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Abstract

This thesis investigates the statistical modelling of count data, com-

mon in diverse fields, including bibliometrics and scientometrics. The

item production model approach reviews existing models, such as the

power law and the generalised inverse Gaussian-Poisson model. Fur-

thermore, a new generalised power law model is proposed to enhance

the fitting of models to specific data types. The main focus of the

study is on scientific production use cases, encompassing authors, pa-

pers, and citations. The research adopts probabilistic combinatorics

and the theory of random integer partitions to gain valuable insights

into the data structure, which examines Young diagrams and their

scaling limits. These insights are then applied to model and estimate

production metrics, including the h-index and g-index.
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Summary of Basic Notation

N The set of natural numbers (positive integers), N = {1, 2, . . . }
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a ∼ b Asymptotic equivalence, a/b→ 1

a� b Asymptotically bigger than, a/b→∞ (also written as b = o(a))

a� b Asymptotically smaller than, a/b→ 0 (also written as a = o(b))

#B The number of elements in set B

1D(x) Indicator function of set D ⊂ R
IA Indicator of event A

P(A) Probability of event A

E(X) Expected value of random variable X
p−→ Convergence in probability
d−→ Convergence in distribution
.
= Approximately equal to

N(0, 1) Standard normal distribution (with zero mean and unit variance)

M Total number of sources in the item production model

K Number of batteries of sources in the composite item production model

Xi Random number of items produced by source i ∈ {1, 2, . . . ,M}
N Total number of items produced, N = X1 + · · ·+XM

Mj Multiplicity of the output j, defined as a random number of sources

(out of M) that produced j items each (j ∈ N0)

Y (x) Upper boundary of the Young diagram, Y (x) =
∑

j≥xMj (x ≥ 0)

fj Theoretical frequency distribution, fj = P(Xi = j) (j ∈ N0)

F (x) Cumulative distribution function (CDF),

F (x) = P(Xi < x) =
∑

j<x fj (x ≥ 0)

F̄ (x) Complementary cumulative distribution function (CCDF),

F̄ (x) = P(Xi ≥ x) =
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j≥x fj (x ≥ 0)

µ Expected number of items produced by a source, µ = E(Xi) =
∑

j∈N0
jfj

f̂j Sample frequency of j items, f̂j = Mj/M (an estimate of fj, j ∈ N0)

µ̂ Sample mean of items per source, µ̂ = N/M (an estimate of µ)



Chapter 1

Introduction

In this chapter, the focus of the research is established: the analysis of frequency

distribution in count data with the application of scientometric data examples.

The background and motivation for this study are also explained. In the end, an

outline of the subsequent chapters is presented.

1.1 Background and Motivation

In many applied situations, one deals with count data in the form of sample

frequencies of occurrence in one of the countably many categories (“boxes”). It

is often appropriate to interpret occurrence in each box as the corresponding

number of batched “items” produced by one out of the plurality of contributing

“sources”; for example, falling into box with label zero is interpreted as no items

produced by the source.

Diverse real-life examples of such a scenario include: abundance data of var-

ious species such as butterflies, with different species treated as sources and the

observed counts as items; the number of followers (items) of different accounts in

Twitter (sources); repeat-buying data, with the number of units bought (items)

by households (sources); the number of papers (items) produced by authors

(sources); etc. For more examples and further references, see, e.g., a mono-

graph by Egghe (2005) or a review paper by Clauset et al. (2009). In the lat-

ter example, papers may themselves play the role of sources, with citations as

1



1. Introduction

items. Altogether, this forms an interesting triangle of relationships, authors–

papers–citations (APC), which is one of the main subjects of investigation in

scientometrics (Egghe, 2005).

A natural objective with such types of data is to explain the observed (relative)

frequencies by fitting a suitable distributional model, preferably possessing some

conceptual foundation and applicable to a variety of use cases. Of course, in any

real-life data set the numbers of sources will reduce to zero for the value of items

big enough, but this is reconciled with the modelling prediction simply by the

fact that the theoretical frequencies tend to zero as the number of items goes to

infinity. However, adequate modelling of the long-tail frequencies is of importance

in relation to understanding the behaviour of extreme values in the count data

(e.g., untypically high citations).

An important principle of statistical modelling is that the choice of a suitable

model for the data is not driven only by goodness-of-fit, but should be intu-

itively justifiable and interpretable. Quoting from Rousseau (2002, p. 320), the

distribution chosen to fit scientometric data “should not be the result of a purely

statistical fitting exercise, but should be explained. . . One should first make a

model based on reasonable and acceptable assumptions. . . A best fitting distri-

bution should then be derived from this model.” On the other hand, the observed

goodness-of-fit of a chosen model to real data may shed light on the proposed

mechanism by providing evidence in favour or against it. Specifically, a reason-

able fit would support the validity of the mechanism in question whereas a “bad”

fit might signal the need to review the model and either improve or discard it.

A celebrated example of a theoretical frequency model is the power law, first

proposed by Lotka (1926) to describe the publication statistics in chemistry and

physics, and based on the empirical observation that the sample frequencies ap-

proximately follow a power law distribution (Coile, 1977; Egghe, 2005). Price

(1965) discovered an important connection with networks, whereby citations were

interpreted as nodes’ degrees. Examples of fitting the power law to the citation

data can be found in Coile (1977), Redner (1998), and Clauset et al. (2009).

An evident heuristic tool to fit a power law model to the count data is by look-

ing at the frequency plots (e.g., histograms) with logarithmic scales on both axes,

whereby one seeks a straight-line fit (Nicholls, 1987). An alternative approach

2



1.1 Background and Motivation

(Clauset et al., 2009), which provides the helpful smoothing of the discrete data,

is via the complementary cumulative frequencies where, using again the log-log

plots, a good fit approximately corresponds to a straight line. More formally,

the model can be fitted using standard statistical methods such as the maximum

likelihood or ordinary least squares estimation (Nicholls, 1987).

The conventional explanation of universality of the power law is based on

the principle of cumulative advantage, also expressed as the catchphrase “success

breeds success”, originally coined in the context of scientific productivity (Price

(1965); Price (1976); Egghe & Rousseau (1995)); see also a more recent review

by Huber (2002) with a critique of cumulative advantage. Unfortunately, the

utility of Lotka’s power law for real data modelling is often limited by fitting to

the data well only on a reduced range of count values, requiring a truncation of

lower values (see an extensive discussion in Clauset et al. (2009)) or of higher

(long-tail) values better described by a stretched-exponential law (Laherrere &

Sornette, 1998).

Numerous other attempts to fit theoretical distributions to a variety of count

data sets included using the negative binomial distribution, the modified geomet-

ric distribution, the beta binomial distribution, and many more (Johnson et al.,

2005) (see the discussion and further references in Huber, 2002; Sichel, 1985),

however, none of these distributional families proved to be sufficiently “universal”

in explaining diverse count data sets, often failing to capture some characteristic

features such as modality and long-tail behaviour.

In a series of papers, Sichel (1971, 1973, 1974, 1975, 1982, 1985) introduced

and developed the so-called generalised inverse Gaussian-Poisson (GIGP) model,

proposed in an attempt to grasp a plausible production of items by respecting

statistical differences in the individual productivity of sources (e.g., papers and

authors, respectively). More precisely, a source is assumed to produce items ac-

cording to a Poisson law whose rate is itself random with a specific choice of the

generalised inverse Gaussian (GIG) density (Johnson et al., 1994; Sichel, 1971).

In other words, the GIGP distribution is a mixed Poisson distribution under the

GIG mixing density (see Gupta & Ong, 2005, for a survey of Poisson mixture mod-

els for long-tailed count data). Sichel applied his GIGP model to a great variety

of use cases and multiple data sets, from sentence-lengths and word frequencies

3



1. Introduction

in written prose (Sichel, 1974, 1975) to number of stones found in diamondiferous

deposits (Sichel, 1973) and scientific production (papers and/or citations) (Sichel,

1985). These examples have demonstrated a remarkable flexibility and versatility

of the GIGP distribution family.

In a more recent development, Yong (2014) proposed to use combinatorial

models of random integer partitions to mimic citation count data, where the

constituent parts of the integer partition represent the author’s papers with the

corresponding numbers of citations, respectively. One drawback of this approach

is that papers with zero citations are not represented in the partition, but there

are ways in which the concept of a partition could be modified to include zeros.

The main perceived advantage of this approach was to leverage the knowledge of

so-called limit shape for suitably scaled Young diagrams visualising parts in the

(random) integer partition, which would then enable one to estimate statistically

some citation metrics such as the h-index. Specifically, noting that the h-index

corresponds geometrically to the location with equal coordinates at the upper

boundary of the Young diagram, and using an explicit equation for the limit

shape under the scaling
√
N along both axes, where N � 1 is the total number

of citations (Pittel, 1997; Vershik, 1996), Yong came up with a simple estimate

of the h-index, h ≈ 0.54
√
N , which he then tested using several data sets of

mathematical citations (Yong, 2014).

When it comes to data analysis of real-life citations, the aforementioned mod-

els can be fitted using standard statistical methods such as the maximum likeli-

hood or ordinary least squares estimation. Unfortunately, neither of these models

appear to provide a good match, at least not in the entire spectrum of the citation

values. Indeed, it has been documented across many use cases (Clauset et al.,

2009) that the power law usually fits quite well but only in the tail region of the

frequency range, which motivates the use of truncated models by excluding the

lower values. In comparison, partition models demonstrate a reasonable fit only

over the initial range, but perform poorly at the tail. A simple pragmatic idea

to sew both models in order to cover the entire frequency range may not work

because there is usually a gap between the fitted domains. We have encountered

this difficulty in our work trying to model the h-index.

4



1.2 Thesis Outline

To overcome these deficiencies and shortcomings, we proposed a generalised

power law (GPL) model by modifying the power law setting (Nuermaimaiti et al.,

2021). This model interpolates between slow (almost flat) decay of the citation

frequencies at the lower end of the citation spectrum and then displaying the

power law behaviour at the tail of the frequency distribution. As we discovered

after the paper was published, a similar frequency model has been known in

the earlier literature as the hooked power law (see, e.g., Pennock et al. (2002);

Thelwall & Wilson (2014); Shahmandi et al. (2020)), where the word “hooked”

refers to the behaviour of the complementary cumulative distribution function

for small counts in log-log coordinates.

The conceptual justification of the GPL model is also based on the mixing

idea as in Sichel (1974), but under the different choices of the source production

law (geometric instead of Poisson) and the mixing density (a beta distribution

instead of the GIG one). As we have demonstrated using a variety of real data

sets (see Section 6.4), the GPL model provides a very good fit across the entire

citation spectrum. In addition, the GPL model possesses a limit shape, which

can be used, for example, to make meaningful estimation of the h-index. In

particular, the estimation of the h-index based on the GPL model appears to be

significantly more accurate as compared to the partition model.

1.2 Thesis Outline

The rest of the thesis is organised as follows.

Chapter 2 draws forth the research interests of this thesis by presenting in-

formetric data examples. Moreover, this chapter delves into the distinctions and

connections among informetrics, scientometrics, and bibliometrics. Furthermore,

it provides a comparative analysis of prominent scientometric data platforms.

Moving forward, Chapter 3 commences by presenting a mathematical setup

for describing these informetric data sets introduced in Chapter 3 within the

“sources-items” system. Additionally, this chapter introduces the Young diagram

as a graphical representation of the data. The notion of limit shape is also

expounded upon, and an example of the limit shape of random integer partitions

5



1. Introduction

is provided. The chapter also introduce the composite item production model,

and provide production metrics and model-based estimators for these metrics.

In Chapter 4, one of the classical models, namely power law, is applied to the

scientometric data to explore its fitting properties. However, it is discovered that

the standard power law model is inadequate for the data set. Thus, the power

law model with truncation is explored in addition. Furthermore, by comparing

the results obtained from fitting the integer partitions model to the data, a gap

in the data domain is discovered.

In Chapter 5, the GIGP model, another classical model, is explored. A mixed

Poisson model is employed to explicate the GIGP distribution. This chapter

also provides a detailed account of the universal limit shape of the GIGP model,

as well as the fluctuations and convergence of this limit shape. Furthermore,

computer simulations and data examples are furnished to support the analysis.

Chapter 6 introduces a novel model, the GPL model, to address the shortcom-

ings of the power law model and the integer partitions model previously discussed

in Chapter 4. Building upon the conceptualisation of the GIGP model presented

in Chapter 5, the GPL model is explained via a mixed geometric model. The

limit shape of the GPL model is derived, and data examples of fitting the GPL

model are presented.

In Chapter 7, a breakthrough is made by considering the time evolution of

citations instead of just analysing a snapshot of scientometric data. This chapter

employs exploratory data analysis to gain insights from dynamic citation data.

Then the content of the study focuses on the survival analysis of the first citation

of publications with considerations given to the number of pages and co-authors

of a paper as covariates. At the end of this chapter, the dynamic citations are

researched using the point processes.

The thesis concludes with Chapter 8, which provides a summary of the main

findings and contributions of the research. Additionally, this chapter outlines

future directions for further work.

In addition to the main chapters, the Appendix provides detailed computa-

tions to support the research conducted in this thesis. Appendix A summarises

the method used for scraping data from Google Scholar web pages. Appendix

6



1.2 Thesis Outline

B lists asymptotic formulas for the Bessel function, which are helpful for the

calculations in Chapter 5.

7
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Chapter 2

Count Data: Examples

The present chapter serves as an introduction to the various types of informetric

data that are relevant to the research presented in this thesis. Additionally, it

outlines the five data sets that have been utilised in this study. Subsequently, the

chapter proceeds to offer a comparative analysis of three mainstream platforms

that are commonly used for collecting scientometric data.

2.1 Types of Informetric Data

The aim of this section is twofold: firstly, to introduce the data that will be used

for the remainder of the thesis, and secondly, to compare various platforms that

offer scientometric data.

Informetrics is a general field of study that focuses on the quantitative as-

pects of information. Informetrics encompasses more specialised domains, such

as bibliometrics and scientometrics.

Bibliometrics refers to statistical analyses of publications such as articles and

books, used in the fields of libraries and information science. Pritchard (1969)

first used bibliometrics in English in 1969 and defined it as the mathematical and

statistical methods for books and media of communication. In many research

fields, bibliometrics is used to analyse the impact of fields, researchers and papers.

Also, bibliometrics can be applied to descriptive linguistics, the assessment of

the use of the reader and evaluating budgets through the analysis of academic

literature. Citation analysis is a general method for researching bibliometrics.

9



2. Count Data: Examples

Citation indices and citation graphs (or citation networks) are the most commonly

used methods in the field of citation analysis. The h-index is one of the science

citation indices.

Scientometrics is a sub-field of informetrics, which centres on the analysis

and quantification of scientific publications. Scientometrics study is based on

the work of Price (1965) (who is credited as the father of scientometrics) and

Garfield (1955) (who created the science citation index). Hirsch (2005) proposed

a citation index referred to as h-index and defined as the maximum number of

an author’s papers, h, each one cited at least h times (Hirsch, 2005). After the h-

index was introduced, to remedy the censoring of the larger citation the g-index

was proposed by Egghe (2006). Yong (2014) connected citations and integer

partitions, and estimated the h-index using the limit shape of random partitions.

There is a significant overlap between bibliometrics and scientometrics. Figure

2.1 presents a Venn diagram that illustrates the relationship among informetrics,

bibliometrics, and scientometrics.

Bibliometrics

Informetrics

Scientometrics

Figure 2.1: Venn Diagram: relationships among the informetrics, bibliometrics

and scientometrics.

The present thesis encompasses methodology applicable to diverse informetric

data sets, but its primary focus is on the statistical analysis of scientometric data.

10



2.2 Examples of Informetric Data Sets

2.2 Examples of Informetric Data Sets

This section provides an overview of the data sets used throughout this thesis.

Two of these data sets (EJP and AMS) were collected by the author of the present

thesis, while other data sets were retrieved from the literature and web databases.

We describe the nature and sources of the data and illustrate the resulting data

sets using two types of empirical plots — the frequency plots showing the observed

multiplicities per each count value, and complementary cumulative plots based

on relative frequencies, depicting the corresponding distributional tails. Noting

that the frequencies are typically getting very small for larger counts, in order

to visualise details of the tail behaviour it is often useful to plot the data in

logarithmically transformed coordinates (referred to as log-log coordinates).

A: Lotka’s Data

This data set is from a seminal article by Lotka (1926). It presents the number of

papers featured in Chemical Abstracts in 1907–1916, restricted to authors whose

surnames begin with A and B. The data set comprises 6,891 authors who pro-

duced 22,939 papers. Among these authors, 3,991 had authored only one paper

each, while 1,059 had authored two papers, and so on. The complete data set

can be found in Lotka (1926, page 318, table 1). Notably, the names of authors

were not included in the table. The full index of Chemical Abstracts for volumes

1 to 10 (1907–1916) is available online, https://babel.hathitrust.org/cgi/

pt?id=mdp.39015023498507&view=1up&seq=19&skin=2021.

Lotka’s data set is graphically illustrated in Figure 2.2, showing the frequency

and complementary cumulative plots, both in the original and log-log coordinates.

B: Chen’s Data

Chen’s data is from Chen (1972), which comprised counts of the use of physics

journals in M.I.T. Science Library in 1971, recorded per each volume taken from

the shelves for reading or photocopying. The total number of volumes ever re-

quested was 138, and the total number of requests was 4,292. The frequency plots

11
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Figure 2.2: Sample frequency (upper left) and complementary cumulative fre-

quencies (upper right) plots of Lotka’s data in original scale. Logarithmic scaled

sample frequency (lower left) and logarithmic scaled complementary cumulative

(lower right) plots.

graphically representing Chen’s data, both in the original and log-log coordinates,

are given in Figure 2.3.

C: Moby Dick Data

This data set, consisting of word frequencies in the novel “Moby Dick: The

Whale” by American writer Herman Melville, is a classic example for text anal-

ysis. The Moby Dick data set used in this thesis can be accessed directly in R

under the name “moby” within the poweRlaw package (Gillespie, 2015).

The data set includes unique words as sources and their time of occurrence

as items. The novel consists of 18,855 unique words, with a total of 245,567

occurrences. The data set is provided in the form of occurrences of each word,

12
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Figure 2.3: Chen’s data: frequency plots (left column) and complementary cumu-

lative frequency plots (right column) in the original (top row) and log-log (bottom

row) coordinates.

but one may apply table(moby) in R to obtain the data shown in an aggregated

way. Of these words, 9,161 words occurred only once, and 3,085 occurred twice.

The most used word occurred 14,086 times. Note that the study in this thesis

focuses on the frequency distribution of the count data, thus not accounting for

specific counts of particular words. If relevant, the latter information is available

through an online tutorial by Bonnell & Ogihara (2023).

The frequencies and complementary cumulative plots of the Moby Dick data,

both in the original and the log-log coordinates, are depicted in Figure 2.4.

D: EJP Data

This data was collected by the author of this thesis on 27th January,

2020. It comprises citations of each publication of 113 authors who pub-

13
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Figure 2.4: Moby Dick data: frequency plots (left column) and complementary

cumulative frequency plots (right column) in the original (top row) and log-log

(bottom row) coordinates.

lished at least one paper in the first 10 issues of the Electronic Journal of

Probability (EJP), volume 24 (2019) (https://projecteuclid.org/journals/

electronic-journal-of-probability/volume-24/issue-none) and who are

also featured on Google Scholar (https://scholar.google.com/). This data

set contains 245,567 citations and 15,400 publications of 113 authors in total.

The citation score of each publication was obtained by using an R command

get_publications()$cites in the package scholar, after collecting the Google

Scholar IDs of authors; here, the Google Scholar ID should be entered inside the

parentheses in the template command (Yu et al., 2016). In turn, Google Scholar

IDs were identified using web scraping techniques on Google Scholar web pages.

For more details about web scraping, see Appendix A.

The complete EJP data set, with citation numbers per paper per individ-

ual author, is available online from the GitHub (see https://github.com/
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Figure 2.5: EJP data: frequency plots (left column) and complementary cumula-

tive frequency plots (right column) in the original (top row) and log-log (bottom

row) coordinates.

Ruheyan/Citation-data/blob/main/data/cejop.csv), listing authors and the

citation numbers of each of their papers. Authors and papers are anonymised,

as shown in Table 2.1. For example, the first paper of author #1 is cited

1,486 times, the second paper of the same author is cited 506 times, etc.

The last paper of author #113 has no citations. The aggregated EJP data,

listing the citation counts of the pooled population of all papers (Table 2.2),

is available from https://github.com/Ruheyan/Citation-data/blob/main/

data/ejop_citations_frequency.csv.

The frequency and complementary cumulative frequency plots for the EJP

data are shown in Figure 2.5, both in the original and log-log coordinates.
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Table 2.1: The structure of the EJP data set, listing all authors with citations of

each of their paper.

Author Paper Citations

1 1 1,486

1 2 506

1 3 475

1 4 241
...

...
...

113 110 0

113 111 0

Table 2.2: Structure of the aggregated EJP data showing the numbers of papers

per numbers of citations.

Citations Papers

0 6,472

1 1,157

2 790

3 583
...

...

4,100 1

4,981 1

D′: Extended EJP Data (with covariates)

The extended EJP data consists of yearly citation data for authors included in the

EJP data. The data was retrieved from the Web of Science (WoS) by the author

of this thesis in January 2020. The data set includes a total of 3,588 publications

from 111 authors. The identities of authors are consistent with those appearing

in the EJP data, except for two authors who lack a Web of Science page. It is

worth noting that the data set excludes all books and prefaces. The WoS archives

citation data from 1900 until the date of collection (18th September, 2022). Ad-

ditionally, the data set includes the publication year, total citations, number of

pages, and the number of authors for each publication. The titles of the papers

16
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are labelled by numbers. The data set is available online at https://github.

com/Ruheyan/Citation-data/blob/main/data/Extended_EJP_Data.csv.

E: AMS Data

This data was collected by the author of the present thesis in March 2021 with

the aid of the Google Scholar, using the same techniques as with the EJP data.

The authors in this data set are the academic members (excluding PhD stu-

dents) of the American Mathematical Society (AMS), https://www.ams.org/.

The initial list of the current members was provided by Dr Leonid Bogachev

via accessing the AMS online database through his AMS membership. Over-

all, this data set comprises 3,089 authors with the total of 316,361 papers and

12,351,608 citations. The complete data set per individual authors is available on-

line at https://github.com/Ruheyan/Citation-data/blob/main/data/cAMS.

csv. An aggregated version, with paper counts versus citations, is stored on-

line at https://github.com/Ruheyan/Citation-data/blob/main/data/AMS_

citations_frequency.csv.

Frequency plots of citations of papers in the AMS data are depicted in Figure

2.6, both in the original and log-log coordinates.
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Figure 2.6: AMS data: frequency plots (left column) and complementary cumula-

tive frequency plots (right column) in the original (top row) and log-log (bottom

row) coordinates.

2.3 Scientometric Databases

This subsection compares three mainstream platforms for obtaining scientometric

data, and explains the reasons for using the Google Scholar for collecting the EJP

and the AMS data. Furthermore, other databases are provided at the end of this

subsection.

The three most popular online databases for bibliometric data are as follows:

• Google Scholar (https://scholar.google.com/)

• Scopus (https://www.scopus.com/freelookup/form/author.uri)

• Web of Science (https://www.webofscience.com/wos/author/search)
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2.3 Scientometric Databases

These three databases display scientometric indicators, such as publications, ci-

tations, the h-index etc. For the definition of the h-index and more detail, see

Section 2.4.1.

However, various websites include different data on the publication profile

of the same authors. Table 2.3 illustrates the differences among websites using

Stephen Hawking and Alan Turing as examples. It should be noted that Google

Scholar does not directly list the total number of papers of an author. Instead,

users can click on ‘show more’ to view the entire publication list and find the

publication count at the centre of the bottom.

Table 2.3: Scientometric data of Stephen Hawking and Alan Turing featured in

different data platforms (snapshot taken on 13 December 2022).

Author Stephen Hawking Alan Turing

citations papers h-index citations papers h-index

Google Scholar 141,235 1,024 130 58,233 301 43

Scopus 50,161 160 77 704 18 5

Web of Science 51,031 160 83 12,557 38 10

Different collection methods reason for the differences among these databases.

Google Scholar uses an automated approach to collect citation data, which can

cover all the related data of a publication without many restrictions on publica-

tion type and published time, and it updates fast. However, it may cause some

technical errors, such as duplication. Scopus and Web of Science have their ex-

perts using their selective criteria. For including a paper, the journal where the

paper is published needs to be included in the databases first, so some citations

are not counted or take a longer time to be included.

In terms of citation coverage, according to Mart́ın-Mart́ın et al. (2018), the

citation coverage of Google Scholar is broader than Scopus and Web of Science

in all disciplines. Citations on Google Scholar are not only limited to journal

articles but also include theses, preprints, books etc., while Scopus and Web of

Science are journal based. Furthermore, Google Scholar is more sensitive than

Scopus and Web of Science on non-English publications (Mart́ın-Mart́ın et al.,

2018).
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Google Scholar has no restrictions on the publication time or items that can

be viewed, but it does not provide download access. Scopus only allows ten

documents to be viewed without signing in, and after signing in, only citation

information for 2,000 documents can be downloaded at once. Scopus provides

yearly citation data, which can be downloaded for 200 documents at once, and

also provides graphical outputs of author analysis and citation overview. Web

of Science also provides citation reports and yearly citation data, and it allows

up to 1,000 records to be downloaded at once, which is better than Scopus.

Additionally, citation data from Scopus starts from 1970, while that of Web of

Science starts from 1900. The yearly citation data is useful for Chapter 7, where

the time evolution of citations is researched, and data is downloaded from the

Web of Science.

After comparing these three databases (as summarised in Table 2.4), the data

from Google Scholar was selected for use. In both time coverage and publication

types coverage, Google Scholar contains the most complete and informative ci-

tation data for each author. Additionally, the software Publish or Perish for

analysing citation also uses Google Scholar data, which gives more confidence

in choosing Google Scholar as our database for this thesis. Although collecting

citation data from Google Scholar is more complicated than from the other two

databases, we decided to face the challenge.
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2.4 Some Metrics of Scientific Production

Table 2.4: Comparison of three data platforms on citation data: Google Scholar,

Scopus, and Web of Science.

Platform Advantages Disadvantages

Google Scholar

• Broad coverage

• No time restriction

• Fast updates

• Non-English publications

included

• Downloading not available

• Technical errors

Scopus

• Downloading available

(registration required)

• Annualised data available

• Limited coverage

• Data only after 1970

Web of Science
• Downloading available

• Annualised data available

• Limited coverage

• Data only after 1900

2.4 Some Metrics of Scientific Production

This section introduces two most frequently used citation metrics in the citations

analysis, the h-index and the g-index.

2.4.1 The h-index

The h-index introduced by Hirsch (2005) is defined as the maximum number h

of an author’s papers, each one cited at least h times. For illustration, Figure 2.7

shows the h-indexes of the authors from the EJP and the AMS data sets against

their citation scores, N . The dependence appears to be of a square-root type,

h = a
√
N + b; to check this out, a linear regression model was used, giving the

estimates â
.
= 0.4146, b̂

.
= 3.0576 (EJP) and â

.
= 0.4146, b̂

.
= 2.4116 (AMS);

see the solid red lines in Figure 2.7. This empirical observation will be further

discussed in Section 3.6.1 in the general context of the item production model

and in Section 4.5.2 with regard to fitting the integer partition model to citation

data.

The online platforms such as Google Scholar, Scopus and Web of Science (see

Section 2.3) provide information about an author’s h-index. This metric can serve
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Figure 2.7: The h-index versus total citations: EJP data (left) and AMS data

(right). The red lines are fitted via regression of the form h = a
√
N + b, where N

is the total number of citations. Specific fits are h ≈ 0.4146
√
N + 3.0576 (EJP)

and h ≈ 0.3815
√
N + 2.4116 (AMS).

as a benchmark for evaluating faculty recruitment, promotion, and scholarship.

Its potential applications in research make it a valuable tool in the fields of discrete

probability and statistics in the social sciences. Furthermore, it involves only a

simple calculation that can be carried out by knowing the number of papers and

their respective citation counts, resulting in a single numerical value.

In a subsequent development, Hirsch (2007) demonstrated the superior per-

formance of the h-index in predicting scientific achievement among physicists,

compared to other measures such as the total number of published papers, to-

tal citations garnered, and mean number of citations per year. This research

placed a greater emphasis on predicting future scientific achievement, with less

consideration given to future citations of previous papers.

However, despite the h-index has become one of the commonly accepted met-

rics of scientific productivity, disputes and discussions about the utility and faith-

fulness of the h-index are still prevalent. The following issues have been noted in

the literature with regard to the use of the h-index.

• Disciplines

Hirsch (2005) initially focused his study of the h-index in the physical sci-

ences, commenting that it may be necessary to analyse different disciplines
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separately. Since then, numerous scholars have conducted related research.

However, some objections have been raised. Radicchi et al. (2008) presented

a universal curve that allows for the rescaling of h-indices across different

scientific disciplines. As a result, there is a question as to whether the

classification of disciplines should be taken into account when studying the

h-index.

• Co-authorship

The term “co-authors” refers to individuals who collaborated in writing a

paper together. According to Yong (2014), co-authors impact the accuracy

of h-index estimations since it does not consider authorship order. In re-

sponse to this issue, Hirsch (2019) introduced a new index, hα, which aims

to measure leadership among co-authors.

• Self-citations

The h-index is susceptible to manipulation through self-citations. Although

self-citations can clearly boost the h-index, their impact is relatively small

when compared to the total h value of a scientist (Hirsch, 2005). Ideally,

scientists should eliminate self-citations when calculating their citation met-

rics.

