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Abstract

This thesis is concerned with the efficient numerical solution of problems of elasto-

hydrodynamic lubrication (EHL). Our approach is to consider fully-coupled models in

which the governing equations for the lubricating film, the elastic deformation and the

force balance are each discretized and solved as a single monolithic nonlinear system of

algebraic equations. The main contributions of this work are to propose, implement and

analyse a novel, optimal, preconditioner for the Newton linearization of this algebraic sys-

tem, and to assess the development of efficient finite elementmeshes through both manual

tuning and the use of adaptive mesh refinement based upon a posteriori error estimation

and control.

Throughout this work, we employ first order finite element discretizations for both the

Reynolds equation (for the lubricant) and for the linear elasticity model on a finite do-

main. The resulting nonlinear algebraic equations are thensolved using a quasi-Newton

algorithm. For each linear solve a Krylov subspace method isused and a new block-

wise preconditioner is presented which is designed to exploit the specific structure that

is present in this class of problem. This preconditioner combines the use of multigrid

preconditioning for the elasticity block and a separate, efficient, approximation to precon-

dition the Reynolds block. The solver developed in this workcan be distinguished into

two variants based upon the use of algebraic and geometric multigrid preconditioning of

the elasticity block.

Numerical results are presented both for line and point contact problems to validate

the implementations and to allow a comparison of the performance and efficiency of the

proposed solution strategies compared to the use of a state-of-the-art sparse direct solver at

each Newton step. These results demonstrate that the preconditioned iterative approach is

both computationally and memory superior to the sparse direct solver. Most importantly,

both the computational and memory costs are seen to grow linearly with the number of

unknowns.

A locally adaptive solution scheme is also developed for fully-coupled EHL point con-

tact problems. This automates the refinement process to the regions of the domain which

exhibit large error in their solutions. Numerical results are presented which demonstrate

the performance and effectiveness of the proposed procedure.
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Chapter 1

Introduction

1.1 Elastohydrodynamic Lubrication

Friction is force resisting the motion of objects relative to each other. Although this is

essential in many daily life activities such as walking, brushing teeth, stopping moving

objects, etc, there are examples where frictional forces are not desirable. Consider the

example of mechanical systems, where many individual components are in motion rela-

tive to each other. Surfaces will therefore be in contact. Elementary mechanics explains

that the frictional force produced not only lowers the efficiency of the components, as

work must be done to overcome the friction, but also increases their wear, which affects

the life of machine components. Therefore, in such situations, frictional forces need to

be minimized in order to obtain maximum efficiency and to prevent wear. A common

way to reduce the frictional force and prevent wear is lubrication. The separation of the

components by the lubricant helps to protect them from direct contact and hence reduces

friction and wear, which not only leads to less energy consumption but also increases the

life of components. The use of a lubricant reduces the friction to about a tenth that in a dry

contact [102]. To maintain such a lubricant film between the contact surfaces, a pressure

is generated inside the lubricant film through the relative motion of the surfaces: this is

referred as hydrodynamic lubrication [54,104].

Elastohydrodynamic lubrication (EHL) deals with the behaviour of a lubricant film

between the movingelasticcomponents of mechanical systems. The behaviour of the

1
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lubricant film is determined by the geometry of the contacting elements. In particular,

if the pressure generated inside the lubricant film is sufficiently high (up to giga pascals

in the case of steel) then the contacting elements deform elastically and hence define a

new shape of the lubricant film. Figure 1.1 illustrates two typical EHL pressure profiles,

showing the high pressure regions generated in EHL contacts. It is high pressure, and

the resulting elastic deformation, that characterizes elastohydrodynamic lubrication [33,

102, 104]. In addition, with such a wide range of operating pressures in the contact, the

properties of lubricants such as viscosity, and density etc., will change across the contact.

Thus the fluid film formation is also strongly affected by thislubricant behaviour which

can not be neglected.
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Figure 1.1: Typical EHL solutions - note the typical pressure spike/ridge which occurs on
the outflow side of the contact.

In general, contact types are classified into two categories: conforming contacts and

non-conforming contacts. In the former case the surfaces ofthe contacting elements fit

exactly or closely together before any deformation takes place. Journal bearings are ex-

amples of such a contact. In this case, contact surfaces meetat many points in the un-

deformed case i.e the contact area is usually large. A non-conforming contact is formed

if the contact surfaces meet along a line or at a point prior toany deformation (these are

cases (a) and (b) respectively in Figure 1.1). Ball bearingsand roller bearings are ex-

amples of such contacts. In the non-conforming contacts thecontact area is very small

compared to size of the contacting elements and stresses arehighly concentrated in this

region. In other words, for a given load, the pressure generated is very high and therefore

may lead to significant elastic deformation of contact surfaces. Such contacts usually fall

into elastohydrodynamic lubrication regime [104].

Research into EHL problems comprises of a combination of experiments and numer-
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ical simulations. In order to develop efficient oil for the operating conditions for which

they are intended, it is essential for designers of lubricants and components to get perfor-

mance results for a variety of lubricants in different operating conditions. Since applied

loads can cause pressure distributions across the contact area of the order of giga-Pascals,

minimum film thicknesses are in the micrometre range, and lubricant molecules pass

through the contact in hundredths of a second, it can be difficult to conduct physical

experiments into the behaviour of EHL contacts. Thus if accurate computer codes are

available, then the cost effective solution to numerous EHLtests may be obtained [45]. In

short, efficient computer codes thus gain much more significance in tackling these kinds

of problem for optimised results, which is the motivation ofthis study.

1.2 An Historical Overview of Numerical Techniques for

EHL Problems

Recall from the previous section that an EHL problem comprises of finding the pressure

distribution across the fluid, and the shape of the lubricantfilm which is determined by the

geometry and the resultant elastic deformation of the contacting surfaces. The Reynolds

equation [90] governs the pressure distribution across thefluid for a given geometry and

the lubricant properties. This is obtained from the Navier-Stokes equations for viscous

flow by making a thin film approximation which leads to a nonlinear convection-diffusion

equation relating pressure, film thickness and the lubricant properties. The shape of the

lubricant film generally depends upon the separation due to undeformed geometry, an

initial separation constant, and the elastic deformation of the contacting surfaces. A most

commonly used method to calculate the elastic deformation of the contact surfaces is to

evaluate an elastic deformation integral [33, 66, 102] which is obtained by an analytical

solution of the linear elasticity equation on a semi-infinite domain. For a full description

of a complete mathematical model of the EHL problems one is referred to the next chapter.

The history of the numerical solution of EHL problems startswith the work of Petru-

sevich [85] in 1951, and was first to predict a pressure spike in the outlet region of flow.

This provided a platform to the development of different methods. However, circular

contact cases were not solved numerically until the early 1970s, see Ranger [88]. The

semi-system approach consists in solving the governing EHLequations separately and

establishing an iterative procedure between their solutions. One of the first to use this

approach were Dowson and Higginson [33] for the line contactcase. This followed the

pioneering work of Hamrock and Dowson [53] and Ranger [88] for the circular contact.
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These methods were based on direct methods, in which the Reynolds equation is solved

for the pressure for a given geometry. But the drawback of these methods were their fail-

ure for highly loaded cases. To overcome this limitation Ertel [37] introduced the Inverse

method. Contrarily to the direct method, this consists of solving Reynolds equation to

compute the film thickness for a given pressure profile. Dowson and Higginson [33] were

the first to apply this method to EHL line contacts in 1959. This approach was later con-

sidered to point contacts by Evans and Snidle [39]. In computational terms, this method

was considered undesirable for large systems due to its computational complexity being

close toO(N3).

A multigrid technique was first used by Lubrecht [73] for bothline and point contact

cases. This provided a faster convergence rate and hence, reduced the computational cost.

Further computation time reduction as achieved by Brandt and Lubrecht [20] introduc-

ing a multilevel multi-integration (MLMI) technique, in which computation of the elastic

deformation integral was accelerated by reducing its computational complexity using a

multilevel framework. Regardless of the efficiency, this approach was found unstable to

highly loaded cases. Later on, Venner [102] developed a distributive relaxation scheme for

both multilevel techniques to obtain further efficiency, and the stability for highly loaded

EHL cases. In the late ‘90s Nurgat [80, 81] presented a simpler new relaxation scheme

suitable for highly loaded cases. The convergence of this scheme was further enhanced by

Goodyer [45–47]. The author combined this improved technique with adaptive meshing

to further the accuracy with least computational work, and improve the efficiency by par-

allelism. The different works cited here so far are based on finite difference discretizations

of the EHL equations. These methods limit the discretization process to regular structured

rectangular meshes using low order approximations, and have been the most widely used

technique in the EHL modelling.

The finite element method has been applied to EHL problems since the 1970s however.

Line contacts were first considered by Taylor and O’Callaghan [99] and point contacts by

Oh and Rohde [82]. Recently Lu [70–72] used “discontinuous Galerkin (DG) FEM” to

get stabilised results for highly loaded line contact and moderately loaded point contact

cases. These DG techniques are not widely used to solve EHL problems today, there is

still research being done.

The full-system approach consist in solving the coupled EHLequations simultane-

ously. A Newton-Raphson full-system approach is first used by Oh and Rohde [82]. This

method converges in a few iterations but requires a good initial guess. A similar model

was used by Okamura [83], which is improved by Houpert and Hamrock [62] for a line

contact case. This model is extended to elliptical contactsby Hsiao et al. [63]. All these
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methods were based on half space approach for elastic deflection. The drawback of this

approach is that it uses the pressure from all points in the domain to calculate the de-

flection at each point, which makes the resulting linearizedsystem matrix highly dense.

Finally, for heavy loads, the Jacobian matrix becomes almost singular which makes it

hard to reach the solution.

In 2000, a “differential deflection method” based on the halfspace approach was

introduced by Evans and Hughes [38, 60, 61, 64]. The advantage of this method is to use

the information from comparatively fewer points in the domain to calculate the elastic

deflection at each point. In other words the influence of pressure acting at a point is

reduced to a limited locality of that point. Therefore this approach results in a less dense

matrix compared to the half space approach for elastic deflection. Authors and their

co-workers applied this method to line contact [64] and thenextended to point contact

cases [60,61].

Recently Habchi [49–51] used a numerical approach to compute the solution of clas-

sical linear elasticity equation to obtain the elastic deflection. This equation only uses the

information at the neighbouring points to calculate the elastic deflection at a point in the

domain. So the resultant matrix is highly sparse and made it easy to reach the solution

without any special treatment for convergence. The drawback of this method is the need

to solve the elasticity equation in a2D domain for line contact problems and a3D domain

for point contact problems. This cost is minimized by using afine mesh in the region of

interest and a coarse mesh elsewhere. The other advantage ofthis method is that it yields

additional solution information such as displacement, andderived fields such as stress,

throughout the solid components, which is not possible using traditional half-space ap-

proach. Nevertheless, the relatively high computational cost of this approach has so far

prevented its wide spread use.

1.3 Outline of Thesis

In this work the issues of the high computational and memory costs of the fully-coupled

approach to solve EHL problems are addressed. Habchi et al. [49–51] used a sparse di-

rect solver to solve the linearized system at each Newton step. Experience shows that

sparse direct solvers are very efficient for small systems, but when the resolution and/or

the dimension of the problem is increased their performancereduces and they require

very large amounts of memory (specifically, both the CPU times and the memory re-

quirements grow significantly faster thanO(N), whereN is the number of degrees of

freedom). To solve large sparse problems, iterative methods are often considered to be
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superior to sparse direct methods, however this relies uponfinding good preconditioners

to make them computationally competitive. In this work an efficient, preconditioned iter-

ative solver has been developed to solve fully-coupled EHL problems. Numerical results

presented show that the performance of this technique appears to be close to optimal, both

in terms of computational time and memory usage.

In Chapter 2, the mathematical model used for the EHL line andpoint contact prob-

lems is presented. This model can be distinguish into two sets of equations: first the

EHL system itself which includes the Reynolds equation, thefilm thickness equation and

the load balance equation. The second set is concerned with the lubricant’s properties,

such as density and viscosity. For the computation of elastic deflection, two approaches

are discussed. The first approach is a traditional half-space approach derived analytically

from the linear elasticity equation on a semi-infinite domain. The latter is concerned with

the numerical solution of the linear elasticity equation ona finite domain.

In Chapter 3, the various numerical methods that are relevant to this thesis are outlined.

This includes a brief introduction to the finite element method. The Newton method

is explained for the solution of nonlinear systems. For the solution of linear systems,

both direct and iterative approaches are discussed. The useof preconditioning is also

explained, where the main focus is given to the multigrid preconditioning (using both

geometric and algebraic multigrid). This chapter also explains the implementation of

different numerical methods using the KINSOL software library [57].

In Chapter 4, the full-system approach to the solution of EHLproblems is discussed.

This includes a Galerkin finite element discretization of the EHL line and point contact

equations. Since, the Reynolds equation exhibits an oscillatory behaviour in its pressure

solution for heavy loads, a Streamline Upwind Petrov-Galerkin (SUPG) method [22] is

described to stabilize the pressure solution. A coupling procedure is given which puts all

the discrete EHL equations together to form a single, large,nonlinear system. The Newton

method is applied to this fully-coupled nonlinear system. For the solution of the linear

system formed at each Newton iteration different solution strategies are discussed. For

the development of an efficient iterative solver a new blockwise preconditioning strategy

is proposed. This preconditioner combines the use of multigrid for the preconditioning

of the linear elasticity block and an efficient, separate, approximation to precondition the

Reynolds block. Numerical results are presented to justifythe accuracy of the line and

point contact implementations compared to previously published results.

Chapter 5 is devoted to the solution of EHL line contact problems. The accuracy

of the solution is discussed using coarse meshes. The performance of different linear

solvers are then discussed to produce a comparison between their computational times
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and their memory usage. Furthermore, this chapter also describes the effect of varying

the Poisson ratio for the elastic material over the accuracyand the performance of the

proposed preconditioning strategy. Finally, the performance of the Bi-CGSTAB [101]

method is compared with the GMRES method [94].

In Chapter 6, the accuracy and the performance of the solver for EHL point contact

problems is considered. First of all, a methodology based ona large number of experi-

ments is explained to select efficient3D meshes which ensures the accuracy of the elastic

deformation solution whilst keeping the EHL solution cost as low as possible. This is then

followed by a detailed comparison of the computational times and the memory growth of

different linear solvers. Finally, it includes a discussion of the effect of the quality of

meshes over the accuracy of the EHL solution.

In Chapter 7, a locally adaptive solution scheme for the fully-coupled EHL point

contact problem is discussed. This includes a discussion onan ‘a posteriori’ error esti-

mation, the mesh refinement criteria and the refinement algorithm used. A procedure for

post-optimization of the refined meshes is also explained. Finally, numerical results are

presented to show the performance and effectiveness of proposed procedure for solving

EHL point contact problems.

Finally, the thesis is summarized in Chapter 8. This chapteralso describes possible

extensions of this research and future work.



Chapter 2

Governing Equations

2.1 Overview

In this chapter the mathematical model used for the EHL problems solved in the rest

of this thesis is presented. This model is discussed separately both for the line and the

point contact cases and is followed by their non-dimensional forms. This chapter also

presents two different groups of dimensionless parameterswhich significantly reduce the

number of physical parameters defining an EHL line or point contact case. Moreover, two

different approaches are discussed for computing the elastic deformation of contacting

surfaces: the first is the so-called half-space approach [33, 45, 73, 102, 104] which is a

mathematical relationship derived from an analytical solution to Lamé’s equation of linear

elasticity on a semi-infinite domain, while the other is based upon a purely numerical

solution of the equation of linear elasticity on a finite domain [50, 51]. The drawback of

the latter approach is the need to solve the elasticity equation in a 2D domain for line

contact problems and a3D domain for point contact problems. However, the advantage

of this method is that it yields additional solution information such as displacement, and

derived fields such as stress, throughout the solid components, which is not possible using

the, more traditional, half-space approach (which only yields the surface deformation).

8
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2.2 Geometric Representation of EHL Contacts

Recall from the previous chapter that non-conforming contacts can induce very high pres-

sure (up to giga pascals) in the lubricant film within the contact region and that such wide

operating pressure may cause the contact surfaces to deformelastically. Such contacts

fall under the EHL regime. These contacts can be categorisedinto two types: the line

contacts and the point contacts. The line contact is formed if the contact surfaces meet

along a line prior to any deformation. Figure 2.1 shows a linecontact formed between: (a)

two parallel cylinders (b) a cylinder and a plane. Here, thex-direction is taken to be per-

pendicular to the contact and the surfaces have velocitiesu1 andu2 in this direction. The

functionh(x) presents a measure of the gap between the surfaces. On the other hand, if

the surfaces of the contacting elements meet at a point priorto any deformation, then this

is referred to as a point contact. Figure 2.2 shows an exampleof such contact between:

two spheres (left) or a sphere and a plane (right).

Surface 2

Surface 1

R2

R1

u2

u1

h(x)

(a): EHL line contact

xy

z

R

u2

u1h(x)

(b): Equivalent reduced geometry

R−1 = R−1
1 + R−1

2

Figure 2.1: An example of a line contact.

Generally the geometry of the contacting machine elements could be rather complex,

e.g the contact between gear teeth or the contact between a ball and the inner/outer race-

way in a ball bearing. Such geometries can be reduced to a rather more simple form in the

immediate vicinity of the contact. The film thickness and thecontact area are generally

very small compared to overall dimensions of the contactingelements thus the geometry

close to contact region can be approximated by paraboloids [33], see Figure 2.3. These

parabolically shaped surfaces have local radii of curvatureR1x andR2x in thex-direction

andR1y andR2y in they-direction. It can further be reduced to a contact between a plane

and an equivalent parabolically shaped surface [33] whose reduced (or equivalent) radii
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R2

u2

h(x,y)

R1

u1

(a): EHL point contact

R
u2

h(x,y)

u1

(b): Equivalent reduced geometry

R−1 = R−1
1 + R−1

2

x

y

z

Figure 2.2: An example of a point contact.

of curvatures are:

R−1
x = R−1

1x + R−1
2x

R−1
y = R−1

1y + R−1
2y

It should be noted that Figure 2.3 can be manipulated as two types of a point contact:

a circular point contact if the contacting elements have same radii of curvature in both

principal directions otherwise this would be an elliptic point contact [102]. Furthermore,

the line contacts assumes an infinitely large radius of curvature of paraboloid in one of

the principal directions. Throughout this work, both line contact problems and point

contact problems are considered, however in the point contact cases only the circular

point contacts have been studied.

2.3 Governing Equations

Models of an EHL contact can be grouped into two sets of equations: one group describes

the EHL problem itself while the other is concerned with the properties of the lubricant.

The former group consists of the following three equations.

• The Reynolds Equation: this governs the pressure distribution across the contact,

for the given geometry and lubricant properties. This is derived from the Navier-

Stokes equations for a Newtonian fluid and was first developedby Osborne Reynolds

[90] in 1886. For a slow viscous flow, the inertia and body forces are assumed neg-
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R2x
R2y

u2
h(x,y)
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Equivalent reduced geometry
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y

z

Figure 2.3: Approximation of contact surfaces by paraboloids along with a reduced ge-
ometry on the right.

ligible, and therefore neglected, compared to viscous and pressure forces. Another

assumption is that flow through a narrow gap eventually leadsto a further simpli-

fication of these equations of momentum (based upon a thin-film approximation).

Using the boundary conditions (based on the assumption thatno slip occurs at the

boundary surfaces) these equations can be solved for the velocities. Finally substi-

tution of these velocities into the equation of continuity yields an equation for the

pressure in the lubricant film called the Reynolds equation.

• The Film Thickness Equation: this determines the shape of the lubricant film across

the contact. This is in fact the separation of two surfaces inthe contact which

generally depends upon a separation constant, the separation due to the undeformed

geometry and the elastic deformation of the contacting surfaces induced by the

pressure generation within the lubricant film.

• The Force Balance Equation: this is a conservation law whichensures that the total

pressure generated inside the lubricant film balances the applied load.

The latter group describes the variation of lubricant properties, such as density and vis-

cosity, with pressure. In the following sections these equations are given separately both

for the line and the point contact cases and are discussed in both dimensional and non-

dimensional forms.

2.3.1 Line Contact

Recall from previous section that the geometry of contact surfaces in the contact region

can be accurately approximated by paraboloids. A further simplification of the contact
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geometry is obtained by reducing it to an equivalent contactbetween a paraboloid and a

plane. This is known as equivalent or reduced geometry. For the line contact the reduced

radius of curvature of the paraboloid approximating the reduced surface is infinitely large

in one principal direction (lets sayy-direction). Let the two surfaces carrying a lubricant

flow in between have the velocitiesu1 andu2 in thex-direction. LetΩf denote a domain

representing a cross-section through they-axis (this is ignoring any end effects for the line

contact): this gives1D domain for the lubricant flow and the contact formed. For a given

line load, a very high pressure is assumed to be generated in the lubricant film within the

contact region. The pressure generated has negligible variation along they-direction thus

the problem reduces to a1D case [33,104], see Figure 2.4, for example.

R

u2

h(x) h0

x2

2R

u1

Equivalent reduced geometry

w: applied load per unit length

Ωf

x

z

Figure 2.4: A1D line contact problem on the domainΩf

To govern the pressure distribution, the Reynolds equationfor an isothermal line con-

tact [70] reads:
∂

∂x

(
ρh3

η

∂p

∂x

)
− 6us

∂(ρh)

∂x
− 12

∂(ρh)

∂t
= 0, (2.1)

where

p is pressure,

h is the thickness of the lubricant film,

ρ is the density of the lubricant,

η is the viscosity of the lubricant,
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us = u1 + u2 is total velocity of two surfaces withu1 and u2 being the individual

velocities of upper and lower surfaces respectively.

The film thickness equation for line contact case may be written as:

h(x) = h0 +
x2

2R
+ d(x), (2.2)

whereh0 is the central offset film thickness, the middle term defines the shape of unde-

formed surface withR being the reduced radius of curvature andd(x) is the combined

elastic deformation of the surfaces in contact. This is mostcommonly calculated using

the half-space approximation [33, 66, 102] which is based upon an analytical solution of

the linear elasticity equation on a semi-infinite domain, giving:

d(x) = −
4

πE ′

∫ +∞

−∞

ln |x− x′|p (x′) dx′,

whereE ′ is the reduced elastic modulus of the contacting surfaces given by:

2

E ′
=

1− ν2
1

E1

+
1− ν2

2

E2

, (2.3)

whereν1 andν2 are the Poisson ratios of the materials in the two surfaces.

The conservation law which states that the total pressure generated must be equal to

the applied load can be expressed mathematically for the line contact case as:

∫ +∞

−∞

p(x)dx = w, (2.4)

wherew is the applied load per unit length.

2.3.2 Point Contact

In this section we present a mathematical model of EHL point contact problems. In

Figure 2.5 a reduced point contact geometry is considered whereΩf represents the2D

fluid domain. The lubricant flow is assumed in thex-direction along with the two surface

velocitiesu1 andu2. To govern the pressure distribution in the lubricant film the Reynolds

equation for the point contact case reads [45,70,104]:

∂

∂x

(
ρh3

η

∂p

∂x

)
+

∂

∂y

(
ρh3

η

∂p

∂y

)
− 6us

∂(ρh)

∂x
− 12

∂(ρh)

∂t
= 0. (2.5)
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Figure 2.5: A2D point contact problem

The shape of the lubricant film for the point contact case is defined by the following

equation:

h(x, y) = h0 +
x2

2Rx
+

y2

2Ry
+ d(x, y), (2.6)

where the middle two terms on the right-hand-side give the paraboloid approximation

to the shape of an undeformed reduced surface withRx andRy being the reduced radii

of curvature inx andy directions respectively. For a circular contactRx = Ry = R, so

equation(2.6) becomes:

h(x, y) = h0 +
x2 + y2

2R
+ d(x, y), (2.7)

where the half-space approximation to the linear elasticity equation [45,102,104] gives:

d(x, y) =
2

πE ′

∫ +∞

−∞

∫ +∞

−∞

p(x′, y′)dx′dy′

√
(x− x′)2 + (y − y′)2

, (2.8)

andE ′ still satisfies (2.3). Finally, the force balance equation for the point contact case

reads: ∫ +∞

−∞

∫ +∞

−∞

p(x, y)dxdy = F, (2.9)

whereF is the applied load.

2.3.3 Lubricant Properties

In EHL contacts there are large variations in pressure, which affect the properties of lu-

bricants across the contact. It is therefore necessary to use lubricant models which can
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approximate this behaviour. There are two general classes of lubricant model proposed

to describe the properties of the oils. The most widely used models are derived purely

empirically [11, 33, 91] while the other kind of models aim tobe more physically based,

e.g. see [10, 59, 107]. The latter models can be much more accurate than those of first

kind but still they are rarely used in EHL simulations because of their complex mathemat-

ical expressions and dependence upon large numbers of parameters (some of which are

hard to determine). On the other hand the empirical models are much more simple, easy

to implement and therefore widely used in EHL simulations. In the following only two,

commonly used, models are considered. Indeed, these are assumed throughout this thesis

both for the line and the point contact problems.

2.3.3.1 Density Model

A commonly used density variation model for EHL problems is that of Dowson and Hig-

ginson [33]. It takes account of compressibility of the lubricant and is given by:

ρ (p) = ρ0
0.59× 109 + 1.34p

0.59× 109 + p
, (2.10)

whereρ0 is density at ambient pressure. This model is only pressure dependent and does

not depend on other properties of lubricants. A mathematical equivalent expression seen

in [45] is:

ρ (p) = ρ0

(
1 +

0.59× 10−9p

1 + 1.7× 10−9p

)
. (2.11)

2.3.3.2 Viscosity Model

The viscosity is another important property of the lubricants in EHL contacts and it may

vary over several orders of magnitude with increasing pressure. The simplest viscosity-

pressure relationship is exponential, known as the Barus model [11], and is given by:

η (p) = η0 exp (αp) , (2.12)

whereη0 is viscosity at ambient pressure andα is pressure-viscosity coefficient. How-

ever, this model is only accurate for relatively low pressures and tends to significantly

overestimate the viscosity against high pressure. A more realistic viscosity model was

introduced by Roelands [91] which is accurate for pressuresup to1 G Pa and is given by:

η (p) = η0 exp

(
αp0

z

(
−1 +

(
1 +

p

p0

)z))
, (2.13)



Chapter 2 16 Governing Equations

where

p0 is a constant, typicallyp0 = 1.96× 108 [Pa],

z is the pressure-viscosity index, typically0.5 ≤ z ≤ 0.7.

Note that the Roelands viscosity model is assumed throughout this thesis.

2.4 Non-dimensionalisation

In EHL problems, the maximum pressure can rise to giga pascals, whilst minimum film

thickness may be in the micrometre range, so handling these ranges of numerical values

with finite precision arithmetic requires care. In order to numerically compute solutions,

and minimise any floating point arithmetic errors, non-dimensionalisation is used. The

non-dimensionalisation of EHL equations is mainly based onHertz’s theory for dry con-

tacts [55]. In the following the non-dimensionalisation ofthe EHL equations is discussed

both for the line and the circular point contact cases. Sincethis thesis is only concerned

with steady-state solution methods therefore non-dimensionalisation of such problems are

only considered.

2.4.1 Line Contact

The first parameters to be introduced are the maximum Hertzian pressure and the Hertzian

radius, which are derived from Hertz’s theory [55]. In the case of line contacts, the

Hertzian pressure profile is given by:

p(x) =





ph

√
1−

(
x
a

)2
if |x| < a

0 otherwise
(2.14)

whereph is the maximum Hertzian pressure:

ph =
2w

πa
,

and the Hertzian half contact width,a, is defined by:

a =

√
8wR

πE ′
,

whereR is the reduced radius of curvature,w is applied load per unit length andE ′ is the

reduced elastic modulus as described earlier in this chapter.
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Let us define the following dimensionless variables as:

X =
x

a
ρ̄ =

ρ

ρ0

η̄ =
η

η0

P =
p

ph

H =
hR

a2
D =

d R

a2
.

Hence

X =
x

a
⇒ x = aX ⇒ dx = adX,

P =
p

ph
⇒ p = phP ⇒ dp = phdP.

For an isothermal steady state flow, the Reynolds equation(2.1) may be written as:

d

dx

(
ρh3

η

dp

dx

)
− 6us

d(ρh)

dx
= 0, (2.15)

using the dimensionless variables, equation (2.15) may be written as:

d

dX

(
ρ̄H3

η̄λ

dP

dX

)
−

d

dX
(ρ̄H) = 0, (2.16)

where

λ =
6usη0R

2

a3ph

.

Using the same dimensionless variables, equation(2.2) may be written as:

H(X) = H0 +
X2

2
+ D(X), (2.17)

where

D(X) = −
1

π

∫ +∞

−∞

ln |X −X ′|P (X ′) dX ′. (2.18)

Finally, the force balance equation(2.4) becomes:

∫ +∞

−∞

P (X)dX =
π

2
. (2.19)

In EHL contacts, the number of physical parameters can be significantly reduced into

a set of dimensionless parameters. The physical parametersto be reduced areα, E ′, η0,

R, w, andus, and two different families of reduced parameters have beenwidely used.

The first set of parameters to be introduced here is known as Moes parameters [102],M
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andL. By defining:

ᾱ = αph

and recallingλ from equation(2.16), the Moes parameters,M andL may be defined

from:

ᾱ = L

√
M

2π
,

and

λ =
3π2

8M2
.

Dowson and Higginson [33] introduced a second family of three non-dimensional

parameters: the load parametersW , the material parametersG and the speed parameters

U to characterize each load situation. These define the following relationships for the line

contact:

W =
w

E ′R
,

G = αE ′,

U =
η0us

2E ′R
.

These parameters are related to Moes parameters [102] in thefollowing expressions:

M = W (2U)−1/2 ,

and

L = G (2U)1/4 .

These parameters are enough to define any non-dimensional line contact case.

2.4.2 Point Contact

In case of a circular contact, the Hertzian pressure profile is given by:

p(x, y) =





ph

√
1−

(
x
a

)2
−
(

y
a

)2
if |x2 + y2| < a2

0 otherwise
(2.20)

whereph is the maximum Hertzian pressure:

ph =
3F

2πa2
,
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anda is the Hertzian radius:

a3 =
3FR

2E ′
,

whereR is the reduced radius of curvature,F is applied point load andE ′ is the reduced

elastic modulus.

Let us define the following dimensionless variables as:

X =
x

a
Y =

y

a
ρ̄ =

ρ

ρ0
η̄ =

η

η0
P =

p

ph

H =
hR

a2
D =

d R

a2

Hence

X =
x

a
⇒ x = aX ⇒ ∂x = a∂X,

Y =
y

a
⇒ y = aY ⇒ ∂y = a∂Y,

P =
p

ph

⇒ p = phP ⇒ ∂p = ph∂P.

For an isothermal steady state flow, the Reynolds equation(2.5) may be written as:

∂

∂x

(
ρh3

η

∂p

∂x

)
+

∂

∂y

(
ρh3

η

∂p

∂y

)
− 6us

∂(ρh)

∂x
= 0, (2.21)

using the dimensionless variables, equation(2.21) may be written as:

∂

∂X

(
ρ̄H3

η̄λ

∂P

∂X

)
+

∂

∂Y

(
ρ̄H3

η̄λ

∂P

∂Y

)
−

∂

∂X
(ρ̄H) = 0, (2.22)

where

λ =
6usη0R

2

a3ph
.

Using the same dimensionless variables, equation(2.7) may be written as:

H = H0 +
X2 + Y 2

2
+ D(X, Y ), (2.23)

where

D(X, Y ) =
2

π2

∫ +∞

−∞

∫ +∞

−∞

P (X ′, Y ′)dX ′dY ′

√
(X −X ′)2 + (Y − Y ′)2

. (2.24)



Chapter 2 20 Governing Equations

Finally, the force balance equation(2.9) becomes:

∫ +∞

−∞

∫ +∞

−∞

P (X, Y )dXdY =
2π

3
. (2.25)

Similar to the line contact case, the parameters:

ᾱ = αph

and

λ =
6usη0R

2

a3ph

are related to Moes parameters [102],M andL, as follows:

ᾱ =
L

π

(
3M

2

)1/3

,

and

λ =

(
128π3

3M4

)1/3

.

In the late 1970s, Hamrock and Dowson [52] introduced the following relations for the

point contact problems:

W =
F

E ′R2
,

G = αE ′,

U =
η0us

2E ′R
.

These parameters are related to Moes parameters [102] in thefollowing expressions:

M = W (2U)−3/4 ,

and

L = G (2U)1/4 .

Again these parameters are enough to define any non-dimensional circular point contact

case.
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2.4.3 Lubricant Properties

The dimensionless variables:

ρ̄ =
ρ

ρ0
η̄ =

η

η0
P =

p

ph

can be used to obtain the dimensionless forms of the density-pressure relationship and

the viscosity-pressure relationships defined above. The Dowson and Higginson density

model given in equation(2.10) has the following dimensionless form:

ρ̄ (P ) =
0.59× 109 + 1.34P ph

0.59× 109 + P ph

. (2.26)

Also, the dimensionless Roelands viscosity model defined inequation(2.13) is given by:

η̄ (P ) = exp

(
αp0

z

(
−1 +

(
1 +

P ph

p0

)z))
. (2.27)

2.5 A Modified Reynolds Equation

The solution of differential equations depends upon the boundary conditions. Of the

equations discussed so far, the only differential equationto be discussed explicitly is the

Reynolds equation, see equations (2.16) and (2.22), which needs to be solved on a1D

fluid domain for line contact problems, and a2D fluid domain for point contact problems.

