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Abstract

This thesis is concerned with the efficient numerical solutf problems of elasto-
hydrodynamic lubrication (EHL). Our approach is to consifigly-coupled models in
which the governing equations for the lubricating film, thaséc deformation and the
force balance are each discretized and solved as a singlelithesnonlinear system of
algebraic equations. The main contributions of this wokktarpropose, implement and
analyse a novel, optimal, preconditioner for the Newtoadirization of this algebraic sys-
tem, and to assess the development of efficient finite elemesihes through both manual
tuning and the use of adaptive mesh refinement based uponexipaserror estimation
and control.

Throughout this work, we employ first order finite elementdssizations for both the
Reynolds equation (for the lubricant) and for the lineasetity model on a finite do-
main. The resulting nonlinear algebraic equations are slodred using a quasi-Newton
algorithm. For each linear solve a Krylov subspace methadgsesd and a new block-
wise preconditioner is presented which is designed to @xiple specific structure that
is present in this class of problem. This preconditioner loioves the use of multigrid
preconditioning for the elasticity block and a separatigieht, approximation to precon-
dition the Reynolds block. The solver developed in this weatk be distinguished into
two variants based upon the use of algebraic and geomettigndipreconditioning of
the elasticity block.

Numerical results are presented both for line and pointasirgroblems to validate
the implementations and to allow a comparison of the perdmice and efficiency of the
proposed solution strategies compared to the use of aaftdibe-art sparse direct solver at
each Newton step. These results demonstrate that the plifoord iterative approach is
both computationally and memory superior to the sparseds@ver. Most importantly,
both the computational and memory costs are seen to groarljneith the number of
unknowns.

A locally adaptive solution scheme is also developed fdyfobupled EHL point con-
tact problems. This automates the refinement process tedgi@ns of the domain which
exhibit large error in their solutions. Numerical resulte presented which demonstrate
the performance and effectiveness of the proposed proeedur
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Chapter 1

Introduction

1.1 Elastohydrodynamic Lubrication

Friction is force resisting the motion of objects relatigegach other. Although this is
essential in many daily life activities such as walking,dimng teeth, stopping moving
objects, etc, there are examples where frictional forcesnat desirable. Consider the
example of mechanical systems, where many individual corapts are in motion rela-
tive to each other. Surfaces will therefore be in contacéntéintary mechanics explains
that the frictional force produced not only lowers the efficy of the components, as
work must be done to overcome the friction, but also incrediseir wear, which affects
the life of machine components. Therefore, in such sitaatidrictional forces need to
be minimized in order to obtain maximum efficiency and to preawvear. A common
way to reduce the frictional force and prevent wear is ludran. The separation of the
components by the lubricant helps to protect them from tizentact and hence reduces
friction and wear, which not only leads to less energy corsion but also increases the
life of components. The use of a lubricant reduces the @nicto about a tenth that in a dry
contact [102]. To maintain such a lubricant film between thietact surfaces, a pressure
is generated inside the lubricant film through the relativeion of the surfaces: this is
referred as hydrodynamic lubrication [54, 104].

Elastohydrodynamic lubrication (EHL) deals with the babav of a lubricant film
between the movinglasticcomponents of mechanical systems. The behaviour of the
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lubricant film is determined by the geometry of the contagitements. In particular,

if the pressure generated inside the lubricant film is seifitty high (up to giga pascals
in the case of steel) then the contacting elements deforstiedly and hence define a
new shape of the lubricant film. Figure 1.1 illustrates twoi¢gl EHL pressure profiles,

showing the high pressure regions generated in EHL contdicts high pressure, and

the resulting elastic deformation, that characterizestelgydrodynamic lubrication [33,

102, 104]. In addition, with such a wide range of operatingspures in the contact, the
properties of lubricants such as viscosity, and density @it change across the contact.
Thus the fluid film formation is also strongly affected by thibricant behaviour which

can not be neglected.
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Figure 1.1: Typical EHL solutions - note the typical pressspike/ridge which occurs on
the outflow side of the contact.

In general, contact types are classified into two categodesforming contacts and
non-conforming contacts. In the former case the surfaceéseotontacting elements fit
exactly or closely together before any deformation takaseal Journal bearings are ex-
amples of such a contact. In this case, contact surfacesaheginy points in the un-
deformed case i.e the contact area is usually large. A nafeoming contact is formed
if the contact surfaces meet along a line or at a point pri@nyp deformation (these are
cases (a) and (b) respectively in Figure 1.1). Ball bearanys roller bearings are ex-
amples of such contacts. In the non-conforming contactedinéact area is very small
compared to size of the contacting elements and stressésgéitg concentrated in this
region. In other words, for a given load, the pressure geéeeia very high and therefore
may lead to significant elastic deformation of contact ste$a Such contacts usually fall
into elastohydrodynamic lubrication regime [104].

Research into EHL problems comprises of a combination ogéexgents and numer-
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ical simulations. In order to develop efficient oil for theepating conditions for which
they are intended, it is essential for designers of lubt&cand components to get perfor-
mance results for a variety of lubricants in different opi@gconditions. Since applied
loads can cause pressure distributions across the condaabthe order of giga-Pascals,
minimum film thicknesses are in the micrometre range, anddabt molecules pass
through the contact in hundredths of a second, it can be wiffto conduct physical
experiments into the behaviour of EHL contacts. Thus if aat@icomputer codes are
available, then the cost effective solution to numerous Et$ts may be obtained [45]. In
short, efficient computer codes thus gain much more signifeean tackling these kinds
of problem for optimised results, which is the motivatiortluk study.

1.2 An Historical Overview of Numerical Techniques for
EHL Problems

Recall from the previous section that an EHL problem congsrisf finding the pressure
distribution across the fluid, and the shape of the lubriimtwhich is determined by the
geometry and the resultant elastic deformation of the cbing surfaces. The Reynolds
equation [90] governs the pressure distribution acros$laigefor a given geometry and
the lubricant properties. This is obtained from the NaB&rkes equations for viscous
flow by making a thin film approximation which leads to a noaln convection-diffusion
equation relating pressure, film thickness and the lubtipewperties. The shape of the
lubricant film generally depends upon the separation duentteiormed geometry, an
initial separation constant, and the elastic deformatidhecontacting surfaces. A most
commonly used method to calculate the elastic deformatidheocontact surfaces is to
evaluate an elastic deformation integral [33, 66, 102] Whscobtained by an analytical
solution of the linear elasticity equation on a semi-inérdbmain. For a full description
of a complete mathematical model of the EHL problems ondésned to the next chapter.
The history of the numerical solution of EHL problems stavith the work of Petru-
sevich [85] in 1951, and was first to predict a pressure spikbe outlet region of flow.
This provided a platform to the development of different Inoets. However, circular
contact cases were not solved numerically until the ear§0%$9see Ranger [88]. The
semi-system approach consists in solving the governing Egllations separately and
establishing an iterative procedure between their salatidOne of the first to use this
approach were Dowson and Higginson [33] for the line contase. This followed the
pioneering work of Hamrock and Dowson [53] and Ranger [88]ife circular contact.
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These methods were based on direct methods, in which theoRisyaquation is solved
for the pressure for a given geometry. But the drawback afdmeethods were their fail-
ure for highly loaded cases. To overcome this limitatioreHR7] introduced the Inverse
method. Contrarily to the direct method, this consists d¥iag Reynolds equation to

compute the film thickness for a given pressure profile. Dovesaw Higginson [33] were

the first to apply this method to EHL line contacts in 1959.sTdgpproach was later con-
sidered to point contacts by Evans and Snidle [39]. In coatprial terms, this method
was considered undesirable for large systems due to its wiatignal complexity being

close toO(N3).

A multigrid technique was first used by Lubrecht [73] for béitte and point contact
cases. This provided a faster convergence rate and hedoegkthe computational cost.
Further computation time reduction as achieved by Brandtlarbrecht [20] introduc-
ing a multilevel multi-integration (MLMI) technique, in vikh computation of the elastic
deformation integral was accelerated by reducing its cdatfmnal complexity using a
multilevel framework. Regardless of the efficiency, thipregach was found unstable to
highly loaded cases. Later on, Venner [102] developed aldligive relaxation scheme for
both multilevel techniques to obtain further efficiencygddhe stability for highly loaded
EHL cases. In the late ‘90s Nurgat [80, 81] presented a simm@w relaxation scheme
suitable for highly loaded cases. The convergence of thisree was further enhanced by
Goodyer [45-47]. The author combined this improved teamaigith adaptive meshing
to further the accuracy with least computational work, angdriove the efficiency by par-
allelism. The different works cited here so far are basedrotefdifference discretizations
of the EHL equations. These methods limit the discretirgpimcess to regular structured
rectangular meshes using low order approximations, and been the most widely used
technique in the EHL modelling.

The finite element method has been applied to EHL problence $ive 1970s however.
Line contacts were first considered by Taylor and O’Calla88] and point contacts by
Oh and Rohde [82]. Recently Lu [70-72] used “discontinuoatetin (DG) FEM” to
get stabilised results for highly loaded line contact andienately loaded point contact
cases. These DG techniques are not widely used to solve Eblilgons today, there is
still research being done.

The full-system approach consist in solving the coupled Eduations simultane-
ously. A Newton-Raphson full-system approach is first use@b and Rohde [82]. This
method converges in a few iterations but requires a goowliguess. A similar model
was used by Okamura [83], which is improved by Houpert and téakn[62] for a line
contact case. This model is extended to elliptical contiagtdsiao et al. [63]. All these
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methods were based on half space approach for elastic dafledhe drawback of this
approach is that it uses the pressure from all points in theailo to calculate the de-
flection at each point, which makes the resulting linearzgstem matrix highly dense.
Finally, for heavy loads, the Jacobian matrix becomes admiogular which makes it
hard to reach the solution.

In 2000, a “differential deflection method” based on the tsdce approach was
introduced by Evans and Hughes [38, 60, 61, 64]. The advardhthis method is to use
the information from comparatively fewer points in the dami calculate the elastic
deflection at each point. In other words the influence of presacting at a point is
reduced to a limited locality of that point. Therefore thpgpeoach results in a less dense
matrix compared to the half space approach for elastic diftec Authors and their
co-workers applied this method to line contact [64] and tertended to point contact
cases [60, 61].

Recently Habchi [49-51] used a numerical approach to coenjiwt solution of clas-
sical linear elasticity equation to obtain the elastic deitern. This equation only uses the
information at the neighbouring points to calculate thesttadeflection at a point in the
domain. So the resultant matrix is highly sparse and madasi & reach the solution
without any special treatment for convergence. The dralwbéthis method is the need
to solve the elasticity equation irk® domain for line contact problems andi@ domain
for point contact problems. This cost is minimized by usirfgha mesh in the region of
interest and a coarse mesh elsewhere. The other advanttige miethod is that it yields
additional solution information such as displacement, dadved fields such as stress,
throughout the solid components, which is not possiblegusiaditional half-space ap-
proach. Nevertheless, the relatively high computationat of this approach has so far
prevented its wide spread use.

1.3 Outline of Thesis

In this work the issues of the high computational and memosisof the fully-coupled

approach to solve EHL problems are addressed. Habchi et®i5[L] used a sparse di-
rect solver to solve the linearized system at each Newtqm dExperience shows that
sparse direct solvers are very efficient for small systemtswhen the resolution and/or
the dimension of the problem is increased their performaadeces and they require
very large amounts of memory (specifically, both the CPU sraad the memory re-
quirements grow significantly faster th& '), where N is the number of degrees of
freedom). To solve large sparse problems, iterative metlaoe often considered to be
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superior to sparse direct methods, however this relies fipdmg good preconditioners
to make them computationally competitive. In this work dicafnt, preconditioned iter-
ative solver has been developed to solve fully-coupled EHiblems. Numerical results
presented show that the performance of this technique epfmebe close to optimal, both
in terms of computational time and memory usage.

In Chapter 2, the mathematical model used for the EHL line@midt contact prob-
lems is presented. This model can be distinguish into twe skequations: first the
EHL system itself which includes the Reynolds equationfilhethickness equation and
the load balance equation. The second set is concernedheitlulbricant’s properties,
such as density and viscosity. For the computation of elasilection, two approaches
are discussed. The first approach is a traditional halfesppproach derived analytically
from the linear elasticity equation on a semi-infinite domdihe latter is concerned with
the numerical solution of the linear elasticity equatioradimite domain.

In Chapter 3, the various numerical methods that are retéwainis thesis are outlined.
This includes a brief introduction to the finite element noeth The Newton method
is explained for the solution of nonlinear systems. For thieit®n of linear systems,
both direct and iterative approaches are discussed. Thefyseconditioning is also
explained, where the main focus is given to the multigridcpraitioning (using both
geometric and algebraic multigrid). This chapter also aixd the implementation of
different numerical methods using the KINSOL softwaredityr[57].

In Chapter 4, the full-system approach to the solution of Fidhblems is discussed.
This includes a Galerkin finite element discretization @& BHL line and point contact
equations. Since, the Reynolds equation exhibits an atmill behaviour in its pressure
solution for heavy loads, a Streamline Upwind Petrov-Gahe(SUPG) method [22] is
described to stabilize the pressure solution. A couplimg@dure is given which puts all
the discrete EHL equations together to form a single, largelinear system. The Newton
method is applied to this fully-coupled nonlinear systeror fhe solution of the linear
system formed at each Newton iteration different solutivategies are discussed. For
the development of an efficient iterative solver a new blaskwpreconditioning strategy
is proposed. This preconditioner combines the use of nmridtigr the preconditioning
of the linear elasticity block and an efficient, separat@raximation to precondition the
Reynolds block. Numerical results are presented to jusiéyaccuracy of the line and
point contact implementations compared to previously ighked results.

Chapter 5 is devoted to the solution of EHL line contact peaid. The accuracy
of the solution is discussed using coarse meshes. The penfme of different linear
solvers are then discussed to produce a comparison betWwegrcomputational times
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and their memory usage. Furthermore, this chapter alsaidesahe effect of varying

the Poisson ratio for the elastic material over the accueay the performance of the
proposed preconditioning strategy. Finally, the perfarogaof the Bi-CGSTAB [101]

method is compared with the GMRES method [94].

In Chapter 6, the accuracy and the performance of the satweEHL point contact
problems is considered. First of all, a methodology based targe number of experi-
ments is explained to select efficiedid meshes which ensures the accuracy of the elastic
deformation solution whilst keeping the EHL solution cast@aw as possible. Thisis then
followed by a detailed comparison of the computational raed the memory growth of
different linear solvers. Finally, it includes a discussiaf the effect of the quality of
meshes over the accuracy of the EHL solution.

In Chapter 7, a locally adaptive solution scheme for theyfaupled EHL point
contact problem is discussed. This includes a discussicanda posteriori’ error esti-
mation, the mesh refinement criteria and the refinementighgoused. A procedure for
post-optimization of the refined meshes is also explainédally, numerical results are
presented to show the performance and effectiveness obgpedpprocedure for solving
EHL point contact problems.

Finally, the thesis is summarized in Chapter 8. This chagiwr describes possible
extensions of this research and future work.
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Governing Equations

2.1 Overview

In this chapter the mathematical model used for the EHL pmoisl solved in the rest
of this thesis is presented. This model is discussed sabatath for the line and the
point contact cases and is followed by their non-dimengitorans. This chapter also
presents two different groups of dimensionless parametieich significantly reduce the
number of physical parameters defining an EHL line or pointact case. Moreover, two
different approaches are discussed for computing thei@ldstormation of contacting
surfaces: the first is the so-called half-space approacB33, 102, 104] which is a
mathematical relationship derived from an analytical Bofuto Lamé’s equation of linear
elasticity on a semi-infinite domain, while the other is lwhs@on a purely numerical
solution of the equation of linear elasticity on a finite dom®0, 51]. The drawback of
the latter approach is the need to solve the elasticity emuat a 2D domain for line
contact problems and 3D domain for point contact problems. However, the advantage
of this method is that it yields additional solution infortiwe such as displacement, and
derived fields such as stress, throughout the solid compsnehich is not possible using
the, more traditional, half-space approach (which onlydge¢he surface deformation).
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2.2 Geometric Representation of EHL Contacts

Recall from the previous chapter that non-conforming ccistean induce very high pres-
sure (up to giga pascals) in the lubricant film within the e@htegion and that such wide
operating pressure may cause the contact surfaces to defastically. Such contacts
fall under the EHL regime. These contacts can be categonmgedwo types: the line
contacts and the point contacts. The line contact is forrhdteicontact surfaces meet
along a line prior to any deformation. Figure 2.1 shows adimetact formed between: (a)
two parallel cylinders (b) a cylinder and a plane. Here,itkdirection is taken to be per-
pendicular to the contact and the surfaces have velocitiendu, in this direction. The
functionh(x) presents a measure of the gap between the surfaces. On énédatid, if
the surfaces of the contacting elements meet at a pointtoremmy deformation, then this
is referred to as a point contact. Figure 2.2 shows an exaafach contact between:
two spheres (left) or a sphere and a plane (right).

(a): EHL line contact (b): Equivalent reduced geometry
R =R+ Ry!

U2

h(x)

U2

Figure 2.1: An example of a line contact.

Generally the geometry of the contacting machine elementkide rather complex,
e.g the contact between gear teeth or the contact betwedhamtahe inner/outer race-
way in a ball bearing. Such geometries can be reduced toermatbre simple form in the
immediate vicinity of the contact. The film thickness and tbhatact area are generally
very small compared to overall dimensions of the contaatieghents thus the geometry
close to contact region can be approximated by parabol8igls $ee Figure 2.3. These
parabolically shaped surfaces have local radii of cureafyyr, and R, in the x-direction
andR,, andR,, in they-direction. It can further be reduced to a contact betwedareep
and an equivalent parabolically shaped surface [33] whedeced (or equivalent) radii
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(a): EHL point contact (b): Equivalent reduced geometry

R'=R'+ Ry’

Figure 2.2: An example of a point contact.

of curvatures are:
-1 -1 -1
Rz = Rl:c + R2:c

-1 _ p-1 —1
R =Ry, + Ry,

It should be noted that Figure 2.3 can be manipulated as tp@stpf a point contact:
a circular point contact if the contacting elements haveesaadii of curvature in both
principal directions otherwise this would be an elliptiargacontact [102]. Furthermore,
the line contacts assumes an infinitely large radius of ¢urgaof paraboloid in one of
the principal directions. Throughout this work, both linentact problems and point
contact problems are considered, however in the point cbetses only the circular
point contacts have been studied.

2.3 Governing Equations

Models of an EHL contact can be grouped into two sets of eguatione group describes
the EHL problem itself while the other is concerned with theperties of the lubricant.
The former group consists of the following three equations.

e The Reynolds Equation: this governs the pressure distoibatcross the contact,
for the given geometry and lubricant properties. This isvéer from the Navier-
Stokes equations for a Newtonian fluid and was first develbgédsborne Reynolds
[90]in 1886. For a slow viscous flow, the inertia and body é&srare assumed neg-
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Equivalent reduced geometry

Figure 2.3: Approximation of contact surfaces by paralsa@long with a reduced ge-
ometry on the right.

ligible, and therefore neglected, compared to viscous aesspre forces. Another
assumption is that flow through a narrow gap eventually léadsfurther simpli-
fication of these equations of momentum (based upon a tinmafdproximation).
Using the boundary conditions (based on the assumptiomthalip occurs at the
boundary surfaces) these equations can be solved for theities. Finally substi-
tution of these velocities into the equation of continuitglgls an equation for the
pressure in the lubricant film called the Reynolds equation.

e The Film Thickness Equation: this determines the shapeadiitricant film across
the contact. This is in fact the separation of two surfaceth@contact which
generally depends upon a separation constant, the sepedat to the undeformed
geometry and the elastic deformation of the contactingased induced by the
pressure generation within the lubricant film.

e The Force Balance Equation: this is a conservation law waigures that the total
pressure generated inside the lubricant film balances thieeddoad.

The latter group describes the variation of lubricant proeg, such as density and vis-
cosity, with pressure. In the following sections these #iguna are given separately both
for the line and the point contact cases and are discusseatlindimensional and non-
dimensional forms.

2.3.1 Line Contact

Recall from previous section that the geometry of contadses in the contact region
can be accurately approximated by paraboloids. A furthepsiication of the contact
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geometry is obtained by reducing it to an equivalent cortativeen a paraboloid and a
plane. This is known as equivalent or reduced geometry.Heplirie contact the reduced
radius of curvature of the paraboloid approximating theioed! surface is infinitely large
in one principal direction (lets say-direction). Let the two surfaces carrying a lubricant
flow in between have the velocities andu, in the z-direction. Let(2; denote a domain
representing a cross-section throughggkexis (this is ignoring any end effects for the line
contact): this givegD domain for the lubricant flow and the contact formed. Foneeqgi
line load, a very high pressure is assumed to be generatbd lnltricant film within the
contact region. The pressure generated has negligiblaticarialong the-direction thus
the problem reduces tola) case [33, 104], see Figure 2.4, for example.

Equivalent reduced geometry

w: applied load per unit length

Figure 2.4: A1D line contact problem on the domdiry

To govern the pressure distribution, the Reynolds equédtioan isothermal line con-

tact [70] reads: ,
O (ph?Op\ . O(ph)  O(ph) _
8x< 1 ax) Ous—gr 12 =0 (2.1)

where
p IS pressure,
h is the thickness of the lubricant film,
p is the density of the lubricant,

7 is the viscosity of the lubricant,
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us = uy + usy is total velocity of two surfaces with; and u, being the individual
velocities of upper and lower surfaces respectively.

The film thickness equation for line contact case may be evridis:

{L'Z

h(x) = ho + ¥ +d(x), (2.2)

whereh, is the central offset film thickness, the middle term defiresghape of unde-
formed surface withk? being the reduced radius of curvature afia) is the combined
elastic deformation of the surfaces in contact. This is nsostmonly calculated using
the half-space approximation [33, 66, 102] which is baseshign analytical solution of
the linear elasticity equation on a semi-infinite domaimirg:

4 +oo

d(r) = / In|z —2'|p (2') d’,

- !
10 D

whereE" is the reduced elastic modulus of the contacting surfacendiy:

2 1—vi 1-0v2
— = 2.3
BB T E (2.3)

wherer; andv, are the Poisson ratios of the materials in the two surfaces.
The conservation law which states that the total pressurergeed must be equal to
the applied load can be expressed mathematically for teechmtact case as:

+0o0
/_ p(z)dr = w, (2.4)

o0

wherew is the applied load per unit length.

2.3.2 Point Contact

In this section we present a mathematical model of EHL poamttact problems. In
Figure 2.5 a reduced point contact geometry is consideresterdy represents theD
fluid domain. The lubricant flow is assumed in thelirection along with the two surface
velocitiesu; andu,. To govern the pressure distribution in the lubricant film Reynolds
equation for the point contact case reads [45, 70,104]:

3 3
O (PhZ0pN O (ph7OpN g Oph) o 00h) (2.5)
or \ n Ox oy \ n Oy
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Equivalent reduced geometry

Figure 2.5: A2D point contact problem

The shape of the lubricant film for the point contact case fndd by the following

equation:
2 2

h(z,y) = hy 5% ; (2,9), (2.6)

where the middle two terms on the right-hand-side give thalpaoid approximation
to the shape of an undeformed reduced surface Rjtland R, being the reduced radii
of curvature inz andy directions respectively. For a circular contdet = R, = R, so
equation(2.6) becomes:

% + y2
2R

h(z,y) = ho + +d(z,y), (2.7)

where the half-space approximation to the linear elagtegjuation [45, 102, 104] gives:

“+oo “+oo d /d
d(z,y) = // P y) Ty (2.8)
mE o V(T =2+ (y—y)?>
and E’ still satisfies (2.3). Finally, the force balance equationthe point contact case
reads:
+o0o +o0o
| [ rewasay—r 2.9)

whereF' is the applied load.

2.3.3 Lubricant Properties

In EHL contacts there are large variations in pressure, haftect the properties of lu-
bricants across the contact. It is therefore necessaryetdubisicant models which can
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approximate this behaviour. There are two general cladskesiacant model proposed
to describe the properties of the oils. The most widely usedeats are derived purely
empirically [11, 33, 91] while the other kind of models aimlie more physically based,
e.g. see [10,59,107]. The latter models can be much moreatecthan those of first
kind but still they are rarely used in EHL simulations be@ofktheir complex mathemat-
ical expressions and dependence upon large numbers of g@anisome of which are
hard to determine). On the other hand the empirical modelsmarch more simple, easy
to implement and therefore widely used in EHL simulatiomsthe following only two,
commonly used, models are considered. Indeed, these amaedshroughout this thesis
both for the line and the point contact problems.

2.3.3.1 Density Model

A commonly used density variation model for EHL problemsisttof Dowson and Hig-
ginson [33]. It takes account of compressibility of the feant and is given by:

0.59 x 10 + 1.34p
0.59 x 102 +p ’

p(p) = po (2.10)
wherep, is density at ambient pressure. This model is only presseperntient and does
not depend on other properties of lubricants. A mathemlagpaivalent expression seen
in [45] is:

(2.11)

0.59 x 10~%
p(p) = po (1+ )

1+1.7x 10"%

2.3.3.2 Viscosity Model

The viscosity is another important property of the lubrisan EHL contacts and it may
vary over several orders of magnitude with increasing pmessThe simplest viscosity-
pressure relationship is exponential, known as the Barwdehjdl], and is given by:

n(p) = noexp (ap), (2.12)

wherer), is viscosity at ambient pressure ands pressure-viscosity coefficient. How-
ever, this model is only accurate for relatively low pressuand tends to significantly
overestimate the viscosity against high pressure. A madbste viscosity model was
introduced by Roelands [91] which is accurate for pressupa® 1 G Pa and is given by:

1(p) = 1o exp (@ (—1 + (1 + Z%))) , (2.13)
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where

po is a constant, typically, = 1.96 x 10 [Pa],

z is the pressure-viscosity index, typicallyp < z < 0.7.

Note that the Roelands viscosity model is assumed throughistthesis.

2.4 Non-dimensionalisation

In EHL problems, the maximum pressure can rise to giga pssedtilst minimum film
thickness may be in the micrometre range, so handling tteesges of numerical values
with finite precision arithmetic requires care. In order tonerically compute solutions,
and minimise any floating point arithmetic errors, non-disienalisation is used. The
non-dimensionalisation of EHL equations is mainly basedHertz’s theory for dry con-
tacts [55]. In the following the non-dimensionalisatiortieé EHL equations is discussed
both for the line and the circular point contact cases. Sihisethesis is only concerned
with steady-state solution methods therefore non-dinogradisation of such problems are
only considered.

2.4.1 Line Contact

The first parameters to be introduced are the maximum Hanriessure and the Hertzian
radius, which are derived from Hertz's theory [55]. In theseaf line contacts, the
Hertzian pressure profile is given by:

plz) = Pry/ 1 — (5) if |z| <-a (2.14)
0 otherwise

wherep,, is the maximum Hertzian pressure:

2w

Pn = )
ma

and the Hertzian half contact width, is defined by:

. — SwR
N TR’
whereR is the reduced radius of curvatuiejs applied load per unit length arid is the

reduced elastic modulus as described earlier in this chapte
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Let us define the following dimensionless variables as:

X = E ,5 — ﬁ 77 — E P = £
a Po o Ph
h d
H= —Jj D = —?
a a
Hence
Xx=2% o p=aX = dr = ad X,
a
P
P:p— = p=pP = dp =ppdP.
h
For an isothermal steady state flow, the Reynolds equ&?ian may be written as:
d [ ph®dp d(ph)
— (=2 ) — 6u,———2 =0, 2.15
dx ( n dx) Ou dz 0 ( )

using the dimensionless variables, equatibhy) may be written as:

d (pH?dP\ d
ix (G i)~ ax v =0 (219
where
6us770R2
A= e
a“pn

Using the same dimensionless variables, equdfiat) may be written as:

X2
H(X) = Hy+ -+ D(X), (2.17)
where .
D(X) = -2 / In|X — X'|P(X')dX". (2.18)
T J-oo

Finally, the force balance equati¢f4) becomes:

+oo T
/OO P(X)dX = 5 (2.19)
In EHL contacts, the number of physical parameters can mgfisigntly reduced into
a set of dimensionless parameters. The physical parametbesreduced are, F’, 1,
R, w, anduy, and two different families of reduced parameters have beadaly used.
The first set of parameters to be introduced here is known asNMarameters [102)/
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and L. By defining:

a = apy

and recalling\ from equation(2.16), the Moes parameterd/ and L may be defined
from:

M
- M
@ o’
and
\ 32
8 M?

Dowson and Higginson [33] introduced a second family of ¢hn@n-dimensional
parameters: the load paramet@érs the material parametefs and the speed parameters
U to characterize each load situation. These define the foitprelationships for the line
contact:

w
W= E'R’
G = oF,

o TolUs
v 2FE'R

These parameters are related to Moes parameters [102] fiollibwing expressions:

M = W (U)™?,

and
L = G(U)"*.

These parameters are enough to define any non-dimensio@aldntact case.

2.4.2 Point Contact

In case of a circular contact, the Hertzian pressure prdfiggvien by:

(z\2 (y\? 9 9 9
sy = PV () = ()7 Wyl < 2.20)
0 otherwise

wherep,, is the maximum Hertzian pressure:

3F

Pn = 27TCL27
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anda is the Hertzian radius:
3 3FR

a = W’
whereR is the reduced radius of curvatuié,is applied point load and’ is the reduced
elastic modulus.
Let us define the following dimensionless variables as:

X = z Y = y p= L n= Q P = P
a a Po Mo Pn
h
oA
a a
Hence
x=12 = x =aX = 0r =adX,
a
Y:% =y =aY = 0y = adyY,
p="r = p=p,P = Op = ppoP.
Pn
For an isothermal steady state flow, the Reynolds equ&?ién may be written as:
0 h3 O 0 h3 0 d(ph
P20 | O (ph7OpY g, Oloh) (2.21)
o n o dy \ n Oy ox

using the dimensionless variables, equati21) may be written as:

o (pH?OoP o (pH?3OP 0
X ( 5 ax) G ( oy ) " ax P =0 (2.22)
where
6usn0R2
A= Sl
a“pn

Using the same dimensionless variables, equdtldf) may be written as:

X2 4Y?

H:HO+T+D(X,Y), (2.23)
where N N
o0 o0 P X/ Y/ X Y/
D(X,)Y) 2/ ( JdX'd . (2.24)
o \/ X=X+ (Y -Y")?
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Finally, the force balance equati¢n9) becomes:

2

+00 +00 T
/ / P(X,Y)dXdY:?. (2.25)

Similar to the line contact case, the parameters:
a = apy
and
_ BugnR?

a®py,

are related to Moes parameters [102],and L, as follows:

L /3M\Y3
a=—-(——] ,
A7)

\ 12873 1/3‘
3MA

In the late 1970s, Hamrock and Dowson [52] introduced thieiohg relations for the
point contact problems:

A

and

F
W= e
G = al,
_ TolUs
2E'R’

These parameters are related to Moes parameters [102] fiolliwing expressions:
M =W QU)™M,

and
L = G(2U)"*.

Again these parameters are enough to define any non-dinmahsiocular point contact
case.
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2.4.3 Lubricant Properties
The dimensionless variables:

__ P _ n P

Po Mo Pn
can be used to obtain the dimensionless forms of the depsatysure relationship and
the viscosity-pressure relationships defined above. Thesbo and Higginson density
model given in equatiof®.10) has the following dimensionless form:

0.59 x 10° + 1.34P p,
0.59 x 10°+ Pp,

p(P) = (2.26)

Also, the dimensionless Roelands viscosity model definedjiration(2.13) is given by:

n(P) = exp (% (—1 + (1 + %)Z)) : (2.27)

2.5 A Modified Reynolds Equation

The solution of differential equations depends upon thendawty conditions. Of the
equations discussed so far, the only differential equatidre discussed explicitly is the
Reynolds equation, see equations (2.16) and (2.22), whaeldsto be solved on D
fluid domain for line contact problems, an@@& fluid domain for point contact problems.
Let (2 represent the fluid domain within which an EHL contact is deinA specification
of pressureP is required at the boundar)? of fluid domain(, in order to determine
the pressure distribution across the fluid donfajn Generally, it is assumed that, at the
boundary of the contact regidiy, the pressure of the lubricant is equal to the ambient
pressure. Pressure lower than the vapour pressure is plysioacceptable, thus the
fluid will cavitate and the pressure will remain equal to th@eur pressure. This process
is called cavitation [36,41, 104], and since both the vagwassure and the atmospheric
pressure are very small compared to the pressure genenaidd an EHL contact, they
can be treated as zero, hence the pressure is limited framwlisl zero. Moreover, the
principle of mass conservation applied at the boundaryet#vitation region [36] results
in the following dimensionless Reynolds boundary condsio

P>0o0on; and VPi=0 atthe cavitation boundary, (2.28)
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wherer is the unit outward normal vector to the cavitation bound&Bynce the exact
location of this boundary is unknown prior to computing tihegsure this is known as free
boundary problem. Various treatments are possible to kahdlfree boundary problem,
see [36,41, 105], for example. In this work, a penalty metint@duced by Wu [105] is
used to handle the cavitation region. This method introdaceadditional term (known as
the penalty term) for which the Reynolds equation (in bothlihe and the point contact
cases) modifies to

0
V.(eVP) — e (pH) — (P~ =0,  throughouty, (2.29)
whereP = 0 is imposed on the computational domain boundiny, ¢ a suitably large
positive number and®®~ = min(P, 0). Note that this additional term has no effect where
P > 0; however, it dominates in the regions where< 0. The term therefore has an
effect of forcing the negative pressure towards zero pexvithate is sufficiently large.