• Book citations

Citations of books (especially textbooks) may also be worth removing when

calculating or estimating the h-index (Yong, 2014). The rationale here is

that books may be cited for reasons different from citing research papers,

especially with regard to well-known books of famous academics. Using

an estimation method based on the limit shape of integer partitions, Yong

(2014) argued that the estimation often becomes more accurate if text-

book citations are removed. For example, for a prominent combinatorialist

R. P. Stanley, with 6,510 citations (by 2014), the estimated h-index of 43.6

has a 20% error as compared to the actual value of 35; however, after sub-

tracting 3,362 citations from textbooks, a revised h-index is 32, while the

adjusted estimate is 30.3. In contrast, when dealing with more homoge-

neous subsets of researchers, the results are often less sensitive to books;
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for example, for mathematicians in the National Academy of Sciences of the

USA, Yong (2014) reports that the correlation coefficient between the sam-

ple and estimated h-indexes with and without books only improves from

0.94 to 0.95.

The general preference in the community is to exclude books; for example,

according to the web guidance by the University of Waterloo (see https:

//subjectguides.uwaterloo.ca/calculate-academic-footprint/

YourHIndex), citations of books and conference proceedings should be

removed when calculating the h-index, since these records are not well

represented in scientometric data platforms.

• Conference proceedings

In computer science, conference proceedings play a major role in updat-

ing cutting-edge algorithms and techniques, while other subjects, such as

mathematics, may not consider conference proceedings and other book col-

lections as valuable as journal publications.

Hirsch (2005) mentioned that the value of the h-index increases with the

academic age A of scientific research, that is, h ≈ βA. In his opinion, we can

measure the achievement of scientists by the value of β. When β ≈ 1, one is a

successful scientist, when β ≈ 2, he/she is an outstanding scientist, and when

β ≈ 3, the person is a truly unique individual. Hirsch collected data from 1985

to 2005 of physicists who obtained the Nobel Prize, and the average h-index of

them is 41, and the average value of β is 1.14 (Hirsch, 2005).

Let T be the time elapsed after an author’s first paper is published; this time

may be interpreted as the individual’s academic age. Following Hirsch (2005),

Figure 2.8 illustrates the relationship between an author’s academic age T and

their h-index. The time T is measured in years, with an author’s first publication

assigned a value of T = 0, and subsequent years incremented accordingly. The

data presented in Figure 2.8 corresponds to the h-index of a randomly selected

author from the EJP data set (Section 2.2, D). The increasing h-index of this

randomly chosen author over time is evident, with a slope of approximately β =

1.257 ≈ 1, indicating a successful scientific career according to Hirsch’s definition.
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Note that the dynamic data was collected by the author of this thesis from the

Web of Science, since Google Scholar does not provide annualised data.
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Figure 2.8: Growth of the h-index with the academic age (defined as the number

of years in research) for authors in the EJP data set. The slope of the straight

line (fitted via linear regression) is 1.257.

2.4.2 The g-index

The h-index focuses on h most cited papers with at least h citations each, but

the citation counts larger than h are censored. To address this limitation, Egghe

(2006) proposed the g-index, calculated by arranging an author’s papers in de-

creasing order of generated citations and determining the largest value of g such

that the sum of citations of the top g papers is at least g2. Figure 2.9 using

the EJP and the AMS data sets, illustrating the scatter plot of the g-index as a

function of citations N , and also its relation with the h-index.

The g-index and corresponding citation counts tend to a square-root relation,

i.e., g = a
√
N + b; to check this out, a linear regression was used, giving the

esimates â
.
= 0.92417, b̂

.
= 0.03961 (EJP) and â

.
= 0.9235, b̂

.
= −0.7075 (AMS);

these are depicted in solid red lines in Figure 2.9. Same as the h-index, this

empirical observation will be further discussed in both in the general context
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of the item production model (see Section 3.6.2) and with regard to fitting the

integer partiton model to citation data (see Section 4.5.2).

The h-index and the g-index tend to have a linear relation, i.e., g = αh + β,

checking through linear regression, we obtain α̂
.
= 2.151, β̂

.
= −5.409 (EJP) and

α̂
.
= 2.240, β̂

.
= −3.166 (AMS). These are illustrated in Figure 2.9 in solid red

lines.

0 5000 10000 15000 20000 25000

0
5

0
1

0
0

1
5

0

EJP

citation

g

0 10 20 30 40 50 60

0
5

0
1

0
0

1
5

0

EJP

h

g

0 50000 100000 150000 200000

0
1

0
0

2
0

0
3

0
0

4
0

0

AMS

citation

g

0 50 100 150

0
1

0
0

2
0

0
3

0
0

4
0

0

AMS

h

g

Figure 2.9: Illustartion of g-index using EJP data (top row) and AMS data

(bottom row). Left panels show scatter plots of the g-index versus the total

number of citation N . The red lines show fitted lines via regression g = a
√
N+b,

yielding g ≈ 0.92417
√
N + 0.03961 (EJP) and g ≈ 0.9235

√
N − 0.7075 (AMS).

Right panels display scatter plots of g versus the h-index, with red lines depicting

linear regression fits, g ≈ 2.151h− 5.409 (EJP) and g ≈ 2.240h− 3.166 (AMS).
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2.5 Possible Ethical Issues

2.5 Possible Ethical Issues

In the context of research involving personal details, such as gender, age, and

personal address, ethical and data protection issues are crucial. This also applies

in scientometric research, where personal details may be included in the data.

However, this thesis does not require an ethical approval review since publications

and citation data are publicly available. Nonetheless, according to the course

on Introduction to Research Ethics attended by the author on September 19,

2019, personal data that are not publicly available must be either anonymous

or confidential. Anonymity refers to the inability to identify a person from the

information provided, while confidentiality ensures that only a limited number

of individuals can access data containing personal information. These ethical

considerations become even more critical when research involves children’s data.

In most of our studies, personal names were omitted from the scientometric

data analysis, to make sure there are no ethical issues arising. However, it is

still possible and legitimate to retrieve the author’s identity from the data in

cases of research interest, such as outliers in a data set. For instance, the data set

presented in Lotka (1926) did not include authors’ names, but the data source was

known (i.e., the index of Chemical Abstracts), which would enable a researcher to

find the relevant information if required, by referring to the original source. For

example, an outlier in Lotka’s data identified due to the GIGP fitting is discussed

in Section 5.5.1. As another example, a specific paper from the EJP data set,

with over 2,300 authors (!), is discussed in Section 7.2.5.
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Chapter 3

Item Production Model:

Mathematical Setup

This chapter aims to establish the foundation for the present thesis by setting

up the basic model for the data. The model enables later chapters to investigate

under different assumptions.

3.1 Item Production Model

3.1.1 Context and motivation

In informetrics, it is customary to use the terms “sources” and “items” to de-

scribe the count data (Egghe, 2005). Informally, “sources” produce “items”; for

example, in Lotka’s data set authors produce papers. Likewise, in Chen’s data

set, journal volumes are sources and their individual uses are items, while in the

Moby Dick data set, different words are sources and their occurrences are items.

In the context of scientometrics, there are three pillars of the data depending

on the focus of study — authors producing papers which, in turn, are producing

citations. All of these features are present in our EJP and AMS data sets (see Sec-

tion 2.2). The three “sources-items” relations arising here are as follows. Firstly,

authors (sources) produce papers (items); on the other hand, papers (sources)

produce citations (items). Finally, authors may be interpreted as sources di-

rectly producing citations as items. These relations are symbolically depicted
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3. Item Production Model: Mathematical Setup

Authors (A)

Papers (P) Citations (C)

Figure 3.1: Authors-papers-citations (APC) triangle.

in Figure 3.1. In the present thesis, we are mostly interested in the relation

“papers–citations”, in particular due to the relevance of the h-index.

Table 3.1 displays the summary of the data sets A–E described in Section 2.2

by highlighting the suitable interpretation of sources and items.

Table 3.1: Summary of the data sets A to E introduced in Section 2.2

Data set sources – items sources items items per source

A (Lotka’s) authors – papers 6,891 22,939 3.328835

B (Chen’s) volumes – uses 138 4,292 31.10145

C (Moby Dick) words – occurrences 18,855 209,994 11.13731

D (EJP) papers – citations 15,400 245,567 15.94591

E (AMS) papers – citations 316,361 12,351,608 39.04276

3.1.2 Outputs and multiplicities

Suppose there are M sources, each one producing a batch of items, and let Xi

denote the random size of the batch produced by the i-th source (i = 1, . . . ,M).

The range of the output size can be j ∈ N0 if empty output is allowed (e.g.,

citations of a paper), or it can be zero truncated, with j ∈ N (e.g., papers of an

author). The sources are independent of one another and their random outputs

follow a common frequency distribution (fj), that is, the random variables (Xi)

are mutually independent and, for each i = 1, . . . ,M ,

P(Xi = j) = fj (j ∈ N0).
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3.1 Item Production Model

Remark 3.1. To streamline the notation, we keep writing j ∈ N0, wherein the

zero-truncated case is included with f0 = 0.

Remark 3.2. The item production model introduced above can be rephrased as

the classic occupancy problem, dealing with independent allocation of M particles

over infinitely many boxes with probability distribution (fj) (Gnedin et al., 2007).

We assume that the distribution (fj) has finite mean,

µ := E(Xi) =
∞∑
j=0

jfj <∞. (3.1)

The total (random) number of produced items is given by the sum of the outputs,

N =
M∑
i=1

Xi, (3.2)

with the expected value

E(N) =
M∑
i=1

E(Xi) = Mµ. (3.3)

It is useful to represent each Xi via “scanning” across the range of possible

values j,

Xi =
∞∑
j=0

jI{Xi=j}, (3.4)

where IA denotes the indicator of event A (i.e., with values 1 if A occurs and 0

otherwise). Of course,

E
(
I{Xi=j}

)
= P(Xi = j) = fj (j ∈ N0). (3.5)

Consider the multiplicity Mj of output size j ∈ N0 in the pooled production of

items (Xi),

Mj := #
{
i ∈ {1, . . . ,M} : Xi = j

}
=

M∑
i=1

I{Xi=j} (j ∈ N0). (3.6)

Using (3.5), we find the expectation

E(Mj) =
M∑
i=1

E
(
I{Xi=j}

)
= Mfj (j ∈ N0). (3.7)
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3. Item Production Model: Mathematical Setup

Note that the random variables (Mj) are not independent; indeed, they sum up

to the number of sources,

∞∑
j=0

Mj =
∞∑
j=0

M∑
i=1

I{Xi=j} =
M∑
i=1

∞∑
j=0

I{Xi=j} =
M∑
i=1

1 = M.

From the interpretation of the multiplicities Mj, it is evident that the total

(random) number of produced items is given by

N =
∞∑
j=0

jMj. (3.8)

The same can be easily obtained using definition (3.2) and decompositions (3.4)

and (3.6),

N =
M∑
i=1

Xi =
M∑
i=1

∞∑
j=0

jI{Xi=j} =
∞∑
j=0

j
M∑
i=1

I{Xi=j} =
∞∑
j=0

jMj.

The expected value of N can then be expressed using (3.7) and (3.1),

E(N) =
∞∑
j=0

jE(Mj) = M
∞∑
j=0

jfj = Mµ, (3.9)

which is, of course, the same as (3.3).

Remark 3.3. In view of formulas (3.3) and (3.9), the sample mean µ̂ = N/M is

an unbiased estimator of the expected value µ, possessing all standard properties

such as consistency and asymptotic normality. The advantage of this estimator

is that it is non-parametric, in the sense that it does not require knowledge of

any distributional model (fj) behind the production output data.

Example 3.1. To illustrate this notation, consider a mock example of citation

data. We interpret papers as sources and citations as items produced by sources.

Suppose there is a single author with M = 8 papers and the following citation

counts for each of these papers:

i 1 2 3 4 5 6 7 8

Xi 2 1 4 2 0 1 0 0
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3.1 Item Production Model

The total number of citations is

N =
∑
i

Xi = 2 + 1 + 4 + 2 + 0 + 1 + 0 + 0 = 10.

The same data can be represented using the multiplicities of specific citations:

j 0 1 2 3 4 ≥ 5

Mj 3 2 2 0 1 0

Mj/M 0.375 0.250 0.250 0.000 0.125 0.000

Here, the multiplicity Mj is the number of papers with exactly j citations (j =

0, 1, 2, . . . ). In particular, M0 = 3 because there are three papers that have not

been cited, and M3 = 0 because none of the papers have been cited three times.

The ratios Mj/M are the relative frequencies of having j citations, respectively.

3.1.3 The likelihood

Suppose that the theoretical frequencies (fj) depend on one or more model pa-

rameters, fj = fj(θ), where θ = (θ1, . . . , θr) ∈ Rr. With the observed data

X = (X1, . . . , XM) consisting of independent values with common distribution

(fj(θ)), the likelihood is given by the product rule,

L(θ;X) =
M∏
i=1

fXi(θ). (3.10)

The maximum likelihood estimate of the vector parameter θ can then be obtained

either by maximising the function (3.10) directly (e.g., using the R command

optim) or by solving numerically the likelihood equation ∂L/∂θ = 0, or more

explicitly, the set of equations

∂L

∂θk
= 0, k = 1, . . . , r.

As usual, it may be more convenient to work with the log-likelihood ` = logL,

`(θ;X) =
M∑
i=1

log fXi(θ), (3.11)
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3. Item Production Model: Mathematical Setup

which is maximised by solving the corresponding log-likelihood equations

∂`

∂θk
= 0, k = 1, . . . , r.

Clearly, the order of terms in the product formula (3.10) (as well as in the sum

formula (3.11)) is not important, so it can be rewritten using the order statistics

X1,M ≥ · · · ≥ XM,M ,

obtained by arranging the sample terms Xi in non-increasing order. In particular,

X1,M = max{Xi, i = 1, . . . ,M}, XM.M = min{Xi, i = 1, . . . ,M}.

Thus, formula (3.10) takes the form

L(θ;X) =
M∏
i=1

fXi,M (θ). (3.12)

Of course, this does not cause any loss of information about the unknown param-

eter θ, which means that the collection of order statistics {Xi,M} is a sufficient

statistic for θ, also confirmed by the factorisation rule (Garthwaite et al., 2002,

Theorem 2.1, p. 21). A reduction of stored information here is that we do not

need to know each individual output Xi, but only an ordered collection of these

outputs.

Example 3.2. The original EJP data set stores the sample X, which is citations

of each author’s papers without any particular ordering. A reduced version of the

data set is achieved by storing the multiplicities of the citations (Mj), which can

also return the data to the ordered counts of citations {Xi,M}. The reduction in

storage applies to the AMS data set as well.

In turn, collecting the counts of the order statistics Xi,M with the same sample

value j ∈ N0, expression (3.12) can be rewritten in terms of the multiplicities

(Mj),

L(θ;X) =
∞∏
j=0

fj(θ)Mj , (3.13)
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3.1 Item Production Model

which again appears to follow a product rule despite the fact that the multiplicities

(Mj) are not independent. Formally, the expression (3.13) can be verified by

expressing the frequencies in the form

fx(θ) =
∞∏
j=0

fj(θ)1{x}(j),

where 1D(x) is the indicator function of set D (i.e., 1D(x) = 1 if x ∈ D and

1D(x) = 0 otherwise). Substituting this into (3.10), we obtain

L(θ;X) =
M∏
i=1

∞∏
j=0

fj(θ)1{Xi}(j)

=
∞∏
j=0

fj(θ)
∑M
i=1 I{Xi=j}

=
∞∏
j=0

fj(θ)Mj ,

according to (3.6). Thus, formula (3.13) follows.

The representation (3.13) is useful, because the data is often aggregated by

ignoring the individual outputs of the sources, instead reporting only the observed

counts Mj. Again, this does not cause any loss of information about the unknown

parameter θ, because, according to the factorisation rule (Garthwaite et al., 2002,

Theorem 2.1, p. 21), the vector of multiplicities (Mj) is a sufficient statistic for θ.

In fact, it is easy to see that the statistics {Xi,M} and (Mj) are equivalent: if

we know all the terms {Xi,M} then we can calculate the counts (Mj), and vice

versa. The choice of a particular representation of the likelihood depends on the

convenience of data handling in a given format of the data set.

3.1.4 Likelihood of censored data

Sometimes the interest is in modelling a truncated range of observed frequencies

starting from some threshold, say j ≥ j∗. For example, this situation frequently

arises when fitting a power law (see Section 4.2). In that case, the aim is to fit a

conditional model f∧j = P(Xi = j |Xi ≥ j∗) to the observed counts Xi = j ≥ j∗.
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Denoting the probability of threshold exceedance by ρ = P(Xi ≥ j∗), this leads

to a likelihood of censored data

L(ρ,θ;X) =
M∏
i=1

(1− ρ)I{Xi<j∗}
(
ρf∧Xi(θ)

)I{Xi≥j∗}
= (1− ρ)M−M(j∗) ρM(j∗)

M∏
i=1

(
f∧Xi(θ)

)I{Xi≥j∗} , (3.14)

where M(j∗) :=
∑M

i=1 I{Xi≥j∗} is the total number of observations (Xi) with

values at least j∗. Note the binomial-type part in front of the product in (3.14).

Accordingly, the log-likelihood ` = logL is given by

`(ρ,θ;X) =
(
M −M(j∗)

)
log(1− ρ) +M(j∗) log ρ

+
M∑
i=1

I{Xi≥j∗} log(f∧Xi
(
θj)
)
. (3.15)

Differentiating the log-likelihood ` = logL with respect to ρ, we obtain

∂`

∂ρ
= −M −M(j∗)

1− ρ
+
M(j∗)

ρ
= 0,

which immediately yields a familiar maximum likelihood estimator (MLE) for ρ

of success-rate type,

ρ̂ =
M(j∗)

M
. (3.16)

The MLE of the vector parameter θ is obtained as usual by solving the corre-

sponding likelihood equations ∂`/∂θ = 0.

3.2 Young Diagrams and Limit Shape

As already mentioned in Section 3.1.3 , it is useful to rank the sources according to

their production output, that is, by considering the (descending) order statistics

X1,M ≥ X2,M ≥ · · · ≥ XM,M ; for example, X1,M = max1≤i≤M{Xi} is the highest

output score among M sources. The production profile is succinctly visualised

by the Young diagram formed by the left- and bottom-aligned row blocks of unit

height and lengths (Xi,M), with longer blocks positioned lower (see Figure 3.2).
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In particular, blocks corresponding to the output value j = 0 (if it is allowed)

degenerate to vertical intervals (of height 1 each) placed on top of the rest of the

Young diagram along the vertical axis.

x

Y (x)
�

�

y

0 1 2 3 4

1

2

3

4

5

6

Figure 3.2: Young diagram and the boundary Y (x) for M = 6 sources and ordered

outputs (Xi,M) = (4, 2, 2, 2, 1, 1), corresponding to counts M4 = 1, M2 = 3,

M1 = 2.

The upper boundary of the Young diagram is the graph of the (left-continuous)

step function

Y (x) :=
∑
j≥x

M∑
i=1

I{Xi=j} =
∑
j≥x

Mj (x ≥ 0) (3.17)

(see (3.6)).

To highlight the dependence on x, rewrite definition (3.17) in the form

Y (x) =
∞∑
j=0

Mj 1[0,j](x) (x ≥ 0). (3.18)

If M0 > 0 then the function Y (x) has an isolated peak at x = 0; otherwise,

Y (x) is right-continuous at zero. The value at the origin is the total number of

sources, i.e.,

Y (0) =
∞∑
j=0

Mj = M,
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whereas the area under the graph of Y (x) equals the total number of produced

items, i.e., ∫ ∞
0

Y (x) dx =
∞∑
j=0

Mj

∫ ∞
0

1[0,j](x) dx =
∞∑
j=0

jMj = N

(see (3.18) and (3.8)).

Setting

Zi(x) :=
∑
j≥x

I{Xi=j} = I{Xi≥x} (i = 1, . . . ,M), (3.19)

formula (3.17) can be expressed in the form

Y (x) =
M∑
i=1

∑
j≥x

I{Xi=j} =
M∑
i=1

Zi(x). (3.20)

The indicators Z1(x), . . . , ZM(x) are independent and identically distributed

Bernoulli random variables; specifically,

P(Zi(x) = 1) = P(Xi ≥ x) =
∑
j≥x

fj =: F̄ (x), (3.21)

P(Zi(x) = 0) = P(Xi < x) =
∑
j<x

fj =: F (x), (3.22)

where F̄ (x) + F (x) = 1 for all x ≥ 0. Hence,

E
(
Zi(x)

)
= F̄ (x), Var

(
Zi(x)

)
= F̄ (x)

(
1− F̄ (x)

)
= F̄ (x)F (x).

Furthermore, for any 0 ≤ x ≤ x′ we have

Zi(x)Zi(x
′) = I{Xi≥x}I{Xi≥x′} = I{Xi≥x′} = Zi(x

′),

whence

Cov
(
Zi(x), Zi(x

′)
)

= E
(
Zi(x)Zi(x

′)
)
− E
(
Zi(x)

)
E
(
Zi(x

′)
)

= F̄ (x′)− F̄ (x) F̄ (x′) = F̄ (x′)F (x).

It then follows easily from (3.20) that, for each x ≥ 0,

E
(
Y (x)

)
= MF̄ (x), Var

(
Y (x)

)
= MF̄ (x)F (x). (3.23)
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and, for 0 ≤ x ≤ x′,

Cov
(
Y (x), Y (x′)

)
=

M∑
i,i′=1

Cov
(
Zi(x), Zi′(x

′)
)

=
M∑
i=1

Cov
(
Zi(x), Zi(x

′)
)

= MF̄ (x′)F (x), (3.24)

A useful visual insight into the structure of the production distribution may

be obtained by looking at scaled Young diagrams, with some scaling coefficients

A and B,

Ỹ (x) =
1

B
Y (Ax) =

1

B

∑
j≥Ax

Mj =
1

B

M∑
i=1

Zi(Ax) (x ≥ 0). (3.25)

The aim is to seek a limit shape x 7→ ϕ(x) such that, with suitable A,B →∞,

E
(
Ỹ (x)

)
→ ϕ(x) (x > 0), (3.26)

and, moreover, the random variable Ỹ (x) converges to ϕ(x) (in probability),

Ỹ (x)
p−→ ϕ(x) (x > 0). (3.27)

Remark 3.4. The reason for restricting the range of convergence in (3.26) and

(3.27) to x > 0 is that, in some cases, ϕ(0) =∞ (e.g., see Figure 3.3).

By definition of convergence in probability, the limit (3.27) means that, for

any ε > 0,

P
(∣∣Ỹ (x)− ϕ(x)

∣∣ ≥ ε
)
→ 0 (x > 0). (3.28)

Remark 3.5. It is often possible to prove a stronger limit shape result by showing

uniform convergence in (3.26) and (3.28), at least away from x = 0 (Bogachev,

2015; Nuermaimaiti et al., 2021). More precisely, this means that, for any δ > 0,

sup
x≥δ

∣∣E(Ỹ (x)
)
− ϕ(x)

∣∣→ 0 (3.29)

and, for any ε > 0,

P

(
sup
x≥δ

∣∣Ỹ (x)− ϕ(x)
∣∣ ≥ ε

)
→ 0. (3.30)
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A natural way to prove (3.28) is by using Chebyshev’s inequality (Shiryaev,

1996, Sec. II.6, p.192), yielding the upper bound

P
(
|Ỹ (x)− ϕ(x)| ≥ ε

)
≤

E
(
(Ỹ (x)− ϕ(x))2

)
ε2

,

and then decomposing the mean squared deviation E
(
(Ỹ (x) − ϕ(x))2

)
through

the variance Var
(
Ỹ (x)

)
and the squared deviation

(
E
(
Ỹ (x)

)
− ϕ(x)

)2
. Thus,

remembering the scaling (3.25) and the formulas (3.23), the proof of the limit

shape result (3.28) is reduced to proving two limits,

E
(
Ỹ (x)

)
=
MF̄ (Ax)

B
→ ϕ(x), Var

(
Ỹ (x)

)
=
MF̄ (Ax)F (Ax)

B2
→ 0. (3.31)

Recalling that Ỹ (x) is a (normalised) sum of independent indicators Zi(Ax) =

I{Xi≥Ax}, i = 1, . . . ,M (see (3.25)), it is natural to expect that Ỹ (x) is

asymptotically normal, with mean E
(
Ỹ (x)

)
= MF̄ (Ax)/B ∼ ϕ(x) and vari-

ance MF̄ (Ax)F (Ax)/B2 ∼ ϕ(x)/B (see (3.31)). However, a standard cen-

tral limit theorem is not directly applicable because the “success” probability

P(Zi(Ax) = 1) = F̄ (Ax) is not constant (and, moreover, it tends to 0). We will

prove such results directly for the GIGP model (Section 5.3) and the GPL model

(Section 6.2.3), using the method of characteristic functions.

The notion of limit shape is motivated by similar topics in the theory of

random integer partitions (Vershik, 1995, 1996). This classic example is recalled

briefly in the next Section 3.3 by way of illustration, although the setting there

is somewhat different from the item production model.

3.3 Example: Limit Shape of Integer Partitions

Due to the scale-free property, the power law does not change the shape after

scaling, so the power law have a limit shape does not depend on scalings.

To illustrate the concept of limit shape, we start with a baseline example of

the power law frequency distribution, fj = j−a/ζ(a) (j ≥ 1), with a > 1. Choose

any A → ∞ such that B := M/Aa−1 → ∞; that is, 1 � A � M1/(a−1). Then
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the scaled expected Young diagram boundary function specialises to

E
(
Ỹ (x)

)
=
Aa−1

M

∑
j≥Ax

Mj−a

ζ(a)
=

1

ζ(a)

∑
j/A≥x

(
j

A

)−a
1

A
(3.32)

→ 1

ζ(a)

∫ ∞
x

s−a ds =
x−(a−1)

(a− 1)ζ(a)
, (3.33)

using that the sum in (3.32) is the Riemann integral sum of the integral in (3.33).

Thus, the limit shape exists and is given by the right-hand side of (3.33), but

this is of no practical use because the scaling parameter A → ∞ is arbitrary as

long as A = o(M1/(a−1)) (which confirms that the power law distribution is scale

free).

The classic example of a frequency model possessing a meaningful limit shape

comes from the theory of random integer partitions. Here, the values j = 1, 2, . . .

are interpreted as candidate parts into an integer partition, and the corresponding

multiplicity Mj is the number of times the part j is used, respectively. In partic-

ular, if Mj = 0 then the value j is not involved in the partition, and it is tacitly

assumed that only finitely many of Mj’s are non-zero. The sum N =
∑∞

j=1 jMj

yields the integer being partitioned into the sum of the parts j with Mj > 0.

The standard model set-up there is different from the item production model

described in Section 3.2. Namely, instead of the premise of M independent

sources, with multiplicities (Mj) expressed by formula (3.6), the randomised par-

tition model is defined by assuming that the multiplicities (Mj) are independent

random variables with geometric distribution, Mj ∼ Geom(1− zj) (j ≥ 1), that

is,

P(Mj = m) = zjm (1− zj) (m ≥ 0), (3.34)

with the expected value given by

E(Mj) =
zj

1− zj
(j ≥ 1). (3.35)

The parameter z ∈ (0, 1) is chosen specifically as

z = e−κ/
√
n, κ :=

π√
6

=
√
ζ(2), (3.36)

where n is an external (large) parameter.
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Note that, for any z ∈ (0, 1),

P(Mj > 0) = 1− P(Mj = 0) = 1− (1− zj) = zj,

and
∞∑
j=1

P(Mj > 0) =
∞∑
j=1

zj =
z

1− z
<∞.

Therefore, by the Borel–Cantelli lemma (Shiryaev, 1996, Sec. II.10, p. 255), the

number of nonzero terms in the sequence of random multiplicities (Mj) is finite

with probability 1.

Due to the mutual independence of Mj and the geometric marginal distribu-

tions (3.34), the probability of a given sequence of multiplicities Mj = mj (j ≥ 1)

(with finitely many nonzero terms) is expressed as follows,

P(Mj = mj, j = 1, 2, . . . ) =
∞∏
j=1

zjmj(1− zj) =
zN

G(z)
, (3.37)

where N =
∑∞

j=1 jmj and

G(z) =
∞∏
j=1

1

1− zj
(0 < z < 1).

Formula (3.37) is an instance of the so-called Boltzmann distribution, with roots in

statistical physics (Auluck & Kothari, 1946; Vershik, 1997) and many applications

in probabilistic combinatorics (Arratia et al., 2003) and computing (Duchon et al.,

2004).

Motivation for the choice of the Boltzmann distribution (3.37) is due to the

fact that its conditioning leads to the uniform distribution on the corresponding

subspace. Specifically, denoting by Πn the set of all integer partitions of n, it is

easy to see that the conditional probability of any partition in Πn with specific

multiplicities of parts Mj = mj, conditioned on N =
∑∞

j=1 jMj = n, is given by

P
(
Mj = mj, j ≥ 1

∣∣N =
∑

j jMj = n
)

=
zn/G(z)

(zn/G(z)) ·#Πn

=
1

#Πn

,

which is the uniform distribution onΠn. Furthermore, the choice of the parameter

z in the asymptotic form (3.36) is explained by the natural calibration condition

E(N) = E
(∑∞

j=1 jMj

)
∼ n (n→∞). (3.38)
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Indeed, using the mean formula (3.35) and seeking the parameter z in the form

z = e−αn , with αn → 0, the asymptotic equation (3.38) is rewritten as

E(N) =
∞∑
j=1

j e−αnj

1− e−αnj
=

1

α2
n

∞∑
j=1

αnj e−αnj

1− e−αnj
αn ∼ n. (3.39)

Observing that the sum in (3.39) is a Riemann integral sum, it follows that

∞∑
j=1

αnj e−αnj

1− e−αnj
αn →

∫ ∞
0

s e−s

1− e−s
ds

=
∞∑
`=1

∫ ∞
0

s e−`s ds =
∞∑
`=1

1

`2
= ζ(2) =

π2

6
= κ2.

Substituting this into equation (3.39), we obtain αn ∼ κ/
√
n, in line with (3.36).