LetΩf represent the fluid domain within which an EHL contact is defined. A specification

of pressureP is required at the boundary∂Ωf of fluid domainΩf in order to determine

the pressure distribution across the fluid domainΩf . Generally, it is assumed that, at the

boundary of the contact regionΩf , the pressure of the lubricant is equal to the ambient

pressure. Pressure lower than the vapour pressure is physically unacceptable, thus the

fluid will cavitate and the pressure will remain equal to the vapour pressure. This process

is called cavitation [36, 41, 104], and since both the vapourpressure and the atmospheric

pressure are very small compared to the pressure generated inside an EHL contact, they

can be treated as zero, hence the pressure is limited from below by zero. Moreover, the

principle of mass conservation applied at the boundary of the cavitation region [36] results

in the following dimensionless Reynolds boundary conditions:

P ≥ 0 on Ωf and ∇P.~n = 0 at the cavitation boundary, (2.28)
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where~n is the unit outward normal vector to the cavitation boundary. Since the exact

location of this boundary is unknown prior to computing the pressure this is known as free

boundary problem. Various treatments are possible to handle the free boundary problem,

see [36, 41, 105], for example. In this work, a penalty methodintroduced by Wu [105] is

used to handle the cavitation region. This method introduces an additional term (known as

the penalty term) for which the Reynolds equation (in both the line and the point contact

cases) modifies to

∇. (ǫ∇P )−
∂

∂X
(ρ̄H)− ξP− = 0, throughoutΩf , (2.29)

whereP = 0 is imposed on the computational domain boundary∂Ωf , ξ a suitably large

positive number andP− = min(P, 0). Note that this additional term has no effect where

P ≥ 0; however, it dominates in the regions whereP < 0. The term therefore has an

effect of forcing the negative pressure towards zero provided thatξ is sufficiently large.

2.6 Linear Elastic Model

In the previous sections the analytic expressions from the half-space approximation to

the linear elasticity equation have been used to calculate the elastic deformation of con-

tacting surfaces in semi-infinite elasticity domains. The half-space approximations only

provide the elastic deformation at the surfaces of contacting elements and therefore no

knowledge is provided as to the full displacement or stress fields within the contacting el-

ements. Moreover the elastic deformation at each point requires the information of overall

pressure distribution through the fluid domainΩf . In an alternative approach [49–51] the

elastic deformationD of the contacting bodies can also be modelled by solving Lam´e’s

equation of linear elasticity numerically on a finite two dimensional domainΩ for line

contact problems and a finite three dimensional domainΩ for point contact problems,

with appropriate boundary conditions. In discrete form this uses the information from

neighbouring points to define the elastic deflection at each point in the domain. The

other advantage of this method is that it yields additional solution information such as

displacement, and derived fields such as stress, throughoutthe solid components, which

is not possible using traditional half-space approach as discussed above. A view of the

3D domainΩ, showing the fluid boundary (Ωf ) and the bottom boundary (ΩD), is given

in the Figure 2.6. In [50] it is demonstrated that a geometry of size60 × 60 × 60 (non-

dimensional) is sufficiently large to provide solutions forwhich the elastic deformation at

the contact is no longer dependent on the domain size. Hence this is adopted throughout
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Figure 2.6: A view of the 3D elasticity domainΩ showingΩf (the fluid boundary) and
ΩD (the bottom boundary)

this thesis. Note that a cross-section of the 3D domain (theXZ-plane whereY = 0)

defines the 2D elasticity domain for the line contact problems.

The linear elasticity equation reads [76]:

∂

∂xj

(
cijkl

∂uk

∂xl

)
= −Fi, (2.30)

whereFi is the body force e.g. due to gravity or other external forces, and repeated

suffices imply summation over the number of space dimensions. The fourth order tensor

is defined by

cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.31)

andλ andµ (known as Lamé’s coefficients) are material properties given by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Hereδij is the Kronecker delta, whilstE is the Young’s modulus andν is the Poisson

ratio of the solid component that is being deformed. In EHL the body force is assumed

to be zero, with all of the non-negligible contributions to the elastic deformation coming

from the high pressure at the contact, so equation (2.30) can be written as:

∂

∂xj

(
cijkl

∂uk

∂xl

)
= 0. (2.32)
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The resolution of equation (2.32) in a domainΩ is subject to the following boundary

conditions [51]:






u = 0 at the bottom boundaryΩD;

σn = njcijkl
∂uk

∂xl
= −δidp at the fluid boundaryΩf ;

σn = 0 elsewhere,

(2.33)

whered represents the dimension of the elasticity domain.

2.6.1 Non-dimensionalisation

In order to get a suitable non-dimensional form of equation (2.32), let us define dimen-

sionless variables as follows:

Xi =
xi

a
, Uk =

ukR

a2
P =

p

ph
and Cijkl = cijkl ×

a

Rph
.

Hence equation (2.32) can be written as:

∂

a∂Xj


Rph

a
Cijkl

∂
(

a2Uk

R

)

a∂Xl


 = 0,

or
∂

∂Xj

(
Cijkl

∂Uk

∂Xl

)
= 0, (2.34)

where the corresponding boundary conditions (2.33) become:






U = 0 at the bottom boundaryΩD;

σn = njCijkl
∂Uk

∂Xl
= −δidP at the fluid boundaryΩf ;

σn = 0 elsewhere.

(2.35)

2.6.2 Equivalent problem

In [51], it is demonstrated that the two contacting solid components with material proper-

ties(E1, ν1) and(E2, ν2) can be reduced to an equivalent solid component with equivalent

material properties(Eeq, νeq) such that:

Eeq =
E2

1E2(1 + ν2)
2 + E2

2E1(1 + ν1)
2

{E1(1 + ν2) + E2(1 + ν1)}2
(2.36)
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νeq =
E1ν2(1 + ν2) + E2ν1(1 + ν1)

E1(1 + ν2) + E2(1 + ν1)
. (2.37)

Moreover, the non-dimensional elasticity tensor for equivalent problem implies:

Cijkl = cijkl(Eeq, νeq)×
a

Rph

= cijkl(Eeq ×
a

Rph

, νeq) = cijkl(Enew, νeq). (2.38)

Under the same pressure distribution inΩf , the solution of the equivalent elasticity prob-

lem gives the total elastic deformation of both contacting solids [51]. If both contact

surfaces have same material properties(E, ν) then the equivalent Young’s modulus and

Poisson’s ratio for the equivalent problem reduces to:

Eeq =
E

2
and νeq = ν.

A simplified expression ofEnew in equation (2.38) can be obtained by using expressions

of the Hertzian half contact widtha and the maximum Hertzian pressureph defined for

the line contact problems:

Enew = Eeq ×
a

Rph
=

E

2
×

a.π.a

2wR
=

πE

4wR
× a2 =

πE

4wR
×

8wR

πE ′
=

2E

E ′
,

where

E ′ =
E

1− ν2
.

Hence

Enew = 2E ×
(1− ν2)

E

= 2(1− ν2). (2.39)

For the point contact case, a similar procedure can be applied to defineEnew by using

expressions of the Hertzian radiusa and the maximum Hertzian pressureph defined for

the point contact problems:

Enew = Eeq ×
a

Rph
=

E

2
×

2πa3

3FR
=

πE

3FR
× a3 =

πE

3FR
×

3FR

2E ′
=

πE

2E ′
,

using the definition ofE ′ given above implies:

Enew =
π

2
(1− ν2). (2.40)
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By usingEnew, the dimensionless total elastic deformation of the contacting solid com-

ponents is obtained by solving equation (2.34) subject to the boundary conditions (2.35)

in appropriate domains. The elastic deflectionD(X) in equation (2.17) andD(X, Y ) in

equation (2.23) is related to the displacement fieldU through the following relation:

D = −Uz |Ωf
.

2.7 Summary

In this chapter, the line and the point contact EHL equationsare introduced, followed by

their non-dimensional forms. The equations (2.16), (2.17), (2.19), (2.26) & (2.27) define

a complete non-dimensional isothermal steady state EHL line contact problem. On the

other hand the equations (2.22), (2.23), (2.25), (2.26) & (2.27) define a complete non-

dimensional isothermal steady state EHL circular point contact problem. Note that due

to dependencies of density and viscosity relationships upon the pressure, the Reynolds

equation is highly nonlinear. Moreover, two ways are described to calculate the elas-

tic deformation: the first, so-called the half-space approximation of the linear elasticity

equation, which is given in the relations (2.18) & (2.24) for the line and the point contact

cases respectively, whilst the latter is concerned with thenumerical solution of the Lamé’s

equation of linear elasticity in appropriate domains [49–51]. Throughout this thesis, the

latter approach is considered for the elastic deformation solution and the issue of the high

computational and memory costs of this approach to solve EHLproblems are discussed.

Indeed, the primary focus of this thesis is to develop fast, efficient and reliable numerical

techniques for the solution of this problem. Since our concern is primarily with these

numerical methods we focus exclusively on the equivalent reduced geometry problem in

the remainder of this work.



Chapter 3

Numerical Methods

3.1 Introduction

In this chapter we discuss various numerical methods used throughout this thesis for the

solution of discretized forms of steady-state EHL problems. In the first section, a brief in-

troduction to the finite element method (FEM) is provided. Later, it is demonstrated that

the discretized forms of EHL problems reduce to systems of nonlinear algebraic equa-

tions. The Newton method is described for obtaining the numerical solution of systems

of nonlinear equations, whilst for the solution of linear systems arising at each Newton it-

eration both direct and iterative approaches are discussed. Later in this chapter multigrid

methods [21, 100] are explained to give a general introduction of this class of solution

method. Finally, a description of an open source software library [57] is provided since

this is used as the framework for the implementation of different techniques discussed

throughout this chapter.

3.2 Finite Element Method

Many physical phenomena in science and engineering, e.g. fluid dynamics, solid me-

chanics, electromagnetics, biomechanics, etc., can be represented in terms of partial dif-

ferential equations. The finite element method (FEM) [18, 35, 40, 93, 109] is a numerical

technique to find the approximate solution of such partial differential equations. The ba-

27
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sic idea of the finite element method is to divide the domain (on which the equation is

prescribed) into a number of finite elements, consisting of simple convex shapes whose

vertices are known as nodes, to obtain an approximate solution. The division of the do-

main into finite elements is known as finite element mesh and the process is itself called

mesh generation.

By way of motivation, the finite element method is explained for a simple elliptic

partial differential equation in a domainΩ ⊂ R
d (d = 1, 2, or 3) with ∂Ω representing its

boundary. The Poisson equation [35] involves in finding a solutionu ∈ R
d such that:

−∇2u = f in Ω, (3.1)

subject to the boundary conditions:

u = g0 on ΓD 6= φ

∇u.~n = g1 on ΓN ,
(3.2)

where∇2 =
∑d

i=1
∂2

∂x2
i

is a d-dimensional Laplacian operator in cartesian coordinates,

f ⊂ R
d is the source function,ΓD ∪ ΓN = ∂Ω, whilst~n is a unit normal to the boundary

∂Ω. Note that where the value ofu is specified on the part of boundaryΓD these are

known as Dirichlet boundary conditions, while in the remaining part of the boundary

ΓN = ∂Ω\ΓD the conditions specified in terms of the normal derivative are known as the

Neumann boundary conditions. The finite element approximation consists of replacing

the strong form of the problem by a weak form [35, 93]. This is obtained by multiplying

an appropriate test functionv ∈ H1
0 (Ω) (see below) on both sides of equation (3.1) and

integrating over the domainΩ. This yields:

−

∫

Ω

v∇2udΩ =

∫

Ω

vfdΩ, (3.3)

applying the Green’s formula [93] on the left-hand side yields the required weak formu-

lation: ∫

Ω

∇u.∇vdΩ−

∫

∂Ω

(∇u.~n)v ds =

∫

Ω

fvdΩ, (3.4)

or ∫

Ω

∇u.∇vdΩ =

∫

Ω

fvdΩ +

∫

∂Ω

(∇u.~n)v ds. (3.5)

Before proceeding to next step, let us consider the above more rigorously by first defining
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the space of square integrable functionsL2(Ω) [18,35], given by

L2(Ω) :=

{
u : Ω→ R |

∫

Ω

u2dΩ <∞

}
,

where the norm associated with this space (known as theL2 norm) is given by

‖u‖2 = ‖u‖L2(Ω) =

(∫

Ω

u2dΩ

) 1

2

.

Now the integrals in the weak form will be well defined if the dot product of the gradients

of the functionsu andv, and the functionsf , v andg1 are square integrable. Such func-

tions are the members of a well known space called the SobolevspaceH1(Ω) [18, 35]

which is defined as:

H1(Ω) :=

{
u : Ω→ R | u,

∂u

∂xi
∈ L2(Ω) for i = 1, .., d

}
.

The space does not take into account the Dirichlet boundary conditions thus the solution

space is defined as

H1
E(Ω) :=

{
u ∈ H1(Ω) | u = g0 onΓD

}

where, as noted above, the test space should be

H1
0 (Ω) :=

{
v ∈ H1(Ω) | v = 0 onΓD

}
.

Now, equation (3.5) can be written more precisely as:

∫

Ω

∇u.∇vdΩ =

∫

Ω

fvdΩ +

∫

ΓN

g1v ds. (3.6)

The finite element method consists of approximatingu by replacing the weak problem

by a finite-dimensional problem. This is achieved by taking finite-dimensional subspaces:

Sh
E ⊂ H1

E andSh
0 ⊂ H1

0 [35]. For this purpose, the domainΩ is divided into a set ofm

non-overlapping elements interconnected atn+nD discrete nodes (wheren is the number

of nodes inΩ \ ΓD andnD is the number of nodes onΓD). This then defines the finite-

dimensional subspace:Sh
0 = span{N1, N2, ...., Nn} of piecewise functions which are

continuous across the whole domainΩ and zero on the Dirichlet boundary. In the simplest

case (which is the focus of this thesis) each of these elements is a simplex (triangle in2D,

tetrahedron in3D) and the functions in the basis set are uniquely associatedwith each
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nodePj in Ω \ ΓD for j = 1, 2, .., n, and satisfy the following properties [93]:

Nj(Pi) =

{
1 if Pi = Pj

0 if Pi 6= Pj .
(3.7)

For the finite-dimensional solution subspaceSh
E the basis set is extended by adding an-

othernD basis functions which correspond to the nodes on the Dirichlet boundaryΓD

in order to take into account the Dirichlet boundary conditions [35]. Since the set of

the basis functions of the test subspace is subset to that of the basis set of the solution

subspace so the kind of approximation is generally referredto as the Galerkin approxi-

mation [18, 35, 40, 109]. The Galerkin finite element approximation: uh ∈ Sh
E is of the

form:

uh =

n+nD∑

i=1

ui Ni

or

uh =
n∑

i=1

ui Ni +

n+nD∑

i=n+1

ui Ni, (3.8)

where the values ofu1, u2, ...., un are unknowns whileun+1, un+2, ...., un+nD
are given by

the Dirichlet boundary conditions. So replacingu in equation (3.6) with the approxima-

tion given in (3.8) andv with Nj for j = 1, 2, ...., n, we have a system ofn equations in

n-unknowns which is given by

n∑

i=1

ui

∫

Ω

∇Ni.∇NjdΩ =

∫

Ω

fNjdΩ +

∫

ΓN

g1Nj ds−

n+nD∑

i=n+1

ui

∫

Ω

∇Ni.∇NjdΩ ,

for j = 1, 2, ..., n. In particular whenu = g0 = 0 on ΓD, thenSh
E is same asSh

0 in the

Galerkin approximation, and also the above system reduces to

n∑

i=1

ui

∫

Ω

∇Ni.∇NjdΩ =

∫

Ω

fNjdΩ +

∫

ΓN

g1Nj ds . (3.9)

The above system can typically be written in matrix notationas

Ku = f , (3.10)

with u = [uj ] and

K = [Kji], Kji =

∫

Ω

∇Nj.∇NidΩ
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and

f = [fj ] =

∫

Ω

fNjdΩ +

∫

ΓN

g1Nj ds.

(Note that ifg0 6= 0 the only change is some additional contributions to certaincompo-

nents of the right-hand sidef .)

The matrixK is referred to as the global stiffness matrix. Note that the entry Kji of the

global stiffness matrixK will always be zero unless the nodes associated with the basis

functionsNj andNi belong to the same element of the mesh. This leads to the observa-

tion that the global stiffness matrix will be sparse, and thej-th row of the global stiffness

matrix will only have the nonzero entries in itsi-th column if the nodesj andi belong to

the same element. In other words, one need to only think of a patch of elements sharing a

common nodej. Therefore, in practice, it is useful to calculate the element stiffness ma-

trices for each element separately and then summing up theircontributions to the global

stiffness matrix by

Kji =

∫

Ω

∇Ni.∇NjdΩ =

m∑

e=1

∫

Ωe

∇Ni.∇NjdΩe

This process is known as an assembly process [93]. A similar procedure is to be carried

out for the right hand side vectorf i.e.

f =
m∑

e=1

Iefe where Ie ∈ R
n×(d+1)

where

fe =

∫

Ωe

fNjdΩe +

∫

ΓN∩∂Ωe

g1Nj ds.

Finally, the finite element meshing ofΩ ⊂ R
d may involve: line elements (R), tri-

angles/rectangles (R
2) or tetrahedra/bricks (R

3) [35, 109] etc. In this work, triangular

(R2) and tetrahedral elements (R
3) are used. The basis functions discussed above can be

approximated to an arbitrary accuracy using polynomials which generally depend upon

the number of nodes used in an element. For convenience, we only consider the two-

dimensional case in detail here, i.e.Ω ⊂ R
2. A triangular FE mesh ofΩ is shown in the

Figure(3.1) with an element in zoom-in interconnected at three nodes numbered locally

from 1 to 3 in anti-clockwise direction. The polynomial basis functions defined on the

three node triangular element are linear and are given by [109]:

N e
I =

aI + bIx + cIy

2A
for I = 1, 2, 3,
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+
1

2

3

Figure 3.1: A triangulation

with

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2

a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3

a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1,

while Ae is area of element:

Ae =
a1 + a2 + a3

2
.

For further details about different types of elements and the approximation: the reader is

referred to standard finite element texts, for example, see [109].

Finally, note that the finite element discretization of nonlinear partial differential equa-

tions leads to systems of nonlinear algebraic equations (this is discussed in detail in Chap-

ter 4).

3.3 Newton Method

Newton’s method [68] is considered as a powerful numerical tool for solving systems

of nonlinear algebraic equations. These systems arise in many applications, including the

discretization of nonlinear partial differential equations. Consider a system ofn nonlinear
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algebraic equations:

F(u) = 0, (3.11)

here the residualF : Rn → Rn andu is a vector ofn-unknowns, expressed as:

u = [u1, u2, ......, un]
T .

Alternatively, equation(3.11) can be written as:

Fi(u) = 0 i = 1, 2, ..., n. (3.12)

In the neighbourhood ofu, Taylor series can be used to expand each functionFi as:

Fi(u + δu) = Fi(u) +

n∑

j=1

∂Fi

∂uj
δuj + h.o.t. i = 1, 2, ..., n. (3.13)

In vector notation this is:

F(u + δu) = F(u) + F
′(u)δu + h.o.t. (3.14)

Ignoring the higher order terms (h.o.t.), equation(3.14) can be written as:

F(u) + F
′(u)δu ≈ 0,

in the case where we wish to solveF(u + δu) = 0. This re-arranges to

F
′(u)δu ≈ −F(u), (3.15)

whereF′(u) is the system Jacobian:

F
′(u) =




∂F1

∂u1

∂F1

∂u2
.... ∂F1

∂un

∂F2

∂u1

∂F2

∂u2
.... ∂F2

∂un

: : : :
∂Fn

∂u1

∂Fn

∂u2
.... ∂Fn

∂un




.

Solving equation(3.15) at an initial guessuold, for the correctionδu, yields an update:

u
new = u

old + δu.
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Sometimes this full Newton approach fails to converge (ifu
old is not sufficiently close to

the true solution) and so damping of the Newton update is often used in order to improve

convergence of the Newton iteration:

u
new = u

old + λδu,

whereλ ∈ (0, 1] is often known as a damping factor or step length. The whole Newton

process can be summarized in the following steps:

1. Setu0 = an initial guess.

2. Fork = 0, 1, 2, ... until convergence, repeat:

(a) Solve

F
′(uk) δuk = −F(uk)

for the Newton stepδuk.

(b) Setuk+1 = u
k + λδuk, where0 < λ ≤ 1.

(c) Test for convergence.

A significant advantage of Newton’s method is that it is generally expected to achieve

quadratic convergence provided the initial guess is good enough for it to converge. How-

ever, if the initial guess is not sufficiently good then the Newton iteration may diverge.

The computation of the Newton step is most expensive part of the Newton iteration since

a linear system must be solved. This may be found by means of a direct method or an

iterative method.

Generally, it is not necessary to solve the linear system exactly at each Newton itera-

tion, i.e. it is only necessary to solve the linear system to asufficient precision in order to

determine a good enough Newton update to achieve convergence of the nonlinear system.

The inexact Newton methodmakes use of an iterative method for the solution of the

linear system at each Newton iteration so that it may be solved approximately. One way

of implementing this is to choose the stopping criterion forthe Newton step as:

‖F′(uk) δuk + F(uk)‖ ≤ ηk‖F(uk)‖ , (3.16)

where the variableηk is called a forcing term. The best choice of this parameter ishighly

empirical, however different choices are suggested in, forexample, [34]. A large value

of this parameter may leads to a poor determination of the Newton step which can cause

divergence. On the other hand a relatively very small value of this parameter, although
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leading to fewer Newton iterations, leads to more computational work overall. It should

be noted that in this approach the accuracy of the inner solves increases whenever the

solution comes closer to solution of the nonlinear system.

3.4 Sparse Direct Method

Direct methods for solving linear systems may be defined as the methods that seek the

exact solution of a linear system in a finite number of steps (in the absence of rounding

errors). The direct methods generally involve algorithms that reduce the system matrix to

some special and easily solvable form e.g. a triangular formor equivalently to the product

of lower triangularL and upper triangularU factors. This is known asLU decomposi-

tion [26]. The discretization techniques such as the finite element discretization of partial

differential equations generally leads to large and very sparse system matrices. Efficient

direct algorithms for sparse matrices are much more complicated than for the dense ma-

trices [32]. The main complication is due to the need for efficiently handling the fill-in

in the factorsL andU . Note that fill-in are the nonzero entries in the factorsL andU

that are not present in the original matrix. The fill-in significantly affects the efficiency

of a direct algorithm both in terms of computational time andmemory requirements. A

typical direct algorithm [32] assumes the solution in the following four phases:

1. A pre-ordering phase that applies a suitable algorithm tore-order the rows and

columns of system matrix in order to reduce fill-in. This is normally independent

of the numeric values of the system matrix.

2. Symbolic analysis which determines the nonzero structures of the factorsL and

U and creates suitable data structures for these factors. This helps to predict the

memory requirement for the numerical factorization. However, this is only an es-

timate, the actual requirement depends upon pivoting chosen (for stability) during

the numerical factorization.

3. Numerical factorization which computes the factorsL andU of the original matrix.

4. A solve phase that computes the solution of the system by performing two triangular

solves using the factors computed in step 3.

Sometime an additional phase, iterative refinement, is usedafter the solution phase to

improve the accuracy of the solution. This only requires repetition of step 4 above but

using the residual on the right-hand side. Numerical factorization is generally the most
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time consuming phase while the solve phase is about an order of magnitude faster [32].

There are a number of algorithms associated with each phase which have their own impact

on the performance of a direct algorithm for some class of problems. A number of efficient

sparse direct algorithms [26, 27] have been developed so farand further work is still

going on in this field. Amongst them, UMFPACK [27–30] is a public domain software

which is used throughout this thesis. UMFPACK is based on theUnsymmetric-pattern

MultiFrontal method. This combines the step 1 & 2 and thus assumes the solution only

in three steps. UMFPACK factorizesPAQ, PRAQ, or PR−1AQ into the product LU,

whereP andQ are permutation matrices which reduces the fill-in. Importantly, the other

role ofP is to maintain the numerical accuracy of the solution (hencethis depends upon

numerical values and not just the sparsity pattern). Finally, R is a diagonal matrix of row

scaling factors. For more details, one is referred to [27].

The use of a direct method to determine a Newton step may be a good choice if the Ja-

cobian can be computed and stored efficiently and the cost of factorization of the Jacobian

is not excessive or the Jacobian is dense (rendering iterative methods ineffective). Another

possible reason of the choice of a direct method may be the failure of convergence of it-

erative methods for a specific problem. Despite the fact of being more expensive in terms

of Jacobian factorization and storage requirements, sparse direct methods are still used in

real applications due to their robustness.

In some applications the discretization of1D problems often leads to tridiagonal sys-

tems which can be efficiently solved usingThomas’ algorithm [97]. The said algorithm

is a simplified version of Gaussian elimination method whichrequires onlyO(n) opera-

tions to find the exact solution [97]. This method employs in two steps: in the first step

all the nonzero entries in the diagonal below the main diagonal are eliminated while the

second step the backward substitution is used to obtain the solution. It may be extended

for any banded matrix for which the bandwidth is independentof n: exploiting the fact

that no fill-in occurs beyond the band structure.

3.5 Newton Krylov Methods

Recall from the previous section that an inexact Newton strategy uses an iterative linear

approach for the inner solve to approximate a Newton step. Asthe name suggests a

Newton Krylov method uses a Krylov subspace based iterativetechnique for its inner

linear solve. For a solution of a linear systemAx = b, a Krylov subspace linear iterative
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solver seeks the approximation of the form:

xk = x0 + x̃,

wherex0 is an initial iterate and̃x ∈ Kk, a kth Krylov subspace spanned by a set ofk

vectors{r0, , Ar0, ...., A
k−1r0} with r0 = b − Ax0 the initial residual. Thus a Krylov

subspace method involves matrix-vector products and builds an approximation from an

appropriate Krylov subspace. In the following sections a few such methods are discussed

which have been frequently used throughout this work.

3.5.1 Conjugate Gradient Method

The conjugate gradient method (CG) is the most well known method from the general

family of Krylov subspace methods. It was originally developed as a direct method

for symmetric positive definite (SPD) systems in 1952 by Hestenes and Stiefel [56] but

was not widely used due to being considered computationallyexpensive. Later in 1971,

Reid [89] revived it as an iterative method for large sparse SPD systems. For a symmet-

ric positive definite matrixA, solvingAx = b is equivalent to minimizing the following

quadratic function:

f(x) =
1

2
xT Ax− xT b. (3.17)

This minimum occurs when the gradient is zero:

∇f(x) =
1

2
AT x +

1

2
Ax− b = 0,

and sinceAT = A,

Ax− b = 0.

The CG is basically a line-search method which seeks to minimize a one-dimensional

problem by finding the value ofαk that minimizesf(xk+1) where:

xk+1 = xk + αkpk, (3.18)

and the vectorpk denotes the search direction from the existing iteratexk. Using rela-

tion (3.18), the following recurrence relation holds for the residual vectors:

rk+1 = b−Axk+1 = rk − αkApk. (3.19)

Various strategies are possible to determine the search directions. Recall from linear
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algebra that a gradient of a function defines a direction in which the function increases

most rapidly, and hence the negative gradient provides the direction of steepest descent.

Such a choice of a direction yields the so-called steepest descent method [44, 93]. Note

that the negative gradient of the function (3.17) at a given approximationxk defines the

residualrk = b−Axk, therefore the iteration (3.18) becomes:

xk+1 = xk + αkrk.

The drawback of this method is its slow convergence for the ill-conditioned systems. An-

other approach is to generate a set of search directions{p0, p1, ...., pn−1} which are con-

jugate to each other with respect toA (i.e. A-orthogonal). TheA-orthogonality condition

reads:

pT
i Apj = 0 ∀ i 6= j.

An important property of such a set is that alln vectors are linearly independent with

respect to the inner product generated byA. Methods using such a set of directions are

called conjugate direction methods [24]. The Gram-Schmidt[93] conjugation generates a

set of conjugate directions from a set ofn linearly independent vectors{u0, u1, ..., un−1},

however the disadvantage of this method is its computational complexity as it requires

the storage of all previous search directions. This computational complexity is reduced

significantly by conjugate gradient method [24,35,44,93] which uses a simple recurrence

relation to define the search directions. As the name suggests, this is basically a conjugate

direction method which involves producing search directions by conjugation of residu-

als. The recurrence relation used to define such search directions is basically a linear

combination of the residualrk+1 and the previous search directionpk i.e.

pk+1 = rk+1 + βkpk, (3.20)

where the parameterβk is chosen such that the new search directionpk+1 is A-orthogonal

to previous search directionpk and is given by:

βk =
rT
k+1rk+1

rT
k rk

. (3.21)

Putting all the steps together constitutes the Algorithm 1.

Note that the CG method only requires the storage of the last two residual vectors,

one last search direction and only one matrix vector multiplication per iteration. Hence

the computational cost per iteration isO(m) wherem is the number of non-zero entries
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Algorithm 1 Conjugate Gradient Method [35]
1: computep0 = r0 = b− Ax0

2: for k = 0, 1, 2, ....until convergence (see (3.16)),do
3: αk =

rT
k

rk

pT
k

Apk

4: xk+1 = xk + αkpk

5: rk+1 = rk − αkApk

6: (test for convergence)

7: βk =
rT
k+1

rk+1

rT
k

rk

8: pk+1 = rk+1 + βkpk

9: end for

of A. In short, the conjugate gradient method is considered as a powerful numerical tool

for solving problems which involve large and sparse symmetric positive definite system

matrices.

3.5.2 Generalized Minimal Residual Method

The generalized minimal residual method (GMRES) [94] was designed by Saad and

Schultz in 1986, to solve linear systemsAx = b with unsymmetric coefficient matrices

A. WhenA is unsymmetric, then minimizing the function(3.17) is no longer equivalent

to solvingAx = b. In the GMRES method [94] the minimizing functional in the Krylov

subspaceKk(A, r0) is chosen as the 2-norm of the residualrk. Starting withx0 as an

initial guess and definingr0 = b−Ax0 with v1 = r0/‖r0‖2, the GMRES method uses the

Arnoldi method [93,94] implemented through modified Gram-Schmidt orthogonalization

which sequentially generates orthonormal basis vectors{v1, v2, ...., vk}, such that:

span{v1, v2, ...., vk} = span{v1, Av1, ...., A
k−1v1} = Kk(A, v1).

Let Vk denote a matrix withvj in its j-th column andHk denote ak×k upper Hessenberg

matrix formed by the numbershij computed at the same time by Arnoldi method [93],

then the reduction ofA to Hessenberg form is given by [93,94]:

Hk = V T
k AVk.

The relation betweenVk andVk+1 is given by:

AVk = Vk+1H̄k, (3.22)
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whereH̄k is (k + 1)× k upper Hessenberg matrix:

H̄k =

[
Hk

hk+1

]
; hk+1 = (0, 0, ....., h(k+1)k).

Thek-th GMRES approximation seeks to approximate the solution of the form:

xk = x0 + x̃,

wherex̃ ∈ K(A, r0) and this is determined by using the firstk-orthonormal vectors gen-

erated by the algorithm, i.e:

x̃ = Vky,

therefore

xk = x0 + Vky, (3.23)

wherey is a k-vector which is chosen to minimize theL2-norm of the corresponding

residual (‖rk‖2) [93,94], where

‖rk‖2 = ‖b− Axk‖2

= ‖b− A(x0 + Vky)‖2

= ‖r0 − AVky‖2,

using the relation(3.22), we have

‖rk‖2 = ‖βv1 − Vk+1H̄ky‖2 ; β = ‖r0‖2

= ‖Vk+1

(
βe1 − H̄ky

)
‖2 ,

since columns ofVk+1 are orthonormal so the functionalf(y) to be minimized is equiva-

lent to, see [93,94]:

f(y) = ‖rk‖2 = ‖βe1 − H̄ky‖2 . (3.24)

Here e1 = {1, 0, 0, ...., 0) is a unit vector of lengthk + 1. Finally the GMRES algo-

rithm [94] requires a solution of(k + 1) × k least square problem to obtain the optimal

value ofy. A summary of all the above steps is given in Algorithm 2.

Assuming the use of exact arithmetic, GMRES converges in at mostn steps [94]. Note

that at each GMRES iteration, an orthogonalization of a vector vk+1 to Kk(A, v1) is re-

quired against all the previous constructed vectors{vi}
k
i=1. This grows the computational

cost at each iteration likeO(kn). In other words an increase in the number of GMRES
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Algorithm 2 GMRES [93]
1: Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0

β

2: for j = 1, 2, ..., k, ...until satisfied,do
3: computewj := Avj

4: for i = 1, ...., j do
5: hij := (wj, vi)
6: wj := wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0, setk := j and exit loop (go to step11)
9: vj+1 = wj/hj+1,j

10: end for
11: define the(k + 1)× k Hessenberg matrix̄Hk = {hij}1≤i≤k+1,1≤j≤k

12: computey the minimizer of‖βe1 − H̄ky‖2 andxk = x0 + Vky.

steps increases both the memory usage and the computationalcost, therefore, it becomes

impractical wheneverk is significantly large. The issues with large computationalcosts

of this method is often avoided by restarting the iteration after a fixed number of steps,

and this is known as restarted GMRES or GMRES(m), see [93, 94]. In the GMRES(m)

version, if the convergence is not achieved fork ≤ m wherem is specified as some upper

bound of dimension of Krylov-subspace used, then GMRES is restarted with a new initial

guessx0 set toxm. This process is repeated until convergence is achieved. Note however

that a small value ofm may lead to slow convergence of GMRES(m) or even entire failure

of convergence, however the optimum choice tends to vary from one problem to another.

3.5.3 Other Iterative Techniques

The GMRES [94] method is very effective in solving general non-symmetric systems

though at the cost of large storage requirements. The biconjugate gradient (BCG) method

[93] is another approach for non-symmetric systems which produces two mutually or-

thogonal sequence of residuals, however providing no minimization of residual any longer

unlike the GMRES. In other words, takingv1 = r0/‖r0‖2, this method consists of a pro-

jection process onto

Kk(A, v1) = span{v1, Av1, ...., A
k−1v1},

orthogonal to

Lk(A
T , v1) = span{v1, A

T v1, ...., (A
T )k−1v1}.
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In 1980s, a variant of BCG so-called conjugate gradient squared algorithm (CGS) [101]

was proposed in order to avoid usage ofAT , and to provide faster convergence rate with al-

most the same computational cost. However this method suffers with irregular behaviour

in convergence. In order to overcome these negative effectsvan der Vorst [101] proposed

another variant of BCG so-called biconjugate gradient stabilized method (Bi-CGSTAB).

3.6 Preconditioning

The previous section is concerned with different iterativeapproaches for solving the linear

systemAx = b resulting from linearization of some nonlinear system. Iterative methods

for solving sparse linear systems are generally superior todirect approaches in terms of

memory. However, with increasing problem sizes, not only does the amount of compu-

tational work to carry out a single iteration increase, but also the number of iterations

required to achieve convergence typically grows [35]. Thus, when this growth in iter-

ations is too great, iterative methods can suffer from a lackof robustness compared to

direct methods. This lack of performance of an iterative method is generally due to an

unfavourable distribution of the eigenvalues of the systemmatrix [35], causing the system

to become more ill-conditioned as the system gets larger. Frequently, the performance of

an iterative method can be improved significantly by using preconditioning [35, 44, 93].