2.6 Linear Elastic Model

In the previous sections the analytic expressions from #ikdpace approximation to
the linear elasticity equation have been used to calcutetelastic deformation of con-
tacting surfaces in semi-infinite elasticity domains. Tla#-Bpace approximations only
provide the elastic deformation at the surfaces of comgaiements and therefore no
knowledge is provided as to the full displacement or stresddiwithin the contacting el-
ements. Moreover the elastic deformation at each poiniregjthe information of overall
pressure distribution through the fluid domé&ip. In an alternative approach [49-51] the
elastic deformatiorD of the contacting bodies can also be modelled by solvingd’am”
equation of linear elasticity numerically on a finite two dnsional domain for line
contact problems and a finite three dimensional donfaiior point contact problems,
with appropriate boundary conditions. In discrete forns thses the information from
neighbouring points to define the elastic deflection at eamhtpn the domain. The
other advantage of this method is that it yields additiomdlitton information such as
displacement, and derived fields such as stress, throug®gblid components, which
is not possible using traditional half-space approach ssudsed above. A view of the
3D domain(2, showing the fluid boundaryX;) and the bottom boundary2(), is given

in the Figure 2.6. In [50] it is demonstrated that a geometrgize 60 x 60 x 60 (non-
dimensional) is sufficiently large to provide solutions¥drich the elastic deformation at
the contact is no longer dependent on the domain size. Harees tadopted throughout
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Qp

Figure 2.6: A view of the 3D elasticity domain showing(2; (the fluid boundary) and
Qp (the bottom boundary)

this thesis. Note that a cross-section of the 3D domain Klieplane wherey” = 0)
defines the 2D elasticity domain for the line contact proldem
The linear elasticity equation reads [76]:

0 Guk .
a—xj <Cijkla—xl> = —F, (2.30)

where F; is the body force e.g. due to gravity or other external foree=l repeated
suffices imply summation over the number of space dimensibims fourth order tensor
is defined by

Cijil = A0ij0k1 + 11(0ir 01 + 0k ), (2.31)

and\ andu (known as Lamé’s coefficients) are material propertiesgyiy

vE FE

MU - M)

Hered;; is the Kronecker delta, whilst' is the Young's modulus and is the Poisson
ratio of the solid component that is being deformed. In EH& blody force is assumed
to be zero, with all of the non-negligible contributions bhe telastic deformation coming
from the high pressure at the contact, so equat2dvj can be written as:

o <Cijkl%> _o. (2.32)
X ; X



Chapter 2 24 Governing Equations

The resolution of equatior2(32) in a domains? is subject to the following boundary
conditions [51]:

u=>0 at the bottom boundar§ p;
Op = njCijkl%%I; = —0;qp at the fluid boundarﬂf; (233)
o, =0 elsewhere

whered represents the dimension of the elasticity domain.

2.6.1 Non-dimensionalisation

In order to get a suitable non-dimensional form of equatibB2), let us define dimen-
sionless variables as follows:

; up R P a
X, =2 U= p=Loand  Cuu=ciju X — .
i a k a2 oh ijkl ijkl Rph

Hence equatior2(32) can be written as:

8 Rph C a <%> _ 0
a0X; ikl adX; ’
of 0 ovU,
k —
2 (0l - -

where the corresponding boundary conditidh8%) become:

U=0 at the bottom boundar§ ;
o, = njCijklg—ggj = —8;¢P atthe fluid boundarg;; (2.35)
on, =0 elsewhere

2.6.2 Equivalent problem

In [51], it is demonstrated that the two contacting solid poments with material proper-
ties(Ey, v, ) and(Es, 1) can be reduced to an equivalent solid component with ecgrival
material propertie$E,,, v.,) such that:

B — E%Eg(]_ + 1/2)2 + E%El(]_ + 1/1)2
“ {E1(1—|—l/2) + E2(1+V1)}2

(2.36)
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U E11/2(1 + 1/2) + E2V1(1 + 1/1)
“ E1(1—|—l/2) + E2(1+I/1)

Moreover, the non-dimensional elasticity tensor for egl@at problem implies:

(2.37)

a
Veq) = Cijkl(Enew, Veq)- (2.38)

a
Cijkl = Cijil(Eeq, Veq) X —=— = Ciji1(Eeg X ——
J J ( q (I) Rph J ( q Rph

Under the same pressure distributiorfip, the solution of the equivalent elasticity prob-
lem gives the total elastic deformation of both contactinfids [51]. If both contact
surfaces have same material propertiesyv) then the equivalent Young’s modulus and
Poisson’s ratio for the equivalent problem reduces to:

E,=— and v,=vr.

A simplified expression of/,.., in equation £.38) can be obtained by using expressions
of the Hertzian half contact width and the maximum Hertzian pressurgdefined for
the line contact problems:

a F  arma mF 9 mF SwR B 2F

Erew = Ee B — A = —— = — = —,
““Ron 2 2wR awrR " T iR TE  E

where 5

E = .

1— 12
Hence
(1-2%)
Erew =2E
“TE
=2(1—1?). (2.39)

For the point contact case, a similar procedure can be apgieefineFE,.,, by using
expressions of the Hertzian radiusand the maximum Hertzian pressuredefined for
the point contact problems:

a E 2md? mE 3 TE 3FR 7wE

““Ron 2 “3FR _3FR " T3FR 2B  2E"

Enew = Ee

using the definition of2” given above implies:

Brew = g(1 —12). (2.40)
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By using F,...,, the dimensionless total elastic deformation of the cdmtgceolid com-
ponents is obtained by solving equati@3{) subject to the boundary conditioris §5)
in appropriate domains. The elastic deflectiofX ) in equation £.17) andD(X,Y") in
equation £.23) is related to the displacement fidl@ithrough the following relation:

D=-U.lg, .

2.7 Summary

In this chapter, the line and the point contact EHL equatemesintroduced, followed by
their non-dimensional forms. The equatiofsl (), (2.17), (2.19), (2.26) & (2.27) define

a complete non-dimensional isothermal steady state EHi_dontact problem. On the
other hand the equation8.£2), (2.23), (2.25), (2.26) & (2.27) define a complete non-
dimensional isothermal steady state EHL circular pointaciproblem. Note that due
to dependencies of density and viscosity relationshipsiupe pressure, the Reynolds
equation is highly nonlinear. Moreover, two ways are désatito calculate the elas-
tic deformation: the first, so-called the half-space apnation of the linear elasticity
equation, which is given in the relations 8) & (2.24) for the line and the point contact
cases respectively, whilst the latter is concerned witmthraerical solution of the Lamé’s
equation of linear elasticity in appropriate domains [4B-3 hroughout this thesis, the
latter approach is considered for the elastic deformatiduti®n and the issue of the high
computational and memory costs of this approach to solve fitdblems are discussed.
Indeed, the primary focus of this thesis is to develop fdftient and reliable numerical
techniques for the solution of this problem. Since our comég primarily with these
numerical methods we focus exclusively on the equivalesticed geometry problem in
the remainder of this work.
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Numerical Methods

3.1 Introduction

In this chapter we discuss various numerical methods useddhout this thesis for the
solution of discretized forms of steady-state EHL problemshe first section, a brief in-
troduction to the finite element method (FEM) is providedtdrait is demonstrated that
the discretized forms of EHL problems reduce to systems afimear algebraic equa-
tions. The Newton method is described for obtaining the migaksolution of systems
of nonlinear equations, whilst for the solution of lineast®ms arising at each Newton it-
eration both direct and iterative approaches are discusseer in this chapter multigrid
methods [21, 100] are explained to give a general introdoof this class of solution
method. Finally, a description of an open source softwdmaty [57] is provided since
this is used as the framework for the implementation of d#ifé techniques discussed
throughout this chapter.

3.2 Finite Element Method

Many physical phenomena in science and engineering, e.gl ditnamics, solid me-
chanics, electromagnetics, biomechanics, etc., can besepmted in terms of partial dif-
ferential equations. The finite element method (FEM) [1848593, 109] is a numerical
technique to find the approximate solution of such partiti¢ential equations. The ba-

27
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sic idea of the finite element method is to divide the domamwich the equation is
prescribed) into a number of finite elements, consistingrapte convex shapes whose
vertices are known as nodes, to obtain an approximate splufihe division of the do-
main into finite elements is known as finite element mesh aagtbcess is itself called
mesh generation.

By way of motivation, the finite element method is explained & simple elliptic
partial differential equation in a domaih C R? (d = 1,2, or 3) with 9Q representing its
boundary. The Poisson equation [35] involves in finding asmh « € R? such that:

—YV?u=f inQ, (3.1)
subject to the boundary conditions:

= go onI'p #¢

(3.2)
Vurn =aq¢ on I'y,

whereV? = ¢ aa—;? is a d-dimensional Laplacian operator in cartesian coordinates
f c R%is the source functior, , U 'y = 052, whilst 7 is a unit normal to the boundary
002. Note that where the value af is specified on the part of boundaly, these are
known as Dirichlet boundary conditions, while in the renwagnpart of the boundary
'y = 02\ I'p the conditions specified in terms of the normal derivatiwelarown as the
Neumann boundary conditions. The finite element approxamatonsists of replacing
the strong form of the problem by a weak form [35, 93]. Thishsamned by multiplying

an appropriate test functiane H} () (see below) on both sides of equatiénlj and
integrating over the domain. This yields:

- /Q vV2udQ = /Q vfdQ, (3.3)

applying the Green’s formula [93] on the left-hand side gsethe required weak formu-
lation:

/Vu.Vde—/ (Vu.ﬁ)vds:/fvd(l, (3.4)
Q 20 Q
or

/Q Vu.VodQ = /Q fodQ + /a Q(Vu.ﬁ)vds. (3.5)

Before proceeding to next step, let us consider the above ngwrously by first defining
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the space of square integrable functidri$2) [18, 35], given by

LZ(Q)::{U:Q—HR\/uZdQ<oo},
Q

where the norm associated with this space (known ag.{herm) is given by

1

2
lulle = llull o = ( / uzdsz) |

Now the integrals in the weak form will be well defined if thet gooduct of the gradients
of the functionsu andv, and the functiong, v andg, are square integrable. Such func-
tions are the members of a well known space called the Solsplaver/!(2) [18, 35]
which is defined as:

ou

8xi

HY(Q) = {u:Q—>]R|u, eLZ(Q)forizl,..,d} :
The space does not take into account the Dirichlet boundargliions thus the solution
space is defined as

Hp(Q) :={uec H(Q) |u=goonTp}

where, as noted above, the test space should be
Hy(Q):={ve H(Q)|v=00nTp}.

Now, equation (3.5) can be written more precisely as:

/Vu.Vde:/fde+/ g1v ds. (3.6)
Q Q I'n

The finite element method consists of approximatiriy replacing the weak problem
by a finite-dimensional problem. This is achieved by takingdidimensional subspaces:
Sh c Hi andS} c H{ [35]. For this purpose, the domaidis divided into a set ofn
non-overlapping elements interconnected &t , discrete nodes (whereis the number
of nodes i \ ', andnp, is the number of nodes dnp). This then defines the finite-
dimensional subspaces) = span{N;, N,,...., N, } of piecewise functions which are
continuous across the whole dom&and zero on the Dirichlet boundary. In the simplest
case (which is the focus of this thesis) each of these elen®atsimplex (triangle i@D,
tetrahedron irsD) and the functions in the basis set are uniquely associsitdeach
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nodeP; in Q\ I'p for j = 1,2, ..,n, and satisfy the following properties [93]:

Ny =4 P =D (3.7)
0 if B, #P;.

For the finite-dimensional solution subspatle the basis set is extended by adding an-
othernp basis functions which correspond to the nodes on the Deidhbundarnyi

in order to take into account the Dirichlet boundary comxiisi [35]. Since the set of
the basis functions of the test subspace is subset to thahedfdsis set of the solution
subspace so the kind of approximation is generally refetoesb the Galerkin approxi-
mation [18, 35, 40, 109]. The Galerkin finite element appmation: «* € S% is of the
form:

n+np

Uhiz j{: Uiﬁﬁ

i=1

or .
n n-rnp

Uh :ZZE:QMuAQ—F 2{: uiﬁﬁ, (3.8)
=1 i=n+1

where the values afy, us, ...., u, are unknowns while,, 1, 19, ...., un1n,, are given by
the Dirichlet boundary conditions. So replacingn equation §.6) with the approxima-
tion given in §.8) andv with N; for j = 1,2, ....,n, we have a system of equations in
n-unknowns which is given by

n n+np
Zui/VNi.VdeQ:/fdeQJr/ giN;ds — Y ui/VNZ-.VdeQ,
= Q Q Iy i=n+1 Q

for j = 1,2,...,n. In particular when: = go = 0 onT'p, thenS% is same ass} in the
Galerkin approximation, and also the above system redoces t

> u / VN;.VN;dQ = / FN;AQ + / g1N; ds . (3.9)
=1 7O @

I'n

The above system can typically be written in matrix notatien
Ku=f, (3.10)

with u = [u,] and
1{‘::[1¥3A, }{5‘::U/QY7AG:‘7AQd(2
Q
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and
f= [fj] = / fNJdQ +/ gle ds.
Q I'n

(Note that ifgy # 0 the only change is some additional contributions to certampo-
nents of the right-hand side)

The matrixX is referred to as the global stiffness matrix. Note that theye/<;; of the
global stiffness matrix< will always be zero unless the nodes associated with the basi
functionsV; andV; belong to the same element of the mesh. This leads to thevabser
tion that the global stiffness matrix will be sparse, and itk row of the global stiffness
matrix will only have the nonzero entries in itsh column if the nodeg andi belong to
the same element. In other words, one need to only think ofchpd elements sharing a
common nodg. Therefore, in practice, it is useful to calculate the eletstiffness ma-
trices for each element separately and then summing updbeiributions to the global
stiffness matrix by

Kj = / VN.VN;dQ =) / VN,;.VN;dQ,
Q e=1 Qe

This process is known as an assembly process [93]. A simitareplure is to be carried
out for the right hand side vectéii.e.

f = Zfefe where 7, € R (@D
e=1

where

fe = / fdeQe +/ gle ds.
Qe T'nNOQe

Finally, the finite element meshing 6f ¢ R? may involve: line elementsR), tri-
angles/rectangleR¢) or tetrahedra/bricksi®) [35, 109] etc. In this work, triangular
(R?) and tetrahedral elementRy) are used. The basis functions discussed above can be
approximated to an arbitrary accuracy using polynomialgkwiyenerally depend upon
the number of nodes used in an element. For convenience, Weaomnsider the two-
dimensional case in detail here, i®@.c R2 A triangular FE mesh of? is shown in the
Figure(3.1) with an element in zoom-in interconnected at three nodesheued locally
from 1 to 3 in anti-clockwise direction. The polynomial basis funcisodefined on the
three node triangular element are linear and are given 18]]10

ar +byr + cry
2A

Ny = for 1=1,23,
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Figure 3.1: A triangulation

with
a1 = T2Y3 — T3Y2, bi = Y2 — Y3, Cl = T3 — T2
Ay = T3Y1 — T1Y3, by = y3 — Y1, Co =171 — I3
a3 = T1Y2 — Ta2l1, bs = y1 — Yo, C3 = Xg — X1,

while A¢ is area of element:
o a1 + as + as

2
For further details about different types of elements ardagproximation: the reader is
referred to standard finite element texts, for example, 5@@|[
Finally, note that the finite element discretization of noaar partial differential equa-
tions leads to systems of nonlinear algebraic equatiorsigtkdiscussed in detail in Chap-
ter 4).

Ae

3.3 Newton Method

Newton’s method [68] is considered as a powerful nhumerioal for solving systems
of nonlinear algebraic equations. These systems ariseny a@plications, including the
discretization of nonlinear partial differential equaitso Consider a system afnonlinear
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algebraic equations:
F(u) =0, (3.11)

Alternatively, equatior{3.11) can be written as:
Fi(u)=0 i=1,2,...,n. (3.12)

In the neighbourhood ai, Taylor series can be used to expand each fundijas:
Fi(u+déu) = Zaujéu]jthot i=1,2,...,n. (3.13)

In vector notation this is:
F(u+ du) = F(u) + F'(u)du + h.o.t. (3.14)
Ignoring the higher order term$.¢.t.), equation(3.14) can be written as:
F(u) + F'(u)du =~ 0,
in the case where we wish to sol#¢u + ju) = 0. This re-arranges to
F'(u)du ~ —F(u), (3.15)

whereF’(u) is the system Jacobian:

on  om OF,
ouq Ous e Oun
oFy  0Fp OF,
F/(U) — ouq Ousg Y Oug
OF, OF, OFy,
ouq Ous e Oun

Solving equatior{3.15) at an initial guesa®?, for the correctiordu, yields an update:

uev — uold + Su.
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Sometimes this full Newton approach fails to convergeufif is not sufficiently close to
the true solution) and so damping of the Newton update isafsed in order to improve
convergence of the Newton iteration:

unew — uold + )\5u7

where) € (0, 1] is often known as a damping factor or step length. The wholstdie
process can be summarized in the following steps:

1. Setu’ = an initial guess.
2. Fork =0,1,2,... until convergence, repeat:

(&) Solve

for the Newton stepu”.
(b) Setu*+! = u* + \du¥, whered < )\ < 1.

(c) Test for convergence.

A significant advantage of Newton’s method is that it is galgrexpected to achieve
guadratic convergence provided the initial guess is goodgi for it to converge. How-
ever, if the initial guess is not sufficiently good then thealn iteration may diverge.
The computation of the Newton step is most expensive paheoNewton iteration since
a linear system must be solved. This may be found by means iwéet dnethod or an
iterative method.

Generally, it is not necessary to solve the linear systemtixat each Newton itera-
tion, i.e. itis only necessary to solve the linear systemdaféicient precision in order to
determine a good enough Newton update to achieve convergétize nonlinear system.
The inexact Newton methodmakes use of an iterative method for the solution of the
linear system at each Newton iteration so that it may be sapproximately. One way
of implementing this is to choose the stopping criteriontfe Newton step as:

[ (u) du® + F(u®) || < il F ()] (3.16)

where the variable, is called a forcing term. The best choice of this parameteighly

empirical, however different choices are suggested inekample, [34]. A large value
of this parameter may leads to a poor determination of thetblestep which can cause
divergence. On the other hand a relatively very small valuiais parameter, although
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leading to fewer Newton iterations, leads to more comporati work overall. 1t should
be noted that in this approach the accuracy of the inner soh@eases whenever the
solution comes closer to solution of the nonlinear system.

3.4 Sparse Direct Method

Direct methods for solving linear systems may be defined asméthods that seek the
exact solution of a linear system in a finite number of stepsh{e absence of rounding
errors). The direct methods generally involve algorithhveg teduce the system matrix to
some special and easily solvable form e.g. a triangular fareguivalently to the product
of lower triangularL and upper triangulal/ factors. This is known agU decomposi-
tion [26]. The discretization techniques such as the fingenent discretization of partial
differential equations generally leads to large and vegrspsystem matrices. Efficient
direct algorithms for sparse matrices are much more comtglitthan for the dense ma-
trices [32]. The main complication is due to the need for effidy handling the fill-in
in the factorsL andU. Note that fill-in are the nonzero entries in the factérand U
that are not present in the original matrix. The fill-in sigezantly affects the efficiency
of a direct algorithm both in terms of computational time ameémory requirements. A
typical direct algorithm [32] assumes the solution in thikofeing four phases:

1. A pre-ordering phase that applies a suitable algorithrmetorder the rows and
columns of system matrix in order to reduce fill-in. This igmally independent
of the numeric values of the system matrix.

2. Symbolic analysis which determines the nonzero strastof the factord. and
U and creates suitable data structures for these factors HEfps to predict the
memory requirement for the numerical factorization. Hogrethis is only an es-
timate, the actual requirement depends upon pivoting ch(fee stability) during
the numerical factorization.

3. Numerical factorization which computes the factbrandU of the original matrix.

4. A solve phase that computes the solution of the systemibgrp@ng two triangular
solves using the factors computed in step 3.

Sometime an additional phase, iterative refinement, is atedthe solution phase to
improve the accuracy of the solution. This only requirestition of step 4 above but
using the residual on the right-hand side. Numerical fazation is generally the most
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time consuming phase while the solve phase is about an ofaeagnitude faster [32].
There are a number of algorithms associated with each pHhash have their own impact
on the performance of a direct algorithm for some class déleras. A number of efficient
sparse direct algorithms [26, 27] have been developed sanfdrfurther work is still
going on in this field. Amongst them, UMFPACK [27-30] is a paldomain software
which is used throughout this thesis. UMFPACK is based onltheymmetric-pattern
MultiFrontal method. This combines the step 1 & 2 and thusiaes the solution only
in three steps. UMFPACK factorizeBA(Q, PRAQ, or PR~*A( into the product LU,
whereP and( are permutation matrices which reduces the fill-in. Impaiathe other
role of P is to maintain the numerical accuracy of the solution (hahtedepends upon
numerical values and not just the sparsity pattern). Rin&llis a diagonal matrix of row
scaling factors. For more details, one is referred to [27].

The use of a direct method to determine a Newton step may bedadmice if the Ja-
cobian can be computed and stored efficiently and the coattdrization of the Jacobian
is not excessive or the Jacobian is dense (rendering iteraethods ineffective). Another
possible reason of the choice of a direct method may be thedaof convergence of it-
erative methods for a specific problem. Despite the fact mfgoeore expensive in terms
of Jacobian factorization and storage requirements, spirsct methods are still used in
real applications due to their robustness.

In some applications the discretizationld problems often leads to tridiagonal sys-
tems which can be efficiently solved usifigomas’ algorithm [97]. The said algorithm
is a simplified version of Gaussian elimination method whieuires onlyO(n) opera-
tions to find the exact solution [97]. This method employswo steps: in the first step
all the nonzero entries in the diagonal below the main diagare eliminated while the
second step the backward substitution is used to obtairolbéan. It may be extended
for any banded matrix for which the bandwidth is independdnt: exploiting the fact
that no fill-in occurs beyond the band structure.

3.5 Newton Krylov Methods

Recall from the previous section that an inexact Newtortexjsauses an iterative linear
approach for the inner solve to approximate a Newton step.thAshame suggests a
Newton Krylov method uses a Krylov subspace based iterégnique for its inner

linear solve. For a solution of a linear systetm = b, a Krylov subspace linear iterative
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solver seeks the approximation of the form:
T = Xo + '-'i'v

wherez, is an initial iterate and: € Ky, a kth Krylov subspace spanned by a setiof
vectors{ry, , Arg, ...., A¥"1ry} with ry = b — Az, the initial residual. Thus a Krylov
subspace method involves matrix-vector products and $aildapproximation from an
appropriate Krylov subspace. In the following sectionsva$ech methods are discussed
which have been frequently used throughout this work.

3.5.1 Conjugate Gradient Method

The conjugate gradient method (CG) is the most well knowrhotfrom the general
family of Krylov subspace methods. It was originally deye#d as a direct method
for symmetric positive definite (SPD) systems in 1952 by Eless and Stiefel [56] but
was not widely used due to being considered computatioeajensive. Later in 1971,
Reid [89] revived it as an iterative method for large spaB® Systems. For a symmet-
ric positive definite matrix4, solving Az = b is equivalent to minimizing the following

quadratic function:

f(z) = %xTAx — (3.17)

This minimum occurs when the gradient is zero:
1, 1

and sinced” = A,
Axr —b=0.

The CG is basically a line-search method which seeks to nizeira one-dimensional
problem by finding the value af;, that minimizesf (x;,) where:

Tpy1 = T + QpPr, (3.18)

and the vectop, denotes the search direction from the existing iterate Using rela-
tion (3.18), the following recurrence relation holds foe tlesidual vectors:

The1 = b — Az = 1 — o Apy. (3.19)

Various strategies are possible to determine the searebtidins. Recall from linear
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algebra that a gradient of a function defines a direction irckwvkhe function increases
most rapidly, and hence the negative gradient providesitieetibn of steepest descent.
Such a choice of a direction yields the so-called steepestethe method [44, 93]. Note
that the negative gradient of the function (3.17) at a givygpreximationz;, defines the
residualr, = b — Axy, therefore the iteration (3.18) becomes:

Tpy1 = T + QT

The drawback of this method is its slow convergence for theoihditioned systems. An-
other approach is to generate a set of search direcfian$, ...., p,—1} which are con-

jugate to each other with respectAqi.e. A-orthogonal). Thed-orthogonality condition

reads:

piAp;j=0 ¥ i#].

An important property of such a set is that allvectors are linearly independent with
respect to the inner product generated/yMethods using such a set of directions are
called conjugate direction methods [24]. The Gram-Schidiltconjugation generates a
set of conjugate directions from a setolinearly independent vectofsig, u1, ..., u,_1},
however the disadvantage of this method is its computdticoraplexity as it requires
the storage of all previous search directions. This contjoutal complexity is reduced
significantly by conjugate gradient method [24, 35, 44, 9Bich uses a simple recurrence
relation to define the search directions. As the name sugjgbh# is basically a conjugate
direction method which involves producing search dire®iby conjugation of residu-
als. The recurrence relation used to define such searchidireds basically a linear
combination of the residua}.,.; and the previous search directippi.e.

Dk+1 = Tk+1 + BrkDk, (3.20)

where the parameter, is chosen such that the new search direction is A-orthogonal
to previous search directign and is given by:

B = M (3.21)
T Tk
Putting all the steps together constitutes the Algorithm 1.
Note that the CG method only requires the storage of the lastésidual vectors,
one last search direction and only one matrix vector mudtplon per iteration. Hence
the computational cost per iteration@qm) wherem is the number of non-zero entries
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Algorithm 1 Conjugate Gradient Method [35]
1. computepy =19 =b — Axg
2: for £k =0,1,2,....until convergence (see (3.163p

T

T.T
3 Ak = Pka;k
4 Tpi1 = Tk + Qi
5 Th1 = Tk — Qi Apy,
6: (test foTr convergence)
7 B = Tk};r%
8: Ph+1 = Tht1 + Bk
9: end for

of A. In short, the conjugate gradient method is considered asvaniul numerical tool
for solving problems which involve large and sparse symim@isitive definite system
matrices.

3.5.2 Generalized Minimal Residual Method

The generalized minimal residual method (GMRES) [94] wasigiteed by Saad and
Schultz in 1986, to solve linear systems = b with unsymmetric coefficient matrices
A. WhenA is unsymmetric, then minimizing the functidB.17) is no longer equivalent
to solving Az = b. In the GMRES method [94] the minimizing functional in theykav
subspaceC, (A, ) is chosen as the 2-norm of the residugl Starting withz, as an
initial guess and definingy, = b — Az, with v; = r¢/||ro||2, the GMRES method uses the
Arnoldi method [93,94] implemented through modified Graoh@idt orthogonalization
which sequentially generates orthonormal basis vedtarg, ...., vy }, such that:

span{vy, va, ..., vy } = spanfvy, Avy, ..., AF o} = ICu(A, vy).

Let V}, denote a matrix withy; in its j-th column and?;, denote & x k upper Hessenberg
matrix formed by the numberis;; computed at the same time by Arnoldi method [93],
then the reduction oft to Hessenberg form is given by [93, 94]:

Hy, = V,' AV,
The relation betwee, andV}_, is given by:

AVj, = Vi Hy, (3.22)
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whereH), is (k + 1) x k upper Hessenberg matrix:

_ H
7. - [ k ] ; hk+1 — (0,0, ..... ,h(k+1)k)-

The k-th GMRES approximation seeks to approximate the solutidheform:
Ty =Xy + T,

wherez € K(A, rq) and this is determined by using the fiksbrthonormal vectors gen-
erated by the algorithm, i.e:
T = ka,

therefore
Ty = o + Vi, (3.23)

wherey is a k-vector which is chosen to minimize thig,-norm of the corresponding
residual (|, ||2) [93,94], where

Irellz = (|6 — Azl
= |[b—A(xo + Viy)|l2
= |[ro — AViyll2,

using the relatior{3.22), we have

Ikl = 1181 — Vi Hyylla 58 = |Iroll2
= [[Vig1 (Ber — Hyy) |I2

since columns o¥/,; are orthonormal so the functionAly) to be minimized is equiva-
lent to, see [93, 94]:

F@y) = lIrellz = llBex — Hyyll2 - (3.24)

Heree; = {1,0,0,....,0) is a unit vector of lengttk + 1. Finally the GMRES algo-
rithm [94] requires a solution afk + 1) x k least square problem to obtain the optimal
value ofy. A summary of all the above steps is given in Algorithm 2.

Assuming the use of exact arithmetic, GMRES converges iroatmsteps [94]. Note
that at each GMRES iteration, an orthogonalization of aoregt,; to (A, vy) is re-
quired against all the previous constructed vecfor$?_,. This grows the computational
cost at each iteration lik&(kn). In other words an increase in the number of GMRES
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Algorithm 2 GMRES [93]
1: Computerg = b — Az, 3 := [|roll2, andvy := 73
2. for j =1,2,..., k,...until satisfieddo
3: computew; := Av;

4: fori=1,....,5do

5: hij = (wj,v;)

6: w; = w; — hi;v;

7: end for

8: hji1; = ||w;ll2. If hj11; =0, setk := j and exit loop (go to stepl)
o v =wi/hjny

10: end for

11: define the(k + 1) x k Hessenberg [natriIE[k = {hi; hi<i<k+11<j<k
12: computey the minimizer of||Se; — Hyy||2 andxy = zo + Viy.

steps increases both the memory usage and the computatomtaiherefore, it becomes
impractical whenevek is significantly large. The issues with large computaticrtats
of this method is often avoided by restarting the iteratitieraa fixed number of steps,
and this is known as restarted GMRES or GMREj(see [93, 94]. In the GMRES()
version, if the convergence is not achievedior m wherem is specified as some upper
bound of dimension of Krylov-subspace used, then GMRESstareed with a new initial
guessr, set tox,,,. This process is repeated until convergence is achievetk IiNavever
that a small value af: may lead to slow convergence of GMREg(or even entire failure
of convergence, however the optimum choice tends to varg fsne problem to another.

3.5.3 Other lterative Techniques

The GMRES [94] method is very effective in solving generahssymmetric systems
though at the cost of large storage requirements. The higatg gradient (BCG) method
[93] is another approach for non-symmetric systems whiddpeces two mutually or-

thogonal sequence of residuals, however providing no maation of residual any longer
unlike the GMRES. In other words, taking = ry/||ro||2, this method consists of a pro-
jection process onto

Ki(A, v1) = span{vy, Avy, ..., A" o},

orthogonal to
Li(AT, v1) = span{vy, ATvy, ..., (A7) oy .
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In 1980s, a variant of BCG so-called conjugate gradientsglialgorithm (CGS) [101]
was proposed in order to avoid usageldf, and to provide faster convergence rate with al-
most the same computational cost. However this methodrsuffgh irregular behaviour
in convergence. In order to overcome these negative effaatsler Vorst [101] proposed
another variant of BCG so-called biconjugate gradientiktald method (Bi-CGSTAB).

3.6 Preconditioning

The previous section is concerned with different iteragipproaches for solving the linear
systemAx = b resulting from linearization of some nonlinear systemratee methods
for solving sparse linear systems are generally superidirézt approaches in terms of
memory. However, with increasing problem sizes, not onlgsdithe amount of compu-
tational work to carry out a single iteration increase, dabdahe number of iterations
required to achieve convergence typically grows [35]. Thusen this growth in iter-
ations is too great, iterative methods can suffer from a lafckobustness compared to
direct methods. This lack of performance of an iterativehudtis generally due to an
unfavourable distribution of the eigenvalues of the systeairix [35], causing the system
to become more ill-conditioned as the system gets largequently, the performance of
an iterative method can be improved significantly by usirgcpnditioning [35, 44, 93].
The term preconditioning is regarded as a way of transfagrthie original linear system
into an equivalent system, which has the same solution asriti@al one, but also has a
more favourable spectrum [35] (i.e. the eigenvalues ofrdmesformed system are tightly
clustered within a small region compared to the originatesyg. Additionally, a good
preconditioner) is a matrix for which it is inexpensive to calculate the effetits in-
verse over an arbitrary vector A preconditioner) can be applied to a linear system in
three different ways [93].

e Left preconditioning leads to preconditioned system:
M Az = M™"b (3.25)

¢ Right preconditioner leads to preconditioned system:
AM 'u=b, z=M"u (3.26)

which involves substitution of a new variahldgor z.
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e Split preconditioning can also be appliedf is available in factored form i.e
M = M M, this defines the following preconditioned system:

M{YAM; 'u = M, 2= My u. (3.27)

Recall from the previous section that the conjugate gradiethod may be applied
to systems with symmetric positive definite matrices. Itidtidoe noted that the pre-
conditioned matrices/~*A and AM~! are no longer necessarily symmetric positive
definite [93] even ifM is. Thus strategies preserving symmetry need to be comsider
One way to preserve symmetry is the use of split preconditgonGiven a symmetric
positive-definite matrix\/, the availabilityd = LL™ leads to preconditioned system:

LYAL Tu=L"% z=L"u,

where the preconditioned system matfix! AL=7 is symmetric and positive-definite,
therefore the conjugate gradient method is applicableitosystem. Applying the con-
jugate gradient method to this system in a straightforwaadmer produces an algorithm
which, at first appearance, requiredo be computed. However a few careful substitu-
tions lead to preconditioned conjugate gradient [35, 44,9% Algorithm 3, which only
requires one to compute the affectidf-! over an arbitrary vector.

