on redox state. In the Kimmeridge clay, magnetic susceptibility cycles of around 0.5 - 1 cycles per meter have been documented, and related to Milankovitch-driven climate variability (specifically to obliquity and precession cycles; Weedon *et al.*, 1999). In the lower Jurassic, $\delta^{13}C_{org}$ records also show Milankovitch cyclicity, albeit at frequencies of 0.2 - 0.3 cycles per meter. While some workers have argued that these correspond with obliquity (due to the purported presence of large hiatuses in the *D. Tenuicostatum* zone; Boulila & Hinnov, 2017), others contend that they reflect 100 kyr short eccentricity cycles (at least before the T-OAE CIE; Suan *et al.*, 2008; Huang & Hesselbo, 2014; Ait-Itto *et al.*, 2018). These disagreements have led to widely differing estimates for the length of the T-OAE CIE, a debate which has been exacerbated by a lack of formalised agreement on the initiation and termination of the CIE (see Thibault *et al.*, 2018 for a discussion).

Despite their similarities, the LSB is much thinner than many of the black shales of the Kimmeridge clay (with the Blackstone Band being around 6 times thicker; Strahan, 1898). The Blackstone Band is also renowned for its extremely high TOC content (reaching 50 wt.%;), which is around 6 times the highest value found in the LSB. I depositional environments of these two black shales are also markedly different, with the Kimmeridge Clay being deposited in a wide shelfal environment, characterised by seasonally-controlled currents (Oschmann, 1988). Intervals of organic matter enrichment in the Kimmeridge Clay have been attributed to increases in primary production; however, this played a far less important role in Corg enrichment of sediments in the Cleveland Basin. TOC and $\delta^{13}C_{org}$ are positively correlated in the Kimmeridge Clay, but negatively correlated within the Mulgrave Shale Member of the Cleveland Basin (Sælen *et al.*, 2000). This implies that, during the deposition of this unit, isotopically light carbon was primarily supplied through new production, with disruption of the chemocline (and resulting phytoplankton blooms) being relatively rare. In the Kimmeridge Clay, by contrast, frequent overturning led to depletion of sub-chemoclinal ¹²C, and resulted in a more positive $\delta^{13}C_{org}$. As of yet, it is unknown whether the marine carbon-cycle processes associated with the deposition of the Mulgrave Shale Member (as described by Sælen et al., 2000), also applied during the deposition of the LSB; however, given the high level of basinal restriction, this seems likely. An

isotopic analysis capable of targeting the influence of upwelling and stratification on the carbon isotope signature of marine organic matter could better constrain the record of these processes through the LSB, and aid in comparison between the black shales of the *C. exaratum* subzone, and from other successions such as the Kimmeridge Clay. I shall present the findings of such a study in Chapter 5.

4.4 Possible influence of interannual climate variability on the LSB

The LSB corresponds with a negative $\delta^{13}C_{org}$ excursion of -2.5% (Littler *et al.*, 2010). Similar excursions in the lower *D. tenuicostaum* zone (and the contemporaneous *D. polymorphum* zone; Page, 2004; Wignall et al., 2005) occur in many European lower Jurassic successions, and capture a 100 kyr short eccentricity signal (Thibault et al., 2018; Ruebsam et al., 2019). However, not all localities contain three thin black shales concomitant with the negative $\delta^{13}C_{org}$ excursions, and not all thin black shales in D. tenuicostatum or H. polymorphum zones are necessarily accompanied by a distinct negative δ^{13} C excursion. The Upper Sulphur Band (in the Cleveland Basin), for example, occurs between beds 18 and 19a, in the D. clevelandicum subzone (Howarth, 1973), and is not accompanied by a corresponding $\delta^{13}C_{org}$ excursion (Kemp *et al.*, 2005; Littler *et* al., 2010; Thibault et al., 2018). Additionally, no prominent negative δ^{13} C excursions occur in the D. tenuicostatum subzone (which, in the Cleveland Bain, encompasses beds 20 - 27 of Howarth, 1973) in any European lower Toarcian succession, despite the occurrence of ~1.5 100 kyr cycles within the $\delta^{13}C_{org}$ record (van de Schootbrugge *et al.*, 2013; Ruebsam *et al.*, 2019). This implies that while Milankovitch-driven climate variability during the upper Pliensbachian and lower Toarcian (prior to the T-OAE) could have contributed to oxygen depletion in shallow marine settings (especially highly restricted ones), an additional climatic influence (i.e. volcanogenic CO₂) was probably necessary to trigger black shale preservation. However, assuming an entirely volcanogenic source for the injection of isotopically light carbon during the Toarcian leads to unrealistically high pCO₂ estimates (Ruebsam et al., 2020a), and while Hg/TOC anomalies have been detected in thin black shales from the Pl-To (Percival et al., 2015), the attribution of Hg enrichment in TOC to volcanogenic deposition been questioned (Them et al., 2019). A similar distribution of negative δ^{13} C excursions could have also been generated through the stepwise collapse of climate-sensitive methane reservoirs at the end of the Pliensbachian and towards the T-OAE (Ruebsam et al., 2019). A compound-specific isotopic analysis capable of evaluating the

signature of a carbon pool(s) in sync with the atmosphere during this event (i.e. a record isolated from any competing influences from marine dynamics) could not only link oxygen depletion with coeval carbon cycle perturbation, but could provide powerful constraints on the source of isotopically depleted carbon, and its dynamics in the lower Jurassic earth system.

5.0 Conclusions

- The crossing of a (possibly climate-influenced) redox threshold at the top of the Cleveland Ironstone Formation resulted in increasingly frequent periods of bottom-water dysoxia/anoxia in the Cleveland Basin, which resulted in the reductive dissolution of reactive Fe, and its subsequent incorporation into syngenetic pyrite. The frequent strong redox stratification in this hydrographically restricted environment also led to an elevated sedimentary Mn content. Through the deposition of the LSB, anoxia frequency increased to the point where benthic organisms were excluded. The resulting lack of bioturbation allowed for the preservation of the sediment fabric, characterised first by hummocky cross-stratification, and then by C_{org}-rich laminae.
- High levels of bioturbation homogenised redox proxy signals (especially Fe_{HR}/Fe_T) in the lower part of the LSB, resulting in a mixed geochemical signal. This does not undermine the utility of the iron-speciation proxies, but instead indicates that the bioturbated black shale facies represented a period of rapidly fluctuating redox, the Fe_{HR}/Fe_T signal of which has since been time-averaged. I recommend that future studies on redox variability in bioturbated black shales employ a multiproxy ichnological, and Fe-redox geochemical approach, and bear in mind that in intensely bioturbated sediments, Fe_{HR}/Fe_T is less a function of anoxia, and more a function of the frequency of anoxia.
- The redox chemistry in the Cleveland Basin was metastable for most of the Lower Jurassic, with environmental perturbations at the Pl-To and the T-OAE triggering shifts into a regime dominated by very frequent anoxia.

Chapter 4 – Palynology and Palynofacies of the Lower Sulphur Band.

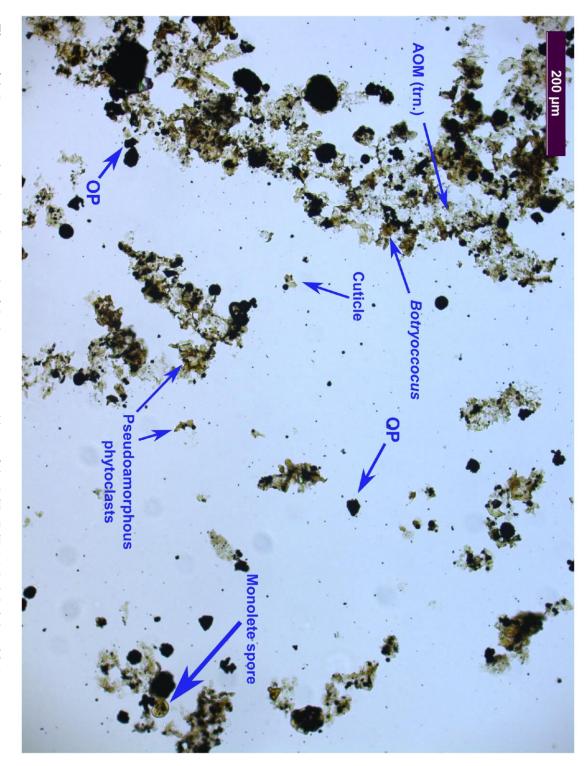
1.0 Study aims

In Chapter 3, I speculated that the organic carbon content of the LSB is a mixture of marine and terrestrially derived macerals. If this is true, then a study of the organic microfossil component of the LSB could resolve a wider range of palaeoenvironmental processes than those offered by inorganic geochemistry alone (e.g. palaeocurrent, plankton community structure, the terrestrial environment etc.), and such a study is the aim of this Chapter.

This aim is achieved through a palynological preparation of samples extracted from the LSB sample blocks (Chapter 2, section 5.0). I suggest that the assemblage of land-derived palynomorphs will be able to constrain palaeoenvironmental changes in the terrestrial environment concomitant with redox shifts in the Cleveland Basin. The composition of the planktonic community, and the occurrence of carbon burial can additionally provide independent records of the water column redox state, complementary to the inorganic geochemical data presented in Chapter 3. I anticipate that the proxies mentioned above will, when taken together, resolve environmental processes such as sea level rise/fall and climate change- processes which have the potential to impact (either solely or in concert) the water column redox state of the Cleveland Basin.

I will also attempt to evaluate change in sea level through the LSB, since the model of Fe_{HR} enrichment due to remobilisation of Fe-enriched sediments from proximal settings, requires at least a minor transgression. Moreover, evidence for a transgression during the emplacement of the LSB (if indeed present), needs to be reconciled with the trace element data of McArthur *et al.* (2008) and McArthur (2019), implying hydrological restriction.

2.0 Results


It is important to stress at the outset that the data presented here should be viewed with a small degree of caution, since the palynomorph count employed in each sample was 300, and this deviates from many count numbers utilised in the literature, as a count of 500 is recommended by Tyson (1995), and Slater et al.. (2019) counted 500-632. At the time of the analysis I assumed that beyond 300 counts, additional identifications would not greatly shift the results due to the effect of the law of large numbers. Any palynofacies components making up less than 5% of the total count will have a standard deviation of greater than 25% (Traverse, 2007, p. 664). However, I do not believe that the uncertainties associated with this selected count number significantly affect the accuracy of the conclusions I have drawn, since the absolute changes in per cent occurrence between data points that are not statistically significant are (in the worst case) limited to 56%. For example, each point contained between 0 and 9 bryophyte spores, with a mean count of 1.96, or 0.65% of a palynoclast count of 300. According to Traverse (Traverse, 2007, p. 664), this percentage value will have a standard deviation of 80% (i.e. a 95% confidence interval of 160% assuming repeated counts are normally distributed). Therefore, the mean value for bryophyte spore count, with 95% confidence, is $0.65 \pm 1.05\%$, or about 2 ± -3 spores. An uncertainty of 5 spores (2+3) is 56% of the variability (0 to 9) in bryophyte spore count throughout the samples, which could mean that no change between two given samples of less than five spores (or 1.7% of the total palynoclast count) is statistically significant (at least at 95% confidence). However, bryophyte spores are the least common variety of palynoclast under consideration in this study, and for a more dominant palynoclast (e.g. phytoclasts), the associated uncertainty is much lower for a total palynoclast count of 300. For example, each point contained between 47 and 145 phytoclasts, with a mean count of 90.6, or 30.2% of the total palynoclast count. This has a standard deviation of 8.5%, or a 95% confidence interval of 17% (Traverse, 2007, p. 664). The mean phytoclast count, with 95% confidence, is, therefore 30.2 +/-5.13%, or 90.6 +/- 15.4 phytoclasts. An uncertainty of 31 phytoclasts (2×15.4) is approximately 21% of the variability, which is less than half of the equivalent figure for bryophyte spores. Statistically significant (95% confidence) change between any two phytoclast occurrence data points, therefore, must exceed 31 phytoclasts (or 10.3% of the total palynoclast count). The lower than literaturerecommended number selected for the palynofacies count also allowed more time to be given to the complementary biomarker analysis (Chapter 5), which also generated a wide range of very palaeoenvironmentaly informative proxy records. Any issues could, however, easily be addressed by a re-analysis of the slides (stored in the School of Earth and Environment at the University of Leeds), utilising a higher palynomorph count, more in line with the recommendation of Tyson (1995), but I do not anticipate that the results of such a recount would be significantly different.

2.1 Palynology and Palynofacies

The amorphous, palynomorph, and phytoclast kerogen groups have all been identified within the LSB, although no conclusive zoomorphs (e.g. foraminiferal test linings), were found. Photomicrographs of representative macerals are shown in Figs. 4.1 - 4.6. AOM dominates the majority of the samples, and as such, follows a similar trend to TOC (Fig. 4.7), ranging from a minimum of 21.3% at -3 mm (in Lithofacies A), to a maximum of 64.7% at 80.3 mm (in Lithofacies B; Appendix 3). However, phytoclasts (predominantly degraded leaf wax cuticle), make up a large proportion of the palynofacies throughout the LSB as well: they range from a minimum of 19.3% at 48.5 mm (Lithofacies A), to a maximum of 48.3% at 139 mm (Lithofacies C).

Dinoflagellates, acritarchs and prasinophyte algae all make a varied, but small contribution to the palynofacies (Fig. 4.7), with dinoflagellates being the most common (1.0-12.0%, with an average of 4.0%), and prasinophytes being the least common (0.0-6.7%, with an average of 1.5%) of the marine palynomorphs. The abundance of dinoflagellates shows a decrease around the top of Lithofacies A (to a minimum of 1.0%), with the abundance of acritarchs showing a corresponding increase (to a maximum of 7.3%), and with the abundance of prasinophytes remaining relatively constant (around 1.5%, excepting at -28 mm where it reaches 6.7%). When normalising the abundance of these groups to the abundance of marine palynomophs (Fig. 4.8), this turnover in the planktonic community becomes more pronounced. The predominance of dinoflagellates shows a precipitous decline from a maximum of 77.2% (of marine plankton) at 28.5 mm, to a minimum of 10.0% at 99.0 mm (but, never declining 0.00%). The dinoflagellate genera *Nanoceratopsis* sp. and *Mancodinium* sp. drive the majority of this decline (Fig. 4.9), with the dominance of *Liasidum* sp. remaining relatively constant throughout.

The relative proportions of *Nanoceratopsis* sp. and *Mancodinium* sp., however, varies widely through the section, from maxima of 85.7% and 68.6%, respectively, to minima of 0.0%. Again, the acritarchs increase in abundance as the dinoflagellates decrease, making up 73.3% of the marine plankton assemblage (their highest value in the LSB) when dinoflagellate abundance is at its lowest. Apart from at –28.5 mm, prasinophytes do not make up more than 34.5% of the marine plankton content of the LSB, but broadly speaking, increases in prasinophyte abundance, and the abundance of articarchs are concomitant.

Botryococcus, and a monolete spore. Lithofacies A) with translucent (trn.) AOM, opaque phytoclasts (OP), pseudoamorphous phytoclats, leaf cuticle, Figure 4.1. Representative photomicrograph of the kerogen assemblage of the LSB (LSB1.1 Pal, height= 38.5 mm,

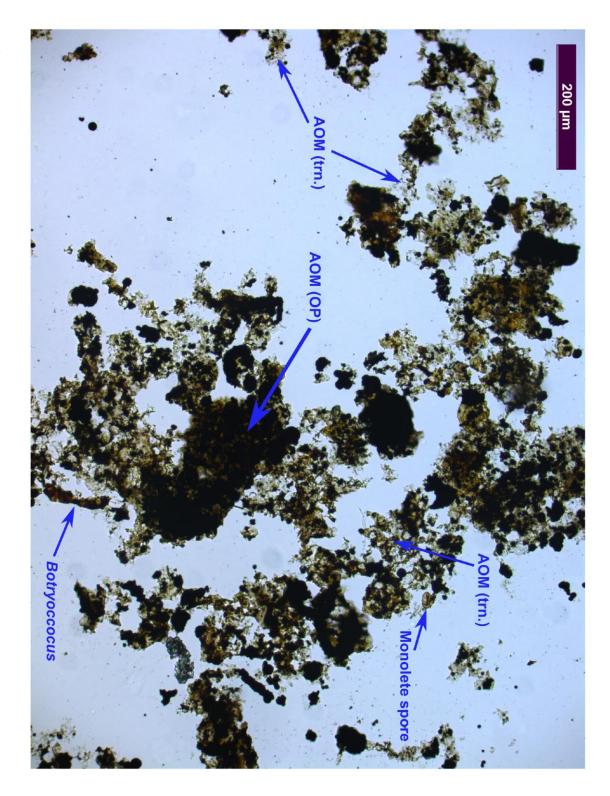
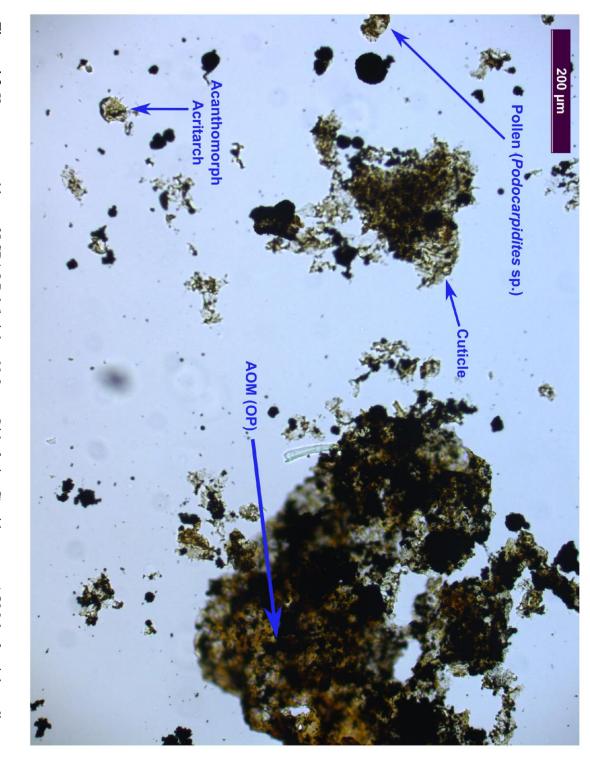
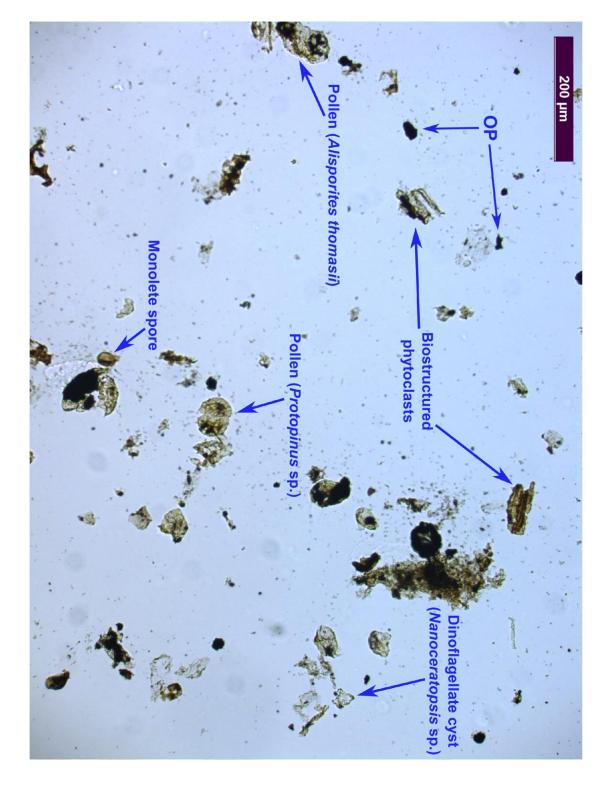
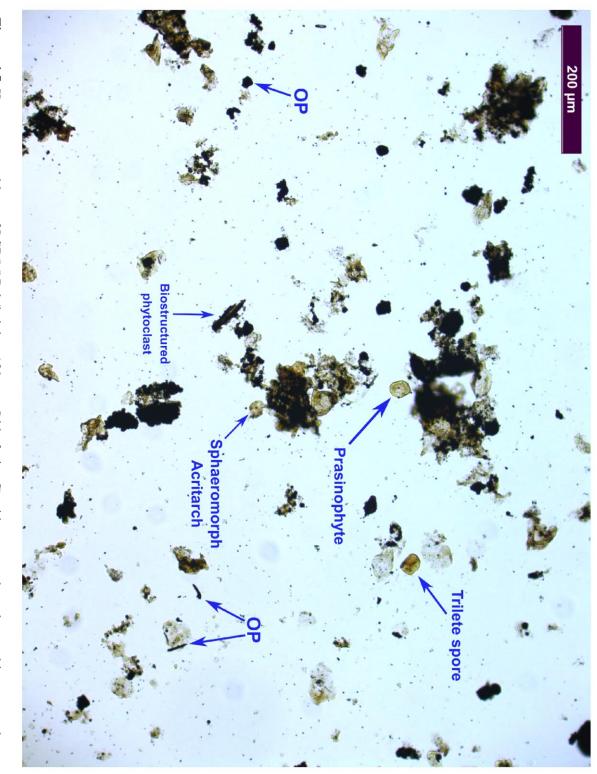
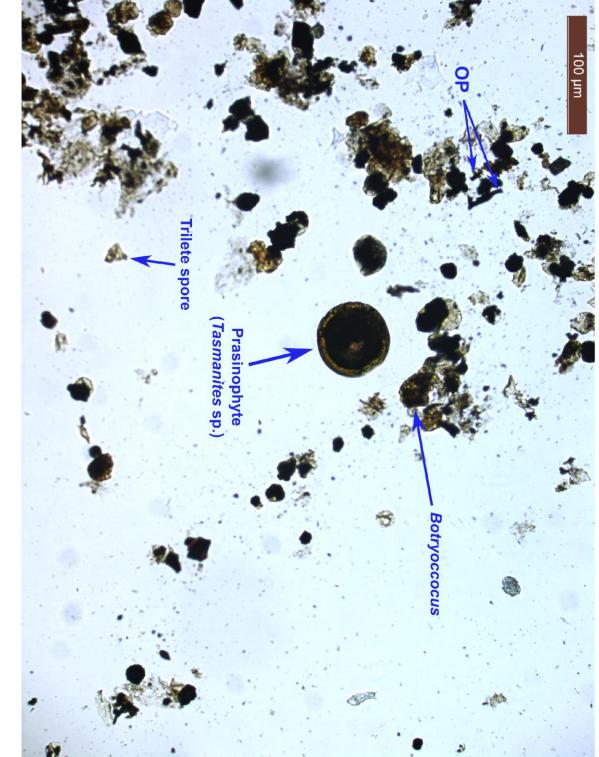
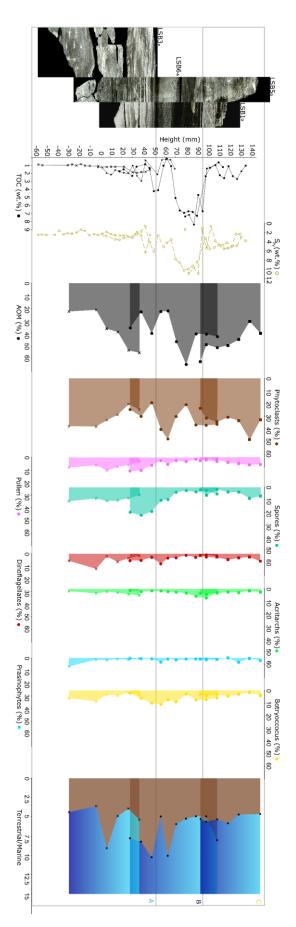




Figure 4.2. Kerogen assemblage of LSB1.3 Pal (height= 56.8 mm, Lithofacies B) with translucent AOM, opaque (OP)

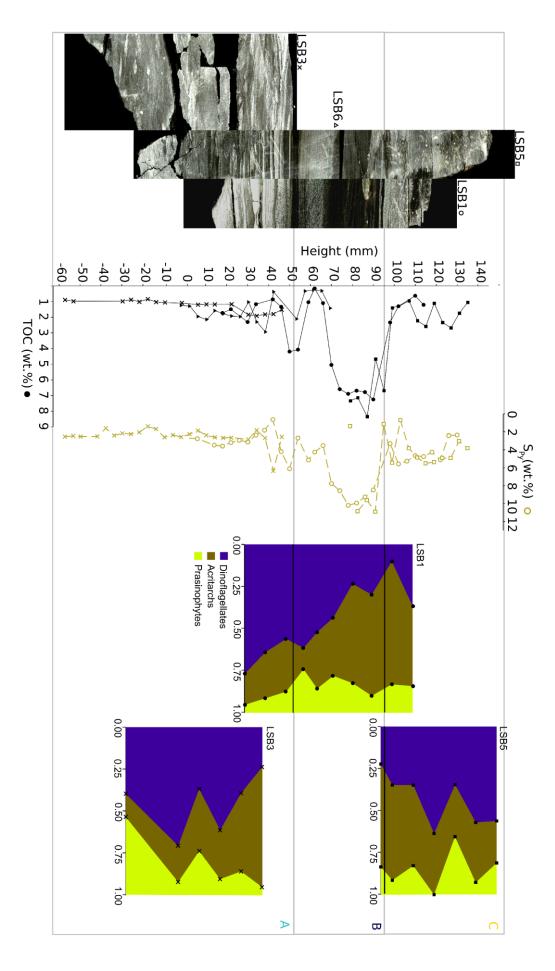

AOM, Botryococcus, and a monolete spore.


(Podocarpidites sp.), and an acanthomorph acritarch. Figure 4.3. Kerogen assemblage of LSB1.8 Pal (height= 99.0 mm, Lithofacies C) with opaque AOM, leaf cuticle, pollen and a monolete spore.

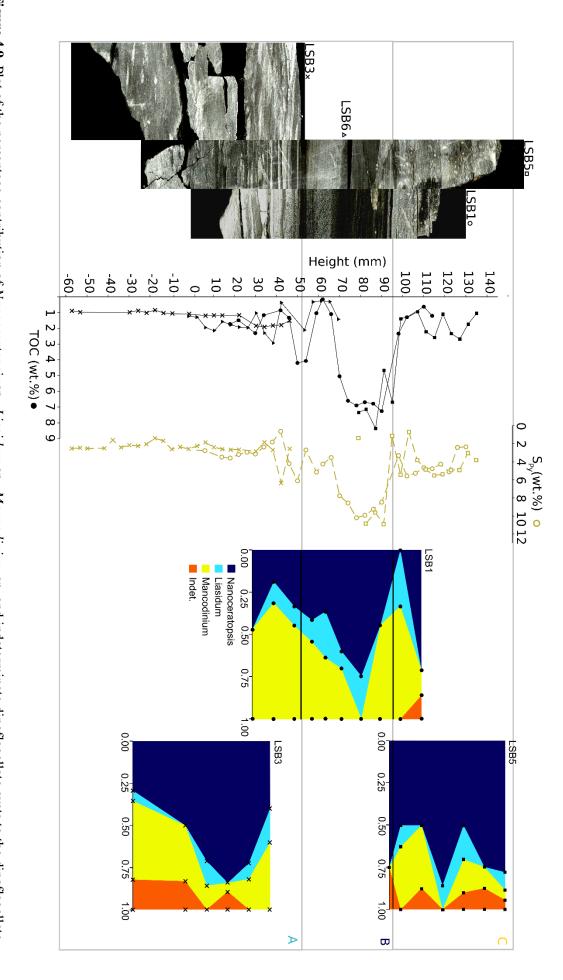

biostructured phytoclasts, pollen (Alisporites thomasii and Protopinus sp.), a dinoflagellate cyst (Nanoceratopsis sp.), Figure 4.4. Kerogen assemblage of LSB3.1 Pal (height= -3.00 mm, Lithofacies A) with opaque phytoclasts,

phytoclast, a prasinophte, a sphaeromorph acritarch and a trilete spore. Figure 4.5. Kerogen assemblage of LSB5.5 Pal (height= 139 mm, Lithofacies C) with opaque phytoclasts, a biostructured

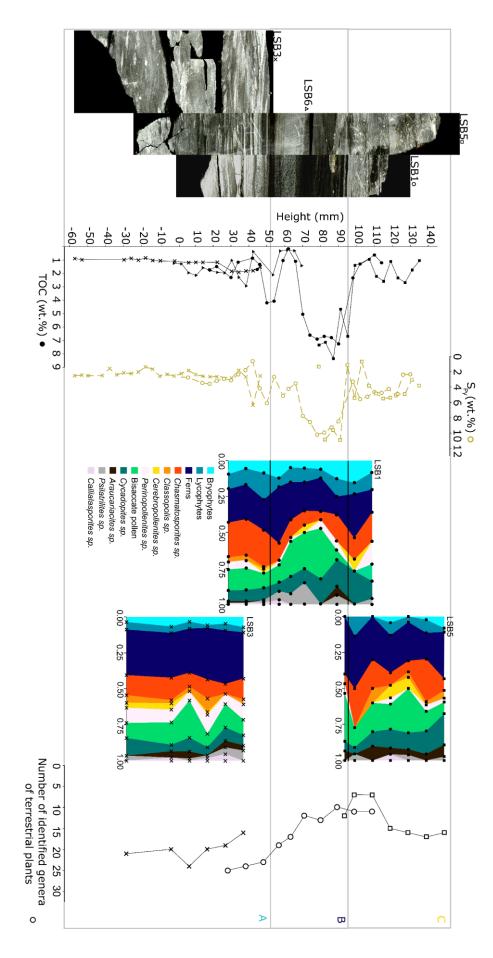
(Tasmanites sp.), opaque phytoclats, Botryoccocus, and a trilete spore Figure 4.6. Kerogen assemblage of LSB3.0 Pal (height= -28 mm, Lithofacies A) with a well-preserved prasinophyte



Circles indicate data taken from LSB1, crosses from LSB3, squares from LSB5, and triangles from LSB6. marine ratio (see Appendix 3 for quantification) is also included. As in Chapter 3, a contrast-enhanced photomosaic of scans of the LSB is included. through the LSB. These are; AOM, phytoclasts, pollen, spores, dinoflagellates, acritarchs, prasinophytes, and botryoccocus. A plot of the terrestrial Figure 4.7. Plot of TOC and S_{py} (repeated on all downcore plots, as in Chapter 3), compared with the abundance of various palynofacies components


Both spores and pollen contribute to palynofacies, but spores are more dominant throughout (average of 8.2% compared to 5.1% for pollen). Both reach higher abundance in the upper part of Lithofacies A (up to 22.0% and 10.7%, respectively), compared with the overlying Lithofacies B (down to 1.7% and 1.3%, respectively). Fig. 4.10 visualises the up-section variability in the terrestrial floral assemblage of the LSB. Assemblages are dominated by ferns (average 28.1%), Chasmatosporites (15.2%), Cycadopites (11.1%), and bisaccate pollen producers (16.5%), with Classpolis, Cerebropollenites, Perinopollenites, Araucariacites and Callialasporites producers being relatively rare (averages 2.3%, 1.8%, 5.2%, 2.8% and 0.9%, respectively). The contributions of most of the floral groups delineated in Fig. 4.10 show relatively little variability for most of the LSB, apart from at 56.8 mm, 99.0 mm, 7.00 mm and 27.0 mm. At 56.8 mm and 99.0 mm, ferns (and to a lesser extent bryophytes and lycophytes) make up a relatively higher proportion of the assemblage, with the abundances of *Chasmatosporites* and bisaccate producers showing coeval decreases. At these points, ferns, lycophytes and bryophytes together make up over 50% of the terrestrial assemblage. Point increases in the abundance of bisaccate producers (and to a lesser extent Cycadopites producers) also occur at 7.00 mm and 27.0 mm, with Chasmatosporites, Classpollis and Cerebropollenites producers showing corresponding decreases.

Although insufficient numbers of terrestrial palynomorphs have been identified to quantify diversity properly, a steady decline in the number of identified genera of terrestrial palynomorphs can be discerned, falling from 25 at 28.5 mm, to a minimum of 7 between 99.0 mm and 109 mm (Fig. 4.10). At this point, a gradual recovery then starts, with the number of identified genera reaching 17 at 139 mm.


Botryoccocus also makes up a significant proportion of the palynofacies, reaching as high as 11.0% at 56.8 mm (Lithofacies B; Fig. 4.7). Its abundance shows two broad peaks – one centered at the basal part of Lithofacies B (peak of 11.0% at 56.8 mm), and the other in Lithofacies A (peak of 8.7% at -3 mm) – superimposed on a broadly constant trend of 5.3%. The lowest value (1.7%) occurs at 139 mm, in the upper part of Lithofacies C.

palynological samples were prepared, and are labelled accordingly. dinoflagellates + acritarchs + prasinophytes) through the LSB. The three different plots correspond to the three different LSB blocks from which Figure 4.8. Plot of the percentage contribution of dinoflagellates, acritarchs and prasinophytes to the phytoplankton community (here defined as

assemblage through the LSB. As in Fig. 4.8, the three different plots correspond to the three different LSB blocks. Figure 4.9. Plot of the percentage contribution of Nanoceratopsis sp., Liasidum sp., Mancodinium sp. and indeterminate dinoflagellate cysts to the dinoflagellate

downcore plot of the number of identified genera (excluding spores and pollen of unknown genus) is also included. ferns and bisaccate producers) to the total spore + pollen count through the LSB. As in Fig.4.8, different plots correspond to different sample blocks. A Figure 4.10. The contribution of a range of terrestrially-derived spores and pollen (grouped by genus with the exceptions of bryophytes, lycophytes,

Figure 4.11. Ternary plot of phytoclasts, AOM and palynomorphs (spores + pollen + dinoflagellates + acritarchs + prasinophytes + botryoccocus), after Tyson (1989).

3.0 Interpretations

3.1 Palaeoenvironment via Palynofacies

Unsurprisingly, for a shallow marine section through which HI grows in proportion with TOC (Chapter 3, section 3.5), AOM is both the largest constituent of the sedimentary organic matter, and is most enriched in the bituminous layer of Lithofacies B (characterised by high pyrite and Mo content). The frequent anoxia associated with this interval, and lower bottom-water energy, clearly allowed for a high degree of carbon burial.

Lithofacies A, by contrast, was subject to episodes of higher bottom water energy, as indicated by the presence of hummocky cross-stratification (HCS; Chapter 3, section 3.1), and AOM content is generally lower in the palynofacies samples taken from this interval. Spores are also particularly common in the interval characterised by HCS, forming up to 22.0% of the assemblage (an apparent peak is located at 38.5 mm). In modern depositional settings, spores generally do not travel as far as bisaccate pollen. This is both due to the closer association of spore producers with damp environments typically found around rivers (see Chapter 1, section 9.2.2), and (more importantly) to the greater density of spores as compared with bisaccate pollen (Tyson, 1995, p. 265). More energetic currents might have been able to transport these heavy spores further into the basin depocentre (see section 3.2.0). However, the apparent peak in spore concentration does not match well with the large silty lens at the base of Lithofacies B, where there is good independent evidence for an increased fluvial flux (Chapters 3 and 5). This lens is, instead, characterised by an increase in terrigenous palynomorphs generally (compared with marine palynomorphs), and phytoclasts particularly (mostly as cuticle, see Appendix 3).

Botryococcus makes a small contribution to the palynofacies, but shows a muted peak at 56.8 mm. This can be crudely correlated with an increase in the terrestrial/marine palynomorph ratio, and with the silty lens at 62 mm. So it can be tentatively argued that the increased fluvial flux at this point delivered a greater quantity of *Botryococcus* into the distal marine environment. While Botryococcaceae are exclusively non-marine, freshwater algae (Tyson, 1995, p.312), fragments can be transported a considerable distance, and often make up a minor percentage of marginal (Piaseki, 1986; Robert & Yapaudjian, 1990; Hudson *et al.* 1995) and even shallow marine sediments (Williams, 1992). Andrews & Walton (1990) found occasional spikes in *Botryoccocus* dominance (of up to 43%) in a Bathonian-aged sequence of fossil oyster-dominated lagoons from the Isle of Skye (Scotland, UK), and tied these with episodic increases in fluvial flux. Bearing the above in mind, there is no need to invoke a greater freshwater content of the basin overall (contra Ramirez & Algeo 2020) to explain the presence of *Botryococcus* – its occurrence was primarily controlled by fluvial flux into the marine basin.

While the absolute abundance of dinoflagellates is relatively minor compared to many of the other macerals identified, they decline in Lithofacies B. This decline is controlled primarily by the declining habitability of the benthic environment (see 4.2.1), limiting the opportunities for successful encystment, and killing any dormant cysts before excystment. However, the abundance of dinoflagellate cysts does vary by 3.3 - 11% within Lithofacies A, and in this interval (characterised by HCS), hydrodynamics probably exerts a greater control on cyst abundance. The presence of HCS in this interval indicated that the sediments were deposited above the storm wave base, and so it is likely that the dinoflagellate cysts (which share a hydrodynamic equivalence with fine silt and clay;

Tyson, 1995, p. 285) were swept into seed beds – areas of the seafloor rich in dinoflagellate cysts, with a spatial distribution governed by the hydrodynamic equivalence of the cysts to fine silt (e.g. White & Lewis, 1982). This concentration effect might have also been balanced by a lower rate of dinoflagellate cyst production due to the closer distance to land (see Chapter 5, section 3.2; Wall *et al.* 1977, p.162; Tyson, 1989), and possibly by lower rates of primary production (see Chapter 5, section 3.4). Brief episodes of high dinoflagellate production might have also led to the local saturation of the sediment, and hence a decoupling from the sediment grain size distribution (Lewis, 1988). The fluctuating redox state of Lithofacies A might have also controlled the abundance of dinocysts, albeit to a lesser extent than in Lithofacies B, due to the lower frequency of anoxic episodes. All of these factors, in combination, could explain the variable dinocyst content of Lithofacies A, and the lower variability in Lithofacies B is mainly due to the lower benthic redox state. The greater shoreline distance and generally lower bottom water energy might have also played a role.

The ternary diagram in Fig. 4.11 shows that the majority of the data points from Lithofacies A and B, broadly cluster around the "distal dysoxic/anoxic shelf" field, which is consistent with a large (albeit hydrographically restricted) marine basin, with the depocenter located under a water column prone to oxygen depletion. However, many of the data points lie along a transport path line, which originates from the hetrolithic proximal shelf field. Many of these data points are located within the HSC structures of Lithofacies A, and the silty layer in the lower part of Lithofacies B, both characterised by a distinctly coarser lithology than the black shale of Lithofacies B (Chapter 3). The transport path was originally defined by Tyson (1989), and represents a redirection of material from a less direct shelf-tobasin path, capturing a more phytoclast-dominated palynodebris from the shelf and transporting it into the basin depocenter. Tyson (1989) suggested that this pathway might indicate an increase in the influence of turbiditic or storm-generated depositional processes. Given that the large silty lens in this section (in particular) is associated with geochemical indicators interpreted to represent humid climatic conditions (such as low K/Al and Rb/Al ratios Chapter 3), I argue that enhanced storm activity and resulting episodes of shelf-to-basin transport likely took place here. This also means that some of the dinoflagellate cysts recovered from the generally anoxic Lithofacies B high have been transported into the basin depocentre from more proximal settings that remained oxic during this time. However, few sedimentary structures indicate this, apart from the large silty lens at 62.00 mm.

Fig. 4.11 also shows how most of the data points from the bioturbated Lithofacies C clump in the field associated with sediment deposited on a "proximal suboxic/anoxic shelf". This is somewhat puzzling, given that the *n*-alkane terrestrial-aquatic ratio decreases up section, implying a greater distance from the palaeo-shoreline (see Chapter 5, section 3.2). However, it is also likely that the main palynomorph groups contributing to this clustering (phytoclasts) were transported onto the shelf from a more proximal setting. This is supported by the presence of thin silty horizons in Lithofacies C, and

occasional decreases in the K/Al and Rb/Al ratios (Chapter 3, section 3.4). The "proximal suboxic/anoxic shelf" field also lies at the termination of a phytoclast transport path. Tyson (1989) originally defined this transport path based on data from a fault scarp fan facies, in the Late Jurassic Toni-Thelma oil field (North Sea). In this scenario, phycoclast material delivered to the palynofacies by lateral transport, combined with a high degree of AOM preservation under suboxic/anoxic conditions, vastly dilutes the contribution from other palynomorphs. In my studied section, woody phytoclast debris was likewise added directly into a distal AOM-dominated setting by turbidite-style bottom currents. In other words, small fluvial pulses into the basin might have continued to occur even after the deposition of Lithofacies B. The record of these fluvial pulses is more subtle than that of the large pulse at 62.00 mm, which implies either that the humid climatic shifts were less intense, or that a secular increase in shoreline distance (and sea level, water mass connection, etc.) meant that any nutrient pulse didn not result in a shift to a frequently anoxic state (see Chapter 5, section 4.1), and that the fluvial flux left less of a record in this more distal setting.

3.2 Biological community structure through the LSB

3.2.0 Phytoplankton

While the dominance of dinoflagellates within the phytoplankton community declines through the LSB (concomitant with increases in pyrite and Mo), it never reaches zero (the nadir is 10.0%). This implies that while the declining redox state of the basin negatively affected the dinoflagellate population (probably by interfering with the cyst-forming stage of the life cycle), it did not decline enough to eliminate it. This could either be due to a low intensity of oxygen depletion (i.e. conditions were persistently dysoxic, but not anoxic), or periods of anoxia interspaced by oxia. Given the wealth of proxy evidence in this interval for anoxia and euxinia, it can be inferred that the second of these options is most probable. Essentially, while dinoflagellates were precluded from reproducing via cyst formation during the anoxic periods (which negatively affected their population size), the oxic periods, while short, were long enough for the surviving dinoflagellates to carry out the encystment stage of their life cycle. Therefore, the decline in dinoflagellate dominance (like the Fe_{HR}/Fe_T proxy discussed in Chapter 3) tracks the frequency of oxia, rather than the absolute oxygen level of the basin. The feasibility of at least some periods of bottom-water oxia and consequent dinoflagellate encystment is especially likely, considering that for the samples used for my palynological preparation, 1cm of stratigraphic height (probably representing centuries of sedimentation) was averaged together. Alternatively, the presence of a small number of dinoflagellate cycts in the C_{org} rich sediments could imply that the frequent anoxia coeval with the deposition of these sediments was restricted to the basin interior, with marginal environments remaining oxic. Intermittent episodes of shelf-to-basin transport could have, therefore, remobilised cysts formed I these settings and redeposited them in the C_{org}-rich sediments of the basin interior, under frequently anoxic conditions. This mechanism would, however, imply that the highest dinoflagellate cyst content of the sediment would be encountered in the interval characterised by the most energetic shelf-to-basin transport. This is the silty lens at 62 mm, and it is not characterised by an increase in the number of dinoflagellate cysts (Fig. 4.7). While this lens does not contain a high organic matter content in general, dinosporin is a very resistant material (Bogus *et al.*, 2014), and could have probably survived redeposition in the silty lens if shelf-to-basin transport was indeed the primary delivery mechanism of palynomorphs into the basin.

The decline in dinoflagellate dominance of the phytoplankton community was also driven by both *Nanoceratopisis* sp. and *Mancodinium* sp., implying that both genera were equally affected by declining oxygen levels. However, *Nanoceratopsis* sp. makes a relative recovery in the middle of Lithofacies B (up to 75% of the dinoflagellate assemblage at 80.3 mm), while the *Mancodinium* sp. makes up a larger proportion of the community at 38.5 mm and 99 mm. This could mean that *Nanoceratopsis* sp. was better adapted to exploit the brief oxic recoveries within the core of the LSB (bracketed by more intense anoxia and euxinia) than *Mancodinium* sp. In other words, *Nanoceratopsis* was a more opportunistic genus than *Mancodinium*, which was better suited to exploit oxic spells bracketed by less severe oxygen depletion.

Acritarchs took up most of the empty niche space left by the dinoflagellates. This implies that whatever organisms produced the acritarch palynomorphs were meroplanktonic, and that a decline in the habitability of the benthic environment (and lower water column) would not markedly affect their reproduction. These organisms, therefore, possessed a competitive advantage over dinoflagellates (particularly during the deposition of Lithofacies B), which relied on the increasingly rare oxic events to maintain their population size.

While prasinophytes make a constant, but minor contribution to the phytoplankton community throughout, their dominance does reach a local peak at -28 mm. As mentioned in Chapter 1 section 9.1.1, prasinophytes are uniquely adapted to nitrogenous conditions (high levels of dissolved NH^{4+}). Therefore, this brief peak in their population could be indicative of more frequent nitrogenous conditions at this time – conditions typically associated with a dysoxic, rather than anoxic water column (Quan *et al.*, 2008). This could mean that the lowest 60 mm of the LSB correspond to the beginning of the decline in the redox state of the basin, with the episodes of oxygen depletion being relatively weak (only depleting oxygen to the level of dysoxia, as opposed to full anoxia). The low TOC level of these sediments compared with the rest of the LSB seems to support this. However, a

study of the δ^{15} N signature of this interval would be needed to directly asses the presence or absence of nitrogenous conditions.

3.2.1 Terrestrial environment

Throughout the studied section, the relative proportions of different terrigenous palynomorph producers do not vary much, indicating that, for most of the LSB, no marked change occurred in the terrestrial environment. However, there are two distinct exceptions to this trend - moderate increases in the dominance of bryophytes, lycophytes and ferns (and corresponding declines in the dominance of most of the other identified plant groups) at 56.8 mm and 99 mm. What is particularly noteworthy is that these peaks match up with the negative peaks in K/Al and Rb/Al described in Chapter 3 (sections 3.4 and 4.4), and with positive peaks in the terrestrial-aquatic ratio (Chapter 5, sections 2.1.1 and 3.2). This corroborates the hypothesis – formed in Chapter 3 – that the silty lenses of the LSB (particularly the large lens at 62.00 mm) indicate periods of enhanced fluvial flux to the Cleveland Basin (and the cation leaching of clay profiles in the surrounding hinterland), initiated by an episode of relatively humid climate. Bryophytes, lycophytes and ferns are all moisture-loving plants (Chapter 1; 9.2.2), and under a relatively humid climate, it is probable that a greater niche space opened up for these plant groups. During the intervening drier periods, the moisture-loving plants then lost their temporary competitive advantage, and the ecospace became filled by dry-adapted bisaccate producers, cycads, and Chasmatosoprites instead. Interestingly, no peaks in the dominance of Perinopollenites sp. are seen concomitant with the peaks in moss/fern dominance, even though this genus is adapted to wetter climatic conditions (Stukins et al., 2013).

No marked peak in the abundance of *Cerebropollenites* was observed. Increased prevalence of this genus has been associated with the T-OAE (Koppelhus & Dam, 2003) and Tr/J (Belcher *et al.*, 2010), suggesting an association with hyperthermal events. The absence of such a peak in the LSB implies that the ambient temperature in the terrestrial environment did not rise greatly, and possibly that the episodes of enhanced fluvial flux were due to an increase in climatic humidity, but not temperature. This situation – local to the Cleveland Basin – seems difficult to reconcile with wider evidence for a slight increase in global temperatures at this time: a compilation of δ^{18} O measurements of belemnites from across Europe implies the presence of a negative shift of around 1.0 ‰ occurred around the Pl-To (Dera *et al.*, 2011; Ruebsam *et al.*, 2019). Additionally, a recent TEX86 analysis of Pliensbachian-Toarcian sediments from two localities in the Tethyan realm implies that the Pl-To was accompanied by a temperature rise as of as much as 5°C (at least in these localities; Ruebsam *et al.*, 2020b). In contrast, δ^{18} O analysis of belemnites (δ^{18} O_{bel}) from the Cleveland Basin (Hesselbo & Korte, 2011;

Korte *et al.*, 2015) shows that SSTs did not change appreciably from the late Pliensbachian event through to the T-OAE (varying between 5 – 20°C). This dataset, however, does not sample the LSB itself, with the two closest $\delta^{18}O_{bel}$ values being 16 cm below, and 45 cm above the LSB. This either implies a period of climatic stasis on the order of 100 kyr across the Pl-To, or that this dataset is of insufficient resolution to capture short-term (ca. 10 kyr) variability. It is also possible that the rise SST that characterised the Pl-To in the Tethyan realm was simply not expressed in the northern EES. A palaeontological study of the T-OAE indicates that it was anoxia, rather than temperature, that was the primary kill mechanism for extinctions in the northern EES, (Wignall *et al.*, 2005), and it is probable that this applied to the Pl-To as well. Future work in the LSB employing $\delta^{18}O_{bel}$, or possibly TEX86 (Ruebsam *et al.*, 2020b) would be needed to better assess temperature change through this interval (see Chapter 5, section 4.1).

Bisaccate producers are slightly better represented in the terrestrial community in Lithofacies B, which could indicate a shift to a wetter terrestrial environment (Slater *et al.* 2019). However, bisaccate pollen is very susceptible to transportation (e.g. Tyson, 1989), with grains from the modern genus *Pinus* remaining afloat for several weeks to a year (Hopkins, 1950; Traverse 2007) – although some modern bisaccae pollen grains, such as *Abies* sp. do not remain afloat for this long (Mudie, 1982). The higher bisaccate content of the LSB with respect to the Toarian CIE interval is also in line with the observation of Slater *et al.* (2019) that bisaccate producers were more prevalent around the Cleveland Basin during the Pliensbachian.

The gradual decline in the number of higher plant genera through the LSB could be related to a longer-term stress on the terrestrial environment – possibly forced by a global-scale carbon cycle disruption. Alternatively, the decline in the number of plant genera could be only apparent, and related to an increased distance of the depositional environment from the palaeo-shoreline: as the pollen and spore content of the sample decreases, then the number of plant genera that can be identified will also decrease. Indeed, the palynomorph count through the LSB was insufficient to quantify diversity (i.e. the Simpson D-1 index; Slater *et al.*, 2019), so separating the magnitude of these two competing influences is difficult. However, a longer count of the palynofacies slides could easily test this.

4.0 Discussion

The shift in the composition of the phytoplankton community described in 2.1, provides further evidence in favour of a secular decline in the habitability of the benthic environment of the Cleveland Basin through the deposition of the LSB, mediated by an increase in the frequency of anoxia. However, a complete "blackout" of dinocysts from the palynological assemblage was not observed. This contrasts with the data of Slater et al. (2019), who documented a steep decline in the occurrence of dinoflagellate cysts in the Mulgrave Shale member of the Cleveland Basin, frequently reaching 0.0%. During these periods, the plankton community became dominated by sphaeromorph acritarchs, which were interpreted as representing a period of algal dominance of the marine community (this is corroborated by a positive shift in the sterane/hopane ratio through the same interval; French et al., 2014). However, the lowest dinoflagellate count I report is 3 - from an interval 50 - 150 times shorter than the Toarcian CIE (see Chapter 1, section 6.0). This implies that the duration of exposure of the benthic marine environment to frequent anoxia exerts a control on the decline of dinocyst formation: a period of several millennia (approximate duration of Lithofacies B) is sufficient to reduce dinoflagellate dominance by about 70%. A longer duration of exposure to episodes of benthic anoxia is required to drive out dinoflagellates completely. Other palaeoenvironmental variables are also known to influence temporal variability in dinocyst counts, and so it is also possible that while declining oxygen levels made the Cleveland Basin less hospitable to dinoflagellates, no compounding stresses from temperature or salinity changes were present (see Chapter 1, section 9.1.1) The occurrence of infrequent dinoflagellate cysts in the core of the LSB also corroborates (along with the infrequent occurrence of *P. dubius*) the occurrence of brief reoxygenation episodes in these intervals. However, since dinoflagellates only require days to years (less than a decade) of oxia for cyst formation and germination (Armstrong & Brasier, 2005), the presence of dinoflagellate cysts is not incompatible with evidence for a generally anoxic environment.

Unlike purported dinocyst blackouts such as at the Tr/J (Bonis *et al.*, 2010), the decline in dinoflagellate dominance of the phytoplankton community driven here is driven by two genera (as opposed to one species), which both made relatively important contributions to the community before the decline in benthic habitability. In other words, the decline in the frequency of periods of oxia in the Cleveland Basin affected the life cycles of all the dinoflagellate genera. It could be argued that the dinoflagellate community of the Cleveland Basin was, as a whole, less well adapted to a decline in benthic redox state than the dinoflagellate community of the Upper Triassic Lilstock Formation (Bonis *et al.*, 2010). However, the low dinoflagellate count of my slides makes this claim rather speculative.

Unlike the Mulgrave Shale Member, the land plant sporomorph assemblage of the LSB does not indicate a board shift towards a hotter climate, but rather, a generally stable climate punctuated by episodes of enhanced humidity. No large increases in the dominance of genera typically associated with high temperatures are seen, and most wet climate-adapted genera become increasingly dominant within the terrestrial community at 56.8 mm and 99 mm. The palynological record of the terrestrial environment through the LSB, therefore, corroborates inorganic (Chapter 3) and organic (Chapter 5) geochemical evidence for brief episodes of a more humid climate during the deposition of the LSB. While climatic humidity can be influenced by geographically localised factors (such as orogeny), it can also be influenced by global climate change. While it has been postulated (based primarily on shifts $\delta^{18}O_{bel}$ data) that a magmatic plume emplaced a thermal dome in the North Sea around this time (Korte & Hesselbo, 2011; Korte et al., 2015), there is little evidence for any uplift in the region of the Cleveland Basin, that could have led to a disruption of precipitation patterns. Furthermore, it is probable that the Pl-To boundary (to which the LSB is likely concomitant, being the basal unit within the *D. tenuicostatum* zone and accompanied by a negative $\delta^{13}C_{org}$ excursion; Hesselbo & Jenkyns, 1995; Simms, 2004; Littler et al., 2010; Powell, 2010) was characterised by a short period of global warming, possibly due to enhanced activity of the Karoo-Ferrar LIP (Ruebsam et al., 2019). However, attributing the fluvial pulses recorded in the LSB to any change in global climate requires additional proxy evidence (I present such a study in Chapter 5), and needs to be reconciled with the apparent absence of floral markers for a hyperthermal event. It is also likely, given the high hydrographic restriction of the Cleveland Basin at this time (Chapter 3), that a fluvial pulse would have raised the nutrient loading of the basin, and induced local salinity stratification. Both these factors would have made the basin more suspectable to episodes of eutrophication, and therefore, the fluvial pulses may have played a causal role in the change in basin redox. I also test this hypothesis in Chapter 5.

Shelf-to-basin transport was a major control on palynomorph transport, since increases in the proportions of phytoclasts (and, to a small extent, *Botryococcus*) are linked to the emplacement of silty lenses, and the position of the samples within phytoclast-AOM-palynomorph ternary space could easily be controlled by the palynofacies transport paths of Tyson (1989). These palynodebris components are strongly associated with terrigenous settings, and in order to be preserved in significant quantities in the basin depocentere, they require lateral transport from marginal settings (via the basin shelf). What is interesting is that although episodes of shelf-to-basin transport were a common feature of the LSB, these do not seem to have disrupted the redox regime to a great extent: the large silty lens at 62 mm contains reworked (but not re-oxidised) pyrite framboids (Chapter 3; section 3.1), and is not associated with a relative recovery in the dominance of dinoflagellates (Fig. 4.8). I shall further examine the possibility of shelf-to-basin transport under anoxic conditions in Chapter 5.

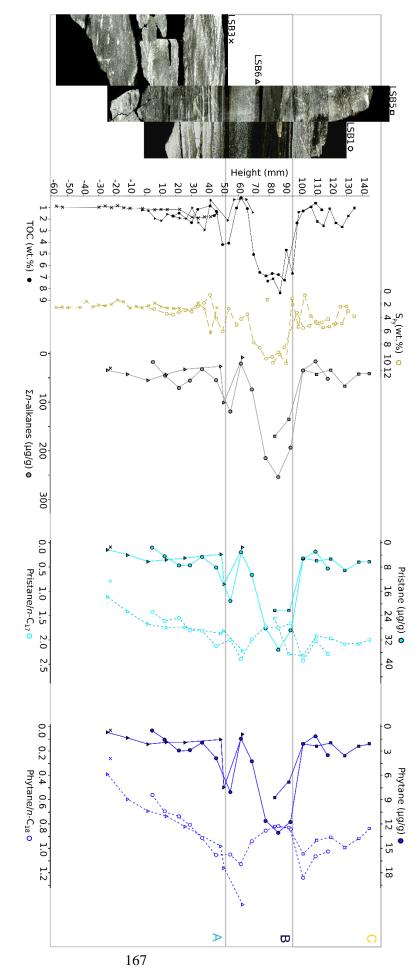
The slight shift in the spore and pollen content of the LSB (at around 52 mm) could be indicative of a shift to a more distal environment. However, both spores and pollen have well-documented hydrodynamic equivalence to silt (Tyson, 1995, p. 261). The apparent shift could therefore merely indicate dilution of the silty component of the sediment by clay at the boundary between lithofacies A and B – although this is also a distinctive feature of deeper water facies. Ultimately, distance to the palaeoshoreline is better constrained by different sets of proxy data presented in my work, such as the terrestrial/aquatic ratio (Chapter 5).

5.0 Conclusions

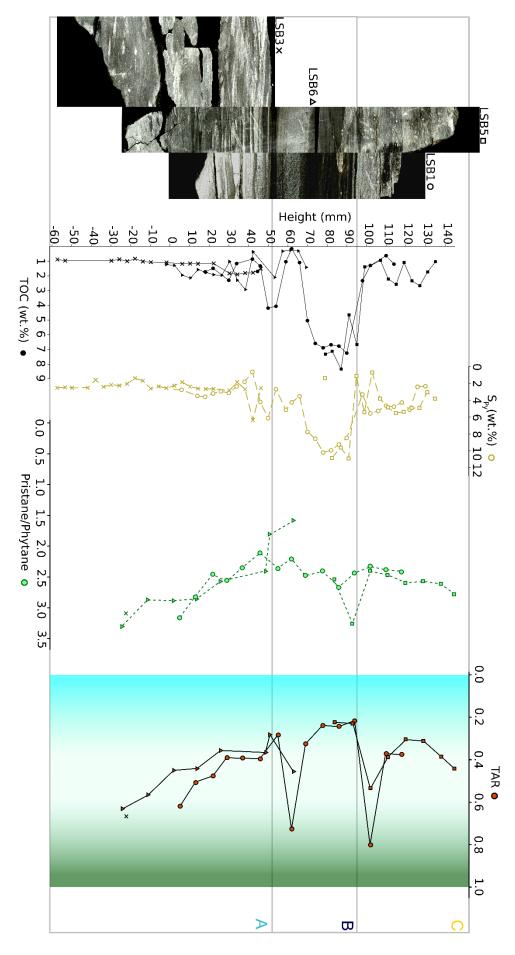
- Dinoflagellate dominance of the phytoplankton community within the Cleveland Basin was negatively impacted by the increased frequency of bottom water anoxia during the deposition of the LSB. However, it is possible that brief periods of bottom water reoxygenation (lasting at least weeks to years) permitted a limited degree of dinoflagellate cyst formation even during the interval characterised by the most frequent anoxia. The vacant ecospace left by the dinoflagellates was reoccupied mainly by acritarchs.
- The terrestrial environment around the Cleveland Basin was generally warm and dry during the deposition of the LSB, but was intermittently more humid. These conditions favoured the growth of wet-adapted bryophytes, lycophytes and ferns. Episodes of humid climate were strongly linked with enhanced fluvial flux (which may have played a causal role in oxygen depletion), and were possibly related to global climatic perturbation at the PI-To boundary. These assertions, however, need to be tested against additional suites of (organic geochemical and isotopic) proxy data.
- Shelf-to-basin transport was a common feature of the LSB, and shelf-to-basin transport was a major pathway for the delivery of palynomorphs (especially phytoclasts) to the basin depocentre. The shelf-to-basin transport episodes also do not appear to have significantly affected the redox state of the basin.
- The palynological data presented here cannot conclusively demonstrate a general increase in palaeoshoreline distance through the LSB, due to the dominance of shelf-to-basin transport, and hydrodynamic equivalence effects.

Chapter 5 – An organic geochemical and isotopic study of the Lower Sulphur Band

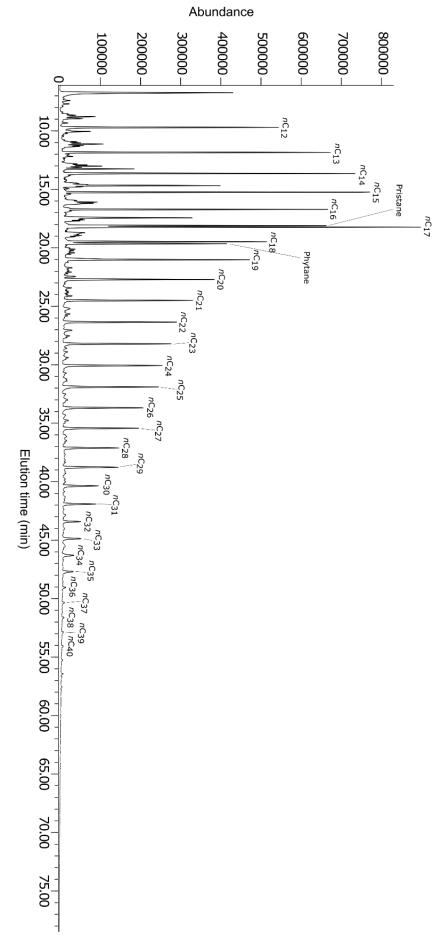
1.0 Study aims

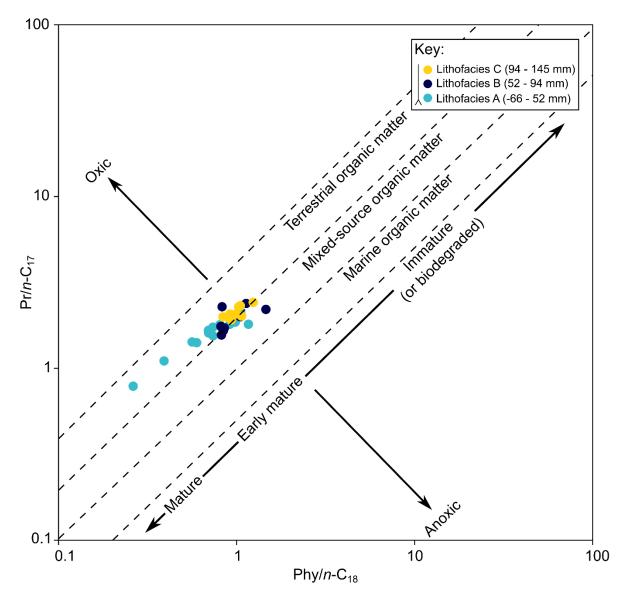

In Chapter 3, the progressive decline in the habitability of the benthic environment of the Cleveland Basin, and the enhanced preservation of TOC, pyrite and trace elements in the LSB, was attributed to the increased frequency of anoxic/euxinic chemocline expansion episodes in a restricted basin. Little could, however, be concluded about the causal environmental mechanisms behind chemocline expansion, or those responsible for its frequency. In Chapter 4, section 5.0, it was additionally speculated that there was a causal link between enhanced delivery of nutrients (supplied by episodes of enhanced fluvial flux), and the development of more frequently eutrophic conditions in the basin. In Chapter 3, section 4.3, I determined that euxinia was present during the deposition of the LSB (especially in Lithofacies B), but could not determine how far up the water column it extended: although Mo/Al was enriched up to 3.43 ppm/wt.%, it was difficult to tell whether the amount of Mo drawdown was limited by the size of the Mo inventory, or the extent of euxinia. Finally, the possibility of a link between climatic and basinal redox state changes, and global climate disruption at the Pl-To, was raised (Chapter 1, section 9.3; Chapter 3, section 5.0), and I suggested that an isotopic analysis could be used to test this hypothesis (Chapter 3, section 4.6). In this Chapter, I will present the results of an organic geochemical (biomarker) study, and a compound-specific isotopic study of the LSB. I will also discuss whether or not the data support either a nutrient enhancement model for basinal redox disruption, the expansion of euxinic conditions into the photic zone during the deposition of Lithofacies B, or a link between the paleoenvironmental changes observed, and the wider climatic conditions of the Pl-To.

2.0 Results

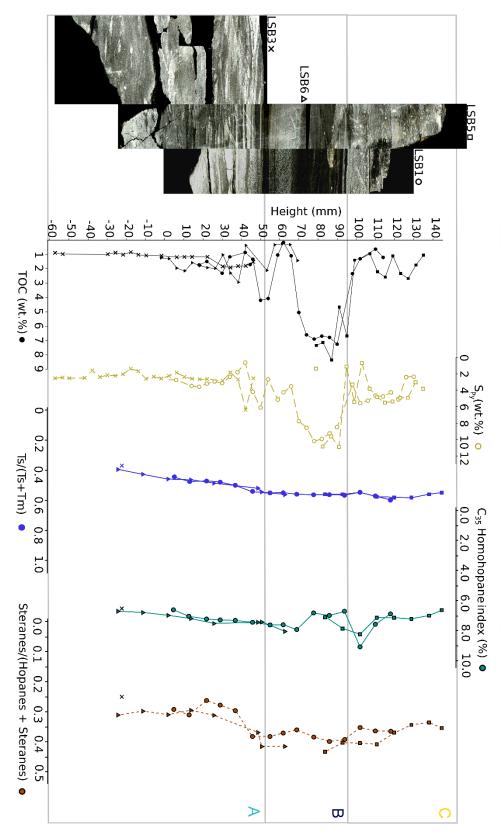

2.1 Organic geochemistry and biomarkers

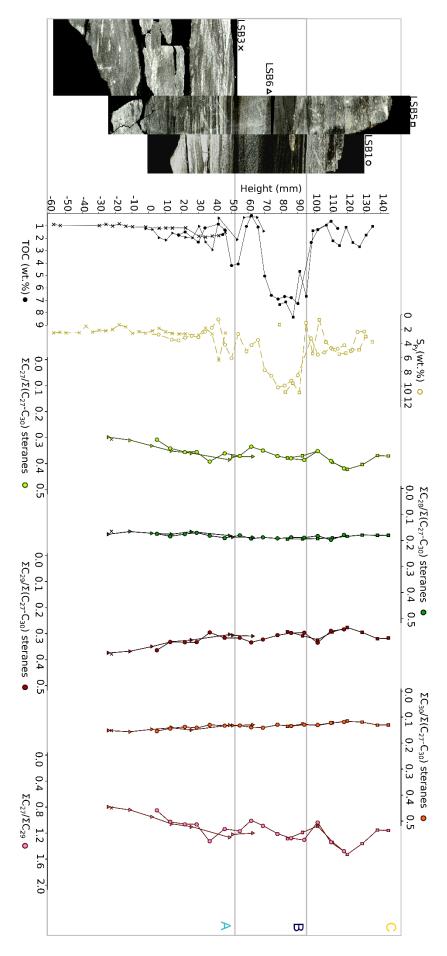
2.1.1 n-Alkanes


I have identified chain *n*-alkanes from $n-C_{12}$ to $n-C_{40}$, in the LSB, along with pristane and phytane (see Fig. 5.3 for a representative chromatogram). n-alkane content follows a very similar trend to TOC (ranging between 10 - 154 mg/g), implying *n*-alkanes make a relatively constant contribution to sediment TOC. Pristane (pr) and phytane (phy) show similar trends, with pristane content between 1 -35 mg/g and phytane content between 0 - 13 mg/g.. pr/n-C₁₇ and phy/n-C₁₈ gently increase through Lithofacies A, rising by 1.33 and 0.903, respectively. In Lithofacies B, both trends reverse, and reach a minimum at 84 mm. After peaking briefly at the base of Lithofacies C, both trends finally begin to decline, reaching 1.99 and 0.838 at 145 mm, respectively. A pr/n-C₁₇ vs phy/n-C₁₈ cross plot (Fig. 5.4) shows that the LSB has undergone a small degree of thermal maturation, and has a mixed organic matter source, corroborating the conclusions drawn from my Rock-Eval data (Chapter 3, section 4.10). Pr/phy gently declines through the section, reaching a minimum of 1.59 at 63 mm before gently recovering (Fig. 5.2). The terrestrial/aquatic ratio (TAR) gently declines from 0.666 at -22 mm, reaching a minimum of 0.217 at 94 mm, before recovering to 0.44 at 145 mm. This trend, however, is interrupted by two prominent positive single-point excursions at 62 mm and 102 mm, the first of which corresponds with the 13 - 18 mm thick silty layer, and one of the prominent troughs in K/Al described in Chapter 3, section 3.4.

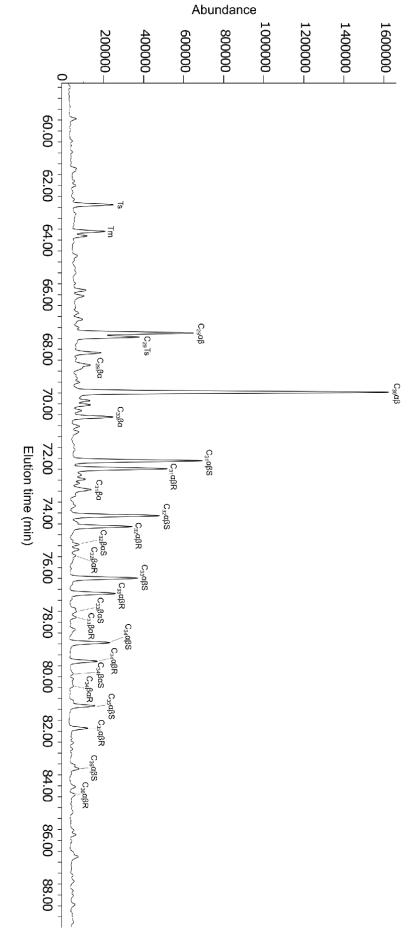

indicated by the large grey boxes, with colour-coded letters corresponding with the colours of the data points in Figs. 5.4, 5.9, 5.14, 5.20 and 5.21. Figure 5.1. TOC, pyrite Sulphur (S_{py} ; included in all plots, as in Chapters 3 and 4), Σ *n*-alkanes, pristane (alongside pristane/*n*-C₁₇) and phytane also included. Circles indicate data taken from LSB1, crosses from LSB3, squares from LSB5, and triangles from LSB6. Lithofacies A, B and C are (alongside phytane/n-C₁₈) of the LSB.. As in Chapters 3 and 4, a photomosaic of scanned photos of the LSB (enhanced contrast and with block codes) is

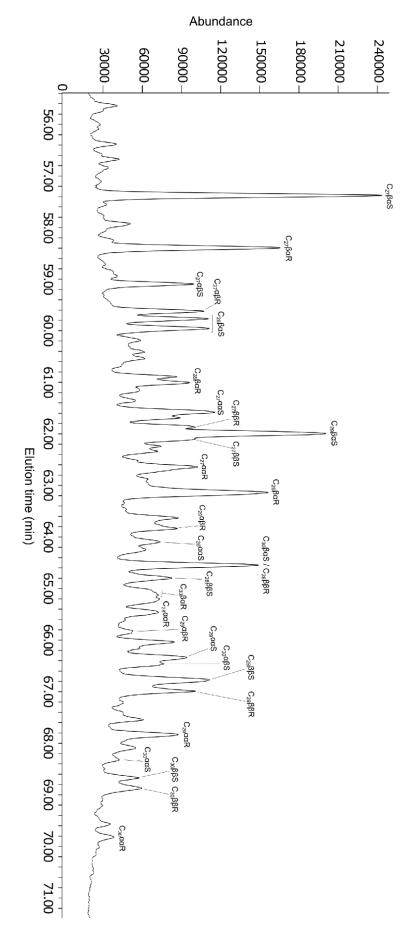
the TAR, one of which is concomitant with the large silty lens at 62mm. Figure 5.2. Pr/phy, and the terrestrial/aquatic ratio (TAR; definition in Chapter 1, section 9.2.6) of the LSB. Note the presence of two sharp peaks in the

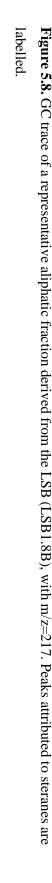

attributed to n-alkanes and branched isoprenoids are labelled. Figure 5.3. Gas Chromstograph (GC) trace of a representative aliphatic fraction derived from the LSB (LSB1.8B), with m/z= 85. Peaks

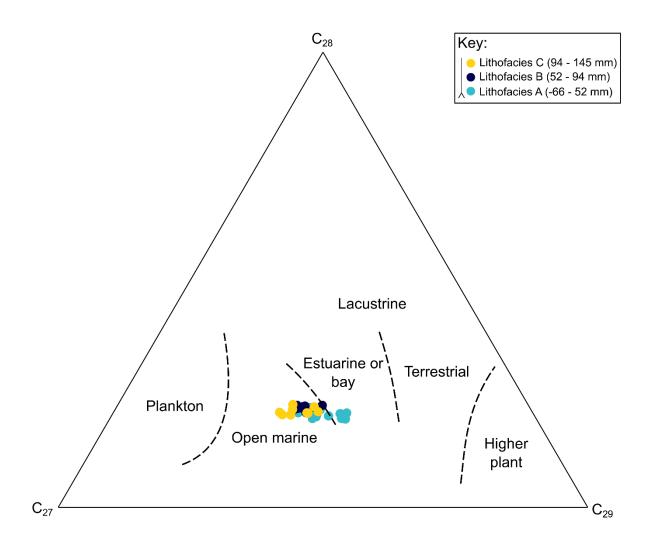

Figure 5.4. Cross plot of phytane/n-C₁₈ versus pristane/n-C₁₇, with trends for various organic matter assemblages, and the influence of redox and thermal maturity (adapted from Peters *et al.*, 1999). Note the close match of the data to the trend for mixed-source organic matter, corroborating the evidence from Rock-Eval pyrolysis for a mixed organic matter pool (Chapter 3, section 4.10).

2.1.2 Hopanes and steranes


Both hopanes and steranes contribute to the organic matter assemblage of the LSB, with hopanes being much more abundant than steranes (see Figs. 5.7 and 5.8 for representative chromatograms).


mm (see text for a discussion). positive excursion in the C₃₅ homohopane index in Lithofacies B, and the shift of 0.08 in the steranes/(steranes+hopanes) ratio at 46 Figure 5.5. Ts/(Ts+Tm), C₃₅ homohopane index, and Steranes/(Steranes + hopanes) of the LSB. Note the lack of a pronounced




text for a discussion). visualise relative change in these steranes sans the closed-sum effect. Note the presence of two slight decreases in this ratio at 62 mm and 102 mm (see Figure 5.6. $\Sigma C_{27}/\Sigma(C_{27-C30})$ sterane, $\Sigma C_{28}/\Sigma(C_{27-C30})$ sterane, $\Sigma C_{29}/\Sigma(C_{27-C30})$ sterane, and $\Sigma C_{30}/\Sigma(C_{27-C30})$ sterane of the LSB. $\Sigma C_{27}/\Sigma C_{29}$ is also shown, to

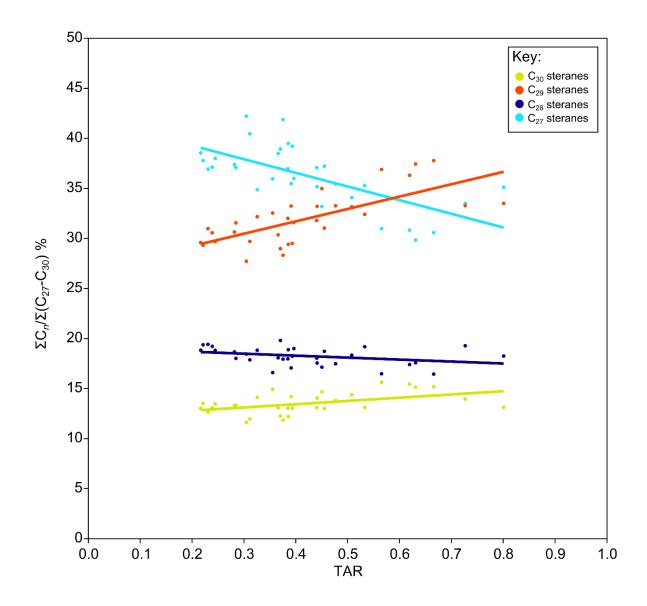


Figure 5.9. Ternary plot comparing the relative contributions of C_{27} , C_{28} and C_{29} steranes (after Huang & Meinschein, 1979). Given that the relative contribution of C_{28} does not very much, and the contributions of C_{27} and C_{29} are roughly anticorrelated, the spread of data is very constrained (on the boundary between the open marine, and estuarine fields). However, a slight up-section trend into the open marine field can be discerned.

The C₃₅ homohopane index follows a similar trend to pr/n-C₁₇ and phy/n-C₁₈ (albeit muted and slightly offset vertically): it rises from 6.52% at -22 mm, to 6.62% at 145 mm, with a negative inflection of ~1.5% between 69-102 mm (corresponding with TOC values of over 5.0 wt.%). The negative inflection is also followed by a brief positive inflection of up to 9.07%.

At 46 mm there is a slight shift in the relative contribution of steranes to the assemblage: the steranes/(steranes+hopanes) ratio jumps from 0.296 to 0.382. Otherwise, the trend in this ratio is more or less constant.

Figure 5.10. Correlation of the proportions of n-C₂₇₋₃₀ regular steranes with TAR. Positive correlations imply an association of the sterane with terrigenous organic matter, and negative correlations imply an association with marine matter (see 3.2).

The Ts/(Ts+Tm) ratio is essentially constant for the section, showing only a slight rise from 0.369 at - 22 mm, to 0.547 at 145 mm. This trend also shows no appreciable deviation with differing lithologies (e.g., no deviation in the silty layer at 62 mm, nor in the TOC-rich upper part of Lithofacies B).

Of the C₂₇₋₃₀ regular steranes, only C₂₇ and C₂₉ show appreciable variability (Fig. 5.6), and their trends are essentially anticorrelated: $\Sigma C_{27}/\Sigma (C_{27-C30})$ rises from 0.306 at -22 mm to 0.371 at 145 mm, while $\Sigma C_{29}/\Sigma (C_{27-C30})$ falls from 0.378 at -22 mm to 0.318 at 145 mm. To circumvent the closed sum effect, I have also plotted $\Sigma C_{27}/\Sigma C_{29}$, and this follows a similar trend to $\Sigma C_{27}/\Sigma (C_{27-C30})$. A C₂₇₋₂₉ sterane ternary plot shows that the LSB lies in the open marine marine-estuarine/bay fields (Fig. 5.9), and therefore, that the total lipid extract (TLE) contains contributions from both planktonic and higher plant sources (in agreement with my *n*-alkane and palynological data). When plotted against TAR (Fig. 5.10), $\Sigma C_{27}/\Sigma (C_{27-30})$ shows a negative correlation (-13.7, R² = 0.45), and $\Sigma C_{29}/\Sigma (C_{27-C30})$ shows a positive correlation (12.5, R² = 0.52).

2.1.3 Isorenieratane and aryl isoprenoids

Isorenieratane is present in the LSB (consistent with the unpublished findings of Salem, 2013), however, the section contains a substantial amount of diagenetically rearranged carotenoids and aryl isoprenoids, as well as biphenylic isorenieratane (Fig. 5.13). In Lithofacies A, the concentration of isorenieratane rises sharply at 2mm to $0.07\mu g/g$, and varies between $0.01 - 0.09 \mu g/g$ below 62 mm (although there is also variability between sample blocks). At 62 mm (in the lower part of Lithofacies B), there is a brief drop in the concentration of isorenieratane (down to $0.01 \mu g/g$), but this is followed by a rise up to a maximum of $0.16 \mu g/g$ at 86 mm (mirroring the trend of TOC and S_{py}). At 86 mm, isorenieratane content drops to $0.03 \mu g/g$, and then gradually declines through Lithofacies C (not exceeding $0.01 \mu g/g$). Biphenylic isorenieratane follows a very similar trend, but shows lower values than isorenieratane.

In Lithofacies A, the AIR (Chapter 1, section 9.1.6) decreases from 4.50 at -24 mm, to 3.73 at 51 mm then (like the K/Al and Rb/Al proxies discussed in Chapter 3, section 3.4), shows a negative peak down to 1.52 at 62 mm – in the silty layer in the lower part of Lithofacies B, and corresponding with the large peak in biphenylic isorenieratane (Fig. 5.12). The AIR then recovers to a maximum of 4.62 at 94 mm, before showing another negative peak in the lower part of Lithofacies C (2.30 at 102 mm). Finally, the AIR gradually recovers again, reaching 4.32 at 145 mm. The AIR and pr/phy do not show significant correlation (Fig. 5.14), which, together with the elevated pr/phy values for the section, further indicates the strong influence of terrestrially derived organic matter.

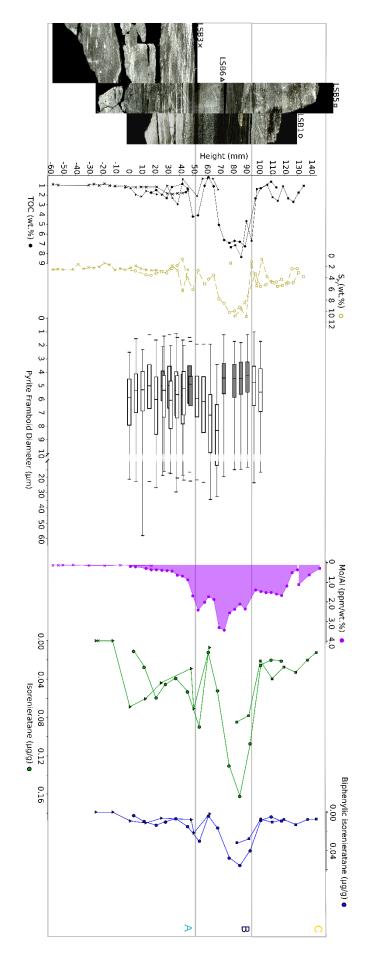
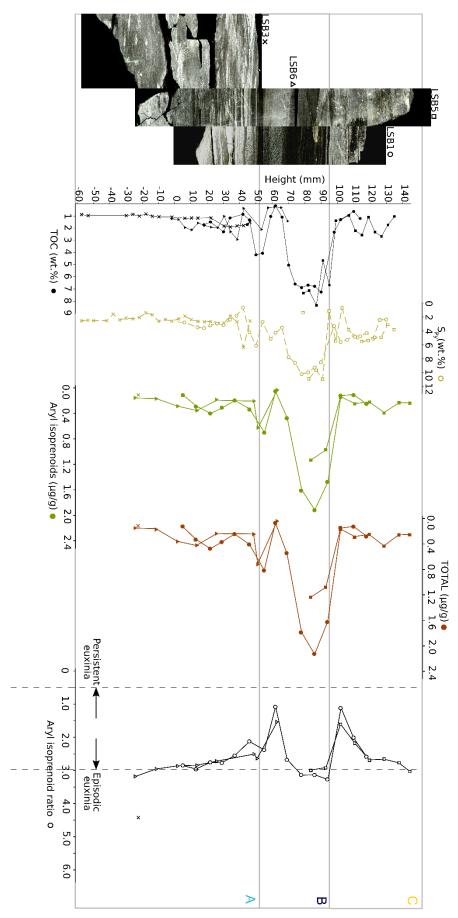
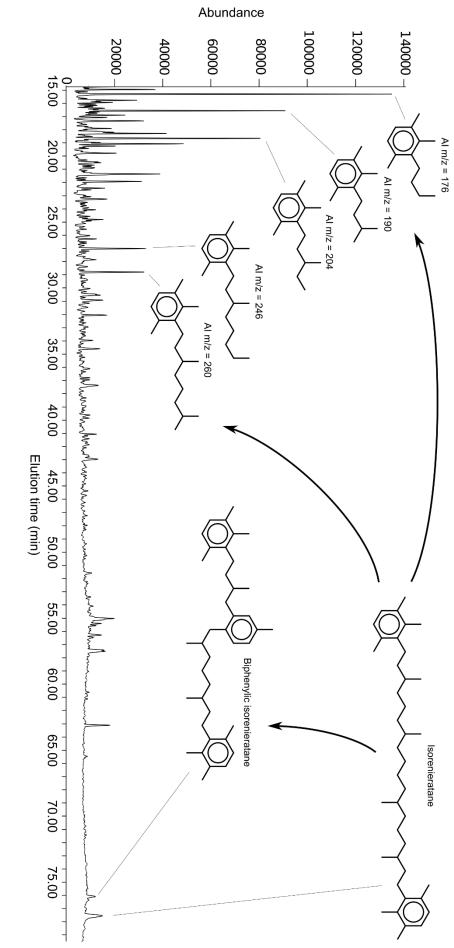
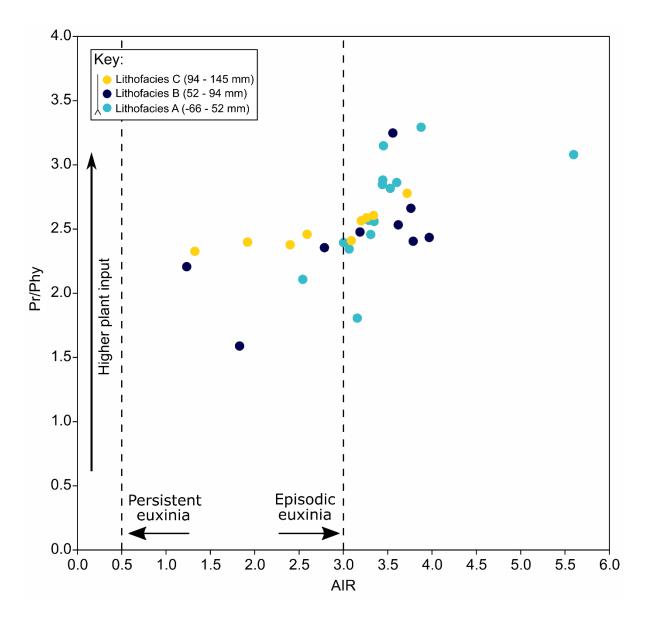
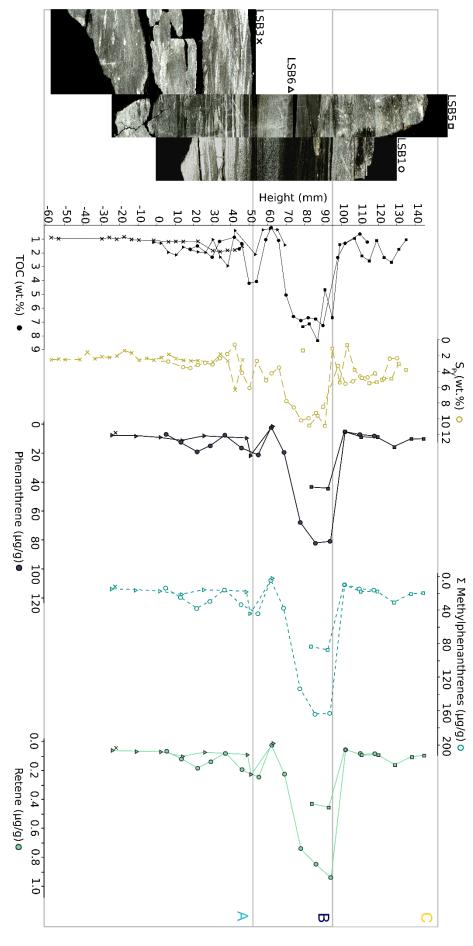
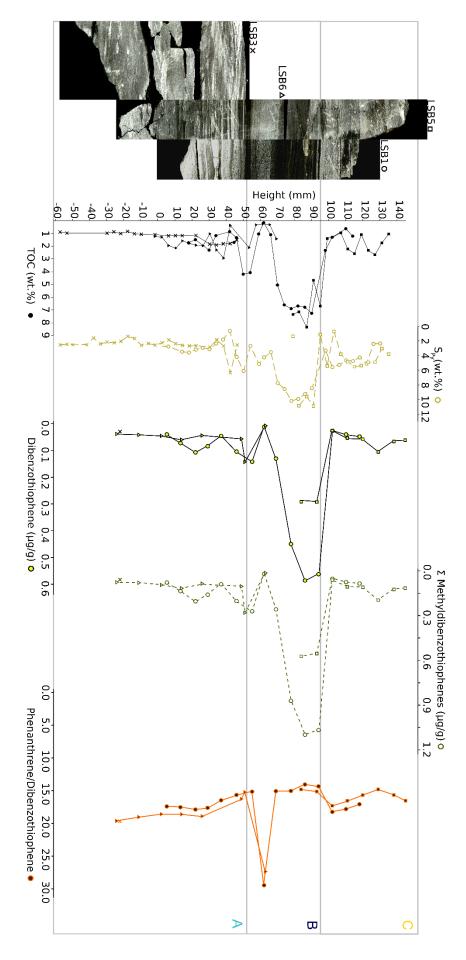




Figure 5.11. Isorenieratane and biphenylic isorenieratane content of the LSB. The carotenoids are plotted against pyrite framboid diameter and Mo/Al


(Chapter 3, sections 3.1.1 and 3.4), to form a comparison of different proxies sensitive to euxinia.

ratio(AIR) of the LSB. Figure 5.12. Aryl isoprenoid content, total aryl isoprenoid, Isorenieratane and biphenylic isorenieratene content (TOTAL), and aryl isoprenoid


isorenieratane, and its catagenetic breakdown products are labelled, and bond-line formulae are also included. Figure 5.13. GC trace of a representative aromatic fraction derived from the LSB (LSB1.8B), with m/z=133. Peaks attributed to


Figure 5.14. Pr/phy plotted against AIR for the LSB. The values display little correlation, and pr/phy is generally high, possibly indicating an input of excess plant material (chlorophyll being a source of phytol).

2.1.4 Other aromatics

Phenanthrene, Σ -methylphenanthrenes, retene, dibenzothiophene, and Σ -methyldibenzothiophenes are all present within the LSB, and show nearly identical downcore trends (Figs. 5.15 and 5.16). All the trends appear to show enrichment in Lithofacies B, along with increased S_{py} content.

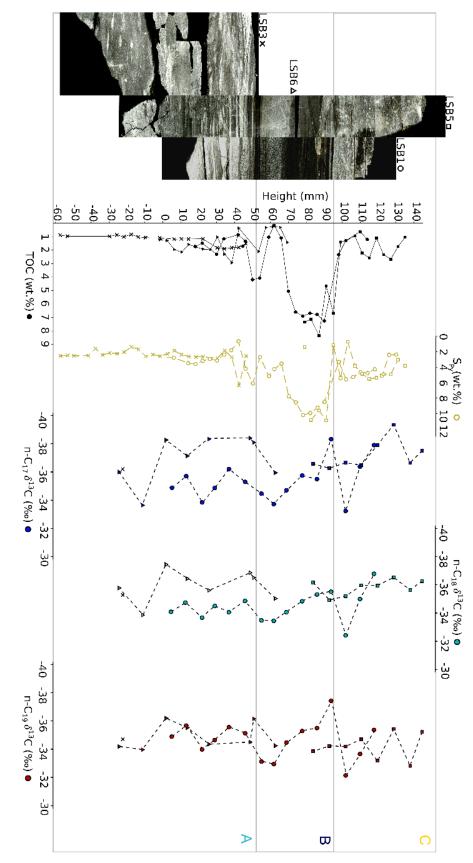
LSB. Figure 5.15. Phenanthrene, Σ -methylphenanthrenes, Retene, Dibenzothiophene, Σ -methyldibenzothiophenes, and phenanthrene/dibenzothiophene of the

LSB. Figure 5.16. Phenanthrene, Σ -methylphenanthrenes, Retene, Dibenzothiophene, Σ -methyldibenzothiophenes, and phenanthrene/dibenzothiophene of the

By contrast, the Phenanthrene/Dibenzothiophene ratio varies less, and shows a gentle decrease through Lithofacies B (from 17.6 at 29 mm to 14.4 at 94 mm), and then a recovery towards 16.6 at the top of Lithofacies C. The exception to this trend is at 62 mm, where the ratio shows a large positive spike up to 29.3.

2.2 Compound-specific isotopic analysis (CSIA)

The compound-specific carbon isotopic trends, both in marine (n-C₁₇₋₁₉; Fig. 5.17) and terrestrial (n-C₂₇₋₂₉; Fig. 5.18) fractions, are frequently in conflict with one another, with no unequivocal positive or negative excursion evident over the studied interval. While a negative peak is observed in the terrestrial fractions in LSB1 during Lithofacies B (minima of -35.7‰, -35.0‰ and -35.6‰ in n-C₂₇, n-C₂₈ and n-C₂₉, respectively), comparable values are also found in LSB3 during Lithofacies A (n-C₂₇, = -37.2‰ to -32.3‰, n-C₂₈ = -36.5‰ to -32.4‰, and n-C₂₉ = -36.0‰ to -32.3‰) and in LSB5 during Lithofacies C (n-C₂₇, = -36.8‰ to -31.7‰, n-C₂₈ = -36.1‰ to -31.8‰, and n-C₂₉ = -35.6‰ to -31.9‰). The marine fractions show even less agreement, with an apparent negative point excursion at 94 mm in n-C₁₇ and n-C₁₉ (-38.4‰ and -37.4‰, respectively), but not n-C₁₈. The n-C₁₇ and n-C₁₈ values from LSB6 also appear to be negatively shifted from the concomitant trend of LSB1, but the n-C₁₉ values are in near-perfect agreement. Regardless of the variability in the CSIA trends, they all show consistently negative δ^{13} C values, with the heaviest isotopic signature residing in n-C₂₇ (-31.7‰ at 102 mm).


3.0 Interpretations

I have decided to plot key biomarkers normalised to sample weight, rather than TOC. Despite the frequent use of TOC normalisation in the organic geochemical literature, when applied to my dataset, the biomarkers often show widely exaggerated values at intervals characterised by low TOC. Isorenieratane, for instance, reaches $6.5 \mu g/gTOC$ in the silty lens when normalised to TOC, and shows apparently muted values in the interval of Lithofacies B characterised by small framboid diameters (Figs. 3.16; 5.19). I argue that the composition of TOC in the LSB is too complex to allow for a straightforward normalisation – it is composed of both marine, and terrestrially-derived organic matter (Chapter 3, section 3.10; Chapter 4, section 3.1; this Chapter, section 3.2), as opposed to entirely marine organic matter (a situation where TOC normalisation is, arguably, valid). A consequence of sediment normalisation, however, is that the trends of many biomarkers of interest closely follow that of TOC (e.g. Fig. 5.19). This could mean that the decline in redox state responsible

for enhanced organic matter preservation was also the case of the enrichment of these biomarkers. However, it is difficult to discriminate the effect of an enhanced TOC delivery flux on biomarker content at a given redox state. It is likely that with some of the biomarkers evaluated here, both enhanced formation under low redox, and enhanced delivery flux in TOC acted in concert (e.g. with isorenieratane). However, in the case of biomarkers such as dibenzothiophene, which is exclusively produced in the geosphere (Hughes *et al.*, 1995; Peters *et al.*, 2005, p.32), it is safe to say that an increase, with sediment normalisation, reflects enhanced production of the biomarker, rather than simply enhancement of the biological pump.

3.1 Migration of biomarkers

While I interpret the up-section variability in the contractions of *n*-alkanes, pristane, phytane, and isorenieratane to be of palaeoenvironmental significance (3.2 and 3.3), it is important to bear in mind that the LSB has been subjected to a moderate degree of thermal maturation ($R_0 = 0.5 - 0.7\%$; Chapter 3, section 3.5), and as shown in Fig. 5.20, Lithofacies A is partly in the early oil generation window. The section is also heterolithic, with coarser silty layers punctuating C_{org} -rich shale. Therefore, it is probable that the observed trends in *n*-alkanes, pristane, phytane, and isorenieratane are (at least to an extent) the result of post-depositional migration of these compounds within the sediment pore space. The degree to which organic compounds are expelled from kerogen (and thus enter the pore-space of proximal high porosity sediments) can be modelled by polymer solution theory. When the temperature rises sufficiently high to overcome the van der Waals forces holding the organic molecule in the kerogen, the molecule can be expelled (Ritter, 2003). The affinity a given molecule has for retention in the kerogen vs expulsion is captured by the Hildebrand solubility parameter δ , where higher values of δ indicate greater affinity of kerogen. While aromatic and cyclic hydrocarbons have δ values typically between 8-11, *n*-alkanes and branched isoprenoids have δ values between 6-7. All this is to say that it is likely that some degree of migration of *n*-alkanes, took place within the pore space of the LSB during early diagenesis, especially in Lithofacies A. The silty layer at 62 mm might also contain higher levels of remobilised *n*-alkanes than the surrounding lithologies – the coarser sediment has greater pore space, allowing for expelled compounds to accumulate. It is, however, unlikely that these changes will greatly affect the final palaeoenvironmental interpretation, since the thermal maturity is not very advanced. Additionally, the δ values of pristane and *n*-C₁₇, and of phytane and n-C₁₈ are very similar. Therefore, the pr/n-C₁₇ and phy/n-C₁₈ ratios are unaffected by migration out of the kerogen, since both the numerator, and denominator in these terms, are affected to about the same degree.

Figure 5.17. δ^{13} C of *n*-C₁₇, *n*-C₁₈ and *n*-C₁₉, through the LSB.

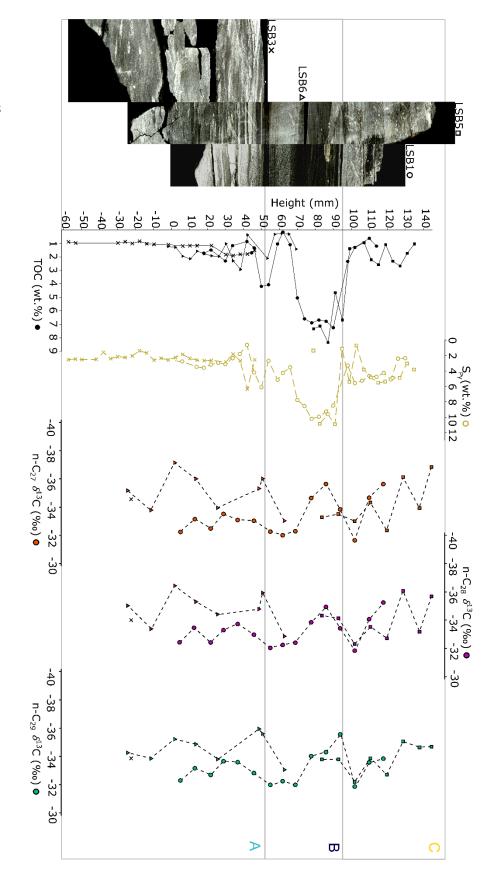
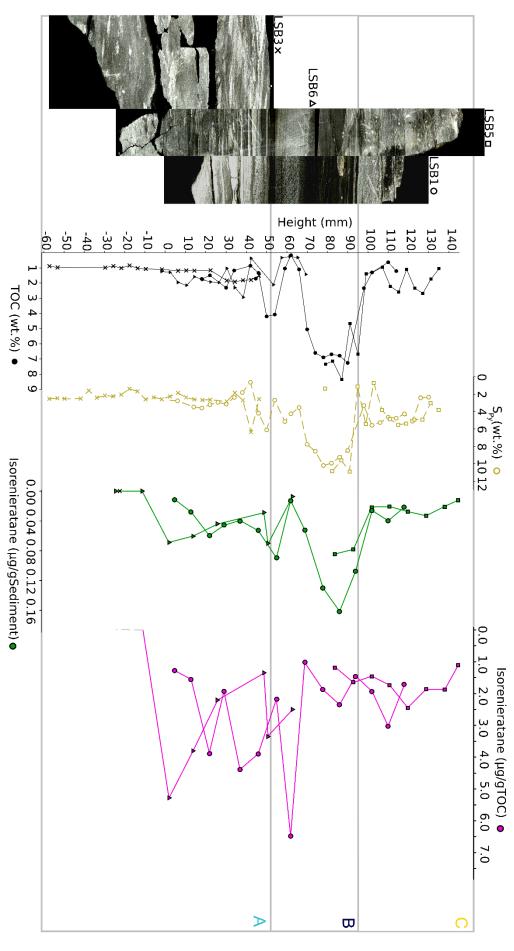
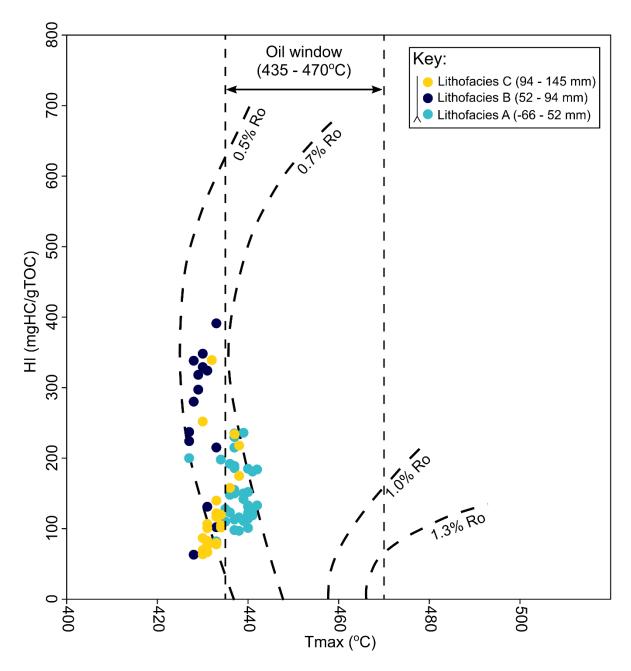




Figure 5.18. $\delta^{13}C$ of $n\text{-}C_{27},$ $n\text{-}C_{28}$ and $n\text{-}C_{29}$, through the LSB.

normalization produces a plot similar to that of TOC, while normalization to TOC results in a plot with greatly exaggerated values in TOC lean lithologies (see text for a fuller discussion). Figure 5.19. Isorenieratane as expressed in µg/g sediment (green) compared with isorenieratane as expressed in µg/gTOC (pink). Note how sediment

Figure 5.20. HI vs T_{max} , (see Chapter 3, section 3.5) with vitrinite reflectivity equivalence (R_0) and the oil generation window indicated.

3.2 Palaeoshoreline distance

It was speculated in Chapters 1, 3 and 4, that a key palaeoenvironmental parameter controlling redox dynamics during the deposition of the LSB, was sea level. During lowstands, reduced hydrodynamic contact with the wider EES would both increase water residence time within restricted basins, and reduce the dissolved oxygen content (leaving the system vulnerable to a shift into a frequently anoxic state). During highstands, this effect was reversed due to enhanced hydrodynamic connectivity, which

allowed ventilation of isolated basins by ocean currents. The difficulty with testing this model is that the data presented in this study was collected from a single site (near the basin depocenter), and no similar high-resolution work on time-equivalent sections from the basin margins has been carried out. Here, a transgression would be indicated by features such as stratigraphic overstep, or reworking of older lithologies. However, a relative sea-level change can still be implied with the use of some proxy for the relative distance of the depositional setting to land. For the LSB, I argue that the TAR makes the strongest case for a change in this parameter. The TAR gently decreases through the section, excluding two sharp, positive peaks at 62 and 102 mm. This implies that, over time, the environment became increasingly distal, with terrigenous *n*-alkanes making up less of the sediment Corg. The sharp positive peaks are exceptions to this general trend, and correspond perfectly with the fluvial pulses described in Chapter 3, section 4.4. I argue, therefore, that at these points, an increased flux of terrigenous material entered the basin, and the higher bottom-water energy also allowed this material to be transported further away from the basin margins. In other words, the TAR records the combined influence of sea level and climate on the sedimentary organic matter composition. It is also important to stress that the TAR is not TOC normalised, so these negative peaks cannot simply reflect episodes of dilution (or lack thereof) by other organic matter components.

While pristane and phytane are often interpreted in the context of redox change, the presence of pristane can also provide information on the relative contribution of terrestrially-derived Corg. Both of these isoprenoids are derived from the cleavage of the phytyl side-chain of chlorophyll (a major component of terrestrial phytoclasts, especially leaves). Under oxic conditions, an increased flux of this material from the hinterland would lead to an increase in pristane, but not phytane (which does not typically survive long-distance transportation, due to oxidation of the precursor phytol to phytenic acid, and subsequent decarboxylation to pristane; Peters et al., 2005, p. 499). It is, therefore, unusual to see both pristane and phytane, together making such high contributions to sediment Corg. There is no evidence for reoxygenation of the bottom water during deposition of Lithofacies B. It is therefore reasonable to suggest that while shelf-to-basin transport of organic material occurred during the deposition of Lithofacies B, its strength was insufficient to entrain enough oxygen into the benthic environment to facilitate the oxidation of phytol. Phytol was, therefore, protected from conversion into pristane during transport. If the flux of terrestrial organic matter accompanying these episodes of shelf-to-basin transport also had a high initial phytol content, and if these episodes were especially rapid, this mechanism can explain the high phytane content of the silty layer. The high levels of pristane could indicate that the shelf-to-basin transport event also reworked previously deposited pristane from more persistently oxic, marginal settings.

The relative contributions of marine and terrestrial carbon pools were also the main controls on the sterane distributions recovered from the LSB. Only C_{27} and C_{29} regular steranes show significant

variability (Fig. 5.6), and these are negatively, and positively (respectively) correlated with the TAR (Fig. 5.10). The $\Sigma C_{27}/\Sigma C_{29}$ regular sterane ratio also shows muted negative peaks roughly concomitant with the strong peaks in the TAR. This is in line with the widely reported association of C_{27} regular steranes with marine zooplankton and Rhodophyceae, and of C_{29} regular steranes with terrestrial organic matter (Huang & Meinschein, 1979; Czochanska *et al.*, 1988; Rieley *et al.*, 1991; Dahl *et al.*, 1994; Kodner *et al.*, 2008). The slight shift of the sterane data towards the marine field in C_{27-29} regular sterane ternary space (Fig. 5.9) also corroborates the interpretation made based on the TAR – that palaeoshoreline distance increased through the deposition of the LSB.