The expected limit shape in the partition model can now be easily computed

(Bogachev, 2015; Vershik, 1996): setting A = B =
√
n, we have, for any x > 0,

E
(
Ỹ (x)

)
=

1

B

∑
j≥Ax

E(Mj) =
1√
n

∑
j≥
√
nx

e−αnj

1− e−αnj

→ 1

κ

∫ ∞
κx

e−s

1− e−s
ds =

1

κ

∞∑
`=1

∫ ∞
κx

e−`s ds

=
1

κ

∞∑
`=1

1

`
e−κx = −1

κ
log (1− e−κx). (3.40)

Thus, the limit shape y = ϕ(x) is given by the equation

y = −κ−1 log (1− e−κx) (x > 0), (3.41)

or, in a more symmetric form,

e−κx + e−κy = 1 (x, y > 0), (3.42)

where κ = π/
√

6 (see (3.36)). The plot of this function is shown in Figure 3.3

(red line).

Note that ϕ(0) =∞. According to the calculation in (3.40), this implies that

the expected value of M grows faster than
√
n. More precisely, we have

E(M) =
∞∑
j=1

e−αnj

1− e−αnj
=

m∑
j=1

e−αnj

1− e−αnj
+

1

αn

∞∑
j>m

αn e−αnj

1− e−αnj
, (3.43)
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where m = [1/αn] and αn = κ/
√
n (see (3.36)). Arguing as before, we see that

the last sum in (3.43) converges to the integral
∫∞

1
e−κs (1 − e−κs)−1 ds < ∞.

Next, write

m∑
j=1

e−αnj

1− e−αnj
=

1

αn

m∑
j=1

1

j
+

m∑
j=1

(
e−αnj

1− e−αnj
− 1

αnj

)
,

where (Olver et al., 2010, 2.10.8)

m∑
j=1

1

j
∼ logm ∼ − logαn

and
m∑
j=1

(
e−αnj

1− e−αnj
− 1

αnj

)
∼ 1

αn

∫ 1

0

(
e−s

1− e−s
− 1

s

)
ds = O(α−1

n ),

noting that the integrand function has a finite limit at zero,

e−s

1− e−s
− 1

s
=
s e−s − 1 + e−s

s (1− e−s)
=
−1

2
s2 +O(s3)

s2 +O(s3)
→ −1

2
(s→ 0).

As a result,

E(M) ∼ α−1
n (− logαn) ∼

√
n

2κ
log n =

√
6n

2π
log n (n→∞). (3.44)

Remark 3.6. Two different model settings discussed above — with independent

outputs Xi (i = 1, . . . ,M), like in the item production model (Section 3.1), or

with independent multiplicities Mj (j ∈ N0), like in a randomised model of integer

partitions (Section 3.3), are in fact closely connected and, in a sense, equivalent

to one another. Indeed, randomisation of certain parameters in combinatorial

structures is a frequently used technical tool (Arratia et al., 2003) aiming to

overcome structural constraints, such as a prescribed sum of parts in integer par-

titions (Bogachev, 2015; Fristedt, 1993). As another example directly related

to the item production model, in the occupancy problem (see Remark 3.2) it is

conventional to use the so-called poissonisation (Arratia et al., 2003; Borisov &

Jetpisbaev, 2022) by replacing the original (co-dependent) multiplicities Mj by

independent Poisson random variables with mean Mfj, respectively (j ∈ N0)

Bogachev et al. (2008); Gnedin et al. (2007). In each of these settings, the antici-

pated equivalence is guaranteed via a suitable “bridge” between the original and
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Figure 3.3: A random (simulated) Young diagram (shown as a shaded area) under

the scaling
√
n along both axes, with n = 100. Horizontal blocks correspond to

the ordered outputs Xi,M (with the sample value M = 17). The limit shape ϕ(x)

defined in (3.42) is shown as a red solid line.

randomised versions of the problem, such as a local limit theorem for the asymp-

totics of probabilities P
(∑

j jMj = n
)

in the case of integer partitions (Bogachev,

2015; Fristedt, 1993), or a “depoissonisation lemma” in the occupancy problem

(Bogachev et al., 2008; Gnedin et al., 2007).

3.4 Indexes Characterising the Item Production

In this section, we review the citation indexes, discussed in Section 2.4, in the

framework of the general item production model of Section 3.1. Although these

indexes (such as h-index and g-index) were historically proposed in the context

of citations of scientific outputs, we argue that they make sense in the general

framework and provide a useful characterisation of the output performance. In

addition, a new production metric called the h1-index is proposed by combining

the ideas used in defining the h-index and g-index.
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3. Item Production Model: Mathematical Setup

3.4.1 The h-index

Suppose that an author has M papers with citations X1, . . . , XM , respectively.

Then the definition of the h-index given in Section 2.4.1 is expressed mathemat-

ically as follows,

h := max

{
j ≥ 0:

M∑
i=1

I{Xi≥j} ≥ j

}
. (3.45)

Using formula (3.17), the latter definition can be rewritten in either of the forms

h = max

{
j ≥ 0:

∑
`≥j

M` ≥ j

}
= max

{
j ≥ 0: Y (j) ≥ j

}
. (3.46)

Thus, the h-index is interpreted geometrically as (the size of) the largest

square under the graph of the Young boundary Y (x) (see Figure 3.4, top row).

Such a square is often called the Durfee square (Yong, 2014).

It follows from (3.46) that

Y (h+ 1)− 1 < h ≤ Y (h). (3.47)

Furthermore, since h and Y (h+1) are integers, the left inequality in (3.47) means

in fact that Y (h+ 1) ≤ h, so that the double inequality (3.47) can be written in

a tighter form,

Y (h+ 1) ≤ h ≤ Y (h). (3.48)

This two-sided inequality can be verified geometrically by inspection of (four)

possible geometric configurations that may arise when considering the crossing of

the Young diagram by the diagonal y = x.

3.4.2 The g-index

Suppose that an author has M papers with X1, . . . , XM citations. Consider the

corresponding order statistics, that is, order citation counts X1,M ≥ · · · ≥ XM,M .

Then the definition of the g-index given in Section 2.4.2 can be written mathe-

matically as follows,

g := max

{
k ≥ 1:

k∑
i=1

Xi,M ≥ k2

}
. (3.49)
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3.4 Indexes Characterising the Item Production

Remark 3.7. Note that, by definition (3.49), g ≤M .

Clearly, the g-index is not smaller than the h-index of the same author (Egghe,

2006, Proposition I.2. p. 133),

g ≥ h. (3.50)

Indeed, if the h-index has value h then there are h papers with at least h citations

each, and therefore with at least h × h = h2 citations in total. Hence, the

trial value k = h satisfies the inequality condition in (3.49), which implies that

g ≥ k = h. as claimed.

3.4.3 First-order h-index

Motivated by the g-index aiming to take into account the actual citations of

top-cited papers, we propose a new citation index referred to as the first-order

h-index (h1-index). Suppose that an author has M publications with X1, . . . , XM

citation, then the h1-index is defined as the maximum integer h1 such that the

total sum of citation counts of papers with at least h1 citations each is not less

than h2
1. Mathematically, this is expressed as

h1 := max

{
j ≥ 0:

M∑
i=1

Xi I{Xi≥j} ≥ j2

}
. (3.51)

Using (3.6), the sum in (3.51) is rewritten as follows,

M∑
i=1

Xi I{Xi≥j} =
M∑
i=1

∞∑
`≥j

` I{Xi=`} =
∑
`≥j

`
M∑
i=1

I{Xi=`} =
∑
`≥j

`M`.

Hence, definition (3.51) can be expressed in terms of the multiplicities,

h1 := max

{
j ∈ [0,M ] :

∑
`≥j

`M` ≥ j2

}
. (3.52)

The h1-index combines the features of both the h-index and the g-index. It

takes into account citations that are equal to or greater than a minimum threshold

value of h1 as in the h-index, while also including higher citations as in the g-

index. This ensures that the h1-index captures the impact of highly cited papers

and provides a more balanced picture of their overall scholarly impact.
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3. Item Production Model: Mathematical Setup

The general relationship between the h-index, h1-index, and g-index is as

follows,

h ≤ h1 ≤ g. (3.53)

Indeed, from the defining condition (3.46) we have

h ≤
∑
`≥h

M` ≤
1

h

∑
`≥h

`M` ≤
h2

1

h
,

according to (3.51), and it follows that h ≤ h1.

Turning to the relation between h1 and g, let the maximising sum in (3.52)

be expressed as

h2
1 ≤

M∑
i=1

Xi I{Xi≥h1} =
J∑
i=1

Xi,M , (3.54)

involving J higher order statistics Xi,M , each one satisfying the inequality

Xi,M ≥ h1 (i = 1, . . . , J). (3.55)

Now, if J ≤ h1 then from (3.54) we obtain

h2
1 ≤

J∑
i=1

Xi,M ≤
h1∑
i=1

Xi,M ,

and it follows from the definition (3.49) that g ≥ h1. Alternatively, if J ≥ h1

then, using (3.55), we can write

J∑
i=1

Xi,M ≥
h1∑
i=1

Xi,M ≥
h1∑
i=1

h1 = h2
1,

and as before it follows again that g ≥ h1.

Remark 3.8. The confinement of the h1-index to the range [0,M ] (see (3.52)) is

important, for otherwise the value of h1 could go above M , thus violating the

inequality g ≥ h1. For instance, consider the citation output (18, 18, 1, 1), then

M=4∑
i=1

Xi I{Xi≥6} = 18 + 18 = 36 = 62,

so that h1 = 6. On the other hand,

k=4∑
i=1

Xi,M = 18 + 18 + 1 + 1 = 38 ≥ 42,

hence g = 4 < h1 = 6.
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Figure 3.4: Visualisation of the citation indexes h, g, and h1. The Young diagrams

depict ordered citations of three mock authors, (3, 3, 2, 2, 1, 0), (4, 3, 2, 2, 1, 0) and

(6, 3, 2, 2, 1, 0), with M = 6 papers each. Shaded areas in each row show the

citation counts for calculating the indexes: h-index (top row), with values h =

2 for each author; g-index (middle row), yielding g = 2, g = 3, and g = 3,

respectively; and h1-index, yielding h1 = 2, h1 = 2, and h1 = 3, respectively.

In Figure 3.4, examples are shown of different citation outputs difference only

in the citation counts of their top-cited paper (each with the same number of
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3. Item Production Model: Mathematical Setup

papers, M = 6), which yield the same h-index, but different g-index and h1-

index values. These examples also illustrate the inequalities (3.53).

3.5 Composite Model of Item Production

In some situations, a standard item production model with a single “battery” of

sources i = 1, . . . ,M (as described in Section 3.1) may not be sufficient, because

several such batteries are needed.

As one important example, in the APC relationship (see Section 3.1.1) papers

(sources) produce citations (items) for each individual author, so in fact we are

dealing with several item production models, indexed by authors (who may be

assumed to be independent if we ignore multiple authorship). Another example

is the statistical analysis of journal uses (see Chen’s data in Section 2.2), where

the journal issues are interpreted as sources and their uses as items; however, if

we wanted to repeat the same analysis for a different time window, this would

require considering another (independent) item production model. As our third

example arising from the count statistics in literary texts (e.g., the Moby Dick

data set in Section 2.2), the need for multiple item production models would arise

if one wanted to consider several books by the same author or different authors.

These considerations lead to the following generalisation of the item produc-

tion model with a single battery of sources (Section 3.1.2) to a composite item

production model with multiple batteries of sources. Suppose there are K in-

dependent batteries of sources, each one following the common frequency distri-

bution (fj). The number of sources in each battery is denoted M (k), and their

respective independent outputs (also independent of M (k)) are
(
X

(k)
1 , . . . , X

(k)

M(k)

)
(k = 1, . . . , K). The battery sizes M (k) are assumed random, independent and

identically distributed; we denote by η = E
(
M (k)

)
their expected value. The total

number of sources equals

M =
K∑
k=1

M (k).

Multiplicities of output counts j ∈ N0 in each battery are denoted M
(k)
j (k =
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1, . . . , K), and the pooled multiplicities are given by

Mj =
K∑
k=1

M
(k)
j (j ∈ N0).

Likewise, we can define the individual Young diagrams per battery, with the

upper boundaries

Y (k)(x) =
∑
j≥x

M
(k)
j (x ≥ 0, k = 1, . . . , K), (3.56)

and the pooled Young diagram with the boundary

Y (x) =
∑
j≥x

Mj (x ≥ 0). (3.57)

We can also consider the mean Young boundary of the pooled sample,

Y (x) =
1

K

K∑
k=1

Y (k)(x) =
1

K

∑
j≥0

K∑
k=1

M
(k)
j =

1

K

∑
j≥0

Mj (x ≥ 0). (3.58)

As an example of this notation, if there are K authors, with M (1), . . . ,M (K)

papers and citation profiles Y (1)(x), . . . , Y (K)(x), respectively, then Y (x) in (3.57)

corresponds to the pooled “mega-author”, while Y (x) in (3.58) is related to an

average author. Clearly, the latter object makes more sense if we wish to use

Young diagrams to model the h-index (see Section 3.4.1).

With the aid of the indicators (cf. (3.19))

Z
(k)
i (x) := I{X(k)

i ≥x}
(x ≥ 0, i = 1, . . . ,M (k), k = 1, . . . , K),

the individual Young boundaries (3.56) can be decomposed as the sums of such

indicators (cf. (3.20)) but now with a random number of terms,

Y (k)(x) =
M(k)∑
i=1

Z
(k)
i (x) (k = 1, . . . , K). (3.59)

Recalling the well-known Wald identities (Shiryaev, 1996, Sec. VII.3, Theorem 3,

p.488), for each k = 1, . . . , K we have

E
(
Y (k)(x)

)
= E

(
M (k)

)
· E
(
Z

(k)
1 (x)

)
= η F̄ (x), (3.60)
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and furthermore,

E
{(
Y (k)(x)−M (k)E

(
Z

(k)
1 (x)

)2
}

= E
(
M (k)

)
· Var

(
Z

(k)
1 (x)

)
= η F̄ (x)F (x), (3.61)

where F̄ (x) =
∑

j≥x fj and F (x) = 1− F̄ (x) (see (3.21), (3.22)). Observe, using

the first Wald identity (3.60), that

E
(
Y (k)(x)−M (k)E

(
Z

(k)
1 (x)

)
= ηF̄ (x)− ηF̄ (x) = 0.

Hence, the second Wald identity (3.61) is rewritten as

Var
(
Y (k)(x)−M (k)E

(
Z

(k)
1 (x)

)
= η F̄ (x)F (x). (3.62)

The new setting, with a composite item production model, leads to the ques-

tion about existence of the limit shape for the sample mean diagram Y (x). The

following natural result is valid.

Theorem 3.1. Assume that in a standard (single battery) item production model,

the limits (3.31) hold with some function ϕ(x) and scaling coefficients A = AM →
∞ and B = BM → ∞ (i.e., chosen according to the battery size M → ∞).

Consider a composite item production model with K � 1 batteries of independent

random sizes M (k), respectively, assuming that η = E
(
M (k)

)
< ∞. With the

scaling coefficients Aη and Bη, set

Ỹ (x) :=
1

Bη

Y (Aηx) =
1

KBη

K∑
k=1

Y (k)(Aηx) (x ≥ 0). (3.63)

Then x 7→ ϕ(x) is the limit shape of Ỹ (x), that is,

E
(
Ỹ (x)

)
→ ϕ(x) (x > 0), (3.64)

and moreover, for any ε > 0,

P
(
|Ỹ (x)− ϕ(x)| > ε

)
→ 0 (x > 0). (3.65)

Proof. Using formulas (3.63) and (3.60), we have

E
(
Ỹ (x)

)
=

1

KBη

K∑
k=1

E
(
Y (k)(Aηx)

)
=
ηF̄ (Aηx)

Bη

→ ϕ(x), (3.66)
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according to the first limit in (3.31) (with η in place of M and, accordingly, Aη

and Bη instead of generic A and B). This proves the first claim (3.64).

Next, we represent (3.63) as follows,

Ỹ (x) =
1

KBη

K∑
k=1

(
Y (k)(Aηx)−M (k)F̄ (Aηx)

)
+
η F̄ (Aηx)

Bη

· 1

K

K∑
k=1

M (k)

η
. (3.67)

Using mutual independence of the batteries (k = 1, . . . , K) and the second Wald

identity in the form (3.62), we have

Var

(
1

KBη

K∑
k=1

(
Y (k)(Aηx)−M (k)F̄ (Aηx)

))

=
1

K2B2
η

K∑
k=1

Var
(
Y (k)(Aηx)−M (k)F̄ (Aηx)

)
=
η F̄ (Aηx)F (Aηx)

KB2
η

∼ ϕ(x)

KBη

→ 0,

where we used the limit (3.66). Therefore, the first (normalised) sum on the

right-hand side of (3.67) converges to zero in probability.

On the other hand, again using the limit (3.66) and the law of large numbers

for the random sequence (M (k)/η) (with mean 1), we obtain

η F̄ (Aηx)

Bη

· 1

K

K∑
k=1

M (k)

η

p−→ ϕ(x).

Thus, the second claim (3.65) is also proved.

3.6 Estimation of the Citation Indexes

3.6.1 Estimation of the h-index

According to (3.28), for each x > 0 we have an approximation

Ỹ (x) = B−1Y (Ax) ≈ ϕ(x). (3.68)

Applying this to the value h of the h-index, that is, such that Y (h) ≈ h (see

(3.48)), it follows that

Y (h) ≈ h ≈ Bϕ(h/A). (3.69)
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This suggests that the h-index may be approximately estimated via solving the

equation

ϕ(s) =
As

B
. (3.70)

Note that the solution to this equation exists and is unique, because s 7→ ϕ(s) is

a non-increasing continuous function with ϕ(0) > 0, while the right-hand side of

(3.70) vanishes at zero and is continuous and increasing.

More precisely, if s = s∗ is the root of equation (3.70), then the h-index is

estimated by setting

ĥ = As∗. (3.71)

First, we show that the estimator (3.71) is consistent in the sense that it is

asymptotically close (in probability) to the h-index on the scale B, that is,

ĥ− h
B

=
As∗ − h

B

p−→ 0. (3.72)

Indeed, setting s = h/A, from (3.48) we get

Y
(
A(s+ 1/A)

)
B

≤ As

B
≤ Y (As)

B
,

that is,

Ỹ (s+ 1/A) ≤ As

B
≤ Ỹ (s). (3.73)

By virtue of the limit shape result (3.27) (more precisely, its uniform version

(3.30)), both the left- and right-hand sides of (3.73) are close (in probability) to

ϕ(s). Therefore,

ϕ(s)− As

B

p−→ 0.

Since the function s 7→ ϕ(s) is continuous, in view of equation (3.70) it follows

As∗

B
− As

B

p−→ 0,

or, returning to h and ĥ,

ĥ− h
B

p−→ 0,

as claimed in (3.72).
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3.6 Estimation of the Citation Indexes

Asymptotic confidence bounds for the h-index can also be constructed. To

this end, recall that Ỹ (s) = Y (As)/B is asymptotically normal with mean

MF̄ (As)/B ∼ ϕ(s) and variance

MF̄ (As)F (As)

B2
∼ ϕ(s)

B

(
1− Bϕ(s)

M

)
(cf. (3.31)). Hence, with s = h/A, we have a distributional approximation

Y (As)−Bϕ(s)√
Bϕ(s)

(
1−Bϕ(s)/M

) d
≈ N(0, 1), (3.74)

where N(0, 1) is the standard normal distribution. But Y (As) = Y (h) ≈ h and,

on the other hand, Bϕ(s) ≈ Bϕ(s∗) = As∗ = ĥ (see (3.69) and (3.71)). Thus,

(3.74) can be rewritten as

h− ĥ√
ĥ
(
1− ĥ/M

) d
≈ N(0, 1). (3.75)

Hence, for the confidence level (1− α) 100%, the confidence bounds for h are

given by

h± = ĥ± zα/2
√
ĥ
(
1− ĥ/M

)
, (3.76)

where ĥ = As∗ (see (3.71)) and zα/2 is the upper (α/2)-quantile of the standard

normal distribution, that is, the root of the equation

Φ(z) = 1− 1
2
α.

For instance, if α = 0.05 then zα/2
.
= 1.9600.

Example 3.3. In the integer partition model (see Section 3.3), the scaling coef-

ficients are given by A = B =
√
N , where N is the total number of items (cita-

tions). Using the limit shape (3.41), the equation (3.70) is reduced to ϕ(s) = s,

that is,

− log (1− e−κs) = −κs (κ = π/
√

6),

which solves to

s∗ =
log 2

κ
.
= 0.5404446. (3.77)
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Thus, the general formula (3.71) specialises as

ĥ = 0.5404446
√
N. (3.78)

As a real data example, we looked at one entry in the list of Fields medalists

1998–2010 in Yong (2014, Table 2, p. 1041). Specifically, we considered Richard

Borcherds (1998 award), with N = 1,062 citations and M = 32 papers. Note that

the number of papers is not provided in Yong (2014), so this had to be identified

separately by using the Google Scholar. This person’s actual h-index (by 2014)

was h = 14. The estimated h-index using formula (3.78) is given by

ĥ = s∗
√
N

.
= 17.61219.

Furthermore, using formula (3.76), an asymptotic 98% confidence interval for the

h-index is calculated as [12.08, 23.11], which covers the true value h = 14 quite

well. For a comparison, the 95% confidence interval calculated by Yong (2014)

using combinatorial methods was [14, 21], with the true value h = 14 sitting just

on its left boundary.

Remark 3.9. In the composite item production model, with multiple batteries of

sources (e.g., a group of K authors, with their papers and citations), one should

work with the averaged Young diagrams Y (x). Hence, the scaling B should

be replaced by B/K, with the corresponding modifications for the estimates of

citation indexes. This modification is meaningful, noting that the citation indexes

are individual-based metrics.

3.6.2 Estimation of the g-index

By definition of the g-index (3.49) and its graphical representation using the

Young diagram (see Figure 3.5. left panel), the area of the g top blocks is at least

g2. Recall, using the limit shape result (3.27), that Ỹ (x) = B−1Y (Ax) ≈ ϕ(x),

that is,

Y (x) ≈ Bϕ(x/A) =: ϕ̃(x) (x > 0). (3.79)

Hence, the aforementioned part of the Young diagram (i.e., below level y = g) can

be approximated by the corresponding area below the graph of the function ϕ̃(x).
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3.6 Estimation of the Citation Indexes

In turn, passing over to the inverse function ϕ̃−1(y), the last area is expressed by

integration, leading to the equation∫ g

0

ϕ̃−1(y) dy = g2. (3.80)

Solving this equation, we obtain an estimator ĝ.
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Figure 3.5: Graphical illustration of estimation of the g-index (left panel) and h1-

index (right panel) via the limit shape. The shaded parts of the Young diagram

(for a mock citation output (17, 12, 8, 7, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1)) represent

top citation counts such that the shaded area is at least g2 or h2
1, respectively,

which are approximated by the areas below the graph of the rescaled limit shape

ϕ̃(x) defined in (3.79) and the horizontal level y = g (left) or y = ϕ̃(h1) (right).

These areas are expressed by formulas (3.80) and (3.86).

Example 3.4. Continuing Example 3.3 based on the integer partition model, we

can estimate the g-index using formula (3.80). First, from the limit shape (3.41)

we find the inverse of the function ϕ̃(x) =
√
N ϕ

(
x/
√
N
)
,

ϕ̃−1(y) = −
√
N

κ
log

(
1− exp

(
− κy√

N

))
, (3.81)

where κ = π/
√

6 (see (3.36)). Next, the integral in (3.80) can be calculated by

means of a series expansion of the logarithm,

log(1− x) = −
∞∑
n=1

xn

n
(0 ≤ x < 1).
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Hence, with the substitution t = κy/
√
N ,∫ g

0

ϕ̃−1(y) dy = −
√
N

κ

∫ g

0

log

(
1− exp

(
− κy√

N

))
dy

= −N
κ2

∫ κg/
√
N

0

log
(
1− e−t

)
dt

=
N

κ2

∞∑
n=1

1

n

∫ κg/
√
N

0

e−nt dt

=
N

κ2

∞∑
n=1

1

n2

(
1− e−nt

) ∣∣
t=κg/

√
N

=
N

κ2

(
ζ(2)− Li2(e−t)

) ∣∣
t=κg/

√
N
.

where Li2(x) is the dilogarithm function (see Olver et al., 2010, 25.12.1),

Li2(x) :=
∞∑
n=1

xn

n2
.

Thus, using that ζ(2) = κ2, equation (3.80) takes the form

N − N

κ2
Li2

(
exp

(
− κg√

N

))
= g2. (3.82)

From this equation, it is clear that its solution g is proportional to
√
N .

Setting g = z
√
N , equation (3.82) is rewritten as

1− κ−2 Li2
(
e−κz

)
= z2. (3.83)

Recalling that κ = π/
√

6 and solving equation (3.83) numerically gives

z
.
= 0.8869923, (3.84)

Hence we obtain the estimate

ĝ = z
√
N = 0.8869923

√
N. (3.85)

Substituting N = 1,062, the estimate of the g-index is given by ĝ = z
√
N

.
=

28.90561.

Note that there is a striking increase from the h-index, which confirms the

emphasis of the g-index on the impact of higher citations. It is also interesting

that the estimated value of g is so close to the total number of papers, indicating

a good balance of citations for most of the papers.
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3.6 Estimation of the Citation Indexes

3.6.3 Estimation of the h1-index

By definition of the h1-index (3.49) and its graphical representation using the

Young diagram (see Figure 3.5, right panel), the area of the h1 top blocks, each

at least of size h1, is not smaller than h2
1. Again using the rescaled limit shape

(3.79), the aforementioned part of the Young diagram (i.e., below level y = Y (h1))

can be approximated by the corresponding area below the graph of the function

ϕ̃(x) and the horizontal level y = ϕ̃(h1), leading to the condition

h1 ϕ̃(h1) +

∫ ∞
h1

ϕ̃(x) dx = h2
1. (3.86)

Solving this equation, we can obtain an estimator ĥ1.

By comparing the graphical representations of the areas involved in the esti-

mation of g and h1 (see Figure 3.5), it becomes evident that the area given on

the left-hand side of (3.86) is the same as the area on the left-hand side of (3.80),

but with g = ϕ̃(h1). Hence, equation (3.86) can be rewritten in an equivalent

form, ∫ ϕ̃(h1)

0

ϕ̃−1(y) dy = h2
1. (3.87)

Example 3.5. Adapting the calculations in Example 3.4 and writing h1 = w
√
N ,

similarly to equation (3.82) we obtain from (3.87)

1− κ−2 Li2
(
e−κϕ(w)

)
= w2. (3.88)

Solving this equation numerically yields

w
.
= 0.738981,

hence, with N = 1,062, we get

ĥ1 = 0.738981
√

1062
.
= 24.08217.

Again, we see a substantial increase as compared to the h-index of 14, confirming

the high impact of this author, although more conservative than the g-index.

59



3. Item Production Model: Mathematical Setup

60



Chapter 4

Power Law Model

This chapter explores the power law (PL) model, one of the popular models for

scientometric data. It begins by introducing the classic power law model and the

truncated power law, followed by the fitting of these models to real data. Towards

the end of the chapter, the fitting of the integer partition model is compared to

that of the power law model.

4.1 Power Law Distribution

Definition 4.1. A discrete random variable X with values in N follows a (dis-

crete) power law with parameter a > 1 if the probability frequencies fj = P(X =

j) are given by

fj =
ca
ja

(j ∈ N), (4.1)

where ca is the normalisation constant such that

∞∑
j=1

ca
ja

= 1 ⇒ c−1
a =

∞∑
j=1

1

ja
= ζ(a), (4.2)

where ζ(a) is the Riemann zeta function (Olver et al., 2010, 25.2.1).

The power law (4.1) is also known as the Riemann zeta distribution or the

Zipf distribution (Johnson et al., 1994, p. 527).

Of course, the condition a > 1 is needed in order that the series (4.2) be

convergent, so that formula (4.2) defines a proper probability distribution. In
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4. Power Law Model

many practical examples, this parameter is in the range 2 < a < 3 (Clauset

et al., 2009).

The expected value of the power law (4.1) is finite if a > 2, and is given by

µ =
∞∑
j=1

jfj =
1

ζ(a)

∞∑
j=1

1

ja−1
=
ζ(a− 1)

ζ(a)
. (4.3)

The complementary cumulative distribution function (CCDF) of the power law

(4.1) with normalisation (4.2) is given by

F̄ (x) =
1

ζ(a)

∑
j≥x

1

ja
(x ≥ 0). (4.4)

Clearly, F̄ (x) = 1 for 0 ≤ x ≤ 1. For computational convenience, the right-hand

side of (4.4) may be expressed using the Hurwitz zeta function (Olver et al., 2010,

25.11.1),

ζ(a, x) =
∞∑
`=0

1

(`+ x)a
(x > 0). (4.5)

Indeed, noting that, for j ∈ N and x > 0, the inequality j ≥ x is equivalent to

j ≥ dxe, we have∑
j≥x

1

ja
=
∑
j≥dxe

1

ja
=
∞∑
`=0

1

(`+ dxe)a
= ζ(a, dxe). (4.6)

Hence, for all x > 0 formula (4.4) takes the form

F̄ (x) =
ζ(a, dxe)
ζ(a)

(x > 0). (4.7)

The Hurwitz zeta function ζ(a, x) can be numerically calculated in R using com-

mand hzeta in the gsl package (see more detail in Galassi et al. (2002)).