Algorithm 3 Preconditioned Conjugate Gradient Method [35]
1. computerq = b — Axg, solveM zy = rq, Setpy = zg
2. for £k =0,1,2,....until convergencejo

T
Zp Tk

3. oL = k
k= pT Apy,

4: Tk4+1 = Tk + QxPk
5: Tpe1 = T — QpApg
6: (test for convergence)
7 solveMzy 1 = 1141
i _ Zg+17k+1
8. /Gk — 2/1577’]@
9: Prt1 = Zi+1 + B
10: end for

The GMRES algorithm [94] is developed for general systeras the preconditioned
GMRES algorithm can be obtained for any type of preconditign Recall from the
previous section that the GMRES algorithm generates th@mzation of theL,-norm
of the residual vector at each step. It should be noted tledethpreconditioner modifies
the residual vector while this is not the case in right prelttioning. In other words the
GMRES algorithm minimizes the original residual in caseight preconditioning. In
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this section the preconditioned GMRES [93], see Algorithris4nly provided for right
preconditioning which is used throughout this thesis.

Algorithm 4 Right Preconditioned GMRES [93]
1: Computerg = b — Axg, [ := ||rol|2, andv; := 2

2: for j =1,2,..., k,...until satisfieddo 0

3: computew; := AM 1,

4: fori=1,....,5do

5: hij = (wj,v;)

6: w; = w; — hiv;

7 end for

8: hji1; = ||w;jll2. If hj11; =0, setk := j and exit loop (go to stepl)
9 v =wj/hjny

10: end for

11: define the(k + 1) x k Hessenberg [natriIE[k = {hi; hi<i<k+11<j<k
12: computey the minimizer of||3e; — Hyyl|» andzy = 2o + M~ V,y.

As stated above, a good preconditionérshould be such that the resultant precondi-
tioned (transformed) system has a tight clustered set ehegjues within a small interval
(or a small number of small intervals), and additionally #ffect of its inverse over an
arbitrary vector is inexpensive to compute. A number of prelitioning techniques have
been devised so far [13, 25, 35, 93], among them [13] is a gyaper providing a review
of different preconditioning techniques have been dewedoome common examples of
preconditioning techniques include: diagonal precoond#rs, incomplete LU factoriza-
tion (ILU), sparse approximate inverse (SPAI) and multdgreconditioners. The diag-
onal or Jacobi preconditioner consists of choosing theqméitioner )/ as the diagonal
of the system matrix4. This preconditioner has only the effect of diagonal scalh
A. Moreover, if the system matrix is partitioned into bloclssaaresult of partitioning of
unknown variables, then choosing only the diagonal blodkklg a preconditioner the
so-called block diagonal preconditioner.

The incomplete LU factorization consists of computing apgnate LU factors of
the system matrixd such that the residual matrix = A — LU satisfies some specified
constraints, such as having zeros in prescribed locatfé]s [n other words, some con-
straints are applied to control the level of fill-in (see $@tt3.4) in LU factors. In the
simplest case where no fill-in is allowed in the factorizatfmocess is called no fill-in
ILU or ILU(0). The accuracy of ILU{) can be improved by allowing some fill-in during
the factorization process. This involves by introducingiaction called “fill-in level” to
control the level of fill-in in the LU factors [13].
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Sparse approximate inverse (SPAI) preconditioners irgbomputing the sparse ap-
proximation ofA~! explicitly and using this as a preconditioner for an iteratnethod [13,
25]. One simple way to compute a sparse approximate invefss by minimizing
||I — AM|| in the Frobenius norm, subject to some sparsity constrgift®5, 93]. Thus
computation ofV/ involves solving: independent least square problems. Comprehensive
details of this approach can be found in [25, 93].

Finally, we describe in details the multigrid preconditimgin the following section
which includes a detailed introduction to multigrid metb@hd different variants of this
approach.

3.7 Multigrid

Multigrid methods [21,100] began to be developedd60s but efficient applications first
arose with the work of Brandt [19]. A multigrid approach foHE problems was first
used by Lubrecht [73]. Later on Venner [102] and Goodyer ptBitributed in enhancing
the efficiency of the application of multigrid methods to Reynolds equation in EHL
problems. Unlike these previous applications of multigoidEHL problems, in this work
multigrid methods are used as a preconditioner for theieigsequation.

By way of motivation for this a general overview of multigmadethods is provided.
For the sake of simplicity, let us assume thatrepresents a uniform grid of element size
h, andA,x, = by, is a corresponding discrete system that needs to be solveg.owe
further assume that, is an approximation to the exact solutionobtained, for example,
by applying few steps of a relaxation scheme (e.g. Jacohis&8&eidel, etc.). Then the
errore;, can be defined as:

€np = Th — Th,

andr;, is the residual:

Th = bh — Ahi’h.

The error and the residual can be related to each other thrthegerror equation as
follows:
Ap(Zn +en) = by

Apep, = by, — Apzy,

Aheh =T (328)
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If the error equation is solved the solution can be correbted
Ty = Ty + €p. (329)

Note that the relaxation on the error equation (3.28) is\edent to that on the original
system [21]. So nothing can be obtained through this protegscould not have been
achieved by solving the original equation. However, if thoee,;, in (3.29) can be ap-
proximated in some efficient way then an improved solutiamtoa obtained through the
correction:

Tp — Tp + ep. (3.30)

Note that many relaxation schemes e.g. Jacobi, GausstSeide have a smoothing
effect on the error of approximation that means they elit@rbe high frequency error
components efficiently but damp slowly the low frequencypeoomponents [100]. Be-
cause of this property such relaxation methods are also kr@smoothing methods or
smoothers. On the other hand the smooth errors are dampedguigkly on a coarser
grid (for instance a grid with mesh si2é) and thus the relaxation will be more effective
and relatively cheap on such grid [100]. Suppose that aroappation to the erroe,, is
obtained o)y, through relaxation or any other suitable procedure (e.grezidmethod)
then that approximation can be used to correct the fine gtigtisn (hence known as
coarse grid correction). A combination of error smoothing &@s coarse grid correction
leads to so-called two-grid method [21, 100]. A two-grid haet is mainly based on the
following components [21, 35, 93, 100]:

e Smoother: a relaxation scheme which efficiently reduceditie-frequency error
components through its first few iterations.

e Prolongation or interpolation: a transfer operat§y which maps a coarse grid
vectoruvyy, to a fine grid vectowy,:

h .
L5t vap, — vy,

e Restriction: a transfer operatdf" which defines a mapping from a fine grid to a
coarse grid:

]}%h L Up — VUgp

Having defined these components, a two-grid method can bmaumzed in the following
steps:
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e relaxy, timesA,x, = b, on€, with an initial guess for),
e restrict the residual:;, = b, — A7), to the coarse grid by, = I?"r),

¢ solve the coarse grid problem:

Aspean = Top (3.31)

e prolongate the coarse grid errey, to the fine grid by, = I% ey, and correct the
fine grid approximationi;, « I + e,

e relaxy, timesA,xz, = b, on), with the initial guess),.

The numbers, andw, are also known as pre-and post-smoothing iterations régsplc

In practice, the computational complexity of the coarsd groblem (3.31) will itself be

very large therefore it is useful to solve it approximatédly.obtain such an approximation,
a further two-grid strategy can be applied to the probler81B. This process can be
repeated recursively until a coarsest grid is reached facwdndirect solution is possible
at very low cost. Such a recursive application of a two-gdrection scheme leads
to what is called a true “multigrid method” [21, 100]. An expl®a of a sequence of
subsequent coarse grids used in the multigrid are shownguar&i3.2. The recursive

Figure 3.2: A sequence of hierarchical grids

definition of multigrid method is summarized in Algorithm 5.
The method outlined in Algorithm 5 is regarded ad &-cycle of multigrid. A
schematic of a multigrid V-cycle is also shown in Figure 3The details about other
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Algorithm 5 7,=MGV (A}, o, by) [21]

1. applyr, pre-smoothing steps a#y,z;, = b, with an initial guess;
restrict the residual:, = b, — A7, to the coarse grid byy = I}r;,
if coarsest grid is reachéden

solve:Ayey = ry
else

GH:MGV(AH, 0, T’H)
end if
correct the fine grid approximation;, « i, + ey
apply v, post-smoothing steps ofy,z;, = by, with the initial guess),

) () finest level

g ]
interpolation

I
restr’iction @ |

exac coarsest level

Figure 3.3: Schematic of a multigrid V-cycle

multigrid cycles can be found in the standard texts, for eplansee [21, 100]. Note that
the error of the improved solution may still be large, thus pnocess can be repeated
until the solution satisfies some prescribed stopping anlez. Multigrid methods are
designed to havé-independent convergence and they therefore require @Qly) op-
erations [100]. Instead of using multigrid as a stand-akwlger they can be combined
with iterative methods such as conjugate gradient [44], ®@8R94] etc. to accelerate
their convergence. In fact, a single V-cycle of the multigtan be used as an efficient
preconditioner (to approximately solve the preconditibegstem:\/ > = r) for an iter-
ative solver with the computational complexity proporabto the size of problem. So
this is the context in which a multigrid approach will be désed, and used, here. The
multigrid approach can be classified into two variants dagleometric multigrid (GMG)
and algebraic multigrid (AMG), and these are discussederfaddowing sections.
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3.7.1 Geometric Multigrid

The geometric multigrid method [21, 100] (GMG) is expligitied to the underlying
differential equation and the discretization scheme ulatkepends on the availability of
both discretization and underlying mesh information. Tiwelves generating a sequence
of hierarchical mesheQ,, ()., .....,Q,, such that);, C Q, C ..... Q,. Such a hierarchy
of grids is obtained through uniform or adaptive refinemeaiftslements of a particular
grid, where each selected element is automatically dividem smaller finer elements.
Figure 3.2 shows a sequence of sddhierarchical grids with rectangular elements. This
then requires the discretization of a problem at each iddadi grid level. Moreover the
inter-grid transfer operators are defined using the geaeriaformation.

3.7.2 Algebraic Multigrid

This is an extension of the multigrid approach where the ttaogson of the multilevel hi-
erarchy takes place algebraically, hence the name algeafatigrid (AMG) [17, 21,93,
100]. AMG is being considered to develop effective and ropusconditioners for Krylov
subspace methods [17]. In AMG, the re-discretization ofabfm on each coarse level
and the geometric interpretation are not required to bin&lHhierarchy of discrete sys-
tems. Therefore AMG has an advantage over the geometriegmditegarding its ease
in implementation, however this can also restrict the ajayility of the approach too (e.g.
the system matrix must satisfy certain AMG criteria [17]h &lgebraic multigrid method
builds the hierarchy of operators directly from the oridgispgstem matrix. AMG can be
distinguished into two phases: the setup phase and the gbhase. In the setup phase
the hierarchy of linear systems is developed along with thesfer operators: the pro-
longation operator/,. and the restriction operatdf;.,* = (I )". The Galerkin

coarse ine coarse

condition is usually used to construct the coarse-gridatpef17, 21, 35]:

Acoarse _ I;Zngse Afine g CJZ;L:SG.

The second phase is regarded as the solution phase whertandarsl multigrid cycles
are performed (typically a single V-cycle is used for pregitioning). The unknowns
of subsequent coarse levels are simply the subsets of thi@arunknowns of the prob-
lem. This is based on finding the strength of connections ftimenentries of a system
matrix [100]. Note that a pointhas a strong connection with pointf:

—a;; = 9r22§<{—aik}, 6 € (0,1]
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l.e the unknownz; strongly depends on the unknown or the unknownz; strongly
influences the unknown;. This eventually leads to partitioning into a set of coarses
C and fine pointg’. Once the coarse grid points have been chosen then thealaeon
weights are defined. Having defined the prolongation opgregmaining operators are
defined as stated above.

The standard coarsening is usually performed in two padsié® aata. In the first
pass, a preliminary partitioning int®@ and F' unknowns is done. In the second, some
of the initial F' unknowns are reassigned @unknowns to further satisfy the prolonga-
tion requirements. If the second pass is not performed,dbesening strategy is referred
to as one or single pass coarsening [17,21]. Single passaroag can have a signifi-
cant effect on the setup phase where it not only reducesrtieergquired by coarsening
process but also reduces the storage requirement for tlisecgad operators. It has a
further significant effect on the solution phase i.e it restuthe overall time required to
perform a multigrid cycle. However a drawback is that it maguit in a poorer quality
preconditioner [17].

Throughout this thesis an open source softwde M 20 [1, 17] has been used for
the AMG preconditioning. AMG preconditioning [17] requsr¢hat the system matrix
must have positive diagonal entries and most of the offahagientries must be negative
(the diagonal should be large compared to the sum of theiaffethals). This software
offers the flexibility of user-selected choices includiig tthoice of smoother, coarsest
grid solver and the choice of the type of coarsening. Noté dha pass coarsening is
assumed throughout this thesis if not explicitly statecoilise.

3.8 KINSOL Implementation

The KINSOL (Krylov Inexact Newton Solver) software is a meanbf the family of the
SUNDIALS software suite [57] developed to solve systemsaflimear algebraic equa-
tions. This is a C implementation of previous software NKS@8], a Newton-Krylov
solver written in FORTRAN to solve systems of nonlinear algéc equations. However
KINSOL provides some additional features including a widkoice of linear system
solvers and tolerances. The linear solver modules availalthin KINSOL can be cate-
gorized into two families: direct family and “spils” familyhe former offers two direct
linear solvers for dense and banded system matrices, Widl&atter comprises of three
scaled preconditioned iterative linear solvers which a®eld on Krylov subspace meth-
ods. These are respectively scaled preconditioned GMRES$PGMR), a scaled pre-
conditioned Bi-Conjugate Gradient Stable method [101]BS8) and a scaled precon-
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ditioned Transpose-Free Quasi-Minimal Residual meth@§l 8PTFQMR). In addition
to these modules, KINSOL also provides an option of a userdavear solver module.
KINSOL implements a modified Newton strategy with a direoelr solver where the
Jacobian updates are made as infrequently as possibleg®4lance the overall high
computational costs. However the drawback of this methdkasit requires more non-
linear iterations to converge. In the case of spils solMelSOL implements an inexact
Newton strategy. For the Krylov iterative solvers, right@onditioning is available within
KINSOL. In this case KINSOL requires user subroutines tageind solve the precondi-
tioned system of the form/z = r» whereM denotes a preconditioning matrix. There are
two options to choose the length of Newton st&p (n the first case\ is set tol (standard
Newton strategy) while the second option (global strategpgs a linesearch strategy to
determine a suitable length of Newton step [57, 68].

In KINSOL the stopping criteria for the Newton method are dzhsipon both the
nonlinear residual and the step length. For the former, th@thin iteration must pass a
stopping test:

1F () oo < U,

where U is the machine unit roundoff. For the latter, the Nmwhethod will terminate
when the maximum scaled step is below a given tolerance

A6, ||oe < U3

Only the first condition is considered a successful comghetif KINSOL. The second
condition (small step) may indicate that the iteration &lstl near a point for which the
residual is still unacceptable. Note that the above meatormlues are defaults however
KINSOL also accepts the user’'s own specified values for ttedseances.

In theinexact Newton strategy i.e. when the preconditioned iterative solver is used,
the convergence of the overall nonlinear solver is couplgd the accuracy with which
the linear system is solved at each Newton iteration. Sgadlifj the stopping criterion
for the Krylov iteration is chosen as:

1 (un) 6+ F (un) [| < (3 + U)I[F (ua)]]

Different choices of),, are available within KINSOL, including the user’s own cheiar
a default value 06.1.

Finally the system Jacobian can be supplied to KINSOL by a sskroutine or it
can be approximated within KINSOL using the difference gerdt[68]. Since Krylov
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iterative solvers require Jacobian-vector multiplicatithe difference quotient approxi-
mation of Jacobian-vector product avoids the storage afhlan matrix thus a significant
amount of memory may be saved particularly for large systems

Throughout this thesis KINSOL is applied using the SPGMR uledor the precon-
ditioned iterative solutions if not explicitly stated otlase. The SPGMR module uses
the GMRES method with no restarts. User subroutines have jpexided to calculate
Jacobian-vector products at each inner iteration and t@gbk preconditioning systems.
For the direct solutions, an external linear solver (UMFRARS8]) is attached within
KINSOL.

3.9 Summary

The content of this chapter reflects the numerical techsiguech have been used in the
rest of this thesis. First of all, the finite element method haen explained for the so-
lution of partial differential equations. Later on, varsonumerical techniques have been
discussed for the solution of linear and nonlinear systehegjoations. These methods
can be implemented within the framework of the KINSOL lity@s7], which has been
used throughout this work to develop codes for the solutidaHL equations. KINSOL
allows the choice of inner solvers: both direct and preciionied iterative solvers. For
the direct inner-solver, UMFPACK [28] can be attached farendirect solves. KIN-
SOL implements an inexact Newton strategy with a precomui#d iterative linear solver.
Three scaled preconditioned linear iterative solvers: @8R94], Bi-CGStab [101] and
TFQMR [43] are available within KINSOL through the moduleB&GVIR, SPBCG and
SPTFQMR respectively [57]. The SPGMR module with no scal;hgsed throughout
this thesis if not explicitly stated otherwise. Finally a&usubroutine may be supplied to
KINSOL to solve the preconditioned system at each lineaaiien. Moreover a standard
Newton strategy, i.e. a full step, is taken to update thetgolat each Newton iteration.



Chapter 4

Discretization and Solution

4.1 Overview

In this chapter the full-system finite element approach éostblution of EHL equation is

discussed. In the following section we described a stan@aitdrkin finite element dis-

cretization of EHL line and point contact equations. Lateran alternative discretization
of the Reynolds equation is discussed in order to stabilizgotessure solution. This is
then followed by an explanation of the coupling procedure adescription of the New-

ton method applied to the fully-coupled nonlinear systematek in this chapter a new
preconditioning strategy is proposed and discussed fodévelopment of an efficient
iterative solver for the resulting linear systems at eacttde step. Following a consid-
eration of different variants of the solver used in this wdhe accuracy of the solution is
justified both for the line and the point cases compared taipusly published results.

4.2 Finite Element Discretization

In the previous chapter, a general finite element procedareimtroduced for the Pois-
son equation. Now in this section the finite element disza¢ion of the EHL equations
is discussed both for the line and the point contact casasallyywe consider a stan-
dard Galerkin discretization but, as the Reynolds equataronvection-dominated in
the contact region it exhibits oscillations in its pressswoéution [73, 102]. Therefore in

53
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Figure 4.1: A 2D domain and a triangulation

Section 4.2.3 an alternative discretization of the Reymelguation is discussed. This is
shown to be more stable in the sense that the unphysicalypeesscillations no longer
appeatr.

4.2.1 Line Contact

In this subsection, standard Galerkin discretizationtieReynolds equation (i1,) and

the linear elasticity equation (if?) are considered. Recall from Chapter 2 that the line
contact problems requires the Reynolds equation to be ¢awea one dimensional do-
main (2, for pressure distribution, and the linear elasticity eguabn a two dimensional
domains for the elastic deformation solution. Léf) be the boundary of the domain
and(; be the part ob(2 that corresponds to the fluid region, see Figure 4.1. Foririee |
contact case the penalised Reynolds equatid9) takes the following form:

¢ (P ) - o —er =0, (4.)
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wheree(P) = ”n—’f andP = 0 on 0. For a weighting functior’V,, (which is zero on
09), the weak form of this equation is:

dpP dw, dw, N B
/ (P)dX e de—/ pHWdQJchg QfP W,dQ2y = 0. (4.2)
Similarly, for a weighting functiorV,, (which has two components, both of which are
zero onf)p), the weak form of the linear elasticity equati@ni3d) is:

/C,jklaXl 8X dQ /l;t njCijkla—XqudFt, (43)

wherel',(= 0 — Qp) is the part ofoS2 that corresponds to the traction boundary. As
shown in equation35) n;C, wkla UL represents the normal traction and is given as

niCiyngse =0 (fori=1,2) onT; — Q,
njCijklg—)U(’; = —0;P on Qf.
Equation {.3) can therefore be written as:

O, W, B

Consider a partition of2 into ne,, triangular elements{(2.}, such that:e, of these
elements have edges tn (and these edges form a partition(®f). Let {2} be the set
of thesene, line segments (edges) and defiRg C H; andP[; C H; to be piecewise
linear finite element solution spaces oy{él.} and{Q,.} respectively. Equations! )
and {@.4) can be written as a sum over these elements:

nep

Z </ (P) a7 dWPdee _/ Hdﬂdee +& P_Wdefe> =0,
Qe

dX dX dX Q
QfEZI fe
(4.5)
s U W, —
P Qs = 0. 4.
Z / ijkl 5~ 0X 8X QZ;I/S; i2 Wud fe 0 ( 6)
On each elemeri?,., P in equation 4.5) may be approximated by:
2
P~ P°=> NiPf, (4.7)

=1

whereN; are local linear basis functions arZR} are nodal values aP at the vertices of
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the element. So replacing in equation ¢.5) with the approximation given in equation
(4.7) andW,, with N¢ for i = 1, 2, followed by the usual finite element assembly process,
leads to a discrete system:of nonlinear equations, wherg, is total number of nodes in
s, excluding boundary nodes. Note that there is no explicitiirement for the meshes
of the domaing? and(2; to match. However numerical experience [98] suggests that a
similar resolution is required in both and();, thus we have used a single mesh in this
work for ease of implementation.

Similarly, on each elemefil., U in equation 4.6) is approximated by:

3
UmnU*=> WU, (4.8)
q=1

wherelV 7 are local linear basis functions ang are nodal values of the displacement
U within the element. So replacinlg in equation 4.6) with the approximation given in
equation ¢.8), P with the approximation given in equation.{) and W, with (W, 0)7

and then(0, W;)T forq =1, 2, 3, leads (after finite element assembly) to a discrete system
of 2 x n, linear equations, where, is total number of nodes ift excluding Dirichlet
boundary nodes ofl,.

Note that the choice of the linear elements discussed aleadsIto highly sparse
problems and, as we shall see next, preconditioning teabsiguch as algebraic multigrid
are very appropriate for linear elements. The price thatid for using these elements
however is their lower accuracy (than higher degree apprations) which means that
much finer meshes are required that might be the case forrgtier elements.

Finally, the discrete form of the load balance equatibm9) is obtained by using the
finite element assembly of the approximation giverdirT):

nep

2
S [ S wipans -G o 4.9)

QfEZI fe j=1

4.2.2 Point Contact

This subsection considers a standard Galerkin discretizat the Reynolds equation (in
(1) and the linear elasticity equation () for the point contact case. Here the Reynolds
equation needs to be solved on a two dimensional dofajand the elasticity equation
on a three dimensional domd&ih Again we define thaif) is the boundary of the domain

( and(); is the part ofo(2 that corresponds to the fluid region. The penalised Reynolds
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equation £.29) for the point contact case reads:

V. (eVP) — aix (GH) — £P~ =0, (4.10)

whereP = 0 arounddS);. For a weighting functiofV, (W, = 0 ono$;), the weak form
of the equation4.10) is:

8W
pP. dQy —
/Qf eV VWP f / E3% o,

Similarly, for a weighting functior?,, (W, = 0 on Qp), the weak form of the linear
elasticity equation is:

ou, oW, oUy,
/kal&Xl 8X dQ /Ft njCijklﬁ—XqudFt, (412)

P~W,d; = 0. (4.11)

wherel;(= 02 — Qp) is the part 002 that corresponds to the traction boundary. As for
the line contact case; kal X U represents the normal traction and for the point contact
case, itis given by

nCiyngse =0 (fori=1,2,3) onl; — Q,
njCijklg—%’; :—52‘3P Oan.

Equation ¢.12) can therefore be written as:

oU, oW, -
| Con Stan s | 2P =0 (4.13)

Now consider a partition of2 into ne,, tetrahedral elementgs2. }, such thate, of
these elements have triangular facesr(and these triangular faces form a partition of
Q). Let{Qy.} be the set of thesee, triangles and defin@ and P} to be piecewise
linear finite element spaces oV, } and{<2. } respectively. Equationd (11) and ¢.13)
can be written as a sum over these elements:

nep

d
> ( /Q eVP.YW,d, — / pH%deeij ; P—Wpd9f8> =0, (4.14)
Q=1 fe fe

nep

e U W, |
Z / Comnz%, ox ¢ + > /Q 5is PW,d< s, = 0. (4.15)

Qfe=1
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On each elemeri?,., P in equation 4.14) is approximated by:
PmP°=> NiPf (4.16)

whereNy are local linear basis functions aiti are nodal values af within the element.
So replacingP in equation {.14) with the approximation given in equation.(6) and

W, with N7 for i = 1,2, 3, followed by the usual finite element assembly processslead
to a discrete system of, nonlinear equations, where, is total number of nodes in
(14, excluding boundary nodes. Similarly, on each elent&ntU in equation ¢.15) is
approximated by:

4
UnU"=> WU, (4.17)
q=1

wherelV 7 are local linear basis functions ang are nodal values of the displacement
U within the element. So replacing in equation 4.15) with the approximation given
in equation ¢{.17), P with the approximation given in equatiod.(6) and W, with
(We,0,0)7, (0,W5,0)" and then(0,0, W)™ for ¢ = 1,..4, leads (after finite element
assembly) to a discrete system¥ok n, linear equations, where, is total number of
nodes in(2 excluding Dirichlet boundary nodes.

Finally, the discrete form of the load balance equation ixioled by using the finite
element assembly of the approximation givendini ¢):

nep

3
¢ e 2T
> [ SNpan. -5 o (4.18)

Qpe=1" e j=1

4.2.3 Stabilization

For heavily loaded cases the value of diffusivity’) = ”—’f becomes very small in the
n

contact region due to large increases in the viscosjtgf the lubricant used, and so the
Reynolds equation is convection-dominated in this regiarthis situation the Galerkin
solution exhibits an oscillatory behaviour in the pressaes for example [73, 102]. For
such cases, a standard Galerkin approximation of the Regregjuation (discussed in
the previous section) is unsatisfactory [51]. In order tdéaoba stabilized solution a
Streamline Upwind Petrov-Galerkin (SUPG) method [22] mayubed. For the sake of
brevity, the implementation is explained for the point @mtcase only (the line contact
case being a simplification of this).

To describe the SUPG approach let us rewrite equatian) (excluding penalty term)
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in the classical convection-diffusion form as follows:

op OP  OH

or
—V.(eVP)+ V.VP+Q =0, (4.19)

whereV = (1, V3) = (H%, 0) and@ = p2Z. The SUPG method applied to this kind

of problem consists of choosing the weighting functidhin equation ¢.14) to be of the
form:

_he_ V.VN,

Wp:Np—l—a2|V| . »

with

1 h
a = coth(Pe) — Do Pe = |V2| =
e €

whereh, is the element size anBle is the local Peclet number of the elementin the
Galerkin procedure, oscillations will occur wheneyEe| > 1. For more details, see for
example [22, 35,51, 108].

Note that if the discretization procedure given in Sectidh2lwhen applied to equa-
tion (4.19) with the new weighting function defined above emdwith the following
form:

nep

dN, he d(pH
Z / eVP.VdiQfe—/ pH—2LdQ. + a (V.VNp) (v )dee =0,
Qpe=1 Qfe Qe dX 2"/’ Qe dX

(4.20)
So replacingP in equation ¢.20) with the approximation given in equation.(6) and
N, with N¢ for i = 1,2, 3, followed by the usual finite element assembly processslead
to a discrete system of, nonlinear equations, wherg, is total number of nodes ift;,
excluding boundary nodes. This method introduces an adaitstabilization term within
the Reynolds equation which is mesh dependent, therefbas iho effect on the accuracy
of a converged solution in the limit as the mesh size goesrm ze

4.3 Solution Method

4.3.1 Coupling Procedure

The traditional half-space approaches are mainly basedl@osa-coupling of the pres-
sure and film thickness solutions. In such an approach (2034p, 47, 73, 102, 104)),
each EHL equation is solved separately and an iterativadimlstablished between their
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solutions. Typically under-relaxation is required to &k convergence of the solution
and consequently a slow convergence rate may be obtainadthef decrease in under-
relaxation factor is required to achieve the convergencédavily loaded cases, which
leads to a further decrease in the convergence rate [104].

In the fully coupled approach, all the discrete systemsrgyiffom the FEM dis-
cretization of EHL equations are coupled together to formargd nonlinear system of
equations for all of the unknowns, and this is solved in alsipgss. Thus, no under-
relaxation is required and no extra treatment is requirexttoeve convergence for heav-
ily loaded cases (e.g. [50, 51]). Nevertheless, some heladed cases may require a
better initial guess for a Newton procedure to achieve cgaree.

4.3.2 Linearization

In Section 4.2 we discussed the discrete nonlinear systasisgafrom EHL equations.
Let us rewrite them in the following vector form:

RP(PvUvHO) =0
Ry (P, U) =0 (4.21)
Ry, (P) =0

whereR p represents the residual of the system of nonlinear equatiasing from the
discretization of Reynolds equatioRy; is the residual of the linear system of equations
arising from discretization of the linear elasticity eqoatand Ry, is the residual of the
discretized load balance equation. In this work, a Newtatgdure is applied to system
(4.21) to yield the following linear system at each outer iteratio

ORp ORp OR

P oU aHg oP —Rp

ag;)u B;X_UU 0 U | =| -Ry | . (4.22)
o o7 0 §Hy L

Starting with an initial estimate for the solution, the Newprocedure consists of solving
the linearized systemi(22) at each Newton iteration and this update is added to the
solution obtained at the previous iteration, to provide pdated solution. This process is
repeated until convergence is achieved.
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4.3.3 Structure of the Linear System

In what follows we write the Jacobian matrix in the systeémZ) in the following form:

Juu Jiz Jis
J=1Ju Jo 0 ) (4.23)
Js1 0 0

where J;; is a sparse block (tridiagonal in the line contact case) zé ), x n,. Also
Jia, Jo1 and Jyy are highly sparse blocks of sizg, x (d x n,), (d x n,) x n, and
(d x ny) x (d x n,) respectively, where is 2 or 3 for line or point contact problems
respectively. Finally,/;3 and.Js;; are column and row vectors, respectively, of length
Note thatr, < n, since the Reynolds equation is solved in a domain of dimensiel.

4.4 Preconditioned lterative Solution

As described in the previous section the Newton method regjthie solution of the linear
system {.22) at each iteration which is the most expensive part of a Newtration.
Therefore one needs to solve this system as efficiently aslesn order to get the best
performance results. Both direct and iterative approachase used to solve the linear
system 4.22) at each Newton step. The objective of this study is to dgvatvefficient
preconditioned iterative solver so that the systér)) can be solved efficiently (in both
time and memory) at each Newton step, as compared to a $ttie-art sparse direct
solver (e.g. [28]). This goal can be achieved if a good prdit@mer is available at a
relatively low cost. A simplest choice of the preconditiomeay be a block diagonal
preconditioner of the form:

Ju 0 0
P=| 0 Jyp 0],
0O 0 1

where J;; ~ Ji; and Jyys &~ Jyy in SOMe sense. This preconditioner can be used to
precondition the Reynolds and the elasticity block in systeatrix (.23) separately. In
order to get a better preconditioner, consider, for sinitylithe case where the force
balance equation is ignored. Then we haye a 2) block Jacobian matrix of the form

A Ju J
j— 1 J12
Jo1 Ja
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If we choose a left precondition&t such that

p1_ STt ST 5!
Lo J3!
22

then

p_lj _ S_l —S_1J12J2_21 J11 J12 _ S_l(Jll - J12J2_21J21) 0
O J2_21 J21 J22 J2_21J21 I
For an ideal preconditioner
S = Ju — JiaJs3' Jor,

i.e. all eigenvalues aP~1J are equal to 1, thus the convergence should be obtained in
precisely?2 iterations [77]. However, the question arises as to how plydaae effect of
S—1 can be computed (or approximated) without formigxplicitly. It should be noted
that, sincen, < n,,, even with a relatively poor approximation of the Schur céengent
S, still the vast majority of the eigenvaluesif 1J will be equal tol. Furthermore, it will
be shown that the application of this method with= .J;; yields a preconditioner that is
both cost-effective and highly efficient in accelerating tonvergence of GMRES [94].

In this work, an identity “preconditioner” is used for thegie load balance equation.
Thus the preconditioner (to soh\2z = r, at each GMRES iteration) used here is based
upon the following upper triangular form:

Ju Jiz s
P=| 0 Jyp 0
0 0 1

In the case of line contact problems,; is a tridiagonal matrix, so the effect of’
over an arbitrary vector is calculated efficiently using the Thomas algorithm whish i
O(n,). The block preconditionerJNQQ ~ Joo, Of the elasticity block is undertaken by
either algebraic multigrid (AMG) preconditioning [1, 17 geometric multigrid (GMG)
preconditioning [21, 100], which are designed to®g:,). In the case of point contact
problems,J;; is no longer tridiagonal, but is still a highly sparse (anthtieely small)
block, so a sparse direct solver [28] is used to compute feetedf /' over an arbitrary
vectorwv.
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The overall algorithm to solve the preconditioned system:

Ju Jiz Jis Zp rp
0 J22 0 VA ) = ry (424)
0 O ]. ZHO THO

therefore involves the following steps:
1. Formzy, = rg,

2. Perform 1-V cycle of AMG or GMG to computé‘zlrU, which is the approximate
solution of Jyzy = ry.

3. Using the calculated solutions in step-1 & step-2, solve:
Juzp =rp — Jiozu — J132m,

for zp using the Thomas algorithm in the line contact case or a sjinact solver [28]
in the point contact case.