 C_{29} regular steranes are also associated with Charophyceae and Ulvophyceae, and the increase in the relative contribution of these steranes has been tied to shifts in redox-sensitive algal production (Kasprak *et al.*, 2015). The slight increases in C_{29} regular sterane abundance at 37 and 120 mm, could therefore, also be a function of enhanced productivity of green algae. While the nutrient stimulation of the surface layer (that I propose was present during the deposition of the silty layers; see section 4.1) could very well have favoured the proliferation of green algae, it is difficult to separate the relative influence of this proliferation from the effect of enhanced terrestrial organic matter flux on the C_{29} sterane content of the LSB.

No variation is observed in the contribution of C_{28} steranes to the LSB (in contrast to sediments deposited during the end Triassic extinction; Kasprak *et al.*, 2015). While prasinophytes (one of the main producers of C_{28} steranes), are nonetheless present (Chapter 4, section 2.1), their absolute contribution to the palynofacies, and the sterane distribution of the LSB is relatively low (although their relative contribution to the phytoplankton assemblage varies markedly).

3.3 Euxinia

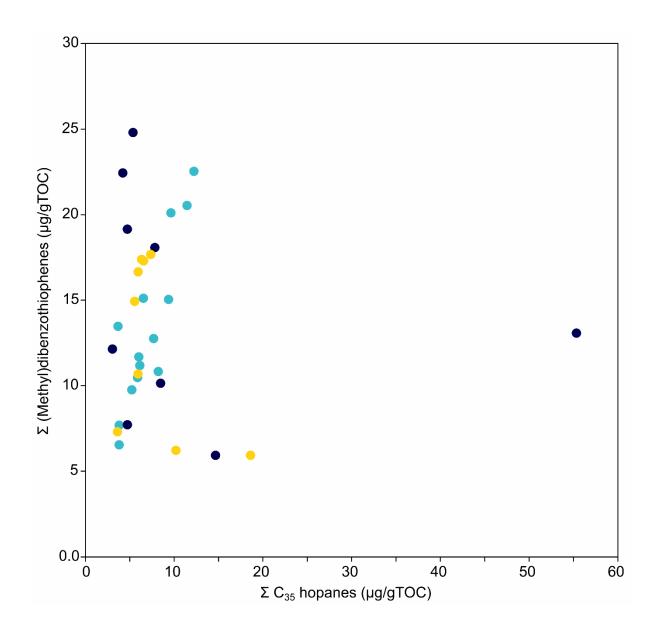
Although partly degraded during catagenesis into aryl isoprenoids, and a biphenylic derivative (see Chapter 1, section 9.1.6), the presence of isorenieratane in the LSB corroborates (along with small framboid diameters and the enrichment in Mo; Chapter 3, sections 3.1.1 and 3.4) the occurrence of euxinia, and the presence of free sulphide in the photic zone of the water column. While isorenieratane can also be produced by mat-forming Chlorobiaceae (Beatty *et al.*, 2005; Bühring *et al.*, 2011), no lithological evidence of this (i.e. wavy lamination; O'Brien *et al.*, 1990) was found in hand specimen, or thin section of the LSB. Some mat-derived isorenieratane may have been delivered into the basin depocenter during storms (see Chapter 6, section 3.4 for a fuller discussion), however, it is tentatively assumed that the amount of isorenieratane supplied by this pathway is lower compared to that produced by Chlorobiaceae blooms within the water column.

The trend in the concentration of isorenieratane through the LSB mirrors that of TOC, S_{py} and Mo/Al (and is approximately inverse with that of mean framboid diameter, Figs 3.16; 3.26). This indicates that the euxinia that characterised the upper part of Lithofacies A, and most of Lithofacies B did indeed extend into the photic zone, and that free sulphide availability was the limiting factor on planktonic Chlorobiaceae production. However, it is possible that the primary productivity of Chlorobiaceae was controlled by more factors than just the presence of free sulphide. As discussed in Chapter 3, section 4.5, this interval of the LSB was likely characterised by strong stratification (as implied by strong Mn cycling). If this was the case, then it is possible that bioavailable nutrients were locked below the chemocline, only being returned to the photic zone by infrequent episodes of upwelling. Sælen *et al.* (1996) invoked such a mechanism to explain the low δ^{13} C values of the black shales of the Mulgrave Shale Member, with upwelling episodes returning isotopically depleted carbon to the surface layer. If present during deposition of the LSB, upwelling episodes would have returned euxinic water masses to the photic zone during the deposition of Lithofacies B – the frequency of which could have also been a limiting factor on Chlorobiaceae production. Recent work has shown that the modern Benguela Upwelling System - known for high productivity levels and the occasional upwelling of sulphidic water masses - can support booms of (isorenieratane-producing) brownpigmented green sulphur bacteria (Ma et al., 2021). Alternatively, there could have been some limitation on light penetration during the deposition of the LSB (since Chlorobiaceae require fluorescent light intensities of at least $5 - 10 \,\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, and no more than 200 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$; Overmann, 2006), and this could well have been the case during the emplacement of the large silty lens at 62 mm.

While the lithology of the LSB indicates that episodes of storm activity occurred, it was likely at its most intense in the silty lens at 62 mm. It is, therefore, probable that the temporary decrease in Chlorobiacae production during this brief interval was related to reduced light penetration in a turbid water column, despite the presence of sufficient sulphide $-S_{py}$ and Mo/Al values do not show significant depletion during the silty lens (Fig. 3.26), and sedimentary features such as the silty lens are often diagnostic of infrequent, strong storms. Alternatively, the episode of shelf-to-basin transport responsible for the formation of the silty lens could have raised the oxygen content of the photic zone for a geologically brief period. However, the silty lens also contains reworked pyrite framboids (Chapter 3, section 2.1), and its location directly below the most organic-rich interval of the LSB (characterised by the most intense oxygen depletion), implies its emplacement lead (ultimately) to a depletion of the basinal oxygen inventory (see section 4.1). However, the low isorenieratane content per gram of sediment in the silty lens could also be related to dilution of the sample by the high silt content. While this is a potential consequence of sediment normalisation, TOC normalisation would yield unrealistically high (for a low TOC sediment) isorenieratane concentration values in the silty lens (see section 3.0).

The positive shift in the steranes/steranes+hopanes ratio at 46 mm (Fig. 5.5) implies that algal production increased at this point. It is also possible that a general shift towards greater levels of primary production occurred here, although the shift pre-dates the emplacement of the silty layer (and therefore, the interval of enhanced nutrient flux). Enrichment of Zn/Al and Cu/Al in Lithofacies B could be interpreted as tracking an increase in productivity (Saito et al., 2002; Algeo and Maynard, 2004; Naimo et al., 2005), but the enrichment of both metals is also controlled by syngenetic pyrite formation (which was intense in the LSB; Chapter 3, section 4.3; Huerta-Diaz and Morse, 1992; Tribovillard et al., 2006). A better evaluation could, however, be attempted through the use of sequential P extraction, which can be used to evaluate changes in the organic matter and Fe oxideassociated P content of the LSB – a proxy for the extent of P utilisation following episodes of upwelling of sub-chemocline waters (März *et al.*, 2008). δ^{114} Cd_{Org} is also negatively shifted by biological uptake of ¹¹⁰Cd, and hence (assuming no change in authigenic sulphide precipitation), a negative shift in the δ^{114} Cd signature of the LSB could be indicative of higher primary productivity (although the validity of this method is still an active area of research; Sweere et al., 2020; Bryan et al., 2021). Thermal or salinity stratification could be further evaluated by a targeted $\delta^{18}O$ and $\delta^{13}C$ analysis of belemnite rostra through the LSB (as in Sælen et al., 1996).

The presence of isorenieratane in Lithofacies A, like the Fe speciation data, strongly implies that the environment was subjected to episodes of severe oxygen depletion (to the point of euxinia), despite the high bioturbation levels seen in this interval. During these periods, the anoxic/oxic chemocline rose above the sediment-water interface, and resulted in infrequent blooms of chlorobiaceae in the water column. However, the wide framboid diameter distribution, and limited (essentially background) Mo content of the sediments argue against the presence of a large volume of aqueous sulphide in the water column. It is possible, therefore, that the euxinic episodes were short-lived enough that any euxinia signal in these proxies became time-averaged by intense bioturbation during intervening episodes of bottom-water oxia.


The positive point excursions in TAR (i.e. fluvial pulses), are also coeval with negative excursions in the AIR, against a relatively constant background. Taken at face value, this implies that the silty lenses were associated with longer-lasting episodes of photic zone euxinia, compared with the sediments of Lithofacies A, and the TOC-rich Lithofacies B. While it is possible that nutrient stimulation of surface waters during the emplacement of the silty layer (see section 4.0) led to prolonged episodes of Chlorobiaceae production (with coeval strong fluxes of Chlorobiaceae-derived organic matter to the sediment), this layer is associated with reverse grading (Fig. 3.16). It is more than likely that under these relatively energetic conditions, any short-chain aryl isoprenoids that comprised the sediment were selectively winnowed away, leaving behind only the long-chain aryl

isoprenoids. A straightforward interpretation of the AIR does require the assumption that the preservation conditions of sedimentary organic matter remained constant (Schwark & Frimmel, 2004), and the dynamic nature of sediment deposition in the LSB, therefore, complicates the interpretation of the AIR. Additionally, the AIR shows values associated with episodic euxinia (Fig. 5.12) in the interval characterised by the highest levels of isorenieratane. This further implies that the interval was characterised by strong stratification, with the majority of Chlorobiaceae production occurring in sporadic episodes of water column overturning.

3.4 Redox

Since the Cleveland Basin was hydrographically isolated from the wider EES – and the resupply of aqueous oxygen therefore limited – an enhanced biological pump could have drastically reduced the dissolved oxygen inventory of the basin, and, therefore, could have been the key factor in triggering the system-shift of the basin (see section 4.1). This is implied by the close juxtaposition of a silty lens with an interval of C_{org} -rich sediment (implying an enhanced fluvial flux and nutrient stimulation; see section 4.0), and by the shift in the steranes/steranes+hopanes ratio at 46 mm – a typical organic geochemical marker of enhanced algal productivity.

The pr/phy ratio is somewhat elevated throughout the section (compared to typical marine shale values) due to the addition of excess phytol from terrestrial organic matter (Figs. 5.4 and 5.14). This means that the widely accepted threshold values for distinguishing anoxic and dysoxic/suboxic environments (Huges *et al.*, 1995), cannot be applied here. However, the ratio shows a gentle decrease in the middle of the LSB, further strengthening the case for a decline in the average redox state. C_{35} homohopanes are present within the LSB, indicating reduced oxidation of the bacteriohopanetetrol precursor (consistent with a periodically anoxic environment; Peters & Moldowan, 1991). However, the lack of significant increase in the C_{35} homohopane index within Lithofacies B implies that the fixation of hopanoids in the kerogen through sulphurisation of the side chain was greatly reduced (Köster *et al.*, 1997). This further implies that most free sulphide was incorporated into pyrite before significant organic matter sulphurisation could occur. Curiously, the presence of dibenzothiophene within the LSB (see 3.6) indicates that organic matter sulphurisation did occur, although the content of dibenzothiophene, and methyldibenzothiophene is not correlated with that of C_{35} hopanes (Fig. 5.21). The dominant pathway for dibenzothiophene formation in marine sediments is unknown, but

Figure 5.21. Concentration of C_{35} hopanes through the LSB, compared with that of dibenzothiophene and methyldibenzothiophenes (grouped together as Σ (methyl)dibenzothiophenes.

one possibility is that biphenyl is catalytically sulphurised in the presence of elemental sulphur, on the surface of carbonaceous particles (Asif *et al.*, 2009). The high levels of dibenzothiophene, concomitant with relatively low C_{35} homohopane index values, imply that this sulphurisation pathway (if present) was a more active process than the sulphurisation of hopanoid side chains. The presence of biphenyls in marine sediments has been linked with the biodegradation of carotenoids (Grice *et al.*, 1996) and the oxic degradation of PAHs hosted in plant-derived resins (Sun & Püttmann, 2001). Of these two processes, the biodegradation of carotenoids is a more likely source of biphenyl within the LSB, since carotenoids are abundant, and there is no evidence for extensive oxidation of the organic matter post-deposition (the presence of biphenyl in the German Kupferschiefer was attributed to this, Sun & Püttmann, 2001). However, it could be argued that a slight positive correlation between C_{35}

hopanes and (Methyl)dibenzothiophenes is evident in Lithofacies A (Fig. 5.21), which would mean that the sulphurisation of biphenyl became a dominant process only after 52 mm. This would require either an increase in the availability of elemental sulphur or biphenyls.

3.5 Organic matter sulphurisation

The presence of dibenzothiophene, methyldibenzothiophenes, and the depression of the phenanthrene/dibenzothiophene ratio in the LSB, indicate the post-depositional sulphuristation of organic matter within the LSB. Dibenzothiophene is exclusively produced during diagenesis, and is believed to be particularly characteristic of reactive Fe-limited sulphidic conditions (Hughes *et al.*, 1995; Peters *et al.*, 2005, p.32). While highly reactive Fe is abundant in this section (Chapter 3, section 3.3), the presence of dibenzothiophene indicates that the sulphide concentration (especially in sediment porewaters), often exceeded the reactive Fe supply. The trends observed are completely different to that of the "S_{org}" trend presented in Chapter 3, section 3.3, and further invalidate its utility in this study.

Although not detected in this analysis, it is also possible that other S-bearing organic phases were present, and separated from the TLE into the polar fraction during the SPE. An analysis of this fraction may better quantify the occurrence of isoprenoid polysulphides, which can be formed via successive sulphurisation of phytol (de Graaf *et al.*, 1992). It is possible that the enhanced Mo/Al level of Lithofacies B was, in part, due to sequestration by sulphurised organic matter species (although the efficiency of this pathway of Mo sequestration has been questioned; Helz *et al.*, 1996; Tribovillard *et al.*, 2004; Helz & Vorlicek, 2019).

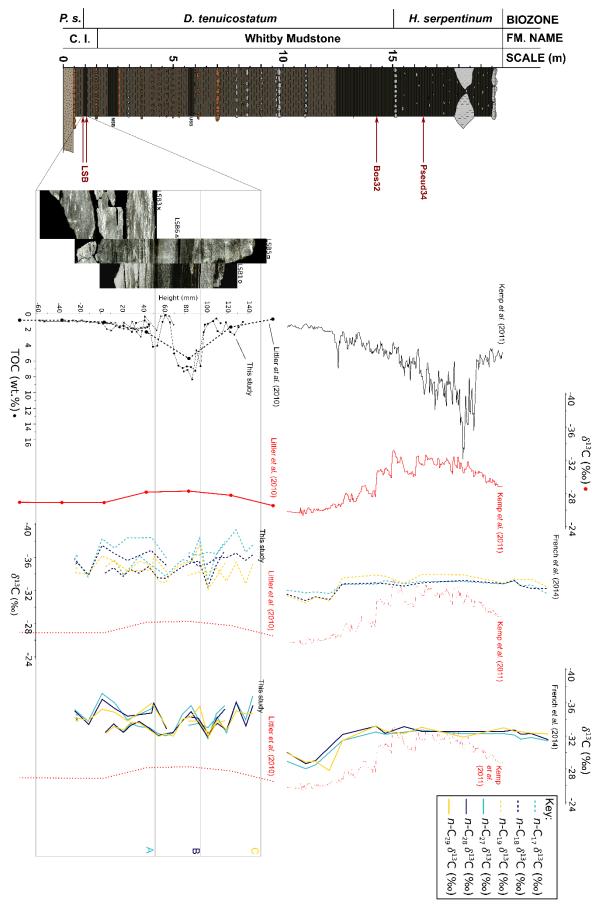
The ratio of phenanthrene/dibenzothiophene shows a very distinct positive spike at 62 mm, implying that organic matter sulphuristation was greatly reduced here. This is not especially surprising given that the interval was very TOC lean, and therefore, unlikely to generate any significant quantity of aqueous sulphide during diagenesis. However, the reworked pyrite framboids within this silty layer imply that the shelf-to-basin transport responsible for its formation did not entrain much oxygen into the marine environment (see section 3.2). Since there is also evidence for a fluvial pulse at this point, the high phenanthrene/dibenzothiophene ratio might in part be driven by sulphate limitation (i.e., the influence of low-salinity waters), independently from redox change. However, the pr/phy ratio does not nearly meet the threshold associated with true brackish environments (pr/phy = 3.0; Hughes *et al.*, 1995), and the majority of the section displays clear palaeontological (marine bivalves and belemnites) and geochemical (sulphide-rich) evidence for being deposited in a shallow marine environment. The transgression invoked in section 3.2 might also partly explain the gentle downward

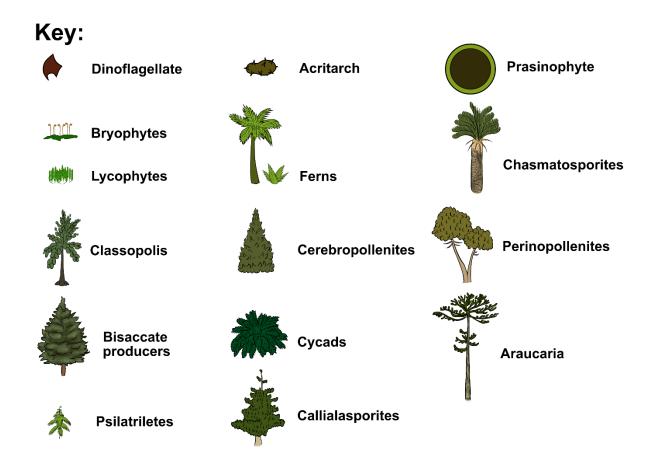
trend in phenanthrene/dibenzothiophene through the section, due to the loss of sulphate limitation via the predominance of marine waters.

3.6 Retene and phenanthrene

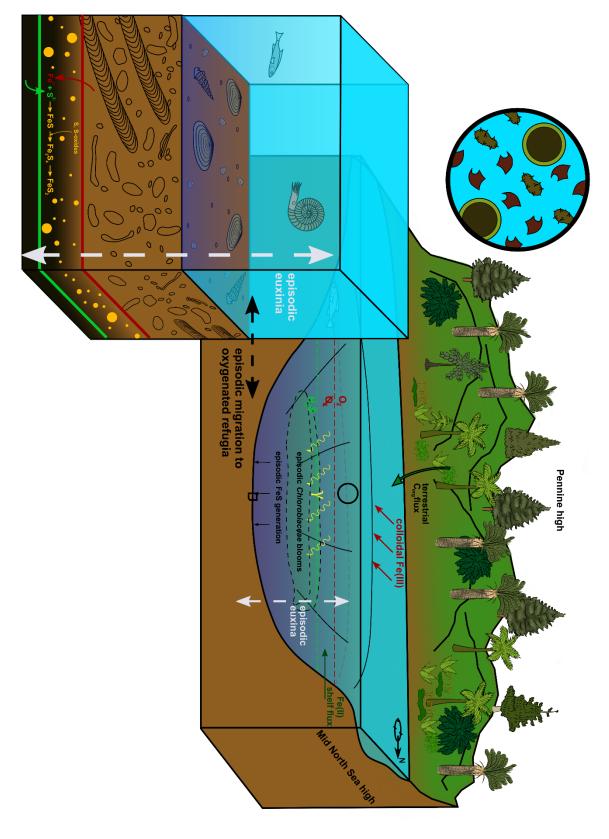
The trend in the enrichment of retene in the LSB does not differ markedly from that of the phenanthrenes and dibenzothiophenes, and does not perfectly mirror the dominance of bisaccate producers in the terrestrial plant community (Chapter 4, section 2.1): bisaccate producers make a small, but persistent contribution terrestrial plant sporemorph assemblages during the deposition of Lithofacies A, before proliferating at the expense of *Chasmatosporites* sp. in Lithofacies B. Retene, however, only shows elevated concentrations in the TOC-rich part of Lithofacies B (along with phenanthrenes and dibenzothiophenes), which implies that it was produced primarily in the sediment during early diagenesis.

Since the content of retene and phenanthrenes within the LSB broadly track that of dibenzothiophenes (exclusive geosphere compounds), it is unlikely that they are indicative of any change in the frequency and severity of wildfires through the section. The increased occurrence of wildfire-derived charcoal concomitant with the termination of the TOAE CIE has been interpreted as a marker for enhanced atmospheric pO_2 levels, which might have been instrumental in the termination of the TOAE (Baker *et al.*, 2017). Retene and a range of other PAHs have also been recovered from Toarcian-aged coals in Poland (Rybicki *et al.*, 2016), which implies that they could be used to track the severity of wildfires through this stage of the Lower Jurassic. While retene is elevated within Lithofacies B, it is not accompanied by any supporting proxy evidence for wildfire activity, such as increased opaque phytoclast content (Appendix 2), and I, therefore, suspect its increased content in Lithofacies B reflects the diagenetic breakdown of aromatic compounds. The phenanthrene detected within the LSB is likely to be microbial in origin, and produced by the degradation of aromatic 8,14-secohopanoids (Killops 1991).


3.7 Carbon cycling via Compound-Specific Isotopic Analysis (CSIA)


While a clear negative excursion is not evident in the CSIA data, the δ^{13} C values of both short and long-chain *n*-alkanes are lower than the values of both bulk TOC and *n*-alkanes in the upper Grey Shale and Mulgrave Shale Members (which have been attributed to exogenic carbon cycle perturbation; French *et al.*, 2014). The long-chain CSIA data points are also consistently lower than concomitant δ^{13} C_{org} data (Littler *et al.*, 2010) by 3.33 – 10.6 ‰ (Fig. 5.22). This is of great

palaeoenvironmental significance, and implies that during the deposition of the LSB, both marine and terrestrial carbon pools were isotopically depleted. The low δ^{13} C signatures of marine *n*-alkane pools (lower than bulk δ^{13} C) strongly imply that the primary producers in the Cleveland Basin acquired their carbon from an isotopically depleted reservoir. If the environment was strongly stratified (as suggested by the Mn/Al data; Chapter 3, section 3.5), then primary producers in the photic zone would have acquired the carbon needed to synthesise short-chain (C_{17-19}) *n*-alkanes from highly isotopically depleted carbon recycled from below the chemocline by episodic upwelling. Such a mechanism has been invoked to explain the prominent negative $\delta^{13}C_{org}$ excursion in the *C. exaratum* subzone (Sælen *et al.*, 1996). However, the concomitant δ^{13} C signatures of terrestrial *n*-alkane pools in the LSB are also consistently isotopically depleted with respect to bulk δ^{13} C (by 3.33 – 10.6 ‰), which indicates that terrestrial primary producers incorporated depleted carbon as well. A decline in the δ^{13} C signature of *n*-alkanes derived from leaf wax cuticle could also reflect a shift to a more humid climate at constant pCO_2 levels (Kohn, 2010), but humid climate shifts in the geological past a frequently associated with high pCO_2 levels (e.g. the Carnian pluvial event; Dal Corso *et al.*, 2012) – in which case a decline in the δ^{13} C of leaf wax cuticle reflects the influence of two linked palaeoenvironmental changes. Additionally, as argued by Hesselbo et al. (2000), the presence of prominent, concomitant δ^{13} C excursions in marine and terrestrial carbon reservoirs is highly unlikely to be coincidental, given the network of interactions between the atmosphere and terrestrial and marine ecosystems in the surface carbon cycle. The isotopically light carbon in the *n*-alkanes from the LSB, therefore, is likely to have been added to the earth surface system through either the dissociation of a climate-sensitive methane reservoir (Kemp et al., 2005; Ruebsam et al., 2019; 2020a), or possibly through volcanic activity (Svensen et al., 2007).


The fact that large jumps in the up-section δ^{13} C trends were not observed is probably to the low stratigraphic coverage of my study. It is possible that if my sampling interval extended further down into bed 25, or further up into bed 27 of the Cleveland Ironstone series, different δ^{13} C values could have been encountered. As discussed in Chapter 3, section 3.0, the chosen sampling methodology prioritised resolution over completeness, and while highly detailed up-section plots of the specific isotopic signatures of palaeoenvironmentaly important carbon pools have been evaluated, it is difficult to place them in a wider stratigraphic context. The CSIA dataset presented here would be greatly improved by the inclusion of as little as 1-2 samples from the upper part of bed 25, or the lower part of bed 27, even at the expense of some resolution in these beds. At the very least, it is probable that such an analysis would help to better align the dataset with the bulk δ^{13} C study of Littler *et al.* (2010) – attempted in Fig.5.22.

centimeter scale), while the upper part of the plot encompasses the C. exaratum subzone (and is meter scale). A simplified stratigraphic column is also included on are also plotted (superimposed in my TOC dataset in the LSB). My CSIA plots are compared with the bulk d13C trends, as well as the CSIA plots of French et al. plotted in red – one for the LSB (Littler et al., 2010), and one for the C. exaratum subzone (Kemp et al., 2011). The corresponding TOC values for these samples the far left. Figure 5.22. My CSIA dataset compared with published bulk and compound-specific isotopic studies of the Cleveland Basin. Two bulk isotopic datasets are (2014) – short chain CSIA plots are dashed, and long chain CSIA plots are solid lines. Note that the lower part of the diagram encompasses the LSB (and is

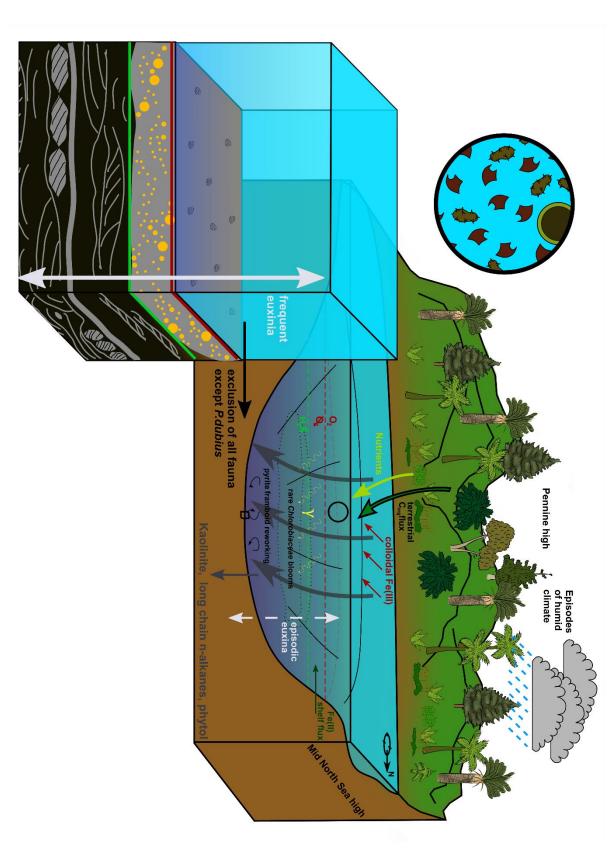
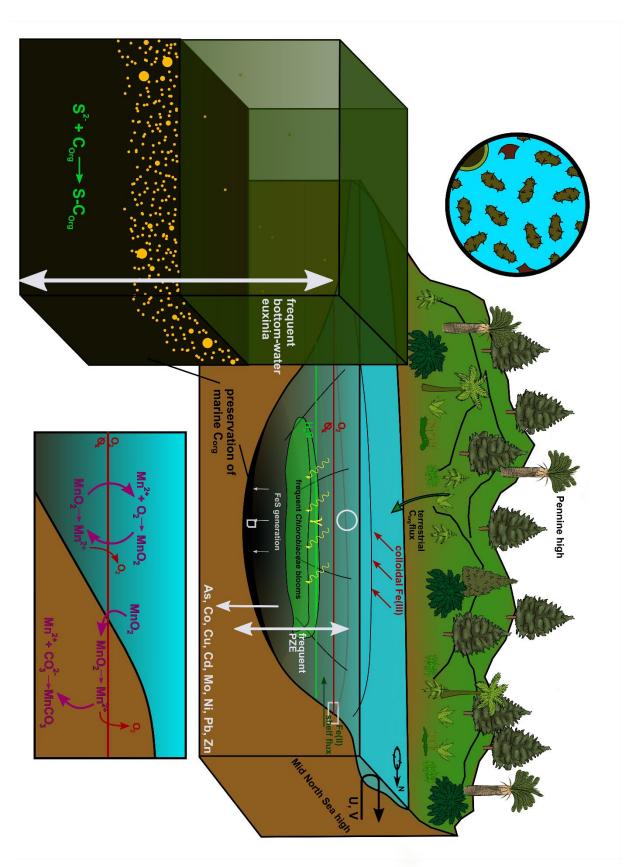
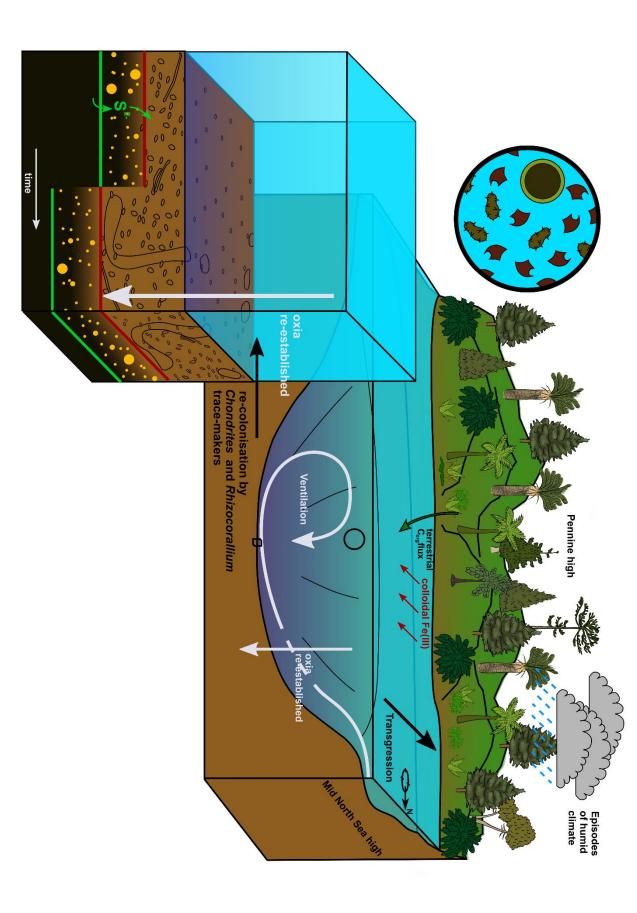


Figure 5.23. Key for phytoplankton and terrestrial plant illustrations used in Figs. 5.23 – 5.26.


producers. Episodes of photic zone euxinia also lead to a moderate level of chlorobiaceae production, but are not frequent enough to significantly impact the prasinophytes, while the warm, slightly humid climate favors a terrestrial plant community characterized by ferns, Chasmatosporites and bisaccate pollen terrestrial floral communities. Frequent dysoxia and episodic anoxia/euxinia results in a phytoplankton community dominated by dinoflagallates and Figure 5.24. Geological reconstruction of the lower part of the LSB (-60 - 52 mm, Lithofacies A), with reconstructions of the marine phytoplankton, and benthic community.

nutrient loading results in frequent chlorobiaceae blooms, and the more frequent episodes of anoxia/euxinia preclude all macrobenthos apart from P. dubius recalcitrant Corg to the basin. Episodes of shelf-to-basin transport result in the deposition of a large silty layer, and reworking of pyrite framboids. The higher Cleveland Basin from the surrounding hinterlands, enhancing the nutrient loading of the basin, and delivering kaolinite clay, and a higher proportion of Figure 5.25. Geological reconstruction of the LSB from 52 – 66 mm (Lithofacies B). An episode of pronounced humidity results in a greater fluvial flux into the Prasinophytes make up less of the phytoplankton community, and the terrestrial pant community becomes dominated by bryophytes, lycophytes and ferns.



chlorobiaceae blooms.

producers, the Cleveland Basin has shifted into a state characterised by highly frequent anoxia. A strong chemocline results in prominent Mn cycling (Chapter 3, marine phytoplankton community is dominated by acritarchs, while strongly stratified conditions, with infrequent upwelling of euxinic water masses, support episodic section 4.5), and the frequently anoxic/euxinic conditions result in the sequestration of labile Corg and of trace elements within syngenetic pyrite. The highly stressed Figure 5.26. Geological reconstruction of the LSB from 66 - 94 mm (Lithofacies B). While a drier climate favors a land plant community dominated by bisaccate

chlorobiaceae production ceases. The intermittently humid climate leads to a land plant community composed of ferns, cycads and bisaccate producers. with Chondrites-producing pioneers being followed by Rhizocorallium producers. Dinoflagellates begin to dominate the phytoplankton community, and Pliensbachian iceahouse (see text), results in ventilation of the water column in the Cleveland Basin. This results in the gradual recovery of the benthic community, Figure 5.27. Geological reconstruction of the LSB from 94 - 145 mm (Lithofacies C). A transgression, possibly forced by deglaciation at the close of the

4.0 Discussion

4.1 Implications for model of formation of the LSB

My comprehensive investigation into the redox chemistry of the LSB, both via inorganic and organic geochemical analysis, reveals that the enhanced frequency of anoxia concomitant with the deposition of the LSB was initiated due to an episode of enhanced nutrient flux into a restricted basin. The large silty layer at 62 mm (concomitant with frequent episodes of high Chlorobiaceae biomass production), immediately precedes the deposition of large amounts of organic matter in Lithofacies B, and it is therefore reasonable to suggest a genetic relationship here. The more hydrographically restricted a basin becomes, the longer the residence time of water within it. Assuming no change in removal fluxes, any increase in nutrient flux into the basin would raise the baseline nutrient concentration in the water mass. Moreover, enhanced freshwater fluxes into proximal marine environments frequently lead to short, sharp spells of stratification (e.g. Ærtebjerg et al., 2003). An enhanced nutrient flux into a hydrographically restricted marine setting, therefore, raises the probability for periods of enhanced eutrophication, either directly (through nutrient loading), or during episodes of upwelling in a stratified setting (which return nutrient-rich waters to the photic zone). While enhanced primary production (irrespective of oxygen depletion) is poorly correlated with organic carbon accumulation in the modern ocean (Tyson, 1995, p.34), these environments are typically open marine upwelling zones, so any oxygen consumed by remineralisation of excess production would be replaced by ocean currents. In restricted environments, the ability of ocean currents to replenish aqueous oxygen supply is greatly reduced. Therefore, the effect of an increase in primary productivity on the marine oxygen budget (and, as a consequence, organic matter preservation), is much more pronounced. Indeed, sediments from restricted environments tend to have TOC values five to six times higher than those deposited in more oxic settings (Raiswell et al., 1988). The n-alkane and regular sterane data presented here imply that a transgression was the primary mechanism responsible for the recovery of the redox state of the Cleveland Basin after the deposition of the LSB. A higher sea level would have probably (assuming no tectonically controlled change in basin architecture) improved the hydrographic connection of the Cleveland Basin to the wider EES, and would therefore have favoured the ventilation of the basin through the circulation of oxic marine waters. This would also explain why the fluvial fluxes that occurred during the deposition of Lithofacies C did not lead to a decline in basin redox like they did in Lithofacies B. The enhanced connectivity of the basin meant that any oxygen consumed in the remineralisation of an enhanced organic matter flux (due to enhanced new production under eutrophic conditions in the photic zone) would be replaced. This model for the development, and disappearance of, frequently anoxic conditions within the LSB is summarised in the series of geological reconstructions presented in Figs. 5.24 - 5.27 (A key for the illustrations used is

205

presented in Fig. 5.23). The geological reconstructions also illustrate the changes in the marine phytoplankton and land plant assemblages described in Chapter 4 (sections 3.2.1).

While an enhanced fluvial flux would have greatly enhanced stratification towards the basin margins, it is unlikely that this led to the prolonged stratification of the basin during the deposition of Lithofacies B (as indicated by, for example, Mn/Al enrichment; Chapter 3, section 3.5). Salinity stratification is typically only developed where a significant flux of freshwater enters a saline water body (e.g., in estuaries), and is, therefore, inherently spatially limited. Higher sea-surface temperatures in the Cleveland Basin, over a prolonged period of time (thousands of years) are more likely to have been the cause of sustained water column stratification. While existing $\delta^{18}O_{bel}$ datasets from the Pl-To of the Cleveland basin do not indicate any major changes in SST (Korte & Hesselbo, 2011; Korte *et al.*, 2015), it is likely that these datasets do not capture sufficiently high-resolution variability in SST across the LSB to rule out a short, sharp temperature rise. Belemnites are occasionally found in the LSB, and a $\delta^{18}O$ analysis targeting these belemnites will provide a better constraint on temperature, such as TEX86 (Ruebsam *et al.*, 2020b) could be evaluated through this interval. A palaeotemperature record with much greater vertical resolution could be reconstructed this way (since it is a bulk sediment analysis).

Ultimately, I argue it is probable that the LSB marks a regional expression of global climatic disruption at the Pl-To, given the evidence I have presented for enhanced fluvial fluxes during episodes of wetter climate. The Palaeocene-Eocene Thermal Maximum (PETM) was another interval of global climatic perturbation, and was in many ways analogous to the Pl-To: both events are marked by carbon isotope excursions of similar magnitude (and shape), and by atmospheric carbon injection of high rate, and short duration (Clapham & Renne, 2019). The PETM was also associated with an enhanced hydrological cycle (Carmichael et al., 2017), and consequent changes in clay mineral assemblages (John et al., 2012). While black shales were not as well developed in the PETM as in the Pl-To, oxygen depletion (sometimes to the point of photic zone euxinia) was nonetheless a widespread phenomenon during this event as well (Schoon et al., 2015). The PETM was marked by a temperature shift of 5-8 °C (McInerney & Wing, 2011), and it is believed that a similar excursion in temperature occurred (at least in some localities) during the Pl-To (Ruebsam et al., 2019). However, I have not uncovered any direct evidence for higher temperatures, and indeed, one of the markers for a hotter terrestrial environment (the occurrence of Cerebropollenites; Chapter 4, section 3.2.1; Slater et al., 2019) is absent. While it could be argued that this is consistent with a relative stasis in temperature throughout the deposition of the LSB (Korte et al., 2015), it is, again, unlikely that a geologically brief period of water column stratification (such as is observed in the LSB), accompanied by episodes

of enhanced surface runoff under humid climatic conditions, occurred in the absence of a temperature rise.

4.2 Wider implications

The upper Pliensbachian stage of the Lower Jurassic was characterised by significantly cooler global temperatures than the Toarcian, as indicated by the heavier δ^{18} O of shelly macrofauna recovered from successions of this age, such as the Cleveland Ironstone Formation (Korte & Hesselbo, 2011), and the Rodiles Formation of the Asturian Basin (Northern Spain; Gomez et al., 2016). The occurrence of glendonites (and, occasionally, pseudomorphs after ikaite) in upper Pliensbachian sediments from Germany and Siberia (Suan et al., 2011; Teichert & Luppold, 2013) strongly imply that the high latitudes reached temperatures below 4 °C, and episodes of mantle-upwelling induced uplift in the North Sea are likely to have limited circulation of warm ocean waters to the high latitudes (Korte et al., 2015). Furthermore, recent work has suggested that the CIEs of the Pl-To and the T-OAE were produced by the destabilisation of a climate-sensitive reservoir of ¹³C depleted carbon, and that it is likely that this reservoir was permafrost developed in the high latitudes of Eurasia during the upper Pliensbachian (Ruebsam et al., 2019; 2020a). If this is the case, then it is probable that the Pl-To event was characterised by a eustatic sea level rise in addition to higher global temperatures. The sea level curve of Hesselbo (2008) - based on the lithological identification of transgressive and regressive systems tracts - shows a brief transgressive-regressive couplet coeval with the uppermost Cleveland Ironstone Formation, and a subsequent high-resolution detrital element analysis has revealed concomitant peaks in Si/Al, Zr/Al and Zr/Rb (Thibault et al., 2018). My model for the recovery of the redox state of the Cleveland Basin after the deposition of the LSB fits well with this emerging picture of sea level rise coeval with the Pl-To. It implies that a brief rise in temperature (that influenced temperature and humidity around the Cleveland Basin) preceded the short transgression observed at the Pl-To boundary in Europe. This temperature rise could have been a symptom of the injection of isotopically depleted carbon into the ocean-atmosphere system. It is also possible that the short, sharp temperature rise could have been a consequence of the intrusion of lavas in the Karoo-Ferrar LIP prior to the main phase of eruption (McElwain *et al.*, 2005). However, the δ^{13} C signature of the pre-TOAE CIE interval is too light to have been produced by an exclusively volcanic source (the pCO_2 level predicted by volcanogenic δ^{13} C does not agree with stomata data; Ruebsam *et al.*, 2020a), and Hg/TOC anomalies detected at the Pl-To in the Cleveland Basin (Percival et al., 2015), might be better explained by an influx of terrestrially derived materials (Them et al., 2019). Hg/TOC was not evaluated in my study since the elemental analysis was conducted via a bulk HF digest. Therefore, any Hg would have been liberated as a gaseous phase during the analysis. An elemental analysis via XRF, or flame ionisation detection (FID), could quantify Hg content (as well as Si). However,

although the global warming of the Pl-To might have been ultimately triggered by a small degree of intrusive activity in the Karoo-Ferrar, some workers have argued that the small extent of thermal metamorphism of coals in the Karoo-Ferrar basin (Gröcke *et al.*, 2009) implies that this process was minor compared to the subsequent destabilisation of climate-sensitive methane reservoirs.

Like with the Fe Speciation proxies (Chapter 3, section 4.9), the high degree of bioturbation in Lithofacies A might explain the apparent presence of Isorenieratane in sediments belonging to ORB 3-4 (Chapter 3, section 4.2). This lower part of the LSB was deposited under a widely oscillating redox state, with potentially many episodes of euxinia (and Chlorobiaceae production) occurring in et al.an interval that was probably several millennia in duration. However, given that the sediment was intensely bioturbated between these episodes, the organic geochemical record of isorenieratane content became time-averaged, and resulted in an apparent record of PZE concomitant with a lower dysaerobic biological community. An additional factor affecting the apparent high levels of isorenieratane in Lithofacies A (more so than the high values of Fe_{HR}/Fe_T and Fe_{PV}/Fe_{HR}), is the greater degree of time averaging required to generate samples for a TLE: about a centimetre of stratigraphic hight was required (in this case), to generate bitumen extracts of over 10 mg (at TOC = 2 wt.%; Appendix 3). Regrettably, this is the highest resolution that can currently be achieved for biomarker analysis. These two issues mean (as for the inorganic proxies), that in highly bioturbated sediments, inorganic geochemical proxy records should be interpreted as a function of anoxic/euxinic event frequency, rather than absolute redox state. Reworking of isorenieratane has also recently been identified in the lower Jurassic Pre-planorbis beds at Lilstock (Somerset, UK), where a thin interval of intense bioturbation leads to a local enrichment of isorenieratane by nearly three orders of magnitude (Fox et al., 2020, and their supplementary information). As discussed in Chapter 3, section 4.9, a subsequent Fe-redox study of this section by He et al. (2022) also yielded Fe_{Pv}/Fe_{HR} data indicating euxinic conditions concomitant with the heavily bioturbated interval. Comparison of the data from the LSB, and the pre-planorbis beds makes a strong case against a straightforward application of palaeoredox proxies to bioturbated units, and in favour of an appreciation of the dynamic nature of both the Bristol Channel, and Cleveland Basins.

5.0 Conclusions

• The LSB was formed due to an enhanced flux of nutrients (via an enhanced fluvial flux) into a restricted marine environment, with an enhanced biological pump depleting the oxygen inventory of the basin. This resulted in the preservation of organic matter, and the exclusion of (eventually) all benthic organisms. The oxygen depletion was also accompanied by intense stratification (probably temperature mediated), which was the limiting factor on primary production during the period of maximum carbon burial.

- The enhanced fluvial fluxes into the Cleveland Basin are probably indicative of periods of greater climatic humidity, due to their association with changes in the clay mineral and palynological assemblages. Analogy with the PETM would suggest that the climatic shifts were due to a disruption to the global carbon cycle.
- During the deposition of the LSB, both marine and terrestrial primary producers obtained their carbon from isotopically depleted reservoirs, indicating the concomitant occurrence of water column stratification, and isotopic depletion in atmospheric carbon. The close association between these two processes strongly implies that the oxygen depletion responsible for the formation of the LSB was the regional expression of a global climate perturbation at the Pl-To.
- Intervals of intense bioturbation have the ability to time average both inorganic, and organic geochemical redox proxy records, leading to the apparently bizarre juxtaposition of anoxic or euxinic geochemical markers with a dysaerobic biofacies. This does not invalidate the use of any of these proxies, but instead implies that (during bioturbated intervals) the values generated through geochemical analysis are a function of anoxia/euxinia frequency, rather than of absolute oxygen levels.
- The preceding three Chapters of this work demonstrate that the LSB is a condensed record of a highly dynamic depositional environment, with anoxia, shelf-to-basin transport, and the marine biological community all playing an active role in the development of its sedimentary architecture. My work is a noteworthy example of black shale deposition under episodically high energy conditions, and serves as a case study of the ability of high-resolution, multproxy analysis to accurately reconstruct the formation of this facies.

Chapter 6 – A multiproxy analysis of thin Shell Pavements from the Whitby Mudstone Formation

1.0 Study aims

In the previous three chapters, I have presented a detailed, multiproxy study of a thin black shale unit from the Lower Jurassic mudrocks of the Cleveland Basin. The Lower Sulphur Band (LSB) is a brief period of highly frequent anoxic events in an otherwise oxic/dysoxic environment. However, it is also possible that the opposite case applies to thin, monospecific shell pavements from the Grey Shale and Mulgrave Shale Members, where the thin-shelled bivalves *Pseudomytiloides dubius* (hereafter *P. dubius*), and *Bositra radiata* (hereafter *B. radiata*), are found in high abundance, in mm-scale interval, often overlapping to the point where they form a distinct layer (often laterally continuous but occasionally containing gaps indicating partial development). A brief period of reoxygenation concomitant with these pavements has not been confirmed by geochemical analysis, and I will apply the same high-resolution analysis used in my study of the LSB to test this. In this chapter I will present the results of the sedimentological, palaeontological, pyrite framboid, Fe redox, major and trace element, and Rock-Eval analyses I have performed on three shell pavements from the Lower Jurassic of the Cleveland Basin, and the results of the palynological, biomarker, and compound-specific isotopic analyses I have performed on two of these pavements. I will then expand upon the implications of my findings for the palaeoenvironment of the Cleveland Basin, and the palaeobiology of paper pectens.

Three thin shell pavements were analysed, and are coded according to the bed from which they were extracted (numbering of Howarth, 1955; 1962; 1973). See Chapter 2, section 4.0 for the sampling methodology.

2.0 Results

2.1 Lithofacies and macrofossils

All three shell pavements are situated within laminated black shales (ORB 1-2 of Wignall & Hallam, 1991), mostly composed of clay-sized particles and sedimentary organic matter, with occasional thin silt laminae 0.5 - 1.5 mm in thickness (Fig. 6.8). Unfortunately, assigning durations to these intervals with an acceptable level of precision is impossible. Applying the age models discussed in Chapter 1, section 6.0 to the shell pavements produces durations on the order of 10 - 100 yr. However, they are all thinner than the mm-scale scour marks that typify the sediments of the Whitby Mudstone Formation (often, in fact, occurring within them; see section 4.1). This means that any duration estimate derived from sampling an interval of this size would fall well within the 95% uncertainty envelopes modelled by Kemp *et al.* (2018 – their Figs. 9 and 10). The stratigraphic heights the shell pavements are summarised in table 6.1.

Bos32 is 1.4 mm in thickness (measured via photomicrograph). The shells that comprise this pavement were likely derived from both *Pseudomytiloides dubius* and *Bositra radiata*: 53.3% of the shells show a prismatic microstructure in thin section (Fig. 6.9), which is a known morphological feature of shells from the family Inoceramidae, to which *P. dubius* belongs (MacLeod & Orr, 1993; Henderson, 2004). The remaining 46.7% of the shells are thinner, and do not show a prismatic microstructure. These shells can therefore be attributed to *B. radiata*, which I identified upon inspection of the pavement in hand specimen. The majority of the shells preserved in this pavement are concave-up (Fig. 6.9). The shells of both *P. dubius* and *B. radiata* have a length of 10 - 33 mm (mean = 21 mm, standard deviation = 8 mm; measured from the bedding place surface – Figs. 6.1 - 6.3; Appendix 3). The shells also overlap, completely covering the bedding plane surface, so no spacing measurements could be made (hence there is no corresponding histogram for this pavement). The pavement are pyritised, and euhedral crystals of diagenetic pyrite are often found encrusting the shells (Figs. 6.9 and 6.16). In addition to Bos32, the sediments enclosing the pavement contain frequent individual shells of *P. dubius* and *B. radiata*, and occasional shell pavements with a lower number of shells than Bos32 (examples in Figs. 6.6

211

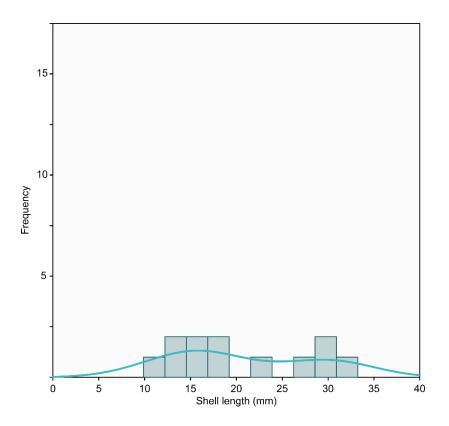

Pavement	Bed	Position in stratigraphy	Bivalves	Thickness	
			present	(µm)	
Pseud41	41	70 cm above the top jet dogger	P. dubius only	730	
Pseud34	34	10 cm below the central nodule layer in bed 34	P. dubius only	580	
Bos32	32	69 cm below the cannon ball doggers	P. dubius and B. radiata	1390	

Table 6.1. The locations of each of the studied shell pavements within the stratigraphy of the Whitby

 Mudstone Formation, along with the faunal composition, and the interpreted duration of each pavement.

and 6.7). These are also associated with thin, normally graded silty laminae, which occasionally contain reworked pyrite framboids (Figs. 6.7 and 6.17).

While the shell pavements were invariably associated with the thin silty laminae, not all laminae were accompanied by a shell pavement (e.g. Fig. 6.8). Another, a partially developed pavement (not analysed geochemically) is preserved within bed 32, with the shells occasionally showing orientation not parallel with the bedding (Fig. 6.10). Many of the shells in this pavement are thicker than in Bos32, and display prismatic microstructure, implying they belonged to *P. dubius*. A subhedral calcareous bioclast is contained within this shell pavement (Fig. 6.11), and is probably derived from an echinoderm (e.g. a crinoid ossicle), since the whole clast goes into extinction simultaneously when observed under XPL.

Figure 6.1. Frequency distribution of the lengths of the shells from Bos (n = 12). The data for all histograms was collected from the scanned images of the shell pavements (Figs. 2.8 - 2.10). Note that not all of the visible specimens could be measured, since the overlap meant that edges could not be identified.

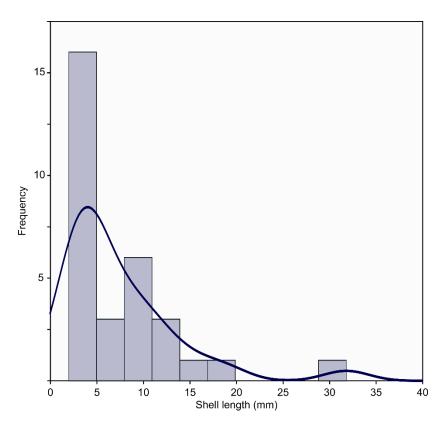
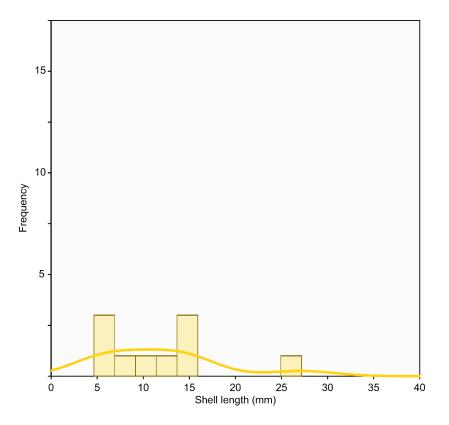
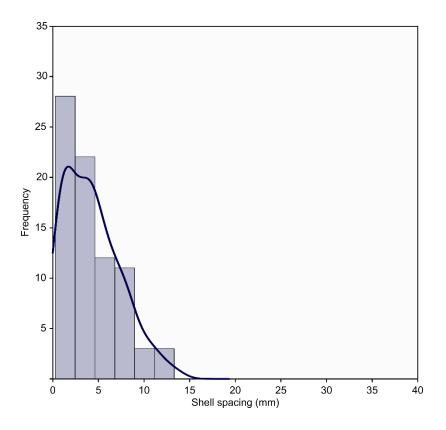
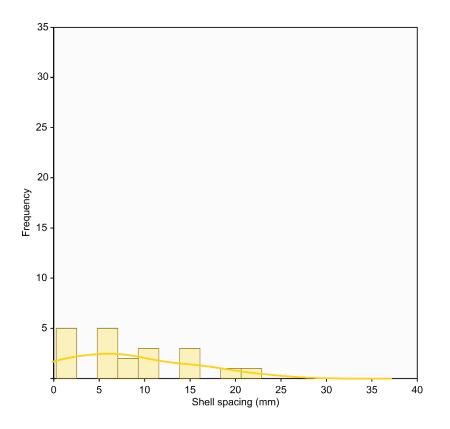
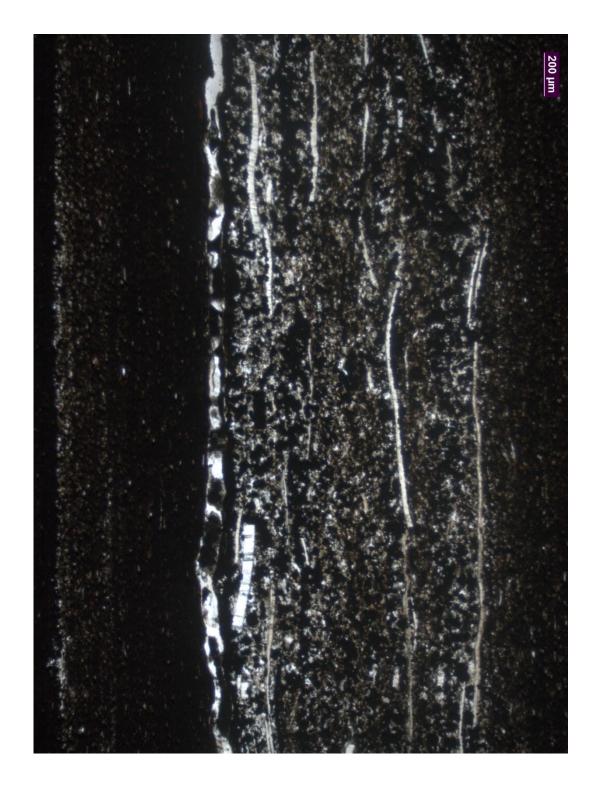
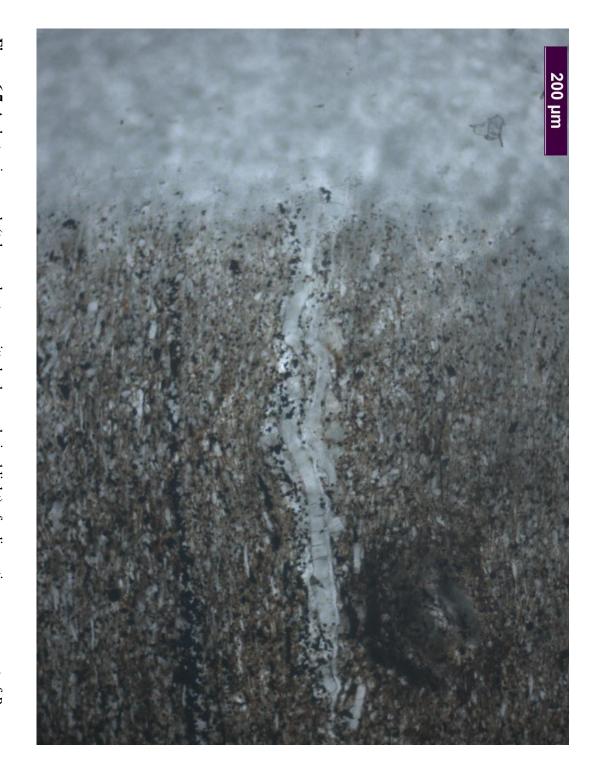




Figure 6.2. Frequency distribution of the lengths of the shells from Pseud34 (n = 31).

Figure 6.3. Frequency distribution of the lengths of the shells from Pseud41 (n = 8).

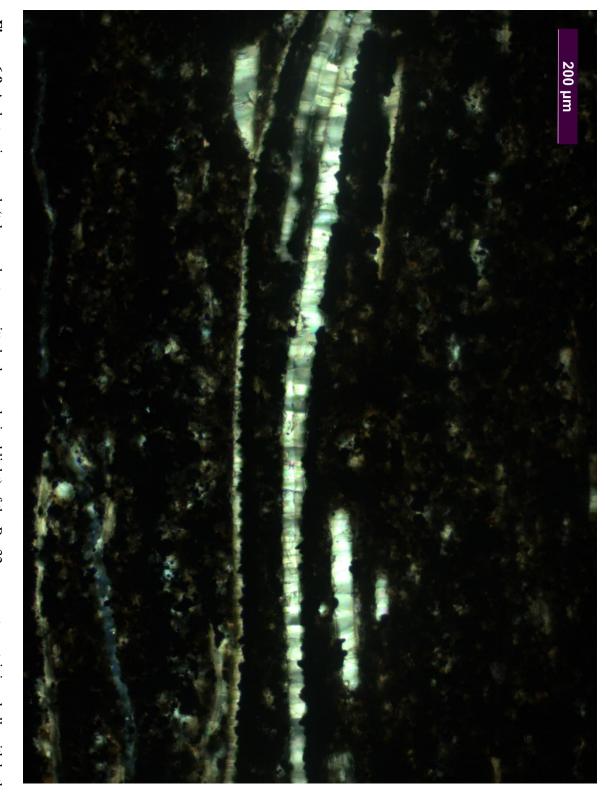
Figure 6.4. Frequency distributions of the spacing of the shells from Pseud34 (n = 79).


Figure 6.5. Frequency distributions of the spacing of the shells from Pseud41 (n = 20).

Pseud34 is 0.6 mm thick, and it only contains shells with a prismatic microstructure, implying that the pavement was composed entirely of *P. dubius*. In some shells, the outer layer has become recrystallised, with just the inner layer retaining the original prismatic microstructure (Fig. 6.13). Like Bos32, Pseud34 is also associated with a thin, normally graded silty horizon approximately 0.5 mm in thickness (Figs. 6.12 and 6.13). The *P. dubius* shells in Pseud34 are generally smaller than those in Bos32, with a length of 2 - 32 mm (mean = 8 mm, standard deviation = 6 mm; Fig. 6.2; Appendix 3). They are also more widely spaced apart, with some of the bedding plane surface uncovered. The gaps between the shells range between 0 - 13 mm, with a mean of 4 mm and a standard deviation of 3 mm (Fig. 6.4). This pavement also contains a large shell fragment with dark brown colouration implying partial replacement by siderite (Fig. 6.12).

Pseud41 is 0.7 mm thick, and like Pseud34, it is composed entirely of *P. dubius* shells with prismatic microstructure, with no *B. radiata* shells present. The shells have a length between 5 - 27 mm (mean = 12 mm, standard deviation = 7 mm; Fig. 6.3; Appendix 3). The shells are also widely spaced apart, with the gaps between the shells being between 0 - 23 mm (mean = 8 mm, standard deviation = 6 mm; Fig. 6.5; Appendix 3). An elongate phosphatic bioclast (likely a fish scale) was also found in bed 41 (Fig. 6.14), implying the sediments belong to ORB1.


composed of both P. dubius and B. radiata (prismatic and non-prismatic microstructure observed). Younging is from bottom to top. Figure 6.6. A photomicrograph (taken under transmitted, plane polarised light) of another shell pavement from bed 32, also

dubius from bed 32, with reworked pyrite framboids forming a lag at the base of the pavement. Younging is from Figure 6.7. A photomicrograph (taken under transmitted, plane polarised light) of a discontinuous pavement of *P*. (continuous or discontinuous). Younging is from bottom to top. lamina is accompanied by occasional shell fragments, but the top is not. Neither is accompanied by a shell pavement Figure 6.8. A photomicrograph (taken under transmitted, plane polarised light) of silt laminate from bed 32. The bottom

prismatic (P. dubius), and non-prismatic (B. radiata) microstructure. Younging is from bottom to top. Figure 6.9. A photomicrograph (taken under transmitted, plane polarised light) of the Bos32 pavement, containing shells with both

Figure 6.10. A photomicrograph (taken under transmitted, plane polarised light) of a discontinuous pavement from bed 32 - with thicker shells (P. dubius). Younging is from bottom to top.

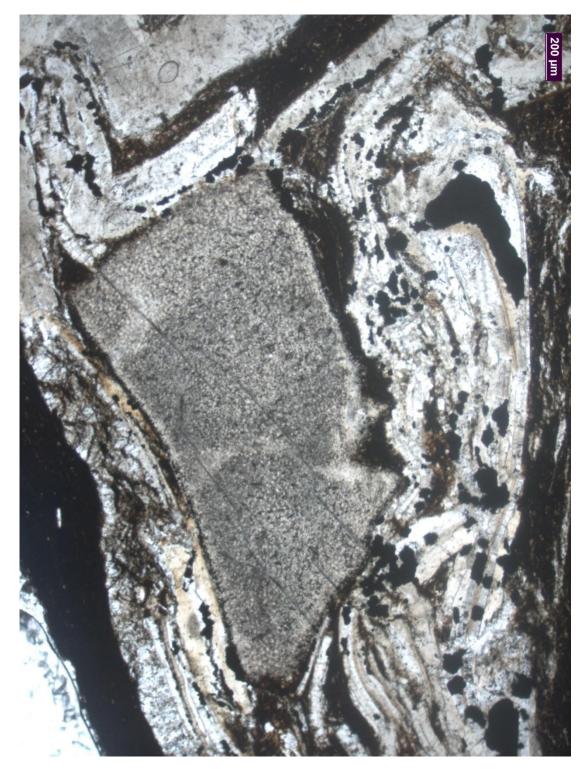
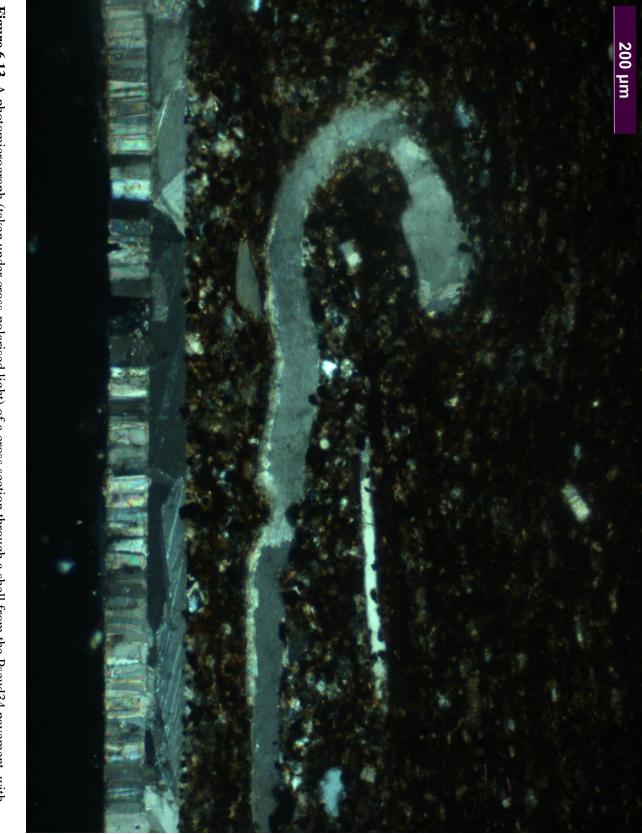
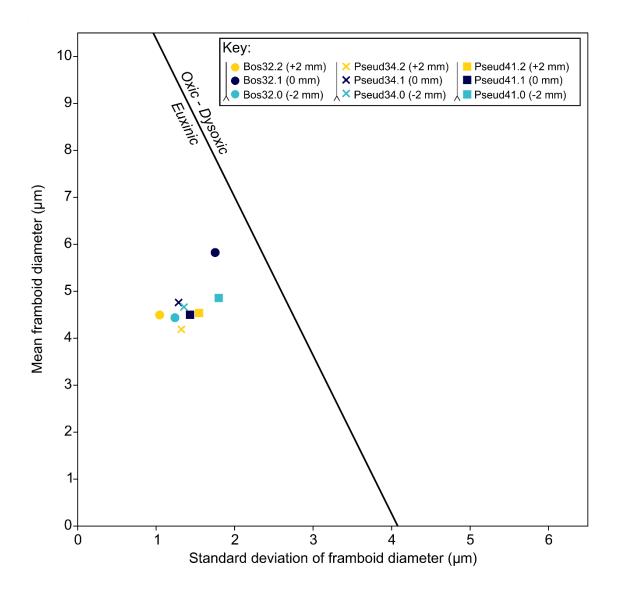
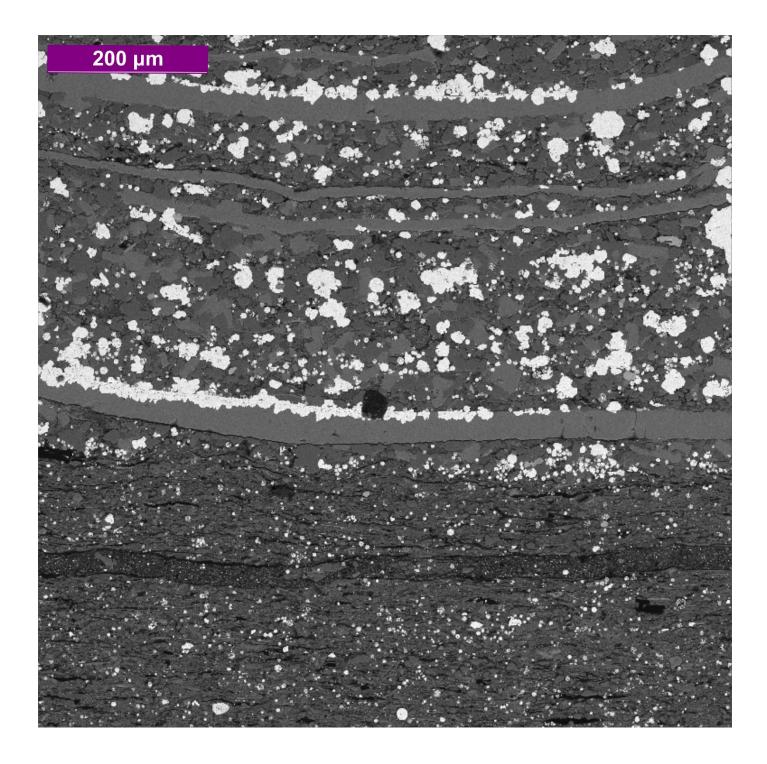
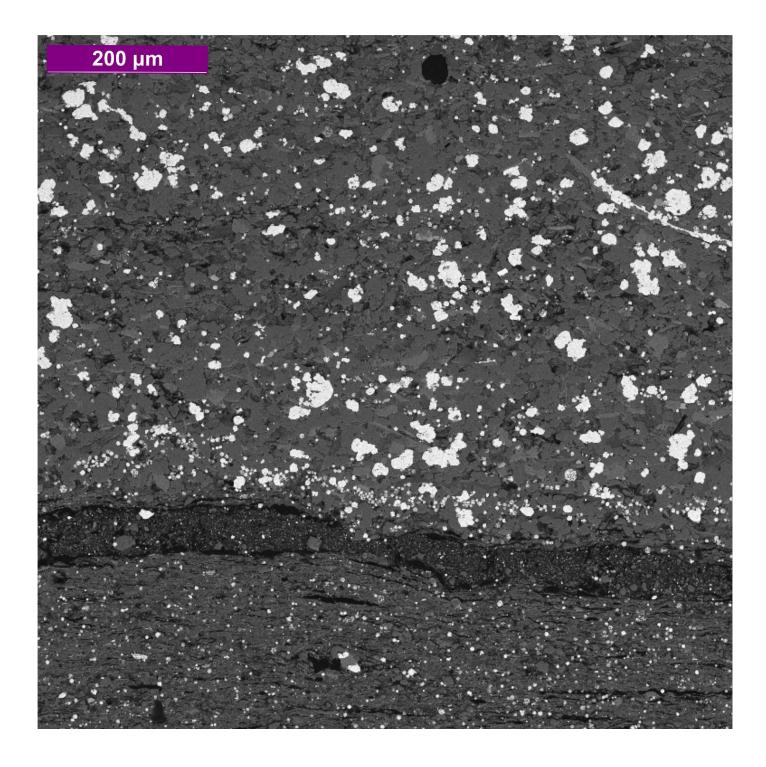



Figure 6.11. Calcareous bioclast (crinoid ossicle) encased within the shell pavement shown in Fig. 6.10. Younging is from

bottom to top.


replacement). Younging is from bottom to top. Figure 6.12. A photomicrograph (taken under transmitted, plane polarised light) of a shell fragment from Pseud34 (possible siderite


prismatic microstructure clearly visible. Younging is from bottom to top. Figure 6.13. A photomicrograph (taken under cross-polarised light) of a cross section through a shell from the Pseud34 pavement, with


fish scale) found in bed 41. Younging is from bottom to top. Figure 6.14. A photomicrograph (taken under transmitted, plane polarised light) of an elongate, fractured phosphatic bioclast (probably a

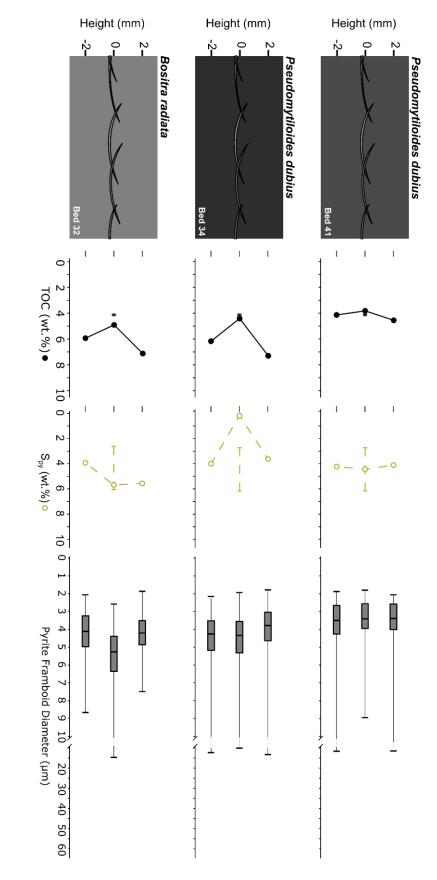

Figure 6.15. Wilkins plot for each of the shell pavements. Note that in this figure, as well as Figs. 6.24, 6.28, 6.48 and 6.50, circles denote samples from Bos32, crosses from Pseud34, and squares from Pseud41. Teal symbols indicate the sample 2 mm below the pavement (depending on the sample resolution), dark blue the sample concomitant with the pavement, and yellow the sample 2/5 mm above the pavement (see younging direction in key).

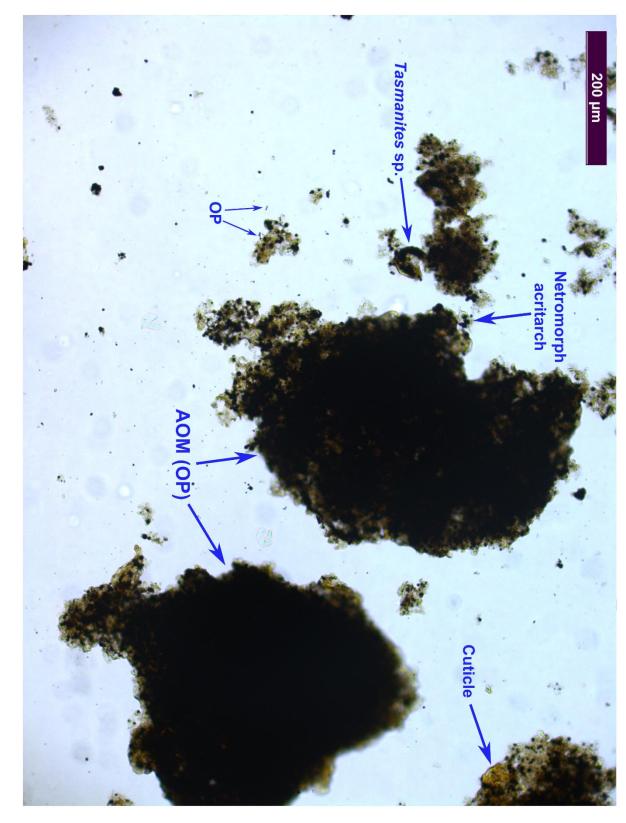
Figure 6.16. Backscattered SEM photomicrograph of Bos32 (younging up), showing the encrustation of euhedral pyrite on the shell surfaces (and partial replacement). Younging is from bottom to top.

Figure 6.17. Backscattered SEM photomicrograph of a silty lamina from Bos32. Note the presence of a pyrite framboid lag 50 µm in thickness at the base of the lamina, followed by the occurrence of large reworked euhedral pyrite crysts. Younging is from bottom to top.

indicate pyrite framboid data that plot to the left of the euxinic/oxic-anoxic boundary in the Wilkins plot (Fig. 6.15). Note that in all upfossil from the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) section plots, the horizontal bar ()-indicates the range of values for the proxy in question recovered from around the individual P. dubius (arranged by stratigraphic height) through each of the shell pavements. Schematics of the shell pavements are also included. Dark boxes Figure 6.18. TOC, pyrite Sulphur (S_{py}; included in all plots, as in previous chapters), and box-and-whisker plots of pyrite framboid diameters

2.2 Pyrite framboids

The morphology of the pyrite framboids encountered within the sell pavements is, overall, very similar to those found in the LSB, with both type 1 and (occasional) type 2 framboids observed (Wignall & Newton, 1998).


Euhaedral pyrite crysts were also present, occasionally forming framboids, which (as in Chapter 3, section 3.1.1) were not counted in the framboid diameter analysis (assuming a diagenetic origin). Large euhedral pyrite crysts were especially common in the Bos32 pavement, where they often encrusted the shells (Figs. 6.9 and 6.16). The thin silty laminae also contained euhedral pyrite crysts, as well as generally larger framboids, that sometimes accumulate in lags (Figs. 6.7 and 6.17) – implying transport and redeposition.

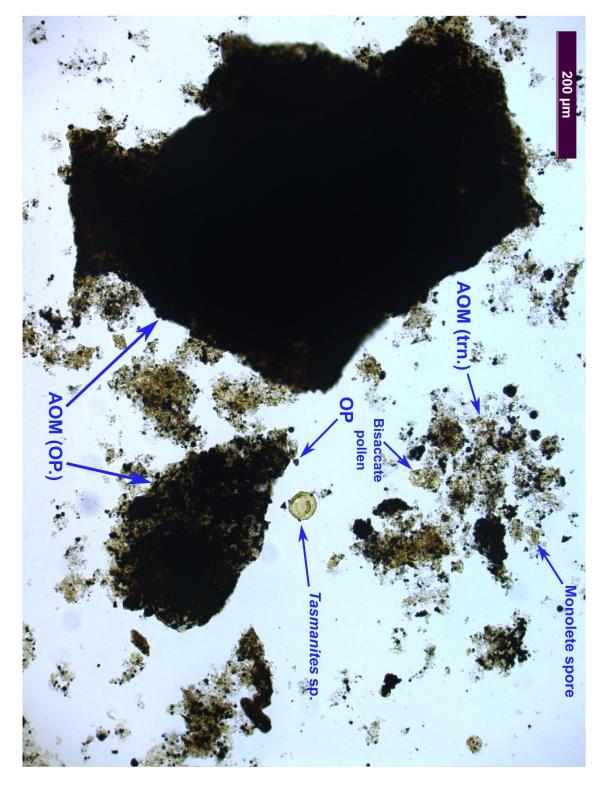
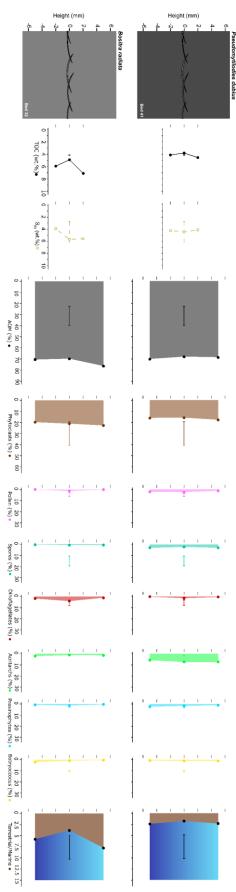
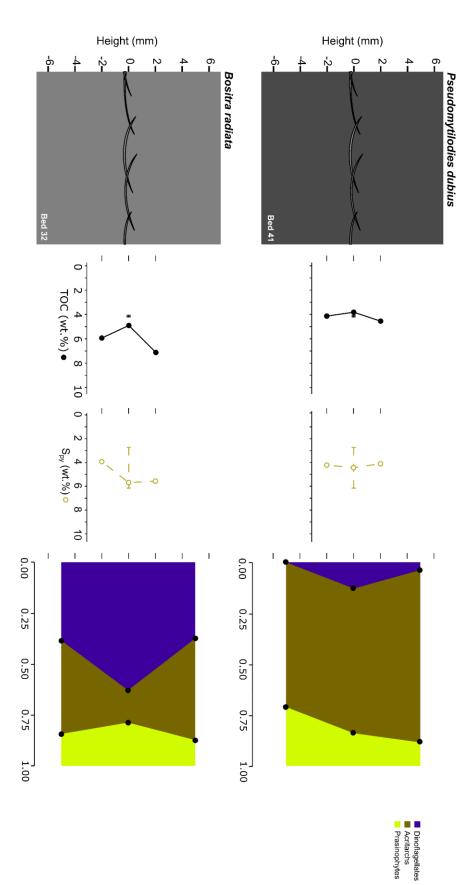
Despite the presence of in situ benthic macrofauna, the mean diameter of the pyrite framboids did not significantly increase concomitant with the shell pavements, and all three shell pavements plot within the euxinic field of the Wilkins plot (Fig. 6.15). In fact, Pseud41 is accompanied by a decrease in the maximum framboid diameter (by 2.8 μ m; Fig. 6.18), implying a lower redox state. An increase in the mean, maximum and minimum framboid diameters are observed in Bos 32, but only by 1.39 μ m, 6.04 μ m, and 0.55 μ m (respectively). The first and third quartiles of framboid diameter increase in Bos32 (by 1.15 μ m and 1.42 μ m, respectively) but remain relatively constant in Pseud34 and Pseud41.

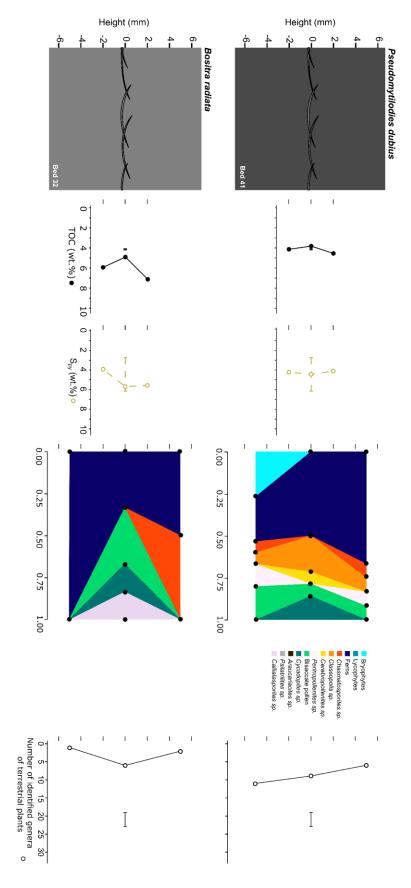
2.3 Palynology

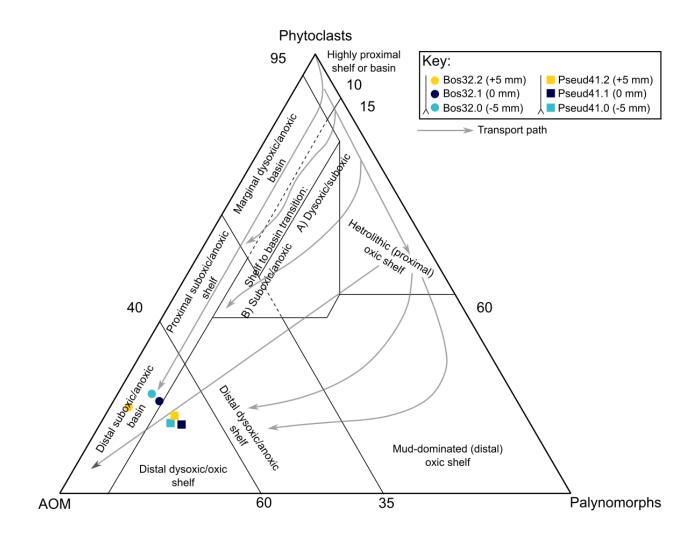
Amorphous, phytoclast, sporomorph and palynomorph kerogen groups were identified within the palynological slides prepared from the shell pavements (no zoomorphs were found). Representative photomicrographs are shown in Figs. 6.19 and 6.20.

In Bos32 and Pseud41, AOM dominates the palynofacies, making up no less than 68.3% of the assemblages (Fig. 6.21). The second most common macerals identified in the palynological preparations were phytoclasts, which comprise 15.7 - 22.7% of the palynofacies. Levels of AOM are 28.3 - 47.3% higher in the shell pavements than in the LSB, and the levels of phytoclasts are up to 24.7% lower.

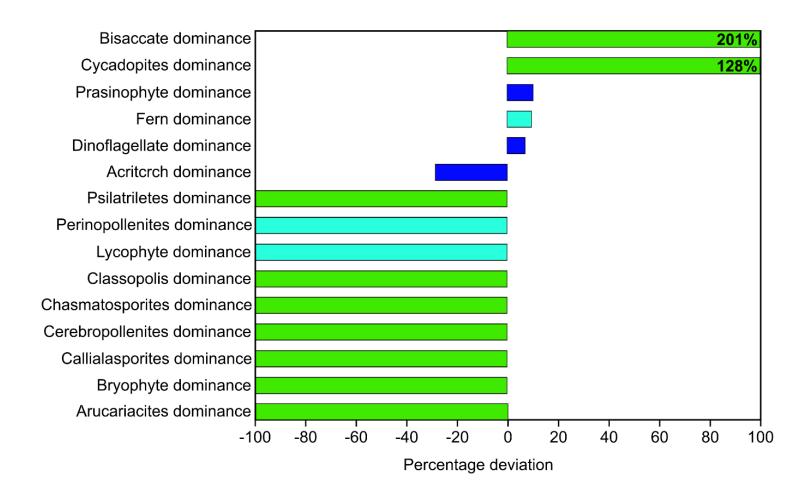
sp., a netromorph acritarch, opaque (OP) AOM, leaf cuticle and very small opaque phytoclasts (OP). Figure 6.19. Representative photomicrograph of the kerogen assemblage of Bos32.2 (pavement sample), with the prasinophyte Tasmanites


Figure 6.20. Representative photomicrograph of the kerogen assemblage of Pseud41.2 (pavement sample), with tanslucent (trn.) AOM, bisaccate pollen, opaque phytoclasts, opaque AOM, a monolete spore and Tasmanites sp.


in question recovered from around the individual P. dubius fossil from the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) Appendix 3 for quantification) is also included. Note that in all up-section plots, the horizontal bar (-) indicates the range of values for the proxy These are; AOM, phytoclasts, pollen, spores, dinoflagellates, acritarchs, prasinophytes, and botryoccocus. A plot of the terrestrial marine ratio (see Figure 6.21. Plot of TOC and S_{py}, compared with the abundance of various palynofacies components through through each of the shell pavements.

LSB1.12 Chapter 3, section 3.2) the range of values for the proxy in question recovered from around the individual P. dubius fossil from the LSB (i.e. the samples LSB1.11 and dinoflagellates + acritarchs + prasinophytes) through Bos32 and Pseud 41. Note that in all up-section plots, the horizontal bar (-) indicates Figure 6.22. Plot of the percentage contribution of dinoflagellates, acritarchs and prasinophytes to the phytoplankton community (defined as



in question recovered from around the individual P. dubius fossil from the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) of unknown genus) through Bos32 and Pseud 41. Note that in all up-section plots, the horizontal bar () indicates the range of values for the proxy ferns and bisaccate producers) to the total spore + pollen count, and a up-section plot of the number of identified genera (excluding spores and pollen Figure 6.23. The contribution of a range of terrestrially-derived spores and pollen (grouped by genus with the exceptions of bryophytes, lycophytes,

Figure 6.24. Ternary plot of phytoclasts, AOM and palynomorphs (spores + pollen + dinoflagellates + acritarchs + prasinophytes + botryoccocus), after Tyson (1989).

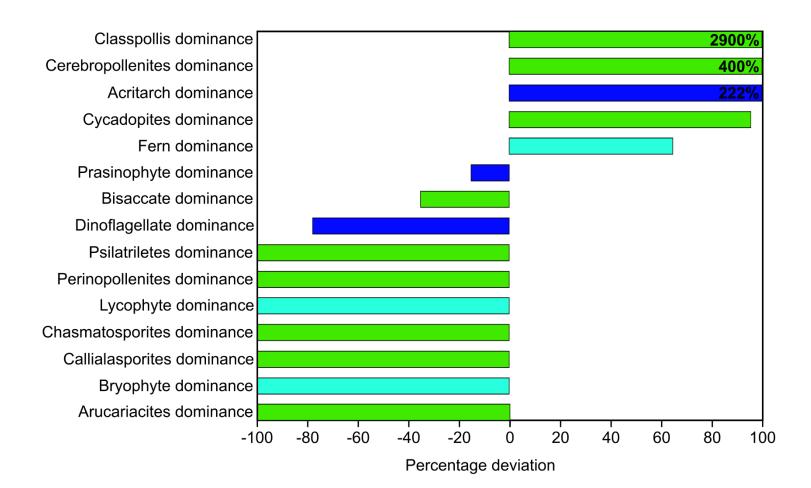

Variability in the remaining palynofacies components is relatively low, with the greatest point increase being in dinoflagellate content concomitant with Bos32 (an increase of 2.33%; Fig. 6.21). Acritarchs are also more common in all three samples from Pseud41 than in Bos32 (by 3.67 - 6.33%). While the terrestrial/marine ratio shows a decrease concomitant with both shell pavements, the decrease is much more pronounced in Bos32 than in Pseud41 (by 2.03 verses 0.64). The abundance values in all pavement samples are roughly comparable with the values from the LSB, except for spores, which are 8.0 - 18.3% less common in the shell pavements than in the LSB. The terrestrial/marine ratio is also lower in both shell pavements than in the LSB (by 1.21 - 8.03), even though the values of Bos32.1 and Bos32.3 are

Figure 6.25. Staked chart of the relative deviations of the dominance of various marine (dark blue bars) and terrestrial plant (green and teal bars) genera/groups in Bos32 compared with the LSB. Teal bars indicate plant groups adapted to wet conditions.

roughly comparable with the LSB. Dinoflagellate dominance within the phytoplankton community also increases concomitant with both pavements, and this is also more pronounced in Bos32 than in Pseud41. In most of the palynological samples, the only dinoflagellate genus identified was *Nanoceratopsis* sp. (except in Bos32.2, where one cyst attributed to *Mancodinium* sp. was found). In Bos32, prasinophytes also show a slight increase (at the expense of acritarchs), reaching up to 21.1% dominance. This is not observed in Pseud41.

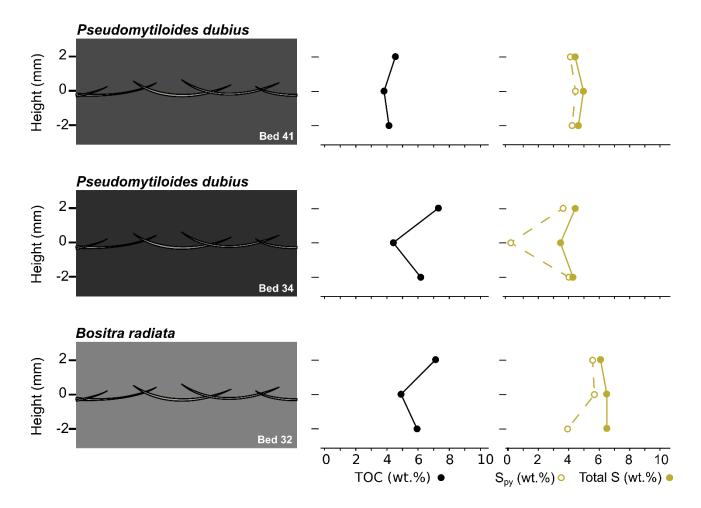
Ferns make up the largest proportion of the terrestrial community concomitant with both Bos32 and Pseud41, and in Bos32, a distinct drop in dominance occurs on the shell pavement (by 66.7%; Fig. 6.23). The combined dominance of ferns and bryophytes (both being wet-adapted plant types) shows a decrease

Figure 6.26. Staked chart of the relative deviations of the dominance of various marine (dark blue bars) and terrestrial plant (green and teal bars) genera/groups in Pseud41 compared with the LSB. Teal bars indicate plant groups adapted to wet conditions.

concomitant with the Pseud41 pavement (by 3.33%). Conversely, *Cycadopites* is more dominant in the terrestrial community coeval with both pavements, reaching 16.7% in Bos32, and 14.2% in Pseud41.

One to six land plant genera were identified in Bos32 (Fig. 6.23), whereas 6 - 11 were identified in Pseud41 – both ranges are significantly lower than the values from the LSB (by 8-13). The number of identified genera also increases concomitant with the Bos32 pavement (by 5), but no deviation from a gentle downward trend (from 11 at -2 mm to 6 at +2 mm) is observed concomitant with the Pseud41 pavement. Since graphically representing the differences in plankton and land plant community dominance values between the shell pavements and the LSB is difficult in an up-section plot (using the I-shaped bar), I have plotted stacked bar charts of these values in Figs. 6.25 and 6.26. Prasinophytes and

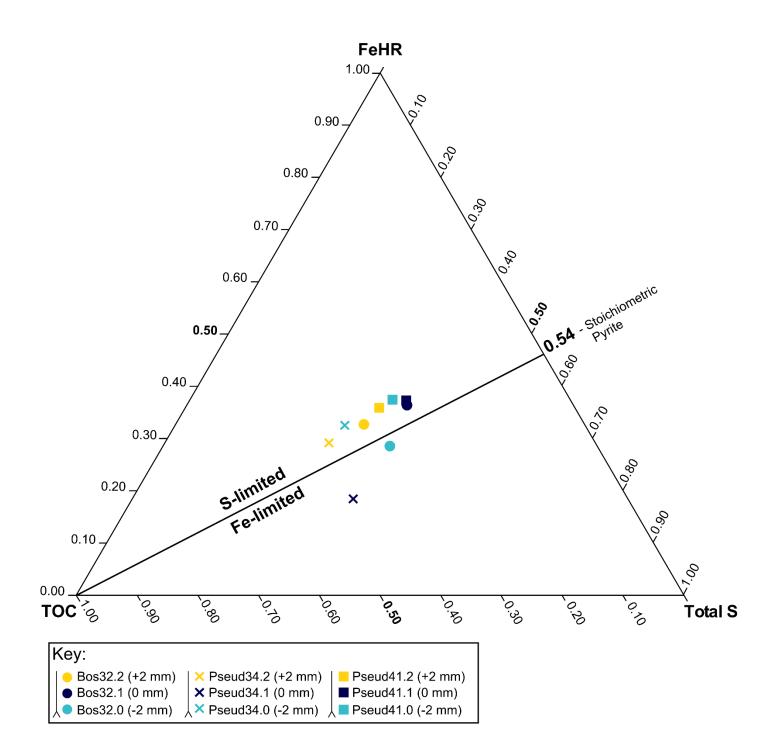
dinoflagellates were more dominant in the phytoplankton community during the formation of Bos32 than they were in the LSB, and acritarchs were less dominant. During the formation of Pseud41, by contrast, acritarchs were far more dominant, and prasinophytes and dinoflagellates were less dominant. During the formation of both pavements, ferns were more dominant within the terrestrial plant community than they were in the LSB, and bryophytes and lycophytes were less dominant. *Cycadopites* was also more dominant in the terrestrial plant community during the formation of both pavements (compared with the LSB), whereas bisaccate producers were more dominant in Bos32, and *Classpolis* and *Cereborpollenites* were more dominant in Pseud41 (both compared with the LSB). All other plant genera were more dominant within the floral assemblage of the LSB than with the floral assemblages of either pavement.

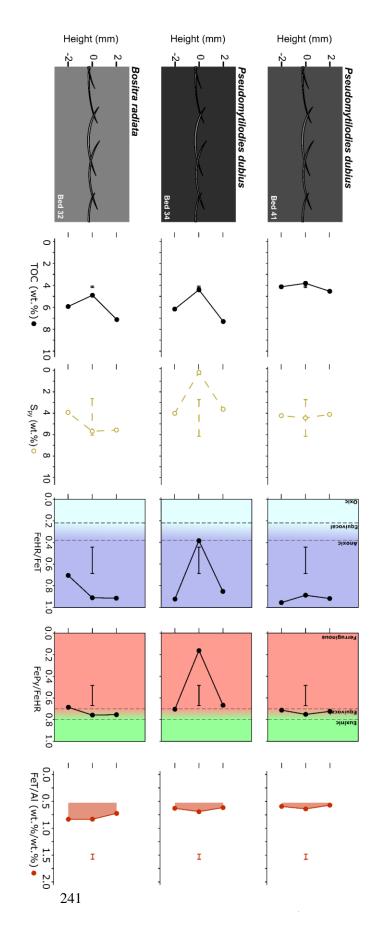

When plotted on an AOM-Phytoclast-Palynomorph ternary diagram (after Tyson, 1989; Fig. 6.24), all the data points from Bos32 plot in the distal suboxic/anoxic basin field, and all the data points from Pseud41 plot in the distal dysoxic/oxic shelf field. The Bos32 samples also plot at the end of a transport path originating from a highly proximal shelf or basin, while the Pseud41 samples plot close to a transport path from a heterolithic (proximal) oxic shelf.

2.4 Sulphur-iron systematics

Pyrite is the dominant S-bearing phase in most shell pavement samples. However, the S_{py} trend only perfectly follows the total S trend in Pseud41. The sample Bos32.1 contains other S-bearing phases (accounting for 39.7% of the total S value), and so does Pseud34.2 (accounting for 90.6% of the total S value; Fig. 6.27). It is unclear what this secondary sulphur-bearing phase is, since both carbonate (in the form of shell calcite) and sulphurised organic matter species (see section 2.6.5) are present.

Both Bos32 and Pseud41 are associated with relative increases in the S_{py} level, increasing by 1.76 wt.% in the former, and by 0.213 wt.% in the latter. Pseud34, by contrast, shows a relative decrease in S_{py} (by 1.46 wt.%). Compared with the individual *P. dubius* shell recovered from the LSB, Pseud34 is greatly depleted in S_{py} , whereas Bos32 is slightly enriched, and Pseud41 is more-or-less comparable.


A TOC-Fe_{HR}-Total S ternary (Fig. 6.28) shows that in most of the shell pavement samples, pyrite formation was S-limited. The two exceptions, where pyrite formation was Fe limited, are Bos32.1, and Pseud41.2.


Figure 6.27. Total S and S_{py} for each of the shell pavements plotted together, showing S_{py} is greatly depleted compared with total S in the samples Bos32.1 and Pseud34.2.

Pseud34 and Pasud41 show point decreases in Fe_{HR}/Fe_T , by 0.540 and 0.0680, respectively (Fig. 6.29). However, most values remain in the unequivocally anoxic field, with the data point for Pseud34.2 plotting near the upper boundary of the equivocal field. Furthermore, Bos32 shows a relative increase in Fe_{HR}/Fe_T (by 0.21), with all three data points plotting in the anoxic field. These values are outside the range found for the individual *P. dubius* from the LSB, with Bos32 and Pseud41 having higher Fe_{HR}/Fe_T signatures (0.21 – 0.45, and 0.18 – 0.43, respectively), and Pseud34 having a lower signature (0.08 – 0.32).

Most of the Fe_{Py}/Fe_{HR} data points from the shell pavements plot in or near the equivocal field, with only Pseud34 showing a prominent decrease into the ferruginous field (by 2.95). Bos32 and Pseud34 show

Figure 6.28. Ternary plot comparing TOC, TS and Fe_{HR} for the shell pavement samples, with the regression line for stoichiometric pyrite indicated. Note that in the S-limited zone, S is assumed to be derived from sulphate reduction in anoxic sediments.

plots, the horizontal bar (-) indicates the range of values for the proxy in question recovered from around the individual P. dubius fossil from the background colour. Shaded areas indicate enrichment relative to the standard shale value of Wedepohl (1971; 2004). Note that in all up-section Equivocal-Anoxic fields of Anderson & Raiswell (2004), Poulton & Canfield (2011) and Poulton (2021), indicated with dashed vertical lines, and Figure 6.29. Fe_{HR}/Fe_T, Fe_{Py}/Fe_{HR} and Fe_T/Al through each of the shell pavements. Thresholds for the Oxic-Equivocal-Anoxic, and Ferruginous-LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2)

minor increases (by 1.54 and 0.185, respectively). As with Fe_{HR}/Fe_T, all the Fe_{Py}/Fe_{HR} values concomitant with the pavements plot outside the range of the LSB *P. dubius* individual, being either elevated (in Bos32 and Pseud41; by 0.09 - 0.27 and 0.08 - 0.27, respectively), or depleted (in Pseud34; by 0.33 - 0.51). All pavements show a slight increase in Fe_T/Al (by a maximum of 0.05wt.%/wt.% in Pseud41), but none reach the enrichment levels encountered in the LSB. All the values taken from the shell pavements are also enriched relative to the standard shale values of Wedepohl (1971; 2004).

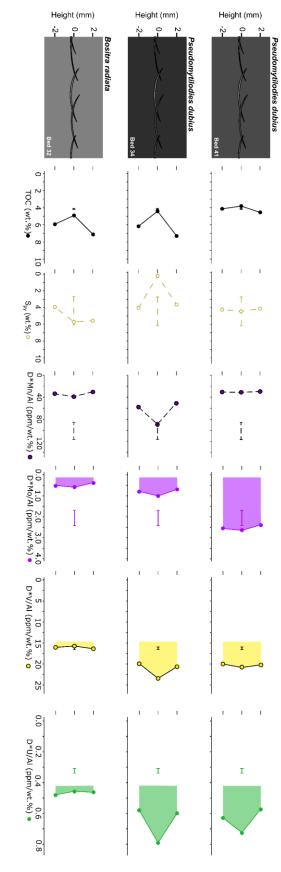
2.5 Major and trace elements

To account for the dilution effect of both siliciclastic input (from the silt laminae) and carbonate formation (from the shells) on the redox-sensitive trace element enrichment values, I have normalised these to Al (wt.%), and are also multiplied by a carbonate correction factor (D):

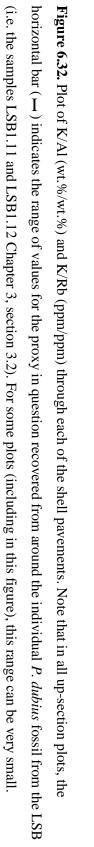
$$D = \frac{100}{(100 - CaCO_3(wt.\%)[TIC])}$$

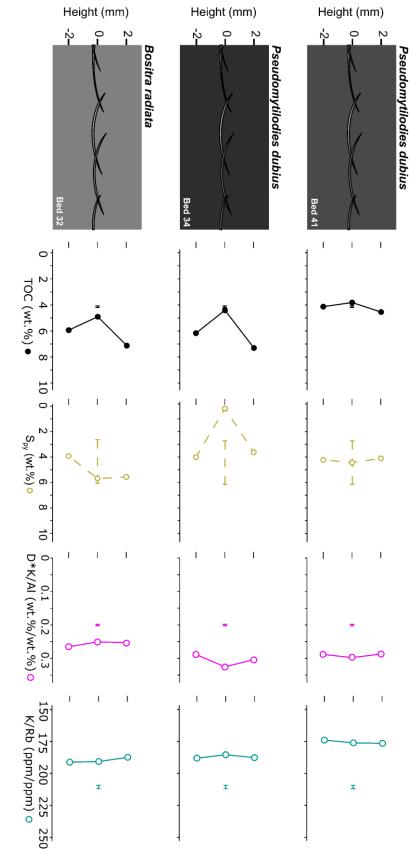

where $CaCO_3(wt.\%)[TIC]$ is the concomitant value of carbonate, defined as the difference between

Total C and TOC. This is assuming that the majority of the carbonate content of the shell pavement samples is supplied from the shells, and that the concentration of authigenic Fe carbonate phases is small by comparison.


Neither Al nor Ti show significant variation concomitant with the shell pavements (Fig. 6.30), except for a slight decrease in Al (by 1.90 wt.%) in Pseud34. Correcting Al wt.% and Ti wt.% for carbonate dilution using D does not affect these trends (Appendix 3).

D*Mn/Al shows a small enrichment concomitant with Bos32 (up to 38.4 ppm/wt.%; Fig. 6.31), and a larger enrichment in Pseud34 (up to 57.8 ppm./wt.%), but no appreciable enrichment or depletion in Pseud41. All samples are depleted in D*Mn/Al relative to the standard shale value by 11.8 - 71.3 ppm/wt.%. While the D*Mn/Al content of Bos32 and Pseud41 are much lower than for the individual *P*. *dubius* from the LSB (by 50.6 - 90.3 ppm/wt.%), Pseud34 is in about the same range.


There are small increases in the level of D*Mo/Al concomitant with all three of the shell pavements, with the greatest being in Pseud34 (by 0.21 ppm/wt.%; Bos32 shows an increase of 0.06 ppm/wt.%, and Pseud41 an increase of 0.102 ppm/wt.%). All D*Mo/Al values from Pseud41 are higher than the other pavements (by 1.37 ppm/wt.% - 2.26 ppm/wt.%), but all samples are enriched relative to the standard



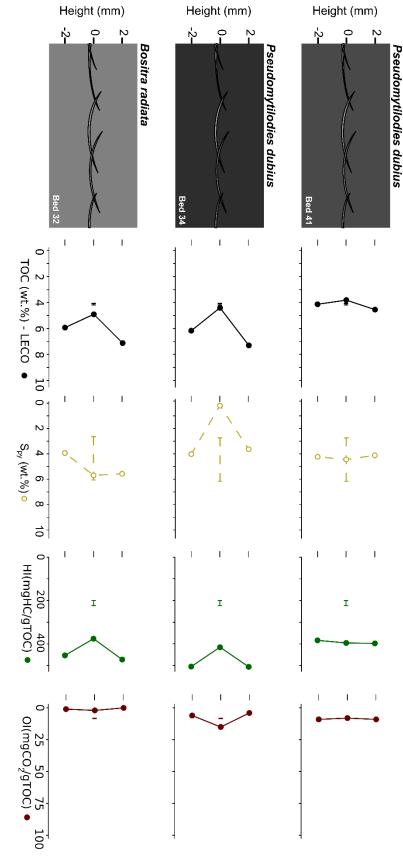
samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) indicates the range of values for the proxy in question recovered from around the individual P. dubius fossil from the LSB (i.e. the

the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) the horizontal bar (-) indicates the range of values for the proxy in question recovered from around the individual *P. dubius* fossil from enrichment of the plotted trace element relative to the standard shale values of Wedepohl (1971; 2004). Note that in all up-section plots, Figure 6.31. Plot of Mn/Al, Mo/Al, V/Al and U/Al through each of the shell pavements. As ig Fig. 6.29, shaded areas indicate

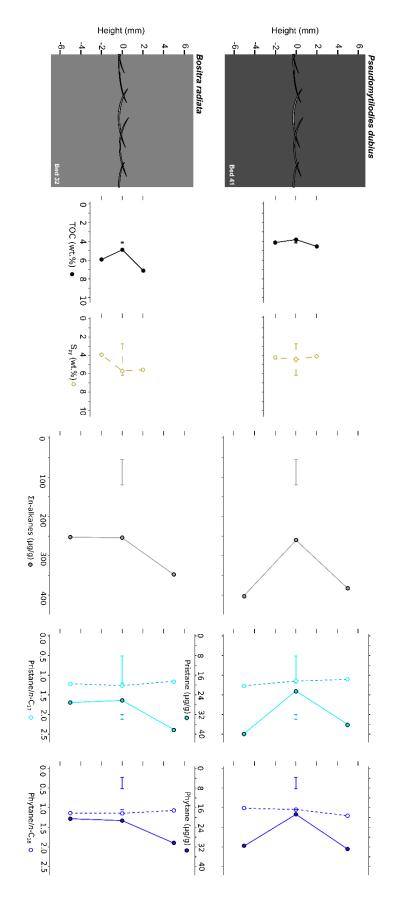
shale value (Wedepohl 1971; 2004). Mo enrichment is higher in Pseud41 compared with the LSB (by -0.26 - 0.46 ppm/wt.%), but lower in Bos32 and Pseud34 than with the LSB (1.17 - 1.88 ppm/wt.% in Bos32 and 0.99 - 1.70 ppm/wt.% in Pseud34).