By taking the logarithm of (4.1) with normalisation (4.2), we get

log fj = − log ζ(a)− a log j (j ∈ N). (4.8)

Thus, the frequency plot of the power law (4.1) in logarithmically transformed

coordinates u = log x, v = log y (referred to as log-log coordinates) lies on a

straight line with equation v = b−au, with slope (−a) and intercept b = − log ζ(a)

(for illustration, see the left panel of Figure 4.1).
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4.1 Power Law Distribution

Likewise, for the CCDF F̄ (x) =
∑

j≥x f` we have asymptotically as x→∞,

F̄ (x) =
1

ζ(a)

∞∑
j≥x

j−a =
x

ζ(a)

∞∑
j/x≥1

(
j

x

)−a
1

x

∼ x

ζ(a)

∫ ∞
1

s−a ds =
x1−a

(a− 1) ζ(a)
, (4.9)

by replacing the integral Riemann sum with the corresponding integral. Rewriting

the asymptotic formula (4.9) in the log-log coordinates u = log x, v = log y as

before, we obtain the tail approximation

log F̄ (x) ≈ − log ζ(a)− log (a− 1)− (a− 1) log x, (4.10)

which means that the tail of the power law plotted on the log-log coordinates

is close to a straight line, v = b − (a − 1)u, with slope −(a − 1) and intercept

b = − log ζ(a)− log (a− 1) (see the right panel of Figure 4.1).
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Figure 4.1: Graphical illustration of the power law distribution (with a = 2.3).

The left panel shows the frequencies (4.1) in log-log coordinates, which follow a

straight line with slope −a = −2.3 according to (4.8). The right panel shows

the CCDF plot (4.4) (also in log-log coordinates); its tail approximately follows

a straight line with slope −(a− 1) = −1.3 (see (4.10)).

According to the general formula (3.14), the likelihood of the power law model

is given by

L(a;X) =
∞∏
j=1

(
ca
ja

)Mj

=

(
1

ζ(a)

)M ∞∏
j=1

j−aMj , (4.11)
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with the log-likelihood

`(a;X) = −M log ζ(a)− a
∞∑
j=1

Mj log j. (4.12)

The MLE for the parameter a is obtained by taking the derivative and setting it

to zero,

`′(a;X) = −M ζ ′(a)

ζ(a)
−
∞∑
j=1

Mj log j = 0, (4.13)

thus leading to the equation

−ζ
′(a)

ζ(a)
=
∞∑
j=1

Mj

M
log j. (4.14)

Noting that the derivative of the Riemann zeta function is given by

ζ ′(a) = −
∞∑
j=1

log j

ja
,

and the empirical frequencies f̂j = Mj/M converge to the expected frequencies

fj = caj
−a (by virtue of the law of large numbers), it readily follows from the

equation (4.14) that the MLE â is consistent, that is, â converges to a as M →∞.

Using an alternative representation of the likelihood via the sources outputs

(Xi) (see (3.10)), the likelihood is expressed as

L(a;X) =
M∏
i=1

ca
Xa
i

=

(
1

ζ(a)

)M M∏
i=1

X−ai , (4.15)

with the log-likelihood

`(a;X) = −M log ζ(a)− a
M∑
i=1

logXi. (4.16)

Hence, equation (4.13) takes the form

`′(a;X) = −M ζ ′(a)

ζ(a)
−

M∑
i=1

logXi = 0, (4.17)

that is (Johnson et al., 2005; Nicholls, 1987),

−ζ
′(a)

ζ(a)
=

1

M

∞∑
j=1

logXi. (4.18)
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4.2 Truncated Power Law

In many practical cases, the power law appears to be unsuitable for smaller counts

j, so a pragmatic solution is to try and fit the power law only for larger values,

j ≥ j∗, by truncating the observed frequencies with j < j∗ (Clauset et al., 2009).

A suitable value j∗ ≥ 1 is called a truncation threshold.

More precisely, the modified model assumes that the conditional frequencies

f∧j = P(Xi = j |Xi ≥ j∗) =
P(Xi = j)

P(Xi ≥ j∗)
=

fj
F̄ (j∗)

are given, for all j ≥ j∗, by the truncated power law,

f∧j =
ca,j∗
ja

(j ≥ j∗), (4.19)

where ca,j∗ is an adjusted normalising constant determined by the formula

c−1
a,j∗ =

∞∑
j=j∗

1

ja
=
∞∑
`=0

1

(`+ j∗)a
= ζ(a, j∗) (4.20)

(cf. (4.5)). Of course, when j∗ = 1 these probability frequencies are reduced to

the non-truncated power law (4.1).

The (conditional) CCDF of the truncated power law (4.19) is given by

F̄∧(x) =
∑
j≥x

f∧j =
1

ζ(a, j∗)

∑
j≥x

1

ja
=
ζ(a, dxe)
ζ(a, j∗)

(x ≥ j∗). (4.21)

In particular, F̄∧(j∗) = 1.

The unconditional probabilities fj = P(Xi = j) in the range j ≥ j∗ are then

expressed as follows,

fj = P(Xi ≥ j∗) · P(Xi = j |Xi ≥ j∗)

= F̄ (j∗) f
∧
j =

F̄ (j∗)

ζ(a, j∗) ja
(j ≥ j∗). (4.22)

Note that no modelling assumptions are made about the expected frequencies

below j∗ (unless another model is deployed for that purpose). Therefore, as

mentioned in Section 3.1.4, the probability ρ = P(Xi ≥ j∗) = F̄ (j∗) must be

65



4. Power Law Model

treated as a parameter. Hence, one works with a likelihood of censored data (see

(3.14))

L(a, ρ;X) = (1− ρ)M−M(j∗) ρM(j∗)
∞∏
j=j∗

(
ca,j∗
ja

)Mj

, (4.23)

where M is the number of sources and M(j∗) =
∑∞

j=j∗
Mj is the number of

sources with at least j∗ items each. Accordingly, the log-likelihood is given by

`(a, ρ;X) =
(
M −M(j∗)

)
log(1− ρ) +M(j∗) log ρ

+ log ca,j∗

∞∑
j=j∗

Mj − a
∞∑
j=j∗

Mj log j. (4.24)

In the alternative representation of the likelihood of censored data using the

outputs (Xi), formula (4.23) takes the form

L(a, ρ;X) = (1− ρ)M−M(j∗) ρM(j∗)(ca,j∗)
M(j∗)

M∏
i=1

X−ai I{Xi≥j∗}. (4.25)

4.3 Fitting the Power Law

4.3.1 Graphical methods

A natural heuristic tool to fit a power law model is by looking at the frequency

plots with logarithmic scales on both axes, whereby one seeks a straight-line fit,

with the slope corresponding to (−a), according to (4.8) (Nicholls, 1987).

Another, more accurate approach (Clauset et al., 2009), which provides the

helpful smoothing of the discrete data, is via the CCDF given in (4.4). Using again

the log-log plots, a good fit corresponds to a straight line, with slope 1 − a (see

(4.10)). Hence, by fitting a line to the log-transformed complementary cumulative

frequencies of data and determining the slope, the parameter a of the fitted power

law can be estimated.

4.3.2 Estimation of parameter a

Standard techniques for parameter estimation, such as ordinary least squares

(OLS) or maximum likelihood estimation (MLE), can be effectively employed to

estimate the parameter(s) of the power law.
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For the standard (untruncated) power law, the likelihood is given by either

of the formulas (4.11) and (4.15) (see also (4.12) and (4.16)), which can be max-

imised either directly (e.g., using the R command optim) or by solving numeri-

cally the corresponding likelihood equation, (4.14) or (4.18).

For the truncated power law, assuming that the truncation threshold j∗ is

known, the parameter a can be estimated by maximising the likelihood of censored

data (4.23) after substituting the MLE ρ̂ = M(j∗)/M for the parameter ρ = F̄ (j∗)

(see (3.16)).

A useful approximation for the MLE â was given by Clauset et al. (2009,

formula (3.7), p. 667),

â ≈ 1 +M

(
M∑
i=1

log
Xi

j∗ − 1
2

)−1

. (4.26)

In particular, in the untruncated case (with j∗ = 1) formula (4.26) is reduced to

â ≈ 1 +
1

log 2 +M−1
∑M

i=1 logXi

. (4.27)

This approximation is based on a comparison with the continuous power law

distribution, that is, with density f(x; j∗) = (a − 1) ja−1
∗ x−a (x ≥ j∗), for which

the likelihood is given by (cf. (4.18))

L(a;X) = (a− 1)MjM(a−1)
∗

M∏
i=1

X−ai ,

leading to the likelihood equation

M

a− 1
−

M∑
i=1

log
Xi

j∗
= 0,

which easily solves to the continuous power law MLE

â = 1 +
M∑M

i=1 log(Xi/j∗)
. (4.28)

As explained by Clauset et al. (2009, Appendix B.4), this result can be satisfac-

torily adapted to the discrete power law by replacing j∗ in (4.28) with j∗ − 1
2

by

way of correction for discreteness, resulting in formula (4.26).
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4.3.3 Estimation of the truncation threshold

According to Clauset et al. (2009, §3.3), joint estimation of parameter a and the

truncation threshold j∗ may be based on minimising the Kolmogorov–Smirnov

(KS) distance between the empirical and theoretical distribution functions. In

the context of the truncated power law model, the KS distance is adapted as

follows,

D ≡ D(a, j∗) = sup
x≥j∗

∣∣F̄obs(x)− F̄ (x)
∣∣ , (4.29)

where F̄obs(x) :=
∑∞

j≥x f̂j =
∑∞

j≥xMj/M is the empirical CCDF and F̄ (x) is

the CCDF of the fitted power law model (4.21). The joint estimate (̂∗, â) is the

minimiser of D.

In the general case (including where j∗ is unknown in advance), the R library

poweRlaw is helpful for getting the MLE estimation of parameter a together with

the optimal choice of j∗ (Gillespie, 2015).

4.3.4 Estimation of the citation indexes

Egghe & Rousseau (2006) gave the formulas for estimating the h-index and the

g-index under the power law model,

ĥ = M1/a, ĝ =

(
a− 1

a− 2

)1−1/a

M1/a. (4.30)

Of course, the value of parameter a should be replaced here with a suitable

estimate â.

In the case of a truncated power law, these formulas remain the same as long

as the estimated values (4.30) prove to be above the truncation threshold j∗ (see

a data-based discussion in Sections 4.4.2 and 4.4.3).

4.4 Real Data Examples

The following examples illustrate the fitting results of the power law model to

some real data sets introduced in Section 2.2. When using a truncated power

law, we extrapolate the fitted plots below the truncation threshold to check an
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extended performance of the fitted model and to illustrate suitability of the esti-

mated threshold ̂∗.

4.4.1 Lotka’s data

Lotka’s data set (see Section 2.2, A) has the total number of authors M = 6,891

and the total number of papers N = 22,939. The estimated parameter â
.
= 1.97

(with j∗ = 1) is obtained using the poweRlaw package in R. Since j∗ = 1, the

usual (non-truncated) power law model was fitted. The outcomes of the power law

fitting are graphically depicted in Figure 4.2. Note that Lotka (1926) presented

the original frequencies (i.e., without the log-log transformation), and displayed

only a partial range of values, 1 ≤ j ≤ 30. In this representation, the power law

appears to perform exceptionally well. However, using the log-log coordinates in

the full range of the data (especially in , upon observing the frequencies and the

complementary cumulative frequencies in log-log transformed coordinates, it is

evident that the power law only fits to the initial range of the data.
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Figure 4.2: The left panel of the figure displays the empirical frequencies along

with the corresponding fitted power law frequencies in log-log coordinates. In

the right panel, the complementary cumulative frequencies of the number of pa-

pers of authors are presented alongside the CCDF of the power law model, both

represented in log-log coordinates.
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4. Power Law Model

4.4.2 Moby Dick data

As mentioned in Section 2.2, the Moby Dick data is the classic count data for

text analysis in informetrics. The corresponding complementary cumulative plot

of this dataset (see Figure 2.4 in the lower right) exhibits a linear trend. Hence

fitting the power law model to this data set is a natural process. The Moby Dick

data set (see Section 2.2, C) has the total number of unique words M = 18,855

and the total number of occurrences N = 245,567. The estimated power law

parameters were found to be â
.
= 1.95 and ̂∗ = 7 using the poweRlaw package in

R. The results of the power law fitting are graphically displayed in Figure 4.3. In

particular, according to formula (4.22) the fitted CCDF in the range x ≥ ̂∗ = 7

is given by

F̄obs(j∗) · F̄∧(x) = F̄obs(j∗)
ζ(â, x)

ζ(â, j∗)
. (4.31)

An interesting question is whether the fitted model (4.31) can be used to

estimate the h-index. For this, we need to be able to solve the equation

MF̄obs(j∗)
ζ(â, h)

ζ(â, j∗)
= h. (4.32)

Taking h = 7 as a trial value and noting that F̄obs(7)
.
= 0.1568815, the left-hand

side of (4.32) is evaluated as

MF̄obs(7)
.
= 2958.001� 7.

It follows that the solution to equation (4.32) exists in the range j ≥ 7, so the

fitted model can be used for that purpose. In fact, using the estimation formula

(4.30), we obtain an estimated value

ĥ = M1/â .
= 154.6904. (4.33)

A comparison with the true value h = 159 shows a remarkably accurate esti-

mation. This is not surprising since the power law fit (even with truncation)

is extremely good for the Moby Dick data set. The h-index in word frequency

analysis can be a measure for evaluating the vocabulary size and the repetition

of words in literature. When two books have different h-index but the same word

counts in total, the following conjecture can be made: the book with a higher
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h-index has a smaller vocabulary size and higher repetition of words, so this book

can be recommended to the beginner of a language to read; conversely, the book

with a lower h-index may have a larger vocabulary size and lower repetition in

using words, so reading this book requires people with higher vocabulary levels.
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Figure 4.3: Power law (shown in red) fitted to the Moby Dick data (shown in

black), with the estimated parameters â
.
= 1.952728 and ̂∗ = 7. The left panel

displays the empirical frequencies and corresponding fitted power law frequencies,

both in log-log coordinates. The right panel depicts the complementary cumula-

tive frequencies of the words in Moby Dick along with the CCDF of the power

law model, both in log-log coordinates. The dashed vertical lines correspond to

the estimated truncation threshold ̂∗ = 7.

4.4.3 EJP data

The EJP data set (see Section 2.2, D) comprises all papers of a “mega-author”

when citing their work. Where the “mega-author” is that all papers of the group

of authors are pooled together, and these papers are counted for one “mega-

author”. In this way the citation indexes can be estimated using the method

introduced in Section 3.5. With a total of M = 15,400 papers and N = 245,567

citations, the model fitting result of the power law with a truncation to the EJP

data is displayed in Figure 4.4. Using the R package poweRlaw, the truncated

power law parameter is estimated to be â
.
= 2.32, with a truncation threshold
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4. Power Law Model

̂∗ = 48. The dashed lines in both plots indicate that the power law is only

fitted to the range j ≥ 48, although we do extrapolate the fitted plots below

the threshold to illustrate their performance there, confirming that truncation is

needed for fitting the power law to the EJP data.
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Figure 4.4: Truncated power law model (4.19) (in red) fitted to the EJP data set

(in black). The left panel shows the logarithmic transformed frequencies of the

EJP data and the frequencies of the truncated power law. The right panel depicts

the complementary cumulative frequencies of the EJP data and the CCDF of the

truncated power (4.21). The dashed vertical lines correspond to the estimated

truncation threshold j∗ = 48.

Like in Section 4.4.2, we can look at whether the fitted model admits an

estimate of the h-index. Because the EJP data set requires a composite item

production model, with K = 113 “batteries” of sources (papers), equation (3.5)

should be modified to
M

K
F̄obs(j∗) ·

ζ(â, h)

ζ(â, j∗)
= h. (4.34)

Again taking h = ̂∗ = 48 as a trial value, we compute

M

K
F̄obs(48) =

15400

113
× 0.06746753

.
= 9.19 < 48.

This computation indicates that there is no solution to equation (4.34) in the

range h ≥ 48, and therefore the h-index cannot be estimated using the fitted

truncated power law. For a comparison, note that the average (sample mean)
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4.5 Fitting the Integer Partition Model

h-index (per author) of the EJP data set is h̄ = 17.52, which is much smaller

than 48.

4.5 Fitting the Integer Partition Model

As demonstrated in Section 4.4, the truncated power law only fits to the tail of

the EJP data but does not cover the smaller counts. This leads to the idea to

check the goodness-of-fit of the integer partition model discussed in Section 3.3.

As shown below, the latter model has an exponential tail decay of frequencies

(i.e., faster than any power law), which renders it unsuitable for fitting the tail-

end of the data; however, it may be usable for approximating the initial portion

of the data.

Note that the integer partition model has no intrinsic parameters, it is cali-

brated through an external parameter n, which has the meaning of the expected

value of the total number N of items (citations). On the other hand, the number

of sources M in the partition model is not fixed, in contrast to the item pro-

duction model. For the sake of comparison with other item production models

such as power law, we propose to use the sample value N as a substitute for the

expectation n = E(N) and, on the contrary, the expected value E(M) in place of

M , or rather the asymptotic version (3.44) modified as

E(M) ∼
√
N logN

2κ
, (4.35)

where κ = π/
√

6 (see (3.36)).

4.5.1 Fitting to the EJP data

As explained above, using (4.35) the frequencies (fj) in the integer partition

model can be written in the form

fj ≈
E(Mj)

E(M)
∼ 2κ√

N logN
· e−κj/

√
N

1− e−κj/
√
N

(j ∈ N). (4.36)

For j �
√
N , the model (4.36) has a power-law decay,

fj ∼
2

j logN
,
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4. Power Law Model

whereas for j �
√
N it has an exponential decay,

fj ∼
2κ e−κj/

√
N

√
N logN

.

The corresponding CCDF can be approximated using the limit shape,

F̄ (x) ≈
√
N ϕ(x/

√
N)

E(M)
∼ − 2

logN
log
(

1− e−κx/
√
N
)
. (4.37)

Figure 4.5 illustrates the results of fitting the integer partition model to the

EJP data. The left panel displays the frequencies of the data and the integer

partition model (4.36). The right panel shows the empirical CCDF of the data

and the CCDF of the fitted model (4.37). Both plots are displayed in logarithmi-

cally transformed coordinates. These plots demonstrate that the integer partition

model is only suitable for fitting the initial portion of the EJP data, while it does

not perform well for the tail of the data.
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Figure 4.5: The EJP data is displayed in black, and the integer partition model

is displayed in red. The left panel depicts the frequencies of the EJP data and

the integer partitions, while the right panel shows the complementary cumulative

frequencies of the data and the integer partition model.

4.5.2 Estimating the h and g indexes

Using the limit shape of integer partitions under the uniform measure (as N →
∞), one can characterise typical asymptotic properties of citation diagrams, such

as the h-index and g-index.
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4.5 Fitting the Integer Partition Model

The average h-index and the g-index of these 113 authors from the EJP data

are h̄
.
= 17.52212 and ḡ

.
= 32.28319, respectively. The integer partition model

is fitted to a “mega-author” of the EJP data, hence an averaging is needed for

estimating the average h-index and average g-index. From Remark 3.9 and the

estimate (3.78), the estimated average h-index is given by

̂̄h = 0.5404446
√
N/K. (4.38)

substituting the total number of citations N = 245,567 and the number of authors

in the EJP data set K = 113, we obtain the estimation of the average h-index

through the limit shape of the integer partition model is ̂̄h .
= 25.19399. Similarly,

again using Remark 3.9 and the estimate (3.85), the average g-index estimate is

given by ̂̄g = 0.8869923
√
N/K

.
= 41.34906.

The estimated average values of the h-index and g-index are relatively larger than

the actual values. This discrepancy can be attributed to the integer partition

model not being a perfect fit for the EJP data, as illustrated in Figure 4.5.
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Figure 4.6: Scatter plots of the empirical and estimated h-index (left) and g-index

(right) using the limit shape of integer partitions. The black circles in these plots

represent the real h-index and g-index values with their corresponding number of

citationsN for the 113 authors included in the EJP data. The red curves represent

the corresponding estimations obtained using equations (3.78) and (3.85) for the

h-index and the g-index, respectively.
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4. Power Law Model

By focusing on individual authors rather than a “mega-author”, Figure 4.6

provides a visual representation of the empirical and estimated h-index (left) and

g-index (right) regarding the total number of citations N . The black circles on

the plots represent the actual h-index and g-index of 113 authors from the EJP

dataset. These values are calculated for each author using the definitions of the

h-index and g-index as described in equations (3.45) and (3.49), respectively. The

red curves depict the estimated h-index and g-index, which are generated using

equations (3.78) and (3.85), respectively.

The left plot indicates that the estimation of the h-index performs well for

total citation counts up until approximately 5,000 citations. However, it tends to

overestimate for extremely high citation counts. This limitation of the h-index is

attributed to its censoring of highly cited papers beyond the h-index. While the

limit shape of integer partitions is symmetric, the citation diagram is not always

symmetric for authors with exceptionally highly cited papers.

The EJP data have been fitted with two models: the truncated power law and

integer partition models. The truncated power law model is effective in capturing

the tail of the data for values of j ≥ 48, as shown in Figure 4.4. On the other

hand, the integer partition model is better suited for the beginning of the data

with values of j ≤ 7, as presented in Figure 4.5. Despite their respective strengths,

both models are unable to capture the entire range of the data. Notably, the gap

between the partition and power law models makes it impossible to accurately

capture the h-index. Recall that the sample mean h-index of authors in the EJP

data is given by h̄
.
= 17.52. which is deep below the truncation threshold j∗ = 48.
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Chapter 5

Generalised Inverse

Gaussian-Poisson Model

This chapter explores the generalised inverse Gaussian-Poisson (GIGP) model

introduced by Sichel (1985). Using main strategies developed in Chapter 3, the

limit shape of the GIGP model is specified. The fluctuations of this limit shape

are asymptotically normal are also shown in this chapter. More precisely, for

convergence to the limit shape to be valid, the number of sources should be

growing fast enough. In the opposite regime referred to as “chaotic”, the empirical

random process is approximated by means of an inhomogeneous Poisson process.

These results are illustrated using both computer simulations and some classic

data sets in scientometrics dealing with citations of research papers.

This chapter has been documented as a preprint, see Bogachev et al. (2023).

5.1 The GIGP Distribution

5.1.1 The GIGP Frequencies

Definition 5.1. The generalised inverse Gaussian-Poisson (GIGP) distribution

introduced by Sichel (1971, 1985) is of the form

fj =
(1− θ)ν/2

Kν

(
α (1− θ)1/2) ·

(
1
2
αθ
)j

j!
Kν+j(α) (j ∈ N0), (5.1)
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5. Generalised Inverse Gaussian-Poisson Model

where parameters have the range ν ∈ R, α > 0 and 0 < θ < 1, and Kν(·) is

the modified Bessel function of the second kind of order ν (Olver et al., 2010,

§10.25(i), §10.25(ii)).

The GIGP model (5.1) is a mixed Poisson distribution (Sichel, 1971),

fj =

∫ ∞
0

λj e−λ

j!
g(λ) dλ (j ≥ 0), (5.2)

with the mixing density for the Poisson parameter λ chosen as a generalised

inverse Gaussian (GIG) density (Johnson et al., 1994, page 284))

g(λ) =

(
2 (1− θ)1/2/αθ

)ν
2Kν

(
α (1− θ)1/2) λν−1 exp

(
−(1− θ)λ

θ
− α2θ

4λ

)
(λ > 0). (5.3)

Remark 5.1. We follow the nomenclature of Sichel (1971). The connection with

an alternative parameterisation (θ, ψ, χ) in Johnson et al. (1994) is via the maps

θ 7→ ν, ψ 7→ 2(1− θ)/θ, χ 7→ α2θ/2.

The normalisation in (5.3) is due to one of the integral representations for the

Bessel function (Olver et al., 2010, 10.32.10). Representation (5.2) explains why

formula (5.1) defines a probability distribution,

∞∑
j=0

fj =

∫ ∞
0

∞∑
j=0

λj e−λ

j!
g(λ) dλ =

∫ ∞
0

g(λ) dλ = 1,

and it also leads to a curious identity for the Bessel functions, which does not

seem to have been mentioned in the special functions literature,

∞∑
j=0

(
1
2
αθ
)j
Kν+j(α)

j!
=
Kν

(
α (1− θ)1/2)

(1− θ)ν/2
. (5.4)

From formula (5.2), the expression (5.1) is easily obtained using the normalisa-

tion of the GIG density (5.3) with parameters θ and α replaced by θ̃ = θ/(1 + θ)

and α̃ = α
√

1 + θ , respectively. Furthermore, formula (5.2) implies that the

expected value of the GIGP distribution (5.1) coincides with that of the GIG
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5.1 The GIGP Distribution

distribution (5.3),

µ =
∞∑
j=0

jfj =

∫ ∞
0

∞∑
j=0

j
λj e−λ

j!
g(λ) dλ =

∫ ∞
0

λ g(λ) dλ

=
αθ

2 (1− θ)1/2
·
Kν+1

(
α (1− θ)1/2)

Kν

(
α (1− θ)1/2) ,

(5.5)

where the last computation is based on the normalisation in (5.3) with order ν+1.

Expression (5.5) follows directly from the definition (5.1) by using the identity

(5.4) with order ν + 1.

As was pointed out by Sichel (1985, p. 315), the frequencies (5.1) satisfy the

recurrence relation

fj+2 =
(ν + j + 1)θ

j + 2
fj+1 +

α2θ2

4 (j + 2) (j + 1)
fj (j ∈ N0),

which can be obtained by integration by parts of the integral representation

mentioned above after formula (5.3).

The tail of the GIGP distribution (5.1) has a power-geometric decay, as can

be shown using Stirling’s formula (Olver et al., 2010, 5.11.3) and the asymptotics

(B.7) of the Bessel function of large order, yielding

fj ∼
(1− θ)ν/2

(
1
2
α
)−ν

2Kν

(
α (1− θ)1/2) jν−1θj (j →∞). (5.6)

5.1.2 The boundary case α = 0

The value α = 0 can also be included in the GIGP class via the limit α→ 0+. To

this end, we need to consider several cases for the value of the order ν. Namely,

if ν > 0 then, using the small argument asymptotics of the Bessel function (see

(B.2)), we obtain from (5.1)

fj ∼ (1− θ)ν Γ(ν + j) θj

Γ(ν) j!
=

(
ν + j − 1

j

)
(1− θ)ν θj (j ∈ N0), (5.7)

where Γ(z) :=
∫∞

0
sz−1 e−s ds (z > 0) is the gamma function (Olver et al., 2010,

5.2.1). Formula (5.7) defines a negative binomial distribution with parameters ν
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and θ (Johnson et al., 2005, Sec. 5.1), with the expected value given by

µ =
ν θ

1− θ
. (5.8)

The latter expression is consistent with the limit of (5.5) as α→ 0+ (again using

(B.2)). The tail behaviour of (5.7) is retrieved with the aid of Stirling’s formula

(Olver et al., 2010, 5.11.3),

fj ∼
(1− θ)ν jν−1θj

Γ(ν)
(j →∞), (5.9)

which is formally in agreement with the limit of (5.6) as α→ 0+.

However, for ν ≤ 0 the limiting GIGP distribution degenerates to f0 = 1 and

fj = 0 for all j ≥ 1. Indeed, for ν = 0 we get, using the asymptotic formula

(B.4),

f0 =
K0(α)

K0

(
α (1− θ)1/2) ∼ − logα

− log
(
α (1− θ)1/2) → 1.

For ν < 0, with the aid of the asymptotic formulas (B.1) and (B.2) we have

f0 =
(1− θ)ν/2Kν(α)

Kν

(
α (1− θ)1/2) ∼ (1− θ)ν/2 1

2
Γ(−ν)

(
1
2
α
)ν

1
2

Γ(−ν)
(

1
2
α (1− θ)1/2)ν = 1.

To rectify this degeneracy, we switch to the zero-truncated GIGP distribution

defined by

P(Xi = j |Xi ≥ 1) =
fj

1− f0

(j ∈ N)

and taken in the limit as α→ 0+. We denote the resulting conditional frequencies

by (f̌j) (j ∈ N), and the corresponding expected value by µ̌. We restrict analysis

to the range −1 < ν ≤ 0, and consider separately the cases ν = 0 and −1 < ν < 0

(see Remark 5.3 below for why the value ν = −1 is not compatible with α = 0).

Remark 5.2. The case ν < −1 with α > 0 is excluded from consideration (see

Proposition 5.2(e) and a comment before this proposition). Hence, it is of no

interest for us to consider the limit α→ 0 here.

Case ν = 0

Applying the asymptotic formula (B.4), we obtain

1− f0 =
K0

(
α (1− θ)1/2)−K0(α)

K0

(
α (1− θ)1/2) ∼ log (1− θ)

logα
,
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5.1 The GIGP Distribution

whereas (B.2) and (B.5) give for j ≥ 1

fj =

(
1
2
αθ
)j

j!
· Kj(α)

K0

(
α (1− θ)1/2) ∼ 1

− logα
· θ

j

j
,

using that Γ(j) = (j − 1)!. Hence,

fj
1− f0

∼ f̌j :=
1

− log (1− θ)
· θ

j

j
(j ∈ N), (5.10)

which is Fisher’s logarithmic series distribution (Johnson et al., 2005, Sec. 7.1.2).

Note that the tail behaviour of (5.10) is automatically power-geometric akin to

(5.9) (with ν = 0). The expected value of this distribution is easily computed,

µ̌ =
1

− log (1− θ)

∞∑
j=1

θj =
θ

(1− θ)
(
− log (1− θ)

) . (5.11)

Case −1 < ν < 0

With the aid of the asymptotic formula (B.6) we get

1− f0 =
Kν

(
α (1− θ)1/2)− (1− θ)ν/2Kν(α)

Kν

(
α (1− θ)1/2)

∼ Γ(ν + 1)

(−ν) Γ(−ν)

(
1
2
α
)−2ν (

1− (1− θ)−ν
)
,

and furthermore, for j ≥ 1,

fj ∼
(1− θ)ν/2

(
1
2
αθ
)j

j!
·

1
2

Γ(ν + j)
(

1
2
α
)−ν−j

1
2

Γ(−ν)
(

1
2
α (1− θ)1/2)ν ∼ Γ(ν + j) θj

Γ(−ν) j!

(
1
2
α
)−2ν

.

Hence,
fj

1− f0

∼ f̌j :=
(−ν) Γ(ν + j) θj

Γ(ν + 1)
(
1− (1− θ)−ν

)
j!