It should be noted that the application of AMG preconditi@n[1, 17] requires that
the system matrix must have positive diagonal entries arst afdhe off-diagonal entries
must be negative (the diagonal should be large comparee tutin of the off-diagonals).
As described above, the size of thg block is(d x n,) x (d x n,), which corresponds
to d x n, displacement unknowns with, unknowns in each direction. If we order the
unknown displacements for each coordinate direction im, tilren the/,, block is repre-
sented byi/? sub-blocks of size§n, x n,). In order to apply AMG preconditioning td,
we apply a single V-cycle to each of the diagonal sub-bloakd,neglect the off-diagonal
blocks. Finally, a single pass coarsening is used in AMGaditioning. This strategy
leads to fewer and much sparser coarse level operators arefdre results in a signifi-
cant reduction in the memory usage and overall time. Mone@a@auss-Seidel smoother
is used both in AMG and GMG preconditioning. This approaciprieconditioning the
linear elasticity equation has been found to be very effeqirovided the Poisson ratio is
not close td).5 [16]. In this work a Poisson rati0.3 has typically been used, however
we assess the effect of altering this value in Chapter 5. Goe/alent Poisson ratio and
the Young’s modulus are then obtained according to equatibB6) and @.37) for the
reduced system models considered in this work.
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4.5 Solver Layout

The main objective of this study is to propose a robust préitimmed iterative solver
which is both computationally and memory efficient compdced state-of-the-art sparse
direct solver [27-30]. For this purpose, a nonlinear sois@feveloped in ‘C’, using the
KINSOL [57] library to solve the nonlinear system.Z1). This nonlinear solver uses a
standard Newton strategy, i.e it employs a full Newton skepther, the stopping criteria
for the Newton method is set to use the default values (seo8e:8), if not explicitly
stated otherwise. KINSOL requires a user subroutine to coenfhe system function
(residual) of the nonlinear system 1) for a given value of current solution. The system
Jacobian is computed and stored at the same time while camggbe system function
F. For the solution of the linearized systein2?2) at each Newton iteration, two variants
of the solver are considered. The difference in these twianty is the attachment of
different inner linear solvers within KINSOL for the solati of the linearized system
(4.22) at each Newton iteration.

e Sparse Direct Solver: In the first variant, an external sparse direct solver is at-
tached as an inner solver within KINSOL. Experience shows tiMFPACK [28]
is a very efficient choice, therefore, this is used in thiskwor

e Preconditioned Iterative Solvers: The second variant of the nonlinear solver con-
siders an iterative linear routine as the inner solver. tfexplicitly stated other-
wise, this is the preconditioned GMRES method [94] (withaadtarts) available
within KINSOL through the SPGMR module [57]. For the stogpitolerance:
(n, + U)|| F|| to terminate the GMRES iteration the valuegfis supplied to KIN-
SOL. The choice ofy, is highly empirical, and varies for the type of loaded cases
being considered and the type of initial guess. The inptitirguess is the Hertzian
pressure profile for pressure solution and a positive nurfaodt,. With this poor
initial guess we have found that, = 10~¢ works well in practice for the EHL
problems that we have considered. Any significant increasieis parameter may
lead to divergence of the solution as one can see that in gtddiv Newton iter-
ations, wherd|F'|| may be large, a bigger choice of this parameter may not lead
to a good Newton step, and thus the Newton iteration may geveFurthermore,
some heavily loaded EHL cases may require a further decne#isis parameter. A
much smaller value of this parameter can suffer with somwlolaaks however. One
drawback may be that as the Newton iterate progresses theadecn|| /|| leads
to successive drops in the linear solver tolerance and harersolving may cause
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the computational work to increase. Another drawback is ttia convergence of
the GMRES method may stall, especially, in the final few Newterations due to
roundoff errors of double precision arithmetic. To avoidlssituation the maxi-
mum dimension of Krylov subspace used can be fixed to a saitaiistant in order
to prevent the linear system from being oversolved, and ahgisn thus obtained
(even if the maximum dimension of the Krylov subspace usedashed) can be
used to update the Newton iterate. Another possible way chemser,, in such
a way that the linear solver tolerance remains fixed to alsi@itealue unless the
| F'|| is not sufficiently small. In other words the inexact Newttrategy is only
implemented in the final few Newton iterations. Such a trestimvill be explicitly
stated in the forthcoming text in Chapter 5.

A user subroutine is supplied to KINSOL for the evaluationhed Jacobian-vector
product.Juv for a given input vector where the matrix/ is the system Jacobian al-
ready available. Recall from Section 3.8 that only rightpralitioning is available
for the linear iterative solvers within KINSOL. A user subtime is also supplied
to solve the preconditioning systeRz =r, i.e. (@.24), at each GMRES itera-
tion, where different blocks of the preconditioning maifixvere already computed
along with the system Jacobian. The algorithm describeldarptevious section is
used to solve the preconditioned systBm= r at each GMRES iteration. Finally,
the preconditioned iterative variant of solver is splibifiairther two variants on
the basis of AMG and GMG preconditioning 5{21ZU = ry block in the precon-
ditioned system4(24).

4.6 Accuracy of EHL Solution

In this section we demonstrate the accuracy of the fullypted line and point contact
solvers developed in this work. For this purpose the contpatdutions are compared
against previously published results using the integrapt@gch (based upon a half-space
formulation) in a finite difference based model. This conmgaar is discussed separately
both for line and point contact problems in the following settions.

4.6.1 Line Contact

In this subsection, a comparison of the fully-coupled fimtement line contact results
is established against a finite difference based model @&, in order to validate the
implementation for the test cases given in Table 4.1. We ésstblish this comparison
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Table 4.1: Non-dimensional parameters for different lioptact cases.

Parameters Test Case 1 Test Case 2
Moes parametet, 10 10

Moes parametet)/ 20 200

Maximum Hertzian pressurg;, 1.05G Pa 3.3G Pa
Viscosity index,a 1.7x 107 8%Pa ! 1.7x 10 %Pa!
Pressure-viscosity index, 0.69 0.69

Table 4.2: Validation of line contact result&/ = 20, L = 10 andp, = 1.05G Pa

Venner [102] This model
n H. H,, P Np Total dof H. H,, P
1793 . 0.07404  0.758 1792 308435 0.08427 0.07361 0.78420
3585 . 0.07385  0.787 3584 552191 0.08428 0.07364 0.86492
7169 . 0.07375  0.825 7168 904665 0.08428 0.07365 0.87872
14337 . 0.07370 0.850 | 14336 1314207 0.08428 0.07365 0.88551
28673 . 0.07367 0.867 | 28674 1628545 0.08428 0.07365 0.89533
: 1
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Figure 4.2: Pressure and film thickness profiles= 20, L = 10 andp, = 1.05 G Pa

for the Test Case 1 which is comparatively a moderately ldamese. The mesh size
(with n,, finite element pressure unknowns) is kept constant thrautghe whole of the
fluid domain(;: X = [—4.0 : 1.5], in order to have a fair comparison against the finite
difference based model. Table 4.2 gives a comparison oftseBom both models in
terms of the central film thickne$$/,.), the minimum film thicknes§H,,,) and the height
of the pressure spikeP;) (see Figure 4.2).

Venner [102] showed that the minimum film thickness is cogweg to0.07365 with
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Table 4.3: Validation of line contact result&/ = 200, L = 10 andp;, = 3.3G Pa

Venner [103] This model
n H. m np Total dof H. H,, Ps
1791 5979 x 1073 5.466 x 1073 | 1791 282664 6.000 x 1072  5.448 x 1072  0.3167
3583  5.998 x 1073 5502 x 1073 | 3584 426173 6.010 x 1072  5.480 x 1073  0.3073
7167  6.003 x 107 5.512x107% | 7167 700542 6.013 x 107® 5.491 x 107*  0.3579
14335 6.004 x 107®  5.516 x 1072 | 14335 1214206 6.014 x 107> 5.495 x 107>  0.3656
28671 6.005 x 1072  5.517 x 1073 | 28671 1628542 6.014 x 1073 5.497 x 10™®  0.3931

n = 114689 (the number of finite difference unknowns for the pressune)) the corre-
sponding height of the pressure spiké)i879. The current model’s results are close to
these showing the validation and convergence of the cusmwer. A small difference in
the calculated results can be expected due to use of twaatiffeiscretization methods
and the use of different elastic models. For the finest réisolgase reported in Table 4.2
the relative difference between the computed minimum filiokiness solutions is about
0.03% while that in the pressure spikes is ab8tt. In a different experiment reported
in [103], Venner et al. showed that the converged value diraéfiim thickness i$).08401
with n = 28673 which only differs by0.3% with the solution computed using the current
model.

As a next test we consider a more heavy loaded case (Test @mgendn Table 4.1)
with the fluid domairf;: X = [-2.5 : 1.5]. The mesh size (corresponding to different
resolution cases) is again kept constant throughout tledlumnain( ; while a sufficiently
fine mesh is used in the elasticity domain. A comparison afltef current model
against a finite difference based model [103] is given in &abB in terms of the central
film thickness(H.) and the minimum film thicknesgH,,). As for the Test Case 1 the
computed results are again very close to those of publiskmdts, and that they again
appear to converge to same solution. The total relativerdiffce between the converged
values is about.15% for the central film thicknesgH..) and0.36% for the minimum film
thicknesg H,,).

Finally note that the size of the mesh in the 2D elasticity donmay be shown to be
“sufficiently fine”: i.e. a further decrease in the mesh sizthin the elasticity domain
does not lead to a significant improvement in the accuradgtive to the discretization
error). In fact it is even possible to obtain the solution@t kcost using much coarser
meshes (like the one shown in Figure 4.1) without comprargisin the accuracy of the
solution (this is discussed in more detail in the next chdpte
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Table 4.4: Non-dimensional parameters for the contact &etveteel surfaces [104].

Parameters Test Case 3 Test Case 4
Moes parametet, 10 10

Moes parameter}/ 20 200

Maximum Hertzian pressurg;,  0.45GPa 0.97GPa
Viscosity index,« 22 x 107 %Pa! 2.2 x 107 %Pa?
Viscosity at ambient pressurgy;  0.04 Pa s 0.04 Pas

Total speeds, 1.6ms! 1.6ms!

Table 4.5: Validation of point contact results: Test Case 3.

Venner [104] This model
Ng X Ny H. H,, nyp Total dof H. H,,

64 x 64 (=4096)  0.41904 0.28622 | 4450 10486550 0.42306 0.28921
128 x 128 (=16384) 0.42872 0.29094 | 17732 14834838 0.42999 0.29123
256 x 256 (=65536) 0.43116 0.29218 | 67350 47440138 0.43129  0.29202

4.6.2 Point Contact

In this subsection, a comparison of the fully-coupled firikement point contact solver
is made with published results using the integral (halfegpapproach in a finite dif-
ference based model [104]. This will enable us to validate d¢hlculated point con-
tact results. The meshes used for this purpose have beematghevith a uniform
mesh size (corresponding to three different resolutioms)ysvhere in the contact re-
gion (; = [—4.5,1.5] x [-3, 3]), which therefore provides a fair comparison with the
finite difference based model [104]. A comparison of the wigd results with the fi-
nite difference based model [104], is given in Table 4.5 rmieof central and minimum
film thicknesses (this is the only data provided in [104]) floe Test Case 3 (given in
Table 4.4). It should be noted that the number marked represents the number of
pressure unknowns in the contact region and ‘Total dof’esents total unknowns of the
fully coupled system. It can be seen that the calculatedtseate very close to that of
the finite difference based model. The difference betweervilo solutions decreases as
we switch to higher resolutions. For example, in the finesbltgion case the relative dif-
ference between the central film thickngéssolutions and the minimum film thickness
H,, solutions is abou®.03% and0.05% respectively. Moreover, it should be noted that
both models use totally different approaches, thereforeallslifference in the solutions
is expected even though they appear to converge to the sanle re

A similar trend in the solution is observed for Test Case 4ciwhs a comparatively
more heavily loaded case. Table 4.6 provides a comparisoesofts obtained on fine
meshes against the finite difference based model [104]. dtigent that the calculated
values are again close to those of finite difference basecthaod that they again appear
to converge to the same result.
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Table 4.6: Validation of point contact results: Test Case 4.
Venner [104] This model
Nz X Ny H. H,, np Total dof H,. H,,

64 x 64 (=4096)  0.070686 0.033080 | 4450 10486550 0.070251  0.028999
128 x 128 (=16384) 0.078872 0.037120 | 17732 14834838 0.078987  0.036286
256 x 256 (=65536) 0.080935 0.038480 | 67350 47440138 0.081202 0.038426

Again as for the line contact case, the main drawback of thesdts is the use of
very fine meshes, leading to very large discrete problemighndre very expensive from
a computational point of view. This issue is explicitly agssed in Chapter 6.

4.7 Conclusion

In this chapter, we have discussed a standard finite elensametzation of the EHL line
and point contact equations. A Streamline Upwind Petrole&a (SUPG) method [22]
is explained in order to stabilize the discretization of Reynolds equation. The full
system approach results in a large coupled nonlinear sygter) to which a Newton
procedure is applied for the solution. For the iterativeusoh of the linearized sys-
tems (.22) at each Newton iteration we have proposed a new preconditl® in order
to efficiently solve the preconditioned systedn2{l) which will be demonstrated in the
subsequent chapters. We have described an overall laydl¢ afonlinear solver along
with the different variants that have been considered i work. Finally, the accuracy
of our computed results is justified by comparing them wivpyusly published results
in literature. We have shown that the difference in both @mmputed and the published
results is small and that they appear to converge to the saluigos as finer meshes are
used. The only drawback of the computed results is the usergffine meshes in the
corresponding elasticity domains which is further disedss the next chapters.



Chapter 5

Line Contact Problems

5.1 Introduction

Recall from previous chapter the development of three utsiaf the Newton solver
where the only differences are in the attachment of innealirsolvers (direct and itera-
tive) and the type of preconditioning of the elasticity IHgaAMG or GMG). The stopping
tolerance for the Newton iteration is chosen as the defaeltthe Newton iteration will
successfully terminate when the maximum norm of the re$ideztor is lower tharl/s
whereU is machine unit roundoff [57]. Unless stated otherwise jtenative variants of
the solver the stopping tolerance for the GMRES iteratiofwjs+ U)||F||. Since the
preconditioning is always undertaken to the right, thigptog criterion is independent
of the preconditioner used.

Note that the convergence of the GMRES method depends upaffi@aently large
dimension of Krylov-subspace being used [94]. Furthermateach GMRES iteration,
an orthogonalization of a search direction is requiredregaall the previous search di-
rections, which grows the computational cost at each itaratn other words an increase
in the maximum dimension of the Krylov-subspace increasdh the memory usage
and the computational cost. Hence, the method becomesdtigaavhenever the maxi-
mum dimension of the Krylov-subspace used is large. Thiggdn is often avoided by
the use of restarted GMRES where an upper baund specified for the dimension of
Krylov-subspace used, and if the convergence is not adtievé: < m then GMRES is

70
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Table 5.1: Non-dimensional parameters for different labldee contact cases [102,103].

Parameters Test Case 1 Test Case 2
Moes parametet, 10 10

Moes parametet)/ 20 200

Maximum Hertzian pressurg;, 1.05G Pa 3.3G Pa
Viscosity index,a 1.7x 107 8%Pa ! 1.7x 10 %Pa!
Pressure-viscosity index, 0.69 0.69

restarted with new initial guess set tox,,,. This process is repeated until convergence is
achieved. One way other than the restarted GMRES may benthatdaximum dimension

of the Krylov-subspace should be fixed to a suitable constant the Newton update is
applied even if the GMRES iteration is not fully convergedt&that alternative Krylov
subspace methods, such as Bi-CGSTAB [101], may be used tocawe the memory
issue (see Section 5.5).

For the results presented in this chapter, iterative limgai solvers are applied with
a sufficiently large maximum Krylov dimension to show theeeffveness of the precon-
ditioning strategy by ensuring that we get full convergetcéhe solution of the linear
system {.22) at each Newton step. We will see that the cumulative numbénear
iterations appears to be independent of problem size. lildradso be noted that if the
initial guess is not sufficiently accurate then some undtdation of the outer Newton
iteration may be required to achieve convergence. In thikywoee used a Hertzian pres-
sure profile (see chapter 2) as an initial guess for pressutena under-relaxation was
required to reach the converged solutions for any of thescagmorted in this chapter.

An example of a typical finite element mesh used in this wodhigwn in Figure 5.1
which shows a fine mesh close to the contact region and avediattoarse mesh else-
where. The test cases considered in this chapter are taken[102, 103], and are de-
scribed in Table 5.1 in terms of Moes parametgfsand L and a maximum Hertzian
pressurep,. Note that a Poisson rati@3 has been used (if not explicitly stated oth-
erwise) and the Young's modulus is then obtained accordneguation £.39) for the
non-dimensional equivalent elasticity problem. Moreotee penalty parametér= 10°
is used in this work. An increase in this factor will lead toianorease in the computa-
tional work for minimal change in the solution. Finally, wéupdating the density and
viscosity, the very small negative pressures in the cawitaegions are treated as zero.
In the following section the solution of typical EHL line caat problems is discussed.
This includes a discussion on the accuracy of the line congéaalts using coarse meshes,
along with the effect of local refinement in the Hertzian emttregion. It is then fol-
lowed by a comparison of performances of the proposed pd#tomned iterative solver
compared to a state-of-the-art sparse direct solver [28\gig a detailed comparison of
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Figure 5.1: An example employed mesh for a line contact bl

their computational times and memory usages.

5.2 Accuracy on Selected Coarse Meshes

In the previous chapter the accuracy of the line contactitee$or the test cases given
in Table 5.1 was demonstrated by showing that the results alerost identical to previ-
ously published ones using integral approach in a finitedsfice based model [102,103].
However the drawback of those results were the use of verynigghes in the elasticity
domain. In fact it is possible to use much coarser meshe®ial#sticity domain without
compromising the accuracy of the solution. To demonsttatethe numerical solution
is computed for Test Case 1 keeping the same resolution ioathi&ct region but using
large mesh sizes in the elasticity domain compared to thariggh cases. A comparison
of these newly computed results with those using fine meshg#&/€n in Table 5.2 in
terms of central film thicknes&., minimum film thicknessH,,, and the peak value of
the pressure spikg;. It is apparent from Table 5.2 that there is a minimal changbe
newly computed solutions with a large decrease in the sitgeaélasticity problem corre-
sponding to different resolution cases. In the finest régolicase the relative differences
between the two solutions abe)2%, 0.005% and0.6% for H., H,, and P, respectively,
with a total reduction in the size of problem being almost Hiom degrees of freedom.
So far the mesh size was kept constant throughout the fluichoiofty in order to
obtain a comparison with the finite difference based modeg2[103]. As a next step,
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Table 5.2: Accuracy of the line contact results over the ddene and coarse meshes:
M =20, L =10 andp, = 1.05GPa

Fine Meshes Coarse Meshes
Np Total dof H. H,, P Total dof H. H,, P

1792 308435  0.08427 0.07361  0.78420 45221 0.08427  0.07362 0.7972
3584 552191  0.08428 0.07364 0.86492 84491 0.08428 0.07366  0.8692
7168 904665  0.08428 0.07365 0.87872 | 207533  0.08428 0.07365 0.8767
14336 | 1314207 0.08428 0.07365 0.88551 | 314303  0.08427 0.07366 0.8940
28674 | 1628545 0.08428 0.07365 0.89533 | 756109  0.08426  0.07365 0.9010

Table 5.3: Line contact results with one level of refinemanthie contact region [-1:1],
M =20, L =10 andp, = 1.05G Pa.

Uniform refinement With local refinement
Np Total dof H. H,, P Np Total dof H. H,, P

1792 45221 0.08427 0.07362 0.7972 | 1412 36541 0.08429 0.07365 0.8043
3584 84491 0.08428 0.07366  0.8692 | 2825 65534 0.08429  0.07367  0.8693
7168 207533  0.08428 0.07365 0.8767 | 5648 125375  0.08427 0.07365 0.8792
14336 314303  0.08427 0.07366 0.8940 | 11296 241401  0.08426 0.07365 0.8949

we study the effect of local refinement in the non-dimendibieatzian contact region on
the accuracy of the EHL solution. This involves one levelaffrement in the contact
region[—1 : 1] (i.e the mesh size is halved) and the accuracy of resultipaced with
the results given in Table 5.2. The rationale behind this gat a significant decrease in
the number of unknowns in thd and2D domains without any change in the accuracy
of solution. In other words this involves placing (relatiemore points only in the
region where the solution has largest variation. Table &8sga comparison of results
(obtained using both the uniform refinement and the noneamifrefinement in the fluid
domain) in terms of the central film thickneg&.), the minimum film thicknes$H,,)
and the maximum height of the pressure sgike). One can see that results using the
local refinement are very close to those obtained using @aumifefinement in the whole
fluid domain{2;. Thus the local refinement leads to a significant further etess in the
problem size without significantly affecting the accuraéyhe solution.

So far we discussed the accuracy of the computed EHL solftioa moderately
loaded Test Case 1 using suitably coarser meshes. As a apxins compare the accu-
racy of solutions for Test Case 2 (given in Table 5.1) usirgyse2D meshes against the
solution obtained on fine meshes (see previous chaptere that the meshes used for
Test Case 2 are different than those used for Test Case 1 doaswmering two different
fluid domains. Table 5.4 gives a comparison of results coetpover both fine and coarse
meshes in terms of the central film thickn€$s.), the minimum film thicknesgH,,,) and
the maximum height of the pressure spil{¢). Again this can be seen that a significant
decrease in the size of problem for each resolution casemdsad to a significant drop
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Table 5.4: Accuracy of the line contact results over the Uddene and coarse meshes:
M = 200, L = 10 andp, = 3.3G Pa

Fine mesh solution Coarse mesh solution
np Total dof H. H,, P Total dof H. H,, P

1791 282664  0.006000 0.005448  0.3167 35826 0.006008  0.005456  0.3055
3584 426173  0.006010 0.005480 0.3073 68095 0.006014  0.005485  0.3405
7167 700542  0.006013 0.005491 0.3579 | 193752  0.006015 0.005494  0.3699
14335 | 1214206 0.006014 0.005495 0.3656 | 340932  0.006017 0.005498 0.3867
28671 | 1628542 0.006014 0.005497 0.3931 | 622378  0.006013  0.005497  0.4025

in the accuracy of EHL solution (except the height of the pues spike). For the finest
resolution case reported here, the relative change in thé@wois about).02%, 0% (to 6
decimal places) an?.3% in the central film thickness, the minimum film thickness and
the spike height respectively, with a total reduction of#hmne million degrees of free-
dom in the size of problem. Note that the use of much coarsehesecauses notable
changes in the heights of the pressure spike, and the us@bfiysless coarse meshes
may help to decrease the said differences.

5.3 Performance of Solvers

In this section, we discuss the performance of our precmmdit iterative solvers com-
pared to a sparse direct solver. For each of the test casasa@|n this chapter, the only
initial guess we used is the Hertzian pressure profile fasgaree solution and a small pos-
itive value for H,. For the preconditioned iterative solvers, the forcingneyr, = 10°

is used for the Test Case 1 to obtain the converged solutiomesponding to various
resolution cases. However, for the Test Case 2, which is & meavily loaded case with
the Hertzian pressure of abdui8 G Pa, a further decrease in this parameter is required to
determine a good Newton step (especially during the firstNewton iterations) to reach
convergence. The reason for this is that the quality of thlguess for which the initial
residual norm|F|| is aboutO(10°) therefore for the stopping toleran¢g;,, + U) || F||)

of linear solver the value of, needs to be chosen sufficiently small (ab&d10~)) such
that a good Newton step is determined to avoid the risk ofrgasmce of the Newton iter-
ation. Practically such a small value incurs several drakbaThese drawbacks include
oversolving for the Newton step (as the Newton iteratiorgpeeses) and possibly that the
linear solver may stall, especially in the final few Newtcerdtions due to roundoff er-
rors of double precision arithmetic. As stated in the presichapter, in order to cure such
negative aspects one possibility may be to keep the maximuomargion of the Krylov
subspace to be fixed at a suitable constant which defines @&n bhppnd for the computa-
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Table 5.5: Comparison of sparse direct and iterative (AM&lts: M = 20, L = 10
andp, = 1.05G Pa

np Total dof Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t(s) t/ni mem.(Mb)| ni-li t(s) t/ni mem.(Mb)

1792 45221 12 7.35 0.61 67 12-254 8.43 0.70 52
3584 84491 12 14.13 1.18 129 12-238 15.13 1.26 93
7168 207533 | 12 39.31 3.28 287 12-214  35.76  2.98 227
14336 314303 12 61.15 5.10 411 12-195 50.11 4.18 353
28674 756109 12 177.84 14.82 1028 12-191  128.07 10.67 802
28674 1628545 | 12 56291 46.91 2505 12-189  279.99 23.33 1709

tional work per nonlinear iteration. Another possibilityhieh is used in this experiment
(for Test Case 2) is to fix the stopping tolerance of lineaveoln, + U)||F| = 10~*
until the residual nornf| #'|| do not become sufficiently small. In other words the inexact
Newton strategy is implemented in the final few Newton itiers where the value of,
becomes constant and the drop in the tolerance of lineaesdepends only off /'||.
Our experience shows that this is quite advantageous tal aw@rsolving of the linear
systems at each Newton iteration.

Finally, the comparison of different variants of the soligesplit into two phases which
are described in detail in the following subsections forheakcthe test cases reported in
Table 5.1. Note that all timings reported here were compugadg an Intel Xeon CPU
W3520 @ 2.67GHz witls GB RAM. This is a different architecture to that used to abtai
the timings reported in [2].

5.3.1 Algebraic Multigrid Solver

In the first phase, a comparison of sparse direct and AMG pittoned iterative results
for Test Case 1 are given in Table 5.5 in terms of total iteredj total time, time per
nonlinear iteration (ni) and memory usage. The number (Bsents the sums of linear
iteration counts across all Newton steps. It can be seenthbatparse direct solver is
slightly faster in the first two cases, but as the size of tleblem is increased its per-
formance deteriorates (i.e. the time and memory growth @pertinear) and it becomes
less efficient than the preconditioned AMG solver. For thecpnditioned AMG solver
both the memory usage and the computational time grow alimestrly with increasing
problem size. Furthermore, the number of linear iterat{tipare independent of the size
of the problem.

As a next step we give a comparison of direct and precondtidMG iterative re-
sults for Test Case 2 in Table 5.6 in terms of total iteratidoisl time, time per nonlinear
iteration (ni) and memory usage. For this heavy loaded dasedmputational work
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Table 5.6: Comparison of sparse direct and iterative (AM&utts: M = 200, L = 10
andp, = 3.3G Pa

np Total dof Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t(s) t/ni mem.(Mb) [ ni-li t(s) t/ni mem.(Mb)

1791 35826 18 8.38 0.47 56 20-538 13.40 0.67 43
3584 68095 19 17.22 0.91 103 18-445 21.26 1.18 77
7167 193752 | 18  57.84 3.21 277 18-428  60.61 3.37 221
14335 340932 18 105.03 5.84 459 19-453  113.43 5.97 403
28671 622378 | 18  234.10 13.01 864 19-443  209.46  11.02 703
28671 1628542 | 22 1230.89 55.95 2676 23-452  611.05 26.57 1799

per nonlinear iteration has increased, as expected. Afésparse direct solution the
preconditioned AMG solver also requires more work to achighe convergence. It can
be seen that the sparse direct solver is slightly more efti¢ia terms of computational
times) than the preconditioned AMG solver in the first foursimeesolutions, but as the
problem size further increases the performance of the sgrsct solver deteriorates (as
observed for the Test Case 1) and the preconditioned AM@tiver solver eventually
becomes more efficient. The cumulative number of lineaaitens (li) are again inde-
pendent of the size of the problem. Finally, in the precoodéd AMG results both the
computational time and the memory growth appear to be linétrincreasing problem
size.

5.3.2 Geometric Multigrid Solver

In the second phase of performance assessment we give arsongz using AMG ver-

sus GMG in the preconditioning of the elasticity block« in (4.23)). Starting with a

suitable coarse grid a sequence of geometrically nestedyfide are obtained through
uniform mesh refinement. Moreover, on each fine level, mesé &ite written in order to
use them to get preconditioned iterative AMG results for parison, where AMG per-

forms its own coarsening which results in a greater numbéewais than in the GMG

case. The coarsest grid uses one extra level of refinemeln¢ iHértzian contact region
in order to see the performance over unstructured meshesn Ags comparison is per-
formed for the test cases given in Table 5.1. For Test Ca$e Ietults obtained from the
two different preconditioners are given in Table 5.7 in teiwhtotal iterations, total time,
time per nonlinear iteration and memory usage. It shoulddiedchthat in the first case
GMG preconditioning uses only 2-levels and therefore isasafficient as AMG precon-
ditioning. However, as the number of levels increases onesea that it performs better
than the AMG preconditioning. Both the time and the memonygseance are superior
except for the first case. As for AMG preconditioning, boté ttme and memory growth
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Table 5.7: Comparison of preconditioned iterative resiwith AMG and GMG): M =
20, L = 10 andp;, = 1.05G Pa

np Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
‘ ni-li t(s) t/ni mem.(Mb) ni-li t(s) t/ni mem.(Mb) levels
1417 25730 12-235 4.20 0.35 29 12-228 9.35 0.78 27 2
2835 96196 12-221 16.42 1.37 106 12-220 16.72 1.39 81 3
5671 371336 12-195 61.46 5.12 418 12-212 50.57 4.21 305 4
11343 1458448 | 12-187 243.48 20.29 1625 13-211  204.00 15.69 1123 5

Table 5.8: Comparison of preconditioned iterative resiuith AMG and GMG): M =
200, L = 10 andp, = 3.3G Pa

np Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
‘ ni-li t(s) t/ni mem.(Mb) ni-li t(s) t/ni mem.(Mb) levels
1495 23602 18-514  7.60 0.42 29 18-583  19.25 1.07 29 2
2991 87724 20-482 29.70 1.49 100 20-599 34.62 1.73 86 3
5983 337528 | 21-465 119.06 5.67 402 23-606  107.49  4.67 321 4
11967 1323376 | 21-420 452.73 21.56 1524 20-539 379.91 19.00 1272 5

is almost linear and the number of linear iterations (li) sw#ependent of the problem
size.

As for Test Case 1, a similar behaviour in the performancéefifferent precondi-
tioned iterative solvers is observed for the Test Case 2 cohgputational details for both
solvers are provided in Table 5.8. For this heavy loaded, ¢hsepreconditioned GMG
solver again competes favourably with the performanceeftG solver as the number
of its levels goes up. Both the computational time and the argrasage appear to be
growing linearly with the size of problem for both solversurthermore, the number of
linear iterations (li) are again independent of the probére.

5.3.3 Further Discussion

A graphical representation of the performances of the iiffesolvers is plotted in Fig-
ure 5.2(a) for the Test Case 1, showing total time and timenpelinear iteration for the
different solvers. It can be seen that the performance alitieet solver deteriorates most
quickly with increasing problem size. Moreover, the perfance of the GMG solver is
poor on coarse meshes but as the number of levels goes ugatrpsmwell compared to
the other solvers. Similarly, the observation from Figu2(15) reveals that both iterative
solvers are more memory efficient in all mesh cases than #rselirect solver, and the
GMG solver requires even less memory than the AMG solveralBinthe efficiency of
each preconditioned iterative solver is quite close toroatias both the memory and time
growth appear to be linear with increasing problem sizedjigng the GMG cases with
small numbers of levels).
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Figure 5.2: Performances of different line contact solvérs = 20, L = 10 andp;, =
1.05G Pa
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Figure 5.3: Performances of different line contact solvéis= 200, L. = 10 andp;, =
3.3G Pa

A similar observation can be made for the Test Case 2, forhwvaigraphical repre-
sentation of the computational time (total time) and menuzgge of the different solvers
is given in Figure 5.3(a) and Figure 5.3(b) respectivelyaidghe sparse direct solver is
seen to be efficient for smaller problems but its efficiendgderates as the problem size
increases. Thus the iterative solvers become more effithantthe sparse direct solver.
Furthermore, the GMG solver performs even better than th&Addlver once it exceeds
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a certain number of grid levels. Finally, even for this hebbaded case, both the time and
the memory growth again appear to be linear with the incngggioblem size, justifying
the performance of iterative solvers as being close to thienom level.

Note however that the GMG approach is not quite as effecBvéraay appear from
an initial inspection of Table 5.7 and Figure 5.2(a), forrepée. The need to generate
a nested sequence of grids puts unnecessary restrictiathe dimest mesh and so many
more degrees of freedom are required for a given accuraayexample, the finest case
in Table 5.7 has,, = 11343 butn, = 723552. With an unstructured mesh that has more
unknowns in; (n, = 14336 in Table 5.5) only314303 degrees of freedom are needed
in total (i.e.n, = 149983). In this specific example, the AMG solver with least problem
size leads to about,% savings in both the CPU and the memory usage compared to the
GMG solver with a large problem size.

5.3.4 Eigenvalues Analysis

So far, it has been shown that the performance of preconétiderative solvers appeared
to be nearly optimal. This showed the effectiveness of tieegmditioning strategy used
in this work. Recall that a good preconditioner has an efféctustering the eigenvalues
of a system matrix within a small interval (or a small numbéismall intervals). In
this subsection, the behaviour of the eigenvalues of balotiginal and the transformed
(preconditioned) system is discussed as the discretizgbes finer. Note that a total of
four different discretizations are used for this purpose.

Figure 5.4 shows the distribution of eigenvalues (for treatstg Newton iteration)
of the original (left) and the preconditioned system (r)gig the discretization becomes
finer (top to bottom). It can be seen that the eigenvalueseobtiginal system are well
distributed in a large interval of size abafif10°). Moreover, the magnitude of the largest
eigenvalue roughly doubles as the discretization becomesvihich means that the orig-
inal system is getting more and more ill-conditioned. Ondttesr hand, one can see that
the eigenvalues of the preconditioned system are welleledtwithin a small number
of small intervals. Note that the majority of the eigenvalaee clustered arouridcom-
pared to the original system and that the magnitude of tlgestreigenvalue does not
grow large. In other words, the preconditioning operatqresps to have a good effect
on clustering the eigenvalues and that is why such an opperébrmance is experienced
with the proposed preconditioner.