The term preconditioning is regarded as a way of transforming the original linear system

into an equivalent system, which has the same solution as theoriginal one, but also has a

more favourable spectrum [35] (i.e. the eigenvalues of the transformed system are tightly

clustered within a small region compared to the original system). Additionally, a good

preconditionerM is a matrix for which it is inexpensive to calculate the effect of its in-

verse over an arbitrary vectorν. A preconditionerM can be applied to a linear system in

three different ways [93].

• Left preconditioning leads to preconditioned system:

M−1Ax = M−1b (3.25)

• Right preconditioner leads to preconditioned system:

AM−1u = b, x = M−1u (3.26)

which involves substitution of a new variableu for x.
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• Split preconditioning can also be applied ifM is available in factored form i.e

M = M1M2, this defines the following preconditioned system:

M−1
1 AM−1

2 u = M−1
1 b, x = M−1

2 u . (3.27)

Recall from the previous section that the conjugate gradient method may be applied

to systems with symmetric positive definite matrices. It should be noted that the pre-

conditioned matricesM−1A and AM−1 are no longer necessarily symmetric positive

definite [93] even ifM is. Thus strategies preserving symmetry need to be considered.

One way to preserve symmetry is the use of split preconditioning. Given a symmetric

positive-definite matrixM , the availabilityM = LLT leads to preconditioned system:

L−1AL−T u = L−1b, x = L−T u,

where the preconditioned system matrixL−1AL−T is symmetric and positive-definite,

therefore the conjugate gradient method is applicable to this system. Applying the con-

jugate gradient method to this system in a straightforward manner produces an algorithm

which, at first appearance, requiresL to be computed. However a few careful substitu-

tions lead to preconditioned conjugate gradient [35, 44, 93], see Algorithm 3, which only

requires one to compute the affect ofM−1 over an arbitrary vector.

Algorithm 3 Preconditioned Conjugate Gradient Method [35]
1: computer0 = b− Ax0, solveMz0 = r0, setp0 = z0

2: for k = 0, 1, 2, ....until convergence,do
3: αk =

zT
k

rk

pT
k

Apk

4: xk+1 = xk + αkpk

5: rk+1 = rk − αkApk

6: (test for convergence)
7: solveMzk+1 = rk+1

8: βk =
zT
k+1

rk+1

zT
k

rk

9: pk+1 = zk+1 + βkpk

10: end for

The GMRES algorithm [94] is developed for general systems thus the preconditioned

GMRES algorithm can be obtained for any type of preconditioning. Recall from the

previous section that the GMRES algorithm generates the minimization of theL2-norm

of the residual vector at each step. It should be noted that the left preconditioner modifies

the residual vector while this is not the case in right preconditioning. In other words the

GMRES algorithm minimizes the original residual in case of right preconditioning. In
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this section the preconditioned GMRES [93], see Algorithm 4, is only provided for right

preconditioning which is used throughout this thesis.

Algorithm 4 Right Preconditioned GMRES [93]
1: Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0

β

2: for j = 1, 2, ..., k, ...until satisfied,do
3: computewj := AM−1vj

4: for i = 1, ...., j do
5: hij := (wj, vi)
6: wj := wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2. If hj+1,j = 0, setk := j and exit loop (go to step11)
9: vj+1 = wj/hj+1,j

10: end for
11: define the(k + 1)× k Hessenberg matrix̄Hk = {hij}1≤i≤k+1,1≤j≤k

12: computey the minimizer of‖βe1 − H̄ky‖2 andxk = x0 + M−1Vky.

As stated above, a good preconditionerM should be such that the resultant precondi-

tioned (transformed) system has a tight clustered set of eigenvalues within a small interval

(or a small number of small intervals), and additionally theeffect of its inverse over an

arbitrary vector is inexpensive to compute. A number of preconditioning techniques have

been devised so far [13,25,35,93], among them [13] is a survey paper providing a review

of different preconditioning techniques have been developed. Some common examples of

preconditioning techniques include: diagonal preconditioners, incomplete LU factoriza-

tion (ILU), sparse approximate inverse (SPAI) and multigrid preconditioners. The diag-

onal or Jacobi preconditioner consists of choosing the preconditionerM as the diagonal

of the system matrixA. This preconditioner has only the effect of diagonal scaling of

A. Moreover, if the system matrix is partitioned into blocks as a result of partitioning of

unknown variables, then choosing only the diagonal blocks yields a preconditioner the

so-called block diagonal preconditioner.

The incomplete LU factorization consists of computing approximate LU factors of

the system matrixA such that the residual matrixR = A − LU satisfies some specified

constraints, such as having zeros in prescribed locations [93]. In other words, some con-

straints are applied to control the level of fill-in (see Section 3.4) in LU factors. In the

simplest case where no fill-in is allowed in the factorization process is called no fill-in

ILU or ILU( 0). The accuracy of ILU(0) can be improved by allowing some fill-in during

the factorization process. This involves by introducing a function called “fill-in level” to

control the level of fill-in in the LU factors [13].
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Sparse approximate inverse (SPAI) preconditioners involves computing the sparse ap-

proximation ofA−1 explicitly and using this as a preconditioner for an iterative method [13,

25]. One simple way to compute a sparse approximate inverseM is by minimizing

‖I − AM‖ in the Frobenius norm, subject to some sparsity constraints[13,25,93]. Thus

computation ofM involves solvingn independent least square problems. Comprehensive

details of this approach can be found in [25,93].

Finally, we describe in details the multigrid preconditioning in the following section

which includes a detailed introduction to multigrid methods and different variants of this

approach.

3.7 Multigrid

Multigrid methods [21,100] began to be developed in1960s but efficient applications first

arose with the work of Brandt [19]. A multigrid approach for EHL problems was first

used by Lubrecht [73]. Later on Venner [102] and Goodyer [45]contributed in enhancing

the efficiency of the application of multigrid methods to theReynolds equation in EHL

problems. Unlike these previous applications of multigridto EHL problems, in this work

multigrid methods are used as a preconditioner for the elasticity equation.

By way of motivation for this a general overview of multigridmethods is provided.

For the sake of simplicity, let us assume thatΩh represents a uniform grid of element size

h, andAhxh = bh is a corresponding discrete system that needs to be solved onΩh. We

further assume that̃xh is an approximation to the exact solutionxh obtained, for example,

by applying few steps of a relaxation scheme (e.g. Jacobi, Gauss-Seidel, etc.). Then the

erroreh can be defined as:

eh = xh − x̃h,

andrh is the residual:

rh = bh − Ahx̃h.

The error and the residual can be related to each other through the error equation as

follows:

Ah(x̃h + eh) = bh

Aheh = bh − Ahx̃h

Aheh = rh. (3.28)
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If the error equation is solved the solution can be correctedby:

xh = x̃h + eh. (3.29)

Note that the relaxation on the error equation (3.28) is equivalent to that on the original

system [21]. So nothing can be obtained through this processthat could not have been

achieved by solving the original equation. However, if the error eh in (3.29) can be ap-

proximated in some efficient way then an improved solution can be obtained through the

correction:

x̃h ← x̃h + eh. (3.30)

Note that many relaxation schemes e.g. Jacobi, Gauss-Seidel, etc. have a smoothing

effect on the error of approximation that means they eliminate the high frequency error

components efficiently but damp slowly the low frequency error components [100]. Be-

cause of this property such relaxation methods are also known as smoothing methods or

smoothers. On the other hand the smooth errors are damped more quickly on a coarser

grid (for instance a grid with mesh size2h) and thus the relaxation will be more effective

and relatively cheap on such grid [100]. Suppose that an approximation to the erroreh is

obtained onΩ2h through relaxation or any other suitable procedure (e.g. a direct method)

then that approximation can be used to correct the fine grid solution (hence known as

coarse grid correction). A combination of error smoothing and its coarse grid correction

leads to so-called two-grid method [21, 100]. A two-grid method is mainly based on the

following components [21,35,93,100]:

• Smoother: a relaxation scheme which efficiently reduces thehigh-frequency error

components through its first few iterations.

• Prolongation or interpolation: a transfer operatorIh
2h which maps a coarse grid

vectorv2h to a fine grid vectorvh:

Ih
2h : v2h → vh

• Restriction: a transfer operatorI2h
h which defines a mapping from a fine grid to a

coarse grid:

I2h
h : vh → v2h

Having defined these components, a two-grid method can be summarized in the following

steps:
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• relaxν1 timesAhxh = bh onΩh with an initial guess forxh

• restrict the residual:rh = bh − Ahx̃h to the coarse grid byr2h = I2h
h rh

• solve the coarse grid problem:

A2he2h = r2h (3.31)

• prolongate the coarse grid errore2h to the fine grid byeh = Ih
2he2h and correct the

fine grid approximation:̃xh ← x̃h + eh

• relaxν2 timesAhxh = bh onΩh with the initial guess̃xh.

The numbersν1 andν2 are also known as pre-and post-smoothing iterations respectively.

In practice, the computational complexity of the coarse grid problem (3.31) will itself be

very large therefore it is useful to solve it approximately.To obtain such an approximation,

a further two-grid strategy can be applied to the problem (3.31). This process can be

repeated recursively until a coarsest grid is reached for which a direct solution is possible

at very low cost. Such a recursive application of a two-grid correction scheme leads

to what is called a true “multigrid method” [21, 100]. An example of a sequence of

subsequent coarse grids used in the multigrid are shown in Figure 3.2. The recursive

Figure 3.2: A sequence of hierarchical grids

definition of multigrid method is summarized in Algorithm 5.

The method outlined in Algorithm 5 is regarded as a1 V-cycle of multigrid. A

schematic of a multigrid V-cycle is also shown in Figure 3.3.The details about other
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Algorithm 5 x̃h=MGV(Ah, x0, bh) [21]
1: applyν1 pre-smoothing steps onAhxh = bh with an initial guessx0

2: restrict the residual:rh = bh − Ahx̃h to the coarse grid byrH = IH
h rh

3: if coarsest grid is reachedthen
4: solve:AHeH = rH

5: else
6: eH=MGV(AH , 0, rH)
7: end if
8: correct the fine grid approximation:̃xh ← x̃h + Ih

HeH

9: applyν2 post-smoothing steps onAhxh = bh with the initial guess̃xh

ν1

ν1

ν1

ν1

exact coarsest level

finest level

ν2

ν2

ν2

ν2

restriction interpolation

Figure 3.3: Schematic of a multigrid V-cycle

multigrid cycles can be found in the standard texts, for example, see [21, 100]. Note that

the error of the improved solution may still be large, thus the process can be repeated

until the solution satisfies some prescribed stopping tolerance. Multigrid methods are

designed to haveh-independent convergence and they therefore require onlyO(N) op-

erations [100]. Instead of using multigrid as a stand-alonesolver they can be combined

with iterative methods such as conjugate gradient [44], GMRES [94] etc. to accelerate

their convergence. In fact, a single V-cycle of the multigrid can be used as an efficient

preconditioner (to approximately solve the preconditioned system:Mz = r) for an iter-

ative solver with the computational complexity proportional to the size of problem. So

this is the context in which a multigrid approach will be described, and used, here. The

multigrid approach can be classified into two variants called geometric multigrid (GMG)

and algebraic multigrid (AMG), and these are discussed in the following sections.
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3.7.1 Geometric Multigrid

The geometric multigrid method [21, 100] (GMG) is explicitly tied to the underlying

differential equation and the discretization scheme used.It depends on the availability of

both discretization and underlying mesh information. Thisinvolves generating a sequence

of hierarchical meshesΩ1, Ω2, ....., Ωn such thatΩ1 ⊂ Ω2 ⊂ .....Ωn. Such a hierarchy

of grids is obtained through uniform or adaptive refinementsof elements of a particular

grid, where each selected element is automatically dividedinto smaller finer elements.

Figure 3.2 shows a sequence of such4-hierarchical grids with rectangular elements. This

then requires the discretization of a problem at each individual grid level. Moreover the

inter-grid transfer operators are defined using the geometric information.

3.7.2 Algebraic Multigrid

This is an extension of the multigrid approach where the construction of the multilevel hi-

erarchy takes place algebraically, hence the name algebraic multigrid (AMG) [17, 21, 93,

100]. AMG is being considered to develop effective and robust preconditioners for Krylov

subspace methods [17]. In AMG, the re-discretization of a problem on each coarse level

and the geometric interpretation are not required to build the hierarchy of discrete sys-

tems. Therefore AMG has an advantage over the geometric multigrid regarding its ease

in implementation, however this can also restrict the applicability of the approach too (e.g.

the system matrix must satisfy certain AMG criteria [17]). An algebraic multigrid method

builds the hierarchy of operators directly from the original system matrix. AMG can be

distinguished into two phases: the setup phase and the solvephase. In the setup phase

the hierarchy of linear systems is developed along with the transfer operators: the pro-

longation operatorIfine
coarse and the restriction operatorIcoarse

fine = (Ifine
coarse)

T . The Galerkin

condition is usually used to construct the coarse-grid operator [17,21,35]:

Acoarse = Icoarse
fine AfineIfine

coarse.

The second phase is regarded as the solution phase where the standard multigrid cycles

are performed (typically a single V-cycle is used for preconditioning). The unknowns

of subsequent coarse levels are simply the subsets of the original unknowns of the prob-

lem. This is based on finding the strength of connections fromthe entries of a system

matrix [100]. Note that a pointi has a strong connection with pointj if:

−aij = θ max
k 6=i
{−aik}, θ ∈ (0, 1]
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i.e the unknownxi strongly depends on the unknownxj or the unknownxj strongly

influences the unknownxi. This eventually leads to partitioning into a set of coarse points

C and fine pointsF . Once the coarse grid points have been chosen then the interpolation

weights are defined. Having defined the prolongation operator, remaining operators are

defined as stated above.

The standard coarsening is usually performed in two passes of the data. In the first

pass, a preliminary partitioning intoC andF unknowns is done. In the second, some

of the initial F unknowns are reassigned asC unknowns to further satisfy the prolonga-

tion requirements. If the second pass is not performed, the coarsening strategy is referred

to as one or single pass coarsening [17, 21]. Single pass coarsening can have a signifi-

cant effect on the setup phase where it not only reduces the time required by coarsening

process but also reduces the storage requirement for the coarse grid operators. It has a

further significant effect on the solution phase i.e it reduces the overall time required to

perform a multigrid cycle. However a drawback is that it may result in a poorer quality

preconditioner [17].

Throughout this thesis an open source softwareHSL MI20 [1, 17] has been used for

the AMG preconditioning. AMG preconditioning [17] requires that the system matrix

must have positive diagonal entries and most of the off-diagonal entries must be negative

(the diagonal should be large compared to the sum of the off-diagonals). This software

offers the flexibility of user-selected choices including the choice of smoother, coarsest

grid solver and the choice of the type of coarsening. Note that one pass coarsening is

assumed throughout this thesis if not explicitly stated otherwise.

3.8 KINSOL Implementation

The KINSOL (Krylov Inexact Newton Solver) software is a member of the family of the

SUNDIALS software suite [57] developed to solve systems of nonlinear algebraic equa-

tions. This is a C implementation of previous software NKSOL[23], a Newton-Krylov

solver written in FORTRAN to solve systems of nonlinear algebraic equations. However

KINSOL provides some additional features including a widerchoice of linear system

solvers and tolerances. The linear solver modules available within KINSOL can be cate-

gorized into two families: direct family and “spils” family. The former offers two direct

linear solvers for dense and banded system matrices, while the latter comprises of three

scaled preconditioned iterative linear solvers which are based on Krylov subspace meth-

ods. These are respectively scaled preconditioned GMRES [94] (SPGMR), a scaled pre-

conditioned Bi-Conjugate Gradient Stable method [101] (SPBCG) and a scaled precon-
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ditioned Transpose-Free Quasi-Minimal Residual method [43] (SPTFQMR). In addition

to these modules, KINSOL also provides an option of a user-own linear solver module.

KINSOL implements a modified Newton strategy with a direct linear solver where the

Jacobian updates are made as infrequently as possible [57] to balance the overall high

computational costs. However the drawback of this method isthat it requires more non-

linear iterations to converge. In the case of spils solvers,KINSOL implements an inexact

Newton strategy. For the Krylov iterative solvers, right preconditioning is available within

KINSOL. In this case KINSOL requires user subroutines to setup and solve the precondi-

tioned system of the formMz = r whereM denotes a preconditioning matrix. There are

two options to choose the length of Newton step (λ): in the first caseλ is set to1 (standard

Newton strategy) while the second option (global strategy)uses a linesearch strategy to

determine a suitable length of Newton step [57,68].

In KINSOL the stopping criteria for the Newton method are based upon both the

nonlinear residual and the step length. For the former, the Newton iteration must pass a

stopping test:

‖F (un)‖∞ < U
1

3 ,

where U is the machine unit roundoff. For the latter, the Newton method will terminate

when the maximum scaled step is below a given tolerance

‖λδn‖∞ < U
2

3 .

Only the first condition is considered a successful completion of KINSOL. The second

condition (small step) may indicate that the iteration is stalled near a point for which the

residual is still unacceptable. Note that the above mentioned values are defaults however

KINSOL also accepts the user’s own specified values for thesetolerances.

In the inexact Newton strategy, i.e. when the preconditioned iterative solver is used,

the convergence of the overall nonlinear solver is coupled with the accuracy with which

the linear system is solved at each Newton iteration. Specifically, the stopping criterion

for the Krylov iteration is chosen as:

‖F ′(un) δn + F (un)‖ < (ηn + U)‖F (un)‖ .

Different choices ofηn are available within KINSOL, including the user’s own choice or

a default value of0.1.

Finally the system Jacobian can be supplied to KINSOL by a user subroutine or it

can be approximated within KINSOL using the difference quotient [68]. Since Krylov
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iterative solvers require Jacobian-vector multiplication, the difference quotient approxi-

mation of Jacobian-vector product avoids the storage of Jacobian matrix thus a significant

amount of memory may be saved particularly for large systems.

Throughout this thesis KINSOL is applied using the SPGMR module for the precon-

ditioned iterative solutions if not explicitly stated otherwise. The SPGMR module uses

the GMRES method with no restarts. User subroutines have been provided to calculate

Jacobian-vector products at each inner iteration and to solve the preconditioning systems.

For the direct solutions, an external linear solver (UMFPACK [28]) is attached within

KINSOL.

3.9 Summary

The content of this chapter reflects the numerical techniques which have been used in the

rest of this thesis. First of all, the finite element method has been explained for the so-

lution of partial differential equations. Later on, various numerical techniques have been

discussed for the solution of linear and nonlinear systems of equations. These methods

can be implemented within the framework of the KINSOL library [57], which has been

used throughout this work to develop codes for the solution of EHL equations. KINSOL

allows the choice of inner solvers: both direct and preconditioned iterative solvers. For

the direct inner-solver, UMFPACK [28] can be attached for inner direct solves. KIN-

SOL implements an inexact Newton strategy with a preconditioned iterative linear solver.

Three scaled preconditioned linear iterative solvers: GMRES [94], Bi-CGStab [101] and

TFQMR [43] are available within KINSOL through the modules SPGMR, SPBCG and

SPTFQMR respectively [57]. The SPGMR module with no scalingis used throughout

this thesis if not explicitly stated otherwise. Finally a user subroutine may be supplied to

KINSOL to solve the preconditioned system at each linear iteration. Moreover a standard

Newton strategy, i.e. a full step, is taken to update the solution at each Newton iteration.
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Discretization and Solution

4.1 Overview

In this chapter the full-system finite element approach to the solution of EHL equation is

discussed. In the following section we described a standardGalerkin finite element dis-

cretization of EHL line and point contact equations. Later on, an alternative discretization

of the Reynolds equation is discussed in order to stabilize the pressure solution. This is

then followed by an explanation of the coupling procedure and a description of the New-

ton method applied to the fully-coupled nonlinear system. Later in this chapter a new

preconditioning strategy is proposed and discussed for thedevelopment of an efficient

iterative solver for the resulting linear systems at each Newton step. Following a consid-

eration of different variants of the solver used in this work, the accuracy of the solution is

justified both for the line and the point cases compared to previously published results.

4.2 Finite Element Discretization

In the previous chapter, a general finite element procedure was introduced for the Pois-

son equation. Now in this section the finite element discretization of the EHL equations

is discussed both for the line and the point contact cases. Initially we consider a stan-

dard Galerkin discretization but, as the Reynolds equationis convection-dominated in

the contact region it exhibits oscillations in its pressuresolution [73, 102]. Therefore in

53
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Ωf

Ω

ΩD

Figure 4.1: A 2D domain and a triangulation

Section 4.2.3 an alternative discretization of the Reynolds equation is discussed. This is

shown to be more stable in the sense that the unphysical pressure oscillations no longer

appear.

4.2.1 Line Contact

In this subsection, standard Galerkin discretizations of the Reynolds equation (inΩf ) and

the linear elasticity equation (inΩ) are considered. Recall from Chapter 2 that the line

contact problems requires the Reynolds equation to be solved on a one dimensional do-

mainΩf for pressure distribution, and the linear elasticity equation on a two dimensional

domainΩ for the elastic deformation solution. Let∂Ω be the boundary of the domainΩ

andΩf be the part of∂Ω that corresponds to the fluid region, see Figure 4.1. For the line

contact case the penalised Reynolds equation (2.29) takes the following form:

d

dX

(
ǫ(P )

dP

dX

)
−

d

dX
(ρ̄H)− ξP− = 0, (4.1)



Chapter 4 55 Discretization and Solution

whereǫ(P ) = ρ̄H3

η̄λ
andP = 0 on ∂Ωf . For a weighting functionWp (which is zero on

∂Ωf ), the weak form of this equation is:

∫

Ωf

ǫ(P )
dP

dX

dWp

dX
dΩf −

∫

Ωf

ρ̄H
dWp

dX
dΩf + ξ

∫

Ωf

P−WpdΩf = 0. (4.2)

Similarly, for a weighting functionWu (which has two components, both of which are

zero onΩD), the weak form of the linear elasticity equation (2.34) is:

∫

Ω

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj
dΩ =

∫

Γt

njCijkl
∂Uk

∂Xl
WudΓt, (4.3)

whereΓt(= ∂Ω − ΩD) is the part of∂Ω that corresponds to the traction boundary. As

shown in equation (2.35) njCijkl
∂Uk

∂Xl
represents the normal traction and is given as

{
njCijkl

∂Uk

∂Xl
= 0 (for i = 1, 2) onΓt − Ωf ,

njCijkl
∂Uk

∂Xl
= −δi2P onΩf .

Equation (4.3) can therefore be written as:

∫

Ω

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj

dΩ +

∫

Ωf

δi2PWudΩf = 0. (4.4)

Consider a partition ofΩ into neu triangular elements,{Ωe}, such thatnep of these

elements have edges onΩf (and these edges form a partition ofΩf ). Let {Ωfe} be the set

of thesenep line segments (edges) and definePh
u ⊂ H1

0 andPh
p ⊂ H1

0 to be piecewise

linear finite element solution spaces over{Ωe} and{Ωfe} respectively. Equations (4.2)

and (4.4) can be written as a sum over these elements:

nep∑

Ωfe=1

(∫

Ωfe

ǫ(P )
dP

dX
.
dWp

dX
dΩfe −

∫

Ωfe

ρ̄H
dWp

dX
dΩfe + ξ

∫

Ωfe

P−WpdΩfe

)
= 0,

(4.5)
neu∑

Ωe=1

∫

Ωe

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj
dΩe +

nep∑

Ωfe=1

∫

Ωfe

δi2PWudΩfe = 0. (4.6)

On each elementΩfe, P in equation (4.5) may be approximated by:

P ≈ P e =
2∑

j=1

N e
j P

e
j , (4.7)

whereN e
j are local linear basis functions andP e

j are nodal values ofP at the vertices of
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the element. So replacingP in equation (4.5) with the approximation given in equation

(4.7) andWp with N e
i for i = 1, 2, followed by the usual finite element assembly process,

leads to a discrete system ofnp nonlinear equations, wherenp is total number of nodes in

Ωf , excluding boundary nodes. Note that there is no explicit requirement for the meshes

of the domainsΩ andΩf to match. However numerical experience [98] suggests that a

similar resolution is required in bothΩ andΩf , thus we have used a single mesh in this

work for ease of implementation.

Similarly, on each elementΩe, U in equation (4.6) is approximated by:

U ≈ Ue =

3∑

q=1

W e
q Ue

q , (4.8)

whereW e
q are local linear basis functions andUe

q are nodal values of the displacement

U within the element. So replacingU in equation (4.6) with the approximation given in

equation (4.8), P with the approximation given in equation (4.7) andWu with (W e
q , 0)T

and then(0, W e
q )T for q = 1, 2, 3, leads (after finite element assembly) to a discrete system

of 2 × nu linear equations, wherenu is total number of nodes inΩ excluding Dirichlet

boundary nodes onΩD.

Note that the choice of the linear elements discussed above leads to highly sparse

problems and, as we shall see next, preconditioning techniques such as algebraic multigrid

are very appropriate for linear elements. The price that is paid for using these elements

however is their lower accuracy (than higher degree approximations) which means that

much finer meshes are required that might be the case for higher order elements.

Finally, the discrete form of the load balance equation (2.19) is obtained by using the

finite element assembly of the approximation given in (4.7):

nep∑

Ωfe=1

∫

Ωfe

2∑

j=1

N e
j P e

j dΩfe −
π

2
= 0. (4.9)

4.2.2 Point Contact

This subsection considers a standard Galerkin discretization of the Reynolds equation (in

Ωf ) and the linear elasticity equation (inΩ) for the point contact case. Here the Reynolds

equation needs to be solved on a two dimensional domainΩf , and the elasticity equation

on a three dimensional domainΩ. Again we define that∂Ω is the boundary of the domain

Ω andΩf is the part of∂Ω that corresponds to the fluid region. The penalised Reynolds
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equation (2.29) for the point contact case reads:

∇. (ǫ∇P )−
∂

∂X
(ρ̄H)− ξP− = 0, (4.10)

whereP = 0 around∂Ωf . For a weighting functionWp (Wp = 0 on∂Ωf ), the weak form

of the equation (4.10) is:

∫

Ωf

ǫ∇P.∇WpdΩf −

∫

Ωf

ρ̄H
∂Wp

∂X
dΩf + ξ

∫

Ωf

P−WpdΩf = 0. (4.11)

Similarly, for a weighting functionWu (Wu = 0 on ΩD), the weak form of the linear

elasticity equation is:

∫

Ω

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj
dΩ =

∫

Γt

njCijkl
∂Uk

∂Xl
WudΓt, (4.12)

whereΓt(= ∂Ω−ΩD) is the part of∂Ω that corresponds to the traction boundary. As for

the line contact casenjCijkl
∂Uk

∂Xl
represents the normal traction and for the point contact

case, it is given by

{
njCijkl

∂Uk

∂Xl
= 0 (for i = 1, 2, 3) onΓt − Ωf ,

njCijkl
∂Uk

∂Xl
= −δi3P onΩf .

Equation (4.12) can therefore be written as:

∫

Ω

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj
dΩ +

∫

Ωf

δi3PWudΩf = 0. (4.13)

Now consider a partition ofΩ into neu tetrahedral elements,{Ωe}, such thatnep of

these elements have triangular faces onΩf (and these triangular faces form a partition of

Ωf ). Let {Ωfe} be the set of thesenep triangles and definePh
u andPh

p to be piecewise

linear finite element spaces over{Ωe} and{Ωfe} respectively. Equations (4.11) and (4.13)

can be written as a sum over these elements:

nep∑

Ωfe=1

(∫

Ωfe

ǫ∇P.∇WpdΩfe −

∫

Ωfe

ρ̄H
dWp

dX
dΩfe + ξ

∫

Ωfe

P−WpdΩfe

)
= 0, (4.14)

neu∑

Ωe=1

∫

Ωe

Cijkl
∂Uk

∂Xl

∂Wu

∂Xj
dΩe +

nep∑

Ωfe=1

∫

Ωfe

δi3PWudΩfe = 0. (4.15)
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On each elementΩfe, P in equation (4.14) is approximated by:

P ≈ P e =
3∑

j=1

N e
j P

e
j , (4.16)

whereN e
j are local linear basis functions andP e

j are nodal values ofP within the element.

So replacingP in equation (4.14) with the approximation given in equation (4.16) and

Wp with N e
i for i = 1, 2, 3, followed by the usual finite element assembly process, leads

to a discrete system ofnp nonlinear equations, wherenp is total number of nodes in

Ωf , excluding boundary nodes. Similarly, on each elementΩe, U in equation (4.15) is

approximated by:

U ≈ Ue =

4∑

q=1

W e
q Ue

q , (4.17)

whereW e
q are local linear basis functions andUe

q are nodal values of the displacement

U within the element. So replacingU in equation (4.15) with the approximation given

in equation (4.17), P with the approximation given in equation (4.16) and Wu with

(W e
q , 0, 0)T , (0, W e

q , 0)T and then(0, 0, W e
q )T for q = 1, ..4, leads (after finite element

assembly) to a discrete system of3 × nu linear equations, wherenu is total number of

nodes inΩ excluding Dirichlet boundary nodes.

Finally, the discrete form of the load balance equation is obtained by using the finite

element assembly of the approximation given in (4.16):

nep∑

Ωfe=1

∫

Ωfe

3∑

j=1

N e
j P e

j dΩfe −
2π

3
= 0. (4.18)

4.2.3 Stabilization

For heavily loaded cases the value of diffusivity,ǫ(P ) = ρ̄H3

η̄λ
, becomes very small in the

contact region due to large increases in the viscosity,η̄, of the lubricant used, and so the

Reynolds equation is convection-dominated in this region.In this situation the Galerkin

solution exhibits an oscillatory behaviour in the pressure, see for example [73, 102]. For

such cases, a standard Galerkin approximation of the Reynolds equation (discussed in

the previous section) is unsatisfactory [51]. In order to obtain a stabilized solution a

Streamline Upwind Petrov-Galerkin (SUPG) method [22] may be used. For the sake of

brevity, the implementation is explained for the point contact case only (the line contact

case being a simplification of this).

To describe the SUPG approach let us rewrite equation (4.10) (excluding penalty term)
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in the classical convection-diffusion form as follows:

−∇. (ǫ∇P ) + H
∂ρ̄

∂P

∂P

∂X
+ ρ̄

∂H

∂X
= 0,

or

−∇. (ǫ∇P ) + V.∇P + Q = 0, (4.19)

whereV = (V1, V2) = (H ∂ρ̄
∂P

, 0) andQ = ρ̄∂H
∂X

. The SUPG method applied to this kind

of problem consists of choosing the weighting functionWp in equation (4.14) to be of the

form:

Wp = Np + α
he

2|V |
V.∇Np

with

α = coth(Pe)−
1

Pe
, Pe =

|V |he

2ǫ
,

wherehe is the element size andPe is the local Peclet number of the elemente. In the

Galerkin procedure, oscillations will occur whenever|Pe| > 1. For more details, see for

example [22,35,51,108].

Note that if the discretization procedure given in Section 4.2.2 when applied to equa-

tion (4.19) with the new weighting function defined above endup with the following

form:

nep∑

Ωfe=1

(∫

Ωfe

ǫ∇P.∇NpdΩfe −

∫

Ωfe

ρ̄H
dNp

dX
dΩfe + α

he

2|V |

∫

Ωfe

(V.∇Np)
d(ρ̄H)

dX
dΩfe

)
= 0,

(4.20)

So replacingP in equation (4.20) with the approximation given in equation (4.16) and

Np with N e
i for i = 1, 2, 3, followed by the usual finite element assembly process, leads

to a discrete system ofnp nonlinear equations, wherenp is total number of nodes inΩf ,

excluding boundary nodes. This method introduces an additional stabilization term within

the Reynolds equation which is mesh dependent, therefore ithas no effect on the accuracy

of a converged solution in the limit as the mesh size goes to zero.

4.3 Solution Method

4.3.1 Coupling Procedure

The traditional half-space approaches are mainly based on aloose-coupling of the pres-

sure and film thickness solutions. In such an approach (e.g. [20, 46, 47, 73, 102, 104]),

each EHL equation is solved separately and an iterative linkis established between their



Chapter 4 60 Discretization and Solution

solutions. Typically under-relaxation is required to achieve convergence of the solution

and consequently a slow convergence rate may be obtained. A further decrease in under-

relaxation factor is required to achieve the convergence for heavily loaded cases, which

leads to a further decrease in the convergence rate [104].

In the fully coupled approach, all the discrete systems arising from the FEM dis-

cretization of EHL equations are coupled together to form a large nonlinear system of

equations for all of the unknowns, and this is solved in a single pass. Thus, no under-

relaxation is required and no extra treatment is required toachieve convergence for heav-

ily loaded cases (e.g. [50, 51]). Nevertheless, some heavily loaded cases may require a

better initial guess for a Newton procedure to achieve convergence.

4.3.2 Linearization

In Section 4.2 we discussed the discrete nonlinear systems arising from EHL equations.

Let us rewrite them in the following vector form:





RP (P,U, H0) = 0

RU(P,U) = 0

RH0
(P) = 0 ,

(4.21)

whereRP represents the residual of the system of nonlinear equations arising from the

discretization of Reynolds equation,RU is the residual of the linear system of equations

arising from discretization of the linear elasticity equation andRH0
is the residual of the

discretized load balance equation. In this work, a Newton procedure is applied to system

(4.21) to yield the following linear system at each outer iteration:




∂RP

∂P

∂RP

∂U

∂RP

∂H0

∂RU

∂P

∂RU

∂U
0

∂RH0

∂P
0

T 0







δP

δU

δH0


 =



−RP

−RU

−RH0


 . (4.22)

Starting with an initial estimate for the solution, the Newton procedure consists of solving

the linearized system (4.22) at each Newton iteration and this update is added to the

solution obtained at the previous iteration, to provide an updated solution. This process is

repeated until convergence is achieved.
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4.3.3 Structure of the Linear System

In what follows we write the Jacobian matrix in the system (4.22) in the following form:

J =




J11 J12 J13

J21 J22 0

J31 0 0


 , (4.23)

whereJ11 is a sparse block (tridiagonal in the line contact case) of size np × np. Also

J12, J21 andJ22 are highly sparse blocks of sizenp × (d × nu), (d × nu) × np and

(d × nu) × (d × nu) respectively, whered is 2 or 3 for line or point contact problems

respectively. Finally,J13 andJ31 are column and row vectors, respectively, of lengthnp.