(j ∈ N). (5.12)

This is an extended negative binomial distribution (Johnson et al., 2005,

Sec. 5.12.2), with the expected value

µ̌ =
(−ν) θ (1− θ)−ν−1

1− (1− θ)−ν
. (5.13)

The tail decay of the distribution (5.12) is easily obtained using Stirling’s formula

(Olver et al., 2010, 5.11.3),

f̌j ∼
(−ν)jν−1 θj

Γ(ν + 1)
(
1− (1− θ)−ν

) (j →∞). (5.14)
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Remark 5.3. If ν = −1 then, using (B.1), (B.3) and (B.4), we have

1− f0 =
K1

(
α (1− θ)1/2)− (1− θ)−1/2K1(α)

K1

(
α (1− θ)1/2) ∼ 1

2
α2θ (− logα),

and

f1 =
(1− θ)−1/2 (1

2
αθ
)
K0(α)

K1

(
α (1− θ)1/2) ∼ 1

2
α2θ (− logα) ,

hence
f1

1− f0

∼ f̌1 = 1.

Thus, the limiting conditional distribution (f̌j) appears to be degenerate, with all

mass concentrated at j = 1. This is unsuitable for the modeling purposes, which

explains why the “corner” case ν = −1, α = 0 is excluded from consideration.

5.1.3 Asymptotics of the GIGP mean

As indicated by the integer partition example in Section 3.3, for the existence of a

meaningful limit shape, the area of the Young diagram must grow faster than the

number of constituent blocks (see (3.44)). In the context of the item production

model, this means that the total number of items, N =
∑

j jMj, should be much

larger than the number of sources, M =
∑

jMj. Recalling from (3.3) that the

expected total number of items is given by E(N) = Mµ (where µ = E(Xi) is

the expected number of items per source, see (3.1)), this implies that a suitable

limiting regime is determined by µ→∞.

In turn, from the expression (5.5) for the GIGP mean µ, one can hypothesise

that the latter is achieved if θ ≈ 1, while the parameters α and ν are kept

fixed. This can be verified (cf. Proposition 5.2 below) using the known asymptotic

formulas for the Bessel function Kν(z) with z → 0, adapted to our needs in the

next lemma.

Lemma 5.1. For α > 0 and ν ∈ R fixed, the following asymptotics hold as

θ → 1−,

Kν

(
α (1− θ)1/2) ∼


1
2

Γ(ν)
(

1
2
α
)−ν

(1− θ)−ν/2 (ν > 0),

1
2

(
− log (1− θ)

)
(ν = 0),

1
2

Γ(−ν)
(

1
2
α
)ν

(1− θ)ν/2 (ν < 0).

(5.15)
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Proof. The leading terms of the asymptotics (5.15) follow directly from formulas

(B.2) for ν 6= 0 (with the aid of (B.1) for ν < 0) and (B.5) for ν = 0,

Using this lemma, we can characterise more precisely the asymptotic be-

haviour of the GIGP mean in the limit as 1 − θ → 0+. In particular, this

analysis reveals that the desired growth to infinity is in place for ν ≥ −1, but

fails for ν < −1.

Proposition 5.2. The expected values µ and µ̌ of the GIGP (α > 0) and zero-

truncated GIGP (α = 0) distributions, respectively, have the following asymptotics

as θ → 1−.

(a) ν > 0, α ≥ 0:

µ ∼ ν

1− θ
. (5.16)

(b) ν = 0, α ≥ 0:

µ ∼ 1

(1− θ)
(
− log (1− θ)

) , µ̌ ∼ 1

(1− θ)
(
− log (1− θ)

) . (5.17)

(c) −1 < ν < 0, α ≥ 0:

µ ∼
Γ(ν + 1)

(
1
2
α
)−2ν

Γ(−ν) (1− θ)ν+1 , µ̌ ∼ −ν
(1− θ)ν+1 . (5.18)

(d) ν = −1, α > 0:

µ ∼
(

1
2
α
)2(− log (1− θ)

)
. (5.19)

(e) ν < −1, α > 0:

µ ∼
(

1
2
α
)2

−ν − 1
. (5.20)

Proof. Consider cases (a)–(e) using the asymptotic formulas of Lemma 5.1.

(a) For α > 0, using the first line of (5.15) for orders ν and ν + 1, we have

Kν+1

(
α (1− θ)1/2)

Kν

(
α (1− θ)1/2) ∼ 1

2
Γ(ν + 1)

(
1
2
α (1− θ)1/2)−ν−1

1
2

Γ(ν)
(

1
2
α (1− θ)1/2)−ν =

ν
1
2
α (1− θ)1/2

,

(5.21)

where we also used the recurrence property of the gamma function, Γ(ν +

1) = ν Γ(ν) (Olver et al., 2010, 5.5.1). Substituting this into (5.5) gives

(5.16). If α = 0 then (5.16) readily follows from (5.8).
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(b) For α > 0, formulas (5.15) with ν = 0 and ν = 1 give

K1

(
α (1− θ)1/2)

K0

(
α (1− θ)1/2) ∼

(
1
2
α (1− θ)1/2)−1

− log (1− θ)
, (5.22)

and the first formula in (5.17) follows from (5.5). If α = 0 then formula

(5.11) immediately gives the second formula in (5.17).

(c) For α > 0, using the symmetry relation (B.1), similarly to (5.21) we obtain

Kν+1

(
α (1− θ)1/2)

Kν

(
α (1− θ)1/2) ∼ Γ(ν + 1)

(
1
2
α (1− θ)1/2)−2ν−1

Γ(−ν)
,

and the first formula in (5.18) then follows from (5.5). The second formula

in (5.18) is immediate from (5.13).

(d) Follows from (5.5) using the symmetry relation (B.1) and the asymptotic

ratio (5.22).

(e) Again using (B.1) and the first line of (5.15) with orders −ν > 0 and

−ν − 1 > 0, we obtain

Kν+1

(
α (1− θ)1/2)

Kν

(
α (1− θ)1/2) ∼ Γ(−ν − 1)

(
1
2
α (1− θ)1/2)

Γ(−ν)
,

and (5.20) follows from (5.5), again using the recurrence Γ(z + 1) = z Γ(z)

(Olver et al., 2010, 5.5.1), now with z = −ν − 1.

Thus, the proof of Proposition 5.2 is complete.

Proposition 5.2 describes the growth of the expected value µ (for α > 0) or µ̌

(for α = 0) in terms of the small parameter 1− θ. For the purposes of the GIGP

model fitting, it is useful to express 1− θ through µ or µ̌, respectively, by solving

the asymptotic equations (5.16), (5.17), (5.18), and (5.19).

Proposition 5.3. Under the conditions of Proposition 5.2, the following asymp-

totics hold.

(a) ν > 0, α ≥ 0:

1− θ ∼ ν

µ
.
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(b) ν = 0, α ≥ 0:

1− θ ∼ 1

µ log µ
, 1− θ ∼ 1

µ̌ log µ̌
.

(c) −1 < ν < 0, α ≥ 0:

1− θ ∼

(
Γ(ν + 1)

(
1
2
α
)−2ν

Γ(−ν)µ

)1/(ν+1)

, 1− θ ∼
(
−ν
µ̌

)1/(ν+1)

.

(d) ν = −1, α > 0:

log (1− θ) ∼ −4µ

α2
.

Remark 5.4. Formula (5.19) provides only the logarithmic asymptotics of 1− θ,
but this suffices for the estimation purposes.

5.2 The Limit Shape in the GIGP Model

5.2.1 Scaling coefficients and the main theorem

Let the frequencies fj (j ∈ N0) be given by the GIGP distribution formula (5.1)

with parameters 0 < θ < 1, ν ≥ −1 and α ≥ 0, excluding the “corner” pair

ν = −1, α = 0. The case α = 0 is understood as the limit of conditional

probabilities P(Xi = j |Xi > 0) = fj/(1 − f0) (j ∈ N) as α → 0+ (see Section

5.1.2).

Given the random vector of observed multiplicities (Mj) produced by M

sources, our aim is to study the asymptotics of scaled Young diagrams with the

boundary (see (3.25))

Ỹ (x) :=
Y (Ax)

B
=

1

B

∑
j≥Ax

Mj =
1

B

M∑
i=1

Zi(Ax) (x ≥ 0). (5.23)

We proceed under the following assumptions on the limiting regime, including

the specification of the scaling coefficients A and B.

Assumption 5.1. The number of sources is large, M → ∞. In addition, the

intrinsic parameter θ ∈ (0, 1) is assumed to be close to its upper limit 1, that is,

θ → 1−, which guarantees that the mean number of items per source is large (see

Proposition 5.2).

85



5. Generalised Inverse Gaussian-Poisson Model

Assumption 5.2. The x-scaling coefficient A is chosen to be

A =
1

− log θ
∼ 1

1− θ
→∞ (θ → 1−), (5.24)

whereas the y-scaling coefficient B is specified according to particular domains

in the space of parameters ν and α as follows:

(a) ν > 0, α ≥ 0:

B =
M

Γ(ν)
. (5.25)

(b) ν = 0, α ≥ 0:

B =
M

− log (1− θ)
. (5.26)

(c) −1 ≤ ν < 0, α > 0:

B =
M
(

1
2
α
)−2ν

(1− θ)−ν

Γ(−ν)
. (5.27)

(d) −1 < ν < 0, α = 0:

B =
M (−ν)(1− θ)−ν

Γ(ν + 1)
. (5.28)

Assumption 5.3. The y-scaling coefficient B defined in Assumption 5.2 is large,

B → ∞. For ν > 0, this is automatic according to (5.25) (as long as M → ∞),

but for ν ≤ 0 we must assume in addition that M � − log (1 − θ) if ν = 0 and

M � (1− θ)ν if ν < 0.

Remark 5.5. The need to impose an additional condition in Assumption 5.3 on

the joint limiting behaviour of the external parameter M →∞ and the intrinsic

GIGP parameter θ → 1− for ν ≤ 0 shows that, in order to have a manifested

limit shape in the data, the number of sources, M , must be sufficiently large. We

will clarify the opposite situation below in Section 5.4.

For ν ≥ −1, consider the function

ϕν(x) :=

∫ ∞
x

sν−1 e−s ds (x > 0), (5.29)

which is the (upper) incomplete gamma function (Olver et al., 2010, 8.2.2). The

following is our main result, establishing convergence in probability of the scaled

Young diagrams (see (5.23)) to the limit shape ϕν(x).
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Theorem 5.4. Under Assumptions 5.1, 5.2 and 5.3, for each x > 0 and any

ε > 0, we have

P
(∣∣Ỹ (x)− ϕν(x)

∣∣ ≥ ε
)
→ 0. (5.30)

The proof of Theorem 5.4 is postponed to Sections 5.2.3 and 5.2.4, after we

illustrate convergence to the limit shape using computer simulations in the next

section.

5.2.2 Graphical illustration using computer simulations

In this section, we illustrate the limit shape approximation using computer simu-

lated data in two example cases, with ν = 0.5 and ν = −0.5 (see Fig. 5.1, left pan-

els). The other parameter settings are as follows, α = 2. θ = 0.99, and M = 1000.

The plots depict the data as the upper boundary of the Young diagram Y (x) de-

fined in (3.17) and the theoretical GIGP complementary distribution function

F̄ (x) (see (3.21) and (5.1)), along with the limit shape scaled back to the original

frequencies of counts, that is, x 7→ B ϕν(x/A), where A = −1/ log θ
.
= 99.49916

(see (5.24)) and B
.
= 564.1896 for ν = 0.5 or B

.
= 56.41896 for ν = −0.5 (see

(5.25) and (5.27), respectively). In both cases, the plots show a very good fit of

the limit shape in the bulk of the observed values.

The inspection of the tail behaviour is facilitated by observing from (5.29)

that

ϕν(x) = −
∫ ∞
x

sν−1 d(e−s)

= xν−1 e−x + (ν − 1)

∫ ∞
x

sν−2 e−s ds ∼ xν−1 e−x (x→∞).

Therefore, according to (5.23) and (5.30), it may be expected that, for large

enough x,

y = Y (Ax) ≈ B ϕν(x) ≈ B xν−1 e−x,

or, taking the logarithm,

log Y (Ax) + x ≈ logB + (ν − 1) log x. (5.31)

Hence, switching from (x, y) to the new coordinates

u = log x, v = log y + x, (5.32)
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Figure 5.1: Illustration of the limit shape approximation using M = 1000 random

values (Xi) simulated using the GIGP model (5.1) with parameters θ = 0.99,

α = 2, and (a) ν = 0.5 or (b) ν = −0.5. In the left panels, the black stepwise

plots represent the upper boundary Y (x) of the corresponding Young diagrams,

together with the GIGP complementary cumulative distribution function F̄ (x)

shown as blue dotted plots, while the smooth red curves represent the scaled

back limit shape, x 7→ B ϕν(x/A). In the right panels, the tails are shown in

transformed coordinates (5.32), with the same line and colour coding.

a transformed data plot may be expected to be close to a straight line with slope

ν − 1, as well as the tails of the theoretical GIGP distribution function and of

the limit shape alike. This is illustrated for the simulated data in Fig. 5.1 (right

panels), showing a reasonable linearisation of the long tails in both cases, ν = 0.5

and ν = −0.5.

The graphical method described above can be used for a quick visual check
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5.2 The Limit Shape in the GIGP Model

of suitability of the GIGP frequency model even before estimating the model

parameters, by first experimenting with the scaling coefficient A = −1/ log θ (see

(5.24)) aiming to get a linearised data plot (thus producing a crude estimate for

the parameter θ), followed by reading off the fitted slope (which estimates the

parameter ν − 1), and then exploiting the fitted intercept (close to logB, see

(5.31)) to get an estimate for the parameter α using one of the formulas (5.25)

to (5.28). We will apply this method to some real data sets in Section 5.5.

5.2.3 Convergence of expected Young diagrams

We start our proof of Theorem 5.4 by showing that convergence to the limit shape

ϕν(x) holds for the expected Young diagrams. From (3.23) and (3.25), we have

E
(
Ỹ (x)

)
=
MF̄ (Ax)

B
. (5.33)

Theorem 5.5. Under Assumptions 5.1 and 5.2, for each x > 0

E
(
Ỹ (x)

)
→ ϕν(x). (5.34)

Remark 5.6. Note that Assumption 5.3 is not needed in Theorem 5.5.

Remark 5.7. In calculations below, we confine ourselves to the leading asymp-

totics (5.6) of terms in the series F̄ (Ax) (see (5.33)). A more careful analysis

involving control over the approximation errors is straightforward by using the

classic Euler–Maclaurin summation formula (Olver et al., 2010, §2.10(i)) and uni-

form asymptotic expansions of the Bessel function of large order (Olver et al.,

2010, §10.41(ii)).

Proof of Theorem 5.5. The proof below is broken down according to various sub-

domains of the parameters ν and α (see Assumption 5.2). First, we consider the

cases with α > 0, where the GIGP distribution is supported on j ∈ N0, and then

switch to the boundary cases with α = 0, where the support is reduced to j ∈ N.

• α > 0

Using the asymptotic approximation (5.6) of the frequencies fj (with j ≥
Ax ≥ Aδ � 1), from (5.33) we obtain

E
(
Ỹ (x)

)
=
M

B

∑
j≥Ax

fj ∼
M (1− θ)ν/2

(
1
2
α
)−ν

2BKν

(
α (1− θ)1/2) ∑

j≥Ax

jν−1θj. (5.35)

89



5. Generalised Inverse Gaussian-Poisson Model

Recalling that A = (− log θ)−1 ∼ (1− θ)−1, for the last sum in (5.35) we

have

A−ν
∑
j≥Ax

jν−1θj =
∑
j≥Ax

(
j

A

)ν−1

e−j/A
1

A
→
∫ ∞
x

sν−1 e−s ds = ϕν(x),

(5.36)

which is evident by interpreting (5.36) as the Riemann integral sum con-

verging to the integral on the right. Furthermore, the asymptotics of the

denominator in (5.35) is obtained from formulas (5.15) (see Lemma 5.1).

Hence, returning to (5.35) and recalling the definitions (5.24) of A and

(5.25), (5.26), (5.27) of B, we easily obtain (5.34).

• α = 0

Using the tail approximations (5.9) (ν > 0), (5.10) (ν = 0) and (5.14)

(−1 < ν < 0), from (5.33) we obtain, similarly to (5.35) and (5.36),

E
(
Ỹ (x)

)
∼ MCν(θ)

B

∑
j≥Ax

jν−1θj ∼ MCν(θ)A
ν

B
ϕν(x), (5.37)

where A ∼ (1− θ)−1 (see (5.24)) and

Cν(θ) :=


(1− θ)ν/Γ(ν) (ν > 0),

(− log (1− θ))−1 (ν = 0),

(−ν)/Γ(ν + 1) (−1 < ν < 0).

Now, using the specifications (5.25), (5.26), or (5.28), it is immediate to see

that the right-hand side of (5.37) is reduced to ϕν(x).

This completes the proof of Theorem 5.5.

5.2.4 Convergence of random Young diagrams

Theorem 5.6. Under Assumptions 5.1, 5.2 and 5.3, for each x > 0 the mean

squared deviation of Ỹ (x) from the limit shape ϕν(x) is asymptotically small,

E
(∣∣Ỹ (x)− ϕν(x)

∣∣2)→ 0. (5.38)
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This implies convergence in probability, Ỹ (x)
p→ ϕν(x), that is, for each x > 0

and any ε > 0,

P
(∣∣Ỹ (x)− ϕν(x)

∣∣ ≥ ε
)
→ 0. (5.39)

Proof. By the standard decomposition of the mean squared deviation, we have

E
(∣∣Ỹ (x)− ϕν(x)

∣∣2) = Var
(
Ỹ (x)

)
+
(
E
(
Ỹ (x)

)
− ϕν(x)

)2
. (5.40)

Using formulas (3.23) and (3.25), the variance term in (5.40) is estimated as

follows,

Var
(
Ỹ (x)

)
=
MF̄ (Ax)F (Ax)

B2

≤ MF̄ (Ax)

B2
∼ ϕν(x)

B
→ 0, (5.41)

according to (5.33), (5.34), and also Assumption 5.3, which guarantees that B →
∞. By Theorem 5.5, convergence in (5.41) is uniform on [δ,∞), for every δ > 0.

As for the second term on the right-hand side of (5.40), due to Theorem 5.5 it is

asymptotically small, uniformly on every interval [δ,∞). Hence, the limit (5.38)

follows.

Finally, convergence in probability (5.39) is a standard consequence of (5.38)

due to Chebyshev’s inequality (Shiryaev, 1996, Sec. II.6, p.192):

P
(∣∣Ỹ (x)− ϕν(x)

∣∣ ≥ ε
)
≤

E
(∣∣Ỹ (x)− ϕν(x)

∣∣2)
ε2

→ 0,

according to (5.38).

5.3 Fluctuations of Random Young Diagrams

As mentioned in Section 3.2, Ỹ (x) may be expected to be asymptotically normal,

with mean E
(
Ỹ (x)

)
= MF̄ (Ax)/B ∼ ϕν(x) and variance MF̄ (Ax)F (Ax)/B2 ∼

ϕν(x)/B (see (5.33), (5.34) and (5.41)). We prove this result below, using the

method of characteristic functions.

Theorem 5.7. Under Assumptions 5.1, 5.2 and 5.3, for any x > 0,

Υ (x) :=

√
B

ϕν(x)

(
Ỹ (x)− MF̄ (Ax)

B

)
d−→ N(0, 1), (5.42)
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where N(0, 1) is a standard normal law (i.e., with zero mean and unit variance),

and
d→ denotes convergence in distribution.

Proof. Substituting (5.23), the left-hand side of (5.42) is rewritten as

Υ (x) =
1√

Bϕν(x)

M∑
i=1

(
Zi(Ax)− F̄ (Ax)

)
. (5.43)

The characteristic function of (5.43) is given by

ψ(t;x) := E
(
eitΥ (x)

)
= e−i t̃MF̄ (Ax)

(
1 + F̄ (Ax)

(
ei t̃ − 1

))M
, (5.44)

where

t̃ =
t√

Bϕν(x)
, t ∈ R. (5.45)

Choosing the principal branch of the logarithm function C \ {0} 3 z 7→ log z ∈ C
(i.e., such that log 1 = 0), we can rewrite (5.44) as

logψ(t;x) = −i t̃MF̄ (Ax) +M log (1 + w), (5.46)

where

w := F̄ (Ax)
(
ei t̃ − 1

)
. (5.47)

Since A → ∞ and B → ∞ (by Assumptions 5.2 and 5.3), we have t̃ → 0 and

w → 0, hence

log(1 + w) = w − 1
2
w2 +O(|w|3).

Therefore, Taylor expanding ei t̃ = 1 + i t̃ − 1
2
t̃2 + O(t̃3) and substituting (5.45)

and (5.47), formula (5.46) is elaborated as follows,

logψ(t;x) = −MF̄ (Ax)F (Ax) t2

2Bϕν(x)
+O

(
MF̄ (Ax)

B3/2

)
→ − t

2

2
,

using that MF̄ (Ax)/B ∼ ϕν(x) and F (Ax)→ 1 for any x > 0. Thus, ψ(t;x)→
e−t

2/2, which is the characteristic function of the normal distribution N(0, 1), as

claimed.
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5.4 Poisson Approximation in the “Chaotic”

Regime

In this section, we consider the case wherein Assumption 5.3 is not satisfied, so

that the y-scaling coefficient B is bounded (which is only possible for ν ≤ 0, see

formulas (5.25) to (5.28)). We call this case chaotic because convergence of the

random variable Ỹ (x) to the limit shape ϕν(x) does not hold here (cf. Theorem

5.6), despite convergence of the expected value E
(
Ỹ (x)

)
= MF̄ (Ax)/B → ϕν(x)

(Theorem 5.5). The root cause of this failure is that, although Ỹ (x) is a nor-

malised sum of independent Bernoulli variables Zi(Ax) = I{Xi≥Ax} (see (5.23)),

the success probability P(Xi ≥ Ax) = F̄ (Ax) tends to zero, which is not offset

by a fast enough growth of the number of terms M (see Remark 5.5).

For orientation, consider a stylised case where B = 1, then MF̄ (Ax)→ ϕν(x)

and, according to the classic Poisson “law of small numbers” Whitaker (1914),

the binomial distribution of the sum Ỹ (x) = Z1(Ax)+ · · ·+ZM(Ax) is asymptot-

ically close to a Poisson distribution with parameter λ = ϕν(x). That is to say,

the sums Ỹ (x) do not settle down to a deterministic constant (like in a law of

large numbers (3.27)) but, due to a persistent “small” randomness, admit a non-

degenerate (Poisson) approximation without any normalisation. This observation

is generalised as follows.

Theorem 5.8. Suppose that Assumptions 5.1 and 5.2 are satisfied but Assump-

tion 5.3 is not, so that B = O(1). Then the distribution of the random vari-

able Y (Ax) for x > 0 is approximated by a Poisson distribution with parameter

MF̄ (Ax) ∼ Bϕν(x) and with the corresponding error in total variation distance

(or in Kolmogorov’s uniform distance) bounded by O(M−1) = o(1).

Proof. This is an immediate consequence of a well-known approximation for the

binomial distribution of the total number of successes in n independent Bernoulli

trials, with success probability p, by a Poisson distribution with parameter λ =

np, with the error bounded by σ2 = np2 (see, e.g., Barbour et al. (1992); Novak

(2019)). In our case, λ = MF̄ (Ax) and σ2 = MF̄ (Ax)2 ∼
(
Bϕν(x)

)2
/M =

O(1/M) = o(1).
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The Poisson approximation stated in Theorem 5.8 is illustrated in Fig. 5.2

using 100 simulated samples (of size M = 35 each) from the GIGP distribution

(5.1) with parameters ν = −0.5, α = 2, and θ = 0.99. The y-scaling coefficient

computed from (5.27) is given by B
.
= 1.974664, confirming that this is a chaotic

regime (i.e., where Assumption 5.3 is not satisfied). The x-scaling coefficient

(5.24) specialises to A
.
= 99.49916. The left panel in Fig. 5.2 shows the sam-

ple Young diagrams superimposed on one another using transparent shading (in

blue), so that darker places correspond to a more frequent occurrence. As antic-

ipated, there is no convergence to a deterministic limit shape, but an emerging

“typical” boundary of blue diagrams clearly indicates an expected curve estab-

lishing in the limit.

In the right panel of Fig. 5.2, we choose a trial value x0 = 0.2 and plot

a histogram for the observed frequencies of the random values Y (Ax0), where

Ax0
.
= 19.89983. A visual inspection supports a reasonable match with Pois-

son distribution with the mean MF̄ (Ax0)
.
= 4.342498. This is confirmed by

Pearson’s χ2-test, with the bins labelled by the values of j from 0 to 9 and the

respective observed frequencies oj. Since the expected frequencies e0
.
= 1.3004

and e9
.
= 3.340067 are less than 5, we follow a common recommendation and

combine the bins j = 0 and j = 9 with j = 1 and j = 8, respectively. The

grouped χ2-statistic is calculated to yield 1.972246 on 10− 2− 1 = 7 degrees of

freedom, with the p-value of 96.14%, so the goodness-of-fit test is comfortably

passed.
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Figure 5.2: Illustration of Poisson statistics in the chaotic regime. The left panel

shows superimposed Young diagrams of 100 random samples of size M = 35 each,

generated from the GIGP model (5.1) with parameters ν = −0.5, α = 2, and

θ = 0.99. The right panel shows the histogram of observed frequencies oj of the

random values Y (Ax0), where Ax0
.
= 19.89983. For orientation, the mean of the

approximating Poisson distribution is given by MF̄ (Ax0)
.
= 4.342498.

5.5 Real Data Examples

In this section, we look at how well the theoretical limit shape ϕν(x) conforms to

some real data sets studied earlier by Sichel (1985).

5.5.1 Lotka’s data set: author productivity

We start with a classic data set considered by Lotka in his seminal paper Lotka

(1926), comprising the counts of the number of papers (items) published by au-

thors (sources) in Chemical Abstracts during 1907–1916. This data set is usually

considered as a baseline example of the power law statistics of counts (Clauset

et al., 2009; Lotka, 1926), but Sichel (1985, pp. 316–317 and Table 2) argued that

a GIGP model with predefined parameters ν = −0.5, α = 0 and an estimated

θ = 0.96876 is a better fit to the data (with the p-value of 91.8% in Pearson’s χ2-

test). The distinctive difference between the two models is of course the long-tail

behaviour, either power or power-geometric, respectively.

To examine the goodness-of-fit graphically, similarly to Section 4.3.1 we first
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5. Generalised Inverse Gaussian-Poisson Model

plot the empirical Young diagram Y (x), compared with the fitted GIGP com-

plementary distribution function F̄ (x) and contrasted with the theoretical limit

shape scaled back to the original coordinates, that is, x 7→ B ϕ(x/A). Here,

M = 6891, and the scaling coefficients calculated from (5.24) and (5.28) are

given by A
.
= 31.5076 and B

.
= 343.5839. Although the value of A is not partic-

ularly large (because θ is not extremely close to 1), a big value of B confirms a

reasonable predisposition of the data for a good limit shape approximation.
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(a) Lotka’s data: GIGP parameters ν = −0.5, α = 0 (predefined), θ = 0.96876 (estimated)
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(b) Chen’s data: GIGP parameters ν = 0, α = 0 (predefined), θ = 0.99369 (estimated).

Figure 5.3: GIGP model fit to real data sets. Black plots represent the data,

blue dotted plots show the fitted GIGP complementary distribution functions,

and smooth red lines depict the graphs of the scaled-back limit shape. The right

panel shows the tail versions of these plots in transformed coordinates (5.32).

The left panel in Fig. 5.3(a) demonstrates an excellent fit to the bulk of the

data for both the GIGP model as well as the limit shape (scaled back to the

original coordinates, x 7→ B ϕ(x/A)). The visual inspection of the tails in the
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5.5 Real Data Examples

right panel of Fig. 5.3(a) (in transformed coordinates (5.32)) confirms a good fit

but only for moderately large observed values j, whereas the region u ≥ 4.5, cor-

responding to values j ≥ e4.5 ≈ 90, reveals increasing deviations from the GIGP

prediction. This suggests that very large values in the tail of Lotka’s data require

a different fitting model, such as a stretched-exponential approximation Laher-

rere & Sornette (1998). Incidentally, upon a closer look at the upper extremes in

the Lotka data set, there is just a handful of counts larger than 90, namely, 95,

107, 109, 114, and 346.

A surprising maximum 346 looks like a genuine outlier, three times bigger

than the runner-up! Interestingly, this record is attributed to Professor Emil

Abderhalden, a prolific and controversial Swiss biochemist and physiologist who

worked in the first half of the 20th century (Wikipedia, 2023). Being rather

extraordinary, perhaps this individual record needs to be removed from statistical

analysis.

5.5.2 Chen’s data set: journal use

For our second real data example, we revisit the data set from Chen (1972),

considered by Sichel (1985, pp. 318–319 and Table 4) for the sake of testing a

GIGP model. The data comprised counts of use (items) of physics journals in the

M.I.T. Science Library in 1971, recorded per each volume (sources) taken from

the shelves for reading or photocopying. The total number of sources involved

(i.e., the number of volumes ever requested) was M = 138. Sichel fitted a GIGP

model with predefined values ν = 0, α = 0 and an estimated θ = 0.99369. He

tested goodness-of-fit via Pearson’s χ2-test, observing a reasonably high p-value

of 31.2%, thus not signalling any significant mismatch.