As a next case, Figure 5.5 shows the distribution of eigei®gbf both the original
and preconditioned system at one of the last Newton iteratidhe same behaviour in
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Figure 5.4: The behaviour of eigenvalues of the original pretonditioned system at
the starting Newton iteration with successive finer diszations: M/ = 20, L = 10 and
pn, = 1.05G Pa

the distribution of eigenvalues can be observed both forotiginal and the precondi-
tioned system. For the original system, the magnitude gfelstreigenvalue gets twice
as large as the discretization goes finer. In the case of gmopditioned system, the
majority of eigenvalues are again clustered closé,tand the magnitude of the largest
eigenvalue remains the same with the finer resolution. Euribre, one can observe that
the eigenvalues get more clustered closé &s the resolution of the problem increases.
In other words, the preconditioned system at the finer digetions appears to have a
better spectrum compared to the coarse discretizationsraDwvthe effectiveness of the
preconditioning appears not to be affected as the Newtoatibes progress.
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Figure 5.5: The behaviour of eigenvalues of the original pretonditioned system at
the 10th Newton iteration with successive finer discretization$: = 20, L = 10 and
pn, = 1.05G Pa

5.4 Varying Poisson Ratio: Accuracy and Performance

In the results presented so far, a Poisson ratio.®fhas been used for calculating the
elastic deformation of elastic material. In this section stedy the effect of varying
the Poisson ratio for the elastic material on the accuradytila@ performance of current
model. This will be achieved by varying the Poisson ratioussn0.25 and0.495. Recall
that the material reaches the incompressibility limit asPoisson ratio approaches.

5.4.1 Accuracy

In this subsection we discuss the effect of variation of &misratio over the accuracy of
EHL solution. For the sake of demonstration, Test Case 1ndoudifferent values of
Poisson ratio for th@D elastic material using168 unknowns for pressure ar)7533
degrees of freedom in total §n, + 2n,,). The results are presented in Table 5.9 in terms
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Table 5.9: Effect of varying the Poisson ratio over the aacyrof the line contact results
with n, = 7168 and207533 degrees of freedom in totall/ = 20, L = 10 andp;, =
1.05G Pa

v Hc Hm Ps HO

0.25 0.08428 0.07366 0.8731 —2.4307
0.30  0.08428 0.07365 0.8767 —2.4204
0.35 0.08427 0.07365 0.8753 —2.4059
0.40  0.08427 0.07365 0.8761 —2.3847
0.45 0.08426 0.07364 0.8810 —2.3490
0.47  0.08424 0.07364 0.9100 —2.3219
0.48 0.08422 0.07364 0.9097 —2.2979
0.49 0.08414 0.07363 0.9246 —2.2466
0.495 0.08399 0.07357 0.9923 —2.1767
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Figure 5.6: Pressure profiles for different values of Paisstio withn, = 7168 and
207533 degrees of freedom in total/ = 20, L = 10 andp, = 1.05G Pa

of central film thicknesdi,., the minimum film thicknesg7,, and the height of pressure
spike P,. It can be noticed that for the different values of Poissdioaetween0.25
and0.40 there are only minor changes in the solution, but as the Boissio exceeds
0.40 these changes in the solution become significant. This gaecesdly be observed
for v = 0.495 with a large jump in the height of pressure spike though thatg does
not appear in the film thickness solutions (béthandH,,). However this can be clearly
seen in Figure 5.6 which suggests that the pressure soistiost fully converged as the
Poisson ratio approaches.

This kind of behaviour in the solution (for harder matenassdue to the inaccurate
elastic deformation solutions within this situation. IrcBusituations the use of a suffi-
ciently fine mesh in the elasticity domain helps to overconmeproblem. Note that such
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Figure 5.7: Pressure profiles for= 0.30 andv = 0.495 computed over coarse mesh
(with n, = 7168 and total dof =207533) and fine meshr{, = 7168 and total dof =
904665) respectively:M = 20, L = 10 andp;,, = 1.05G Pa

Table 5.10: Computed solution for= 0.30 andr = 0.495 computed over coarse mesh
(with n, = 7168 and total dof =207533) and fine meshr{, = 7168 and total dof =
904665) respectively:M = 20, L = 10 andp;, = 1.05G Pa

v H. Ho, P, Ho  Dmas

0.30  0.08428 0.07365 0.8767 -2.4204 2.5047
0.495 0.08426 0.07366 0.8753 -2.3383  2.4225

fine meshes are obtained by keeping a specific resolutiorangeldl in the contact region
and using smaller mesh sizes in the remaining part of thé@tgslomain. To justify this,

an experiment is carried out for= 0.495 using the same resolution (i.e. 7168 unknowns
for pressure) in the fluid domain but adding more points inglasticity domain leading
t0 904665 degrees of freedom in total.

The previously obtained result for = 0.30 (with a coars&D mesh) is plotted to-
gether with newly computed solution for= 0.495 (with a much fine2D mesh) and is
shown in Figure 5.7. One can see that the results shown noaaapp have converged
to the same solution. Moreover, a comparison between tenpated values is listed
in Table 5.10 wherd,,,,, represents the maximum elastic deformation of the equivale
contact surface. It should be noted that the elastic defitomarofile of the contact sur-
face forv = 0.495 tends to differ from that for = 0.3 only by a small constant and
this small constant is balanced by their correspondingegabf H,. A similar trend is
observed in the other resolution cases where a use of veryDimeesh leads to matching
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Figure 5.8: Convergence of the pressure profilevfee 0.495 with increasing problem
size:M = 20, L = 10 andp;, = 1.05G Pa

the EHL solution fory = 0.495 to that withry = 0.3 on a much coarser mesh. More-
over, this behaviour can also be justified by consideringiibredimensional half space
method which has no explicit dependency either on the Yaumgidulus or the Poisson
ratio but yields a fixed elastic deformation profile (assuyrimed operating pressure).
Furthermore one should not be surprised with the value ofirmax elastic deformation
reported in Table 5.10 because the numerical solution oélaticity problem leads to
the displacement proportional lor, see for example [33, 66] i.e the numerical solution
of the elasticity problem accommodates all those constahish have been adjusted or
combined withH, in the traditional half space approach.

So far, it was shown that the use of very fi2e mesh for large Poisson ratio leads
to achieve the same accuracy in the EHL solution comparelatowith small Poisson
ratio using a coarseD mesh. In order to see the convergence of the EHL solution for
higher values of the Poisson ratio as the elasticity mesk fioer and finer, Test Case 1
is run usingr = 0.495 over a sequence of four meshes leading to, respectivelg03,
614207, 1314207 and1699647 degrees of freedom in total. Note that these meshes use the
same resolution in the fluid domaii36 unknowns for pressure). The pressure profiles
shown in Figure 5.8 reveals that on the coarser mesh the@olstnot fully converged,
but as the problem goes finer and finer the pressure profileasppe@ have converged
to the same solution. A similar trend can also be observedgar€& 5.9 showing the
convergence of film thickness profiles as the mesh goes firktirzer.

Consider Test Case 2 with the finest resolution that we hagd te the pressure
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Figure 5.9: Convergence of the film thickness profile for= 0.495 with increasing
problem size:M = 20, L = 10 andp, = 1.05G Pa

: 0.45
v=0.30 ——
1 v=0.495 0.4
0.8 0.35
0.3
o 0.6 o
5 / \ 5 025
[] [9]
8 8
d 04 i 0.2
/ 0.15
0.2 0.1 \
0 — 0.05 " y=030 ——
o L V0495 ——
15 -1 05 0 05 1 0.9 0.910.920.930.94 0.95 0.96 0.97 0.98 0.99
X X
() (b)

Figure 5.10: Pressure profiles for= 0.30 andv = 0.495 computed over coarse mesh
(with n, = 28671 and total dof =622378) and fine meshi{, = 28671 and total dof =
1628542) respectively:M = 200, L = 10 andp;, = 3.3G Pa

solution, i.e. usin@8671 unknowns for pressure. Again we consider a coa3enesh
yielding 622378 degrees of freedom in total and a very fRi2zmesh with1 628542 degrees
of freedom in total. The solution for Test Case 2 is computdgithe Poisson rati®.30
and0.495 on these coarse and the fine meshes. For this heavy loadadsoage = 0.495
neither of the solvers reached convergence on the c@@rseesh, therefore we provide
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Table 5.11: Effect of varying the Poisson ratio over the genfances of different line
contact solvers with, = 7168 and904665 degrees of freedom in totad/ = 20, L = 10
andp, = 1.05G Pa

np Sparse Direct Solver Prec. Iterative Solver (AMG)
ni t(s) t/ni mem.(Mb) | ni-li t(s) t/ni mem.(Mb)

0.25 | 12 566.64 47.22 1949 12-212  164.57 13.71 1038
0.30 | 12 566.64 47.22 1947 12-212  166.88 13.91 1047
0.35 | 12 567.58 47.30 1949 12-212  166.77  13.90 1033
0.40 | 12 568.36 47.36 1948 12-227  176.20 14.68 1060
045 | 12 567.19 47.27 1948 12-272  206.88 17.24 1108
0.47 | 12 566.70 47.23 1948 14-320 250.35 17.88 1151
048 | 12 566.84 47.24 1948 12-330 254.99 21.25 1172
0.49 | 12 568.55 47.38 1948 12-440  330.01 27.50 1283
0.495 | 12 568.81 47.40 1952 12-596 434.66  36.22 1415

a direct comparison between the solutionsifor 0.30 andv = 0.495 as computed on
the coarse and the fine mesh respectively. This is shown urég10. Again both cases
appear to converge to the same solution however there It gliifference in the height of
pressure spike. Moreover, despite the appearance of Pigli@e tiny oscillations in the
solution fory = 0.495 are observed, i.e. the pressure profile is not absolutelypdmand
might be causing a small difference in the height of presspiie to that withy = 0.30
on a coarser mesh.

Overall, these experiments suggest that the use of diffe@does of Poisson ratio
for the elastic material yields the same EHL solution predida sufficiently accurate
elasticity mesh has been used.

5.4.2 Performance

In this subsection, we consider the effect of varying thes&an ratio over the performance
of the AMG preconditioned iterative solver. For this purpd®st Case 1 is considered
with 7168 unknowns for pressure ardd4665 degrees of freedom in total. The Poisson
ratio is varied from0.25 to 0.495. In Table 5.11, the performance of both the sparse
direct and the iterative (AMG) variants of the solver aresidared in terms of the total
nonlinear iterations (ni), linear iterations (i) (itera solver only), total time (t (s)), time
per nonlinear iteration and the memory usage. As expected]ifferent values of the
Poisson ratio the performance of the sparse direct solyeraap to be essentially constant
both in terms of the computational time and the memory us&yethe other hand the
performance of the AMG solver is almost constant for the @alaf the Poisson ratio
up to0.40. But once the Poisson ratio exceeds this value the perfarenahthe AMG
solver deteriorates as the iterative solver requires mamk ¥o achieve the convergence
at each nonlinear iteration. Since the GMRES method is usedeainner linear solver
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Figure 5.11: Effect of varying the Poisson ratio over thefgranances of different line
contact solvers with,, = 7168 and904665 degrees of freedom in totad/ = 20, L = 10
andp, = 1.05G Pa

this growth in the computational work also leads to a comwesing growth in the total
memory usage. A more clear picture of the performance oéuiifit solvers (in terms of
their computational times) is shown in the Figure 5.11. Thi®als that the performance
of the AMG solver deteriorates when exceeding= 0.40 but when the Poisson ratio
gets very close t0.5 it deteriorates drastically. A similar behaviour in thefpemance
(as for the accuracy) is also observed in the other resolu#ses sketching the same
story. This kind of behaviour in the performance of an AMGvsolis not surprising and
can be generally expected whenever the Poisson ratio ie tbds5 [16, 48]. In other
words, for higher values of the Poisson ratio the corresjmgndystems become more
ill-conditioned [18, 48] which affects the optimality of AGlsolvers.

Finally, in order to analyse the performance of the predimed AMG solver for
a fixed value of Poisson ratio close @d, an experiment is set up for a Poisson ratio
v = 0.48. The results are obtained over a sequence offih@neshes (corresponding
to different resolutions in the fluid domain), and these aesented in Table 5.12, while
a more clear picture of these results is shown in Figure 5.1Qne can see that both
the computational time and the memory growth again appdae tmear with increasing
problem size (despite of the slightly worse CPU time for leiglialues of the Poisson
ratio). Furthermore, Table 5.12 reveals that the cumwdatember of linear iterations
also appears independent of the problem size. This experisimws that the AMG
solver scales almost linearly even for the higher valueb®foisson ratio.
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Table 5.12: Performance of the AMG solver for Poisson ratie 0.48 on a sequence
of fine 2D meshes (corresponding to different resolutions in thel ftldmain): M = 20,
L =10andp, = 1.05G Pa

np Total dof Ni-li t(s) t/ni mem.(MB)
1792 308435 12-379  94.10 7.84 422
3584 552191 12-347 159.69 13.31 741

7168 904665  12-330 254.99 21.25 1172
14336 1699647 12-293 448.35 37.36 2167
28674 2028545 13-312 556.72  42.82 2463
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Figure 5.12: Performance of the AMG solver for Poisson ratie 0.48 on a sequence
of fine 2D meshes (corresponding to different resolutions in thel ftldmain): M = 20,
L =10andp, = 1.05G Pa

5.5 Biconjugate Gradient Stabilized Method (Bi-CGSTAB)

In this section the performance of different Krylov itevatisolvers are discussed. Recall
from Chapter 3 that the computational cost of the GMRES nukgnows likeO(kn) due
to orthogonalization of a vector against all the previousae directions. This situation
can be avoided by using a restarted GMRES with a suitablerigopmsdm for the number
of GMRES iterations before restarting. On the other handBikeGSTAB method does
not require the storage of all previous search directionsugh it still requires twice
as much memory storage as compared to the conjugate graakéthbd for symmetric
positive definite systems). Nevertheless, the method dthinate advantages over the
GMRES method, especially when the matter of the storage poitant. Therefore, an
experiment is setup for the Test Case 1 where the main liodzagrauses both the GMRES
and the Bi-CGSTAB as an alternative.
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Table 5.13: Performance of different Krylov subspace ba#seative linear solversi/ =
20, L = 10 andp, = 1.05G Pa

np Total dof GMRES Bi-CGSTAB
ni-li t(s) t/ni mem.(Mb) ni-li t(s) t/ni mem.(Mb)
1792 45221 12-254 8.40 0.70 52 12-283  15.01 1.25 42
3584 84491 12-238  15.20 1.27 93 12-264  26.45 2.20 76
7168 207533 12-214  35.81 2.98 223 12-241  62.79 5.23 187
14336 314303 12-195  50.34 4.20 325 12-235  91.47 7.62 278
28674 756109 | 12-191 130.36  10.86 804 12-220 218.67 18.22 678

The results are listed in Table 5.13 in terms of ni, li, totald, time per nonlinear
iteration and the memory usage. These results are obtasied tihe full inexact New-
ton strategy withy, = 10=¢ and both linear solvers are allowed to use the maximum
dimension of Krylov subspace in order to give a fair comparisThe results presented in
Table 5.13 are evidence of the expected behaviours of thdinear solvers in terms of
further memory savings by the use of the Bi-CGSTAB methodweieer the method is
not quite as robust as GMRES for these tests. In other wosdBHCGSTAB method is
about75% (on average) slower than the GMRES method. Indeed the ctinrutaumber
of linear iterations across all the Newton steps are sghtire than the GMRES method
and, looking at the total computational cost, also revdasa single Bi-CGSTAB itera-
tion is more expensive than a single GMRES iteration whicl beadue to twice as many
as matrix-vector products and the preconditioned solvegened to a GMRES iteration.

A more clear picture about the growth in the computationat @nd the memory
usage is shown in Figure 5.13. Figure 5.13(a) reveals thiagdoh resolution case the
total computational cost with the use of Bi-CGSTAB methoali®ut75% more than
that with the use of GMRES. However the growth in computatiaost for both the
methods appears to be linear. A similar trend is observeth®smemory usage of two
methods in Figure 5.13(b) where the GMRES method is seen shdigly worse than
the Bi-CGSTAB method as expected. If we compare the oveeafbpmance of the two
methods then the GMRES methods appears to be far bettetitb&81-CGSTAB method
as one can see that a small compromise on the memory leadmificsint savings in the
computational times. Despite the performance, one may fa@nthe entire failure of
convergence of the Bi-CGSTAB method for heavily loaded sasich in our case, was
observed for Test Case 2. Finally, further tests would nedattundertaken to confirm
that these conclusions hold across a wider range of paraspsiee.
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Figure 5.13: Performance of different Krylov subspace baserative linear solvers:
M =20, L =10andp, = 1.05G Pa

5.6 Conclusion

In this chapter the accuracy and the performance of diftdirsmcontact solvers have been
discussed. First of all the accuracy of the EHL results wéseussed on the coarg®
meshes relative to finer ones which have been used in theopeehapter. We showed
that the accuracy of the computed EHL solution is not sigaifity affected for the set
of coarse meshes we used in this work. We also discussedylthefleffect of using a
relatively more fine mesh in the Hertzian contact region ¢heraccuracy and cost.

We further gave a detailed comparison of the performancéefdifferent solvers
developed for the line contact problem. It was shown tha®t¥i& preconditioned variant
of the iterative solver performs better than the sparsets@ver. We further showed that
the performance significantly improves if AMG precondiiiog of the elasticity block is
switched to the GMG preconditioning. However, in the cas&MG preconditioning
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one needs to accept the restriction over the meshes wheg agjiobal refinement to
generate the hierarchy of the meshes. This restriction se¢erbe too great to allow
GMG to outperform AMG in terms of accuracy per CPU cycle.

The effect of varying the Poisson ratio (for thB elastic model) over the accuracy
and the performance of our line contact solvers was also dstraided. It was concluded
that the variation of Poisson ratio does not affect the asyuof EHL solution provided
a sufficiently fine2D mesh is used. Moreover, the performance of the preconéitio
iterative solver deteriorates drastically whenever thisgm ratio becomes sufficiently
close to0.5. Finally, the performance of the GMRES and Bi-CGSTAB metheds
compared. It was observed that the Bi-CGSTAB method as ar Imear solver leads to
a further savings in the memory usage however its performaras observed to be not
so good as that of GMRES in terms of CPU time. In other wordssthall compromise
on the memory usage the GMRES method as an inner linear dolved to be superior
for the cases considered here.



Chapter 6

Point Contact Problems

6.1 Overview

In this chapter the accuracy and performance of the solvesnsidered for EHL point
contact problems. The issues addressed in this chaptadmtie selection of efficieAD
meshes based upon a series of experiments to ensure tha@cotiEHL point contact
solutions at minimal computational cost. The memory and GBldngs for the proposed
preconditioned Newton-Krylov approach, relative to a spatirect Newton solver, are
consistent but relatively small for EHL line contact prahke In this chapter we consider,
much larger, point contact problems for which these adegasaare very much more
significant. Finally, we discuss the effect of the qualitytlod tetrahedral meshes over the
accuracy of the solution.

6.2 Problem Consideration

As discussed in Chapters 4 and 5, three variants of the reanlsolver have been devel-
oped. The first variant uses a sparse direct routine [28]eamitter linear solver while the
other variants uses the GMRES [94] method for inner linebweso The difference in the
later two variants is the manner of the preconditioning efelasticity block in the fully-
coupled system, based upon AMG and GMG preconditioningectgely. Recall from
Chapter 4 that the stopping tolerance for the Newton itendti chosen a& s with U be-

92
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ing the machine unit roundoff. In the iterative variantstoé Newton solver the stopping
tolerance for GMRES iteration {8),, + U)||F'|| with ,, = 10~° for the problems consid-
ered in this chapter. Moreover, as discussed previousdyctimvergence of the GMRES
method depends upon the dimension of the Krylov-subspaeg, @asd the method be-
comes more expensive whenever the maximum dimension of iylesksubspace used
is large. For the line contact problems in the previous draghie GMRES iteration was,
however, allowed to use a sufficiently large dimension s@a@shieve convergence. The
purpose behind that choice was to show that the proposedrmiiioning strategy leads
to the number of GMRES iterations, needed for convergensiaghindependent of the
problem size. In practice, the solution of (4.22) is onlyuiegd as part of an inner iter-
ation and so it is not generally necessary to solve it so Bxaa. it is only necessary
to solve the linear system (4.22) to a sufficient precisiowrider to determine a good
Newton update to achieve convergence of the non-lineaessy&t.21). Therefore, in the
case of point contacts, the maximum dimension of Krylovspaze is fixed t@’ (with
no restarts) in order to approximately solve the linearesyst4.22) at each Newton step.
Our experience shows that the choi€e= 15 works reliably for the EHL cases consid-
ered here, and prevents one from over solving the lineasystém (4.22) at each of the
Newton iterations. Again, as for the line contact probleths, initial guess used only
consists of the Hertzian pressure profile for pressure antbd positive value for central
offset film thicknessK,). Finally, a Poisson rati0.3 has been used for the problems con-
sidered in this chapter whereas the Young’s modulus for ¢juévalent non-dimensional
elasticity problem is obtained according to equation (R.#breover, the penalty param-
eter¢ is chosen to beé0°® x h? as suggested in [51], where a different valu€ i used
for each element of characteristic length Moreover, as for the line contacts, the very
small negative pressures in the cavitation regions ar¢etless zero while updating the
density and viscosity.

Throughout this chapter meshes have been generated usingéh source software
NETGEN [95]. This allows meshes of a given local spacing tadbgned, as well as
permitting hierarchical mesh refinement to take place dlgddoreover, it allows one to
perform mesh optimization over the meshes resulting fragnanchical mesh refinement.
All timings reported here were computed using an AMD Optérah Processor 8384 @
2.7GHz with a maximum of28 GB RAM.
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Table 6.1: Non-dimensional parameters for the contact &etveteel surfaces [104].

Parameters TestCase 1 Test Case 2
Moes parametet, 10 10

Moes parameter}/ 20 200

Maximum Hertzian pressurg;,  0.45GPa 0.97GPa
Viscosity index,« 22 x 107 %Pa! 2.2 x 107 %Pa?
Viscosity at ambient pressurgy;  0.04 Pa s 0.04 Pas

Total speeds, 1.6ms! 1.6ms!

6.3 Selection of Efficient Meshes

For the point contact problems considered here, the Regmojdation needs to be solved
on a 2D domain and the elasticity equation on a 3D domain. Asigusly mentioned,
following Habchi [50], we let2 represent a 3D domair30 < X < 30;-30 < Y <
30; —60 < Z < 0. In [50] experiments were undertaken on different dimemsieading
to the said dimension being adopted in their work. In thigieacwe first discuss the
accuracy of the elastic deformation solution by definingele meshes and give a com-
parison of these against solutions obtained by using veeyrfiashes. These tests have
been carried out first using a Hertzian pressure profile ama #ssuming a typical EHL
pressure profile, though the results presented here ardamlye EHL pressure profile.
The test cases considered in this work are described in thie Bal. These test cases
are taken from [104] in order to establish a comparison ottireent model with a finite
difference based model, so as to validate the calculated pontact results.

The term(2; is the part of the boundary of the 3D domain which correspdadke
contact region and is chosen to be of dimensidrb < X < 1.5; -3 <Y < 3. Note that
three resolution cases, named Resolution 1, 2 and 3, arerugesd work, corresponding
to regular grids 064 x 64, 128 x 128 and256 x 256 points in{2; respectively.

It should be noted that the fine mesh cases used for comparismiutions lead to
very large computational problems and it has only been jgado solve these large
problems with the development of proposed efficient preitamekd iterative solver.

6.3.1 Accuracy of the Elastic Deformation

The pressure generated inside the lubricant film is high gimaw the contact region to
lead to a significant elastic deformation while, on the otreerd, the pressure outside the
contact region is relatively low. Moreover, the precisidrtlee computed elastic defor-
mation is most important in and around the contact regioesthis is where it has most
effect on the Reynolds equation. Hence, we propose that 8bneesh is required in
the contact region up to a certain depth, but not in the whalgtieity domain. Neverthe-
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Region R1

Figure 6.1: A view of the top of the 3D domain

less, a suitable mesh size needs to be defined outside ttectoggion in order to get a
sufficiently accurate solution throughout the whole domain

Here, we present selected meshes which give a sufficientiyraie elastic defor-
mation solution at as low a cost as possible. In order to sheweffectiveness of these
meshes, the elastic deformation solution is compared sghi@ solution obtained on very
fine meshes. In the case of fine meshes, we split the 3D dontaitwo regions. The
first region is of dimensior-4.5 < X <4.5; -3 <Y < 3;-3 < Z < 0 and the second
region is the remainder of the domain. A mesh size correspgrid different resolution
cases is adopted everywhere in the first region and a mesbf$iZzes used in the remain-
ing region. A view XY plane, whereZ = 0) of the top of the domain is shown in Fig-
ure 6.1. For the sake of simplicity, the notatiddsand k2 are used to represent these two
different regions in the domairRR1 representing the whole domain, aRd representing
the central region of dimension4.5 < X <4.5;-3<Y <3;,-3< Z <0. Itshould
be noted that the length @2 is chosen-4.5 < X < 4.5 instead of—4.5 < X < 1.5
(see definition of2; above) in order to get a sufficiently accurate elastic de&tion so-
lution. We carried out different experiments to ensure #mgtincrease in the depth &R
and any further decrease in the mesh size adopted in themeigaegion does not lead
to any significant improvement in the accuracy of the elad¢iformation solution (see
Appendix A for a more complete report of these computatiexgleriments). Note that
this two-region strategy for defining fine meshes for thedhesolution cases considered
leads t03505403, 4950405 and15802299 nodes in the elasticity mesh respectively.
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Table 6.2: A set of mesh sizes defining the selected mesh ébrreaolution case.
Selected Case Meshsizel Meshsize2 Meshsize3 Meshsize4

Resolution-1 0.09375 1.0 4.0 4.0
Resolution-2 0.04688 1.0 2.0 2.0
Resolution-3 0.02344 0.7 1.0 2.0

Table 6.3: Root mean square error for the displacement ithiade selected resolution
cases along with their fine cases: Test Case 1.

Case Fine cases Selected cases Total reduction
nodes RMSE nodes RMSE in the problem size (%)

Resolution-1| 3505403 1.64 x 1072 | 97687 2.43 x 1073 97.2%
Resolution-2| 4950405 6.25 x 10~% | 221260 9.85 x 10~* 95.5%
Resolution-3| 15802299 — 705860 4.80 x 10~4 95.5%

Having established meshes to act as a benchmark for each tifrée resolutions to
be considered, we now seek to define meshes with fewer degfrffesdom that are able
to maintain the required resolution ity and yield results of similar accuracy. To do this
we split the 3D domain into four regions. The first two regians hemispherical regions,
centred on the origin, with radii ‘1.5’ and ‘15’ respectiyellhe third region is a cube of
dimensions-20 < X < 20;—-20 <Y < 20;—40 < Z < 0 while the fourth region is
the remainder of the domain. The choice of the first regioraiseld on the fact that this
includes the region where the pressure values are mosfisagi(especially in the inlet
region). The choices of regions 2 and 3 are based upon a largker of different compu-
tational experiments that are reported in Appendix A. Actele resolution (Mesh size 1)
is specified for all points inside the region 1 and a suitaldsimsize (Mesh size 2) is de-
fined for points on the curved boundary of region 2. For aleothterior points of region
2, linear interpolation is used to define a local mesh sizehdiuld be noted that in the
remaining regions of the domain (outside of region 2), défe large mesh sizes (Mesh
size 3 in region 3 and Mesh size 4 in region 4) are used depgngian the resolution
used in the most central region. The mesh sizes 1 to 4 (foroimerégions respectively)
for each resolution case are given in the Table 6.2, defiiagptoposed meshes. Note
that the purpose of defining region 3 (particularly for resioin-3) is to control the huge
increase in the number of nodes in the mesh without significaffecting the overall
accuracy of solution.

The root mean square error (RMSE) for the displacement ithiade selected resolu-
tion cases, along with their fine (benchmark) cases, areleadéd with respect to the fine
case of resolution 3 and are given in the Table 6.3. Theseegane obtained by com-
paring the computed solution on the given mesh against ttealvailable solution, on the
finest available mesh. One can see that the selected cades eamall fraction of the
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Figure 6.2: Elastic deformation solution along the cerinal in ©2; (whereY = 0): Fine
and Selected case of resolution-1: Test Case 1.

nodes, less thaito, compared to their corresponding fine cases (with the sasoéutéon

in the contact region) without significantly affecting thecaracy of the solution. In par-
ticular, for Resolution 1 and Resolution 2 the errors in thlected cases are of the same
order of magnitude (less than a factor of 2 difference) asdhmased on the benchmark
meshes of the same resolution. Moreover, a view of the eldstormation solution using
the fine and selected cases at resolution-1 along the céingah 2, (whereY = 0) is
given in Figure 6.2, which also shows that both results atemely close to each other.
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Table 6.4: A comparison of point contact results over fine aetected meshes:
Test Case 1.

This model (fine-meshes) This model (selected-meshes)
np Total dof H. Hy | mnp Total dof H. H,,

4450 10486550 0.42306 0.28921 | 1690 294056  0.42242  0.28603
17732 14834838  0.42999  0.29123 | 4854 666160  0.42842  0.28996
67350 47440138 0.43129 0.29202 | 16776 2131882 0.43059 0.29167

Table 6.5: A comparison of point contact results over fine aetected meshes:
Test Case 2.

This model (fine-meshes) This model (selected-meshes)
nyp Total dof H. Hn | nyp Total dof H. H,,

4450 10486550 0.070251  0.028999 | 1690 294056  0.070361  0.027603
17732 14834838  0.078987  0.036286 | 4854 666160  0.078910  0.035759
67350 47440138 0.081202 0.038426 | 16776 2131882 0.081243  0.037901

6.3.2 Point Contact Results

In this subsection, we discuss the accuracy of the full EHutgm computed over the
selected meshes which were determined, as described imghi@ys subsection, based
upon numerical experiments to ensure a sufficiently acewaistic deformation solution
with a significantly reduced computational cost. For thiggmse, a comparison of newly
computed results is made with those obtained over the besréhmeshes (very fine) used
in the previous subsection. Note that the latter meshesdieeady been used in Chapter 4
to validate the accuracy of point contact results agairesptieviously published results
using the integral approach in a finite difference based {@04].

Table 6.4 gives a comparison of these results for the Test Cawheren, denotes
the number of pressure unknowns. One can see that the agafrdee solution is not
significantly affected (relative to the overall discretima error) while keeping in mind
the total decrease in the size of problem. For example in8addable 6.4, a reduction
of 45M degrees of freedom (dof) leads to a very small dropergitcuracy of the solution.
The total relative difference between the two solutiors 6% and0.12% for the central
film thickness {.) and the minimum film thicknesd4,,), respectively. In particular, in
the selected cases, the same order of magnitude in erroséswaal as with the fine cases.

A similar trend in the solutions is observed for Test Case &wis a comparatively
more heavily loaded case. Table 6.5 provides a comparisbneotase results with those
computed over the selected meshes. Again it can be seehératdturacy of the solution
is not significantly affected for this loaded case (Test Gasehile computing the solution
over the selected meshes. The total relative differencedszt the two solutions 505%
and 1.4% for the central film thickness and the minimum film thicknesspectively.
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This experiment provides further evidence that the mestieh approach proposed in
this work may be applied across a range of EHL cases.

6.4 Performance of Solvers

In this section the performance of preconditioned iteeatwvlvers are compared to the
sparse direct solver. To solve the linearized system (4R2ach Newton iteration, again
different linear solvers are used. For the sparse direcitee6 MFPACK [28] is used,
while in the iterative solvers the right-preconditioned &S method is used. In the
iterative solvers, again preconditioning of the elasfibibck (J5; in (4.23)) is done using
algebraic and geometric multigrid. Contrary to the linetaghcase, the Reynolds block
is not tridiagonal, therefore we have used a sparse dirdeersJMFPACK) for this
block of the preconditioner. The choice of the sparse disebter is inspired from the
fact that it performs very well for theD EHL problem both in terms of memory usage
and computational time.

6.4.1 Algebraic Multigrid Solver

Before discussing geometric multigrid preconditioning fivet give a comparison be-
tween the performance of the sparse direct and the precamelit iterative solvers, with
AMG preconditioning of the elasticity block. These resute obtained using the mod-
erately loaded Test Case 1 (see Table 6.1) and are given |la Babin terms of total
iterations, total time, time per nonlinear iteration andhmoey usage. It can be seen that
the AMG solver is performing very well compared to the spatsect solver, both in
terms of memory usage and time. Furthermore, both memoigyeusad computational
time is growing almost linearly with the increase in the peob size. For this 3D case the
sparse direct solver soon reaches its limitations in tefrbsth the memory and the CPU
time required (due, we believe, to the much greater fill-at thccurs for the 3D problem
relative to the 2D line contact case). Indeed, we have irgeiffi memory to compute the
finest case. The preconditioned iterative approach is faersor.