Note thatnp ≪ nu since the Reynolds equation is solved in a domain of dimension d−1.

4.4 Preconditioned Iterative Solution

As described in the previous section the Newton method requires the solution of the linear

system (4.22) at each iteration which is the most expensive part of a Newton iteration.

Therefore one needs to solve this system as efficiently as possible in order to get the best

performance results. Both direct and iterative approachescan be used to solve the linear

system (4.22) at each Newton step. The objective of this study is to develop an efficient

preconditioned iterative solver so that the system (4.22) can be solved efficiently (in both

time and memory) at each Newton step, as compared to a state-of-the-art sparse direct

solver (e.g. [28]). This goal can be achieved if a good preconditioner is available at a

relatively low cost. A simplest choice of the preconditioner may be a block diagonal

preconditioner of the form:

P =




J̃11 0 0

0 J̃22 0

0 0 1


 ,

where J̃11 ≈ J11 and J̃22 ≈ J22 in some sense. This preconditioner can be used to

precondition the Reynolds and the elasticity block in system matrix (4.23) separately. In

order to get a better preconditioner, consider, for simplicity, the case where the force

balance equation is ignored. Then we have a(2× 2) block Jacobian matrix of the form

Ĵ =

(
J11 J12

J21 J22

)
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If we choose a left preconditioner̂P such that

P̂
−1 =

(
S−1 −S−1J12J

−1
22

0 J−1
22

)

then

P̂
−1

Ĵ =

(
S−1 −S−1J12J

−1
22

0 J−1
22

)(
J11 J12

J21 J22

)
=

(
S−1(J11 − J12J

−1
22 J21) 0

J−1
22 J21 I

)
.

For an ideal preconditioner

S = J11 − J12J
−1
22 J21,

i.e. all eigenvalues of̂P−1
Ĵ are equal to 1, thus the convergence should be obtained in

precisely2 iterations [77]. However, the question arises as to how cheaply the effect of

S−1 can be computed (or approximated) without formingS explicitly. It should be noted

that, sincenp ≪ nu, even with a relatively poor approximation of the Schur complement

S, still the vast majority of the eigenvalues ofP̂
−1

Ĵ will be equal to1. Furthermore, it will

be shown that the application of this method withS = J11 yields a preconditioner that is

both cost-effective and highly efficient in accelerating the convergence of GMRES [94].

In this work, an identity “preconditioner” is used for the single load balance equation.

Thus the preconditioner (to solvePz = r, at each GMRES iteration) used here is based

upon the following upper triangular form:

P =




J11 J12 J13

0 J̃22 0

0 0 1




In the case of line contact problems,J11 is a tridiagonal matrix, so the effect ofJ−1
11

over an arbitrary vectorν is calculated efficiently using the Thomas algorithm which is

O(np). The block preconditioner,̃J22 ≈ J22, of the elasticity block is undertaken by

either algebraic multigrid (AMG) preconditioning [1, 17] or geometric multigrid (GMG)

preconditioning [21, 100], which are designed to beO(nu). In the case of point contact

problems,J11 is no longer tridiagonal, but is still a highly sparse (and relatively small)

block, so a sparse direct solver [28] is used to compute the effect ofJ−1
11 over an arbitrary

vectorν.
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The overall algorithm to solve the preconditioned system:




J11 J12 J13

0 J̃22 0

0 0 1







zP

zU

zH0


 =




rP

rU

rH0


 (4.24)

therefore involves the following steps:

1. FormzH0
= rH0

2. Perform 1-V cycle of AMG or GMG to computẽJ−1
22 rU, which is the approximate

solution ofJ22zU = rU.

3. Using the calculated solutions in step-1 & step-2, solve:

J11zP = rP − J12zU − J13zH0

for zP using the Thomas algorithm in the line contact case or a sparse direct solver [28]

in the point contact case.

It should be noted that the application of AMG preconditioning [1, 17] requires that

the system matrix must have positive diagonal entries and most of the off-diagonal entries

must be negative (the diagonal should be large compared to the sum of the off-diagonals).

As described above, the size of theJ22 block is(d × nu)× (d× nu), which corresponds

to d × nu displacement unknowns withnu unknowns in each direction. If we order the

unknown displacements for each coordinate direction in turn, then theJ22 block is repre-

sented byd2 sub-blocks of sizes(nu×nu). In order to apply AMG preconditioning toJ22

we apply a single V-cycle to each of the diagonal sub-blocks,and neglect the off-diagonal

blocks. Finally, a single pass coarsening is used in AMG preconditioning. This strategy

leads to fewer and much sparser coarse level operators and therefore results in a signifi-

cant reduction in the memory usage and overall time. Moreover, a Gauss-Seidel smoother

is used both in AMG and GMG preconditioning. This approach topreconditioning the

linear elasticity equation has been found to be very effective provided the Poisson ratio is

not close to0.5 [16]. In this work a Poisson ratio0.3 has typically been used, however

we assess the effect of altering this value in Chapter 5. The equivalent Poisson ratio and

the Young’s modulus are then obtained according to equations (2.36) and (2.37) for the

reduced system models considered in this work.



Chapter 4 64 Discretization and Solution

4.5 Solver Layout

The main objective of this study is to propose a robust preconditioned iterative solver

which is both computationally and memory efficient comparedto a state-of-the-art sparse

direct solver [27–30]. For this purpose, a nonlinear solveris developed in ‘C’, using the

KINSOL [57] library to solve the nonlinear system (4.21). This nonlinear solver uses a

standard Newton strategy, i.e it employs a full Newton step.Further, the stopping criteria

for the Newton method is set to use the default values (see Section 3.8), if not explicitly

stated otherwise. KINSOL requires a user subroutine to compute the system function

(residual) of the nonlinear system (4.21) for a given value of current solution. The system

Jacobian is computed and stored at the same time while computing the system function

F . For the solution of the linearized system (4.22) at each Newton iteration, two variants

of the solver are considered. The difference in these two variants is the attachment of

different inner linear solvers within KINSOL for the solution of the linearized system

(4.22) at each Newton iteration.

• Sparse Direct Solver: In the first variant, an external sparse direct solver is at-

tached as an inner solver within KINSOL. Experience shows that UMFPACK [28]

is a very efficient choice, therefore, this is used in this work.

• Preconditioned Iterative Solvers:The second variant of the nonlinear solver con-

siders an iterative linear routine as the inner solver. If not explicitly stated other-

wise, this is the preconditioned GMRES method [94] (withoutrestarts) available

within KINSOL through the SPGMR module [57]. For the stopping tolerance:

(ηn + U)‖F‖ to terminate the GMRES iteration the value ofηn is supplied to KIN-

SOL. The choice ofηn is highly empirical, and varies for the type of loaded cases

being considered and the type of initial guess. The input initial guess is the Hertzian

pressure profile for pressure solution and a positive numberfor H0. With this poor

initial guess we have found thatηn = 10−6 works well in practice for the EHL

problems that we have considered. Any significant increase in this parameter may

lead to divergence of the solution as one can see that in the first few Newton iter-

ations, where‖F‖ may be large, a bigger choice of this parameter may not lead

to a good Newton step, and thus the Newton iteration may diverge. Furthermore,

some heavily loaded EHL cases may require a further decreasein this parameter. A

much smaller value of this parameter can suffer with some drawbacks however. One

drawback may be that as the Newton iterate progresses the decrease in‖F‖ leads

to successive drops in the linear solver tolerance and henceoversolving may cause



Chapter 4 65 Discretization and Solution

the computational work to increase. Another drawback is that the convergence of

the GMRES method may stall, especially, in the final few Newton iterations due to

roundoff errors of double precision arithmetic. To avoid such situation the maxi-

mum dimension of Krylov subspace used can be fixed to a suitable constant in order

to prevent the linear system from being oversolved, and the solution thus obtained

(even if the maximum dimension of the Krylov subspace used isreached) can be

used to update the Newton iterate. Another possible way is tochooseηn in such

a way that the linear solver tolerance remains fixed to a suitable value unless the

‖F‖ is not sufficiently small. In other words the inexact Newton strategy is only

implemented in the final few Newton iterations. Such a treatment will be explicitly

stated in the forthcoming text in Chapter 5.

A user subroutine is supplied to KINSOL for the evaluation ofthe Jacobian-vector

productJv for a given input vectorv where the matrixJ is the system Jacobian al-

ready available. Recall from Section 3.8 that only right preconditioning is available

for the linear iterative solvers within KINSOL. A user subroutine is also supplied

to solve the preconditioning systemPz = r, i.e. (4.24), at each GMRES itera-

tion, where different blocks of the preconditioning matrixP were already computed

along with the system Jacobian. The algorithm described in the previous section is

used to solve the preconditioned systemPz = r at each GMRES iteration. Finally,

the preconditioned iterative variant of solver is split into further two variants on

the basis of AMG and GMG preconditioning of̃J−1
22 zU = rU block in the precon-

ditioned system (4.24).

4.6 Accuracy of EHL Solution

In this section we demonstrate the accuracy of the fully-coupled line and point contact

solvers developed in this work. For this purpose the computed solutions are compared

against previously published results using the integral approach (based upon a half-space

formulation) in a finite difference based model. This comparison is discussed separately

both for line and point contact problems in the following subsections.

4.6.1 Line Contact

In this subsection, a comparison of the fully-coupled finiteelement line contact results

is established against a finite difference based model [102,103] in order to validate the

implementation for the test cases given in Table 4.1. We firstestablish this comparison



Chapter 4 66 Discretization and Solution

Table 4.1: Non-dimensional parameters for different line contact cases.
Parameters Test Case 1 Test Case 2

Moes parameter,L 10 10

Moes parameter,M 20 200

Maximum Hertzian pressure,ph 1.05G Pa 3.3G Pa
Viscosity index,α 1.7 × 10

−8Pa−1
1.7 × 10

−8Pa−1

Pressure-viscosity index,z 0.69 0.69

Table 4.2: Validation of line contact results.M = 20, L = 10 andph = 1.05 G Pa
Venner [102] This model

n Hc Hm Ps np Total dof Hc Hm Ps

1793 . 0.07404 0.758 1792 308435 0.08427 0.07361 0.78420
3585 . 0.07385 0.787 3584 552191 0.08428 0.07364 0.86492
7169 . 0.07375 0.825 7168 904665 0.08428 0.07365 0.87872
14337 . 0.07370 0.850 14336 1314207 0.08428 0.07365 0.88551
28673 . 0.07367 0.867 28674 1628545 0.08428 0.07365 0.89533
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Figure 4.2: Pressure and film thickness profiles:M = 20, L = 10 andph = 1.05 G Pa

for the Test Case 1 which is comparatively a moderately loaded case. The mesh size

(with np finite element pressure unknowns) is kept constant throughout the whole of the

fluid domainΩf : X = [−4.0 : 1.5], in order to have a fair comparison against the finite

difference based model. Table 4.2 gives a comparison of results from both models in

terms of the central film thickness(Hc), the minimum film thickness(Hm) and the height

of the pressure spike(Ps) (see Figure 4.2).

Venner [102] showed that the minimum film thickness is converging to0.07365 with
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Table 4.3: Validation of line contact results.M = 200, L = 10 andph = 3.3 G Pa
Venner [103] This model

n Hc Hm np Total dof Hc Hm Ps

1791 5.979 × 10
−3

5.466 × 10
−3

1791 282664 6.000 × 10
−3

5.448 × 10
−3

0.3167

3583 5.998 × 10
−3

5.502 × 10
−3

3584 426173 6.010 × 10
−3

5.480 × 10
−3

0.3073

7167 6.003 × 10
−3

5.512 × 10
−3

7167 700542 6.013 × 10
−3

5.491 × 10
−3

0.3579

14335 6.004 × 10
−3

5.516 × 10
−3

14335 1214206 6.014 × 10
−3

5.495 × 10
−3

0.3656

28671 6.005 × 10
−3

5.517 × 10
−3

28671 1628542 6.014 × 10
−3

5.497 × 10
−3

0.3931

n = 114689 (the number of finite difference unknowns for the pressure) and the corre-

sponding height of the pressure spike is0.879. The current model’s results are close to

these showing the validation and convergence of the currentsolver. A small difference in

the calculated results can be expected due to use of two different discretization methods

and the use of different elastic models. For the finest resolution case reported in Table 4.2

the relative difference between the computed minimum film thickness solutions is about

0.03% while that in the pressure spikes is about3%. In a different experiment reported

in [103], Venner et al. showed that the converged value of central film thickness is0.08401

with n = 28673 which only differs by0.3% with the solution computed using the current

model.

As a next test we consider a more heavy loaded case (Test Case 2given in Table 4.1)

with the fluid domainΩf : X = [−2.5 : 1.5]. The mesh size (corresponding to different

resolution cases) is again kept constant throughout the fluid domainΩf while a sufficiently

fine mesh is used in the elasticity domain. A comparison of results of current model

against a finite difference based model [103] is given in Table 4.3 in terms of the central

film thickness(Hc) and the minimum film thickness(Hm). As for the Test Case 1 the

computed results are again very close to those of published results, and that they again

appear to converge to same solution. The total relative difference between the converged

values is about0.15% for the central film thickness(Hc) and0.36% for the minimum film

thickness(Hm).

Finally note that the size of the mesh in the 2D elasticity domain may be shown to be

“sufficiently fine”: i.e. a further decrease in the mesh size within the elasticity domain

does not lead to a significant improvement in the accuracy (relative to the discretization

error). In fact it is even possible to obtain the solution at low cost using much coarser

meshes (like the one shown in Figure 4.1) without compromising on the accuracy of the

solution (this is discussed in more detail in the next chapter).
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Table 4.4: Non-dimensional parameters for the contact between steel surfaces [104].
Parameters Test Case 3 Test Case 4

Moes parameter,L 10 10

Moes parameter,M 20 200

Maximum Hertzian pressure,ph 0.45GPa 0.97GPa
Viscosity index,α 2.2 × 10

−8Pa−1
2.2 × 10

−8Pa−1

Viscosity at ambient pressure,η0 0.04 Pa s 0.04 Pa s
Total speed,us 1.6 m s−1

1.6 m s−1

Table 4.5: Validation of point contact results: Test Case 3.
Venner [104] This model

nx × ny Hc Hm np Total dof Hc Hm

64 × 64 (=4096) 0.41904 0.28622 4450 10486550 0.42306 0.28921
128 × 128 (=16384) 0.42872 0.29094 17732 14834838 0.42999 0.29123
256 × 256 (=65536) 0.43116 0.29218 67350 47440138 0.43129 0.29202

4.6.2 Point Contact

In this subsection, a comparison of the fully-coupled finiteelement point contact solver

is made with published results using the integral (half-space) approach in a finite dif-

ference based model [104]. This will enable us to validate the calculated point con-

tact results. The meshes used for this purpose have been generated with a uniform

mesh size (corresponding to three different resolutions) everywhere in the contact re-

gion (Ωf = [−4.5, 1.5] × [−3, 3]), which therefore provides a fair comparison with the

finite difference based model [104]. A comparison of the obtained results with the fi-

nite difference based model [104], is given in Table 4.5 in terms of central and minimum

film thicknesses (this is the only data provided in [104]) forthe Test Case 3 (given in

Table 4.4). It should be noted that the number marked ‘np’ represents the number of

pressure unknowns in the contact region and ‘Total dof’ represents total unknowns of the

fully coupled system. It can be seen that the calculated results are very close to that of

the finite difference based model. The difference between the two solutions decreases as

we switch to higher resolutions. For example, in the finest resolution case the relative dif-

ference between the central film thicknessHc solutions and the minimum film thickness

Hm solutions is about0.03% and0.05% respectively. Moreover, it should be noted that

both models use totally different approaches, therefore a small difference in the solutions

is expected even though they appear to converge to the same result.

A similar trend in the solution is observed for Test Case 4 which is a comparatively

more heavily loaded case. Table 4.6 provides a comparison ofresults obtained on fine

meshes against the finite difference based model [104]. It isevident that the calculated

values are again close to those of finite difference based model and that they again appear

to converge to the same result.
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Table 4.6: Validation of point contact results: Test Case 4.
Venner [104] This model

nx × ny Hc Hm np Total dof Hc Hm

64 × 64 (=4096) 0.070686 0.033080 4450 10486550 0.070251 0.028999
128 × 128 (=16384) 0.078872 0.037120 17732 14834838 0.078987 0.036286
256 × 256 (=65536) 0.080935 0.038480 67350 47440138 0.081202 0.038426

Again as for the line contact case, the main drawback of theseresults is the use of

very fine meshes, leading to very large discrete problems, which are very expensive from

a computational point of view. This issue is explicitly addressed in Chapter 6.

4.7 Conclusion

In this chapter, we have discussed a standard finite element discretization of the EHL line

and point contact equations. A Streamline Upwind Petrov-Galerkin (SUPG) method [22]

is explained in order to stabilize the discretization of theReynolds equation. The full

system approach results in a large coupled nonlinear system(4.21) to which a Newton

procedure is applied for the solution. For the iterative solution of the linearized sys-

tems (4.22) at each Newton iteration we have proposed a new preconditionerP in order

to efficiently solve the preconditioned system (4.24) which will be demonstrated in the

subsequent chapters. We have described an overall layout ofthe nonlinear solver along

with the different variants that have been considered in this work. Finally, the accuracy

of our computed results is justified by comparing them with previously published results

in literature. We have shown that the difference in both our computed and the published

results is small and that they appear to converge to the same solution as finer meshes are

used. The only drawback of the computed results is the use of very fine meshes in the

corresponding elasticity domains which is further discussed in the next chapters.
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Line Contact Problems

5.1 Introduction

Recall from previous chapter the development of three variants of the Newton solver

where the only differences are in the attachment of inner linear solvers (direct and itera-

tive) and the type of preconditioning of the elasticity block (AMG or GMG). The stopping

tolerance for the Newton iteration is chosen as the default,i.e. the Newton iteration will

successfully terminate when the maximum norm of the residual vector is lower thanU
1

3

whereU is machine unit roundoff [57]. Unless stated otherwise, foriterative variants of

the solver the stopping tolerance for the GMRES iteration is(ηn + U)‖F‖. Since the

preconditioning is always undertaken to the right, this stopping criterion is independent

of the preconditioner used.

Note that the convergence of the GMRES method depends upon a sufficiently large

dimension of Krylov-subspace being used [94]. Furthermore, at each GMRES iteration,

an orthogonalization of a search direction is required against all the previous search di-

rections, which grows the computational cost at each iteration. In other words an increase

in the maximum dimension of the Krylov-subspace increases both the memory usage

and the computational cost. Hence, the method becomes impractical whenever the maxi-

mum dimension of the Krylov-subspace used is large. This situation is often avoided by

the use of restarted GMRES where an upper boundm is specified for the dimension of

Krylov-subspace used, and if the convergence is not achieved for k ≤ m then GMRES is

70
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Table 5.1: Non-dimensional parameters for different loaded line contact cases [102,103].
Parameters Test Case 1 Test Case 2

Moes parameter,L 10 10

Moes parameter,M 20 200

Maximum Hertzian pressure,ph 1.05G Pa 3.3G Pa
Viscosity index,α 1.7 × 10

−8Pa−1
1.7 × 10

−8Pa−1

Pressure-viscosity index,z 0.69 0.69

restarted with new initial guessx0 set toxm. This process is repeated until convergence is

achieved. One way other than the restarted GMRES may be that the maximum dimension

of the Krylov-subspace should be fixed to a suitable constant, and the Newton update is

applied even if the GMRES iteration is not fully converged. Note that alternative Krylov

subspace methods, such as Bi-CGSTAB [101], may be used to overcome the memory

issue (see Section 5.5).

For the results presented in this chapter, iterative line contact solvers are applied with

a sufficiently large maximum Krylov dimension to show the effectiveness of the precon-

ditioning strategy by ensuring that we get full convergenceto the solution of the linear

system (4.22) at each Newton step. We will see that the cumulative number of linear

iterations appears to be independent of problem size. It should also be noted that if the

initial guess is not sufficiently accurate then some under-relaxation of the outer Newton

iteration may be required to achieve convergence. In this work, we used a Hertzian pres-

sure profile (see chapter 2) as an initial guess for pressure and no under-relaxation was

required to reach the converged solutions for any of the cases reported in this chapter.

An example of a typical finite element mesh used in this work isshown in Figure 5.1

which shows a fine mesh close to the contact region and a relatively coarse mesh else-

where. The test cases considered in this chapter are taken from [102, 103], and are de-

scribed in Table 5.1 in terms of Moes parametersM andL and a maximum Hertzian

pressureph. Note that a Poisson ratio0.3 has been used (if not explicitly stated oth-

erwise) and the Young’s modulus is then obtained according to equation (2.39) for the

non-dimensional equivalent elasticity problem. Moreover, the penalty parameterξ = 106

is used in this work. An increase in this factor will lead to anincrease in the computa-

tional work for minimal change in the solution. Finally, while updating the density and

viscosity, the very small negative pressures in the cavitation regions are treated as zero.

In the following section the solution of typical EHL line contact problems is discussed.

This includes a discussion on the accuracy of the line contact results using coarse meshes,

along with the effect of local refinement in the Hertzian contact region. It is then fol-

lowed by a comparison of performances of the proposed preconditioned iterative solver

compared to a state-of-the-art sparse direct solver [28] bygiving a detailed comparison of



Chapter 5 72 Line Contact Problems

Figure 5.1: An example employed mesh for a line contact problem.

their computational times and memory usages.

5.2 Accuracy on Selected Coarse Meshes

In the previous chapter the accuracy of the line contact results for the test cases given

in Table 5.1 was demonstrated by showing that the results were almost identical to previ-

ously published ones using integral approach in a finite difference based model [102,103].

However the drawback of those results were the use of very finemeshes in the elasticity

domain. In fact it is possible to use much coarser meshes in the elasticity domain without

compromising the accuracy of the solution. To demonstrate this the numerical solution

is computed for Test Case 1 keeping the same resolution in thecontact region but using

large mesh sizes in the elasticity domain compared to the finemesh cases. A comparison

of these newly computed results with those using fine meshes is given in Table 5.2 in

terms of central film thicknessHc, minimum film thicknessHm and the peak value of

the pressure spikePs. It is apparent from Table 5.2 that there is a minimal change in the

newly computed solutions with a large decrease in the size ofthe elasticity problem corre-

sponding to different resolution cases. In the finest resolution case the relative differences

between the two solutions are0.02%, 0.005% and0.6% for Hc, Hm andPs respectively,

with a total reduction in the size of problem being almost a million degrees of freedom.

So far the mesh size was kept constant throughout the fluid domain Ωf in order to

obtain a comparison with the finite difference based model [102, 103]. As a next step,
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Table 5.2: Accuracy of the line contact results over the use of fine and coarse meshes:
M = 20, L = 10 andph = 1.05 G Pa

Fine Meshes Coarse Meshes
np Total dof Hc Hm Ps Total dof Hc Hm Ps

1792 308435 0.08427 0.07361 0.78420 45221 0.08427 0.07362 0.7972
3584 552191 0.08428 0.07364 0.86492 84491 0.08428 0.07366 0.8692
7168 904665 0.08428 0.07365 0.87872 207533 0.08428 0.07365 0.8767
14336 1314207 0.08428 0.07365 0.88551 314303 0.08427 0.07366 0.8940
28674 1628545 0.08428 0.07365 0.89533 756109 0.08426 0.07365 0.9010

Table 5.3: Line contact results with one level of refinement in the contact region [-1:1],
M = 20, L = 10 andph = 1.05 G Pa.

Uniform refinement With local refinement
np Total dof Hc Hm Ps np Total dof Hc Hm Ps

1792 45221 0.08427 0.07362 0.7972 1412 36541 0.08429 0.07365 0.8043
3584 84491 0.08428 0.07366 0.8692 2825 65534 0.08429 0.07367 0.8693
7168 207533 0.08428 0.07365 0.8767 5648 125375 0.08427 0.07365 0.8792
14336 314303 0.08427 0.07366 0.8940 11296 241401 0.08426 0.07365 0.8949

we study the effect of local refinement in the non-dimensional Hertzian contact region on

the accuracy of the EHL solution. This involves one level of refinement in the contact

region[−1 : 1] (i.e the mesh size is halved) and the accuracy of results is compared with

the results given in Table 5.2. The rationale behind this is to get a significant decrease in

the number of unknowns in the1D and2D domains without any change in the accuracy

of solution. In other words this involves placing (relatively) more points only in the

region where the solution has largest variation. Table 5.3 gives a comparison of results

(obtained using both the uniform refinement and the non-uniform refinement in the fluid

domain) in terms of the central film thickness(Hc), the minimum film thickness(Hm)

and the maximum height of the pressure spike(Ps). One can see that results using the

local refinement are very close to those obtained using a uniform refinement in the whole

fluid domainΩf . Thus the local refinement leads to a significant further decrease in the

problem size without significantly affecting the accuracy of the solution.

So far we discussed the accuracy of the computed EHL solutionfor a moderately

loaded Test Case 1 using suitably coarser meshes. As a next step, we compare the accu-

racy of solutions for Test Case 2 (given in Table 5.1) using coarse2D meshes against the

solution obtained on fine meshes (see previous chapter). Note that the meshes used for

Test Case 2 are different than those used for Test Case 1 due toconsidering two different

fluid domains. Table 5.4 gives a comparison of results computed over both fine and coarse

meshes in terms of the central film thickness(Hc), the minimum film thickness(Hm) and

the maximum height of the pressure spike(Ps). Again this can be seen that a significant

decrease in the size of problem for each resolution case doesnot lead to a significant drop
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Table 5.4: Accuracy of the line contact results over the use of fine and coarse meshes:
M = 200, L = 10 andph = 3.3 G Pa

Fine mesh solution Coarse mesh solution
np Total dof Hc Hm Ps Total dof Hc Hm Ps

1791 282664 0.006000 0.005448 0.3167 35826 0.006008 0.005456 0.3055
3584 426173 0.006010 0.005480 0.3073 68095 0.006014 0.005485 0.3405
7167 700542 0.006013 0.005491 0.3579 193752 0.006015 0.005494 0.3699
14335 1214206 0.006014 0.005495 0.3656 340932 0.006017 0.005498 0.3867
28671 1628542 0.006014 0.005497 0.3931 622378 0.006013 0.005497 0.4025

in the accuracy of EHL solution (except the height of the pressure spike). For the finest

resolution case reported here, the relative change in the solution is about0.02%, 0% (to 6

decimal places) and2.3% in the central film thickness, the minimum film thickness and

the spike height respectively, with a total reduction of about one million degrees of free-

dom in the size of problem. Note that the use of much coarser meshes causes notable

changes in the heights of the pressure spike, and the use of slightly less coarse meshes

may help to decrease the said differences.

5.3 Performance of Solvers

In this section, we discuss the performance of our preconditioned iterative solvers com-

pared to a sparse direct solver. For each of the test cases reported in this chapter, the only

initial guess we used is the Hertzian pressure profile for pressure solution and a small pos-

itive value forH0. For the preconditioned iterative solvers, the forcing term ηn = 10−6

is used for the Test Case 1 to obtain the converged solutions corresponding to various

resolution cases. However, for the Test Case 2, which is a more heavily loaded case with

the Hertzian pressure of about3.3 G Pa, a further decrease in this parameter is required to

determine a good Newton step (especially during the first fewNewton iterations) to reach

convergence. The reason for this is that the quality of the initial guess for which the initial

residual norm‖F‖ is aboutO(106) therefore for the stopping tolerance((ηn + U)‖F‖)

of linear solver the value ofηn needs to be chosen sufficiently small (aboutO(10−9)) such

that a good Newton step is determined to avoid the risk of divergence of the Newton iter-

ation. Practically such a small value incurs several drawbacks. These drawbacks include

oversolving for the Newton step (as the Newton iteration progresses) and possibly that the

linear solver may stall, especially in the final few Newton iterations due to roundoff er-

rors of double precision arithmetic. As stated in the previous chapter, in order to cure such

negative aspects one possibility may be to keep the maximum dimension of the Krylov

subspace to be fixed at a suitable constant which defines an upper bound for the computa-
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Table 5.5: Comparison of sparse direct and iterative (AMG) results:M = 20, L = 10
andph = 1.05 G Pa

np Total dof Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb)

1792 45221 12 7.35 0.61 67 12-254 8.43 0.70 52

3584 84491 12 14.13 1.18 129 12-238 15.13 1.26 93

7168 207533 12 39.31 3.28 287 12-214 35.76 2.98 227

14336 314303 12 61.15 5.10 411 12-195 50.11 4.18 353

28674 756109 12 177.84 14.82 1028 12-191 128.07 10.67 802

28674 1628545 12 562.91 46.91 2505 12-189 279.99 23.33 1709

tional work per nonlinear iteration. Another possibility which is used in this experiment

(for Test Case 2) is to fix the stopping tolerance of linear solver (ηn + U)‖F‖ = 10−4

until the residual norm‖F‖ do not become sufficiently small. In other words the inexact

Newton strategy is implemented in the final few Newton iterations where the value ofηn

becomes constant and the drop in the tolerance of linear solver depends only on‖F‖.

Our experience shows that this is quite advantageous to avoid oversolving of the linear

systems at each Newton iteration.

Finally, the comparison of different variants of the solveris split into two phases which

are described in detail in the following subsections for each of the test cases reported in

Table 5.1. Note that all timings reported here were computedusing an Intel Xeon CPU

W3520 @ 2.67GHz with6 GB RAM. This is a different architecture to that used to obtain

the timings reported in [2].

5.3.1 Algebraic Multigrid Solver

In the first phase, a comparison of sparse direct and AMG preconditioned iterative results

for Test Case 1 are given in Table 5.5 in terms of total iterations, total time, time per

nonlinear iteration (ni) and memory usage. The number (li) presents the sums of linear

iteration counts across all Newton steps. It can be seen thatthe sparse direct solver is

slightly faster in the first two cases, but as the size of the problem is increased its per-

formance deteriorates (i.e. the time and memory growth are superlinear) and it becomes

less efficient than the preconditioned AMG solver. For the preconditioned AMG solver

both the memory usage and the computational time grow almostlinearly with increasing

problem size. Furthermore, the number of linear iterations(li) are independent of the size

of the problem.

As a next step we give a comparison of direct and preconditioned AMG iterative re-

sults for Test Case 2 in Table 5.6 in terms of total iterations, total time, time per nonlinear

iteration (ni) and memory usage. For this heavy loaded case the computational work
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Table 5.6: Comparison of sparse direct and iterative (AMG) results:M = 200, L = 10
andph = 3.3 G Pa

np Total dof Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb)

1791 35826 18 8.38 0.47 56 20-538 13.40 0.67 43

3584 68095 19 17.22 0.91 103 18-445 21.26 1.18 77

7167 193752 18 57.84 3.21 277 18-428 60.61 3.37 221

14335 340932 18 105.03 5.84 459 19-453 113.43 5.97 403

28671 622378 18 234.10 13.01 864 19-443 209.46 11.02 703

28671 1628542 22 1230.89 55.95 2676 23-452 611.05 26.57 1799

per nonlinear iteration has increased, as expected. As for the sparse direct solution the

preconditioned AMG solver also requires more work to achieve the convergence. It can

be seen that the sparse direct solver is slightly more efficient (in terms of computational

times) than the preconditioned AMG solver in the first four mesh resolutions, but as the

problem size further increases the performance of the sparse direct solver deteriorates (as

observed for the Test Case 1) and the preconditioned AMG iterative solver eventually

becomes more efficient. The cumulative number of linear iterations (li) are again inde-

pendent of the size of the problem. Finally, in the preconditioned AMG results both the

computational time and the memory growth appear to be linearwith increasing problem

size.

5.3.2 Geometric Multigrid Solver

In the second phase of performance assessment we give a comparison of using AMG ver-

sus GMG in the preconditioning of the elasticity block (J22 in (4.23)). Starting with a

suitable coarse grid a sequence of geometrically nested finegrids are obtained through

uniform mesh refinement. Moreover, on each fine level, mesh files are written in order to

use them to get preconditioned iterative AMG results for comparison, where AMG per-

forms its own coarsening which results in a greater number oflevels than in the GMG

case. The coarsest grid uses one extra level of refinement in the Hertzian contact region

in order to see the performance over unstructured meshes. Again this comparison is per-

formed for the test cases given in Table 5.1. For Test Case 1, the results obtained from the

two different preconditioners are given in Table 5.7 in terms of total iterations, total time,

time per nonlinear iteration and memory usage. It should be noted that in the first case

GMG preconditioning uses only 2-levels and therefore is notas efficient as AMG precon-

ditioning. However, as the number of levels increases one can see that it performs better

than the AMG preconditioning. Both the time and the memory performance are superior

except for the first case. As for AMG preconditioning, both the time and memory growth
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Table 5.7: Comparison of preconditioned iterative results(with AMG and GMG):M =
20, L = 10 andph = 1.05 G Pa

np Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
ni-li t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb) levels

1417 25730 12-235 4.20 0.35 29 12-228 9.35 0.78 27 2

2835 96196 12-221 16.42 1.37 106 12-220 16.72 1.39 81 3

5671 371336 12-195 61.46 5.12 418 12-212 50.57 4.21 305 4

11343 1458448 12-187 243.48 20.29 1625 13-211 204.00 15.69 1123 5

Table 5.8: Comparison of preconditioned iterative results(with AMG and GMG):M =
200, L = 10 andph = 3.3 G Pa

np Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
ni-li t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb) levels

1495 23602 18-514 7.60 0.42 29 18-583 19.25 1.07 29 2

2991 87724 20-482 29.70 1.49 100 20-599 34.62 1.73 86 3

5983 337528 21-465 119.06 5.67 402 23-606 107.49 4.67 321 4

11967 1323376 21-420 452.73 21.56 1524 20-539 379.91 19.00 1272 5

is almost linear and the number of linear iterations (li) areindependent of the problem

size.

As for Test Case 1, a similar behaviour in the performance of the different precondi-

tioned iterative solvers is observed for the Test Case 2. Thecomputational details for both

solvers are provided in Table 5.8. For this heavy loaded case, the preconditioned GMG

solver again competes favourably with the performance of the AMG solver as the number

of its levels goes up. Both the computational time and the memory usage appear to be

growing linearly with the size of problem for both solvers. Furthermore, the number of

linear iterations (li) are again independent of the problemsize.