To cross-examine the fit using our methods, similarly as in Section 5.5.1 we

plot the empirical Young diagram’s boundary Y (x) along with the fitted GIGP

function F̄ (x) and scaled-back limit shape B ϕ(x/A) (see Fig. 5.3(b), left panel),

where the scaling coefficients calculated from (5.24) and (5.26) are given by A
.
=

157.9781 and B
.
= 27.24247. It is worth pointing out that, in contrast to Lotka’s

data set considered in Section 5.5.1, here we have quite a large value for the

x-scaling coefficient A but a relatively small value of the y-scaling parameter B.
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5. Generalised Inverse Gaussian-Poisson Model

At first glance, the plots in Fig. 5.3(b) (left panel) seem to conform to the

GIGP model; however, one cannot help noticing a visible deviation from the

theoretical prediction around the value x = 100. This is confirmed by looking

at the tail plots in transformed coordinates (5.32) (see Fig. 5.3(b), right panel),

where x = 100 corresponds to u = log 100
.
= 4.60517. To test statistically whether

the deviations are significant, we can use the asymptotic normality of Y (x) due

to Theorem 5.7. Specifically, setting x = 100 and standardising according to

formula (5.42), we calculate Υ (100/A)
.
= −3.413073, with an extremely small p-

value of 0.032%. Thus, the deviation is highly significant, which implies that the

GIGP model is not an accurate fit, at least for moderately large values starting

from about x = 70.
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Chapter 6

Generalised Power Law

This section is concerned with the generalised power law (GPL) model for the

frequency distribution of count data. This model aims to bridge small values

of counts and a power type upper tail in order to overcome the limitations of

integer partitions and power law models. As mentioned in the Introduction,

we introduced the GPL model independently in Nuermaimaiti et al. (2021) but

discovered later on that a similar model is known in the literature as a hooked

power law (see, e.g., Thelwall & Wilson (2014)). The new features of our usage

of the GPL model contrasted with previous work are summarised at the end of

Section 6.4.5.

Unlike the integer partitions in Chapter 3 and the power law in Chapter 4, the

GPL model achieved good results to model the whole range of the data, while

the other models fit well only part of the data. Compared to the generalised

inverse Gaussian-Poisson (GIGP) model introduced in Chapter 5, the GPL is

computationally easier to fit to the real data. The performance of our model was

verified by fitting GPL to the EJP data and the AMS data, respectively, which

demonstrated that the GPL model works well in both cases.
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6. Generalised Power Law

6.1 Generalised Power Law Model

6.1.1 The model setup

The generalised power law (GPL) model introduced in this section is designed as

a suitable extension of the classical power law model (4.1). It involves a shape

parameter a > 1, akin to the power-law exponent in (4.1), and a scale parameter

L > 0, tacitly assumed to be large.

Definition 6.1. We say that a discrete random variable X with values in N0

follows a generalised power law with parameters a and L if the frequencies fj =

P(X = j) are given by

fj = Ca,L

(
1 +

j

L

)−a
(j ∈ N0), (6.1)

where Ca,L is a normalisation constant ensuring that (6.1) defines a proper prob-

ability distribution,

C−1
a,L =

∞∑
j=0

(
1 +

j

L

)−a
. (6.2)

Observe that, for smaller values of j, the GPL formula (6.1) simplifies to

fj ∼ Ca,L

(
1− aj

L

)
(j � L), (6.3)

using the asymptotic approximation (1 + x)−a − 1 ∼ −ax for x → 0. On the

other hand, for large j formula (6.1) is reduced to a power-law dependence,

fj = Ca,L

(
j

L

)−a(
1 +

L

j

)−a
∼ Ca,LL

a

ja
(j � L), . (6.4)

Thus, the GPL model (6.1) may be viewed as providing an effective sewing of the

formerly truncated lower values with the power-law tail.

Assuming that L� 1 and replacing the sum in (6.2) (rearranged as a Riemann

integral sum) with the corresponding integral, we can write

1 =
∑
j≥0

fj = Ca,LL
∑
j≥0

1

(1 + j/L)a
· 1

L

∼ Ca,LL

∫ ∞
0

dx

(1 + x)a
=
Ca,LL

a− 1
. (6.5)
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6.1 Generalised Power Law Model

Hence, the normalisation constant Ca,L is asymptotically evaluated as

Ca,L ∼
a− 1

L
. (6.6)

The expected value of the GPL model is given by

µ =
∑
j≥0

jfj = Ca,L
∑
j≥1

j

(1 + j/L)a
. (6.7)

Substituting equation (6.2) for Ca,L, we have

µ =

∑
j≥1 j (1 + j/L)−a∑
j≥0 (1 + j/L)−a

. (6.8)

Remembering that L � 1, similarly to (6.5) we can obtain an asymptotic ap-

proximation by replacing a Riemann sum with the integral,

µ = Ca,LL
2
∑
j≥1

j/L

(1 + j/L)a
· 1

L

∼ Ca,LL
2

∫ ∞
0

x dx

(1 + x)a
=

Ca,LL
2

(a− 1)(a− 2)
. (6.9)

Substituting (6.6), this simplifies to

µ ∼ L

a− 2
, (6.10)

that is,

L ∼ (a− 2)µ. (6.11)

In particular, formulas (6.10) and (6.11) show that the expected value µ is large

(for large scale parameter L).

6.1.2 Conceptual justification of the GPL model

To provide a meaningful motivation for the GPL formula (6.1), consider first the

low-production regime, j � L. Substituting (6.6), we can rewrite the approxi-

mate expression (6.3) in an asymptotically equivalent form as

fj ∼
a− 1

a
· a
L

(
1− a

L

)j
(0 ≤ j � L). (6.12)
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6. Generalised Power Law

Formula (6.12) has a clear interpretation: in the course of time a source (such as

a newly published paper) produces items (citations) sequentially, independently

of one another, with probability p = 1− a/L each (close to 1), until the string of

items is terminated with probability q = 1 − p = a/L. Thus, the probability of

producing j items is given by the geometric formula, pjq. The pre-factor (a−1)/a

in (6.12) may be interpreted as the probability of a low-production outcome (i.e.,

with j � L).

Note that the geometric law in (6.12), even extended over the entire range

j ≥ 0, has the mean p/q ∼ L/a. Compensated by the pre-factor (a − 1)/a it

becomes
(a− 1)L

a2
=

(a− 1)(a− 2)

a2
· L

a− 2
<

L

a− 2
∼ µ,

according to formula (6.10). That is to say, the mean number of items pro-

duced under the first regime is asymptotically smaller than the average number

of items per source. This indicates that the low-production regime is not exhaus-

tive; moreover, the long-tail regime of the power-law type provides a dominating

contribution to the mean of items.

The mechanism of migration to the long-tail regime represented by the formula

(6.4) is also quite clear: the independent generation of successive items with

approximately constant probability of adding a new item, becomes more and more

state-dependent, thus paving the way to the principle “success breeds success”

(also known as cumulative advantage), which is commonly accepted to underpin

the power-law behaviour (see Price (1976), Egghe (2005), Egghe & Rousseau

(1995), Huber (2002)).

6.1.3 Mixed geometric distribution as an approximation

of the GPL

Motivated by the approach of Sichel (1971, 1985), we propose a mixed distribution

model for the item production, designed to reproduce the GPL distribution (6.1).

Building on the observation in Section 6.1.2 about a geometric approximation

(6.12), we assume a background geometric law for individual sources instead of

a Poisson law used in Sichel (1971). Specifically, suppose that each of the M

sources produces items according to a geometric law with individual parameters
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6.1 Generalised Power Law Model

pi (i = 1, . . . ,M), which are deemed to be independent sample values of a random

variable p with a beta distribution, p ∼ Beta(α, β), that is, with density

g(p) =
pα−1 (1− p)β−1

B(α, β)
(0 < p < 1),

where B(α, β) is the beta function (Olver et al., 2010, §5.12),

B(α, β) =

∫ 1

0

pα−1 (1− p)β−1 dp.

The resulting mixed distribution is given by

fj =

∫ 1

0

p (1− p)j g(p) dp

=
1

B(α, β)

∫ 1

0

p (1− p)j pα−1(1− p)β−1 dp

=
B(α + 1, β + j)

B(α, β)
(j ∈ N0). (6.13)

The beta function can be conveniently expressed as (Olver et al., 2010, 5.12.1)

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, (6.14)

where Γ(z) =
∫∞

0
sz−1 e−s ds is the gamma function. Using the recurrence rela-

tion Γ(z + 1) = αΓ(z) (Olver et al., 2010, 5.5.1), it is easy to check that the

probabilities (fj) satisfy the chain of recurrence relations

f0 =
α

α + β
, fj+1 =

β + j

α + β + j + 1
fj (j ≥ 0).

For example,

f1 =
αβ

(α + β)(α + β + 1)
.

To identify the asymptotic behaviour of fj, we substitute (6.14) and use Stir-

ling’s asymptotic formula (Olver et al., 2010, 5.11.3)

Γ(z) ∼
√

2π zz−1/2 e−z (z →∞),
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6. Generalised Power Law

which yields for large j

fj =
Γ(α + 1) Γ(β + j)/Γ(α + β + j + 1)

Γ(α) Γ(β)/Γ(α + β)

=
αΓ(α + β)

Γ(β)
· Γ(β + j)

Γ(α + β + j + 1)

∼ αΓ(α + β)

Γ(β)
·

√
2π (β + j)β+j−1/2 e−β−j

√
2π (α + β + j + 1)α+β+j+1/2 e−α−β−j−1

∼ αΓ(α + β)

Γ(β)
· eα+1

jα+1

(
1− α + 1

α + β + j + 1

)α+β+j+1

∼ αΓ(α + β)

Γ(β) jα+1
. (6.15)

Comparing with the long-tail behaviour of the GPL model (see (6.4)) we see that

Ca,LL
a

ja
∼ αΓ(α + β)

Γ(β) jα+1
(j →∞),

and it follows that

a = α + 1. (6.16)

Furthermore, recalling that L� 1 and Ca,L ∼ (a− 1)/L (see (6.6)), we get

(a− 1)La−1 = αLα ∼ αΓ(α + β)

Γ(β)
, (6.17)

and it is clear that the parameter β must be large. Again using Stirling’s formula,

we obtain
Γ(α + β)

Γ(β)
∼
√

2π (α + β)α+β−1/2 e−α−β√
2π ββ−1/2 e−β

∼ βα. (6.18)

Combining (6.17) and (6.18), we obtain αLα ∼ αβα, so

L = β. (6.19)

In the asymptotic calculations above, it was tacitly assumed that β is fixed.

Repeating this analysis with β → ∞ and j � β (i.e., by formally combining

(6.15) and (6.18)), it is straightforward to obtain the asymptotics

fj ∼
αβα

jα+1
(j � β), (6.20)
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6.2 Limit Shape in the GPL Model

which is consistent with the GPL asymptotics (6.4) due to the connection formulas

(6.16) and (6.19).

The mixed geometric model is quite convenient analytically, because many

formulas are exact rather than asymptotic. For instance, the normalising constant

is expressed exactly in terms of the beta function. Similarly, the expected value

of this distribution is easy to compute,

µ =
∑
j

jfj =
1

B(α, β)

∑
j

j B(α + 1, β + j).

Recalling the integral representation (6.13), we have

∑
j

j B(α + 1, β + j) =

∫ 1

0

∑
j

p (1− p)j pα−1 (1− p)β−1 dp

=

∫ 1

0

1− p
p

pα−1 (1− p)β−1 dp

= B(α− 1, β + 1).

Using the formula (6.14), it is now easy to compute

µ =
B(α− 1, β + 1)

B(α, β)
=

β

α− 1
.

In the original GPL model, this result is obtained only asymptotically (see (6.10)).

6.2 Limit Shape in the GPL Model

6.2.1 Convergence of random Young diagrams

In line with Chapter 3, let X = (Xi, i = 1, . . . ,M) be an independent random

sample of size M from the GPL distribution (see Definition 6.1), interpreted

as the random item outputs produced by i-th source, respectively. Let (Mj)

be the corresponding multiplicities of counts j ∈ N0 (see (3.6)). Recalling that

Y (x) =
∑

j≥xMj defines the upper boundary of the corresponding Young diagram

(see (3.17)), consider a rescaled diagram with scaling coefficients

A = L, B = M, (6.21)
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6. Generalised Power Law

that is,

Ỹ (x) =
1

B

∑
j≥Ax

Mj =
1

M

∑
j≥Lx

Mj (x ≥ 0).

For a > 1, define the function

ϕa(x) :=
1

(1 + x)a−1 (x ≥ 0). (6.22)

Our first result is the convergence to ϕa(x) of the expected (rescaled) Young

diagrams, E
(
Ỹ (x)

)
.

Theorem 6.1. Assuming that L→∞, we have

E
(
Ỹ (x)

)
→ ϕa(x) (x ≥ 0). (6.23)

Proof. The general formula (3.31) specialises to

E
(
Ỹ (x)

)
=
MF̄ (Ax)

B
= F̄ (Lx) = Ca,L

∑
j≥Lx

1

(1 + j/L)a
. (6.24)

Again approximating the sum in (6.24) by an integral, we obtain, for any x ≥ 0,∑
j≥Lx

1

(1 + j/L)a
= L

∑
j≥Lx

1

(1 + j/L)a
· 1

L

∼ L

∫ ∞
x

ds

(1 + s)a
=

L

(a− 1) (1 + x)a−1 =
Lϕa(x)

a− 1
.

Returning to (6.24) and substituting (6.6), we finally get

E
(
Ỹ (x)

)
∼ a− 1

L
· Lϕa(x)

a− 1
= ϕa(x), (6.25)

as claimed.

Remark 6.1. For convergence in (6.25) we only need that L→∞— no condition

on growth of B = M is required. But for convergence of random functions Ỹ (x)

the condition M →∞ is essential (see Theorem 6.2).

We can now obtain our main result about convergence of random diagrams

Ỹ (x) to the limit shape ϕa(x).
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6.2 Limit Shape in the GPL Model

Theorem 6.2. Assuming that L → ∞ and M → ∞, for each x ≥ 0 the mean

squared deviation of Ỹ (x) from the limit shape ϕa(x) is asymptotically small,

E
(
|Ỹ (x)− ϕa(x)|2

)
→ 0. (6.26)

This implies convergence in probability, Ỹ (x)
p−→ ϕν(x), that is, for each x > 0

and any ε > 0,

P
(∣∣Ỹ (x)− ϕa(x)

∣∣ ≥ ε)→ 0. (6.27)

Proof. By a standard decomposition of the mean squared deviation, we have

E
(
|Ỹ (x)− ϕa(x)|2

)
= Var

(
Ỹ (x)

)
+
(
E
(
Ỹ (x)

)
− ϕa(x)

)2
. (6.28)

Using formulas (3.23) and (3.25) (with A = L and B = M), the variance term in

(6.28) is estimated as follows,

Var
(
Ỹ (x)

)
=
MF̄ (Ax)F (Ax)

B2
=
F̄ (Lx)F (Lx)

M

≤ F̄ (Lx)

M
∼ ϕa(x)

M
→ 0, (6.29)

according to (6.23) and (6.24). As for the second term on the right-hand side of

(6.28), it is asymptotically small due to (6.23). Hence, the limit (6.26) follows.

Finally, convergence in probability (6.27) is a standard consequence of (6.26)

due to Chebyshev’s inequality (Shiryaev, 1996, Sec. II.6, p.192),

P
(∣∣Ỹ (x)− ϕa(x)

∣∣ ≥ ε) ≤
E
(
|Ỹ (x)− ϕa(x)|2

)
ε2

→ 0,

according to (6.26).

6.2.2 Graphical illustration using computer simulation

As an example, the limit shape of the GPL model using simulation is shown

in this section, with parameters a = 2.5, L = 20 and M = 1,000. Figure 6.1

shows the simulated data as the upper boundary of the Young diagram Y (x)

which is defined in (3.17) in black; and the theoretical complementary cumulative

distribution function

F̄ (x) =
Bϕ( x

A
)

M
= (1 +

x

L

1−a
) (6.30)
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F̄ (x) (see (3.21) and (6.1)) and the limit shape scaled back to the original

frequencies of counts, that is x 7→M ϕa(x/L) are shown in blue and red, respec-

tively. The plots show a good fit of the limit shape in the bulk of the simulated

data.

The tail behaviour of the limit shape of the GPL is inspected, using (6.25),

for x→∞,

y = Y (Lx) ≈M ϕa(x) ≈M (1 + x)1−a , (6.31)

and furthermore, by taking the logarithm,

log Y (Lx) = logM − (a− 1) log(x+ 1) ≈ logM − (a− 1) log x. (6.32)

That is to say, the graph of the limit shape of the GPL model is approximately

a straight line for large x in logarithmically transformed coordinates u = log z,

v = log y. The tail of the CCDF of the GPL model is also a straight line since

(3.31).

Alternatively, this can be explained by recalling that the GPL is approxi-

mately a power law for large j (see (6.4)), and the tail of the CCDF of the power

law in logarithmically transformed coordinates is approximately a straight line.

6.2.3 Fluctuations of random Young diagrams

Recalling that Ỹ (x) is a (normalised) sum of independent indicators Zi(Ax) =

I{Xi≥Ax}, i = 1, . . . ,M (see (5.23)), it is natural to expect that Ỹ (x) is asymp-

totically normal, with mean E
(
Ỹ (x)

)
= MF̄ (Ax)/B ∼ ϕν(x) and variance

MF̄ (Ax)F (Ax)/B2 ∼ ϕν(x)/B (see (6.25) and (6.29)). However, a standard

central limit theorem is not directly applicable because the “success” probability

P(Zi(Ax) = 1) = F̄ (Ax) is not constant (and, moreover, it tends to 0), so we

have to re-prove this statement using the method of characteristic functions.

Theorem 6.3. Assuming that L→∞ and M →∞, for any x > 0 we have

Υ (x) :=

√
M

ϕa(x)

(
Ỹ (x)− F̄ (Lx)

)
d−→ N(0, 1), (6.33)

where N(0, 1) is a standard normal law (i.e., with zero mean and unit variance),

and
d→ denotes convergence in distribution.
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Figure 6.1: Illustration of the limit shape approximation using M = 1,000 ran-

dom values (Xi) simulated using the GPL model (6.1) with parameters a = 2.5

and L = 20. In the left panel, the black stepwise plot represents the upper

boundary Y (x) of the corresponding Young diagrams, together with the GPL

complementary distribution function F̄ (x) shown in blue dots, while the smooth

red curves represent the scaled back limit shape, x 7→ B ϕa(x/A). In the right

panel, the tail is shown in logarithmic transformed coordinates, with the same

line and colour coding.

Proof. Substituting (3.25), the left-hand side of (6.33) is rewritten as

Υ (x) =
1√

Mϕa(x)

M∑
i=1

(
Zi(Lx)− F̄ (Lx)

)
. (6.34)

The characteristic function of (6.34) is given by

ψ(t;x) := E
(
eitΥ (x)

)
= e−i t̃MF̄ (Lx)

(
1 + F̄ (Lx)

(
ei t̃ − 1

))M
, (6.35)

where

t̃ =
t√

Mϕa(x)
, t ∈ R. (6.36)

Choosing the principal branch of the logarithm function C \ {0} 3 z 7→ log z ∈ C
(i.e., such that log 1 = 0), we can rewrite (6.35) as

logψ(t;x) = −i t̃MF̄ (Lx) +M log (1 + w), (6.37)

where

w := F̄ (Lx)
(
ei t̃ − 1

)
. (6.38)
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6. Generalised Power Law

Since L→∞, we have t̃→ 0 and w → 0, hence

log(1 + w) = w − 1
2
w2 +O(|w|3).

Therefore, Taylor expanding ei t̃ = 1 + i t̃ − 1
2
t̃2 + O(t̃3) and substituting (6.36)

and (6.38), formula (6.37) is elaborated as follows,

logψ(t;x) = − F̄ (Lx)F (Lx) t2

2ϕa(x)
+O

(
F̄ (Lx)

M1/2

)
→ − t

2

2
,

using that F̄ (Lx) ∼ ϕa(x) (see (6.29)) and F (Lx) → 1 for any x > 0. Thus,

ψ(t;x) → e−t
2/2, which is the characteristic function of the normal distribution

N(0, 1), as claimed.

6.3 Fitting the GPL Model

6.3.1 Graphical methods

A simple graphical approach to estimation of the parameter a is via a log-log

transform of the data in the upper tail of the frequency range, taking advantage

of a power-law approximation (6.4), and using equation (4.8). After that, the

parameter L can be approximately recovered using the relation (6.31). Despite a

considerable waste of data, these crude estimates may be helpful as meaningful

seeds in the iterative numerical procedures, such as ordinary least squares or the

maximum likelihood estimation.

6.3.2 Ordinary least squares

Another method is the ordinary least squares (OLS). Here, the square-distance

between the empirical distribution (f̂j) (with f̂j = Mj/M) from the GPL distri-

bution (fj) (with trial parameter values a and L) is given by

g(a, L;X) :=
∑
j≥0

(
f̂j − fj

)2
=
∑
j≥0

(
Mj

M
− Ca,L

(1 + j/L)a

)2

. (6.39)
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To minimise g(a, L), we let the partial derivatives equal to zero,

∂g

∂a
= 2

∑
j≥0

(
Mj

M
− Ca,L

(1 + j/L)a

)
Ca,L log (1 + j/L)− ∂Ca,L

∂a

(1 + j/L)a
= 0, (6.40)

∂g

∂L
= −2

∑
j≥0

(
Mj

M
− Ca,L

(1 + j/L)a

)
Ca,L (aj/L2) +

∂Ca,L
∂L

(1 + j/L)

(1 + j/L)a+1 = 0. (6.41)

The partial derivatives of Ca,L can be obtained from (6.2),

∂Ca,L
∂a

= C2
a,L

∑
j≥0

log(1 + j/L)

(1 + j/L)a
, (6.42)

∂Ca,L
∂L

= −
aC2

a,L

L

∑
j≥0

j/L

(1 + j/L)a+1 . (6.43)

Substituting expressions (6.42) and (6.43) (together with (6.2)) into (6.40) and

(6.41), the latter equations can be solved (e.g., numerically) to yield the OLS

estimates for parameters a and L. Alternatively, the function g(a, L) can be

minimised directly, for instance, using the R function optim.

6.3.3 Maximum likelihood

According to (3.13), the likelihood of the GPL model is represented as

L(a, L;X) =
∏
j≥0

f
Mj

j = CM
a,L

∏
j≥1

(
1 +

j

L

)−aMj

, (6.44)

with the log-likelihood

`(a, L;X) = M logCa,L − a
∑
j≥1

Mj log

(
1 +

j

L

)
. (6.45)

To maximise (6.45), we set the partial derivatives equal to zero,

∂`

∂a
=

M

Ca,L
· ∂Ca,L
∂a

−
∑
j≥1

Mj log

(
1 +

j

L

)
= 0, (6.46)

∂`

∂L
=

M

Ca,L
· ∂Ca,L
∂L

+
a

L

∑
j≥1

j/L

1 + j/L
= 0, (6.47)
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6. Generalised Power Law

where the partial derivatives of Ca,L are given in (6.42) and (6.43). By solving

these equations numerically, we obtain the MLEs â and L̂.

A simple asymptotic analysis of the likelihood equations (6.46) and (6.47)

may be helpful. Namely, taking advantage of the approximate relation (6.6), the

log-likelihood is written as

`(a, L;X) ≈M log
a− 1

L
− a

∑
j≥1

Mj log

(
1 +

j

L

)
,

Then equations (6.46) and (6.47) simplify to

∂`

∂a
≈ M

a− 1
−
∑
j≥1

Mj log

(
1 +

j

L

)
= 0, (6.48)

∂`

∂L
≈ −M

L
+
a

L

∑
j≥1

Mj
j/L

1 + j/L
= 0. (6.49)

Hence, we obtain the approximate maximum likelihood equations,∑
j≥1

Mj

M
log

(
1 +

j

L

)
=

1

a− 1
, (6.50)

∑
j≥1

(
Mj

M
· j/L

1 + j/L

)
=

1

a
. (6.51)

Eliminating parameter a gives a closed equation on L,(∑
j≥1

(
Mj

M
· j/L

1 + j/L

))−1

−

(∑
j≥1

Mj

M
log

(
1 +

j

L

))−1

= 1. (6.52)

This equation can be solved numerically to yield an estimate L̂, and then from

(6.51) we get

â =

(∑
j≥1

(
Mj

M
· j/L̂

1 + j/L̂

))−1

. (6.53)

6.3.4 Method of moments

A more precise way of representing the expected value µ = E(X) without replac-

ing sums with integrals, compared to equation (6.9), is given by

µ =

∑
j≥1 j (1 + j/L)−a∑
j≥0 (1 + j/L)−a

(6.54)
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6.3 Fitting the GPL Model

This relation can be viewed as a first-order moment equation, which can be

used for parameter estimation, whereby the theoretical mean µ is replaced by its

sample mean value, µ̂ = N/M ,

N = M

∑
j≥1 j (1 + j/L)−a∑
j≥0 (1 + j/L)−a

.

Using (6.10), a simplified (asymptotic) version of this equation reads

N =
ML

a− 2
. (6.55)

Since we have two parameters, a and L, we need another equation to close

the system of equations. We cannot use the second-order moments, since they

may not exist (if a ≤ 3). Instead, we can use a different statistic related to

the occupation problem we are considering. One such statistic is the number of

occupied boxes — in our case, the number of distinct output values j produced

by the M sources,

W = #{Mj > 0} =
∑
j≥0

I{Mj>0}. (6.56)

It is easy to see (Karlin, 1967, p. 381) that the expectation of W is given by

E(W ) =
∑
j≥0

(
1− (1− fj)M

)
.

Note that by the binomial theorem,

(1− fj)M =
M∑
k=0

(
M

k

)
(−fj)k, (6.57)

while by the Taylor expansion of exponential,

e−Mfj =
∞∑
k=0

(−Mfj)
k

k!
. (6.58)

From (6.57) and (6.58), also using the approximation
(
M
k

)
≈ Mk

k!
, we obtain∑

j≥0

{
(1− fj)M − e−Mfj

}
→ 0 (M →∞).
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6. Generalised Power Law

Hence,

E(W ) =
∑
j≥0

(
1− e−Mfj

)
+ o(1).

Thus, replacing this expectation with the sample value of W (see the definition

(6.56)), the required second equation for estimation of the model parameters takes

the form

W =
∑
j≥0

(
1− e−Mfj

)
.

We can simplify this problem even further by using an asymptotic expression

for E(W ) (Karlin, 1967, Example 4, p. 378, and Theorem 1′, p. 381) and also

recalling (6.6),

E(W ) ∼ Γ
(
1− 1

a

)
(a− 1)1/a M1/aL1−1/a.

So for the estimation purposes we can use the equation

W = Γ
(
1− 1

a

)
(a− 1)1/aM1/aL1−1/a. (6.59)

For instance, expressing L from (6.55), we obtain a closed equation on a,

W = Γ
(
1− 1

a

)
(a− 1)1/a (a− 2)1−1/aN1−1/aM−1+2/a

which can be solved numerically.

6.4 Real Data Examples

In the following examples, we illustrate the fitting result of the GPL model to

real data sets introduced in Section 2.2.

6.4.1 Lotka’s data

We fit the GPL model to Lotka’s data set (see Section 2.2, A), the estimated

parameters of the GPL model â
.
= 2.511331 and L̂

.
= 2.280752 are obtained using

the OLS with the aid of optim function in R. The fitted result is depicted in

Figure 6.2.

The GPL model performs reasonably well at the beginning of the data. For

j � L, the GPL is approximated by a power law (see (6.4)), so for large j the

114



6.4 Real Data Examples

GPL exhibits a power tail. However, Lotka’s data starts the power law behaviour

from the beginning of the data, so the estimated parameter L̂ = 2.280752 is

relatively small. The fitting result of the GPL to Lotka’s data in Figure 6.2 did

not show a significant improvement compared to the result obtained by fitting

the power-law model to the data, as shown in Figure 4.2.

Lotka’s data does not have a power law tail from observing the right panel

of Figure 6.2. Compared to the GIGP model, which has a power-geometric tail

that fits to Lotka’s data better (see the first row of Figure 5.3).
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Figure 6.2: The GPL model (red) fitted to Lotka’s data (black), with the esti-

mated parameters â
.
= 2.511331 and L̂

.
= 2.280752. The plots depict frequencies

(left panel) and complementary cumulative frequencies (right panel), shown in

log-log coordinates.

6.4.2 Chen’s data

The GPL is fitted to Chen’s data (Section 2.2, C) using two different estima-

tion methods, ordinary least squares (OLS) and maximum likelihood estimation

(MLE). The top row of Figure 6.3 illustrates the fitting result of the GPL using

OLS to estimate the parameters, with the resulting estimates of â
.
= 1.841551 and

L̂
.
= 6.845811. The OLS method captures reasonably well the bulk of the data

within the range 1 ≤ j ≤ 70. The bottom row of Figure 6.3 displays the fitted

GPL obtained using MLE, with estimated parameters â
.
= 2.232609 L̂

.
= 12.967.
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6. Generalised Power Law

The MLE method provides a better fit for the tail of the data than OLS. However,

there are visible deviations in the middle part of the data, also observed in fitting

using the GIGP model (see Figure 5.3 (b)).
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Figure 6.3: The GPL model (red) fitted to Chen’s data (black). The top row de-

picts the GPL with estimated parameters â
.
= 1.841551 and L̂

.
= 6.845811 using

OLS. The bottom row depicts the GPL with estimated parameters â
.
= 2.232609;

L̂
.
= 12.967 using MLE. The plots depict frequencies (left panel) and complemen-

tary cumulative frequencies (right panel), shown in log-log coordinates.

6.4.3 EJP data

The EJP dataset (see Section 2.2, D) comprises K = 113 authors, M = 15,400 pa-

pers, and N = 245,567 citations, including M0 = 6,472 papers with zero citations.

116



6.4 Real Data Examples

Noting that the observed frequency of zero-count papers f̂0 = M0/M = 0.42 is

relatively high, we compared the fitting results with and without zero counts,

which suggested that the value at j = 0 is worth excluding. For a clearer visual-

isation, Figure 6.4 (left) includes zero counts, making it evident that zero-count

citations appear to be an outlier.

Using the OLS method, the estimated parameters are â
.
= 2.175316 and L̂

.
=

16.35075. Figure 6.4 shows that the fit is remarkably accurate, especially over a

large initial part of the citation spectrum (up to around j = 500).