Both D*U/Al and D*V/Al show a slight decrease concomitant with Bos32 (by 0.03 ppm/wt.% and 0.36 ppm/wt.%, respectively), and an increase concomitant with Pseud34 (0.22 ppm/wt.% and 3.52 ppm/wt.%, respectively) and Pseud 41 (0.1 ppm/wt.% and 0.77 ppm/wt.%, respectively). D*U/Al and D*V/Al are also both greatly enriched in the shell pavement samples compared with the LSB (-0.759 ppm/wt.% - 7.55 ppm/wt.% for D*V/Al, and 0.120 ppm/wt.% - 0.485 ppm/wt.% for D*U/Al), except V*/Al in Bos32 (which is roughly comparable).

2.6 Organic geochemistry

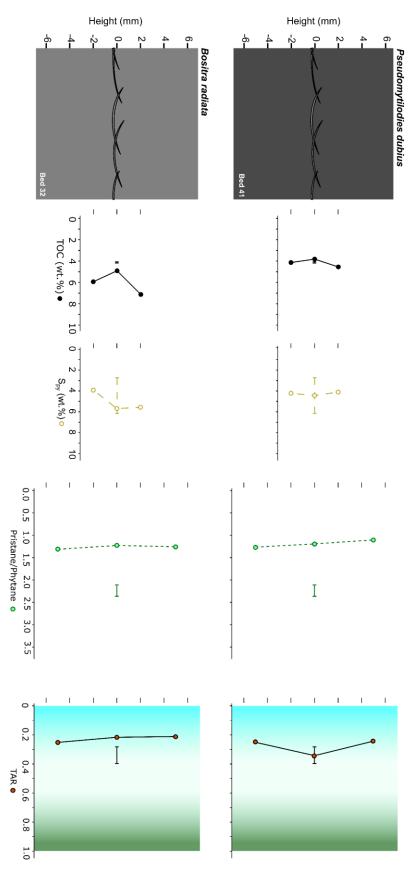

All the shell pavements are associated with a point decrease in TOC, although this is to be expected given the dilution effect of the shells (in addition to any change in background TOC). The magnitude of this decrease was the largest for Pseud34 - with TOC decreasing by 1.76 wt.% - even though the coverage of the pavement by shells is less in Pseud34 than in Bos32 (which shows a TOC decrease of 1.03 wt.%; compare with Figs. 2.9 and 6.2). The TOC content concomitant with all three shell pavements is roughly comparable to that of the individual *P. dubius* from the LSB.

2.6.1 Rock-Eval pyrolysis


As discussed in Chapter 3, section 3.5, it is highly suspected that the TOC value obtained by Rock-Eval pyrolysis is an underestimate of the true TOC value, so I will not be relying on the Rock-Eval TOC data in the interpretation. It suffices to say that the trends in TOC via Rock-Eval roughly compare with those in TOC via LECO (see Appendix 3).

HI varies in proportion with TOC in Bos32 and Pseud41, although it shows no considerable variability through Pseud41 (Fig. 6.33). The HI values are also 152 - 307 mgHC/gTOC higher than those reported from the LSB individual.

OI shows no variability concomitant with either Bos32 or Pseud41, but shows a point increase on Pseud34 by 9 mgCO₂/gTOC. The values also do not deviate significantly from that of the LSB (by no more than 7 mgCO₂/gTOC).



around the individual P. dubius fossil from the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) pavements. Note that in all up-section plots, the horizontal bar (-) indicates the range of values for the proxy in question recovered from Figure 6.33. TOC (from LECO), S_{py}, and the Rock-Eval parameters HI (mgHC/gTOC) and OI (mgCO₂/gTOC) through each of the shell

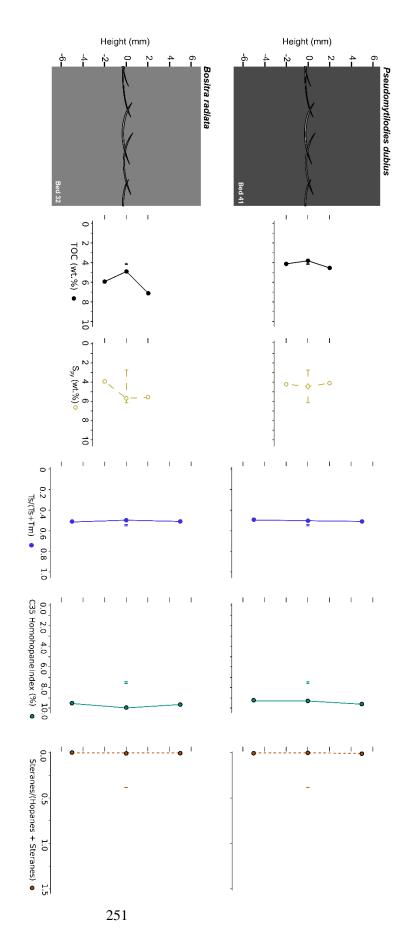
enrichment of the biomarker independent of TOC. Pseud41. Unless otherwise stated, all the biomarkers of interest are normalised to TOC (via LECO; see Chapter 5, section 3.0), to isolate the Figure 6.34. TOC, pyrite sulphur, Σ *n*-alkanes, pristane (alongside pristane/*n*-C₁₇) and phytane (alongside phytane/*n*-C₁₈) through Bos32 and

the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) horizontal bar (-) indicates the range of values for the proxy in question recovered from around the individual *P. dubius* fossil from the LSB (i.e. Figure 6.35. Pristane/phytane and the TAR (definition in Chapter 1, section 9.2.6) through Bos32 and Pesud41. Note that in all up-section plots, the

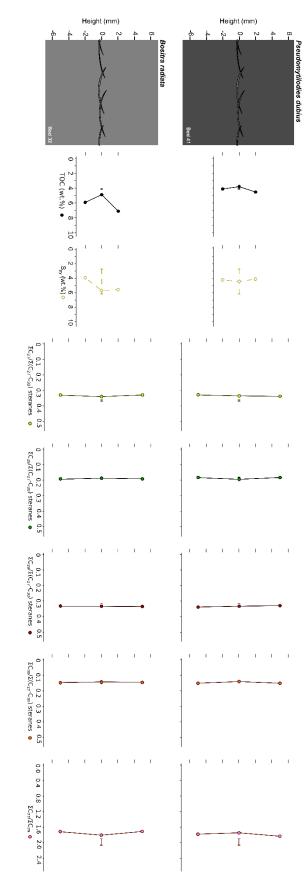
2.6.2 *n*-Alkanes and isoprenoids

As discussed in Chapter 5, section 3.0, I have normalised most biomarker proxy records presented here to local TOC to independently quantify their abundances.

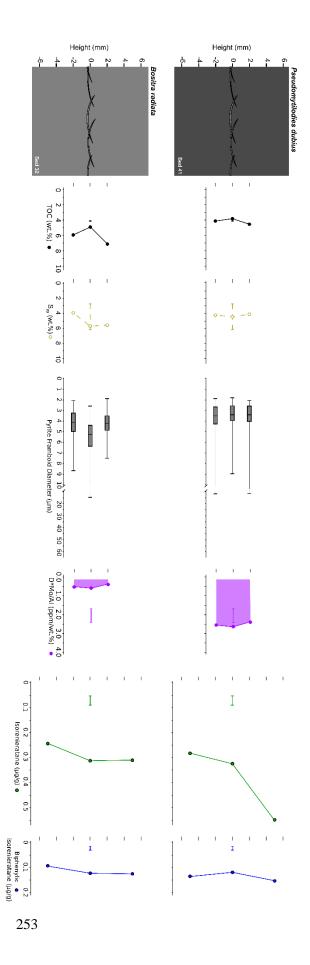
The concentration of *n*-alkanes shows a slight increase in Bos32 (by 0.925 mg/gTOC; Fig. 6.34), and a slight decrease in Pseud41 (by 2.97 mg/gTOC). However, for both pavements, the level is higher than for the individual from the LSB (by 1.00 - 3.02 mg/gTOC).

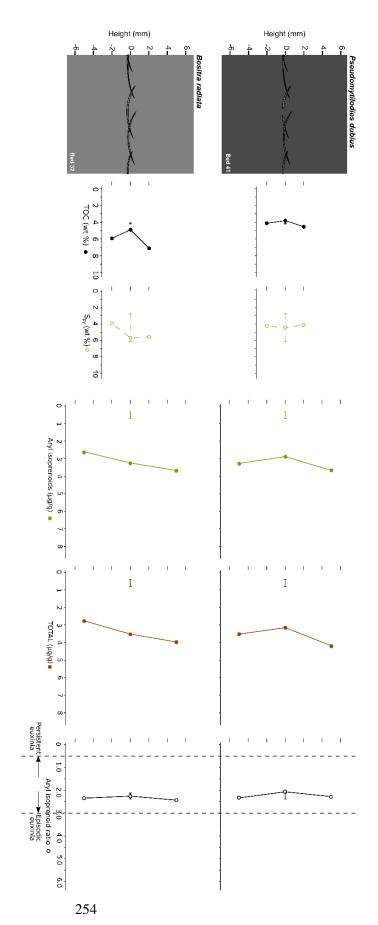

Pristane and phytane do not show significant variability through Bos32, but both show a decrease coeval with Pseud41 (by 379 μ g/gTOC and 270 μ g/gTOC, respectively). Neither Pr/*n*-C₁₇ or Phy/*n*-C₁₈ show significant excursions in either of the shell pavements. Pristane concentrations in the shell pavements are comparable to the individual *P. dubius* from the LSB, but Phytane is enriched by 147 – 295 μ g/gTOC. Conversely, Pr/*n*-C₁₇ is depleted in the shell pavements compared with the LSB (by 0.74 – 0.98), whereas Phy/*n*-C₁₈ is comparable.

Unlike in the LSB, neither pr/phy nor the TAR vary considerably across either shell pavements (Fig. 6.35). Pr/Phy is also lower than for the LSB (by 0.88 - 1.16), and the TAR in Bos32 is slightly depleted compared with the LSB (by 0.07 - 0.18).


2.6.3 Hopanes and steranes

Ts/(Ts+Tm) does not vary through either of the shell pavements, nor does the C_{35} homohopane index (which is higher than for the LSB by 1.65 – 2.56 %; Fig. 6.36). The steranes/(hopanes+sternes) ratio is extremely small in all of the shell pavement samples (i.e. the hopane concentration vastly overwhelms the sterane concentration) and does not display any variability. It is also depleted in both pavements, relative to the LSB value, by 0.38.


The relative contributions of ΣC_{27} , ΣC_{28} , ΣC_{29} and ΣC_{30} to $\Sigma (C_{27-30})$ do not vary through either Bos32 or Pseud41, and are essentially identical to the values coeval with the individual *P. dubius* from the LSB (Fig. 6.37). Likewise, $\Sigma C_{27}/\Sigma C_{29}$ also does not vary greatly through either pavement, and shows values comparable with the LSB.


plot away from the axes are in fact the bars used to indicate the range of values for the proxy in question recovered from around the Figure 6.36. Ts/(Ts+Tm), C₃₅ homohopane index, and steranes/(steranes + hopanes), through Bos32 and Pseud41. Note that the points that individual P. dubius fossil from the LSB (i.e. the samples LSB1.11 and LSB1.12 Chapter 3, section 3.2)

and $\Sigma C_{27}\!/\Sigma C_{29}$ through Bos32 $\,$ and Pseud41. $\label{eq:Figure 6.37.} Figure \ 6.37. \ Steranes/(Steranes+hopanes), \ \Sigma C_{27}/\Sigma (C_{27}-C_{30}) \\ sterane, \ \Sigma C_{27}/\Sigma (C_{27}-C_{30}) \\ sterane, \ \Sigma C_{29}/\Sigma (C_{27}-C_{30}) \\ sterane, \ \Sigma C_{30}/\Sigma (C_{30}-C_{30}) \\ sterane, \ \Sigma C_{30}/\Sigma ($

samples LSB1.11 and LSB1.12 Chapter 3, section 3.2) bars (-) indicate the range of values for the proxy in question recovered from around the individual P. dubius fossil from the LSB (i.e. the diameter and Mo/Al, to form a comparison of different proxies sensitive to euxinia. As in all the up-section plots in this chapter, the horizontal Figure 6.38. Isorenieratane and biphenylic isorenieratane content through Bos32 and Pseud41. The carotenoids are plotted against pyrite framboid

and Pseud41. Figure 6.39. Aryl isoprenoid content, total aryl isoprenoid, Isorenieratane and biphenylic isorenieratane content (TOTAL), and AIR through Bos32

2.6.4 Isorenieratane and aryl isoprenoids

Both Isorenieratane, and the biphenylic derivative described in Chapter 5, section 2.1.3, were identified within the Bos32 and Pseud41 samples. Both carotenoids were at a higher concentration – in all samples – than in the samples concomitant with the *P. dubius* individual from the LSB (by $1.43 - 6.34 \mu g/gTOC$; Fig. 6.38).

Biphenylic isorenieratane, aryl isoprenoids and total carotenoids+isoprenoids show a relative decrease concomitant with Pseud41 (by $0.16 \mu g/gTOC$, $4.17 \mu g/gTOC$, and $2.67 \mu g/gTOC$), although isorenieratane shows an increase (by $1.67 \mu g/gTOC$). By contrast, both isorenieratane, and biphenylic isorenieratane are relatively enriched in Bos32 (by $2.26 \mu g/gTOC$, and $0.94 \mu g/gTOC$), along with aryl isoprenoids ($22.0 \mu g/gTOC$), and total carotenoids+isoprenoids ($25.2 \mu g/gvTOC$). Neither pavement is accompanied by a significant change in the AIR (Fig. 6.39), and the values observed are comparable to those from the LSB (and imply somewhat episodic euxinia).

2.6.5 Other aromatics

The trends in Phenanthrene, Σ methylphenanthrenes, retene, dibenzothiophene, and Σ methyldibenzothiophenes all show roughly similar trends through both Bos32 and Pseud41 (Figs. 6.40 and 6.41), with a slight increase in concentration concomitant with the pavement (by 3.47 – 24.8%), that persists into the sediment 5 mm above. Phenanthrene and dibenzothiophene reach similar concentrations to the LSB in both pavements, whereas Σ methylphenanthrenes and Σ methyldibenzothiophenes are more highly concentrated (by 35.2 – 174 µg/gTOC and 13.9 – 28.8 µg/gTOC, respectively). Retene levels are also higher (by 11.8 – 8.19 µg/gTOC) in Pseud41 compared with the LSB, but roughly comparable in Bos32. The Phenanthrene/Dibenzothiophene ratio does not show marked variation through either shell pavements, and is elevated relative to the LSB values by 6.30 – 9.34.

2.7 Compound-specific isotope analysis

The greatest excursion observed in the CSIA data presented here is in δ^{13} C of *n*-C₁₇ from Pseud41 (Fig. 6.42), where there is an increase of 3.0 ‰ coeval with the shell pavement.

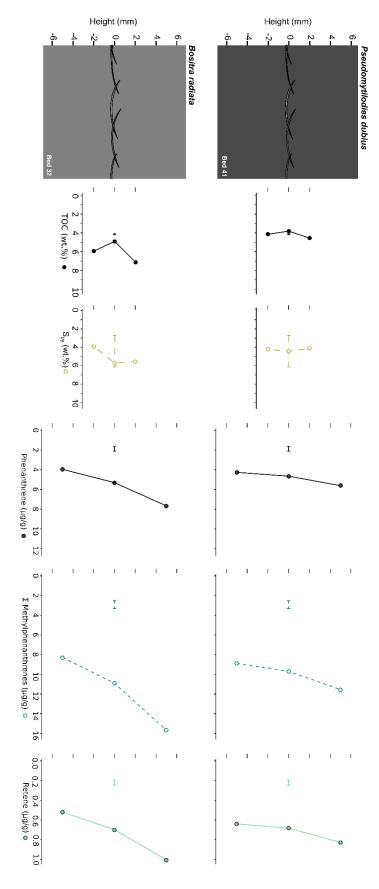
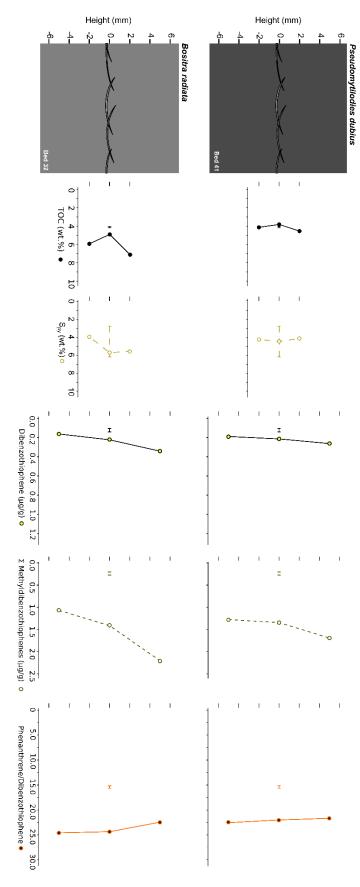
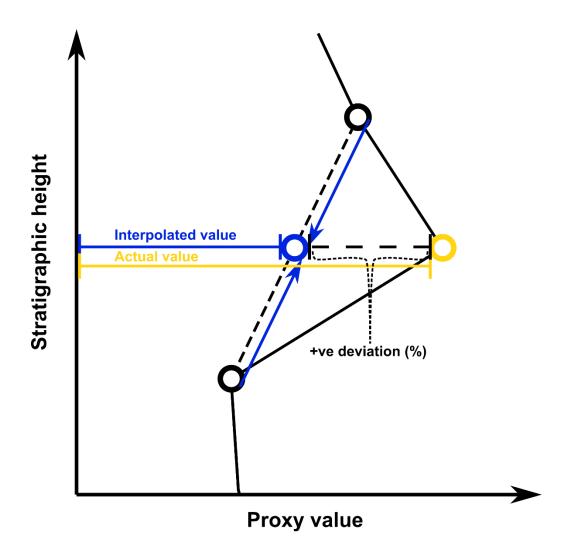


Figure 6.40. Phenanthrene, Σ -methylphenanthrenes, and retene through Bos32 and Pseud41.




Figure 6.41. Dibenzothiophene, Σ -methyldibenzothiophenes, and phenanthrene/dibenzothiophene through Bos32 and Pseud41.

most of the data points are not plotted. CSIA trends of French et al. (2014) are also included, although due to the high stratigraphic resolution – focusing on the shell pavements – Figure 6.42. $\delta^{13}C$ of *n*-C₁₇, *n*-C₁₈ and *n*-C₁₉ chain alkanes through Bos32 and Pseud41. The bulk $\delta^{13}C_{org}$ trend of Kemp *et al.* (2011), and the

most of the data points are not plotted. and the CSIA trends of French et al. (2014) are also included, although due to the high stratigraphic resolution - focusing on the shell pavements -Figure 6.43. δ^{13} C of *n*-C₂₇, *n*-C₂₈ and *n*-C₂₉ chain alkanes through Bos32 and Pseud41. As in Fig. 6.42, the bulk δ^{13} Corg trend of Kemp *et al.* (2011),

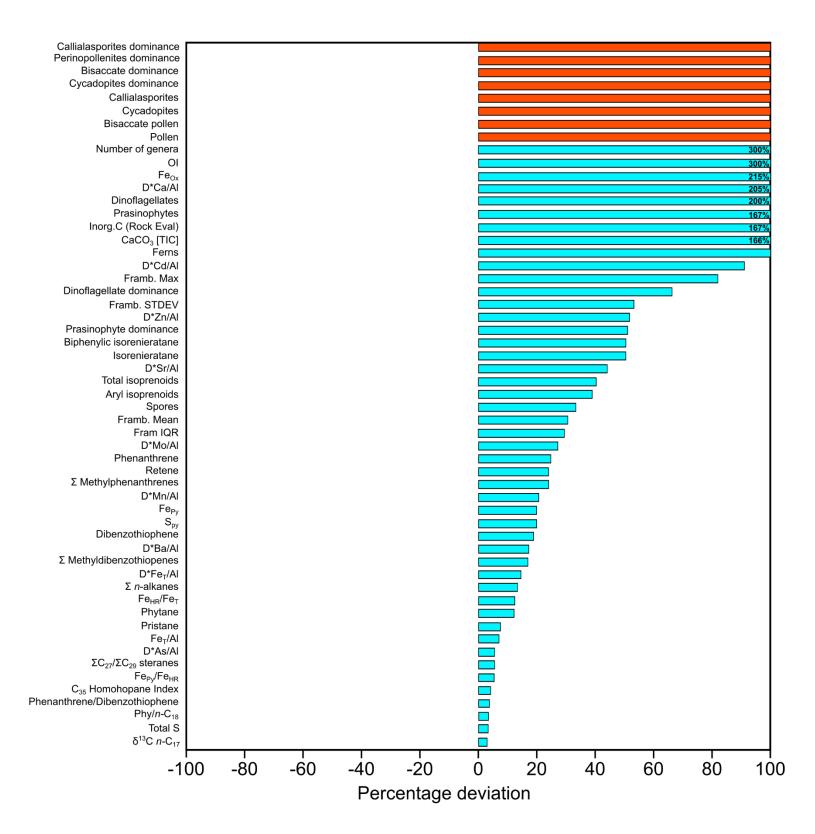


Figure 6.44. A visual representation of the quantification of percentage deviation from interpolated value (presented in Figs. 6.45 - 6.47).

A similar positive excursion is reflected in the concomitant δ^{13} C of *n*-C₁₈ and *n*-C₁₉ signatures (+2.6‰ and +1.2‰, respectively). Bos32 is accompanied by negative excursions in δ^{13} C of *n*-C₁₇, *n*-C₁₈ and *n*-C₁₉ (of -1.0‰, -2.0‰ and -1.0‰, respectively). The δ^{13} C of *n*-C₂₇, *n*-C₂₈ and *n*-C₂₉ trends of Bos32 and Pseud41 are likewise negative and positive (respectively; Fig. 6.43), ranging between -0.6 – -1.2‰ in Bos32, and 0.7 – 1.8‰ in Pseud41. Compared with the individual *P. dubius* shell from the LSB, the isotopic signatures of Bos32 are generally (up to 3.0‰) lower, with the δ^{13} C of *n*-C₁₉ signature just about reaching the lower end of the range of values from the LSB (-34‰). In Pseud41, the values of δ^{13} C of *n*-C₁₇, *n*-C₁₈, and *n*-C₁₉ are comparable to those from the LSB, whereas the δ^{13} C of *n*-C₂₇, *n*-C₂₈, and *n*-C₂₉ signatures are lower (by 0.5 – 1.8‰)

2.8 Different shell pavements compared

Figs. 6.41 - 6.43 show stacked charts of percentage deviations of each measured proxy from the background value (interpolated from the samples directly above and below the pavement), for each of the shell pavements (see Fig. 6.44 for a visual explanation). I have decided to produce these figures, since they take up less space than a large number of up-section plots, while retaining the same information. Carbonate-associated elements (Ba, Ca, Mg, Li and Sr) are generally enriched in the shell pavements (between -0.004 - 1.34 wt.%/wt.% for Mg and Ca, and -0.438 - 41.1 ppm/wt.% for Ba, Li and Sr), even when correcting for carbonate dilution. The redox-sensitive elements (As, Co, Fe, Mn, Mo, Pb, U and V) generally show enrichment (by 0.071 - 0.224 wt.%/wt.% for D*Fe/Al and -0.362 - 31.6 ppm/wt.% for As, Co, Mn, Mo, Pb, U and V). Bos32 is the only pavement that shows relative depletions in As, Co, Pb, U or V (by 0.026 - 0.362 ppm/wt.%, respectively), whereas Pseud34 shows enrichment in all these elements (by 0.215 – 3.52 ppm/wt.%, respectively). Greater enrichment variability is seen in the elements sensitive to both authigenic sulphide formation and organic matter flux (Cd, Cu, Ni, Tl and Zn), ranging between -4.66 – 40.1 ppm/wt.%. Again, Bos32 shows the greatest number of depletions (in Cu, Ni and Tl, by $-1.19 - -4.5 \times 10^{-3}$ ppm/wt.%, respectively), whereas Pseud34 shows enrichments in the same elements (by $1.88 \times 10^{-3} - 11.2$ ppm/wt.%, respectively). Finally, the elements sensitive to detrive influence (Cr, K, Rb and Zr) are enriched in Pseud34 (by 0.0377 wt.%/wt.% for K, and 1.7 – 2.26 ppm/wt.% for Cr, Rb and Zr) and Pseud41 (by 9.32×10^{-3} wt.%/wt.% for K, and 0.02 - 0.327 ppm/wt.% for Cr, Rb and Zr), but are all depleted in Bos32 (with the exception of Zr, which is only enriched by 0.021 ppm/wt.%).

Figure 6.45. Staked chart of the relative deviations of a range of proxies concomitant with the Bos32 pavement. Deviations of >100% are indicated. Red bars indicate a div/0 error in the calculation.

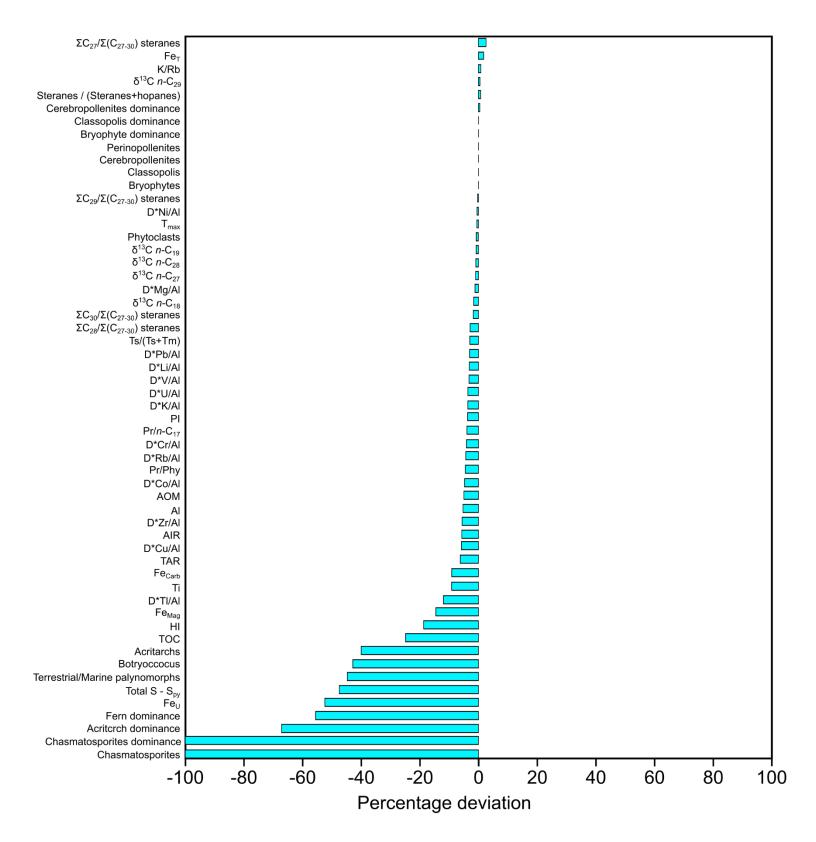
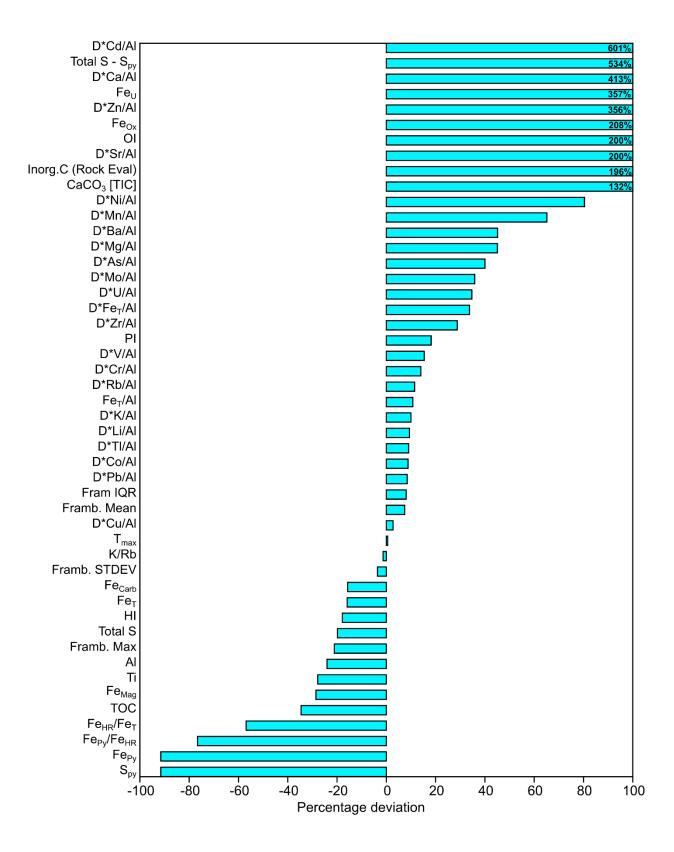
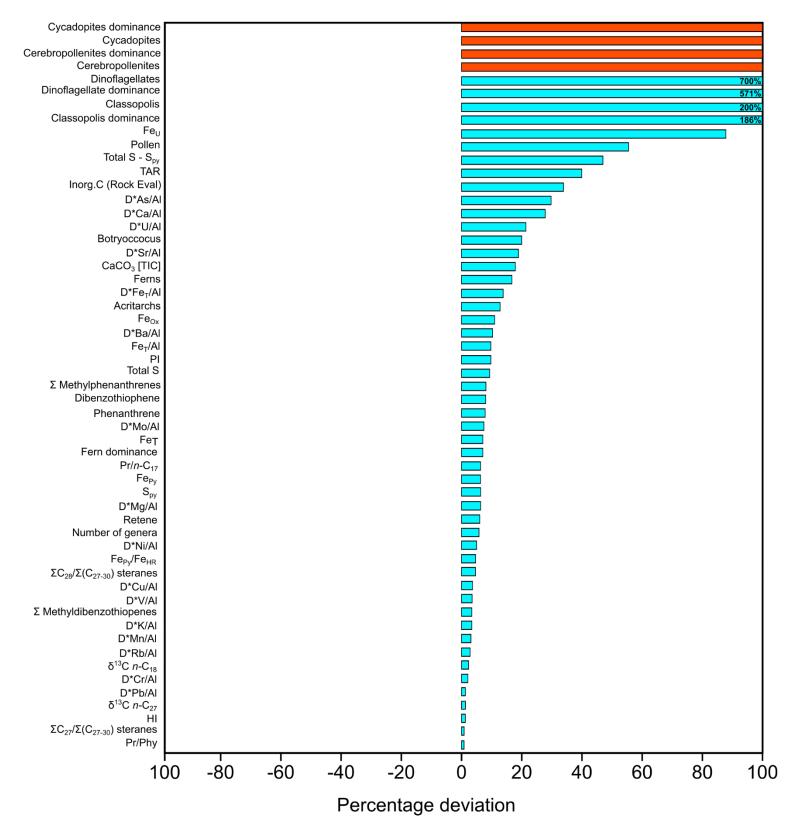




Figure 6.45. continued

Figure 6.46. Stacked chart of the relative deviations of a range of proxies concomitant with the Pseud34 pavement.

Figure 6.47. Stacked chart of the relative deviations of a range of proxies concomitant with the Pseud41 pavement. Deviations of >100% are indicated. Red bars indicate a div/0 error in the calculation.

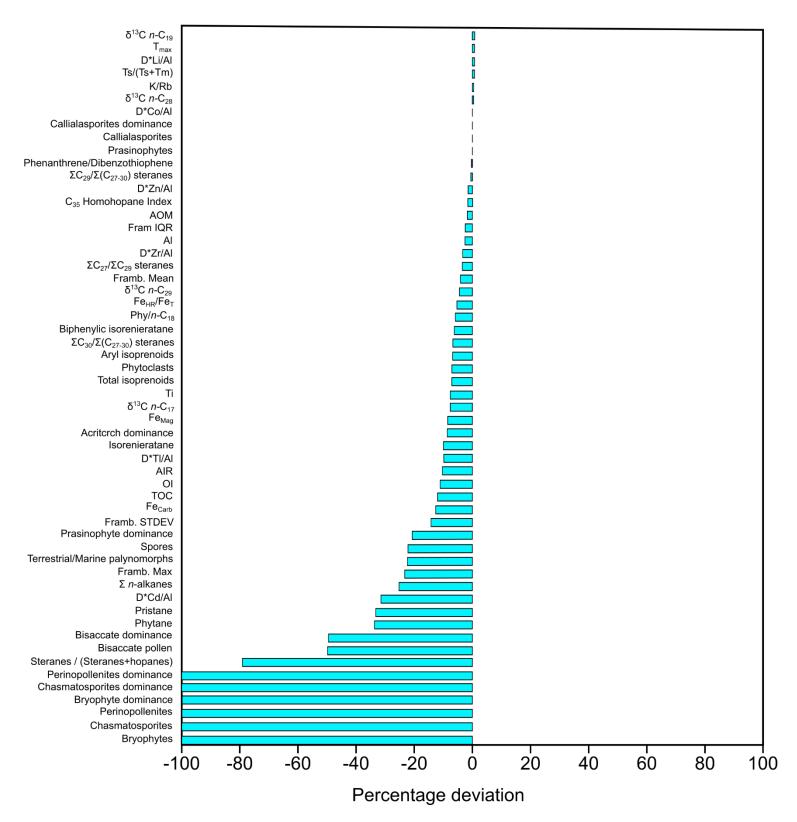
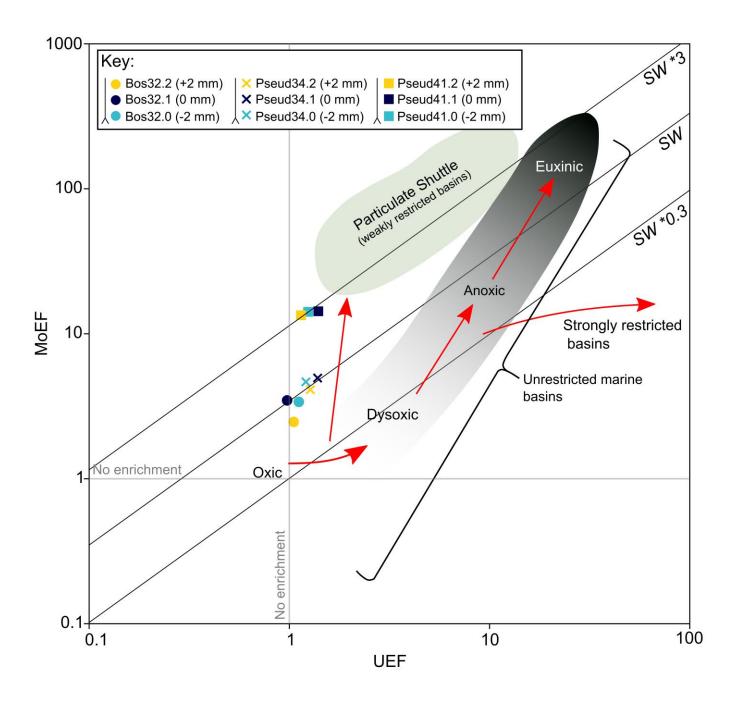



Figure 6.47. continued

Figure 6.48. UEF vs MoEF plot for the shell pavements. Trendlines and annotations adapted from Algeo & Tribovillard (2009).

3.0 Interpretations

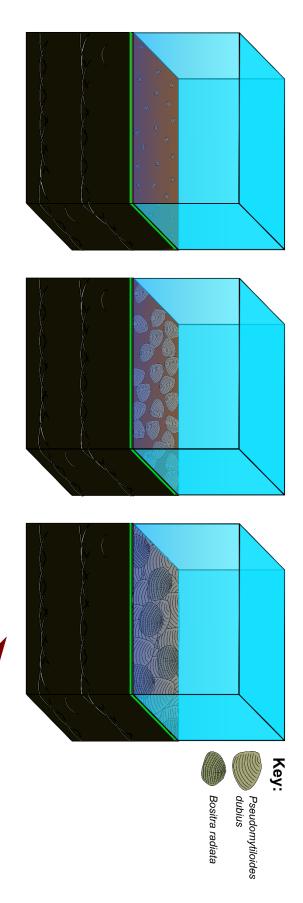
3.1 Statistical significance

In this chapter, I have attempted to evaluate palaeoproxy variability across the shell pavements. However, the sampling method I chose, and the nature of the material, raise concerns over the statistical significance of the findings. The geochemical methods I employed require minimum sample weights for precise analytical results (see Chapter 2, table 2.1). As discussed in Chapter 2 (section 4.0), I adopted a sapling approached that balanced the requirement for highly resolved records against required sample weights, and decided to sample using a 2 mm drill bit, at 2 mm resolution (approximately 5 mm resolution in the LSB). While this approach still permitted the resolution of cm-scale proxy variability within the LSB, few noteworthy lithological changes encompassing less than 2 mm of stratigraphic height were found in that bed. The shell pavements, however, are, on average, 0.9 mm thick (average of the thicknesses presented in Table 6.1). A 2 mm drill bit, therefore, will yield a sample composed mainly of sediments directly adjacent to the pavement (above and below) when drawn along the exposed edge. Despite the mixing of geochemical signals inherent in this sampling methodology, I chose to use a 2 mm drill bit for sampling the shell pavements, since that was the only method available to generate the required sample weights for the inorganic geochemical and pyrolysis analyses. While a thinner drill bit could have generated samples with a smaller amount of contamination from adjacent sediments, the smaller bit diameter would mean that the resulting powder volume would be insufficient for obtaining precise analytical results. Where the sample blocks were fissile enough, I was able to draw the long edge of the drill bit along a greater area of the pavement surface. However, this was not possible for all pavements (due to limited sample material), and the act of drilling along the pavement surface still incorporated a large amount of sediment from below the pavement into the sample. The same effect of signal mixing in the shell pavement geochemical samples also applies to the palynological, biomarker, and CSIA data collected from the shell pavements, and is, in fact, greatly exacerbated in these analyses due to the greater stratigraphic height covered by these samples (Chapter 2, section 4.0). It could even be argued that in these analyses, all three samples essentially cover the background signal of each proxy, with negligible influence from the pavement itself. Ultimately, these problems demonstrate that the shell pavements, due to their width, fall below the minimum stratigraphic resolution that can be precisely analysed via conventional geochemical analysis. Non-destructive analysis techniques such as core-scanning XRF (Dahl et al., 2019) would be more appropriate for the study of lithological variability on this scale. In my study, I chose to employ the same methods of sampling to the LSB and shell pavements, both to test the limits of conventional geochemical

268

sampling, and in an attempt to evaluate palaeoenvironmental changes across two intervals using directly comparable methods. The frequently low variability, and inconsistent nature of the proxy datasets, however, show that the sampling methods employed for the analysis of the LSB, are ill-suited for the study of the shell pavements. These caveats, however, only apply to the data gathered through the collection of geochemical and palynological samples. Data gathered through descriptive sedimentological, macropalaeontological, and SEM analysis (with the exception of up-section pyrite diameter plots), should, in theory, not be subject to the same limitations.

3.2 Sedimentological and macropalaeontological interpretations


The narrower distribution of shell lengths in Pseud34 compared with the other two pavements indicates that, on average, the individuals composing this pavement were younger, and were probably killed before they could grow to their adult size $(59 - 104 \text{ mm}^2 \text{ in area for } P. dubius \text{ and } 166 - 298 \text{ mm}^2 \text{ for } B. radiata;$ Caswell & Coe, 2013). However, the shell length distribution for this pavement is slightly bimodal (Fig. 6.2), implying a few P. dubius survived long enough to reach a size of 30 - 35 mm. It could be the case that, over the length of time marked by the pavement, two generations of P. dubius were able to colonise the sediment surface, with the second being composed of many more individuals than the first. Pseud41 shows a similar, if greatly muted, shell length frequency distribution (Fig. 6.3), which also implies that this interval was marked by several generations of colonisation. However, the distribution is wider, implying that the first-generation shells had time to grow to a larger size before the return of anoxic conditions resulted in a mass mortality, ending the growth of the pavement. Bos32 shows both a much wider distribution of shell sizes, and the largest mean shell size of all the pavements (21 mm; Fig. 6.1). There is also no discernible space between the shells, and the pavement is characterised by ubiquitous overlapping (so shell spacing was not measured - compare Figs. 6.1 and 6.2). Bos32, therefore, represents a far more mature pavement than Pseud34 or Pseud41, probably indicating an uninterrupted period of redox amelioration in the benthic environment. Interestingly, a mixed fauna is also only present in this pavement (although out of only three pavements studied in detail). B. radiata does not appear to grow on top of *P. dubius* in this pavement (implying no commensalistic relationship), and several pavements formed exclusively by B. radiata occur through bed 32 (not studied here), which do not appear to be associated with *P. dubius*. It is, therefore, probably the case that the Bos32 pavement studied here represented conditions favourable to both P. dubius and B. radiata, and the two species competed for the same resources. B radiata pavements, however, are not found in the overlying Mulgrave Shale Member (Little, 1995), which implies that this species was more adversely effected by the deteriorating redox state

269

of the Cleveland Basin than *P.dubius*. For both Pseud34 and Pseud41, the mean and standard deviation of shell spacing is similar (mean = 4 mm, standard deviation = 3 mm, and mean = 8 mm, standard deviation = 6 mm, respectively). The distributions are also unimodal (Figs. 6.4 and 6.5). A bimodal distribution would be expected if the shells formed 'islands' within the pavement, but the unimodal spacing distributions imply that during each colonisation event, the shells were distributed relatively evenly across the sediment. This means that it is unlikely (although still possible) that the first generation of *P. dubius* acted as growing surfaces for future generations, and instead implies that *P. dubius* individuals of any generation were able to grow on the sediment-water interface. However, when discussing the shell length and spacing data presented here, it is important to bear in mind the relatively limited sample size, with the number of measurements (n in Appendix 3) ranging between 8 – 79. Such a survey of a larger exposed area of shell pavement, on the order of 1-10 m² is likely to yield more accurate results (ideally with n > 300 for both shell length and spacing). Figure 6.49 graphically summarises my model for the development of the shell pavements.

3.2.1 The association of shell pavements with silty laminae

The deposition of thin silty laminae and the development of a shell pavement appear closely related, with Bos32 and Pseud34 occurring within silty laminae. These sedimentary structures have been studied in detail by Ghadeer & MacQuaker (2011; 2012), who attributed them to density flows (due to their sharp, erosional bases, and normal grading) and suggested that these were probably triggered by storms. Similar structures have also been found in the Toarcian-aged Nishinakayama Form55ation (Japan), and have been interpreted as indicating fluvial pulses, taking place in a humid climate forced by the injection of isotopically light carbon into the earth's surface environment (Izumi *et al.*, 2018). The tops of most of the studied silty laminae in the Mulgrave Shale Member were homogenised, and the occasional presence of *Chondrites* traces led Ghadeer & MacQuaker (2011) to suggest that the flow events were followed by a brief return of bottom water oxygenation (likening the triplet motif of the sediments to the "lam-scram" textures found in some turbidites). *Chondrites*-bearing sediments are likely to represent extended periods of bottom water dysoxia (Wignall, 1994, p.22), and it is also probable that tops of the silty laminae were homogenised by meiofauna tolerant of low oxygen. In modern dysoxic environments, nematodes can withstand oxygen concentrations as low as 0.2 mL/L (although they are far less numerous than at 4.0 mL/L; Hendelberg & Jensen, 1993), and while their burrows have low preservation potential, the blurring

15 yr

anoxia kills the bivalves, with the cycle of frequent anoxia, punctuated by the growth of a pavement, repeating many times. and B. radiata (but see text). The growth of a mature pavement takes place over a time period of about 15 years. The subsequent return of grow to a larger size (possibly enhanced by the availability of prasinophytes), and start to form an interlinked pavement. On the right, a fully interface, allowing for benthic colonisation, while excluding bioturbating organisms from the (sulphidic) sediment. In the centre, the bivalves dubius to colonise the sediment. The oxic/euxinic boundary (represented by the green line) remains fixed just below the sediment-water **Figure 6.49.** Development of a shell pavement. On the left, a return of oxygen levels of between 0.0 - 1.1 mL/L allows a generation of *P*. interlinked pavement stabilises the sediment surface, allowing for the colonisation of the benthic environment by later generations of P. dubius

of initially sharp sedimentological contacts can persist in the geological record (Schieber & Wilson, 2021). However, despite the association of two of the shell pavements with silty horizons, Pseud41 (the least well-developed of the shell pavements) was not associated with a silty lamination, and not all silty laminae found in thin section were accompanied by a shell pavement (Fig. 6.8). It is possible that the small size of the thin sections compared with the lateral extent of the silty laminae, meant that any pavements developed at this point were missed in my analysis. However, if we were to assume bottom water oxygen levels improved during the formation of the silty laminae, then the lack of a pavement would indicate that relatively few spat colonised the sediment. In modern marine invertebrates, the dispersal of spat following a mass spawning can be greatly enhanced by storms, so long as reduced water residence times do not negatively impact the probability of successful fertilisations (Sasaki & Shepherd, 1995; Shanks, 1998). The lack of colonisation could therefore indicate quiet conditions in the basin during reoxygenation.

Another possibility is that even though shelf-to-basin transport occurred intermittently throughout the upper Grey Shale and Mulgrave Shale Members, these events were not necessarily accompanied by improvements in benthic oxygen levels long enough to sustain the formation of a pavement (with the in situ bivalves developing during periods of dysoxia unrelated to shelf-to-basin transport). In Chapter 5, section 3.2, I invoked a similar scenario to explain the coexistence of high pristane and phytane levels in the large silty lens of the LSB. The concentrations of the two isoprenoids also vary in tandem through Bos32 and Pseud41 (Fig. 6.34), implying that the same process exerts a control on their final concentrations in the sediment: in the absence of this anoxic transport pathway, pristane and phytane would be anticorrelated (see Chapter 1, section 9.1.6). While a small amount of co-enrichment of pristane and phytane is observed in Bos32, the opposite (a decrease in the concentration of both isoprenoids) is seen in Pseud41, which is consistent with the lack of lithological evidence for shelf-to-basin transport. The small variations in pristane and phytane coeval with the pavements could indicate that while anoxic transport of phytol precursor occurred, the amount was small, which is consistent with a more distal environment of the Upper Grey Shale and Mulgrave Shale Members compared with the LSB. The presence of small framboids (<5 µm in diameter) within the silty laminae (Fig. 6.17) also argues in favour of anoxic transport, since oxic transport would have re-oxidised pyrite framboids this small (Raiswell et al., 2008).

If the coarser lamina present within Bos32 was indeed deposited under anoxic conditions (as implied by the presence of re-deposited small framboids), then the pavement could not have been directly associated with it. It is still possible, however, that this episode of anoxic transport was immediately preceded by a

shift to extreme dysoxic conditions, with an exacrobic biofacies: the recovery of the redox state of the water would have offered an opportunity for dysoxia-tolerant bivalves to become established, while the persistently sulphidic sediments would have protected small framboids and phytane from reoxidation.

Finally, it is also important to point out that excessive storminess during the formation of the pavements was unlikely in the first place if the climatic variability model I describe in section 4.2 (decadal to centennial-scale episodes of relatively dry climate) held true. Summing all of these arguments together, it becomes apparent that even though shell pavements and silty laminae sometimes occur together, their emplacements are controlled by different paleoenvironmental processes. To better test this, a wider survey of the shell pavements of the Whitby Mudstone Formation, sampling around 100 shell pavements, and comparing with concomitant sedimentary architecture, is required.

3.2.2 Pyrite framboids

While the framboid data from all nine samples (including the three from the pavements themselves) plot in the euxinic field of the Wilkins plot (Fig. 6.15), the mean framboid diameter increases in Bos32 and Pseud34, with the mean and standard deviation of framboid diameter in Bos32 also increasing on the pavement. Only Pseud41 shows a reduction in the mean framboid diameter (by 0.35 μ m). A large proportion of these framboids may also be diagenetic: if the shell pavements are characteristic of the exaerobic biofacies of Savrda & Bottjer (1987; 1991), then oxic and sulphidic conditions were closely juxtaposed on the shell pavement. Since the formation of pyrite framboids requires free sulphide, and partially oxidised sulphur species (Chapter 1, section 9.1.2), these conditions are ideal for their growth. The association of some of the shell pavements with shelf-to-basin transport episodes also implies that the pyrite framboids could have been reworked, and the occurrence of pyrite framboid lags towards the base of some of the silty laminae (Fig. 6.17) might indicate this. It should also be noted that due to the more frequently euxinic conditions of the upper Grey Shale and Mulgrave Shale Members, compared with the LSB, small framboids are more common here, and so the same degree of reworking would be likely to generate a more apparently euxinic signature. Despite these potential explanations for small values in the mean and standard deviation of framboid diameter coeval with in situ benthic macrofauna, the possibility of an error in this analysis must also be recognised: the width of view selected during the framboid counting process was around 100 μ m, and as can be seen in Figs. 6.16 and 6.17, pyrite granules much larger than six micrometres are visible with the width of view set to 870 µm. While many of these larger pyrite crysts are not, in fact, framboidal (they are predominantly recrystallised), the exclusion of some

large framboid sizes by choice of view width could have introduced a bias into the results, with apparently euxinic values ultimately being generated. During my pyrite framboid analysis of the LSB, I selected a field of view around 300 µm wide, and therefore the data generated during this study is probably more accurate.

3.3 Palynological interpretations

The composition of the phytoplankton community changes significantly across the first and third shell pavements, with dinoflagellates showing a limited recovery during both. Prasinophytes also show a slight recovery concomitant with Bos32, but not Pseud41. One of the key distinguishing features between these two beds is the presence of *B. radiata* alongside *P. dubius* in Bos32, but not in Pseud41, which, as discussed earlier, might indicate a more developed, longer-lived pavement. However, the high degree of sample averaging in the palynological analysis implies that the true change in prasinophyte dominance through the shell pavements cannot be determined from this analysis (section 3.1).

In their analysis of shell pavements of the Whitby Mudstone Formation, Caswell & Coe (2013), discovered a positive correlation between the shell area of *P. dubius*, and the concentration of Mo. These workers suggested that Mo availability limited the growth of N₂-fixing cyanobacteria (based on a culture study by Cole *et al.*, 1993), and that Mo enrichment typifies nitrogenous conditions. Since prasinophytes possess a competitive advantage over other phytoplankton groups under these conditions (see Chapter 1, section 9.1.1), Caswell & Coe (2013) argued that they were common during intervals characterised by Mo enrichment (although no palynological study was performed). They also suggested that due to their high nutritional value, Tasmanites (the dominant prasinophyte genus in the Cleveland Basin during the deposition of the Whitby Mudstone Formation) was the preferred food of *P. dubius*. They thus established a causal link between Mo enrichment, nitrogenous conditions, prasinophyte dominance and bivalve size. Therefore, the prediction resulting from this claim is that both Mo enrichment, and increases in the relative contribution of prasinophytes to the phytoplankton community would also characterise the shell pavements characterised by larger bivalve shell sizes. If larger bivalve shell sizes also enhance the probability of pavement formation due to a sediment stabilisation effect, it could further be argued that Mo enrichment, and subsequent prasinophyte proliferation, also typify the formation of a shell pavement (although a high quantity of spat is also required). While my palynological investigation of the shell pavements does suggest a link between bivalve size and prasinophyte dominance (compare Figs. 6.1 and 6.19), and while all the studied pavements show a Mo increase (Fig. 6.31), the pavement characterised by the greatest Mo enrichment (Pseud41) is accompanied by a decline in the dominance of prasinophytes,

rather than an increase (Fig. 6.22). This could mean that despite the Mo enrichment, either nitrogenous conditions were not developed, or another factor was limiting the proliferation of prasinophytes. While Mo is a component of nitrogenase (along with V), the quantity of Mo delivered to the sediment by the preservation of this enzyme is low compared with fluxes such as that of Mn (oxyhydr)oxides or sulphurised organic matter (Tribovillard et al., 2006). An alternative explanation for the lower-thanexpected dominance of prasinophytes is that the highly frequent photic zone euxinia prior to the development of Pseud41 could have eliminated all but the hardiest phytoplankton from the basin. Even though the conditions concomitant with Pseud41 were favorable for the proliferation of prasinophytes, the population density was both severely depleted, and demonstrated a hysteresis-like response to a sudden return of favorable conditions. Despite this, both the highest contribution of prasinophytes to the phytoplankton community, and the widest shell lengths, are observed in Bos32, which the Caswell & Coe (2013) model: shell pavements could become established in the absence of prasinophytes, but the added nutritional value of a prasinophyte-containing diet could have enabled *P. dubius* to reach the large size that it did in Bos32, and thereby form a much thicker, and interlinked pavement. Since both Bos32 and Pseud41 show an increase in the dominance of dinoflagellates (which is almost exclusively driven by the genus Nanoceratopsis), it is also possible that this was a food source for P. dubius, which filter-fed the dinoflagellates out of the water as they attempted to descend to the sediment to form cysts. However, only two shell pavements contained enough material for a palynological study, and it is equally likely that the co-occurrence of dinoflagellate cysts, prasinophytes, and shelly macrofauna, simply reflects improved bottom water redox (i.e. prasinophytes being a direct nutritional source for the bivalves cannot be proved based on this dataset alone). Furthermore, as discussed in section 3.1, the palynological data derived from the shell pavements is almost certainly carries a mixed signal of the pavements, and the sediments above and below them. I strongly suspect (given that dinoflagellates are a common food source for modern bivalves; Wang & Fisher et al., 1996; Etheridge, 2010), that a wider palynological study of P. dubiuscontaining sediments, from both oxic and dysoxic (or frequently anoxic) environments would both confirm this, and better test the prasinophyte predation model of Caswell & Coe (2013).

All of the data points of my palynofacies study of the shell pavement samples plot in either the distal suboxic/anoxic basin, or the distal dysoxic/oxic shelf fields of Tyson's palynofacies ternary diagram (Fig. 6.24; Tyson, 1989). The corresponding palaeoenvironment described in Tyson's 1989 study of the Piper and Kimmeridge Clay formations (Dorset, UK), was a very distal subsiding basin with orbitally paced changes in stratification (Oschmann 1988). The data might, however, also partially indicate the lateral transport of recalcitrant palynomorphs, since the points also plot towards the end of two transport paths in the ternary space. This is in agreement with the presence of thin silty horizons within the sections, which

are likely to have redeposited resistant macerals originating from the terrestrial environment and the basin margins.

The land plant community structure evaluated from my shell pavement palynomorph slides (presented in Fig. 6.23) should be interpreted with caution, since (as demonstrated by the low spore and pollen content, low TAR; and lower Ti content relative to the LSB; Figs. 6.21, 6.30 and 6.35), the palaeoenvironments of both Bos32 and Pseud41 were distal. In addition,. These two issues compound in the shell pavement samples, and as a result, the data compares poorly with previously published palynological data from the same section. Slater *et al.* (2019), found that ferns were 6.88 - 25.2% dominant, and bisaccate producers were 11.5 - 35.3% dominant within the terrestrial plant community, during their "Toarcian-CIE" interval. These figures contrast sharply with mine (compare Appendix 3).

However, the influence of differing hydrodynamic properties of spores and pollen is unlikely to have significantly impacted my analysis. While sporomorphs are hydrodynamically equivalent to fine silt (Muller, 1959), the absolute content of spores and pollen do not vary greatly across either Bos32 or Pseud41 (despite the presence of a silty lamination in the former; Fig. 6.21). This is in agreement with the TAR showing little to no change in the relative contribution of long-chain versus short-chain *n*-alkanes (Fig. 6.35). While the Terrestrial/Aquatic palynomorph ratio does decrease slightly concomitant with Bos32, this is driven mainly by the decrease in AOM in this pavement, which is depleted in coarser lithologies (Tyson, 1995, pp. 249 – 251). Furthermore, sporomorph assemblages from distal localities (notwithstanding the tendency for bisaccate pollen to be overrepresented) tend to be less impacted by hydrodynamic effects compared with proximal settings, and, therefore, are often more representative of the terrestrial community (and can therefore serve as decent palaeoclimate records; Tyson, 1995, pp. 261 -279 and references therein). High spore counts are also typically found in proximal shelf sediments, with episodes of shelf-to-basin transport delivering a greater quantity of spores to the basin depocenter. However, the silty lamination in Bos32 is not marked by a significant increase in spore content. Slater et al. (2019) also determined that the Toarcian transgression (Hesselbo, 2008) did not significantly affect the palynological assemblages recovered from the Cleveland Basin, with the abundance of bisaccate pollen decreasing while the abundance of fern spores remained constant. These workers also demonstrated that the number and terrestrial diversity of land plant genera dropped substantially around the T-OAE CIE, and while my analysis also seems to indicate that the number of identified genera are much lower in the shell pavement samples, compared with the LSB, this decrease is not significantly large to be attributed to true variability - it is more likely to be an artefact of the high degree of sample averaging (section 3.1).

Furthermore, even if significant, this finding adds to the uncertainty associated with my terrestrial flora reconstructions.

If one were to overlook these issues, my land plant records appear to indicate that the climate of the Cleveland Basin became drier during the deposition of the pavements, as moisture-loving plants (particularly ferns) became far less dominant. The vacant niche space is filled primarily by bisaccate producers and *Cycadopites* sp. It could be argued that this indicates a shift to a drier climate: The dominance of the dry-adapted *Chasmatosporites* and *Classpolis* genera also increases slightly in Pseud41, with a corresponding decline in the wet-adapted *Perinopollenits sp.* (Sutkins *et al.*, 2013; Slater *et al.*, 2019), although this trend is not observed in Bos32, with *Chasmatosporites sp.* increasing in abundance after the shell pavement. This is to be expected if the apparent trends in sporemorph content are not significant, due to sample averaging. Alternatively, the climate might have become more seasonal during the formation of the shell pavements, with frequent shifts between wet and dry conditions (as in the model of Röhl *et al.*, 2001). In their study of the same section, Slater *et al.* (2019) argued that the land plant assemblage was indicative of a highly seasonal terrestrial environment, to which dry-adapted flora was best suited. However, the presence of mixed palynological signals in my study of the shell pavements (section 3.1) renders this interpretation very speculative.

3.4 Inorganic geochemical interpretations

The combination of lower water column sulphide, and high pyrite content, in the Bos32 layer, implies an exaerobic biofacies (low water column sulphide sharply juxtaposed with high sediment sulphide). Given that the presence of in situ *P. dubius* and *B. radiata* in Bos32 indicates that oxygen was present in the benthic marine environment, the relative increase in pyrite concomitant with this pavement (and the corresponding positive shifts in Fe_{HR}/Fe_T and Fe_{Py}/Fe_{HR} ; Fig. 6.29) is apparently contradictory. However, as can be seen via SEM microscopy (Fig. 6.16), a proportion, if not the majority of this pyrite is diagenetic. This underscores the importance of understanding the lithology of a geological sample before applying the Fe speciation proxies (while in no way undermining their use as reliable palaeoredox indicators). The Fe-redox proxies are best complemented by an assessment of the concentration of trace elements that are sensitive to the formation of authigenic sulphides, and/or pyrite framboid analysis (Poulton, 2021), to deconvolve the competing influences of syngenetic verses diagenetic pyrite formation (both of which I have applied here). Indeed, Fe_{HR}/Fe_T implies that Pseud34 and Pseud41 were accompanied by a shift to more oxygenated conditions: the lower frequency of anoxia at these points meant that although the Fe shuttle was probably still in operation (and still facilitated the delivery of Mo

and U; Fig. 6.48), its strength was greatly reduced, with less particulate Fe being converted to pyrite (Fig. 6.29).

Moreover, the presence of diagenetic pyrite encrusting shells of in situ P. dubius and B. radiata further implies that the animals died in situ, and that the proliferation of sulphate reducing bacteria within the bivalve tissues, during decay under anaerobic conditions, created sulphidic microenvironments characterised by rapid pyrite growth. In other words, if the bivalve shells remained in contact with the decaying bivalve tissues, (i.e. if the valves were not transported into the depositional environment from another location), they would have become ensconced within sulphidic porewaters, with the shell surface becoming a site for the nucleation of pyrite crystal growth. This effect is further enhanced if levels of dissolved Fe²⁺ are high, and if the supply of organic matter capable of being metabolised by sulphate reducers is limited to that provided by the decaying bivalve (i.e. the organic content of the surrounding sediment is lowered, as is the case in the coarser laminae; Briggs et al., 1996; Raiswell et al., 2008; Farrell *et al.*, 2009). While the supply of Fe^{2+} to Bos32 was high, the sulphur-limitation on the growth of pyrite within the pavement (Fig. 6.28), combined with the lower level of metabolizable organic matter (occurring within a silty lamination), implies that the in situ decay of bivalve tissues was the limiting factor on pyrite growth. It can therefore be suggested that pyritisation of a shell pavement is taphonomic evidence that the deposit was autochthonous, and that the animals grew in situ, during a brief oxic spell, within a predominantly anoxic environment. A classic example of pyrite growth being enhanced by the presence of metabolisable organic matter is the pyritisation of soft tissues in fossils from the Hunsrück Shale (Germany; Briggs et al., 1996). Here, the high Fe²⁺, but low pyritisation of the host sediment (Corg content limiting the growth of sulphate reducing bacteria), resulted in a residual pool of seawater sulphate in the host sediment. The free Fe^{2+} , and residual sulphate then combined with sulphide generated by anaerobes in the decaying carcases to form pyrite.

Additionally, in a recent study of *Varicorbula gibba* shells from episodically anoxic environments in the northern Adriatic, Tomašových *et al.* (2021), demonstrated how the nucleation of pyrite framboids on the surfaces of articulated bivalve shells, indicates that they were immediately enclosed within an anoxic, Fe^{2+} rich microenvironment post-mortem. The decay of the dead bivalves by sulphate reducing bacteria within the sediment microenvironment, then leads to conditions ideal for (sulphide-limited) pyrite formation. In order to preserve these sulphidic microenvironments, bioturbation needs to be absent, and so Tomašových *et al.* (2021) suggested that an increase in the frequency of pyritised shells through a recent (or geological) sediment archive is indicative of declining habitability of the benthic environment, particularly when pyritisation exceeds 10% of the shelly assemblage. The two samples that plot in the Felimited field of the ternary plot (i.e. exceptions to the general trend of s-limitation) are Bos32.1 and

Pseud41.2. It is possible that, at these points, the supply of aqueous sulphide greatly exceeded the supply of highly reactive Fe, and therefore, that the growth of the Bos32 marked a point where aqueous sulphide became scarcer, while Pseud41 marks a point of Fe limitation.

To confirm whether the pyrite preserved within the shell pavements (especially Bos32) originated from diagenetic sulphide, a study of the δ^{34} S signature of the Ag₂S precipitate generated during my pyrite extraction would be required. In their study of the pyritised soft tissues of the Hunsrück Shale, Briggs et al. (1996) found that the pyritisation of soft tissues sequestered the leftover seawater sulphate, resulting in a δ^{34} S signature more positive than that of the sedimentary pyrite. Therefore, the pyritisation of soft tissues required a diagenetic environment high in aqueous Fe²⁺, but with relatively low levels of metabolizable organic matter. This technique has also been used to determine the diagenetic history of pyritised lobsters in the Speeton Clay Formation, showing how, in contrast to the Hunsrück Shale, frequent bioturbation of the sediment led to the reoxidation of early diagenetic pyrite, and the formation pyrite with a light δ^{34} S signature (Poulton *et al.*, 1998). It is possible that a shift to heavier δ^{34} S values (analogous with the Hunsrück Shale) would be observed in the shell pavements. However, the deposit is orders of magnitude thinner than the fossil beds of the Hunsrück Shale, and surrounded by sediments with very negative δ^{34} S values (as implied by the high drawdown of 32 S from the local seawater by pyrite formation; Newton et al., 2011). My sampling method, however, has yielded inherently mixed geochemical signals (section 3.1). Therefore, a δ^{34} S analysis of the Ag₂S precipitates (stored in the School of Earth and Environment at the University of Leeds) generated from my Spy analysis, would almost certainly yield a mixed signal, and the precipitates are therefore are unfit for this purpose. However, even with appropriately prepared samples, it would be difficult to determine whether 32 S in the pavement pyrite was primarily supplied from the decay of the bivalve tissues, or the diffusion of free sulphide from the surrounding sediments.

The small degree of Mn enrichment concomitant with Bos32 and Pseud34 also implies that these shell pavements were associated with brief recoveries in the bottom-water redox state. Mn is soluble in its reduced (2+) state. As such, sediments with appreciable Mn (oxyhydr)oxide content typify either oxic conditions, or environments with a high degree of authigenic Mn⁴⁺ formation in the sediment (which requires impingement of a strong redoxcline on the sediment-water interface; Chapter 3, section 4.5). The slightly elevated Mn/Al levels concomitant with these shell pavements could indicate Mn reduction (i.e. anoxia) becoming less dominant, compared with the sediments directly above and below. It is also possible that the episodes of Mn enrichment indicate brief periods of enhanced restriction (irrespective of redox change), that resulted in Mn²⁺ that would have otherwise left the basin being incorporated into diagenetic Mn carbonate phases. A similar model was invoked to explain the Mn enrichment in the LSB

(Chapter 3, section 4.5). However, while still hydrographically isolated from the European Epicontinental Seaway (EES), the Cleveland Basin was probably much less restricted during the deposition of the upper Grey Shale and Mulgrave Shale Members, since a transgression occurred over this interval (although the degree of restriction is a matter of debate; McArthur *et al.*, 2008; Thibault *et al.*, 2018; McArthur, 2019). Soluble Mn²⁺ was, therefore, more likely to have left the basin. The fact that Mn is depleted relative to the standard shale values (Wedepohl, 1971; 2004) in my shell pavement samples (in contrast with my LSB samples), therefore, seems to agree with the Mn enrichment occurring under more hydrographically open conditions. Given the co-occurrence of elevated Mn within the shell pavements with the presence of in situ benthic macrofauna, I argue that the primary cause of relative Mn enrichment (if present) was the lack of dissolution of Mn (oxyhydr)oxide phases during a brief period of bottom-water oxia.

The Fe_T/Al values through the shell pavements are probably depleted relative to those of the individual P. dubius from the LSB (Fig. 6.29), which is consistent with a lower supply of highly reactive Fe into the (more distal) basin. While the basin depocenter was at least as frequently euxinic as the LSB (lithofacies B), the lack of a strong flux of highly reactive Fe from the reworking of marginal sediments, combined with a less restricted hydrodynamic setting, significantly reduced the strength of the Fe shuttle compared with the LSB: As suggested in Chapter 3, section 4.3 (and as argued by Newton, 2001), the persistent reworking of marginal sediments enriched in reactive Fe phases such as siderite (belonging to the Cleveland Ironstone Formation), could have been a major source of Fe to the Cleveland Basin during the deposition of the LSB. However, reactive Fe could have also been supplied to the basin via a riverine flux, with the Fe originally being derived from the weathering of older rocks around the basin margins. In either case, the higher sea level during the deposition of the Whitby Mudstone Formation, and the more distal nature of the depositional setting, mean that in this formation, the ability of such a flux to supply a high load of highly reactive Fe (that can be titrated by free sulphide when present) is greatly reduced. The lower availability of reworked marginal ironstone material might also account for the lower As and Pb levels of the shell pavement samples, since both of these elements are readily incorporated into Fe(oxyhydr)oxide particles (Lu et al., 2011; Tribovillard, 2020). This would imply that the capture of As and Pb by these Fe-bearing phases (prior to titration by free sulphide) constituted the main flux of these elements into the Cleveland Basin.

There is no evidence for an increased flux of sulphurised organic matter, and the availability of free sulphide during the growth of the shell pavements was greatly reduced. Therefore, the elevated level of Mo in all of the shell pavements is possibly indicative of the incorporation of Mo⁶⁺ into authigenic Mn (oxyhydr)oxide phases, under extreme dysoxic conditions, at the sediment-water interface (Calvert & Pedersen, 1993). Since euxinia was not persistent, and conditions fluctuated between euxinic, through

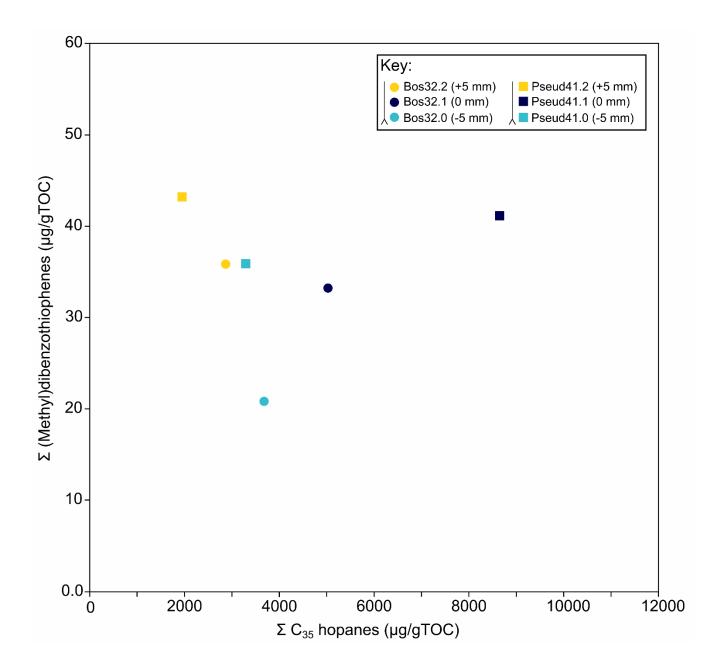
anoxic, to dysoxic (resulting in largely equivocal values for the Fe-speciation proxies; Fig. 6.29), the geochemical switch described by Helz *et al.* (1996) was not activated (Erickson and Helz, 2000), and therefore, Fe(oxyhydr)oxides and organic matter might have not played a major role in enhancing Mo levels in the pavements (TOC, in fact, decreases on all of them).

Uranium enrichment occurs within the sediment when U⁶⁺ ions diffuse into the Fe reduction zone, and are reduced to U⁴⁺ prior to capture by CO₃²⁻ (Klinkhammer & Palmer, 1991). High sedimentation rates, or sudden changes in sedimentation rate, are known to disrupt this process, with the redox boundary being pushed further down into the sediment (Crusius & Thompson, 2000), and so the depletion in U observed in Bos32 is consistent with shelf-to-basin transport. However, U is enriched in Pseud34 and Pseud41, which, again, is likely due to sample averaging. Small enrichments in U could indicate a lack of shelf-tobasin transport, or possibly enhanced scavenging by organometallic complexes under higher carbon burial rates (Klinkhammer & Palmer, 1991; Wignall, 1994, pp. 45-48; McManus et al., 2005). Alternatively, reoxidation of the might remobilise U and Mo from authigenic phases and result in their re-precipitation (Crusius et al., 1996; Morford et al., 2001). Vanadium frequently associates with Fe and Mn (oxyhydr)oxide particulates (Calvert & Piper, 1984), but the small enrichments seen in Pseud34 and Pseud41 cannot be attributed to paleoenvironmental change with any accuracy, due to V/Al being a mixed geochemical signal (section 3.1). If it were significant, V enrichment could reflect an enhanced Fe-shuttle, or precipitation of Mn oxides at the sediment-water interface. U and V are also more enriched in the shell pavement samples overall, compared with the LSB, which again highlights how the environment was more hydrodynamically open then at the termination of the Pliensbachian (Chapter 3, section 4.7).

It is also probable that many of the trace elements I evaluated that are easily incorporated into sulphides (As, Cd, Cu, Mo, Ni, Pb, U and Zn) are enriched in diagenetic pyrite formed post-deposition, and, therefore, do not reflect sulphidic conditions in the water column. Upward-migrating aqueous As (liberated from Fe (oxyhydr)oxides during suboxic diagenesis) is known to reprecipitate during sediment reworking (Sullivan & Aller, 1996). Cd is also readily re-precipitated in the event of a sudden deepening of the sedimentary oxic/anoxic chemocline, which often occurs when a turbidite is emplaced on top of organic-rich sediments (Rosenthal *et al.*, 1995). A rapidly fluctuating Mn redoxcline can potentially concentrate Mo in surficial sediments (Adelson *et al.*, 2001). Ni and Zn are both liberated from organometallic complexes during the decay of organic matter (Calvert & Pederson, 1993; Tribovillard *et al.*, 2006) and might have become adsorbed onto Fe-Mn (oxyhydr)oxide particles during a brief oxic spell (Fernex *et al.*, 1992; Peacock & Sherman, 2007). However, the proxy records of all of these trace elements within the shell pavements are mixed signals, and so while there is good lithological evidence

(in Bos32, for example; Fig. 6.16) in favour of diagenetic sulphide precipitation, the extent to which this resulted in trace element redistribution cannot be assessed.

In Chapter 3, section 4.4, I interpreted variations in the K/Al and Rb/Al ratios through the LSB as reflecting variations in the clay mineral assemblage, with intervals of low K/Al and Rb/Al corresponding with the input of cation-depleted clays, formed under humid climatic conditions. However, the shifts in K/Al in the shell pavements are negligible (by $9.3 \times 10^{-3} - 0.04$ wt.%/wt.%), and do not occur in all three pavements, with Bos32 showing a negative excursion. This could indicate that the depositional environment was sufficiently distal that the effect of a shift in the clay mineral assemblage would be greatly minimised, or possibly that no great shift occurred in the clay mineral composition in the first place. However, the mostly likely explanation, again, is sample averaging (section 3.1). Therefore, while it is possible that the K/Al and Rb/Al ratios were affected by changing clay mineral assemblages during brief episodes of drier climate, such speculation (expanded upon in sections 4.1 and 4.2) cannot be sufficiently justified by my dataset.


3.5 Organic and isotopic geochemical interpretations

All three pavements show point decreases in TOC. While this is necessarily due in part to the dilution effect of the shell material, it is also the case that the sediments directly associated with the pavement had a lower organic matter content in and of themselves, as shown in thin section (e.g., Figs. 6.12 and 6.13). This implies either a further dilution effect of the silty lenses (when present) on sediment TOC, or that the intervals were more oxidising (both effects are likely to have worked in concert). All three pavements also demonstrate variable decreases in the HI, and corresponding increases in OI. This implies either re-oxidation of organic matter during the formation of the shell pavements (especially in Pseud34), or a switch to an organic matter assemblage more dominated by recalcitrant organic matter. This latter interpretation, is not supported by the palynological data, which shows that the content of phytoclasts (i.e. recalcitrant, woody material), does not change through Bos32, where a significant decrease in the HI occurs (Fig. 6.33). However, the sampling method of the palynological study probably incurred time-averaging many times greater than the duration of this pavement, so determining the true contribution of recalcitrant organic matter to the pavement TOC is not possible based on my datasets.

The C_{35} homohopane index, while higher than in the LSB, shows no appreciable variability through the shell pavements, and neither does the phenanthrene/dibenzothiophene ratio (Figs. 6.36 and 6.41). This indicates that, while organic matter sulphurisation took place in the euxinic porewaters of the sediment post-deposition, no change in the degree of organic matter sulphurisation occurred. There is also no correlation between Σ (methyl)dibenzothiophenes and C_{35} hopanes (Fig. 6.50). As in the LSB (Chapter 5, section 3.5), this implies that fixation of C_{35} hopanoids into the kerogen via side chain sulphurisation was less dominant than the formation of (methyl)dibenzothiophenes, which was, in turn, less dominant than the sequestration of sulphide into pyrite. If the formation of (methyl)dibenzothiophenes was indeed limited by the availability of biphenyl (as speculated in Chapter 5, section 3.5), then the extent of their formation would have been even more pronounced here than in the LSB, since carotenoid biomarkers (a precursor of biphenyls; Grice *et al.*, 1996) were especially abundant in the sediments of the Upper Grey Shale and Mulgrave Shale Members (French *et al.*, 2014).

The consistently low steranes/(hopanes+steranes) ratio (Fig. 6.36) through the shell pavements strongly implies that primary production during both intervals was dominated by (hopanoid-producing) prokaryotes, which is consistent with the frequently anoxic nature of the basin. The lack of a significant excursion in this ratio might also imply that no large changes in primary production occurred (Chapter 5, section 3.3). The upper water column in the Cleveland Basin might have been comparatively oligotrophic, with nutrients only being returned to the surface from beneath the chemocline by episodic upwelling (Sælen *et al.*, 1996).

The slight increases in retene and (methyl)phenanthrenes seen in the shell pavements (Fig. 6.40) may represent an increase in the dominance of the terrestrial land plant community by gymnosperms, since the palynological data support this (compare Figs. 6.23 and 6.40). However, (methyl)phenanthrenes can also be produced by the degradation of aromatic secohopanoids (Chapter 5, section 3.6), and given that there is covariation between this, and the content of (methyl)dibenzothiophenes, I strongly suspect that bacterial degradation exerts a greater influence. It is possible that a component of PAH content of the samples was derived from wildfire charcoals, but there is no palynological evidence to corroborate this (levels of opaque phytoclasts decline in Bos32 from 14.6% to 6%, and only rise by 1.34% in Pseud 41; Appendix 3). As discussed in Chapter 5, section 3.6, wildfires have typically been associated with high atmospheric oxygen content, resulting from the extensive carbon burial during the T-OAE. So the lack of significant charcoal, or PAH content of the shell pavement sediments implies they were not associated with such a change. In other words, improved redox was not due to enhanced oxygen availability in the atmosphere, raising the oxygen content of the basinal water mass by diffusion.

Figure 6.50. Concentration of C_{35} hopanes through Bos32 and Pseud41 compared with that of dibenzothiophene and methyldibenzothiophenes (grouped together as Σ (methyl)dibenzothiophenes. Concentration of C_{35} hopanes, compared with that of dibenzothiophene and methyldibenzothiophenes (grouped together as Σ (methyl)dibenzothiophenes), through Bos32 and Pseud41.

Regrettably, all the organic geochemical proxy records, including the TAR, AIR, and isorenieratane content (Figs. 6.35, 6.38 and 6.39), have been greatly corrupted by the sampling methodology (see section 3.1). The required sample weights for efficient extraction (for the TOC content of the shell pavement samples), also mean that the sampling method I selected (averaging approximately 1 cm of stratigraphic height per sample) is about the highest resolution sampling that can currently be performed for a biomarker analysis.

The δ^{13} C excursions in marine and terrestrial fractions are essentially synchronous in Bos32 (i.e. a negative δ^{13} C excursion in *n*-C₁₇ is matched by a negative excursion in *n*-C₂₇; Figs. 6.42 and 6.43). Taken at face value, this implies that an injection of isotopically depleted carbon into the earth surface system was accompanied by an increase in stratification in the basin (Sælen et al., 1996; French et al., 2014), although an increase in climatic humidity could also influence these isotopic signatures (Chapter 1, section 9.8.7). However, the occurrence of dinoflagellate cysts, equivocal Fe-speciation proxy values, and partial reoxygenation of the sediment means that it was unlikely that the Cleveland Basin was highly stratified during the formation of the shell pavements. I therefore highly suspect that these trends are erroneous: as with much of the geochemical data described here, the CSIA data points bear mixed signals from the pavement, and the directly adjacent sediments, and as such, show little to no variability. It is, however, noteworthy that with the exception of n-C₁₉, all the CSIA trends are depleted relative to both the bulk δ^{13} C signal (Kemp *et al.*, 2011), and the m-scale CSIA analysis of French *et al.* (2014; Figs. 6.42 and 6.45). This implies that, although the shell pavement CSIA data is inconclusive, CSIA trends likely varied at a much higher frequency through the upper Grey Shale and Mulgrave Shale members than a m-scale analysis would suggest. A future CSIA study focusing on a constrained interval in these formations, at cm-scale resolution, could, therefore, potentially provide greatly improved records of carbon cycle dynamics, particularly if combined with spectral analysis.

4.0 Discussion

4.1 Model for shell pavement formation

The depositional environments of the upper Grey Shale, and Mulgrave Shale Members were characterised by highly frequent anoxic (euxinic) events. However, this state was interrupted by brief periods where the oxic/anoxic boundary descended onto, or lower than, the sediment-water interface, thereby facilitating the development of an exaerobic biofacies. Savrda and Bottjer (1987) argued that exaerobic conditions were typified by oxygen concentrations of 0.2-1.0 mL/L (severe to extreme dysoxia; Tyson & Pearson, 1991), and incidentally, my multiproxy comparison of the shell pavements, and the LSB fossil, implies that *P. dubius* grew under these very oxygen concentration values. Del Piero *et al.* (2020) also invoked a model of episodic benthic reoxygenation in their study of *Halobia cordillerana* pavements from the Triassic-aged Quatsino Formation (Vancouver Island, Canada). Here, the presence of both mature pavements, and pavements composed of juveniles, indicates that *Halobia cordillerana* produced planktonic larvae, which were dispersed into both oxic and euxinic environments. If they were not killed by euxinia while still in their juvenile stage, the bivalves grew to form shell pavements.

All the shell pavements, and the individual *P. dubius* shell from the LSB (Chapter 3), correspond with oxygen-limited conditions, as corroborated by a wide suite of redox proxies. However, this does not preclude a benthic mode of life for the bivalves in question. This is because the redox proxy values attained could have been generated under different oxygen concentrations. For example, MoERF values between 1 - 10 are typically associated with dysoxic environments (Algeo & Tribovillard, 2009), which encompass oxygen concentrations as low as 0.2 mL/L and as high as 2.0 mL/L (Tyson & Pearson, 1991). Furthermore, the values of some redox-sensitive proxies, such as Fe_{HR}/Fe_T and Fe_{Pv}/Fe_{HR} are also sensitive to rapid sedimentation changes and redox fluctuations, and this is why these two proxy systems use equivocal zones (Chapter 1, section 9.1.4). In order to accurately determine the most probable range of oxygen concentrations coeval with the formation of each pavement (and the individual P. dubius), I have therefore compared the values of multiple redox proxies (Tables 6.1 - 6.4). I have then made a qualitative judgement as to what the probable range of oxygen content was. This often involved critically examining the results of some proxy values, such as the small framboid size distributions (implying euxinic conditions via the Wilkins plot). One of the main factors that have complicated the interpretation of the redox proxies I applied has been the frequent occurrence of mm-scale, normally graded silty laminae through the studied intervals, which are likely to be associated with cryptic hiatuses (Kemp et al., 2018). Occasionally, these are concomitant with the shell pavements, implying that any attempt to establish continuous changes in palaeoenvironmental parameters across them is impossible. The interpretation of up-section proxy trends has also been complicated by diagenetic sulphide formation, which has affected the proportion of sedimentary Fe that is highly reactive (Fe_{HR}/Fe_T), the proportion of highly reactive Fe hosted in pyrite (Fe_{Pv}/Fe_T), and the distributions of sulphide associated trace elements (particularly As, Cd, Ni and Zn).

As discussed in Chapter 1, section 6.0, some workers have been reluctant to accept the in situ growth of bivalves within black shale sequences, instead suggesting non-benthic life modes (see review in Chapter 1, section 6.0). It could be argued that the apparent contradictions between the presence of shell

pavements, and the proxy data implying anoxic or euxinic conditions, is further evidence that the shells did not grow in situ, and were transported into the frequently anoxic/euxinic basin depocenter during episodes of shelf-to-basin transport. However, the occurrence of geochemical proxy data indicating anoxia or euxinia in the shell pavements, is likely to be largely due to the inherent time-averaging introduced my sampling methodology. As discussed in section 3.1, the aim of this work was to attempt to evaluate the redox history of the shell pavements with the same methods applied to the LSB, so that the results could be directly comparable. However, the nature of the results seems to indicate that these methods are inappropriate for mm-scale features, such as shell pavements. Despite the limitations of the geochemical data, it can still be argued that the shell pavements I studied grew in situ, during a brief period of benthic reoxygenation. A key argument in favour of this is that none of the shell pavements I studied display any evidence of post-mortem transport: none of the shells display fracture due to abrasion or saltation, and no evidence of imbrication was found either. While the shells appear to be disarticulated, the sediments have been subjected to compaction (*P. dubius* valves were originally convex; Chapter 1, section 6.0), so the initial space between the valves is often no longer present. Disarticulation commonly occurs during the in situ decay of bivalves, and does not necessarily mean that the disarticulated shells will be transported. Additionally, most of the valves in the shell pavements are concave-up – which is hydrodynamically unfavourable, and therefore, evidence against transport (Del Piero et al., 2020). Moreover, the taphanomically-controlled sulphide generation described in section 3.3, not only reconciles the high pyrite content of the pavements (specifically Bos32) with the presence of macrofauna, but serves as additional evidence in favour of in situ growth. It is clear, however, that P. dubius could also adopt a pseudoplanktonic mode of life, encrusting floating macrophyte debris (the fossil wood assemblages of the Posidonia Shale are impressive examples of this mode of life). It is, therefore, possible that the individual P. dubius recovered from the LSB dropped off a floating log or ammonite, and, therefore, does not represent in situ growth on the sediment-water interface. However, this explanation cannot reasonably explain the high number of individuals comprising a shell pavement (Kauffman; 1978, 1982). I have demonstrated that the pavement-forming bivalves could tolerate oxygen levels just as low, if not lower, than the individual recovered from the LSB. It is still possible that the individual shell dropped onto the seafloor, but it is equally likely that it grew in situ. These two models are impossible to test based on the geological data available. However, the in situ growth of P. dubius under a brief period of extreme dysoxia is supported by the evidence for in situ pavement development I present here, while the model invoking deposition of a P. dubius shell that dropped from floating macrophyte debris runs the risk of being unfalsifiable.

P. dubius- individual (LSB)	VALUE	IMPLIED WATER COLLUMN REDOX STATE	POSSIBLE O ₂ LEVEL
Bioturbation (%)	0-5.31	ORB 3 – 4 (lower dysaerobic)- probably severe to extreme dysoxic (Tyson & Pearson,1991)	1.0 – 0.2 mL/L
Framboid distribution	Right of Wilkins Plot	Severe dysoxic	
Fe _{HR} /Fe _T	0.457-0.704	Anoxic	0 mL/L
Fe _{Py} /Fe _{HR}	0.485 -0.673	Ferruginous	
Mn/Al (ppm/wt%)	85.1 - 116	Oxygen depletion and stratification, but some O_2 present	1.1 – 0.0 mL/L
Mo/Al (ppm/wt%)	1.69 – 2.41 (ERF =11.2 – 16.0)	Anoxic (Algeo & Tribovillard, 2009)	0 mL/L
Isorenieratane (µg/gTOC)	2.189 - 3.91	Episodic euxinia in bioturbated interval	≥0 mL/L
AIR	2.14 - 2.38	Somewhat episodic euxinia	
OVERALL:		Extreme dysoxic/suboxic	1.1 – 0.2 mL/L

increases when O2 concentration drops below 50µM (Klinkhamer & Bender, 1980) mL/L; Tyson & Pearson, 1991). Oxygen concentration based on sedimentary Mn loss is based on the observation that dissolved Mn content range of O_2 values based on each proxy. Overall, it is likely that the individual *P*. *dubius* grew under extreme dysoxic/suboxic conditions ($O_2 = 0.2$) Table 6.2. Key redox proxy values concomitant with the P. dubius individual found in the LSB, along with an interpretation of redox state, and

P. dubius, B. radiata together (Bos32)	VALUE	IMPLIED WATER COLLUMN REDOX STATE	POSSIBLE O ₂ LEVEL
Bioturbation (%)	0	ORB 1 – 3(anaerobic -lower dysaerobic)- probably extreme dysoxic to anoxic (Tyson & Pearson,1991)	0.2 – 0.0 mL/L
Framboid distribution	Left of Wilkins Plot	Euxinic	0 mL/L
Fe _{HN} /Fe _T	0.911	Anoxic	0 mL/IL
Fe _{Py} /Fe _{HR}	0.759	Equivocal	
D*Mn/Al (ppm/wt%)	38.4	Possible brief entrainment of oxygen	1.1 – 0.0 mL/L
D*Mo/Al (ppm/wt%)	0.580 (ERF=3.47)	Suboxic (Algeo & Tribovillard, 2009)	0.2 - 0 mL/L
Isorenieratane (µg/gTOC)	6.36	Episodic euxinia (with some isorenieratane supplied via remobilised microbial mat fragments)	≥0 mL/L
AIR	2.26	Somewhat episodic euxinia	
OVERALL:		Suboxic	≤ 0.2, but > 0.0 mL/L
Table 6.3. Key redox pro	oxy values concomitan	Table 6.3. Key redox proxy values concomitant with Bos32, along with an interpretation of redox state, and range of O_2 values based	range of O_2 values based

proxy. Overall, it is likely that Bos32 pavement represents suboxic conditions ($O_2 \le 0.2 \text{ mL/L}$; Tyson & Pearson, 1991). **Table 6.5.** Key redox proxy values concomitant with Bos32, along with an interpretation of redox state, and range of O_2 values based on each

	_		
P. dubius – many small shells (Pseud34)	VALUE	IMPLIED WATER COLLUMN REDOX STATE	POSSIBLE O2 LEVEL
Bioturbation (%)	0	ORB 1 – 3(anaerobic -lower dysaerobic)- probably extreme dysoxic to anoxic (Tyson & Pearson,1991)	0.2 – 0.0 mL/L
Framboid distribution	Left of Wilkins Plot	Euxinic	0 mL/L
Fe _{HR} /Fe _T	0.382	Anoxic	0 mL/L
Fepy/Fehr	0.160	Equivocal	
D*Mn/Al (ppm/wt%)	89.4	Possible brief entrainment of oxygen	1.1 - 0.0 mL/L
D*Mo/Al (ppm/wt%)	1.01 (ERF=4.96)	Suboxic (Algeo & Tribovillard, 2009)	0.2 – 0 mL/L
Isorenieratane (μg/gTOC)	n/a	n/a	n/a
AIR	n/a	n/a	n/a
OVERALL:		Suboxic	≤ 0.2, but > 0.0 mL/L
Table 6.4. Key redox p	roxy values concomita	Table 6.4. Key redox proxy values concomitant with Pseud34, along with an interpretation of redox state, and range of O_2 values bas	und range of O ₂ values bas

each proxy. Overall, it is likely that the Pseud34 pavement represents suboxic conditions ($O_2 \le 0.2 \text{ mL/L}$; Tyson & Pearson, 1991). ased on

	_		
P. dubius – few large shells (Pseud41)	VALUE	IMPLIED WATER COLLUMN REDOX STATE	POSSIBLE O ₂ LEVEL
Bioturbation (%)	0	ORB 1 – 3(anaerobic -lower dysaerobic)- probably extreme dysoxic to anoxic (Tyson & Pearson,1991)	0.2 – 0.0 mL/L
Framboid distribution	Left of Wilkins Plot	Euxinic	0 mL/L
Fe _{HR} /Fe _T	0.886	Anoxic	0 mL/IL
Fe _{Py} /Fe _{HR}	0.750	Equivocal	
D*Mn/Al (ppm/wt%)	31.3	No change in redox through the pavement – persistently dysoxic	1.1 – 0.0 mL/L
D*Mo/Al (ppm/wt%)	2.65 (ERF=14.3)	Anoxic (Algeo & Tribovillard, 2009)	0 mL/L
Isorenieratane (µg/gTOC)	8.52	Episodic euxinia (with some isorenieratane supplied via remobilised microbial mat fragments)	≥0 mL/L
AIR	2.07	Somewhat episodic euxinia	
OVERALL:		Suboxic	≤ 0.2, but > 0.0 mL/L
Table 6.5. Kev redox	nroxy values concomi	Table 6.5. Key redox proxy values concomitant with Pseud41, along with an interpretation of redox state, and range of O_2 values has	and range of O ₂ values ha

proxy. Overall, it is likely that the Pseud41 pavement represents suboxic conditions ($O_2 \le 0.2 \text{ mL/L}$; Tyson & Pearson, 1991). Table 6.5. Key redox proxy values concomitant with Pseud41, along with an interpretation of redox state, and range of O_2 values based on each The small, juvenile, individual *P. dubius* recovered from the LSB probably grew under extreme dysoxic/suboxic conditions (1.1 - 0.2 mL/L; Table 6.1), but my multiproxy analysis of the shell pavements has shown that this species could tolerate even lower oxygen levels ($\leq 0.2 \text{ mL/L}$, but > 0 mL/L; Tables 6.2 - 6.4). Some extant epibenthic bivalves are known to tolerate oxygen levels of 0.2 mLL or below. For example, *Jupiteria callimene* is an epibenthic bivalve (and a member of the family Nuculanidae) that has been recovered from the oxygen minimum zone off Baja California, from a site with a dissolved oxygen content of around 0.1 mL/L (Dall, 1908; Hendrickx *et al.*, 2016; Suarez-Monzo *et al.*, 2018). Recent incubation and genetic sequencing of the nuculanid bivalve *Lembulus bicuspidatus* has also shown that, under dysoxic conditions, genes involved in the production of enzymes regulating anaerobic glycolysis become active (Amorim *et al.*, 2021). It is possible that *P. dubius* and *B. radiata* possessed similar adaptations to the extant Nuculanidae, and, therefore, could inhabit extreme dysoxic/suboxic environments.

Despite the development of shell pavements at benthic oxygen concentrations of less than 0.2 mL/L, the LSB does not contain any, even though the redox state in the upper part of Lithofacies A was not only favourable for pavement development (1.1 - 0.2 mL/L), but contains in situ fossils of (juvenile) *P*. *dubius*. As for the thin laminae near the shell pavements (see section 3.1.1), the reason for this absence is probably the lack of mass colonisation of the sediment by *P. dubius* spat. One possible reason for this is that the spawning event wherein this individual was conceived did not result in a very wide spread of viable spat outside of the basin margins, due to low energy conditions (this individual being a rare exception). However, shelf-to-basin transport occurred during the deposition of the LSB (Chapter 3, section 3.1), and I did invoke the occurrence of intermittent storms to account for the sedimentary structures observed here. Even so, I have suggested that the dispersal of *P. dubius* spat, and shelf-to-basin transport episodes are not necessarily related. It might be the case that the period of bottom-water dysoxia represented by the individual *P. dubius* was much shorter than 15 years, so there was no opportunity for a pavement to form. It is also possible (as mentioned above) that this individual *P. dubius* fell off a floating log and floated down onto the sediment, but this would be difficult to prove.

Outside the shell pavements, the palaeoenvironment was dominated by water column stratification, with severe oxygen depletion beneath the chemocline, and episodic upwelling of nutrients into the photic zone (Sælen *et al.*, 2000). Nutrient stimulation through enhanced fluvial flux would have assisted in maintaining an anoxic state in the bottom waters, and (as discussed in Chapter 5, section 4.1) was instrumental in triggering system shifts in the redox state of the basin. However, prolonged oxygen depletion is unlikely to have been solely due to eutrophication. Instead, the key factor in the maintenance of frequently anoxic conditions was the moderately restricted nature of the basin, and its susceptibility to

stratification under a warm, humid climate. The shell pavements mark points where this system state was momentarily perturbed, with the return of higher benthic redox accompanying the temporary destruction of stratification (possibly accompanied by a drier climate – see section 4.2).

4.2 Wider implications for the Lower Toarcian world

Overall, this dataset reveals that the marine environment in the Cleveland Basin was generally anoxic and sulphidic across each of the three studied intervals. There might have been occasional brief episodes of re-oxygenation either side of the pavements, on a scale too fine to be captured by the sampling procedure used (see Chapter 3; section 4.3; Chapter 4; section 3.2.1; Chapter 5; section 4.2), but the frequency of periods of anoxia and euxinia were generally far greater. Major factors contributing to the maintenance of this high frequency of anoxia were the hydrographically isolated nature of the basin (Baroni *et al.*, 2018), and the generally hot, humid climate (Rees *et al.* 2000, Ruebsam *et al.*, 2020a) – forced by a massive injection of carbon dioxide into the ocean-atmosphere system (Hesselbo *et al.*, 2000; French *et al.*, 2014; Ruebsam *et al.*, 2020a).

The modelling work of Baroni *et al.* (2018) suggests that circulation in the EES was dominated by a clockwise gyre of warm water from the Tethys (Fig. 6.51), and that the rough bathymetry of the EES resulted in sluggish circulation in the Cleveland and SW German basins. By contrast, flow through the Viking Corridor was weaker, and ran in a southward direction. This circulation model is supported by higher TOC/P and Fe_T/Al values of lower Toarcian sediments from the UK and Germany compared with those further south (e.g. in Spain). The Baroni *et al.* (2018) model, however, conflicts with a model of northward-flowing warm waters through the Viking Corridor proposed by Korte *et al.* (2015). Based on a positive shift in the δ^{18} O of belemnite calcite from northern EES localities (particularly Yorkshire and Scotland), these workers suggested an origin of the Pliensbachian icehouse involving the partial obstruction of this northward current of warm water by uplift in the northern EES, forced by the emplacement of a thermal dome in the underlying lithosphere. However, others have suggested that Korte *et al.* (2015) underestimated the masking effect of enhanced salinity on belemnite δ^{18} O (van de Schootbrugge *et al.*, 2019).

The clockwise warm current would have created a low-pressure zone over the northern EES, resulting in a more humid climate, and possibly setting up an atmospheric convection cell, with a low-pressure zone located over Laurasia (Fig. 6.51). The resulting humid conditions would enhance runoff (and weathering rates; Cohen *et al.*, 2004), raising the likelihood of salinity stratification in restricted settings. As implied

by my model for the formation of the shell pavements, this current regime was not constant, and episodic cooling of the northern hemisphere (Baroni *et al.*, 2018) is likely to have, in turn, weakened the clockwise gyre (Fig. 6.52). This would have resulted in the low-pressure zone being restricted to Gondwana, with a high-pressure zone moving southward from the boreal region, resulting in a drier climate. As in the model of Röhl *et al.* (2001), such brief episodes of drier climate would have been accompanied by more intense ventilation of the water column during the winter months. The stronger circulation would have temporarily disrupted water column stratification, and could have induced episodes of shelf-to-basin transport (Ghadeer & MacQuaker, 2011; 2012). While the change in circulation was sufficient to oxygenate the water column, the sediment porewaters remained anoxic and sulphidic, with the oxic/euxinic chemocline positioned precisely on the sediment-water interface.

The timescales of these periods of circulation state change were likely to have been on the order of decades to centuries, although precise estimates are not possible (see Chapter 1, section 6.0).

The interannual variability model I propose here is somewhat analogous to the modern El Niño Southern Oscillation (ENSO). ENSO is also characterised by a spatio-temporal shift in the distribution of warm water masses, and is coupled via positive feedback to changes in atmospheric pressure and equatorial wind direction. ENSO oscillations have also been tied to the local amelioration of dysoxic conditions in shelfal marine environments: during the 1997/98 El Niño, for example, suppression of the normal upwelling of nutrient-rich waters resulted in the O_2 concentration in the lower water column off the Chilean coast rising by 3-6 mL/L (Sellanes, 2002; Escribano *et al.*, 2004). However, an essential feature of ENSO that distinguishes it from my model, is the upwelling of cold, deep water of the western margin of South America - upwelling does not play a major role in my model of the interannual variability of the clockwise gyre. The causes of ENSO are still unclear, although anomalous equatorial zonal winds may be involved (Chen *et al.*, 2019). Similar stochastic behaviour in wind patterns might have also modulated the interannual variability in the strength of the clockwise gyre, which took place over a time period too long to have been influenced by the seasons, and too short to have been influenced by Milankovitch cycles.

Another possible trigger for the shifts in circulation mode could be episodic declines in the flux of (isotopically light) CO_2 to the atmosphere (as implied in section 3.4). The reasons for such declines in carbon injection would depend on the suggested cause for the Toarcian CIE. Episodic declines in the dissociation of methane hydrate deposits (Hesselbo *et al.*, 2000; Kemp *et al.*, 2005), lulls in the intensity of volcanism in the Karoo-Ferrar LIP, exhaustion of the carbon content of coal deposits cut by Karoo-Ferrar-related intrusions (McElwain *et al.*, 2005; Svensen *et al.*; 2007), and breaks in the rate of permafrost destabilisation in the high latitudes (Ruebsam *et al.* 2019; 2020a), are all possible explanations.

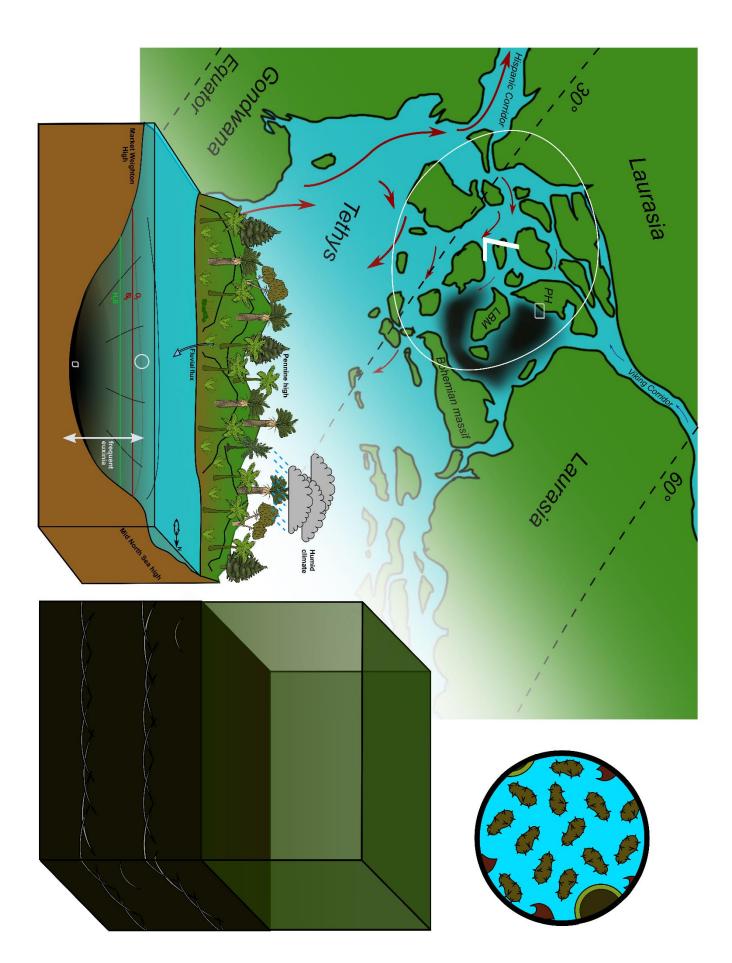
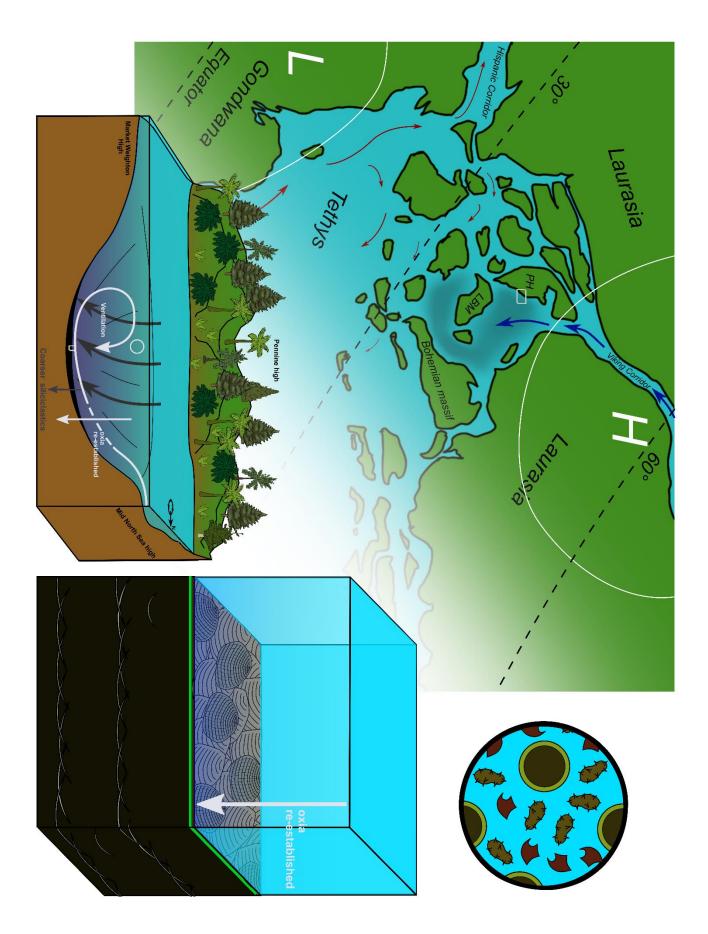



Figure 6.52

Figure 6.50 (page 287). Summary diagram of the paleoenvironment of the Cleveland Basin during the deposition of the Mulgrave Shale Member, and its relationship with the wider palaeogeography of Europe. As discussed in the text, the EES is dominated by the clockwise flow of warm Tethyan waters (red arrows), and the development of a low pressure system (*L*). Southward flow of cool, ventilating water from the Viking corridor (blue arrows) is greatly diminished, and the northern EES becomes dominated by low redox and the burial of organic carbon (shaded black). The Cleveland Basin (bottom left) is charcaterised by a highly stratified water column, with frequently euxinic bottom waters. The warm, humid climate also leads to a land plant community dominated by ferns (key for plant symbols in Chapter 5, Fig. 5.23). The benthic environment is sterile, and acritarchs dominate the phytoplankton community.