Table 6.6: Comparison of sparse direct and iterative (AM&S)lts, Test Case 1
np Total dof ‘ _ Sparse Direct Solver Prec. Iterative Solver (AMG)
ni

t(s) t/ni mem.(Gb)| ni-li t(s) t/ni mem.(Gb)
1690 294056 9 20685 2298.33 21 9-135 729 81.00 0.7
4854 666160 | 7 68567 9795.29 56 7-1056 1242 177.43 1.5
16776 2131882 | — — — — 7-105 4184 597.71 4.9
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Table 6.7: Comparison of preconditioned iterative poimttact results (with AMG and
GMG) for cases Test Case 1 & Test Case 2.

nyp Total dof Prec. Iterative Solver (AMG) Prec. Iterative Solver (GMG)
ni-li t(s) t/ni mem.(Gb)| ni-li t(s) t/ni mem.(Gb) levels

Test 1

4675 529214 7-105 1013 144.71 1.2 7-105 814 116.29 0.8 3

18837 4152538 | 7-105 9046  1292.29 9.9 7-105 6894 984.86 6.0 4
Test 2

4675 529214 | 12-180 1524 127.00 1.2 12-179 1213  101.08 0.8 3

18837 4152538 | 11-165 11930 1084.55 9.9 12-180 10098 841.50 6.0 4

6.4.2 Geometric Multigrid Solver

As for the line contact problems considered in the previcwepter a further time and
memory usage reduction is possible if AMG preconditionifthe elasticity block is re-
placed with GMG preconditioning on a suitable mesh. Such shrsequence is obtained
through uniform refinements of the coarsest mesh. The pedioce of GMG precondi-
tioning depends upon the coarsest grid used and how effictttcoarsest grid problem
is solved. In this work UMFPACK is used to solve the coarsest groblem. In order
to obtain the efficient coarsest grid solution, the lingaot the elasticity block ({5, in
(4.23)) is taken into account. In other words, LU factoii@atof the coarsest grid matrix
is done only once and these factors are stored in order tal &kreirepeated factoriza-
tion and to use them consistently in the later computatitirshould be noted that linear
tetrahedral elements have been used in the meshing of thc#jadomain. Starting
with a suitable coarse grid with a total 8942 mesh points, each tetrahedral element is
divided into8 child tetrahedra (e.g. see [84,96]) at each refinement,lgveling the
number of elements eight times at each refinement level. i$hise main drawback of
GMG preconditioning: that we have to accept this restricbwer the meshes. Moreover,
the division of each tetrahedron is done in two phases, theléading to the removal
of the four corners, leaving an octahedron behind. Thishexteon is further divided to
produce four new tetrahedra. There are three choices obagg which can be used to
divide this octahedron. In this work, we have used the ldardiegional [69, 96], however
other choices [84] are possible. It should be noted thatracgwf the solution depends
upon the quality of the meshes generated at each level (vdiscussed in detail later
in this chapter). Our main concern in this section is to disdine performance of AMG
and GMG preconditioning however. Table 6.7 gives a comparief the AMG and
GMG preconditioning strategies for Test Case 1 and Test Za$ée efficiency and op-
timality of both solvers is apparent as the time growth aredrttemory usage is almost
linear. Again, a further reduction in time and memory usagachieved by using GMG
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Figure 6.3: Performances of different point contact savéest Case 1

preconditioning of the elasticity block.

The overall performance showing total time and time per ineal iteration for the
different solvers for Test Case 1 can be seen in Figure 6.3 ¢an see that the pre-
conditioned iterative solvers substantially outperfotma aipplication of a sparse direct
solver. It is also clear that the AMG performance is very eles GMG and that, as for
the line contact case, it is not likely that the benefits of @G approach are sufficient
to overcome the mesh restrictions compared to AMG.

Consider, for example, the finest case in Table 6.6, the uctstied mesh has, =
16776 with 2131882 degrees of freedom in total. For an equivalent resolutiof jn
(n, = 18837 in Table 6.7) the GMG solver leads to comaparatively twiedioblem size
(i.e. 4152538 degrees of freedom in total). In this specific example, theG\sblver (with
least problem size) leads to a saving of ab#iit in the CPU and0% in the memory
usage compared to the GMG solver (with a large problem siredddition to the mesh
restriction, the quality of hierarchical meshes used in@MG solver is generally not
good enough compared to the unstructured meshes used itM@esalver. This issue is
discussed in detail in the following section.
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6.5 Hierarchical Meshes

In addition to the local mesh resolution, another imporfaator which affects the ac-
curacy of a solution of a problem is the quality of mesh uset I5]. In other words,
optimizing the quality of a mesh prior to computing the swotof a problem can im-
prove the accuracy of the solution. In this subsection,dBgect of the solution process
is considered by computing the EHL solution over differersimes of resolution 2. In
mesh optimization, various heuristic measures of the tyuafithe mesh are improved by
modifying the mesh in different ways. The mesh optimizatoNETGEN [95] includes
local reconnection via edge and face swaps, local node mavegind some collapsing of
elements. The metric used is based upon minimizing an exrrmtibnal which quantifies
the quality of the mesh. The Netgen [95] optimization preogistinguish between the
metric optimization and the topological optimization. hetformer case, mesh quality
is increased with points movement. Once the quality doesnmaitove any further with
point movement then topological changes are made in the mieste some elements are
removed and the points are connected in a new manner. Moremige and face swaps
are also performed to improve the mesh quality. For moreldethout the optimization
process in NETGEN, see [95].

For this work an experiment is carried out for the Test Casewhich an optimized
coarse mesh (generated by NETGEN) is chosen as an initidl.mEse choice of this
initial mesh is made such that the two levels of uniform refieat gives an equivalent
mesh to that with selected mesh case of resolution 2 (seefB8&cB). Three cases are
then considered. In the first case (Case 1), two levels obtmitefinement are applied
to the initial mesh. Each refinement involves the divisioreath tetrahedral element
into 8 child tetrahedra, growing the number of elementstdighes at each refinement
level. The division of each tetrahedron is done in two phaes first leading to the
removal of four corners, leaving an octahedron behind. dtighedron is further divided
to produce four new tetrahedra. There are three choicesagbdals which can be used
to divide this octahedron. In Case 1, we have used the loigegpdnal [69, 96], however
other choices [84] are possible. In the second case (Ca#igeZyyo levels of refinement
are carried out using NETGEN [95]. Among the three choicediafonal to divide an
octahedron the NETGEN chooses the best one. Finally, amatiion is performed
(within NETGEN [95]) over the mesh obtained in Case 2 leadinGase 3.

It may be observed that Case 1 leads to a poor quality solstiare unphysical os-
cillations are clearly visible in the pressure solutiore s&gure 6.4. On the other hand,
Case 2 yields a slightly better solution (with fewer ostitlas) than that of Case 1, while
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Figure 6.4: The shapes of pressure profile along the ceitea{WhereY” = 0) computed
over optimized and non-optimized meshes: Test Case 1

Case 3 leads to a smooth pressure profile (as smooth as coatthiseed at this spatial
resolution). It should be noted that the number of degredseefiom for the first two
cases are the same (710906), as a result of the uniform refiriggrmocedures, while in
Case 3 this number is 670577. This slight reduction is duééacbllapsing of nodes,
edges, faces and elements that takes place during the m#shizagion process [95].
The key observation however is that the smoother, optimizesh can yield better quali-
tative accuracy in the solution than that of a non-optimimesh with more nodes. Recall
that, in this example we have selected the initial mesh duahtivo levels of refinement
produce an equivalent mesh to the selected case of resoRifsere Section 6.3). In order
to assess the accuracy in a more quantitative manner the R¥IBE pressure and film
thickness solutions for these different resolution 2 casesalculated with respect to the
fine case of resolution 3, and are given in Table 6.8. It caneea shat the RMSE of
both the film thickness solutions and the pressure solutiayery similar to those for
the selected mesh case. The accuracy of the pressure pnofiéases while switching
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Table 6.8: Root mean square error of pressure and film thédesesolutions of various
resolution 2 cases with respect to the fine case of resol@tidiest Case 1.

Case | dof Pressure RMSE  Film thickness RMSE t(s) tliter mensp)
Case 1 710906 3.27 x 1072 3.10 x 1073 1421 203.0 1.6
Case 2 710906 2.71 x 1072 3.31x 1073 1397 199.57 1.6
Case 3 670577 2.42 x 1072 3.48 x 1073 1343 191.86 1.5
Selected mesh (Res. 4) 666160 2.56 x 1072 3.12x 1073 1242 177.43 1.5
Fine mesh (Res. 2) | 14834838  1.39 x 1072 1.68 x 1073 31681 4525.86 34
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Figure 6.5: The shapes of pressure profile along the cemteajwhereY” = 0) computed
over optimized and non-optimized meshes: Test Case 2

from Case 1 to Case 3 and in Case 3 it is even slightly improvedthat of the selected
case. Moreover, it is apparent that the accuracy of the pressd film thicknesses solu-
tions is not substantially affected as compared to the imsisicomputed on the very fine
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reference mesh with a huge number of degrees of freedd834838).

A similar behaviour in the accuracy of the solution is obserfor heavily loaded
Test Case 2. Figure 6.5 shows the pressure profiles (alorgetiteal line wherg” = 0)
for each of three mesh cases. Again Case 1 leads to a pootycgalition while Case 2
yields a slightly better solution. As for the Test Case 1,&Cagoptimized mesh) leads
to a comparatively more smooth pressure profile than Casel Case 2. However, the
pressure profile is not completely smooth for this spatisbhation but it can be further
smoothed with an increase in the spatial resolution. Nbeésts, the results shown pro-
vide a further evidence that the accuracy of an EHL solutanlze significantly improved
using a post processed optimized mesh.

6.6 Conclusion

In this chapter we investigate the accuracy of the elasfierdetion solution, as well as
the complete point contact EHL results, over a number oéckfft finite element meshes
for the linear elasticity problem. It has been possible tonsthat a judicious choice of
these finite element meshes can allow a substantial reductithe total number of de-
grees of freedom without reducing the overall accuracy igoificantly relative to the
discretization error in the Reynolds equation solutionth@ specific example included
here this results in a reduction in CPU of ab86% (from 316815 to 1242s) and a reduc-
tion in memory of abou96% (from 34Gb to 1.5Gb) for the AMG solver. The selected
elasticity meshes presented in this chapter have been fioubd accurate over a rela-
tively small range of EHL problems, however, it requires steynatic study over a wider
range of cases to demonstrate, its applicability in full. rétaver, for harder materials, a
comparatively smaller mesh size (away from the contacbrggnay be needed to obtain
appropriate meshes using the same methodology so as tovaehaesired accuracy in
a solution. Note that if the surface roughness is taken iotoant then a finer mesh in
the contact region (high pressure region) may be requirddizs may therefore affect
the mesh sizes close to the central contact region accdyditdNgvertheless the mesh
approach used here would still be applicable.

Furthermore, we discuss the performance of different fediypled EHL point contact
solvers by giving a detailed comparison of their computeldimes and memory costs.
For the point contact problems, presented in this chapterpplication of our precondi-
tioning strategy outperforms the sparse direct solver sgyificantly, with huge savings
in memory and time being achieved. Perhaps most importémelgrowth in both time
and memory for the preconditioned iterative approach aggede linear.
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Finally, it has been shown that the performance of the AMQagqgh is very close to
GMG, and that the benefits of the GMG approach are not enougheiwome the mesh
restrictions compared to AMG. A further observation pr@ddn this work is that the use
of unstructured hierarchical meshes without appropriaéshroptimization can lead to
poor quality EHL results. In other words, optimizing a mesiopto computing an EHL
solution significantly improves its accuracy. As the suefawesh remains unchanged
during the optimization process in NETGEN [95], the onlysea for the improvement
in the accuracy of an EHL solution is the improved accuracgdrresponding elastic
deformation solution. In short, an AMG solver with least e size yields a better
accuracy in an EHL solution more economically than a GMG aagin.

The effect of mesh quality over the accuracy of an EHL sofuiscalso likely to be an
important observation for future work where we seek to madeeaf local error estimation
to control the mesh refinement locally in order to automagegéneration of the linear
elasticity finite element meshes (see the following chafatean initial investigation of
this approach).



Chapter 7

An Adaptive Method for EHL Problems

7.1 Overview

Recall from previous chapters that a fully-coupled EHL paiontact problem involves
solving a linear elasticity equation ors® domain, and the Reynolds equation on a small
part of its surface boundary (the so-called the fluid domadn)arge number of experi-
ments were carried out to define approprizlemeshes (corresponding to different mesh
resolutions in the contact region) with a view to obtainingatisfactory EHL solution
at the lowest cost as possible. Note that, in the selectidghasle meshes, smaller mesh
sizes were used only in the contact region where the pressiwgon exhibits the large
variation [45, 70].

In this chapter, the development of a locally adaptive fieleEament solution scheme
for fully-coupled EHL point contact problems is discussettjch automatically refines
the mesh in the fluid as well as the elasticity domain (wheeeftily-coupled solution
exhibits large variations). In Section 7.2, a descriptibthe proposed adaptive algorithm
is provided. Section 7.3 discusses in detail an ‘a posiéeioor assessment which is used
to find the local, as well as global, error estimates. In $eci.4, different refinement
criteria are described to target a list of elements for refielet. Section 7.5 provides
details about the refinement algorithm which is used to cautythe mesh refinement
process. Section 7.6 provides a description of a procedurpdst-optimization of the
meshes generated. The layout of different variants of taptage solver developed in this
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work is presented in Section 7.7. Finally, in Section 7.8netical results are presented
to show the effectiveness and the performance of the progoseedure for solving EHL
problems.

7.2 Mesh Adaptivity

The accuracy of a finite element approximation depends, gstasther things, upon
the computational mesh being considered. The use of finehesg$.e. with smaller
elements) is one way to improve the accuracy of a finite el¢goroximation. In other
words the overall difference (error) between a computedaméxact solution can be
reduced with the use of finer meshes. The case of uniformiyegineshes often leads to
an excessive increase in the size of the discrete probledn} Aecomes very expensive,
from a computational point of view, to achieve a desired eaxy In particular the use
of very fine elementsverywheren the computational domains is not often required (see
Chapter 6). Specifically it may only be required to use thestieements in those regions
where the local error is greatest, such as regions wherelhton has sharp features, e.g.
steep gradients, singularities or discontinuities, ette &rrors arising from such regions
make a major contribution to the overall global error, areldlocuracy of a solution can
be improved by paying particular attention to such regibased on an assessment of the
local error (through an error estimate or indicator).

This goal can be achieved using an adaptive procedure [6967409, 110] which
seeks to automatically optimize the computational prosesas to obtain the desired
performance results (i.e. global accuracy) at a minimal matational cost. Differ-
ent adaptive procedures are possible but they typicallglwevapplying local refine-
ment/derefinement and/or adjusting the order of approximatdf the method in the re-
gions where the large errors come from. The various stregeigr controlling the finite
element adaptivity generally fall into three categories:

¢ h-adaptivity [67,69,87,92,96] consists of using the sasweke of elements through-
out, but the sizes of elements are changed locally to imptteweccuracy or effi-
ciency. In such a case the elements which show large errdreinsolution are
divided into smaller elements.

e p-adaptivity consists of using the same number of elemeumtshe order of ap-
proximating polynomials are increased to achieve a desicedracy in a computed
solution. This is typically used in conjunction with h-adigjy [12, 31, 65].
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¢ r-refinement keeps the number of nodes and the order of tineeals fixed but
adjusts their position to improve the accuracy of the sofutExamples include [9,
74,75].

As noted above, these strategies may also be applied in patrdn, for example hp-
refinement combines both the h-refinement and the p-refinefinetoth the local mesh
sizes and order of polynomial are altered) in an efficient meario obtain best results.
Moreover, h-refinement can be applied in different ways:

¢ |ocal refinement: elements showing large errors are divitledsmaller elements [67,
69, 96].

e mesh coarsening: this involves coarsening the mesh inmegibere the solution on
the elements exhibits small errors. Thisis done in ordezdoice the computational
cost [67,69, 92,96, 109]. However the efficiency of the athar may be affected
due to complex data management.

e re-meshing: in this case new local mesh sizes are deternondtie basis of a
computed solution, and a totally new mesh is generated 458ji86, 109]. The
advantage is that both the refinement and derefinement céymleagnplemented.
However the drawback is the difficulty of transferring th&usion between different
grids, and it may also be expensive to generate a totally neshraspecially i3D
cases.

An adaptive algorithm generally involves the followingess [74]:
1. Aninput initial mesh.
2. Solve the corresponding system of discrete equations.
3. Compute the local error estimates or indicators for edanent in the mesh.

4. If the errors are in the prescribed limit then the processomplete, otherwise
identify a list of elements exhibiting large or small errors

5. Perform the refinement process, and goto step 2.

In this work, only the use of h-adaptivity is considered witist order finite elements.
The reason for this is so as to make use of the preconditidesative solver (developed
and used in the previous chapters) at each adaptive levetlar to obtain an efficient
solution at step 2 of the above algorithm. Note that dereferd@rhas not been used, and
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a similar effect to that with remeshing will be discussed @tt®n 7.8. In the following
section, a detailed discussion is provided about erromegés, refinement criteria and the
refinement process.

7.3 A Posteriori Error Assessment

The error assessments generally fall into two categoraegriori’ error assessment and
‘a posteriori’ error assessment. An ‘a priori’ error assesst takes into account advance
knowledge of the behaviour of the exact or the numericaltsniwor of input data, and is
used where the knowledge of the specific numerical solusorot required. For exam-
ple, where the solution is known to possess a singularityimal refinement strategy
may be determined in advance, e.g. [7]. On the other hand séepori’ error assess-
ment is generally based on the computed numerical solutidnisstherefore an important
ingredient for an adaptive finite element procedure. Thezenaany ‘a posteriori’ error
estimators developed, e.g. [3, 54, 110], which generallyrfto two categories: recovery
based error estimators [110] and residual based error a&stisn3]. The work presented
in this chapter only takes into account error estimatorseffirst type. To explain such
estimators, let us assume thatis a finite element approximation to an exact solution
of an elasticity equation then the error in the computedtgnius the difference:

e =1u— u,
and the error in their corresponding gradients or stresgmted by, is:
€, =0 — Op.
For an elasticity problem, stresses are calculated frorfiritie element solution by:

op = DSuh,
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where the elasticity matrild and the differential operat® are given by [4] (for the3D
problem):
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Instead of the point-wise definition of errors, an integralasure is often used to present
errors throughout an element or the whole dom&in (n the energy norm, a common ‘a
posteriori’ error estimate, based on the stresses of theisolof an elasticity problem,
takes the following form [110]:

leq||” = /Q(U —0,)'D7 Yo — 7,)d.

Since neither the exact solutiannor o are always in hand, a reasonable error estimator
can be obtained if the true gradientsare replaced with a suitable approximatieh
(obtained by a suitable post-processing of the finite elémgproximation):

I3l = [ (0" =)D 0" ~ on)ar. (7.1)

Generally the gradients computed from the finite elementagdmation are discontinu-
ous over the inter-element boundaries. An approximatiagheés made at each node by
averaging the elemental contribution of such gradientsgatah of elements sharing that
node. It is then possible to use the interpolating polyndsr(ihe same as those used in
the finite element approximation) to define a continuouyvered, approximation on the
whole domain. Such class of methods are often known as angragethod [3]. Various
estimators can be distinguished based on the specific siagsed in the construction of
the average or recovered gradients.

A well known post-processed, or recovery based, error estimvas proposed by
Zienkiewicz et al. in late ‘80s [110] (known variously as @keewicz-Zhu or ZZ or 2
error estimator). Later on, the authors presented an ingoregtimator based on super-
convergent patch recovery [111, 112]. These estimatorbased on the fact that the
approximated solution is less accurate at the element'ssxadd boundaries. However,
there are points within the elements where the gradientsare accurate and converge
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to exact values more quickly as the element size decreasescifiSally, such points
often exhibit superconvergent behaviour in the solutiot are therefore referred to as
superconvergent points. Thus a more accurate estifnajeof the true gradiento) is
recovered at a node by interpolating between the gradi¢tiie &uperconvergent points
in a patch of elements surrounding that node. The ZZ erramastr is economical and
easy to implement. Furthermore, the ZZ error estimator legs lshown to be effective
compared to other residual based error estimators in differomparative studies, see for
example [4, 6, 8].

Finally, the norm used above is defined over the whole dorfiairin practice, the
squared value of the norm can be obtained by summing up tihedodl element contri-
butions, i.e.

N
lezl® =" lles |1, (7.2)
1=1

wheres is the element number and is the total number of elements in a current mesh.

7.4 Refinement Criterion

In the previous section, a recovery based error estimatdisiussed to determine an
approximation to the global, as well as local, error produicea finite element approxi-
mation. If the global error is already within the prescrilimainds for a given mesh then
the goal is already achieved. However, this is often not sz @nd refinement is typ-
ically necessary in all or some parts of the domain, whichleklarge or unacceptable
errors. In practice, a tolerance,) is usually specified for the target relative errgy in
the final solution (or gradients), i.e.

leo |l
T] =

< Ntol - (7.3)
o]
The refinement, solution and error estimation steps arategeintil this criterion is satis-
fied. If neither the true error nor the exact gradients arevkniben they are replaced with
their best approximations available. Some times it is ngspe to reach the prescribed
limit (let sayn:,; = 5% [109]) of permissible error (especially for the 3D problgrdae
to nature and availability of computer resources e.g. mgnspeed etc. Therefore other
alternatives such as maximum refinement levels, minimumete size, memory usage,
etc. can be specified as stopping criteria. In this work, tgimum number of refine-
ment levels are used as a stopping criterion for the adaptoaeedure.

As stated earlier, refinement is necessary in the regiorsgdést error. In other words,
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one main requirement for an optimal mesh is that the errogusky distributed among
all the elements in a mesh [78], i.e. the requirement:

1
o 2_|_ et 2\ 2
A

must hold for all the elements (numberedin a current mesh. In the above equation,
is the total number of elements ang, (average element error) represents the maximum
permissible error for an element. In other words, the ratio:

el

€tol

&k > 1 (7.4)

specifies the set of elements to be refined. Derefinementipaksible, to save compu-
tations, whenevefy, < Egerer < 1.

Another refinement criterion (used in this work) is basedrufieding the maximum
error in elementsd,,,,.) and targeting elements for refinement according to thetexua

€tol = Clmazx, (7 . 5)

wherec is a constant (and different values of this constant are instéés work for demon-
stration purposes). Any decrease in this parameter mait re$lagging quite a lot more
elements for refinement and the required goal may not be\shigue to an excessive
number of elements in the final mesh.

7.5 Tetrad

The mesh refinement algorithm TETRahedral ADaptivity (TADR is a mesh adaption

algorithm developed at University of Leeds by Speares ¢96].in late ‘90s. A general

description of this algorithm is provided in this sectionwewer, for more details one is
referred to the original text [96]. The algorithm used in THAD is hierarchical in nature

and is suitable for meshes consisting of tetrahedral el&snérhe mesh adaption algo-
rithm is supported both by the mesh refinement and derefineprenoess. Assuming a
good quality input mesh the refinement of the base level masdstplace by addition of
new nodes by edge, face and element subdivision and the ehamghe mesh are kept
track of via the construction of a data hierarchy. Contrarydfinement, the derefine-
ment process is a process where nodes, edges, faces andtslaneeremoved from the
mesh to restore the original element(s) back. Note thatehefiilement algorithm works
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only until the elements of the base level mesh are recoveaek, mnd hence no further
derefinement is possible.

The mesh refinement process is invoked automatically in @fspeegion of the com-
putational domain depending upon where the corresponaigen has large estimated
error and/or a larger spatial resolution is required. Itsistemed that this information has
been provided to TETRAD by a user subroutine in which the sdge either marked
for refinement or derefinement (or no action). If an edge isketdhfor refinement then it
leads to refinement of all elements sharing that edge. Sigifean edge is marked for
derefinement then all the elements which are sharing tha adggpotentially derefined.
The refinement process takes into account only two typeshafigisions. A regular sub-
division in which each parent element is divided into eidhitccelements by introducing
new nodes bisecting each edge. In the first instance this keagmoval of four corners
leaving an octahedron behind. The division of this octabledurther results into four
new child elements on the basis of dissection by the longagbdal [69, 96]. The other
kind of subdivision, the so-called green refinement, takasgowhere not all of the edges
of an element are marked for refinement, and this avoids thsilpitity of introducing
“hanging nodes” (nodes on edges or faces which are potigmtiall the vertices of all el-
ements sharing those edges or faces) without introducingaditional edge refinement.
Note that green refinement often leads to poor quality elésnamd therefore a precau-
tion is taken into account in the development of TETRAD thgteen element may not
be refined further. In such a case, the previous green refimenfi¢he parent element
is replaced with the regular refinement. Thus the green refimé always appears at the
interface between lower and higher grid resolutions. Asressequence, the poor quality
elements never appear in the region of interest providetbapiate flagging criteria have
been used for adaption.

Finally, the developers showed that the scaling behavibtheofundamental refine-
ment process is close to optimal linear behaviour [96] ambtssignificantly affected by
the mesh depth.

7.6 Optimization of Meshes

In the previous chapter, it was observed that the unstredtoreshes resulting from hi-
erarchical mesh refinement often lead to poor quality EHIultesvithout appropriate
mesh optimization. In other words, the accuracy of the EHutgsmn can be improved by
optimizing the quality of mesh prior to any computation. lhistwork, this fact is also
taken into account for the meshes resulting from the lodalement process.
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In order to combine optimization with local mesh refinemehg meshes obtained
once the refinement is performed are passed to NETGEN [9%&];exdnsmoothing process
is performed via edge and face swaps, local node movemetits@me collapsing of
elements. Note that, unlike [74], the optimization doesseatk to reduce the error further,
rather it is undertaken to ensure minimization of a qualitydtional which quantifies the
quality of the mesh. An advantageous side-effect of thenapétion is that the collapsing
of elements in the optimization process also leads to a texaum the size of problem
compared to the original mesh. In other words, this methad ehaesemblance with
r-refinement cases, along with a possible reduction in thebaun of mesh points. A
difficulty encountered with this type of approach is to handhnsfer of the solution data
between the grids. Furthermore, the optimization prosedsstroys the mesh hierarchy,
so that neither de-refinement nor the use of GMG precondiitipis possible.

Smoothing via NETGEN [95] also has the drawback that the negsimization only
takes place in the interior of the domain, i.e. the surfacelmremains unchanged. The
advantage of this is that the pressure solution can be tapsfto the new optimized mesh
without any difficulty. However, to produce an initial gudss the elasticity solution on
this changed mesh, one needs to solve the elasticity equatrcesponding to the surface
pressure. Hence, at the cost of a solution of the elasticjaon (equivalent to less
than one fully-coupled iteration) one yields an initial gador which the fully-coupled
iteration converges very quickly. Note however that thetmeknement of greerRD
elements on the fixed surface mesh will lead to even more poalitg surface mesh
elements, regardless of an optimiz&d mesh. The poor quality surface mesh in the
fluid region may affect the accuracy of the pressure soluti@ne possibility to avoid
the low quality surface mesh is to perform the mesh optinomabnly at the final level
to improve the accuracy of the final solution. This is therefoconsidered as one of the
possible strategies in the following section.

7.7 Solver Layout

In this section we discuss the overall layout of the adaglgerithm used in this work.
A suitable initial mesh is first generated using NETGEN [9@ere a fine mesh is used
in the contact region compared to the other parts of the donTdie choice of an initial
mesh is made such that a reasonably good starting solutidd be obtained. The main
algorithm used in this work can then be split into the follog/steps.

1. Pass an initial mesh to TETRAD [96] to read-in the mesh anid lall the data and
their structures.
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2. Construct lists of leaf elements and edges, and assigmlaoyiconditions.

3. Set up and solve the fully-coupled EHL problem using tHeesdbased on AMG
preconditioning of the elasticity block (see Chapter 6).

4. Estimate the error within each element. If the maximurellesreached then output
is produced and code exits, otherwise a list of elementse@ted for adaption (h-
refinement).

5. Perform h-refinement within the TETRAD. For mesh optirtiza goto step 6,
otherwise goto step 2.

6. Optimize the locally refined mesh using NETGEN [95]. Freeall the previous
data and structures except the new mesh and the solutioratiatgoto step 1.

Having defined the basic algorithm, a description of différeariants of this adaptive
algorithm is now provided. Recall from the previous sectibat the post processing
(smoothing) of the adapted mesh may lead to even more aea@sults. Note however
that if the optimization in step 6 is performed then it degérthe mesh hierarchy. More-
over, calling the step 6 at each refinement level may resathad quality surface mesh
after a number of levels, which may affect the accuracy ofsthlation of the Reynolds
equation. To assess the accuracy of the solution, threégss are considered, which
ultimately lead to three variants of the main algorithm.

e The first variant of solver skips the step 6 and repeats fram 2tuntil the maxi-
mum level criterion is reached. In this case TETRAD keepscarceof all of the
refinement history and therefore green elements are peyé&mm further refine-
ment (and the use of the GMG preconditioner is possible iarihao, though not
implemented here) and the initial guess at each stage is@esinterpolant from
the previous solution.

e The second variant of the main solver utilizes step 6 at eafthement level and
therefore repeats the process from step 1 with new meshe $ecsurface mesh
does not change, and hence t2 fluid mesh, so the solution of the Reynolds
equation is transferred to this new mesh without any difficidnd solving the
elasticity equation yields an initial guess for the displaent for this new mesh.
Hence, an overall improved initial guess leads to fewer Mewvterations to achieve
the convergence of the fully-coupled system. However, tedity of the surface
mesh deteriorates with each additional local refinement.
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Table 7.1: Non-dimensional parameters for the contact &etveteel surfaces [104].

Parameters Values

Moes parametet, 10

Moes parameter}/ 20

Maximum Hertzian pressurg;,  0.45GPa
Viscosity index,« 2.2 x 107 8Pa?
Viscosity at ambient pressurg;  0.04 Pas

Total speedss 1.6ms?

e To avoid the risk of successive green refinement at the surfesh, the third vari-
ant only utilizes the step 6 at the final level of refinement] bence a surface mesh
is obtained with a relatively good quality.

In the following section, a comparison of accuracy and théopeance of these vari-
ants is provided to assess the different strategies usée mktove variants of the solver.

7.8 Numerical Results

In this section, a comparison is made between the accuratyhanperformance of the
different variants of the adaptive finite element solverddypical EHL problem. The test
case considered in this work is given in Table 7.1. Moreawves, suitable initial coarse
meshes are used. There is no specific reason in the choicess thitial meshes other
than to produce a relatively good starting solution andvatize sensitivity to the choice
of initial mesh to be considered. The first initial mesh is posed of a total 016671
points wherel87 of them lie on the surface common to the fluid domain. This raé¢hat
this initial mesh is relatively fine close to the contact egcompared to the remaining
region of the elasticity domain. In the second choice of ateirmesh, relatively small
mesh sizes are used yielding a mesh \izh34 points in total, of thent91 points are in
the fluid region.

7.8.1 Implementation of the Error Estimator

Recall from previous chapters that a fully-coupled EHL peat consists of solving the
Reynolds equation, the linear elasticity equation and dlae balance equation simulta-
neously. For point contact problems, the linear elastiegyation is numerically solved
on a3D domain(2, while the Reynolds equation is solved o fluid domain(2; which

is a small part of the surface boundary(ef The solution of the linear elasticity equa-
tion exhibits large variation close to the fluid region. Ihetwords, the mesh elements
close to the fluid region show large errors. Performing loeéihement in that region
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not only improves the accuracy of the elastic deformatidatsm but also increases the
spatial resolution in the fluid domain for the solution of Reynolds equation. Together,
the increase in the spatial resolution and the relativetyieate elastic deformation solu-
tion yield a significantly improved pressure profile. Henagth the improved traction
boundary condition, the elastic deformation thus computéde more accurate. Hence,
a simple and an effective way to develop an adaptive proeefiura fully-couple EHL
problem is to apply the local refinement to the linear elégtimesh (with local error es-
timation based on the solution of the linear elasticity eguma. Therefore, in this work,
the error estimator discussed in Section 7.3 is only appdi¢de linear elasticity solution
to find an approximation of local and the global errors.

Figure 7.1 shows a cut through the centreline of 3Bedomain after different iter-
ations of h-refinement based adaptivity. The elements doaimd using their element
sizes. Hence the elements with very small mesh sizes«(e~*) are shown by red and
those with large . ~ ¢?) are shown by purple. One can see that the local refinement
is targeting mainly those regions close to the contact redgitowever, as the refinement
levels go up, the refinement also extends to the regions awaythe fluid region. More-
over, Figure 7.1(c) shows an arc-shaped region (correspgrd the pressure-ridge re-
gion) showing much finer elements. This explains that thésregion where the pressure-
ridge affects the elastic deformation solution more sigaifily. Overall, this experiment
suggests that the refinement strategy implemented heresgedre effective for a fully-
coupled EHL problem. The correspondi2i) mesh for the Reynolds equation is getting
finer in the region where it is desired to be.

7.8.2 Accuracy Appraisal

In this subsection, the accuracy appraisal of differentavais of the solver is considered.
As a first case, an initial mesh witl6671 mesh points is used as a base level mesh. The
EHL problem is set up and solved on this starting mesh. Oresdkution is obtained,
local error estimation on each element of the mesh is mad®diog to equation (7.1),
while a global error estimation is obtained according toaggu (7.2). Having the local
error estimate for each element in hand, a set of elementmarked for refinement
according to equation (7.5) where we have chosen the cdnstan0.1,0.2 & 0.3 for
demonstration and comparison purposes. Note that a snhadl whthis constant targets
significantly more elements for refinement and vice versas@dm as the refinement is
performed, the procedure is repeated again until the maximumnber of levels specified
are reached. Recall that variant 2 of the solver also ped@moptimization process on
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(a) Mesh at refinement level-1 (b) Mesh at refinement level-2

(c) Mesh at refinement level-3

-4 -3 -2 -1 0 1 2

(e) Color scheme used for different valuedwfelement size).

Figure 7.1: A view of meshes at different refinement levelsddaupon an initial mesh
with 16671 points.

the refined meshes at each refinement level while variantyB8aglies the optimization
process at last refinement level.

