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Abstract

In this thesis, we investigate the representation theory of diagram algebras. We

focus on the representation theory of the blob algebra bn and a certain quotient

of Hecke algebra type A which is called Deguchi-Martin quotient, HPM
n . In

particular, this research concerns the semisimple case of these algebras.

We use some of the combinatorial results to show that there is a bijection

between the canonical basis of the cell modules of the blob algebra bn−1 and the

Deguchi-Martin quotient of the Hecke Algebra HPM
n . Furthermore, we show

that these algebras are isomorphic for n = 2 and n = 3 at a certain value of

parameter m.
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Introduction

In 1991 Deguchi and Martin introduced a quotient of a Hecke algebra of type

A, HPM
n [3]. This quotient is a special case of Martin-Rittenberg’s hierarchy

of ‘physical’ quotients of the ordinary Hecke algebras corresponding to the

(2, 2) q-symmetrizer idempotent [13], and they also gave the full description of

the representation theory of HPM
n . In this thesis, we called this quotient the

Deguchi-Martin quotient.

Later in 1993, as a generalization of the Temperley-Lieb algebra, Martin

and Saleur introduced blob algebras [14]. It will be denoted by bn. The blob

algebras also generalize the well-known diagram of the Temperley-Lieb algebra

[23]. Indeed, it can be defined on the basis of a marked (blobbed) Temperley-

Lieb diagram. Because of this, bn was called the ‘blob algebra’. In [15], Martin

and Woodcock gave the structure of the standard modules, over any field of

characteristic zero. The blob algebra is known as the Temperley-Lieb algebra

of type B because it is a quotient of the Hecke algebra type B, similar to

how the Temperley-Lieb algebra is a quotient of the Hecke algebra type A. In

representation theory, the blob algebra has recently been receiving considerable

attention (see for example [16], [19], [11]).

Generically, both algebras bn and HPM
n are semisimple. For P = M = 1,

the dimension of the cell module for Deguchi-Martin quotient, Rλ is given via
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the Pascal triangle [3]. See Figure 2. Shifting n by 1 the dimension of the cell

module for the blob algebra, ∆n−1(t) is also given via the same Pascal triangle

[3], [15]. See Figure 1. So, is there a way to construct a bijection between

these cell modules? This motivates us to investigate the relation between these

algebras.
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Figure 1: The dimensions and bases for cell modules for the blob algebra
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Figure 2: The Pascal triangle of H
1|1
n cell modules

In this work we study the relationship between the simple (cell) basis of the

Deguchi-Martin quotient in (1 | 1) case and the blob algebra. by the combina-

torics of Young tableau. Plaza and Hansen’s results inspire this strategy. In

[20] they show that the blob algebra is graded cellular algebras, thus making
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their cell modules, or standard modules, graded modules for the algebra. They

introduced a way of determining the blob diagrams, using standard bitableaux

of one-line bipartitions. Moreover, they establish a bijection between the set

of blob diagrams and pairs of one-line standard bitableaux of the same shape.

We will provide a brief summary of this thesis. The first chapter reviews

the fundamental concepts needed to go through the other chapters. Mainly,

this will introduce the symmetric group, combinatorial concepts, Hecke alge-

bra, Temperley Lieb algebra, blob algebra, and the general theory of cellular

algebras.

In Chapter 2, we review the main algebra that led to the current study. In

the first section of this chapter, we introduce a representation RPM of Hecke

algebra. Some notations related to Hecke algebra are reviewed in the second

section. In the next section, we recall section 3.3 of [3] which deals with q-

permutation representation of RPM . Section four describes the irreducible

representations of RPM . After that, we will determine the generic irreducible

content of q-permutation representation. Finally, we define the Deguchi-Martin

quotient, one of this study’s main inputs.

The third chapter presents the main finding of the research. The first

section gives a brief overview of the work of Plaza and Hansen including their

bijection between the blob diagrams and pairs of one-line standard bitableaux

of the same shape. From this point, in section two we define a map between

the set of basis cell modules of blob algebra and the Deguchi-Martin quotient

and review some definitions required for this. We define a second map in the

third section, which will be the reverse of the first. Theorem 3.4.1 in the last

section illustrates the main result of this thesis.