Figure 6.51 (page 288). Summary diagram of the palaeoenvironment of the Cleveland Basin during the formation of the shell pavements, and its relationship with the wider palaeogeography of Europe. Due to a decrease in northern hemisphere temperatures, the strength of the clockwise gyre is decreased. Low pressure shifts southward to Gondwana, and a high pressure zone (*H*) moves southward from the boreal region (beyond the top of the diagram). The southward cool water current through Viking Corridor is enhanced, resulting in better ventilation of the northern EES, and a brief reduction in the rate of organic carbon burial. The lack of a low pressure zone over Europe leads to a cooler, drier climate, and bisaccate producers and cycads dominate the land plant community at the expense of ferns. Periods of bottom-water dysoxia lasting decades (perhaps even centuries) facilitate the development of a shell pavement, and the more oxygenated (possibly nitrogenous) upper water column means the phytoplankton community becomes more dominated by prasinophytes, and some dinoflagellate genera. Intermittent storms, before and after (and possibly during) the formation of the pavement lead to shelf-to-basin transport.

4.3 Suggestions for future work

I argue that my model needs further testing, and that the selection of 2-3 shell pavements means that this data is rather noisy and low-resolution. An essential requirement in any future study of the shell pavements would be the utilisation of non-destructive sampling methods, capable of generating redox proxy records of sub-mm scale resolution (e.g. Dahl *et al.*, 2019). Unfortunately this exceeds the resolution of palynological and organic geochemical analysis, and so determining the change in palaeoenvironmental parameters such as the influence of marine verses terrestrial organic matter, and the composition of the planktonic and terrestrial plant communities (among others), are not possible with current analytical methods. Proxies such as the dominance of dinoflagellates and prasinophytes, and the relationship between shell size frequency and pavement duration, would greatly benefit from a wider survey of the shell pavements, which frequently occur throughout the Whitby Mudstone Formation (Caswell & Coe, 2013; Danise *et al.* 2013). However, such a study would have to overcome the issues of sampling averaging encountered in this study, and are therefore more likely to take a time-invariant approach (i.e. are shell pavements associated with a higher prasinophyte content of the palynological assemblage compared to proximal sediments).

Based on the work presented here, I also predict that periods of drier climate in the EES were generally accompanied by brief exaerobic spells in dominantly euxinic shallow marine settings, and this facilitated 'paper pecten' pavement formation. I have speculated that these periods of drier climate are related to interannual variability in the circulation regime through the EES, and that this, in turn, could have been due to decadal to centennial changes in the dynamics of the global carbon cycle. A high-resolution, compound-specific isotopic analysis through multiple shell pavements, and comparison with a globally integrated carbon isotope record, would be an ideal way to test this. However, such a method would need to overcome two key difficulties:

- The thin profile of the shell pavements makes it very difficult to avoid time averaging during sampling. This is exacerbated by the need for a relatively high sample weight of 2.5 g (for a TOC of 8.0 wt.%) for an efficient TLE, which is the method I have used to obtain long-chain *n*-alkane fractions for CSIA. An analytical method utilising raw samples may require a smaller weight, and, therefore, be able to avoid sample averaging (at the possible expense of analytical precision).
- The pavements occur very frequently through the Whitby Mudstone Formation, and may not have been continuous across the sediment surface. The samples I studied were very spatially limited

(blocks on the order of 10 cm in diameter), and so the possibility of large gaps between shells that are only evident when studied at a metre scale remains. If this is the case, it is possible that many pavements are not visible at the exposure surface. Coring would also risk missing shell pavements entirely.

However, if the shell pavements are generally correlated with carbon isotope evidence for a drier climate, and improved circulation in the Cleveland Basin (positive excursions in the δ^{13} C of *n*-C₂₇₋₂₉ alkanes), and if these excursions can be compared to a global δ^{13} C stack (impossible with my limited dataset; Figs. 6.42 and 6.43), with reference to an accurate age model, than it may be possible to further constrain the origin and nature of the T-OAE CIE, as well as finely resolve the dynamic relationship between ¹²C injection, and the earth surface system of the Lower Jurassic.

5.0 Conclusions

- The bivalves *P. dubius* and *B. radiata* could tolerate oxygen levels lower than 0.2 mL/L, and had a predominantly epibenthic mode of life. When oxygen levels improved sufficiently, the spat of these bivalves was not immediately killed while attempting to colonise the seafloor of a distal basin. Furthermore, if favourable conditions persisted for at least a decade, multiple generations of bivalves could grow, with the shells interlinking to form a shell pavement.
- The generally euxinic redox state of the Cleveland Basin was frequently interrupted by periods of dysoxia lasting decades to centuries, during the deposition of the upper Grey Shale and Mulgrave Shale Members of the Whitby Mudstone Formation. These are often marked by shell pavements, and occasionally (but not necessarily) coincide with episodes of shelf-to-basin transport of silty material. The oxic/euxinic chemocline descended to at least the depth of the sediment-water interface during these episodes ,facilitating the development of an exaerobic biofacies. and sometimes descended slightly deeper. This possibly resulted in the reprecipitation of redox-sensitive trace elements within diagenetic pyrite (a process aided by the in-situ decay of bivalve tissues).

- Shelf-to-basin transport under anoxic conditions resulted in the preservation of lags of small, reworked pyrite framboids. This further highlights the importance of careful interpretation of redox proxy records with reference to sub-mm scale lithology, particularly in condensed sequences.
- The episodes of dysoxia marked by shell pavement formation were possibly developed under relatively dry climatic conditions. A timescale of decades to centuries for these putative dry episodes implies they were primarily controlled by interannual climate variability over the EES. Recent modelling work suggests the presence of a clockwise gyre of warm water-dominated circulation in the EES during the Toarcian. Episodic weakening of this current system due to intermittent cooling in the northern hemisphere could have resulted in better ventilation of the Cleveland Basin, with a corresponding shift in atmospheric pressure systems leading to a drier climate.
- The declines in northern hemisphere palaeotemperature (if present) could be related to episodic declines in the rate of ¹²C injection during the T-OAE. The proxy records I have presented here, however, are insufficient to test this, and I, therefore, recommend a more extensive CSIA of shell pavements recovered from core material in the Cleveland Basin: A sufficiently high-resolution record could be better tied to a global δ¹³C stack.
- Regardless of major limitations related to sample averaging, this study has demonstrated the highly dynamic nature of the redox state of the Cleveland Basin even at the height of the T-OAE and the ability of thin-shelled bivalves to thrive, albeit briefly, during the very geologically brief intervals of improved redox within a predominantly inhospitable environment.

Chapter 7 – Conclusion

At the beginning of this project, I aimed to reconstruct the redox dynamics, reactive Fe enrichment, and causal mechanisms of the LSB, and, more specifically, to investigate whether the LSB could be considered a bellwether for the intense oxygen depletion that would come to characterise the Cleveland Basin during the T-OAE. To this end, I employed a wide range of sedimentological, (micro)palaeontological, inorganic geochemical, organic geochemical, and isotopic analysis techniques, to derive 13 palaeontological, 4 pyrite framboid, 54 inorganic geochemical, 31 organic geochemical, and 6 isotopic geochemical proxy records either for redox, or for complementary palaeoenvironmental variables (nutrient stimulation, palaeoshoreline distance, biological community structures, etc.), in what is, to my knowledge, the highest resolution study of a thin black shale to date.

Above all, my study has highlighted the dynamic nature of redox changes in restricted shallow marine settings, and black shale deposition in these environments. This is of great relevance not just to the understanding of the geological history of the Cleveland Basin, but to the interpretation of proxy records from black shale sequences in general. The occurrence of sedimentary structures within the LSB and Mulgrave Shale Member indicative of reletivley energetic shelf-to-basin transport, that bear proxy indicators for low oxygen levels (e.g. small framboid sizes; Chapter), further highlights how high-energy events such as shelf-to-basin transport do not necessarily change the redox state of the basins in which they occur, and is consistent with the work of Ghadeer & MacQuaker (2011, 2012), who arrived at the same conclusion. My Fe-speciation and biomarker studies of the bioturbated portions of the LSB have demonstrated that biological reworking of the sediment can greatly homogenise redox proxy signals, to the point of generating simultaneous, and apparently incompatible biological and geochemical records of redox state (chapters 3 and 5). My palynological investigation of the LSB revealed a small population of dinoflagellates even during the period of the deposition of the LSB characterised by the most intense anoxia (chapter 4), and I have argued that the shell pavements of the Grey Shale and Mulgrave Shale Members are indicative of brief spells of higher bottom water oxygen concentration, lasting decades to centuries (chapter 6). These findings demonstrate how dynamic the redox state concomitant with black shale deposition can be -a property not recognised in many older studies. The observation of the highly dynamic, often seasonal nature of redox change in modern dysoxic environments (Tyson & Pearson, 1991; Rabalais et al.; 2010), when combined with the principle that the present is the key to the past, provides further support for this model of black shale formation. This realisation, however, does raise the important question of how much we can ever really know about the deposition of black shales in the deep past, given the limitations of our current analytical procedures and technology, combined with the widespread incompleteness of the geological record. In chapters 3 and 5, I suggested that in samples that are

known to contain a time-averaged signal (due to bioturbation, for example), proxy values should be thought of as representing anoxia frequency instead of being an absolute function of anoxia through time. However, the true value for anoxia frequency for any given interval may be impossible to establish, even at the highest possible sampling resolution, depending on how frequently the redox state oscillated, or how thoroughly the sediment was mixed by bioturbation. Therefore, if this approach were to be adopted in future work on black shales, an estimate for the true frequency of anoxia may have to be calculated as a function of the proxy data, plus the limit of sampling resolution (perhaps utilising models based on Baysian statistics).

In addition to highlighting one of the most fundamental challenges in accurate palaeoenvironmental reconstruction, my work has provided excellent constraints on the palaeoenvironmental processes responsible for the formation of the LSB, and an attempt at providing similar constraints for the shell pavements of the Whitby Mudstone Formation. The relative sea level lowstand in the Cleveland Basin towards the end of the Pliensbachian (possibly due to glaciation in the high latitudes; Hesselbo & Korte, 2011; Ruebsam et al., 2019), resulted in a highly restricted system, and therefore, its oxygen inventory was vulnerable to rapid depletion. This did not occur throughout the upper Pliensbachinan, due to the absence of major warming episodes in the global climate, so the Cleveland Basin became characterised by the deposition of Fe-rich sediments. However, as soon as a brief period of warming occurred (probably concomitant with the PI-To boundary), the resulting rapid shift to a humid climate - characterised by high nutrient flux from the hinterland - shifted the Cleveland Basin into a redox state characterised by highly frequent anoxia. While anoxia was not persistent (probably due to seasonal fluctuations in primary production and stratification strength; Tyson & Pearson 1991), it was frequent enough to eliminate all benthos and most metazoans from the Cleveland Basin. Even after the nutrient pulse subsided, the highly frequent anoxia persisted due to the lack of renewal of the oxygen inventory by ocean currents - in other words, the redox state demonstrated a hysteresis-like response. This state persisted for several kyr after the nutrient pulse, and was ended by a transgression that improved the connectivity of the Cleveland Basin to oxygenated water masses. My inorganic geochemical study of the LSB (chapter 3) showed how reactive Fe was enriched throughout the LSB, and reached its highest level of enrichment during the interval characterised by the greatest TOC content (the up-section profile being later homogenised by bioturbation). While there is also lithological evidence for shelf-to-basin transport (in the form of coarser-grained layers), developed during periods of humid climate, these are not correlated with a high increase in the enrichment of highly reactive Fe, and if anything, show a decrease in total Fe. Therefore, of the two modes of Fe_{HR} enrichment in the LSB proposed by Newton (2001, p.143), the mode invoking lateral diffusion of Fe²⁺ in basinal bottom waters, following the dissolution of a steady supply of reworked Fe oxides, is likely to have been the most dominant.

While my study of the LSB establishes a link between temporally constrained periods of anoxia, and nutrient stimulation in restricted settings, my work on the shell pavements of the Whitby Mudstone Formation suggests that episodic ventilation of restricted settings is responsible for periods of oxygenation, which are geologically brief, but none-the-less long enough to be exploited by dysoxiatolerant bivalves. Moreover, the timescales of shell pavement deposition, and their possible link with changes in the local climate, imply a link between episodes of reoxygenation, and interannual variability in the early Toarcian climate (a similar conclusion was drawn by Röhl et al., 2001, for the Inoceramenbank of the Posidonia Shale). The speculations I made in chapter 6, if correct, have important implications for our understanding of the T-OAE. Episodic weakening of the clockwise gyre (a circulation pattern proposed by Baroni et al., 2018), combined with a shift in the distribution of atmospheric pressure systems, implies that episodes of cooler climate in the northern hemisphere occurred during the T-OAE. However, given that the shell pavements themselves represent reoxygenation periods decades to centuries in duration, it is not likely that Milankovich cycles are the cause of this variability in palaeotemperature. As discussed in chapter 6, the nearest modern equivalent to the interannual variability I propose is ENSO, the causes of which are still not clearly understood. What is well understood, however, is that the T-OAE was accompanied by a massive injection of isotopically depleted carbon dioxide into the earth surface system. Given the profound effect this had on the global climate of the early Jurassic, I believe it is reasonable to suggest that the episodic declines in northern hemisphere palaeotemperature I invoked in my work (and suggested by Baroni et al., 2018), are linked to variability in the rate of carbon dioxide injection. My purpose with this work is not to argue for or against any of the many suggested pathways for ¹²C injection into the earth surface system during the T-OAE, only to suggest that the primary mechanism(s) for the release of carbon dioxide experienced fluctuations in its intensity through the CIE interval. Regrettably, my study of the shell pavements exceeds the maximum resolution that can be geochemically analysed with acceptable precision, due the frequent occurrence of cryptic hiatal surfaces in the surrounding lithology, and possibly on the pavements themselves.

It can also be inferred from the model of oxygen depletion I invoked for the LSB, that the crossing of environmental thresholds (due to nutrient stimulation) can shift shallow seas vulnerable to oxygen depletion into a state of highly frequent anoxia. Many such regions in the modern ocean are predicted to suffer prolonged anoxia as global temperatures rise, and surface runoff and nitrate loading of river catchment systems increases (Sinha *et al.*, 2017). Modelling by Conley *et al.* (2009) predicts that (due to reduced O_2 solubility) a 4°C rise in SST by the end of the century will lead to a doubling in the area of the seafloor of the Danish Straits exposed to "hypoxia". The age model adopted here implies that these frequently anoxic states demonstrate hysteresis-like behaviour and can persist for a timescale on the order of 10^{3-4} years. This further highlights the vulnerability of coastal marine ecosystems to anthropogenic activity, and emphasises the need for appropriate safeguarding and mitigation of

ecosystem-related impacts (Breitburg et al., 2018). Given the position of the LSB during the P. paltum subzone (at the top of the Pliensbachian-aged Cleveland Ironstone Formation), and the concomitant (possibly carbon-cycle influenced) $\delta^{13}C_{\text{Org}}$ excursion (Littler *et al.*, 2010), it is possible that it is coeval with the PI-To boundary in the Cleveland Basin. Given the similarity of the PI-To event to modern climate change (both are concomitant with a relatively short duration of carbon emission, but at a high rate; cf. Clapham & Renne, 2019 – their Fig.6), my research is of potential relevance to the study of modern environments. Specifically, I showed how benthic environments repeatedly exposed to dysoxia become inamicable to an increasing number of organisms, the more frequently the exposure occurs. My models for the formation of the LSB and the shell pavements show how even relatively brief periods of reoxygenation, driven by improvements in hydrographic connectivity and current intensity, can provide an opportunity for the partial recovery of benthic communities. However, only a few groups of highly specialised organisms can exploit these reestablished niches as they form, and are usually unable to act as ecosystem engineers, especially if the return to dysoxic conditions is very brief. In the Cleveland Basin, despite the intermittent occurrence of shell pavement and Chondrites trace-makers throughout the Mulgrave Shale Member, full ecosystem recovery did not start until the Dumortieria pseudoradiosa zone (Atkinson et al., 2022). This was probably driven by the colonisation of the sediment by infaunal bivalves such as Dacryomya ovum (Caswell & Dawn, 2019), which could rework the sediment more extensively, and lead to deeper oxygen penetration than *Chondrites* trace-makers could. This might mean that modern shallow marine ecosystems, in addition to being greatly disturbed by the occurrence of dysoxia, may take thousands of years to recover to a state of biodiversity comparable to before the initial oxygen depletion, with the species composition of the environment often being radically different.

In closing, my study of the LSB has shown that it represents a period of highly frequent anoxia, triggered by a nutrient pulse into a restricted system, and my study of the shell pavements suggests that episodic ventilation of the Cleveland Basin during the T-OAE was linked to interannual variability in the lower Toarcian climate. A careful and critical examination of high-resolution, multiproxy datasets, while bearing in mind the dynamic nature of deposition in shallow marine environments, is the key to the reconciliation of palaeontology and geochemistry, in the solving of oceanic anoxic event conundrums.

Appendix 1 – References

Ærtebjerg, G., Carstensen, J., Axe, P., Duron, J.-N. and Stips, A. 2003. Helsinki Commission.

- Adegoke, A.K., Sarki Yandoka, B.M., Abdullah, W.H. and Akaegbobi, I.M. 2014. Molecular geochemical evaluation of late cretaceous sediments from Chad (Bornu) basin, Ne Nigeria: Implications for paleodepositional conditions, source input and thermal maturation. *Arabian Journal of Geosciences*. 8(3),pp.1591–1609.
- Adelson, J.M., Helz, G.R. and Miller, C.V. 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay Sediments. *Geochimica et Cosmochimica Acta*. 65(2),pp.237–252.
- Agbi, I., Ozibo, B. and Newton, R.J. 2015. Pyrite framboid size distribution of the Grey Shales (Yorkshire UK) as an indication of redox conditions. *IOSR Journal of Applied Geology and Geophysics*. 3(5),pp.36–42.
- Ait-Itto, F.-Z., Martinez, M., Price, G.D. and Ait Addi, A. 2018. Synchronization of the astronomical time scales in the early Toarcian: A link between anoxia, carbon-cycle perturbation, mass extinction and volcanism. *Earth and Planetary Science Letters*.
 493,pp.1–11.
- Alcott, L.J., Krause, A.J., Hammarlund, E.U., Bjerrum, C.J., Scholz, F., Xiong, Y., Hobson,
 A.J., Neve, L., Mills, B.J., März, C., Schnetger, B., Bekker, A. and Poulton, S.W. 2020.
 Development of iron speciation reference materials for palaeoredox analysis. *Geostandards and Geoanalytical Research.* 44(3),pp.581–591.
- Algeo, T.J. and Lyons, T.W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. *Paleoceanography*. **21**(1),pp.n/a-n/a.
- Algeo, T.J. and Maynard, J.B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-Type cyclothems. *Chemical Geology*. 206(3-4),pp.289–318.

- Algeo, T.J. and Tribovillard, N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. *Chemical Geology*. **268**(3-4),pp.211–225.
- Allen, J.A. and Scheltema, R.S. 1972. The functional morphology and geographical distribution of *planktomya henseni*, a supposed neotenous pelagic bivalve1. *Journal of the Marine Biological Association of the United Kingdom*. **52**(1),pp.19–31.
- Amorim, K., Piontkivska, H., Zettler, M.L., Sokolov, E., Hinzke, T., Nair, A.M. and Sokolova, I.M. 2021. Transcriptional response of key metabolic and stress response genes of a nuculanid bivalve, Lembulus bicuspidatus from an oxygen minimum zone exposed to hypoxia-reoxygenation. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*. 256,p.110617.
- Anderson, D.M., Aubrey, D.G., Tyler, M.A. and Coats, D.W. 1982. Vertical and horizontal distributions of dinoflagellate cysts in sediments1. *Limnology and Oceanography*. 27(4),pp.757–765.
- Anderson, D.M., Taylor, C.D. and Armbrust, E.V. 1987. The effects of darkness and anaerobiosis on dinoflagellate cyst germination1,2. *Limnology and Oceanography*. 32(2),pp.340–351.
- Anderson, T.F. and Raiswell, R. 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. *American Journal of Science*. **304**(3),pp.203–233.
- Andrews, J.E. and Walton, W. 1990. Depositional environments within Middle Jurassic oyster-dominated lagoons: An integrated litho-, bio- and palynofacies study of the Duntulm Formation (great estuarine group, Inner Hebrides). *Transactions of the Royal Society of Edinburgh: Earth Sciences.* 81(1),pp.1–22.
- Anita, D.D.J. and Wood, B.A. 1977. Some aspects of the palaeoecology of the E1b zone of the Edale Shales (Namurian) in the Edale Valley, Derbyshire. *The Mercian Geologist*. 6(3),pp.179–196.
- Anon n.d. Hopanoids. *The Summons Lab*. [Online]. [Accessed 12 October 2022]. Available from: https://summons.mit.edu/biomarkers/biomarker-

classification/lipids/isoprenoids/polycyclic-isoprenoids-with-concatenated-ring-system/hopanoids/.

- Anon n.d. Paleobiology database. *paleobiodb.org*. [Online]. [Accessed 1 September 2022]. Available from: https://paleobiodb.org/navigator/.
- Armstrong, H.A. and Brasier, M.D. 2005. Microfossils 2nd ed. Oxford: Blackwell.
- Armstrong, H.A., Wagner, T., Herringshaw, L.G., Farnsworth, A.J., Lunt, D.J., Harland, M., Imber, J., Loptson, C. and Atar, E.F.L. 2016. Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. *Paleoceanography*. **31**(8),pp.1041–1053.
- Arntz, W.E. and Rumohr, H. 1986. Fluctuations of benthic macrofauna during succession and in an established community. *Meeresforschung Reports on Marine Research*.
 31(2),pp.97–114.
- Asif, M., Alexander, R., Fazeelat, T. and Pierce, K. 2009. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis. *Organic Geochemistry*. **40**(8),pp.895–901.
- Atar, E., Aplin, A.C., Lamoureux-Var, V., März, C. and Wagner, T. 2020. Sedimentation of the Kimmeridge Clay Formation in the Cleveland Basin (Yorkshire, UK). *Minerals*. 10(11),p.977.
- Atar, E., März, C., Aplin, A.C., Dellwig, O., Herringshaw, L.G., Lamoureux-Var, V., Leng, M.J., Schnetger, B. and Wagner, T. 2019. Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK. *Climate of the Past.* 15(4),pp.1581–1601.
- Atkinson, J.W., Wignall, P.B. and Page, K.N. 2020. The Hettangian–Sinemurian (Lower Jurassic) strata of Redcar, Cleveland Basin, NE England: facies and palaeoecology. *Proceedings of the Yorkshire Geological Society*. 63(2),pp.77–87.

- Baker, S.J., Hesselbo, S.P., Lenton, T.M., Duarte, L.V. and Belcher, C.M. 2017. Charcoal evidence that rising atmospheric oxygen terminated early jurassic ocean anoxia. *Nature Communications*. 8(1).
- Bam, L.C., Miller, J.A., Becker, M., De Beer, F.C. and Basson, I. 2016. The Third Ausimm International Geometallergy Conference (15th-16th June 2016) *In*: Perth, pp. 209–219.
- Bang, E., Nakrem, H.A., Little, C.T.S., Kürschner, W., Kelly, S.R.A. and Smelror, M. 2022. Palynology of Early Cretaceous (Barremian to aptian) hydrocarbon (methane) seep carbonates and associated mudstones, Wollaston Forland, Northeast Greenland. *Acta Palaeobotanica*. 62(1),pp.11–23.
- Baroni, I.R., Pohl, A., van Helmond, N.A.G.M., Papadomanolaki, N.M., Coe, A.L., Cohen, A.S., van de Schootbrugge, B., Donnadieu, Y. and Slomp, C.P. 2018. Ocean Circulation in the Toarcian (Early Jurassic): A Key Control on Deoxygenation and Carbon Burial on the European Shelf. *Paleoceanography and Paleoclimatology*. 33(9),pp.994–1012.
- Baucon, A., Bednarz, M., Dufour, S., Felletti, F., Malgesini, G., Neto de Carvalho, C., Niklas, K.J., Wehrmann, A., Batstone, R., Bernardini, F., Briguglio, A., Cabella, R., Cavalazzi, B., Ferretti, A., Zanzerl, H. and McIlroy, D. 2020. Ethology of the trace fossil Chondrites: Form, function and environment. *Earth-Science Reviews*. 202,p.102989.
- Beatty, J.T., Overmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A. and Plumley, F.G. 2005. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. *Proceedings of the National Academy of Sciences*. **102**(26),pp.9306–9310.
- Belcher, C.M., Mander, L., Rein, G., Jervis, F.X., Haworth, M., Hesselbo, S.P., Glasspool,
 I.J. and McElwain, J.C. 2010. Increased fire activity at the triassic/jurassic boundary in
 Greenland due to climate-driven floral change. *Nature Geoscience*. 3(6),pp.426–429.
- Berner, R.A. 1970. Sedimentary Pyrite Formation. *American Journal of Science*. **268**(1),pp.1–23.

- Berner, R.A. 1984. Sedimentary pyrite formation: An update. *Geochimica et Cosmochimica Acta*. **48**(4),pp.605–615.
- Bertine, K.K. and Turekian, K.K. 1973. Molybdenum in marine deposits. *Geochimica et Cosmochimica Acta*. **37**(6),pp.1415–1434.
- Bishop, A.N. and Abbott, G.D. 1995. Vitrinite reflectance and molecular geochemistry of Jurassic sediments: the influence of heating by Tertiary dykes (northwest Scotland). *Organic Geochemistry*. 22(1),pp.165–177.
- Bodin, S., Mattioli, E., Fröhlich, S., Marshall, J.D., Boutib, L., Lahsini, S. and Redfern, J.
 2010. Toarcian carbon isotope shifts and nutrient changes from the northern margin of Gondwana (high atlas, Morocco, Jurassic): Palaeoenvironmental implications. *Palaeogeography, Palaeoclimatology, Palaeoecology*. 297(2),pp.377–390.
- Bogus, K., Mertens, K.N., Lauwaert, J., Harding, I.C., Vrielinck, H., Zonneveld, K.A. and Versteegh, G.J. 2014. Differences in the chemical composition of organic-walled dinoflagellate resting cysts from phototrophic and heterotrophic dinoflagellates. *Journal of Phycology*. **50**(2),pp.254–266.
- Bonis, N.R., Ruhl, M. and Kürschner, W.M. 2010. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie's Bay, SW UK. *Journal of the Geological Society*. 167(5),pp.877–888.
- Boulila, S. and Hinnov, L.A. 2015. Comment on "Chronology of the early Toarcian Environmental Crisis in the Lorraine Sub-basin (Ne Paris Basin)" by W. Ruebsam, P.
 Münzberger, and L. Schwark [earth and planetary science letters 404 (2014) 273–282]. Earth and Planetary Science Letters. 416,pp.143–146.
- Bourbonniere, R.A. and Meyers, P.A. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. *Limnology and Oceanography*. **41**(2),pp.352–359.
- Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon,
 V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I.,
 Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A.,

Telszewski, M., Yasuhara, M. and Zhang, J. 2018. Declining oxygen in the global ocean and coastal waters. *Science*. **359**(6371),p.eaam7240.

- Briggs, D.E., Raiswell, R., Bottrell, S.H., Hatfield, D. and Bartels, C. 1996. Controls on the pyritization of exceptionally preserved fossils; an analysis of the Lower Devonian Hunsrueck slate of Germany. *American Journal of Science*. **296**(6),pp.633–663.
- Brocks, J.J. and Schaeffer, P. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640ma barney creek formation. *Geochimica et Cosmochimica Acta*. **72**(5),pp.1396–1414.
- BROOKS, J.D., GOULD, K. and SMITH, J.W. 1969. Isoprenoid Hydrocarbons in Coal and Petroleum. *Nature*. **222**(5190),pp.257–259.
- Brown, J.W. and Sorhannus, U. 2010. A Molecular Genetic Timescale for the Diversification of Autotrophic Stramenopiles (Ochrophyta): Substantive Underestimation of Putative Fossil Ages. *PLoS ONE*. 5(9),p.e12759.
- Brumsack, H.-J. 2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. 232(2-4),pp.344–361.
- Bryan, A.L., Dickson, A.J., Dowdall, F., Homoky, W.B., Porcelli, D. and Henderson, G.M. 2021. Controls on the cadmium isotope composition of modern marine sediments. *Earth and Planetary Science Letters*. 565,p.116946.
- Bühring, S.I., Sievert, S.M., Jonkers, H.M., Erterai, T., Elshahed, M.S., Krumholz, L.R. and Hinrichs, K.-U. 2011. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial Mat Systems. *Geobiology*. 9, pp. 166–179.
- Calvert, S.E. and Pedersen, T.F. 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. *Marine Geology*. **113**(1-2),pp.67–88.

- Calvert, S.E. and Pedersen, T.F. 1996. Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. *Economic Geology*. 91(1),pp.36–47.
- Calvert, S.E. and Pedersen, T.F. 2007. Chapter Fourteen: Elemental Proxies for
 Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation
 and Application *In*: C. Hillaire–Marcel and A. De Vernal, eds. *Proxies in Late Cenozoic Paleoceanography*. Developments in Marine Geology. Elsevier, pp. 567–644.

DOI: 10.1016/S1572-5480(07)01019-6

- Calvert, S.E. and Piper, D.Z. 1984. Geochemistry of ferromanganese nodules from Domes Site A, northern equatorial Pacific: Multiple diagenetic metal sources in the Deep Sea. *Geochimica et Cosmochimica Acta*. 48(10),pp.1913–1928.
- Campbell, H.J. 1985. The stratigraphic significance of the Triassic bivalves Daonella and Halobia in New Zealand and New Caledonia . *New Zealand Geological Survey Record*.
 9,pp.21–23.
- Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M. and Berner, R.A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. *Chemical Geology*. 54(1-2),pp.149–155.
- Carmichael, M.J., Inglis, G.N., Badger, M.P.S., Naafs, B.D., Behrooz, L., Remmelzwaal, S., Monteiro, F.M., Rohrssen, M., Farnsworth, A., Buss, H.L., Dickson, A.J., Valdes, P.J., Lunt, D.J. and Pancost, R.D. 2017. Hydrological and associated biogeochemical consequences of rapid global warming during the paleocene-eocene thermal maximum. *Global and Planetary Change*. **157**, pp.114–138.
- Carrie, J., Sanei, H. and Stern, G. 2012. Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils. *Organic Geochemistry*. **46**, pp.38–53.
- Caswell, B.A. and Coe, A.L. 2013. Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic deoxygenation. *Geology*. **41**(11),pp.1163–1166.

- Caswell, B.A. and Dawn, S.J. 2019. Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. **521**,pp.114–126.
- Caswell, B.A., Coe, A.L. and Cohen, A.S. 2009. New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction. *Journal of the Geological Society*. **166**(5),pp.859–872.
- Cernusak, L.A., Ubierna, N., Winter, K., Holtum, J.A., Marshall, J.D. and Farquhar, G.D. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. *New Phytologist*. **200**(4),pp.950–965.
- Chappe, B., Albrecht, P. and Michaelis, W. 1982. Polar Lipids of Archaebacteria in Sediments and Petroleums. *Science*. 217(4554),pp.65–66.
- Chen, N., Thual, S. and Stuecker, M.F. 2019. El Niño and the southern oscillation: Theory. *Reference Module in Earth Systems and Environmental Sciences*.
- Chih, C.P. and Ellington, W.R. 1983. Energy metabolism during contractile activity and environmental hypoxia in the phasic adductor muscle of the bay scallop Argopecten Irradians concentricus. *Physiological Zoology*. 56(4),pp.623–631.
- Chowns, T.M. 1968. ENVIRONMENTAL AND DIAGENETIC STUDIES OF THE CLEVELAND IRONSTONE FORMATION OF NORTH EAST YORKSHIRE.
- Clapham, M.E. and Renne, P.R. 2019. Flood Basalts and Mass Extinctions. *Annual Review of Earth and Planetary Sciences*. **47**(1),pp.275–303.
- Coates, J.D., Anderson, R.T. and Lovley, D.R. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. *Applied and Environmental Microbiology*. **62**(3),pp.1099–1101.
- Cochran, J.R., Stow, D.A.V., Stow, D.A.V. and Wetzel, A. 1990. Hemiturbidite: A New Type of Deep-Water Sediment *In: Proceedings of the Ocean Drilling Program, Scientific Results, 116.*

- Cohen, A.S., Coe, A.L., Harding, S.M. and Schwark, L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by Continental Weathering. *Geology*. **32**(2),p.157.
- Cole, J.J., Lane, J.M., Marino, R. and Howarth, R.W. 1993. Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and salt water. *Limnology and Oceanography*. **38**(1),pp.25–35.
- Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. and Duarte, C.M. 2009. Ecosystem thresholds with hypoxia. *Hydrobiologia*. **629**(1),pp.21–29.
- Conley, D.J., Carstensen, J., Ærtebjerg, G., Christensen, P.B., Dalsgaard, T., Hansen, J.L.S. and Josefson, A.B. 2007. LONG-TERM CHANGES AND IMPACTS OF HYPOXIA IN DANISH COASTAL WATERS. *Ecological Applications*. 17(sp5),pp.S165–S184.
- Conti, M.A. and Monari, S. 1992. Thin-shelled bivalves from the Jurassic Rosso Ammonitico and Calcari a Posidonia Formations of the Umbrian-Marchean Apennine (Central Italy). *PALEOPELAGOS*. 2,pp.193–213.
- Conway, E. 1949. Xxii.—the autecology of Bracken (pteridium aquilinum (L.) kuhn): The germination of the spore, and the development of the prothallus and the young sporophyte. *Proceedings of the Royal Society of Edinburgh. Section B. Biology*. 63(3),pp.325–343.
- Cornford, C., Gardner, P. and Burgess, C. 1998. Geochemical truths in large data sets. I: Geochemical screening data. *Organic Geochemistry*. **29**(1-3),pp.519–530.
- Correia, V.F., Riding, J.B., Duarte, L.V., Fernandes, P. and Pereira, Z. 2017. The palynological response to the Toarcian Oceanic Anoxic Event (Early Jurassic) at Peniche, Lusitanian Basin, western Portugal. *Marine Micropaleontology*. 137, pp.46–63.
- Crowe, S.A., Jones, C., Katsev, S., Magen, C., O'Neill, A.H., Sturm, A., Canfield, D.E., Haffner, G.D., Mucci, A., Sundby, B. and Fowle, D.A. 2008. Photoferrotrophs thrive in an Archean ocean analogue. Proceedings of the National Academy of Sciences. 105(41),pp.15938–15943.

- Crusius, J. and Thomson, J. 2000. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. *Geochimica et Cosmochimica Acta*. **64**(13),pp.2233–2242.
- Crusius, J., Calvert, S., Pedersen, T. and Sage, D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. *Earth and Planetary Science Letters*. **145**(1-4),pp.65–78.
- Czochanska, Z., Gilbert, T.D., Philp, R.P., Sheppard, C.M., Weston, R.J., Wood, T.A. and Woolhouse, A.D. 1988. Geochemical application of sterane and triterpane biomarkers to a description of oils from the Taranaki Basin in New Zealand. *Organic Geochemistry*. **12**(2),pp.123–135.
- Dahl, J.E.P., Moldowan, J.M., Teerman, S.C., McCaffrey, M.A., Sundararaman, P. and Stelting, C.E. 1994. Source rock quality determination from oil biomarkers I: A new geochemical technique. *AAPG Bulletin*. **78**(10),pp.1507–1526.
- Dahl, T.W., Siggaard-Andersen, M.-L., Schovsbo, N.H., Persson, D.O., Husted, S., Hougård, I.W., Dickson, A.J., Kjær, K. and Nielsen, A.T. 2019. Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox. *Scientific Reports*. 9(1).
- Dal Corso, J., Mietto, P., Newton, R.J., Pancost, R.D., Preto, N., Roghi, G. and Wignall, P.B.
 2012. Discovery of a major negative 13C spike in the Carnian (late triassic) linked to the eruption of Wrangellia Flood Basalts. *Geology*. 40(1),pp.79–82.
- Dall, W.H. 1908. The Mollusca and the Brachiopoda In: Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of the Alexander Agassiz, by the U.S. fish commission steamer "Albatross", from October, 1904, to March 1905, Lieit. Commander L. M. Garrett, U.S.C.N commanding. Boston, Massachusetts: Bulletin of the Museum of Comparative Zoology at Harvard Collage, pp. 372–373.
- Dando, P.R. and Southward, A.J. 1986. Chemoautotrophy in Bivalve Molluscs of the Genus Thyasira. *Journal of the Marine Biological Association of the United Kingdom*. 66(4),pp.915–929.

- Danise, S., Twitchett, R.J., Little, C.T.S. and Clémence, M.-E. 2013. The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic). *PLoS ONE*. 8(2),p.e56255.
- De Graaf, W., Damsté, J.S.S. and de Leeuw, J.W. 1992. Laboratory simulation of natural sulphurization: I. Formation of monomeric and oligomeric isoprenoid polysulphides by low-temperature reactions of inorganic polysulphides with phytol and phytadienes. *Geochimica et Cosmochimica Acta*. 56(12),pp.4321–4328.
- Deer, W.A., Howie, R.A. and Zussman, J. (2013) *An introduction to the rock-forming minerals*. London: Mineralogical Society of Great Britain & Ireland.
- Dekov, V.M., Maynard, J.B., Kamenov, G.D., Rouxel, O., Lalonde, S. and Juranov, S. 2020.
 Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): Insights from C,
 O, Fe, Sr, Nd, and Pb isotopes. *Ore Geology Reviews*. **122**, p.103550.
- Del Piero, N., Rigaud, S., Takahashi, S., Poulton, S.W. and Martini, R. 2020. Unravelling the paleoecology of flat clams: New insights from an Upper Triassic halobiid bivalve. *Global and Planetary Change*. **190**, p.103195.
- Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J.-F., Pellenard, P., Joachimski, M.M. and Durlet, C. 2011. Climatic ups and downs in a disturbed jurassic world. *Geology*. **39**(3),pp.215–218.
- Diaz, R.J. and Rosenberg, R. 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Science. 321(5891),pp.926–929.
- Dickinson, W.R. 1988. Provenance and Sediment Dispersal in Relation to Paleotectonics and Paleogeography of Sedimentary Basins In: K. L. Kleinspehn and C. Paola, eds. New Perspectives in Basin Analysis. New York: Springer, pp. 3–25.
- Doyle, P. and Whitham, A.G. 1991. Palaeoenvironments of the Nordenskjöld Formation: an Antarctic Late Jurassic-Early Cretaceous black shale-tuff sequence In: Geological Society, London, Special Publications Volume 58: Modern and Ancient Continental Shelf Anoxia. Geological Society of London Special Publications. London: The Geological Society, pp. 397–414.

- Dubilier, N., Bergin, C. and Lott, C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. *Nature Reviews Microbiology*. **6**(10),pp.725–740.
- Duff, K.L. 1975. Palaeoecology of a bituminous shale the Lower Oxford Clay of central England. *Palaeontology*. 18(3),pp.443–482.
- Dufour, S.C. and Felbeck, H. 2003. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. *Nature*. **426**(6962),pp.65–67.
- Dumas, S., Arnott, R.W.C. and Southard, J.B. 2005. Experiments on Oscillatory-Flow and Combined-Flow Bed Forms: Implications for Interpreting Parts of the Shallow-Marine Sedimentary Record. *Journal of Sedimentary Research*. **75**(3),pp.501–513.
- Dypvik, H. and Harris, N.B. 2001. Geochemical facies analysis of fine-grained siliciclastics using th/u, Zr/Rb and (Zr+RB)/Sr ratios. *Chemical Geology*. **181**(1-4),pp.131–146.
- Einsele, G., Seilacher, A. and Kauffman, E.G. 1988. The Community Structure of "Shell Islands" on Oxygen Depleted Substrates in Mesozoic Dark Shales and Laminated Carbonates (Abstract) *In: Cyclic and Event Stratification*. New York: Springer-Verlang, pp. 502–503.
- Erickson, B.E. and Helz, G.R. 2000. Molybdenum(VI) speciation in Sulfidic Waters: *Geochimica et Cosmochimica Acta*. **64**(7),pp.1149–1158.
- Etheridge, S.M. 2010. Paralytic shellfish poisoning: Seafood Safety and human health perspectives. *Toxicon*. **56**(2),pp.108–122.
- Farrell, Ú.C., Martin, M.J., Hagadorn, J.W., Whiteley, T. and Briggs, D.E.G. 2009. Beyond Beecher's trilobite bed: Widespread pyritization of soft tissues in the late ordovician taconic foreland basin. *Geology*. **37**(10),pp.907–910.
- Feeley, K.J., Bravo-Avila, C., Fadrique, B., Perez, T.M. and Zuleta, D. 2020. Climate-driven changes in the composition of New World Plant Communities. *Nature Climate Change*. 10(10),pp.965–970.

- Fernex, F., Février, G., Bénaïm, J. and Arnoux, A. 1992. Copper, lead and zinc trapping in Mediterranean deep-sea sediments: probable coprecipitation with Mn and Fe. *Chemical Geology*. 98(3-4),pp.293–306.
- Fox, C.P., Cui, X., Whiteside, J.H., Olsen, P.E., Summons, R.E. and Grice, K. 2020. Molecular and isotopic evidence reveals the end-triassic carbon isotope excursion is not from massive exogenous light carbon. *Proceedings of the National Academy of Sciences.* **117**(48),pp.30171–30178.
- French, K.L., Birdwell, J.E. and Whidden, K.J. 2019. Geochemistry of a thermally immature Eagle Ford Group drill core in central Texas. *Organic Geochemistry*. **131**,pp.19–33.
- French, K.L., Sepúlveda, J., Trabucho-Alexandre, J., Gröcke, D.R. and Summons, R.E. 2014. Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. *Earth and Planetary Science Letters*. **390**, pp.116–127.
- Fustic, M., Nair, R., Wetzel, A., Siddiqui, R., Matthews, W., Wust, R., Bringue, M. and Radovic, J. 2021. Bioturbation, heavy mineral concentration, and high gamma-ray activity in the Lower Cretaceous McMurray Formation, Canada. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. **564**,p.110187.
- Galic, N., Hawkins, T. and Forbes, V.E. 2019. Adverse impacts of hypoxia on aquatic invertebrates: A meta-analysis. *Science of The Total Environment*. **652**,pp.736–743.
- Ghadeer, S.G. and Macquaker, J.H.S. 2011. Sediment transport processes in an ancient muddominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. *Journal of the Geological Society*. **168**(5),pp.1121– 1132.
- Ghadeer, S.G. and Macquaker, J.H.S. 2012. The role of event beds in the preservation of organic carbon in fine-grained sediments: Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England. *Marine and Petroleum Geology*.
 35(1),pp.309–320.

- Giger, W., Schaffner, C. and Wakeham, S.G. 1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland. *Geochimica et Cosmochimica Acta*. 44(1),pp.119–129.
- Giner, J.L. and Djerassi, C. 1991. Biosynthetic studies of marine lipids. 31. Evidence for a protonated cyclopropyl intermediate in the biosynthesis of 24-propylidenecholesterol. *Journal of the American Chemical Society*. **113**(4),pp.1386–1393.
- Goldring, R., Pollard, J.E. and Taylor, A.M. 1991. Anconichnus horizontalis: A Pervasive Ichnofabric-Forming Trace Fossil in Post-Paleozoic Offshore Siliciclastic Facies. *PALAIOS*. 6(3),pp.250–263.
- González, M.A. 2015. Aromatic abietane diterpenoids: Their biological activity and synthesis. *Natural Product Reports*. **32**(5),pp.684–704.
- Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J.A. and Chiessi, C.M. 2012. Distribution of major elements in Atlantic surface sediments (36°N-49°S): Imprint of Terrigenous Input and Continental Weathering. *Geochemistry, Geophysics, Geosystems.* 13(1).
- Grabenstatter, J., Méhay, S., McIntyre-Wressnig, A., Giner, J.-L., Edgcomb, V.P., Beaudoin, D.J., Bernhard, J.M. and Summons, R.E. 2013. Identification of 24-n-propylidenecholesterol in a member of the Foraminifera. *Organic Geochemistry*.
 63,pp.145–151.
- Grantham, P.J. 1986. The occurence of unusual C27 and C29 Sterane predominances in two types of Oman Crude Oil. *Organic Geochemistry*. **9**(1),pp.1–10.
- Grantham, P.J. and Wakefield, L.L. 1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. *Organic Geochemistry*. **12**(1),pp.61–73.
- Grice, K. and Eiserbeck, C. 2014. 12.3 The Analysis and Application of Biomarkers In: P. G. Falkowski, K. H. Freeman, H. D. Holland and K. K. Turekin, eds. Volume 12: Organic Geochemistry. Treatise on Geochemistry. Elsevier, pp. 47–78.

DOI: https://doi.org/10.1016/B978-0-08-095975-7.01006-8

- Grice, K., Schaeffer, P., Schwark, L. and Maxwell, J. 1996. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-West Germany) from free and S-bound lipids. *Organic Geochemistry*. 25(3-4),pp.131–147.
- Griffin, N.J.G. and Aken, M.E. 1993. RHYTHMIC SETTLING BEHAVIOR IN PYRAMIMONAS PARKEAE(PRASINOPHYCEAE)1. Journal of Phycology. 29(1),pp.9–15.
- Gómez, J.J., Comas-Rengifo, M.J. and Goy, A. 2016. Palaeoclimatic oscillations in the pliensbachian (early jurassic) of the Asturian Basin (Northern Spain). *Climate of the Past.* 12(5),pp.1199–1214.
- Hagerman, L. 1998. Physiological flexibility; a necessity for life in anoxic and sulphidic habitats. *Hydrobiologia*. 375/376,pp.241–254.
- Hallam, A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian—
 Hettangian and Pliensbachian—Toarcian boundaries (latest Triassic to early Jurassic). *Journal of the Geological Society*. **154**(5),pp.773–779.
- Harazim, D. and McIlroy, D. 2015. Mud-Rich Density-Driven Flows Along an Early Ordovician Storm-Dominated Shoreline: Implications for Shallow-Marine Facies Models. *Journal of Sedimentary Research*. 85(5),pp.509–528.
- Harazim, D., McIlroy, D., Edwards, N.P., Wogelius, R.A., Manning, P.L., Poduska, K.M., Layne, G.D., Sokaras, D., Alonso-Mori, R. and Bergmann, U. 2015. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone. *Geology*. **43**(11),pp.1007–1010.
- Hare, V.J., Loftus, E., Jeffrey, A. and Ramsey, C.B. 2018. Atmospheric CO2 effect on stable carbon isotope composition of Terrestrial Fossil Archives. *Nature Communications*. 9(1).

- Hautevelle, Y., Michels, R., Malartre, F. and Trouiller, A. 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/malm transition of the Paris Basin (France). *Organic Geochemistry*. **37**(5),pp.610–625.
- Hayes, J.M. 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. *Reviews in Mineralogy and Geochemistry*. **43**(1),pp.225–277.
- Hazra, B., Wood, D.A., Mani, D., Singh, P.K. and Singh, A.K. 2019. In: Evaluation of Shale Source Rocks and Reservoirs. Petroleum Engineering. Cham, Switzerland: Springer Nature, pp. 7–55.
- DOI: https://doi.org/10.1007/978-3-030-13042-8
- He, T., Wignall, P.B., Newton, R.J., Atkinson, J.W., Keeling, J.F.J., Xiong, Y. and Poulton,
 S.W. 2022. Extensive marine anoxia in the European epicontinental sea during the end-Triassic mass extinction. *Global and Planetary Change*. 210, p.103771.
- Heier, K.S. and Adams, J.A.S. 1964. The geochemistry of the alkali metals. *Physics and Chemistry of the Earth*. **5**,pp.253–381.
- Heindel, K., Foster, W.J., Richoz, S., Birgel, D., Roden, V.J., Baud, A., Brandner, R., Krystyn, L., Mohtat, T., Koşun, E., Twitchett, R.J., Reitner, J. and Peckmann, J. 2018. The formation of microbial-metazoan bioherms and biostromes following the latest Permian Mass Extinction. *Gondwana Research*. 61,pp.187–202.
- Helz, G.R. and Vorlicek, T.P. 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. *Chemical Geology*. **509**, pp.178–193.
- Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.F.W., Pattrick, R.A.D., Garner, C.D. and Vaughan, D.J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: Exafs Evidence. *Geochimica et Cosmochimica Acta*. 60(19),pp.3631–3642.
- Hendelberg, M. and Jensen, P. 1993. Vertical distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. *Ophelia*. **37**(2),pp.83–94.

- Henderson, R.A. 2004. A Mid-Cretaceous Association of Shell Beds and Organic-rich Shale: Bivalve Exploitation of a Nutrient-Rich, Anoxic Sea-floor Environment . *PALAIOS*. 19(2),pp.156–169.
- Hendrickx, M., Valentich-Scott, P. and Suárez-Mozo, N. 2016. Deep-water bivalve mollusks collected during the TALUD XV cruise off the west coast of the southern Baja California Peninsula, Mexico. *Biodiversity Data Journal*. **4**, p.e8661.
- Hesselbo, S.P. 2008. Sequence stratigraphy and inferred relative sea-level change from the onshore British jurassic. *Proceedings of the Geologists' Association*. **119**(1),pp.19–34.
- Hesselbo, S.P. and Jenkyns, H.C. 1995. A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire *In*: P. D. Taylor, ed. *Field Geology of the British Jurassic*. London: The Geological Society, pp. 105–150.
- Hesselbo, S.P., Gröcke, D.R., Jenkyns, H.C., Bjerrum, C.J., Farrimond, P., Morgans Bell, H.S. and Green, O.R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. *Nature*. **406**(6794),pp.392–395.
- Hesselbo, S.P., Jenkyns, H.C., Duarte, L.V. and Oliveira, L.C.V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). *Earth and Planetary Science Letters*. 253(3-4),pp.455–470.
- Hesselbo, S.P. and Pieńkowski, G. (2011) 'Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic anoxic event (early jurassic, polish basin)', *Earth and Planetary Science Letters*, 301(1–2), pp. 365–372. doi:10.1016/j.epsl.2010.11.021.
- Hesselbo, S.P., Little, C.T.S., Ruhl, M., Thibault, N. and Ullmann, C.V. 2020. Comments on "Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK)" by Remirez, M. N. and Algeo, T. J. *Earth-Science Reviews.* 208,p.103290.
- Heusser, L. and Balsam, W.L. 1977. Pollen distribution in the Northeast Pacific Ocean. *Quaternary Research*. **7**(1),pp.45–62.

- Hillaire–Marcel, C., De Vernal, A., Calvert, S.E. and Pedersen, T.F. 2007. Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:
 Interpretation and Application *In: Developments in Marine Geology 1: Proxies in Late Cenozoic Paleoceanography*. Elsevier, pp. 597–644.
- Hollaar, T.P., Hesselbo, S.P., Deconinck, J.-F., Damaschke, M., Ullmann, C.V., Jiang, M. and Belcher, C.M. 2023. Environmental changes during the onset of the late Pliensbachian event (early jurassic) in the Cardigan Bay Basin, Wales. *Climate of the Past.* 19(5),pp.979–997.
- Hollingworth, N.T.J. and Wignall, P.B. 1992. The callovian-oxfordian boundary in Oxfordshire and Wiltshire based on two new temporary sections. *Proceedings of the Geologists' Association*. **103**(1),pp.15–30.
- Hopkins, J.S. 1950. Differential Flotation and Deposition of Coniferous and Deciduous Tree Pollen. *Ecology*. **31**(4),pp.633–641.
- Howard, A.S. 1984. Palaeoecology, sedimentology and depositional environments of the middle lias of North Yorkshire.
- Howard, A.S. 1985. Lithostratigraphy of the Staithes Sandstone and Cleveland Ironstone formations (Lower Jurassic) of north-east Yorkshire. *Proceedings of the Yorkshire Geological Society*. 45(4),pp.261–275.
- Howarth, M.K. 1955. DOMERIAN OF THE YORKSHIRE COAST. Proceedings of the Yorkshire Geological Society. **30**(2),pp.147–175.
- Howarth, M.K. 1962. THE JET ROCK SERIES AND THE ALUM SHALE SERIES OF THE YORKSHIRE COAST. Proceedings of the Yorkshire Geological Society. 33(4),pp.381–422.
- Howarth, M.K. 1973. The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire coast. *Bulletin of the British Museum (Natural History): Geology*. 24(4),pp.237–277.

- Huang, C. and Hesselbo, S.P. 2014. Pacing of the toarcian oceanic anoxic event (early jurassic) from astronomical correlation of marine sections. *Gondwana Research*. 25(4),pp.1348–1356.
- Huang, W.-Y. and Meinschein, W.G. 1979. Sterols as ecological indicators. *Geochimica et Cosmochimica Acta*. **43**(5),pp.739–745.
- Huckriede, H. and Meischner, D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. *Geochimica et Cosmochimica Acta*. **60**(8),pp.1399–1413.
- Hudson, J.D., Clements, R.G., Riding, J.B., Wakefield, M.I. and Walton, W. 1995. Jurassic paleosalinities and brackish-water communities: A case study. *PALAIOS*. **10**(5),p.392.
- Huerta-Diaz, M.A. and Morse, J.W. 1992. Pyritization of trace metals in anoxic marine sediments. *Geochimica et Cosmochimica Acta*. **56**(7),pp.2681–2702.
- Hughes, W.B., Holba, A.G. and Dzou, L.I.P. 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. *Geochimica et Cosmochimica Acta*. 59(17),pp.3581–3598.
- Izumi, K., Kemp, D.B., Itamiya, S. and Inui, M. 2018. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian Oceanic anoxic event. *Earth and Planetary Science Letters*. **481**,pp.162–170.
- Jaraula, C.M.B., Grice, K., Twitchett, R.J., Böttcher, M.E., LeMetayer, P., Dastidar, A.G. and Opazo, L.F. 2013. Elevated PCO2 leading to late triassic extinction, persistent photic zone euxinia, and rising sea levels. *Geology*. 41(9),pp.955–958.
- Jefferies, R.P.S. and Minton, P. 1965. The mode of life of two Jurassic species of 'Posidonia' (Bivalvia). *Palaeontology*. **8**(1),pp.156–185.
- Jeffree, C.E. 2006. The fine structure of the plant cuticle *In*: M. Riederer and C. Müller, eds. *Biology of the Plant Cuticle*. Annual Plant Reviews. Oxford: Blackwell, pp. 11–110.
- Jenkyns, H.C. 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. *American Journal of Science*. **288**(2),pp.101–151.

- Jenkyns, H.C. 2010. Geochemistry of oceanic anoxic events. *Geochemistry, Geophysics, Geosystems*. **11**(3),pp.n/a-n/a.
- Jenkyns, H.C., Géczy, B. and Marshall, J.D. 1991. Jurassic Manganese Carbonates of Central Europe and the Early Toarcian Anoxic Event. *The Journal of Geology*. 99(2),pp.137– 149.
- Jiang, C., Alexander, R., Kagi, R.I. and Murray, A.P. 1998. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate. *Organic Geochemistry*. 29(5-7),pp.1721–1735.
- John, C.M., Banerjee, N.R., Longstaffe, F.J., Sica, C., Law, K.R. and Zachos, J.C. 2012. Clay assemblage and oxygen isotopic constraints on the weathering response to the paleocene-eocene thermal maximum, East Coast of North America. *Geology*. 40(7),pp.591–594.
- Jones, D.L. 1993. Cycads of the world. Washington, D.C.: Smithsonian Institution Press.
- Jørgensen, B.B. 1980. Seasonal Oxygen Depletion in the Bottom Waters of a Danish Fjord and Its Effect on the Benthic Community. *Oikos*. **34**(1),p.68.
- Kasprak, A.H., Sepúlveda, J., Price-Waldman, R., Williford, K.H., Schoepfer, S.D., Haggart, J.W., Ward, P.D., Summons, R.E. and Whiteside, J.H. 2015. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-triassic extinction. *Geology*. 43(4),pp.307–310.
- Kauffman, E.G. 1978. Benthic environments and palaeoecology of the Posidonienschiefer (Toarcian). *Neues Jahrbuch für Geologie und Paläontologie Abhandlungen*. 157,pp.18–36.
- Kauffman, E.G. 1982. The community structure of "shell islands" on oxygen depleted substrates in Mesozoic dark shales and laminated carbonates (abstract) *In*: G. Einsele and A. Seilacher, eds. *Cyclic and Event Stratification*. Berlin Heidelberg New York: Springer-Verlag, pp. 502–503.

- Kemp, D.B., Coe, A.L., Cohen, A.S. and Schwark, L. 2005. Erratum: Astronomical pacing of methane release in the Early Jurassic period. *Nature*. 438(7068),pp.696–696.
- Kemp, D.B., Coe, A.L., Cohen, A.S. and Weedon, G.P. 2011. Astronomical forcing and chronology of the early toarcian (early 325urassic) oceanic anoxic event in Yorkshire, UK. Paleoceanography. 26(4).
- Kemp, D.B., Fraser, W.T. and Izumi, K. 2018. Stratigraphic completeness and resolution in an ancient Mudrock succession. *Sedimentology*. 65(6),pp.1875–1890.
- Killops, S.D. 1991. Novel aromatic hydrocarbons of probable bacterial origin in a Jurassic lacustrine sequence. *Organic Geochemistry*. **17**(1),pp.25–36.
- Kleinspehn, K.L., Paola, C. and Dickinson, W.R. 1988. Provenance and Sediment Dispersal in Relation to Paleotectonics and Paleogeography of Sedimentary Basins *In: New Perspectives in Basin Analysis*. New York: Springer-Verlag, pp. 3–25.
- Klinkhammer, G.P. and Bender, M.L. 1980. The Distribution of Manganese in the Pacific Ocean. *Earth and Planetary Science Letters*. **46**,pp.361–384.
- Klinkhammer, G.P. and Palmer, M.R. 1991. Uranium in the oceans: Where it goes and why. *Geochimica et Cosmochimica Acta*. **55**(7),pp.1799–1806.
- Kodner, R.B., Pearson, A., Summons, R.E. and Knoll, A.H. 2008. Sterols in red and green algae: Quantification, phylogeny, and relevance for the interpretation of geologic steranes. *Geobiology*. 6(4),pp.411–420.
- Kohn, M.J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. *Proceedings of the National Academy of Sciences*. 107(46),pp.19691–19695.
- Kong, X., Jiang, Z., Han, C. and Zhang, R. 2020. Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, Northern China. *International Journal of Coal Geology*. 217,p.103350.
- Koopmans, M.P., Köster, J., Van Kaam-Peters, H.M.E., Kenig, F., Schouten, S., Hartgers, W.A., de Leeuw, J.W. and Sinninghe Damsté, J.S. 1996. Diagenetic and catagenetic

products of Isorenieratene: Molecular Indicators for Photic Zone Anoxia. *Geochimica et Cosmochimica Acta*. **60**(22),pp.4467–4496.

- Koopmans, M.P., Rijpstra, W.I.C., Klapwijk, M.M., de Leeuw, J.W., Lewan, M.D. and Sinninghe Damsté, J.S. 1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. *Organic Geochemistry*. 30(9),pp.1089–1104.
- Koppelhus, E.B. and Dam, G. 2003. Palynostratigraphy and palaeoenvironments of the RÆVEKLØFT, Gule Horn and OSTREAELV formations (lower–middle jurassic), Neill Klinter Group, Jameson Land, East Greenland. *Geological Survey of Denmark and Greenland Bulletin.* 1,pp.723–775.
- Korte, C. and Hesselbo, S.P. 2011. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the early jurassic. *Paleoceanography*. 26(4).
- Korte, C., Hesselbo, S.P., Ullmann, C.V., Dietl, G., Ruhl, M., Schweigert, G. and Thibault, N. 2015. Jurassic climate mode governed by Ocean Gateway. *Nature Communications*. 6(1).
- Krügel, H., Krubasik, P., Weber, K., Saluz, H.P. and Sandmann, G. 1999. Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. *Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids*. 1439(1),pp.57–64.
- Köster, J., Van Kaam-Peters, H.M.E., Koopmans, M.P., De Leeuw, J.W. and Sinninghe Damsté, J.S. 1997. Sulphurisation of homohopanoids: Effects on carbon number distribution, speciation, and epimer ratios. *Geochimica et Cosmochimica Acta*. 61(12),pp.2431–2452.
- Küspert, W. 1982. Environmental Changes During Oil Shale Deposition as Deduced from Stable Isotope Ratios *In*: G. Einsele and A. Seilacher, eds. *Cyclic and Event Stratification*. Berlin Heidelburg New York: Springer-Verlag, pp. 482–501.

- Laffoley, D., Baxter, J.M., Pitcher, G.C. and Jacinto, G.S. 2019. Ocean deoxygenation links to harmful algal blooms *In: Ocean deoxygenation: Everyone's problem*. Gland, Switzerland: IUCN, pp. 137–153.
- Lam, P. and Kuypers, M.M.M. 2011. Microbial Nitrogen Cycling Processes in Oxygen Minimum Zones. Annual Review of Marine Science. 3(1),pp.317–345.
- Lange, I.M., Reynolds, R.C. and Lyons, J.B. 1966. K/Rb ratios in coexisting K-feldspars and biotites from some New England granites and metasediments. *Chemical Geology*. 1,pp.317–322.
- Lehndorff, E. and Schwark, L. 2004. Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—Part II: polycyclic aromatic hydrocarbons (PAH). *Atmospheric Environment*. **38**(23),pp.3793–3808.
- Lehndorff, E. and Schwark, L. 2009. Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation I: Temporal accumulation patterns. *Environmental Pollution*. **157**(4),pp.1323–1331.
- Levin, L. 2002. Deep-Ocean Life Where Oxygen Is Scarce. American Scientist. 90(5),p.436.
- Lewis, J. 1988. Cysts and sediments: Gonyaulax polyedra (Lingulodinium machaerophorum) in Loch Creran. *Journal of the Marine Biological Association of the United Kingdom*.
 68,pp.701–714.
- Li, M., Larter, S.R., Taylor, P., Jones, D.M., Bowler, B. and Bjorøy, M. 1995. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols. *Organic Geochemistry*. 23(2),pp.159–167.
- Li, M., Lee, Y.J., Testa, J.M., Li, Y., Ni, W., Kemp, W.M. and Di Toro, D.M. 2016. What drives interannual variability of hypoxia in Chesapeake Bay: Climate forcing versus nutrient loading? *Geophysical Research Letters*. **43**(5),pp.2127–2134.
- Li, S., Wignall, P.B., Poulton, S.W., Hedhli, M. and Grasby, S.E. 2022. Carbonate shutdown, phosphogenesis and the variable style of marine anoxia in the late Famennian (Late

Devonian) in western Laurentia. *Palaeogeography, Palaeoclimatology, Palaeoecology*. **589**,p.110835.

- Liaaen-Jensen, S., Renstrøm, B., Ramdahl, T., Hallenstvet, M. and Bergquist, P. 1982. Carotenoids of marine sponges. *Biochemical Systematics and Ecology*. 10(2),pp.167– 174.
- Litchman, E., Klausmeier, C.A., Miller, J.R., Schofield, O.M. and Falkowski, P.G. 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. *Biogeosciences*. 3(4),pp.585–606.
- Little, C.T.S. 1995. The Pliensbachian-Toarcian (Lower Jurassic) extinction event.
- Little, C.T.S. and Benton, M.J. 1995. Early Jurassic mass extinction: A global long-term event. *Geology*. **23**(6),p.495.
- Littler, K., Hesselbo, S.P. and Jenkyns, H.C. 2010. A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England. *Geological Magazine*. 147(2),pp.181–192.
- Liu, F., Peng, H., Bomfleur, B., Kerp, H., Zhu, H. and Shen, S. 2020. Palynology and vegetation dynamics across the Permian–triassic boundary in Southern Tibet. *Earth-Science Reviews*. 209, p.103278.
- Lu, P., Nuhfer, N.T., Kelly, S., Li, Q., Konishi, H., Elswick, E. and Zhu, C. 2011. Lead coprecipitation with iron oxyhydroxide nano-particles. *Geochimica et Cosmochimica Acta*. **75**(16),pp.4547–4561.
- Lyons, T.W. and Severmann, S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. *Geochimica et Cosmochimica Acta*. **70**(23),pp.5698–5722.
- Ma, J., French, K.L., Cui, X., Bryant, D.A. and Summons, R.E. 2021. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. *Proceedings of the National Academy of Sciences*. 118(29).

- MacLeod, K.G. and Orr, W.N. 1993. The taphonomy of Maastrichtian inoceramids in the Basque region of France and Spain and the pattern of their decline and disappearance. *Paleobiology*. **19**(2),pp.235–250.
- MacQuaker, J.H.S., Keller, M.A. and Davies, S.J. 2010. Algal Blooms and "Marine Snow": Mechanisms That Enhance Preservation of Organic Carbon in Ancient Fine-Grained Sediments. *Journal of Sedimentary Research*. 80(11),pp.934–942.
- MacRae, R.A., Fensome, R.A. and Williams, G.L. 1996. Fossil dinoflagellate diversity, originations, and extinctions and their significance. *Canadian Journal of Botany*. 74(11),pp.1687–1694.
- Marynowski, L., Szełęg, E., Jędrysek, M.O. and Simoneit, B.R.T. 2011. Effects of weathering on organic matter Part II: Fossil wood weathering and implications for organic geochemical and petrographic studies. *Organic Geochemistry*. 42(9),pp.1076– 1088.
- Mathews, R.P., Singh, B.D., Singh, V.P., Singh, A., Singh, H., Shivanna, M., Dutta, S., Mendhe, V.A. and Chetia, R. 2020. Organo-petrographic and geochemical characteristics of gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. *Geoscience Frontiers*. 11(3),pp.965–988.
- Matthewson, A.P., Shimmield, G.B., Kroon, D. and Fallick, A.E. 1995. A 300 kyr highresolution aridity record of the North African continent. *Paleoceanography*. 10(3),pp.677–692.
- Maynard, J.B. 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. *Economic Geology*. 105(3),pp.535–552.
- McArthur, J.M. 2019. Early Toarcian black shales: A response to an oceanic anoxic event or anoxia in marginal basins? *Chemical Geology*. **522**,pp.71–83.

- McArthur, J.M., Algeo, T.J., van de Schootbrugge, B., Li, Q. and Howarth, R.J. 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. *Paleoceanography*. **23**(4),pp.n/a-n/a.
- McArthur, J.M., Donovan, D.T., Thirlwall, M.F., Fouke, B.W. and Mattey, D. 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. *Earth and Planetary Science Letters*. **179**(2),pp.269–285.
- McElwain, J.C., Wade-Murphy, J. and Hesselbo, S.P. 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. *Nature*. 435(7041),pp.479–482.
- McInerney, F.A. and Wing, S.L. 2011. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. *Annual Review of Earth and Planetary Sciences*. **39**(1),pp.489–516.
- McManus, J., Berelson, W.M., Klinkhammer, G.P., Hammond, D.E. and Holm, C. 2005. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. *Geochimica et Cosmochimica Acta*. **69**(1),pp.95–108.
- McRoberts, C.A. and Stanley, G.D. 1989. A unique bivalve–algae life assemblage from the Bear Gulch Limestone (Upper Mississippian) of Central Montana. *Journal of Paleontology*. 63(5),pp.578–581.
- Merian, E., Anke, M., Ihnat, M., Stoeppler, M. and Wedepohl, K.H. 2004. The Composition of Earth's Upper Crust, Natural Cycles of Elements, Natural Resources In: Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance. Weinheim: WILEY-VCH Verlag GmbH & Co., pp. 3–16.
- Mermoud, F., Gülaçar, F.O. and Buchs, A. 1985. 5α(H)-cholestan-3α-ol in sediments:
 Characterization and geochemical significance. *Geochimica et Cosmochimica Acta*.
 49(2),pp.459–462.

- Morford, J.L., Russell, A.D. and Emerson, S. 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. *Marine Geology*. **174**(1-4),pp.355–369.
- Mudie, P.J. 1982. Pollen distribution in recent marine sediments, Eastern Canada. *Canadian Journal of Earth Sciences*. **19**(4),pp.729–747.
- Muller, J. 1959. Palynology of Recent Orinoco Delta and Shelf Sediments: Reports of the Orinoco Shelf Expedition; Volume 5. *Micropaleontology*. 5(1),pp.1–32.
- Muramoto, J.A., Honjo, S., Fry, B., Hay, B.J., Howarth, R.W. and Cisne, J.L. 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes. *Deep Sea Research Part A. Oceanographic Research Papers*. 38.
- März, C., Poulton, S.W., Beckmann, B., Küster, K., Wagner, T. and Kasten, S. 2008. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. *Geochimica et Cosmochimica Acta*. 72(15),pp.3703–3717.
- März, C., Schnetger, B. and Brumsack, H.-J. 2010. Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry. *Paleoceanography*. 25(3).
- März, C., Vogt, C., Schnetger, B. and Brumsack, H.-J. 2011. Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the Central Arctic Ocean (IODP Expedition 302). *Earth and Planetary Science Letters*. **310**(3-4),pp.526–537.
- Naimo, D., Adamo, P., Imperato, M. and Stanzione, D. 2005. Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy. *Quaternary International*. 140-141, pp.53–63.
- Newell, A.J., Vane, C.H., Sorensen, J.P.R., Moss-Hayes, V. and Gooddy, D.C. 2016. Longterm Holocene groundwater fluctuations in a chalk catchment: evidence from Rock-Eval pyrolysis of riparian peats. *Hydrological Processes*. **30**(24),pp.4556–4567.

- Newton, R.J. 2001. The Characterisation of Depositional Environments Using Fe, S and C Geochemistry.
- O'Brien, N.R. 1990. Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain. *Sedimentary Geology*. **67**(1-2),pp.25–34.
- Ogg, J.G., Ogg, G.M. and Gradstein, F.M. 2016. A Concise Geologic Time Scale. Elsevier.
- OLIVER, P.G. 2001. FUNCTIONAL MORPHOLOGY AND DESCRIPTION OF A NEW SPECIES OF AMYGDALUM (MYTILOIDEA) FROM THE OXYGEN MINIMUM ZONE OF THE ARABIAN SEA. *Journal Molluscan Studies*. **67**(2),pp.225–241.
- Oschmann, W. 1988. Kimmeridge clay sedimentation A new cyclic model. Palaeogeography, Palaeoclimatology, Palaeoecology. **65**(3-4),pp.217–251.
- OSCHMANN, W. 1993. Environmental oxygen fluctuations and the adaptive response of marine benthic organisms. *Journal of the Geological Society*. **150**(1),pp.187–191.
- Overmann , J. 2006. Chapter 5.1: The Family Chlorobiaceae *In*: M. Dworkin, S. Falkow, E. Rosenburg, K.-H. Schleifer and E. Stackebrandt, eds. *The Prokaryotes*. New York: Springer, pp. 359–378.
- Overnell, J., Brand, T., Bourgeois, W. and Statham, P.J. 2002. Manganese dynamics in the water column of the upper basin of Loch Etive, a Scottish fjord. *Estuarine, Coastal and Shelf Science*. **55**(3),pp.481–492.
- Page, K.N. 1995. Biohorizons and zonules: intra-subzonal units in Jurassic ammonite stratigraphy. *Palaeontology*. 38(4),pp.801–814.
- Page, K.N. 2004. A sequence of biohorizons for the subboreal province lower Toarcian in northern Britain and their correlation with a submediterranean standard. *Rivista Italiana di Paleontologia e Stratigrafia*. **110**(1),pp.109–114.
- Pan, Y.H., Hu, S.X., Sha, J.G., Zhang, Q.Y., Wang, Y.Q., Zhou, C.Y., Wen, W., Huang, J.Y. and Xie, T. 2014. Early Triassic bivalves from the Feixianguan Formation in Xingyi, Guizhou and the Ximatang Formation in Qiubei, Yunnan (southern China). *Palaeoworld.* 23(2),pp.143–154.

- Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J.C. and Thiede, J. 1978. Late Quaternary climatic changes in western tropical Africa deduced from deep-sea sedimentation off the Niger delta . *Oceanologica Acta*. **1**(2),pp.217–232.
- Peacock, C.L. and Sherman, D.M. 2007. Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater. *Chemical Geology*. 238(1-2),pp.94–106.
- Pearce, C.R., Cohen, A.S., Coe, A.L. and Burton, K.W. 2008. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. *Geology*. **36**(3),p.231.
- Pedersen, T.F., Shimmield, G.B. and Price, N.B. 1992. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the oman margin. *Geochimica et Cosmochimica Acta*. 56(1),pp.545–551.
- Percival, L.M.E., Witt, M.L.I., Mather, T.A., Hermoso, M., Jenkyns, H.C., Hesselbo, S.P., Al-Suwaidi, A.H., Storm, M.S., Xu, W. and Ruhl, M. 2015. Globally Enhanced Mercury deposition during the end-pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. *Earth and Planetary Science Letters*. 428,pp.267–280.
- Peters, K.E. and Moldowan, J.M. 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. *Organic Geochemistry*. **17**(1),pp.47–61.
- Peters, K.E., Fraser, T.H., Amris, W., Rustanto, B. and Hermanto, E. 1999. Geochemistry of crude oils from eastern indonesia1. *AAPG Bulletin*. **83**(12),pp.1927–1942.
- Peters, K.E., Walters, C.C. and Moldowan, J.M. 2005. *The biomarker guide*. Cambridge: Cambridge University Press.
- Piasecki, S. 1986. Palynological analysis of the organic debris in the lower cretaceous jydegård formation, Bornholm, Denmark. *Grana*. **25**(2),pp.119–129.

- Pitcher, G.C. and Jacinto, G.S. 2019. 3.3 Ocean deoxygenation links to harmful algal blooms
 In: D. Laffoley and J. M. Baxter, eds. Ocean deoxygenation: Everyone's problem:
 Causes, impacts, consequences and solutions. Gland, Switzerland: IUCN, pp. 137–153.
- Plint, A.G. 2013. Mud dispersal across a Cretaceous prodelta: Storm-generated, waveenhanced sediment gravity flows inferred from mudstone microtexture and microfacies. *Sedimentology*. **61**(3),pp.609–647.
- Popp, B.N., Laws, E.A., Bidigare, R.R., Dore, J.E., Hanson, K.L. and Wakeham, S.G. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. *Geochimica et Cosmochimica Acta*. 62(1),pp.69–77.
- Poulton, S.W. 2021. The iron speciation paleoredox proxy. Cambridge University Press.
- Poulton, S.W. and Canfield, D.E. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. *Chemical Geology*. 214(3-4),pp.209–221.
- Poulton, S.W. and Canfield, D.E. 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. *Elements*. **7**(2),pp.107–112.
- Poulton, S.W. and Raiswell, R. 2002. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. *American Journal of Science*. **302**(9),pp.774–805.
- Poulton, S.W., Bottrell, S.H. and Underwood, C.J. 1998. Porewater sulphur geochemistry and fossil preservation during phosphate diagenesis in a Lower Cretaceous Shelf Mudstone. *Sedimentology*. 45(5),pp.875–887.
- Poulton, S.W., Fralick, P.W. and Canfield, D.E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. *Nature Geoscience*. **3**(7),pp.486–490.
- Poulton, S.W., Krom, M.D. and Raiswell, R. 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. *Geochimica et Cosmochimica Acta*. 68(18),pp.3703–3715.

- Powell, J.H. 1984. Lithostratigraphical nomenclature of the Lias Group in the Yorkshire Basin. *Proceedings of the Yorkshire Geological Society*. **45**(1-2),pp.51–57.
- Powell, J.H. 2010. Jurassic sedimentation in the Cleveland Basin: a review. *Proceedings of the Yorkshire Geological Society*. **58**(1),pp.21–72.
- POWELL, T.G. and McKIRDY, D.M. 1973. Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia. *Nature Physical Science*. 243(124),pp.37–39.
- Pross, J. 2001. Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate cysts. *Palaeogeography, Palaeoclimatology, Palaeoecology*. **166**(3-4),pp.369–381.
- Quan, T.M., van de Schootbrugge, B., Field, M.P., Rosenthal, Y. and Falkowski, P.G. 2008.
 Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany):
 Evidence for redox variations across the Triassic-Jurassic boundary. *Global Biogeochemical Cycles*. 22(2),pp.n/a-n/a.
- Rabalais, N., Cai, W., Carstensen, J., Conley, D., Fry, B., Hu, X., Quiñones-Rivera, Z., Rosenberg, R., Slomp, C., Turner, E., Voss, M., Wissel, B. and Zhang, J. 2014.
 Eutrophication-Driven Deoxygenation in the Coastal Ocean. *Oceanography*. 27(1),pp.172–183.
- Rabalais, N.N., Díaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang, J. 2010.
 Dynamics and distribution of natural and human-caused hypoxia. *Biogeosciences*. 7(2),pp.585–619.
- Radke, M., Welte, D.H. and Willsch, H. 1991. Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben. *Chemical Geology*. 93(3-4),pp.325–341.
- Raiswell, R. and Anderson, T.F. 2005. Reactive iron enrichment in sediments deposited beneath euxinic bottom waters: constraints on supply by shelf recycling. *Geological Society, London, Special Publications.* 248(1),pp.179–194.

- Raiswell, R. and Berner, R.A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. *American Journal of Science*. **285**(8),pp.710–724.
- Raiswell, R. and Canfield, D.E. 1998. Sources of iron for pyrite formation in marine sediments. *American Journal of Science*. **298**(3),pp.219–245.
- Raiswell, R. and Canfield, D.E. 2012. The Iron Biogeochemical Cycle Past and Present. *Geochemical Perspectives*. **1**(1),pp.1–220.
- Raiswell, R., Buckley, F., Berner, R.A. and Anderson, T.F. 1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. *Journal of Sedimentary Petrology*. 58(5),pp.812–819.
- Raiswell, R., Hardisty, D.S., Lyons, T.W., Canfield, D.E., Owens, J.D., Planavsky, N.J., Poulton, S.W. and Reinhard, C.T. 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. *American Journal of Science*. **318**(5),pp.491– 526.
- Raiswell, R., Newton, R., Bottrell, S.H., Coburn, P.M., Briggs, D.E., Bond, D.P. and Poulton, S.W. 2008. Turbidite depositional influences on the diagenesis of Beecher's trilobite bed and the Hunsruck slate; sites of soft tissue pyritization. *American Journal of Science*. 308(2),pp.105–129.
- Rees, P.M.C.A., Ziegler, A.M. and Valdes, P.J. 2000. 10 Jurassic phytogeography and climates: new data and model comparisons *In*: B. T. Huber, K. G. MacLeod and S. L. Wing, eds. *Warm Climates in Earth History*. Cambridge University Press, pp. 297–318.
- Reinhardt, M., Duda, J.-P., Blumenberg, M., Ostertag-Henning, C., Reitner, J., Heim, C. and Thiel, V. 2018. The taphonomic fate of Isorenieratene in Lower Jurassic shalescontrolled by Iron? *Geobiology*. **16**(3),pp.237–251.
- Remírez, M.N. and Algeo, T.J. 2020. Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK). *Earth-Science Reviews*. 201,p.103072.

- Remírez, M.N. and Algeo, T.J. 2020. Reply to comment on "Remírez, M.N. and Algeo, T.J., 2020. Paleosalinity determination in ancient epicontinental seas: A case study of the T-OAE in the Cleveland Basin (UK). Earth-Science Reviews, 201, 103072" by Stephen P. Hesselbo, Crispin T. S. Little, Micha Ruhl, Nicolas Thibault, and Clemens V. Ullmann. *Earth-Science Reviews*. 208,p.103291.
- RHOADS, D.O.N.A.L.D.C. and MORSE, J.O.H.N.W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. *Lethaia*. **4**(4),pp.413–428.
- Rickard, D. 2019. How long does it take a pyrite framboid to form? *Earth and Planetary Science Letters*. **513**,pp.64–68.
- Rieley, G., Collier, R.J., Jones, D.M. and Eglinton, G. 1991. The biogeochemistry of Ellesmere Lake, U.K.—I: source correlation of leaf wax inputs to the sedimentary lipid record. *Organic Geochemistry*. **17**(6),pp.901–912.
- Ritter, U. 2003. Solubility of petroleum compounds in kerogen. *Organic Geochemistry*. **34**(3),pp.319–326.
- Robert, P. and Yapaudjian, L. 1990. Early Cretaceous rift sediments of the Gabon-Congo margin: Lithology and organic matter; tectonic and Paleogeothermal Evolution. *Journal* of African Earth Sciences (and the Middle East). **10**(1-2),pp.319–330.
- Rodrigues, B., Duarte, L.V., Silva, R.L. and Mendonça Filho, J.G. 2020. Sedimentary organic matter and early Toarcian environmental changes in the Lusitanian Basin (Portugal). *Palaeogeography, Palaeoclimatology, Palaeoecology*. **554**,p.109781.
- Rohrssen, M., Gill, B.C. and Love, G.D. 2015. Scarcity of the C30 sterane biomarker, 24-npropylcholestane, in Lower Paleozoic marine paleoenvironments. *Organic Geochemistry*. 80,pp.1–7.
- Rosenthal, Y., Lam, P., Boyle, E.A. and Thomson, J. 1995. Authigenic cadmium enrichments in suboxic sediments: Precipitation and Postdepositional Mobility. *Earth and Planetary Science Letters*. **132**(1-4),pp.99–111.

- Ruebsam, W., Mayer, B. and Schwark, L. 2019. Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution. *Global and Planetary Change*. 172,pp.440–453.
- Ruebsam, W., Reolid, M. and Schwark, L. 2020a. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. *Nature Scientific Reports*. **10**(1).
- Ruebsam, W., Reolid, M., Sabatino, N., Masetti, D. and Schwark, L. 2020b. Molecular paleothermometry of the early Toarcian Climate Perturbation. *Global and Planetary Change*. **195**, p.103351.
- Rybicki, M., Marynowski, L., Misz-Kennan, M. and Simoneit, B.R.T. 2016. Molecular tracers preserved in Lower Jurassic "blanowice brown coals" from southern Poland at the onset of coalification: Organic geochemical and Petrological Characteristics. *Organic Geochemistry*. **102**,pp.77–92.
- Röhl, H., Schmid-Röhl, A., Oschmann, W., Frimmel, A. and Schwark, L. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. *Palaeogeography, Palaeoclimatology, Palaeoecology*. **165**(1-2),pp.27–52.
- Saito, M.A., Moffett, J.W., Chisholm, S.W. and Waterbury, J.B. 2002. Cobalt limitation and uptake in prochlorococcus. *Limnology and Oceanography*. **47**(6),pp.1629–1636.
- Salem, N.-E. 2013. Geochemical characterisation of the Pliensbachian-Toarcian boundary during the onset of the Toarcian Oceanic Anoxic Event. North Yorkshire, UK.
- Sasaki, R. and Shepherd, S.A. 1995. Larval dispersal and recruitment of Haliotis discus hannai and tegula spp. on miyagi coasts, Japan. *Marine and Freshwater Research*. 46(3),p.519.
- Savrda, C.E. and Bottjer, D.J. 1987. The exaerobic zone, a new oxygen-deficient marine biofacies. *Nature*. **327**(6117),pp.54–56.
- Savrda, C.E. and Bottjer, D.J. 1991. Oxygen-related biofacies in marine strata: an overview and update. *Geological Society, London, Special Publications*. **58**(1),pp.201–219.

- Schatz, W. 2005. Palaeoecology of the Triassic black shale bivalve Daonella—new insights into an old controversy. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. 216(3-4),pp.189–201.
- Schieber, J. and Wilson, R.D. 2021. Burrows without a trace—How meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. *PalZ*. **95**(4),pp.767–791.
- Schindel, D.E. 1980. Microstratigraphic sampling and the limits of paleontologic resolution. *Paleobiology*. **6**(4),pp.408–426.
- Schmid-Rohl, A. and Rohl, H.-J. 2003. Overgrowth on ammonite conchs: Environmental implications for the lower toarcian posidonia shale. *Palaeontology*. **46**(2),pp.339–352.
- Schneider, R.R., Price, B., Müller, P.J., Kroon, D. and Alexander, I. 1997. Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. *Paleoceanography*. **12**(3),pp.463–481.
- Schoon, P.L., Heilmann-Clausen, C., Schultz, B.P., Sinninghe Damsté, J.S. and Schouten, S. 2015. Warming and environmental changes in the eastern North Sea basin during the palaeocene–eocene thermal maximum as revealed by biomarker lipids. *Organic Geochemistry*. **78**, pp.79–88.
- Schubert, B.A. and Jahren, A.H. 2012. The effect of atmospheric CO2 concentration on Carbon Isotope Fractionation in C3 Land Plants. *Geochimica et Cosmochimica Acta*.
 96,pp.29–43.
- Schwark, L. and Empt, P. 2006. Sterane biomarkers as indicators of palaeozoic algal evolution and extinction events. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. 240(1-2),pp.225–236.
- Schwark, L. and Frimmel, A. 2004. Chemostratigraphy of the Posidonia Black Shale, SW-Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions. *Chemical Geology*. **206**(3-4),pp.231–248.

- Seifert, W.K. and Moldowan, J.M. 1978. Applications of Steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. *Geochimica et Cosmochimica Acta*. 42(1),pp.77–95.
- Seifert, W. and Kramer, W. 2003. Accessory titanite: An important carrier of zirconium in lamprophyres. *Lithos*. **71**(1),pp.81–98.
- Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. *Historical Biology*. **3**(4),pp.289–311.
- Sellanes, J. 2002. sobre los indicadores bioquímicos de la calidad de la materia organica sedimentaria y la meiofauna en un area de surgencia costera de Chile central.
- Shang, Y. and Zavada, M.S. 2003. The ultrastructure of cerebropollenites from the jurassic and cretaceous of Asia. Grana. 42(2),pp.102–107.
- Shanks, A.L. 1998. Apparent oceanographic triggers to the spawning of the limpet lottia digitalis (Rathke). *Journal of Experimental Marine Biology and Ecology*. 222(1-2),pp.31–41.
- Shen, S.Z., Cao, C.-Q., Henderson, C.M., Wang, X.-D., Shi, G.R., Wang, Y. and Wang, W. 2006. End-permian mass extinction pattern in the Northern Peri-gondwanan region. *Palaeoworld.* 15(1),pp.3–30.
- Silva, R.L., Duarte, L.V., Wach, G.D., Ruhl, M., Sadki, D., Gómez, J.J., Hesselbo, S.P., Xu, W., O'Connor, D., Rodrigues, B. and Filho, J.G.M. 2021. An Early Jurassic (Sinemurian–Toarcian) stratigraphic framework for the occurrence of Organic Matter Preservation Intervals (OMPIs). *Earth-Science Reviews*. 221, p.103780.
- Simms, M.J., Page, K.N., Morton, N. and Chidlaw, N. 2004. Chapter 6: the Cleveland Basin In: British Lower Jurassic stratigraphy. Peterborough: Joint Nature Conservation Committee, pp. 239–304.
- Sinha, E., Michalak, A.M. and Balaji, V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. *Science*. **357**(6349),pp.405–408.

- Sirevåg, R., Buchanan, B.B., Berry, J.A. and Troughton, J.H. 1977. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. *Archives of Microbiology*. **112**(1),pp.35–38.
- Slater, S.M., Twitchett, R.J., Danise, S. and Vajda, V. 2019. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. *Nature Geoscience*. 12(6),pp.462–467.
- Sluijs, A. and Brinkhuis, H. 2009. A dynamic climate and ecosystem state during the paleocene-eocene thermal maximum: Inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. *Biogeosciences*. 6(8),pp.1755–1781.
- Song, J., Littke, R., Maquil, R. and Weniger, P. 2014. Organic facies variability in the Posidonia Black Shale from Luxembourg: Implications for thermal maturation and depositional environment. *Palaeogeography, Palaeoclimatology, Palaeoecology*.
 410,pp.316–336.
- Stachowitsch, M., Riedel, B., Zuschin, M. and Machan, R. 2007. Oxygen depletion and benthic mortalities: the first in situ experimental approach to documenting an elusive phenomenon. *Limnology and Oceanography: Methods*. 5(10),pp.344–352.
- Stow, D.A.V. and Wetzel, A. 1990. 3. Hemiturbidite: a new type of deep-water sediment *In*: J. R. Cochran and D. A. V. Stow, eds. *Proceedings of the Ocean Drilling Program*, *Scientific Results, Vol. 116.* Texas A&M University, pp. 25–34.
- Strahan, A. 1898. The Geology of the Isle of Purbeck and Weymouth. Memoirs of the Geological Survey, England and Wales, pp. 278
- Stukins, S., Jolley, D.W., McIlroy, D. and Hartley, A.J. 2013. Middle Jurassic vegetation dynamics from allochthonous palynological assemblages: An example from a marginal marine depositional setting; Lajas Formation, Neuquén Basin, Argentina. *Palaeogeography, Palaeoclimatology, Palaeoecology*. **392**,pp.117–127.
- Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte, L.V. and Mailliot, S. 2008. Duration of the early Toarcian carbon isotope excursion deduced from Spectral Analysis: Consequence for its possible causes. *Earth and Planetary Science Letters*. 267(3–4),pp.666–679.

- Suan, G., Nikitenko, B.L., Rogov, M.A., Baudin, F., Spangenberg, J.E., Knyazev, V.G., Glinskikh, L.A., Goryacheva, A.A., Adatte, T., Riding, J.B., Föllmi, K.B., Pittet, B., Mattioli, E. and Lécuyer, C. 2011. Polar record of Early Jurassic Massive Carbon Injection. *Earth and Planetary Science Letters*. **312**(1-2),pp.102–113.
- Suan, G., van de Schootbrugge, B., Adatte, T., Fiebig, J. and Oschmann, W. 2015. Calibrating the magnitude of the Toarcian carbon cycle perturbation. *Paleoceanography*. **30**(5),pp.495–509.
- Sullivan, K.A. and Aller, R.C. 1996. Diagenetic cycling of arsenic in Amazon Shelf sediments. *Geochimica et Cosmochimica Acta*. **60**(9),pp.1465–1477.
- Summons, R.E. and Powell, T.G. 1987. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria. *Geochimica et Cosmochimica Acta*. 51(3),pp.557–566.
- Sun, Y.-Z. and Püttmann, W. 2000. The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen Basin, Germany. *Organic Geochemistry*. 31(11),pp.1143–1161.
- Suárez-Mozo, N.Y., Valentich-Scott, P. and Hendrickx, M.E. 2018. Deep-water bivalves from the oxygen minimum zone area off the western peninsula of Baja California, Mexico. *Molluscan Research*. **39**(2),pp.99–109.
- Svensen, H., Planke, S., Chevallier, L., Malthe-Sørenssen, A., Corfu, F. and Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. *Earth and Planetary Science Letters*. **256**(3-4),pp.554–566.
- Sweere, T.C., Dickson, A.J., Jenkyns, H.C., Porcelli, D., Ruhl, M., Murphy, M.J., Idiz, E., van den Boorn, S.H.J.M., Eldrett, J.S. and Henderson, G.M. 2020. Controls on the CDisotope composition of Upper Cretaceous (Cenomanian–Turonian) organic-rich mudrocks from South Texas (Eagle Ford Group). *Geochimica et Cosmochimica Acta*. 287,pp.251–262.
- Syvitski, J.P.M., LeBlanc, K.W.G. and Cranston, R.E. 1990. The flux and preservation of organic carbon in Baffin Island fjords *In*: J. A. Dowdeswell and J. D. Scourse, eds.

Geological Society Special Publication No. 53: Glacimarine Environments: Processes and Sediments. Geological Society Special Publications. London: The Geological Society, pp. 177–199.

- Sælen, G., Doyle, P. and Talbot, M.R. 1996. Stable-Isotope Analyses of Belemnite Rostra from the Whitby Mudstone Fm., England: Surface Water Conditions during Deposition of a Marine Black Shale. *PALAIOS*. **11**(2),pp.97–117.
- Sælen, G., Tyson, R.V., Telnæs, N. and Talbot, M.R. 2000. Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK. *Palaeogeography, Palaeoclimatology, Palaeoecology*. **163**(3-4),pp.163–196.
- Taylor, P.D., Hesselbo, S.P. and Jenkyns, H.C. 1995. A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire In: Field Geology of the British Jurassic. Geological Society. London: Geological Society, pp. 105–150.
- Teichert, B.M.A. and Luppold, F.W. 2013. Glendonites from an early jurassic methane seep

 climate or methane indicators? *Palaeogeography, Palaeoclimatology, Palaeoecology*. 390,pp.81–93.
- Testa, J.M., Murphy, R.R., Brady, D.C. and Kemp, W.M. 2018. Nutrient- and climateinduced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. *Frontiers in Marine Science*. 5.
- Theede, H., Ponat, A., Hiroki, K. and Schlieper, C. 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. *Marine Biology*. 2(4),pp.325–337.
- Them, T.R., Jagoe, C.H., Caruthers, A.H., Gill, B.C., Grasby, S.E., Gröcke, D.R., Yin, R. and Owens, J.D. 2019. Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). *Earth and Planetary Science Letters*. **507**,pp.62–72.
- Thibault, N., Ruhl, M., Ullmann, C.V., Korte, C., Kemp, D.B., Gröcke, D.R. and Hesselbo, S.P. 2018. The wider context of the Lower Jurassic Toarcian oceanic anoxic event in

Yorkshire coastal outcrops, UK. *Proceedings of the Geologists' Association*. **129**(3),pp.372–391.

- Thomas, Y., Flye-Sainte-Marie, J., Chabot, D., Aguirre-Velarde, A., Marques, G.M. and Pecquerie, L. 2019. Effects of hypoxia on metabolic functions in marine organisms: Observed patterns and modelling assumptions within the context of Dynamic Energy Budget (DEB) theory. *Journal of Sea Research*. 143,pp.231–242.
- Tomašových, A., Berensmeier, M., Gallmetzer, I., Haselmair, A. and Zuschin, M. 2021. Pyrite-lined shells as indicators of inefficient bioirrigation in the holocene– anthropocene stratigraphic record. *Biogeosciences*. 18(22),pp.5929–5965.
- Trabucho-Alexandre, J., Dirkx, R., Veld, H., Klaver, G. and de Boer, P.L. 2012. Toarcian Black Shales In the Dutch Central Graben: Record of Energetic, Variable Depositional Conditions During An Oceanic Anoxic Event. *Journal of Sedimentary Research*. 82(4),pp.258–259.
- Traverse, A. 2007. Palaeopalynology 2nd ed. Dordrecht (Netherlands): Springer.
- Tribovillard, N. 2020. Arsenic in marine sediments: how robust a redox proxy? *Palaeogeography, Palaeoclimatology, Palaeoecology*. **550**,p.109745.
- Tribovillard, N., Algeo, T.J., Lyons, T. and Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. *Chemical Geology*. **232**(1-2),pp.12–32.
- Tribovillard, N., Koched, H., Baudin, F., Adatte, T., Delattre, M., Abraham, R. and Ferry, J. 2019. Storm-induced concentration of sulfurized, marine-origin, organic matter as a possible mechanism in the formation of petroleum source-rock. *Marine and Petroleum Geology*. **109**, pp.808–818.
- Tribovillard, N., Riboulleau, A., Lyons, T. and Baudin, F. 2004. Enhanced trapping of molybdenum by sulfurized Marine Organic matter of marine origin in Mesozoic limestones and shales. *Chemical Geology*. 213(4),pp.385–401.
- Tribovillard, N.-P., Desprairies, A., Lallier-Vergès, E., Bertrand, P., Moureau, N., Ramdani, A. and Ramanampisoa, L. 1994. Geochemical study of organic-matter rich cycles from

the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. *Palaeogeography, Palaeoclimatology, Palaeoecology.* **108**(1-2),pp.165–181.

- Tyson, R.V. 1989. Late Jurassic palynofacies trends, Piper and Kimmeridge Clay Formations, UK onshore and northern North Sea *In*: D. J. Batten and M. C. Keen, eds. *Northwest European Micropalaeontology and Palynology*. Ellis Horwood, pp. 135– 172.
- Tyson, R.V. 1995. Sedimentary organic matter. Chapman and Hall.
- Tyson, R.V., Pearson, T.H., Tyson, R.V. and Pearson, T.H. 1991. Modern and ancient continental shelf anoxia: an overview *In: Modern and Ancient Continental Shelf Anoxia, Geological Society Special Publication No* 58. Bath: Geological Society, pp. 1–24.
- Vajda, V., Raine, J.I. and Hollis, C.J. 2001. Indication of global deforestation at the cretaceous-tertiary boundary by New Zealand fern spike. *Science*. **294**(5547),pp.1700– 1702.
- VAN BUCHEM, F.S.P., MELNYK, D.H. and McCAVE, I.N. 1992. Chemical cyclicity and correlation of Lower Lias mudstones using gamma ray logs, Yorkshire, UK. *Journal of the Geological Society*. **149**(6),pp.991–1002.
- van de Schootbrugge, B., Bachan, A., Suan, G., Richoz, S. and Payne, J.L. 2013. Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass extinction. *Palaeontology*. 56(4),pp.685–709.
- van de Schootbrugge, B., Bailey, T.R., Rosenthal, Y., Katz, M.E., Wright, J.D., Miller, K.G., Feist-Burkhardt, S. and Falkowski, P.G. 2005. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. *Paleobiology*. 31(1),pp.73–97.
- van de Schootbrugge, B., Houben, A.J., Ercan, F.E., Verreussel, R., Kerstholt, S., Janssen, N.M., Nikitenko, B. and Suan, G. 2019. Enhanced Arctic-Tethys Connectivity ended the Toarcian oceanic anoxic event in NW Europe. *Geological Magazine*. 157(10),pp.1593–1611.

- Van der Weijden, C.H. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. *Marine Geology*. **184**(3-4),pp.167–187.
- Van Kaam-Peters, H.M.E. and Sinninghe Damsté, J.S. 1997. Characterisation of an extremely organic sulphur-rich, 150Ma old carbonaceous rock: palaeoenvironmental implications. *Organic Geochemistry*. 27(7-8),pp.371–397.
- Van Kaam-Peters, H.M.E., Schouten, S., Köster, J. and Sinninghe Damstè, J.S. 1998. Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulfurisation. *Geochimica et Cosmochimica Acta*. 62(19-20),pp.3259–3283.
- Vandenbroucke, M. and Largeau, C. 2007. Kerogen origin, evolution and Structure. Organic Geochemistry. 38(5),pp.719–833.
- Wall, D., Dale, B., Lohmann, G.P. and Smith, W.K. 1977. The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the north and south Atlantic Oceans and adjacent seas. *Marine Micropaleontology*. 2,pp.121–200.
- Wallace, J.B., Ross, D.H. and Meyer, J.L. 1982. Seston and dissolved organic carbon dynamics in a Southern Appalachian Stream. *Ecology*. 63(3),pp.824–838.
- Wang, W.-X. and Fisher, N.S. 1996. Assimilation of trace elements and carbon by the mussel Mytilus edulis: Effects of food composition. *Limnology and Oceanography*. 41(2),pp.197–207.
- Wanty, R.B. and Goldhaber, M.B. 1992. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in Sedimentary Rocks. *Geochimica et Cosmochimica Acta*. 56(4),pp.1471–1483.
- Weedon, G.P., Jenkyns, H.C., Coe, A.L. and Hesselbo, S.P. 1999. Astronomical calibration of the jurassic time-scale from cyclostratigraphy in British Mudrock Formations.
 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 357(1757),pp.1787–1813.

- Wedephol, K.H. 2004. The Composition of Earth's Upper Crust, Natural Cycles of Elements, Natural Resources In: E. Merian, M. Anke, M. Ihnat and M. Stoeppler, eds. Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance - 2nd edition. Weinheim: WILEY-VCH, pp. 3–16.
- Wedepohl, K.H. 1971. Environmental influences on the chemical composition of shales and clays. *Physics and Chemistry of the Earth*. 8,pp.307–333.
- Wehrli, B. and Stumm, W. 1989. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation. *Geochimica et Cosmochimica Acta*. **53**(1),pp.69–77.
- Wheatcroft, R.A. and Drake, D.E. 2003. Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation. *Marine Geology*. **199**(1-2),pp.123–137.
- White, A.W. and Lewis, C.M. 1982. Resting cysts of the toxic, red tide dinoflagellate Gonyaulax excavata in bay of fundy sediments. *Canadian Journal of Fisheries and Aquatic Sciences.* **39**(8),pp.1185–1194.
- Whiteside, J.H. and Grice, K. 2016. Biomarker Records Associated with Mass Extinction Events. *Annual Review of Earth and Planetary Sciences*. **44**(1),pp.581–612.
- Wignall, P.B. 1994. Black shales. Oxford: Clarendon Press.
- Wignall, P.B. and Bond, D.P.G. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. *Proceedings of the Geologists' Association*. 119(1),pp.73–84.
- Wignall, P.B. and Hallam, A. 1991. Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. *Geological Society, London, Special Publications*. 58(1),pp.291–309.
- Wignall, P.B. and Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. *American Journal of Science*. **298**(7),pp.537–552.

- Wignall, P.B., Newton, R.J. and Little, C.T.S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the early Jurassic mass extinction in Europe. *American Journal of Science*. **305**(10),pp.1014–1032.
- Wijsman, J.W.M., Middelburg, J.J. and Heip, C.H.R. 2001. Reactive iron in Black Sea Sediments: implications for iron cycling. *Marine Geology*. **172**(3-4),pp.167–180.
- Wilkin, R., Arthur, M. and Dean, W. 1997. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. *Earth and Planetary Science Letters*. 148(3-4),pp.517–525.
- Wilkin, R.T., Barnes, H.L. and Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. *Geochimica et Cosmochimica Acta*. **60**(20),pp.3897–3912.
- Williams, G. 1992. Palynology as a palaeoenvironmental indicator in the Brent Group, northern North Sea. *Geological Society, London, Special Publications*. **61**(1),pp.203– 212.
- Williams, L.A. and Reimers, C. 1983. Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report. *Geology*. **11**,pp.267–269.
- Winter, M.A. and Hamilton, P.V. 1985. Factors influencing swimming in Bay scallops, Argopecten irradians (Lamarck, 1819). *Journal of Experimental Marine Biology and Ecology*. 88(3),pp.227–242.
- Wittkop, C., Swanner, E.D., Grengs, A., Lambrecht, N., Fakhraee, M., Myrbo, A., Bray, A.W., Poulton, S.W. and Katsev, S. 2020. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments. *Earth and Planetary Science Letters*. 538,p.116201.
- Xu, W., Ruhl, M., Jenkyns, H.C., Leng, M.J., Huggett, J.M., Minisini, D., Ullmann, C.V., Riding, J.B., Weijers, J.W.H., Storm, M.S., Percival, L.M.E., Tosca, N.J., Idiz, E.F., Tegelaar, E.W. and Hesselbo, S.P. 2018. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). *Earth and Planetary Science Letters*. 484,pp.396–411.

- Yamaguchi, M. 1958. Chemical Constitution of Isorenieratene. Bulletin of the Chemical Society of Japan. 31(1),pp.51–55.
- Yonge, C.M. 1977. Form and evolution in the Anomiacea (Mollusca:Bivalvia) Pododesmus, Anomica, Patro, Enigmonia (Anomiidae): Placunanomica, Placuna (Placunidae Fam. Nov.). *Philosophical Transactions of the Royal Society of London B. Biological Sciences*. 276(950),pp.453–527.
- Zheng, Y., Anderson, R.F., van Geen, A. and Fleisher, M.Q. 2002. Remobilization of authigenic uranium in marine sediments by bioturbation. *Geochimica et Cosmochimica Acta*. 66(10),pp.1759–1772.

Appendix 1 – ICPMS methods (by Stephen Reid)

1. ICP-MS Analysis

ICP-MS analysis was used in 2 modes depending on the element analysed. The two modes are Standard (STD) mode and "Kinetic Energy Discrimination (KED) mode. The table below summarises what mass and mode was used for each element.

Standard mode is used when no significant interference was found on the relevant mass.

KED mode uses helium gas in the collision/reaction cell to reduce the effect of polyatomic interferences.

Element	Mass m/z	Instrument mode	Calibration Range
Li	7	STD	10-100 µg L-1
V	51	KED	0.1-10 µg L-1
Cr	52	KED	0.1-10 µg L-1
Co	59	KED	0.1-10 µg L-1
Ni	60	KED	0.1-10 µg L-1
Cu	63	KED	0.1-10 µg L-1
Zn	66	KED	0.1-10 µg L-1
Ga	71	KED	0.1-10 µg L-1
As	75	KED	0.1-10 µg L-1
Rb	85	KED	0.1-10 µg L-1
Zr	90	KED	0.1-10 µg L-1
Мо	95	KED	0.1-10 µg L-1
Cd	111	KED	0.1-10 µg L-1
TI	205	KED	0.1-10 µg L-1
Pb*	206	KED	0.1-10 µg L-1
Pb	207	KED	0.1-10 µg L-1
Pb	208	KED	0.1-10 µg L-1
Bi	209	KED	0.1-10 µg L-1
U	238	KED	0.1-10 µg L-1
Zr	90	KED	0.1-10 µg L-1

* To account for the natural isotopic variation in Pb found in environmental samples due to it's radiogenic origins, Pb was analysed using three isotopes and the results combined to determine the concentration.

Calibrations

Direct calibration was used for the analysis with the calibration standards matrix matched.

Calibrations ranges are summarised Above.

Instrument Settings

	Std mode	KED mode				
Nebuliser	c-flow PFA concentric neb					
Cones	Ni sample and skimmer with high matrix insert					
Spraychamber	PFA spraychamber					
Plasma Power / kw	1350	1350				
Extraction voltage / v	~ -120	~ -120				
Nebuliser gas flow / ml	~0.95	~0.95				
min-1						
Cell gas flow / ml min-1	n/a	5.0				

A Thermo Scientific iCAPQc ICP-MS was used for the analysis

Internal Standardisation

Rhodium at a concentration of 1 μ g L⁻¹ were added to all standards and samples for use as an internal standard.