Compared with fitting the truncated power law model (Figure 4.4) and integer

partition model (Figure 4.5), the GPL model covered the whole range of the EJP

data.
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Figure 6.4: The GPL model (red) fitted to the EJP data (black), with the esti-

mated parameters â
.
= 2.175316 and L̂

.
= 16.35075. The plots depict frequencies

(left panel) and complementary cumulative frequencies (right panel), shown in

log-log coordinates.

Substitute (6.22) and (6.21) into (3.70), we obtain

1

(1 + h)a−1
=
Lh

M
(6.60)

There are K = 113 authors in the EJP data, according to remark 3.9, B is

replaced by B/K, so (6.60) is written as

1

(1 + h)a−1
=

Lh

M/K
, (6.61)
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6. Generalised Power Law

substituting â
.
= 2.175316, L̂

.
= 16.35075, M = 15,400 and K = 113, the esti-

mation of the h-index in the EJP data is given by ĥ
.
= 22.754. Compared to the

estimated h-index from the integer partition model (25.19399), the estimation

from the GPL model is the closer to the real average h-index 17.52.

6.4.4 AMS data

The AMS data (see Section 2.2, E) comprises K = 3,089 authors, M = 316,361

papers, and N = 12,351,608 citations, including M0 = 101,576 papers with zero

citations (i.e., 32.11%). Figure 6.5 depicts the results of fitting the GPL to the

AMS data; using the OLS the estimates are â
.
= 2.225705 and L̂

.
= 18.04318.

Similarly to the EJP data set, a big percentage of zero citations suggests that

the count m0 may be an outlier worth omitting from fitting. This has been

confirmed by trying both fits, with and without M0. Indeed, as shown in Figure

6.5 (left), the value j = 0 appears to be outlier off the GPL fit, with the rest of

the data being fitted very well. The GPL fitted the AMS data accurately around

1 ≤ x ≤ 10,000. However, as seen in the right panel of Figure 6.5, the tail of the

AMS data exhibits a faster decay than the tail of the fitted GPL.
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Figure 6.5: The GPL model (red) fitted to the AMS data (black), with the esti-

mated parameters â
.
= 2.225705 and L̂

.
= 18.04318. The plots depict frequencies

(left panel) and complementary cumulative frequencies (right panel), shown in

log-log coordinates.
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6.4.5 GPL fitting lessons

As a summary from the GPL fitting to various data sets reported above, some

conclusions are as follows. For the data sets that manifest a relatively flat (linear)

decay at a smaller range of count values, the GPL model works extremely well by

capturing a transition to a power decay range and thus extending to a considerable

bulk of the data, if not the entire data set (like with the EJP data). A remarkable

additional benefit of the GPL model (e.g., evidenced in the EJP and AMS cases)

is that it reveals the zero-inflated feature of the data, which can be meaningfully

interpreted (e.g., as an excessive proportion of papers that acquire no citations).

In some cases, such as the Lotka data, no separate modelling if the initial range

is needed, since the bulk of the data including the initial range is successfully

modelled by the non-truncated power law. On the other hand, the GPL cannot

model non-power tails for larger values of j (e.g., for the AMS data set), which

suggests that different models should be used, such as the GIGP model (with a

power-geometric decay) or a stretched exponential model advocated by Laherrere

& Sornette (1998). It should be mentioned though that the GPL model is a lot

more straightforward to fit by having a much simpler analytic expression with just

two parameters, whereas the GIGP model is expressed via the non-elementary

Bessel function, and moreover, some of its three parameters often need to be

predefined a priori (Sichel, 1985).

However, instead of treating each range of the data separately by a specially

selected model each, we argue using a successful example of the “sewing” GPL

that a synthetic model combining the GPL with the stretched exponential model

via a functional form resembling (6.1), would be the most flexible fitting tool,

allowing to capture both transitions, from the initial “flat” domain to the power

law and then to the stretched exponential one. It would be interesting to elaborate

this idea in our future research.

In conclusion of this section, let us summarise the new contributions due

to the GPL model developed in the present thesis as compared to the previous

applications of the hooked power law. The latter was initially proposed for fitting

to the web links data by Pennock et al. (2002); it was also useful in modelling

zero-inflated citation data (Shahmandi et al., 2020; Thelwall & Wilson, 2014).

119



6. Generalised Power Law

In our work, we have found the limit shape of the GPL model (Section 6.2.1)

and proved asymptotic normality of fluctuations around it (Section 6.2.3); these

results play an important part in the model diagnostics and fitting to the data.

Besides, we have provided a conceptual motivation of the GPL model as a mixed

geometric distribution with a beta mixing density (Section 6.1.3). Incidentally,

the GPL model was instrumental in the discovery of a zero-count “outlier” in the

EJP and AMS data sets (Sections 6.4.3 and 6.4.4).
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Chapter 7

Modelling Temporal Dynamics of

Citations

This chapter begins with an exploratory data analysis of temporal citation data

and applies survival analysis to analyse the time of the first citation of papers

after their publication. The chapter then proceeds to study the time evolution of

citations using the Hawkes point process.

7.1 Exploratory Data Analysis

The time evolution of citations has always been a popular topic in scientometric

research (see Egghe & Rao, 2001; Egghe et al., 1992; Wang et al., 2013, etc.).

Note that in our analysis of the GIGP model in Chapter 5, we confined ourselves

to the case where the GIGP parameters are fixed constants; however, in the

original paper by Sichel (1985) an attempt was made to address the temporal

aspect by allowing the parameters to be time-dependent. It would be interesting

to pursue further research in this direction by looking into the possible time

evolution of the GIGP scaling coefficients leading to the limit shape. In a related

development, there has been research on growing Young diagrams (see Eriksson

& Sjöstrand, 2012; Krapivsky, 2021). In principle, these results may be useful in

describing the time evolution of citations, but we did not pursue this direction in

the thesis, given a poor performance of the integer partition model evidenced by

our experiments with the EJP citation data.
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The present chapter utilises an extended EJP data set (see Section 2.2, D′).

The publication year of each paper is designated as Year A = 0.

The get_article_cite_history command in the scholar package of R (Yu

et al., 2016) allows for the retrieval of dynamic citation data from Google Scholar,

given that the publication ID is known. The corresponding ID can be obtained

through the get_publications command within the same R package. Never-

theless, despite this option, we find that accessing the dynamic data from WoS is

a more convenient and efficient method. WoS provides a user-friendly interface

that allows for easy access to yearly citation records of papers. The citation data

is displayed publicly and presented in numerical form upon clicking the citations

record of each paper. In contrast, Google Scholar only presents the historical to-

tal citation records of authors in histograms, necessitating web scraping to obtain

precise citation history data for individual publications.

Figure 7.1 depicts the accumulation of citations over time. The left panel

displays the citations of 100 papers that have experienced growth in citations.The

selection of 100 papers was made randomly from a data set of 3,951 papers using

the R command sample.int(3591,100); this was done to improve clarity, as it

is more comprehensible than including all 3,951 papers. The plot reveals that

the citations of different papers are distributed broadly. The right panel displays

citations for one of these randomly selected papers. This plot reveals that a

paper may take several years to become recognised and accumulate citations. To

investigate this observation further, Figure 7.2 presents a histogram showing the

distribution of the number of years before a paper receives its first citation.

The distribution of citations over time after publication is a topic of interest

in our investigation. Figure 7.3 displays histograms of the total citations received

by papers at one year, five years, ten years, fifteen years, twenty years, and

twenty-five years after publication. Generally, these plots exhibit a similar right-

skewed, long-tail curve shape, with the curve shifting to the right as the years

progress. Moreover, the peak of these histograms is consistently not at 0. Note

that we only consider the publication year, ignoring the publication month. This

data limitation implies that even papers published in January and December of

the same year are grouped. However, as time passes, the month of publication

becomes less critical, thus rendering this limitation insignificant.
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Figure 7.1: Plots illustrating accumulation of citations over time for a set of ran-

domly chosen papers from extended EJP data, with the year axis defined relative

to the year of publication (i.e., year 0 corresponds to the year of publication).

The left panel displays the citation counts for 100 randomly selected papers, with

each line representing an individual paper. The right panel shows the citation

growth of a single randomly chosen paper over time since publication.
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Figure 7.2: Histogram of the distribution of years before a paper receives its first

citation after publication.

The number of papers for collecting citations varies due to differing publication

years. Specifically, papers published one year prior to the data collection possess

a citation record of only two years. However, to analyse citations a decade after

publication, a minimum of eleven years of citation records are necessary. Conse-

quently, the amount of data available for citation analysis after ten years is less

than after one year. This explains the greater amount of noise present in the
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Figure 7.3: Histograms of citations after 1, 5, 10, 15, 20 and 25 years since

publication. Note that the noise in the histograms increases in later panels due

to the smaller sample sizes resulting from fewer papers having longer records of

citations.

histograms displayed in the latter panel of Figure 7.3. Specifically, the numbers

of papers available for citation analysis after one, five, ten, fifteen, twenty, and

twenty-five years are 3,475, 2,613, 1,676, 953, 569, and 304, respectively.

The scatter plot presented in Figure 7.4 displays the relationship between
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Figure 7.4: Scatter plot of citations received in the first 5 years since publication

versus those in the next 5 years. The red line fitted using linear regression has a

slope of 1.1189.

the citations accumulated in the first five years and in the next five years after

publication. The plot consists of 1,676 papers published at least ten years ago

and for which citation data is available for both the fifth and tenth year post-

publication. By applying a linear regression on these data, we obtained the

slope 1.1189, which indicates that in the following five years, these papers receive

citations slightly more than in the first five years. The 95% confidence interval

to regression coefficient of 1.1189 is (1.0865, 1.1513). Although there is a general

trend, in that papers receiving more citations in the first five years also receive

more citations in the next five years, this relationship does not necessarily hold

for all papers. It is important to note that citations received in the same year

of publication have been excluded to ensure that both five-year periods have the

same length of time.

Figure 7.5 provides further insights into the data set by displaying the mean

and median of citations over time. As seen in these plots in Figure 7.5, there

is a general upward trend in both the mean and median of citations with minor

fluctuations at the beginning. However, towards the end of the time period, there

are larger fluctuations in the data, which could be attributed to the reduced

number of papers with available citation records for longer time periods. The

125



7. Modelling Temporal Dynamics of Citations

0 10 20 30 40 50

0
10

20
30

40

Year

M
ea

n 
C

ita
tio

ns

 

 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ra

ct
io

n 
of

 P
ap

er
s

0 10 20 30 40 50

0
10

20
30

40
50

Year

M
ed

ia
n 

C
ita

tio
ns

Figure 7.5: Statistics of citations received by papers published over the years. The

left panel shows the mean of citations changing by years, represented by a black

solid line, along with the fraction of the number of papers published corresponding

years ago, denoted by a blue dashed line. The right panel illustrates the median

changing by years, represented by a black solid line, along with the 25% and 75%

percentiles represented by red lines.

fraction is one for year zero, as all papers have data for their year of publication.

As noted in the discussion of Figure 7.1, papers often require some time before

being discovered and cited. Figure 7.2 examines the distribution of the time it

takes for a paper to receive its first citation after publication. As shown in the

histogram, the most common scenario is for papers to receive their first citation

after one year of publication.

One interesting observation from the data set is that the paper by Fill (1988)

took 25 years to receive its first (self-)citation in 2013, followed by only one further

citation in 2018 (https://mathscinet-ams-org.eu1.proxy.openathens.net/

mathscinet/search/publications.html?refcit=958208&loc=refcit). This

observation highlights the fact that some papers may take a considerable amount

of time to be discovered and cited, and that self-citations can also play a role in

the citation patterns of a given paper.

A related phenomenon known in bibliometrics as the “sleeping beauty” is

where a paper may not generate any citations for a very long time, but then sud-

denly it is noticed by the research community and then starts receiving citations

(Ke et al., 2015). One of the well-known examples is with a French mathemati-

cian Paul Painlevé who discovered in the 1900s (Painlevé, 1902) a classification
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of solutions to second-order nonlinear differential equations in the complex plane,

the so-called Painlevé transcendents, but mathematicians and physicists only ap-

preciated this work after more than 70 years (McCoy et al., 1977).

Figure 7.6 provides a more detailed view of the citation record for a subset

of papers. The left panel of the figure illustrates the citations received by 100

randomly selected papers each year, with each line representing a single paper.

The red line depicts the mean of the annual citations received by these papers.

The right panel of the figure displays the citations received by a single paper each

year. Notably, Figure 7.6 presents the citations received by papers on an annual

basis, in contrast to Figure 7.1 which shows the accumulated citations over time.
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Figure 7.6: Annual citation records for a set of papers. The left panel displays

the annual citation count for 100 randomly selected papers, with each line repre-

senting a single paper and the red line indicating the average number of annual

citations. In the right panel, the annual citation record of a single randomly

chosen paper is presented. It is worth noting that unlike other figures that show

accumulated citations, this figure shows the citations received every year.

We looked for a typical period without citations to define the “death” of a

paper. Figure 7.7 shows the distribution of gap years between two citations. Even

though the largest gap is 25 years in this data set, we can define the end point

after 25 years with zero citations; it is not necessarily true in other data sets.
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Figure 7.7: Histogram of years in between two citations. Note that this is not

the same as the gaps between publications to the first citation shown in Figure

7.2.

7.2 Using Survival Analysis

7.2.1 Motivation

In this section, we use survival analysis to model the time until the first citation

of a paper (interpreted as “death”, or end event). Out of all the papers in our

data set, 90.2% have been cited before 2022. However, for the remaining papers,

the timing of their potential future citations is unknown, which means they are

treated as censored. To address this issue, we conduct a study focusing on papers

published between 1900 to 2022, and investigate their first citation. Papers that

have yet to receive a first citation are treated as “surviving” and the first citation

of a paper as interpreted as an “end event”. Papers that had already received

their first citation before 1900 are excluded from our study (as left-censored).

Survival analysis is a set of statistical techniques commonly used to model

time-to-event data. In classic survival analysis, it is often encountered that some

individuals under study do not experience the event of interest before the end

of the observation, or withdraw from the study for unrelated reasons. As a

result, the exact time of death is not known for such individuals, which leads to

incompleteness of information. This is known as censoring. A common type of

censoring in survival analysis is right censoring, which occurs when the observed

time for an individual is less than their actual time to the event of interest (Collett,
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2015).

There are seven different situations in our data that can result in censoring.

Specifically, a paper is considered censored if the end event (i.e., the first citation)

does not occur during the study period.

1. The paper was published and cited before 1900 but not since 1900 until

2022. Thus, the event of interest happened before the beginning of the

study, which is an example of left censoring. This thesis has no such a case

since the WoS only records data from 1900.

2. The paper was published before 1900 and cited after 1900 but before 2022.

We treated these papers as if they were published in 1900, since the obser-

vation started in 1900.

3. The paper was published before 1900 and not cited until the end of the

study in 2022. In this case, the paper is right-censored. Similarly as for

Type 2, we assumed these papers were published in 1900.

4. The paper was published in 1900 and received a citation during the study,

but the end of study coincided with the time of citation. This is a non-

censored observation.

5. The paper was published in 1900 and did not receive citations until the end

of the study. Such a paper is right-censored.

6. The event occurred during the study as the paper was published after 1900

and cited before 2022.

7. The paper was published after 1900 and before 2022, but not cited until

the end of the study. In this case, the paper is right-censored.

Figure 7.8 illustrates various survival histories of first citations, including all

seven aforementioned scenarios.

In what follows, we treat the duration of time elapsed before a paper receives

its first citation as a survival time. Hence, the data comprising such times for a

set of papers may be studied using statistical survival analysis.
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1900 2022

Start of Study End of Study

Published
First Citation
Censored

Figure 7.8: Different survival histories with censoring. Here, “death” is inter-

preted as a first citation after publication of the paper.

7.2.2 Basic concepts: survival function and hazard rate

Assume that papers receive their citations independently of one another. Let T

denote the time when a paper receives its first citation after publication. This

is interpreted as “death” and the duration from 0 to T as the “survival time”.

Assume that the random survival time T1, T2, . . . have the same distribution as T .

Suppose that the random variable T has continuous distribution function with

the probability density f(t),

F (t) := P(T < t) =

∫ t

0

f(u) du (t ≥ 0). (7.1)

The survival function is then defined as

S(t) := P(T ≥ t) = 1− F (t) (t ≥ 0). (7.2)

Note that S(0) = P(T ≥ 0) = 1, since T ≥ 0. If “death” is a certain event

(i.e., it occurs with probability 1, sooner or later), then S(∞) = limt→∞ S(t) = 0.

However, if this is not the case (e.g., with a first citation which may never occur)

then S(∞) > 0.
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The mean survival time is given by

E(T ) =

∫ ∞
0

tf(t) dt =

∫ ∞
0

S(t) dt, (7.3)

where the second formula is obtained by integration by parts. The median survival

time µ is defined by the property P(T < µ) = P(T ≥ µ), that is, 1−S(µ) = S(µ).

Hence, µ is the root of the equation

S(µ) = 0.5. (7.4)

The hazard function h(t) (also called hazard rate) is defined as the conditional

probability of death at time t,

h(t) :=
P(T ∈ [t, t+ dt) |T ≥ t)

dt
. (7.5)

Here, dt is an infinitely small time increment, so the expression on the right-hand

side should be understood as the limit as dt→ 0.

Expressing the conditional probability in definition (7.5), we have

P(t ≤ T < t+ dt)

P(T ≥ t) dt
=
S(t)− S(t+ dt)

S(t) dt
=
−S ′(t) dt

S(t) dt
.

Recalling that S ′(t) = −f(t), this gives an explicit formula for the hazard rate,

h(t) = −S
′(t)

S(t)
=
f(t)

S(t)
(t ≥ 0). (7.6)

This formula can be rewritten in a more intuitive way as

h(t) dt = S(t) · f(t) dt,

where the term S(t) on the right represents survival up to t and the second term

f(t) dt stands for instantaneous death thereafter.

Formula (7.6) can be viewed as a differential equation for y = S(t). Note that

h(t) = −S
′(t)

S(t)
= − d

dt

(
logS(t)

)
. (7.7)

Integrating (7.7) and using the initial condition S(0) = 1, we obtain

logS(t) = −
∫ t

0

h(u) du = −H(t). (7.8)
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where H(t) is the cumulative (integrated) hazard function,

H(t) =

∫ t

0

h(u) du. (7.9)

Thus, the survival function is uniquely determined by the hazard function ac-

cording to the formula

S(t) = exp

(
−
∫ t

0

h(u) du

)
= e−H(t) (t ≥ 0). (7.10)

7.2.3 Kaplan–Meier survival estimator

Consider a group of n subjects with a recorded survival time t1, t2, . . . , tn. Among

these time points, there are m ≤ n cases of death, with the associated times

arranged in ascending order denoted by t(1), t(2), . . . , t(m), where t(0) := 0 and

tm+1 := ∞. For i = 0, 1, . . . ,m, let ni denote the number of subjects alive just

before t(i), di denote the number of death at time t(i), and ci denote the number of

censored subjects at or after t(i) but before t(i+1). It follows that ni+1 = ni−ci−di.
The probability of death during each interval [t(i), t(i+1)) is estimated by

q̂i =
di
ni
,

and the probability of survival is estimated by

p̂i = 1− q̂i =
ni − di
ni

.

Note that the censored subjects, denoted by ci, are accounted for in the total

number of subjects at risk ni (just before t(i)), so they are exposed to hazard at

the time of death t(i). To prevent ambiguity, if a censored survival time coincides

with the death time t(i), it is presumed that death happens before any censored

times, with the latter occurring immediately thereafter.

Then a product-type of estimation for the survival function, called the

Kaplan–Meier (KM) estimator, is given by

Ŝ(t) =
k∏
i=0

ni − di
ni

(t(k) ≤ t < t(k+1)). (7.11)
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Note that Ŝ(t) = 1 for 0 ≤ t < t(1), since d0 = 0. In the particular case with no

censoring (i.e., all ci = 0), we have ni+1 = ni − di and the Kaplan–Meier formula

(7.11) is reduced to the usual empirical distribution function estimator,

Ŝ(t) =
nk+1

n
(t(k) ≤ t < t(k+1)).

The fundamental formula (7.11) can be intuitively justified as follows. Denote

Ai := {T > t(i)}(i = 0, 1, . . . ,m), then

P(Ai|Ai−1) ≈ 1− di
ni

=
ni − di
ni

. (7.12)

Then, viewing the survival experience sequentially, The probability of event Ak

can be represented as a product of conditional probabilities accounting for in-

creasing history,

P(Ak) = P(Ak|Ak−1)× P(Ak−1)

= P(Ak|Ak−1)× P(Ak−1|Ak−2)× P(Ak−2)

= · · · = P(Ak|Ak−1)× P(Ak−1|Ak−2)× · · · × P(A1|A0)× P(A0). (7.13)

Noting that P(A0) = 1 and using the estimate (7.12), this product is approxi-

mated as

P(Ak) = S(t(k)) ≈
k∏
i=1

ni − di
ni

, (7.14)

which leads to the Kaplan–Meier product estimator (7.11).

The KM survival estimator can be calculated using command survfit under

survival library in R (Therneau, 2022).

The variance of the Kaplan-Meier estimator is given by Greenwood’s formula:

Var{Ŝ(t)} ≈ {Ŝ(t)}2

k∑
i=0

di
ni(ni − di)

, t(k) ≤ t < t(k+1) (7.15)

7.2.4 Comparison of groups and the Cox proportional

hazards model

There is often a need to compare various survival data sets, e.g. to determine if

different groups of data are statistically similar (i.e. belong to the same general
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population) or there are significant differences. One commonly used method is

log-rank test. Suppose we want to test the hypothesis of homogeneity of two

groups, that is, that survival times observed in groups 1 and 2 have the same

theoretical survival functions,

H0 : S1(t) ≡ S2(t) (t ≥ 0).

Let (t(i)) be a pooled set of death times in the union of the two groups, and denote

by ni and di the corresponding pooled numbers at risk and numbers of death at

time t(i). Also, denote by n1i and n2i the individual numbers at risks, and by

d1i and d2i the individual numbers of deaths in the groups. Note that under the

null hypothesis H0 the probability of death at time t(i) can be estimated from the

pooled data as p̂i = di/ni, while the expected shares of deaths in the groups will

be proportional to p̂i and their numbers at risk, n1i and n2i, respectively.

The log-rank test is based on the chi-squared type statistic

W :=
(O1 − E1)2

E1

+
(O2 − E2)2

E2

, (7.16)

where O1 and O2 are the observed numbers of deaths in groups 1 and 2,

O1 =
m∑
i=1

d1i, O2 =
m∑
i=1

d2i,

and E1 and E2 are the expected numbers of deaths in the groups under the null

hypothesis H0,

E1 =
m∑
i=1

n1idi
ni

, E2 =
m∑
i=1

n2idi
ni

.

It can be shown that W has approximately a chi-squared distribution χ2
1 with one

degree of freedom. Hence, at a significance level α, we reject the null hypothesis

H0 if WL > k1−α, where k1−α is the (1− α)-quantile of χ2
1.

A more flexible approach, which allows to assess the impact of various co-

variates on survival, is based on the Cox proportional hazards model. It is based

on the idea to model the hazard by separating the impact of explanatory vari-

ables from the time dependence, represented by a baseline hazard rate. More

134



7.2 Using Survival Analysis

precisely, the corresponding modelling assumption is that the hazard rate of the

i-th observed individual (i = 1, . . . , n) may be represented in the form

hi(t) = eβ1xi1+···+βpxiph0(t) (t ≥ 0), (7.17)

where the quantity β1xi1 + · · ·+ βpxip is called the risk score (Cox, 1972). Note

that under this model, the hazard ratio between any two individuals is a constant

not depending on time,

hi(t)

hj(t)
= exp

(
β1

(
xi1 − xj1

)
+ · · ·+ βp

(
xip − xjp

))
(t ≥ 0).

This explains the term “proportional hazards”. Note that no modelling assump-

tions are made about the baseline hazard rate h0(t) in (7.17), which is why the

Cox model is often referred to as semi-parametric, that is, half-parametric due

to the regression part in (7.17) and half-non-parametric due to the unspecified

function h0(t).

The regression parameters βk can be estimated by maximising a properly con-

structed partial likelihood (see more details in Collett (2015)). The R command

coxph can be used to fit the Cox proportional hazards model. It also returns the

estimated standard errors of the estimates β̂k and the corresponding p-values for

testing the hypotheses H0k : βk = 0, that is, that the corresponding covariate xk

is not included in the model, which is just another way to say that this covariate

is not influential and, therefore, may be omitted from the model.

The Cox proportional hazards model can be used to compare two groups;

to this end, let the variable x be defined so that the values x = 0 and x = 1

correspond to being in group 1 or group 2, respectively. Here, formula (7.17)

specialises as follows,

hi(t) = eβxih0(t) (t ≥ 0), (7.18)

where xi = 0 or xi = 1 depending on whether the i-th individual is in group 1 or

group 2, respectively. Thus, the Cox framework provides a useful regression-based

alternative to a non-parametric log-rank test.
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7.2.5 Application to first citation data

The survival analysis is applied to the extended EJP data (see Section 2.2 D’) in

this section. Set the publication year of papers as year 1. Figure 7.9 shows the

estimated survival function plot in terms of the time to first citations of papers

from the extended EJP data, i.e., the probability of not cited after publications

the corresponding year. The median survival time of receiving the first citation

is two years.
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Figure 7.9: Estimated survival plot for the extended EJP data using the Kaplan–

Meier estimator. The solid black line is the probability of not having any citations

yet in the corresponding year.

Suitable covariates may be included in the survival model and assessed in

terms of their importance. In the context of scientific production, Nane (2015)

considered some features as covariates: collaboration type (international or na-

tional), document type, the number of authors, and the field of research. Unfor-

tunately, due to limitations of the Web of Science, only the number of authors

is available and, therefore, can be used as a covariate. In addition, the length of

the paper is included as a covariate.

Using our data set, we experimented with considering the number of collabo-

rators as one of the covariates. With the aid of Excel, the number of authors of

a paper is counted by counting the semicolons and plus one in the cell of the au-

thors, i.e., using command = Len(A1) - Len(Substitute(A1, ";", "")) + 1.
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The left panel of Figure 7.10 shows the distribution of collaborators of a paper

in a histogram. Papers with two authors are the majority. The mean number of

collaborators in this data is 2.93, and the median is 2.
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Figure 7.10: Histograms of the number of collaborators (left panel) and the num-

ber of pages (right panel) of a paper.

One of these papers has 2,333 collaborators, which is rather exceptional for

this data set, so we excluded it from our analysis. This paper is based on an AT-

LAS collaboration (see https://en.wikipedia.org/wiki/ATLAS_experiment#

ATLAS_detector), where ATLAS is an abbreviation of A Toroidal LHC Appara-

tus.

It is worth noting that publications in high-energy physics, particle physics,

and cosmology often have huge author lists. This is because such work may have

been done on big installations such as the Large Hadron Collider (LHC), in which

case the publication would include the entire personnel involved in such work.

First, suppose that papers are divided into two categories according to the

number of authors. Specifically, single-authored papers are in one category, and

papers with collaboration (i.e., with more than one author) are in another cate-

gory. The left panel of Figure 7.11 shows the plot of the survival functions esti-

mated by the KM estimator of the extended EJP data in two different groups.

The single-authored papers have a higher survival probability, which means that

the single-authored papers have a lower probability of being cited earlier than

collaborative papers. In contrast, survival probability for collaborative papers is

lower than that for single-authored papers; this means that collaborative papers

tend to be cited earlier in this data set.
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To test the significance of differences statistically, we applied the log-rank test

using R; the observed statistic value is Wobs = 47.9, with the corresponding p-

value of 4×10−12 (based on a chi-squared distribution with one degree of freedom).

Hence, we strongly reject the null hypothesis, which means that these two groups

have a significant difference with regard to survival.

We also fitted the Cox proportional hazards model (7.18), with the estimated

regression coefficient β̂ = 0.34232. The corresponding null hypothesis H0 : β = 0

is strongly rejected with the p-value 9.869 × 10−13, which confirms the log-rank

test conclusion.

Similarly, we looked into survival differences with regard to the length of the

papers. The right panel of Figure 7.10 shows the histogram of the number of

pages of these publications. The mean paper length is 25.07, and the median is

22. In some journals, submitted manuscripts are required to be no more than 6

pages, hence in this section papers are classified into two groups in terms of their

length, long papers (longer than 6 pages) and short papers (6 pages or less). This

classification can be another covariate in the survival analysis. The middle panel

of Figure 7.11 shows the estimated survival plots of the extended EJP data for

these two categories. Perhaps unexpectedly, it appears that shorter papers have

higher chances of survival, which means that they have a lower chance of being

cited earlier as compared to longer papers in this data set.

Applying the log-rank test in R, we obtained the observed statistic value

Wobs = 78.4, with the p-value less than 2.2× 10−16 (based on the approximately

chi-squared distribution with one degree of freedom). Hence, the null hypothesis

is very strongly rejected, which means that long and short papers are significantly

different in terms of timing to first citation.

As a cross check, by fitting the Cox proportional hazards model (7.18) and

testing the null hypothesis H0 : β = 0, we obtained the p-value less than 2.2 ×
10−16, which confirms that the null H0 is strongly rejected and, therefore, these

two groups are significantly different.

Lastly, we look at survival probability differences when both covariates are

included, accounting for the paper length and collaboration, respectively. That

is, papers are now divided into four categories: (i) short single-authored, (ii) short

collaborative, (iii) long single-authored, and (iv) long collaborative. The result is
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shown in the right panel of Figure 7.11. Short single-authored papers have the

highest survival probability, followed by short collaborative papers, long single-

authored papers, and finally long collaborative papers. This means that long

collaborative papers have a higher chance to receive their first citation sooner, as

compared to the other three categories in this data set. In addition, short papers

and long papers have clear separation at the end in this plot. By applying the log-

rank test, we obtainWobs = 121, with the corresponding p-value less than 2×10−16

(based on a chi-squared distribution with 3 degree of freedom). Therefore, we

strongly reject the null hypothesis and these four groups are significantly different.