In the final chapter, we will begin to investigate isomorphism between the

4
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element of blob algebra and the Deguchi-Martin quotient. We look at some

small dimensional isomorphism between the algebras themselves.
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Chapter 1

Background

The goal of this thesis is to investigate the relationship between blob algebra

and the quotient of Hecke algebra using the results of their representation

theory. Let us recall the main concepts of Temperley-Lieb algebra and the

symmetric group, which is a special case of blob algebra and Hecke algebra.

Furthermore, since all of these algebras are cellular algebras, we also recall

cellular algebras and related results.

The complex field C will be used as the ground field throughout the thesis.

1.1 The Symmetric Group

Let N be the natural numbers. For a fixed n ∈ N, the symmetric group on

n letters, Sn is the group on the set X = {1, 2, . . . , n} whose consisting of

all bijections from X to X and whose group multiplication is composition.

The elements σ ∈ Sn are called permutations. The permutations of the form

τ = (i, j) are called transpositions which generate Sn. Indeed, the symmetric

6
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group is generated by the adjacent transpositions (1, 2), (2, 3), . . . , (n−1, n). If

σ = τ1τ2 · · · τk, where the τi are transpositions, then following to section 1.1 in

[22] we define the sign of σ to be

sgn(σ) = (−1)k.

The representation theory of symmetric groups brings some interesting com-

binatorial notions such as a partition, Young diagram, Young tableau, and

more, which will be used during this thesis. We define these notions in the

next section.

1.2 Combinatorics of Tableaux

Definition 1.2.1 ([22, Definition 2.5.3]). A composition of n is an ordered

sequence of non-negative integers

λ = (λ1, λ2, . . . , λl)

such that
∑

i=1 λi = n. The integers λi are called the parts of the composition.

Definition 1.2.2 ([6, p. 1]). A partition λ of a positive integer n is a non-

increasing composition λ. Write λ ⊢ n to indicate that λ is a partition of

n.

For a partition (composition) λ, the Young diagram is another tool that can

be used to represent the partition, which is also used to describe many objects

in algebra and combinatorics.

Definition 1.2.3 ([6, p. 1]). A Young diagram of size n is an array of n

left-justified boxes with a non-increasing number of boxes in each row.

7



CHAPTER 1. BACKGROUND

In particular, there is a clear one-to-one correspondence between partitions

and Young diagrams.

Definition 1.2.4 ([22, Definition 3.5.2]). Let λ be a Young diagram, then the

conjugate of λ is λ′ = (λ′
1, λ

′
2, . . . , λ

′
l). Where λ′

i is the length of the ith

column of λi. Otherwise put, λ′ is just the transpose of the diagram of λ and

so it is sometimes denoted by λt.

λ1

λ2

λ3

λ = (5, 2, 1)

λ′
1 λ

′
2 λ

′
3

λ′ = (3, 2, 1, 1, 1)

Figure 1.1: Conjugate partition.

Definition 1.2.5 ([6, p. 2]). Young tableau, is obtained by filling in the boxes

of a Young diagram of λ ⊢ n with 1, 2, . . . , n such that:

1. non-decreasing across each row;

2. strictly increasing down each column.

We say that λ is the shape of the tableau for some partition λ.

Definition 1.2.6. A standard tableau is a Young tableau whose entries are

increasing across each row and each column.

Example 1.2.7. Let n = 5, the set of all partitions of 5 is

{(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (15)}.

8



CHAPTER 1. BACKGROUND

The Young diagrams corresponding to these partitions are

.

The standard tableaux of the partition λ = (4, 1) are

1 2 3 4
5

1 2 3 5
4

1 2 4 5
3

1 3 4 5
2 .

Definition 1.2.8 ([22, Definition 2.2.2]). Suppose λ = (λ1, λ2, . . . , λl) and

µ = (µ1, µ2, . . . , µk) are partitions of n. Then λ dominates µ, written λ� µ,

if

λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi

for all i ≥ 1. If i > l (respectively, i > k), then we take λi (respectively, µi) to

be zero. For example if λ = (3, 2) and µ = (3, 1, 1), then λ� µ.