Sample Preparation

Samples were analysed neat. All sample handling was carried out in a laminar flow cabinet. Low metal content PFA lab ware was used wherever possible. Trace metal grade acids were used in the preparation of all blanks and calibration standards.

2. ICP-OES Analysis

A Thermo Scientific iCAP7400 ICP-OES was used. The analysis was used in radial mode. The table below summarises what wavelength as used for each element.

Element	Wavelength / nm	Calibration Range
Iron	259.837	1-100 mg L-1
	234.349	1-100 mg L-1
Aluminium	396.152	1-100 mg L-1
	308.215	1-100 mg L-1
Manganese	257.610	1-100 mg L-1
	293.930	1-100 mg L-1
Calcium	393.366	1-100 mg L-1
	315.887	1-100 mg L-1
Potassium	766.490	1-100 mg L-1
Magnesium	279.553	1-100 mg L-1
	285.213	1-100 mg L-1
Strontium	407.771	1-100 mg L-1
	346.446	1-100 mg L-1
Barium	455.403	1-100 mg L-1
	493.409	1-100 mg L-1
Titanium	334.941	0.1-10 mg L-1
	368.520	0.1-10 mg L-1

Instrument set up

Nebuliser	Quartz Glass Expantion Seaspray
Spraychamber	Quartz cyclonic spraychamber
Torch	Quartz
Injector	1 mm quartz

Sample Preparation

Samples were diluted to \sim 2 % HNO₃ before analysis. Appropriate internal standard was added to each dilution (outline below).

Calibrations

Direct calibration was used for the analysis using 2% HNO₃ as diluent.

Internal Standardisation

Yttrium (371.030 nm) and lutetium (261.542 nm) at a concentration of 1 mg L⁻¹ was added to all standards and samples for use as an internal standard.

Limit of Detection

Limit of Detection was estimated as 3 times the standard deviation of 5 blank measurements.

$$LOD = 3\sigma_{5 Blanks}$$

Precision

Precision was estimated by calculating the 95% confidence interval of 5 repeated sample measurements.

$$\bar{x} \pm \frac{t_{n-1}s}{\sqrt{n}}$$

Where n = number of measurements

n-1 = degrees of freedom (5)

t = t value (2.78 for 4 degrees of freedom)

s = calculated standard deviation of 5 measurements

x = calculated mean of 5 measurements

Accuracy

Accuracy was estimated by Spiking a sample with a known amount of analyte and measuring the analyte recovery. Sample and Sample + Spike were analysed 5 times.

% Recovery =
$$100 \times \frac{M_{Spike} - M_{Sample}}{C_{spike}}$$

Where M_{spike} = Measured concentration of spiked sample.

M_{Sample} = Measured concentration of sample.

 C_{Spike} = Actual concentration of spike.

Appendix 2 – Data

Note: each cell of the following tables only includes one figure, which is often text-wrapped.

Organic geochemistry (LECO & Rock Eval):

Sample Code	Stratigraph ic height*	C (wt.%) of acid- treated sample	TOC (via total combustio n)	TOC (via Rock Eval 6)	HI	01	Tmax (oC)	PI	Inorgani c C (via Rock Eval 6)	TIC (%)
LSB1.0	2			1.09	150	36	439	0.08	0.17	
LSB1.1	6			1.27	186	18	437	0.07	0.17	
LSB1.2	14			1.41	150	22	437	0.09	0.21	
LSB1.3	18		1.744933	1.51	192	15	436	0.08	0.2	
LSB1.4	22	0.84551	1.509419	1.44	189	15	437	0.08	0.21	- 0.66391
LSB1.5	26			1.64	198	13	434	0.08	0.21	0.00331
LSB1.6	30	1.6494	2.321012	1.72	235	16	437	0.08	0.17	- 0.67161
LSB1.7	34	6.6765	1.184723	1.10	215	32	437	0.08	0.26	5.49177 7
LSB1.8	38			0.60	113	45	437	0.11	0.34	
LSB1.9	42	0.80844	0.881126	0.70	110	41	435	0.11	0.3	- 0.07269
LSB1.10	46	1.3062	1.347097	1.26	148	19	436	0.1	0.27	-0.0409
LSB1.11	50	3.884	4.20393	3.54	200	8	427	0.1	0.3	- 0.31993
LSB1.12	54	4.2166	4.078695	3.73	224	8	427	0.1	0.32	0.13790
LSB1.13	59	1.1244	1.059122	0.85	131	55	431	0.11	0.32	0.06527 8
LSB1.14	62	0.66969	0.185005	0.30	63	83	428	0.13	0.43	0.48468 5
LSB1.15	66	1.6071	1.117059	0.99	102	31	433	0.13	0.36	0.49004 1
LSB1.16	70	5.2049	5.050529	3.85	237	10	427	0.09	0.35	0.15437 1
LSB1.17	74	7.2442	6.597405	5.46	324	5	431	0.08	0.38	0.64679 5
LSB1.18	78	6.9571	6.892842	5.42	297	4	429	0.08	0.33	0.06425 8
LSB1.19	82	7.4281	6.688774	5.69	329	5	430	0.07	0.3	0.73932 6
LSB1.20	86	7.5428	6.781139	5.93	348	6	430	0.07	0.27	0.76166 1
LSB1.21	90	7.9717	7.251084	5.80	338	9	428	0.07	0.25	0.72061 6
LSB1.22	98	2.6859	2.349418	3.63	339	11	432	0.07	0.27	0.33648 2
LSB1.23	102	1.1324	1.316286	1.03	120	37	434	0.23	0.3	- 0.18389
LSB1.24	106			1.14	117	36	433	0.09	0.27	
LSB1.25	110	0.59956	0.649523	0.51	67	65	431	0.14	0.32	- 0.04996
LSB1.26	114	0.59782	1.226874	1.01	80	36	433	0.11	0.29	- 0.62905

1004.27	110			1.00	150	24	426	0.1	0.20	1
LSB1.27	118			1.66	158	24 25	436	0.1	0.28	
LSB1.28	122			1.14	83		431	0.09	0.22	
LSB1.29 LSB1.30	126 130			1.30 1.49	175 234	32 26	438	0.08	0.29	
LSB1.50	-57.5	0.76974	0.770445	0.87	128	14	437	0.08	0.25	-0.0007
LSB3.0	-53.5	0.77532	0.853896	0.87	128	14	441	0.08	0.10	-0.0007
1303.1		0.77552	0.055050							0.07858
LSB3.2	-50			0.90	98	9	437	0.08	0.1	
LSB3.3	-42			1.14	101	9	440	0.08	0.13	
LSB3.4	-38			1.31	236	33	439	0.06	0.15	
LSB3.5	-34	0.02171	0.050225	0.84	82	19	433	0.12	0.16	
LSB3.6	-30	0.82171	0.859235	0.87	114	21	440	0.08	0.15	- 0.03752
LSB3.7	-26	0.78981	0.758639	0.85	111	21	439	0.08	0.17	0.03117
LSB3.8	-22		0.893328	0.91	122	21	440	0.07	0.13	1
LSB3.9	-18		0.721437	0.78	110	29	435	0.09	0.14	
LSB3.10	-14	0.89346	0.9073	0.90	116	27	438	0.08	0.16	-
LSB3.11	-10	0.90022	0.956997	1.04	113	9	439	0.08	0.12	0.01384
		0.50022	0.550557							0.05678
LSB3.12	-6			1.01	131	9	440	0.07	0.14	
LSB3.13	-2	0.85701	0.974258	1.13	230	46	437	0.06	0.16	- 0.11725
LSB3.14	2			0.86	97	26	438	0.08	0.15	
LSB3.15	6	0.96262	1.074152	1.02	133	22	440	0.07	0.16	-
LSB3.16	10	0.93905	1.051856	1.00	152	21	440	0.07	0.13	0.11153
							110			0.11281
LSB3.17	14	1.0182	1.057628	1.13	185	27	440	0.06	0.18	- 0.03943
LSB3.18	18			1.03	142	26	439	0.08	0.18	0
LSB3.19	22	0.98646	1.044192	1.06	133	22	442	0.08	0.17	- 0.05773
LSB3.20	30	1.4839	1.712802	1.24	184	27	442	0.07	0.17	-0.2289
LSB3.21	34	1.554	1.787751	1.34	181	24	441	0.08	0.17	-
LSB3.22	38	1.4238	1.694174	2.06	123	14	436	0.08	0.2	0.23375
										0.27037
LSB3.23	42	1.527	1.668695	1.63	155	22	437	0.07	0.16	-0.1417
LSB3.24	46	1.2941	1.383487	1.44	119	17	435	0.1	0.15	- 0.08939
LSB5.0	79	6.7933	7.345086	5.60	280	8	428	0.08	0.54	-
LSB5.1	82.5	6.6407	7.142033	5.61	318	8	429	0.07	0.51	0.55179
		7.4055								0.50133
LSB5.2	87	7.4955	8.358496	5.94	391	6	433	0.06	0.42	-0.863
LSB5.3	91	4.3084	4.671255	3.81	215	8	433	0.1	0.38	- 0.36286
LSB5.4	95	5.909	6.69218	4.25	252	9	430	0.08	0.4	- 0.78318
LSB5.5	99	1.1478	1.398918	1.07	105	39	434	0.13	0.33	-
LSB5.6	103	1.1137	1.238636	0.85	78	42	431	0.15	0.34	0.25112
										- 0.12494
LSB5.7	107	0.87372	0.94982	0.74	64	53	430	0.1	0.27	-0.0761
LSB5.8	111	1.7562	2.215888	1.64	107	23	431	0.09	0.23	- 0.45969
LSB5.9	115	2.1848	2.584807	1.84	101	24	431	0.09	0.28	-
										0.40001

	110	0.00424	1 102054	0.00	70	20	422	0.00	0.20	1 1
LSB5.10	119	0.99421	1.102054	0.96	78	39	433	0.09	0.28	- 0.10784
LSB5.11	123	1.8831	2.334152	1.38	102	38	434	0.13	0.26	- 0.45105
LSB5.12	127	2.3114	2.681938	2.12	140	19	433	0.1	0.23	- 0.37054
LSB5.13	131	1.785	1.737747	2.02	122	19	433	0.08	0.26	0.04725 3
LSB5.14	135	0.94648	1.051764	0.80	76	51	431	0.1	0.23	- 0.10528
LSB5.15	139			1.25	70	27	430	0.08	0.19	0.10520
LSB5.16	143			1.54	87	23	430	0.08	0.21	
LSB5.17	147			1.59	218	21	438	0.07	0.21	
Bos32.1	-2	6.2766	5.937148	5.56	453	1	433	0.14	0.3	0.33945 2
Bos32.2	0	6.1354	4.908235	4.76	376	2	431	0.13	0.8	1.22716 5
Bos32.3	2	7.7097	7.127399	6.65	472	0	434	0.13	0.3	0.58230 1
Pseud34. 1	-2	7.6451	6.169544	5.65	506	6	436	0.12	1.09	1.47555 6
Pseud34. 2	0	7.6142	4.40528	3.90	416	15	436	0.13	2.68	3.20892
Pseud34.	2	8.5877	7.299382	6.80	507	4	431	0.1	0.72	1.28831 8
Pseud41. 1	-2	6.1203	4.134251	4.17	384	9	431	0.16	1.28	1.98604 9
Pseud41. 2	0	6.1018	3.817735	3.86	396	8	436	0.17	1.64	2.28406 5
Pseud41.	2	6.4359	4.54744	4.56	398	9	435	0.15	1.17	1.88846
LSB accura	icy:									
		C (wt.%) of acid- treated sample	TOC (via total combustio n)	TOC (via Rock Eval 6)	HI	OI	Tmax (oC)	PI	Inorgani c C (via Rock Eval 6)	TIC (%)
Sample		7.2442	6.597405	5.46	324	5	431	0.08	0.38	0.64679 5
Repeat 1		5.818	6.54174	5.56	297	6	429	0.07	0.41	- 0.72374
Repeat 2		5.8931	6.326225	5.56	306	6	430	0.07	0.4	- 0.43312
Repeat 3		5.9719	6.380173	5.55	312	7	428	0.07	0.48	- 0.40827
Standard (LECO data RE6 data)	SBC-1 for , and ifp for	1.5196	0.817342	3.3	392	25	456	0.01	3.27	0.70225
Mean		6.2318	6.461386	5.5325	309.75	6	429.5	0.0725	0.4175	- 0.22959
Stan.Dev		0.677852	0.128869	0.04856 3	11.3247 5	0.81649 7	1.29099 4	0.005	0.04349 3	0.60155
95% Confi	dence	1.077446	0.204838	0.07719	18.0006 9	, 1.29782 1	2.05203 6	0.00794 8	0.06913 3	0.95616 4
as a % of n (i.e. precis	neasurement	17.28948	3.170184	1.39521 7	5.81136 2	21.6303 6	0.47777	8 10.9620 7	16.5587	4 416.473 6
	standard -	0.2896		0	9	1	40	, 0.00041 5	0.07	- 0.14774
Deviation accuracy)		19.05765	•	0	2.29591 8	4	8.77193	4.15335 5	2.14067 3	21.0381 8
			1	1		1	1	1	1	1

Shell pavement accuracy									
	C (wt.%) of acid- treated sample	TOC (via total combustio n)	TOC (via Rock Eval 6)	HI	OI	Tmax (oC)	PI	Inorgani c C (via Rock Eval 6)	TIC (%)
Sample	6.2766	4.134251	5.56	453	1	433	0.14	0.3	1.98604 9
Repeat 1	6.2751	4.598618	5.84	454	3	432	0.16	0.3	1.04658 2
Repeat 2	6.3423	•	5.89	457	2	432	0.16	0.28	
Repeat 3	6.3261		5.97	473	3	432	0.16	0.27	
Standard (SBC-1 for LECO data, and ifp for RE6 data)	2.0883	1.102576	3.28	373	23	414	0.01	3.22	0.9857
Mean	6.305025	4.366435	5.815	442	2.25	432.25	0.126	0.2875	1.51631 5
Stan.Dev	0.034337	0.328357	0.17823 2	9.32291 1	0.95742 7	0.5	0.01	0.015	0.66430 3
95% Confidence	0.054578	2.948727	0.2833	14.8187 7	1.52183	0.79475	0.01589 5	0.02384 3	5.96561 2
as a % of measurement (i.e. precision)	0.865635	67.53169	4.87188 1	3.35266 2	67.6369 1	0.18386 4	12.6150 8	8.29304 3	393.428 2
Measured standard - reported standard	0.8583	•	-0.02	-10	-1	-2	0.00041 5	0.02	0.13572 4
Deviation (i.e. accuracy)	41.10042		0.60975 6	2.68096 5	4.34782 6	0.48309 2	4.15335 5	0.62111 8	13.7689 6

Bioturbation:

Sample	Stratigraphic	Bioturnation
block	height*	intensity
		(%area)
LSB1	134	20.82983
LSB1	124	32.82981
LSB1	114	27.62942
LSB1	104	16.50173
LSB1	94	18.0601
LSB1	84	26.12957
LSB1	74	6.219918
LSB1	64	0
LSB1	54	0
LSB1	44	0
LSB1	34	3.974829
LSB1	24	16.15736
LSB1	14	2.146444
LSB1	4	10.11019
LSB3	49	11.53193
LSB3	39	8.684332
LSB3	29	7.238297
LSB3	19	1.97899
LSB3	9	12.97796

LSB3	-1	88.63235
LSB3	-11	71.49501
LSB3	-21	93.0259
LSB3	-31	88.44486
LSB3	-41	94.14246
LSB3	-51	80.40715
LSB3	-61	85.95575
LSB5	146	50.22071
LSB5	136	38.48497
LSB5	126	37.26967
LSB5	116	37.52871
LSB5	106	21.09569
LSB5	96	34.34592
LSB5	86	21.2678
LSB5	76	2.045881
LSB6	70	2.745055
LSB6	60	0.950307
LSB6	50	5.306801
LSB6	40	5.735958
LSB6	30	15.9008
LSB6	20	22.50707
LSB6	10	44.30395
LSB6	0	63.20682

Shell pavement data 1:

Pavement:	Bed number:	Duration (yr):	Thickness (m):	Sed rate (mm/yr):		Shell pavemen t thickness (um)	Shell pavemen t duration (yr):
Pseud41	41	120000	5.1816	0.04318		728.5149	16.87158
Pseud34	34	520000	2.6	0.005		581.8182	116.3636
Bos32	32	20000	1.85	0.0925		1386.047	14.98429

Shell pavement data 2:

	Bos32 Length	Pseud34 Length	Pseud41 length	Bos32 Spacing	Pseud34 Spacing	Pseud41 Spacing	
n	12	31	8	N/A	79	20	
	9.885154	2.039654	4.665603	N/A	0.276289	0.339261	
	12.89115	2.10868	5.367719		0.308891	0.339261	
	14.53081	2.144598	6.112205		0.308891	0.42916	
	14.91894	2.459567	8.38462		0.414433	0.606908	
	16.54503	2.860922	9.785059		0.436858	1.398846	

17.99423	2.874598	12.7176		0.498102	5.050496	Π
18.13827	2.936993	14.46272		0.569569	5.134098	\square
23.24251	3.116673	14.59776		0.690721	5.312605	\square
27.98445	3.530139	15.29096		0.743907	6.191141	\square
30.24807	3.634023	27.1837		0.743907	6.99427	\square
30.40708	3.877894			0.976818	7.65432	\square
33.23585	4.052232			1.105154	8.300715	\square
	4.300017			1.113765	9.907654	
	4.825149			1.188363	10.95169	
	4.905595			1.188363	11.24213	T
	4.950952			1.243298	15.50289	
	5.532678			1.408795	15.63967	
	6.171135			1.468474	15.93061	
	6.204197			1.494261	18.56098	
	8.200704			1.611038	22.93485	
	8.318541			1.663487		П
	8.41911			1.795876		
	9.021788			1.801171		
	10.36911			1.801171		
	10.57863			1.919146		
	11.42177			2.15786		
	12.70025			2.214637		
	13.92517			2.248805		
	16.52426			2.447916		
	19.19063			2.762885		
	31.80201			2.927231		
				3.326974		
				3.464658		
				3.538197		
				3.538197		
				3.540914		
				3.670585		
				3.706779		
				3.757939		
				3.890189		
				3.899997		
				3.909759		
				4.02755		
				4.180982		
				4.39681		
				4.455015		
				4.497655		
				4.510364		
				4.510364		
				4.592146		
				4.70501		

		5.113226	
		5.41765	
		5.4998	
		5.51541	
		5.679065	
		5.941815	
		5.946604	
		5.997764	
		6.079913	
		6.458889	
		6.666796	
		6.858679	
		6.908595	
		7.279835	
		7.434142	
		7.732395	
		7.960978	
		8.013565	
		8.22511	
		8.39162	
		8.444897	
		8.569411	
		9.670099	
		9.879019	
		10.49261	
		11.19309	
		11.65988	
		13.29708	

Sulphur data:

Sample Code	Stratigraphic height*	Pyritic Sulphur (wt.%) - Spy	TS (via total combustion)	"OM-hosted sulphur (wt.%)" -Sorg
LSB1.0	2	2.718468		
LSB1.1	6	2.778032		
LSB1.2	14	3.484796		
LSB1.3	18	3.599863		
LSB1.4	22	3.205982	3.7924	0.586418
LSB1.5	26	2.946408		
LSB1.6	30	3.144982	3.6601	0.515118
LSB1.7	34	2.369831	11.255	8.885169
LSB1.8	38	1.823771		
LSB1.9	42	0.645117	3.4983	2.853183
LSB1.10	46	4.208356	5.059	0.850644
LSB1.11	50	6.120013	10.518	4.397987
LSB1.12	54	2.697483	9.5352	6.837717
LSB1.13	59	5.153044	6.4776	1.324556
LSB1.14	62	4.262661	5.6026	1.339939
LSB1.15	66	3.539992	6.083	2.543008
LSB1.16	70	7.772224	9.1976	1.425376
LSB1.17	74	8.57584	10.456	1.88016
LSB1.18	78	10.20941	11.682	1.472593
LSB1.19	82	9.943459	12.008	2.064541
LSB1.20	86	9.269871	11.911	2.641129
LSB1.21	90	8.48493	10.749	2.26407
LSB1.22	98	3.317356	5.9216	2.604244
LSB1.23	102	5.58673	4.8093	-0.77743
LSB1.24	106	5.277875		
LSB1.25	110	4.660646	3.6562	-1.00445
LSB1.26	114	4.773696	5.6182	0.844504
LSB1.27	118	4.274734		
LSB1.28	122	5.121653		
LSB1.29	126	2.411669		
LSB1.30	130	2.35929		
LSB3.0	-57.5	2.514392	2.5896	0.075208
LSB3.1	-53.5	2.43406	2.5717	0.13764
LSB3.2	-50	2.505207		
LSB3.3	-42	2.485885		
LSB3.4	-38	1.579923		
LSB3.5	-34	2.385387		
LSB3.6	-30	2.136353	2.7046	0.568247
LSB3.7	-26	2.227682	2.4848	0.257118
LSB3.8	-22	2.031978		
LSB3.9	-18	1.372622		
LSB3.10	-14	1.662714	2.5555	0.892786

•		Pyritic Sulphur (wt.%)	TS (via total combustion)	OM-hosted sulphur (wt.%)
LSB accuracy	 :			
-				
Pseud41.3	2	4.206655	4.5009	0.294245
Pseud41.2	0	4.533001	5.0367	0.503699
Pseud41.1	-2	4.320454	4.7118	0.391346
Pseud34.2 Pseud34.3	2	3.72394	4.4893	0.76536
Pseud34.1 Pseud34.2	0	0.331421	3.5417	3.210279
Pseud34.1	-2	4.098146	4.3455	0.247354
Bos32.2	2	5.558905	6.0837	0.524795
Bos32.1 Bos32.2	-2	5.679961	6.496	0.816039
Bos32.1	-2	3.916592	6.4983	2.581708
LSB5.10	143			
LSB5.16	143			
LSB5.14 LSB5.15	135	3.731819		1.033401
LSB5.13 LSB5.14	131	2.959673	5.3853	1.653481
LSB5.12 LSB5.13	127	4.827994	5.247 5.7413	2.781627
LSB5.11 LSB5.12	123	4.825886		0.419006
LSB5.10	119	5.288256	6.1045 5.3204	0.816244 0.494514
LSB5.9	115	5.41525	7.0363	1.62105
LSB5.8		4.766517		1.010083
LSB5.7	107	3.739971	5.6595 5.7766	1.919529
	103	0.640362	6.7298	6.089438
LSB5.5 LSB5.6	103	5.340183	6.0897	0.749517
LSB5.4	95		8.2253	7.157866
LSB5.3	91	10.77225	11.875	1.102752
LSB5.2	87	9.49159	10.093	0.60141
LSB5.1	82.5	10.71713	12.235	1.517871
LSB5.0	79	1.290012	11.407	10.11699
LSB3.24	46	2.537479	3.0822	0.544721
LSB3.23	42	6.326706	3.4548	-2.87191
LSB3.22	38	2.671715	3.3711	0.699385
LSB3.21	34	1.819218	3.3711	1.551882
LSB3.20	30	2.818537	3.574	0.755463
LSB3.19	22	2.612887	2.892	0.279113
LSB3.18	18	2.653715		
LSB3.17	14	2.583286	2.6687	0.085414
LSB3.16	10	2.360254	2.4985	0.138246
LSB3.15	6	1.84268	2.4913	0.64862
LSB3.14	2	2.238105		
LSB3.13	-2	2.591406	2.7431	0.151694
LSB3.12	-6	2.335972		
LSB3.11	-10	2.57853	2.7106	0.13207

		[
Sample	8.57584	10.456	1.88016
Repeat 1	8.380094	10.556	2.175906
Repeat 2	8.821722	10.516	1.694278
Repeat 3	9.306273	10.522	1.215727
Standard (SBC-1)		0.63187	
Mean	8.770983	10.5125	1.741517
Stan.Dev	0.399994	0.041581	0.402742
95% Confidence	0.63579	0.066093	0.640158
as a % of measurement (i.e. precision)	7.24879	0.628712	36.75862
Measured standard - reported standard		-0.08313	
Deviation (i.e. accuracy)		0.08313	
Shell pavement accuracy:			
Shell pavement accuracy:	Pyritic Sulphur (wt.%)	TS (via total combustion)	OM-hosted sulphur (wt.%)
Shell pavement accuracy: Sample	Pyritic Sulphur (wt.%) 3.916592	TS (via total combustion) 6.4983	OM-hosted sulphur (wt.%) 2.581708
	, , ,		,
Sample	3.916592	6.4983	2.581708
Sample Repeat 1	3.916592 6.468845	6.4983 6.3851	2.581708 -0.08374
Sample Repeat 1 Repeat 2	3.916592 6.468845 6.054584	6.4983 6.3851 6.2963	2.581708 -0.08374 0.241716
Sample Repeat 1 Repeat 2 Repeat 3	3.916592 6.468845 6.054584	6.4983 6.3851 6.2963 6.4417	2.581708 -0.08374 0.241716 0.309909
Sample Repeat 1 Repeat 2 Repeat 3 Standard (SBC-1)	3.916592 6.468845 6.054584 6.131791	6.4983 6.3851 6.2963 6.4417 0.11235	2.581708 -0.08374 0.241716 0.309909
Sample Repeat 1 Repeat 2 Repeat 3 Standard (SBC-1) Mean	3.916592 6.468845 6.054584 6.131791 . 5.642953	6.4983 6.3851 6.2963 6.4417 0.11235 6.40535	2.581708 -0.08374 0.241716 0.309909 0.762397
SampleRepeat 1Repeat 2Repeat 3Standard (SBC-1)MeanStan.Dev	3.916592 6.468845 6.054584 6.131791 . 5.642953 1.164878	6.4983 6.3851 6.2963 6.4417 0.11235 6.40535 0.086145	2.581708 -0.08374 0.241716 0.309909 0.762397 1.224977
Sample Sample Repeat 1 Repeat 2 Repeat 3 Standard (SBC-1) Mean Stan.Dev 95% Confidence	3.916592 6.468845 6.054584 6.131791 . 5.642953 1.164878 1.851574	6.4983 6.3851 6.2963 6.4417 0.11235 6.40535 0.086145 0.136928	2.581708 -0.08374 0.241716 0.309909 0.762397 1.224977 1.947101

Inorganic geochemistry:

Sample Code	Stratigraphic height*	FeCarb (wt.%)	FeOx (wt.%)	FeMag (wt.%)	FePy (wt.%)	FeT (wt.%)	FeHR/Fe T	FePy/FeH R
LSB1.0	2	0.526397	0.07436 7	0.13341 7	2.36771	4.88507	0.634974	0.763312
LSB1.1	6	0.575819	0.07431 5	0.12744 4	2.41958 8	5.1253	0.623801	0.756792
LSB1.2	14	0.726735	0.18127 7	0.12850 2	3.03516 1	5.52296	0.737227	0.745433
LSB1.3	18	0.785063	0.09931 7	0.14061 2	3.13538 1	5.542755	0.750597	0.75363
LSB1.4	22	0.752113	0.12294	0.12602 8	2.79232 2	4.680812	0.810415	0.736099
LSB1.5	26	0.7342	0.08947 8	0.11443 5	2.56624	5.067817	0.691492	0.732301
LSB1.6	30	0.764139	0.10296 3	0.11658 8	2.73919 2	5.315432	0.700391	0.735772
LSB1.7	34	0.668165	0.07374 4	0.09394 3	2.06405 7	4.351582	0.666403	0.711766
LSB1.8	38	0.845825	0.08328 8	0.07288	1.58845 4	4.048192	0.639902	0.613197

r						1		
LSB1.9	42	0.859097	0.13504 2	0.09089 8	0.56187 9	4.277094	0.385055	0.34117
LSB1.10	46	1.14397	0.13256 7	0.13391	3.66536 2	6.244466	0.812849	0.722124
LSB1.11	50	1.767789	0.65773	0.16333 4	5.33036 2	11.25185	0.703815	0.673092
LSB1.12	54	1.810378	0.51001	0.17116	2.34943	10.58229	0.457462	0.48532
LSB1.13	59	1.775648	7 0.20331	7 0.13439	3 4.48815	7.384563	0.893962	0.679868
LSB1.14	62	1.967228	4 0.18707	7 0.13255	8 3.71266	6.434401	0.932414	0.618826
LSB1.15	66	1.899375	9 0.27059	5 0.13500	3.08323	7.463918	0.721901	0.572219
LSB1.16	70	2.096919	4 0.64040	4 0.21339	5 6.76939	10.84632	0.896167	0.696431
LSB1.17	74	2.130407	4 0.39737	9 0.20456	2 7.46931	12.36967	0.824732	0.732167
LSB1.18	78	2.140984	9 0.53779	2 0.26015	9 8.89211	13.08221	0.904361	0.751591
LSB1.19	82	2.075387	7 0.51309	5 0.23180	8.66047	13.06641	0.878647	0.754347
			6	3	7			
LSB1.20	86	1.91525	0.38358 1	0.19552 4	8.0738	12.26039	0.861975	0.763974
LSB1.21	90	1.745204	0.78217 6	0.20001 6	7.39013 9	11.73604	0.862091	0.730429
LSB1.22	98	1.598261	0.41575	0.17556 9	2.88932 5	7.388276	0.687428	0.568887
LSB1.23	102	1.613401	0.17529	0.15599 2	4.86588 7	7.475808	0.911015	0.714461
LSB1.24	106	1.57575	0.33018 1	0.14014	4.59688 3	7.168137	0.926734	0.691994
LSB1.25	110	1.503258	0.56527	0.11444 2	4.05929 4	6.639286	0.940202	0.650291
LSB1.26	114	1.461365	0.38944	0.13648 6	4.15775 7	7.063048	0.870028	0.676603
LSB1.27	118	1.346959	0.25222	0.14913	3.72317	6.883197	0.794905	0.680468
LSB1.28	122	1.407446	3 0.58498	1 0.15148	5 4.46081	7.090976	0.931428	0.675397
LSB1.29	126	0.849922	8 0.15634	6 0.12671	8 2.10049	4.876593	0.663061	0.649609
LSB1.30	130	0.795123	8 0.09157	0.15257	7 2.05487	4.75806	0.650297	0.664116
LSB3.0	-57.5	0.536719	5 0.14856	7 0.14786	6 2.18996	4.861711	0.62182	0.724408
LSB3.1	-53.5	0.53932	5 0.14614	1 0.16254	6 2.11999	4.952422	0.599304	0.714284
LSB3.2	-50	0.58874	2 0.14760	6 0.16317	9 2.18196	4.875805	0.631994	0.70809
LSB3.3	-42	0.576165	3	2 0.12286	6 2.16513	5.222841	0.567983	0.729867
				1	7	5.222041	0.307383	
LSB3.4	-38	0.534362	0.10979 6	0.11250 9	1.37606 9			0.645213
LSB3.5	-34	0.581922	0.08570 7	0.10537 4	2.07760 6			0.728829
LSB3.6	-30	0.594341	0.09532 4	0.11445 3	1.86070 4	4.818813	0.553004	0.698247
LSB3.7	-26	0.61336	0.09315 5	0.11186 8	1.94024 9			0.703338
LSB3.8	-22	0.650529	0.09857 2	0.12332 4	1.76979 7			0.669814
LSB3.9	-18	0.636602	0.10179	0.12230	, 1.19551 5	4.447993	0.462278	0.581417
LSB3.10	-14	0.607309	0.09941	0.11945	1.44817			0.63674
LSB3.11	-10	0.572268	9 0.09716	6 0.10215	8 2.24582			0.74429
		I		6	8			

LSB3.12	-6	0.573799	0.09944 7	0.11534	2.03456 7	4.699093	0.600787	0.720672
LSB3.13	-2	0.584272	0.08940	0.10166 9	2.25704 3			0.744312
LSB3.14	2	0.591104	0.07806	0.09627 6	1.94932 7			0.718044
LSB3.15	6	0.566632	0.07471	0.09858 1	1.60492 3			0.684446
LSB3.16	10	0.577324	0.08287	0.10928	2.05571 6			0.727636
LSB3.17	14	0.572706	0.07144	0.09694 8	2.24997			0.752229
LSB3.18	18	0.555718	0.07280	0.09775 6	2.31131 3	4.655963	0.652408	0.760903
LSB3.19	22	0.556142	0.07977	0.09504	2.27575			0.75689
LSB3.20	30	0.670912	0.12184	7 0.08983	2 2.45486			0.73555
LSB3.21	34	0.725527	6 0.12267	5 0.07151	8			0.632731
LSB3.22	38	0.72018	2 0.12185	9 0.08069	9 2.32699			0.716059
LSB3.23	42	0.749741	0.12104	5 0.11865	5.51038			0.847774
LSB3.24	46	0.670418	7 0.16902	7 0.09762	5 2.21007			0.702248
LSB5.0	79	2.494988	4 0.47383	8 0.21005	4 1.12356			0.261146
LSB5.1	82.5	2.369702	2 0.26513	9 0.19321	4 9.33432			0.767475
LSB5.2	87	2.219568	1 0.18598	6 0.20420	2 8.26691			0.760059
LSB5.3	91	2.026372	0.58639	8 0.18287	2 9.38232			0.770435
LSB5.4	95	2.057211	1 0.39507	5 0.22066	9 0.92970			0.258061
LSB5.5	99	1.5938	3 0.19869	9 0.14885	5 4.65115			0.705521
LSB5.6	103	1.724667	9 0.28798	8 0.15028	1 0.55773			0.205
LSB5.7	107	1.613339	5 0.36479	6 0.14332	8 3.25741			0.605594
LSB5.8	111	1.811596	0.36721	9 0.13914	1 4.15150			0.641708
LSB5.9	115	1.79285	5 0.41444	2 0.14188	4 4.71653			0.667524
LSB5.10	119	1.950122	7 0.43035	4 0.12409	3 4.60592			0.647764
LSB5.11	123	1.625496	1 0.26452	7 0.12399	5 4.20321			0.676058
LSB5.12	127	1.584747	9 0.32857	9 0.14876	3 4.20504			0.670968
LSB5.13	131	1.535385	1 0.39573	8 0.13708	9 2.57779	7.780441	0.597139	0.554841
LSB5.14	135	1.439331	3 0.32422	9 0.11225	3 3.25031			0.634068
LSB5.15	139	1.421847	1 0.57691	8 0.11605	1	8.436172		
LSB5.16	143	1.573246	1 0.40945	9 0.14241				
LSB5.17	147	0.868485	6 0.1351	8 0.11537		4.298041		
Bos32.1	-2	1.381	0.07104	4 0.10790	3.41124	7.052342	0.704899	0.686202
Bos32.2	0	1.272004	4 0.21705	5 0.08492	3 4.94708	7.157917	0.911029	0.758632
Bos32.3	2	1.418247	0.06690	5 0.09085	9 4.84165	7.011795	0.915267	0.754426
50052.5		1.110247	6	7	2	,.011,55	0.515207	5.75 1720

2	1	1 275 491	0.06893	0.06484	2 5 6 0 2 7	E E07200	0.022146	0 702925
-2		1.375481	0.06883 5	0.06484 6	3.56937	5.507299	0.922146	0.702835
0		1.174778	0.28313 7	0.05814 5	0.28865 8	4.720028	0.382353	0.159947
2		1.411683	0.11484 3	0.09795 6	3.24344 9	5.715397	0.851722	0.666289
-2		1.332096	0.12263 9	0.07301 2	3.76299 6	5.54745	0.953725	0.711242
0		1.114867	0.13293	0.06625	3.94811 8	5.940996	0.88574	0.750282
2		1.219916	0.11686 5	0.07168 9	3.66388	5.538466	0.91584	0.722324
		FeCarb (wt.%)	FeOx (wt.%)	FeMag (wt.%)	FePy (wt.%)	FeT (wt.%)	FeHR/Fe T	FePy/FeH R
		0.72018	0.12185 1	0.08069 5	7.46931 9	12.36967	0.824732	0.732167
		0.770983	0.13061 9	0.12077 3	7.29883	11.69048	0.865681	0.721212
		0.743797	0.13366 7	0.12478	7.68347 6	11.35626	0.911448	0.742319
		0.768179	0.13633 8	0.11874 5	8.10550 6	11.53885	0.950079	0.739363
		0.581482	0.07378 4	2.37295 1		4.613414		
		0.750785	0.13061 9	0.11124 8	7.63928 3	11.73882	0.887985	0.733765
		0.023777	0.00629	0.02052	0.34838	0.44221	0.054481	0.009392
nce		0.037793	0.01000	0.03262	0.55375	0.702893	0.086598	0.014929
surement	(i.e.	5.033779	7.65996 2	29.3227 4	7.24879	5.987768	9.752186	2.034544
indard - re	ported	-0.00152	0.01178 4	2.26995 1	•	0.073414		
. accuracy		0.001518	0.01178 4	2.26995 1	•	0.073414		
nt accurac	v.							
	y.	FeCarb (wt.%)	FeOx	FeMag	FePy	FeT (wt.%)	FeHR/Fe	FePy/FeH
		1.381	(wt.%) 0.07104	(wt.%) 0.10790	(wt.%) 3.41124	7.052342	T 0.704899	R 0.686202
		1.585213	4 0.07562	5 0.09956	3 5.63418	7.385331	1.001254	0.761933
		1.747987	9 0.07395	6 0.10065	4 5.27337	7.371531	0.976184	0.732823
		1.580668	1 0.07657	9 0.10498	5 5.34062	7.392399	0.96083	0.751899
nitby)		0.727637	0.06393	3 0.13378		4.431888		•
		1.573717	0.07429	0.10327	4.91485	7.300401	0.910792	0.733214
		0.150211	0.00242	8 0.00387 1	5 1.01457 7	0.165599	0.138269	0.033587
nce		0.238761	0.00385	0.00615	1.61267	0.26322	0.219779	0.053386
		45 47470	5.18891	5.95786	32.8121	3.605559	24.13052	7.281077
surement	(i.e.	15.17179	1	4	52.0121	3.003333	24.13032	, 1201077
	2 -2 0 2 -2 0 2 -2 0 -2 0	0	0 1.174778 2 1.411683 -2 1.332096 0 1.114867 2 1.219916 2 1.219916 2 1.219916 2 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 1.219916 1 0.72018 1.72018 0.72018 1.743797 0.581482 1.0001518 0.023777 1.000152 0.001518 1.000152 0.0001518 1.000152 0.0001518 1.1381 1.580668 1.580668 1.580668 1.580668 1.573717 1.50150211 0.150211 <td>Image: second second</td> <td>Image: bit is a section of the section of</td> <td>Image: book of the sector of the s</td> <td>Image: bit is a section of the section of</td> <td>N S 6 1 − × × × 0 1.14778 0.28313 0.05814 0.28865 4.720028 0 0.382353 2 1.411683 0.11484 0.09795 3.24344 5.715397 0 0.851722 2 1.32096 0.12263 0.07301 3.7699 5.54745 0 0.953725 0 1.114867 0.13233 0.06625 3.94311 5.940996 0.88574 2 1.219916 0.11686 0.07168 3.66338 5.538466 0.91584 2 1.219916 0.11686 0.07168 3.66338 5.38466 0.91584 2 1.219916 0.11686 0.07168 3.66338 5.38466 0.91584 2 0.72018 0.7168 0.60718 3.66338 12.36967 0.824732 1 0.72018 0.13061 0.12077 7.29833 11.69048 0.826733 2 0.770983 0.130633 0.11247</td>	Image: second	Image: bit is a section of the section of	Image: book of the sector of the s	Image: bit is a section of the section of	N S 6 1 − × × × 0 1.14778 0.28313 0.05814 0.28865 4.720028 0 0.382353 2 1.411683 0.11484 0.09795 3.24344 5.715397 0 0.851722 2 1.32096 0.12263 0.07301 3.7699 5.54745 0 0.953725 0 1.114867 0.13233 0.06625 3.94311 5.940996 0.88574 2 1.219916 0.11686 0.07168 3.66338 5.538466 0.91584 2 1.219916 0.11686 0.07168 3.66338 5.38466 0.91584 2 1.219916 0.11686 0.07168 3.66338 5.38466 0.91584 2 0.72018 0.7168 0.60718 3.66338 12.36967 0.824732 1 0.72018 0.13061 0.12077 7.29833 11.69048 0.826733 2 0.770983 0.130633 0.11247

Deviation (i.e. accuracy)	0.144637	0.00193	0.03078	0.108112		
		4	4			

Sam	Stratigraphic	AI	Ті	Mn	Ca	к	Mg	Ti	FeTwt.	Mn	Ca	к	Mgwt.
ple	height*	(wt.	(wt.	(wt.	(wt.	(wt.	(wt.%)	wt.%	%/wt%	wt.%	wt.%	wt.%	%/wt%
Code		%)	%)	%)	%)	%)	(,.,	/wt%	/-/	/wt%	/wt%	/wt%	/-/
LSB1.	2	9.01	0.45	0.03	0.37	1.87	0.88	 0.050	0.5418	0.003	0.041	0.208	0.0986
0	2	559	166	2789	541	8616	9653	0.050	47	637	64	374	79
LSB1.	6	9.69	0.46	0.03	0.41	1.95	0.95	 0.048	0.5288	0.003	0.042	0.201	0.0990
1	0	0518	7946	1363	0.41	6618	9446	289	98	236	41	911	0.0550
LSB1.	14	9.26	0.45	0.03	0.72	1.78	0.89	0.048	0.5959	0.003	0.077	0.192	0.0967
2	14	7754	1165	0.03	0.72	6342	6872	681	33	282	775	748	73
LSB1.	18	8.75	0.44	0.03	0.45	1.72	0.89	 0.051	0.6331	0.003	0.051	0.196	0.1019
3	10	4688	9245	2257	4368	1451	2677	315	19	685	9	632	66
LSB1.	22	7.79	0.40	0.02	0.46	1.51	0.77	0.051	0.6006	0.003	0.059	0.194	0.0992
L3B1. 4	22	3081	3909	9527	2557	4326	37	829	37	789	355	317	8
4 LSB1.	26	8.59	0.45	0.03	0.51	1.68	0.87	0.052	0.5897	0.003	0.059	0.196	o 0.1019
сэвт. 5	20	3852	2273	4092	1205	8416	5913	627	0.5897	967	485	468	23
LSB1.	30	8.60	0.47	0.03	0.49	1.78	0.91	 0.054	0.6173	0.004	485 0.057	0.207	0.1061
сзы. 6	50	8.00 9391	2288	4598	0.49	858	353	0.034 857	0.0175 99	0.004	0.037	748	0.1001
	24												
LSB1. 7	34	7.70	0.40 1021	0.03 4253	0.66	1.43	0.76 2217	0.052 048	0.5647	0.004	0.086	0.186	0.0989
	38	4854			6333	6834			84	446	482	484	27
LSB1.	38	6.77	0.28 3037	0.03 8892	0.95 4156	0.98	0.61 6362	0.041 763	0.5973	0.005 739	0.140 788	0.145 596	0.0909 46
8	42	7245				6743			21				
LSB1.	42	6.58	0.30	0.03	0.84	1.02	0.61	0.045	0.6498	0.005	0.128	0.155	0.0940
9	10	2083	2213	8959	2771	6673	9258	 914	08	919	04	98	82
LSB1.	46	7.17	0.36	0.04	0.82	1.31	0.75	0.050	0.8698	0.006	0.115	0.183	0.1051
10	50	8685	1098	9578	8167	5874	4939	 301	62	906	365	303	64
LSB1.	50	7.15	0.38	0.06	0.56	1.57	0.82	0.053	1.5719	0.008	0.078	0.220	0.1154
11		8115	5341	0909	0784	5645	6251	833	01	509	342	12	29
LSB1.	54	7.15	0.38	0.08	0.63	1.47	0.81	0.054	1.4796	0.011	0.088	0.206	0.1145
12		1974	7811	294	6035	8428	9204	224	32	597	931	716	42
LSB1.	59	6.47	0.27	0.07	0.98	0.92	0.61	0.042	1.1400	0.011	0.151	0.142	0.0951
13		7243	4252	6541	2368	5167	6623	341	78	817	665	833	98
LSB1.	62	5.67	0.21	0.07	1.40	0.68	0.56	0.037	1.1342	0.013	0.246	0.120	0.1001
14		3031	2115	7725	0761	5195	8124	39	09	701	916	781	45
LSB1.	66	6.40	0.28	0.07	1.07	0.98	0.65	0.044	1.1646	0.011	0.167	0.154	0.1027
15		8721	2376	6492	5359	7457	8742	061	5	936	796	08	88
LSB1.	70	7.72	0.37	0.09	0.43	1.60	0.88	0.049	1.4035	0.012	0.056	0.207	0.1150
16		7819	9816	5002	7324	1532	8724	149	42	294	591	242	03
LSB1.	74	9.17	0.45	0.11	0.52	1.85	1.06	0.049	1.3477	0.012	0.057	0.202	0.1155
17		8176	6071	2489	8588	8166	0733	691	27	256	592	455	71
LSB1.	78	8.32	0.36	0.09	0.40	1.64	0.88	0.044	1.5711	0.010	0.048	0.197	0.1057
18		6353	9806	1343	4591	6143	043	414	81	97	592	703	4
LSB1.	82	8.45	0.37	0.09	0.36	1.69	0.89	0.044	1.5445	0.010	0.042	0.200	0.1052
19		9478	7816	1033	1005	8529	0603	662	88	761	675	784	79
LSB1.	86	8.35	0.40	0.08	0.35	1.72	0.87	0.048	1.4681	0.010	0.041	0.206	0.1044
20		0937	654	3908	0539	0552	2596	682	46	048	976	031	91
LSB1.	90	8.11	0.39	0.07	0.31	1.64	0.81	0.048	1.4470	0.009	0.039	0.202	0.1009
21		0286	3927	999	9328	5686	8686	571	56	863	373	913	44
LSB1.	98	7.91	0.39	0.06	0.60	1.49	0.81	0.050	0.9332	0.007	0.076	0.188	0.1027
22	100	7072	7805	3133	6505	2412	3279	246	08	974	607	506	25
LSB1.	102	7.32	0.30	0.07	0.95	1.05	0.68	0.041	1.0208	0.009	0.130	0.144	0.0932
23	100	3013	1667	054	3496	6905	2845	194	65	633	205	326	46
LSB1.	106	7.59	0.32	0.06	0.92	1.14	0.71	0.042	0.9436	0.009	0.121	0.151	0.0935
24		585	2908	9192	6452	9985	0642	511	91	109	968	396	57
LSB1.	110	6.68	0.25	0.07	1.15	0.86	0.59	0.037	0.9938	0.011	0.173	0.129	0.0893
25		0511	1597	6446	8813	3741	7109	661	29	443	462	293	81
LSB1.	114	7.83	0.34	0.07	1.19	1.16	0.71	0.044	0.9017	0.009	0.153	0.148	0.0909
26		2624	9933	486	8539	6283	2747	676	47	557	019	901	97
LSB1.	118	8.02	0.41	0.06	0.76	1.46	0.83	0.051	0.8572	0.008	0.095	0.182	0.1045
27		9327	5923	6357	3827	6033	9182	8	57	264	13	585	15
LSB1.	122	7.69	0.35	0.06	0.64	1.24	0.70	0.046	0.9211	0.007	0.084	0.161	0.0919
28		828	7663	032	8798	4991	8005	46	12	836	278	723	69
LSB1.	126	8.86	0.46	0.04	0.76	1.71	0.89	0.052	0.5502	0.004	0.086	0.193	0.1013
29		1963	6471	4186	4807	2689	8178	637	84	986	302	263	52

LSB1.	130		8.86	0.45	0.03	0.64	1.72	0.89		0.051	0.5367	0.004	0.072	0.195	0.1011
30	150		3886	5545	8288	574	9783	6653		393	92	319	851	149	58
LSB3.	-		9.98	0.50	0.03	0.41	2.10	1.03		0.050	0.4870	0.003	0.041	0.210	0.1032
0	57.		2714	7779	2411	9188	4581	0683		866	13	247	991	823	47
	5														
LSB3.	-		10.0	0.51	0.03	0.36	2.22	1.05		0.050	0.4914	0.003	0.035	0.221	0.1045
1	53.		7785	0381	2439	1159	7509	3201		644	16	219	837	03	06
	5														
LSB3.	-50		10.4	0.50	0.03	0.34	2.21	1.06		0.048	0.4669	0.003	0.033	0.212	0.1015
2 LSB3.	-42		4158 10.8	598 0.50	5189 0.03	9586 0.37	7111 2.34	0258 1.09		458 0.046	6 0.4828	37 0.003	48 0.034	335 0.216	42 0.1012
цэвэ. З	-42		10.8	0.50 6035	0.03 5515	0.37 6045	2.34 4475	5636		0.046 781	0.4828 33	283	0.034 764	738	88
LSB3.	-38		1700	0035	5515	0045	475	5050		701	55	205	704	/ 50	00
4															
LSB3.	-34														
5															
LSB3.	-30		9.54	0.48	0.03	0.36	2.06	1.00		0.051	0.5050	0.003	0.037	0.216	0.1056
6			1249	9591	3732	2375	2452	8096		313	51	535	98	162	57
LSB3.	-26														
7	22														
LSB3. 8	-22														
o LSB3.	-18		9.39	0.47	0.03	0.31	1.99	0.98		0.050	0.4733	0.003	0.033	0.211	0.1050
9	-10		781	9015	3987	4781	1332	7682		971	0.4733	617	495	893	97
LSB3.	-14		701	5010	0007		1001			572	01	01/			57
10															
LSB3.	-10														
11															
LSB3.	-6		9.81	0.49	0.03	0.31	2.22	1.07		0.050	0.4789	0.003	0.032	0.226	0.1094
12			0387	258	3594	5334	5886	3784		21	92	424	143	891	54
LSB3.	-2														
13 LSB3.	2														
14	2														
LSB3.	6														
15	-														
LSB3.	10														
16															
LSB3.	14														
17															
LSB3.	18		9.10	0.47	0.03	0.32	1.97	0.98		0.051	0.5113	0.003	0.035	0.216	0.1078
18 LSB3.	22		5505	2477	1881	1101	0183	1651		889	35	501	264	373	09
19	22														
LSB3.	30														
20															
LSB3.	34														
21															
LSB3.	38														7
22															
LSB3.	42														
23 LSB3.	46								-						
LSB3. 24	40														
LSB5.	79								-			1		1	
0	-														
LSB5.	82.											İ		İ	
1	5														
LSB5.	87														
2												ļ		ļ	
LSB5.	91														
3	05														
LSB5. 4	95														
4 LSB5.	99								-						
L365. 5															
LSB5.	103							-							
6															
		•							•				•		

LSB5. 7	107													
, LSB5. 8	111													
LSB5. 9	115													
LSB5. 10	119													
LSB5.	123													
11 LSB5.	127													
12 LSB5.	131		7.57	0.43	0.06	0.51	1.60	0.89	 0.057	1.0272	82.19	0.067	0.211	0.1176
13 LSB5.	135		4382	7362	2255	4458	4065	0755	 742	05	167	921	775	01
14 LSB5.	139		7.20	0.39	0.04	0.52	1.50	0.77	0.055	1.1706	55.89	0.072	0.209	0.1081
15			6206	9159	0277	3288	8532	9372	391	81	15	616	338	53
LSB5. 16	143													
LSB5. 17	147		8.29 109	0.45 6271	0.03 4873	0.64 5543	1.76 0928	0.91 7489	0.055 031	0.5183 93	42.06 085	0.077 86	0.212 388	0.1106 6
Bos3	-2		8.47	0.40	0.02	1.35	2.18	0.92	 0.047	0.8325	0.003	0.159	0.258	0.1094
2.1	0		0476	4423	7686	4203	7094	6929	745	79	269	873	202	31
Bos3 2.2	0		8.59 7101	0.38 3756	0.02 961	3.72 694	1.93 6719	0.83 5597	0.044 638	0.8325 97	0.003 444	0.433 511	0.225 276	0.0971 95
Bos3	2		9.68	0.44	0.02	1.40	2.34	0.98	0.045	0.7242	0.002	0.145	0.242	0.1013
2.3	-2		2051	0499	7632	6122	9436	1274	496	06 0.6308	854	23	659	5
Pseu d34.1	-2		8.72 9468	0.34 8952	0.04 4237	3.08 134	2.20 4973	1.32 7481	0.039 974	86	0.005 068	0.352 981	0.252 59	0.1520 69
Pseu	0		6.82	0.26	0.04	8.69	1.62	1.19	0.038	0.6911	0.006	1.273	0.238	0.1747
d34.2	2		9705 9.25	0267	474 0.04	8234 2.27	9668	3723 1.28	108 0.040	03 0.6172	551 0.004	589 0.245	615 0.271	84
Pseu d34.3	2		9.25 9338	2427	0.04 1744	534	2.51 462	1.28 569	222	58	0.004 508	0.245 735	577	0.1388 53
Pseu	-2		9.31	0.36	0.02	5.50	2.23	0.87	0.038	0.5954	0.002	0.591	0.240	0.0935
d41.1 Pseu	0		6227 9.25	1652 0.33	3881 0.02	8016 6.45	5905 2.22	1388 0.88	82 0.036	61 0.6417	563 0.002	228 0.697	001	34 0.0951
d41.2	0		7311	9573	3465	2342	5473	0.88	682	63	535	0.097	402	35
Pseu	2		9.68	0.37	0.02	5.20	2.34	0.89	0.038	0.5720	0.002	0.538	0.241	0.0919
d41.3			1309	3703	441	9764	1328	0371	6	78	521	126	84	68
LSB accurac	cv:													
	1		Al	Ti	Mn	Са	К	Mg	Ti	FeTwt.	Mn	Са	К	Mgwt.
			(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt. %)	(wt.%)	wt.% /wt%	%/wt%	wt.% /wt%	wt.% /wt%	wt.% /wt%	%/wt%
Sam			9.17	0.45	0.11	0.52	1.85	1.06	 0.049	1.3477	0.012	0.057	0.202	0.1155
ple			8176	6071	2489	8588	8166	0733	691	27	256	592	455	71
Repe at 1			8.45 6018	0.42 6413	0.10 3654	0.39 7178	1.74 4907	0.96 3805	0.050 427	1.3825 04	0.012 258	0.046 97	0.206 351	0.1139 79
Repe			7.90	0.42	0.10	0.39	1.68	0.91	 0.053	1.4357	0.012	0.049	0.212	0.1160
at 2			9384	0841	0243	0716	21	8107	208	96	674	399	671	78
Repe at 3			8.10 4182	0.41 3243	0.10 1689	0.40 5181	1.70 0733	0.93 3381	0.050 991	1.4238 15	0.012 548	0.049 996	0.209 859	0.1151 73
Standa	-	-	10.8	0.38	0.11	2.14	2.88	1.49	0.035	0.6335	0.010	0.197	0.265	0.1378
FeOx, F and Fe		•	5943	3225	4973	4246	279	6455	29	14	587	455	464	02
SBC-1)	i, ior al	i eise												
Mea			8.41	0.42	0.10	0.43	1.74	0.96	0.051	1.3974	0.012	0.050	0.207	0.1152
n Stan.			194 0.55	9142 0.01	4519 0.00	0416	6476 0.07	9007 0.06	079 0.001	6 0.0402	434 0.000	989 0.004	834 0.004	0.0008
Stan. Dev			0.55 8671	0.01 8747	0.00 5494	0.06 5715	0.07 8981	4033	0.001 516	0.0402 55	211	0.004 592	0.004 421	0.0008 95
95%			0.88	0.02	0.00	0.10	0.12	0.10	0.002	0.0639	0.000	0.007	0.007	0.0014
Confide	ence		8007	9798	8733	4454	554	1781	409	85	335	299	027	22

25.2%	as a % of			6.94	8.35	24.2	7.18	10.5	4.716	4.5786	2.692	14.31	3.381	1.2344
	rement (i.e		10.5 5651	3623	5576	6828	8197	036	367	44	464	53	118	97
precisio		•	5051	5025	5570	0020	0157	030	507		404	55	110	57
	red standa	rd -	0.06	-	-	0.14	0.02	-	-	0.6239	-	0.012	0.000	-
	ed standar	-	7434	0.12	0.00	4246	009	0.07	0.012	7	0.000	132	203	0.0074
		-	, 101	977	103		000	125	25		16	101	200	6
Deviati	ion (i.e.		0.06	0.12	0.00	0.14	0.02	0.07	0.012	0.6239	0.000	0.012	0.000	0.0074
accurat	•		7434	9775	1027	4246	009	1245	246	7	161	132	203	63
Shell pa	avement													
accura	cy:													
			Al	Ti	Mn	Са	К	Mg	Ti	FeTwt.	Mn	Са	к	Mgwt.
			(wt.	(wt.	(wt.	(wt.	(wt.	(wt.%)	wt.%	%/wt%	wt.%	wt.%	wt.%	%/wt%
			%)	%)	%)	%)	%)		/wt%		/wt%	/wt%	/wt%	
Sam			8.47	0.40	0.02	1.35	2.18	0.92	0.047	0.8325	0.003	0.159	0.258	0.1094
ple			0476	4423	7686	4203	7094	6929	745	79	269	873	202	31
Repe			9.05	0.38	0.00	1.51	2.16	0.92	0.042	0.8159	0.003	0.167	0.239	0.1020
at 1			1687	3615	3045	2336	8151	3651	381	07	045	078	53	42
Repe			9.09	0.41	0.00	1.50	2.20	0.94	0.045	0.8106	0.003	0.165	0.241	0.1035
at 2			3798	0127	3058	3181	0472	1227	1	11	058	297	975	02
Repe			9.14	0.40	0.00	1.51	2.18	0.93	0.043	0.8082	0.003	0.165	0.239	0.1019
at 3			6474	1699	3031	3434	9536	2888	918	24	031	466	386	94
Standa	-		11.6	0.43	0.01	1.03	2.69	1.05						
(Whitb	y)		9034	9262	7468	1399	4114	4896						
Mea			8.94	0.39	0.00	1.47	2.18	0.93	0.044	0.8168	0.003	0.164	0.244	0.1042
n			0609	9966	9205	0788	6313	1174	786	3	101	429	773	42
Stan.			0.31	0.01	0.01	0.07	0.01	0.00	0.002	0.0109	0.000	0.003	0.009	0.0035
Dev			5811	1452	2321	7859	3433	7716	265	79	112	141	031	29
95%			0.50	0.01	0.01	0.12	0.02	0.01	0.003	0.0174	0.000	0.004	0.014	0.0056
Confide			1982	8203	9584	3757	1352	2264	6	52	179	993	355	09
as a %			5.61	4.55	212.	8.41	0.97	1.31	8.039	2.1364	5.765	3.036	5.864	5.3810
	rement (i.e	•	463	1203	7504	434	6613	7086	259	92	842	473	513	33
precisio						0.00								
	red standa	-	-	-	-	0.00	0.04	-						
reporte	ed standar	a a	0.20	0.11	0.00	1399	4114	0.04						
D			966	374	153	0.00	0.04	51						
Deviati	-		0.20	0.11	0.00	0.00	0.04	0.04						
accura	cy)		9662	3738	1532	1399	4114	5104						

Sampl e Code	Stratigrap hic	Mn ppm/wt.%	V ppm/w	Zr ppm/w	Rb ppm/w	Sr ppm/w	Ni ppm/w	As ppm/w	Cr ppm/w	Li ppm/w	Zn ppm/w
	height*	pp,	t.%	t.%	t.%	t.%	t.%	t.%	t.%	t.%	t.%
LSB1.0	2	36.36956	15.031	6.0213	9.6698	17.083	18.697	1.8901	13.210	9.5676	8.7213
			23	62	28	31	02	45	57	83	03
LSB1.1	6	32.36484	14.865	5.5655	9.6353	13.506	13.781	1.8438	13.022	9.3824	8.3407
			67	71	75	66	42	61	03	82	08
LSB1.2	14	32.8211	14.158	6.0076	9.2112	13.962	15.281	2.1977	12.540	9.0498	8.6663
			55	98	26	59	43	09	08	1	07
LSB1.3	18	36.84507	14.950	6.2645	9.4447	13.582	33.072	2.4714	13.324	9.5140	8.8921
			81	97	96	13	57	23	88	31	68
LSB1.4	22	37.88894	14.432	6.3688	9.3052	14.079	37.730	2.4336	13.019	9.4964	8.4501
			43	2	87	94	7	15	57	44	58
LSB1.5	26	39.67027	14.327	6.6006	9.1706	14.235	17.140	2.5399	13.099	9.1582	8.1796
			02	22	15	86	74	23	16	12	84
LSB1.6	30	40.18635	15.531	6.9271	10.074	15.247	17.230	2.6729	14.439	9.5488	8.5981
			24	38	24	05	15	93	71	24	39
LSB1.7	34	44.45692	13.691	7.6781	8.5227	14.875	15.646	2.3581	12.405	8.2648	8.2010
			25	84	55	79	69	89	93	83	94
LSB1.8	38	57.38581	10.576	5.2992	6.3977	13.720	14.894	2.4213	9.8370	6.6376	7.7944
			86	7	29	28	44	39	94	84	58
LSB1.9	42	59.18924	11.489	6.5035	6.9875	13.287	16.213	2.8578	11.046	7.0501	8.6750
			88	12	69	38	18	16	35	81	77
LSB1.1	46	69.0631	13.262	6.8359	8.3650	21.069	20.820	4.5164	12.440	8.1210	9.8968
0			28	38	68	15	58	93	78	61	57

LSB1.1	50	85.09097	16.553	7.1197	10.526	17.175	35.163	11.880	15.456	10.354	12.894
1	50	83.03037	10.555	96	71	36	91	99	15.450 55	87	9
LSB1.1	54	115.9684	15.907	6.8224	9.7623	16.983	48.615	12.075	14.921	9.9578	13.128
2 LSB1.1	59	118.1688	69 10.553	56 5.2092	61 6.1594	8 13.557	15 99.539	61 7.0216	91 10.446	67 6.9710	2 9.9387
3			43	84	47	27	54	88	92	2	91
LSB1.1	62	137.0074	9.2045	5.1366	5.1461	13.746	32.208	7.1534	9.9925	6.0900	10.398
4 LSB1.1	66	119.3565	47 11.542	94 6.3142	27 6.8034	77 14.298	39 40.044	16 6.8362	67 11.884	83 7.5566	46 9.7871
5			85	61	17	97	66	37	84	38	3
LSB1.1 6	70	122.9353	17.418 56	5.8892 64	10.045 16	13.940 24	46.242 03	10.635 83	15.705 34	11.270 58	15.970 94
LSB1.1	74	122.5613	16.584	5.4595	9.9413	13.954	52.801	10.231	15.344	11.012	14.743
7		400 700	58	63	63	03	9	47	49	11	79
LSB1.1 8	78	109.703	16.938 2	5.0267 58	9.6265 73	13.309 25	45.811 11	10.455 32	15.053 23	11.701 51	17.320 61
LSB1.1	82	107.6111	16.895	5.4773	9.6062	13.156	45.487	9.6675	14.886	11.932	17.138
9 LSB1.2	86	100.477	54 18.144	82 5.6735	76 10.286	56 16.781	24 47.000	07 9.4997	98 16.717	64 11.825	59 19.148
0	80	100.477	82	16	25	8	13	01	57	63	7
LSB1.2	90	98.62735	17.572	6.0789	10.134	13.576	55.175	9.6435	16.351	11.708	18.113
1 LSB1.2	98	79.74277	33 15.209	72 7.1810	36 8.9837	36 14.269	38 60.209	49 5.3305	02 14.200	47 9.9368	33 13.229
2			31	24	97	87	07	31	28	47	61
LSB1.2 3	10 2	96.32712	11.192 67	4.9238 77	6.4328 84	12.953 29	46.568 36	6.2984 42	10.555 02	7.7886 23	11.813 12
LSB1.2	10	91.09176	11.674	4.7960	6.8178	12.937	61.984	6.5110	11.442	7.9061	11.808
4	6		29	93	78	42	13	67	61	33	58
LSB1.2 5	11 0	114.4316	9.8949 51	4.6543 29	5.4393 77	12.297 11	59.442 33	6.7864 77	9.8720 4	6.8724 19	9.9816 1
LSB1.2	11	95.57414	10.892	5.7586	6.4287	13.351	210.96	6.5089	10.462	7.2471	15.595
6	4	00.01070	07	6 0070	88	7	28	24	21	29	34
LSB1.2 7	11 8	82.64373	14.408 44	6.0278 6	8.3974 95	14.114 39	40.826 84	6.6667 28	14.091 89	9.6314 91	13.089
LSB1.2	12	78.35515	12.878	5.7364	7.4679	12.702	36.930	6.8593	12.534	8.7484	11.634
8 LSB1.2	2 12	49.86051	34 14.811	43 6.5953	22 8.9989	15 14.446	87 22.442	25 3.2707	57 13.891	24 9.9943	65 10.972
9	6	43.00031	98	94	64	84	1	72	76	37	81
LSB1.3 0	13 0	43.19496	14.636 57	6.5265 53	9.2323 35	17.882 52	23.729 04	2.3798 96	13.325 01	9.6558 32	9.7493 7
LSB3.0	-	32.46753	15.259	6.6883	10.151	13.181	29.437	2.1861	13.528	10.562	7 8.5930
	57.		74	12	52	82	23	47	14	77	74
LSB3.1	5	32.18884	15.557	6.6952	10.579	13.412	16.909	2.3605	14.098	11.115	8.5193
202012	53.	02.2000.	94	79	4	02	87	15	71	88	13
LSB3.2	5	33.70044	14.977	6.4317	10.220	12.577	11.167	1.7466	13.105	10.506	8.1938
۷.202.2	- 50	55.70044	14.977 97	0.4317 18	26	09	4	1.7466 96	73	10.506 61	8.1938 33
LSB3.3	-	32.83262	14.957	5.5364	10.214	12.875	9.7854	1.7832	13.197	10.600	7.8326
LSB3.4	42		08	81	59	54	08	62	42	86	18
	38										
LSB3.5	- 34										
LSB3.6	-	35.35354	15.050	6.0202	11.030	13.616	12.181	1.8767	13.313	10.989	8.4646
1000 7	30		51	02	3	16	82	68	13	9	46
LSB3.7	- 26										
LSB3.8	-										
LSB3.9	22	36.16505	14.902	5.7524	10.655	13.422	10.800	1.8325	13.300	11.092	7.7669
100.5	- 18	50.10505	14.902 91	5.7524 27	10.855 34	13.422 33	10.800 97	1.8325 24	13.300 97	23	9
LSB3.1	-										
0 LSB3.1	- 14				+						
1	10										
LSB3.1	-6	34.2437	15.735 29	6.1134 45	11.596 64	13.844 54	12.310 92	1.8739 5	13.949 58	11.512	8.0252 1
2			23	45	64	54	92	5	58	61	1

1683 1883 1884 1885211 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												
LBBA1 2 M <td></td> <td>-2</td> <td></td>		-2										
1983.1 6 10	LSB3.1	2										
LGSB.1101	LSB3.1	6										
LSB3.1 14	LSB3.1	10										
183 18 35.01259 15.314 6.4755 11.200 13.929 17.920 13.602 17.712 7.4307 1583.1 22 - - - - - - - 97 02 85 3 1583.2 30 - 15.5 - - - - - - - - - - - - - <t< td=""><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		14										
811970.28531583.23011		18	35 0125	9 15 314	6 4735	11 209	13 929	11 889	1 7329	13 602	11 712	7 4307
9 0	8		55.0125									
0 -	9	22										
1		30										
ISB3.2 38 A A A A A A A A A A A ISB3.2 42 A		34										
ISB3.2 42	LSB3.2	38										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSB3.2	42										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSB3.2	46										
5 0 0 0 0 0 0 0 0 0 0 LSB5.2 87 0<		79										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSB5.1											
LSB5.4 95 Image: space spa	LSB5.2											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		91										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LSB5.7											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSB5.8											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LSB5.9											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
LSB5.1 13 82.19167 15.025 6.3868 9.7862 15.732 19.034 7.4144 14.653 11.145 11.868 3 1 49 2 67 13 84 39 49 92 LSB5.1 13 55.8915 14.336 6.1623 9.2474 15.472 11.987 11.242 13.495 11.054 13.551 5 9 99 59 67 53 59 52 31 09 73 LSB5.1 14 6.1623 9.2474 15.472 11.987 11.242 13.495 11.054 13.551 59 9 59 67 53 59 52 31 09 73 LSB5.1 14 42.06085 15.149 6.3020 10.403 15.422 18.722 4.9676 14.223 11.441 11.409 7 7 15.698 6.5516 13.499 17.188 11.626 2.4862 1	LSB5.1	12										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		82.1916		6.3868	9.7862	15.732	19.034				
LSB5.1 13 55.8915 14.336 6.1623 9.2474 15.472 11.987 11.242 13.495 11.054 13.551 5 9 99 59 67 53 59 52 31 09 73 LSB5.1 14 6 3 99 63020 10.403 15.422 18.722 4.9676 14.223 11.441 11.409 6 3 7 19 78 95 31 68 69 56 77 53 Bos32. -2 32.68547 15.698 6.5516 13.499 17.188 11.626 2.4862 12.339 11.361 11.166 1 - 48 03 72 7 97 89 76 97 58 Bos32. 0 34.44152 14.178 6.0718 11.808 22.233 9.6770 2.2734 11.072 10.103 14.012 2 66 97 35 81 6.4 98 13 99 07 8 03				49		2	67	13	84	39	49	92
5 9 - 99 59 67 53 59 52 31 09 73 LSB5.1 14 -	-		55 8915	14 336	6 1623	9 2474	15 472	11 987	11 242	13 495	11 054	13 551
6 3	5	9	55.6515									
7 7 19 78 95 31 68 69 56 77 53 Bos32. -2 32.68547 15.698 6.5516 13.499 17.188 11.626 2.4862 12.339 11.361 11.166 1 - 48 03 72 7 97 89 76 97 58 Bos32. 0 34.44152 14.178 6.0718 11.808 22.233 9.6770 2.2734 11.072 10.103 14.012 2 - 66 97 35 81 64 98 13 99 07 Bos32. 2 28.5399 15.662 7.2158 12.944 15.881 9.2411 2.1314 12.385 10.962 8.6315 3 - 03 81 45 - 5 31 39 1 Pseud3 -2 50.6759 17.503 6.3091 13.432 20.321 10.058 <t< td=""><td>6</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6	3										
Bos32. -2 32.68547 15.698 6.5516 13.499 17.188 11.626 2.4862 12.339 11.361 11.166 1 - 48 03 72 7 97 89 76 97 58 Bos32. 0 34.44152 14.178 6.0718 11.808 22.233 9.6770 2.2734 11.072 10.103 14.012 2 - 66 97 35 81 64 98 13 99 07 Bos32. 2 28.5399 15.662 7.2158 12.944 15.881 9.2411 2.1314 12.385 10.962 8.6315 3 - 03 81 45 5 31 39 1 Pseud3 -2 50.6759 17.503 6.3091 13.432 20.321 10.058 2.0486 10.635 7.4831 11.217 4.1 - 22 06 58 02 6			42.0608						69			
Bos32. 0 34.44152 14.178 6.0718 11.808 22.233 9.6770 2.2734 11.072 10.103 14.012 2 -		-2	32.6854	7 15.698	6.5516	13.499	17.188		2.4862	12.339	11.361	11.166
Bos32. 2 28.5399 15.662 7.2158 12.944 15.881 9.2411 2.1314 12.385 10.962 8.6315 3 -2 50.6759 17.503 6.3091 13.432 20.321 10.058 2.0486 10.635 7.4831 11.217 4.1 -2 50.6759 17.202 6.5180 12.874 47.099 16.620 2.3332 10.294 6.7582 39.306 4.2 -2 69 36 24 77 86 16 96 47 21 Pseud3 2 45.08366 18.517 5.9132 14.473 17.584 12.213 1.9752 11.183 7.4374 9.6071	Bos32.	0	34.4415	2 14.178	6.0718	11.808	22.233	9.6770	2.2734	11.072	10.103	14.012
Pseud3 -2 50.6759 17.503 6.3091 13.432 20.321 10.058 2.0486 10.635 7.4831 11.217 4.1 22 06 58 02 6 7 37 71 63 Pseud3 0 65.50763 17.202 6.5180 12.874 47.099 16.620 2.3332 10.294 6.7582 39.306 4.2 69 36 24 77 86 16 96 47 21 Pseud3 2 45.08366 18.517 5.9132 14.473 17.584 12.213 1.9752 11.183 7.4374 9.6071	Bos32.	2	28.5399	15.662	7.2158	12.944		9.2411		12.385	10.962	8.6315
Pseud3 0 65.50763 17.202 6.5180 12.874 47.099 16.620 2.3332 10.294 6.7582 39.306 4.2 69 36 24 77 86 16 96 47 21 Pseud3 2 45.08366 18.517 5.9132 14.473 17.584 12.213 1.9752 11.183 7.4374 9.6071	Pseud3	-2	50.6759	17.503	6.3091	13.432		10.058		10.635	7.4831	11.217
Pseud3 2 45.08366 18.517 5.9132 14.473 17.584 12.213 1.9752 11.183 7.4374 9.6071		0	65.5076	3 17.202	6.5180							
		2		69	36			-			47	
			15.0050									

Pseud4		1				1					
	-2	25.63347	16.756	6.0433	13.797	25.937	26.975	3.6417	11.208	16.349	13.983
1.1			46	02	4	31	38	99	52	66	63
Pseud4	0	25.34781	16.880	5.8794	13.651	29.276	22.396	4.3378	11.103	16.059	12.059
1.2			62	96	27	35	29	44	42	05	78
Pseud4	2	25.2134	17.015	6.5430	13.703	25.051	17.132	3.2803	11.327	16.715	11.359
1.3			44	27	3	59	23	8	17	79	57
LSB accur	racy:										
	-	D.4 -	v	7.	Dh	C.,	NI:	A -	<u></u>	13	7
		Mn	v ppm/w	Zr	Rb ppm/w	Sr ppm/w	Ni	As	Cr	Li	Zn
		ppm/wt.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%
Sampl		122.5613	16.584	5.4595	9.9413	13.954	52.801	10.231	15.344	11.012	14.743
e		122.5015	58	63	63	03	9	47	49	11.012	79
Repeat		122.5806	17.668	6.1534	10.207	13.356	48.693	10.879	16.393	11.506	16.401
1		122.5000	81	0.1554	65	84	95	23	8	83	8
Repeat		126.7388	18.124	6.3828	9.6758	13.935	49.878	11.251	16.892	12.391	17.361
2			06	7	44	24	03	3	59	45	29
Repeat		125.4776	17.167	6.0527	9.5654	13.541	47.551	10.895	16.035	11.474	16.752
3		-	06	06	38	17	94	55	3	3	32
Standard	l (Whitby	105.8738	20.650	8.2013	12.709	17.291	7.8692	3.1200	10.151	17.502	23.524
for FeOx,	, FeCarb,		07	39	72	01	13	15	57	15	46
FeMag ar	nd FeT, for										
all else S	BC-1)										
Mean		124.3396	17.386	6.0121	9.8475	13.696	49.731	10.814	16.166	11.596	16.314
			13	35	74	82	45	39	55	17	8
Stan.D		2.106196	0.6620	0.3934	0.2872	0.2959	2.2565	0.4248	0.6511	0.5763	1.1198
ev			5	39	54	82	32	44	02	18	53
95%		3.347798	1.0523	0.6253	0.4565	0.4704	3.5867	0.6752	1.0349	0.9160	1.7800
Confiden			29	7	9	64	58	89	26	58	06
as a % of		2.692464	6.0526	10.401	4.6365	3.4348	7.2122	6.2443	6.4016	7.8996	10.910
	ment (i.e.		91	8	7	41	52	62	53	55	38
precision	ı) d standard -	-1.61321	0.2645	-	-	0.7973	0.1968	0.7386	0.0514	2.3983	6.2894
	d standard - standard	-1.01521	0.2645 97	- 4.2152	- 0.9114	0.7973	0.1968 63	22	0.0514 92	2.3983	6.2894 73
reported	stanuaru		57	4.2152	0.9114 8	05	05	~~	52	07	15
Deviatior	n (i.e.	1.61321	0.2645	4.2152	0.9114	0.7973	0.1968	0.7386	0.0514	2.3983	6.2894
accuracy	•	1.01011	97	65	83	09	63	22	92	67	73
	í i		-						-	-	-
Shell pav	rement										
Shell pav accuracy:											
-		Mn	v	Zr	Rb	Sr	Ni	As	Cr	Li	Zn
-		Mn ppm/wt.%	ppm/w	ppm/w	ppm/w	ppm/w	ppm/w	ppm/w	ppm/w	ppm/w	ppm/w
accuracy		ppm/wt.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%	ppm/w t.%
accuracy: Sampl			ppm/w t.% 15.698	ppm/w t.% 6.5516	ppm/w t.% 13.499	ppm/w t.% 17.188	ppm/w t.% 11.626	ppm/w t.% 2.4862	ppm/w t.% 12.339	ppm/w t.% 11.361	ppm/w t.% 11.166
accuracy: Sampl e		ppm/wt.% 32.68547	ppm/w t.% 15.698 48	ppm/w t.% 6.5516 03	ppm/w t.% 13.499 72	ppm/w t.% 17.188 7	ppm/w t.% 11.626 97	ppm/w t.% 2.4862 89	ppm/w t.% 12.339 76	ppm/w t.% 11.361 97	ppm/w t.% 11.166 58
accuracy: Sampl e Repeat		ppm/wt.%	ppm/w t.% 15.698 48 15.079	ppm/w t.% 6.5516 03 5.2714	ppm/w t.% 13.499 72 12.633	ppm/w t.% 17.188 7 16.104	ppm/w t.% 11.626 97 10.588	ppm/w t.% 2.4862 89 2.3840	ppm/w t.% 12.339 76 11.980	ppm/w t.% 11.361 97 10.947	ppm/w t.% 11.166 58 12.292
accuracy: Sampl e Repeat 1		ppm/wt.% 32.68547 30.45127	ppm/w t.% 15.698 48 15.079 77	ppm/w t.% 6.5516 03 5.2714 59	ppm/w t.% 13.499 72 12.633 02	ppm/w t.% 17.188 7 16.104 32	ppm/w t.% 11.626 97 10.588 64	ppm/w t.% 2.4862 89 2.3840 59	ppm/w t.% 12.339 76 11.980 88	ppm/w t.% 11.361 97 10.947 78	ppm/w t.% 11.166 58 12.292 71
accuracy: Sampl e Repeat 1 Repeat		ppm/wt.% 32.68547	ppm/w t.% 15.698 48 15.079 77 15.198	ppm/w t.% 6.5516 03 5.2714 59 6.1259	ppm/w t.% 13.499 72 12.633 02 12.707	ppm/w t.% 17.188 7 16.104 32 16.245	ppm/w t.% 11.626 97 10.588 64 11.227	ppm/w t.% 2.4862 89 2.3840 59 2.4369	ppm/w t.% 12.339 76 11.980 88 11.921	ppm/w t.% 11.361 97 10.947 78 10.257	ppm/w t.% 11.166 58 12.292 71 11.924
accuracy: Sampl e Repeat 1 Repeat 2		ppm/wt.% 32.68547 30.45127 30.5808	ppm/w t.% 15.698 48 15.079 77 15.198 49	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03	ppm/w t.% 13.499 72 12.633 02 12.707 09	ppm/w t.% 17.188 7 16.104 32 16.245 9	ppm/w t.% 11.626 97 10.588 64 11.227 42	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56	ppm/w t.% 12.339 76 11.980 88 11.921 09	ppm/w t.% 11.361 97 10.947 78 10.257 96	ppm/w t.% 11.166 58 12.292 71 11.924 66
accuracy: Sampl e Repeat 1 Repeat 2 Repeat		ppm/wt.% 32.68547 30.45127	ppm/w t.% 15.698 48 15.079 77 15.198	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3		ppm/wt.% 32.68547 30.45127 30.5808	ppm/w t.% 15.698 48 15.079 77 15.198 49	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03	ppm/w t.% 13.499 72 12.633 02 12.707 09	ppm/w t.% 17.188 7 16.104 32 16.245 9	ppm/w t.% 11.626 97 10.588 64 11.227 42	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56	ppm/w t.% 12.339 76 11.980 88 11.921 09	ppm/w t.% 11.361 97 10.947 78 10.257 96	ppm/w t.% 11.166 58 12.292 71 11.924 66
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard		ppm/wt.% 32.68547 30.45127 30.5808	ppm/w t.% 15.698 48 15.079 77 15.198 49	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby)		ppm/wt.% 32.68547 30.45127 30.5808 30.30882	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard		ppm/wt.% 32.68547 30.45127 30.5808	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean		ppm/wt.% 32.68547 30.45127 30.5808 30.30882 31.00659	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.D		ppm/wt.% 32.68547 30.45127 30.5808 30.30882	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247 15.305 93 0.2709	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86 0.5334	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51 0.4058	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6 0.5363	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71 0.4276	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53 0.0456	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7 0.1904	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06 0.4679	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93 0.5530
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.D ev		ppm/wt.% 32.68547 30.45127 30.5808 30.30882 31.00659 1.124751	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247 15.305 93 0.2709 6	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86 0.5334 73	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51 0.4058 8	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6 0.5363 69	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71 0.4276 34	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53 0.0456 88	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7 0.1904 64	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06 0.4679 24	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93 0.5530 95
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.D		ppm/wt.% 32.68547 30.45127 30.5808 30.30882 31.00659	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247 15.305 93 0.2709	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86 0.5334	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51 0.4058	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6 0.5363	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71 0.4276	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53 0.0456	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7 0.1904	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06 0.4679	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93 0.5530
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.D ev 95%		ppm/wt.% 32.68547 30.45127 30.5808 30.30882 31.00659 1.124751 1.787791	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247 15.305 93 0.2709 6 0.4306 9	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86 0.5334 73 0.8479 56	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51 0.4058 8 0.6451 47	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6 0.5363 69 0.8525 58	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71 0.4276 34 0.6797 25	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53 0.0456 88 0.0726 21	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7 0.1904 64 0.3027 42	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06 0.4679 24 0.7437	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93 0.5530 95 0.8791 45
accuracy: Sampl e Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.D ev 95% Confiden as a % of		ppm/wt.% 32.68547 30.45127 30.5808 30.30882 31.00659 1.124751	ppm/w t.% 15.698 48 15.079 77 15.198 49 15.247 15.247 15.305 93 0.2709 6 0.4306	ppm/w t.% 6.5516 03 5.2714 59 6.1259 03 5.9121 77 5.9652 86 0.5334 73 0.8479	ppm/w t.% 13.499 72 12.633 02 12.707 09 12.738 21 12.894 51 0.4058 8 0.6451	ppm/w t.% 17.188 7 16.104 32 16.245 9 16.039 49 16.394 6 0.5363 69 0.8525	ppm/w t.% 11.626 97 10.588 64 11.227 42 11.151 81 11.148 71 0.4276 34 0.6797	ppm/w t.% 2.4862 89 2.3840 59 2.4369 56 2.4729 1 2.4450 53 0.0456 88 0.0726	ppm/w t.% 12.339 76 11.980 88 11.921 09 11.989 07 12.057 7 0.1904 64 0.3027	ppm/w t.% 11.361 97 10.947 78 10.257 96 10.640 54 10.802 06 0.4679 24 0.7437 65	ppm/w t.% 11.166 58 12.292 71 11.924 66 11.207 78 11.647 93 0.5530 95 0.8791

Measured standard - ro standard	eported					
Deviation (i.e.						
accuracy)						

Sample Code	Stratigraph ic height*	Ba ppm/wt.%	U ppm/wt .%	Mo ppm/wt .%	Cu ppm/wt .%	Cd ppm/wt .%	Co ppm/wt .%	Ga ppm/wt .%	Tl ppm/wt .%	Pb ppm/wt .%
LSB1.0	2	40.02399	0.25647	0.18005	4.00285	0	2.93878	2.67694	0.06994	4.98109
LSB1.1	6	35.07625	3 0.23415	4 0.20225	9 4.13091	0	4 3.13530	9 2.64904	7 0.07592	7 5.66085
LSB1.2	14	40.80611	3 0.24019	6 0.29008	9 4.72574	0	7 4.15486	7 2.52644	0.0948	1 8.06568
			1	1	5		5			1
LSB1.3	18	43.30734	0.26213 2	0.36401 9	5.18669 9	0	4.11388	2.67579 6	0.09805 4	8.58284 7
LSB1.4	22	50.05551	0.27255 8	0.35975 6	4.90204 3	0	3.83539 1	2.57235 7	0.08827 9	8.36907 5
LSB1.5	26	52.42913	0.27945	0.3763	5.09061	0	3.71047	2.58025	0.10879	8.48757
LSB1.6	30	48.15455	5 0.29822	0.39946	5.17883	0	5 4.06643	4 2.75096	9 0.10084	9.30858
LSB1.7	34	75.24061	7 0.30682	0.42919	1 4.88319	0	3 3.7061	2 2.41632	6 0.09955	1 8.09737
	20	110 7707	7	8	1	0	3.60692	9	1	7 10245
LSB1.8	38	116.7797	0.24781 3	0.62557 1	5.12268 7	U	3.60692 6	1.99290 6	0.11837 7	7.10345 6
LSB1.9	42	105.5231	0.27423	0.68345 4	5.46857 6	0	4.38821 3	2.11834 7	0.12412 4	8.45701 2
LSB1.10	46	76.46964	0.29337	0.87079	6.19670	0	5.50000	2.41450	0.17061	12.4411
LSB1.11	50	39.89592	3 0.30826	1.68638	8 11.842	0.01838	4 11.3485	1 2.88420	5 0.33890	1 33.4467
LSB1.12	54	37.33792	4 0.33505	9 2.40545	13.2450	3 0.02097	10.5009	3 2.78390	3 0.33432	3 37.1325
				2	6	3	5	9		2
LSB1.13	59	57.63608	0.29532 4	2.00758 6	9.99623 9	0.02507 3	5.39522 6	2.01742 1	0.23720 6	17.5547 2
LSB1.14	62	98.11013	0.27859 F	1.72160 1	10.4995 8	0.02282 6	4.90401	1.76031 1	0.26569	12.704
LSB1.15	66	71.29911	5 0.30200	1.86642	o 10.4265	0.02338	6 5.60269	2.13076	2 0.27048	18.0970
LSB1.16	70	26.21621	5 0.31163	6 3.30529	16.0551	6 0.03334	2 8.04641	2.92087	9 0.34849	7 39.3766
	74	29.61148	7 0.32135	1 3.42648	14 6197	2 0.02898	8 7.96964	9 2.93401	2 0.30387	8 36.7213
LSB1.17	74	29.01148	0.32135	3.42048 8	14.6187	0.02898 6	7.96964 9	2.93401 7	2	36.7213 6
LSB1.18	78	23.74211	0.28392 3	2.54752 7	17.3034 9	0.04678 7	8.52689 9	2.81417 3	0.36805 9	33.9190 6
LSB1.19	82	23.22342	0.28853	2.36177 9	16.4546	0.04286 9	8.39902	2.75549	0.35609	34.0398
LSB1.20	86	27.74704	5 0.28462	2.10021	8 17.2391	0.04104	2 9.69176	2.94666	2 0.30661	5 31.1776
LSB1.21	90	26.55135	1 0.28619	1 2.34888	17.3193	5 0.03982	2 9.29267	2.89214	6 0.29883	9 33.8860
LSB1.22	98	39.30685	6 0.30662	4 1.38678	2 11.0011	6 0.02085	7 6.26414	4 2.62098	9 0.15354	5 23.9906
LJD1.22	56	33.30083	4	4	4	6	1		3	23.9900
LSB1.23	10 2	53.16573	0.25692	1.46056 2	11.1050 8	0.0251	6.48981 5	2.15078 7	0.19199 1	17.6525 6
LSB1.24	10	54.5505	0.26026	1.51865	11.3715	0.02462	5.73819	2.21774	0.20087	17.8707
LSB1.25	6 11	70.01655	6 0.24700	1.51044	5 11.0548	1 0.02775	5 5.73790	3 1.93633	7 0.18489	4 17.0730
LSB1.26	0 11	59.20578	1 0.27744	7 1.59742	11.3950	9 0.03353	2 5.87039	2.13089	2 0.20422	8 20.3451
1004.07	4	47 1 4407	6	5	8	9	8	6	3	4
LSB1.27	11 8	47.14197	0.29597 6	1.66719 8	11.2947 4	0.02568 2	7.13760 4	2.67032 4	0.17029 4	21.6796 6
LSB1.28	12	49.10004	0.27039	1.18193	10.9679	0.02327	6.11551	2.38823	0.17724	17.2565

LSB1.29	12	49.39891	0.28308	0.50218	5.90355	0.01621	4.60462	2.61137	0.10356	9.43883
1604.20	6	40.00022	4	0.05474	2	1	2	7	1	8
LSB1.30	13 0	49.96023	0.25594 2	0.35471 1	5.00147	0.01836 2	3.78938 4	2.60534 2	0.08828	8.17107 8
LSB3.0	-	30.73593	0.25974	0.13571	3.13852	0	2.92207	2.70562	0.06774	3.35497
	57. 5			4	8		8	8	9	8
LSB3.1	-	30.04292	0.22746	0.13562	3.13304	0.00083	2.89699	2.7897	0.07382	3.62660
	53. 5		8	2	7	9	6			9
LSB3.2	-50	27.7533	0.22246 7	0.12268 7	2.81938 3	0	2.59911 9	2.68722 5	0.04933 9	3.30396 5
LSB3.3	-42	27.46781	0.20922 7	0.11824	2.93991 4	0	2.53218 9	2.66094 4	0.05815 5	3.51931 3
LSB3.4	-38									
LSB3.5	-34									
LSB3.6	-30	35.15152	0.19050 5	0.14909 1	3.15151 5	0.00058 8	2.92929 3	2.72727 3	0.05899	3.89899
LSB3.7	-26			_	-		-	-		
LSB3.8	-22				1	1	1	1	1	1
LSB3.9	-18	35.19417	0.17815	0.15315 5	2.83980 6	0.00077 2	2.64563 1	2.74271 8	0.06771 8	3.95631 1
LSB3.10	-14			5	0	-	-	0	0	-
LSB3.11	-10				1	1	1	1	1	1
LSB3.12	-6	31.93277	0.19558 8	0.13130 3	3.13025 2	0.00085 1	2.62605	2.94117 6	0.06848 7	4.15966 4
LSB3.13	-2			5	-	-		0	,	
LSB3.14	2									
LSB3.15	6									
LSB3.16	10									
LSB3.17	14									
LSB3.18	18	39.5466	0.19974	0.16297 2	3.92947 1	0.00079 8	2.84634 8	2.94710 3	0.06246 9	5.08816 1
LSB3.19	22			-	-	5	5	5	5	-
LSB3.20	30									
LSB3.21	34									
LSB3.22	38									
LSB3.23	42									
LSB3.24	46									
LSB5.0	79									
LSB5.1	82. 5									
LSB5.2	87									
LSB5.3	91									
LSB5.4	95									
LSB5.5	99				1	1	1	1	1	1
LSB5.6	10 3									
LSB5.7	3 10 7									
LSB5.8	11									
LSB5.9	1 11									
LSB5.10	5 11									
LSB5.11	9 12									
	3									

LSB5.12	12									
	7									
LSB5.13	13 1	39.55377	0.25052 5	1.11621 3	13.1675 3	0.29041 9	6.83271 8	2.96837 4	0.19141 2	23.2132 9
LSB5.14	13 5									
LSB5.15	13 9	35.89506	0.22199 5	0.62256 7	11.4156 8	0.24206 1	6.37688 9	2.76891 8	0.15731 8	15.1522 6
LSB5.16	14 3				-		-	-	_	
LSB5.17	14 7	26.82864	0.24381	0.29367 5	7.12077 2	0.22707 1	6.61012 8	2.92984 3	0.09393 6	11.2074 4
Bos32.1	-2	30.90138	0.46828 2	0.50868 8	5.01166 2	0.00336	2.60224 3	3.09403 7	0.02989	3.45108 3
Bos32.2	0	31.48947	0.40929	0.52073	4.46525	0.00500	2.24415	2.78580	0.02362	3.10822
Bos32.3	2	26.70154	3 0.44151	8 0.36997	8 5.14086	4 0.00226 2	9 2.44546 7	2 3.07236 5	1 0.02759 9	3.40935
Pseud3	-2	33.26527	7 0.50756	4 0.70099	8 8.42420	0.00467	3.07547	3.02230	0.02344	5 2.94319
4.1 Pseud3	0	38.30917	0.58149	0.74187	3 7.26408	8 0.02344	4 2.81333	6 2.99462	7 0.02096	4 2.66425
4.2 Pseud3	2	30.46298	2 0.53545 7	2 0.61714	8.65743	6 0.00339	1 3.17054	3.03490	1 0.02296	2 2.99043
4.3 Pseud4	-2	25.6242	7 0.52120 5	2.12562	8 4.34600	2 0.00493	8 3.38766	7 2.79229	7 0.03584	1 2.95703
1.1 Pseud4	0	27.37858	0.58671	3 2.14533	1 4.41054	1 0.00249	8 3.31400	2.91818	4 0.03206	4 2.81334
1.2 Pseud4	2	25.79192	4 0.48021 8	9 2.01102 4	8 4.45775 1	2 0.00260 2	3 3.47565 9	1 2.80115 9	1 0.03788 9	6 2.79260 9
1.3										
LSB accur	acy:									
		Ba ppm/wt.%	U ppm/wt	Mo ppm/wt	Cu ppm/wt	Cd ppm/wt	Co ppm/wt	Ga ppm/wt	Tl ppm/wt	Pb ppm/wt
Course			%	%	%	%		%		
Sample		29.61148	.% 0.32135	.% 3.42648 8	.% 14.6187	.% 0.02898	.% 7.96964	.% 2.93401 7	.% 0.30387	.% 36.7213
Repeat		29.61148 26.03625	0.32135 0.30348	3.42648 8 3.36554	14.6187 16.2852	0.02898 6 0.03491	.%	2.93401 7 2.94773	.% 0.30387 2 0.32156	.% 36.7213 6 38.7597
Repeat 1 Repeat			0.32135 0.30348 8 0.33106	3.42648 8 3.36554 7 3.30278	14.6187 16.2852 1 16.8789	0.02898 6	.% 7.96964 9 8.25517 8.43510	2.93401 7 2.94773 3 2.98862	.% 0.30387 2 0.32156 2 0.32269	.% 36.7213 6 38.7597 9 39.3946
Repeat 1 Repeat 2 Repeat		26.03625	0.32135 0.30348 8 0.33106 4 0.31349	3.42648 8 3.36554 7 3.30278 4 3.25174	14.6187 16.2852 1 16.8789 7 16.4245	0.02898 6 0.03491 2 0.03845 0.04010	.% 7.96964 9 8.25517 8.43510 2 8.16599	2.93401 7 2.94773 3	.% 0.30387 2 0.32156 2	.% 36.7213 6 38.7597 9 39.3946 5 39.8695
Repeat 1 Repeat 2	arb, FeM	26.03625 26.10489 25.55367 for 67.28843 ag	0.32135 0.30348 8 0.33106 4	3.42648 8 3.36554 7 3.30278 4	14.6187 16.2852 1 16.8789 7	0.02898 6 0.03491 2 0.03845	.% 7.96964 9 8.25517 8.43510 2	2.93401 7 2.94773 3 2.98862 6	.% 0.30387 2 0.32156 2 0.32269 6	.% 36.7213 6 38.7597 9 39.3946 5
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f	arb, FeM	26.03625 26.10489 25.55367 for 67.28843 ag	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540	.% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1)	arb, FeM	26.03625 26.10489 25.55367 for 67.28843	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.31734	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9	.% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1) Mean Stan.De v 95%	Carb, FeM	26.03625 26.10489 25.55367 for 67.28843 26.82657	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.31734 9 0.01170 6 0.01860	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896	.% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measurem	arb, FeM for all else ce	26.03625 26.10489 25.55367 for 67.28843 26.82657 1.872735 2.976713 11.09613	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.31734 9 0.01170 6	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3	% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measurem precision Measurem	arb, FeM for all else ce nent (i.e. d standard	26.03625 26.10489 25.55367 for ag 26.82657 1.872735 2.976713 11.09613 d - 5.72862	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.51175 4 0.31734 9 0.01170 6 0.01860 7 5.86331 6 -	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057 2 3.61356 2 -	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121 4 9.78837 2 -	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492 0.00782 21.9579 6 0.01007	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762 3 3.74853 6	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812 7 2.31819 7 0.20447	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896 8 5.92433	.% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402 8 5.69717 7
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeC and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measuren precision Measured reported	arb, FeM for all else ce nent (i.e. d standard	26.03625 26.10489 25.55367 for ag and a state of the s	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.31734 9 0.01170 6 0.01860 7 5.86331 6 - 0.02197	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057 2 3.61356 2 - 0.01862	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121 4 9.78837 2 - 0.11792	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492 0.00782 21.9579 6 0.01007 5	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762 3 3.74853 6	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812 7 2.31819 7 0.20447 4	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896 8 5.92433 3 0.00294	-% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402 8 5.69717 7 - 0.03072
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measurem precision Measurem	arb, FeM for all else ce d standard standard (i.e.	26.03625 26.10489 25.55367 for ag 26.82657 1.872735 2.976713 11.09613 d - 5.72862	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.51175 4 0.31734 9 0.01170 6 0.01860 7 5.86331 6 -	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057 2 3.61356 2 -	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121 4 9.78837 2 -	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492 0.00782 21.9579 6 0.01007	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762 3 3.74853 6	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812 7 2.31819 7 0.20447	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896 8 5.92433 3	.% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402 8 5.69717 7
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeC and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measurem precision Measured reported Deviation	arb, FeM for all else ce d standard standard (i.e.	26.03625 26.10489 25.55367 for ag and a state of the s	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.51175 4 0.31734 9 0.01170 6 0.01860 7 5.86331 6 - 0.02197 0.02197	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057 2 3.61356 2 - 0.01862 0.01862	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121 4 9.78837 2 - 0.11792 0.11791	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492 0.00782 21.9579 6 0.01007 5 0.01007	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762 3 3.74853 6 - 0.01767 0.01766	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812 7 2.31819 7 0.20447 4 0.20447	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896 8 5.92433 3 0.00294	-% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402 8 5.69717 7 - 0.03072 0.03072
Repeat 1 Repeat 2 Repeat 3 Standard FeOx, FeO and FeT, f SBC-1) Mean Stan.De v 95% Confidence as a % of measurem precision Measured reported Deviation	arb, FeM for all else to all else ce nent (i.e. d standard (i.e.	26.03625 26.10489 25.55367 for ag and a state of the s	0.32135 0.30348 8 0.33106 4 0.31349 2 0.51175 4 0.51175 4 0.31734 9 0.01170 6 0.01860 7 5.86331 6 - 0.02197 0.02197	3.42648 8 3.36554 7 3.30278 4 3.25174 4 0.20376 5 3.33664 1 0.07585 5 0.12057 2 3.61356 2 - 0.01862 0.01862	14.6187 16.2852 1 16.8789 7 16.4245 1 2.75458 2 16.0518 5 0.98849 6 1.57121 4 9.78837 2 - 0.11792 0.11791	0.02898 6 0.03491 2 0.03845 0.04010 3 0.04713 9 0.03561 3 0.00492 0.00782 21.9579 6 0.01007 5 0.01007	.% 7.96964 9 8.25517 8.43510 2 8.16599 5 2.08574 4 8.20647 9 0.19353 4 0.30762 3 3.74853 6 - 0.01767 0.01766	2.93401 7 2.94773 3 2.98862 6 2.88471 2.70632 7 2.93877 2 0.04286 0.06812 7 2.31819 7 0.20447 4 0.20447	.% 0.30387 2 0.32156 2 0.32269 6 0.33255 0.08540 9 0.32017 0.01193 3 0.01896 8 5.92433 3 0.00294	-% 36.7213 6 38.7597 9 39.3946 5 39.8695 1 3.21241 9 38.6863 3 1.38661 7 2.20402 8 5.69717 7 - 0.03072 0.03072

	Ba ppm/wt.%	U	Мо	Cu	Cd	Со	Ga	TI	Pb
		ppm/wt							
		.%	.%	.%	.%	.%	.%	.%	.%
Sample	30.90138	0.46828	0.50868	5.01166	0.00336	2.60224	3.09403	0.02989	3.45108
		2	8	2		3	7	1	3
Repeat	28.88998	0.40484	0.47814	4.71622	0.00365	2.52319	2.92056	0.02595	3.13275
1		7	9		5	5	3	3	5
Repeat	28.90691	0.42791	0.47820	4.95359	0.00291	2.53868	2.95741	0.02599	3.18879
2		1	1	2	8	1	2	3	
Repeat	28.56028	0.41304	0.47282	4.86079	0.00273	2.55041	3.04923	0.02656	3.19587
3		4		5	1	8	2	1	2
Standard									
(Whitby)									
Mean	29.31464	0.42852	0.48446	4.88556	0.00316	2.55363	3.00531	0.02709	3.24212
		1	5	7	6	4	1	9	5
Stan.De	1.069795	0.02817	0.01634	0.12886	0.00041	0.03427	0.08016	0.00188	0.14213
v		4	5	6	9		2	2	7
95%	1.700439	0.04478	0.02598	0.20483	0.00066	0.05447	0.12741	0.00299	0.22592
Confidence		2		3	7	2	8	1	7
as a % of	5.800647	10.4504	5.36265	4.19260	21.0558	2.13310	4.23974	11.0371	6.96849
measurement (i.e.		6	8	7	5	3	8	4	8
precision)									
Measured standard -	reported								
standard									
Deviation (i.e.									
accuracy)									

Sampl e	Stratig phic	gra	K/Rb	TIC	CaCO 3	D	D*Ti wt.%/	D*FeTwt. %/wt%	D*Mn wt.%/	D*Ca wt.%/	D*K wt.%/	D*Mgwt. %/wt%
Code	height	t*			(wt. %)		wt%	,,,,	wt%	wt%	wt%	,,,,
LSB1. 0	2		215.489									
LSB1. 1	6		209.551 3									
LSB1. 2	14		209.253 4									
LSB1. 3	18		208.190 8									
LSB1. 4	22		208.824	0	0	1	0.051 829	0.600637	0.003 789	0.059 355	0.194 317	0.09928
LSB1. 5	26		214.236 3									
LSB1. 6	30		206.216 5	0	0	1	0.054 857	0.617399	0.004 019	0.057 027	0.207 748	0.106109
LSB1. 7	34		218.807 4	5.491 777	45.76 481	1.843 821	0.095 967	1.041362	0.008 197	0.159 458	0.343 844	0.182403
LSB1. 8	38		227.575 3									
LSB1. 9	42		223.224 9	0	0	1	0.045 914	0.649808	0.005 919	0.128 04	0.155 98	0.094082
LSB1. 10	46		219.129 1	0	0	1	0.050 301	0.869862	0.006 906	0.115 365	0.183 303	0.105164
LSB1. 11	50		209.106 4	0	0	1	0.053 833	1.571901	0.008 509	0.078 342	0.220 12	0.115429
LSB1. 12	54		211.748	0.137 905	1.149 209	1.011 626	0.054 855	1.496833	0.011 732	0.089 965	0.209 119	0.115874
LSB1. 13	59		231.893 2	0.065 278	0.543 985	1.005 47	0.042 572	1.146314	0.011 882	0.152 494	0.143 615	0.095719
LSB1. 14	62		234.702 9	0.484 685	4.039 041	1.042 09	0.038 964	1.181948	0.014 277	0.257 309	0.125 865	0.10436
LSB1. 15	66		226.474 8	0.490 041	4.083 672	1.042 575	0.045 937	1.214236	0.012 444	0.174 94	0.160 64	0.107165
LSB1. 16	70		206.310 8	0.154 371	1.286 425	1.013 032	0.049 79	1.421833	0.012 454	0.057 328	0.209 943	0.116502

LSB1.	74	203.649	0.646	5.389	1.056		0.052	1.424507	0.012	0.060	0.213	0.122155
17 LSB1.	78	205.371	795 0.064	956 0.535	97 1.005		522 0.044	1.57964	954 0.011	873 0.048	989 0.198	0.106309
18	70	9	258	486	384		653	1.57504	029	853	767	0.100505
LSB1. 19	82	209.013 5	0.739 326	6.161 053	1.065 656		0.047 594	1.645999	0.011 468	0.045 476	0.213 967	0.112191
LSB1.	86	200.297	0.761	6.347	1.067		0.051	1.567647	0.010	0.044	0.219	0.111573
20		5	661	171	773		981		729	821	994	
LSB1. 21	90	200.223 2	0.720 616	6.005 133	1.063 888		0.051 674	1.539506	0.010 493	0.041 889	0.215 877	0.107393
LSB1.	98	209.828	0.336	2.804	1.028		0.051	0.96013	0.008	0.078	0.193	0.105688
22	102	4	482	02	849		696	1.020805	204	817	944	0.002246
LSB1. 23	102	224.357 4	0	0	1		0.041 194	1.020865	0.009 633	0.130 205	0.144 326	0.093246
LSB1. 24	106	222.058 1										
LSB1. 25	110	237.697	0	0	1		0.037 661	0.993829	0.011 443	0.173 462	0.129 293	0.089381
LSB1.	114	231.615	0	0	1		0.044	0.901747	0.009	0.153	0.148	0.090997
26 LSB1.	118	6 217.427					676		557	019	901	
27 LSB1.	122	7 216.557										
28		3										
LSB1. 29	126	214.761 3										
LSB1. 30	130	211.376										
LSB3.	-	207.675	0	0	1		0.050	0.487013	0.003	0.041	0.210	0.103247
0 LSB3.	57.5	9 208.924	0	0	1		866 0.050	0.491416	247 0.003	991 0.035	823 0.221	0.104506
1	53.5	9	0	U	1		644	0.451410	219	837	03	0.104500
LSB3. 2	-50	207.758 6										
LSB3. 3	-42	212.184 9										
LSB3. 4	-38											
LSB3.	-34											
5 LSB3.	-30	195.970	0	0	1		0.051	0.505051	0.003	0.037	0.216	0.105657
6		7	-				313		535	98	162	
LSB3. 7	-26											
LSB3. 8	-22											
LSB3. 9	-18	198.861										
LSB3.	-14											
10 LSB3.	-10					-						
11 LSB3.	-6	195.652				<u> </u>						
LSB3. 12	-0	195.652 2										
LSB3. 13	-2					_						
LSB3.	2											
14 LSB3.	6											
15						<u> </u>						
LSB3. 16	10											
LSB3. 17	14											
LSB3. 18	18	193.033 7	0	0	1							
18 LSB3.	22	/		1		<u> </u>			<u> </u>			
19												