Cross checking by fitting the Cox proportional hazards model (7.18), we

strongly reject the null hypothesis β = 0 with obtained p-value less than

2.2× 10−16, which confirms that these four groups are different.
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Figure 7.11: Survival plots until first citation for papers categorised according

to different covariates. Left panel: single-authored (black) or collaborative (red).

Middle panel: short (at least six pages, black) or long (more than six pages,

red). Right panel: short single-authored (black), short collaborative (red), long

single-authored (blue), and long collaborative (green).

We conjecture that the above results may be explained by noting that the

more authors a paper has, the higher chance is there to disseminate the paper

to the public (e.g., in conferences and seminars). So it will be known by more

people, which may push the paper to be cited by others. On the other hand, our

findings about the impact of length of the paper could be explained by noting

that a longer paper has more content, so the perspectives for being cited are more

than with shorter papers. In the present thesis, these conjectures have not been

tested from the data, it is worth checking these points in the future.
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7. Modelling Temporal Dynamics of Citations

As a concluding comment, survival analysis conducted above could be im-

proved by inclusion of left-truncated papers instead of omitting them as in the

present study, but the analysis will become more complicated.

7.3 Citations as a Point Process

In this section, we consider dynamic citations as a point process. Point processes

are stochastic processes employed in modelling events that occur at irregular

intervals concerning either the temporal or spatial axis (Daley & Vere-Jones,

2003). Before generalising to the Hawkes process, simpler models of Poisson and

inhomogeneous Poisson processes are introduced.

Following Daley & Vere-Jones (2003), let (Ti) = (0 < T1 < T2 < . . . ) denote

the consecutive random times of occurrence of some events (such as “arrivals”).

It is assumed that there are no ties, so the next arrival time is strictly larger than

the previous one, Ti < Ti+1. Such point processes are called “simple”. Let Nt be

the accumulated number of arrivals over time interval [0, t],

Nt :=
∑
(Ti)

I{Ti≤t} (t ≥ 0). (7.19)

The counting random process (Nt) is piecewise constant, with unit jumps at the

arrival times Ti.

In practice, the data may include multiple items at each arrival (see Figure

7.12), which may be due to the problem setting (e.g., number of cars involved

in a traffic accident) or because of data aggregation (e.g., monthly or yearly

data). In such cases, one may use compound processes, where the number of

items νi in arrival Ti is assumed independent of Ti and modelled via a certain

distribution on top of the background point process (Ti), for example, geometric,

P(νi = k) = α (1− α)k−1, or conditional Poisson, P(νi = k) =
(
1− e−µ

)
µk e−µ/k!

(k = 1, 2, . . . ).

7.3.1 Poisson process

Let τi be a random “waiting” time between two consecutive arrivals at times Ti−1

and Ti (i = 1, 2, . . . ), where we set T0 = 0. Then the arrival times are expressed
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Figure 7.12: Cumulative number of citations Nt over time t with mock arriving

time T = (1, 3, 3, 4, 10). The jump points represent the instants of time when

new citations arrive.

as Tn =
∑n

i=1 τi. The random variables (τi) are also called inter-arrival times.

Definition 7.1. The point process (Ti) defined in (7.19) is called a (homogeneous)

Poisson process with intensity λ > 0 if inter-arrival times (τi) are mutually inde-

pendent and follow exponential distribution with parameter λ > 0, that is,

P(τi > t) = e−λt (t ≥ 0).

The probability density function of τ is given by

fτ (t) = λe−λt (t ≥ 0), (7.20)

with the expected value

E(τ) =

∫ ∞
0

tfτ (t) dt = λ

∫ ∞
0

t e−λt dt =
1

λ
. (7.21)

The Poisson process is memoryless, that is, the distribution of future inter-

arrival times does not depend on the earlier arrivals (i.e., past history of the

process). This is illustrated by calculating a conditional distribution of the re-

maining waiting time τ − s given that τ > s,

P(τ > t+ s |τ > s) =
P(τ > t+ s, τ > s)

P(τ > s)
=

P(τ > t+ s)

P(τ > s)

=
e−λ(t+s)

e−λs
= e−λt = P(τ > t). (7.22)
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7. Modelling Temporal Dynamics of Citations

Thus, P(τ > t + s |τ > s) = P(τ > t), which means that the previous waiting

of at least time s does not change the exponential distribution of the remaining

time, as if the waiting is renewed at time s.

A useful alternative description of the Poisson process is through the consid-

eration of possible jumps within an infinitely small amount of time dt, leading to

the following asymptotic formulas,
P(Nt+dt = n+ 1 |Nt = n) = λ dt+ o(dt),

P(Nt+dt = n |Nt = n) = 1− λ dt+ o(dt),

P(Nt+dt ≥ n+ 2 |Nt = n) = o(dt).

(7.23)

Thus, a jump by one unit occurs with probability proportional to time dt, with

intensity λ as the proportionality coefficient, with probability of making more

than one jump being of higher order of smallness, o(dt).

To obtain the likelihood, assume that over the time interval [0, t], we observed

Nt = N arrivals at times 0 = T0 ≤ T1 < T2 < · · · < TNt ≤ t. Then, using the

independence of the waiting times τi = Ti − Ti−1, the likelihood is given by

L(λ;N,T ) = λ e−λT1 × λ e−λ(T2−T1) × · · · × λ e−λ(TN−TN−1) × e−λ(t−TN ),

where the last factor accounts for no arrivals from TN till t. Simplifying, this

yields

L(λ;N,T ) = λN e−λt.

Hence, the log-likelihood ` = logL is

`(λ;N,T ) = N log λ− λt.

It is easy to find the maximum likelihood of λ,

`′(λ;N,T ) =
N

λ
− t = 0 ⇒ λ̂ =

N

t
.

Thus, the MLE λ̂ is given by the mean number of arrivals per unit time, which

is consistent with the meaning of λ as the arrival intensity.

The inhomogeneous Poisson process is defined similarly, but it allows the

intensity to be a (deterministic) function of time, λ = λ(t). The simple choice of
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7.3 Citations as a Point Process

the time-dependent intensity is to assume that it is piecewise constant between

some change-points (Gyarmati-Szabó et al., 2011).

The equations (7.23) are transformed accordingly,
P(Nt+dt = n+ 1 |Nt = n) = λ(t) dt+ o(dt),

P(Nt+dt = n |Nt = n) = 1− λ(t) dt+ o(dt),

P(Nt+dt ≥ n+ 2 |Nt = n) = o(dt).

(7.24)

Note that this process is also memoryless, since the intensity λ(t) does not depend

on the past history.

A more general class of point processes with memory can be defined using the

notion of conditional intensity,

λ(t |Ht) =
P
(
Nt+dt −Nt = 1

∣∣Ht

)
dt

, (7.25)

where Ht is the history of the process up to time t, which comprises all past arrival

times T1, T2, . . . , TNt . Accordingly, the equations (7.24) are further modified,
P(Nt+dt = n+ 1 |Nt = n,Ht) = λ(t|Ht) dt+ o(dt),

P(Nt+dt = n |Nt = n,Ht) = 1− λ(t|Ht) dt+ o(dt),

P(Nt+dt ≥ n+ 2 |Nt = n,Ht) = o(dt).

(7.26)

This general approach can be made more specific by defining the Hawkes process,

considered in the next section.

7.3.2 Hawkes process

The class of Hawkes processes was introduced by Hawkes (1971) with the aim

to capture the possible dependence on past event. The key idea is to model the

conditional intensity of the process as a linear combination of inputs from past

arrivals using a certain self-exciting kernel. Examples of practical applications

of the Hawkes processes are ubiquitous, including modelling of earthquake after-

shocks (Vere-Jones & Ozaki, 1982), social media activity (Rizoiu et al., 2018),

epidemic dynamics (Browning et al., 2021), and many more. The similarity of

the self-exciting property of the Hawkes processes with the scientometric prin-

ciple “success breeds success” makes the choice of this class of point processes

particularly attractive for modelling dynamic citation data.
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7. Modelling Temporal Dynamics of Citations

Definition 7.2. A point process is called a Hawkes process if the conditional

intensity function (7.25) is of the form

λ(t |Ht) = λ0(t) +
∑
Ti<t

k(t− Ti), (7.27)

where λ0(t) is a (deterministic) base intensity function and k(t) is the memory

kernel.

Remark 7.1. The kernel k(t) is usually assumed to be a non-increasing function,

which is motivated by the natural assumption that older events have a smaller

impact on future arrivals.

The interpretation of the kernel k(t) is that it accounts for earlier events at

times Ti < t, which influence the new arrivals through the updated intensity

λ(t |Ht) at t ≥ 0 (hence, the term “self-exitation”). When the kernel vanishes,

k(t) ≡ 0, the Hawkes process is reduced to an inhomogeneous Poisson process

with intensity λ0(t).

A popular choice of the kernel is an exponential function, which is given by

k(t) = ae−bt (t ≥ 0), (7.28)

where a ≥ 0, b > 0 and a < b. Another choice widely used in the literature is a

power-law kernel,

k(t) =
β

(t+ δ)α + 1
(t ≥ 0), (7.29)

where β ≥ 0, α, δ > 0 and β < αδα.

7.3.3 Hawkes process with multiple arrivals

As already mentioned at the beginning of Section 7.3, in practical applications

it is often the case that the data records are aggregated, which leads to ties

in the data. This occurs in our citation data set, as the numbers of collected

citations are reported on a monthly basis. On the other hand, multiple items at

arrival cannot be ignored: having more citations in the current month makes it

more likely that there will be further citations, thus enhancing the self-excitation

mechanism.
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7.3 Citations as a Point Process

To address this complication, we propose to understand the summation in

formula (7.27) as extending over all individual arrivals, with account of their

multiplicities. That is to say, if there are νi items arriving at time Ti, then the

conditional intensity is given by

λ(t |Ht) = λ0(t) +
∑
Ti<t

νi k(t− Ti). (7.30)

Note that a similar approach is used for discrete-time Hawkes processes (Browning

et al., 2021).
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Figure 7.13: Intensity plot of the Hawkes process on a mock example, correspond-

ing to Figure 7.12. The upper panel is with the exponential kernel (λ0 = 1, a = 1,

b = 1.1), and the lower panel is with the power-law kernel (λ0 = 1, α = 1, β = 1,

δ = 1.1).

For illustration, plots of intensity (7.30) with an exponential kernel (7.28)

and a power law kernel (7.29) are depicted in Figure 7.13. Given a mock arriving

time T = (1, 3, 3, 4, 10), for simplicity assuming that the background intensity λ0

is a constant. For an illustration (not fitting) Figure 7.13 depicted two different

intensity as a function of time with two exponential and power law kernel func-

tions given (7.28) and (7.29). The intensity function of these two examples are
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7. Modelling Temporal Dynamics of Citations

λ(t|Ht) = 1 +
∑

Ti<t
e−1.1t and λ(t|Ht) = 1 +

∑
Ti<t

1
(t+1.1)2

, respectively. At each

time Ti, intensity increase when a new event arrives. Then while waiting for the

next arrival, the intensity reduces in the exponential way (upper panel) or in a

power law way (the lower panel).

7.3.4 Maximum likelihood estimation

Consider events (arrivals) happening within the time interval [0, t], and let

0 ≤ T1 < T2 < · · · < TNt ≤ t be the corresponding arrival times. Considering

arrivals sequentially and using the decomposition into a product of conditional

probabilities accounting for increasing history (cf. (7.13)), the likelihood corre-

sponding to the observed value Nt = N and the data T = (T1, T2, . . . , TN) is

given by

L(θ;N,T ) = exp

(
−
∫ T1

0

λ(u |H0) du

)
λ(T1 |HT1)

× exp

(
−
∫ T2 |HT2

T1

λ(u |HT1) du

)
λ(T2 |HT2)

× · · · × exp

(
−
∫ TN

TN−1

λ(u |HTN−1
) du

)
λ(TN |HTN )

× exp

(
−
∫ t

TN

λ(u |HTN ) du

)
= exp

(
−
∫ t

0

λ(u |H0) du

) N∏
i=1

λ(Ti |HTi). (7.31)

Hence, the log-likelihood ` = logL is given by

`(θ;N,T ) = −
∫ t

0

λ(u |H0) du+
n∑
i=1

log λ(Ti |HTi). (7.32)

Substituting a particular functional form of the background intensity λ0(t)

(e.g., for simplicity assuming that it is constant, λ0(t) = λ) and using the para-

metric kernel (7.28) or (7.29), the log-likelihood (7.32) can be numerically max-

imised using the optim() function in R.

If the Hawkes model with multiple arrivals is required, with the corresponding

data (T ,ν) =
(
(Ti, νi)

)
(see Section 7.3.3), then the log-likelihood `(θ;N,T ,ν) is
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7.3 Citations as a Point Process

again given by formula (7.32) but with the conditional intensity λ(t |Ht) modified

according to formula (7.30).

7.3.5 Application to citation modelling

It is a natural idea to model citation arrivals as a point process. Set a month as

a time unit, and set the month the paper is published as 0. Suppose a paper is

published in January of a certain year, set this month T0 = 0. Then it received

its first single citation in February the same year, i.e., N1 = 1; two citations in

April, i.e., N3 = 3; one in May, i.e., N4 = 4; and one citation in November, i.e.,

N10 = 5. The arrivals of citations of this paper happened in months (1, 3, 3, 4, 10).

Figure 7.12 demonstrates citations Nt accumulated over time t in this example.

Using the same way of showing the number of citations N arrived at time t,

Figure 7.14 displays examples of citations accumulated by months. These three

plots used the same type of representation as in Figure 7.12; only the lines in

waiting for the arrival of new events are omitted to make the plot concise. Every

dot in these plots represents a citation. The left panel shows the citation growth

of a paper published in January 1983, which received 7 citations until February

2023. The middle panel shows the citation growth of a paper published in January

2013, which received 50 citations until February 2023. The right panel displays

a paper published in November 2005 that received 4295 citations until February

2023.
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Figure 7.14: Cumulative citation plots versus time for three papers, with the total

number of citations: 7 (left panel), 50 (middle panel), and 4,295 (right panel).
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7. Modelling Temporal Dynamics of Citations

The Hawkes processes were fitted to the actual citation arrivals data presented

in Figure 7.14. By setting the background intensity to the same function type

as the kernel, albeit with a distinct parameter. Specifically, the intensity used to

conform to the data for the exponential kernel is expressed as follows,

λ(t|Ht) = a′eb
′t +

∑
Ti<t

νiaeb(t−Ti). (7.33)

The intensity with the power law kernel and the power law background is set as

λ(t|Ht) =
β′

(t+ δ′)α′+1
+
∑
Ti<t

νi
β

(t− Ti + δ)α+1
. (7.34)

Figure 7.15 depicts the result of fitting the Hawkes processes to citation arrival

data with both exponential kernel and the power law kernel. Note that the dashed

lines after the end of the observation in these plots do not indicate predictions.
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Figure 7.15: Intensity plot of the Hawkes process fitted to citations of three

selected papers (cf. Figure 7.14). Blue lines are with exponential kernel function

and the red lines are with the power law function. Dashed vertical lines represent

termination of observations (February 2023), that is, months 480, 121, and 27,

respectively. Note that the right panel only shows the first 100 citations among

4,259 citations due to computation limitations.

148



Chapter 8

Conclusion

8.1 What This Thesis Has Accomplished

This thesis has presented our research into statistical modelling of count data,

which frequently occur in informetrics (including scientometrics and bibliomet-

rics) as well as in many other diverse fields. We have reviewed some of the

prominent existing models (such as the power law and GIGP models) through

the unifying approach based on the item production model. Despite the gen-

eral and transferable value of such an approach, this thesis has primarily focused

on the scientific production use case, comprising authors, their papers, and the

corresponding citations.

In our discussion of different models, where possible we have looked into their

plausible conceptual justification, exemplified by the principle “success breeds

success” for the power law and the mixing probability framework for the GIGP

and GPL models. On the other hand, data analysis helps to validate the statis-

tical model and, in particular, review its hypothetical mechanism. Specifically,

in the item production model we assumed that sources are independent and pro-

duce items with the same distribution, which is clearly a simplification of real

situations. Nevertheless, if the goodness-of-fit to real data is reasonable, then the

researcher may use the model with confidence; however, if the model does not fit

well, this signals that some of the assumptions may not be tenable or may even

help detect additional data features such as interpretable outliers (see Sections

6.4.3 and 6.4.4).
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Motivated by probabilistic combinatorics and theory of random integer parti-

tions, we looked at the production profiles known as Young diagrams, and their

possible scaling limits. Although the Young diagrams are essentially the comple-

mentary cumulative plots, focusing on the suitable scales provides useful insights

into the data structure, which can be used for modelling and estimation of the

production metrics such as h-index and g-index.

Our investigation has shown that, when fitting the power law and the integer

partition model to real-life count data, neither of them provide a good match in

the entire range of the data. This limitation has prompted us to propose the GPL

model by modifying the power law setting, which captures a transition from a

relatively flat behaviour at small counts to a power decay at the tail. Although

we subsequently discovered that the GPL model had been known in the literature

as a hooked power law (Thelwall & Wilson (2014); Shahmandi et al. (2020)), our

motivation and usage of the GPL were significantly different. Fitting the GPL

model to different data sets demonstrates that it performs well, often helping to

highlight zero-count frequencies as outliers (like in the EJP and the AMS data).

Compared to the GIGP model, the parameter estimation of the GPL model is

quite straightforward and does not require complicated calculations, whereas the

GIGP model, which is is expressed via the non-elementary Bessel function, leads

to significant computational difficulties, so much so that in practice some of the

parameters are often predefined a priori (Sichel, 1985).

Furthermore, we have identified the limit shapes in the power law, GIGP, and

GPL models under appropriate scaling and proved pointwise convergence of the

corresponding Young diagrams. We have also introduced a composite model of

the item production model in terms of the multiple batteries of sources producing

items and provided the corresponding method of finding the limit shape of the

average of the composite model and the way of proving its convergence. This is

useful for estimating the average production metrics in a composite model.

To compare different models through real data, we have used the web scraping

technique to collect citations of authors’ papers from Google Scholar and created

the EJP and the AMS data sets. These data sets and other existing data sets from

the literature have enabled us to evaluate the performance of different models.
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8.2 Specific Contributions

In terms of the production metrics, we have proposed the h1-index, which

combines the properties of the h-index and the g-index and takes into account ci-

tations equal to or greater than h1, while also including all citations from the top-

cited papers. Previous research by Yong (2014) estimated the h-index through

the limit shape of the integer partitions. In this thesis, we have presented an ex-

tension of this approach that provides estimations for the h-index, g-index, and

the h1-index using the limit shape in general. Additionally, numerical examples

are provided using the limit shape of the integer partitions model.

In the study of temporal citation data, exploratory data analysis was con-

ducted and survival analysis was applied to investigate the time to the first ci-

tation after publication. Various covariates were considered to compare the time

to citations after publication in different groups. Additionally, dynamic citations

were examined as a point process. Motivated by the phenomenon of “success

breeds success” in citation patterns, the Hawkes process was employed to model

the citation data due to its self-exciting properties and intensity dependence on

the history of citations.

8.2 Specific Contributions

In this section, we summarise the main contributions of the author provided

in this thesis (with according references to sections), breaking them down for

convenience into the three blocks: (i) methodology, (ii) technical results, and (iii)

data collection and analysis.

8.2.1 Methodology

(a) The item production model was presented systematically with a view on

applications in informetrics, which included a composite item production

model with multiple sources applicable to the authors-papers-citations (APC)

relationship (Sections 3.1 and 3.5).

(b) A unified review of some of the existing models (such as power law and

GIGP), as well as data sets, was pursued on the basis of the item production

model (Sections 4.1–4.4, 5.1 and 5.5).
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(c) Motivated by theory of random integer partitions, we developed and advo-

cated the use of the approach based on finding the limit shape based on a

selected model and subject to finding suitable scaling parameters (Sections

3.2, 5.2 and 6.2).

(d) Motivated by the h-index and the g-index, the h1 index was proposed (Section

3.4.3).

(e) The GPL model was proposed by modifying the power law setting (Chapter

6).

(f) Survival analysis was employed to analyse the time-dependent first citation

data, grouping papers into different categories based on covariates and com-

paring the discrepancy in the time taken to receive the first citation after

publication (Section 7.2).

(g) Similar to the “success breeds success”, the Hawkes processes exhibit a pos-

itive dependence on past events. Adapting the self-exciting property, the

Hawkes processes are fitted to the time-dependent citation data. In addi-

tion, a version of kernels that allows multiple arrivals on continuous time was

provided (Section 7.3).

8.2.2 Technical results

(a) The relation h ≤ h1 ≤ g was proved (Section 3.4.3).

(b) We provided a model-based estimator for the h-index, g-index and the h1-

index (Section 3.6).

(c) The limit shape of the power law model was found. observing that it is

independent of any scaling due to the inherent scale-free nature of the model

(Section 3.3).

(d) The limit shape of the GIGP and the GPL model were found with appropriate

scalings and the convergence of the limit shape is proved as well as the random

fluctuations of random Young diagrams (Sections 5.2, 5.3 and 6.2).
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8.2.3 Data collection and analysis

(a) We fitted a regression model to verify the conjecture by Hirsch that the h-

index has a square root relation with the number of citations. The regression

approach was also applied to the g-index (Section 2.4).

(b) The EJP data and the AMS data were collected using the web scraping

technique (data sets D & E in Section 2.2 and Appendix A).

(c) By a systematic analysis of some classical data sets, we discovered some

interesting features of the data, such as a departure from the power law fit in

Lotka’s data for moderate tails, with superiority of the GIGP model (Sections

4.4.1 and 5.5.1).

(d) Analysis based on the GIGP limit shape revealed significant deviations within

a certain range of frequencies in Chen’s data (Section 7.2).

(e) Through the GPL model fit, an inflated zero count (outlier) was identified in

the EJP data, as well as in the the AMS data (Sections 6.4.3 and 6.4.4).

8.3 Future Work

In Lotka’s data, the smaller range of the data is the power law and the tail behave

differently, which motivated “sewing” other models, such as include the stretched

exponential (SE) model. The stretched exponential density is given by

f(x) =
γ xγ−1

xγ0
e−(x/x0)γ (x ≥ x0), (8.1)

where 0 < γ < 1 and x0 are two parameters of the SE distribution (Laherrere &

Sornette, 1998). Combining the stretched exponential model and the power law

gives the frequency

fj = Cj−a1
ja2−1

La2
e−(j/L)a2 , (8.2)

which can be simplified to

fj = Cj−a e−(j/L)γ , (8.3)
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where C is a normalisation constant, a is the parameter for the power law, and γ

and L are the parameters of the (scaled) stretched exponential part. We expect

that the PL-SE model on CCDF plot is thinner than the GPL and PL but fatter

than GIGP and pure exponential distribution. One may also try to combine the

GPL model and SE model if the complementary cumulative frequency plot of

data starts with flatter reduction and then the middle part is a straight line, then

gets faster decay at the tail.

In survival analysis on citations, if data is accessible, it is worth considering

covariates beyond the number of authors and the length of papers. Additional

covariates, such as the gender of the (corresponding) author, the journal of publi-

cation, or the geographical region, may be considered to look at whether citations

significantly differ with respect to these covariates. Some covariates, such as gen-

der, may require manual detection, as the relevant information is not always

readily apparent in the data. Adding interaction terms would also be interesting.

Aligned with the GIGP model, it would be worthwhile to explore the incorpo-

ration of time dependence within the GPL model. By retaining the limit shape

and allowing for temporal variation, the model would be capable of capturing the

evolution of the data over time.
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Appendix A

Web Scraping: Collecting Profile

IDs from Google Scholar

Provided we know the Google Scholar profile ID of a given author, we can use the

help of the R package scholar to find the number of citations for each of their

papers. However, there is no list of profile IDs of authors in R, nor any other

resources. So, we need to collect a large number of Google Scholar profile IDs.

Our initial attempt to collect Google Scholar profile IDs involved doing so

manually. This entailed recording names of an author from the Electronic Journal

of Probability, typing the name into Google Scholar and finally cutting the ID

from the web link of the page for this author. Repeating the above process one by

one for each author became very time consuming, and so we decided instead to use

a web scraping technique in Python and store collections of these IDs. To apply

the above mentioned web scraping technique, we needed an input list of names of

authors from the same academic field. One may find such a file, for example, by

obtaining the records of members of the American Mathematical Society (AMS)

from the AMS website. This need not be straightforward — for example, the

AMS membership lists are separated by country, and only members of the AMS

can see and download the file. Fortunately, due to Dr Leonid Bogachev’s AMS

membership, we were able to obtain such a list in this instance.

In what follows, we outline the sequence of steps for collecting Google Scholar

IDs in Python.
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1. First, open the page of the list of authors on Google Scholar; here is

the link to the page: https://scholar.google.com/citations?view_

op=search_authors&mauthors={name}&hl=en&oi=ao. The name author

should be in place of {name}. As an example, the name of the author of

this thesis Ruheyan Nuermaimaiti is used, the web page we want to visit

is https://scholar.google.com/citations?view_op=search_authors&

mauthors={RuheyanNuermaimaiti}&hl=en&oi=ao. The webpage can be

visited by Python using the requests.get command in requests.get

package.

2. To find the resources we are interested in, right-click the page we want to

scrape the data from and click “inspect” then we will see a window show-

ing the code of this page. With moving the indicator, the corresponding

section of this page is highlighted. Then one can locate the place they

are interested in and observe the corresponding code. In our case, we are

interested in the Google Scholar profile IDs of authors, it is 12 alphanu-

meric characters in the web page source listed after “user=”. For exam-

ple, {<a href="/citations?hl=en&amp;user=hHkPQ4cAAAAJ"> ...</a>,

where “hHkPQ4cAAAAJ” is what we need. This step can be achieved by

the Python command split(‘user=’) to locate the Google Scholar ID

and choose the first 12 characters after “user=” to get the 12 alphanumeric

characters.

3. Save the list of Google Scholar IDs in a suitable file, such as a ∗.csv file.

Getting IDs of authors using this web scraping technique significantly reduced

the time it took to collect citation data. Ideally, one would input a list of authors,

and automatically yield a list of Google Scholar profile IDs which are unique and

correctly correspond to the original list of authors. To achieve this objective,

however, one must manually overcome various difficulties which occur both before

and after web scraping.

We now document some of the aforementioned difficulties with the web scrap-

ing technique. In what follows we have listed some of the possible outcomes when

156

https://scholar.google.com/citations?view_op=search_authors&mauthors={name}&hl=en&oi=ao
https://scholar.google.com/citations?view_op=search_authors&mauthors={name}&hl=en&oi=ao
https://scholar.google.com/citations?view_op=search_authors&mauthors={Ruheyan Nuermaimaiti}&hl=en&oi=ao
https://scholar.google.com/citations?view_op=search_authors&mauthors={Ruheyan Nuermaimaiti}&hl=en&oi=ao


we input an authors name, and in sub-lists, we have discussed some possible rea-

sons for these outcomes. As above, ideally, the outcome is one Google Scholar

profile ID, which is the correct ID, but this is not always the case. Instead, the

following outcomes may be returned:

• No response

– Some authors on the list have no Google Scholar profile.

– There can be several choices for how one writes the name of an author.

For example, one must choose the order of the first name and the last,

whether the first name is abbreviated with initials or not, and whether

or not to include middle names or titles. The choices made are often

determined by the preference of person inputting the name into Google

Scholar.

• One ID

– This is a correct ID we are expecting.

– This is an incorrect ID since the listed author in Google Scholar is

different to the author from our original input. This can be checked,

for example, if these authors work in different academic fields or work

for different organisations.

• Several IDs

– Only one of them is the correct ID. There might exist several authors

who have the same name as the input.

– None of them are the correct ID. Although there might exist several

people who have the same name as the input, it is still possible none

of them are the person we are looking for.

Thus, in some of the above-listed situations we may have to clean the data

manually. Even though this may involve some manual processes, this web scrap-

ing technique is still more efficient than collecting the IDs purely manually.
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Appendix B

Asymptotic Formulas for the

Bessel Function

The following is a list of useful properties of the Bessel function Kν(z), including

some asymptotic formulas under various regimes for the argument z and the

order ν. For ease of use, we collect these facts here, with reference to the NIST

handbook (Olver et al., 2010).

Lemma B.1 (Olver et al. (2010), 10.27.3). For any ν and z,

K−ν(z) = Kν(z). (B.1)

Lemma B.2. Let ν be fixed and z → 0+.

(a) (Olver et al. (2010), 10.30.2) If ν > 0 then

Kν(z) ∼ 1
2

Γ(ν)
(

1
2
z
)−ν

. (B.2)

(b) (Olver et al. (2010), 10.31.1 with the aid of 10.25.2) If ν = 1 then

K1(z) = z−1 + 1
2
z log z +O(z). (B.3)

(c) (Olver et al. (2010), 10.31.2 with the aid of 10.25.2) If ν = 0 then

K0(z) = − log
(

1
2
z
)
− γ +O(z2 log z). (B.4)

where γ = 0.5772 . . . is Euler’s constant (Olver et al. (2010), 5.2.3). In

particular,

K0(z) ∼ − log z. (B.5)
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(d) (Olver et al. (2010), 10.27.4 and 10.25.2 with the aid of 5.5.3) For −1 <

ν < 0,

Kν(z) = 1
2

Γ(−ν)
(

1
2
z
)ν

+
Γ(ν + 1)

2ν

(
1
2
z
)−ν

+O(zν+2). (B.6)

Lemma B.3 (Olver et al. (2010), 10.41.2). If z 6= 0 is fixed and ν → +∞, then

Kν(z) ∼
√

π

2ν

( ez

2ν

)−ν
. (B.7)
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(Zürich, 1994), Vol. 2 , 1384–1394, Birkhäuser. 40
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