5.3.3 Further Discussion

A graphical representation of the performances of the different solvers is plotted in Fig-

ure 5.2(a) for the Test Case 1, showing total time and time pernonlinear iteration for the

different solvers. It can be seen that the performance of thedirect solver deteriorates most

quickly with increasing problem size. Moreover, the performance of the GMG solver is

poor on coarse meshes but as the number of levels goes up it performs well compared to

the other solvers. Similarly, the observation from Figure 5.2(b) reveals that both iterative

solvers are more memory efficient in all mesh cases than the sparse direct solver, and the

GMG solver requires even less memory than the AMG solver. Finally, the efficiency of

each preconditioned iterative solver is quite close to optimal as both the memory and time

growth appear to be linear with increasing problem size (ignoring the GMG cases with

small numbers of levels).
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Figure 5.2: Performances of different line contact solvers: M = 20, L = 10 andph =
1.05 G Pa
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Figure 5.3: Performances of different line contact solvers: M = 200, L = 10 andph =
3.3 G Pa

A similar observation can be made for the Test Case 2, for which a graphical repre-

sentation of the computational time (total time) and memoryusage of the different solvers

is given in Figure 5.3(a) and Figure 5.3(b) respectively. Again the sparse direct solver is

seen to be efficient for smaller problems but its efficiency deteriorates as the problem size

increases. Thus the iterative solvers become more efficientthan the sparse direct solver.

Furthermore, the GMG solver performs even better than the AMG solver once it exceeds
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a certain number of grid levels. Finally, even for this heavyloaded case, both the time and

the memory growth again appear to be linear with the increasing problem size, justifying

the performance of iterative solvers as being close to the optimum level.

Note however that the GMG approach is not quite as effective as it may appear from

an initial inspection of Table 5.7 and Figure 5.2(a), for example. The need to generate

a nested sequence of grids puts unnecessary restrictions onthe finest mesh and so many

more degrees of freedom are required for a given accuracy. For example, the finest case

in Table 5.7 hasnp = 11343 butnu = 723552. With an unstructured mesh that has more

unknowns inΩf (np = 14336 in Table 5.5) only314303 degrees of freedom are needed

in total (i.e.nu = 149983). In this specific example, the AMG solver with least problem

size leads to about75% savings in both the CPU and the memory usage compared to the

GMG solver with a large problem size.

5.3.4 Eigenvalues Analysis

So far, it has been shown that the performance of preconditioned iterative solvers appeared

to be nearly optimal. This showed the effectiveness of the preconditioning strategy used

in this work. Recall that a good preconditioner has an effectof clustering the eigenvalues

of a system matrix within a small interval (or a small number of small intervals). In

this subsection, the behaviour of the eigenvalues of both the original and the transformed

(preconditioned) system is discussed as the discretization goes finer. Note that a total of

four different discretizations are used for this purpose.

Figure 5.4 shows the distribution of eigenvalues (for the starting Newton iteration)

of the original (left) and the preconditioned system (right) as the discretization becomes

finer (top to bottom). It can be seen that the eigenvalues of the original system are well

distributed in a large interval of size aboutO(106). Moreover, the magnitude of the largest

eigenvalue roughly doubles as the discretization becomes finer which means that the orig-

inal system is getting more and more ill-conditioned. On theother hand, one can see that

the eigenvalues of the preconditioned system are well clustered within a small number

of small intervals. Note that the majority of the eigenvalues are clustered around1 com-

pared to the original system and that the magnitude of the largest eigenvalue does not

grow large. In other words, the preconditioning operator appears to have a good effect

on clustering the eigenvalues and that is why such an optimalperformance is experienced

with the proposed preconditioner.

As a next case, Figure 5.5 shows the distribution of eigenvalues of both the original

and preconditioned system at one of the last Newton iterations. The same behaviour in
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Figure 5.4: The behaviour of eigenvalues of the original andpreconditioned system at
the starting Newton iteration with successive finer discretizations:M = 20, L = 10 and
ph = 1.05 G Pa

the distribution of eigenvalues can be observed both for theoriginal and the precondi-

tioned system. For the original system, the magnitude of largest eigenvalue gets twice

as large as the discretization goes finer. In the case of the preconditioned system, the

majority of eigenvalues are again clustered close to1, and the magnitude of the largest

eigenvalue remains the same with the finer resolution. Furthermore, one can observe that

the eigenvalues get more clustered close to1 as the resolution of the problem increases.

In other words, the preconditioned system at the finer discretizations appears to have a

better spectrum compared to the coarse discretizations. Overall, the effectiveness of the

preconditioning appears not to be affected as the Newton iterations progress.
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Figure 5.5: The behaviour of eigenvalues of the original andpreconditioned system at
the 10th Newton iteration with successive finer discretizations:M = 20, L = 10 and
ph = 1.05 G Pa

5.4 Varying Poisson Ratio: Accuracy and Performance

In the results presented so far, a Poisson ratio of0.3 has been used for calculating the

elastic deformation of elastic material. In this section westudy the effect of varying

the Poisson ratio for the elastic material on the accuracy and the performance of current

model. This will be achieved by varying the Poisson ratio between0.25 and0.495. Recall

that the material reaches the incompressibility limit as the Poisson ratio approaches0.5.

5.4.1 Accuracy

In this subsection we discuss the effect of variation of Poisson ratio over the accuracy of

EHL solution. For the sake of demonstration, Test Case 1 is run for different values of

Poisson ratio for the2D elastic material using7168 unknowns for pressure and207533

degrees of freedom in total (1+np +2nu). The results are presented in Table 5.9 in terms
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Table 5.9: Effect of varying the Poisson ratio over the accuracy of the line contact results
with np = 7168 and207533 degrees of freedom in total:M = 20, L = 10 andph =
1.05 G Pa

ν Hc Hm Ps H0

0.25 0.08428 0.07366 0.8731 −2.4307
0.30 0.08428 0.07365 0.8767 −2.4204
0.35 0.08427 0.07365 0.8753 −2.4059
0.40 0.08427 0.07365 0.8761 −2.3847
0.45 0.08426 0.07364 0.8810 −2.3490
0.47 0.08424 0.07364 0.9100 −2.3219
0.48 0.08422 0.07364 0.9097 −2.2979
0.49 0.08414 0.07363 0.9246 −2.2466
0.495 0.08399 0.07357 0.9923 −2.1767
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Figure 5.6: Pressure profiles for different values of Poisson ratio with np = 7168 and
207533 degrees of freedom in total:M = 20, L = 10 andph = 1.05 G Pa

of central film thicknessHc, the minimum film thicknessHm and the height of pressure

spikePs. It can be noticed that for the different values of Poisson ratio between0.25

and0.40 there are only minor changes in the solution, but as the Poisson ratio exceeds

0.40 these changes in the solution become significant. This can especially be observed

for ν = 0.495 with a large jump in the height of pressure spike though that jump does

not appear in the film thickness solutions (bothHc andHm). However this can be clearly

seen in Figure 5.6 which suggests that the pressure solutionis not fully converged as the

Poisson ratio approaches0.5.

This kind of behaviour in the solution (for harder materials) is due to the inaccurate

elastic deformation solutions within this situation. In such situations the use of a suffi-

ciently fine mesh in the elasticity domain helps to overcome this problem. Note that such
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Figure 5.7: Pressure profiles forν = 0.30 andν = 0.495 computed over coarse mesh
(with np = 7168 and total dof =207533) and fine mesh (np = 7168 and total dof =
904665) respectively:M = 20, L = 10 andph = 1.05 G Pa

Table 5.10: Computed solution forν = 0.30 andν = 0.495 computed over coarse mesh
(with np = 7168 and total dof =207533) and fine mesh (np = 7168 and total dof =
904665) respectively:M = 20, L = 10 andph = 1.05 G Pa

ν Hc Hm Ps H0 Dmax

0.30 0.08428 0.07365 0.8767 -2.4204 2.5047
0.495 0.08426 0.07366 0.8753 -2.3383 2.4225

fine meshes are obtained by keeping a specific resolution unchanged in the contact region

and using smaller mesh sizes in the remaining part of the elasticity domain. To justify this,

an experiment is carried out forν = 0.495 using the same resolution (i.e. 7168 unknowns

for pressure) in the fluid domain but adding more points in theelasticity domain leading

to 904665 degrees of freedom in total.

The previously obtained result forν = 0.30 (with a coarse2D mesh) is plotted to-

gether with newly computed solution forν = 0.495 (with a much finer2D mesh) and is

shown in Figure 5.7. One can see that the results shown now appear to have converged

to the same solution. Moreover, a comparison between their computed values is listed

in Table 5.10 whereDmax represents the maximum elastic deformation of the equivalent

contact surface. It should be noted that the elastic deformation profile of the contact sur-

face forν = 0.495 tends to differ from that forν = 0.3 only by a small constant and

this small constant is balanced by their corresponding values ofH0. A similar trend is

observed in the other resolution cases where a use of very fine2D mesh leads to matching
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Figure 5.8: Convergence of the pressure profile forν = 0.495 with increasing problem
size:M = 20, L = 10 andph = 1.05 G Pa

the EHL solution forν = 0.495 to that withν = 0.3 on a much coarser mesh. More-

over, this behaviour can also be justified by considering thenon-dimensional half space

method which has no explicit dependency either on the Young’s modulus or the Poisson

ratio but yields a fixed elastic deformation profile (assuming fixed operating pressure).

Furthermore one should not be surprised with the value of maximum elastic deformation

reported in Table 5.10 because the numerical solution of theelasticity problem leads to

the displacement proportional toln r, see for example [33, 66] i.e the numerical solution

of the elasticity problem accommodates all those constantswhich have been adjusted or

combined withH0 in the traditional half space approach.

So far, it was shown that the use of very fine2D mesh for large Poisson ratio leads

to achieve the same accuracy in the EHL solution compared to that with small Poisson

ratio using a coarse2D mesh. In order to see the convergence of the EHL solution for

higher values of the Poisson ratio as the elasticity mesh goes finer and finer, Test Case 1

is run usingν = 0.495 over a sequence of four meshes leading to, respectively,314303,

614207, 1314207 and1699647 degrees of freedom in total. Note that these meshes use the

same resolution in the fluid domain (14336 unknowns for pressure). The pressure profiles

shown in Figure 5.8 reveals that on the coarser mesh the solution is not fully converged,

but as the problem goes finer and finer the pressure profile appears to have converged

to the same solution. A similar trend can also be observed in Figure 5.9 showing the

convergence of film thickness profiles as the mesh goes finer and finer.

Consider Test Case 2 with the finest resolution that we have used for the pressure
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Figure 5.9: Convergence of the film thickness profile forν = 0.495 with increasing
problem size:M = 20, L = 10 andph = 1.05 G Pa
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Figure 5.10: Pressure profiles forν = 0.30 andν = 0.495 computed over coarse mesh
(with np = 28671 and total dof =622378) and fine mesh (np = 28671 and total dof =
1628542) respectively:M = 200, L = 10 andph = 3.3 G Pa

solution, i.e. using28671 unknowns for pressure. Again we consider a coarse2D mesh

yielding622378 degrees of freedom in total and a very fine2D mesh with1628542 degrees

of freedom in total. The solution for Test Case 2 is computed using the Poisson ratio0.30

and0.495 on these coarse and the fine meshes. For this heavy loaded caseusingν = 0.495

neither of the solvers reached convergence on the coarse2D mesh, therefore we provide
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Table 5.11: Effect of varying the Poisson ratio over the performances of different line
contact solvers withnp = 7168 and904665 degrees of freedom in total:M = 20, L = 10
andph = 1.05 G Pa

np Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb)

0.25 12 566.64 47.22 1949 12-212 164.57 13.71 1038

0.30 12 566.64 47.22 1947 12-212 166.88 13.91 1047

0.35 12 567.58 47.30 1949 12-212 166.77 13.90 1033

0.40 12 568.36 47.36 1948 12-227 176.20 14.68 1060

0.45 12 567.19 47.27 1948 12-272 206.88 17.24 1108

0.47 12 566.70 47.23 1948 14-320 250.35 17.88 1151

0.48 12 566.84 47.24 1948 12-330 254.99 21.25 1172

0.49 12 568.55 47.38 1948 12-440 330.01 27.50 1283

0.495 12 568.81 47.40 1952 12-596 434.66 36.22 1415

a direct comparison between the solutions forν = 0.30 andν = 0.495 as computed on

the coarse and the fine mesh respectively. This is shown in Figure 5.10. Again both cases

appear to converge to the same solution however there is slight difference in the height of

pressure spike. Moreover, despite the appearance of Figure5.10, tiny oscillations in the

solution forν = 0.495 are observed, i.e. the pressure profile is not absolutely smooth and

might be causing a small difference in the height of pressurespike to that withν = 0.30

on a coarser mesh.

Overall, these experiments suggest that the use of different values of Poisson ratio

for the elastic material yields the same EHL solution provided a sufficiently accurate

elasticity mesh has been used.

5.4.2 Performance

In this subsection, we consider the effect of varying the Poisson ratio over the performance

of the AMG preconditioned iterative solver. For this purpose Test Case 1 is considered

with 7168 unknowns for pressure and904665 degrees of freedom in total. The Poisson

ratio is varied from0.25 to 0.495. In Table 5.11, the performance of both the sparse

direct and the iterative (AMG) variants of the solver are considered in terms of the total

nonlinear iterations (ni), linear iterations (li) (iterative solver only), total time (t (s)), time

per nonlinear iteration and the memory usage. As expected, for different values of the

Poisson ratio the performance of the sparse direct solver appears to be essentially constant

both in terms of the computational time and the memory usage.On the other hand the

performance of the AMG solver is almost constant for the values of the Poisson ratio

up to0.40. But once the Poisson ratio exceeds this value the performance of the AMG

solver deteriorates as the iterative solver requires more work to achieve the convergence

at each nonlinear iteration. Since the GMRES method is used as the inner linear solver
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Figure 5.11: Effect of varying the Poisson ratio over the performances of different line
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andph = 1.05 G Pa

this growth in the computational work also leads to a corresponding growth in the total

memory usage. A more clear picture of the performance of different solvers (in terms of

their computational times) is shown in the Figure 5.11. Thisreveals that the performance

of the AMG solver deteriorates when exceedingν = 0.40 but when the Poisson ratio

gets very close to0.5 it deteriorates drastically. A similar behaviour in the performance

(as for the accuracy) is also observed in the other resolution cases sketching the same

story. This kind of behaviour in the performance of an AMG solver is not surprising and

can be generally expected whenever the Poisson ratio is close to 0.5 [16, 48]. In other

words, for higher values of the Poisson ratio the corresponding systems become more

ill-conditioned [18,48] which affects the optimality of AMG solvers.

Finally, in order to analyse the performance of the preconditioned AMG solver for

a fixed value of Poisson ratio close to0.5, an experiment is set up for a Poisson ratio

ν = 0.48. The results are obtained over a sequence of fine2D meshes (corresponding

to different resolutions in the fluid domain), and these are presented in Table 5.12, while

a more clear picture of these results is shown in Figure 5.12.One can see that both

the computational time and the memory growth again appear tobe linear with increasing

problem size (despite of the slightly worse CPU time for higher values of the Poisson

ratio). Furthermore, Table 5.12 reveals that the cumulative number of linear iterations

also appears independent of the problem size. This experiment shows that the AMG

solver scales almost linearly even for the higher values of the Poisson ratio.
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Table 5.12: Performance of the AMG solver for Poisson ratioν = 0.48 on a sequence
of fine 2D meshes (corresponding to different resolutions in the fluid domain):M = 20,
L = 10 andph = 1.05 G Pa

np Total dof ni-li t(s) t/ni mem.(MB)

1792 308435 12-379 94.10 7.84 422

3584 552191 12-347 159.69 13.31 741

7168 904665 12-330 254.99 21.25 1172

14336 1699647 12-293 448.35 37.36 2167

28674 2028545 13-312 556.72 42.82 2463
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Figure 5.12: Performance of the AMG solver for Poisson ratioν = 0.48 on a sequence
of fine 2D meshes (corresponding to different resolutions in the fluid domain):M = 20,
L = 10 andph = 1.05 G Pa

5.5 Biconjugate Gradient Stabilized Method (Bi-CGSTAB)

In this section the performance of different Krylov iterative solvers are discussed. Recall

from Chapter 3 that the computational cost of the GMRES method grows likeO(kn) due

to orthogonalization of a vector against all the previous search directions. This situation

can be avoided by using a restarted GMRES with a suitable upper boundm for the number

of GMRES iterations before restarting. On the other hand theBi-CGSTAB method does

not require the storage of all previous search directions (though it still requires twice

as much memory storage as compared to the conjugate gradientmethod for symmetric

positive definite systems). Nevertheless, the method can still have advantages over the

GMRES method, especially when the matter of the storage is important. Therefore, an

experiment is setup for the Test Case 1 where the main linear solver uses both the GMRES

and the Bi-CGSTAB as an alternative.
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Table 5.13: Performance of different Krylov subspace basediterative linear solvers:M =
20, L = 10 andph = 1.05 G Pa

np Total dof GMRES Bi-CGSTAB
ni-li t (s) t/ni mem.(Mb) ni-li t (s) t/ni mem.(Mb)

1792 45221 12-254 8.40 0.70 52 12-283 15.01 1.25 42

3584 84491 12-238 15.20 1.27 93 12-264 26.45 2.20 76

7168 207533 12-214 35.81 2.98 223 12-241 62.79 5.23 187

14336 314303 12-195 50.34 4.20 325 12-235 91.47 7.62 278

28674 756109 12-191 130.36 10.86 804 12-220 218.67 18.22 678

The results are listed in Table 5.13 in terms of ni, li, total time, time per nonlinear

iteration and the memory usage. These results are obtained using the full inexact New-

ton strategy withηn = 10−6 and both linear solvers are allowed to use the maximum

dimension of Krylov subspace in order to give a fair comparison. The results presented in

Table 5.13 are evidence of the expected behaviours of the twolinear solvers in terms of

further memory savings by the use of the Bi-CGSTAB method. However the method is

not quite as robust as GMRES for these tests. In other words the Bi-CGSTAB method is

about75% (on average) slower than the GMRES method. Indeed the cumulative number

of linear iterations across all the Newton steps are slightly more than the GMRES method

and, looking at the total computational cost, also reveals that a single Bi-CGSTAB itera-

tion is more expensive than a single GMRES iteration which may be due to twice as many

as matrix-vector products and the preconditioned solves compared to a GMRES iteration.

A more clear picture about the growth in the computational cost and the memory

usage is shown in Figure 5.13. Figure 5.13(a) reveals that for each resolution case the

total computational cost with the use of Bi-CGSTAB method isabout75% more than

that with the use of GMRES. However the growth in computational cost for both the

methods appears to be linear. A similar trend is observed forthe memory usage of two

methods in Figure 5.13(b) where the GMRES method is seen to beslightly worse than

the Bi-CGSTAB method as expected. If we compare the overall performance of the two

methods then the GMRES methods appears to be far better than the Bi-CGSTAB method

as one can see that a small compromise on the memory leads to significant savings in the

computational times. Despite the performance, one may evenface the entire failure of

convergence of the Bi-CGSTAB method for heavily loaded cases, which in our case, was

observed for Test Case 2. Finally, further tests would need to be undertaken to confirm

that these conclusions hold across a wider range of parameter space.
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Figure 5.13: Performance of different Krylov subspace based iterative linear solvers:
M = 20, L = 10 andph = 1.05 G Pa

5.6 Conclusion

In this chapter the accuracy and the performance of different line contact solvers have been

discussed. First of all the accuracy of the EHL results were discussed on the coarse2D

meshes relative to finer ones which have been used in the previous chapter. We showed

that the accuracy of the computed EHL solution is not significantly affected for the set

of coarse meshes we used in this work. We also discussed briefly the effect of using a

relatively more fine mesh in the Hertzian contact region overthe accuracy and cost.

We further gave a detailed comparison of the performance of the different solvers

developed for the line contact problem. It was shown that theAMG preconditioned variant

of the iterative solver performs better than the sparse direct solver. We further showed that

the performance significantly improves if AMG preconditioning of the elasticity block is

switched to the GMG preconditioning. However, in the case ofGMG preconditioning
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one needs to accept the restriction over the meshes when using a global refinement to

generate the hierarchy of the meshes. This restriction seems to be too great to allow

GMG to outperform AMG in terms of accuracy per CPU cycle.

The effect of varying the Poisson ratio (for the2D elastic model) over the accuracy

and the performance of our line contact solvers was also demonstrated. It was concluded

that the variation of Poisson ratio does not affect the accuracy of EHL solution provided

a sufficiently fine2D mesh is used. Moreover, the performance of the preconditioned

iterative solver deteriorates drastically whenever the Poisson ratio becomes sufficiently

close to0.5. Finally, the performance of the GMRES and Bi-CGSTAB methods was

compared. It was observed that the Bi-CGSTAB method as an inner linear solver leads to

a further savings in the memory usage however its performance was observed to be not

so good as that of GMRES in terms of CPU time. In other words, the small compromise

on the memory usage the GMRES method as an inner linear solverfound to be superior

for the cases considered here.



Chapter 6

Point Contact Problems

6.1 Overview

In this chapter the accuracy and performance of the solver isconsidered for EHL point

contact problems. The issues addressed in this chapter include the selection of efficient3D

meshes based upon a series of experiments to ensure the accuracy of EHL point contact

solutions at minimal computational cost. The memory and CPUsavings for the proposed

preconditioned Newton-Krylov approach, relative to a sparse direct Newton solver, are

consistent but relatively small for EHL line contact problems. In this chapter we consider,

much larger, point contact problems for which these advantages are very much more

significant. Finally, we discuss the effect of the quality ofthe tetrahedral meshes over the

accuracy of the solution.

6.2 Problem Consideration

As discussed in Chapters 4 and 5, three variants of the nonlinear solver have been devel-

oped. The first variant uses a sparse direct routine [28] as the inner linear solver while the

other variants uses the GMRES [94] method for inner linear solves. The difference in the

later two variants is the manner of the preconditioning of the elasticity block in the fully-

coupled system, based upon AMG and GMG preconditioning respectively. Recall from

Chapter 4 that the stopping tolerance for the Newton iteration is chosen asU
1

3 with U be-

92
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ing the machine unit roundoff. In the iterative variants of the Newton solver the stopping

tolerance for GMRES iteration is(ηn + U)‖F‖ with ηn = 10−6 for the problems consid-

ered in this chapter. Moreover, as discussed previously, the convergence of the GMRES

method depends upon the dimension of the Krylov-subspace used, and the method be-

comes more expensive whenever the maximum dimension of the Krylov-subspace used

is large. For the line contact problems in the previous chapter the GMRES iteration was,

however, allowed to use a sufficiently large dimension so as to achieve convergence. The

purpose behind that choice was to show that the proposed preconditioning strategy leads

to the number of GMRES iterations, needed for convergence, being independent of the

problem size. In practice, the solution of (4.22) is only required as part of an inner iter-

ation and so it is not generally necessary to solve it so exactly, i.e. it is only necessary

to solve the linear system (4.22) to a sufficient precision inorder to determine a good

Newton update to achieve convergence of the non-linear system (4.21). Therefore, in the

case of point contacts, the maximum dimension of Krylov-subspace is fixed toC (with

no restarts) in order to approximately solve the linear system (4.22) at each Newton step.

Our experience shows that the choiceC = 15 works reliably for the EHL cases consid-

ered here, and prevents one from over solving the linearizedsystem (4.22) at each of the

Newton iterations. Again, as for the line contact problems,the initial guess used only

consists of the Hertzian pressure profile for pressure and a small positive value for central

offset film thickness (H0). Finally, a Poisson ratio0.3 has been used for the problems con-

sidered in this chapter whereas the Young’s modulus for the equivalent non-dimensional

elasticity problem is obtained according to equation (2.40). Moreover, the penalty param-

eterξ is chosen to be106 × h2
e as suggested in [51], where a different value ofξ is used

for each element of characteristic lengthhe. Moreover, as for the line contacts, the very

small negative pressures in the cavitation regions are treated as zero while updating the

density and viscosity.

Throughout this chapter meshes have been generated using the open source software

NETGEN [95]. This allows meshes of a given local spacing to bedefined, as well as

permitting hierarchical mesh refinement to take place globally. Moreover, it allows one to

perform mesh optimization over the meshes resulting from hierarchical mesh refinement.

All timings reported here were computed using an AMD Opteron(tm) Processor 8384 @

2.7GHz with a maximum of128 GB RAM.
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Table 6.1: Non-dimensional parameters for the contact between steel surfaces [104].
Parameters Test Case 1 Test Case 2

Moes parameter,L 10 10

Moes parameter,M 20 200

Maximum Hertzian pressure,ph 0.45GPa 0.97GPa
Viscosity index,α 2.2 × 10

−8Pa−1
2.2 × 10

−8Pa−1

Viscosity at ambient pressure,η0 0.04 Pa s 0.04 Pa s
Total speed,us 1.6 m s−1

1.6 m s−1

6.3 Selection of Efficient Meshes

For the point contact problems considered here, the Reynolds equation needs to be solved

on a 2D domain and the elasticity equation on a 3D domain. As previously mentioned,

following Habchi [50], we letΩ represent a 3D domain−30 ≤ X ≤ 30;−30 ≤ Y ≤

30;−60 ≤ Z ≤ 0. In [50] experiments were undertaken on different dimensions leading

to the said dimension being adopted in their work. In this section, we first discuss the

accuracy of the elastic deformation solution by defining suitable meshes and give a com-

parison of these against solutions obtained by using very fine meshes. These tests have

been carried out first using a Hertzian pressure profile and then assuming a typical EHL

pressure profile, though the results presented here are onlyfor the EHL pressure profile.

The test cases considered in this work are described in the Table 6.1. These test cases

are taken from [104] in order to establish a comparison of thecurrent model with a finite

difference based model, so as to validate the calculated point contact results.

The termΩf is the part of the boundary of the 3D domain which correspondsto the

contact region and is chosen to be of dimension−4.5 ≤ X ≤ 1.5;−3 ≤ Y ≤ 3. Note that

three resolution cases, named Resolution 1, 2 and 3, are usedin this work, corresponding

to regular grids of64× 64, 128× 128 and256× 256 points inΩf respectively.

It should be noted that the fine mesh cases used for comparisonof solutions lead to

very large computational problems and it has only been practical to solve these large

problems with the development of proposed efficient preconditioned iterative solver.

6.3.1 Accuracy of the Elastic Deformation

The pressure generated inside the lubricant film is high enough in the contact region to

lead to a significant elastic deformation while, on the otherhand, the pressure outside the

contact region is relatively low. Moreover, the precision of the computed elastic defor-

mation is most important in and around the contact region, since this is where it has most

effect on the Reynolds equation. Hence, we propose that a fine3D mesh is required in

the contact region up to a certain depth, but not in the whole elasticity domain. Neverthe-
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Figure 6.1: A view of the top of the 3D domain

less, a suitable mesh size needs to be defined outside the contact region in order to get a

sufficiently accurate solution throughout the whole domain.

Here, we present selected meshes which give a sufficiently accurate elastic defor-

mation solution at as low a cost as possible. In order to show the effectiveness of these

meshes, the elastic deformation solution is compared against the solution obtained on very

fine meshes. In the case of fine meshes, we split the 3D domain into two regions. The

first region is of dimension−4.5 ≤ X ≤ 4.5;−3 ≤ Y ≤ 3;−3 ≤ Z ≤ 0 and the second

region is the remainder of the domain. A mesh size corresponding to different resolution

cases is adopted everywhere in the first region and a mesh sizeof 0.5 is used in the remain-

ing region. A view (XY plane, whereZ = 0) of the top of the domain is shown in Fig-

ure 6.1. For the sake of simplicity, the notationsR1 andR2 are used to represent these two

different regions in the domain,R1 representing the whole domain, andR2 representing

the central region of dimension−4.5 ≤ X ≤ 4.5;−3 ≤ Y ≤ 3;−3 ≤ Z ≤ 0. It should

be noted that the length ofR2 is chosen−4.5 ≤ X ≤ 4.5 instead of−4.5 ≤ X ≤ 1.5

(see definition ofΩf above) in order to get a sufficiently accurate elastic deformation so-

lution. We carried out different experiments to ensure thatany increase in the depth ofR2

and any further decrease in the mesh size adopted in the remaining region does not lead

to any significant improvement in the accuracy of the elasticdeformation solution (see

Appendix A for a more complete report of these computationalexperiments). Note that

this two-region strategy for defining fine meshes for the three resolution cases considered

leads to3505403, 4950405 and15802299 nodes in the elasticity mesh respectively.
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Table 6.2: A set of mesh sizes defining the selected mesh for each resolution case.
Selected Case Mesh size 1 Mesh size 2 Mesh size 3 Mesh size 4

Resolution-1 0.09375 1.0 4.0 4.0
Resolution-2 0.04688 1.0 2.0 2.0
Resolution-3 0.02344 0.7 1.0 2.0

Table 6.3: Root mean square error for the displacement in allthree selected resolution
cases along with their fine cases: Test Case 1.

Case Fine cases Selected cases Total reduction
nodes RMSE nodes RMSE in the problem size (%)

Resolution-1 3505403 1.64 × 10
−3

97687 2.43 × 10
−3

97.2%

Resolution-2 4950405 6.25 × 10
−4

221260 9.85 × 10
−4

95.5%

Resolution-3 15802299 − 705860 4.80 × 10
−4

95.5%

Having established meshes to act as a benchmark for each of the three resolutions to

be considered, we now seek to define meshes with fewer degreesof freedom that are able

to maintain the required resolution inΩf and yield results of similar accuracy. To do this

we split the 3D domain into four regions. The first two regionsare hemispherical regions,

centred on the origin, with radii ‘1.5’ and ‘15’ respectively. The third region is a cube of

dimensions−20 ≤ X ≤ 20;−20 ≤ Y ≤ 20;−40 ≤ Z ≤ 0 while the fourth region is

the remainder of the domain. The choice of the first region is based on the fact that this

includes the region where the pressure values are most significant (especially in the inlet

region). The choices of regions 2 and 3 are based upon a large number of different compu-

tational experiments that are reported in Appendix A. A selected resolution (Mesh size 1)

is specified for all points inside the region 1 and a suitable mesh size (Mesh size 2) is de-

fined for points on the curved boundary of region 2. For all other interior points of region

2, linear interpolation is used to define a local mesh size. Itshould be noted that in the

remaining regions of the domain (outside of region 2), different large mesh sizes (Mesh

size 3 in region 3 and Mesh size 4 in region 4) are used depending upon the resolution

used in the most central region. The mesh sizes 1 to 4 (for the four regions respectively)

for each resolution case are given in the Table 6.2, defining the proposed meshes. Note

that the purpose of defining region 3 (particularly for resolution-3) is to control the huge

increase in the number of nodes in the mesh without significantly affecting the overall

accuracy of solution.

The root mean square error (RMSE) for the displacement in allthree selected resolu-

tion cases, along with their fine (benchmark) cases, are calculated with respect to the fine

case of resolution 3 and are given in the Table 6.3. These figures are obtained by com-

paring the computed solution on the given mesh against the best available solution, on the

finest available mesh. One can see that the selected cases lead to a small fraction of the
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Figure 6.2: Elastic deformation solution along the centralline in Ωf (whereY = 0): Fine
and Selected case of resolution-1: Test Case 1.

nodes, less than5%, compared to their corresponding fine cases (with the same resolution

in the contact region) without significantly affecting the accuracy of the solution. In par-

ticular, for Resolution 1 and Resolution 2 the errors in the selected cases are of the same

order of magnitude (less than a factor of 2 difference) as those based on the benchmark

meshes of the same resolution. Moreover, a view of the elastic deformation solution using

the fine and selected cases at resolution-1 along the centralline in Ωf (whereY = 0) is

given in Figure 6.2, which also shows that both results are extremely close to each other.
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Table 6.4: A comparison of point contact results over fine andselected meshes:
Test Case 1.

This model (fine-meshes) This model (selected-meshes)
np Total dof Hc Hm np Total dof Hc Hm

4450 10486550 0.42306 0.28921 1690 294056 0.42242 0.28603
17732 14834838 0.42999 0.29123 4854 666160 0.42842 0.28996
67350 47440138 0.43129 0.29202 16776 2131882 0.43059 0.29167

Table 6.5: A comparison of point contact results over fine andselected meshes:
Test Case 2.

This model (fine-meshes) This model (selected-meshes)
np Total dof Hc Hm np Total dof Hc Hm

4450 10486550 0.070251 0.028999 1690 294056 0.070361 0.027603
17732 14834838 0.078987 0.036286 4854 666160 0.078910 0.035759
67350 47440138 0.081202 0.038426 16776 2131882 0.081243 0.037901

6.3.2 Point Contact Results

In this subsection, we discuss the accuracy of the full EHL solution computed over the

selected meshes which were determined, as described in the previous subsection, based

upon numerical experiments to ensure a sufficiently accurate elastic deformation solution

with a significantly reduced computational cost. For this purpose, a comparison of newly

computed results is made with those obtained over the benchmark meshes (very fine) used

in the previous subsection. Note that the latter meshes havealready been used in Chapter 4

to validate the accuracy of point contact results against the previously published results

using the integral approach in a finite difference based model [104].

Table 6.4 gives a comparison of these results for the Test Case 1, wherenp denotes

the number of pressure unknowns. One can see that the accuracy of the solution is not

significantly affected (relative to the overall discretization error) while keeping in mind

the total decrease in the size of problem. For example in case3 of Table 6.4, a reduction

of 45M degrees of freedom (dof) leads to a very small drop in the accuracy of the solution.

The total relative difference between the two solutions is0.16% and0.12% for the central

film thickness (Hc) and the minimum film thickness (Hm), respectively. In particular, in

the selected cases, the same order of magnitude in error is observed as with the fine cases.

A similar trend in the solutions is observed for Test Case 2 which is a comparatively

more heavily loaded case. Table 6.5 provides a comparison offine case results with those

computed over the selected meshes. Again it can be seen that the accuracy of the solution

is not significantly affected for this loaded case (Test Case2) while computing the solution

over the selected meshes. The total relative difference between the two solutions is0.05%

and 1.4% for the central film thickness and the minimum film thickness,respectively.
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This experiment provides further evidence that the mesh selection approach proposed in

this work may be applied across a range of EHL cases.