For different mesh refinement strategies, Table 7.2 shovesrgarison of behaviour
of problem sizes (both in the pressure unknowns and total@nosizes) and the solution
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Table 7.2: Statistics for solutions using uniform refinetnand adaptive h-refinement.
Variant 1 performs no mesh optimization, variant 2 perfoop8mization at every level,
and variant 3 performs optimization at the finest level only.

| level | uniform refinement | h-refinement |
variant 1 variant 2 variant 3
non-opt. opt.| ¢=0.1 c=0.2 c=0.3 c=0.1 c=02 ¢=03 c=0.1 c=02 ¢=03
number of pressure unknowng
0 431 431 431 431 431 431 431 431 431 431 431
1 1777 1777 1539 897 699 1539 897 699 1539 897 699
2 7217 7217 5163 3357 2265 5602 3489 2496 5163 3357 2265
3 - - 13700 8679 467 12603 7477 457 13700 8679 467
4 16874 10016 - 19231 10569 - 16874 10016
Total degrees of freedom
0 50043 50043 50043 50043 5004 50043 50043 5004 50043 50043 5004
1 381809 354230, 110422 66136 5906 86125 61210 56068 110422 66136 5906
2 2994948 2704035 679186 385831 148894 551030 279022 124183 679186 385831 14889
3 - - | 2979240 1122655 569128 1719745 639962 429131 2170815 1122655 56912
4 3739788 125090 - 3011678 91885 2827140 89253
central film thicknesg7.
0 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.39677 0.3967
1 0.42500 0.42446 0.42210 0.40666 0.40121 0.42215 0.40644 0.40104 0.42210 0.40666 0.4012
2 0.43071 0.43002 0.42826 0.42479 0.42398 0.42876 0.42482 0.42290 0.42826  0.42479 0.4239
3 - - | 0.42996 0.42931 0.42624 0.42929 0.42829 0.42597 0.42997 0.42931 0.4262
4 0.43025 0.4293 - 0.43024 0.4290 - 0.43027 0.4292
minimum film thicknessH.,,
0 0.26047  0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.26047 0.2604
1 0.28472  0.28442 0.28301 0.27163 0.26543 0.28318 0.27208 0.26572 0.28301 0.27163 0.2654
2 0.29051 0.29112 0.28995 0.28715 0.28427 0.29023 0.28744 0.28483 0.28995 0.28715 0.2842
3 - - | 0.29112 0.29034 0.28874 0.29067 0.28947 0.28784 0.29111  0.29034 0.2887
4 0.29133  0.2905 - 0.29121 0.2903 - 0.29129 0.2905

(in terms of central and minimum film thicknesses). In theecakuniform refinement
(optimized and non-optimized), the pressure unknownsrameasing by about a factor
of four while the total problem size by a factor of about eigbn the other hand the local
refinement process targets elements for refinement shoatigg errors and the problem
sizes behave differently for different valuescoin other words, a larger value of constant
c directs the refinement process to be more specific as to rgfihenelements showing
the largest errors. Note that in each case, the local refinemestly affects the elements
close to the contact region (see, also Figure 7.1). Moredvean be seen that variant 1,
for ¢ = 0.1, results in approximately the same solution after two el refinement
compared to that with the uniform refinement cases. In thsg ctne pressure unknowns
are almost the same as with the cases of uniform refinemehéabtal problem size is
about a quarter. Increasing the valuturther reduces the total problem size; however,
one needs to have a little compromise on the accuracy of fbé@u Variant 2, which
optimizes the meshes at every refinement level, seems tlyitter accuracy in results
than variant 1 with relatively smaller problem sizes. Ndtattif it would be possible to
perform a third level of uniform refinement (with or withoyttamization) then this would
lead to a very large problem size (total problem size woutdease by about a factor of
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eight). In such a case, it would be easier to see the signifcaiiocal refinement process.

It should be noted that the output of variant 3 differs fromast 1 only at the finest
level. Here, optimization of refined meshes leads to a saamti decrease in the total
size of the finest level problems while ensuring the overeduaacy of the solution. In
other words, for each choice of variant 3 yields the same accuracy in the solution
(compared to variant 1) with a smaller problem size at thesfitexel. It should be noted
that the optimization of meshes in variant 3 at the final l@redures the accuracy of the
pressure profile (see Chapter 6). Thus, if the pressure g@isfinore accurate then the
film thicknesses solution will be more reliable. On the othand variant 2 optimizes
the meshes at every refinement level therefore it ends upavéimaller problem size
at the finest level compared to variant 3. Although, the tesade not fully converged
one can see that the difference in the output of variants 2 &t8 mcreasingly small
for different choices of: (especially forc = 0.1 & 0.2), and appears to converge to the
same solution. Finally, it can be seen that,dcet 0.1 & 0.2, the central film thicknesses
solution appears to converge more quickly as the refinenegat oes up. However, the
situation is slightly different for the minimum thicknesssolution. The reason may be
that the local refinement process mainly targets the presgige region (see Figure 7.1)
and hence the corresponding changes in the pressure rigdp imfiuence the minimum
film thicknesses solution. In short, results show that baitents 2 & 3 end up with the
same accuracy in their solution with relatively small peyhlsizes compared to variant 1.
Furthermore, we shall see next that both variants 2 & 3 resuietter accuracy than
variant 1 and the uniform refinement cases quite effectively

For each choice of, a comparison of the estimated global errors obtained foin ea
variant of the solver is shown in Figure 7.2. Note that thdgl@rror estimation is for the
elasticity solution with a converging pressure profilef@iént for each mesh strategy) as
the traction boundary condition. The case of uniform refiaet{with and without op-
timization) along with the selected mesh cases (producddaansidered in the previous
chapter) are also included. One can see that a non-optimizéatm refinement process
leads to small reduction in the error with increasing probkize. But, if the meshes
are optimized after each uniform refinement process themativedy fast reduction in
the error is obtained. In this example, for each refinemeéteran, the local refinement
cases (all three variants) appeared to have a superiorrethaction rate, with respect to
problem size, as compared to both cases of uniform refinentezdn be seen that opti-
mization of meshes at each refinement level further imprétvesate of error reduction
with respect to the problem size. It should also be notedttieatast level optimization
(variant 3) significantly reduces the error at the finestllemed results in approximately
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Figure 7.2: A comparison of global error estimation for elifint mesh refinement strate-
gies using a coarsest meshl6f;71 points.

the same accuracy as that obtained with the optimizationeaydevel (variant 2). Fi-
nally, the selected mesh cases even perform better thaodhleréfinement without post-
optimization of meshes (variant 1). Furthermore, it candenghat different refinement
criteria used here only controls the problem sizes, and dokaffect the error’'s conver-
gence rate with a problem size. In other words, the adapstenique is not too sensitive
to the choice of the parameter

As a second test case, a different initial mesh compose22i4 mesh points is
considered. This initial mesh is relatively more fine thaatthsed above. Figure 7.3
shows the accuracy appraisal for different variants of tiiees compared to the use of
uniform refinement and the selected mesh cases. The samédethia the results can
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Figure 7.3: A comparison of global error estimation for elifint mesh refinement strate-
gies using a coarsest mesh2@R34 points.

be observed as before however, the case of optimized unifefirement shows a better
error reduction rate compared to the non-optimized lodadeenent case. Nevertheless,
it can be seen that, again, the local refinement cases (btilopiimization at only the
last or at every level, variants 3 & 2 respectively) perforettér than the other cases in
terms of accuracy.

As a whole, one can conclude from these experiments thatotted tefinement of
meshes with post optimization at only the final or at all lewe&sults in more accurate
results with a relatively small problem size. Most impotlgnthe adaptive algorithm
(with at least last level optimization) leads to better Hsstcompared to the selected mesh
cases. In this sense, the use of automatic mesh refinemesd basn ‘a posteriori’
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Figure 7.4: A comparison of performance of different vaisaof adaptive finite element
solver using the coarser initial mesh.

error estimation has produced

better meshes than the hamdjtapproach described in

Chapter 6. In the next subsection, the performance of eaitteafariants of the proposed
adaptive solver is assessed for each of the three refinemitemiac

7.8.3 Performance

In this subsection, the performance of different variaritadaptive finite element solver
are assessed. For the initial mesh case 1, the computdiioealare plotted in Figure 7.4

for each of the three adaptive
of computational time can be

refinement criteria. In Figle a jump in the growth
observed while switching froaseblevel to first level.
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Table 7.3: Statistics of solution at different refinememels. Variant 1 performs no
optimization, variant 2 perform optimization at every Ievand variant 3 performs opti-
mization at the finest level only.

level | uniform refinement h-refinement
variant 1 variant 2 variant 3
non-opt. opt. 0.1 0.2 0.3 | 0.1 0.2 0.3 | 0.1 0.2 0.3
Total nonlinear iterations
0 14 14 14 14 14 14 14 14 14 14 14
1 9 9 8 10 11 9 9 9 8 10 11
2 4 4 4 5 4 4 4 4 4 5 4
3 5 4 4 3 3 3 3 4 4
4 - 5 4 - 3 3 - 3 3
Average number of linear iterations per one nonlinear ftena
0 11.4 114 | 114 114 114 114 114 114 114 114 114
1 12 11 12,8 11.8 11.7) 11.1 111 10.8] 128 11.8 11.7
2 13.3 13 15.0 15.0 15.0 11.5 13,5 10.5/ 15.0 15.0 15.0
3 - - 13.0 15.0 15.0/ 12.3 12.7 11.7/ 12.7 15.0 15.0
4 - 15.0 15.0| - 11.0 10.3| - 11.3 127

The reason is that the first refinement process led to refineaiemly a few elements
leaving the problem size approximately unchanged. In otweds, the computational
time is almost doubled for almost the same sized problenedirgt refinement level (see
Section 7.8.5 for further details). Moreover, the variaapplies an optimization process
on the refined mesh which leads to a slightly smaller problizen Isut the total time has
increased compared to other two variants. After the firstllethe growth in the time
appeared to be almost linear for each of the variants hoyweagant 3 shows a jump in
the computational time on the final level which is due to ojtation process on the last
level mesh. Furthermore, for each refinement criteriontha#te variants appeared to be
computationally similar despite different problem sizsother words, the optimization
of the refined meshes, at least at the final level, leads te tttange in computational
time (but to relatively more accurate results, as discuabegte).

Table 7.3 gives statistics of average number of lineartitema and the number of non-
linear iterations for each variant of the adaptive solvangithe three different refinement
criteria. It can be seen that as the refinement level incseiaseach case, fewer nonlin-
ear iterations are required to achieve convergence. |mapiby; the performance of the
solver seems independent of the adaptivity method usededwer, the optimization of
meshes at final level in variant 3 results in a relatively $mainber of nonlinear iterations
compared to variant 1. Similarly, variant 2 requires evavgienonlinear iterations at the
intermediate levels as well compared to other two variahte® solver. In addition to
nonlinear iterations, variant 3 requires slightly lessrage number of linear iterations per
nonlinear iterations at the final level while, on the othandhahis number is also reduced
for variant 2 at the intermediate levels as wellhe most important observation of all
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Figure 7.5: A comparison of performance of different vaisaof adaptive finite element
solver using the finer initial mesh.

however is that overall, the average number of linear itenag per nonlinear iteration
appears to be independent of the problem sizes for eachntasfdhe solver

As a next case, Figure 7.5 shows a similar behaviour in thegpotational times while
starting with initial mesh case 2. No jump in the growth ofeims observed on the first
level forc = 0.1, 0.2 as these values lead to refinement of a lot more elements cethpa
to the case for = 0.3. A similar deterioration in time can be observed at any other
refinement level provided the original problem size is ngh8icantly altered as a result of
local refinement process. Finally, ignoring the additidimak of optimization of meshes
(which also appears to be linear), all three variants of tilees appear to be close to
optimal, with approximately linear growth in the computaial time. The qualitative
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behaviour of the iteration counts is similar to that showmable 7.3.

7.8.4 Further Discussion

In this subsection, an overall comparison between the bhetieand efficiency of different
schemes is presented. Note that all cases presented hezaisga&f AMG precondition-
ing of the elasticity block, as the use of GMG preconditignsnot possible while taking
into account the optimization of meshes within an adaptigerithm. Figure 7.6 shows
a comparison of the estimated global error with respectaa@tmputational time for dif-

ferent schemes using the initial mesh case 1. The selectsl ocases (see Chapter 6)

are also included to make it an overall comparison. It carelea shat the selected mesh
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Figure 7.6: A comparison of performance of different saver
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cases and the different variants of the adaptive algorittenefficient in reducing the error
compared to uniform refinement cases. Moreovergfer 0.2 & 0.3, the selected mesh
cases appear to be efficient compared to different varidiie @daptive algorithm; how-
ever, this difference is very small. Note that each varidradaptive algorithm is fully
automatic in optimizing the computational process. On ttneiohand, the meshes used
in the selected mesh cases are based on a large number ahexqutsrto obtain a desired
accuracy at minimal cost. As a whole, the adaptive algoridippears to be more con-
venient than the selected mesh cases despite a slight $ecireéhe computational cost
(for ¢ = 0.2 & 0.3). Furthermore, both the variants 2 & 3 of adaptive algoritme com-
paratively better than the variant 1 in reducing the overalbr at a fixed computational
cost.

7.8.5 Accuracy of Intermediate Solves

The results presented so far were obtained by solving thiénaan EHL problem to full
accuracy at each refinement level. However, it is generatynecessary to solve the
problem too accurately at each intermediate level. In ofN@ds, it is only necessary to
solve a problem to a sufficient precision to obtain a good@yppration to the solution in
order to direct the adaptive procedure. In this subsecti@neffect of different stopping
tolerances for nonlinear solves at each of the intermedkatds is discussed. It should
be noted that the final level problem will always be solvedusately. For this purpose,
an experiment is setup using variant 3. Recall that variaml@ performs optimization
on the refined meshes at the final level. In this experimefihement criterion:e;,, =
0.25 eq 1S USed. Note that, there is no specific reason in the choicamént 3 of
the solver and the refinement criterion other than to makeyipigal test. A total of four
refinement levels are used in this experiment, with initiabimcase 1 as a base level mesh.
The results obtained for different stopping toleranceglierNewton solver are given in
Table 7.4, in terms of the number of pressure unknowns (hp)tdtal problem size, the
nonlinear iterations (ni), the linear iterations (li) ame ttotal solve time (excluding time
for optimization at final level), the optimization time aethinal level and the global error
estimation.

Note that significant savings in the computational timesaatéeved with an increase
in the tolerance. The use of tolerance as high@&s leads to abou25% savings in the
total solve time while keeping the other values almost ungkd. A further increase in
the tolerance ta0~" affects the refinement process slightly. This tolerancaltein a
slightly smaller problem with a relatively large error. M@sobably, the quality of initial
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Table 7.4: Effect of different stopping tolerances for mtediate level nonlinear solves
upon the overall performance of the adaptive solver.
tol | np totaldof ni i time(sec) opt-time (sec) estimated globabr

Us | 12835 1569053 3 36 1640 669 0.0429396

107® | 12818 1567527 3 36 1495 666 0.0429393

1072 | 12768 1562842 3 34 1276 666 0.0429871

107! | 12747 1564912 3 32 1262 669 0.0429649

107% | 12323 1277703 5 61 1327 537 0.0461213
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Figure 7.7: The effect of tolerance for the intermediates®bver the performance of an
adaptive procedure.

guess is also not so good causing the computational workgbtisi grow. Hence, an
intermediate tolerance af)~! is recommended on the basis of this test.

Finally, Figure 7.7 shows the behaviour in the growth of thputational time for the
accurate and approximate solves at intermediate levettu@irng the optimization time).
One can see that the jump in the computational time at thddiret has not appeared in
the case of the approximate solve, and the algorithm hasladinooth linear growth in
the computational time. Note that for each levél = 1,2, 3, 4), the problem is solved
approximately until thei — 1) level.
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7.8.6 A Modified Error Estimator

The results presented so far were obtained using the ZZ-estimator discussed in Sec-
tion 7.3. For the EHL problems, it is even possible to sinyalifis error estimator further.
Recall that a fully-coupled EHL point contact approach ¢usethis work) involves a
numerical solution of the linear elasticity equation o2 domain. There are three
solution components corresponding to each mesh point,hwigipresent displacement
components in each spatial direction. Amongst them the ohasinant components of
the solution vector are those in the z-direction, see Se@i6. Hence, such solution
components can exhibit relatively large errors on coargks giue to the large variation in
their values. Therefore, it may be quite useful to only cdesthose solution components
to find an approximation of an error. Lef, represent a finite element approximation of
the z-displacement solution component, which can be wrdte

n
Whp = E Niw; ,
i=1

where N; represents the basis function corresponding to a nodedn is total number
of nodes. The gradient of the above approximation can béenrés:

Vuwy, =Y VNuw; . (7.6)
=1
Thus replacing the stress vector in equation (7.1) with tkgresssion given in equa-
tion (7.6), a simple error estimator can be defined inith@orm as:

et | = /Q(Vw* — V)T (Vw* — Vawy,)dQ , (7.7)

where the recovered gradievitv* is obtained using the same procedure as described in
Section 7.3 (i.e. taking a piecewise linear approximatiaedal upon recovered nodal
values obtained by averaging over elements surroundiny eade). Some provisional
results using this simple error estimator to assess itscgtylity are now presented.

Figure 7.8 shows a comparison of the error estimates foeréifit variants of the
solver together with the selected mesh cases and the uniéimement cases (both with
and without optimization). Starting with initial mesh cdsdor each variant of the solver,

a total of three refinement levels have been used for a refimeonigerion withc = 0.1
and a total of five refinement level in the other two cases. @nesee a similar behaviour
in the results as was observed in the previous subsectionedah of the refinement
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Figure 7.8: A comparison of global error estimation for elifint mesh refinement strate-
gies using a coarsest meshl6f;71 points.

criteria, variant 1 appears to result in an equivalent aagucompared to the optimized
case of uniform refinement. However, the selected mesh easewven more efficient. On
the other hand, variant 2 shows a better reduction rate of @xith respect to a problem
size) throughout however, variant 3 tends to yield almastesaccuracy at the finest level.

Finally, we note that this simplified version of the origimstimator is relatively easy
to implement and seems to work just as well as the originahesor. However, it will be
necessary to undertake a number of further experimentsiffereht base level meshes
and the different EHL cases to demonstrate its applicgbiiitull.
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7.9 Conclusion

In this chapter, an adaptive finite element solution to ayfabbupled EHL problem has
been discussed. A ZZ-error estimator has been used to firloddlesrror approximations
and these local error estimations are used to find an estimatithe global energy error.
These error estimations have been used to mark elementsfifeement which were ex-
hibiting larger errors than a prescribed tolerance. Thaeefient criterion used at each
refinement level was based on the largest of the local ertonates. The local refinement
of the meshes was carried out using the algorithm that isridbestin Section 7.5. Three
variants of the adaptive algorithm are considered in thiskwd he first variant applies
a standard h-adaptive algorithm. The second variant ceresicthe post-optimization of
the meshes at each refinement level in order to increase theaay. With the post-
optimization process for the meshes, a new mesh was obtairaath level which means
that the hierarchy of meshes does not exist anymore. Thitkenéhe derefinement nor
the use of GMG based preconditioner is possible. Variant tB@fadaptive solver only
utilized the optimization at the final level in order to avdite possibility of excessive
green elements on tiD surface mesh (which remains unchanged by the optimization
process).

The accuracy appraisal of all three variants of the solveewade using two differ-
ent initial meshes against the use of uniformly refined megheth optimized and non
optimized) and against the efficient meshes selected inrthaequs chapter. The results
showed that both the variant 2 and the variant 3 appearedftarpebest in terms of accu-
racy. In other words, variant 2 & 3 have close resemblance anthr-adaptive algorithm
(at least at the final level) resulting in better results. Avdback of the optimization of the
meshes was to lose the hierarchy of meshes and the data. eiowechanged surface
meshes allowed us to generate a better initial guess (bingainear elasticity problem
with the interpolated boundary condition) to reduce the potational work at the subse-
quent levels. Moreover, all three variants of the solvemsttbalmost a linear growth in
their computational time despite of quite few zig-zag bédans.

Significantly, it was shown that an approximate solve at editihe intermediate levels
leads to a smooth linear growth in the computational timetifeumore, due to additional
time required for the optimization process of meshes, u&i2 & 3 require a slightly
longer time than the variant 1 (for a fixed problem size). Hasvgethis slight compromise
on the computational work ensures that these variantstr@salmore accurate solution
compared to variant 1. Finally, a simplified version of the-&Zor estimator was imple-
mented. This estimator is only based on computing the gnésledf the z-components of
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the solution of the elasticity problem, and is relativelgg#o implement. The initial re-
sults showed that the modified estimator can also be eftertian adaptive fully-coupled
EHL finite element point contact procedure.

Overall, it is demonstrated that automatic control of thmalanesh adaptivity results
in better meshes than were obtained by experimentationapteh6, and that the optimal
convergence behaviour of the preconditioned iterativeesohtroduced in Chapter 4 & 6
is still maintained within this adaptive algorithm. Funtire®re, only moderate accuracy
is required from the iterative solves at the intermediatshrievels in order to guide the
local refinement procedure effectively.



Chapter 8

Conclusion

8.1 Summary

In this research a numerical study into the efficient solutd fully-coupled EHL line
and point contact problems has been undertaken. This istanséan of previous work of
Habchi [49-51] who first used a coupled approach to solve Etdblpms based upon the
elastic deflection in the film thickness equation being mieddby using a finite element
solution of Lamé’s equation of linear elasticity. Conyréo the traditional half-space ap-
proach for elastic deflection the finite element model onsusformation at the neigh-
bouring points to calculate the elastic deflection at a poithe domain. This results in
a highly sparse matrix and makes it easier to use sparsexmatthods. Furthermore,
the strong coupling makes it possible to reach the solutidimont any special treatment
for convergence. The drawback, however, is the need to sledvelasticity equation in a
2D domain for line contact problems andB domain for point contact problems, which
makes the size of computational problem very large.

In this thesis the issue of the high computational and mensosts of the fully-
coupled approach to solve EHL problems was discussed. Hahah [49-51] used a
sparse direct solver to solve the linearized system at easttdwh step. To solve very
large sparse problems, iterative methods are considerbd superior to sparse direct
methods in terms of memory, however good preconditionexseqguired to make them
computationally competitive. Therefore the main objextf this study has been to de-

134
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velop a fast and efficient preconditioned Newton-Krylowsolfor fully-coupled EHL
problems. In particular, a new blockwise preconditiones haen developed which is
designed to exploit the specific structure of this problem esmbines algebraic multi-
grid (AMG) /geometric multigrid (GMG) for the linear elasiiy block with a separate,
efficient, approximation to precondition the Reynolds part

In Chapter 4, the accuracy of our implementation of both the ¢ontact solver and
the point contact solver have been validated against ghddigesults in the literature. In
Chapter 5, the accuracy and performance of different veriafithe proposed line contact
solver was assessed. It was shown that the accuracy of theutedhEHL solution is
not significantly affected using a suitable set of selecmduniform meshes. Moreover,
it has been shown that the AMG preconditioned variant of tbefive solver performs
better than the sparse direct solver. The GMG preconditisagant of the iterative solver
was observed to be even more efficient than the AMG precamditl variant, however
one needs to accept restrictions over the meshes due todbal géfinement needed to
generate the hierarchy of meshes for GMG. Later on, theteffiecarying the Poisson
ratio (for the2D elastic model) over the accuracy and the performance efdontact
solvers was demonstrated. It was shown that the accuradyedERL solution is not
affected with the variation of Poisson ratio provided a sidfitly fine elasticity mesh
is used. Moreover, it was demonstrated that the performahpeeconditioned iterative
solver remains optimal as the Poisson ratio is increasedwéder, as the limit 00.5 is
approached the preconditioned iterative solver finallgdetates.)

In Chapter 6, the accuracy and the performance of the prdpbsdeHL point contact
solver is presented. First of all, a large number of expents@ave been carried out to
investigate the accuracy of the elastic deformation asagdie EHL solution over a num-
ber of non-unifornr8D meshes. It was possible to select a set of efficient meslcbdisat
a substantial reduction in the total computational costagseved without significantly
affecting the accuracy of the EHL solution. Moreover, thelaation of the precondi-
tioning strategy was shown to significantly outperform tparse direct solver, with huge
savings in memory and time being obtained. As with the ling&ct case, a further sav-
ing in the time and the memory growth is obtained using the Gpi&onditioning of
the elasticity block. However, these savings are not safiidio overcome the restriction
from using a global refinement process to generate the bleraf meshes. Furthermore,
it was shown that both the time and memory growth appeareeé tmbar with increas-
ing problem sizes. Finally, it was shown that unstructuresianchical meshes without
appropriate mesh optimization can lead to poor quality EBdutts: again suggesting a
preference for the use of AMG over GMG.
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In Chapter 7, a locally adaptive finite element procedurdttly-coupled EHL point
contact problems was discussed. The local h-refinement asegdon the approximation
of the local error in the energy norm using the ZZ-error eaton The main adaptive
solver was distinguished into different variants on thesagpost-optimization (or not)
of the locally refined meshes. It was shown that the adaptigegulure with at least
the last level of the locally refined meshes being optimizedgsms better in terms of
accuracy. Moreover, it was shown that the application optieeonditioning strategy also
performs well for this locally adaptive finite element sclegrand that a linear growth in
the computational cost is still observed. Finally, soméahresults were presented for
a simplified version of the ZZ-error estimator which was lohasa the gradients of the
z-component of the solution of the elasticity problem. Thes®risional results showed
that the modified estimator appears to work as well as thénadigstimator.

8.2 Future Work

In this thesis an efficient preconditioned iterative salntio fully coupled EHL line and
point contact problems has been discussed. Numericakseshdw the effectiveness of
the strategy used both for line and point contact problemgortantly the number of
linear iterations at each nonlinear solve is independenh®fsize of the problem, and
both the computational times and the memory growth are alopignal with increasing
size problems. Especially for the fully coupled point cattaroblem, huge savings in
the computational times and the memory growth are made lgesskurthermore, the
proposed strategy has also been shown to be effective asfalbcally adaptive finite
element solution of the point contact problem. Nevertreltdwere are still possible ways
to improve, and further extend, this work to obtain evendsetsults for a variety of EHL
problems.

e Firstly, it must be acknowledged that due to the time congsassociated with this
project it has only been possible to test the proposed tqaksion a modest number
of problems with a selection of parameters. In order to ftelst the robustness of
our techniques it will be beneficial to consider even morelilog cases, a wider
selection of coarse grids, and a broader range of lubricaotels.

¢ In Section 4.4, the Reynolds block; was used effectively as an approximation of
the Schur complemerst = J;; — J12J2‘21 Jo1, and an efficient sparse direct approach
was used to calculate the effect of its inverse over an aryitvector (i.e. z, =
Jii'r,). However, it may be even possible to consider the solufign = r, by
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means of an iterative method with; as a preconditioner for it. Moreover, as
the J;; is the discretization of an advection diffusion block, se tise of AMG
preconditioning may also be effective.

e A natural extension of this work is to parallelize the EHL eadsing the MPI li-
brary [42,45, 47]. This is possible with the use of paralfrse direct solver [5]
and the use of a parallel AMG approach [79].

e Although the preconditioning strategy developed in thigkvo solve the fully-
coupled EHL problem is shown to be highly effective, thisiéyausing linear finite
elements. An important extension will be to make use of higitder elements,
as shown by Habchi et al. [49-51], with the development of ficient AMG
technique for the elasticity problem using higher ordemalets (extending [106]
for example). It is to be expected that this would allow evettdy performance
results especially for point contact problems, where it m@tgpossible with the use
of linear elements.

e It is not necessary to restrict the above extension to coatis higher order ele-
ments. For example, Lu et al. have shown that higher ordeodisuous Galerkin
(DG) finite elements may be used effectively to discretieeRlynolds equation [70
72].

¢ With the extension of this work to make use of both paraltelend higher order
elements, the extension to transient EHL point contactlprob [45, 46], may well
become feasible without excessive run times. This would verg significant
development.
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Appendix A

Elasticity

The shape of an elastohydrodynamic lubrication film depeipds the elastic deforma-
tion of the contacting surfaces. In most traditional apphes, e.g. [20, 46,47,73, 102,
104], the elastic deformation of contacting surfaces wésutated by using a half space
approach, which is based upon an analytical solution ofldsgieity equations on a semi-
infinite domain. However this approach only provides infatibn about elastic defor-
mation at the surface. On the other hand, the numericalisolof the classical linear
elasticity equation on a finite domain provides considgrabbre information, such as
elastic deformation throughout: it can therefore providgieeers with further informa-
tion such as stresses throughout the contacting elemerwevér the linear elasticity
equation needs to be solved 2B domain for line contact problems, andB domain
for point contact problems. In a FEM solution of the linearsticity equations, the more
the number of mesh points, the more accurate the solutidm&:ilThis however leads to
a significant increase in the size of the discrete algebsatem to be solved. It should
also be noted that a fine mesh is required in the regions wheredlution requires the
greatest resolution. Therefore special attention is requio choose different mesh sizes
in different parts of the domain, especially in point contamblems in order to get a
precise solution with minimal computational cost. The s of this experiment is to
investigate different mesh sizes in different parts ofiBedomain to get a “sufficiently
accurate” elastic deformation with as few finite elementp@ssible. This investigation
is empirical and will be based upon the comparison of difiereimerical solutions com-
puted on different meshes.
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Figure A.1: A view of the top of the 3D domain

The pressure generated inside the lubricant film is high gim@u the contact region
to lead to a significant elastic deformation while, on thesotiiand, the pressure outside
the contact region is relatively low and does not lead to aiBaant elastic deformation.
Moreover, the precision of the elastic deformation is int@otronly in the contact region,
since this is what affects the Reynolds equation. Hence ro@ose that a fineD mesh is
required in the contact region up to a certain depth, butmtite whole elasticity domain.
Nevertheless, a suitable mesh size needs to be definedethisidontact region in order
to get a sufficiently accurate solution in the contact region

In this experiment, the linear elasticity equation is sdle® a3D domain which is
a cube of dimensiof—30, 30] x [—30,30] x [—60, 0], the motivation behind choosing
this dimension comes from the work of Habchi [50,51], whoekgeriments on different
dimensions and adopt the said dimension in his work.

A view (XY plane, whereZ = 0) of the top of the domain is shown in Figure A.1.
For the sake of simplicity, the notatiofd and R2 are used to represent different regions
in the domain,R1 representing the whole domai®2 will represent a central region of
dimension—4.5, 4.5] x [-3, 3] x [-3, 0] which contains the contact domgin4.5, 1.5] x
[—3, 3] (considered in this work) on its top surface. It should beedahat the length
of R2 is chosen—4.5,4.5] instead of[—4.5, 1.5] in order to get a more precise elastic
deformation solution. Moreover, in the following sectianyill be shown that depth ‘3’
of region R2 is good enough to get a sufficiently accurate elastic defoomaolution.
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Later in this appendix, further regioii#3 and R4 will be defined, whose dimensions will
be stated explicitly.

Different resolutions, denoted resolutiby2 and3, will be used for the mesh sizes in
the central region®2 and/or R4) throughout this appendix. Resolution 1 is the coarsest
resolution and the mesh size for this resolution is atod375 which corresponds to
64 x 64 points in the contact domaiti4.5, 1.5] x [—3, 3]), Similarly, resolution 2 and
3 corresponds td28 x 128 and 256 x 256 points in the contact domain respectively.
In order to define the most appropriate mesh size away frortrateregion, a number
of experiments have been carried out for each region andtseme presented in the
following sections. For every test case the root mean sceraoe (RMSE) is calculated
with respect to the finest case. This will be used to providelaa about the mesh sizes
that need to be adopted for sufficient accuracy in the saiutfdhis problem.

All the meshes used here are generated using NETGEN [95idér to get a required
local mesh size density, a mesh size file is provided to NETQEMNch specifies»’
points given by théz;, y;, z;)-coordinates and parametérs where the mesh size will be
reduced at least th;. It should be noted that these points are not necessarily contained
in the final mesh.

It should also be noted that an equivalent geometry of a stestbel contact is con-
sidered in this work, and the elastic material contains i@ elastic properties of both
contact surfaces, and hence the solution will provide tted &dastic deformation of both
contacting surfaces. The equivalent Young’s mod#ysand Poisson ratio,, of equiv-
alent geometry are given by (see Section 2.6)

Veg =V =0.3

By =5(1=1")

Unless stated otherwise, a Hertzian pressure profile istoseatry out all experiments in
this appendix.

A.1 Depth Test for RegionRR2

In this section, the main domain is divided into two regidis and R2 as shown in
Figure A.1(a). A fine mesh of resolution 1 has been used iroreg and a relatively
coarse mesh is used in regidti — R2. The behaviour of fine mesh iR2 down to
different depths has been investigated.

It is clear from Figure A.2 that any increase in the depthra8edoes not lead to any



Chapter A

151

Elasticity

0.9

k& depth1 —e—

e
A
i

depth O L

epth 3
pth6 —x—
depth 12 —«—

0.8

0.7

0.6

0.5

0.4

0.3

Non-dimensional elastic deformation

0.2

0.1

0.98

0.96

0.94

0.92

0.9

0.88

Non-dimensional elastic deformation

0.86

0.84

0.82

0.8

T
depth0 —+—
depth1 —e—
depth 3
depth 6 —*—

depth 12 —=—

a

N\

N
\

\

\
A\

N

- \\\

AR
\
\

-0.4

-0.2

0 0.
X

(b) close-up

2

0.4 0.6

Figure A.2: Effect of using a fine mesh (resolution 1)/i2 down to different depths:
Accuracy of the elastic deformation solution along the @hine (whereY” = 0).

significant improvement in the elastic deformation resdibreover, RMSE of each depth
case is calculated with respect to a case with depth ‘12’ amdegorted in the Table A.1.
One can seen that the RMSE of depth 3 is less titar, relative to a non-dimensional
deformation ofO(1). Therefore, depth 3 ak2 will be adopted in our cases.