LSB3.	30											
20 LSB3.	34											
21 LSB3.	38											
L3B3. 22	50											
LSB3. 23	42											
LSB3. 24	46											
LSB5.	79											
LSB5.	82.5											
1 LSB5.	87											
2 LSB5.	91											
3 LSB5.	95											
4 LSB5.	99											
5 LSB5.	103											
6 LSB5.	107											
7 LSB5.	111											
8 LSB5.	115											
9	_											
LSB5. 10	119											
LSB5. 11	123											
LSB5. 12	127											
LSB5. 13	131	216.401 3	0.047 253	0.393 774	1.003 953		0.057 97	1.031265	82.51 659	0.068 189	0.212 612	0.118066
LSB5. 14	135											
LSB5. 15	139	226.373 3										
LSB5.	143	5										
16 LSB5.	147	204.141										
17 Bos32	-2	8 191.264	0.339	2.828	1.029		0.049	0.856816	0.003	0.164	0.265	0.112616
.1 Bos32	0	7 190.776	452 1.227	763 10.22	111 1.113		135 0.049	0.92744	364 0.003	527 0.482	719 0.250	0.108267
.2 Bos32	2	7 187.461	165 0.582	638 4.852	913 1.051		723 0.047	0.76114	836 0.003	894 0.152	938 0.255	0.106519
.3		7	301	512			817			636	034	
Pseud 34.1	-2	188.042 6	1.475 556	12.29 63	1.140 203		0.045 578	0.719338	0.005 778	0.402 47	0.288 003	0.173389
Pseud 34.2	0	185.342 7	3.208 92	26.74 1	1.365 02		0.052 018	0.943369	0.008 942	1.738 474	0.325 714	0.238584
Pseud 34.3	2	187.633 3	1.288 318	10.73 598	1.120 272		0.045 059	0.691497	0.005 051	0.275 29	0.304 24	0.155554
Pseud 41.1	-2	173.946 6	1.986 049	16.55 04	1.198 328		0.046 519	0.713558	0.003 072	0.708 485	0.287	0.112085
Pseud 41.2	0	176.102	2.284 065	19.03 387	1.235 084		0.045 305	0.792631	0.003	0.860	0.296 916	0.1175
Pseud	2	1 176.483	1.888	15.73	1.186	-	0.045	0.678921	0.002	0.638	0.287	0.109144
41.3		1	46	717	763		81		992	628	007	
								+				
			• •			i			•			

LSB accuracy:										
	K/Rb	TIC	CaCO 3 (wt. %)	D	D*Ti wt.%/ wt%	D*FeTwt. %/wt%	D*Mn wt.%/ wt%	D*Ca wt.%/ wt%	D*K wt.%/ wt%	D*Mgwt. %/wt%
Sampl e	203.649	0.646 795	5.389 956	1.056 97	0.052 522	1.424507	0.012 954	0.060 873	0.213 989	0.122155
Repea t 1	202.153 1	0	0	1	0.050 427	1.382504	0.012 258	0.046 97	0.206 351	0.113979
Repea t 2	219.796 2	0	0	1	0.053 208	1.435796	0.012 674	0.049 399	0.212 671	0.116078
Repea t 3	219.392 6	0	0	1	0.050 991	1.423815	0.012 548	0.049 996	0.209 859	0.115173
Standard (Whitby for FeOx, FeCarb, FeMag and FeT, for all else SBC-1)	208.867	0.702 258	1.702 258	2.702 258	4.702 258	5.702258	6.702 258	7.702 258	8.702 258	9.702258
Mean	211.247 7	0.161 699	1.347 489	1.014 243	0.051 787	1.416656	0.012 609	0.051 81	0.210 717	0.116846
Stan. Dev	9.65865 9	0.323 397	2.694 978	0.028 485	0.001 296	0.023421	0.000 289	0.006 182	0.003 383	0.003642
95% Confidence	15.3524 4	0.514 04	4.283 667	0.045 277	0.002 06	0.037227	0.000 459	0.009 827	0.005 377	0.00579
as a % of measurement (i.e. precision) Measured standard	7.26750 4	317.9	317.9	4.464 128	3.978 572	2.627822	3.642 076	18.96 725	2.551 523	4.954804
standard Deviation (i.e.	- Teporteu									
accuracy)										
Shell pavement accuracy:										
	K/Rb	TIC	CaCO 3 (wt. %)	D	D*Ti wt.%/ wt%	D*FeTwt. %/wt%	D*Mn wt.%/ wt%	D*Ca wt.%/ wt%	D*K wt.%/ wt%	D*Mgwt. %/wt%
Sampl e	191.264 7	1.986 049	16.55 04	1.198 328	0.057 214	0.997703	0.003 917	0.191 581	0.309 411	0.131134
Repea t 1	189.606 3	1.046 582	8.721 517	1.095 548	0.046 43	0.893865	0.003 336	0.183 042	0.262 417	0.111792
Repea t 2	190.425 2	•	•	•						
Repea t 3	187.927 5	•	•	•						
Standard (Whitby)		0.985 724	8.214 366	1.089 495	0	0	0	0	0	0
Mean	189.805 9	1.516 315	12.63 596	1.146 938	0.051 822	0.945784	0.003 626	0.187 311	0.285 914	0.121463
Stan. Dev	1.42359 3	0.664 303	5.535 86	0.072 676	0.007 626	0.073424	0.000 411	0.006 038	0.033 23	0.013677
95% Confidence	2.26280 1	5.965 612	49.71 344	0.652 651	0.068 48	0.65937	0.003 687	0.054 222	0.298 412	0.12282
as a % of measurement (i.e. precision)	1.19216 6	393.4 282	393.4 282	56.90 378	132.1 441	69.7168	101.6 835	28.94 768	104.3 712	101.1178
Measured standard standard	- reported									
Deviation (i.e. accuracy)										

Sample Code	Stratigraph ic height*	D*Mn ppm/wt.%	D*V ppm/wt. %	D*Zr ppm/wt. %	D*Rb ppm/wt. %	D*Sr ppm/wt. %	D*Ni ppm/wt. %	D*As ppm/wt. %	D*Cr ppm/wt. %
LSB1.0	2								
LSB1.1	6								
LSB1.2	14								
LSB1.3	18								
LSB1.4	22	37.88894	14.4324 3	6.36882	9.30528 7	14.0799 4	37.7307	2.43361 5	13.0195 7
LSB1.5	26								
LSB1.6	30	40.18635	15.5312 4	6.92713 8	10.0742 4	15.2470 5	17.2301 5	2.67299 3	14.4397 1
LSB1.7	34	81.9706	25.2442 1	14.1572	15.7144 4	27.4282 9	28.8497	4.34807 9	22.8743 1
LSB1.8	38								
LSB1.9	42	59.18924	11.4898 8	6.50351 2	6.98756 9	13.2873 8	16.2131 8	2.85781 6	11.0463 5
LSB1.10	46	69.0631	13.2622 8	6.83593 8	8.36506 8	21.0691 5	20.8205 8	4.51649 3	12.4407 8
LSB1.11	50	85.09097	16.5531 1	7.11979 6	10.5267 1	17.1753 6	35.1639 1	11.8809 9	15.4565 5
LSB1.12	54	117.3166	16.0926 3	6.90177 2	9.87585 5	17.1812 4	49.1803 3	12.2159 9	15.0953 9
LSB1.13	59	118.8151	10.6111 6	5.23777 6	6.19313 7	13.6314 2	100.084	7.06009 4	10.5040 6
LSB1.14	62	142.7741	9.59197 1	5.3529	5.36273	14.3253 8	33.5640 5	7.45450 7	10.4131 6
LSB1.15	66	124.4382	12.0342 9	6.58309 3	7.09307 5	14.9077 5	41.7495 8	7.12729	12.3908 4
LSB1.16	70	124.5374	17.6455	5.96601 2	10.1760 7	14.1219 1	46.8446 5	10.7744 4	15.9100 1
LSB1.17	74	129.5436	17.5294 1	5.77059 6	10.5077 2	14.749	55.8100 3	10.8143 6	16.2186 7
LSB1.18	78	110.2936	17.0293	5.05382 1	9.6784	13.3809	46.0577 4	10.5116	15.1342 7
LSB1.19	82	114.6764	18.0048 2	5.83700 2	10.2369 8	14.0203 7	48.4737 3	10.3022 3	15.8644
LSB1.20	86	107.2867	19.3745 5	6.05803	10.9833 8	17.9191 6	50.1854 9	10.1435 3	17.8505 8
LSB1.21	90	104.9284	18.6949 9	6.46734 5	10.7818 3	14.4437 2	58.7004 2	10.2596 5	17.3956 6
LSB1.22	98	82.04328	15.6480 8	7.38819	9.24297 2	14.6815 5	61.9460 5	5.48431 2	14.6099 5
LSB1.23	102	96.32712	11.1926 7	4.92387 7	6.43288 4	12.9532 9	46.5683 6	6.29844 2	10.5550 2
LSB1.24	106					-	-		
LSB1.25	110	114.4316	9.89495 1	4.65432 9	5.43937 7	12.2971 1	59.4423 3	6.78647 7	9.87204
LSB1.26	114	95.57414	10.8920 7	5.7586	6.42878 8	13.3517	210.962 8	6.50892 4	10.4622 1
LSB1.27	118				-		-		
LSB1.28	122								
LSB1.29	126								
LSB1.30	130								
LSB3.0	- 57.5	32.46753	15.2597 4	6.68831 2	10.1515 2	13.1818 2	29.4372 3	2.18614 7	13.5281 4
LSB3.1	- 53.5	32.18884	15.5579 4	6.69527 9	10.5794	13.4120 2	16.9098 7	2.36051 5	14.0987 1
LSB3.2	-50								
LSB3.3	-42						1		
LSB3.4	-38						1		
LSB3.5	-34								

LSB3.6	-30	35.35354	15.0505 1	6.02020 2	11.0303	13.6161 6	12.1818 2	1.87676 8	13.3131 3
LSB3.7	-26		-	2			2		5
LSB3.8	-22								
LSB3.9	-18								
LSB3.10	-14								
LSB3.11	-10								
LSB3.12	-6								
LSB3.13	-2								
LSB3.14	2								
LSB3.15	6								
LSB3.16	10								
LSB3.17	14								
LSB3.18	18								
LSB3.19	22								
LSB3.20	30								
LSB3.21	34								
LSB3.22	38								
LSB3.23	42								
LSB3.24	46								
LSB5.0	79								
LSB5.1	82.5								
LSB5.2	87								
LSB5.3	91								
LSB5.4	95								
LSB5.5	99								
LSB5.6	103								
LSB5.7	107								
LSB5.8	111								
LSB5.9	115								
LSB5.10	119								
LSB5.11	123								
LSB5.12	127								
LSB5.13	131	82.51659	15.0848 9	6.41204	9.82490	15.7948 6	19.1093 °	7.44379	14.7113
LSB5.14	135		<u>J</u>	9	8	6	8	6	2
LSB5.15	139								
LSB5.16	143					1		1	
LSB5.17	147					1		1	
Bos32.1	-2	33.63698	16.1554 8	6.74232 7	13.8927 1	17.6890 8	11.9654 5	2.55866 7	12.6989 8
Bos32.2	0	38.36486	15.7938	6.76356 5	13.1534 8	24.7665 3	10.7794 1	2.53247 9	12.3333 9
Bos32.3	2	29.99543	16.4607 9	7.58389	13.6046 2	16.6909 3	9.71244 8	2.24010 1	13.0169 6
Pseud34 .1	-2	57.78081	19.9572 2	7.19366	15.3158 6	23.1700 9	11.4688 4	2.33589 9	12.1264 8
Pseud34 .2	0	89.41922	23.4820	8.89725	17.5736	64.2921 2	22.6878 1	3.18488 7	14.0528 3
Pseud34 .3	2	50.50597	20.7450	6.62449 8	16.2146	19.6991 3	13.6828	2.21278 8	12.5285 6

_ ·									
Pseud41 .1	-2	30.71731	20.0797 3	7.24185 9	16.5338 2	31.0814 1	32.3253 6	4.36407 1	13.4314 9
Pseud41 .2	0	31.30669	20.8489 9	7.26167 4	16.8604 7	36.1587 6	27.6613	5.35760 4	13.7136 6
Pseud41	2	29.92233	20.1933	7.76502	16.2625	29.7303	20.3319	3.89303	13.4426
.3				1	7			3	6
LSB accura	2011								
LSD accure	acy.								
		D*Mn ppm/wt.%	D*V ppm/wt. %	D*Zr ppm/wt. %	D*Rb ppm/wt. %	D*Sr ppm/wt. %	D*Ni ppm/wt. %	D*As ppm/wt. %	D*Cr ppm/wt. %
Sample		129.5436	17.5294 1	5.77059 6	10.5077 2	14.749	55.8100 3	10.8143 6	16.2186 7
Repeat 1		122.5806	17.6688 1	6.1534	10.2076 5	13.3568 4	48.6939 5	10.8792 3	16.3938
Repeat 2		126.7388	18.1240 6	6.38287	9.67584 4	13.9352 4	49.8780 3	11.2513	16.8925 9
Repeat 3		125.4776	17.1670 6	6.05270 6	9.56543 8	13.5411 7	47.5519 4	10.8955 5	16.0353
	(Whitby for arb, FeMag or all else	11.70226	12.7022 6	13.7022 6	14.7022 6	15.7022 6	16.7022 6	17.7022 6	18.7022 6
Mean		126.0852	17.6223 4	6.08989 3	9.98916 4	13.8955 6	50.4834 9	10.9601 1	16.3850 9
Stan.De v		2.889033	0.39572 7	0.25377 3	0.44510 5	0.61799 2	3.67582 7	0.19726 7	0.36864 1
95% Confi	idence	4.592118	0.62900 9	0.40337 2	0.70749 4	0.98229 8	5.84272 6	0.31355 6	0.58595 5
as a % of measuren precision)	·	3.642076	3.56938 4	6.62363 3	7.08261 8	7.06915 4	11.5735 4	2.86088 8	3.57614 7
		ported standard							
Deviation accuracy)	(i.e.								
Shell pave	ment								
accuracy:									
		D*Mn ppm/wt.%	D*V ppm/wt. %	D*Zr ppm/wt. %	D*Rb ppm/wt. %	D*Sr ppm/wt. %	D*Ni ppm/wt. %	D*As ppm/wt. %	
Sample		D*Mn ppm/wt.%							
Sample Repeat 1			ppm/wt. % 18.8119	ppm/wt. %	ppm/wt. %	ppm/wt. %	ppm/wt. % 13.9329	ppm/wt. %	ppm/wt. % 14.7870
Repeat 1 Repeat 2		39.16792	ppm/wt. % 18.8119 3 16.5206	ppm/wt. % 7.85097 5.77513	ppm/wt. % 16.1771 13.8400	ppm/wt. % 20.5977 17.6430	ppm/wt. % 13.9329 3 11.6003	ppm/wt. % 2.97939 2.61185	ppm/wt. % 14.7870 8 13.1256
Repeat 1 Repeat 2 Repeat 3		39.16792	ppm/wt. % 18.8119 3 16.5206 2	ppm/wt. % 7.85097 5.77513	ppm/wt. % 16.1771 13.8400 8	ppm/wt. % 20.5977 17.6430 6	ppm/wt. % 13.9329 3 11.6003 7	ppm/wt. % 2.97939 2.61185 2	ppm/wt. % 14.7870 8 13.1256
Repeat 1 Repeat 2 Repeat 3		39.16792	ppm/wt. % 18.8119 3 16.5206 2 2 0	ppm/wt. % 7.85097 5.77513 9 0	ppm/wt. % 16.1771 13.8400 8 0	ppm/wt. % 20.5977 17.6430 6 0	ppm/wt. % 13.9329 3 11.6003 7 0	ppm/wt. % 2.97939 2.61185 2 0	ppm/wt. % 14.7870 8 13.1256
Repeat 1 Repeat 2 Repeat 3 Standard		39.16792 33.36085	ppm/wt. % 18.8119 3 16.5206 2	ppm/wt. % 7.85097 5.77513 9	ppm/wt. % 16.1771 13.8400 8	ppm/wt. % 20.5977 17.6430 6 0 0 19.1203 8	ppm/wt. % 13.9329 3 11.6003 7	ppm/wt. % 2.97939 2.61185 2	ppm/wt. % 14.7870 8 13.1256 4
Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.De		39.16792 33.36085 0	ppm/wt. % 18.8119 3 16.5206 2 0 17.6662	ppm/wt. % 7.85097 5.77513 9 0 0 6.81305	ppm/wt. % 16.1771 13.8400 8 0 0 15.0085	ppm/wt. % 20.5977 17.6430 6 0 0 19.1203	ppm/wt. % 13.9329 3 11.6003 7 0 12.7666	ppm/wt. % 2.97939 2.61185 2 0 0 2.79562	ppm/wt. % 14.7870 8 13.1256 4 0 13.9563
Repeat 1 Repeat 2 Repeat 3 Standard (Whitby)	idence	39.16792 33.36085 0 36.26438	ppm/wt. % 18.8119 3 16.5206 2 0 17.6662 7 1.62019	ppm/wt. % 7.85097 5.77513 9 0 0 6.81305 5 1.46783	ppm/wt. % 16.1771 13.8400 8 0 0 15.0085 9 1.65251	ppm/wt. % 20.5977 17.6430 6 0 0 19.1203 8 2.08924	ppm/wt. % 13.9329 3 11.6003 7 0 0 12.7666 5 1.64936	ppm/wt. % 2.97939 2.61185 2 0 2.79562 1 0.25988	ppm/wt. % 14.7870 8 13.1256 4 0 13.9563 6 1.17481
Repeat 1 Repeat 2 Repeat 3 Standard (Whitby) Mean Stan.De V	nent (i.e.	39.16792 33.36085 0 36.26438 4.106219	ppm/wt. % 18.8119 3 16.5206 2 0 17.6662 7 1.62019 9	ppm/wt. % 7.85097 5.77513 9 0 0 6.81305 5 1.46783 4 13.1815	ppm/wt. % 16.1771 13.8400 8 0 15.0085 9 1.65251 8 14.8400	ppm/wt. % 20.5977 17.6430 6	ppm/wt. % 13.9329 3 11.6003 7 0 0 12.7666 5 1.64936 6 14.8117	ppm/wt. % 2.97939 2.61185 2 0 2.79562 1 0.25988 8 2.33386	ppm/wt. % 14.7870 8 13.1256 4 0 13.9563 6 1.17481 7 10.5501

Deviation (i.e.				
accuracy)				

Sampl	Stratig	gra	D*Li	D*Zn	D*Ba	D*U	D*Mo	D*Cu	D*Cd	D*Co	D*Ga	D*TI	D*Pb
e	phic		ppm/										
Code	height	t*	wt.%										
LSB1.0	2												
LSB1.1	6												
LSB1.2	14												
LSB1.3	18												
LSB1.4	22		9.4964	8.4501	50.055	0.2725	0.3597	4.9020	0	3.8353	2.5723	0.0882	8.3690
2001.1			44	58	51	58	56	43	Ŭ	91	57	79	75
LSB1.5	26												
LSB1.6	30		9.5488 24	8.5981 39	48.154 55	0.2982 27	0.3994 6	5.1788 31	0	4.0664 33	2.7509 62	0.1008 46	9.3085 81
LSB1.7	34		15.238 97	15.121 35	138.73 02	0.5657 34	0.7913 64	9.0037 3	0	6.8333 86	4.4552 78	0.1835 54	14.930 1
LSB1.8	38		57	55	02	51	01	3		00	70	51	-
LSB1.9	42		7.0501	8.6750	105.52	0.2742	0.6834	5.4685	0	4.3882	2.1183	0.1241	8.4570
			81	77	31	3	54	76		13	47	24	12
LSB1.1	46		8.1210	9.8968	76.469	0.2933	0.8707	6.1967	0	5.5000	2.4145	0.1706	12.441
0 LSB1.1	50		61 10.354	57 12.894	64 39.895	73 0.3082	97 1.6863	08 11.842	0.0183	04 11.348	01 2.8842	15 0.3389	11 33.446
1	50		87	9	92	64	89	11.042	83	5	03	0.3389	73
LSB1.1	54		10.073	13.280	37.772	0.3389	2.4334	13.399	0.0212	10.623	2.8162	0.3382	37.564
2			63	82		45	17	05	17	03	74	06	21
LSB1.1 3	59		7.0091 49	9.9931 52	57.951 32	0.2969 39	2.0185 66	10.050 91	0.0252 1	5.4247 35	2.0284 56	0.2385 03	17.650 73
LSB1.1	62		6.3464	10.836	102.23	0.2903	1.7940	10.941	0.0237	5.1104	1.8344	0.2768	13.238
4			18	14	96	21	64	51	87	28	04	75	72
LSB1.1	66		7.8783	10.203	74.334	0.3148	1.9458	10.870	0.0243	5.8412	2.2214	0.2820	18.867
5 LSB1.1	70		65 11.417	82 16.179	69 26.557	63 0.3156	9 3.3483	41 16.264	81 0.0337	28 8.1512	78 2.9589	05 0.3530	56 39.889
6	/0		45	07	86	98	65	33	77	78	44	33	84
LSB1.1	74		11.639	15.583	31.298	0.3396	3.6216	15.451	0.0306	8.4236	3.1011	0.3211	38.813
7	70		47	74	45	57	96	53	38	82	69	84	39
LSB1.1 8	78		11.764 51	17.413 86	23.869 93	0.2854 52	2.5612 42	17.396 65	0.0470 39	8.5728 05	2.8293 24	0.3700 41	34.101 67
LSB1.1	82		12.716	18.263	24.748	0.3074	2.5168	17.535	0.0456	8.9504	2.9364	0.3794	36.274
9			08	84	16	79	43	02	84	65	04	71	76
LSB1.2	86		12.627	20.446	29.627	0.3039	2.2425	18.407	0.0438	10.348	3.1463	0.3273	33.290
0 LSB1.2	90		09 12.456	47 19.270	56 28.247	11 0.3044	49 2.4989	46 18.425	27 0.0423	61 9.8863	66 3.0769	96 0.3179	71 36.050
1			5	56	66	8	5	82	71	66	17	31	96
LSB1.2	98		10.223	13.611	40.440	0.3154	1.4267	11.318	0.0214	6.4448	2.6965	0.1579	24.682
2 LSB1.2	10		52 7.7886	27 11.813	81 53.165	69 0.2569	91 1.4605	51 11.105	58 0.0251	57 6.4898	93 2.1507	72 0.1919	73 17.652
LЗБ1.2 З	2		23	11.815	73	2	62	08	0.0251	15	87	0.1919 91	56
LSB1.2	10												
4	6			0.0010	70.015	0.0	4 5 - 5 - 5		0.000		4.0555	0.4515	47.0-5
LSB1.2 5	11 0		6.8724 19	9.9816 1	70.016 55	0.2470 01	1.5104 47	11.054 8	0.0277 59	5.7379 02	1.9363 3	0.1848 92	17.073 08
LSB1.2	11		7.2471	15.595	59.205	0.2774	1.5974	o 11.395	0.0335	5.8703	2.1308	0.2042	20.345
6	4		29	34	78	46	25	08	39	98	96	23	14
LSB1.2	11												
7 LSB1.2	8 12												
8	2												
LSB1.2 9	12 6												
LSB1.3	13		1		1	1	1		1	1		1	1
0	0												

LSB3.0	- 57	10.562 77	8.5930 74	30.735 93	0.2597 4	0.1357 14	3.1385 28	0	2.9220 78	2.7056 28	0.0677 49	3.3549 78
LSB3.1	.5 - 53	11.115 88	8.5193 13	30.042 92	0.2274 68	0.1356 22	3.1330 47	0.0008 39	2.8969 96	2.7897	0.0738 2	3.6266 09
LSB3.2	.5 -	00	15	52	00	~~~		35	50		2	05
LSB3.3	50 -											
	42											
LSB3.4	- 38											
LSB3.5	- 34											
LSB3.6	- 30	10.989 9	8.4646 46	35.151 52	0.1905 05	0.1490 91	3.1515 15	0.0005 88	2.9292 93	2.7272 73	0.0589 9	3.8989 9
LSB3.7	- 26											
LSB3.8	- 22											
LSB3.9	- 18											
LSB3.1 0	- 14											
LSB3.1	-											
1 LSB3.1	10 -6											
2 LSB3.1	-2											
3 LSB3.1	2											
4 LSB3.1	6											
5 LSB3.1	10											
6 LSB3.1	14											
7 LSB3.1	18											
8 LSB3.1	22											
9 LSB3.2	30											
0												
LSB3.2 1	34											
LSB3.2 2	38											
LSB3.2 3	42											
LSB3.2 4	46											
LSB5.0	79											
LSB5.1	82 .5											
LSB5.2	87											
LSB5.3 LSB5.4	91 95											
LSB5.4	99											
LSB5.6	10											
LSB5.7	3 10											
LSB5.8	7 11											
LSB5.9	1 11											
	5											

LSB5.1	11												
0 LSB5.1	9 12												
1	3												
LSB5.1 2	12 7												
LSB5.1 3	, 13 1		11.189 55	11.915 84	39.710 14	0.2515 15	1.1206 25	13.219 59	0.2915 67	6.8597 3	2.9801 09	0.1921 69	23.305 06
LSB5.1 4	13 5												
LSB5.1	13												
5 LSB5.1	9 14												
6 LSB5.1	3 14												
7 Bos32.	7 -2		11.692	11.491	31.800	0.4819	0.5234	5.1575	0.0034	2.6779	3.1841	0.0307	3.5515
1			73	65	95	14	96	57	58	97	08	61	48
Bos32. 2	0		11.254 97	15.608 23	35.076 52	0.4559 17	0.5800 57	4.9739 08	0.0055 74	2.4997 98	3.1031 41	0.0263 11	3.4622 86
Bos32. 3	2		11.521 47	9.0717 17	28.063 31	0.4640 34	0.3888 42	5.4030 51	0.0023 77	2.5701 86	3.2290 55	0.0290 06	3.5832 32
Pseud 34.1	-2		8.5323 32	12.790 38	37.929 15	0.5787 22	0.7992 71	9.6053	0.0053 34	3.5066 64	3.4460 42	0.0267 34	3.3558 38
Pseud 34.2	0		9.2251 42	53.653 76	52.292 79	0.7937 49	1.0126 69	9.9156 15	0.0320 04	3.8402 53	4.0877 16	0.0286	3.6367 57
Pseud	2		8.3320	10.762	34.126	0.5998	0.6913	9.6986	0.0038	3.5518	3.3999	0.0257	3.3500
34.3 Pseud	-2		08 19.592	6 16.756	83 30.706	58 0.6245	64 2.5471	87 5.2079	0.0059	77 4.0595	22 3.3460	3 0.0429	97 3.5434
41.1 Pseud	0		25 19.834	97 14.894	19 33.814	74 0.7246	94 2.6496	35 5.4473	09 0.0030	38 4.0930	8 3.6042	53 0.0395	97 3.4747
41.2	2		28	85	86	42 0.5699	75	99 5.2902	77	74	2 2242	97	2
Pseud 41.3	2		19.837 68	13.481 12	30.608 9	0.5699	2.3866 09	94	0.0030 88	4.1247 83	3.3243 11	0.0449 65	3.3141 65
LSB accuracy	/:												
	y:		D*Li ppm/	D*Zn ppm/	D*Ba ppm/	D*U ppm/	D*Mo ppm/	D*Cu ppm/	D*Cd ppm/	D*Co ppm/	D*Ga ppm/	D*TI ppm/	D*Pb ppm/
accuracy	/:		ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%	ppm/ wt.%
	/:		ppm/	ppm/	ppm/	ppm/	ppm/	ppm/	ppm/	ppm/	ppm/	ppm/	ppm/
accuracy Sampl e Repea	/:		ppm/ wt.% 11.639 47 11.506	ppm/ wt.% 15.583 74 16.401	ppm/ wt.% 31.298 45 26.036	ppm/ wt.% 0.3396 57 0.3034	ppm/ wt.% 3.6216 96 3.3655	ppm/ wt.% 15.451 53 16.285	ppm/ wt.% 0.0306 38 0.0349	ppm/ wt.% 8.4236 82 8.2551	ppm/ wt.% 3.1011 69 2.9477	ppm/ wt.% 0.3211 84 0.3215	ppm/ wt.% 38.813 39 38.759
accuracy Sampl e Repea t 1 Repea	/: 		ppm/ wt.% 11.639 47 11.506 83 12.391	ppm/ wt.% 15.583 74 16.401 8 17.361	ppm/ wt.% 31.298 45 26.036 25 26.104	ppm/ wt.% 0.3396 57 0.3034 88 0.3310	ppm/ wt.% 3.6216 96 3.3655 47 3.3027	ppm/ wt.% 15.451 53 16.285 21 16.878	ppm/ wt.% 0.0306 38 0.0349 12 0.0384	ppm/ wt.% 8.4236 82 8.2551 7 8.4351	ppm/ wt.% 3.1011 69 2.9477 33 2.9886	ppm/ wt.% 0.3211 84 0.3215 62 0.3226	ppm/ wt.% 38.813 39 38.759 79 39.394
accuracy Sampl e Repea t 1 Repea t 2	<i>y</i> :		ppm/ wt.% 11.639 47 11.506 83	ppm/ wt.% 15.583 74 16.401 8 17.361 29	ppm/ wt.% 31.298 45 26.036 25 26.104 89	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84	ppm/ wt.% 15.451 53 16.285 21	ppm/ wt.% 0.0306 38 0.0349 12	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96	ppm/ wt.% 38.813 39 38.759 79 39.394 65
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3			ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51
accuracy Sampl e Repea t 1 Repea t 2 Repea	d (Whi		ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a	d (Whi ¢, FeCa and Fe	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx	d (Whi ¢, FeCa and Fe	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else 3 Mean	d (Whi ¢, FeCa and Fe	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 16.524 79	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 16.260 05	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 26 8.3199 87	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else	d (Whi ¢, FeCa and Fe	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 16.524	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 26	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 26 8.3199	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else 3 Mean Stan.D ev 95%	d (Whi c, FeCa and Fe ⁻ SBC-1)	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77 0.6859	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12 1.1795	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07 4.3094	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21 0.0261	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35 0.2610	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 24.702 26 16.260 05 0.5956 63 0.9468	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94 0.0066	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 26 8.3199 87 0.1315 53 0.2091	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61 0.1447	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07 0.0085	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86 0.8355
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else 3 Mean Stan.D ev	d (Whi c, FeCa and Fe ⁻ SBC-1)	rb, T, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 24.702 26 16.260 05 0.5956 63	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 26 8.3199 87 0.1315 53	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else Mean Stan.D ev 95% Confider as a % o measure	d (Whi c, FeCa and Fe SBC-1)	rb, F, for	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77 0.6859 92	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12 1.1795 88	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07 4.3094 64	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21 0.0261 02	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35 0.2610 52	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 16.260 05 0.5956 63 0.9468 06	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94 0.0066 66	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 8.3199 87 0.1315 53 0.2091 04	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61 0.1447 41	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07 0.0085 94	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86 0.8355 79
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else Mean Stan.D ev 95% Confider as a % o	d (Whi c, FeCa and Fe SBC-1) nce f ement n)	rb, F, for (i.e.	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77 0.6859 92 5.8367 31	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12 1.1795 88 7.1382	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07 4.3094 64 15.815	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21 0.0261 02 8.1080	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35 0.2610 52 7.7110	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 24.702 26 16.260 05 0.5956 63 0.9468 06 5.8228	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94 0.0066 66 18.504	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 8.3199 87 0.1315 53 0.2091 04 2.5132	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61 0.1447 41 4.8561	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07 0.0085 94 2.6483	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86 0.8355 79 2.1310
accuracy Sampl e Repea t 1 Repea t 2 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else 3 Mean Stan.D ev 95% Confider as a % o measure precision Measure reported	d (Whi c, FeCa and Fe ⁻ SBC-1) SBC-1) nce f ement n) ed stard	rb, T, for (i.e. hdard - lard	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77 0.6859 92 5.8367 31	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12 1.1795 88 7.1382	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07 4.3094 64 15.815	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21 0.0261 02 8.1080	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35 0.2610 52 7.7110	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 24.702 26 16.260 05 0.5956 63 0.9468 06 5.8228	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94 0.0066 66 18.504	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 8.3199 87 0.1315 53 0.2091 04 2.5132	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61 0.1447 41 4.8561	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07 0.0085 94 2.6483	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86 0.8355 79 2.1310
accuracy Sampl e Repea t 1 Repea t 2 Repea t 3 Standard for FeOx FeMag a all else Mean Stan.D ev 95% Confider as a % o measure precision Measure	d (Whi c, FeCa and Fe ⁻ SBC-1) SBC-1) nce f ement n) ed start d start on (i.e.	rb, T, for (i.e. hdard - lard	ppm/ wt.% 11.639 47 11.506 83 12.391 45 11.474 3 19.702 26 11.753 01 0.4315 77 0.6859 92 5.8367 31	ppm/ wt.% 15.583 74 16.401 8 17.361 29 16.752 32 20.702 26 20.702 26 16.524 79 0.7421 12 1.1795 88 7.1382	ppm/ wt.% 31.298 45 26.036 25 26.104 89 25.553 67 21.702 26 21.702 26 27.248 32 2.7112 07 4.3094 64 15.815	ppm/ wt.% 0.3396 57 0.3034 88 0.3310 64 0.3134 92 22.702 26 0.3219 26 0.0164 21 0.0261 02 8.1080	ppm/ wt.% 3.6216 96 3.3655 47 3.3027 84 3.2517 44 23.702 26 3.3854 43 0.1642 35 0.2610 52 7.7110	ppm/ wt.% 15.451 53 16.285 21 16.878 97 16.424 51 24.702 26 24.702 26 16.260 05 0.5956 63 0.9468 06 5.8228	ppm/ wt.% 0.0306 38 0.0349 12 0.0384 5 0.0401 03 25.702 26 0.0360 26 0.0041 94 0.0066 66 18.504	ppm/ wt.% 8.4236 82 8.2551 7 8.4351 02 8.1659 95 26.702 26 8.3199 87 0.1315 53 0.2091 04 2.5132	ppm/ wt.% 3.1011 69 2.9477 33 2.9886 26 2.8847 1 27.702 26 2.9805 6 0.0910 61 0.1447 41 4.8561	ppm/ wt.% 0.3211 84 0.3215 62 0.3226 96 0.3325 5 28.702 26 0.3244 98 0.0054 07 0.0085 94 2.6483	ppm/ wt.% 38.813 39 38.759 79 39.394 65 39.869 51 29.702 26 39.209 33 0.5256 86 0.8355 79 2.1310

Challman													
Shell pay		τ											
accuracy			D*Li ppm/ wt.%	D*Zn ppm/ wt.%	D*Ba ppm/ wt.%	D*U ppm/ wt.%	D*Mo ppm/ wt.%	D*Cu ppm/ wt.%	D*Cd ppm/ wt.%	D*Co ppm/ wt.%	D*Ga ppm/ wt.%	D*Tl ppm/ wt.%	D*Pb ppm/ wt.%
Sampl			13.615	13.381	37.029	0.5611	0.6095	6.0056	0.0040	3.1183	3.7076	0.0358	4.1355
e			36	23	99	56	75	15	27	4	72	19	3
Repea			11.993	13.467	31.650	0.4435	0.5238	5.1668	0.0040	2.7642	3.1996	0.0284	3.4320
t 1			82	25	37	3	36	47	04	83	18	32	85
Repea t 2													
Repea t 3													
Standard	-		0	0	0	0	0	0	0	0	0	0	0
(Whitby)												
Mean			12.804 59	13.424 24	34.340 18	0.5023 43	0.5667 05	5.5862 31	0.0040 16	2.9413 12	3.4536 45	0.0321 26	3.7838 07
Stan.D			1.1466	0.0608	3.8039	0.0831	0.0606	0.5930	1.58E-	0.2503	0.3592	0.0052	0.4974
ev			07	28	65	74	27	98	05	57	48	23	1
95%			10.296	0.5462	34.160	0.7469	0.5444	5.3261	0.0001	2.2482	3.2261	0.0469	4.4668
Confider	nce		82	54	58	26	44	76	42	66	39	07	72
as a % of	f		80.415	4.0691	99.476	148.68	96.071	95.344	3.5262	76.437	93.412	146.00	118.05
measure	ement	(i.e.	07	59	99	86	84	72	84	52	6	94	23
precision	n)												
Measure	ed stan	dard -											
reported	l stand	lard											
Deviatio	n (i.e.												
accuracy	()												

Palynology:

Sample	Stratig	rap	Spores	Pollen	Dinoflagell	Phytocla	Acritar	Prasinoph	Foraminif	AOM	Botryocco
Code:	hic height	*	(%) = A	(%)= B	ages (%) = E	sts (%) = C	chs (%) = F	ytes (%) = G	eral test linings (%)	(%)	cus (%) = D
LSB1.0	28.5		19.666	10.666	5.666667	24.6666	1.3333	0.333333	0	35.666	2
Pal	20.5		67	67	5 222222	7	33	0.00007	0	67	6 222222
LSB1.1 Pal	38.5		22	10.333 33	5.333333	30	2.3333 33	0.666667	0	23	6.333333
LSB1.2 Pal	48.5		19	6.3333 33	3	19.3333 3	1.6666 67	0.666667	0	40	10
LSB1.3 Pal	56.8		10.333 33	2.6666 67	8	40.3333 3	1.6666 67	3.333333	0	22.666 67	11
LSB1.4 Pal	63.3		9.6666 67	5.6666 67	3.666667	47.6666 7	2.3333 33	1	0	22.333 33	7.666667
LSB1.5 Pal	71.1		4	2.6666 67	3.333333	30	2.6666 67	1.666667	0	46.666 67	9
LSB1.6 Pal	80.3		2.6666 67	3.3333 33	1.333333	20.6666 7	3.3333 33	1	0	64.666 67	3
LSB1.7 Pal	89.4		3.6666 67	1.3333 33	3	36.6666 7	6	1	0	40.333 33	7.666667
LSB1.8 Pal	99		2.6666 67	2.3333 33	1	37	7.3333 33	1.666667	0	40.666 67	7.333333
LSB1.9 Pal	109		5.3333 33	3.3333 33	2.333333	36.3333 3	3	1	0	42.666 67	6
LSB3.0 Pal	-28		11	8	5.666667	37.6666 7	2	6.666667	0	22.666 67	6.333333
LSB3.1 Pal	-3		8.6666 67	6.3333 33	12	38	3.6666 67	1.333333	0	21.333 33	8.666667

LSB3.2 Pal	7	10.666 67	10.333 33	2.333333	33	2.3333 33	1.666667	0	36.333 33	3.333333
LSB3.3 Pal	17	10.333 33	7.3333 33	6.333333	28.6666 7	3	1	0	39	4.333333
LSB3.4 Pal	27	8.6666 67	6	3.666667	20.3333 3	4.3333 33	1.333333	0	53.666 67	2
LSB3.5 Pal	37	6	3.3333 33	1.666667	24.6666 7	5	0.333333	0	55.333 33	3.666667
LSB5.0 Pal	93.5	2.3333 33	2.6666 67	1.333333	23.6666 7	3.6666 67	1	0	62.333 33	3
LSB5.1 Pal	99	6.3333 33	1.3333 33	2.666667	31.3333 3	4.3333 33	0.666667	0	49	4.333333
LSB5.2 Pal	109	1.6666 67	1.6666 67	2.666667	34.3333 3	3.6666 67	1.333333	0	51.333 33	3.333333
LSB5.3 Pal	119	3.6666 67	4	4.666667	30.6666 7	2.6666 67	0	0	49.666 67	4.666667
LSB5.4 Pal	129	4	5	3.333333	33.3333 3	3	3.333333	0	45	3
LSB5.5 Pal	139	8.6666 67	6	2.666667	48.3333 3	1.6666 67	0.333333	0	30.666 67	1.666667
LSB5.6 Pal	149	7	5.6666 67	6	32.6666 7	2.6666 67	2	0	40	4
Bos32.1 Pal	-5	0.3333 33	0	1.666667	22.6666 7	2	0.666667	0	70.666 67	2
Bos32.2 Pal	0	0.6666 67	1.3333 33	4	21	1	1.333333	0	70	0.666667
Bos32.3 Pal	5	0.6666 67	0	1	19.6666 7	1.3333 33	0.333333	0	76.666 67	0.333333
Pseud4 1.1 Pal	-5	3	2	0	16	5.6666 67	2.333333	0	70.333 33	0.666667
Pseud4 1.2 Pal	0	2.3333 33	2.3333 33	1.333333	15.6666 7	7.3333 33	1.666667	0	68.333 33	1
Pseud4 1.3 Pal	5	3	1	0.333333	17.6666 7	7.3333 33	1	0	68.666 67	1

Sample Code:	Stratigraphi c height*	Dinoflagellate predominance	Acritarch predominanc e	Prasinophyte predominance	Terrestrial/Marine = (A+B+C+D)/(E+F+G)	Palynomorph s (for tyson's ternary)%
LSB1.0 Pal	28.5	0.772727	0.181818	0.045455	7.772727	39.66667
LSB1.1 Pal	38.5	0.64	0.28	0.08	8.24	47
LSB1.2 Pal	48.5	0.5625	0.3125	0.125	10.25	40.66667
LSB1.3 Pal	56.8	0.615385	0.128205	0.25641	4.948718	37
LSB1.4 Pal	63.3	0.52381	0.333333	0.142857	10.09524	30
LSB1.5 Pal	71.1	0.434783	0.347826	0.217391	5.956522	23.33333
LSB1.6 Pal	80.3	0.235294	0.588235	0.176471	5.235294	14.66667
LSB1.7 Pal	89.4	0.3	0.6	0.1	4.933333	22.66667
LSB1.8 Pal	99	0.1	0.733333	0.166667	4.933333	22.33333
LSB1.9 Pal	109	0.368421	0.473684	0.157895	8.052632	21
LSB3.0 Pal	-28	0.395349	0.139535	0.465116	4.395349	39.66667
LSB3.1 Pal	-3	0.705882	0.215686	0.078431	3.627451	40.66667
LSB3.2 Pal	7	0.368421	0.368421	0.263158	9.052632	30.66667
LSB3.3 Pal	17	0.612903	0.290323	0.096774	4.903226	32.33333
LSB3.4 Pal	27	0.392857	0.464286	0.142857	3.964286	26
LSB3.5 Pal	37	0.238095	0.714286	0.047619	5.380952	20
LSB5.0 Pal	93.5	0.222222	0.611111	0.166667	5.27778	14
LSB5.1 Pal	99	0.347826	0.565217	0.086957	5.652174	19.66667
LSB5.2 Pal	109	0.347826	0.478261	0.173913	5.347826	14.33333

LSB5.3 Pal	119	0.636364	0.363636	0	5.863636	19.66667
LSB5.4 Pal	129	0.344828	0.310345	0.344828	4.689655	21.66667
LSB5.5 Pal	139	0.571429	0.357143	0.071429	13.85714	21
LSB5.6 Pal	149	0.5625	0.25	0.1875	4.625	27.33333
Bos32.1 Pal	-5	0.384615	0.461538	0.153846	5.769231	6.666667
Bos32.2 Pal	0	0.631579	0.157895	0.210526	3.736842	9
Bos32.3 Pal	5	0.375	0.5	0.125	7.75	3.666667
Pseud41.1 Pal	-5	0	0.708333	0.291667	2.708333	13.66667
Pseud41.2 Pal	0	0.129032	0.709677	0.16129	2.064516	16
Pseud41.3 Pal	5	0.038462	0.846154	0.115385	2.615385	13.66667

Sam ple Code :	Stratig hic hei	Spo re ind et.	Bry op hyt e ind et.	Anapic ulatisp orites spp.	Polycing ulatispo rites crenulat us	Polycing ulatispo rites liassicus	Polycing ulatispo rites sp.	Rogals kaispo rites cicatric osus	Sterei sporit es antiq uaspo rites	Stere ispor ites psila tus	Stere ispor ites seeb erge nsis	Stere ispor ites sp.	Bry oph yte tot al
LSB1. O Pal	28.5	4	0	0	0	0	0	1	0	2	0	6	9
LSB1. 1 Pal	38.5	6	0	0	0	0	0	0	0	0	0	5	5
LSB1. 2 Pal	48.5	2	0	0	0	0	0	0	0	0	0	6	6
LSB1. 3 Pal	56.8	5	0	0	0	0	0	0	0	0	1	3	4
LSB1. 4 Pal	63.3	4	0	0	0	0	0	0	0	0	0	2	2
LSB1. 5 Pal	71.1	0	0	0	0	0	0	0	0	0	0	1	1
LSB1. 6 Pal	80.3	1	0	0	0	0	0	0	0	0	0	1	1
LSB1. 7 Pal	89.4	0	0	0	0	0	0	0	0	0	0	2	2
LSB1. 8 Pal	99	2	0	0	0	0	0	0	0	0	0	2	2
LSB1. 9 Pal	109	1	0	0	0	0	0	0	1	0	0	1	2
LSB3. 0 Pal	-28	0	0	0	0	0	0	0	0	0	0	2	2
LSB3. 1 Pal	-3	0	0	0	0	0	0	0	1	0	0	2	3
LSB3. 2 Pal	7	1	0	0	0	0	0	1	0	0	0	1	2
LSB3. 3 Pal	17	0	0	0	0	0	0	1	0	0	0	2	3
LSB3. 4 Pal	27	1	0	0	0	0	0	0	0	0	0	2	2
LSB3. 5 Pal	37	0	0	0	0	0	0	0	0	0	0	2	2
LSB5. 0 Pal	93.5	0	0	0	0	0	0	0	0	0	0	0	0
LSB5. 1 Pal	99	1	0	0	0	0	0	0	0	0	0	0	0
LSB5. 2 Pal	109	0	0	0	0	0	0	0	0	0	0	0	0
LSB5. 3 Pal	119	0	0	0	0	0	0	0	0	0	0	1	1
LSB5. 4 Pal	129	1	0	0	0	0	0	0	0	0	0	0	0

LSB5. 5 Pal	139	0	0	0	0	0	0	0	0	0	0	1	1
LSB5. 6 Pal	149	1	0	0	0	0	0	0	0	0	0	3	3
Bos3 2.1 Pal	-5	0	0	0	0	0	0	0	0	0	0	0	0
Bos3 2.2 Pal	0	0	0	0	0	0	0	0	0	0	0	0	0
Bos3 2.3 Pal	5	0	0	0	0	0	0	0	0	0	0	0	0
Pseu d41. 1 Pal	-5	0	0	0	0	0	0	0	0	0	0	4	4
Pseu d41. 2 Pal	0	0	0	0	0	0	0	0	0	0	0	0	0
Pseu d41. 3 Pal	5	0	0	0	0	0	0	0	0	0	0	0	0

Sampl	Stratigr	aphi	Lyc	Camaroz	Cerat	Denso	Denso	Kekryp	Kraeus	Leptol	Leptol	Lycopo	Neora
e Code:	c height	t*	oph yte ind et.	onosporit es rudis	ospori tes spinos us	isporit es velatu s	isporit es crassu s	halosp ora distinct a	elispori tes reissing eri	epidit es equat ibossu s	epidit es major	diacidit es rugulat us	istrick ia trunc ata
LSB1. O Pal	28.5		0	1	0	3	0	0	0	0	1	0	0
LSB1. 1 Pal	38.5		0	1	0	3	0	0	0	0	1	0	0
LSB1. 2 Pal	48.5		0	3	0	2	0	0	0	0	2	0	0
LSB1. 3 Pal	56.8		0	1	0	0	0	0	0	0	0	0	0
LSB1. 4 Pal	63.3		0	0	0	1	0	0	0	0	1	0	0
LSB1. 5 Pal	71.1		0	1	0	0	0	0	0	0	1	0	0
LSB1. 6 Pal	80.3		0	0	0	0	0	0	0	0	1	0	0
LSB1. 7 Pal	89.4		0	0	0	0	0	0	0	0	0	0	0
LSB1. 8 Pal	99		0	0	0	0	0	0	0	0	1	0	0
LSB1. 9 Pal	109		0	0	0	0	0	0	0	0	3	0	0
LSB3. 0 Pal	-28		0	0	0	1	0	0	0	0	0	1	0
LSB3. 1 Pal	-3		0	0	0	0	0	0	0	0	0	0	0
LSB3. 2 Pal	7		0	0	0	2	0	0	0	0	0	0	0
LSB3. 3 Pal	17		0	0	0	0	0	0	0	0	1	0	0
LSB3. 4 Pal	27		0	0	0	0	0	0	0	0	1	0	0
LSB3. 5 Pal	37		0	0	0	0	0	0	0	0	0	0	0
LSB5. 0 Pal	93.5		0	0	0	0	0	0	0	0	0	0	0
LSB5. 1 Pal	99		0	0	0	0	0	0	0	0	0	0	0
LSB5. 2 Pal	109		0	0	0	0	0	0	0	0	0	0	0

LSB5. 3 Pal	119	0	0	0	0	0	0	0	0	0	0	1
LSB5. 4 Pal	129	0	0	0	0	0	0	0	0	1	0	0
LSB5. 5 Pal	139	0	1	0	0	0	0	0	1	0	0	0
LSB5. 6 Pal	149	0	0	0	0	0	0	0	0	0	0	1
Bos32 .1 Pal	-5	 0	0	0	0	0	0	0	0	0	0	0
Bos32 .2 Pal	0	0	0	0	0	0	0	0	0	0	0	0
Bos32 .3 Pal	5	0	0	0	0	0	0	0	0	0	0	0
Pseud 41.1 Pal	-5	0	0	0	0	0	0	0	0	0	0	0
Pseud 41.2 Pal	0	0	0	0	0	0	0	0	0	0	0	0
Pseud 41.3 Pal	5	0	0	0	0	0	0	0	0	0	0	0

Samp le Code:	Stratig phic height	Retitrilete s austroclav atidites	Retitril etes clavat oides	Retitri letes semi muris	Retitri letes sp.	cf. Sestrospo rites pseudoalv eolatus	Staplinis porites telatus	Staplinis porites caminus	Uvaespo rites argentae formis	Zebrasp orites laevigat us	Lycop hyte total
LSB1. O Pal	28.5	0	0	0	0	1	0	0	4	0	10
LSB1. 1 Pal	38.5	0	0	0	0	1	0	0	4	0	10
LSB1. 2 Pal	48.5	0	0	0	0	2	0	0	4	0	13
LSB1. 3 Pal	56.8	0	0	0	0	0	0	0	1	0	2
LSB1. 4 Pal	63.3	0	0	0	0	0	0	0	2	0	4
LSB1. 5 Pal	71.1	0	0	0	0	0	0	0	0	0	2
LSB1. 6 Pal	80.3	0	0	0	0	0	0	0	0	0	1
LSB1. 7 Pal	89.4	0	0	0	0	0	0	0	2	0	2
LSB1. 8 Pal	99	0	0	0	0	0	0	0	0	0	1
LSB1. 9 Pal	109	0	0	0	0	0	0	0	0	0	3
LSB3. 0 Pal	-28	0	0	0	0	0	0	0	1	0	3
LSB3. 1 Pal	-3	0	0	0	0	0	0	0	2	0	2
LSB3. 2 Pal	7	0	0	0	0	0	0	0	1	0	3
LSB3. 3 Pal	17	0	0	0	0	0	0	0	0	0	1
LSB3. 4 Pal	27	0	0	0	0	0	0	0	1	0	2
LSB3. 5 Pal	37	0	0	0	0	1	0	0	0	0	1
LSB5. 0 Pal	93.5	0	0	0	0	0	0	0	0	0	0
LSB5. 1 Pal	99	0	0	0	0	2	0	0	1	0	3
LSB5. 2 Pal	109	0	0	0	0	0	0	0	0	0	0

LSB5. 3 Pal	119	0	0	0	0	0	0	0	1	0	2
LSB5. 4 Pal	129	0	0	0	0	0	0	0	0	0	1
LSB5. 5 Pal	139	0	0	0	0	0	0	0	2	0	4
LSB5. 6 Pal	149	0	0	0	0	0	0	0	0	0	1
Bos32 .1 Pal	-5	0	0	0	0	0	0	0	0	0	0
Bos32 .2 Pal	0	0	0	0	0	0	0	0	0	0	0
Bos32 .3 Pal	5	0	0	0	0	0	0	0	0	0	0
Pseud 41.1 Pal	-5	0	0	0	0	0	0	0	0	0	0
Pseud 41.2 Pal	0	0	0	0	0	0	0	0	0	0	0
Pseud 41.3 Pal	5	0	0	0	0	0	0	0	0	0	0

Samp le Code:	Stratigraphi c height*	F er n in d et	Cala mosp ora meso zoica	Laeviga tosporit es spp.	Bacula tisporit es comau mensis	Ciboti umsp ora jurien ensis	Conbacu latisporit es mesozoi cus	Conca vispori tes toralis	Concavis simispori tes variverru catus	Contig nispori tes cookso niae	Crassitu disporit es proble maticus	Deltoi dospo ra austr alis
LSB1. 0 Pal	28.5	0	0	8	0	0	0	0	0	0	0	4
LSB1. 1 Pal	38.5	0	0	8	0	0	0	1	0	0	0	4
LSB1. 2 Pal	48.5	0	1	4	1	0	0	2	0	0	0	1
LSB1. 3 Pal	56.8	0	1	3	1	0	0	1	0	0	0	2
LSB1. 4 Pal	63.3	0	0	3	0	0	0	2	0	0	0	0
LSB1. 5 Pal	71.1	0	0	2	0	0	1	0	0	0	0	0
LSB1. 6 Pal	80.3	0	0	1	0	0	0	0	0	0	0	1
LSB1. 7 Pal	89.4	0	1	0	0	0	0	0	0	0	0	0
LSB1. 8 Pal	99	0	0	3	1	0	0	0	0	0	0	0
LSB1. 9 Pal	109	0	0	1	0	1	0	0	0	0	0	0
LSB3. O Pal	-28	0	0	8	2	0	1	0	1	0	0	2
LSB3. 1 Pal	-3	0	0	2	2	2	0	0	0	0	0	1
LSB3. 2 Pal	7	0	0	5	4	1	2	0	1	0	0	0
LSB3. 3 Pal	17	0	0	5	2	0	0	0	0	0	0	2
LSB3. 4 Pal	27	0	0	4	3	0	0	0	0	0	0	3
LSB3. 5 Pal	37	0	0	4	1	0	0	0	0	0	0	1
LSB5. O Pal	93.5	0	0	1	0	0	0	1	0	0	0	0
LSB5. 1 Pal	99	0	0	3	2	0	0	0	0	0	0	1

LSB5. 2 Pal	109	0	0	3	0	0	0	0	0	0	0	0
LSB5. 3 Pal	119	0	0	4	0	0	0	1	0	0	0	0
LSB5. 4 Pal	129	0	1	4	0	0	0	0	0	0	0	0
LSB5. 5 Pal	139	0	0	4	1	0	0	0	0	0	0	0
LSB5. 6 Pal	149	0	0	4	2	1	0	0	0	0	0	0
Bos32 .1 Pal	-5	0	0	0	0	1	0	0	0	0	0	0
Bos32 .2 Pal	0	0	0	1	0	1	0	0	0	0	0	0
Bos32 .3 Pal	5	0	0	0	1	0	0	0	0	0	0	0
Pseud 41.1 Pal	-5	0	0	1	1	0	0	0	0	0	0	1
Pseud 41.2 Pal	0	0	0	3	1	0	0	0	0	0	0	1
Pseud 41.3 Pal	5	0	0	3	0	0	0	0	0	0	0	0

Sam ple Code :	Stratig aphic height	ospora	Dictyop hyllidite s equiexin us	Dictyop hyllidite s harrisii	Gleiche niidites senonic us	lschyos porites variega tus	Maratti sporites scabrat us	Matonis porites phlebop teroides	Obtusi sporis canad ensis	Osmund acidites wellma nii	Todis porite s major	Fe rn to ta I
LSB1. O Pal	28.5	0	2	3	1	0	2	0	0	0	1	21
LSB1. 1 Pal	38.5	0	2	3	1	0	2	0	0	0	1	22
LSB1. 2 Pal	48.5	0	1	5	1	0	1	0	0	0	0	17
LSB1. 3 Pal	56.8	0	0	3	2	0	1	0	0	0	0	14
LSB1. 4 Pal	63.3	0	0	3	3	0	0	0	0	0	0	11
LSB1. 5 Pal	71.1	0	1	0	0	0	0	0	0	0	0	4
LSB1. 6 Pal	80.3	0	0	0	0	0	2	0	0	0	0	4
LSB1. 7 Pal	89.4	0	0	0	1	0	0	0	0	0	0	2
LSB1. 8 Pal	99	0	0	0	0	0	0	0	0	0	0	4
LSB1. 9 Pal	109	0	0	1	0	0	0	0	0	1	0	4
LSB3. 0 Pal	-28	0	0	2	1	0	0	0	0	0	1	18
LSB3. 1 Pal	-3	0	3	0	1	0	3	0	0	0	0	14
LSB3. 2 Pal	7	0	2	2	0	0	1	0	0	1	0	19
LSB3. 3 Pal	17	0	0	4	2	0	3	1	0	0	0	19
LSB3. 4 Pal	27	0	0	1	0	0	4	0	0	0	1	16
LSB3. 5 Pal	37	0	0	1	0	0	2	0	0	0	0	9
LSB5. 0 Pal	93.5	0	0	0	1	0	2	0	0	1	0	6
LSB5. 1 Pal	99	0	0	0	0	0	2	0	0	0	0	8

		 1		r								
LSB5.	109	0	0	0	0	0	0	0	0	0	0	3
2 Pal												
LSB5.	119	0	0	0	0	0	1	0	0	0	0	6
3 Pal												
LSB5.	129	0	0	1	0	0	0	0	0	0	1	7
4 Pal												
LSB5.	139	0	1	1	1	0	0	0	0	0	0	8
5 Pal												
LSB5.	149	0	1	2	1	0	1	0	0	0	0	12
6 Pal												
Bos3	-5	0	0	0	0	0	0	0	0	0	0	1
2.1												
Pal												
Bos3	0	0	0	0	0	0	0	0	0	0	0	2
2.2												
Pal												
Bos3	5	0	0	0	0	0	0	0	0	0	0	1
2.3												
Pal												
Pseu	-5	0	0	1	0	0	0	0	0	0	0	4
d41.												
1 Pal												
Pseu	0	0	1	0	0	0	1	0	0	0	0	7
d41.												
2 Pal												
Pseu	5	0	0	0	0	0	5	0	0	0	0	8
d41.												
3 Pal												

Samp	Stratigra	Chasmato	Chasmato	Chasmato	Chasmato	Chasmato	Chasmato	Psilatri	Sp	Pol	Bisac
le	phic	sporites	sporites	sporites	sporites	sporites	sporites	letes	ore	len	cate
Code:	height*	indet.	apertus	hians	major	canadensi	total		tot	ind	indet
						S			al	et.	•
LSB1.	28.5	0	9	7	6	1	23	0	59	0	0
0 Pal											
LSB1.	38.5	0	9	7	6	1	23	0	66	0	0
1 Pal											
LSB1.	48.5	0	2	5	8	3	18	1	57	2	0
2 Pal											
LSB1.	56.8	0	1	2	1	0	4	2	31	0	0
3 Pal											
LSB1.	63.3	0	2	0	1	2	5	3	29	1	0
4 Pal											
LSB1.	71.1	0	0	1	0	1	2	3	12	0	0
5 Pal											
LSB1.	80.3	0	0	1	0	0	1	0	8	0	0
6 Pal											
LSB1.	89.4	0	0	2	0	1	3	1	11	0	0
7 Pal											
LSB1.	99	0	0	1	0	1	2	0	8	0	0
8 Pal											
LSB1.	109	0	0	0	2	3	5	1	16	0	1
9 Pal											
LSB3.	-28	2	2	1	1	2	8	2	33	0	0
0 Pal											
LSB3.	-3	1	3	1	1	1	7	0	26	0	0
1 Pal											
LSB3.	7	0	2	2	2	0	6	1	32	0	0
2 Pal											
LSB3.	17	0	2	1	2	2	7	1	31	0	0
3 Pal											
LSB3.	27	0	1	0	1	1	3	2	26	0	0
4 Pal											
LSB3.	37	0	0	0	0	4	4	2	18	0	0
5 Pal											

LSB5.	93.5	0	0	0	0	1	1	0	7	0	0
0 Pal											
LSB5.	99	0	2	0	1	3	6	1	19	0	0
1 Pal											
LSB5.	109	1	1	0	0	0	2	0	5	0	0
2 Pal											
LSB5.	119	0	1	0	1	0	2	0	11	0	0
3 Pal											
LSB5.	129	1	0	1	0	0	2	1	12	0	0
4 Pal											
LSB5.	139	1	6	1	3	2	13	0	26	0	0
5 Pal											
LSB5.	149	0	1	0	1	1	3	1	21	0	0
6 Pal											
Bos32	-5	0	0	0	0	0	0	0	1	0	0
.1 Pal											
Bos32	0	0	0	0	0	0	0	0	2	0	0
.2 Pal											
Bos32	5	0	0	0	0	1	1	0	2	0	0
.3 Pal											
Pseud	-5	0	0	0	1	0	1	0	9	0	0
41.1											
Pal											
Pseud	0	0	0	0	0	0	0	0	7	0	0
41.2											
Pal											
Pseud	5	0	1	0	0	0	1	0	9	0	0
41.3											
Pal											

Samp	Stratigra	Alispor	Alispo	Alispo	Pinuspol	Podocar	Proto	Podocar	Quadra	Vitreisp	Bisac	Classo
le	phic	ites	rites	rites	lenites	pidites	pinus	pidites	eculina	orites	cate	pollis
Code:	height*	micros	thom	sp.	sp.	ellipticu	sp.	sp.	anellaef	pallidu	total	
		accus	asii			s			ormis	5		
LSB1.	28.5	0	2	0	0	1	2	4	2	3	14	3
0 Pal												
LSB1.	38.5	0	2	0	0	1	2	4	2	3	14	3
1 Pal												
LSB1.	48.5	0	1	0	1	1	0	3	1	0	7	1
2 Pal												
LSB1.	56.8	0	0	1	1	1	1	0	0	0	4	0
3 Pal												
LSB1.	63.3	0	2	3	0	1	1	0	1	2	10	0
4 Pal												
LSB1.	71.1	0	0	2	0	1	0	2	0	0	5	0
5 Pal												
LSB1.	80.3	0	0	1	1	0	1	0	1	2	6	0
6 Pal												
LSB1.	89.4	0	1	0	0	0	0	0	0	0	1	0
7 Pal												
LSB1.	99	0	0	0	0	0	0	0	0	0	0	0
8 Pal												
LSB1.	109	0	2	0	0	0	0	0	0	0	3	0
9 Pal												
LSB3.	-28	0	0	0	0	3	1	0	0	2	6	3
0 Pal												
LSB3.	-3	0	0	1	0	3	1	1	1	0	7	1
1 Pal												
LSB3.	7	0	3	0	3	5	2	1	1	1	16	2
2 Pal												
LSB3.	17	0	0	0	0	1	1	2	1	0	5	5
3 Pal												
LSB3.	27	0	1	1	0	2	1	1	1	0	7	0
4 Pal												
LSB3.	37	0	0	1	0	0	0	1	1	0	3	1
5 Pal												

LSB5.	93.5	0	0	1	0	0	0	3	1	0	5	0
0 Pal												
LSB5.	99	0	1	1	0	0	0	0	0	1	3	0
1 Pal												
LSB5.	109	0	0	0	0	0	1	1	0	0	2	1
2 Pal												
LSB5.	119	0	0	1	0	0	0	2	1	0	4	0
3 Pal												
LSB5.	129	0	0	1	3	1	0	0	2	1	8	1
4 Pal												
LSB5.	139	0	0	0	0	2	1	0	2	1	6	1
5 Pal	100	U	•	°,	0	-	-	0	-	-	°	-
LSB5.	149	0	0	0	0	0	1	2	0	0	3	2
6 Pal	115	Ũ	Ũ	Ũ	U	U	-	-	U	Ũ	5	~
Bos3	-5	0	0	0	0	0	0	0	0	0	0	0
2.1	-	-	-	-	-	-	-	-	-	-	-	-
Pal												
Bos3	0	0	1	0	0	0	0	0	1	0	2	0
2.2	•	-	-	-	-	-	-	-	_	-	_	-
Pal												
Bos3	5	0	0	0	0	0	0	0	0	0	0	0
2.3	5	U	Ũ	Ũ	Ũ	U	0	U	U	Ũ	0	Ũ
Pal												
Pseu	-5	0	0	1	1	0	0	0	0	1	3	1
d41.1	-5	0	U	1	1	0	0	0	0	1	5	1
Pal												
Pseu	0	0	0	0	0	0	0	0	0	1	1	3
d41.2	U	U	0	0	U	U	U	U	U	Т	T	3
-												
Pal	_	-					-	-				
Pseu	5	0	0	0	0	0	0	1	0	0	1	1
d41.3												
Pal												

Samp le	Stratigraphi c height*	Cerebro pollenit	Perino polleni	Mut ant	Cyca dopit	Cyca dopit	Cycad opites	Cyca dopi	Arauc ariacit	Callial aspori	Poll en	Dinol agell	Nanoc eratop
Code:		es	tes	Bisa ccat e	es sp.	es mini mus	subgr anulo sus	tes total	es austra lis	tes turbat us	tota I	ate indet.	sis sp.
LSB1. 0 Pal	28.5	0	5	0	5	0	2	7	1	1	32	0	3
LSB1. 1 Pal	38.5	0	5	0	5	0	2	7	1	1	31	0	3
LSB1. 2 Pal	48.5	2	0	0	5	0	1	6	0	1	19	0	3
LSB1. 3 Pal	56.8	0	1	0	1	0	1	2	0	1	8	0	10
LSB1. 4 Pal	63.3	0	1	0	4	0	1	5	0	0	17	0	4
LSB1. 5 Pal	71.1	1	0	0	2	0	0	2	0	0	8	0	6
LSB1. 6 Pal	80.3	0	1	0	2	0	1	3	0	0	10	0	3
LSB1. 7 Pal	89.4	0	1	0	2	0	1	3	1	0	4	0	4
LSB1. 8 Pal	99	1	0	0	1	0	2	3	0	0	7	0	0
LSB1. 9 Pal	109	0	4	0	3	0	0	3	0	0	10	1	5
LSB3. 0 Pal	-28	2	6	0	3	0	4	7	0	0	24	3	5
LSB3. 1 Pal	-3	2	4	0	1	0	1	2	2	1	19	6	18
LSB3. 2 Pal	7	0	4	0	3	0	3	6	3	0	31	0	5
LSB3. 3 Pal	17	1	7	0	2	0	1	3	0	1	22	2	16

LSB3.	27	0	3	0	1	0	3	4	2	2	18	0	8
4 Pal													
LSB3.	37	0	3	0	1	0	1	2	1	0	10	0	2
5 Pal													
LSB5.	93.5	0	1	0	0	0	1	1	1	0	8	1	3
0 Pal													
LSB5.	99	0	0	0	0	0	1	1	0	0	4	0	4
1 Pal													
LSB5.	109	0	0	0	0	0	1	1	1	0	5	1	4
2 Pal													
LSB5.	119	2	1	0	0	0	3	3	1	1	12	0	12
3 Pal													
LSB5.	129	2	0	0	1	0	2	3	1	0	15	1	5
4 Pal													
LSB5.	139	0	2	0	2	0	5	7	2	0	18	1	6
5 Pal													
LSB5.	149	0	1	0	2	0	6	8	3	0	17	1	14
6 Pal													
Bos32	-5	0	0	0	0	0	0	0	0	0	0	0	5
.1 Pal													
Bos32	0	0	0	0	1	0	0	1	0	1	4	0	11
.2 Pal													
Bos32	5	0	0	0	0	0	0	0	0	0	0	0	3
.3 Pal													
Pseud	-5	0	2	0	0	0	0	0	0	0	6	0	0
41.1													
Pal													
Pseud	0	1	0	0	0	0	2	2	0	0	7	0	4
41.2													
Pal													
Pseud	5	0	1	0	0	0	0	0	0	0	3	0	1
41.3													
Pal													

Samp le	Stratigra phic	dium	Lueh ndea	Manco dinium	Dinofla gellate	Phyto clast	Opa que	Cut icle	Biostru ctured	Pseudoam orphous	Fun gal	Acrit arch	Acantho morph
Code:	height*	sp.	sp.	sp.	total	indet.						inde t.	
LSB1. O Pal	28.5	2	0	11	16	0	41	6	24	2	1	0	1
LSB1. 1 Pal	38.5	2	0	11	16	0	25	21	35	8	1	0	1
LSB1. 2 Pal	48.5	1	0	5	9	0	8	23	23	2	2	0	0
LSB1. 3 Pal	56.8	3	0	11	24	1	33	68	15	1	3	0	0
LSB1. 4 Pal	63.3	3	0	4	11	0	38	93	7	3	2	0	1
LSB1. 5 Pal	71.1	1	0	3	10	0	32	41	7	8	2	0	0
LSB1. 6 Pal	80.3	1	0	0	4	0	23	27	4	5	3	0	0
LSB1. 7 Pal	89.4	0	0	5	9	0	36	59	8	7	0	0	3
LSB1. 8 Pal	99	1	0	2	3	0	39	62	5	5	0	0	1
LSB1. 9 Pal	109	0	0	1	7	0	21	76	9	3	0	0	0
LSB3. 0 Pal	-28	1	0	8	17	0	42	29	27	12	3	0	1
LSB3. 1 Pal	-3	0	0	12	36	0	51	22	24	15	2	0	0
LSB3. 2 Pal	7	1	0	1	7	0	33	25	27	13	1	0	0
LSB3. 3 Pal	17	0	0	1	19	0	29	28	17	12	0	0	2

LSB3.	27	1	0	2	11	0	23	20	10	7	1	0	0
4 Pal													
LSB3. 5 Pal	37	1	0	2	5	0	32	18	14	9	1	0	0
LSB5. 0 Pal	93.5	0	0	0	4	0	25	31	9	6	0	0	1
LSB5. 1 Pal	99	1	0	3	8	0	23	52	11	7	1	0	1
LSB5. 2 Pal	109	0	0	3	8	0	25	63	11	3	1	0	0
LSB5. 3 Pal	119	2	0	0	14	0	31	42	8	10	1	0	0
LSB5. 4 Pal	129	2	0	2	10	0	43	41	4	12	0	0	1
LSB5. 5 Pal	139	0	0	1	8	0	62	51	22	7	3	0	2
LSB5. 6 Pal	149	2	0	1	18	0	32	42	13	9	2	0	3
Bos3 2.1 Pal	-5	0	0	0	5	0	43	17	2	6	0	0	0
Bos3 2.2 Pal	0	0	0	1	12	0	18	30	5	10	0	0	0
Bos3 2.3 Pal	5	0	0	0	3	0	28	15	6	10	0	0	0
Pseu d41.1 Pal	-5	0	0	0	0	0	22	8	9	9	0	0	1
Pseu d41.2 Pal	0	0	0	0	4	0	26	10	6	5	0	0	0
Pseu d41.3 Pal	5	0	0	0	1	0	22	7	6	17	1	0	1

Sample	Stratigra	Polygonom	Netromo	Diacromo	Prismatom	Oomor	Herkomo	Petromo	Sphaeromo
Code:	height*	orph	rph	rph	orph	ph	rph	rph	rph
LSB1.0 Pal	28.5	1	0	1	0	1	1	0	2
LSB1.1 Pal	38.5	1	0	1	0	1	1	0	2
LSB1.2 Pal	48.5	1	0	1	0	0	0	0	3
LSB1.3 Pal	56.8	1	0	1	0	1	0	0	2
LSB1.4 Pal	63.3	0	0	1	0	1	0	0	4
LSB1.5 Pal	71.1	0	0	1	1	1	0	0	5
LSB1.6 Pal	80.3	0	0	1	0	2	0	0	7
LSB1.7 Pal	89.4	0	1	1	0	0	2	0	11
LSB1.8 Pal	99	0	0	1	0	2	3	0	15
LSB1.9 Pal	109	0	0	3	0	2	2	0	2
LSB3.0 Pal	-28	0	0	0	0	0	1	0	4
LSB3.1 Pal	-3	0	0	0	0	2	1	0	8
LSB3.2 Pal	7	0	0	0	0	0	1	0	6
LSB3.3 Pal	17	 0	0	0	0	1	1	0	5

LSB3.4	27	0	2	0	0	0	1	0	10
Pal									
LSB3.5	37	0	1	0	0	2	1	0	11
Pal									
LSB5.0	93.5	0	0	1	0	1	0	0	8
Pal									
LSB5.1	99	0	0	0	0	2	4	0	6
Pal									
LSB5.2	109	0	1	0	0	0	2	0	8
Pal									
LSB5.3	119	0	0	1	0	1	1	0	5
Pal		-	-	_	-	_	_	-	-
LSB5.4	129	0	0	0	0	1	0	0	7
Pal		-	-	-	-	_	-	-	
LSB5.5	139	0	2	0	0	0	0	0	1
Pal	100	0	-	°	U	Ũ	0	Ũ	-
LSB5.6	149	0	0	0	0	1	0	0	4
Pal	145	0	U	Ũ	U	-	Ū	Ũ	-
Bos32.1	-5	0	1	0	0	1	0	0	4
Pal	-5	0	1	0	0	1	0	0	4
Bos32.2	0	0	1	0	0	1	0	0	1
	0	0	1	0	0	1	0	0	T
Pal	-			-		-	<u> </u>		
Bos32.3	5	0	0	0	0	0	0	0	4
Pal									
Pseud4	-5	0	0	0	0	0	0	0	16
1.1 Pal									
Pseud4	0	0	0	0	0	0	0	0	22
1.2 Pal		 							
Pseud4	5	0	0	0	0	0	0	0	21
1.3 Pal									

Sample Code:	Stratigrapl height*	nic Acritarch total	Prasinophytes	AOM indet.	Translucent AOM	Opaque AOM	AOM total	Botryoccocos
LSB1.0 Pal	28.5	7	1	0	56	13	69	6
LSB1.1 Pal	38.5	7	2	0	56	13	69	19
LSB1.2 Pal	48.5	5	2	80	40	0	120	30
LSB1.3 Pal	56.8	5	10	0	45	23	68	33
LSB1.4 Pal	63.3	7	3	0	50	17	67	23
LSB1.5 Pal	71.1	8	5	1	101	38	140	27
LSB1.6 Pal	80.3	10	3	2	124	68	194	9
LSB1.7 Pal	89.4	18	3	1	79	41	121	23
LSB1.8 Pal	99	22	5	0	108	14	122	22
LSB1.9 Pal	109	9	3	0	124	4	128	18
LSB3.0 Pal	-28	6	20	0	60	8	68	19
LSB3.1 Pal	-3	11	4	0	62	2	64	26
LSB3.2 Pal	7	7	5	0	105	4	109	10
LSB3.3 Pal	17	9	3	0	104	13	117	13
LSB3.4 Pal	27	13	4	0	138	23	161	6
LSB3.5 Pal	37	15	1	0	132	34	166	11
LSB5.0 Pal	93.5	11	3	0	146	41	187	9
LSB5.1 Pal	99	13	2	1	118	28	147	13
LSB5.2 Pal	109	11	4	0	115	39	154	10
LSB5.3 Pal	119	8	0	0	116	33	149	14
LSB5.4 Pal	129	9	10	0	119	16	135	9
LSB5.5 Pal	139	5	1	0	76	16	92	5

LSB5.6 Pal	149	8	6	0	101	19	120	12
Bos32.1 Pal	-5	6	2	0	179	33	212	6
Bos32.2 Pal	0	3	4	0	174	36	210	2
Bos32.3 Pal	5	4	1	3	188	39	230	1
Pseud41.1 Pal	-5	17	7	0	159	52	211	2
Pseud41.2 Pal	0	22	5	0	172	33	205	3
Pseud41.3 Pal	5	22	3	0	156	50	206	3

Sample Code:	Stratigraphic height*	Bryophyt e dominanc e	Lycophyt e dominanc e	Fern dominanc e	Chasmatosporit es dominance	Psilatrilit es dominanc e	Bisaccate dominanc e	Classopol is dominanc e
LSB1.0 Pal	28.5	0.094737	0.105263	0.231579	0.242105	0	0.147368	0.031579
LSB1.1 Pal	38.5	0.054945	0.10989	0.241758	0.252747	0	0.153846	0.032967
LSB1.2 Pal	48.5	0.085714	0.185714	0.214286	0.257143	0.014286	0.1	0.014286
LSB1.3 Pal	56.8	0.121212	0.060606	0.393939	0.121212	0.060606	0.121212	0
LSB1.4 Pal	63.3	0.04878	0.097561	0.268293	0.121951	0.073171	0.243902	0
LSB1.5 Pal	71.1	0.05	0.1	0.2	0.1	0.15	0.25	0
LSB1.6 Pal	80.3	0.058824	0.058824	0.235294	0.058824	0	0.352941	0
LSB1.7 Pal	89.4	0.125	0.125	0.125	0.1875	0.0625	0.0625	0
LSB1.8 Pal	99	0.153846	0.076923	0.307692	0.153846	0	0	0
LSB1.9 Pal	109	0.08	0.12	0.16	0.2	0.04	0.12	0
LSB3.0 Pal	-28	0.035088	0.052632	0.315789	0.140351	0.035088	0.105263	0.052632
LSB3.1 Pal	-3	0.066667	0.044444	0.311111	0.155556	0	0.155556	0.022222
LSB3.2 Pal	7	0.032258	0.048387	0.306452	0.096774	0.016129	0.258065	0.032258
LSB3.3 Pal	17	0.056604	0.018868	0.358491	0.132075	0.018868	0.09434	0.09434
LSB3.4 Pal	27	0.046512	0.046512	0.372093	0.069767	0.046512	0.162791	0
LSB3.5 Pal	37	0.071429	0.035714	0.321429	0.142857	0.071429	0.107143	0.035714
LSB5.0 Pal	93.5	0	0	0.4	0.066667	0	0.333333	0
LSB5.1 Pal	99	0	0.136364	0.363636	0.272727	0.045455	0.136364	0
LSB5.2 Pal	109	0	0	0.3	0.2	0	0.2	0.1
LSB5.3 Pal	119	0.043478	0.086957	0.26087	0.086957	0	0.173913	0
LSB5.4 Pal	129	0	0.038462	0.269231	0.076923	0.038462	0.307692	0.038462
LSB5.5 Pal	139	0.022727	0.090909	0.181818	0.295455	0	0.136364	0.022727
LSB5.6 Pal	149	0.081081	0.027027	0.324324	0.081081	0.027027	0.081081	0.054054
Bos32.1 Pal	-5	0	0	1	0	0	0	0
Bos32.2 Pal	0	0	0	0.333333	0	0	0.333333	0
Bos32.3 Pal	5	0	0	0.5	0.5	0	0	0
Pseud41.1 Pal	-5	0.266667	0	0.266667	0.066667	0	0.2	0.066667
Pseud41.2 Pal	0	0	0	0.5	0	0	0.071429	0.214286
Pseud41.3 Pal	5	0	0	0.666667	0.083333	0	0.083333	0.083333

Sample Code:	Stratigraphi c height*	Cerebropollenites dominance	Perinopollenites dominance	Cycadopite s dominance	Araucariacite s australis dominance	Callialasporites turbatus dominance	Numbe r of genera
LSB1.0 Pal	28.5	0	0.052632	0.073684	0.010526	0.010526	25
LSB1.1 Pal	38.5	0	0.054945	0.076923	0.010989	0.010989	24
LSB1.2 Pal	48.5	0.028571	0	0.085714	0	0.014286	23
LSB1.3 Pal	56.8	0	0.030303	0.060606	0	0.030303	19
LSB1.4 Pal	63.3	0	0.02439	0.121951	0	0	17
LSB1.5 Pal	71.1	0.05	0	0.1	0	0	12
LSB1.6 Pal	80.3	0	0.058824	0.176471	0	0	13
LSB1.7 Pal	89.4	0	0.0625	0.1875	0.0625	0	10
LSB1.8 Pal	99	0.076923	0	0.230769	0	0	7
LSB1.9 Pal	109	0	0.16	0.12	0	0	11
LSB3.0 Pal	-28	0.035088	0.105263	0.122807	0	0	21
LSB3.1 Pal	-3	0.044444	0.088889	0.044444	0.044444	0.022222	20
LSB3.2 Pal	7	0	0.064516	0.096774	0.048387	0	24
LSB3.3 Pal	17	0.018868	0.132075	0.056604	0	0.018868	20
LSB3.4 Pal	27	0	0.069767	0.093023	0.046512	0.046512	19
LSB3.5 Pal	37	0	0.107143	0.071429	0.035714	0	16
LSB5.0 Pal	93.5	0	0.066667	0.066667	0.066667	0	12
LSB5.1 Pal	99	0	0	0.045455	0	0	11
LSB5.2 Pal	109	0	0	0.1	0.1	0	7
LSB5.3 Pal	119	0.086957	0.043478	0.130435	0.043478	0.043478	15
LSB5.4 Pal	129	0.076923	0	0.115385	0.038462	0	16
LSB5.5 Pal	139	0	0.045455	0.159091	0.045455	0	17
LSB5.6 Pal	149	0	0.027027	0.216216	0.081081	0	16
Bos32.1 Pal	-5	0	0	0	0	0	1
Bos32.2 Pal	0	0	0	0.166667	0	0.166667	6
Bos32.3 Pal	5	0	0	0	0	0	2
Pseud41. 1 Pal	-5	0	0.133333	0	0	0	11
Pseud41. 2 Pal	0	0.071429	0	0.142857	0	0	9
Pseud41. 3 Pal	5	0	0.083333	0	0	0	6

Organic geochemistry (Biomarkers):

Accuracy checks:

Sample Code:	Stratigraphic height*	TOC for normalisation (wt.%)	gTOC/gSediment	n-alkanes and branched isoprenoids accuracy check (98peak/66peak) - D50 tetracosane
LSB1.0B	5	0.853896	0.008539	0.617842
LSB1.1B	13	1.744933	0.017449	0.553931
LSB1.2B	22	1.509419	0.015094	0.820395
LSB1.3B	29	2.321012	0.02321	0.696737
LSB1.4B	37	0.881126	0.008811	0.774519
LSB1.5B	46	1.347097	0.013471	0.760146
LSB1.6B	55	4.078695	0.040787	0.534256
LSB1.7B	62	0.185005	0.00185	0.644044
LSB1.8B	69	5.050529	0.050505	0.619221
LSB1.9B	78	6.892842	0.068928	0.670596
LSB1.10B	86	6.781139	0.067811	0.649217
LSB1.11B	94	7.251084	0.072511	0.752246
LSB1.12B	102	1.316286	0.013163	0.819499
LSB1.13B	110	0.649523	0.006495	0.572957
LSB1.14B	118	1.226874	0.012269	0.658645
LSB3.0B	-22	0.893328	0.008933	0.684821
LSB5.0B	84	7.142033	0.07142	0.582614
LSB5.1B	93	4.671255	0.046713	0.789747
LSB5.2B	102	1.398918	0.013989	0.606845
LSB5.3B	111	2.215888	0.022159	0.799124
LSB5.4B	120	1.102054	0.011021	0.69157
LSB5.5B	129	1.737747	0.017377	0.706288
LSB5.6B	138	1.051764	0.010518	0.611965
LSB5.7B	145	1.051764	0.010518	0.517689
LSB6.0B	-24	0.758639	0.007586	0.663412
LSB6.1B	-11	0.956997	0.00957	0.56808
LSB6.2B	2	1.285703	0.012857	0.685549
LSB6.3B	14	1.568846	0.015688	0.656425
LSB6.4B	26	1.955786	0.019558	0.667561
LSB6.5B	49	2.096112	0.020961	0.67306
LSB6.6B	51	2.096112	0.020961	0.586284
LSB6.7B	63	0.249404	0.002494	0.607422
Bos32.1B	-5	5.937148	0.059371	0.705512
Bos32.2B	0	4.908235	0.049082	0.709888
Bos32.3B	5	7.127399	0.071274	0.714724
Pseud41.1B	-5	4.134251	0.041343	0.781766
Pseud41.2B	0	3.817735	0.038177	0.622932
Pseud41.3B	5	4.54744	0.045474	0.758566

	aphic height*	eranes accuracy check (Lorenz Schwark):	aS			d (deuter ated nC24) m/z=66		т.	ck:	aR peak			aR
LSB1.0	5		0.009	9.678	1519	110044	1.381	7.008		4110	2.617	0.002	0.002
B	12		678	391	732	1	021	142		71	9	618	618
LSB1.1 B	13		0.033 873	33.87 331	1223 524	123478 8	0.990 878	34.18 515		3087 21	8.546 953	0.008 547	0.008 547
LSB1.2	22		0.048	48.00	3154	116670	2.703	17.75		6811	10.36	0.010	0.010
B	20		001	08	460	5	734	352		51	494	365	365
LSB1.3 B	29		0.033 874	33.87 353	1631 692	102582 2	1.590 619	21.29 581		4390 07	9.113 678	0.009 114	0.009 114
LSB1.4	37		0.023	23.40	2262	104735	2.160	10.83		4410	4.563	0.004	0.004
B	10		407	679	357	4	069	613		78	479	563	563
LSB1.5 B	46		0.085 847	85.84 749	6105 176	105644 9	5.778 96	14.85 518		1098 007	15.43 955	0.015 44	0.015 44
LSB1.6	55		0.165	165.2	2522	156544	1.611	102.5		4933	32.32	0.032	0.032
B	62		234	342	040	5	069	618		56	276	323	323
LSB1.7 B	62		0.042 182	42.18 179	3143 111	915601	3.432 839	12.28 773		5516 53	7.403 401	0.007 403	0.007 403
LSB1.8	69		0.097	97.98	5086	109102	4.661	21.01		9893	19.06	0.019	0.019
В			986	646	181	9	82	893		72	048	06	06
LSB1.9 B	78		0.210 439	210.4 394	4723 603	121041 7	3.902 459	53.92 482		7774 19	34.63 449	0.034 634	0.034 634
LSB1.1	86		0.224	224.2	4201	106795	3.934	57.00		5637	30.09	0.030	0.030
OB			282	825	766	4	407	54		93	422	094	094
LSB1.1 1B	94		0.187 882	187.8 824	2984 190	907189	3.289 491	57.11 595		5238 85	32.98 341	0.032 983	0.032 983
LSB1.1	102		0.078	78.40	5549	109602	5.063	15.48		8940	12.63	0.012	0.012
2B			404	438	300	2	128	536		10	12	631	631
LSB1.1 3B	110		0.019 162	19.16 227	1306 293	125334 7	1.042 244	18.38 56		1516 23	2.224 188	0.002 224	0.002 224
LSB1.1	118		0.033	33.34	1112	632962	1.758	18.96		1442	4.320	0.004	0.004
4B			342	171	886		219	334		03	276	32	32
LSB3.0 B	-22		0.012 266	12.26 631	1762 605	908879	1.939 318	6.325 067		5697 44	3.964 96	0.003 965	0.003 965
LSB5.0	84		0.148	148.1	4657	108953	4.275	34.64		7265	23.10	0.023	0.023
В			116	164	944	1	183	562		71	398	104	104
LSB5.1 B	93		0.185 947	185.9 466	4915 360	112909 4	4.353 367	42.71 328		7510 34	28.41 139	0.028 411	0.028 411
LSB5.2	102		0.058	58.25	5304	114895	4.616	12.61		9424	10.35	0.010	0.010
В			253	283	372	3	701	785		54	007	35	35
LSB5.3 B	111		0.044 219	44.21 941	4711 732	128306 8	3.672 239	12.04 154		6810 87	6.391 973	0.006 392	0.006 392
LSB5.4	120		0.027	27.66	3152	120144	2.623	10.54		4093	3.592	0.003	0.003
В			666	631	419	6	854	415		39	447	592	592
LSB5.5 B	129		0.035 142	35.14 244	2819 846	112510 7	2.506 291	14.02 169		5135 21	6.399 775	0.006 4	0.006 4
LSB5.6	138		0.023	23.58	1564	7 887646	1.763	13.37		3193	4.811	4 0.004	4 0.004
В			583	271	974		061	601		02	586	812	812
LSB5.7 B	145		0.023 058	23.05 847	9757 02	910673	1.071 408	21.52 166		2122 90	5.016 986	0.005 017	0.005 017
LSB6.0	-24		0.014	14.13	1583	103273	1.533	9.215		90 5420	4.837	0.004	0.004
В			133	339	820	3	62	706		57	105	837	837
LSB6.1	-11		0.020	20.64	2134	861657	2.476	8.332		6728 71	6.507	0.006	0.006
B LSB6.2	2		641 0.028	076 28.83	321 2610	878057	996 2.972	981 9.700		71 7680	255 8.484	507 0.008	507 0.008
B	_		838	803	445		979	044		61	899	485	485
D					2758			9.217					

LSB6.4	26	0.018	18.20	2884	937485	3.077	5.917	8353	5.272	0.005	0.005
В		209	853	822		193	252	31	473	272	272
LSB6.5	49	0.036	36.00	4978	145390	3.424	10.51	8262	5.975	0.005	0.005
В		009	935	516	5	237	602	08	921	976	976
LSB6.6	51	0.107	107.3	4152	115013	3.610	29.72	8222	21.25	0.021	0.021
В		329	293	734	5	649	576	06	028	25	25
LSB6.7	63	0.017	17.52	2547	100674	2.530	6.925	3672	2.526	0.002	0.002
В		527	665	659	6	588	922	15	26	526	526
Bos32.	-5	0.691	691.7	8296	103611	8.007	86.39	1749	145.8	0.145	0.145
1B		761	614	214	8	017	44	335	644	864	864
Bos32.	0	0.827	827.4	8426	281114	2.997	276.0	1820	178.8	0.178	0.178
2B		496	965	587	9	56	567	998	232	823	823
Bos32.	5	0.812	812.5	7848	118572	6.619	122.7	1557	161.2	0.161	0.161
3B		546	456	809	3	429	516	672	575	258	258
Pseud4	-5	0.803	803.8	6554	106515	6.153	130.6	1663	203.9	0.203	0.203
1.1B		84	401	619	7	665	279	235	745	974	974
Pseud4	0	0.574	574.3	6624	136449	4.855	118.3	1465	127.0	0.127	0.127
1.2B		369	686	664	5	03	038	102	266	027	027
Pseud4	5	0.866	866.5	7498	119936	6.252	138.5	1690	195.3	0.195	0.195
1.3B		514	14	585	0	155	945	346	313	331	331

Sample Code:	Stratigraphic height*	Armomatics accuracy check:
LSB1.0B	5	5388300
LSB1.1B	13	4115215
LSB1.2B	22	4367391
LSB1.3B	29	4504150
LSB1.4B	37	3838480
LSB1.5B	46	5221968
LSB1.6B	55	3861708
LSB1.7B	62	4419266
LSB1.8B	69	4867237
LSB1.9B	78	4470519
LSB1.10B	86	4706399
LSB1.11B	94	6129881
LSB1.12B	102	4739755
LSB1.13B	110	6909884
LSB1.14B	118	3456499
LSB3.0B	-22	3889092
LSB5.0B	84	4097516
LSB5.1B	93	4943702
LSB5.2B	102	4077958
LSB5.3B	111	3832639
LSB5.4B	120	4345848
LSB5.5B	129	4198174
LSB5.6B	138	4353582
LSB5.7B	145	4003581
LSB6.0B	-24	3997418
LSB6.1B	-11	3928309

LSB6.2B	2	2818601
LSB6.3B	14	4304372
LSB6.4B	26	3935003
LSB6.5B	49	4223420
LSB6.6B	51	3870430
LSB6.7B	63	4244907
Bos32.1B	-5	3890633
Bos32.2B	0	3940692
Bos32.3B	5	5045571
Pseud41.1B	-5	4212297
Pseud41.2B	0	5366051
Pseud41.3B	5	4777821

$\mu g/g$ sediment (alkanes and branched isoprenoids):

Sample Code:	Stratigrap hic height*	μg/g nor- pristan e (TIC)	µg/g nC17 (TIC)	µg/g Pristan e (TIC)	μg/g nC18 (TIC)	µg/g Phytan e (TIC)	μg/g nC12 (m/z=8 5)	C13	C14
LSB1.0B	5	0.6061 84	1.1073 48	1.5776 03	0.8906 35	0.5010 55	0.7818 26	0.9479 87	1.0813 43
LSB1.1B	13	1.7506 46	2.8192 67	4.5317 96	2.3084 38	1.6087 27	2.1028 94	2.8490 95	2.9132 57
LSB1.2B	22	3.0484 8	4.7951 31	7.4186 17	4.0913 03	3.0185 29	3.7537 38	4.0664 38	4.6158 56
LSB1.3B	29	3.0416 96	4.1187 06	7.3982 86	3.5827 39	2.8910 86	2.6812 69	3.5441 51	4.1001 21
LSB1.4B	37	1.6574 26	2.5155 74	4.5424 06	2.1162 79	1.9377 74	1.1465 71	1.7944 31	2.1283 81
LSB1.5B	46	3.2594 73	3.8380 79	8.1439 14	3.6598 23	3.8635 27	1.6959 99	2.8638 89	3.6964 98
LSB1.6B	55	6.8406 47	9.4587 68	18.898 23	7.6346 54	8.0239 06	6.8922 94	8.3395 65	8.7371 07
LSB1.7B	62	1.0330 05	1.3171 28	3.1436 38	1.2592 44	1.4244 84	0.1019	0.3191 12	0.5535 11
LSB1.8B	69	4.0704 24	5.2813 07	10.495 21	4.4962 92	4.2370 52	5.0793 11	5.7040 24	5.8245 55
LSB1.9B	78	12.313 71	16.216 42	27.897 11	13.577 61	11.599 91	16.315 84	18.093 54	18.883 98
LSB1.10B	86	12.586 74	19.852 04	34.837 24	16.021 94	13.088 28	18.384 72	20.828 97	21.499 09
LSB1.11B	94	11.259 66	17.192 51	28.526 53	13.892 72	11.718 89	13.593 58	15.391 93	16.470 03
LSB1.12B	102	1.5434 46	2.0442 48	4.9517 58	1.7160 53	2.1282 16	0.3917 76	0.8279 34	1.4999 25
LSB1.13B	110	1.1513 02	1.3967 55	2.8133 97	1.1092 32	1.1834 11	0.4098 89	0.8966 82	1.0720 24
LSB1.14B	118	3.0321 84	3.7195 11	8.4921 3	3.4278 99	3.5240 5	1.2886 49	3.8216 03	5.1201 81
LSB3.0B	-22	0.5758 14	1.6998 38	1.3390 78	1.6554 01	0.4347 95	0.9018 65	1.4111 57	1.4958 99
LSB5.0B	84	7.8414 09	14.105 15	22.042 79	10.586 94	8.7032 57	9.3258 17	12.076 23	13.799 79
LSB5.1B	93	7.2687 63	9.6923 98	22.131 58	8.2198 77	6.8142 56	9.7373 25	10.968 32	11.458 26
LSB5.2B	102	1.6032 87	2.2762 17	5.2680 7	2.0909 69	2.1964 45	0.7921 05	1.4069 33	2.3078 6
LSB5.3B	111	2.2998	3.0972 67	5.9246 08	2.5791 28	2.4092 61	1.7170 67	2.5332 7	2.9117 32

LSB5.4B	120	2.0937	2.6726	5.2548	2.2333	2.0306	1.3293	1.9935	2.6393
		17	13	56	52	37	34	62	45
LSB5.5B	129	3.3538	4.3895	9.0997	3.5739	3.5478	3.5339	4.9173	5.8441
		2	24		64	99	09	09	42
LSB5.6B	138	2.4283	3.0280	6.2688	2.6209	2.4056	1.2239	2.1184	2.9294
		95	37	25	93	61	38	99	83
LSB5.7B	145	2.2350	3.0455	6.0719	2.6083	2.1855	1.2882	2.1703	2.7335
		94	14	96	25	36	05	91	01
LSB6.0B	-24	0.9499	2.0173	2.2281	1.7280	0.6766	1.3608	1.7526	1.7995
		58	66	42	94	38	19	99	34
LSB6.1B	-11	1.7557	2.7832	3.9288	2.3003	1.3724	1.4867	2.1868	2.4665
		71	17	01	53	63	09	28	79
LSB6.2B	2	2.8524	3.7368	6.2194	3.1055	2.1582	2.6971	3.5032	3.9125
		09	71	7	92	55	41	94	39
LSB6.3B	14	1.9674	3.2033	5.5606	2.6529	1.9532	1.8572	2.9122	3.2102
		61	73	01	55	32	43	22	1
LSB6.4B	26	1.6625	2.8700	4.9860	2.3638	1.9420	1.5767	2.0061	2.5131
		03	89	77	31	44	7	09	88
LSB6.5B	49	1.3222	2.0294	3.7691	1.6018	1.5740	1.4030	1.5582	1.7945
		26	34	22	41	21	71	91	88
LSB6.6B	51	5.6690	7.4892	13.528	6.4272	7.4894	6.4571	8.2734	9.4145
		85	56	39	74	29	05	1	49
LSB6.7B	63	0.3990	0.6403	1.4113	0.6078	0.8882	0.0565	0.1702	0.3835
		56	91	89	26	25	91	36	34
Bos32.1B	-5	13.215	21.352	27.039	18.041	20.549	11.040	14.865	17.809
		51	9	92	81	59	15	85	93
Bos32.2B	0	13.680	22.984	26.153	18.609	21.269	11.128	14.401	16.320
		43	4	51	45	13	79	63	91
Bos32.3B	5	17.408	34.581	38.142	28.294	30.293	18.745	22.632	26.045
		79	1	66	49	48	81	48	29
Pseud41.	-5	21.256	33.080	40.034	31.130	31.481	27.064	25.727	30.893
1B		67	84	57	24	67	73	36	69
Pseud41.	0	8.1748	17.912	22.517	18.036	18.771	17.960	23.461	17.182
2B		48	33	16	45	96	97	54	78
Pseud41.	5	18.108	31.513	36.358	27.380	32.850	24.157	24.510	28.261
3B		64	03	02	33	11	27	26	21

Sample Code:	Stratigra phic height*	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24
LSB1.0B	5	1.1748 49	1.0730 67	1.0573 53	0.9212 57	0.9233 61	0.8944 11	0.8836 71	0.9096 34	0.9554 05	0.8976 3
LSB1.1B	13	3.0559	2.8594 26	2.8469 54	2.3914 24	2.3213 57	2.5578 51	2.5898 24	2.3689 4	2.3990 71	2.1294 76
LSB1.2B	22	5.1667 82	4.8200 66	4.7617 04	3.8699 11	3.7684 01	3.5971 92	3.3528 18	3.2268 6	3.3961 37	3.2657 77
LSB1.3B	29	4.4710 45	4.0781 58	4.1330 22	3.2990 83	2.9963 04	2.8773 67	2.6921 59	2.4809 21	2.5399 27	2.2696 13
LSB1.4B	37	2.6503 85	2.5131 92	2.5172 19	1.9955 26	1.9103 88	1.7283 06	1.6680 16	1.5352 11	1.5477 87	1.4535 69
LSB1.5B	46	4.2865 89	4.0836 79	3.9761 71	3.4894 32	3.3717 34	3.1355 71	2.8201 48	2.6068 44	2.6029 69	2.5082 62
LSB1.6B	55	10.002 44	9.5285 26	9.1020 53	7.4857 87	7.2869 88	6.6791 06	5.9963 55	5.4708 84	5.3497 33	5.1681 39
LSB1.7B	62	0.9331 52	1.0758 03	1.2892 89	1.1618 97	1.2203 02	1.1583 57	1.0967 44	1.0868 47	1.0854 66	1.1181 45
LSB1.8B	69	6.2218 99	5.3714 6	5.4211 87	4.3282 85	4.1551 41	3.7913 82	3.3022 4	3.0602 16	2.9537 09	2.8721 95
LSB1.9B	78	19.674 93	17.276 93	17.432 3	13.242 91	12.436 74	11.082 18	9.7529 07	8.7803 27	8.3950 36	7.6419 88
LSB1.10 B	86	23.345 76	20.738 54	20.549 95	15.881 46	14.783 79	13.268 37	11.690 34	10.480 77	8.6447 97	9.0603 01
LSB1.11 B	94	18.690 74	16.055 56	16.325 34	12.574 49	12.054 8	10.109 38	8.8865 57	7.8690 98	7.7597 85	6.6258 65

LSB1.12	102	1.7988	1.8793	2.0211	1.8763	1.9730	1.8402	1.7505	1.6667	1.7764	1.7682
B	102	64	77	4	15	62	89	25	94	25	21
LSB1.13	110	1.4000	1.3347	1.2726	1.0800	0.9810	0.9228	0.8043	0.7941	0.7567	0.7386
В	110	04	77	32	44	56	35	64	4	5	57
LSB1.14	118	4.1698	3.9697	3.6824	3.1958	3.0745	2.7702	2.4671	2.2777	2.3193	2.2192
B	110	4.1058 61	03	15	03	08	2.7702	62	72	54	09
LSB3.0B	-22	1.6502	1.6141	1.7163	1.6383	1.7364	1.6361	1.7157	1.6770	1.8281	1.6095
1303.00	22	7	12	75	06	48	18	01	59	91	21
LSB5.0B	84	, 15.887	14.055	13.890	11.041	13.406	10.629	7.8120	7.0116	6.8515	5.8493
2303.00	04	04	82	13.050	21	76	67	89	72	2	83
LSB5.1B	93	12.124	11.801	10.043	8.1714	8.7010	7.1891	6.1281	6.0064	5.8592	4.9640
1303.10	55	63	49	87	99	9	61	8	22	61	37
LSB5.2B	102	2.1830	2.3585	2.3365	2.0217	1.9531	1.8564	1.7345	1.5949	1.5512	1.6222
2000.20	102	75	01	33	49	03	64	67	48	8	61
LSB5.3B	111	3.3706	3.1598	3.2244	2.6112	2.4697	2.2959	2.0683	1.9131	1.9406	1.7953
2303.30		46	45	7	72	55	9	28	93	1.5400	09
LSB5.4B	120	3.7778	3.0922	2.9292	2.2081	2.0553	1.8087	1.6164	1.4957	1.4688	1.3291
2303.40	120	82	25	91	23	33	03	1.0104	27	39	92
LSB5.5B	129	7.3823	4.9629	4.6796	3.6585	3.6556	3.1435	2.8398	2.6815	2.6029	2.4667
2303.30	125	47	48	14	35	83	29	2.8358 54	35	51	51
LSB5.6B	138	3.5684	3.3964	3.3803	2.6657	2.4901	2.2958	2.7229	1.8468	1.9118	1.8486
1303.00	150	05	8	58	35	54	12	31	51	44	5
LSB5.7B	145	3.5186	3.2588	3.1236	2.5663	2.4047	2.0068	2.0776	1.9163	1.9614	2.0380
2303.70	145	93	95	26	46	05	23	18	01	86	04
LSB6.0B	-24	2.0435	1.9367	1.9871	1.7164	1.8263	1.9024	1.9711	1.9566	2.0409	1.8091
1300.00	24	03	72	52	59	66	1.5024	82	11	91	07
LSB6.1B	-11	3.4396	2.8572	2.6750	2.1907	2.2222	2.0080	2.0445	2.0822	2.2724	2.2594
2020122		72	87	46	67	24	32	91	82	62	73
LSB6.2B	2	4.1485	3.8205	3.7278	3.0682	2.9267	2.8037	2.6431	2.5152	2.5633	2.4381
1000120	-	01	95	11	96	54	14	44	62	31	74
LSB6.3B	14	3.5074	3.2002	2.9908	2.5339	2.4207	2.2176	2.0969	1.9388	1.9904	1.9343
		39	45	05	28	26	96	27	15	91	53
LSB6.4B	26	2.4795	2.9748	2.9292	2.1758	1.7194	1.6251	1.6802	1.5103	1.5478	1.3181
		76	73	04	16	83	21	31	81	82	04
LSB6.5B	49	2.1496	1.9593	1.9197	1.5477	1.5511	1.3601	1.4820	1.5380	1.3725	1.4354
		97	82	8	92	42	21	72	78	53	28
LSB6.6B	51	8.5567	7.3841	7.5593	6.0962	6.0281	6.2430	4.3832	4.0851	3.9855	3.6975
		31	26	89	67	53	94	4	81	05	75
LSB6.7B	63	0.5797	0.4898	0.6145	0.6207	0.8319	0.7136	0.5315	0.5062	0.5012	0.4776
I		87	78	05	92	76	56	35	59	05	51
Bos32.1	-5	21.147	21.463	21.648	17.731	15.682	14.811	12.196	10.641	9.9402	9.1679
В		97	43	84	98	63	26	23	74	65	6
Bos32.2	0	25.919	22.882	22.651	17.119	16.057	13.992	11.830	11.779	10.156	9.4400
В		01	24	32	63	45	26	55	97	08	84
Bos32.3	5	31.011	30.835	31.235	24.824	21.080	20.011	17.274	15.208	14.002	12.698
-				94	35	83	76	94	93	45	12
В	5	1	28					1			
B Pseud41	-5	1 34.048	33.725	32.674	25.438	24.556	22.070	18.930	16.375	16.047	14.411
						24.556 11	22.070 36	18.930 1	16.375 27	16.047 24	14.411 37
Pseud41		34.048	33.725	32.674	25.438						
Pseud41 .1B	-5	34.048 62	33.725 57	32.674 98	25.438 31	11	36	1	27	24	37
Pseud41 .1B Pseud41	-5	34.048 62 20.124	33.725 57 17.825	32.674 98 18.086	25.438 31 14.820	11 12.370	36 11.851	1 10.172	27 10.615	24 12.542	37 10.673