6.4 Performance of Solvers

In this section the performance of preconditioned iterative solvers are compared to the

sparse direct solver. To solve the linearized system (4.22)at each Newton iteration, again

different linear solvers are used. For the sparse direct results UMFPACK [28] is used,

while in the iterative solvers the right-preconditioned GMRES method is used. In the

iterative solvers, again preconditioning of the elasticity block (J22 in (4.23)) is done using

algebraic and geometric multigrid. Contrary to the line contact case, the Reynolds block

is not tridiagonal, therefore we have used a sparse direct solver (UMFPACK) for this

block of the preconditioner. The choice of the sparse directsolver is inspired from the

fact that it performs very well for the2D EHL problem both in terms of memory usage

and computational time.

6.4.1 Algebraic Multigrid Solver

Before discussing geometric multigrid preconditioning wefirst give a comparison be-

tween the performance of the sparse direct and the preconditioned iterative solvers, with

AMG preconditioning of the elasticity block. These resultsare obtained using the mod-

erately loaded Test Case 1 (see Table 6.1) and are given in Table 6.6 in terms of total

iterations, total time, time per nonlinear iteration and memory usage. It can be seen that

the AMG solver is performing very well compared to the sparsedirect solver, both in

terms of memory usage and time. Furthermore, both memory usage and computational

time is growing almost linearly with the increase in the problem size. For this 3D case the

sparse direct solver soon reaches its limitations in terms of both the memory and the CPU

time required (due, we believe, to the much greater fill-in that occurs for the 3D problem

relative to the 2D line contact case). Indeed, we have insufficient memory to compute the

finest case. The preconditioned iterative approach is far superior.

Table 6.6: Comparison of sparse direct and iterative (AMG) results, Test Case 1
np Total dof Sparse Direct Solver Prec. Iterative Solver (AMG)

ni t (s) t/ni mem.(Gb) ni-li t (s) t/ni mem.(Gb)

1690 294056 9 20685 2298.33 21 9-135 729 81.00 0.7
4854 666160 7 68567 9795.29 56 7-105 1242 177.43 1.5
16776 2131882 − − − − 7-105 4184 597.71 4.9
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Table 6.7: Comparison of preconditioned iterative point-contact results (with AMG and
GMG) for cases Test Case 1 & Test Case 2.

np Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
ni-li t (s) t/ni mem.(Gb) ni-li t (s) t/ni mem.(Gb) levels

Test 1

4675 529214 7-105 1013 144.71 1.2 7-105 814 116.29 0.8 3

18837 4152538 7-105 9046 1292.29 9.9 7-105 6894 984.86 6.0 4

Test 2

4675 529214 12-180 1524 127.00 1.2 12-179 1213 101.08 0.8 3

18837 4152538 11-165 11930 1084.55 9.9 12-180 10098 841.50 6.0 4

6.4.2 Geometric Multigrid Solver

As for the line contact problems considered in the previous chapter a further time and

memory usage reduction is possible if AMG preconditioning of the elasticity block is re-

placed with GMG preconditioning on a suitable mesh. Such a mesh sequence is obtained

through uniform refinements of the coarsest mesh. The performance of GMG precondi-

tioning depends upon the coarsest grid used and how efficiently the coarsest grid problem

is solved. In this work UMFPACK is used to solve the coarsest grid problem. In order

to obtain the efficient coarsest grid solution, the linearity of the elasticity block (J22 in

(4.23)) is taken into account. In other words, LU factorization of the coarsest grid matrix

is done only once and these factors are stored in order to avoid the repeated factoriza-

tion and to use them consistently in the later computations.It should be noted that linear

tetrahedral elements have been used in the meshing of the elasticity domain. Starting

with a suitable coarse grid with a total of3042 mesh points, each tetrahedral element is

divided into8 child tetrahedra (e.g. see [84, 96]) at each refinement level, growing the

number of elements eight times at each refinement level. Thisis the main drawback of

GMG preconditioning: that we have to accept this restriction over the meshes. Moreover,

the division of each tetrahedron is done in two phases, the first leading to the removal

of the four corners, leaving an octahedron behind. This octahedron is further divided to

produce four new tetrahedra. There are three choices of diagonals which can be used to

divide this octahedron. In this work, we have used the largest diagonal [69, 96], however

other choices [84] are possible. It should be noted that accuracy of the solution depends

upon the quality of the meshes generated at each level (whichis discussed in detail later

in this chapter). Our main concern in this section is to discuss the performance of AMG

and GMG preconditioning however. Table 6.7 gives a comparison of the AMG and

GMG preconditioning strategies for Test Case 1 and Test Case2. The efficiency and op-

timality of both solvers is apparent as the time growth and the memory usage is almost

linear. Again, a further reduction in time and memory usage is achieved by using GMG



Chapter 6 101 Point Contact Problems

 10

 100

 1000

 10000

 100000

 100000  1e+06  1e+07

tim
e 

(s
)

degrees of freedom

SDS time
SDS time/ni

AMG time
AMG time/ni

GMG time
GMG time/ni

Figure 6.3: Performances of different point contact solvers. Test Case 1

preconditioning of the elasticity block.

The overall performance showing total time and time per nonlinear iteration for the

different solvers for Test Case 1 can be seen in Figure 6.3. One can see that the pre-

conditioned iterative solvers substantially outperform the application of a sparse direct

solver. It is also clear that the AMG performance is very close to GMG and that, as for

the line contact case, it is not likely that the benefits of theGMG approach are sufficient

to overcome the mesh restrictions compared to AMG.

Consider, for example, the finest case in Table 6.6, the unstructured mesh hasnp =

16776 with 2131882 degrees of freedom in total. For an equivalent resolution inΩf

(np = 18837 in Table 6.7) the GMG solver leads to comaparatively twice the problem size

(i.e. 4152538 degrees of freedom in total). In this specific example, the AMG solver (with

least problem size) leads to a saving of about40% in the CPU and20% in the memory

usage compared to the GMG solver (with a large problem size).In addition to the mesh

restriction, the quality of hierarchical meshes used in theGMG solver is generally not

good enough compared to the unstructured meshes used in the AMG solver. This issue is

discussed in detail in the following section.
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6.5 Hierarchical Meshes

In addition to the local mesh resolution, another importantfactor which affects the ac-

curacy of a solution of a problem is the quality of mesh used [14, 15]. In other words,

optimizing the quality of a mesh prior to computing the solution of a problem can im-

prove the accuracy of the solution. In this subsection, thisaspect of the solution process

is considered by computing the EHL solution over different meshes of resolution 2. In

mesh optimization, various heuristic measures of the quality of the mesh are improved by

modifying the mesh in different ways. The mesh optimizationin NETGEN [95] includes

local reconnection via edge and face swaps, local node movement, and some collapsing of

elements. The metric used is based upon minimizing an error functional which quantifies

the quality of the mesh. The Netgen [95] optimization process distinguish between the

metric optimization and the topological optimization. In the former case, mesh quality

is increased with points movement. Once the quality does notimprove any further with

point movement then topological changes are made in the meshwhere some elements are

removed and the points are connected in a new manner. Moreover, edge and face swaps

are also performed to improve the mesh quality. For more details about the optimization

process in NETGEN, see [95].

For this work an experiment is carried out for the Test Case 1 in which an optimized

coarse mesh (generated by NETGEN) is chosen as an initial mesh. The choice of this

initial mesh is made such that the two levels of uniform refinement gives an equivalent

mesh to that with selected mesh case of resolution 2 (see Section 6.3). Three cases are

then considered. In the first case (Case 1), two levels of uniform refinement are applied

to the initial mesh. Each refinement involves the division ofeach tetrahedral element

into 8 child tetrahedra, growing the number of elements eight times at each refinement

level. The division of each tetrahedron is done in two phases, the first leading to the

removal of four corners, leaving an octahedron behind. Thisoctahedron is further divided

to produce four new tetrahedra. There are three choices of diagonals which can be used

to divide this octahedron. In Case 1, we have used the longestdiagonal [69,96], however

other choices [84] are possible. In the second case (Case 2),the two levels of refinement

are carried out using NETGEN [95]. Among the three choices ofdiagonal to divide an

octahedron the NETGEN chooses the best one. Finally, an optimization is performed

(within NETGEN [95]) over the mesh obtained in Case 2 leadingto Case 3.

It may be observed that Case 1 leads to a poor quality solutionsince unphysical os-

cillations are clearly visible in the pressure solution, see Figure 6.4. On the other hand,

Case 2 yields a slightly better solution (with fewer oscillations) than that of Case 1, while
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(b) A close-up of the pressure profile: Case-1
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(c) A close-up of the pressure profile: Case-2
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(d) A close-up of the pressure profile: Case-3

Figure 6.4: The shapes of pressure profile along the central line (whereY = 0) computed
over optimized and non-optimized meshes: Test Case 1

Case 3 leads to a smooth pressure profile (as smooth as could beachieved at this spatial

resolution). It should be noted that the number of degrees offreedom for the first two

cases are the same (710906), as a result of the uniform refinement procedures, while in

Case 3 this number is 670577. This slight reduction is due to the collapsing of nodes,

edges, faces and elements that takes place during the mesh optimization process [95].

The key observation however is that the smoother, optimized, mesh can yield better quali-

tative accuracy in the solution than that of a non-optimizedmesh with more nodes. Recall

that, in this example we have selected the initial mesh such that two levels of refinement

produce an equivalent mesh to the selected case of resolution 2 (see Section 6.3). In order

to assess the accuracy in a more quantitative manner the RMSEof the pressure and film

thickness solutions for these different resolution 2 casesare calculated with respect to the

fine case of resolution 3, and are given in Table 6.8. It can be seen that the RMSE of

both the film thickness solutions and the pressure solutionsare very similar to those for

the selected mesh case. The accuracy of the pressure profile increases while switching
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Table 6.8: Root mean square error of pressure and film thicknesses solutions of various
resolution 2 cases with respect to the fine case of resolution3: Test Case 1.

Case dof Pressure RMSE Film thickness RMSE t(s) t/iter mem.(≈Gb)

Case 1 710906 3.27 × 10
−2

3.10 × 10
−3

1421 203.0 1.6

Case 2 710906 2.71 × 10
−2

3.31 × 10
−3

1397 199.57 1.6

Case 3 670577 2.42 × 10
−2

3.48 × 10
−3

1343 191.86 1.5

Selected mesh (Res. 2) 666160 2.56 × 10
−2

3.12 × 10
−3

1242 177.43 1.5

Fine mesh (Res. 2) 14834838 1.39 × 10
−2

1.68 × 10
−3

31681 4525.86 34
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(c) Pressure profile: Case-3

Figure 6.5: The shapes of pressure profile along the central line (whereY = 0) computed
over optimized and non-optimized meshes: Test Case 2

from Case 1 to Case 3 and in Case 3 it is even slightly improved over that of the selected

case. Moreover, it is apparent that the accuracy of the pressure and film thicknesses solu-

tions is not substantially affected as compared to the solutions computed on the very fine
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reference mesh with a huge number of degrees of freedom (14834838).

A similar behaviour in the accuracy of the solution is observed for heavily loaded

Test Case 2. Figure 6.5 shows the pressure profiles (along thecentral line whereY = 0)

for each of three mesh cases. Again Case 1 leads to a poor quality solution while Case 2

yields a slightly better solution. As for the Test Case 1, Case 3 (optimized mesh) leads

to a comparatively more smooth pressure profile than Case 1 and Case 2. However, the

pressure profile is not completely smooth for this spatial resolution but it can be further

smoothed with an increase in the spatial resolution. Nevertheless, the results shown pro-

vide a further evidence that the accuracy of an EHL solution can be significantly improved

using a post processed optimized mesh.

6.6 Conclusion

In this chapter we investigate the accuracy of the elastic deformation solution, as well as

the complete point contact EHL results, over a number of different finite element meshes

for the linear elasticity problem. It has been possible to show that a judicious choice of

these finite element meshes can allow a substantial reduction in the total number of de-

grees of freedom without reducing the overall accuracy too significantly relative to the

discretization error in the Reynolds equation solution. Inthe specific example included

here this results in a reduction in CPU of about96% (from31681s to 1242s) and a reduc-

tion in memory of about96% (from 34Gb to1.5Gb) for the AMG solver. The selected

elasticity meshes presented in this chapter have been foundto be accurate over a rela-

tively small range of EHL problems, however, it requires a systematic study over a wider

range of cases to demonstrate, its applicability in full. Moreover, for harder materials, a

comparatively smaller mesh size (away from the contact region) may be needed to obtain

appropriate meshes using the same methodology so as to achieve a desired accuracy in

a solution. Note that if the surface roughness is taken into account then a finer mesh in

the contact region (high pressure region) may be required and this may therefore affect

the mesh sizes close to the central contact region accordingly. Nevertheless the mesh

approach used here would still be applicable.

Furthermore, we discuss the performance of different fullycoupled EHL point contact

solvers by giving a detailed comparison of their computational times and memory costs.

For the point contact problems, presented in this chapter, the application of our precondi-

tioning strategy outperforms the sparse direct solver verysignificantly, with huge savings

in memory and time being achieved. Perhaps most importantlythe growth in both time

and memory for the preconditioned iterative approach appears to be linear.
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Finally, it has been shown that the performance of the AMG approach is very close to

GMG, and that the benefits of the GMG approach are not enough toovercome the mesh

restrictions compared to AMG. A further observation provided in this work is that the use

of unstructured hierarchical meshes without appropriate mesh optimization can lead to

poor quality EHL results. In other words, optimizing a mesh prior to computing an EHL

solution significantly improves its accuracy. As the surface mesh remains unchanged

during the optimization process in NETGEN [95], the only reason for the improvement

in the accuracy of an EHL solution is the improved accuracy incorresponding elastic

deformation solution. In short, an AMG solver with least problem size yields a better

accuracy in an EHL solution more economically than a GMG approach.

The effect of mesh quality over the accuracy of an EHL solution is also likely to be an

important observation for future work where we seek to make use of local error estimation

to control the mesh refinement locally in order to automate the generation of the linear

elasticity finite element meshes (see the following chapterfor an initial investigation of

this approach).



Chapter 7

An Adaptive Method for EHL Problems

7.1 Overview

Recall from previous chapters that a fully-coupled EHL point contact problem involves

solving a linear elasticity equation on a3D domain, and the Reynolds equation on a small

part of its surface boundary (the so-called the fluid domain). A large number of experi-

ments were carried out to define appropriate3D meshes (corresponding to different mesh

resolutions in the contact region) with a view to obtaining asatisfactory EHL solution

at the lowest cost as possible. Note that, in the selection ofthose meshes, smaller mesh

sizes were used only in the contact region where the pressuresolution exhibits the large

variation [45,70].

In this chapter, the development of a locally adaptive finiteelement solution scheme

for fully-coupled EHL point contact problems is discussed,which automatically refines

the mesh in the fluid as well as the elasticity domain (where the fully-coupled solution

exhibits large variations). In Section 7.2, a description of the proposed adaptive algorithm

is provided. Section 7.3 discusses in detail an ‘a posteriori’ error assessment which is used

to find the local, as well as global, error estimates. In Section 7.4, different refinement

criteria are described to target a list of elements for refinement. Section 7.5 provides

details about the refinement algorithm which is used to carryout the mesh refinement

process. Section 7.6 provides a description of a procedure for post-optimization of the

meshes generated. The layout of different variants of the adaptive solver developed in this

107
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work is presented in Section 7.7. Finally, in Section 7.8, numerical results are presented

to show the effectiveness and the performance of the proposed procedure for solving EHL

problems.

7.2 Mesh Adaptivity

The accuracy of a finite element approximation depends, amongst other things, upon

the computational mesh being considered. The use of finer meshes (i.e. with smaller

elements) is one way to improve the accuracy of a finite element approximation. In other

words the overall difference (error) between a computed andan exact solution can be

reduced with the use of finer meshes. The case of uniformly refined meshes often leads to

an excessive increase in the size of the discrete problem, and it becomes very expensive,

from a computational point of view, to achieve a desired accuracy. In particular the use

of very fine elementseverywherein the computational domains is not often required (see

Chapter 6). Specifically it may only be required to use the finest elements in those regions

where the local error is greatest, such as regions where the solution has sharp features, e.g.

steep gradients, singularities or discontinuities, etc. The errors arising from such regions

make a major contribution to the overall global error, and the accuracy of a solution can

be improved by paying particular attention to such regions,based on an assessment of the

local error (through an error estimate or indicator).

This goal can be achieved using an adaptive procedure [69, 74, 96, 109, 110] which

seeks to automatically optimize the computational processso as to obtain the desired

performance results (i.e. global accuracy) at a minimal computational cost. Differ-

ent adaptive procedures are possible but they typically involve applying local refine-

ment/derefinement and/or adjusting the order of approximation of the method in the re-

gions where the large errors come from. The various strategies for controlling the finite

element adaptivity generally fall into three categories:

• h-adaptivity [67,69,87,92,96] consists of using the same degree of elements through-

out, but the sizes of elements are changed locally to improvethe accuracy or effi-

ciency. In such a case the elements which show large errors intheir solution are

divided into smaller elements.

• p-adaptivity consists of using the same number of elements but the order of ap-

proximating polynomials are increased to achieve a desiredaccuracy in a computed

solution. This is typically used in conjunction with h-adaptivity [12,31,65].
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• r-refinement keeps the number of nodes and the order of the elements fixed but

adjusts their position to improve the accuracy of the solution. Examples include [9,

74,75].

As noted above, these strategies may also be applied in combination, for example hp-

refinement combines both the h-refinement and the p-refinement (i.e both the local mesh

sizes and order of polynomial are altered) in an efficient manner to obtain best results.

Moreover, h-refinement can be applied in different ways:

• local refinement: elements showing large errors are dividedinto smaller elements [67,

69,96].

• mesh coarsening: this involves coarsening the mesh in regions where the solution on

the elements exhibits small errors. This is done in order to reduce the computational

cost [67, 69, 92, 96, 109]. However the efficiency of the algorithm may be affected

due to complex data management.

• re-meshing: in this case new local mesh sizes are determinedon the basis of a

computed solution, and a totally new mesh is generated again[58, 86, 109]. The

advantage is that both the refinement and derefinement can easily be implemented.

However the drawback is the difficulty of transferring the solution between different

grids, and it may also be expensive to generate a totally new mesh especially in3D

cases.

An adaptive algorithm generally involves the followings steps [74]:

1. An input initial mesh.

2. Solve the corresponding system of discrete equations.

3. Compute the local error estimates or indicators for each element in the mesh.

4. If the errors are in the prescribed limit then the process is complete, otherwise

identify a list of elements exhibiting large or small errors.

5. Perform the refinement process, and goto step 2.

In this work, only the use of h-adaptivity is considered withfirst order finite elements.

The reason for this is so as to make use of the preconditioned iterative solver (developed

and used in the previous chapters) at each adaptive level in order to obtain an efficient

solution at step 2 of the above algorithm. Note that derefinement has not been used, and
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a similar effect to that with remeshing will be discussed in Section 7.8. In the following

section, a detailed discussion is provided about error estimates, refinement criteria and the

refinement process.

7.3 A Posteriori Error Assessment

The error assessments generally fall into two categories: ‘a priori’ error assessment and

‘a posteriori’ error assessment. An ‘a priori’ error assessment takes into account advance

knowledge of the behaviour of the exact or the numerical solution or of input data, and is

used where the knowledge of the specific numerical solution is not required. For exam-

ple, where the solution is known to possess a singularity an optimal refinement strategy

may be determined in advance, e.g. [7]. On the other hand ‘a posteriori’ error assess-

ment is generally based on the computed numerical solution and is therefore an important

ingredient for an adaptive finite element procedure. There are many ‘a posteriori’ error

estimators developed, e.g. [3, 54, 110], which generally fall into two categories: recovery

based error estimators [110] and residual based error estimators [3]. The work presented

in this chapter only takes into account error estimators of the first type. To explain such

estimators, let us assume thatuh is a finite element approximation to an exact solutionu

of an elasticity equation then the error in the computed solution is the difference:

e = u− uh,

and the error in their corresponding gradients or stresses,denoted byσ, is:

eσ = σ − σh.

For an elasticity problem, stresses are calculated from thefinite element solution by:

σh = DSuh,
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where the elasticity matrixD and the differential operatorS are given by [4] (for the3D

problem):

D = E
(1+ν)(1−2ν)



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.

Instead of the point-wise definition of errors, an integral measure is often used to present

errors throughout an element or the whole domain (Ω). In the energy norm, a common ‘a

posteriori’ error estimate, based on the stresses of the solution of an elasticity problem,

takes the following form [110]:

‖eσ‖
2 =

∫

Ω

(σ − σh)
T
D

−1(σ − σh)dΩ.

Since neither the exact solutionu nor σ are always in hand, a reasonable error estimator

can be obtained if the true gradientsσ are replaced with a suitable approximationσ∗

(obtained by a suitable post-processing of the finite element approximation):

‖e∗
σ‖

2 =

∫

Ω

(σ∗ − σh)
T
D

−1(σ∗ − σh)dΩ . (7.1)

Generally the gradients computed from the finite element approximation are discontinu-

ous over the inter-element boundaries. An approximation isthen made at each node by

averaging the elemental contribution of such gradients in apatch of elements sharing that

node. It is then possible to use the interpolating polynomials (the same as those used in

the finite element approximation) to define a continuous, recovered, approximation on the

whole domain. Such class of methods are often known as averaging method [3]. Various

estimators can be distinguished based on the specific steps involved in the construction of

the average or recovered gradients.

A well known post-processed, or recovery based, error estimator was proposed by

Zienkiewicz et al. in late ‘80s [110] (known variously as Zienkiewicz-Zhu or ZZ or Z2

error estimator). Later on, the authors presented an improved estimator based on super-

convergent patch recovery [111, 112]. These estimators arebased on the fact that the

approximated solution is less accurate at the element’s nodes and boundaries. However,

there are points within the elements where the gradients aremore accurate and converge
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to exact values more quickly as the element size decreases. Specifically, such points

often exhibit superconvergent behaviour in the solution and are therefore referred to as

superconvergent points. Thus a more accurate estimate(σ∗) of the true gradient(σ) is

recovered at a node by interpolating between the gradients at the superconvergent points

in a patch of elements surrounding that node. The ZZ error estimator is economical and

easy to implement. Furthermore, the ZZ error estimator has been shown to be effective

compared to other residual based error estimators in different comparative studies, see for

example [4,6,8].

Finally, the norm used above is defined over the whole domainΩ. In practice, the

squared value of the norm can be obtained by summing up the individual element contri-

butions, i.e.

‖e∗
σ‖

2 =
N∑

i=1

‖e∗
σ‖

2
i , (7.2)

wherei is the element number andN is the total number of elements in a current mesh.

7.4 Refinement Criterion

In the previous section, a recovery based error estimator isdiscussed to determine an

approximation to the global, as well as local, error produced in a finite element approxi-

mation. If the global error is already within the prescribedbounds for a given mesh then

the goal is already achieved. However, this is often not the case and refinement is typ-

ically necessary in all or some parts of the domain, which exhibit large or unacceptable

errors. In practice, a tolerance (ηtol) is usually specified for the target relative error (η) in

the final solution (or gradients), i.e.

η =
‖eσ‖

‖σ‖
≤ ηtol . (7.3)

The refinement, solution and error estimation steps are repeated until this criterion is satis-

fied. If neither the true error nor the exact gradients are known then they are replaced with

their best approximations available. Some times it is not possible to reach the prescribed

limit (let sayηtol = 5% [109]) of permissible error (especially for the 3D problems) due

to nature and availability of computer resources e.g. memory, speed etc. Therefore other

alternatives such as maximum refinement levels, minimum element size, memory usage,

etc. can be specified as stopping criteria. In this work, the maximum number of refine-

ment levels are used as a stopping criterion for the adaptiveprocedure.

As stated earlier, refinement is necessary in the regions of largest error. In other words,
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one main requirement for an optimal mesh is that the error is equally distributed among

all the elements in a mesh [78], i.e. the requirement:

‖e∗
σ‖k ≤ ηtol

(
‖σh‖

2 + ‖e∗
σ‖

2

N

) 1

2

= etol,

must hold for all the elements (numberedk) in a current mesh. In the above equation,N

is the total number of elements andetol (average element error) represents the maximum

permissible error for an element. In other words, the ratio:

ξk =
‖e∗

σ‖k
etol

> 1 (7.4)

specifies the set of elements to be refined. Derefinement is also possible, to save compu-

tations, wheneverξk < ξderef ≪ 1.

Another refinement criterion (used in this work) is based upon finding the maximum

error in elements (emax) and targeting elements for refinement according to the equation:

etol = cemax, (7.5)

wherec is a constant (and different values of this constant are usedin this work for demon-

stration purposes). Any decrease in this parameter may result in flagging quite a lot more

elements for refinement and the required goal may not be achieved due to an excessive

number of elements in the final mesh.

7.5 Tetrad

The mesh refinement algorithm TETRahedral ADaptivity (TETRAD) is a mesh adaption

algorithm developed at University of Leeds by Speares et al.[96] in late ‘90s. A general

description of this algorithm is provided in this section however, for more details one is

referred to the original text [96]. The algorithm used in TETRAD is hierarchical in nature

and is suitable for meshes consisting of tetrahedral elements. The mesh adaption algo-

rithm is supported both by the mesh refinement and derefinement process. Assuming a

good quality input mesh the refinement of the base level mesh takes place by addition of

new nodes by edge, face and element subdivision and the changes in the mesh are kept

track of via the construction of a data hierarchy. Contrary to refinement, the derefine-

ment process is a process where nodes, edges, faces and elements are removed from the

mesh to restore the original element(s) back. Note that the derefinement algorithm works
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only until the elements of the base level mesh are recovered back, and hence no further

derefinement is possible.

The mesh refinement process is invoked automatically in a specific region of the com-

putational domain depending upon where the corresponding solution has large estimated

error and/or a larger spatial resolution is required. It is assumed that this information has

been provided to TETRAD by a user subroutine in which the edges are either marked

for refinement or derefinement (or no action). If an edge is marked for refinement then it

leads to refinement of all elements sharing that edge. Similarly if an edge is marked for

derefinement then all the elements which are sharing that edge are potentially derefined.

The refinement process takes into account only two types of subdivisions. A regular sub-

division in which each parent element is divided into eight child elements by introducing

new nodes bisecting each edge. In the first instance this leads to removal of four corners

leaving an octahedron behind. The division of this octahedron further results into four

new child elements on the basis of dissection by the longest diagonal [69, 96]. The other

kind of subdivision, the so-called green refinement, takes place where not all of the edges

of an element are marked for refinement, and this avoids the possibility of introducing

“hanging nodes” (nodes on edges or faces which are potentially not the vertices of all el-

ements sharing those edges or faces) without introducing any additional edge refinement.

Note that green refinement often leads to poor quality elements, and therefore a precau-

tion is taken into account in the development of TETRAD that agreen element may not

be refined further. In such a case, the previous green refinement of the parent element

is replaced with the regular refinement. Thus the green refinement always appears at the

interface between lower and higher grid resolutions. As a consequence, the poor quality

elements never appear in the region of interest provided appropriate flagging criteria have

been used for adaption.

Finally, the developers showed that the scaling behaviour of the fundamental refine-

ment process is close to optimal linear behaviour [96] and isnot significantly affected by

the mesh depth.

7.6 Optimization of Meshes

In the previous chapter, it was observed that the unstructured meshes resulting from hi-

erarchical mesh refinement often lead to poor quality EHL results without appropriate

mesh optimization. In other words, the accuracy of the EHL solution can be improved by

optimizing the quality of mesh prior to any computation. In this work, this fact is also

taken into account for the meshes resulting from the local refinement process.
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In order to combine optimization with local mesh refinement,the meshes obtained

once the refinement is performed are passed to NETGEN [95], where a smoothing process

is performed via edge and face swaps, local node movement, and some collapsing of

elements. Note that, unlike [74], the optimization does notseek to reduce the error further,

rather it is undertaken to ensure minimization of a quality functional which quantifies the

quality of the mesh. An advantageous side-effect of the optimization is that the collapsing

of elements in the optimization process also leads to a reduction in the size of problem

compared to the original mesh. In other words, this method has a resemblance with

r-refinement cases, along with a possible reduction in the number of mesh points. A

difficulty encountered with this type of approach is to handle transfer of the solution data

between the grids. Furthermore, the optimization processes destroys the mesh hierarchy,

so that neither de-refinement nor the use of GMG preconditioning is possible.

Smoothing via NETGEN [95] also has the drawback that the meshoptimization only

takes place in the interior of the domain, i.e. the surface mesh remains unchanged. The

advantage of this is that the pressure solution can be transferred to the new optimized mesh

without any difficulty. However, to produce an initial guessfor the elasticity solution on

this changed mesh, one needs to solve the elasticity equation corresponding to the surface

pressure. Hence, at the cost of a solution of the elasticity equation (equivalent to less

than one fully-coupled iteration) one yields an initial guess for which the fully-coupled

iteration converges very quickly. Note however that the next refinement of green2D

elements on the fixed surface mesh will lead to even more poor quality surface mesh

elements, regardless of an optimized3D mesh. The poor quality surface mesh in the

fluid region may affect the accuracy of the pressure solution. One possibility to avoid

the low quality surface mesh is to perform the mesh optimization only at the final level

to improve the accuracy of the final solution. This is therefore considered as one of the

possible strategies in the following section.

7.7 Solver Layout

In this section we discuss the overall layout of the adaptivealgorithm used in this work.

A suitable initial mesh is first generated using NETGEN [95],where a fine mesh is used

in the contact region compared to the other parts of the domain. The choice of an initial

mesh is made such that a reasonably good starting solution could be obtained. The main

algorithm used in this work can then be split into the following steps.

1. Pass an initial mesh to TETRAD [96] to read-in the mesh and build all the data and

their structures.
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2. Construct lists of leaf elements and edges, and assign boundary conditions.

3. Set up and solve the fully-coupled EHL problem using the solver based on AMG

preconditioning of the elasticity block (see Chapter 6).

4. Estimate the error within each element. If the maximum level is reached then output

is produced and code exits, otherwise a list of elements is created for adaption (h-

refinement).

5. Perform h-refinement within the TETRAD. For mesh optimization, goto step 6,

otherwise goto step 2.

6. Optimize the locally refined mesh using NETGEN [95]. Free up all the previous

data and structures except the new mesh and the solution data, and goto step 1.

Having defined the basic algorithm, a description of different variants of this adaptive

algorithm is now provided. Recall from the previous sectionthat the post processing

(smoothing) of the adapted mesh may lead to even more accurate results. Note however

that if the optimization in step 6 is performed then it destroys the mesh hierarchy. More-

over, calling the step 6 at each refinement level may result ina bad quality surface mesh

after a number of levels, which may affect the accuracy of thesolution of the Reynolds

equation. To assess the accuracy of the solution, three possibilities are considered, which

ultimately lead to three variants of the main algorithm.

• The first variant of solver skips the step 6 and repeats from step 2 until the maxi-

mum level criterion is reached. In this case TETRAD keeps a record of all of the

refinement history and therefore green elements are prevented from further refine-

ment (and the use of the GMG preconditioner is possible in theory too, though not

implemented here) and the initial guess at each stage is a simple interpolant from

the previous solution.

• The second variant of the main solver utilizes step 6 at each refinement level and

therefore repeats the process from step 1 with new mesh. Since the surface mesh

does not change, and hence the2D fluid mesh, so the solution of the Reynolds

equation is transferred to this new mesh without any difficulty, and solving the

elasticity equation yields an initial guess for the displacement for this new mesh.

Hence, an overall improved initial guess leads to fewer Newton iterations to achieve

the convergence of the fully-coupled system. However, the quality of the surface

mesh deteriorates with each additional local refinement.
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Table 7.1: Non-dimensional parameters for the contact between steel surfaces [104].
Parameters Values

Moes parameter,L 10

Moes parameter,M 20

Maximum Hertzian pressure,ph 0.45GPa
Viscosity index,α 2.2 × 10

−8Pa−1

Viscosity at ambient pressure,η0 0.04 Pa s
Total speed,us 1.6 m s−1

• To avoid the risk of successive green refinement at the surface mesh, the third vari-

ant only utilizes the step 6 at the final level of refinement, and hence a surface mesh

is obtained with a relatively good quality.

In the following section, a comparison of accuracy and the performance of these vari-

ants is provided to assess the different strategies used in the above variants of the solver.

7.8 Numerical Results

In this section, a comparison is made between the accuracy and the performance of the

different variants of the adaptive finite element solver fora typical EHL problem. The test

case considered in this work is given in Table 7.1. Moreover,two suitable initial coarse

meshes are used. There is no specific reason in the choice of these initial meshes other

than to produce a relatively good starting solution and allow the sensitivity to the choice

of initial mesh to be considered. The first initial mesh is composed of a total of16671

points where487 of them lie on the surface common to the fluid domain. This means that

this initial mesh is relatively fine close to the contact region compared to the remaining

region of the elasticity domain. In the second choice of an initial mesh, relatively small

mesh sizes are used yielding a mesh with22234 points in total, of them691 points are in

the fluid region.

7.8.1 Implementation of the Error Estimator

Recall from previous chapters that a fully-coupled EHL problem consists of solving the

Reynolds equation, the linear elasticity equation and the load balance equation simulta-

neously. For point contact problems, the linear elasticityequation is numerically solved

on a3D domainΩ, while the Reynolds equation is solved on a2D fluid domainΩf which

is a small part of the surface boundary ofΩ. The solution of the linear elasticity equa-

tion exhibits large variation close to the fluid region. In other words, the mesh elements

close to the fluid region show large errors. Performing localrefinement in that region
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not only improves the accuracy of the elastic deformation solution but also increases the

spatial resolution in the fluid domain for the solution of theReynolds equation. Together,

the increase in the spatial resolution and the relatively accurate elastic deformation solu-

tion yield a significantly improved pressure profile. Hence,with the improved traction

boundary condition, the elastic deformation thus computedwill be more accurate. Hence,

a simple and an effective way to develop an adaptive procedure for a fully-couple EHL

problem is to apply the local refinement to the linear elasticity mesh (with local error es-

timation based on the solution of the linear elasticity equation). Therefore, in this work,

the error estimator discussed in Section 7.3 is only appliedto the linear elasticity solution

to find an approximation of local and the global errors.