A further question arises here is, what is the effect on thettdef regionR2 with an
increase in the fine mesh resolution. For this purpose, anetperiment is carried out in
which resolution 2 has been used in regie& down to depth 3 and 6. Again Figure A.3
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Table A.1: Effect of fine mesh (resolution 1) 2 down to different depths: RMSE of
each case is calculated with respect to a case with depth 12.
Case | RMSE

Depth0 | 8.92 x 1073
Depthl | 4.55 x 1073
Depth3 | 9.52 x 107*
Depth6 | 3.93 x 107
Depth12| 0.0 x 10°
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Figure A.3: Effect of using a fine mesh (resolution 2)/#2 down to different depths:
Accuracy of the elastic deformation solution along the @rine (whereY” = 0).

justifies that depth 3 of regioR2 is working sufficiently well for the higher resolution
problem. The RMSE of these two data sets (i.e. comparingdhien with refinement
to depth ‘3’ against the solution with refinement to depth 16'2.35 x 10~*, which is
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again very small. This experiment concludes that a resoiuti regionR2 down to depth
‘3’ is sufficient to get a sufficiently accurate solution. Té#re, depth ‘3’ of regionk?2
will be adopted in these and higher resolution cases.

A.2 Selection of a Reference Solution for Further Analy-
Sis
In the previous section, it was suggested that a fine meslgioné2 down to a depth
‘3’ is sufficient to get a sufficiently accurate solution. Bed proceeding to the next ex-
periment we need to define a more accurate solution which wedas the “reference
solution” in order to get a comparison of different numergalutions computed on dif-
ferent meshes. This reference solution should be such tlyatuather increase in the
resolution of the problem does not lead to a significant im@neent in the solution. For
this purpose, a test has been undertaken to check the cencergf solutions with in-
creases in the resolution. Again, the main domain is dividedtwo regionsRk1 and R2
as shown in Figure A.1(a). The coarsest resolution we censitlin this analysis uses a
mesh size abou?:1875’ everywhere in region?2 and a mesh sizé)'5’ outside of region
R2. In the other three cases, the resolution is increasedwherg in region?2 and uses
the mesh sizes which correspond to resolution 1, 2 and 3.eTbes cases are named as
‘coarse resolution’, ‘resolution 1’, ‘resolution 2’ ance$olution 3’ respectively. It should
be noted that resolution 3 case leadd 5®02 299 nodes in the mesh (over 45 million
unknowns), which makes the problem very large and aroundGBL memory was re-
quired to solve this problem. These four results are pldtigdther in Figure A.4, while
the RMSE of each resolution with respect to finest resolusgorovided in Table A.2.
Figure A.4 shows that results on resolution 2 and 3 are vergechnd suggests that a
further increase in the resolution will not significantlypnove the solution. This fact can
also be justified from Table A.2, which reveals that RMSE il wader 10~3, even for
resolution 1. Hence, we conclude that resolution 1 is seffity accurate in this refined
region, whilst the resolution 3 case provides a particyladcurate solution, which can
be used as a reference solution to do further analysis tests.

A.3 Mesh Sizes Tests (Meshing Strategy 1)

In the previous section, we have defined a reference solfdrdarther comparisons. In
the convergence tests (see previous section), we incrélasedsolution everywhere in
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Figure A.4: Effect of using different resolutions in regid2: Accuracy of the elastic
deformation solution shown along the centreline (whére: 0).

Table A.2: RMSE of different resolution cases in regie® calculated with respect to the
finest resolution case.

Case | RMSE
Coarse Res] 3.06 x 1073
Res. 1 8.51 x 1074
Res. 2 2.10 x 1074
Res. 3 0.0 x 10°

region R2 and moreover, we have used a relatively small mesh size if0the region
R1 — R2. However, all four extreme cases in the previous sectiot tedarge numbers
of nodes, which are respectively302 424, 3 505403, 4950405 and 15802 299. This
results in a very large problem to solve (even at resolutiprwhich is very expensive
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from a computational point of view. For a sufficiently acderaolution, the small mesh
size everywhere in the domain is not necessary, while, keeipi mind, the region of
interest. Hence a number of questions arise as to how to wraphe efficiency:

1. Is the mesh size ‘0.5’ enough in the regiBih — R2 or can a coarser mesh size be
used without significantly affecting the accuracy of saof

2. Does the mesh size usedin — R2 need to be the same everywhere in the region
R1 — R2 or can this be adapted only in a certain region around regitsh

3. Does the mesh size at each resolution need to be adoptgavbaeee in regionz2,
if no, where should this resolution be adopted insitieand what should be the
dimension of that region and finally, what mesh size shouladael in the remaining
region of R27?

These questions lead to the definition of two more sub-regioamelyR?3 and R4, out-
side and inside of regioR2, respectively. This decomposition of the whole domain can
be viewed in Figure A.1(b). To answer all these questionsijmaber of further tests have
been carried out and results are discussed in the followibeggctions.

A.3.1 Resolution1

In this section, all tests use resolution 1 in the most refregibn, and have been carried
out in order to define the most appropriate mesh sizes awaytfie most central region.

A.3.1.1 Effect of Mesh Size Outside of Regio®2

In this experiment, the main domain is divided into two regid1 and R2. The mesh
size in R2 with depth 3 is kept constant (at resolution 1), whilefin= (R1 — R2),
different mesh sizes have been tested. It is clear from ther&iA.5, that any decrease
in the mesh size below.0 does not lead to any significant improvement in the solution.
Moreover, Table A.3 reveals that RMSE of mesh dizeand0.5 is almost the same (less
than10~2 error relative to ar)(1) displacement). Therefore, the mesh sizein region
R1 — R2 will be adopted in our work for the current resolution.

For a60 x 60 x 60 domain, the mesh size0 leads to roughly216000 nodes in
R1 — R2, which is still quite large in number. So instead of adoptimg mesh size in the
outer regionk1 — R2, we carried out a further test, where we have introduced iameg
R3 outside ofR2. A mesh size ol.0 is adopted ink3 — R2, while a size 06.0 is used in
the remaining region outside &f3. This test is carried out on different dimensiond3t
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Figure A.5: Effect of mesh size outside of regiBa: Accuracy of the elastic deformation
profile (shown along the centreline).

Table A.3: Effect of mesh size outside of regi®: RMSE of each case is calculated
with respect to the reference solution.
Case | RMSE

Very coarse | 6.67 x 1073
Mesh-size 5.0| 4.62 x 1073
Mesh-size 2.0 1.81 x 1072
Mesh-size 1.0| 8.47 x 10~*
Mesh-size 0.5| 8.51 x 10™%

There are two extreme cases, one with “no box” meaning a meslo®5.0 is adopted in
the remaining domain outside &2 and the other withkR3 overlappingR1, i.e. a mesh
size of 1.0’ is used in the entire region outside 8. These results are plotted together
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Figure A.6: Effect of a fixed mesh size in the regiBa — R2 with different dimensions
of R3: Accuracy of the elastic deformation profile (shown along ¢kentreline).

Table A.4: Effect of a fixed mesh size in the regiBh — R2 with different dimensions of
R3: RMSE of each case is calculated with respect to the refersolution.
Case | RMSE

No box 4.62 x 1073
Box15 x 15 x 15 | 1.88 x 1073
Box20 x 20 x 20 | 1.45 x 1073
Box30 x 30 x 30 | 9.42 x 1074
All domain 8.47 x 1074

in Figure A.6, which shows that choicé8 x 20 x 20 and30 x 30 x 30 works fine, but
on the other hand a careful look on the Table A.4 suggests3that30 x 30 is a better
choice thar20 x 20 x 20 for the current resolution case (the former giving an erfdess
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Table A.5: Effect of using mesh sizé9h, 1.5h and2.0h in R2 — R4 (whereh is mesh
size corresponding to resolution 1): RMSE of each case aulzkd with respect to the
reference solution.

Case | RMSE

1.0hinR2— R4 | 1.48 x 1073
15hinR2— R4 | 1.71 x 1073
2.0hinR2— R4 | 1.78 x 1073

than10~3, while the latter gives an error which is slightly larger).

A.3.1.2 Coarsening of Mesh in the Central Region

So far the mesh size in a central regifd was kept constant and different mesh sizes
were tested outside this region, in the remaining domainalllexperiments, the mesh
size in the central regio®2 was choser).09375. This mesh size, although not very
small, still leads to a relatively large number of pointsu@bly 147456) in the central
region R2. In this test, a regio?4 of dimension[—1, 1] x [—1,1] x [-2,0] is defined
inside the central regioR2 and the mesh siz@(09375 is adopted in this new regioR4.
Now in the regionk2 — R4, 1, 1.5 and2 times of this mesh size is adopted. The number
of nodes contained in the mesh for these three cases aretigspe303591, 255578 and
116548.

The RMSE of all these three cases (with respect to the finEserece case) are given
in Table A.5. One can observe that, switching froiw, to 1.5h in R2 — R4, although not
significantly affecting the number of nodes, does increlas&MSE by a modest amount.
On the other hand, switching from5A to 2.0k in R2 — R4 does significantly affect the
number of nodes, but with only a very small further increas¢he RMSE. Moreover,
the first case is the same as case-4 of Table A.4, the onlydiife is the detail of the
mesh generation, i.e. in the former case mesh sizes aredpwbgeparately for region
R2 — R4 and R4, while in the later case (case-4 of Table A.4), mesh size wasiied
for whole regionR2. This led to generation of two different meshes leaving alsma
effect on difference in nodes which 1§7, but the RMSE is changed from42 x 10~
to 1.48 x 10~3. So keeping in mind this variation in the solution, the cleod¢ 2.0/ in
R2 — R4 seems to be a better choice, as this is leading to a largeadecre number
of nodes about87043 without significantly affecting the RMSE. Figure A.7 shows a
graphical comparison of all three cases. It should be ndiat] &dopting different mesh
sizes inR2 — R4 is not significantly affecting the overall solution, and aatihwariation
in the individual nodal values is observed around the centre
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Figure A.7: Effect of using mesh sizégh, 1.5 and2.0h in R2 — R4 (whereh is mesh
size corresponding to resolution 1): Accuracy of the etadéformation profile (shown
along the centreline).

A.3.1.3 A Note on the Reduction in the Depth of?4

In this experiment, the effect of halving the depth @t is discussed, i.e. mesh size
0.09375 is adopted ink4 down to depth 1 instead of 2. This lead to a small reduction in
number of nodes from16548 to 110984. Table A.6 shows that, it has slightly affected the
RMSE. Moreover, Figure A.8 shows that a small variation enseear the centre. Being

a coarse resolution case, decrease in depth of rggios not significantly affecting the
number of nodes contained in resultant mesh. Thereforéh&current case, there is no
significant gain in reducing the depth Bft.



Chapter A 160 Elasticity

1
depth 2 ——
depth 1 —e—

o f \

08 / \

07 j x

06

05

\

Non-dimensional elastic deformation

0.3 /
0.2 M*
0.1 e
0
4 3 -2 1 0 1
X
(@)

. d:ep:h 2 —*—

0.98 /f >\\ depn L —e—
/ N

WSS N
. \

X

Non-dimensional elastic deformation

0.84 / \
0.82

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
X

(b) close-up

Figure A.8: Effect of using a mesh size corresponding tolut®m 1 in R4 down to
different depths: Accuracy of the elastic deformation pedhown along the centreline).

Table A.6: Effect of using a mesh size corresponding to teswl 1 in R4 down to
different depths: RMSE of each case is calculated with i@dgpehe reference solution.
Case | RMSE

Depth 2| 1.78 x 1073
Depth 1| 2.14 x 1073

A.3.1.4 Conclusion and Overall Comparison

So far we have divided the whole domain into four regions,fitst is the most central
region, R4, and has dimensiop-1, 1] x [—1, 1] x [—2, 0], where a mesh siz&09375 is
defined. Second regiaR?2 is of dimensiorj—4.5, 4.5] x [-3, 3] x [—3, 0], and a mesh size
0.1875 is selected ink2 — R4. In the third regionRk3, whose dimension is-15, 15] x
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Figure A.9: A comparison of elastic deformation profileswgsiine and selected mesh of
resolution 1.

[—15,15] x [—30,0], a mesh siz&.0 is used ink3 — R2. And the fourth region is the
remaining region of the domain, where a mesh s$ifeis used. The selection of this
mesh leads t0116548' nodes in the domain. On the other hand, the finest mesh, with
which, we are comparing the solution is split into two maigioas: the first region is of
dimension—4.5,4.5] x [—3, 3] x [-3, 0], where the mesh siZe09375 has been used; and
second region is the remaining region of the domain, whereshrsize of).5 is used.
This finest mesh leads 8505403 nodes in the domain. A comparison of results on both
meshes is given in Figure A.9, and it can be seen that botlitsesme very close, with
only a relatively small loss of precision with a huge redoictin the number of points,
when switching from a very fine mesh to the selected mesh.
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Table A.7: Set of mesh cases for resolution 2: details of ns&=bs used in different
regions of the domain.

Case | R4 R2-R4 R3-R2 R1-R3
Case-1 0.046875 0.1875 1.0 5.0
Case-2 0.046875 0.09375 1.0 5.0
Case-3 0.046875 0.09375 0.5 5.0
Case-4 0.046875 0.09375 0.5 2.0
Case-5 0.046875 0.09375 0.5 1.0
Fine-case| 0.046875  0.046875 0.5 0.5

A.3.2 Effect on Mesh Sizes with Increase in Resolution in th€entral
Region
A.3.2.1 Resolution 2

Recall from previous section that, we divided the whole dionrato four regions, where
we have used mesh siz€9)9375, 0.1875, 1 and5, from central to outer regions, respec-
tively. The mesh sizes defined (in different regions) wenmgasponding to resolution 1,
which we have adopted in the central most region. In this@ectve discuss the effect
of increasing the resolution in the central region upon tleshsizes defined before. In
order to proceed, first of all, we divide the whole domain itte following four regions:
R1 being the whole domain

R3 is a region of dimensionis-10, 10] x [—10, 10] x [—20, 0]

R2 is a region of dimensions-4.5,4.5] x [—3, 3] x [—3,0]

R4 is aregion of dimensions-1,1] x [—1,1] x [-1,0]

It should be noted that, dimensions 88 and R4 are different from those used in the
previous section, and these are selected as a result akdiffexperiments done likewise
in the previous section.

The first case considered here uses the mesh sizes seledtexrl previous section
(from central to outer region) except the resolution 1 idaegd with resolution 2 in the
central regionR4. In the other cases, the mesh sizes are decreased in theeyiters
to check their effect on the accuracy of solution. The mesbssiwe used for each case
(considered here) are given in the Table A.7. While definirggrtext case, changes made
in the previous case are in bold face.

Results corresponding to these cases are plotted togetiégure A.10 and RMSE
for all these cases with respect to reference solution e $ection A.2) are given in
Table A.8. Figure A.10 reveals that results correspondincpse-4, case-5 and fine-case
are very close to each other, i.e. switching to case-5 anfirtbecase does not make a
noticeable difference in the solution. Moreover, from Eabl.8, it is clear that RMSE
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Figure A.10: A comparison of elastic deformation profiles (fesolution 2) correspond-
ing to different mesh cases defined in Table A.7
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Table A.8: RMSE of solutions (computed on different mestesatefined in Table A.7)
with respect to reference solution.
Case | nodes RMSE

Case-1 113412  3.60 x 1073
Case-2 305095 1.78 x 1072
Case-3 421270  1.10 x 1073
Case-4 462344  5.23 x 1074
Case-5 794376  5.23 x 107*
Fine-case| 4950405 2.10 x 10~*

Table A.9: Set of mesh cases for resolution 3: details of ns&=bs used in different
regions of the domain.

Case | R4 R2—-R4 R3-R2 RI1-R3 Remarks
Case-1 0.02344  0.09375 0.5 2.0

Case-2 0.02344  0.04688 0.5 2.0

Case-3 0.02344  0.04688 0.5 1.0 -

Case-4 0.02344  0.04688 0.5 0.5 R4 with depth ‘2’
Fine-case| 0.02344 0.02344 0.5 0.5 -

of case-4 is not affected, while switching to case-5. Altdfouswitching to the fine-
case, withd 950 405 nodes in the mesh, does decrease the RMSE however it isyalread
at an acceptable value before this huge increase in the s@®lbem. Therefore, it is
suggested that mesh sizes defined in case-4 give a suffycaulirate solution (RMSE
well under10~3 relative to anO(1) displacement) with less computational cost, as this
case leads to onl62 344 nodes in the mesh.

A.3.2.2 Resolution 3

In this section, we discuss the effect of further increagsesolution (in the central region)
upon the mesh sizes defined in the previous section A.3.2his éxperiment uses the
same regions defined before. Again the first case considereduises the mesh sizes as
the preferred case (case 4) selected in the previous sekol.1 (from central to outer
region), except the resolution 2 is replaced with resofuion the central regio®4. In
other cases, the mesh sizes are decreased in the outersregidreck their effect on the
accuracy of solution. The mesh sizes used for each caseédeoed here) are given in the
Table A.9. While defining the next case, changes made in tvdqars case are in bold
face.

Results corresponding to these cases are plotted togethiegure A.11 and the
RMSE for all these cases (with respect to reference caseSeeen A.2) along with
number of nodes in each mesh are given in Table A.10. Figuté feveals that results
corresponding to case-3, case-4 and the fine case are vegytoleach other, i.e. switch-
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Table A.10: RMSE of solutions (computed on different mestesalefined in Table A.9)
with respect to reference solution.
Case | nodes RMSE

Case-1 782270 828 x 1074
Case-2 2172986  3.72 x 107*
Case-3 2510252  1.82 x 10~*
Case-4 5664718  1.58 x 1074
Fine-case| 15802299  0.00 x 10°
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Figure A.11: A comparison of elastic deformation profilesrsolution 3 corresponding
to different mesh cases defined in Table A.9

ing to case-4 or the fine-case from case 3 does not make a algcdifference in the
solution. Moreover, from Table A.10, it is clear that RMSEaafse-3 is only slightly
affected when switching to case-4 wiilt64 718 (more than double) nodes in the mesh.
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Table A.11: Set of mesh cases for resolution 3: details ofns&es used in different
regions of the domain.

Case Nodes | Different regions with mesh sizes |
| R4 [ RS-RA[R2-R5[R3—R2[ R6—R3 | RI—R6 |
| Case-1|| 2510252 | 0.02344 | 0.04688 | 05 | 1.0

|
| Case-2|| 2093579 | 0.02344 | 0.04688 | 0.0625 | 05 | 1.0 | 20 |
| Case-3|| 1192335 | 0.02344 | 0.04688 | 0.09375 | 05 | 1.0 | 20 |

Table A.12: RMSE of solutions (using different mesh casdmdd in Table A.11) with
respect to reference solution.

Case | RMSE

Case-1| 1.82 x 107*
Case-2| 1.92 x 107*
Case-3| 2.74 x 1074

In other words, there is no significant gain in accuracy wittuge increase in the size of
problem. Therefore, it is suggested that mesh sizes definedsie-3 give a sufficiently
accurate solution (RMSE well close 10~ relative to anO(1) displacement) with less
computational cost than case-4 and fine-case.

As we have seen case-3 is giving a considerably accuratemsylhowever it is lead-
ing to a number of nodes which is becoming relatively largasTs due to the decrease in
the mesh sizes in regiost, R2— R4 andR1— R3. In order to attempt to make this prob-
lem smaller, we carried out an experiment where we have dkefime more sub-regions
namely R5 and R6. In other words, we divide the whole domain into the follog/isix
regions:

R1 being the whole domain

R6 is a region of dimensionis-20, 20] x [—20, 20] x [—40, 0]

R3 is a region of dimensionis-10, 10] x [—10, 10] x [—20, 0]

R2 is a region of dimensionis-4.5,4.5] x [—3, 3] x [-3,0]

R5 is a region of dimensions-2, 2| x [-2,2] x [-2,0]

R4 is aregion of dimensions-1,1] x [—1,1] x [-1,0]

It should be noted that the regidt® — R4 is split into further sub-region®2 — R5 and
R5 — R4, similarly R1 — R3 is split into further sub-region®1 — R6 and R6 — R3.
Now, instead of adopting the mesh siz64688 everywhere inkR2 — R4, we will only
adopt this mesh size in the sub-regiBh — R4 and use a slightly larger mesh size in the
second sub-regioR2 — R5. Similarly, the mesh sizé.0 will be adopted inkR6 — R3 and

a larger mesh size iR1 — R6. A set of cases considered in this experiment are given in
the Table A.11 where case-1 is the preferred case selectke previous experiment, i.e.
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Figure A.12: A comparison of elastic deformation profilesrsolution 3 corresponding
to different mesh cases defined in Table A.11

case-3in Table A.9.

All of these cases are plotted together in Figure A.12 antRMSE of these cases are
given Table A.12. Figure A.12 shows that all results areelkoseach other i.e. switch-
ing to case-3 did not lead to a significant loss in the accuddtlye solution. Moreover,
Table A.12 shows that the RMSE is only slightly affected whkeitching to case-3. How-
ever, it should be noted that case-3 leads to ahfj2335 nodes in the mesh which is less
than 50% of the nodes contained in the mesh of case-1. Theyéfom a computational
point of view, case-3 is a suitable choice of mesh that leadsrelatively small problem
and a sufficiently accurate solution.
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Figure A.13: A top view of selected mesh case of resolutiamsig meshing strategy 1).

A.3.3 A Note on Generated Meshes

Throughout this section, a number of experiments have bedormed to define appro-
priate mesh sizes away from the central region when usirigrdiit resolutions in the
central region. This led to the definition of different swdgiions in the domain and it is
observed that increasing the resolution in the centrabrepas also affected the mesh
sizes necessary in outer regions, especially those claséisé central region, i.e. this
effect is smaller on the mesh sizes which are away from derggéon. A top view of
the mesh generated for resolution 3 is given in Figure A.1&ah clearly be seen that
“NETGEN” adopted the specified mesh size everywhere in aqodat region.

One observation to come from the last experiment is thattatpp particular mesh
size everywhere in a particular region is not necessaryjtdadds to too many nodes in
the mesh. In other words splitting a region into further sedgpions and varying mesh sizes
within these regions can lead to a large decrease in numipedefs without significantly
affecting the accuracy of solution. However, defining mard enore sub-regions along
with appropriate mesh sizes is not a practical task. In thxé¢ section, we will therefore
adopt a different strategy to generate such meshes (withf®HEN") which will cover
this aspect and there will be no need to define further suipmeg
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Figure A.14: A top view of a typical mesh generated by usingingg strategy 2.

A.4 Alternative Meshes (Meshing Strategy 2)

In this section, the main purpose is to generate meshes vahittimatically get coarser
and coarser as we move away from the central region and theuédsbe no need to define
further sub regions. In the following we generated such dmekich uses only two semi-
spherical regions of radii ‘1’ and ‘15’ respectively. Theoote of these radii is based
upon the experiments done in the previous sections. A selaetsolution is specified
for all points inside the semi-spherical region of radius(tégion-1) and for points on
the curved boundary of semi-spherical region of radius (t&gion-2), a suitable mesh
size is defined. For all other interior points of region-2jredr interpolation is used
to define a mesh size for each point. Providing this mesh da¢ofi‘NETGEN" leads
to the mesh we are acquiring. A top view of such typical mesiegged is given in
the Figure A.14. Readers are reminded again that thesetisakeare based upon our
previous experimentation. It should be noted that in theaiamg region of domain
(outside of region-2), different large mesh sizes are usgebading upon the resolution
used in the central most region. In the following subsedjove obtain a resulting mesh
for each resolution and this is compared with its selectsd e&hich has been obtained in
the previous section and the RMSE of each case is calculatiedespect to the reference
solution (see Section A.2).
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Figure A.15: A comparison of elastic deformation profilesxpauted on the selected mesh
(meshing strategy 2) and fine mesh of resolution 1.

Table A.13: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
previous selected mesh (meshing strategy 1) of resolutiaiti respect to the reference
solution.

Case | nodes RMSE

Current-case | 102673 1.91 x 10~°
Previous-casg 116548 1.78 x 1073

A.4.1 Resolution 1

In this test, resolution 1 is adopted in region-1 and a mezh ‘4i.0’ is specified for the
points on the curved boundary of region-2. For all interiomps of region-2, a linear
interpolation is used to define their corresponding messsiand finally, in the remain-
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Figure A.16: A comparison of elastic deformation profilesnputed on the selected
(meshing strategy 2) and fine mesh of resolution 2.

ing domain, a mesh size ‘4.0’ is used everywhere. The rebtdtimed is plotted together
with the fine-case of current resolution (see previous eerin the Figure A.15, while
the corresponding RMSE along with the RMSE of previous setecase is given in the
Table A.13. Figure A.15 reveals that the result obtaineceiry ¢lose to the one on fine
mesh. Moreover, Table A.13 shows that the current case keadsmaller number of
nodes, however, the RMSE of the current case is only slidgatger than that we had in
the previous selected case.
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Table A.14: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
previous selected mesh (meshing strategy 1) of resolutimiti respect to the reference
solution.

Case | nodes RMSE

Current-case | 209665 5.37 x 10™*
Previous-casd 462344 5.23 x 107*

Table A.15: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
previous selected mesh (meshing strategy 1) of resolutiwiti3 respect to the reference
solution.

Case | nodes RMSE

Current-case | 638298  2.80 x 1074
Previous-case 1192335 2.74 x 1074

A.4.2 Resolution 2

In this test, resolution 2 is adopted in region-1 and a mezh ‘4i.0’ is specified for the
points on the curved boundary of region-2. For all interioings of region-2, a linear in-
terpolation is used to define their corresponding mesh .sfaed finally, in the remaining
domain, a mesh size ‘2.0’ is used. The result obtained igqudbgether with the fine-
case of current resolution (see previous section) in therEié.16, while corresponding
RMSE along with the RMSE of previous selected case is givahenTable A.14. Fig-
ure A.16 reveals that again the result obtained is very dioslkee one on the fine mesh.
Moreover, Table A.14 shows that the current case leads tmdra 50% reduction in the
number of nodes without significantly affecting the RMSE.

A.4.3 Resolution 3

In this test, resolution 3 is adopted in region-1 and a mezh ‘6i.7" is specified for the
points on the boundary of region-2. For all interior pointsegion-2, a linear interpola-
tion is used to define their corresponding mesh sizes. Lilse-previous section, a region
R of dimensions—20, 20] x [—20, 20] x [—40, 0] is defined outside of region-2 and a mesh
size ‘1.0’ is specified for the points in the regié-region-2, while in the remaining do-
main a mesh size ‘2.0’ is used. The result obtained is pldtigdther with fine-case of
current resolution (see previous section) in the Figure/ Avlhile corresponding RMSE
along with the RMSE of previous selected case is given in HidelrA.15. Figure A.17
reveals that again the result obtained is very close to teeoarthe fine mesh. Moreover,
Table A.15 shows that the current case leads to around a 5f@%6tren in the number of
nodes without significantly affecting the RMSE.
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Figure A.17: A comparison of elastic deformation profilesnputed on the selected
(meshing strategy 2) and fine mesh of resolution 3.

A5 EHL

The mesh analysis tests done so far were by using the Herpremsure profile only.
The Hertzian pressure profile defines the pressure valuéswvatunit circular disc i.e
outside this region pressure values are zeros. This was#sem behind choosing the
dimension of central most region as unit cube/cuboid or saii-sphere. The actual
EHL pressure profile is different than the Hertzian presguodile i.e. for a typical EHL
problem, pressure is not zero outside the Hertzian conéggdm, however, this is very
small. For a sufficiently accurate elastic deformation sotufor a typical EHL pressure
profile, we need to choose a slightly bigger inner most regan region-1 should be
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Table A.16: Set of parameters for the contact between steflces

Parameters Values

Moes parametet, 10

Moes parameter}/ 20

Maximum Hertzian pressurg;,  0.45GPa
Viscosity index,« 2.2 x 107 8Pa?
Viscosity at ambient pressurg;  0.04 Pas

Table A.17: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
fine mesh of resolution 1, with respect to the reference wwolut

Case | nodes RMSE
Fine-case 3505403  1.64 x 10~°
Selected-case 97687  2.43 x 1073

of radius at least ‘1.5’ because this is the region from whbeepressure values start
becoming significant, especially in the inlet region. There, for all the experiments in
this section the meshes use the same strategy as given ions@ct however now the
central most region is chosen to be of radius ‘1.5'.

It has been shown by Habchi [50, 51] that for heavily loadesksain addition to sta-
bilization technique (see Chapter 4), an artificial difeusis required to get a completely
smooth pressure profile. Since, contrary to stabilizate@hhiques, artificial diffusion is
non-residual dependent, it has a small effect on the acgwfahe solution. Therefore,
for a quantitative analysis, a relatively light loaded ciasghosen in order to get a smooth
pressure profile without the use of artificial diffusion. TREL test case considered in
this work is given in Table A.16.

It should be noted that this EHL test case is solved over treheseused in section A.2,
of which again the extreme case of resolution 3 will be used seference solution. In
the following sub-sections, a selected case is defined tr essolution and the RMSE of
this selected case along with its fine case will be calculaiédrespect to this reference
solution.

A.5.1 Resolution1

In this test, resolution 1 is adopted in the central regionctviis circular disc of radius
‘1.5 and a mesh size ‘1.0’ is specified for the points on theved boundary of semi-
spherical region of radius ‘15’. For all interior points @gion-2, a linear interpolation is
used to define the corresponding mesh sizes. And finallyeindimaining domain, a mesh
size ‘4.0’ is used. The result obtained is plotted togethién the fine-case of the current
resolution in the Figure A.18, while the corresponding RM&Eng with the RMSE of
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Figure A.18: A comparison of elastic deformation profilesnputed on the selected
(meshing strategy 2) and fine mesh of resolution 1.

finest case of the current resolution, is given in the TablerAFigure A.18 reveals that
the result obtained is very close to the one using a very firghmdoreover, Table A.17
shows that selected mesh leads to very small number of n6@687(nodes) without
significantly affecting the RMSE (obtained with the use ofeayfine mesh 3505403
nodes)).

A.5.2 Resolution 2

In this test, resolution 2 is adopted in the central regionctviis circular disc of radius
‘1.5 and a mesh size ‘1.0’ is specified for the points on theved boundary of semi-
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Figure A.19: A comparison of elastic deformation profilesnputed on the selected
(meshing strategy 2) and fine mesh of resolution 2.

Table A.18: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
fine mesh of resolution 2, with respect to the reference swolut
Case | nodes RMSE

Fine-case 4950405 6.25 x 107*
Selected-case 221260 9.85 x 10~*

spherical region of radius ‘15’. For all interior points @&gion-2, a linear interpolation
is used to define the corresponding mesh sizes. And finallpdnmemaining domain, a
mesh size ‘2.0’ is used. The result obtained is plotted togyetvith the fine-case of current
resolution in the Figure A.19, while the corresponding RM&Bng with the RMSE of

finest case of the current resolution, is given in the Tabl8AFigure A.19 reveals that the
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Figure A.20: A comparison of elastic deformation profilesnputed on the selected
(meshing strategy 2) and fine mesh of resolution 3.

result obtained is very close to the one with using a very fisgshmMoreover, Table A.18
shows that selected mesh leads to very small number of n@dé&26() nodes) without
significantly affecting the RMSE (obtained with the use ofeaywfine mesh 4950405
nodes)).

A.5.3 Resolution 3

In this test, resolution 3 is adopted in the central regiomctvis circular disc of radius
‘1.5” and a mesh size ‘0.7’ is specified for the points on theved boundary of semi-
spherical region (region-2) of radius ‘15’. For all interipoints of region-2, a linear



Chapter A 178 Elasticity

Table A.19: RMSE of solutions, on current selected mesh limgsstrategy 2) and the
fine mesh of resolution 3, with respect to the reference wwolut
Case | nodes RMSE

Fine-case 15802299 0.0 x 10°
Selected-case 705860  4.80 x 10™*

interpolation is used to define the corresponding mesh.sfeefor the previous section,
a regionRk of dimensiong—20, 20] x [—20, 20] x [—40, 0] is defined outside of region-2
and a mesh size ‘1.0’ is specified for the points in the rediefregion-2, while in the
remaining domain a mesh size ‘2.0’ is used. The result obthis plotted together with
the fine-case of current resolution in the Figure A.20, wttie corresponding RMSE,
along with the RMSE of the finest case of current resolutismgiven in the Table A.19.
Figure A.20 reveals that the result obtained is very closthéoone with using a very
fine mesh. Moreover, Table A.19 shows that selected mesh teagkry small number of
nodes 705860 nodes) without significantly affecting the RMSE (obtainethvthe use of
a very fine meshi(802299 nodes)).

A.6 Conclusion

Throughout this appendix, we have addressed a number ofiexqrés to define the most
appropriate mesh sizes needed throughout the domain intardet a sufficiently accu-
rate elastic deformation solution. The two different maghstrategies have been used to
generate meshes. In the first strategy, the domain was isigiainumber of regions and
an appropriate mesh size was adopted everywhere in ea@dnregiwas observed that
splitting a region into further sub-regions and varying thesh sizes between these new
sub-regions leads to a mesh with fewer nodes without sigmifig affecting the accuracy
of solution. However, defining more and more sub-regiona@leith appropriate mesh
sizes is not always a simple job. Therefore, another styateg used in which a mesh
size corresponding to a certain resolution was adopteckicehtral region and then this
mesh size was gradually increased while moving away frorntraleregion. This strategy
leads to a greater decrease in the number of nodes in the nitéslutaving a significant
effect on the accuracy of solution.

Initially, a Hertzian pressure profile was used to undertkéhe analysis tests and
later on the work was extended by considering a typical EHtspure profile (see sec-
tion A.5). It has been shown in section A.5 that the solutibtamed using the selected
meshes was sufficiently accurate but with a considerablgiaemputational cost. It



Chapter A 179 Elasticity

should be noted that, throughout this analysis linear fieiéanents have been used to
solve the linear elasticity equation and the EHL probleme Tésults of this appendix
have been used in the work repeated in Chapter 6: ensurihthehgests of the efficiency
of the proposed preconditioner have been undertaken on dlsé appropriate computa-
tional grids.