Sample Code:	Stratigr aphic height*	C25	C26	C27	C28	C29	C30	C31	C32	C33	C34	C35
LSB1.0	5	0.970	0.800	0.861	0.615	0.655	0.433	0.437	0.277	0.368	0.188	0.167
В		548	047	465	993	816	232	2	464	13	739	136
LSB1.1	13	2.250	1.905	1.901	1.376	1.417	0.979	0.857	0.512	0.611	0.412	0.288
В		602	75	481	213	796	501	527	501	569	327	444
LSB1.2	22	3.426	2.553	2.916	2.063	2.189	1.367	1.423	0.843	1.062	0.603	0.562
В		465	939	614	065	428	661	158	823	481	588	551
LSB1.3	29	2.372	1.977	2.045	1.457	1.537	0.970	0.952	0.551	0.706	0.437	0.384
В		539	018	841	551	219	993	002	058	098	843	689

LSB1.4	37	1.532	1.199	1.269	0.933	0.944	0.626	0.569	0.381	0.421	0.248	0.231
В	07	913	844	133	518	021	623	836	712	853	87	738
LSB1.5	46	2.648	2.343	2.068	1.586	1.555	1.095	0.987	0.536	0.617	0.527	0.425
B	55	386	324	771	896	812	196 1.232	511	43 0.555	889	246	091
LSB1.6 B	22	5.107 532	4.355 169	4.133 589	3.011 483	2.269 697	1.232	1.107 253	0.555 864	0.625 356	0.518 963	0.369 572
LSB1.7	62	1.212	1.073	1.042	0.822	0.867	0.647	0.591	0.341	0.408	0.339	0.316
В		726	787	024	805	839	311	986	979	914	517	249
LSB1.8	69	2.936	2.459	2.282	1.811	1.771	1.182	1.090	0.626	0.718	0.531	0.484
B	78	369 7.365	207	363 5.625	883	682	175	484	311 1.242	004	577 0.783	699
LSB1.9 B	78	7.365 519	6.175 775	946	4.120 763	3.938 358	2.575 715	2.268 369	1.242 556	1.232 728	764	0.666 183
LSB1.1	86	8.979	7.428	6.849	5.022	4.734	3.233	2.767	1.413	1.424	1.074	0.878
0B		933	55	602	598	564	28	39	37	016	743	492
LSB1.1	94	6.831	5.415	4.912	3.719	3.418	2.032	1.868	1.073	1.048	0.674	0.541
1B	102	049	729	275	42	244	961	883	724	214	778	951
LSB1.1 2B	102	2.009 937	1.779 11	1.863 305	1.576 369	1.606 273	1.175 64	1.169 666	0.729 238	0.905 414	0.752 519	0.574 909
LSB1.1	110	0.750	0.661	0.592	0.461	0.471	0.321	0.288	0.157	0.196	0.152	0.124
3B		892	245	902	925	584	731	547	249	939	133	32
LSB1.1	118	2.313	1.939	1.895	1.341	1.392	0.893	0.814	0.393	0.393	0.205	0.182
4B	22	422	642	353	346	386	459	684	324	128	184	012
LSB3.0 B	-22	1.775 379	1.350 832	1.558 345	1.070 3	1.118 981	0.774 359	0.721 038	0.443 05	0.584 933	0.234 907	0.212 657
LSB5.0	84	5.977	4.927	4.523	3.408	3.343	2.115	1.689	1.014	1.007	0.614	0.460
В		018	637	419	404	211	588	501	467	324	362	858
LSB5.1	93	4.537	3.889	3.399	2.591	2.344	1.633	1.376	0.727	0.840	0.596	0.411
В	100	216	589	933	435	707	007	995	772	708	349	839
LSB5.2 B	102	1.613 864	1.517 602	1.435 106	1.148 459	1.187 745	0.854 919	0.826 994	0.507 045	0.667 439	0.519 031	0.467 424
LSB5.3	111	1.830	1.579	1.532	1.165	1.202	0.853	0.760	0.491	0.521	0.333	0.312
В		696	1	313	183	083	502	878	297	331	01	773
LSB5.4	120	1.404	1.177	1.159	0.884	0.901	0.644	0.609	0.351	0.399	0.244	0.193
B	120	389	901	91	61	02	862	087	253	933	82	853
LSB5.5 B	129	2.521 532	2.177 581	2.124 928	1.629 344	1.719 017	1.126 631	1.051 503	0.615 043	0.703 155	0.432 613	0.366 138
LSB5.6	138	1.848	1.634	1.615	1.192	1.249	0.873	0.765	0.421	0.557	0.309	0.250
В		816	403	954	589	871	657	855	178	854	229	559
LSB5.7	145	2.007	1.692	1.775	1.306	1.378	0.903	0.829	0.422	0.596	0.288	0.224
B		918	795	667	142	765	43	096	86	386	781	963
LSB6.0 B	-24	2.053 458	1.529 431	1.713 919	1.116 91	1.232 386	0.792 99	0.749 233	0.468 43	0.571 078	0.301 814	0.249 6
LSB6.1	-11	2.467	1.882	2.108	1.382	1.563	1.002	1.041	0.582	0.775	0.341	0.322
В		038	999	005	936	413	558	203	896	155	001	273
LSB6.2	2	2.666	2.076	2.227	1.538	1.619	1.074	1.017	0.585	0.751	0.426	0.402
B	14	864	15	874	754	676	029	703	307	259	437	1
LSB6.3 B	14	1.994 88	1.668	1.744 813	1.214 517	1.317 822	0.879 845	0.871 72	0.522 608	0.661 294	0.405 348	0.331 131
LSB6.4	26	1.374	1.137	1.132	0.815	0.857	0.568	0.543	0.302	0.387	0.262	0.243
В		36	391	496	018	026	142	61	574	041	099	272
LSB6.5	49	1.328	1.060	0.934	0.699	0.698	0.470	0.424	0.238	0.303	0.225	0.175
B LSB6.6	51	556 3.696	281 3.181	102 2.908	894 2.173	569 2.127	071 1.414	118 1.201	873 0.690	642 0.790	209 0.539	436 0.473
L360.0 B	51	296	201	152	074	355	1.414 679	558	861	919	236	351
LSB6.7	63	0.499	0.423	0.400	0.320	0.316	0.231	0.204	0.129	0.154	0.129	0.107
В		059	427	951	263	759	416	514	668	957	584	254
Bos32.	-5	8.668	7.930	5.579	4.918	4.588	4.383	4.493	3.452	2.851	2.081	1.945
1B Bos32.	0	859 8.178	154 7.590	63 5.621	565 4.606	135 4.556	339 3.758	695 3.847	748 3.062	772 2.363	684 2.104	748 2.079
воsз2. 2В	5	8.178 246	7.590 316	5.621	4.606 524	4.556 054	3.758 279	3.847 267	3.062 994	2.363	2.104	2.079 215
Bos32.	5	11.87	10.27	7.457	5.589	5.657	4.650	4.550	2.911	2.620	2.186	1.818
3B		154	821	679	518	049	082	079	809	283	506	248
Pseud4	-5	12.80	11.45	8.641	7.624	7.705	6.652	6.746	4.960	4.346	3.557	3.023
1.1B Broud4	0	289	756	977	436	631 5.082	969	673 5.042	142	514	364	505
Pseud4 1.2B	0	10.26 337	9.013 673	6.619 668	5.928 309	5.982 92	4.936 179	5.043 465	3.901 904	3.235 713	2.702 082	2.139 133
Pseud4	5	12.36	10.58	8.207	6.630	6.874	6.039	6.339	4.843	3.928	2.585	2.381
1.3B		492	327	247	625	711	661	116	038	743	978	831

Sample Code:	Stratigraphic height*	C36	C37	C38	C39	C40	µg/g sum n-alkanes
LSB1.0B	5	0.06033	0.047027	0.027798	0.025948	0.025319	18.46398
LSB1.1B	13	0.105225	0.10413	0.042988	0.076575	0.065348	46.29346
LSB1.2B	22	0.174311	0.197225	0.09549	0.09352	0.087691	71.32269
LSB1.3B	29	0.132494	0.126299	0.091081	0.057669	0.037972	56.0015
LSB1.4B	37	0.08305	0.057551	0.049331	0.037406	0.035749	33.21213
LSB1.5B	46	0.159083	0.128586	0.087874	0.062286	0.037169	56.00534
LSB1.6B	55	0.160984	0.08327	0	0	0	119.5698
LSB1.7B	62	0.092624	0.102701	0.084125	0.061205	0.037653	20.24397
LSB1.8B	69	0.181252	0.142231	0.096256	0.110338	0.121142	74.63158
LSB1.9B	78	0.302264	0.21298	0.122322	0.059063	0.055417	215.7573
LSB1.10B	86	0.331679	0.310144	0.232053	0.165207	0.082419	254.0849
LSB1.11B	94	0.134551	0.061731	0	0	0	194.1407
LSB1.12B	102	0.252021	0.205582	0.180975	0.166787	0.14486	36.16325
LSB1.13B	110	0.033159	0.023294	0.019261	0.01526	0.017455	16.75175
LSB1.14B	118	0.064487	0	0	0	0	52.20487
LSB3.0B	-22	0.075583	0.065408	0.040182	0.0317	0.028593	30.71727
LSB5.0B	84	0.176489	0.131397	0.078428	0.055718	0	171.161
LSB5.1B	93	0.202868	0.133511	0.106064	0.077421	0.053563	136.0765
LSB5.2B	102	0.150638	0.179779	0.134595	0.113684	0.102469	35.14617
LSB5.3B	111	0.114525	0.093575	0.066615	0.047789	0.046274	42.96243
LSB5.4B	120	0.07997	0.068312	0.047094	0.036497	0.020177	35.96764
LSB5.5B	129	0.13881	0.103932	0.062706	0	0	67.14204
LSB5.6B	138	0.095015	0.090876	0.064824	0	0	43.36982
LSB5.7B	145	0.099317	0.048664	0	0.031989	0.023362	42.69473
LSB6.0B	-24	0.082455	0.066095	0.051329	0.032532	0.027684	35.14296
LSB6.1B	-11	0.095662	0.084989	0.054169	0.041739	0.031775	43.96976
LSB6.2B	2	0.132479	0.085643	0.068749	0.054483	0.043417	55.53948
LSB6.3B	14	0.089584	0.072989	0.055421	0.053183	0.035861	44.73012
LSB6.4B	26	0.066779	0.066282	0.035564	0.024702	0.023672	33.89677
LSB6.5B	49	0.06999	0.063595	0.033574	0.023872	0.024806	27.84658
LSB6.6B	51	0.135427	0.100047	0.057856	0.056685	0.056354	101.7674
LSB6.7B	63	0.041101	0.035876	0.016129	0.010375	0.012853	9.511792
Bos32.1B	-5	1.036648	0.619731	0.318237	0.265892	0.280235	251.5633
Bos32.2B	0	0.752472	0.543625	0.273624	0.226842	0.133588	253.3779
Bos32.3B	5	0.831794	0.488123	0.203125	0.245084	0	346.9664
Pseud41.1B	-5	1.633558	1.238992	0.988084	0	0.433975	403.778
Pseud41.2B	0	1.146135	0.702418	0	0	0	259.3015
Pseud41.3B	5	0.955144	0.759272	0.755227	0	0	383.3379

µg/g sediment (hopanes and steranes):

Sample Code:	Stratigr aphic height*	SUM Hopa nes	C19/3	C20/3	C21/3	C22/3	C23/3	C24/3	C25/3 S	C25/3 R	C24/4
LSB1.0	5	1.084	0.008	0.007	0.007	0.001	0.007	0.003	0.001	0.002	0.017
B		499	403	379	327	063	053	952	318	289	649
LSB1.1	13	3.530	0.031	0.028	0.028	0.006	0.029	0.017	0.007	0.006	0.062
B		942	752	766	409	123	992	002	975	447	697
LSB1.2 B	22	5.402	0.042	0.036	0.036	0.005	0.035	0.019	0.009	0.005	0.080
LSB1.3	29	4.178	0.034	0.030	0.031	0.006	0.032	0.018	0.008	0.006	0.064
B		125	714	892	396	366	998	976	651	783	326
LSB1.4 B	37	2.588	0.023	0.019	0.020	0.003	0.021 813	0.013 017	0.005	0.005	0.038 571
LSB1.5 B	46	4.882	0.043	0.034 414	0.035	0.005	0.038	0.024	0.013 997	0.009	0.059 066
LSB1.6 B	55	9.971 964	0.081 043	0.070	0.069 908	0.012	0.081 669	0.054	0.030 714	0.021	0.124 981
LSB1.7 B	62	2.697 629	0.014 453	0.014	0.016	0.003	0.019 793	0.012	0.007	0.005	0.026
LSB1.8 B	69	6.384 711	0.049 919	0.043 353	0.044	0.005	0.045	0.030	0.014	0.012	0.070 439
LSB1.9	78	11.32	0.143	0.111	0.110	0.017	0.109	0.070	0.037	0.024	0.172
B		276	078	244	997	647	067	934	004	413	876
LSB1.1	86	12.40	0.146	0.128	0.119	0.019	0.119	0.073	0.038	0.029	0.191
OB		685	014	04	617	738	542	404	597	853	358
LSB1.1	94	10.65	0.123	0.106	0.099	0.015	0.094	0.060	0.032	0.022	0.160
1B		401	262	312	462	377	347	353	538	373	143
LSB1.1	102	5.413	0.026	0.026	0.028	0.004	0.033	0.023	0.013	0.010	0.047
2B		194	224	061	686	661	359	015	672	219	485
LSB1.1	110	1.257	0.011	0.010	0.010	0.002	0.011	0.007	0.003	0.003	0.018
3B		809	18	761	203	389	424	149	798	069	058
LSB1.1	118	2.537	0.028	0.025	0.024	0.004	0.026	0.016	0.007	0.006	0.047
4B		409	791	752	671	385	369	41	764	008	58
LSB3.0	-22	1.662	0.012	0.010	0.008	0.001	0.007	0.003	0.001	0.001	0.034
B		742	691	413	959	108	515	704	459	573	655
LSB5.0	84	7.291	0.090	0.075	0.070	0.010	0.067	0.043	0.021	0.015	0.115
B		257	675	892	439	163	979	677	268	487	027
LSB5.1	93	10.15	0.096	0.078	0.077	0.011	0.080	0.050	0.028	0.019	0.125
B		892	76	315	224	591	178	061	326	268	862
LSB5.2	102	3.567	0.024	0.019	0.020	0.002	0.024	0.015	0.008	0.007	0.036
B		17	154	917	902	589	998	647	657	014	57
LSB5.3	111	2.645	0.026	0.022	0.023	0.003	0.023	0.014	0.003	0.007	0.038
B		197	784	51	785	409	738	755	372	353	947
LSB5.4	120	2.007	0.020	0.018	0.018	0.003	0.019	0.011	0.005	0.003	0.032
B		51	507	308	118	114	208	082	673	846	656
LSB5.5	129	3.580	0.038	0.032	0.031	0.005	0.031	0.017	0.008	0.006	0.058
B		961	25	462	21	236	215	587	574	797	107
LSB5.6	138	2.537	0.024	0.022	0.021	0.002	0.019	0.010	0.005	0.003	0.041
B		065	582	616	198	745	275	781	324	605	999
LSB5.7	145	2.190	0.024	0.021	0.019	0.004	0.017	0.010	0.005	0.002	0.040
B		81	489	197	896	193	294	82	326	536	8
LSB6.0	-24	1.684	0.012	0.010	0.009	0.001	0.008	0.004	0.002	0.001	0.030
B		955	243	637	771	755	437	551	097	342	4
LSB6.1	-11	2.422	0.018	0.015	0.014	0.002	0.013	0.007	0.003	0.002	0.037
B		239	073	866	803	116	412	033	564	21	811
LSB6.2	2	3.445	0.027	0.024	0.023	0.003	0.022	0.012	0.006	0.004	0.054
B		681	886	641	657	768	629	783	322	395	802
LSB6.3	14	2.981	0.024	0.021	0.021	0.002	0.020	0.010	0.005	0.003	0.043
B		262	692	365	079	896	328	973	733	376	678
LSB6.4	26	2.200	0.020	0.017	0.017	0.002	0.016	0.009	0.004	0.002	0.031
B		696	21	029	346	705	326	584	335	989	548
LSB6.5	49	2.451	0.021	0.019	0.018	0.002	0.019	0.012	0.005	0.005	0.034
B		357	622	422	79	698	848	374	487	025	434

LSB6.6	51	6.156	0.060	0.052	0.050	0.008	0.053	0.033	0.016	0.012	0.088
В		334	763	096	607	448	293	782	566	496	318
LSB6.7	63	0.951	0.006	0.006	0.006	0.001	0.007	0.005	0.002	0.001	0.010
В		616	348	387	619	5	904	156	479	957	33
Bos32.	-5	5035.	13.34	38.82	82.00	17.23	134.3	91.03	86.05	69.11	36.64
1B		488	722	588	8	181	376	021	039	382	537
Bos32.	0	5280.	12.65	40.29	81.45	16.51	139.1	93.13	72.13	72.17	37.41
2B		641	846	298	83	191	367	445	074	191	106
Bos32.	5	4655.	12.89	37.80	77.38	17.20	126.3	83.97	65.99	62.48	32.85
3B		191	519	85	497	026	608	881	232	756	776
Pseud4	-5	3220.	8.056	25.49	51.39	11.15	88.44	58.60	46.50	44.18	21.71
1.1B		434	311	359	164	948	903	189	299	499	284
Pseud4	0	7936.	18.63	66.06	133.9	26.39	229.3	155.2	124.8	112.0	48.42
1.2B		182	171	526	399	789	574	969	832	418	134
Pseud4	5	2054.	4.868	16.09	34.21	6.239	59.19	40.12	30.06	30.60	13.58
1.3B		762	153	478	821	771	432	245	191	275	663

Sample Code:	Stratigra phic height*	C26/3S	C26/3 R	C28/3S	C28/3 R	C29/3S	C29/3 R	Ts	Tm	C30/3S	C30/3 R
LSB1.0B	5	0.0015 23	0.0015 07	0.0019 74	0.0011 71	0.0024 19	0.0017 49	0.0316 2	0.0396 24	0.0132 69	0.0095 38
LSB1.1B	13	0.0084 55	0.0087 6	0.0061 24	0.0050 79	0.0110 07	0.0082 79	0.1119 76	0.1237 49	0.0440 65	0.0355 85
LSB1.2B	22	0.0085 23	0.0089 54	0.0070 48	0.0068 02	0.0117 82	0.0094 42	0.156	0.1763 05	0.0577 6	0.0481 86
LSB1.3B	29	0.0077 99	0.0079 39	0.0065 78	0.0048 55	0.0103 2	0.0072 13	0.1223 93	0.1333 85	0.0435 58	0.0381 27
LSB1.4B	37	0.0045 81	0.0045 86	0.0038 98	0.0036 32	0.0064 63	0.0048 53	0.0829 53	0.0829 87	0.0279 17	0.0246
LSB1.5B	46	0.0106 2	0.0112 09	0.0094 88	0.0096 46	0.0162 12	0.0131 74	0.1609 6	0.1358 9	0.0471 71	0.0438 29
LSB1.6B	55	0.0258 57	0.0265 86	0.0222 31	0.0217 8	0.0508 9	0.0349 19	0.3242 21	0.2653 96	0.1005 37	0.0937 73
LSB1.7B	62	0.0062 5	0.0062 43	0.0040 22	0.0054 23	0.0119 51	0.0074 32	0.0702 7	0.0579 33	0.0224 8	0.0221 77
LSB1.8B	69	0.0151 98	0.0151 07	0.0109 68	0.0126 88	0.0232 4	0.0157 81	0.1904 27	0.1498 25	0.0585 83	0.0540 54
LSB1.9B	78	0.0301 66	0.0314 13	0.0258 36	0.0257 86	0.0441 31	0.0269 66	0.4258 52	0.3319 95	0.1193 24	0.1022 79
LSB1.10 B	86	0.0334 31	0.0365 41	0.0231 23	0.0230 04	0.0500 78	0.0327 8	0.4707 03	0.3689 64	0.1230 92	0.1102 89
LSB1.11 B	94	0.0291 59	0.0299 47	0.0205 66	0.0219 41	0.0371 91	0.0301 27	0.3886 21	0.3008 78	0.1064 56	0.0953 16
LSB1.12 B	102	0.0123 31	0.0127 28	0.0108 34	0.0123 95	0.0211 58	0.0184 15	0.1328 11	0.1105 64	0.0469 64	0.0423 49
LSB1.13 B	110	0.0035 33	0.0036 48	0.0030 14	0.0029 47	0.0056 15	0.0034 9	0.0427 94	0.0321 78	0.0138 57	0.0131 89
LSB1.14 B	118	0.0069 5	0.0069 26	0.0045 78	0.0043 28	0.0082 78	0.0076 73	0.1066 57	0.0719 18	0.0314 43	0.0252 71
LSB3.0B	-22	0.0011 23	0.0010 7	0.0014 85	0.0016 2	0.0029 49	0.0014 9	0.0399 84	0.0684 04	0.0239 29	0.0138 27
LSB5.0B	84	0.0202 41	0.0203 07	0.0112 37	0.0124 55	0.0273 06	0.0174 23	0.2731 19	0.2146 25	0.0723 45	0.0587 86
LSB5.1B	93	0.0258 02	0.0272 14	0.0158 55	0.0177 75	0.0396 61	0.0258 39	0.3206 96	0.2522 41	0.0940 43	0.0800 23
LSB5.2B	102	0.0081 23	0.0085 26	0.0064 66	0.0077 67	0.0127 94	0.0100 83	0.0973 74	0.0807 56	0.0314 79	0.0286 74
LSB5.3B	111	0.0062 44	0.0064 14	0.0048 44	0.0052 28	0.0092 12	0.0062 91	0.1020 69	0.0749 88	0.0280 34	0.0230 7
LSB5.4B	120	0.0042 05	0.0042 51	0.0031 62	0.0027 63	0.0072 09	0.0054 5	0.0778 42	0.0561 83	0.0227 26	0.0183 83
LSB5.5B	129	0.0069 61	0.0072 8	0.0055 29	0.0054 91	0.0097 53	0.0082 59	0.1315 72	0.0948 93	0.0401 49	0.0308 66

LSB5.6B	138	0.0039	0.0039	0.0034	0.0028	0.0071	0.0052	0.0886	0.0695	0.0323	0.0233
		2	88	67	21	95	61	39	59	91	03
LSB5.7B	145	0.0040	0.0041	0.0027	0.0021	0.0066	0.0046	0.0806	0.0666	0.0286	0.0202
		31	26	17		63	9	12	39	6	28
LSB6.0B	-24	0.0019	0.0020	0.0019	0.0018	0.0038	0.0022	0.0430	0.0659	0.0219	0.0137
		36	07	68	35	85	73	99	59	12	93
LSB6.1B	-11	0.0031	0.0036	0.0029	0.0019	0.0048	0.0027	0.0614	0.0824	0.0310	0.0215
		71	14	86	02	57	24	65	34	18	14
LSB6.2B	2	0.0061	0.0069	0.0041	0.0033	0.0077	0.0050	0.1000	0.1179	0.0397	0.0316
		09	9	83	58	4	05	91	21	35	71
LSB6.3B	14	0.0050	0.0052	0.0041	0.0030	0.0061	0.0045	0.0840	0.0970	0.0327	0.0270
		88	04	08	83	99	14	5	52	23	14
LSB6.4B	26	0.0039	0.0046	0.0032	0.0028	0.0048	0.0033	0.0629	0.0670	0.0238	0.0202
		57	46	9	27	45	81	6	26	64	59
LSB6.5B	49	0.0049	0.0049	0.0040	0.0040	0.0074	0.0049	0.0778	0.0718	0.0230	0.0209
		77	27	48	37	89	62	74	43	04	15
LSB6.6B	51	0.0148	0.0154	0.0128	0.0128	0.0236	0.0149	0.2142	0.1770	0.0593	0.0520
		55	88	88	65	24	39	92	44	27	99
LSB6.7B	63	0.0027	0.0027	0.0019	0.0018	0.0044	0.0023	0.0277	0.0219	0.0087	0.0075
		89	84	24	62	42	5	42	65	89	62
Bos32.1	-5	37.657	38.018	43.524	48.495	75.879	60.636	113.16	108.76	67.183	59.064
В		59	56	53	52	48	85	05	16	05	76
Bos32.2	0	38.899	39.307	41.593	46.247	71.321	56.788	116.05	118.25	69.164	61.057
В		13	11	17	87	58	39	52	84	2	14
Bos32.3	5	34.197	34.915	40.408	44.395	72.584	56.242	107.90	103.67	62.163	56.071
В		73	68	06	52	22	51	87	53	5	32
Pseud41	-5	24.633	24.891	32.740	35.132	50.965	39.998	65.751	67.137	48.127	43.576
.1B		81	7	48	65	4	55	91	22	1	41
Pseud41	0	66.734	65.022	78.934	76.528	122.18	99.843	187.48	184.41	129.50	120.36
.2B		47	19	94	23	7	75	19	23	66	28
Pseud41	5	17.533	17.254	20.277	23.082	31.657	26.357	44.734	43.385	30.300	27.779
.3B		52	83	96	94	67	38	99	1	25	73

Sample Code:	Stratigra phic height*	C29ab	C29Ts	C30*	C29ba	C30ab	C30ba	C31ab S	C31ab R	C31ba	C32ab S
LSB1.0B	5	0.1095	0.0497	0	0.0185	0.1504	0.0439	0.1148	0.0827	0.0248	0.0693
		3	11		41	14	04	69	44	51	38
LSB1.1B	13	0.3630	0.1694	0	0.0637	0.4842	0.1371	0.3505	0.2577	0.0767	0.2143
		64	64		98	47	67	54	8	72	2
LSB1.2B	22	0.5510	0.2401	0	0.0987	0.7446	0.2080	0.5625	0.4013	0.1359	0.3466
		28	85		22	55	21	57	37	26	42
LSB1.3B	29	0.4073	0.1813	0	0.0717	0.5577	0.1593	0.4309	0.3175	0.0957	0.2682
		95	11		46	51	84	58	34	78	73
LSB1.4B	37	0.2622	0.1188	0	0.0432	0.3650	0.0939	0.2704	0.1949	0.0588	0.1630
		53	27		13	89	74	62	49	52	31
LSB1.5B	46	0.4493	0.2284	0	0.0707	0.7032	0.1720	0.4892	0.3584	0.0865	0.3265
		55	51		45	42	1	8	3	11	75
LSB1.6B	55	0.9036	0.4493	0	0.1460	1.3721	0.3198	0.9774	0.7256	0.2120	0.6588
		01	91		49	62	34	8	32	09	77
LSB1.7B	62	0.2261	0.1107	0	0.0384	0.3813	0.0867	0.2745	0.1996	0.0448	0.2027
		09	58		67	55	61	42	27	36	48
LSB1.8B	69	0.5554	0.2704	0	0.1037	0.9062	0.2084	0.6260	0.4618	0.1072	0.4510
		82	49		11	41	83	63	31	37	13
LSB1.9B	78	1.0829	0.5528	0	0.1834	1.6510	0.3888	1.0774	0.8197	0.2148	0.7141
		85	88		38	76	61	44	85	1	04
LSB1.10	86	1.1605	0.6021	0	0.1992	1.7949	0.4238	1.1872	0.9017	0.2306	0.7709
В		42	98		05	74	85	87	11	73	01
LSB1.11	94	0.9772	0.5096	0	0.1790	1.5854	0.3668	1.0295	0.7635	0.2028	0.7011
В		93	62		08	57	12	48	44	92	55
LSB1.12	102	0.4435	0.2234	0	0.0672	0.7428	0.1782	0.5354	0.3862	0.1060	0.3990
В		78	24		53	37	71	68	24	54	37
LSB1.13	110	0.1169	0.0632	0	0.0213	0.1731	0.0419	0.1193	0.0901	0.0261	0.0798
В		18	8		41	8	72	53	49	51	13

LSB1.14	118	0.2424	0.1422	0	0.0292	0.3600	0.0820	0.2446	0.1746	0.0462	0.1623
B	110	47	6	, i i i i i i i i i i i i i i i i i i i	22	26	53	83	73	17	78
LSB3.0B	-22	0.1796	0.0727	0	0.0317	0.2160	0.0739	0.1697	0.1231	0.0417	0.1092
2303.00	22	36	92	Ŭ	6	06	47	82	98	6	96
LSB5.0B	84	0.6950	0.3457	0	0.1102	1.0772	0.2497	0.7026	0.5253	0.1265	0.4650
2303.00	04	18	26	Ŭ	37	25	14	52	72	69	01
LSB5.1B	93	0.9133	0.4499	0	0.1526	1.4859	0.3431	0.9993	0.7241	0.1642	0.6917
L3D3.1D	33	86	47	0	58	73	64	0.9993 87	62	69	98
LSB5.2B	102	0.3066	0.1500	0	0.0448	0.5114	0.1174	0.3579	0.2577	0.0609	0.2641
L3D3.2D	102	27	0.1500	U	76	43	37	0.3375	23	3	61
LSB5.3B	111	0.2481	0.1350	0	0.0418	0.3874	0.0876	0.2577	0.1891	0.0435	0.1785
1303.30	111	42	29	U	5	41	87	59	7	79	45
LSB5.4B	120	0.1841	0.1003	0	0.0285	0.2949	0.0690	0.1964	, 0.1439	0.0344	0.1333
L3D3.4D	120	56	8	U	74	1	5	86	2	73	33
LSB5.5B	129	0.3201	0.1866	0	0.0488	0.5116	0.1153	0.3538	0.2630	0.0635	0.2435
L3D3.3D	125	52	23	0	0.0488 19	53	76	53	36	57	0.2435 7
LSB5.6B	138	0.2282	0.1353	0	0.0400	0.3743	0.0889	0.2547	0.1865	0.0466	0.1671
L3D3.0D	150	16	21	0	0.0400 74	82	6	15	14	4	13
LSB5.7B	145	0.2043	0.1249	0	0.0337	0.3043	0.0755	0.2124	0.1596	0.0406	0.1451
L3D3.7D	145	36	62	0	16	0.3043 37	0.0755	9	19	43	0.1451 53
	-24	0.1724	0.0736	0	0.0325	0.2226	0.0714	9 0.1736	0.1248	43 0.0459	0.1067
LSB6.0B	-24	0.1724	62	0	0.0325 61	98	45	0.1736 97	28	0.0459 82	78
	-11	0.2383	0.1098	0	0.0452	0.3204	45 0.1075	0.2458	0.1799	0.0601	0.1661
LSB6.1B	-11			0		0.3204 89			12	0.0601	
	2	91	76	0	76		74	1			92
LSB6.2B	2	0.3618	0.1602 93	0	0.0620	0.4790	0.1308	0.3580	0.2625	0.0698 02	0.2238 57
	14	24		0	1 0.0503	72	36	93	33	0.0627	
LSB6.3B	14	0.2958	0.1321	0		0.4088	0.1168	0.3143	0.2283		0.1976
	20	37	05	0	24	12	43	75	45	94	21
LSB6.4B	26	0.2087	0.0928	0	0.0354 01	0.2967	0.0821	0.2310	0.1702	0.0471 28	0.1463
	49	49	1	0		79	1	69	06		11
LSB6.5B	49	0.2322	0.1039	0	0.0364	0.3511	0.0930	0.2510	0.1846	0.0517 44	0.1634
	54	52	45	0	69	79	18	14	69		04
LSB6.6B	51	0.5902	0.2816	0	0.0953	0.8717	0.2143	0.6082	0.4543	0.1076	0.4035
	(2)	53	03	0	1	88	53	05	95	07	63
LSB6.7B	63	0.0851	0.0418	0	0.0129	0.1327	0.0308 7	0.0951	0.0705	0.0158	0.0663
D 22.4	-	36	24	22.052	77	87		55	46	56	82
Bos32.1	-5	307.49	149.11	22.053	46.837	533.50	133.31	404.31	318.65	83.850	308.51
B		89	24	95	93	39	56	39	69	87	98
Bos32.2	0	325.78	146.52	21.992	38.031	571.55	141.19	441.96	345.42	75.749	326.03
B	-	1	81	45	29	22	96	69	46	14	202.40
Bos32.3	5	290.96	137.22	16.051	23.536	507.02	127.59	375.49	293.42	72.882	283.48
B		66	74	53	11	83	7	19	9	61	61
Pseud41	-5	198.40	86.245	19.047	25.488	334.84	83.089	261.16	207.57	54.177	196.77
.1B		72	15	6	04	92	49	04	29	73	99
Pseud41	0	479.47	213.99	39.524	71.654	808.30	214.30	640.96	507.26	118.78	473.98
.2B		11	97	81	07	63	99	06	26	03	75
Pseud41	5	130.78	57.203	11.919	17.802	214.42	53.608	167.22	131.83	29.404	123.64
.3B		57	04	45	34	34	86	63	97	72	36

Sample Code:	Stratigraphi c height*	C32abR	C32baS	C32baR	C33abS	C33abR	C33baS	C33baR	C34abS
LSB1.0B	5	0.04581	0.00584 9	0.00726 4	0.04744 3	0.03267 1	0.00512 9	0.00602 8	0.03451 5
LSB1.1B	13	0.15035 2	0.01923 4	0.02227 8	0.14983 9	0.10728 3	0.01769 7	0.01811 6	0.10645 8
LSB1.2B	22	0.25014	0.04128 7	0.04351 1	0.23705 2	0.16242 2	0.02847	0.02926 5	0.16873 7
LSB1.3B	29	0.19019 1	0.02600 6	0.02933 1	0.18979	0.13416 5	0.02068 7	0.02516 5	0.13804 5
LSB1.4B	37	0.11204 9	0.01547 5	0.01706	0.11266 9	0.07812	0.00979 4	0.01332 6	0.07746 7
LSB1.5B	46	0.23085	0.02634 3	0.02734	0.24697 7	0.17255 3	0.02063 1	0.02506 7	0.15170 8

LSB1.6B	55	0.47060 1	0.07763 8	0.08459 1	0.49209 5	0.34781 6	0.04461 1	0.06247	0.31894
LSB1.7B	62	0.14048	0.01588 7	0.01640 5	0.16053 7	0.11024 3	0.01192 3	0.01603 6	0.09721 3
LSB1.8B	69	0.31858	0.04829 2	0.05164 5	0.34891 9	0.24229	0.02868	0.03703 7	0.21872
LSB1.9B	78	0.49436	0.05688 8	0.05976	0.52330 5	0.36645 9	0.04447 3	0.05827 4	0.31145
LSB1.10B	86	0.55355 2	0.07696 6	0.08510 2	0.57418 7	0.40739 1	0.05311 8	0.07198 4	0.33710 1
LSB1.11B	94	0.49873 9	0.04717	0.05175 2	0.50429 5	0.35236 5	0.03977 4	0.05078 5	0.3064
LSB1.12B	102	0.27578 2	0.04531 9	0.04826 5	0.32308 7	0.21843 6	0.03486 3	0.03545 8	0.20391 5
LSB1.13B	110	0.05619 7	0.00897 2	0.00996 1	0.05978 2	0.04214 1	0.00507 6	0.00774 7	0.03699 5
LSB1.14B	118	0.10828 3	0.01214 2	0.01321 8	0.11513 6	0.08189 7	0.00912	0.01420 5	0.07140 4
LSB3.0B	-22	0.07589 5	0.01200	0.01423	0.07234	0.05029	0.00799 9	0.01091 3	0.05131 4
LSB5.0B	84	0.33284 3	0.04152 6	0.04306	0.34355 9	0.24186 5	0.02419 7	0.03622	0.20381 3
LSB5.1B	93	0.48265 5	0.04966	0.05226	0.54521 5	0.37537	0.05073 9	0.06609 9	0.33021 7
LSB5.2B	102	0.18177 3	0.01852 9	0.01884 3	0.20659 8	0.14028	0.01858 5	0.02100 5	0.13092 1
LSB5.3B	111	0.12563 7	0.01359 1	0.01380	0.12662	0.08964 1	0.00910 6	0.01274 9	0.07604 9
LSB5.4B	120	0.09454 5	0.00925	0.00974 5	0.09481 5	0.06624 3	0.00658 3	0.00857 2	0.05964 6
LSB5.5B	129	0.17379 8	0.01683	0.01768 2	0.17461 3	0.12336	0.01151 6	0.01636 3	0.11012
LSB5.6B	138	0.11590 5	0.01308 2	0.01523 7	0.12013 8	0.08447	0.00989	0.01211 5	0.07723 9
LSB5.7B	145	0.10179 8	0.01078 7	0.01301 8	0.09887 9	0.07099	0.00824	0.01203 7	0.06424 3
LSB6.0B	-24	0.07591	0.01004	0.01253 6	0.07616 9	0.05239 7	0.00989	0.01233 3	0.05207
LSB6.1B	-11	0.11816 7	0.01329 9	0.01645	0.10994 1	9 0.07675	0.01353 1	0.01715 2	0.07860 8
LSB6.2B	2	0.15483	0.01732 9	0.01993 4	0.15024	0.10404	0.01522 5	0.02021 9	0.10943
LSB6.3B	14	0.14058	0.01567 1	0.01770 4	0.13650 9	0.09497 5	0.01220 4	0.01775 9	0.09601 7
LSB6.4B	26	0.10377 9	0.01194	0.01330 8	0.10242	0.07195	0.01061	0.01337 5	0.07305 8
LSB6.5B	49	0.11566 2	0.01191 6	0.01312 6	0.11335 5	0.07966	0.01111 2	0.01355 7	0.07888
LSB6.6B	51	0.29159 7	0.03246 1	0.03518 5	0.29175 9	0.20666 6	0.02591 7	0.03638 1	0.18607 6
LSB6.7B	63	0.04714 8	0.00456 8	0.00511 6	0.05143 3	0.03588 8	0.00454 1	0.00637 3	0.03261
Bos32.1B	-5	219.938 9	33.0059 1	32.8233 5	306.206 2	222.520 4	25.0000 3	36.2043 6	170.510 7
Bos32.2B	0	233.483 6	36.6560 5	37.9334 8	327.434 1	236.278 7	28.4293 1	34.1868 4	186.812 5
Bos32.3B	5	210.522 5	25.8785 9	24.9002 4	280.537	206.886 2	26.5152 5	33.3366 6	157.150 7
Pseud41.1	-5	152.070 6	22.7072 4	22.8211 2	194.101 2	144.024 5	15.0842 9	17.2345 6	108.186 7
			-		1				
B Pseud41.2 B	0	353.982 9	50.2515 2	54.2994 2	462.752	355.217 9	37.9467 5	59.1208 8	252.122 7

Sample Code:	Stratigraphic height*	C	34abR	C34baS	C34baR	C35abS	C35abR	C36abS	C36abR
LSB1.0B	5	0.	022623	0.003424	0.003377	0.018505	0.01332	0.007177	0.006636
LSB1.1B	13	0.	072822	0.01278	0.011183	0.061558	0.045193	0.022097	0.014644
LSB1.2B	22	0.	116191	0.020475	0.022508	0.100293	0.074494	0.031688	0.025332
LSB1.3B	29	0.	095576	0.018601	0.018038	0.080266	0.058275	0.027562	0.019026
LSB1.4B	37	0.	053213	0.009706	0.010572	0.048101	0.035571	0.016306	0.01162
LSB1.5B	46	0.	104306	0.018942	0.015601	0.097387	0.06963	0.039183	0.028947
LSB1.6B	55	0.	220298	0.04457	0.040923	0.198511	0.14871	0.080495	0.061069
LSB1.7B	62	0.	066635	0.010929	0.009603	0.059775	0.042931	0.023204	0.015841
LSB1.8B	69	0.	149235	0.023279	0.021849	0.141603	0.100701	0.059052	0.04203
LSB1.9B	78	0.	22227	0.031006	0.031052	0.194809	0.136729	0.083739	0.061784
LSB1.10B	86	0.	232219	0.04497	0.046303	0.212046	0.161104	0.083738	0.057521
LSB1.11B	94	0.	208863	0.034675	0.032187	0.184897	0.128478	0.071851	0.052041
LSB1.12B	102	0.	132526	0.017576	0.019801	0.144424	0.102405	0.056512	0.038745
LSB1.13B	110	0.	026247	0.00582	0.006087	0.024006	0.01783	0.00946	0.007034
LSB1.14B	118	0.	051409	0.006858	0.005846	0.041983	0.032403	0.016311	0.011485
LSB3.0B	-22	0.	034303	0.005389	0.006152	0.026807	0.021041	0.010383	0.007538
LSB5.0B	84	0.	13899	0.019239	0.020367	0.12851	0.09723	0.049312	0.034557
LSB5.1B	93	0.	216508	0.03173	0.032077	0.217306	0.154325	0.093309	0.069958
LSB5.2B	102	0.	088553	0.008794	0.009952	0.084605	0.061033	0.03253	0.02157
LSB5.3B	111	0.	052308	0.005847	0.005995	0.047565	0.036462	0.017498	0.012068
LSB5.4B	120	0.	040853	0.005418	0.004796	0.036952	0.026714	0.014001	0.009408
LSB5.5B	129	0.	074864	0.011589	0.011702	0.067393	0.050278	0.026362	0.017658
LSB5.6B	138	0.	053114	0.006183	0.006472	0.044762	0.034615	0.016846	0.012387
LSB5.7B	145	0.	045726	0.0047	0.005306	0.036194	0.027511	0.013636	0.009973
LSB6.0B	-24	0.	035165	0.008151	0.007772	0.028658	0.021302	0.010938	0.007667
LSB6.1B	-11	0.	052669	0.01024	0.010515	0.042808	0.031824	0.015787	0.010284
LSB6.2B	2	0.	073928	0.00969	0.011718	0.062821	0.044859	0.022051	0.017361
LSB6.3B	14	0.	065684	0.009578	0.010064	0.056849	0.041536	0.020446	0.015479
LSB6.4B	26	0.	04988	0.008911	0.009062	0.044848	0.032035	0.015001	0.010824
LSB6.5B	49	0.	054078	0.008183	0.007341	0.048122	0.035229	0.017408	0.012259
LSB6.6B	51	0.	127591	0.021474	0.022165	0.118382	0.086738	0.044232	0.028843
LSB6.7B	63	0.	022261	0.004256	0.003898	0.021158	0.015656	0.008087	0.006198
Bos32.1B	-5	11	18.1284	22.38006	19.86316	130.7505	87.45899	43.0403	39.0195
Bos32.2B	0	12	26.3125	20.39154	21.99944	145.7807	101.0727	42.24516	43.77
Bos32.3B	5	10	08.0737	19.55951	19.02915	120.1461	84.42795	42.22564	38.77615
Pseud41.1B	-5	73	3.35773	15.1206	12.39486	80.29833	56.25441	23.35993	28.0924
Pseud41.2B	0	17	76.7718	33.6346	31.31933	192.3668	137.9427	56.48748	67.65861
Pseud41.3B	5	44	4.49505	8.825174	7.501663	51.79075	36.83438	14.69756	18.35523

Sample Code:	Stratigrap hic height*	SUM Sterane s	C21ba	C21aa	C22ab	C22aa	C27baS	C27baR
LSB1.0B	5	0.44656	0.02073	0.02466 1	0.01253 5	0.01424 1	0.03620	0.02511 3
LSB1.1B	13	1.59259	0.08038	0.09232	0.04741 9	0.05615	0.14989	0.10012 3
LSB1.2B	22	1.92769	0.0981	0.11304 9	0.05613 1	0.06664	0.17926	0.12268
LSB1.3B	29	1.60971 5	0.08677 6	0.10245	0.05277 7	0.06199 2	0.15243	0.10371 8
LSB1.4B	37	1.08688 6	0.05637 3	0.06693	0.03551	0.03958 1	0.11555 7	0.07759 5
LSB1.5B	46	3.01925 6	0.09599	0.11376	0.0577	0.06752 2	0.30775 8	0.21063 4
LSB1.6B	55	6.17540 5	0.20520	0.23234 2	0.13056 1	0.14865	0.65111 7	0.43810 3
LSB1.7B	62	1.58703 8	0.04157	0.04460	0.02783	0.03106	0.17036	0.11452
LSB1.8B	69	3.59034 9	0.11742	0.13148	0.06917 9	0.08047	0.36793	0.24981 9
LSB1.9B	78	7.06205	0.30614	0.34270	0.17092 6	0.20110	0.72359	0.49827 9
LSB1.10B	86	8.24308	0.32072	0.39994 4	0.19477 9	0.22733	0.81735	0.55654 6
LSB1.11B	94	6.87724 8	0.28942	0.32904	0.17244	0.19844 6	0.71899	0.48205 6
LSB1.12B	102	2.9499	0.07724	0.07889 5	0.04682 7	0.05172 2	0.30789	0.21428
LSB1.13B	110	0.72010	0.02864	0.03214 8	0.01743	0.01984	0.07964	0.05348 7
LSB1.14B	118	1.45875 6	0.07154	0.08321 5	0.04752	0.04987	0.16195	0.10832
LSB3.0B	-22	0.55563	0.02351	0.02778 3	0.01340 7	0.01699	0.04593	0.03173 8
LSB5.0B	84	5.05608	0.20615	0.25420 1	0.12815	0.14204 6	0.50605	0.34270
LSB5.1B	93	6.18315	0.22152	0.26417	0.14201	0.15240 4	0.63161	0.42715 5
LSB5.2B	102	2.18920 3	0.06235	0.06753	0.03821	0.04254	0.22947	0.15616 9
LSB5.3B	111	1.64663	0.0638	0.07606	0.04082 7	0.04321	0.18277	0.12374
LSB5.4B	120	1.05815 5	0.05085 9	0.06079	0.03243	0.03608	0.11867	0.07893 6
LSB5.5B	129	1.67686 4	0.08790	0.10631 9	0.05763 9	0.06019 4	0.18206	0.12144 9
LSB5.6B	138	1.14654 1	0.06214	0.07211	0.03716 3	0.04213	0.11716	0.07844 7
LSB5.7B	145	1.07816 5	0.05879	0.06757	0.03599 1	0.03906 7	0.10479	0.07192 4
LSB6.0B	-24	0.67783	0.02713	0.03271 2	0.01756	0.01965 9	0.05502	0.03896 6
LSB6.1B	-11	0.91156	0.03915	0.04743	0.02404	0.02757 6	0.07624	0.05284 7
LSB6.2B	2	1.37472 7	0.06359	0.07592 7	0.03938	0.04428	0.12330	0.08532
LSB6.3B	14	1.10066	0.05435	0.06589	0.03434 9	0.03856	0.10339	0.06991 2
LSB6.4B	26	0.88632	0.04429	0.05371 5	0.02773 8	0.03080	0.08479	0.05729 5
LSB6.5B	49	1.28464 1	0.05222	0.06232	0.03338	0.03556 8	0.13564	0.09245 6
LSB6.6B	51	3.95795	0.1423	0.16908 4	0.08866	0.09610 3	0.40656	0.27402 5
LSB6.7B	63	0.61161	0.01811	0.02039 6	0.01274	0.01329 8	0.06695	0.04542

Bos32.1B	-5	19.9306	0.56419	0.62986	0.31022	0.43202	1.56991	1.06851
		9	7	6	3	1	1	8
Bos32.2B	0	24.5646	0.67002	0.78128	0.38603	0.51306	1.93119	1.34501
		7	6	4				2
Bos32.3B	5	24.6833	0.72551	0.83296	0.39451	0.54136	1.97266	1.36629
		1	8	2	2	1	9	6
Pseud41.	-5	25.2503	0.64808	0.72372	0.34826	0.50311	1.99075	1.38568
1B		8	7	8	9	9	8	2
Pseud41.	0	16.7796	0.45855	0.51291	0.23654	0.33372	1.32213	0.94207
2B		9	5	3	4	9	4	7
Pseud41.	5	26.1486	0.71738	0.79382	0.37774	0.51718	2.06201	1.47456
3B			5		6	1	9	4

Sample Code:	Stratigra phic height*	C27ab S	C27ab R	C28ba S 1	C28ba S 2	C28ba R	C27aa S	C27bb R	C29ba S	C27bb S	C27aa R
LSB1.0B	5	0.0136	0.0123	0.0124	0.0146	0.0103	0.0096	0.0059	0.0429	0.0050	0.0074
		36	51	63	52	62	78	5	68	62	35
LSB1.1B	13	0.0513	0.0497	0.0484	0.0574	0.0421	0.0338	0.0154	0.1332	0.0144	0.0338
		91	3	09	66	47	73	29	59	82	08
LSB1.2B	22	0.0577	0.0620	0.0570	0.0656	0.0482	0.0480	0.0270	0.1600	0.0247	0.0432
		78	8	48	64	32	01	49	81	74	91
LSB1.3B	29	0.0476	0.0499	0.0460	0.0548	0.0385	0.0338	0.0201	0.1324	0.0184	0.0371
		03	98	16	06	18	74	03	54	47	55
LSB1.4B	37	0.0363	0.0377	0.0344	0.0380	0.0267	0.0234	0.0188	0.0844	0.0162	0.0226
		76	32	96	6	23	07	04	47	86	79
LSB1.5B	46	0.0988	0.0990	0.1037	0.1167	0.0843	0.0858	0.0534	0.2499	0.0475	0.0633
		45	05	95	75	15	47	35	4	54	08
LSB1.6B	55	0.2078	0.2029	0.2107	0.2457	0.1838	0.1652	0.1033	0.5309	0.0883	0.1667
		15	45	8	55	83	34	45	39	42	49
LSB1.7B	62	0.0514	0.0491	0.0567	0.0667	0.0498	0.0421	0.0159	0.1538	0.0144	0.0251
		23	05		35	48	82	27	41	37	47
LSB1.8B	69	0.1127	0.1138	0.1199	0.1388	0.1042	0.0979	0.0496	0.3288	0.0442	0.0769
		48	14	48	7	23	86	91	99	76	27
LSB1.9B	78	0.2457	0.2430	0.2327	0.2654	0.1880	0.2104	0.0898	0.5364	0.0788	0.1527
		26	35	91	44	05	39	37	9	08	68
LSB1.10	86	0.2643	0.2716	0.2584	0.2947	0.2279	0.2242	0.1713	0.6141	0.1462	0.2470
В		26	31	25	55	47	82	32	93	6	58
LSB1.11	94	0.2356	0.2271	0.2263	0.2619	0.1893	0.1878	0.1385	0.5522	0.1281	0.1513
В	_	92	39	65	52	15	82	37	26	54	62
LSB1.12	102	0.1017	0.0911	0.1067	0.1243	0.0868	0.0784	0.0492	0.3140	0.0449	0.0586
В		39	61	37	92	9	04	66	45	36	16
LSB1.13	110	0.0272	0.0248	0.0258	0.0296	0.0218	0.0191	0.0127	0.0544	0.0112	0.0138
В		46	51	39	57	55	62	72	71	24	55
LSB1.14	118	0.0552	0.0540	0.0464	0.0515	0.0390	0.0333	0.0279	0.1112	0.0262	0.0381
В		08	56	69	55	35	42	82	78	19	7
LSB3.0B	-22	0.0157	0.0158	0.0167	0.0199	0.0134	0.0122	0.0058	0.0563	0.0049	0.0126
2020102		62	85	07	5	31	66	42	19	01	17
LSB5.0B	84	0.1668	0.1745	0.1639	0.1885	0.1453	0.1481	0.0921	0.3740	0.0849	0.1192
2020102	0.	56	37	42	73	85	16	08	8	45	24
LSB5.1B	93	0.2036	0.1998	0.2099	0.2432	0.1837	0.1859	0.1098	0.5397	0.0982	0.1391
1000.10	55	17	01	62	8	27	47	22	65	11	26
LSB5.2B	102	0.0708	0.0702	0.0809	0.0915	0.0627	0.0582	0.0401	0.2047	0.0360	0.0368
-5555.20	102	75	93	75	52	44	53	22	84	71	68
LSB5.3B	111	0.0552	0.0600	0.0557	0.0605	0.0459	0.0442	0.0317	0.1228	0.0279	0.0362
2303.30		18	45	0.0337	44	48	19	53	78	0.0279	64
LSB5.4B	120	0.0383	0.0402	0.0346	0.0407	0.0315	0.0276	0.0210	0.0765	0.0197	0.0259
2303.40	120	0.0383	0.0402 12	0.0340 71	38	64	66	88	12	74	69
LSB5.5B	129	0.0577	0.0598	0.0543	0.0614	0.0417	0.0351	0.0298	0.1356	0.0269	0.0391
2003.00	125	22	22	0.0343 57	83	0.0417 94	42	95	13	63	53
LSB5.6B	138	0.0377	0.0380	0.0359	0.0422	0.0284	0.0235	0.0136	0.1018	0.0123	0.0239
L3D3.0D	130	32	0.0380 87	0.0339	83	0.0284 76	83	23	97	76	16
LSB5.7B	145	0.0363	0.0353	0.0335	0.0399	0.0283	0.0230	0.0136	0.0959	0.0122	0.0275
LJDJ./B	145		0.0353 9								
		83	Э	15	93	05	58	5	62	87	35

LSB6.0B	-24	0.0189	0.0184	0.0200	0.0249	0.0166	0.0141	0.0049	0.0745	0.0042	0.0186
		07	4	44	69	74	33	22	43	91	15
LSB6.1B	-11	0.0259	0.0261	0.0257	0.0316	0.0183	0.0206	0.0090	0.0888	0.0074	0.0213
		66	63	72	53	89	41	33	87	71	22
LSB6.2B	2	0.0391	0.0407	0.0399	0.0472	0.0346	0.0288	0.0184	0.1269	0.0161	0.0302
		56	97	45	64	87	38	66	95	34	75
LSB6.3B	14	0.0324	0.0345	0.0336	0.0391	0.0262	0.0241	0.0162	0.0885	0.0136	0.0248
		7	51	21		67	59	39	58	61	42
LSB6.4B	26	0.0267	0.0278	0.0250	0.0290	0.0204	0.0182	0.0147	0.0700	0.0133	0.0193
		21	29	06	84	46	09	05	71	97	26
LSB6.5B	49	0.0430	0.0452	0.0428	0.0476	0.0362	0.0360	0.0229	0.1080	0.0202	0.0282
		86	05	11	18		09	52	27	09	17
LSB6.6B	51	0.1309	0.1325	0.1294	0.1455	0.1144	0.1073	0.0820	0.3150	0.0753	0.0855
		64	62	23	49	9	29	13	88	22	17
LSB6.7B	63	0.0215	0.0194	0.0213	0.0246	0.0181	0.0175	0.0110	0.0556	0.0102	0.0115
		22	06	33	53	05	27	54	91	37	35
Bos32.1	-5	0.4762	0.5545	0.5720	0.6652	0.5103	0.6917	0.5725	1.5406	0.4972	0.4957
В		45	2	93	42	91	61	69	16	71	06
Bos32.2	0	0.6135	0.6619	0.6718	0.7635	0.5888	0.8274	0.7841	1.8578	0.6942	0.6455
В		42	45	36	94	85	96	13	03	21	39
Bos32.3	5	0.6008	0.6542	0.6970	0.7741	0.5817	0.8125	0.6888	1.7058	0.6240	0.5744
В		11	03	82	01	48	46	59	24	26	21
Pseud41	-5	0.6297	0.6771	0.6966	0.7742	0.6186	0.8038	0.7356	1.8808	0.6726	0.6584
.1B		17	45	74	75	29	4	94	3	14	9
Pseud41	0	0.4081	0.4530	0.4860	0.5215	0.4515	0.5743	0.5230	1.2834	0.4630	0.4266
.2B		01	28	91	39	78	69	3	13	37	99
Pseud41	5	0.6604	0.6868	0.7518	0.8276	0.6218	0.8665	0.8268	1.9511	0.7548	0.6672
.3B			89	67	63	04	14	02	92	03	64

Sample Code:	Stratigra phic height*	C29ba R	C29ab R	C28aa S	C29ab S	C30ba S	C28bb S	C28bb S	C30ba R	C28aa R	C30ab R
LSB1.0B	5	0.0319 78	0.0095 48	0.0039 9	0.0055 59	0.0249 72	0.0092 78	0.0075 25	0.0149 51	0.0068 76	0.0054
LSB1.1B	13	0.1113 9	0.0268 38	0.0144 92	0.0183 78	0.0861 18	0.0338 99	0.0286 63	0.0371 35	0.0163 68	0.0143 48
LSB1.2B	22	0.1390 76	0.0355 9	0.0178 77	0.0228 76	0.1060 85	0.0359 15	0.0318 41	0.0424 68	0.0220 42	0.0188
LSB1.3B	29	0.1086 21	0.0340 41	0.0143 23	0.0208 59	0.0846 95	0.0281 6	0.0245 97	0.0422 33	0.0164 13	0.0133 91
LSB1.4B	37	0.0715 29	0.0176 13	0.0115 61	0.0144 34	0.0545 07	0.0211 07	0.0182 39	0.0229 94	0.0118 85	0.0095 56
LSB1.5B	46	0.2154 49	0.0691 73	0.0389 11	0.0349 15	0.1748 48	0.0699 9	0.0599 3	0.0795 35	0.0363 11	0.0185 29
LSB1.6B	55	0.4234 71	0.1426 15	0.0669 31	0.0588 31	0.3545 06	0.1102 42	0.0958 76	0.1655 3	0.0702 64	0.0343 6
LSB1.7B	62	0.1329 63	0.0309 51	0.0164 86	0.0216 02	0.0983 57	0.0369 84	0.0316 51	0.0445 01	0.0195 8	0.0108 31
LSB1.8B	69	0.2580 02	0.0678 63	0.0379 42	0.0410 98	0.2114 81	0.0813 46	0.0692 95	0.0972 1	0.0493 94	0.0268 64
LSB1.9B	78	0.4628 72	0.1152 1	0.0816 56	0.0953 17	0.3992 85	0.1649 01	0.1425 65	0.1322 57	0.0858 34	0.0519 42
LSB1.10 B	86	0.5421 71	0.1525 25	0.0962 74	0.1094 39	0.4685 51	0.1874 57	0.1610 19	0.1947 81	0.1102 69	0.0507 77
LSB1.11 B	94	0.4418 74	0.1095 27	0.0743 92	0.0858	0.3895 55	0.1486 81	0.1296 53	0.1480 76	0.0786 68	0.0504 78
LSB1.12 B	102	0.2301 03	0.0681 93	0.0342 01	0.0355 74	0.1744 51	0.0594 35	0.0498 45	0.0771 11	0.0304 44	0.0173 98
LSB1.13 B	110	0.0491 5	0.0112 66	0.0059 96	0.0089 94	0.0398 87	0.0171 26	0.0150 2	0.0158 06	0.0077 15	0.0054 05
LSB1.14 B	118	0.0878 43	0.0305 89	0.0163 7	0.0151 7	0.0718 27	0.0247 6	0.0213 78	0.0282 31	0.0169 36	0.0111 99
LSB3.0B	-22	0.0442 1	0.0145 18	0.0047 38	0.0069 83	0.0331 23	0.0093 23	0.0079 11	0.0139 16	0.0059 16	0.0069 57

LSB5.0B	84	0.3320	0.0909	0.0597	0.0645	0.2795	0.1172	0.1009	0.1256	0.0622	0.0337
		09	92	96	27	68	1	21	12	1	86
LSB5.1B	93	0.4222	0.1281	0.0761	0.0797	0.3485	0.1445	0.1229	0.1315	0.0687	0.0372
		96	93	12	2	87	49	63	01	92	08
LSB5.2B	102	0.1733	0.0391	0.0226	0.0331	0.1310	0.0532	0.0456	0.0495	0.0226	0.0138
		39	92	16	58	3	74	99	96	41	47
LSB5.3B	111	0.1128	0.0256	0.0168	0.0192	0.0917	0.0385	0.0330	0.0297	0.0180	0.0098
		55	3	22	04	93	69	75	73	34	41
LSB5.4B	120	0.0699	0.0153	0.0098	0.0120	0.0556	0.0187	0.0161	0.0182	0.0102	0.0085
		33	15	39	1	23	07	94	11	6	61
LSB5.5B	129	0.1142	0.0281	0.0126	0.0181	0.0872	0.0311	0.0262	0.0334	0.0163	0.0112
		04	2	25	18	8		1	39	16	
LSB5.6B	138	0.0828	0.0195	0.0082	0.0132	0.0622	0.0233	0.0185	0.0231	0.0109	0.0095
		15	95	54	67	71	61		14	4	22
LSB5.7B	145	0.0725	0.0278	0.0092	0.0093	0.0543	0.0189	0.0155	0.0261	0.0126	0.0099
		77	2	17	93	68	9	14	22	3	73
LSB6.0B	-24	0.054	0.0139	0.0063	0.0059	0.0390	0.0141	0.0118	0.0197	0.0079	0.0065
			03	99	5	04	98	85	25	47	69
LSB6.1B	-11	0.0732	0.0243	0.0082	0.0117	0.0521	0.0175	0.0150	0.0278	0.0107	0.0084
		11	42	22	06	16	58	3	69	97	82
LSB6.2B	2	0.0989	0.0283	0.0107	0.0156	0.0763	0.0281	0.0236	0.0315	0.0129	0.0113
		07	18	57	73	08	59	45	19	92	06
LSB6.3B	14	0.0807	0.0193	0.0091	0.0126	0.0605	0.0216	0.0183	0.0215	0.0112	0.0101
		67	22	11	13	88	27	78	08	2	41
LSB6.4B	26	0.0597	0.0144	0.0074	0.0094	0.0477	0.0165	0.0141	0.0233	0.0085	0.0077
		52	54	05	96	72	34	41	85	15	92
LSB6.5B	49	0.0841	0.0237	0.0112	0.0157	0.0714	0.0251	0.0216	0.0284	0.0143	0.0084
		79	27	75	98	6	53	66	61	08	48
LSB6.6B	51	0.2801	0.0703	0.0451	0.0467	0.2227	0.0891	0.0774	0.0893	0.0448	0.0218
		45	88	14	39	14	93	19	13	49	31
LSB6.7B	63	0.0462	0.0171	0.0076	0.0074	0.0328	0.0125	0.0109	0.0163	0.0072	0.0043
		95	58	61	08	31	72	28	13	02	4
Bos32.1	-5	1.2073	0.4963	0.3650	0.2575	1.1637	0.5497	0.5097	0.5863	0.2775	0.0692
В		42	11	89	89	56	12	19	73	35	03
Bos32.2	0	1.4884	0.6240	0.4553	0.3193	1.5028	0.6598	0.6231	0.6374	0.3873	0.0775
В		17	06	96	36	13	59	37	43	27	38
Bos32.3	5	1.5467	0.6596	0.4585	0.3327	1.4675	0.7226	0.6562	0.7368	0.3711	0.0803
В		08	66	61	65	7	74	94	95	38	22
Pseud41	-5	1.6515	0.6855	0.4832	0.3726	1.5441	0.6443	0.5941	0.6979	0.4319	0.1005
.1B		15	21	55	72	96	04	32	07	43	19
Pseud41	0	1.0408	0.4448	0.2953	0.2154	0.9921	0.4710	0.4177	0.3976	0.2888	0.0538
.2B		12	58	34	78	9	23	35	75	2	85
Pseud41	5	1.5518	0.6911	0.4616	0.3355	1.5776	0.6658	0.6037	0.7677	0.4255	0.1330
.3B		55	98	2	96	26	42	85	82	71	6

Sample Code:	Stratigraphi c height*	C29aaS	C29bbR	C29bbS	C29aaR	C30aaS	C30bbR	C30bbS	C30aaR
LSB1.0B	5	0.01167	0.01143 8	0.01150 9	0.01128 1	0.00144 7	0.00473 4	0.00373 9	0.00261 8
LSB1.1B	13	0.03243 6	0.03991	0.04041 4	0.03404	0.0068	0.01683 6	0.01969 1	0.00854 7
LSB1.2B	22	0.04194 5	0.04649 8	0.04449 5	0.03958 2	0.00548 9	0.02159 7	0.01527 6	0.01036 5
LSB1.3B	29	0.03470 1	0.03544 5	0.03530 2	0.03258 2	0.00557 8	0.01587 2	0.01467 3	0.00911 4
LSB1.4B	37	0.01983 2	0.01738 8	0.01702 9	0.01988 9	0.00325 1	0.01083 1	0.01012 3	0.00456 3
LSB1.5B	46	0.06112 4	0.07498 7	0.07359 3	0.06903 1	0.01537 8	0.03171 5	0.02420 7	0.01544
LSB1.6B	55	0.12242 5	0.15679 7	0.15228 5	0.13537 3	0.02897 9	0.06377 7	0.04905 6	0.03232 3
LSB1.7B	62	0.02909 2	0.03766 7	0.03642 4	0.03727	0.00700 4	0.01737 9	0.01558 7	0.00740 3

LSB1.8B	69	0.08282	0.08745	0.08457	0.07619	0.01919	0.03904	0.03780	0.01906
LSB1.9B	78	0.13358 1	2 0.17802 6	0.17146	9 0.15343 9	7 0.03203	7 0.06581 4	4 0.07513 3	0.03463
LSB1.10B	86	0.15647	0.17622	0.16935 6	0.18776	1 0.04256 3	0.07395 2	0.09651 1	4 0.03009 4
LSB1.11B	94	0.13391	0.14297	0.14524	0.13067 7	0.02763 7	0.06819 4	0.04989	0.03298
LSB1.12B	102	0.05461	0.07053 3	0.06808 9	0.06172	0.01330 8	0.03017 8	0.02902 5	0.01263
LSB1.13B	110	0.01212	0.01625	0.01561 7	0.01236	0.00289	0.00559 3	0.00452 8	0.00222 4
LSB1.14B	118	0.02190	0.02578	0.02533	0.02386	0.00606	0.00942 6	0.01201	0.00432
LSB3.0B	-22	0.01242 6	0.01494 3	0.01449 4	0.01513 7	0.00136	0.00626 9	0.00640 2	0.00396 5
LSB5.0B	84	0.09306 7	0.10385 1	0.10425 3	0.10557 4	0.02248 8	0.04564 1	0.0544	0.02310 4
LSB5.1B	93	0.11617 3	0.13863 6	0.13329 8	0.11580 3	0.02355 6	0.06143 1	0.05377 1	0.02841 1
LSB5.2B	102	0.03341 1	0.05799 5	0.05704	0.04239	0.00776 4	0.02272 3	0.02431 7	0.01035
LSB5.3B	111	0.03003 2	0.03913 6	0.03800 3	0.03062 4	0.00633 5	0.01454 1	0.01506 7	0.00639 2
LSB5.4B	120	0.01442 1	0.01916 6	0.01939 5	0.01668 1	0.00317 7	0.00658 1	0.00621 4	0.00359 2
LSB5.5B	129	0.02201	0.03124 8	0.03112 6	0.02493 6	0.00449 9	0.01042 1	0.01009 1	0.0064
LSB5.6B	138	0.01634 4	0.02390 9	0.02358 3	0.01721	0.00346 9	0.00901	0.00951 7	0.00481 2
LSB5.7B	145	0.01921 9	0.01896 6	0.01836 4	0.01651	0.00310 2	0.00809 6	0.00806 6	0.00501 7
LSB6.0B	-24	0.01489 9	0.01861 1	0.01830 6	0.01723 9	0.00197 3	0.00700 3	0.00878 5	0.00483 7
LSB6.1B	-11	0.01956 1	0.02278 3	0.02263 5	0.02220 2	0.00357	0.01209 8	0.01027 8	0.00650 7
LSB6.2B	2	0.02856 3	0.03736 9	0.03797 6	0.02905 4	0.0043	0.01692 1	0.0201	0.00848 5
LSB6.3B	14	0.02248	0.02584	0.0261	0.02574 7	0.00298 4	0.01238 5	0.01367 7	0.00624 1
LSB6.4B	26	0.02109 4	0.02147 3	0.02124 8	0.01984 7	0.00284 9	0.01024 7	0.01161 4	0.00527 2
LSB6.5B	49	0.02300 7	0.02846 4	0.02808 4	0.02302 6	0.00453 2	0.01132 6	0.01382	0.00597 6
LSB6.6B	51	0.06690 4	0.10400 1	0.10035 1	0.07727 1	0.01562 6	0.04047	0.04938 2	0.02125
LSB6.7B	63	0.0104	0.01081 8	0.01059 1	0.01144 3	0.00277 2	0.00578 9	0.00657 7	0.00252 6
Bos32.1B	-5	0.51163 9	0.69286 5	0.70861 5	0.57728 7	0.07942	0.25214 6	0.32907 6	0.14586 4
Bos32.2B	0	0.66520 6	0.83475 1	0.87015 4	0.73623 3	0.10730 7	0.28973 8	0.37161 3	0.17882 3
Bos32.3B	5	0.71493 3	0.86015 9	0.87706 1	0.73251 2	0.10541 4	0.29994	0.35250 7	0.16125 8
Pseud41.1 B	-5	0.71110 2	0.85757 5	0.85720 4	0.78494 8	0.11843 2	0.33334 7	0.43028 3	0.20397 4
Pseud41.2 B	0	0.49467 8	0.54627 3	0.54190 8	0.49840 1	0.07652 2	0.20935 2	0.27088 1	0.12702 7
Pseud41.3 B	5	0.74789 7	0.87870 5	0.88853 3	0.77661 1	0.11001 7	0.32187 4	0.45778 4	0.19533 1

µg/g sediment (aromatics):

Sampl e Code:	Stratigr aphic height*	AI 176	AI 190	AI 204	AI 218	AI 246	AI 260	AI 274	AI 288	Biphen ylic iso- reniera	lsore nie- ratan e	µg/g sum	Al sum
										tane	_		
LSB1.0 B	5	0.032 109	0.020 054	0.020 99	0.008 276	0.008 286	0.008 269	0.008 286	0.003 635	0.0033 98	0.010 975	0.124 28	0.109 906
LSB1.1 B	13	0.084 097	0.054 554	0.055 859	0.022 909	0.021 086	0.021 202	0.021 086	0.009 867	0.0094 53	0.027 459	0.327 572	0.290 66
LSB1.2	22	0.114	0.072	0.076	0.030	0.030	0.030	0.030	0.013	0.0137	0.058	0.472	0.400
B LSB1.3	29	351	403 0.055	915 0.058	365 0.024	996 0.024	545 0.023	996 0.024	586 0.009	51 0.0102	808 0.045	716 0.365	157 0.310
B LSB1.4	37	3 0.050	042 0.034	293 0.038	412 0.017	439 0.016	605 0.016	439 0.016	866 0.007	27 0.0068	292 0.038	913 0.242	395 0.197
B LSB1.5	46	892 0.080	534 0.057	693 0.063	67 0.029	086 0.031	121 0.029	086 0.031	177 0.015	66 0.0146	745 0.052	87 0.406	259 0.338
B		645	553	538	212	626	121	626	421	81	65	073	743
LSB1.6 B	55	0.176 868	0.115 307	0.133 164	0.064 294	0.060 288	0.055 897	0.060 288	0.029 123	0.0304 03	0.089 195	0.814 828	0.695 23
LSB1.7	62	0.007	0.006	0.008	0.005	0.007	0.006	0.007	0.004 506	0.0041 55	0.012	0.068	0.052 04
B LSB1.8	69	578 0.127	261 0.088	125 0.087	183 0.040	034 0.036	32 0.037	034 0.036	0.017	0.0160	044 0.051	24 0.540	0.473
В		958	01	709	72	759	633	759	616	37	788	987	162
LSB1.9 B	78	0.470 887	0.308 625	0.306 258	0.135 339	0.113 097	0.108 858	0.113 097	0.052 934	0.0475 21	0.129 795	1.786 41	1.609 094
LSB1.1	86	0.566	0.365	0.367	0.144	0.132	0.137	0.132	0.058	0.0553	0.161	2.123	1.906
OB LSB1.1	94	763 0.418	752 0.288	833 0.287	985 0.130	732 0.100	77 0.101	732 0.100	359 0.041	75 0.0402	031 0.106	332 1.615	926 1.468
1B	54	644	412	97	403	123	457	123	76	6	692	845	892
LSB1.1 2B	102	0.020 849	0.014 093	0.018 318	0.009 999	0.016 206	0.014 277	0.016 206	0.009 02	0.0082 37	0.025 385	0.152 59	0.118 969
LSB1.1 3B	110	0.022	0.016	0.021 369	0.010	0.010	0.009	0.010	0.004	0.0049 16	0.019 851	0.131 001	0.106
LSB1.1	118	0.065	0.046	0.047	0.021	0.020	0.019	0.020	0.009	0.0092	0.021	0.281	0.251
4B LSB3.0	-22	804 0.035	454 0.022	917 0.020	0.009	814 0.005	091 0.006	814 0.005	46 0.001	88	117	761 0.106	356 0.106
B LSB5.0	84	67 0.334	378 0.207	1 0.211	101 0.087	639 0.080	415 0.083	639 0.080	992 0.035	0.0319	0.084	934 1.239	934 1.123
В		969	321	933	472	955	72	955	914	83	08	303	24
LSB5.1 B	93	0.284 897	0.178 897	0.182 361	0.075 379	0.072 514	0.069 553	0.072 514	0.032 933	0.0277 73	0.077 561	1.074 381	0.969 047
LSB5.2	102	0.028	0.019	0.024	0.011	0.015	0.013	0.015	0.007	0.0073	0.020	0.165	0.137
B LSB5.3	111	969 0.058	653 0.041	609 0.045	808 0.022	634 0.022	803 0.021	634 0.022	55 0.010	21 0.0104	713 0.038	696 0.293	662 0.244
В		436	5	995	058	114	481	114	818	3	959	907	518
LSB5.4 B	120	0.053 92	0.039 623	0.047 211	0.019 227	0.017 814	0.016 299	0.017 814	0.007 5	0.0074 45	0.027 195	0.254 048	0.219 408
LSB5.5 B	129	0.096 99	0.069 92	0.079 801	0.034 778	0.030 629	0.030 719	0.030 629	0.013 846	0.0127 32	0.032 423	0.432 466	0.387 312
LSB5.6	138	0.062	0.040	0.044	0.019	0.017	0.017	0.017	0.007	0.0074	0.019	0.255	0.227
B	145	391	833 0.044	424 0.047	862	799 0.017	109 0.015	799	769 0.008	85	897	369	987
LSB5.7 B	145	0.067 495	0.044 644	733	0.017 891	26	888	0.017 26	0.008	0.0066 21	0.011 824	0.254 648	0.236 202
LSB6.0	-24	0.045	0.028	0.029	0.013	0.010	0.010	0.010	0.004			0.153	0.153
B LSB6.1	-11	015 0.047	74 0.031	336 0.032	568 0.015	764 0.012	685 0.012	764 0.012	484 0.005			356 0.169	356 0.169
В		628	99	161	151	403	545	403	426			708	708
LSB6.2 B	2	0.081 501	0.053 486	0.053 828	0.023 033	0.021 611	0.021 134	0.021 611	0.009 605	0.0091 43	0.068 052	0.363 005	0.285 81
LSB6.3	14	0.098	0.065	0.068	0.027	0.027	0.025	0.027	0.012	0.0112	0.059	0.422	0.351
B	26	516	335	268	635	109	116	109	015	78	871	252	103
LSB6.4 B	26	0.051 597	0.033 651	0.035 353	0.015 124	0.014 653	0.014 01	0.014 653	0.006 327	0.0062 8	0.043 363	0.235 011	0.185 368

LSB6.5	49	0.056	0.035	0.040	0.017	0.017	0.016	0.017	0.008	0.0073	0.028	0.244	0.209
	45											-	
В		077	189	42	765	263	543	263	591	91	48	98	11
LSB6.6	51	0.168	0.114	0.117	0.051	0.050	0.047	0.050	0.023	0.0218	0.070	0.715	0.623
В		22	592	626	515	132	866	132	288	76	431	678	371
LSB6.7	63	0.005	0.004	0.005	0.003	0.003	0.003	0.003	0.001	0.0016	0.006	0.039	0.031
В		647	368	522	341	563	228	563	858	7	255	015	09
Bos32.	-5	0.715	0.496	0.228	0.264	0.212	0.196	0.212	0.104	0.0940	0.243	2.768	2.430
1B		105	079	624	801	66	679	66	189	32	211	04	797
Bos32.	0	0.925	0.627	0.306	0.281	0.277	0.264	0.277	0.127	0.1236	0.312	3.523	3.087
2B		577	03	015	313	444	793	444	89	16	056	178	505
Bos32.	5	1.101	0.751	0.355	0.299	0.298	0.287	0.298	0.142	0.1257	0.310	3.970	3.534
3B		549	224	568	122	512	836	512	086	83	563	756	41
Pseud4	-5	0.919	0.644	0.306	0.299	0.260	0.257	0.260	0.148	0.1353	0.283	3.515	3.096
1.1B		258	883	241	609	545	504	545	198	61	44	582	781
Pseud4	0	0.780	0.535	0.267	0.238	0.255	0.241	0.255	0.125	0.1187	0.325	3.144	2.700
1.2B		357	795	623	465	549	996	549	14	86	346	606	474
Pseud4	5	1.015	0.702	0.348	0.361	0.304	0.293	0.304	0.162	0.1526	0.548	4.194	3.493
1.3B		84	446	091	876	526	759	526	07	01	491	224	133

Sample	Stratigr		Phen	3-	2-	9-	1-	sum	Reten	Diben	4-	2+3-	1-	Sum
Code:	aphic		an-	Meth	Meth	Meth	Meth	MP	e	ZO-	Methy	Methy	Methy	MDB
	height*		thren	yl-	yl-	yl-	yl-		-	thioph	-	-	-	Т
			e	, Phen	, Phen	, Phen	, Phen			ene	Diben	Diben	Diben	
				an-	an-	an-	an-				z0-	z0-	z0-	
				thren	thren	thren	thren				thioph	thioph	thioph	
				е	e	e	е				ene	ene	ene	
LSB1.0	5		0.690	0.207	0.218	0.318	0.274	1.019	0.066	0.039	0.024	0.035	0.014	0.075
В			084	729	998	663	496	886	637	774	933	211	887	03
LSB1.1	13		1.247	0.374	0.399	0.582	0.498	1.854	0.117	0.071	0.047	0.058	0.026	0.132
В			261	762	792	125	174	853	861	503	029	3	836	165
LSB1.2	22		1.891	0.580	0.603	0.884	0.766	2.835	0.182	0.105	0.067	0.093	0.043	0.204
В			678	595	918	668	67	851	991	889	387	62	046	053
LSB1.3	29		1.487	0.451	0.463	0.685	0.588	2.188	0.142	0.084	0.055	0.069	0.032	0.158
В			434	027	581	084	593	285	495	18	666	485	859	01
LSB1.4	37		0.734	0.232	0.245	0.349	0.303	1.130	0.081	0.044	0.029	0.039	0.017	0.087
B	46		281	237	582	667	164	652	02	692	68	989	989	658
LSB1.5	46		1.632	0.515	0.538	0.783	0.682	2.520	0.191	0.103	0.064	0.094	0.040	0.199
В			607	302	564	62	847	333	929	734	321	74	825	885
LSB1.6	55		2.125	0.655	0.690	1.025	0.888	3.260	0.244	0.140	0.086	0.126	0.056	0.270
B	62		774	808	447	877	816	948	256	91	631	862	753	245
LSB1.7	62		0.214	0.057	0.061	0.093	0.081	0.294	0.022	0.007	0.005	0.007	0.003	0.016
B	60		55	747	328	954	069	098	964	307	621	488	596	705
LSB1.8	69		1.933	0.580	0.610	0.898	0.773	2.863	0.224	0.128	0.081	0.122	0.050	0.255
B LSB1.9	78		182 6.747	092	288 2.126	906 3.137	842	128 9.994	629 0.736	677	802 0.267	509 0.422	916	226
LSB1.9 B	/8		6.747 893	2.051 74	482	269	2.679 151	9.994 642	0.736 965	0.449 1	253	0.422 793	0.177 348	0.867 394
ь LSB1.1	86			2.522	2.624	3.801		12.25	0.843	0.584		0.540	0.218	
OB	80		8.203 121	474	033	3.801 174	3.308 869	655	0.843	0.584 641	0.334 092	0.540 804	0.218 594	1.093 49
LSB1.1	94		8.069	2.521	2.594	3.760	3.286	12.16	0.936	0.560	0.332	0.516	0.214	1.062
1B	54		586	797	116	882	601	34	508	387	0.332	287	543	866
LSB1.1	102		0.491	0.137	0.148	0.219	0.187	0.693	0.054	0.027	0.017	0.022	0.010	0.049
2B	102		103	579	666	256	504	0.055	926	028	122	383	168	673
LSB1.1	110		0.708	0.215	0.229	0.344	0.295	1.085	0.086	0.039	0.025	0.032	0.015	0.072
3B	110		329	723	084	946	327	08	849	765	217	113	172	502
LSB1.1	118		0.802	0.247	0.255	0.387	0.328	1.219	0.084	0.046	0.028	0.036	0.017	0.082
4B			914	951	35	368	527	196	101	942	622	073	869	563
LSB3.0	-22		0.576	0.168	0.174	0.257	0.224	0.825	0.046	0.029	0.018	0.027	0.011	0.057
В			229	597	832	866	58	876	453	23	929	807	002	738
LSB5.0	84	1	4.299	1.260	1.341	1.959	1.672	6.233	0.427	0.290	0.176	0.283	0.112	0.572
В			716	349	345	434	041	168	566	551	813	543	441	797
LSB5.1	93		4.400	1.340	1.381	2.025	1.772	6.519	0.455	0.291	0.177	0.265	0.107	0.551
В			821	606	42	529	368	923	014	664	882	695	502	078
LSB5.2	102		0.494	0.146	0.156	0.229	0.199	0.732	0.058	0.028	0.018	0.026	0.011	0.056
В			965	912	591	464	513	479	285	407	886	119	573	578
LSB5.3	111		0.872	0.271	0.284	0.410	0.356	1.322	0.095	0.052	0.035	0.048	0.022	0.106
В			023	11	494	421	827	852	03	652	288	591	193	072

LSB5.4	120	0.891	0.271	0.285	0.413	0.356	1.327	0.093	0.056	0.036	0.048	0.022	0.106
В		056	542	819	641	702	705	111	773	368	305	08	753
LSB5.5	129	1.544	0.473	0.493	0.719	0.621	2.308	0.161	0.104	0.063	0.091	0.039	0.194
В	-	681	421	88	682	625	608	276	166	475	975	335	784
LSB5.6	138	0.997	0.307	0.324	0.470	0.410	1.513	0.107	0.063	0.039	0.055	0.025	0.120
В		371	617	295	767	541	22	672	799	641	566	633	841
LSB5.7	145	1.005	0.297	0.311	0.464	0.400	1.474	0.096	0.060	0.035	0.055	0.023	0.113
В		383	514	859	683	757	812	032	559	524	341	113	978
LSB6.0	-24	0.760	0.219	0.240	0.347	0.295	1.102	0.064	0.038	0.023	0.037	0.014	0.075
В		633	478	019	643	18	321	171	871	984	164	609	758
LSB6.1	-11	0.804	0.235	0.252	0.360	0.315	1.164	0.069	0.042	0.026	0.037	0.015	0.079
В		708	107	471	799	681	059	696	303	577	591	35	519
LSB6.2	2	0.888	0.262	0.275	0.404	0.351	1.294	0.072	0.047	0.031	0.041	0.018	0.091
В		614	173	841	671	523	208	803	838	641	59	445	675
LSB6.3	14	1.110	0.327	0.345	0.500	0.440	1.613	0.104	0.059	0.037	0.054	0.023	0.115
В		845	299	202	854	131	486	418	928	492	683	092	267
LSB6.4	26	0.805	0.234	0.241	0.355	0.301	1.133	0.074	0.042	0.026	0.041	0.016	0.084
В		969	802	685	062	675	224	353	597	701	669	599	969
LSB6.5	49	0.935	0.277	0.287	0.421	0.364	1.352	0.092	0.057	0.033	0.048	0.020	0.103
В		429	555	816	836	827	035	276	301	843	789	732	364
LSB6.6	51	2.182	0.674	0.702	1.034	0.882	3.293	0.227	0.142	0.089	0.132	0.057	0.279
В		516	387	403	481	118	39	389	365	112	374	626	113
LSB6.7	63	0.127	0.035	0.038	0.057	0.049	0.180	0.016	0.004	0.003	0.004	0.001	0.009
В		4	264	632	025	59	511	003	663	633	422	91	965
Bos32.	-5	3.964	1.482	1.554	2.709	2.517	8.264	0.521	0.161	0.696	0.201	0.176	1.074
1B		619	368	829	886	259	343	65	15	515	602	354	47
Bos32.	0	5.341	1.933	2.077	3.573	3.328	10.91	0.696	0.218	0.935	0.242	0.230	1.409
2B		357	063	062	069	144	134	167	677	641	792	624	057
Bos32.	5	7.669	2.813	2.974	5.111	4.741	15.63	1.004	0.341	1.422	0.422	0.365	2.209
3B		32	019	059	44	018	954	554	171	172	318	349	839
Pseud4	-5	4.271	1.587	1.674	2.931	2.690	8.884	0.636	0.189	0.832	0.245	0.210	1.288
1.1B		695	761	528	764	068	121	881	47	244	737	401	381
Pseud4	0	4.671	1.772	1.806	3.190	2.936	9.705	0.680	0.211	0.884	0.248	0.220	1.353
1.2B		206	241	221	54	969	972	623	929	551	76	665	975
Pseud4	5	5.617	2.164	2.179	3.757	3.471	11.57	0.827	0.258	1.093	0.326	0.280	1.700
1.3B		57	858	834	427	961	408	946	803	029	549	789	367

µg/gTOC (alkanes and branched isoprenoids):

Sample Code:	Stratigraph ic height*	nor- pristane (TIC)	nC17 (TIC)	Pristane (TIC)	nC18 (TIC)	Phytane (TIC)		nC12 (m/z=8 5)	C13	C14
LSB1.0B	5	70.9903 4	129.681 8	184.753 5	104.302 5	58.6787	0	91.5598 2	111.019	126.636 3
LSB1.1B	13	100.327 4	161.568 8	259.711 8	132.293 8	92.1942 3	0	120.514 3	163.278 2	166.955 3
LSB1.2B	22	201.963 9	317.680 7	491.488 4	271.051 6	199.979 6	0	248.687 7	269.404 3	305.803 6
LSB1.3B	29	131.050 4	177.453 1	318.752 6	154.361 1	124.561 4	0	115.521 5	152.698 5	176.652 3
LSB1.4B	37	188.103 3	285.495 5	515.523	240.179	219.920 3	0	130.125 7	203.652 1	241.552 4
LSB1.5B	46	241.962 7	284.914 7	604.552 7	271.682 1	286.803 8	0	125.900 2	212.597	274.404 7
LSB1.6B	55	167.716 6	231.906 7	463.340 1	187.183 8	196.727 3	0	168.982 8	204.466 5	214.213 3
LSB1.7B	62	558.365 5	711.941 7	1699.21 7	680.653 9	769.970 4	0	55.0797 7	172.488 4	299.187
LSB1.8B	69	80.5940 2	104.569 4	207.804 1	89.0261 5	83.8932 4	0	100.569 9	112.939 1	115.325 6
LSB1.9B	78	178.644 9	235.264 6	404.725 8	196.981 3	168.289 2	0	236.707	262.497 5	273.965 1

LSB1.10B	86	185.614	292.753	513.737	236.272	193.01	0	271.115	307.160	317.042
			8	3				5	4	4
LSB1.11B	94	155.282	237.102	393.410	191.595	161.615	0	187.469	212.270	227.138
		5	7	6	1	6		6	7	9
LSB1.12B	102	117.257	155.304	376.191	130.370	161.683	0	29.7637	62.8992	113.951
		6	2	5	8	3		6	4	3
LSB1.13B	110	177.253	215.043	433.148	170.776	182.197	0	63.1061	138.052	165.048
		6	4	5	5			6	5	
LSB1.14B	118	247.147	303.169	692.176	279.401	287.238	0	105.035	311.491	417.335
		1	7	1		1		1		4
LSB3.0B	-22	64.4571	190.281	149.897	185.307	48.6713	0	100.955	157.966	167.452
		7	5	7	1	6		6	3	3
LSB5.0B	84	109.792	197.494	308.634	148.234	121.859	0	130.576	169.086	193.219
		4	8	7	2	6	-	5	8	3
LSB5.1B	93	155.606	207.490	473.782	175.967	145.876	0	208.452	234.804	245.293
1005.00	100	2	2	3	2	3		56 6996	7	464.074
LSB5.2B	102	114.609	162.712	376.581	149.470	157.010	0	56.6226	100.572	164.974
		1	7	7	4	3		8	9	6
LSB5.3B	111	103.790	139.775	267.369	116.392	108.726	0	77.4888	114.323	131.402
1005 40	120	8	4	4	5	7	0	7	400.005	5
LSB5.4B	120	189.983	242.511	476.823	202.653	184.259	0	120.623	180.895	239.493
	120	1 192.998	9 252.598	7	5	2	0	3 203.361	202.070	2 336.305
LSB5.5B	129			523.649	205.666 5	204.166	0		282.970	
LSB5.6B	138	1 230.887	6 287.900	3 596.029	249.199	6 228.726	0	6 116.37	4 201.423	7 278.530
L3B3.0B	130	8	287.900 7	596.029 6	249.199 7	3	U	110.37	201.423 4	278.530 4
LSB5.7B	145	212.509	289.562	577.315	247.995	207.797	0	122.480	206.357	4 259.896
1303.70	145	212.505	205.502 A	1	247.555	207.757	U	4	200.337	8
LSB6.0B	-24	125.218	265.918	293.702	227.788	89.1910	0	179.376	231.031	237.205
2300.00	27	6	9	3	6	3	Ŭ	3	9	4
LSB6.1B	-11	183.466	290.828	410.534	240.371	143.413	0	155.351	228.509	257.741
2000120		6	1	2	9	5	Ū.	5	3	4
LSB6.2B	2	221.856	290.648	483.740	241.548	167.865	0	209.779	272.480	304.311
			1	8	2	8	-	5	8	3
LSB6.3B	14	125.408	204.186	354.438	169.102	124.501	0	118.382	185.628	204.622
		2	6	9	3	2		7	3	4
LSB6.4B	26	85.0043	146.748	254.939	120.863	99.2974	0	80.6208	102.573	128.500
		9	7	8	5				1	2
LSB6.5B	49	63.0799	96.8189	179.814	76.4196	75.0924	0	66.9368	74.3419	85.6150
		4	7	9	3			4	6	9
LSB6.6B	51	270.457	357.292	645.403	306.628	357.301	0	308.051	394.702	449.143
		2	8	9	4			6	7	4
LSB6.7B	63	160.003	256.768	565.903	243.710	356.138	0	22.6906	68.2570	153.779
		4		8	8	2		1	6	8
Bos32.1B	-5	222.590	359.649	455.436	303.880	346.118	0	185.950	250.387	299.974
		3	1	1	1	9		3		4
Bos32.2B	0	278.724	468.282	532.849	379.147	433.335	0	226.737	293.417	332.521
			3	5	4	7			8	
Bos32.3B	5	244.251	485.185	535.155	396.982	425.028	0	263.010	317.542	365.425
		6	4	4	ļ	6		6	ļ	
Pseud41.1B	-5	514.160	800.165	968.363	752.983	761.484	0	654.646	622.297	747.262
		1	2	3	8	1	-	3	9	
Pseud41.2B	0	214.128	469.187	589.804	472.438	491.704	0	470.461	614.540	450.077
		2	2	3	4		-	3	8	7
Pseud41.3B	5	398.216	692.983	799.527	602.104	722.387	0	531.228	538.990	621.475
		2	9	4	2				3	1

Sample Code:	Stratigraph ic height*	C15	C16	C17	C18	C19	C20	C21	C22	C23
LSB1.0B	5	137.586	125.667	123.826	107.888	108.135	104.744	103.487	106.527	111.887
		8	1	9	6	1	7		5	8
LSB1.1B	13	175.130	163.870	163.155	137.049	133.034	146.587	148.419	135.761	137.487
		9	3	5	7	2	4	7	1	9

LSB1.2B	22	342.302 8	319.332 6	315.466 1	256.384 2	249.659 1	238.316 4	222.126 5	213.781 6	224.996 3
LSB1.3B	29	192.633 5	175.706 1	178.069 8	142.139 9	129.094 7	123.970 4	115.990 8	106.889 6	109.431 9
LSB1.4B	37	300.795 3	285.225 1	285.682 1	226.474 6	216.812 2	196.147 5	189.305 2	174.232 9	175.660 2
LSB1.5B	46	318.209	303.146	295.165	259.033	250.296	232.764	209.35	193.515	193.227
LSB1.6B	55	2 245.236	5 233.617	8 223.160	4 183.533	2 178.659	9 163.756	147.016	6 134.133	9 131.162
LSB1.7B	62	2 504.392	581.499	9 696.893	9 628.035	8 659.604	626.121	5 592.818	2 587.469	9 586.722
LSB1.8B	69	8 123.193	3 106.354	7 107.339	85.6996	6 82.2713	7 75.0690	3 65.3840	60.592	2 58.4831
LSB1.9B	78	285.440	4 250.650	252.904	4 192.125	9 180.429	1 160.778	4 141.493	127.383	7 121.793
LSB1.10B	86	1 344.274	3 305.826	4 303.045	6 234.200	8 218.013	1 195.665	3 172.395	3 154.557	5 127.483
LSB1.11B	94	9 257.764	8 221.422	7 225.143	5 173.415	4 166.248	7 139.418	122.554	6 108.523	107.015
LSB1.12B	102	7 136.662	9 142.778	4 153.548	3 142.546	2 149.896	8 139.809	9 132.989	1 126.628	5 134.957
LSB1.13B	110	1 215.543	7 205.501	7 195.933	1 166.282	1 151.042	2 142.078	6 123.839	5 122.265	3 116.508
LSB1.14B	118	5 339.876	2 323.562	5 300.146	7 260.483	7 250.596	9 225.794	2 201.093	1 185.656	7 189.045
	-22	9 184.732	4 180.685	1 192.132	3 183.393	9 194.379	9 183.148	3	5	8 204.649
LSB3.0B		8	2	7	6	6	7	3	6	4
LSB5.0B	84	222.444 2	196.804 1	194.484 9	154.594 8	187.716 3	148.832 5	109.381 9	98.1747 3	95.9323 4
LSB5.1B	93	259.558 3	252.640 8	215.014 4	174.931 6	186.268 8	153.902 1	131.189 1	128.582 6	125.432 3
LSB5.2B	102	156.054 5	168.594 7	167.024 3	144.522 3	139.615 3	132.707 2	123.993 4	114.013	110.891 4
LSB5.3B	111	152.112 6	142.599 5	145.515 9	117.843 1	111.456 7	103.614 9	93.3408	86.3397 9	87.5770 6
LSB5.4B	120	342.803 6	280.587 3	265.802 8	200.364 3	186.500 1	164.121	146.671 6	135.721 7	133.281 9
LSB5.5B	129	424.822 9	285.596 7	269.292	210.533 2	210.369 1	180.896 8	163.421 6	154.311	149.788 8
LSB5.6B	138	339.278 1	, 322.931 8	321.398 9	253.453 7	236.759 7	218.282	258.891 8	175.595 5	181.775
LSB5.7B	145	334.551 5	309.850 3	296.989 2	244.003 9	228.635 4	190.805 4	197.536 5	182.198 8	186.494 9
LSB6.0B	-24	269.364	255.295	2 261.936 2	226.255	240.742	250.766	259.831	257.910	269.033
LSB6.1B	-11	2 359.423	5 298.567	279.524	228.920	3 232.208	7 209.826	2 213.646	6 217.584	1 237.457
LSB6.2B	2	3 322.664	9 297.16	9 289.943	9 238.647	227.638	2 218.068	5 205.579	9 195.633	5 199.372
LSB6.3B	14	1 223.568	203.987	4 190.637	3 161.515	4 154.299	6 141.358	7 133.660	2 123.582	126.876
LSB6.4B	26	1 126.781	2 152.106	2 149.771	4 111.250	8 87.9177	4 83.093	5 85.9108	3 77.2263	1 79.1437
LSB6.5B	49	6 102.556	3 93.4769	2 91.5876	2 73.8411	6 74.0009	64.8877	70.7057	3 73.3776	6 65.4808
LSB6.6B	51	4 408.219	7 352.277	7 360.638	2 290.836	3 287.587	9 297.841	9 209.112	7 194.893	9 190.138
LSB6.7B	63	2 232.468	3 196.419	6 246.388	9 248.909	4 333.585	6 286.144	9 213.121	3 202.987	200.960
Bos32.1B	-5	4 356.197	2 361.510	8 364.633	7 298.661	2 264.144	2 249.467	5 205.422	1 179.239	7 167.424
Bos32.2B	0	4 528.072	8 466.201	6 461.496	6 348.794	2 327.153	6 285.077	4 241.034	9 240.004	9 206.919
			1	2		1	2	7	1	1
Bos32.3B	5	435.097	432.630 2	438.251 6	348.294 7	295.771 7	280.772 3	242.373 7	213.386 9	196.459 5
Pseud41.1B	-5	823.574	815.760 1	790.348 1	615.306 4	593.967 6	533.841 8	457.884 5	396.088	388.153 5

Pseud41.2B	0	527.136	466.902	473.740	388.202	324.017	310.436	266.447	278.054	328.525
		4	1	9	1	3	6	2	7	8
Pseud41.3B	5	713.443	713.076	696.601	587.037	507.652	587.164	407.658	321.087	304.322
		1	3	5	2	7	6	9	9	1

Sample Code:	Stratigra phic height*	C24	C25	C26	C27	C28	C29	C30	C31	C32	C33	C34
LSB1.0B	5	105.1 216	113.6 611	93.69 376	100.8 864	72.13 904	76.80 276	50.73 587	51.20 057	32.49 383	43.11 181	22.10 331
LSB1.1B	13	122.0	128.9	109.2	108.9	78.86	81.25	56.13	49.14	29.37	35.04	23.62
LSB1.2B	22	377 216.3	793 227.0	163 169.2	716 193.2	914 136.6	222 145.0	405 90.60	387 94.28	085 55.90	826 70.39	997 39.98
1001.20		599	056	002	276	795	511	844	519	382	009	808
LSB1.3B	29	97.78	102.2	85.17	88.14	62.79	66.23	41.83	41.01	23.74	30.42	18.86
LSB1.4B	37	549 164.9	2 173.9	916 136.1	435 144.0	809 105.9	054 107.1	488 71.11	667 64.67	214 43.32	197 47.87	431 28.24
LJD1.4D	57	673	721	717	354	461	38	614	134	091	661	456
LSB1.5B	46	186.1	196.5	173.9	153.5	117.8	115.4	81.30	73.30	39.82	45.86	39.13
		975	995	536	725	012	937	04	655	114	819	942
LSB1.6B	55	126.7 106	125.2 247	106.7 785	101.3 459	73.83 447	55.64 762	30.20 909	27.14 724	13.62 847	15.33 227	12.72 375
LSB1.7B	62	604.3	655.5	580.4	563.2	444.7	469.0	349.8	319.9	184.8	221.0	183.5
		859	095	094	405	471	891	881	836	485	283	177
LSB1.8B	69	56.86 919	58.13 982	48.69 207	45.19 058	35.87 511	35.07 914	23.40 695	21.59 147	12.40 089	14.21 641	10.52 518
LSB1.9B	78	110.8	106.8	89.59	81.62	59.78	57.13	37.36	32.90	18.02	17.88	11.37
		685	575	694	013	323	693	796	906	676	418	07
LSB1.10	86	133.6	132.4	109.5	101.0	74.06	69.81	47.68	40.81	20.84	20.99	15.84
B LSB1.11	94	103 91.37	251 94.20	472 74.68	096 67.74	716 51.29	959 47.14	048 28.03	01 25.77	267 14.80	965 14.45	9 9.305
B	54	758	728	854	538	468	114	665	385	777	597	893
LSB1.12	102	134.3	152.6	135.1	141.5	119.7	122.0	89.31	88.86	55.40	68.78	57.16
B	110	341	975	613	577	588	306	493	107	119	545	988
LSB1.13 B	110	113.7 231	115.6 067	101.8 048	91.28 273	71.11 757	72.60 469	49.53 342	44.42 447	24.20 99	30.32 051	23.42 226
LSB1.14	118	180.8	188.5	158.0	154.4	109.3	113.4	72.82	66.40	32.05	32.04	16.72
В		832	623	963	864	304	906	402	325	902	306	411
LSB3.0B	-22	180.1 713	198.7 376	151.2 134	174.4 427	119.8 104	125.2 598	86.68 253	80.71 368	49.59 547	65.47 801	26.29 576
LSB5.0B	84	81.90	83.68	68.99	63.33	47.72	46.81	29.62	23.65	14.20	14.10	8.602
		081	791	487	517	316	035	165	574	417	416	065
LSB5.1B	93	106.2	97.13	83.26	72.78	55.47	50.19	34.95	29.47	15.57	17.99	12.76
LSB5.2B	102	677 115.9	056 115.3	647 108.4	415 102.5	621 82.09	438 84.90	863 61.11	806 59.11	979 36.24	749 47.71	635 37.10
2000.20	102	654	651	84	869	626	456	285	667	551	106	231
LSB5.3B	111	81.01	82.61	71.26	69.15	52.58	54.24	38.51	34.33	22.17	23.52	15.02
LSB5.4B	120	985 120.6	679	262 106.8	119 105.2	309 80.26	835	738	738 55.26	156	694	827 22.21
L3D3.4D	120	120.0	127.4 338	823	498	917	81.75 826	58.51 457	83	31.87 255	36.28 977	49
LSB5.5B	129	141.9	145.1	125.3	122.2	93.76	98.92	64.83	60.50	35.39	40.46	24.89
		511	035	106	806	186	218	284	954	313	363	504
LSB5.6B	138	175.7 666	175.7 824	155.3 963	153.6 423	113.3 894	118.8 357	83.06 586	72.81 623	40.04 496	53.03 986	29.40 103
LSB5.7B	145	193.7	190.9	160.9	168.8	124.1	131.0	85.89	78.82	490	56.70	27.45
		701	095	481	275	858	907	662	904	486	336	686
LSB6.0B	-24	238.4	270.6	201.6	225.9	147.2	162.4	104.5	98.76	61.74	75.27	39.78
LSB6.1B	-11	673 236.1	764 257.7	018 196.7	201 220.2	254 144.5	469 163.3	279 104.7	009 108.7	613 60.90	661 80.99	362 35.63
2000.10		003	894	611	728	078	665	608	989	887	863	243
LSB6.2B	2	189.6	207.4	161.4	173.2	119.6	125.9	83.53	79.15	45.52	58.43	33.16
1006 30	14	374	246	797	807	819	759	632 56.08	537	425	18	759
LSB6.3B	14	123.2 978	127.1 559	106.3 202	111.2 163	77.41 465	83.99 947	56.08 229	55.56 442	33.31 162	42.15 162	25.83 736

LSB6.4B	26	67.39	70.27	58.15	57.90	41.67	43.82	29.04	27.79	15.47	19.78	13.40
	_	511	151	521	492	215	002	932	498	071	952	121
LSB6.5B	49	68.48	63.38	50.58	44.56	33.39	33.32	22.42	20.23	11.39	14.48	10.74
		051	19	324	358	009	69	587	357	599	595	412
LSB6.6B	51	176.4	176.3	151.7	138.7	103.6	101.4	67.49	57.32	32.95	37.73	25.72
		016	406	668	403	717	905	064	317	915	267	556
LSB6.7B	63	191.5	200.1	169.7	160.7	128.4	127.0	92.78	82.00	51.99	62.13	51.95
		167	002	754	634	112	06	757	112	115	063	738
Bos32.1	-5	154.4	146.0	133.5	93.97	82.84	77.27	73.82	75.68	58.15	48.03	35.06
В		169	105	684	828	389	843	903	776	499	269	201
Bos32.2	0	192.3	166.6	154.6	114.5	93.85	92.82	76.57	78.38	62.40	48.14	42.86
В		315	23	445	331	297	47	089	392	52	954	898
Bos32.3	5	178.1	166.5	144.2	104.6	78.42	79.37	65.24	63.83	40.85	36.76	30.67
В		593	62	071	34	297	046	235	927	374	352	747
Pseud41	-5	348.5	309.6	277.1	209.0	184.4	186.3	160.9	163.1	119.9	105.1	86.04
.1B		848	786	374	337	212	852	232	897	768	342	616
Pseud41	0	279.5	268.8	236.1	173.3	155.2	156.7	129.2	132.1	102.2	84.75	70.77
.2B		663	34		925	834	139	96	062	047	479	709
Pseud41	5	289.2	271.9	232.7	180.4	145.8	151.1	132.8	139.3	106.5	86.39	56.86
.3B		454	096	304	806	101	776	145	997	003	462	669