Figure 7.1 shows a cut through the centreline of the3D domain after different iter-

ations of h-refinement based adaptivity. The elements are coloured using their element

sizes. Hence the elements with very small mesh sizes (he ≈ e−4) are shown by red and

those with large (he ≈ e2) are shown by purple. One can see that the local refinement

is targeting mainly those regions close to the contact region. However, as the refinement

levels go up, the refinement also extends to the regions away from the fluid region. More-

over, Figure 7.1(c) shows an arc-shaped region (corresponding to the pressure-ridge re-

gion) showing much finer elements. This explains that this isa region where the pressure-

ridge affects the elastic deformation solution more significantly. Overall, this experiment

suggests that the refinement strategy implemented here seems to be effective for a fully-

coupled EHL problem. The corresponding2D mesh for the Reynolds equation is getting

finer in the region where it is desired to be.

7.8.2 Accuracy Appraisal

In this subsection, the accuracy appraisal of different variants of the solver is considered.

As a first case, an initial mesh with16671 mesh points is used as a base level mesh. The

EHL problem is set up and solved on this starting mesh. Once the solution is obtained,

local error estimation on each element of the mesh is made according to equation (7.1),

while a global error estimation is obtained according to equation (7.2). Having the local

error estimate for each element in hand, a set of elements aremarked for refinement

according to equation (7.5) where we have chosen the constant c = 0.1, 0.2 & 0.3 for

demonstration and comparison purposes. Note that a small value of this constantc targets

significantly more elements for refinement and vice versa. Assoon as the refinement is

performed, the procedure is repeated again until the maximum number of levels specified

are reached. Recall that variant 2 of the solver also performs an optimization process on
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(a) Mesh at refinement level-1 (b) Mesh at refinement level-2

(c) Mesh at refinement level-3 (d) Mesh at refinement level-4

−4 −3 −2 −1 0 1 2

(e) Color scheme used for different values ofln(element size).

Figure 7.1: A view of meshes at different refinement levels based upon an initial mesh
with 16671 points.

the refined meshes at each refinement level while variant 3 only applies the optimization

process at last refinement level.

For different mesh refinement strategies, Table 7.2 shows a comparison of behaviour

of problem sizes (both in the pressure unknowns and total problem sizes) and the solution
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Table 7.2: Statistics for solutions using uniform refinement and adaptive h-refinement.
Variant 1 performs no mesh optimization, variant 2 performsoptimization at every level,
and variant 3 performs optimization at the finest level only.

level uniform refinement h-refinement

variant 1 variant 2 variant 3
non-opt. opt. c = 0.1 c = 0.2 c = 0.3 c = 0.1 c = 0.2 c = 0.3 c = 0.1 c = 0.2 c = 0.3

number of pressure unknownsnp

0 431 431 431 431 431 431 431 431 431 431 431
1 1777 1777 1539 897 699 1539 897 699 1539 897 699
2 7217 7217 5163 3357 2265 5602 3489 2496 5163 3357 2265
3 - - 13700 8679 4674 12603 7477 4576 13700 8679 4674
4 - - - 16874 10016 - 19231 10569 - 16874 10016

Total degrees of freedom

0 50043 50043 50043 50043 50043 50043 50043 50043 50043 50043 50043
1 381809 354230 110422 66136 59062 86125 61210 56068 110422 66136 59062
2 2994948 2704035 679186 385831 148894 551030 279022 124183 679186 385831 148894
3 - - 2979240 1122655 569128 1719745 639962 429131 2170815 1122655 569128
4 - - - 3739788 1250907 - 3011678 918850 - 2827140 892530

central film thicknessHc

0 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677
1 0.42500 0.42446 0.42210 0.40666 0.40121 0.42215 0.40644 0.40104 0.42210 0.40666 0.40121
2 0.43071 0.43002 0.42826 0.42479 0.42398 0.42876 0.42482 0.42290 0.42826 0.42479 0.42398
3 - - 0.42996 0.42931 0.42624 0.42929 0.42829 0.42597 0.42997 0.42931 0.42624
4 - - - 0.43025 0.42934 - 0.43024 0.42903 - 0.43027 0.42922

minimum film thicknessHm

0 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047
1 0.28472 0.28442 0.28301 0.27163 0.26543 0.28318 0.27208 0.26572 0.28301 0.27163 0.26543
2 0.29051 0.29112 0.28995 0.28715 0.28427 0.29023 0.28744 0.28483 0.28995 0.28715 0.28427
3 - - 0.29112 0.29034 0.28874 0.29067 0.28947 0.28784 0.29111 0.29034 0.28874
4 - - - 0.29133 0.29051 - 0.29121 0.29036 - 0.29129 0.29055

(in terms of central and minimum film thicknesses). In the case of uniform refinement

(optimized and non-optimized), the pressure unknowns are increasing by about a factor

of four while the total problem size by a factor of about eight. On the other hand the local

refinement process targets elements for refinement showing large errors and the problem

sizes behave differently for different values ofc. In other words, a larger value of constant

c directs the refinement process to be more specific as to refining the elements showing

the largest errors. Note that in each case, the local refinement mostly affects the elements

close to the contact region (see, also Figure 7.1). Moreover, it can be seen that variant 1,

for c = 0.1, results in approximately the same solution after two levels of refinement

compared to that with the uniform refinement cases. In this case, the pressure unknowns

are almost the same as with the cases of uniform refinement butthe total problem size is

about a quarter. Increasing the valuec further reduces the total problem size; however,

one needs to have a little compromise on the accuracy of the solution. Variant 2, which

optimizes the meshes at every refinement level, seems to yield better accuracy in results

than variant 1 with relatively smaller problem sizes. Note that if it would be possible to

perform a third level of uniform refinement (with or without optimization) then this would

lead to a very large problem size (total problem size would increase by about a factor of
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eight). In such a case, it would be easier to see the significance of local refinement process.

It should be noted that the output of variant 3 differs from variant 1 only at the finest

level. Here, optimization of refined meshes leads to a significant decrease in the total

size of the finest level problems while ensuring the overall accuracy of the solution. In

other words, for each choice ofc, variant 3 yields the same accuracy in the solution

(compared to variant 1) with a smaller problem size at the finest level. It should be noted

that the optimization of meshes in variant 3 at the final levelensures the accuracy of the

pressure profile (see Chapter 6). Thus, if the pressure profile is more accurate then the

film thicknesses solution will be more reliable. On the otherhand variant 2 optimizes

the meshes at every refinement level therefore it ends up witha smaller problem size

at the finest level compared to variant 3. Although, the results are not fully converged

one can see that the difference in the output of variants 2 & 3 gets increasingly small

for different choices ofc (especially forc = 0.1 & 0.2), and appears to converge to the

same solution. Finally, it can be seen that, forc = 0.1 & 0.2, the central film thicknesses

solution appears to converge more quickly as the refinement level goes up. However, the

situation is slightly different for the minimum thicknesses solution. The reason may be

that the local refinement process mainly targets the pressure ridge region (see Figure 7.1)

and hence the corresponding changes in the pressure ridge might influence the minimum

film thicknesses solution. In short, results show that both variants 2 & 3 end up with the

same accuracy in their solution with relatively small problem sizes compared to variant 1.

Furthermore, we shall see next that both variants 2 & 3 resultin better accuracy than

variant 1 and the uniform refinement cases quite effectively.

For each choice ofc, a comparison of the estimated global errors obtained for each

variant of the solver is shown in Figure 7.2. Note that the global error estimation is for the

elasticity solution with a converging pressure profile (different for each mesh strategy) as

the traction boundary condition. The case of uniform refinement (with and without op-

timization) along with the selected mesh cases (produced and considered in the previous

chapter) are also included. One can see that a non-optimizeduniform refinement process

leads to small reduction in the error with increasing problem size. But, if the meshes

are optimized after each uniform refinement process then a relatively fast reduction in

the error is obtained. In this example, for each refinement criterion, the local refinement

cases (all three variants) appeared to have a superior errorreduction rate, with respect to

problem size, as compared to both cases of uniform refinement. It can be seen that opti-

mization of meshes at each refinement level further improvesthe rate of error reduction

with respect to the problem size. It should also be noted thatthe last level optimization

(variant 3) significantly reduces the error at the finest level, and results in approximately
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Figure 7.2: A comparison of global error estimation for different mesh refinement strate-
gies using a coarsest mesh of16671 points.

the same accuracy as that obtained with the optimization at every level (variant 2). Fi-

nally, the selected mesh cases even perform better than the local refinement without post-

optimization of meshes (variant 1). Furthermore, it can be seen that different refinement

criteria used here only controls the problem sizes, and doesnot affect the error’s conver-

gence rate with a problem size. In other words, the adaptive technique is not too sensitive

to the choice of the parameterc.

As a second test case, a different initial mesh composed of22234 mesh points is

considered. This initial mesh is relatively more fine than that used above. Figure 7.3

shows the accuracy appraisal for different variants of the solver compared to the use of

uniform refinement and the selected mesh cases. The same behaviour in the results can
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Figure 7.3: A comparison of global error estimation for different mesh refinement strate-
gies using a coarsest mesh of22234 points.

be observed as before however, the case of optimized uniformrefinement shows a better

error reduction rate compared to the non-optimized local refinement case. Nevertheless,

it can be seen that, again, the local refinement cases (both with optimization at only the

last or at every level, variants 3 & 2 respectively) perform better than the other cases in

terms of accuracy.

As a whole, one can conclude from these experiments that the local refinement of

meshes with post optimization at only the final or at all levels results in more accurate

results with a relatively small problem size. Most importantly, the adaptive algorithm

(with at least last level optimization) leads to better results compared to the selected mesh

cases. In this sense, the use of automatic mesh refinement based upon ‘a posteriori’
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Figure 7.4: A comparison of performance of different variants of adaptive finite element
solver using the coarser initial mesh.

error estimation has produced better meshes than the hand-tuning approach described in

Chapter 6. In the next subsection, the performance of each ofthe variants of the proposed

adaptive solver is assessed for each of the three refinement criteria.

7.8.3 Performance

In this subsection, the performance of different variants of adaptive finite element solver

are assessed. For the initial mesh case 1, the computationaltimes are plotted in Figure 7.4

for each of the three adaptive refinement criteria. In Figure7.4, a jump in the growth

of computational time can be observed while switching from base level to first level.
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Table 7.3: Statistics of solution at different refinement levels. Variant 1 performs no
optimization, variant 2 perform optimization at every level, and variant 3 performs opti-
mization at the finest level only.

level uniform refinement h-refinement
variant 1 variant 2 variant 3

non-opt. opt. 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Total nonlinear iterations

0 14 14 14 14 14 14 14 14 14 14 14
1 9 9 8 10 11 9 9 9 8 10 11
2 4 4 4 5 4 4 4 4 4 5 4
3 - - 5 4 4 3 3 3 3 4 4
4 - - - 5 4 - 3 3 - 3 3

Average number of linear iterations per one nonlinear iteration

0 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4
1 12 11 12.8 11.8 11.7 11.1 11.1 10.8 12.8 11.8 11.7
2 13.3 13 15.0 15.0 15.0 11.5 13.5 10.5 15.0 15.0 15.0
3 - - 13.0 15.0 15.0 12.3 12.7 11.7 12.7 15.0 15.0
4 - - - 15.0 15.0 - 11.0 10.3 - 11.3 12.7

The reason is that the first refinement process led to refinement of only a few elements

leaving the problem size approximately unchanged. In otherwords, the computational

time is almost doubled for almost the same sized problem at the first refinement level (see

Section 7.8.5 for further details). Moreover, the variant 2applies an optimization process

on the refined mesh which leads to a slightly smaller problem size but the total time has

increased compared to other two variants. After the first level, the growth in the time

appeared to be almost linear for each of the variants however, variant 3 shows a jump in

the computational time on the final level which is due to optimization process on the last

level mesh. Furthermore, for each refinement criterion, allthree variants appeared to be

computationally similar despite different problem sizes.In other words, the optimization

of the refined meshes, at least at the final level, leads to little change in computational

time (but to relatively more accurate results, as discussedabove).

Table 7.3 gives statistics of average number of linear iterations and the number of non-

linear iterations for each variant of the adaptive solver using the three different refinement

criteria. It can be seen that as the refinement level increases in each case, fewer nonlin-

ear iterations are required to achieve convergence. Importantly, the performance of the

solver seems independent of the adaptivity method used. Moreover, the optimization of

meshes at final level in variant 3 results in a relatively small number of nonlinear iterations

compared to variant 1. Similarly, variant 2 requires even fewer nonlinear iterations at the

intermediate levels as well compared to other two variants of the solver. In addition to

nonlinear iterations, variant 3 requires slightly less average number of linear iterations per

nonlinear iterations at the final level while, on the other hand, this number is also reduced

for variant 2 at the intermediate levels as well.The most important observation of all
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Figure 7.5: A comparison of performance of different variants of adaptive finite element
solver using the finer initial mesh.

however is that overall, the average number of linear iterations per nonlinear iteration

appears to be independent of the problem sizes for each variant of the solver.

As a next case, Figure 7.5 shows a similar behaviour in the computational times while

starting with initial mesh case 2. No jump in the growth of time is observed on the first

level for c = 0.1, 0.2 as these values lead to refinement of a lot more elements compared

to the case forc = 0.3. A similar deterioration in time can be observed at any other

refinement level provided the original problem size is not significantly altered as a result of

local refinement process. Finally, ignoring the additionaltime of optimization of meshes

(which also appears to be linear), all three variants of the solver appear to be close to

optimal, with approximately linear growth in the computational time. The qualitative
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behaviour of the iteration counts is similar to that shown inTable 7.3.

7.8.4 Further Discussion

In this subsection, an overall comparison between the behaviour and efficiency of different

schemes is presented. Note that all cases presented here make use of AMG precondition-

ing of the elasticity block, as the use of GMG preconditioning is not possible while taking

into account the optimization of meshes within an adaptive algorithm. Figure 7.6 shows

a comparison of the estimated global error with respect to the computational time for dif-

ferent schemes using the initial mesh case 1. The selected mesh cases (see Chapter 6)

are also included to make it an overall comparison. It can be seen that the selected mesh
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Figure 7.6: A comparison of performance of different solvers.



Chapter 7 128 An Adaptive Method for EHL Problems

cases and the different variants of the adaptive algorithm are efficient in reducing the error

compared to uniform refinement cases. Moreover, forc = 0.2 & 0.3, the selected mesh

cases appear to be efficient compared to different variants of the adaptive algorithm; how-

ever, this difference is very small. Note that each variant of adaptive algorithm is fully

automatic in optimizing the computational process. On the other hand, the meshes used

in the selected mesh cases are based on a large number of experiments to obtain a desired

accuracy at minimal cost. As a whole, the adaptive algorithmappears to be more con-

venient than the selected mesh cases despite a slight increase in the computational cost

(for c = 0.2 & 0.3). Furthermore, both the variants 2 & 3 of adaptive algorithmare com-

paratively better than the variant 1 in reducing the overallerror at a fixed computational

cost.

7.8.5 Accuracy of Intermediate Solves

The results presented so far were obtained by solving the nonlinear EHL problem to full

accuracy at each refinement level. However, it is generally not necessary to solve the

problem too accurately at each intermediate level. In otherwords, it is only necessary to

solve a problem to a sufficient precision to obtain a good approximation to the solution in

order to direct the adaptive procedure. In this subsection,the effect of different stopping

tolerances for nonlinear solves at each of the intermediatelevels is discussed. It should

be noted that the final level problem will always be solved accurately. For this purpose,

an experiment is setup using variant 3. Recall that variant 3only performs optimization

on the refined meshes at the final level. In this experiment, refinement criterion:etol =

0.25 emax is used. Note that, there is no specific reason in the choice ofvariant 3 of

the solver and the refinement criterion other than to make it atypical test. A total of four

refinement levels are used in this experiment, with initial mesh case 1 as a base level mesh.

The results obtained for different stopping tolerances forthe Newton solver are given in

Table 7.4, in terms of the number of pressure unknowns (np), the total problem size, the

nonlinear iterations (ni), the linear iterations (li) and the total solve time (excluding time

for optimization at final level), the optimization time at the final level and the global error

estimation.

Note that significant savings in the computational times areachieved with an increase

in the tolerance. The use of tolerance as high as10−1 leads to about25% savings in the

total solve time while keeping the other values almost unchanged. A further increase in

the tolerance to10−0 affects the refinement process slightly. This tolerance results in a

slightly smaller problem with a relatively large error. Most probably, the quality of initial



Chapter 7 129 An Adaptive Method for EHL Problems

Table 7.4: Effect of different stopping tolerances for intermediate level nonlinear solves
upon the overall performance of the adaptive solver.

tol np total dof ni li time (sec) opt-time (sec) estimated globalerror

U
1

3 12835 1569053 3 36 1640 669 0.0429396
10

−3 12818 1567527 3 36 1495 666 0.0429393
10

−2 12768 1562842 3 34 1276 666 0.0429871
10

−1 12747 1564912 3 32 1262 669 0.0429649
10

−0 12323 1277703 5 61 1327 537 0.0461213
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Figure 7.7: The effect of tolerance for the intermediate solves over the performance of an
adaptive procedure.

guess is also not so good causing the computational work to slightly grow. Hence, an

intermediate tolerance of10−1 is recommended on the basis of this test.

Finally, Figure 7.7 shows the behaviour in the growth of the computational time for the

accurate and approximate solves at intermediate levels (excluding the optimization time).

One can see that the jump in the computational time at the firstlevel has not appeared in

the case of the approximate solve, and the algorithm has led to a smooth linear growth in

the computational time. Note that for each leveli (i = 1, 2, 3, 4), the problem is solved

approximately until the(i− 1)th level.



Chapter 7 130 An Adaptive Method for EHL Problems

7.8.6 A Modified Error Estimator

The results presented so far were obtained using the ZZ-error estimator discussed in Sec-

tion 7.3. For the EHL problems, it is even possible to simplify this error estimator further.

Recall that a fully-coupled EHL point contact approach (used in this work) involves a

numerical solution of the linear elasticity equation on a3D domain. There are three

solution components corresponding to each mesh point, which represent displacement

components in each spatial direction. Amongst them the mostdominant components of

the solution vector are those in the z-direction, see Section 2.6. Hence, such solution

components can exhibit relatively large errors on coarse grids due to the large variation in

their values. Therefore, it may be quite useful to only consider those solution components

to find an approximation of an error. Letwh represent a finite element approximation of

the z-displacement solution component, which can be written as:

wh =
n∑

i=1

Niwi ,

whereNi represents the basis function corresponding to a nodei, andn is total number

of nodes. The gradient of the above approximation can be written as:

∇wh =

n∑

i=1

∇Niwi . (7.6)

Thus replacing the stress vector in equation (7.1) with the expression given in equa-

tion (7.6), a simple error estimator can be defined in theL2 norm as:

‖e∗
∇w‖

2 =

∫

Ω

(∇w∗ −∇wh)
T (∇w∗ −∇wh)dΩ , (7.7)

where the recovered gradient∇w∗ is obtained using the same procedure as described in

Section 7.3 (i.e. taking a piecewise linear approximation based upon recovered nodal

values obtained by averaging over elements surrounding each node). Some provisional

results using this simple error estimator to assess its applicability are now presented.

Figure 7.8 shows a comparison of the error estimates for different variants of the

solver together with the selected mesh cases and the uniformrefinement cases (both with

and without optimization). Starting with initial mesh case1, for each variant of the solver,

a total of three refinement levels have been used for a refinement criterion withc = 0.1

and a total of five refinement level in the other two cases. One can see a similar behaviour

in the results as was observed in the previous subsection. For each of the refinement
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Figure 7.8: A comparison of global error estimation for different mesh refinement strate-
gies using a coarsest mesh of16671 points.

criteria, variant 1 appears to result in an equivalent accuracy compared to the optimized

case of uniform refinement. However, the selected mesh casesare even more efficient. On

the other hand, variant 2 shows a better reduction rate of error (with respect to a problem

size) throughout however, variant 3 tends to yield almost same accuracy at the finest level.

Finally, we note that this simplified version of the originalestimator is relatively easy

to implement and seems to work just as well as the original estimator. However, it will be

necessary to undertake a number of further experiments for different base level meshes

and the different EHL cases to demonstrate its applicability in full.
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7.9 Conclusion

In this chapter, an adaptive finite element solution to a fully-coupled EHL problem has

been discussed. A ZZ-error estimator has been used to find thelocal error approximations

and these local error estimations are used to find an estimation of the global energy error.

These error estimations have been used to mark elements for refinement which were ex-

hibiting larger errors than a prescribed tolerance. The refinement criterion used at each

refinement level was based on the largest of the local error estimates. The local refinement

of the meshes was carried out using the algorithm that is described in Section 7.5. Three

variants of the adaptive algorithm are considered in this work. The first variant applies

a standard h-adaptive algorithm. The second variant considered the post-optimization of

the meshes at each refinement level in order to increase the accuracy. With the post-

optimization process for the meshes, a new mesh was obtainedat each level which means

that the hierarchy of meshes does not exist anymore. Thus, neither the derefinement nor

the use of GMG based preconditioner is possible. Variant 3 ofthe adaptive solver only

utilized the optimization at the final level in order to avoidthe possibility of excessive

green elements on the2D surface mesh (which remains unchanged by the optimization

process).

The accuracy appraisal of all three variants of the solver were made using two differ-

ent initial meshes against the use of uniformly refined meshes (both optimized and non

optimized) and against the efficient meshes selected in the previous chapter. The results

showed that both the variant 2 and the variant 3 appeared to perform best in terms of accu-

racy. In other words, variant 2 & 3 have close resemblance with an hr-adaptive algorithm

(at least at the final level) resulting in better results. A drawback of the optimization of the

meshes was to lose the hierarchy of meshes and the data. However, unchanged surface

meshes allowed us to generate a better initial guess (by solving a linear elasticity problem

with the interpolated boundary condition) to reduce the computational work at the subse-

quent levels. Moreover, all three variants of the solver showed almost a linear growth in

their computational time despite of quite few zig-zag behaviours.

Significantly, it was shown that an approximate solve at eachof the intermediate levels

leads to a smooth linear growth in the computational time. Furthermore, due to additional

time required for the optimization process of meshes, variants 2 & 3 require a slightly

longer time than the variant 1 (for a fixed problem size). However, this slight compromise

on the computational work ensures that these variants result in a more accurate solution

compared to variant 1. Finally, a simplified version of the ZZ-error estimator was imple-

mented. This estimator is only based on computing the gradients of the z-components of
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the solution of the elasticity problem, and is relatively easy to implement. The initial re-

sults showed that the modified estimator can also be effective in an adaptive fully-coupled

EHL finite element point contact procedure.

Overall, it is demonstrated that automatic control of the local mesh adaptivity results

in better meshes than were obtained by experimentation in Chapter 6, and that the optimal

convergence behaviour of the preconditioned iterative solver introduced in Chapter 4 & 6

is still maintained within this adaptive algorithm. Furthermore, only moderate accuracy

is required from the iterative solves at the intermediate mesh levels in order to guide the

local refinement procedure effectively.



Chapter 8

Conclusion

8.1 Summary

In this research a numerical study into the efficient solution of fully-coupled EHL line

and point contact problems has been undertaken. This is an extension of previous work of

Habchi [49–51] who first used a coupled approach to solve EHL problems based upon the

elastic deflection in the film thickness equation being modelled by using a finite element

solution of Lamé’s equation of linear elasticity. Contrary to the traditional half-space ap-

proach for elastic deflection the finite element model only uses information at the neigh-

bouring points to calculate the elastic deflection at a pointin the domain. This results in

a highly sparse matrix and makes it easier to use sparse matrix methods. Furthermore,

the strong coupling makes it possible to reach the solution without any special treatment

for convergence. The drawback, however, is the need to solvethe elasticity equation in a

2D domain for line contact problems and a3D domain for point contact problems, which

makes the size of computational problem very large.

In this thesis the issue of the high computational and memorycosts of the fully-

coupled approach to solve EHL problems was discussed. Habchi et.al. [49–51] used a

sparse direct solver to solve the linearized system at each Newton step. To solve very

large sparse problems, iterative methods are considered tobe superior to sparse direct

methods in terms of memory, however good preconditioners are required to make them

computationally competitive. Therefore the main objective of this study has been to de-

134
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velop a fast and efficient preconditioned Newton-Krylov solver for fully-coupled EHL

problems. In particular, a new blockwise preconditioner has been developed which is

designed to exploit the specific structure of this problem and combines algebraic multi-

grid (AMG) /geometric multigrid (GMG) for the linear elasticity block with a separate,

efficient, approximation to precondition the Reynolds part.

In Chapter 4, the accuracy of our implementation of both the line contact solver and

the point contact solver have been validated against published results in the literature. In

Chapter 5, the accuracy and performance of different variants of the proposed line contact

solver was assessed. It was shown that the accuracy of the computed EHL solution is

not significantly affected using a suitable set of selected non-uniform meshes. Moreover,

it has been shown that the AMG preconditioned variant of the iterative solver performs

better than the sparse direct solver. The GMG preconditioned variant of the iterative solver

was observed to be even more efficient than the AMG preconditioned variant, however

one needs to accept restrictions over the meshes due to the global refinement needed to

generate the hierarchy of meshes for GMG. Later on, the effect of varying the Poisson

ratio (for the2D elastic model) over the accuracy and the performance of line contact

solvers was demonstrated. It was shown that the accuracy of the EHL solution is not

affected with the variation of Poisson ratio provided a sufficiently fine elasticity mesh

is used. Moreover, it was demonstrated that the performanceof preconditioned iterative

solver remains optimal as the Poisson ratio is increased. (However, as the limit of0.5 is

approached the preconditioned iterative solver finally deteriorates.)

In Chapter 6, the accuracy and the performance of the proposed the EHL point contact

solver is presented. First of all, a large number of experiments have been carried out to

investigate the accuracy of the elastic deformation as wellas the EHL solution over a num-

ber of non-uniform3D meshes. It was possible to select a set of efficient meshes such that

a substantial reduction in the total computational cost wasachieved without significantly

affecting the accuracy of the EHL solution. Moreover, the application of the precondi-

tioning strategy was shown to significantly outperform the sparse direct solver, with huge

savings in memory and time being obtained. As with the line contact case, a further sav-

ing in the time and the memory growth is obtained using the GMGpreconditioning of

the elasticity block. However, these savings are not sufficient to overcome the restriction

from using a global refinement process to generate the hierarchy of meshes. Furthermore,

it was shown that both the time and memory growth appeared to be linear with increas-

ing problem sizes. Finally, it was shown that unstructured hierarchical meshes without

appropriate mesh optimization can lead to poor quality EHL results: again suggesting a

preference for the use of AMG over GMG.
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In Chapter 7, a locally adaptive finite element procedure forfully-coupled EHL point

contact problems was discussed. The local h-refinement was based on the approximation

of the local error in the energy norm using the ZZ-error estimator. The main adaptive

solver was distinguished into different variants on the basis of post-optimization (or not)

of the locally refined meshes. It was shown that the adaptive procedure with at least

the last level of the locally refined meshes being optimized performs better in terms of

accuracy. Moreover, it was shown that the application of thepreconditioning strategy also

performs well for this locally adaptive finite element scheme, and that a linear growth in

the computational cost is still observed. Finally, some initial results were presented for

a simplified version of the ZZ-error estimator which was based on the gradients of the

z-component of the solution of the elasticity problem. Theseprovisional results showed

that the modified estimator appears to work as well as the original estimator.

8.2 Future Work

In this thesis an efficient preconditioned iterative solution to fully coupled EHL line and

point contact problems has been discussed. Numerical results show the effectiveness of

the strategy used both for line and point contact problems: importantly the number of

linear iterations at each nonlinear solve is independent ofthe size of the problem, and

both the computational times and the memory growth are almost optimal with increasing

size problems. Especially for the fully coupled point contact problem, huge savings in

the computational times and the memory growth are made possible. Furthermore, the

proposed strategy has also been shown to be effective as partof a locally adaptive finite

element solution of the point contact problem. Nevertheless, there are still possible ways

to improve, and further extend, this work to obtain even better results for a variety of EHL

problems.

• Firstly, it must be acknowledged that due to the time constraints associated with this

project it has only been possible to test the proposed techniques on a modest number

of problems with a selection of parameters. In order to fullytest the robustness of

our techniques it will be beneficial to consider even more loading cases, a wider

selection of coarse grids, and a broader range of lubricantsmodels.

• In Section 4.4, the Reynolds blockJ11 was used effectively as an approximation of

the Schur complementS = J11−J12J
−1
22 J21, and an efficient sparse direct approach

was used to calculate the effect of its inverse over an arbitrary vector (i.e. zp =

J−1
11 rp). However, it may be even possible to consider the solutionSzp = rp by
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means of an iterative method withJ11 as a preconditioner for it. Moreover, as

the J11 is the discretization of an advection diffusion block, so the use of AMG

preconditioning may also be effective.

• A natural extension of this work is to parallelize the EHL code using the MPI li-

brary [42, 45, 47]. This is possible with the use of parallel sparse direct solver [5]

and the use of a parallel AMG approach [79].

• Although the preconditioning strategy developed in this work to solve the fully-

coupled EHL problem is shown to be highly effective, this is only using linear finite

elements. An important extension will be to make use of higher order elements,

as shown by Habchi et al. [49–51], with the development of an efficient AMG

technique for the elasticity problem using higher order elements (extending [106]

for example). It is to be expected that this would allow even better performance

results especially for point contact problems, where it wasnot possible with the use

of linear elements.

• It is not necessary to restrict the above extension to continuous higher order ele-

ments. For example, Lu et al. have shown that higher order discontinuous Galerkin

(DG) finite elements may be used effectively to discretize the Reynolds equation [70–

72].

• With the extension of this work to make use of both parallelism and higher order

elements, the extension to transient EHL point contact problems [45,46], may well

become feasible without excessive run times. This would be avery significant

development.
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Appendix A

Elasticity

The shape of an elastohydrodynamic lubrication film dependsupon the elastic deforma-

tion of the contacting surfaces. In most traditional approaches, e.g. [20, 46, 47, 73, 102,

104], the elastic deformation of contacting surfaces was calculated by using a half space

approach, which is based upon an analytical solution of the elasticity equations on a semi-

infinite domain. However this approach only provides information about elastic defor-

mation at the surface. On the other hand, the numerical solution of the classical linear

elasticity equation on a finite domain provides considerably more information, such as

elastic deformation throughout: it can therefore provide engineers with further informa-

tion such as stresses throughout the contacting elements. However the linear elasticity

equation needs to be solved in a2D domain for line contact problems, and a3D domain

for point contact problems. In a FEM solution of the linear elasticity equations, the more

the number of mesh points, the more accurate the solution will be. This however leads to

a significant increase in the size of the discrete algebraic system to be solved. It should

also be noted that a fine mesh is required in the regions where the solution requires the

greatest resolution. Therefore special attention is required to choose different mesh sizes

in different parts of the domain, especially in point contact problems in order to get a

precise solution with minimal computational cost. The purpose of this experiment is to

investigate different mesh sizes in different parts of the3D domain to get a “sufficiently

accurate” elastic deformation with as few finite elements aspossible. This investigation

is empirical and will be based upon the comparison of different numerical solutions com-

puted on different meshes.
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(a) Domain with two sub-regions (b) Domain with four sub-regions

Figure A.1: A view of the top of the 3D domain

The pressure generated inside the lubricant film is high enough in the contact region

to lead to a significant elastic deformation while, on the other hand, the pressure outside

the contact region is relatively low and does not lead to a significant elastic deformation.

Moreover, the precision of the elastic deformation is important only in the contact region,

since this is what affects the Reynolds equation. Hence, we propose that a fine3D mesh is

required in the contact region up to a certain depth, but not in the whole elasticity domain.

Nevertheless, a suitable mesh size needs to be defined outside the contact region in order

to get a sufficiently accurate solution in the contact region.

In this experiment, the linear elasticity equation is solved on a3D domain which is

a cube of dimension[−30, 30] × [−30, 30] × [−60, 0], the motivation behind choosing

this dimension comes from the work of Habchi [50,51], who didexperiments on different

dimensions and adopt the said dimension in his work.

A view (XY plane, whereZ = 0) of the top of the domain is shown in Figure A.1.

For the sake of simplicity, the notationsR1 andR2 are used to represent different regions

in the domain,R1 representing the whole domain.R2 will represent a central region of

dimension[−4.5, 4.5]× [−3, 3]× [−3, 0] which contains the contact domain[−4.5, 1.5]×

[−3, 3] (considered in this work) on its top surface. It should be noted that the length

of R2 is chosen[−4.5, 4.5] instead of[−4.5, 1.5] in order to get a more precise elastic

deformation solution. Moreover, in the following section,it will be shown that depth ‘3’

of regionR2 is good enough to get a sufficiently accurate elastic deformation solution.
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Later in this appendix, further regionsR3 andR4 will be defined, whose dimensions will

be stated explicitly.

Different resolutions, denoted resolution1, 2 and3, will be used for the mesh sizes in

the central region (R2 and/orR4) throughout this appendix. Resolution 1 is the coarsest

resolution and the mesh size for this resolution is about0.09375 which corresponds to

64 × 64 points in the contact domain ([−4.5, 1.5] × [−3, 3]), Similarly, resolution 2 and

3 corresponds to128 × 128 and 256 × 256 points in the contact domain respectively.

In order to define the most appropriate mesh size away from central region, a number

of experiments have been carried out for each region and results are presented in the

following sections. For every test case the root mean squareerror (RMSE) is calculated

with respect to the finest case. This will be used to provide anidea about the mesh sizes

that need to be adopted for sufficient accuracy in the solution of this problem.

All the meshes used here are generated using NETGEN [95]. In order to get a required

local mesh size density, a mesh size file is provided to NETGEN, which specifies ‘n’

points given by the(xi, yi, zi)-coordinates and parametershi, where the mesh size will be

reduced at least tohi. It should be noted that these ‘n’ points are not necessarily contained

in the final mesh.

It should also be noted that an equivalent geometry of a steelto steel contact is con-

sidered in this work, and the elastic material contains the total elastic properties of both

contact surfaces, and hence the solution will provide the total elastic deformation of both

contacting surfaces. The equivalent Young’s modulusEeq and Poisson ratioνeq of equiv-

alent geometry are given by (see Section 2.6)

νeq = ν = 0.3

Eeq =
π

2
(1− ν2)

Unless stated otherwise, a Hertzian pressure profile is usedto carry out all experiments in

this appendix.

A.1 Depth Test for RegionR2

In this section, the main domain is divided into two regionsR1 and R2 as shown in

Figure A.1(a). A fine mesh of resolution 1 has been used in region R2 and a relatively

coarse mesh is used in regionR1 − R2. The behaviour of fine mesh inR2 down to

different depths has been investigated.

It is clear from Figure A.2 that any increase in the depth after ‘3’ does not lead to any
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Figure A.2: Effect of using a fine mesh (resolution 1) inR2 down to different depths:
Accuracy of the elastic deformation solution along the central line (whereY = 0).

significant improvement in the elastic deformation result.Moreover, RMSE of each depth

case is calculated with respect to a case with depth ‘12’ and are reported in the Table A.1.

One can seen that the RMSE of depth 3 is less than10−3, relative to a non-dimensional

deformation ofO(1). Therefore, depth 3 ofR2 will be adopted in our cases.

A further question arises here is, what is the effect on the depth of regionR2 with an

increase in the fine mesh resolution. For this purpose, another experiment is carried out in

which resolution 2 has been used in regionR2 down to depth 3 and 6. Again Figure A.3
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Table A.1: Effect of fine mesh (resolution 1) inR2 down to different depths: RMSE of
each case is calculated with respect to a case with depth 12.

Case RMSE

Depth0 8.92 × 10
−3

Depth1 4.55 × 10
−3

Depth3 9.52 × 10
−4

Depth6 3.93 × 10
−4

Depth12 0.0 × 10
0
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Figure A.3: Effect of using a fine mesh (resolution 2) inR2 down to different depths:
Accuracy of the elastic deformation solution along the central line (whereY = 0).

justifies that depth 3 of regionR2 is working sufficiently well for the higher resolution

problem. The RMSE of these two data sets (i.e. comparing the solution with refinement

to depth ‘3’ against the solution with refinement to depth ‘6’) is 2.35 × 10−4, which is
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again very small. This experiment concludes that a resolution in regionR2 down to depth

‘3’ is sufficient to get a sufficiently accurate solution. Therefore, depth ‘3’ of regionR2

will be adopted in these and higher resolution cases.

A.2 Selection of a Reference Solution for Further Analy-

sis

In the previous section, it was suggested that a fine mesh in region R2 down to a depth

‘3’ is sufficient to get a sufficiently accurate solution. Before proceeding to the next ex-

periment we need to define a more accurate solution which we named as the “reference

solution” in order to get a comparison of different numerical solutions computed on dif-

ferent meshes. This reference solution should be such that any further increase in the

resolution of the problem does not lead to a significant improvement in the solution. For

this purpose, a test has been undertaken to check the convergence of solutions with in-

creases in the resolution. Again, the main domain is dividedinto two regionsR1 andR2

as shown in Figure A.1(a). The coarsest resolution we considered in this analysis uses a

mesh size about ‘0.1875’ everywhere in regionR2 and a mesh size ‘0.5’ outside of region

R2. In the other three cases, the resolution is increased everywhere in regionR2 and uses

the mesh sizes which correspond to resolution 1, 2 and 3. These four cases are named as

‘coarse resolution’, ‘resolution 1’, ‘resolution 2’ and ‘resolution 3’ respectively. It should

be noted that resolution 3 case leads to15 802 299 nodes in the mesh (over 45 million

unknowns), which makes the problem very large and around ‘110GB’ memory was re-

quired to solve this problem. These four results are plottedtogether in Figure A.4, while

the RMSE of each resolution with respect to finest resolutionis provided in Table A.2.

Figure A.4 shows that results on resolution 2 and 3 are very close and suggests that a

further increase in the resolution will not significantly improve the solution. This fact can

also be justified from Table A.2, which reveals that RMSE is well under10−3, even for

resolution 1. Hence, we conclude that resolution 1 is sufficiently accurate in this refined

region, whilst the resolution 3 case provides a particularly accurate solution, which can

be used as a reference solution to do further analysis tests.

A.3 Mesh Sizes Tests (Meshing Strategy 1)

In the previous section, we have defined a reference solutionfor further comparisons. In

the convergence tests (see previous section), we increasedthe resolution everywhere in
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Figure A.4: Effect of using different resolutions in regionR2: Accuracy of the elastic
deformation solution shown along the centreline (whereY = 0).

Table A.2: RMSE of different resolution cases in regionR2 calculated with respect to the
finest resolution case.

Case RMSE

Coarse Res. 3.06 × 10
−3

Res. 1 8.51 × 10
−4

Res. 2 2.10 × 10
−4

Res. 3 0.0 × 10
0

regionR2 and moreover, we have used a relatively small mesh size (0.5)in the region

R1 − R2. However, all four extreme cases in the previous section lead to large numbers

of nodes, which are respectively,3 302 424, 3 505 403, 4 950 405 and15 802 299. This

results in a very large problem to solve (even at resolution 1), which is very expensive
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from a computational point of view. For a sufficiently accurate solution, the small mesh

size everywhere in the domain is not necessary, while, keeping in mind, the region of

interest. Hence a number of questions arise as to how to improve the efficiency:

1. Is the mesh size ‘0.5’ enough in the regionR1− R2 or can a coarser mesh size be

used without significantly affecting the accuracy of solution?

2. Does the mesh size used inR1− R2 need to be the same everywhere in the region

R1−R2 or can this be adapted only in a certain region around regionR2?

3. Does the mesh size at each resolution need to be adopted everywhere in regionR2,

if no, where should this resolution be adopted insideR2 and what should be the

dimension of that region and finally, what mesh size should beused in the remaining

region ofR2?

These questions lead to the definition of two more sub-regions, namelyR3 andR4, out-

side and inside of regionR2, respectively. This decomposition of the whole domain can

be viewed in Figure A.1(b). To answer all these questions, a number of further tests have

been carried out and results are discussed in the following sub-sections.

A.3.1 Resolution 1

In this section, all tests use resolution 1 in the most refinedregion, and have been carried

out in order to define the most appropriate mesh sizes away from the most central region.

A.3.1.1 Effect of Mesh Size Outside of RegionR2

In this experiment, the main domain is divided into two regionsR1 andR2. The mesh

size inR2 with depth 3 is kept constant (at resolution 1), while inR = (R1 − R2),

different mesh sizes have been tested. It is clear from the Figure A.5, that any decrease

in the mesh size below1.0 does not lead to any significant improvement in the solution.

Moreover, Table A.3 reveals that RMSE of mesh size1.0 and0.5 is almost the same (less

than10−3 error relative to anO(1) displacement). Therefore, the mesh size1.0 in region

R1−R2 will be adopted in our work for the current resolution.

For a 60 × 60 × 60 domain, the mesh size1.0 leads to roughly216000 nodes in

R1−R2, which is still quite large in number. So instead of adoptingthis mesh size in the

outer regionR1 − R2, we carried out a further test, where we have introduced a region

R3 outside ofR2. A mesh size of1.0 is adopted inR3−R2, while a size of5.0 is used in

the remaining region outside ofR3. This test is carried out on different dimensions ofR3.
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Figure A.5: Effect of mesh size outside of regionR2: Accuracy of the elastic deformation
profile (shown along the centreline).

Table A.3: Effect of mesh size outside of regionR2: RMSE of each case is calculated
with respect to the reference solution.

Case RMSE

Very coarse 6.67 × 10
−3

Mesh-size 5.0 4.62 × 10
−3

Mesh-size 2.0 1.81 × 10
−3

Mesh-size 1.0 8.47 × 10
−4

Mesh-size 0.5 8.51 × 10
−4

There are two extreme cases, one with “no box” meaning a mesh size of5.0 is adopted in

the remaining domain outside ofR2 and the other withR3 overlappingR1, i.e. a mesh

size of ‘1.0’ is used in the entire region outside ofR2. These results are plotted together
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Figure A.6: Effect of a fixed mesh size in the regionR3 − R2 with different dimensions
of R3: Accuracy of the elastic deformation profile (shown along the centreline).

Table A.4: Effect of a fixed mesh size in the regionR3−R2 with different dimensions of
R3: RMSE of each case is calculated with respect to the reference solution.

Case RMSE

No box 4.62 × 10
−3

Box 15 × 15 × 15 1.88 × 10
−3

Box 20 × 20 × 20 1.45 × 10
−3

Box 30 × 30 × 30 9.42 × 10
−4

All domain 8.47 × 10
−4

in Figure A.6, which shows that choices20× 20 × 20 and30× 30× 30 works fine, but

on the other hand a careful look on the Table A.4 suggests that30 × 30 × 30 is a better

choice than20×20×20 for the current resolution case (the former giving an error of less
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Table A.5: Effect of using mesh sizes1.0h, 1.5h and2.0h in R2 − R4 (whereh is mesh
size corresponding to resolution 1): RMSE of each case is calculated with respect to the
reference solution.

Case RMSE

1.0h inR2 − R4 1.48 × 10
−3

1.5h inR2 − R4 1.71 × 10
−3

2.0h inR2 − R4 1.78 × 10
−3

than10−3, while the latter gives an error which is slightly larger).

A.3.1.2 Coarsening of Mesh in the Central Region

So far the mesh size in a central regionR2 was kept constant and different mesh sizes

were tested outside this region, in the remaining domain. Inall experiments, the mesh

size in the central regionR2 was chosen0.09375. This mesh size, although not very

small, still leads to a relatively large number of points (roughly 147456) in the central

regionR2. In this test, a regionR4 of dimension[−1, 1] × [−1, 1] × [−2, 0] is defined

inside the central regionR2 and the mesh size0.09375 is adopted in this new regionR4.

Now in the regionR2− R4, 1, 1.5 and2 times of this mesh size is adopted. The number

of nodes contained in the mesh for these three cases are respectively,303591, 255578 and

116548.

The RMSE of all these three cases (with respect to the finest reference case) are given

in Table A.5. One can observe that, switching from1.0h to 1.5h in R2−R4, although not

significantly affecting the number of nodes, does increase the RMSE by a modest amount.

On the other hand, switching from1.5h to 2.0h in R2 − R4 does significantly affect the

number of nodes, but with only a very small further increase in the RMSE. Moreover,

the first case is the same as case-4 of Table A.4, the only difference is the detail of the

mesh generation, i.e. in the former case mesh sizes are provided separately for region

R2 − R4 andR4, while in the later case (case-4 of Table A.4), mesh size was specified

for whole regionR2. This led to generation of two different meshes leaving a small

effect on difference in nodes which is177, but the RMSE is changed from9.42 × 10−4

to 1.48 × 10−3. So keeping in mind this variation in the solution, the choice of 2.0h in

R2 − R4 seems to be a better choice, as this is leading to a large decrease in number

of nodes about187043 without significantly affecting the RMSE. Figure A.7 shows a

graphical comparison of all three cases. It should be noted that, adopting different mesh

sizes inR2 − R4 is not significantly affecting the overall solution, and a small variation

in the individual nodal values is observed around the centre.
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Figure A.7: Effect of using mesh sizes1.0h, 1.5h and2.0h in R2−R4 (whereh is mesh
size corresponding to resolution 1): Accuracy of the elastic deformation profile (shown
along the centreline).

A.3.1.3 A Note on the Reduction in the Depth ofR4

In this experiment, the effect of halving the depth ofR4 is discussed, i.e. mesh size

0.09375 is adopted inR4 down to depth 1 instead of 2. This lead to a small reduction in

number of nodes from116548 to 110984. Table A.6 shows that, it has slightly affected the

RMSE. Moreover, Figure A.8 shows that a small variation is seen near the centre. Being

a coarse resolution case, decrease in depth of regionR4 is not significantly affecting the

number of nodes contained in resultant mesh. Therefore, forthe current case, there is no

significant gain in reducing the depth ofR4.
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Figure A.8: Effect of using a mesh size corresponding to resolution 1 in R4 down to
different depths: Accuracy of the elastic deformation profile (shown along the centreline).

Table A.6: Effect of using a mesh size corresponding to resolution 1 in R4 down to
different depths: RMSE of each case is calculated with respect to the reference solution.

Case RMSE

Depth 2 1.78 × 10
−3

Depth 1 2.14 × 10
−3

A.3.1.4 Conclusion and Overall Comparison

So far we have divided the whole domain into four regions, thefirst is the most central

region,R4, and has dimension[−1, 1]× [−1, 1] × [−2, 0], where a mesh size0.09375 is

defined. Second regionR2 is of dimension[−4.5, 4.5]× [−3, 3]× [−3, 0], and a mesh size

0.1875 is selected inR2 − R4. In the third regionR3, whose dimension is[−15, 15] ×
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Figure A.9: A comparison of elastic deformation profiles using fine and selected mesh of
resolution 1.

[−15, 15] × [−30, 0], a mesh size1.0 is used inR3 − R2. And the fourth region is the

remaining region of the domain, where a mesh size5.0 is used. The selection of this

mesh leads to ‘116548’ nodes in the domain. On the other hand, the finest mesh, with

which, we are comparing the solution is split into two main regions: the first region is of

dimension[−4.5, 4.5]× [−3, 3]× [−3, 0], where the mesh size0.09375 has been used; and

second region is the remaining region of the domain, where a mesh size of0.5 is used.

This finest mesh leads to3505403 nodes in the domain. A comparison of results on both

meshes is given in Figure A.9, and it can be seen that both results are very close, with

only a relatively small loss of precision with a huge reduction in the number of points,

when switching from a very fine mesh to the selected mesh.
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Table A.7: Set of mesh cases for resolution 2: details of meshsizes used in different
regions of the domain.

Case R4 R2 − R4 R3 − R2 R1 − R3

Case-1 0.046875 0.1875 1.0 5.0
Case-2 0.046875 0.09375 1.0 5.0
Case-3 0.046875 0.09375 0.5 5.0
Case-4 0.046875 0.09375 0.5 2.0
Case-5 0.046875 0.09375 0.5 1.0
Fine-case 0.046875 0.046875 0.5 0.5

A.3.2 Effect on Mesh Sizes with Increase in Resolution in theCentral

Region

A.3.2.1 Resolution 2

Recall from previous section that, we divided the whole domain into four regions, where

we have used mesh sizes,0.09375, 0.1875, 1 and5, from central to outer regions, respec-

tively. The mesh sizes defined (in different regions) were corresponding to resolution 1,

which we have adopted in the central most region. In this section, we discuss the effect

of increasing the resolution in the central region upon the mesh sizes defined before. In

order to proceed, first of all, we divide the whole domain intothe following four regions:

R1 being the whole domain

R3 is a region of dimensions[−10, 10]× [−10, 10]× [−20, 0]

R2 is a region of dimensions[−4.5, 4.5]× [−3, 3]× [−3, 0]

R4 is a region of dimensions[−1, 1]× [−1, 1]× [−1, 0]

It should be noted that, dimensions ofR3 andR4 are different from those used in the

previous section, and these are selected as a result of different experiments done likewise

in the previous section.

The first case considered here uses the mesh sizes selected inthe previous section

(from central to outer region) except the resolution 1 is replaced with resolution 2 in the

central regionR4. In the other cases, the mesh sizes are decreased in the outerregions

to check their effect on the accuracy of solution. The mesh sizes, we used for each case

(considered here) are given in the Table A.7. While defining the next case, changes made

in the previous case are in bold face.

Results corresponding to these cases are plotted together in Figure A.10 and RMSE

for all these cases with respect to reference solution case (see Section A.2) are given in

Table A.8. Figure A.10 reveals that results corresponding to case-4, case-5 and fine-case

are very close to each other, i.e. switching to case-5 and thefine-case does not make a

noticeable difference in the solution. Moreover, from Table A.8, it is clear that RMSE
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Figure A.10: A comparison of elastic deformation profiles (for resolution 2) correspond-
ing to different mesh cases defined in Table A.7
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Table A.8: RMSE of solutions (computed on different mesh cases defined in Table A.7)
with respect to reference solution.

Case nodes RMSE

Case-1 113412 3.60 × 10
−3

Case-2 305095 1.78 × 10
−3

Case-3 421270 1.10 × 10
−3

Case-4 462344 5.23 × 10
−4

Case-5 794376 5.23 × 10
−4

Fine-case 4950405 2.10 × 10
−4

Table A.9: Set of mesh cases for resolution 3: details of meshsizes used in different
regions of the domain.

Case R4 R2 − R4 R3 − R2 R1 − R3 Remarks

Case-1 0.02344 0.09375 0.5 2.0 -
Case-2 0.02344 0.04688 0.5 2.0 -
Case-3 0.02344 0.04688 0.5 1.0 -
Case-4 0.02344 0.04688 0.5 0.5 R4 with depth ‘2’
Fine-case 0.02344 0.02344 0.5 0.5 -

of case-4 is not affected, while switching to case-5. Although, switching to the fine-

case, with4 950 405 nodes in the mesh, does decrease the RMSE however it is already

at an acceptable value before this huge increase in the size of problem. Therefore, it is

suggested that mesh sizes defined in case-4 give a sufficiently accurate solution (RMSE

well under10−3 relative to anO(1) displacement) with less computational cost, as this

case leads to only462 344 nodes in the mesh.

A.3.2.2 Resolution 3

In this section, we discuss the effect of further increase inresolution (in the central region)

upon the mesh sizes defined in the previous section A.3.2.1. This experiment uses the

same regions defined before. Again the first case considered here uses the mesh sizes as

the preferred case (case 4) selected in the previous sectionA.3.2.1 (from central to outer

region), except the resolution 2 is replaced with resolution 3 in the central regionR4. In

other cases, the mesh sizes are decreased in the outer regions to check their effect on the

accuracy of solution. The mesh sizes used for each case (considered here) are given in the

Table A.9. While defining the next case, changes made in the previous case are in bold

face.

Results corresponding to these cases are plotted together in Figure A.11 and the

RMSE for all these cases (with respect to reference case, seeSection A.2) along with

number of nodes in each mesh are given in Table A.10. Figure A.11 reveals that results

corresponding to case-3, case-4 and the fine case are very close to each other, i.e. switch-
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Table A.10: RMSE of solutions (computed on different mesh cases defined in Table A.9)
with respect to reference solution.

Case nodes RMSE

Case-1 782270 8.28 × 10
−4

Case-2 2172986 3.72 × 10
−4

Case-3 2510252 1.82 × 10
−4

Case-4 5664718 1.58 × 10
−4

Fine-case 15802299 0.00 × 10
0
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Figure A.11: A comparison of elastic deformation profiles for resolution 3 corresponding
to different mesh cases defined in Table A.9

ing to case-4 or the fine-case from case 3 does not make a noticeable difference in the

solution. Moreover, from Table A.10, it is clear that RMSE ofcase-3 is only slightly

affected when switching to case-4 with5 664 718 (more than double) nodes in the mesh.
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Table A.11: Set of mesh cases for resolution 3: details of mesh sizes used in different
regions of the domain.

Case Nodes Different regions with mesh sizes
R4 R5 − R4 R2 − R5 R3 − R2 R6 − R3 R1 − R6

Case-1 2510252 0.02344 0.04688 0.5 1.0

Case-2 2093579 0.02344 0.04688 0.0625 0.5 1.0 2.0

Case-3 1192335 0.02344 0.04688 0.09375 0.5 1.0 2.0

Table A.12: RMSE of solutions (using different mesh cases defined in Table A.11) with
respect to reference solution.

Case RMSE

Case-1 1.82 × 10
−4

Case-2 1.92 × 10
−4

Case-3 2.74 × 10
−4

In other words, there is no significant gain in accuracy with ahuge increase in the size of

problem. Therefore, it is suggested that mesh sizes defined in case-3 give a sufficiently

accurate solution (RMSE well close to10−4 relative to anO(1) displacement) with less

computational cost than case-4 and fine-case.

As we have seen case-3 is giving a considerably accurate solution, however it is lead-

ing to a number of nodes which is becoming relatively large. This is due to the decrease in

the mesh sizes in regionsR4, R2−R4 andR1−R3. In order to attempt to make this prob-

lem smaller, we carried out an experiment where we have defined two more sub-regions

namelyR5 andR6. In other words, we divide the whole domain into the following six

regions:

R1 being the whole domain

R6 is a region of dimensions[−20, 20]× [−20, 20]× [−40, 0]

R3 is a region of dimensions[−10, 10]× [−10, 10]× [−20, 0]

R2 is a region of dimensions[−4.5, 4.5]× [−3, 3]× [−3, 0]

R5 is a region of dimensions[−2, 2]× [−2, 2]× [−2, 0]

R4 is a region of dimensions[−1, 1]× [−1, 1]× [−1, 0]

It should be noted that the regionR2− R4 is split into further sub-regionsR2− R5 and

R5 − R4, similarly R1 − R3 is split into further sub-regionsR1 − R6 andR6 − R3.

Now, instead of adopting the mesh size0.04688 everywhere inR2 − R4, we will only

adopt this mesh size in the sub-regionR5− R4 and use a slightly larger mesh size in the

second sub-regionR2−R5. Similarly, the mesh size1.0 will be adopted inR6−R3 and

a larger mesh size inR1− R6. A set of cases considered in this experiment are given in

the Table A.11 where case-1 is the preferred case selected inthe previous experiment, i.e.
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Figure A.12: A comparison of elastic deformation profiles for resolution 3 corresponding
to different mesh cases defined in Table A.11

case-3 in Table A.9.

All of these cases are plotted together in Figure A.12 and theRMSE of these cases are

given Table A.12. Figure A.12 shows that all results are close to each other i.e. switch-

ing to case-3 did not lead to a significant loss in the accuracyof the solution. Moreover,

Table A.12 shows that the RMSE is only slightly affected whenswitching to case-3. How-

ever, it should be noted that case-3 leads to only1192335 nodes in the mesh which is less

than 50% of the nodes contained in the mesh of case-1. Therefore, from a computational

point of view, case-3 is a suitable choice of mesh that leads to a relatively small problem

and a sufficiently accurate solution.
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Figure A.13: A top view of selected mesh case of resolution 3 (using meshing strategy 1).

A.3.3 A Note on Generated Meshes

Throughout this section, a number of experiments have been performed to define appro-

priate mesh sizes away from the central region when using different resolutions in the

central region. This led to the definition of different sub-regions in the domain and it is

observed that increasing the resolution in the central region has also affected the mesh

sizes necessary in outer regions, especially those closestto the central region, i.e. this

effect is smaller on the mesh sizes which are away from central region. A top view of

the mesh generated for resolution 3 is given in Figure A.13. It can clearly be seen that

“NETGEN” adopted the specified mesh size everywhere in a particular region.

One observation to come from the last experiment is that adopting a particular mesh

size everywhere in a particular region is not necessary, andit leads to too many nodes in

the mesh. In other words splitting a region into further sub-regions and varying mesh sizes

within these regions can lead to a large decrease in number ofnodes without significantly

affecting the accuracy of solution. However, defining more and more sub-regions along

with appropriate mesh sizes is not a practical task. In the next section, we will therefore

adopt a different strategy to generate such meshes (with “NETGEN”) which will cover

this aspect and there will be no need to define further sub-regions.
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Figure A.14: A top view of a typical mesh generated by using meshing strategy 2.

A.4 Alternative Meshes (Meshing Strategy 2)

In this section, the main purpose is to generate meshes whichautomatically get coarser

and coarser as we move away from the central region and there should be no need to define

further sub regions. In the following we generated such a mesh, which uses only two semi-

spherical regions of radii ‘1’ and ‘15’ respectively. The choice of these radii is based

upon the experiments done in the previous sections. A selected resolution is specified

for all points inside the semi-spherical region of radius ‘1’ (region-1) and for points on

the curved boundary of semi-spherical region of radius ‘15’(region-2), a suitable mesh

size is defined. For all other interior points of region-2, a linear interpolation is used

to define a mesh size for each point. Providing this mesh size file to “NETGEN” leads

to the mesh we are acquiring. A top view of such typical mesh generated is given in

the Figure A.14. Readers are reminded again that these selections are based upon our

previous experimentation. It should be noted that in the remaining region of domain

(outside of region-2), different large mesh sizes are used depending upon the resolution

used in the central most region. In the following subsections, we obtain a resulting mesh

for each resolution and this is compared with its selected case which has been obtained in

the previous section and the RMSE of each case is calculated with respect to the reference

solution (see Section A.2).
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Figure A.15: A comparison of elastic deformation profiles computed on the selected mesh
(meshing strategy 2) and fine mesh of resolution 1.

Table A.13: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
previous selected mesh (meshing strategy 1) of resolution 1, with respect to the reference
solution.

Case nodes RMSE

Current-case 102673 1.91 × 10
−3

Previous-case 116548 1.78 × 10
−3

A.4.1 Resolution 1

In this test, resolution 1 is adopted in region-1 and a mesh size ‘1.0’ is specified for the

points on the curved boundary of region-2. For all interior points of region-2, a linear

interpolation is used to define their corresponding mesh sizes. And finally, in the remain-
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Figure A.16: A comparison of elastic deformation profiles computed on the selected
(meshing strategy 2) and fine mesh of resolution 2.

ing domain, a mesh size ‘4.0’ is used everywhere. The result obtained is plotted together

with the fine-case of current resolution (see previous section) in the Figure A.15, while

the corresponding RMSE along with the RMSE of previous selected case is given in the

Table A.13. Figure A.15 reveals that the result obtained is very close to the one on fine

mesh. Moreover, Table A.13 shows that the current case leadsto a smaller number of

nodes, however, the RMSE of the current case is only slightlylarger than that we had in

the previous selected case.
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Table A.14: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
previous selected mesh (meshing strategy 1) of resolution 2, with respect to the reference
solution.

Case nodes RMSE

Current-case 209665 5.37 × 10
−4

Previous-case 462344 5.23 × 10
−4

Table A.15: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
previous selected mesh (meshing strategy 1) of resolution 3, with respect to the reference
solution.

Case nodes RMSE

Current-case 638298 2.80 × 10
−4

Previous-case 1192335 2.74 × 10
−4

A.4.2 Resolution 2

In this test, resolution 2 is adopted in region-1 and a mesh size ‘1.0’ is specified for the

points on the curved boundary of region-2. For all interior points of region-2, a linear in-

terpolation is used to define their corresponding mesh sizes. And finally, in the remaining

domain, a mesh size ‘2.0’ is used. The result obtained is plotted together with the fine-

case of current resolution (see previous section) in the Figure A.16, while corresponding

RMSE along with the RMSE of previous selected case is given inthe Table A.14. Fig-

ure A.16 reveals that again the result obtained is very closeto the one on the fine mesh.

Moreover, Table A.14 shows that the current case leads to around a 50% reduction in the

number of nodes without significantly affecting the RMSE.

A.4.3 Resolution 3

In this test, resolution 3 is adopted in region-1 and a mesh size ‘0.7’ is specified for the

points on the boundary of region-2. For all interior points of region-2, a linear interpola-

tion is used to define their corresponding mesh sizes. Like-wise previous section, a region

R of dimensions[−20, 20]×[−20, 20]×[−40, 0] is defined outside of region-2 and a mesh

size ‘1.0’ is specified for the points in the regionR−region-2, while in the remaining do-

main a mesh size ‘2.0’ is used. The result obtained is plottedtogether with fine-case of

current resolution (see previous section) in the Figure A.17, while corresponding RMSE

along with the RMSE of previous selected case is given in the Table A.15. Figure A.17

reveals that again the result obtained is very close to the one on the fine mesh. Moreover,

Table A.15 shows that the current case leads to around a 50% reduction in the number of

nodes without significantly affecting the RMSE.
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Figure A.17: A comparison of elastic deformation profiles computed on the selected
(meshing strategy 2) and fine mesh of resolution 3.

A.5 EHL

The mesh analysis tests done so far were by using the Hertzianpressure profile only.

The Hertzian pressure profile defines the pressure values within a unit circular disc i.e

outside this region pressure values are zeros. This was the reason behind choosing the

dimension of central most region as unit cube/cuboid or unitsemi-sphere. The actual

EHL pressure profile is different than the Hertzian pressureprofile i.e. for a typical EHL

problem, pressure is not zero outside the Hertzian contact region, however, this is very

small. For a sufficiently accurate elastic deformation solution for a typical EHL pressure

profile, we need to choose a slightly bigger inner most regione.g. region-1 should be



Chapter A 174 Elasticity

Table A.16: Set of parameters for the contact between steel surfaces
Parameters Values

Moes parameter,L 10

Moes parameter,M 20

Maximum Hertzian pressure,ph 0.45GPa
Viscosity index,α 2.2 × 10

−8Pa−1

Viscosity at ambient pressure,η0 0.04 Pa s

Table A.17: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
fine mesh of resolution 1, with respect to the reference solution.

Case nodes RMSE

Fine-case 3505403 1.64 × 10
−3

Selected-case 97687 2.43 × 10
−3

of radius at least ‘1.5’ because this is the region from wherethe pressure values start

becoming significant, especially in the inlet region. Therefore, for all the experiments in

this section the meshes use the same strategy as given in section A.4 however now the

central most region is chosen to be of radius ‘1.5’.

It has been shown by Habchi [50,51] that for heavily loaded cases, in addition to sta-

bilization technique (see Chapter 4), an artificial diffusion is required to get a completely

smooth pressure profile. Since, contrary to stabilization techniques, artificial diffusion is

non-residual dependent, it has a small effect on the accuracy of the solution. Therefore,

for a quantitative analysis, a relatively light loaded caseis chosen in order to get a smooth

pressure profile without the use of artificial diffusion. TheEHL test case considered in

this work is given in Table A.16.

It should be noted that this EHL test case is solved over the meshes used in section A.2,

of which again the extreme case of resolution 3 will be used asa reference solution. In

the following sub-sections, a selected case is defined for each resolution and the RMSE of

this selected case along with its fine case will be calculatedwith respect to this reference

solution.

A.5.1 Resolution 1

In this test, resolution 1 is adopted in the central region which is circular disc of radius

‘1.5’ and a mesh size ‘1.0’ is specified for the points on the curved boundary of semi-

spherical region of radius ‘15’. For all interior points of region-2, a linear interpolation is

used to define the corresponding mesh sizes. And finally, in the remaining domain, a mesh

size ‘4.0’ is used. The result obtained is plotted together with the fine-case of the current

resolution in the Figure A.18, while the corresponding RMSE, along with the RMSE of
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Figure A.18: A comparison of elastic deformation profiles computed on the selected
(meshing strategy 2) and fine mesh of resolution 1.

finest case of the current resolution, is given in the Table A.17. Figure A.18 reveals that

the result obtained is very close to the one using a very fine mesh. Moreover, Table A.17

shows that selected mesh leads to very small number of nodes (97687 nodes) without

significantly affecting the RMSE (obtained with the use of a very fine mesh (3505403

nodes)).

A.5.2 Resolution 2

In this test, resolution 2 is adopted in the central region which is circular disc of radius

‘1.5’ and a mesh size ‘1.0’ is specified for the points on the curved boundary of semi-
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Figure A.19: A comparison of elastic deformation profiles computed on the selected
(meshing strategy 2) and fine mesh of resolution 2.

Table A.18: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
fine mesh of resolution 2, with respect to the reference solution.

Case nodes RMSE

Fine-case 4950405 6.25 × 10
−4

Selected-case 221260 9.85 × 10
−4

spherical region of radius ‘15’. For all interior points of region-2, a linear interpolation

is used to define the corresponding mesh sizes. And finally, inthe remaining domain, a

mesh size ‘2.0’ is used. The result obtained is plotted together with the fine-case of current

resolution in the Figure A.19, while the corresponding RMSE, along with the RMSE of

finest case of the current resolution, is given in the Table A.18. Figure A.19 reveals that the
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Figure A.20: A comparison of elastic deformation profiles computed on the selected
(meshing strategy 2) and fine mesh of resolution 3.

result obtained is very close to the one with using a very fine mesh. Moreover, Table A.18

shows that selected mesh leads to very small number of nodes (221260 nodes) without

significantly affecting the RMSE (obtained with the use of a very fine mesh (4950405

nodes)).

A.5.3 Resolution 3

In this test, resolution 3 is adopted in the central region which is circular disc of radius

‘1.5’ and a mesh size ‘0.7’ is specified for the points on the curved boundary of semi-

spherical region (region-2) of radius ‘15’. For all interior points of region-2, a linear
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Table A.19: RMSE of solutions, on current selected mesh (meshing strategy 2) and the
fine mesh of resolution 3, with respect to the reference solution.

Case nodes RMSE

Fine-case 15802299 0.0 × 10
0

Selected-case 705860 4.80 × 10
−4

interpolation is used to define the corresponding mesh sizes. As for the previous section,

a regionR of dimensions[−20, 20]× [−20, 20]× [−40, 0] is defined outside of region-2

and a mesh size ‘1.0’ is specified for the points in the regionR−region-2, while in the

remaining domain a mesh size ‘2.0’ is used. The result obtained is plotted together with

the fine-case of current resolution in the Figure A.20, whilethe corresponding RMSE,

along with the RMSE of the finest case of current resolution, is given in the Table A.19.

Figure A.20 reveals that the result obtained is very close tothe one with using a very

fine mesh. Moreover, Table A.19 shows that selected mesh leads to very small number of

nodes (705860 nodes) without significantly affecting the RMSE (obtained with the use of

a very fine mesh (15802299 nodes)).

A.6 Conclusion

Throughout this appendix, we have addressed a number of experiments to define the most

appropriate mesh sizes needed throughout the domain in order to get a sufficiently accu-

rate elastic deformation solution. The two different meshing strategies have been used to

generate meshes. In the first strategy, the domain was split into a number of regions and

an appropriate mesh size was adopted everywhere in each region. It was observed that

splitting a region into further sub-regions and varying themesh sizes between these new

sub-regions leads to a mesh with fewer nodes without significantly affecting the accuracy

of solution. However, defining more and more sub-regions along with appropriate mesh

sizes is not always a simple job. Therefore, another strategy was used in which a mesh

size corresponding to a certain resolution was adopted in the central region and then this

mesh size was gradually increased while moving away from central region. This strategy

leads to a greater decrease in the number of nodes in the mesh without having a significant

effect on the accuracy of solution.

Initially, a Hertzian pressure profile was used to undertakeall the analysis tests and

later on the work was extended by considering a typical EHL pressure profile (see sec-

tion A.5). It has been shown in section A.5 that the solution obtained using the selected

meshes was sufficiently accurate but with a considerably lower computational cost. It
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should be noted that, throughout this analysis linear finiteelements have been used to

solve the linear elasticity equation and the EHL problem. The results of this appendix

have been used in the work repeated in Chapter 6: ensuring that the tests of the efficiency

of the proposed preconditioner have been undertaken on the most appropriate computa-

tional grids.