Sample Code:	Stratigraphic height*	C35	C36	C37	C38	C39	C40	sum n- alkanes
LSB1.0B	5	19.57332	7.065214	5.507391	3.255411	3.038824	2.965064	2162.322
LSB1.1B	13	16.5304	6.030302	5.967541	2.463611	4.388398	3.745014	2653.023
LSB1.2B	22	37.26941	11.54824	13.06626	6.326297	6.195793	5.809577	4725.176
LSB1.3B	29	16.5742	5.708448	5.441534	3.924185	2.484648	1.636032	2412.806
LSB1.4B	37	26.3002	9.42547	6.53154	5.598675	4.24521	4.057203	3769.284
LSB1.5B	46	31.5561	11.80934	9.545444	6.523195	4.623727	2.759185	4157.482
LSB1.6B	55	9.061026	3.946954	2.041574	0	0	0	2931.571
LSB1.7B	62	170.9409	50.06572	55.51252	45.47156	33.08266	20.35242	10942.39
LSB1.8B	69	9.596992	3.588775	2.816164	1.905851	2.18469	2.398595	1477.698
LSB1.9B	78	9.664853	4.38518	3.089865	1.774625	0.856868	0.80398	3130.165
LSB1.10B	86	12.95493	4.891194	4.573628	3.422028	2.43627	1.215409	3746.935
LSB1.11B	94	7.474074	1.8556	0.851337	0	0	0	2677.402
LSB1.12B	102	43.67661	19.14639	15.61831	13.74887	12.67104	11.00517	2747.369
LSB1.13B	110	19.1402	5.105169	3.586336	2.965388	2.3494	2.687353	2579.086
LSB1.14B	118	14.83539	5.256211	0	0	0	0	4255.112
LSB3.0B	-22	23.805	8.460866	7.321785	4.497964	3.548546	3.200771	3438.521
LSB5.0B	84	6.452753	2.471136	1.839777	1.098118	0.780144	0	2396.53
LSB5.1B	93	8.816444	4.342894	2.858147	2.270557	1.657396	1.146645	2913.062
LSB5.2B	102	33.41325	10.76816	12.85129	9.621368	8.126538	7.3249	2512.383
LSB5.3B	111	14.11504	5.168343	4.222923	3.006257	2.156664	2.088299	1938.836
LSB5.4B	120	17.59018	7.256424	6.198562	4.273299	3.311746	1.830898	3263.691
LSB5.5B	129	21.06968	7.987945	5.98083	3.608451	0	0	3863.741
LSB5.6B	138	23.82275	9.033858	8.640307	6.163352	0	0	4123.531
LSB5.7B	145	21.3891	9.442866	4.626912	0	3.04145	2.221241	4059.344
LSB6.0B	-24	32.90105	10.86886	8.712346	6.765889	4.288167	3.649156	4632.366
LSB6.1B	-11	33.6754	9.996008	8.880778	5.660282	4.361441	3.320325	4594.554
LSB6.2B	2	31.27475	10.30399	6.661195	5.347219	4.237619	3.3769	4319.776

LSB6.3B	14	21.10667	5.710169	4.652411	3.532582	3.389969	2.285805	2851.148
LSB6.4B	26	12.43859	3.414416	3.388999	1.818387	1.263034	1.210368	1733.154
LSB6.5B	49	8.369598	3.339039	3.033947	1.601739	1.138859	1.18344	1328.487
LSB6.6B	51	22.58234	6.460858	4.772989	2.760165	2.7043	2.688507	4855.055
LSB6.7B	63	43.00411	16.47965	14.38451	6.467071	4.159939	5.153515	3813.802
Bos32.1B	-5	32.77243	17.46037	10.43819	5.3601	4.478445	4.720022	4237.106
Bos32.2B	0	42.36177	15.3308	11.07577	5.574794	4.62167	2.721707	5162.302
Bos32.3B	5	25.51068	11.67037	6.848543	2.849924	3.438613	0	4868.065
Pseud41.1B	-5	73.13306	39.51278	29.96897	23.89995	0	10.49706	9766.653
Pseud41.2B	0	56.03146	30.02133	18.39882	0	0	0	6792.023
Pseud41.3B	5	52.37742	21.004	16.69668	16.60774	0	0	8429.753

Sample Code:	Stratigrap hic height*	2*C29/(C28+C 30)	(C15+`17+`19)/(C27+`29 +`31)	Pr/17	Phy/18	Pr/Phy	Pr/(Pr+P hy)	TAR
LSB1.0B	5	1.250097	1.614528	1.4246 68	0.5625 82	3.1485 62	0.758953	0.6193 76
LSB1.1B	13	1.203708	1.969023	1.6074 37	0.6968 9	2.8170 07	0.738015	0.5078 66
LSB1.2B	22	1.276364	2.097789	1.5471 15	0.7377 92	2.4576 93	0.71079	0.4766 92
LSB1.3B	29	1.265959	2.55793	1.7962 64	0.8069 48	2.5589 99	0.719022	0.3909
LSB1.4B	37	1.210174	2.543305	1.8057 14	0.9156 52	2.3441 36	0.700969	0.3931 89
LSB1.5B	46	1.160148	2.522606	2.1218 72	1.0556 6	2.1078 96	0.678239	0.3964 15
LSB1.6B	55	1.069699	3.513926	1.9979 59	1.0509 85	2.3552 41	0.701959	0.2845 82
LSB1.7B	62	1.18064	1.37608	2.3867 36	1.1312 22	2.2068 6	0.688169	0.7267 02
LSB1.8B	69	1.183466	3.070879	1.9872 37	0.9423 44	2.4770 07	0.712396	0.3256 4
LSB1.9B	78	1.176248	4.187048	1.7203	0.8543 41	2.4049 42	0.706309	0.2388 32
LSB1.10B	86	1.146956	4.088721	1.7548 44	0.8168 98	2.6617 13	0.726904	0.2445 75
LSB1.11B	94	1.188462	4.615062	1.6592 42	0.8435 27	2.4342 36	0.708814	0.2166 82
LSB1.12B	102	1.167345	1.248709	2.4222 88	1.2401 81	2.3267 18	0.699403	0.8008 27
LSB1.13B	110	1.203549	2.700372	2.0142 38	1.0668 74	2.3773 64	0.703911	0.3703 19
LSB1.14B	118	1.246092	2.663495	2.2831 31	1.0280 5	2.4097 64	0.706725	0.3754 47
LSB3.0B	-22	1.213212	1.501632	0.7877 68	0.2626 52	3.0797 93	0.75489	0.6659 42
LSB5.0B	84	1.210433	4.518981	1.5627 48	0.8220 75	2.5327 06	0.716931	0.2212 89
LSB5.1B	93	1.110067	4.334621	2.2833 96	0.8289 97	3.2478 36	0.764586	0.2307 01
LSB5.2B	102	1.185742	1.876232	2.3143 97	1.0504 44	2.3984 53	0.705748	0.5329 83
LSB5.3B	111	1.190957	2.593465	1.9128 5	0.9341 38	2.4590 97	0.710907	0.3855 85
LSB5.4B	120	1.178211	3.281817	1.9661 87	0.9092	2.5877 87	0.721277	0.3047

LSB5.5B	129	1.247484	3.210665	2.0730	0.9927	2.5648	0.71948	0.3114
				49	07	14		62
LSB5.6B	138	1.209799	2.599049	2.0702	0.9178	2.6058	0.722674	0.3847
				61	43	64		56
LSB5.7B	145	1.247993	2.271109	1.9937	0.8379	2.7782	0.735328	0.4403
				51	08	64		14
LSB6.0B	-24	1.290525	1.58489	1.1044	0.3915	3.2929	0.76706	0.6309
				81	52	58		59
LSB6.1B	-11	1.310767	1.769067	1.4116	0.5966	2.8625	0.741106	0.5652
				04	32	91		7
LSB6.2B	2	1.23981	2.220453	1.6643	0.6949	2.8817	0.742382	0.4503
				52	58	12		59
LSB6.3B	14	1.258448	2.266946	1.7358	0.7362	2.8468	0.740049	0.4411
				58	48	72		22
LSB6.4B	26	1.239228	2.814012	1.7372	0.8215	2.5674	0.719687	0.3553
				55	67	37		65
LSB6.5B	49	1.194171	2.732715	1.8572	0.9826	2.3945	0.705413	0.3659
				28	32	82		36
LSB6.6B	51	1.185898	3.550432	1.8063	1.1652	1.8063	0.643663	0.2816
				73	57	31		56
LSB6.7B	63	1.148343	2.197153	2.2039	1.4613	1.589	0.613751	0.4551
				5	15			34
Bos32.1B	-5	0.986494	3.988651	1.2663	1.1389	1.3158	0.568191	0.2507
				35	98	37		11
Bos32.2B	0	1.089339	4.608082	1.1378	1.1429	1.2296	0.551498	0.2170
				81	21	46		1
Bos32.3B	5	1.104936	4.717168	1.1029	1.0706	1.2591	0.557347	0.2119
				91	5	04		92
Pseud41.1	-5	1.079416	3.952481	1.2102	1.0112	1.2716	0.559797	0.2530
В				04	89	79		06
Pseud41.2	0	1.101372	2.866418	1.2570	1.0407	1.1995	0.545353	0.3488
В				77	79	11		67
Pseud41.3	5	1.085171	4.071043	1.1537	1.1997	1.1067	0.525343	0.2456
В				46	71	85		37

$\mu g/gTOC$ (hopanes and steranes):

Sample Code:	Stratigra phic height*	SUM Hopan es		C19/3	C20/3	C21/3	C22/3	C23/3	C24/3	C25/3 S	C25/3 R	C24/4
LSB1.0B	5	127.0	0	0.984	0.864	0.858	0.124	0.825	0.462	0.154	0.268	2.066
		059		058	153	063	494	933	835	387	069	827
LSB1.1B	13	202.3 541	0	1.819 653	1.648 527	1.628 109	0.350 927	1.718 813	0.974 36	0.457 05	0.369 451	3.593 072
LSB1.2B	22	357.9 255	0	2.797 178	2.419 664	2.397 965	0.393 824	2.356 382	1.278 902	0.609 671	0.384 429	5.306 196
LSB1.3B	29	180.0 131	0	1.495 633	1.330 98	1.352 692	0.274 277	1.421 724	0.817 567	0.372 717	0.292 24	2.771 469
LSB1.4B	37	293.7 775	0	2.628 922	2.210 306	2.284 42	0.356 387	2.475 627	1.477 345	0.622 691	0.633 441	4.377 488
LSB1.5B	46	362.4 697	0	3.213 479	2.554 682	2.665 313	0.442 173	2.826 629	1.796 392	1.039 012	0.716 635	4.384 65
LSB1.6B	55	244.4 891	0	1.986 977	1.721 997	1.713 986	0.305 683	2.002 333	1.342 152	0.753 032	0.530 401	3.064 236
LSB1.7B	62	1458. 137	0	7.812 22	7.837 388	8.693 812	2.027 493	10.69 865	6.915 739	4.020 968	3.004 16	14.17 969
LSB1.8B	69	126.4 167	0	0.988 395	0.858 378	0.881 867	0.115 625	0.895 414	0.597 328	0.285 875	0.247 507	1.394 686
LSB1.9B	78	164.2 684	0	2.075 751	1.613 903	1.610 322	0.256 026	1.582 327	1.029 103	0.536 852	0.354 173	2.508 053
LSB1.10 B	86	182.9 611	0	2.153 234	1.888 184	1.763 965	0.291 067	1.762 859	1.082 468	0.569 182	0.440 237	2.821 92

LSB1.11	94	146.9	0	1.699	1.466	1.371	0.212	1.301	0.832	0.448	0.308	2.208
В	54	299	U	916	147	691	0.212	149	337	729	544	54
LSB1.12	102	411.2	0	1.992	1.979	2.179	0.354	2.534	1.748	1.038	0.776	3.607
B	102	474	Ŭ	269	857	339	13	311	491	661	376	462
LSB1.13	110	193.6	0	1.721	1.656	1.570	0.367	1.758	1.100	0.584	0.472	2.780
B	110	512	Ũ	243	744	88	859	867	599	72	442	218
LSB1.14	118	206.8	0	2.346	2.098	2.010	0.357	2.149	1.337	0.632	0.489	3.878
B	110	19	Ũ	66	969	886	385	296	505	844	705	141
LSB3.0B	-22	186.1	0	1.420	1.165	1.002	0.124	0.841	0.414	0.163	0.176	3.879
2000100		29	Ũ	687	626	904	071	222	611	368	108	361
LSB5.0B	84	102.0	0	1.269	1.062	0.986	0.142	0.951	0.611	0.297	0.216	1.610
		894	-	59	605	255	301	817	546	784	845	569
LSB5.1B	93	217.4	0	2.071	1.676	1.653	0.248	1.716	1.071	0.606	0.412	2.694
		774		389	526	164	141	407	689	382	481	404
LSB5.2B	102	254.9	0	1.726	1.423	1.494	0.185	1.786	1.118	0.618	0.501	2.614
		949		641	737	169	082	953	473	865	376	178
LSB5.3B	111	119.3	0	1.208	1.015	1.073	0.153	1.071	0.665	0.152	0.331	1.757
		741		742	855	371	861	264	858	154	835	62
LSB5.4B	120	182.1	0	1.860	1.661	1.644	0.282	1.742	1.005	0.514	0.349	2.963
		607		809	271	037	561	894	543	73	007	208
LSB5.5B	129	206.0	0	2.201	1.868	1.796	0.301	1.796	1.012	0.493	0.391	3.343
		692		109	033	003	323	28	073	42	167	809
LSB5.6B	138	241.2	0	2.337	2.150	2.015	0.260	1.832	1.025	0.506	0.342	3.993
		2		191	249	486	985	668	068	2	753	233
LSB5.7B	145	208.2	0	2.328	2.015	1.891	0.398	1.644	1.028	0.506	0.241	3.879
		986		337	356	718	655	261	784	351	129	155
LSB6.0B	-24	222.1	0	1.613	1.402	1.287	0.231	1.112	0.599	0.276	0.176	4.007
		023		779	174	98	369	12	928	426	858	156
LSB6.1B	-11	253.1	0	1.888	1.657	1.546	0.221	1.401	0.734	0.372	0.230	3.951
		082		52	919	819	075	416	863	411	953	024
LSB6.2B	2	267.9	0	2.168	1.916	1.840	0.293	1.760	0.994	0.491	0.341	4.262
		998		916	521	042	042	013	264	743	849	398
LSB6.3B	14	190.0	0	1.573	1.361	1.343	0.184	1.295	0.699	0.365	0.215	2.784
		29		882	859	6	608	742	408	397	195	062
LSB6.4B	26	112.5	0	1.033	0.870	0.886	0.138	0.834	0.490	0.221	0.152	1.613
		223		348	696	905	29	758	03	657	817	046
LSB6.5B	49	116.9	0	1.031	0.926	0.896	0.128	0.946	0.590	0.261	0.239	1.642
		478		516	559	419	697	898	332	748	709	738
LSB6.6B	51	293.7	0	2.898	2.485	2.414	0.403	2.542	1.611	0.790	0.596	4.213
		025		835	348	306	035	478	668	331	151	432
LSB6.7B	63	381.5	0	2.545	2.560	2.653	0.601	3.169	2.067	0.994	0.784	4.141
	_	552		226	905	972	335	147	498	064	713	887
Bos32.1	-5	84813	0	224.8	653.9	1381.	290.2	2262.	1533.	1449.	1164.	617.2
В	_	.23	-	086	483	269	372	663	231	355	091	217
Bos32.2	0	10758	0	257.9	820.9	1659.	336.4	2834.	1897.	1469.	1470.	762.2
В	_	7.4		026	261	625	124	76	514	586	425	1
Bos32.3	5	65314	0	180.9	530.4	1085.	241.3	1772.	1178.	925.8	876.7	461.0
B Desud 41		.02	-	242	671	739	26	889	253	963	233	064
Pseud41	-5	77896	0	194.8	616.6	1243.	269.9	2139.	1417.	1124.	1068.	525.1
.1B		.43		675	435	07	275	421	473	822	754	939
Pseud41	0	20787	0	488.0	1730.	3508.	691.4	6007.	4067.	3271.	2934.	1268.
.2B	5	6.7	0	305	483	359	541	682	776	132	772	326
Pseud41	2	45185	0	107.0	353.9	752.4	137.2	1301.	882.3	661.0	672.9	298.7
.3B		.04	I	526	307	72	15	707	085	734	666	755

Sample Code:	Stratigr aphic height*	C26/3 S	C26/3 R	C28/3 S	C28/3 R	C29/3 S	C29/3 R	Ts	Tm	C30/3 S	C30/3 R	C29ab
LSB1.0	5	0.178	0.176	0.231	0.137	0.283	0.204	3.702	4.640	1.553	1.117	12.82
В		312	439	182	18	314	786	991	35	887	032	713
LSB1.1	13	0.484	0.502	0.350	0.291	0.630	0.474	6.417	7.091	2.525	2.039	20.80
В		55	013	987	073	794	461	199	902	31	324	674
LSB1.2	22	0.564	0.593	0.466	0.450	0.780	0.625	10.33	11.68	3.826	3.192	36.50
В		678	201	95	67	572	558	509	029	656	344	598

LSB1.3	29	0.336	0.342	0.283	0.209	0.444	0.310	5.273	5.746	1.876	1.642	17.55
L3D1.3 B	25	0.330	0.342	418	172	655	774	263	856	662	706	249
LSB1.4	37	0.519	0.520	0.442	0.412	0.733	0.550	9.414	9.418	3.168	2.791	29.76
В		952	436	441	199	467	811	468	282	355	83	343
LSB1.5	46	0.788	0.832	0.704	0.716	1.203	0.977	11.94	10.08	3.501	3.253	33.35
В		35	06	363	029	445	932	868	764	681	569	728
LSB1.6	55	0.633	0.651	0.545	0.533	1.247	0.856	7.949	6.506	2.464	2.299	22.15
B		947	833	047	992	706	122	145	873	93	085	418
LSB1.7	62	3.378	3.374	2.174	2.931	6.459	4.017	37.98	31.31	12.15	11.98	122.2
B LSB1.8	69	281	239 0.299	002 0.217	346	586 0.460	258 0.312	295	417 2.966	087 1.159	707	18 10.99
LSB1.8 B	69	0.300 913	0.299	172	0.251 217	0.460 154	462	3.770 434	2.966 519	1.159 936	262	848
LSB1.9	78	0.437	0.455	0.374	0.374	0.640	0.391	6.178	4.816	1.731	1.483	15.71
B	70	639	736	818	102	243	212	181	525	125	843	174
LSB1.1	86	0.492	0.538	0.340	0.339	0.738	0.483	6.941	5.441	1.815	1.626	17.11
0B		994	868	984	237	496	396	354	03	218	413	426
LSB1.1	94	0.402	0.413	0.283	0.302	0.512	0.415	5.359	4.149	1.468	1.314	13.47
1B		14		627	594	9	478	482	42	14	505	789
LSB1.1	102	0.936	0.966	0.823	0.941	1.607	1.399	10.08	8.399	3.567	3.217	33.69
2B		784	953	065	699	437	009	985	69	909	288	922
LSB1.1	110	0.543	0.561	0.464	0.453	0.864	0.537	6.588	4.954	2.133	2.030	18.00
3B	110	952	626	099	726	545	352	518	068	426	618	057
LSB1.1 4B	118	0.566 476	0.564 507	0.373 111	0.352 777	0.674 739	0.625 424	8.693 372	5.861 91	2.562 877	2.059 773	19.76 134
LSB3.0	-22	0.125	0.119	0.166	0.181	0.330	0.166	4.475	7.657	2.678	1.547	20.10
L365.0 В		69	738	26	398	135	783	4.475 877	21	643	812	20.10 868
LSB5.0	84	0.283	0.284	0.157	0.174	0.382	0.243	3.824	3.005	1.012	0.823	9.731
В	-	401	337	336	397	331	949	11	095	941	097	37
LSB5.1	93	0.552	0.582	0.339	0.380	0.849	0.553	6.865	5.399	2.013	1.713	19.55
В		348	576	413	521	043	154	305	856	228	089	334
LSB5.2	102	0.580	0.609	0.462	0.555	0.914	0.720	6.960	5.772	2.250	2.049	21.91
В		661	481	243	21	585	776	69	772	204	759	889
LSB5.3	111	0.281	0.289	0.218	0.235	0.415	0.283	4.606	3.384	1.265	1.041	11.19
В		769	448	611	949	739	91	211	117	115	136	832
LSB5.4	120	0.381	0.385	0.286	0.250	0.654	0.494	7.063	5.098	2.062	1.668	16.71
B LSB5.5	129	597 0.400	717 0.418	876 0.318	741 0.315	106 0.561	501 0.475	338 7.571	038 5.460	158 2.310	105 1.776	029 18.42
LSB5.5 В	129	0.400 569	0.418 911	168	965	246	0.475 29	431	5.460 695	2.310 417	221	338
LSB5.6	138	0.372	0.379	0.329	0.268	0.684	0.500	8.427	6.613	3.079	2.215	21.69
B	150	707	144	67	215	101	248	677	578	72	615	836
LSB5.7	145	0.383	0.392	0.258	0.199	0.633	0.445	7.664	6.335	2.724	1.923	19.42
В		233	272	299	625	481	9	425	903	908	21	795
LSB6.0	-24	0.255	0.264	0.259	0.241	0.512	0.299	5.681	8.694	2.888	1.818	22.72
В		155	614	372	879	146	571	035	427	37	161	503
LSB6.1	-11	0.331	0.377	0.312	0.198	0.507	0.284	6.422	8.613	3.241	2.248	24.91
В	_	343	69	057	739	57	652	724	828	208	08	027
LSB6.2	2	0.475	0.543	0.325	0.261	0.602 032	0.389	7.784	9.171	3.090	2.463	28.14
B LSB6.3	14	164 0.324	644 0.331	331 0.261	152 0.196	032	257 0.287	935 5.357	693 6.186	528 2.085	321 1.721	209 18.85
LSB0.3 В	17	32	714	825	491	0.395 159	722	5.357 411	189	2.085 793	892	18.85 697
LSB6.4	26	0.202	0.237	0.168	0.144	0.247	0.172	3.219	3.427	1.220	1.035	10.67
L3D0.4 В		336	545	215	551	71	852	161	045	194	841	341
LSB6.5	49	0.237	0.235	0.193	0.192	0.357	0.236	3.715	3.427	1.097	0.997	11.08
В		454	056	097	575	289	727	182	419	467	8	014
LSB6.6	51	0.708	0.738	0.614	0.613	1.127	0.712	10.22	8.446	2.830	2.485	28.15
В		716	904	869	748	023	712	332	325	353	483	942
LSB6.7	63	1.118	1.116	0.771	0.746	1.781	0.942	11.12	8.806	3.524	3.032	34.13
B		305	124	399	597	092	09	343	938	183	156	575
Bos32.	-5	634.2	640.3	733.0	816.8	1278.	1021.	1905.	1831.	1131. 571	994.8 220	5179.
1B Bos32.	0	707 792.5	505 800.8	882 847.4	15 942.2	046 1453.	313 1157.	974 2364.	882 2409.	571 1409.	339 1243.	235 6637.
возз2. 2В	0	279	800.8 401	847.4 161	942.2 506	1453. 1	002	2364. 5	2409. 388	1409. 146	1243. 974	437
Bos32.	5	479.8	489.8	566.9	622.8	1018.	789.1	1513.	1454.	872.1	786.7	4082.
3B		067	798	399	853	383	03	999	602	765	011	367
Pseud4	-5	595.8	602.0	791.9	849.7	1232.	967.4	1590.	1623.	1164.	1054.	4799.
1.1B		469	848	325	946	76	92	419	927	107	034	108
Pseud4	0	1748.	1703.	2067.	2004.	3200.	2615.	4910.	4830.	3392.	3152.	12559
1.2B		012	161	586	545	511	261	814	411	236	729	.05
	-											

Pseud4	5	385.5	379.4	445.9	507.6	696.1	579.6	983.7	954.0	666.3	610.8	2876.
1.3B		69	405	205	029	646	093	402	555	145	873	028

Sample Code:	Stratigr aphic height*	C29Ts	C30*	C29ba	C30ab	C30ba	C31ab S	C31ab R	C31ba	C32ab S	C32ab R	C32ba S
LSB1.0 B	5	5.821 694	0	2.171 311	17.61 507	5.141 597	13.45 233	9.690 166	2.910 317	8.120 14	5.364 867	0.685 022
LSB1.1 B	13	9.711 792	0	3.656 201	27.75 162	7.860 882	20.08 981	14.77 306	4.399 732	12.28 241	8.616 476	1.102 285
LSB1.2 B	22	15.91 244	0	6.540 399	49.33 389	13.78 153	37.26 978	26.58 886	9.005 159	22.96 525	16.57 193	2.735 312
LSB1.3 B	29	7.811	0	3.091 142	24.03 053	6.866 99	18.56 768	13.68 086	4.126 57	11.55 847	8.194 305	1.120 471
LSB1.4 B	37	13.48 586	0	4.904	41.43 439	10.66 519	30.69 506	22.12 501	6.679 195	18.50 26	12.71 662	1.756 276
LSB1.5 B	46	16.95 878	0	5.251 679	52.20 426	12.76 895	36.32 104	26.60 761	6.421 997	24.24 287	17.13 681	1.955 552
LSB1.6 B	55	11.01 801	0	3.580 772	33.64 218	7.841 573	23.96 552	17.79 079	5.197 962	16.15 412	11.53 802	1.903 501
LSB1.7 B	62	59.86 744	0	20.79 251	206.1 322	46.89 631	148.3 97	107.9 035	24.23 514	109.5 902	75.93 281	8.587 137
LSB1.8 B	69	5.354	0	2.053 475	17.94 35	4.127 947	12.39 598	9.144 22	2.123 279	8.930 012	6.307 86	0.956 173
LSB1.9 B	78	8.021 19	0	2.661 283	23.95 349	5.641 525	15.63 134	11.89 329	3.116 427	10.36 008	7.172 081	0.825
LSB1.1 OB	86	8.880 482	0	2.937 634	26.47 01	6.250 94	17.50 866	13.29 734	3.401 685	11.36 831	8.163 108	1.134 999
LSB1.1 1B	94	7.028	0	2.468 705	21.86 51	5.058 721	14.19 855	10.53 007	2.798 085	9.669 659	6.878 137	0.650 522
LSB1.1 2B	102	16.97 38	0	5.109 261	56.43 43	13.54 351	40.68 019	29.34 197	8.057 069	30.31 538	20.95 153	3.442 968
LSB1.1 3B	110	9.742 613	0	3.285 714	26.66 262	6.462 025	18.37 557	13.87 923	4.026 256	12.28 795	8.652 021	1.381 271
LSB1.1 4B	118	11.59 533	0	2.381 829	29.34 497	6.688 012	19.94 359	14.23 722	3.767 035	13.23 51	8.825 95	0.989 645
LSB3.0 B	-22	8.148 432	0	3.555 233	24.17 987	8.277 7	19.00 558	13.79 085	4.674 605	12.23 468	8.495 781	1.343 654
LSB5.0 B	84	4.840 728	0	1.543 498	15.08 288	3.496 404	9.838 259	7.356 053	1.772 165	6.510 759	4.660 346	0.581 435
LSB5.1 B	93	9.632 247	0	3.268 034	31.81 099	7.346 289	21.39 439	15.50 252	3.516 598	14.80 967	10.33 245	1.063 249
LSB5.2 B	102	10.72 308	0	3.207 912	36.55 993	8.394 851	25.58 424	18.42 304	4.355 495	18.88 322	12.99 381	1.324 541
LSB5.3 B	111	6.093 66	0	1.888 653	17.48 466	3.957 213	11.63 23	8.536 997	1.966 658	8.057 487	5.669 841	0.613 331
LSB5.4 B	120	9.108 422	0	2.592 774	26.76 001	6.265 566	17.82 908	13.05 923	3.128 022	12.09 861	8.578 969	0.839 714
LSB5.5 B	129	10.73 937	0	2.809 33	29.44 347	6.639 43	20.36 275	15.13 658	3.657 445	14.01 642	10.00 136	0.968 508
LSB5.6 B	138	12.86 608	0	3.810 212	35.59 558	8.458 205	24.21 784	17.73 349	4.434 439	15.88 88	11.02 002	1.243 832
LSB5.7 B	145	11.88 115	0	3.205 635	28.93 587	7.178 446	20.20 315	15.17 627	3.864 29	13.80 095	9.678 764	1.025 611
LSB6.0 B	-24	9.709	0	4.292 013	29.35 487	9.417 49	22.89 588	16.45 415	6.061 103	14.07 489	10.00 602	1.323 647
LSB6.1 B	-11	11.48 136	0	4.730 999	33.48 906	11.24 083	25.68 55	18.79 964	6.280 808	17.36 595	12.34 764	1.389 674
LSB6.2 B	2	12.46 736	0	4.823 006	37.26 151	10.17 619	27.85 196	20.41 942	5.429 112	17.41 126	12.04 24	1.347 84
LSB6.3 B	14	8.420 522	0	3.207 7	26.05 816	7.447 677	20.03 863	14.55 494	4.002	12.59 661	8.960 747	0.998 915
LSB6.4 B	26	4.745	0	, 1.810 091	15.17 44	4.198 298	11.81 465	8.702 708	2.409 678	7.480 942	5.306 272	0.610 571

LSB6.5	49	4.958	0	1.739	16.75	4.437	11.97	8.810	2.468	7.795	5.517	0.568
	45	949	0	822	381	-	523	08	593	591	934	467
В						664						
LSB6.6	51	13.43	0	4.547	41.59	10.22	29.01	21.67	5.133	19.25	13.91	1.548
В		454		002	07	623	587	797	627	294	135	624
LSB6.7	63	16.76	0	5.203	53.24	12.37	38.15	28.28	6.357	26.61	18.90	1.831
В		95		199	179	757	279	585	698	618	425	616
Bos32.	-5	2511.	371.4	788.8	8985.	2245.	6809.	5367.	1412.	5196.	3704.	555.9
1B		515	57	961	86	449	901	17	309	431	453	219
Bos32.	0	2985.	448.0	774.8	11644	2876.	9004.	7037.	1543.	6642.	4756.	746.8
2B		352	726	465	.76	79	6	654	307	509	977	275
Bos32.	5	1925.	225.2	330.2	7113.	1790.	5268.	4116.	1022.	3977.	2953.	363.0
3B		351	088	202	791	232	288	916	57	413	708	861
Pseud4	-5	2086.	460.7	616.5	8099.	2009.	6316.	5020.	1310.	4759.	3678.	549.2
1.1B		113	267	091	391	783	994	81	461	748	311	468
Pseud4	0	5605.	1035.	1876.	21172	5613.	16789	13287	3111.	12415	9272.	1316.
1.2B		411	295	874	.4	536	.03		278	.41	066	265
Pseud4	5	1257.	262.1	391.4	4715.	1178.	3677.	2899.	646.6	2718.	2015.	292.5
1.3B		918	134	805	255	88	373	207	214	973	008	97

Sample Code:	Stratigraphi c height*	C32baR	C33abS	C33abR	C33baS	C33baR	C34abS	C34abR	C34baS
LSB1.0B	5	0.85071	5.55611 2	3.82606 1	0.60068	0.70599 1	4.04201 5	2.64932 9	0.40101
LSB1.1B	13	1.27672 2	8.58712 2	6.14823 7	1.01419 3	1.03822 2	6.10096 1	4.17335 3	0.73242 7
LSB1.2B	22	2.88266	15.7048 3	10.7605 6	1.88616 6	1.93880 4	11.1789 4	7.69776	1.35647 9
LSB1.3B	29	1.26371 4	8.17705 6	5.78047 2	0.89127 8	1.08423 9	5.94762 4	4.11784 3	0.80140 3
LSB1.4B	37	1.93620 8	12.7869 5	8.86594	1.11152 3	1.51241 6	8.79176 6	6.03920 2	1.10154
LSB1.5B	46	2.02955	18.3340 4	12.8092 4	1.53151 2	1.86084 4	11.2618 4	7.74300 3	1.40612 1
LSB1.6B	55	2.07396 6	12.0650 2	8.52763 8	1.09374 8	1.53175 9	7.81969 8	5.40117 8	1.09275 5
LSB1.7B	62	8.86723 3	86.7743 2	59.5892 6	6.44448 7	8.66770 9	52.5462 6	36.0179 9	5.90720 1
LSB1.8B	69	1.02256 8	6.90856 7	4.79732 2	0.56785 5	0.73333 6	4.33063 5	2.95483 4	0.46091 9
LSB1.9B	78	0.86699 2	7.59201 2	5.31650 9	0.64520 2	0.84542 4	4.51845 3	3.22465 4	0.44982 2
LSB1.10B	86	1.25497 5	8.46741 8	6.00770 8	0.78332 6	1.06153 8	4.97115 1	3.42448 2	0.66315 8
LSB1.11B	94	0.71372	6.95475 5	4.85947 6	0.54852 6	0.70038	4.22558 1	2.88043 6	0.47820 3
LSB1.12B	102	3.66678 9	24.5453 8	16.5948 7	2.64857 3	2.69381 3	15.4916 6	10.0681 4	1.33528
LSB1.13B	110	1.53354 9	9.20395 6	6.48799 8	0.78150 5	1.19271 1	5.69575 9	4.04089 1	0.89606 5
LSB1.14B	118	1.07740	9.38449 6	6.67523 6	0.74331 9	1.15782 4	5.82001 9	4.19024 6	0.55901
LSB3.0B	-22	1.59304 1	8.09783 9	5.63027	0.89536	1.22163 1	5.74410 3	3.83994 5	0.60325
LSB5.0B	93	0.60296	4.81037 9	3.38649 7	0.33879 2	0.50715 9	2.85370 6	1.94609	0.26938
LSB5.1B LSB5.2B	102	1.11892 5 1.34693	11.6717 1 14.7684	8.03579 5 10.0277	1.08619 7 1.32853	1.41502 1 1.50154	7.06913 5 9.35875	4.63489 3 6.33008	0.67925 5 0.62862
LSB5.2B	102	6 0.62287	5 5.71454	5 4.04538	1.32853 1 0.41095	1.50154 4 0.57533	9.35875 2 3.43196	7 2.36061	0.62862 4 0.26387
LSB5.3B	111	9 0.88423	6 8.60346	4.04538 7 6.01083	0.41095	0.57533 8 0.77783	5.43196 7 5.41225	3.70697	6 0.49161
L3D3.4D	120	0.88423	8.60346 2	6.01083 7	1	5	9 9	3.70697	3

LSB5.5B	129	1.01754 6	10.0482 2	7.09892 7	0.66267 6	0.94160 9	6.33694 7	4.30813	0.66688 6
	138	-	_		0.94043	-		5.04997	0.58785
LSB5.6B	138	1.44874	11.4225	8.03166		1.15185	7.34377		
		7	3	4	9	4	9	2	8
LSB5.7B	145	1.23770	9.40127	6.74977	0.78356	1.14445	6.10815	4.34752	0.44689
		5	4	8	5	7	4	7	4
LSB6.0B	-24	1.65249	10.0401	6.90666	1.30425	1.62566	6.86354	4.63533	1.07443
		6	8	1	5	3	7	5	8
LSB6.1B	-11	1.71917	11.4881	8.02083	1.41388	1.79225	8.21407	5.50356	1.07004
		5	1	8		6	5	9	9
LSB6.2B	2	1.55046	11.6854	8.09223	1.18414	1.57257	8.51129	5.74997	0.75370
		5	3	8	7			7	5
LSB6.3B	14	1.12844	8.70120	6.05378	0.77788	1.13198	6.12022	4.18674	0.61050
		7	8	7	6	4	9	2	4
LSB6.4B	26	0.68045	5.23678	3.67891	0.54255	0.68384	3.73547	2.55037	0.45564
		2	2	8	9	6	7	9	2
LSB6.5B	49	0.62619	5.40788	3.80039	0.53013	0.64675	3.76317	2.57991	0.39040
	-	7	7		6	5	5	4	4
LSB6.6B	51	1.67858	13.9190	9.85949	1.23644	1.73563	8.87718	6.08703	1.02445
		5	4	3	6	3	7	9	3
LSB6.7B	63	2.05144	20.6223	14.3896	1.82069	2.55519	13.0752	8.92556	1.70648
		3	3	7	9	4	2	8	7
Bos32.1B	-5	552.847	5157.46	3747.93	421.078	609.793	2871.92	1989.64	376.949
			2	4	1	7	9	8	6
Bos32.2B	0	772.853	6671.11	4813.92	579.216	696.52	3806.10	2573.48	415.455
		8	7	4	5		3	1	7
Bos32.3B	5	349.359	3936.03	2902.68	372.018	467.725	2204.88	1516.31	274.427
20002102	5	4	7	9	6	5	1	4	27 11 127
Pseud41.1	-5	552.001	4694.95	3483.68	364.861	416.872	2616.84	1774.39	365.739
B		2	4	9	4	6	2020.01	277 1.35	8
Pseud41.2	0	1422.29	12121.1	9304.41	993.959	1548.58	6603.98	4630.27	881.009
B	l 🎽 📗	4	1	3	9	5	7	9	3
Pseud41.3	5	287.329	2604.54	1973.49	227.636	303.609	, 1466.92	978.463	194.069
B	5	3	3	1973.49 6	5	5	2	978.405 8	194.009
ט	1	ى ا	3	U	ر ٦	J	۷	0	1

Sample Code:	Stratigrap hic height*	C34baR	C35abS	C35abR	C36abS	C36abR	C35 homohopa ne index	Ts/(Ts+T m) %
LSB1.0B	5	0.3954	2.1671 17	1.5598 83	0.8404 8	0.7771 26	6.604875	44.3825 9
LSB1.1B	13	0.6409 02	3.5278 2	2.5899 66	1.2663 38	0.8392 13	7.040903	47.5027 8
LSB1.2B	22	1.4911 44	6.6444 64	4.9352 88	2.0993 28	1.6782 71	7.223005	46.9448 6
LSB1.3B	29	0.7771 46	3.4582 18	2.5107 62	1.1875	0.8197 39	7.27984	47.8512 4
LSB1.4B	37	1.1998 09	5.4590 18	4.0369 77	1.8506 23	1.3187 33	7.303536	49.9898 7
LSB1.5B	46	1.1581 51	7.2294 12	5.1688 82	2.9086 94	2.1488 64	7.430591	54.2226 5
LSB1.6B	55	1.0033 31	4.8670 31	3.6460 31	1.9735 59	1.4972 59	7.616246	54.9884 8
LSB1.7B	62	5.1904 87	32.310 08	23.205 08	12.542 59	8.5626 75	7.581278	54.8117 3
LSB1.8B	69	0.4326 06	2.8037 34	1.9938 62	1.1692 18	0.8321 83	7.921136	55.9664 5
LSB1.9B	78	0.4504 97	2.8262 49	1.9836 35	1.2148 73	0.8963 57	6.82076	56.1923 3
LSB1.10B	86	0.6828 15	3.1269 92	2.3757 66	1.2348 71	0.8482 47	6.991098	56.0583
LSB1.11B	94	0.4438 92	2.5499 18	1.7718 45	0.9908 98	0.7176 96	6.698494	56.3627 8
LSB1.12B	102	1.5043 14	10.972 11	7.7798 39	4.2933 12	2.9435 21	9.070259	54.5705 7

LSB1.13B	110	0.9371	3.6958	2.7450	1.4564	1.0829	7.571871	57.0800
10011100		76	84	77	25	07	/10/20/2	9
LSB1.14B	118	0.4764	3.4219	2.6411	1.3294	0.9361	6.860603	59.7265
	_	56	36	15	43	36		8
LSB3.0B	-22	0.6887	3.0007	2.3553	1.1623	0.8437	6.516412	36.8898
		04	89	9	37	74		4
LSB5.0B	84	0.2851	1.7993	1.3613	0.6904	0.4838	7.099104	55.9964
		68	5	71	49	54		1
LSB5.1B	93	0.6866	4.6519	3.3037	1.9975	1.4976	7.845387	55.9740
		91	93	22	17	31		3
LSB5.2B	102	0.7114	6.0478	4.3628	2.3253	1.5418	8.211639	54.6645
		16	78	44	62	97		5
LSB5.3B	111	0.2705	2.1465	1.6454	0.7896	0.5446	7.122346	57.6473
		67	33	86	63	2		3
LSB5.4B	120	0.4351	3.3529	2.4239	1.2704	0.8536	7.125374	58.0800
		6	98	99	6	69		9
LSB5.5B	129	0.6734	3.8781	2.8932	1.5170	1.0161	7.197464	58.0982
		23	55	75	4	65		
LSB5.6B	138	0.6153	4.2558	3.2911	1.6017	1.1777	6.971484	56.0304
		45	64	22	04	16		1
LSB5.7B	145	0.5044	3.4412	2.6156	1.2964	0.9482	6.617927	54.7446
		88	23	87	96	46		1
LSB6.0B	-24	1.0244	3.7774	2.8079	1.4418	1.0106	6.688292	39.5189
		42	98	35	45	13		7
LSB6.1B	-11	1.0987	4.4731	3.3254	1.6496	1.0746	6.768209	42.7140
		81	67	27	64	48		7
LSB6.2B	2	0.9113	4.8861	3.4890	1.7151	1.3502	6.971243	45.9108
		79	25	69	18	88		7
LSB6.3B	14	0.6415	3.6235	2.6475	1.3032	0.9866	7.168296	46.4102
		01	9	24	69	17		3
LSB6.4B	26	0.4633	2.2931	1.6379	0.7670	0.5534	7.496742	48.4360
		35	04	78	28	25		7
LSB6.5B	49	0.3502	2.2957	1.6807	0.8304	0.5848	7.415082	52.0144
		02	6	01	99	43		1
LSB6.6B	51	1.0574	5.6477	4.1380	2.1101	1.376	7.391788	54.7590
		15	03	37	94			4
LSB6.7B	63	1.5630	8.4832	6.2774	3.2426	2.4849	8.033798	55.8114
		01	94	09	83	83		7
Bos32.1B	-5	334.55	2202.2	1473.0	724.93	657.20	9.541277	50.9911
		72	43	81	23	95		
Bos32.2B	0	448.21	2970.1	2059.2	860.69	891.76	9.991651	49.5298
	-	48	24	47	97	67		5
Bos32.3B	5	266.98	1685.6	1184.5	592.44	544.04	9.649033	51.0004
- 144	<u> </u>	59	94	55	11	35		1
Pseud41.	-5	299.80	1942.2	1360.6	565.03	679.50	9.265308	49.4787
1B		9	7	92	4	39	0.007-7-7	7
Pseud41.	0	820.36	5038.7	3613.2	1479.6	1772.2	9.295675	50.4126
2B		42	68	07	07	19		9
Pseud41.	5	164.96	1138.8	810.00	323.20	403.63	9.608602	50.7659
3B		45	99	26	53	88		4

Sample Code:	Stratigrap hic height*	SUM Sterane s		C21ba	C21aa	C22ab	C22aa		C27baS	C27baR
LSB1.0B	5	52.2972 7	0	2.42813 9	2.88806 7	1.46802 7	1.66774 7	0	4.24036 8	2.94096 9
LSB1.1B	13	91.2696 9	0	4.60661 2	5.29113 3	2.71752 2	3.21800 4	0	8.59030 1	5.73791 1
LSB1.2B	22	127.710 7	0	6.49918 8	7.48955 1	3.71872 4	4.41521 9	0	11.8766 3	8.12778 9
LSB1.3B	29	69.3540 3	0	3.73871 8	4.41401	2.27389 9	2.67091	0	6.56743 3	4.46867 1
LSB1.4B	37	123.352	0	6.39784 2	7.59592 7	4.03004 7	4.49204 2	0	13.1146 6	8.80633 4

LSB1.5B	46	224.130	0	7.12628	8.44480	4.28329	5.01237	0	22.8460	15.6361
1001.00	10	5	0	9	5	3	4	Ũ	1	2
LSB1.6B	55	151.406 4	0	5.03108 9	5.69647 3	3.20104	3.64455 3	0	15.9638 5	10.7412 5
LSB1.7B	62	857.834 5	0	22.4705 8	24.1081	15.0445 2	16.7931	0	92.085	61.9041 8
LSB1.8B	69	71.0885 7	0	2.32507	2.60345 9	1.36974 1	1.59345 1	0	7.28498 2	4.94638 7
LSB1.9B	78	102.455	0	4.44145	4.97193 2	2.47975 4	2.91754 6	0	10.4977 8	7.22893 1
LSB1.10B	86	121.558	0	4.72958 9	5.89788	2.87236	3.35239	0	12.0533	8.20726
LSB1.11B	94	9 94.8444	0	3.99146	1 4.53785	7 2.37812	2 2.73677	0	2 9.91563	5 6.64805
LSB1.12B	102	1 224.107	0	8 5.86844	3 5.99377	1 3.55752	9 3.92938	0	4 23.3911	5 16.2792
LSB1.13B	110	7 110.867	0	5 4.41075	1 4.94948	7 2.68385	3 3.05574	0	12.2619	5 8.23488
LSB1.14B	118	1 118.900	0	4 5.83126	8 6.78269	1 3.87396	2 4.06484	0	3 13.2003	4 8.82897
LSB3.0B	-22	3 62.1987	0	8 2.63252	8 3.11002	1.50076	3 1.90217	0	3 5.14147	3.55273
LSB5.0B	84	1 70.7933	0	9 2.88650	3.55921	8 1.79434	7 1.98887	0	3	8 4.79839
	-	4		1	8	2		-	3	1
LSB5.1B	93	132.365 9	0	4.74232 8	5.65527 7	3.04025	3.26259 5	0	13.5213 9	9.14433 2
LSB5.2B	102	156.492 6	0	4.45720 1	4.82758 3	2.73137 7	3.04112 3	0	16.4039 8	11.1635 3
LSB5.3B	111	74.3103 6	0	2.87920 4	3.43282 6	1.84244 7	1.95032 5	0	8.24834 1	5.58441
LSB5.4B	120	96.0165 8	0	4.61489 2	5.51640 4	2.94302 1	3.27419 6	0	10.7681 4	7.16260 9
LSB5.5B	129	96.4964 2	0	5.05853 6	6.11820 5	3.31689 7	3.46393 5	0	10.4773 1	6.98889 8
LSB5.6B	138	109.011 2	0	5.90849 1	6.85606 3	3.53339 5	4.00647 4	0	11.1401	7.45862 6
LSB5.7B	145	102.510 2	0	5.59032 3	6.42443 4	3.42192 6	3.71441 1	0	9.96345 1	6.83842 9
LSB6.0B	-24	89.3486	0	3.57690 6	4.31198 8	2.31539 9	2.59130 5	0	7.25278 6	5.13628 4
LSB6.1B	-11	95.2525	0	4.09133	4.95658	2.51222	2.88154	0	7.96754	5.52213
LSB6.2B	2	8 106.924	0	3 4.94648	4 5.90546	3.06316	8 3.44415	0	1 9.59074	1 6.63609
LSB6.3B	14	2 70.1573	0	7 3.46441	7 4.1999	4 2.18942	3 2.45827	0	4 6.59051	7 4.45627
LSB6.4B	26	1 45.3182	0	7 2.26463	2.74646	2 1.41824	1 1.57529	0	8 4.33565	4 2.92948
LSB6.5B	49	2 61.2868	0	3 2.49163	8 2.97311	1 1.59276	8 1.69684	0	2 6.47124	9 4.41081
LSB6.6B	51	4 188.823	0	5 6.78877	8.06656	3 4.22987	4 4.58484	0	3 19.3960	1 13.073
LSB6.7B	63	7 245.228	0	4 7.26208	8 8.17775	5 5.10888	5.33206	0	3 26.8451	18.2115
Bos32.1B	-5	1 335.694	0	4 9.50283	4 10.6089	9 5.22512	8 7.27657	0	2 26.4421	7 17.9971
Bos32.2B	0	7 500.478	0	1 13.6510	15.9178	4 7.86495	1 10.4530	0	7 39.3459	5 27.4031
	-	8		5	2	5	4	-	2	7
Bos32.3B	5	346.315 9	0	10.1792 8	11.6867 5	5.53514 2	7.59548 9	0	27.6772 6	19.1696 4
Pseud41. 1B	-5	610.760 5	0	15.6760 4	17.5056 6	8.42400 2	12.1695 2	0	48.1528 1	33.5171 1
Pseud41.	0	439.519 5	0	12.0111 9	13.435	6.19593 2	8.74154 1	0	34.6313 8	24.6763 5
2B										

Sample Code:	Stratigrap hic height*	C27abS	C27abR	C28baS 1	C28baS 2	C28baR	C27aaS	C27bbR	C29baS	C27bbS
LSB1.0B	5	1.5968 91	1.4464 46	1.4594 91	1.7158 93	1.2135 25	1.1334 39	0.6968 5	5.0319 43	0.5928 38
LSB1.1B	13	2.9451 75	2.8499 76	2.7742 83	3.2932 95	2.4154 02	1.9412 39	0.8841 9	7.6368 97	0.8299
LSB1.2B	22	3.8278 46	4.1128 73	3.7794 49	4.3502 92	3.1954 05	3.1800 86	1.7920 15	10.605 5	1.6412 81
LSB1.3B	29	2.0509	2.1541	1.9825	2.3612	1.6595	1.4594	0.8661	5.7067	0.7947
LSB1.4B	37	4.1283	46 4.2822	82 3.9150	91 4.3194	15 3.0328	29 2.6564	2.1340	15 9.5839	62 1.8483
LSB1.5B	46	31 7.3376	73 7.3494	37 7.7050	31 8.6686	28 6.2590	64 6.3727	56 3.9667	46 18.553	07 3.5300
LSB1.6B	55	01 5.0951	98 4.9757	94 5.1678	37 6.0253	46 4.5083	75 4.0511	11 2.5337	98 13.017	84 2.1659
LSB1.7B	62	33 27.795	43 26.542	33 30.647	44 36.071	77 26.944	54 22.800	83 8.6088	38 83.155	42 7.8037
LSB1.8B	69	49 2.2324	65 2.2535	92 2.3749	78 2.7496	2.0636	34 1.9401	62 0.9838	02 6.5121	88 0.8766
LSB1.9B	78	04 3.5649	14 3.5259	5 3.3772	08 3.8510	07 2.7275	23 3.0530	68 1.3033	73 7.7832	61 1.1433
LSB1.10B	86	43 3.8979	09 4.0056	8 3.8109	15 4.3466	34 3.3614	14 3.3074	37 2.5265	91 9.0573	32 2.1568
LSB1.11B	94	52 3.2504	77 3.1324	37 3.1218	95 3.6125	79 2.6108	45 2.5910	99 1.9105	78 7.6157	64 1.7673
LSB1.12B	102	44 7.7292	81 6.9255	15 8.1089	86 9.4502	45 6.6011	94 5.9564	63 3.7427	76 23.858	8 3.4138
LSB1.12B	110	15	83 3.8261	38 3.9781	56 4.5659	53 3.3648	83 2.9502	67 1.9664	41 8.3863	26
		98	06	95	42	47	09	22	11	88
LSB1.14B	118	4.4998 95	4.4060 13	3.7875 73	4.2021 62	3.1816 57	2.7176 14	2.2807 22	9.0700 63	2.1370 19
LSB3.0B	-22	1.7644 38	1.7781 87	1.8702 26	2.2331 84	1.5034 44	1.3731 03	0.6539 57	6.3044 53	0.5485 92
LSB5.0B	84	2.3362 59	2.4438	2.2954 58	2.6403 25	2.0356 18	2.0738 68	1.2896 54	5.2377 19	1.1893 74
LSB5.1B	93	4.3589 29	4.2772 54	4.4947 65	5.2080 22	3.9331 3	3.9806 55	2.3510 08	11.555 04	2.1024 64
LSB5.2B	102	5.0664	5.0248 47	5.7883 86	6.5444 79	4.4851 75	4.1641 34	2.8680 74	14.638 71	2.5784 8
LSB5.3B	111	2.4919 02	2.7097 49	2.5139 67	2.7322 52	2.0735 77	1.9955 61	1.4329 8	5.5453 38	1.2591 99
LSB5.4B	120	3.4757 51	3.6487 96	3.1459 91	3.6965 55	2.8641 5	2.5104 3	1.9135 04	6.9426 39	1.7942 87
LSB5.5B	129	3.3216 85	3.4424 78	3.1280 35	3.5380 82	2.4050 64	2.0222 99	1.7203 58	7.8039 61	1.5516 17
LSB5.6B	138	3.5875 23	3.6212 02	3.4138 2	4.0202 01	2.7074 16	2.2422 06	1.2952 18	9.6882 16	1.1766 63
LSB5.7B	145	3.4592 33	3.3648 52	3.1865	3.8024	2.6911	2.1923	1.2978	9.1239	1.1682
LSB6.0B	-24	2.4922	2.4306	43 2.6421	75 3.2913	51 2.1978	62 1.8629	18 0.6487	51 9.8258	61 0.5656
LSB6.1B	-11	26 2.7133	4	44 2.6929	26 3.3075	37 1.9215	92 2.1568	46 0.9438	7 9.2881	68 0.7806
LSB6.2B	2	16 3.0455	43 3.1731	78 3.1068	08 3.6761	38 2.6979	25 2.2429	6 1.4362	49 9.8774	42 1.2549
LSB6.3B	14	03 2.0697	23 2.2023	25 2.1430	5 2.4922	29 1.6742	77 1.5399	77	76 5.6447	08 0.8707
LSB6.4B	26	03 1.3662	31 1.4228	26 1.2785	77 1.4870	62 1.0454	08 0.9310	15 0.7518	58 3.5827	91 0.6849
LSB6.5B	49	33 2.0555	88 2.1565	89 2.0424	98 2.2717	03 1.7270	08 1.7179	52 1.0949	45 5.1536	95 0.9640
LSB6.6B	51	05 6.2479	97 6.3241	24 6.1744	08 6.9437	12 5.4620	12 5.1203	61 3.9126	72 15.032	99 3.5933
LSB6.7B	63	4 8.6294	9 7.7809	49 8.5534	48 9.8845	25 7.2591	98 7.0274	15 4.4322	02 22.329	94 4.1046
0		16	25	77	57	78	02	45	6	95

Bos32.1B	-5	8.0214	9.3398	9.6358	11.204	8.5965	11.651	9.6438	25.948	8.3755
		5	39	27	75	6	41	34	75	92
Bos32.2B	0	12.500	13.486	13.687	15.557	11.997	16.859	15.975	37.850	14.144
		26	43	93	41	91	35	45	74	
Bos32.3B	5	8.4295	9.1787	9.7803	10.860	8.1621	11.400	9.6649	23.933	8.7553
		98	1	21	92	43	31	42	33	08
Pseud41.	-5	15.231	16.378	16.851	18.728	14.963	19.443	17.795	45.493	16.269
1B		71	9	26	29	5	42	09	84	3
Pseud41.	0	10.689	11.866	12.732	13.660	11.828	15.044	13.700	33.617	12.128
2B		62	41	45	96	42	75	01	12	58
Pseud41.	5	14.522	15.104	16.533	18.200	13.673	19.054	18.181	42.907	16.598
3B		46	96	86	63	71	99	7	49	42

Sample Code:	Stratigrap hic height*	C27aaR	C29baR	C29abR	C28aaS	C29abS	C30baS	C28bbR*	C28bbS	C30baR
LSB1.0B	5	0.8707	3.7449 86	1.1181 5	0.4673 26	0.6509 73	2.9245 04	1.086591	0.8813 09	1.7509 07
LSB1.1B	13	01 1.9375	6.3836	1.5380	0.8305	1.0532	4.9353	1.942704	1.6426	2.1281
-	-	04	07	27	36	18	48		6	4
LSB1.2B	22	2.8680	9.2138	2.3578	1.1843	1.5155	7.0281	2.379364	2.1094	2.8135
		91	84	94	73	65	89		56	13
LSB1.3B	29	1.6008 08	4.6798 99	1.4666 32	0.6171 1	0.8987 07	3.6490 46	1.213251	1.0597 62	1.8195 99
LSB1.4B	37	2.5738	8.1178	1.9989	1.3120	1.6381	6.1860	2.395467	2.0699	2.6095
L3D1.4D	57	14	86	1.9989	79	41	77	2.393407	93	2.0095 97
LSB1.5B	46	4.6995	15.993	5.1349	2.8885	2.5918	12.979	5.195588	4.4488	5.9041
		65	55	33	13	89	65		11	39
LSB1.6B	55	4.0882	10.382	3.4965	1.6409	1.4423	8.6916	2.702876	2.3506	4.0584
		95	52	85	93	91	6		42	
LSB1.7B	62	13.592	71.869	16.729	8.9109	11.676	53.164	19.99057	17.108	24.054
	60	86	74	92	05	21	39	1 610645	09	01
LSB1.8B	69	1.5231 57	5.1084 17	1.3436 84	0.7512 54	0.8137 31	4.1873 14	1.610645	1.3720 25	1.9247 48
LSB1.9B	78	2.2163	6.7152	1.6714	1.1846	1.3828	5.7927	2.392355	2.0683	1.9187
		3	62	48	44	39	5			61
LSB1.10B	86	3.6433	7.9952	2.2492	1.4197	1.6138	6.9096	2.76439	2.3745	2.8723
		16	79	58	35	73	22		08	96
LSB1.11B	94	2.0874	6.0938	1.5104	1.0259	1.1832	5.3723	2.05046	1.7880	2.0421
		38	98	86	44	72	71		48	21
LSB1.12B	102	4.4530	17.481	5.1806	2.5983	2.7026	13.253	4.51535	3.7867	5.8581
		99	25	95	04	13	24		88	86
LSB1.13B	110	2.1331	7.5670	1.7345	0.9230	1.3847	6.1409	2.636755	2.3124	2.4334
		3	28	54	91	28	73	0.010167	72	31
LSB1.14B	118	3.1111	7.1599	2.4932	1.3343	1.2364	5.8544	2.018167	1.7425	2.3010
	-22	23	41 4.9489	18	22 0.5304	71 0.7816	77 3.7078	1 042645	04	21
LSB3.0B	-22	49	4.9489	1.6251 81	0.5304	63	51	1.043645	0.8855 11	1.5577 83
LSB5.0B	84	1.6693	4.6486	1.2740	0.8372	0.9034	3.9144	1.641132	1.4130	1.7587
2303.00	04	31	65	3	47	76	07	1.041152	51	76
LSB5.1B	93	2.9783	9.0403	2.7442	1.6293	1.7066	7.4623	3.094428	2.6323	2.8151
		35	13	85	62	03	83		44	04
LSB5.2B	102	2.6354	12.390	2.8016	1.6166	2.3702	9.3665	3.808228	3.2667	3.5453
		46	91	22	63	71	1		53	13
LSB5.3B	111	1.6365	5.0929	1.1566	0.7591	0.8666	4.1424	1.740586	1.4926	1.3436
		43	77	38	55	32	76		34	18
LSB5.4B	120	2.3564	6.3456	1.3896	0.8927	1.0897	5.0472	1.697443	1.4694	1.6524
		39	75	75	85	92	23		27	62
LSB5.5B	129	2.2530	6.5719 78	1.6181 71	0.7265	1.0426	5.0225 84	1.789684	1.5082 87	1.9242 92
	120	63			33	32		2 221151		
LSB5.6B	138	2.2739 32	7.8738 86	1.8630 93	0.7848 19	1.2613 73	5.9206 39	2.221151	1.7589 2	2.1976 19
LSB5.7B	145	2.6180	6.9005	2.6451	0.8763	0.8930	5.1692	1.8055	1.4750	2.4836
		19	25	04	68	39	34		93	39

LSB6.0B	-24		2.4537	7.1179	1.8326	0.8434	0.7842	5.1413	1.871539	1.5666	2.6000
			91	63	17	54	53	36		08	82
LSB6.1B	-11		2.2279	7.6500	2.5435	0.8591	1.2231	5.4457	1.834694	1.5705	2.9121
			81	22	66	88	52	5		28	04
LSB6.2B	2		2.3547	7.6928	2.2025	0.8366	1.2189	5.9351	2.190176	1.8391	2.4515
			81	66	19	97	89	08		08	
LSB6.3B	14		1.5834	5.1481	1.2316	0.5807	0.8039	3.8619	1.378517	1.1714	1.3709
			69	57	15	25	51	37		13	59
LSB6.4B	26	1	0.9881	3.0551	0.7390	0.3786	0.4855	2.4425	0.845385	0.7230	1.1956
			47	39	61	3	16	79		59	63
LSB6.5B	49		1.3461	4.0159	1.1319	0.5379	0.7536	3.4091	1.199966	1.0336	1.3577
			44	69	31	08	81	61		29	85
LSB6.6B	51		4.0798	13.364	3.3580	2.1522	2.2298	10.625	4.255183	3.6934	4.2608
			06	98	24	64	07	11		61	85
LSB6.7B	63		4.6251	18.562	6.8796	3.0717	2.9702	13.163	5.040992	4.3814	6.5406
			62	38	16	88	67	8		55	08
Bos32.1B	-5		8.3492	20.335	8.3594	6.1492	4.3385	19.601	9.258857	8.5852	9.8763
			32	38	13	36	93	25		49	34
Bos32.2B	0		13.152	30.324	12.713	9.2781	6.5061	30.618	13.44391	12.695	12.987
			17	88	45	96	25	2		74	22
Bos32.3B	5		8.0593	21.700	9.2553	6.4337	4.6688	20.590	10.13939	9.2080	10.338
			33	87	52	83	09	54		44	91
Pseud41.	-5		15.927	39.947	16.581	11.689	9.0142	37.351	15.58454	14.370	16.881
1B			68	13	51	05	57	28		97	1
Pseud41.	0		11.176	27.262	11.652	7.7358	5.6441	25.988	12.33777	10.941	10.416
2B			76	56	4	52	29	97		96	52
Pseud41.	5		14.673	34.125	15.199	10.151	7.3798	34.692	14.64212	13.277	16.883
3B			4	91	72	2	97	62		46	82

Sample Code:	Stratigraphi c height*	C28aaR	C30abR	C29aaS	C29bbR	C29bbS	C29aaR	C30aaS	C30bbR
LSB1.0B	5	0.8052	0.63239 8	1.36684 3	1.33950 3	1.34777	1.32113 7	0.16948 3	0.55445 8
LSB1.1B	13	0.93804	0.82225 1	1.85887 9	2.2872	2.31610 6	1.95076 6	0.38968 7	0.96484 5
LSB1.2B	22	1.46029 4	1.24554	2.7789	3.08049 9	2.94781 3	2.62234 3	0.36361 7	1.43079 3
LSB1.3B	29	0.70716 8	0.57693 1	1.49510 2	1.52714	1.52097 3	1.40377	0.24032 7	0.68382
LSB1.4B	37	1.34889 2	1.08457	2.25077 5	1.97341 5	1.93259 6	2.25728	0.36897 5	1.22924 6
LSB1.5B	46	2.69547 7	1.37544 8	4.53748 3	5.56658	5.46311 4	5.12442 8	1.14156 2	2.35429 4
LSB1.6B	55	1.72271 6	0.84241 8	3.00156 5	3.84429 7	3.73367 1	3.31903 8	0.71048 6	1.56367 4
LSB1.7B	62	10.5835	5.85461 9	15.7247 8	20.3598 3	19.6879 7	20.1454 6	3.78567 3	9.39382
LSB1.8B	69	0.97799 3	0.53190 6	1.63982	1.73153 2	1.67448 1	1.50872 9	0.38009 2	0.77312 7
LSB1.9B	78	1.24526 2	0.75356	1.93797 2	2.58277	2.48760 6	2.22606 2	0.46469 8	0.95481 4
LSB1.10B	86	1.62610 8	0.74880 2	2.30753 4	2.59869 5	2.49745 1	2.76885 8	0.62767	1.09055 5
LSB1.11B	94	1.08490 8	0.69614 4	1.84679	1.97181 8	2.00301 3	1.80217 4	0.38113 8	0.94046 4
LSB1.12B	102	2.31290 7	1.32172 6	4.14889 8	5.35845 8	5.17278 2	4.68895 7	1.01102 4	2.29267 2
LSB1.13B	110	1.18772 8	0.83214 1	1.86711 5	2.50193 2	2.40435 7	1.90328	0.44638 2	0.86106 4
LSB1.14B	118	1.38044 5	0.91279 2	1.78521 4	2.10147 8	2.06499 9	1.94526 4	0.49464 9	0.76829 6
LSB3.0B	-22	0.66223 6	0.77879 8	1.39103 3	1.67276	1.62244 6	1.69441 9	0.15222 9	0.70172

LSB5.0B	84	0.87103 9	0.47305 6	1.30308 7	1.45408 3	1.45971 6	1.47820 1	0.31486 3	0.63904 7
LSB5.1B	93	1.47266	0.79652	2.48698	2.96785	2.85358	2.47905	0.50426	1.31507
1909.10	55	2	3	5	5	4	1	9	9
LSB5.2B	102	1.61845	0.98982	2.38837	4.14567	4.07745	3.03020	0.55497	1.62432
2020122		2	3	7	4	2	8	6	2
LSB5.3B	111	0.81384	0.44412	1.35528	1.76617	1.71501	1.38202	0.28590	0.65623
		1	5	6	6	6		8	6
LSB5.4B	120	0.93102	0.77681	1.30854	1.73913	1.75991	1.51362	0.28827	0.59714
			8	4	6	1	6	9	
LSB5.5B	129	0.93889	0.64449	1.26659	1.79816	1.79116	1.43497	0.25891	0.59965
		3	5	9	5	1		5	8
LSB5.6B	138	1.04017	0.90536	1.55396	2.27321	2.24227	1.63634	0.32987	0.85661
		6	5	3	_	5	4	3	8
LSB5.7B	145	1.20082	0.94825	1.82731	1.80322	1.74598	1.56975	0.29496	0.76978
			9	4	6	1	7	9	8
LSB6.0B	-24	1.04758	0.86593	1.96394	2.45316	2.41303	2.27242	0.26013	0.92311
		2	2	7	7	7	3	1	3
LSB6.1B	-11	1.12824	0.88635	2.04400	2.38064	2.36518	2.31996	0.37309	1.26411
		9	1	9	8	5	2	4	2
LSB6.2B	2	1.01049	0.87933	2.22155	2.90647	2.95374	2.25975	0.33444	1.31606
		9	5	3	9	3	5	5	9
LSB6.3B	14	0.71517	0.64640	1.43287	1.64708	1.66365	1.64113	0.19023	0.78941
		9	2		5	8	1	3	
LSB6.4B	26	0.43539	0.39839	1.07852	1.09790	1.08642	1.01479	0.14566	0.52392
		8	1	7	1	1	9	7	4
LSB6.5B	49	0.68260	0.40301	1.09761	1.35793	1.33979	1.09848	0.21618	0.54032
		7		8	4	9	9	7	1
LSB6.6B	51	2.13961	1.04150	3.19179	4.96160	4.78749	3.6864	0.74546	1.93072
		5	4	1	2	5			5
LSB6.7B	63	2.88775	1.74034	4.16996	4.33766	4.24647	4.58826	1.11158	2.32112
		5	2	1	3	9	9	7	4
Bos32.1B	-5	4.67455	1.16559	8.61758	11.67	11.9352	9.72330	1.33767	4.24692
		8	2	8		7	5	5	1
Bos32.2B	0	7.89138	1.57975	13.5528	17.0071	17.7284	14.9999	2.18625	5.90310
			6	6	5	4	5	9	5
Bos32.3B	5	5.20720	1.12694	10.0307	12.0683	12.3054	10.2774	1.47899	4.20826
		1	3	7	5	8	1		7
Pseud41.1	-5	10.4479	2.43136	17.2002	20.7431	20.7342	18.9864	2.86465	8.06304
В		2	2	6	6	1	6	9	5
Pseud41.2	0	7.56521	1.41144	12.9573	14.3088	14.1945	13.0548	2.00437	5.48367
В		2	9	8	2		9	3	9
		9.35847	2.92603	16.4465	19.3230	19.5391	17.0779	2.41930	7.07814
Pseud41.3	5	9.55647							

Sampl e Code:	Stratigr aphic height*	C30b bS	C30a aR	hopanes/(steranes +hopanes) %	steranes/(steranes +hopanes) %	ΣC27/Σ (C27- C30) %	ΣC28/Σ (C27- C30) %	ΣC29/Σ (C27- C30) %	ΣC30/Σ (C27- C30) %	C27/ C28
LSB1.0 B	5	0.43 7819	0.30 6583	70.83305	29.16695	30.832 27	17.400 58	36.312 46	15.454 69	1.77 1911
LSB1.1 B	13	1.12 8449	0.48 9816	68.91611	31.08389	34.089 98	18.342 49	33.173 24	14.394 29	1.85 8525
LSB1.2 B	22	1.01 207	0.68 6684	73.70239	26.29761	35.445 88	17.481 74	33.263 61	13.808 77	2.02 7594
LSB1.3 B	29	0.63 2164	0.39 266	72.18798	27.81202	35.484 49	17.065 9	33.238 72	14.210 89	2.07 9262
LSB1.4 B	37	1.14 8824	0.51 7915	70.42837	29.57163	39.216 35	18.241 21	29.506 24	13.036 2	2.14 9877
LSB1.5 B	46	1.79 7011	1.14 6134	61.79161	38.20839	36.001 72	19.000 53	31.599 31	13.398 44	1.89 4774
LSB1.6 B	55	1.20 2741	0.79 2478	61.75597	38.24403	37.072 37	18.021 52	31.559 76	13.346 35	2.05 7117
LSB1.7 B	62	8.42 515	4.00 1728	62.96006	37.03994	33.503 6	19.278 07	33.274 68	13.943 65	1.73 7913

LSB1.8	69	0.74	0.37	64.00674	35.99326	34.876	18.830	32.173	14.119	1.85
В		8523	7396			89	18	39	54	218
LSB1.9	78	1.09	0.50	61.58755	38.41245	37.120	19.221	30.563	13.095	1.93
В		0021	247			02	32	6	06	119
LSB1.1	86	1.42	0.44	60.08179	39.91821	38.009	18.818	29.690	13.481	2.01
OB		3229	3793			45	14	87	53	983
LSB1.1	94	0.68	0.45	60.77152	39.22848	38.550	18.835	29.590	13.023	2.04
1B		8158	4876			51	68	11	7	6675
LSB1.1	102	2.20	0.95	64.72717	35.27283	35.110	18.252	33.498	13.138	1.92
2B	102	5077	9608	04.72717	55.27205	28	56	99	17	3581
	110			62 50262	26 40727					
LSB1.1	110	0.69	0.34	63.59263	36.40737	38.943	19.807	28.975	12.273	1.96
3B		7163	2434			74	42	77	07	6119
LSB1.1	118	0.97	0.35	63.49609	36.50391	41.873	17.943	28.324	11.858	2.33
4B		8948	2137			66	35	72	28	3659
LSB3.0	-22	0.71	0.44	74.95297	25.04703	30.582	16.452	37.775	15.190	1.85
В		6649	3841			2	63	01	17	8803
LSB5.0	84	0.76	0.32	59.05123	40.94877	37.788	19.374	29.322	13.515	1.95
В		1688	3493			25	2	47	08	0442
LSB5.1	93	1.15	0.60	62.16423	37.83577	36.929	19.422	30.980	12.668	1.90
	53		8217	02.10425	57.05577					
B	100	11		C4 00000		23	14	48	15	1398
LSB5.2	102	1.73	0.73	61.96906	38.03094	35.284	19.180	32.412	13.121	1.83
В		8244	9862			61	6	86	94	9599
LSB5.3	111	0.67	0.28	61.63329	38.36671	39.496	18.886	29.405	12.211	2.09
В		9954	8461			09	23	68	99	1263
LSB5.4	120	0.56	0.32	65.48368	34.51632	42.212	18.448	27.726	11.612	2.28
В		3843	5977			59	26	29	86	8161
LSB5.5	129	0.58	0.36	68.10727	31.89273	40.461	17.869	29.702	11.967	2.26
B		0699	828	00120727	01.00270	13	6	04	23	4244
	120			C0.0745	21 1255					
LSB5.6	138	0.90	0.45	68.8745	31.1255	36.970	17.976	32.006	13.045	2.05
В		4865	7478			64	64	98	74	6593
LSB5.7	145	0.76	0.47	67.01825	32.98175	37.071	18.039	31.800	13.087	2.05
В		6922	7007			45	96	85	74	4963
LSB6.0	-24	1.15	0.63	71.31212	28.68788	29.839	17.583	37.442	15.134	1.69
В		7972	7603			6	21	36	82	7051
LSB6.1	-11	1.07	0.67	72.65692	27.34308	30.993	16.476	36.894	15.635	1.88
В		4002	9966			52	35	4	74	1092
LSB6.2	2	1.56	0.65	71.48111	28.51889	33.198	17.146	34.984	14.670	1.93
	2			/1.40111	20.31003			34.504		
B		3316	9942	70.00574	20.00400	74	66		61	6164
LSB6.3	14	0.87	0.39	73.03574	26.96426	35.176	17.556	33.214	14.052	2.00
В		1809	782			77	14	84	26	3674
LSB6.4	26	0.59	0.26	71.28861	28.71139	35.939	16.598	32.535	14.926	2.16
В		3829	9583			38	69	37	57	5194
LSB6.5	49	0.65	0.28	65.61452	34.38548	38.485	18.075	30.360	13.079	2.12
В		9305	5096			28	01	44	27	9198
LSB6.6	51	2.35	1.01	60.86769	39.13231	37.387	18.661	30.645	13.304	2.00
В		5891	3795			84	86	48	81	3435
LSB6.7	63	2.63	1.01	60.87514	39.12486	37.227	18.727	31.039	13.005	1.98
	05			00.07314	33.12400					
B		6961	2917	00.00570	0.004044	05	93	47	56	7783
Bos32.	-5	5.54	2.45	99.60576	0.394244	32.935	19.171	33.300	14.592	1.71
1B		2662	6809			29	44	74	54	7935
Bos32.	0	7.57	3.64	99.53697	0.46303	33.775	18.681	33.293	14.248	1.80
2B		1221	333			85	84	48	84	7951
Bos32.	5	4.94	2.26	99.47256	0.527435	32.871	19.205	33.483	14.439	1.71
3B		5805	2502			44	94	44	18	1524
	-5	10.4	4.93	99.22203	0.777968	32.804	18.426	33.878	14.889	1.78
		10.4		55.22205	0.777500	46	97	96	14.889 61	0241
Pseud	5	0775	277							0241
Pseud 41.1B		0775	377	00 78001	0.210087					
Pseud 41.1B Pseud	0	7.09	3.32	99.78901	0.210987	33.550	19.242	33.244	13.962	1.74
Pseud 41.1B Pseud 41.2B	0	7.09 534	3.32 7276			33.550 94	19.242 22	33.244 77	13.962 06	1.74 3611
Pseud 41.1B Pseud		7.09	3.32	99.78901 98.74341	0.210987	33.550	19.242	33.244	13.962	1.74

Sample Code:	Stratigrap hic height*	ΣC27βαDia/Σ(C27- C30)βαDia %	ΣC28βαDia/Σ(C27- C30)βαDia %	ΣC29βαDia/Σ(C27- C30)βαDia %	ΣC30βαDia/Σ(C27- C30)βαDia %	ΣC27βαDia/Σ(C27-C30) %	ΣC28βαDia/Σ(C27-C30) %

LSB1.0B	5	28.69942	17.53979	35.07603	18.68476	16.37881	10.00999
LSB1.1B	13	32.64188	19.32554	31.94087	16.09172	18.99376	11.24521
LSB1.2B	22	32.79916	18.56866	32.49577	16.13641	18.94572	10.72578
LSB1.3B	29	33.54974	18.25029	31.57529	16.62467	19.61747	10.67146
LSB1.4B	37	36.72733	18.87768	29.65837	14.73663	21.73923	11.17387
LSB1.5B	46	33.59529	19.75864	30.16034	16.48573	19.31216	11.3582
LSB1.6B	55	33.99472	19.98756	29.7873	16.23041	19.95402	11.73218
LSB1.7B	62	32.08803	19.5175	32.30382	16.09065	19.75694	12.01713
LSB1.8B	69	32.92234	19.34789	31.27835	16.45142	19.3544	11.37425
LSB1.9B	78	35.52974	19.95452	29.05952	15.45622	20.22575	11.35936
LSB1.10B	86	34.5659	19.65237	29.09296	16.68877	19.34985	11.00131
LSB1.11B	94	35.21709	19.86951	29.14899	15.76441	20.39858	11.5089
LSB1.12B	102	31.91968	19.43997	33.26285	15.3775	19.3742	11.79943
LSB1.13B	110	36.00129	20.91734	28.02099	15.06037	21.40273	12.43534
LSB1.14B	118	38.25448	19.39943	28.18385	14.16225	22.39946	11.3591
LSB3.0B	-22	28.20959	18.19223	36.51309	17.08509	16.38772	10.56836
LSB5.0B	84	34.53138	20.25692	28.72703	16.48466	19.62199	11.51072
LSB5.1B	93	33.74157	20.29925	30.65949	15.29969	19.59593	11.7891
LSB5.2B	102	32.69121	19.94384	32.05334	15.31161	19.49126	11.89098
LSB5.3B	111	37.10805	19.63625	28.53858	14.71712	21.54448	11.40056
LSB5.4B	120	37.64951	20.38132	27.90171	14.06745	22.50682	12.18392
LSB5.5B	129	36.49422	18.95349	30.03736	14.51493	22.23894	11.54993
LSB5.6B	138	34.17594	18.63532	32.2711	14.91764	20.96652	11.43254
LSB5.7B	145	33.49697	19.29881	31.94711	15.25711	20.15603	11.61261
LSB6.0B	-24	27.40603	17.98738	37.48169	17.1249	16.18364	10.62179
LSB6.1B	-11	28.88103	16.96085	36.26418	17.89394	16.69289	9.803165
LSB6.2B	2	31.40799	18.35084	34.00841	16.23276	18.11741	10.58551
LSB6.3B	14	33.0919	18.901	32.33138	15.67572	19.09713	10.90765
LSB6.4B	26	34.02501	17.84857	31.08736	17.03907	19.4705	10.21368
LSB6.5B	49	35.2629	19.5761	29.71389	15.44711	20.7149	11.49982
LSB6.6B	51	34.41986	19.69657	30.10318	15.78039	19.6599	11.25027
LSB6.7B	63	34.3027	19.56388	31.132	15.00142	20.54126	11.71531
Bos32.1B	-5	29.69785	19.67221	30.93069	19.69924	14.66251	9.712621
Bos32.2B	0	30.37178	18.76626	31.02087	19.84108	14.74818	9.112678
Bos32.3B	5	30.77701	18.92296	29.98031	20.31972	15.04787	9.252041
Pseud41. 1B	-5	30.03826	18.58978	31.42525	19.94671	14.66285	9.074397
Pseud41. 2B	0	30.44314	19.61958	31.25004	18.68724	14.85903	9.576145
Pseud41. 3B	5	30.52364	18.99934	30.2342	20.24282	14.8956	9.271714

Sample Code:	Stratigraphi c height*	ΣC29βαDia/Σ(C27- C30) %	ΣC30βαDia/Σ(C27- C30) %	ΣC27/Σ(C27 -C29) %	ΣC28/Σ(C27 -C29) %	ΣC29/Σ(C27 -C29) %	ΣC27/ΣC2 9
LSB1.0B	5	20.01795	10.66343	36.46834	20.58137	42.95029	0.849083
LSB1.1B	13	18.58586	9.363499	39.82209	21.42672	38.7512	1.027635

1604.00		10 770 40	0.000040		20.20254	20 5020	1.005.005
LSB1.2B	22	18.77048	9.320848	41.12469	20.28251	38.5928	1.065605
LSB1.3B	29	18.46296	9.720913	41.36246	19.89285	38.74468	1.067565
LSB1.4B	37	17.55505	8.72274	45.09502	20.97563	33.92934	1.329086
LSB1.5B	46	17.33759	9.47678	41.57168	21.94017	36.48815	1.13932
LSB1.6B	55	17.48437	9.526826	42.78224	20.79718	36.42057	1.174672
LSB1.7B	62	19.8898	9.907183	38.93217	22.40168	38.66616	1.00688
LSB1.8B	69	18.38793	9.671465	40.61097	21.92604	37.46299	1.084029
LSB1.9B	78	16.5425	8.798647	42.71336	22.11764	35.169	1.214517
LSB1.10B	86	16.28612	9.342305	43.93219	21.75043	34.31738	1.280173
LSB1.11B	94	16.88379	9.131126	44.32301	21.6561	34.02089	1.302817
LSB1.12B	102	20.18946	9.333637	40.42084	21.01333	38.56583	1.0481
LSB1.13B	110	16.65844	8.953374	44.392	22.5785	33.0295	1.344011
LSB1.14B	118	16.50271	8.292534	47.50719	20.35738	32.13543	1.478343
LSB3.0B	-22	21.21145	9.925193	36.05973	19.39944	44.54083	0.809588
LSB5.0B	84	16.32375	9.367189	43.69346	22.40183	33.90472	1.288713
LSB5.1B	93	17.80596	8.885528	42.2861	22.23947	35.47443	1.192016
LSB5.2B	102	19.11094	9.129137	40.61395	22.07761	37.30845	1.088599
LSB5.3B	111	16.56915	8.544578	44.9903	21.51346	33.49624	1.343145
LSB5.4B	120	16.6796	8.409499	47.75875	20.87211	31.36914	1.522475
LSB5.5B	129	18.30424	8.845147	45.96144	20.2988	33.73975	1.362234
LSB5.6B	138	19.79792	9.151788	42.51734	20.67368	36.80898	1.155081
LSB5.7B	145	19.22343	9.18061	42.65388	20.75652	36.5896	1.165738
LSB6.0B	-24	22.13345	10.11249	35.16119	20.719	44.11982	0.796948
LSB6.1B	-11	20.96026	10.34248	36.73773	19.53001	43.73226	0.84006
LSB6.2B	2	19.61744	9.363723	38.90657	20.09467	40.99877	0.948969
LSB6.3B	14	18.65824	9.046363	40.92809	20.42652	38.64539	1.059068
LSB6.4B	26	17.78946	9.750453	42.24512	19.51101	38.24387	1.104625
LSB6.5B	49	17.45518	9.074283	44.27629	20.79482	34.92889	1.267612
LSB6.6B	51	17.1943	9.013426	43.12562	21.52584	35.34854	1.220011
LSB6.7B	63	18.64257	8.9832	42.79245	21.52773	35.67982	1.199346
Bos32.1B	-5	15.27119	9.725969	38.56254	22.44703	38.99043	0.989026
Bos32.2B	0	15.06338	9.634599	39.38821	21.7861	38.82569	1.014488
Bos32.3B	5	14.65833	9.934963	38.4188	22.44712	39.13408	0.981722
Pseud41.1 B	-5	15.3399	9.736769	38.54342	21.65067	39.8059	0.968284
Pseud41.2 B	0	15.25287	9.121077	38.99552	22.36481	38.63966	1.00921
Pseud41.3 B	5	14.75435	9.878535	39.6415	21.59746	38.76104	1.022715

µg/gTOC (aromatics):

Sample Code:	Stratigraphic height*	AI 176	AI 190	AI 204	AI 218	AI 246	AI 260	AI 274
LSB1.0B	5	3.760306	2.348572	2.458103	0.969207	0.970426	0.968428	0.970426
LSB1.1B	13	4.819492	3.126409	3.201238	1.312895	1.208404	1.215075	1.208404
LSB1.2B	22	7.57584	4.796738	5.095673	2.01171	2.053514	2.023634	2.053514
LSB1.3B	29	3.890532	2.371485	2.511524	1.051768	1.05293	1.016999	1.05293
LSB1.4B	37	5.775789	3.919315	4.391347	2.005348	1.825638	1.82956	1.825638
LSB1.5B	46	5.986563	4.272386	4.716685	2.168536	2.347711	2.161774	2.347711
LSB1.6B	55	4.336382	2.827064	3.264867	1.576338	1.478127	1.370474	1.478127
LSB1.7B	62	4.095888	3.384307	4.391576	2.801495	3.802051	3.416236	3.802051
LSB1.8B	69	2.533564	1.742582	1.736623	0.806243	0.727817	0.745124	0.727817
LSB1.9B	78	6.831532	4.477468	4.443135	1.963477	1.640782	1.579293	1.640782
LSB1.10B	86	8.357934	5.393664	5.424349	2.138056	1.957371	2.031671	1.957371
LSB1.11B	94	5.773535	3.977506	3.971407	1.798389	1.380807	1.399192	1.380807
LSB1.12B	102	1.583906	1.070632	1.391678	0.759655	1.231214	1.084672	1.231214
LSB1.13B	110	3.466955	2.554106	3.289907	1.619626	1.626375	1.463226	1.626375
LSB1.14B	118	5.363579	3.786375	3.905634	1.711691	1.696527	1.556101	1.696527
LSB3.0B	-22	3.992936	2.504969	2.249988	1.018728	0.63126	0.718135	0.63126
LSB5.0B	84	4.690109	2.90283	2.967401	1.224755	1.133502	1.172216	1.133502
LSB5.1B	93	6.09894	3.829744	3.903887	1.613675	1.552336	1.488965	1.552336
LSB5.2B	102	2.070832	1.404894	1.759113	0.844086	1.117612	0.986698	1.117612
LSB5.3B	111	2.637151	1.872856	2.075693	0.995462	0.997985	0.969422	0.997985
LSB5.4B	120	4.892654	3.595383	4.283935	1.744682	1.616421	1.478947	1.616421
LSB5.5B	129	5.58135	4.023577	4.592226	2.001312	1.762598	1.76772	1.762598
LSB5.6B	138	5.932057	3.882372	4.223799	1.888404	1.692291	1.62672	1.692291
LSB5.7B	145	6.417331	4.244678	4.538352	1.701085	1.641008	1.510651	1.641008
LSB6.0B	-24	5.933693	3.788396	3.866884	1.788415	1.418825	1.408505	1.418825
LSB6.1B	-11	4.976832	3.342751	3.36057	1.583222	1.296029	1.310906	1.296029
LSB6.2B	2	6.339061	4.160078	4.186633	1.791507	1.680882	1.643767	1.680882
LSB6.3B	14	6.279547	4.164513	4.351476	1.761481	1.727956	1.600941	1.727956
LSB6.4B	26	2.638196	1.720586	1.807612	0.773274	0.749216	0.716324	0.749216
LSB6.5B	49	2.675267	1.678771	1.928316	0.847513	0.823574	0.789205	0.823574
LSB6.6B	51	8.025317	5.466883	5.611644	2.457649	2.39167	2.283547	2.39167
LSB6.7B	63	2.264026	1.751516	2.214233	1.339588	1.428648	1.294106	1.428648
Bos32.1B	-5	12.04459	8.355504	3.850736	4.460065	3.581852	3.312685	3.581852
Bos32.2B	0	18.85764	12.77506	6.234718	5.731446	5.652622	5.394866	5.652622
Bos32.3B	5	15.45514	10.53995	4.98875	4.196791	4.188235	4.038451	4.188235
Pseud41.1B	-5	22.23516	15.59853	7.407419	7.246991	6.30211	6.22854	6.30211
Pseud41.2B	0	20.44032	14.03437	7.009991	6.246239	6.693731	6.338736	6.693731
Pseud41.3B	5	22.33872	15.44706	7.654657	7.957797	6.69664	6.45988	6.69664

Sample Code:	Stratigraphic height*	AI 288	Biphenylic isorenieratane	Isorenieratane	µg/g sum	AI sum	AIR
LSB1.0B	5	0.425702	0.397985	1.285293	14.55445	12.87117	2.859443
LSB1.1B	13	0.565481	0.541738	1.573619	18.77275	16.6574	2.968538
LSB1.2B	22	0.900055	0.910991	3.896056	31.31773	26.51068	2.770694
LSB1.3B	29	0.425084	0.440615	1.95138	15.76525	13.37325	2.769298
LSB1.4B	37	0.814542	0.779194	4.39723	27.5636	22.38718	2.556129
LSB1.5B	46	1.144737	1.089837	3.90838	30.14432	25.1461	2.142503
LSB1.6B	55	0.714027	0.745408	2.186848	19.97766	17.04541	2.381518
LSB1.7B	62	2.435521	2.245892	6.510293	36.88531	28.12913	1.090474
LSB1.8B	69	0.3488	0.317535	1.025391	10.7115	9.368571	2.674585
LSB1.9B	78	0.767954	0.689432	1.883035	25.91689	23.34442	3.14731
LSB1.10B	86	0.860607	0.81661	2.374689	31.31232	28.12102	3.13118
LSB1.11B	94	0.575912	0.555231	1.471397	22.28418	20.25755	3.276708
LSB1.12B	102	0.685225	0.625761	1.928533	11.59249	9.038196	1.135516
LSB1.13B	110	0.709281	0.756801	3.056186	20.16884	16.35585	2.01476
LSB1.14B	118	0.771058	0.757055	1.721197	22.96574	20.48749	2.581596
LSB3.0B	-22	0.222965	0	0	11.97024	11.97024	4.432081
LSB5.0B	84	0.50286	0.447817	1.177255	17.35225	15.72718	2.989562
LSB5.1B	93	0.70502	0.594548	1.660379	22.99983	20.7449	2.915125
LSB5.2B	102	0.539725	0.523354	1.480646	11.84457	9.840571	1.616028
LSB5.3B	111	0.488198	0.47069	1.75818	13.26362	11.03475	2.195154
LSB5.4B	120	0.680547	0.675531	2.467696	23.05222	19.90899	2.69209
LSB5.5B	129	0.796787	0.732645	1.865781	24.88659	22.28817	2.659976
LSB5.6B	138	0.738661	0.711688	1.891738	24.28002	21.6766	2.769867
LSB5.7B	145	0.763601	0.629555	1.124206	24.21147	22.45771	3.041871
LSB6.0B	-24	0.591065	0	0	20.21461	20.21461	3.178972
LSB6.1B	-11	0.566993	0	0	17.73333	17.73333	2.967227
LSB6.2B	2	0.747038	0.711133	5.292998	28.23398	22.22985	2.864334
LSB6.3B	14	0.765831	0.71885	3.816246	26.9148	22.3797	2.843537
LSB6.4B	26	0.323495	0.321101	2.217179	12.0162	9.47792	2.734035
LSB6.5B	49	0.409861	0.352592	1.358702	11.68738	9.976081	2.505034
LSB6.6B	51	1.110997	1.043634	3.360095	34.1431	29.73937	2.636562
LSB6.7B	63	0.744826	0.669762	2.507931	15.64329	12.46559	1.545958
Bos32.1B	-5	1.754873	1.583785	4.096429	46.62237	40.94216	2.347337
Bos32.2B	0	2.605621	2.518549	6.357808	71.78095	62.90459	2.258338
Bos32.3B	5	1.993517	1.76478	4.357307	55.71115	49.58906	2.441668
Pseud41.1B	-5	3.584627	3.274124	6.85589	85.03551	74.90549	2.341402
Pseud41.2B	0	3.27786	3.111433	8.521957	82.36837	70.73498	2.074891
Pseud41.3B	5	3.563988	3.355746	12.06153	92.23266	76.81538	2.280305

Sample Code:	Stratigraphi c height*	Phenan- threne	3- Methyl-	2- Methyl-	9- Methyl-	1- Methyl-	sum MP	Retene	Dibenzo- thiophen
couc.	cheight	thene	Phenan- threne	Phenan- threne	Phenan- threne	Phenan- threne			e
LSB1.0B	5	80.8159	24.3271	25.6469	37.3186 7	32.1463	119.439	7.80388	4.65792
LSB1.1B	13	6 71.4790 4	9 21.4771 5	2 22.9116 3	33.3609 1	1 28.5497 4	1 106.299 4	6.75445 8	6 4.09776 3
LSB1.2B	22	125.325	38.4648 3	40.0099 9	58.6098 5	50.7923 9	4 187.877 1	8 12.1232 9	7.01521 6
LSB1.3B	29	64.0856	19.4323	19.9732	29.5166	25.3593	94.2815	6.13933	3.62688
LSB1.4B	37	83.3343 9	4 26.3568 8	1 27.8714 4	2 39.6841 6	4 34.4064 9	1 128.319	9.19502 1	1 5.07218 9
LSB1.5B	46	121.194 5	38.2527 6	39.9795 8	58.1710 1	50.6902 4	187.093 6	14.2476 2	7.70057 2
LSB1.6B	55	52.1189 8	16.0788 8	16.9281 3	25.1520 8	21.7916 7	79.9507 6	5.98858 6	3.45478 3
LSB1.7B	62	115.969 7	31.2137 3	33.1491 6	50.7846 8	43.8199 3	158.967 5	12.4125 8	3.94945 1
LSB1.8B	69	38.2768	11.4857 7	12.0836 4	17.7982 5	15.322	56.6896 6	4.44762 4	2.54779
LSB1.9B	78	97.8971	29.7662 4	30.8505 9	45.5148 8	38.8686	145.000 3	10.6917 4	6.51545
LSB1.10B	86	120.969	37.1983 7	38.6960 4	56.0550 9	48.7951 8	180.744 7	12.4429 1	8.62157 2
LSB1.11B	94	111.288	34.7782 1	35.7755 6	51.8664 8	45.3256 4	, 167.745 9	12.9154 2	7.72832
LSB1.12B	102	37.3097	10.4520 6	11.2943 2	16.6571 6	14.2449	52.6484 4	4.17277 8	2.05336 9
LSB1.13B	110	109.053 8	33.2124 8	35.2695 9	53.1076 6	45.4682 9	167.058	13.3712 2	6.12222 6
LSB1.14B	118	65.4439 1	20.2099 8	20.8130 6	31.5736 1	26.7775 6	99.3742 1	6.85492 7	3.82615 9
LSB3.0B	-22	64.5036	18.8729 7	19.5708 8	28.8657 7	25.1397 1	92.4493 2	5.20002 9	3.27198 6
LSB5.0B	84	60.2029 6	17.6469 2	18.7809 9	27.4352 4	23.4112 7	87.2744 2	5.98661 2	4.06817 9
LSB5.1B	93	94.2106 8	28.6990 5	29.5727 9	43.3615 6	37.942	139.575 4	9.74071 5	6.24380 9
LSB5.2B	102	35.3820 1	10.5018 1	11.1937 1	16.4029 8	14.2619 2	52.3604 2	4.16645 7	2.03067 3
LSB5.3B	111	39.3531 9	12.2348 2	12.8388 2	18.5217 4	16.1031 1	59.6985	4.28856 1	2.37611 3
LSB5.4B	120	80.8541	24.6396 5	25.9350 9	37.5336 5	32.3670 3	120.475 4	8.44883	5.15154 6
LSB5.5B	129	88.8898 4	27.2433 7	28.4207 1	41.4146 4	35.7719 2	132.850 6	9.28077 2	5.99429 8
LSB5.6B	138	94.8283 8	29.2476 9	30.8334 5	44.7597 2	39.0335 7	143.874 4	10.2373 2	6.06591 9
LSB5.7B	145	95.5901 9	28.2871 3	29.6510 6	44.1812 6	38.1032 7	140.222 7	9.13060 9	5.75781 5
LSB6.0B	-24	100.262 7	28.9305 3	31.6380 8	45.8245 8	38.9091 4	145.302 3	8.45864	5.12378 7
LSB6.1B	-11	84.0867 2	24.5671 3	26.3816 3	37.7011 8	32.9866 5	121.636 6	7.28276 8	4.42036 9
LSB6.2B	2	69.1150 2	20.3914 4	21.4544 7	31.4747 1	27.3409 1	100.661 5	5.66253 3	3.72077 1
LSB6.3B	14	70.8065 2	20.8624 3	22.0035 5	31.925	28.0544 4	102.845 4	6.65570 4	3.81986 5
LSB6.4B	26	41.2095	12.0055	12.3574 2	18.1544 4	15.4247 6	57.9421 3	3.80170 7	2.17798 9
LSB6.5B	49	44.6268 6	13.2414 2	13.7309 5	20.1247 1	17.4049 5	64.5020 3	4.40224 7	2.73366 3
LSB6.6B	51	104.122 1	32.1732 5	33.5098 3	49.3523 9	42.0835 5	157.119	10.8481 2	6.79184 7
LSB6.7B	63	51.0816 5	14.1393 1	15.4898	22.8643 9	19.8833 2	72.3768 1	6.41647	1.86968 9

Bos32.1B	-5	66.7764	24.9676	26.1881	45.6428	42.3984	139.197	8.78619	2.71427
		9	8	5	9	6	2	8	3
Bos32.2B	0	108.824	39.3840	42.3179	72.7974	67.8073	222.306	14.1836	4.45530
		4	8		3	4	8	5	7
Bos32.3B	5	107.603	39.4676	41.7271	71.7153	66.5182	219.428	14.0942	4.78675
		4	8	3	7	1	4	6	5
Pseud41.1	-5	103.324	38.4050	40.5037	70.9140	65.0678	214.890	15.4049	4.58292
В		5	4	8	2	3	7	9	3
Pseud41.2	0	122.355	46.4212	47.3113	83.5715	76.9296	254.233	17.8279	5.55115
В		4	7	4	5	2	8	2	9
Pseud41.3	5	123.532	47.6060	47.9354	82.6273	76.3498	254.518	18.2068	5.69117
В		6	9	2		1	6	6	

Sample Code:	Stratigraphic height*	4-Methyl- Dibenzo- thiophene	2+3- Methyl- Dibenzo- thiophene	1-Methyl- Dibenzo- thiophene	Sum MDBT	Phen/DBT	DBT/Phen
LSB1.0B	5	2.919917	4.123535	1.743368	8.78682	17.3502	5.763622
LSB1.1B	13	2.6952	3.341089	1.537931	7.57422	17.44343	5.732817
LSB1.2B	22	4.464429	6.20238	2.851852	13.51866	17.86473	5.597621
LSB1.3B	29	2.398358	2.993736	1.415713	6.807807	17.66962	5.659433
LSB1.4B	37	3.368444	4.538356	2.041586	9.948387	16.42967	6.08655
LSB1.5B	46	4.774749	7.032929	3.030555	14.83823	15.73837	6.353898
LSB1.6B	55	2.123981	3.110361	1.39144	6.625782	15.08603	6.628647
LSB1.7B	62	3.038487	4.047359	1.943756	9.029602	29.36349	3.40559
LSB1.8B	69	1.619663	2.425671	1.008123	5.053458	15.02354	6.656221
LSB1.9B	78	3.877254	6.133795	2.572928	12.58398	15.02538	6.655406
LSB1.10B	86	4.92678	7.975117	3.223565	16.12546	14.03104	7.127054
LSB1.11B	94	4.579121	7.120129	2.958776	14.65803	14.40002	6.944433
LSB1.12B	102	1.300767	1.7005	0.77248	3.773747	18.16999	5.50358
LSB1.13B	110	3.882405	4.944148	2.335803	11.16236	17.81277	5.61395
LSB1.14B	118	2.33289	2.940201	1.45647	6.729562	17.10434	5.84647
LSB3.0B	-22	2.118923	3.11276	1.231557	6.46324	19.7139	5.072563
LSB5.0B	84	2.475666	3.970063	1.574349	8.020077	14.7985	6.75744
LSB5.1B	93	3.808009	5.687862	2.301342	11.79721	15.08865	6.627496
LSB5.2B	102	1.350064	1.867073	0.827305	4.044442	17.42378	5.739283
LSB5.3B	111	1.592494	2.192847	1.001531	4.786872	16.562	6.037918
LSB5.4B	120	3.300022	4.383181	2.003528	9.686732	15.69511	6.37141
LSB5.5B	129	3.652718	5.292758	2.263545	11.20902	14.82907	6.743513
LSB5.6B	138	3.769044	5.283141	2.437178	11.48936	15.63298	6.396734
LSB5.7B	145	3.377606	5.261691	2.197562	10.83686	16.60182	6.023437
LSB6.0B	-24	3.161452	4.898805	1.925712	9.98597	19.56809	5.11036
LSB6.1B	-11	2.777165	3.92806	1.60397	8.309195	19.02256	5.256917
LSB6.2B	2	2.460956	3.234783	1.434605	7.130345	18.57546	5.383447
LSB6.3B	14	2.389767	3.485583	1.471919	7.347269	18.53639	5.394793
LSB6.4B	26	1.365207	2.130565	0.848712	4.344483	18.9209	5.285162
LSB6.5B	49	1.614554	2.327574	0.989074	4.931202	16.32493	6.1256
LSB6.6B	51	4.251307	6.31522	2.749201	13.31573	15.33046	6.522963

LSB6.7B	63	1.456553	1.77319	0.765958	3.995701	27.32093	3.660197
Bos32.1B	-5	11.73147	3.395598	2.970352	18.09742	24.60198	0.040647
Bos32.2B	0	19.06267	4.946625	4.69872	28.70802	24.42579	0.04094
Bos32.3B	5	19.95359	5.925279	5.125985	31.00485	22.47939	0.044485
Pseud41.1B	-5	20.13046	5.943931	5.089206	31.1636	22.54555	0.044355
Pseud41.2B	0	23.16951	6.515907	5.779995	35.46541	22.04142	0.045369
Pseud41.3B	5	24.03615	7.180945	6.174655	37.39175	21.70601	0.04607

Compound-specific isotopic analysis:

CSOK sample code	height (mm)	Dilution (µL)	δ13C17(‰)	δ13C18(‰)	δ13C19(‰)	δ13C27(‰)	δ13C28(‰)	δ13C29(‰)
LSB1.0B	5	500	-34.88	-34.06	-34.89	-32.26	-32.45	-32.3
LSB1.1B	13	500	-35.71	-34.72	-35.69	-33.17	-33.45	-33.17
LSB1.2B	22	1000	-33.84	-33.68	-34.01	-32.5	-32.44	-32.69
LSB1.3B	29	750	-34.91	-34.51	-34.66	-33.51	-33.32	-33.67
LSB1.4B	37	1500	-36.23	-34.09	-35.57	-33.1	-33.76	-33.61
LSB1.5B	46	1500	-35.31	-34.86	-35.15	-33.04	-32.99	-32.83
LSB1.6B	55	250	-34.49	-33.49	-33.14	-32.29	-32.07	-31.99
LSB1.7B	62	250	-33.74	-33.46	-32.94	-32.03	-32.27	-32.25
LSB1.8B	69	1000	-34.71	-34.07	-34.47	-32.32	-32.4	-31.99
LSB1.9B	78	1000	-35.78	-34.86	-35.32	-34.65	-33.88	-34.02
LSB1.10B	86	1000	-35.52	-35.34	-35.5	-35.66	-34.95	-34.32
LSB1.11B	94	1000	-38.36	-35.54	-37.44	-33.85	-33.42	-35.58
LSB1.12B	102	500	-33.21	-32.42	-32.15	-31.68	-31.84	-31.86
LSB1.13B	110	250	-36.39	-35.01	-33.65	-34.68	-34.09	-33.58
LSB1.14B	118	250	-37.93	-36.81	-35.37	-35.65	-35.25	-33.87
LSB3.0B	-22	500	-36.24	-35.31	-34.69	-34.57	-34.02	-33.88
LSB5.0B	84	1500	-36.59	-36.19	-33.88	-33.3	-34.33	-33.78
LSB5.1B	93	1000	-36.29	-34.94	-34.23	-33.53	-34.14	-33.81
LSB5.2B	102	1000	-36.66	-35.25	-34.22	-33	-32.32	-32.21
LSB5.3B	111	1000	-36.51	-36.01	-34.73	-34.35	-33.58	-33.87
LSB5.4B	120	1500	-37.93	-35.99	-33.18	-32.4	-32.74	-32.71
LSB5.5B	129	1500	-39.37	-36.57	-35.45	-36.14	-36.09	-35.06
LSB5.6B	138	1000	-36.66	-35.65	-32.86	-33.93	-33.23	-34.66
LSB5.7B	145	250	-37.53	-36.31	-35.26	-36.83	-35.7	-34.7
LSB6.0B	-24	500	-36.03	-35.8	-34.22	-35.18	-35.03	-34.25
LSB6.1B	-11	500	-33.68	-33.87	-33.98	-33.81	-33.4	-33.88
LSB6.2B	2	1000	-38.3	-37.47	-36.21	-37.16	-36.45	-35.25
LSB6.3B	14	1000	-37.17	-36.43	-35.54	-36.02	-35.33	-34.89
LSB6.4B	26	1500	-38.35	-35.62	-34.34	-33.95	-34.43	-33.81
LSB6.5B	49	1500	-38.43	-36.87	-34.52	-35.33	-34.81	-35.98
LSB6.6B	51	1000	-38.13	-36.54	-36.19	-36.08	-35.98	-35.59
LSB6.7B	63	250	-35.99	-35.03	-34.26	-33.01	-32.84	-33.04

Bos32.1B	-5	1000	-36.98	-35.8	-34.44	-34.67	-34.16	-34.82
Bos32.2B	0	1000	-37.95	-37.83	-35.41	-35.89	-35.15	-35.46
Bos32.3B	5	1000	-36.76	-36.5	-34.74	-35.18	-34.31	-35.73
Pseud41.1B	-5	1000	-37.69	-37.27	-35.19	-35.86	-34.66	-36.28
Pseud41.2B	0	500	-34.65	-34.69	-33.98	-34.04	-33.95	-34.46
Pseud41.3B	5	1000	-37.39	-36.66	-34.42	-34.86	-34.04	-35.86