Definition 1.2.9 ([20, Section 4.2]). A bipartition of n is a pair λ =

(λ(1), λ(2)) of usual (integer) partitions such that n = |λ(1)| + |λ(2)|. By the

Young diagram of a bipartition λ we mean the set

[λ] = {(i, j, k) ∈ N× N× {1, 2} |1 ≤ j ≤ λ
(k)
i }.

Its elements are called entries or nodes. We can visualize [λ] as a pair of

usual Young diagrams called the components of [λ].

Definition 1.2.10 ([20, Section 4.2]). For λ a bipartition, a λ-bitableau is a

bijection t : [λ]→ {1, . . . , n}. We say that t has shape λ and write shape(t) = λ.

A λ-bitableau is called standard if in each component its entries increase along

each row and down each column. The set of all standard λ-bitableaux is denoted

9
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by Std(λ) and the union
⋃

λ Std(λ) with λ running over all bipartitions of n is

denoted by Std(n).

Example 1.2.11. Let λ = ((3, 1), (2)) be a bipartition of n = 6, then the Young

diagram corresponding to the bipartition ((3, 1), (2)) is(
,

)
.

an example of ((3, 1), (2))-bitableau is(
4 2 5

3
, 6 1

)
.

A one-line bipartition of n is a bipartition λ of n such that λ
(k)
i = 0 for

all i ≥ 2 and k = 1, 2. The set of all one-line bipartition of n is denoted by

Bip1(n). For example let µ = ((4), (2)) be a one-line bipartition of 6, one of

corresponding standard bitableau of µ is(
2 3 4 5 , 1 6

)
.

1.3 Representations of the Symmetric Group

While it is not our goal to cover every aspect of the symmetric group represen-

tation theory, we briefly describe some of the key findings that will be relevant

to the next section.

Proposition 1.3.1 ([22, Section 1.1]). For a symmetric group Sn, there is a

natural one-to-one correspondence between partitions of n and conjugacy classes

of Sn.

10
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Proposition 1.3.2 ([22, Proposition 1.10.1]). Let G be a finite group, then the

number of inequivalent irreducible G-modules equals the number of conjugacy

classes of G.

Definition 1.3.3 ([22, Definition 2.3.1]). Let λ be a partition of n and let t

be a λ-tableau. Suppose that the t has rows R1,R2, . . . , Rl and columns C1,

C2,. . . , Ck. Then

Rt = SR1 × SR2 × · · · × SRl

and

Ct = SC1 × SC2 × · · · × SCk

are the row-stabilizer and column-stabilizer of t, respectively.

Example 1.3.4. Let t =
1 3

2 4
be (2, 2)-tableau, then the row stabilizer and

column stabilizer are

Rt = S{1,3} × S{2,4} = {1, (13), (24), (13)(24)}.

and

Ct = S{1,2} × S{3,4} = {1, (12), (34), (12)(34)}.

Definition 1.3.5 ([22, Definition 2.1.4]). Two λ-tableaux t1 and t2 are row

equivalent, t1 ∼ t2 if corresponding rows of the two tableaux contain the same

elements. A tabloid of shape λ, or λ-tabloid, is then

{t} = {t1 | t1 ∼ t}.

The λ-tabloid is drawn as the tableaux without vertical lines between the

entries in each row.

11
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For example consider t as given in example 1.3.4, then {t} is

t =
1 3

2 4
=

{
1 3

2 4
,

3 1

2 4
,

1 3

4 2
,

3 1

4 2

}
.

For σ ∈ Sn, σ{t} = {σt}. By this action, we get, in the usual way, an Sn-

module.

Definition 1.3.6 ([22, Definition 2.1.5]). Suppose λ ⊢ n, Let

Mλ = C{{t1}, {t2}, . . . , {tk}}

where {t1}, {t2}, . . . , {tk} is a complete list of λ-tabloids. Then Mλ is called

the permutation module corresponding to λ.

Definition 1.3.7 ([22, Definition 2.3.2]). If t is a tableau, then the associated

polytabloid is

et =
∑
σ∈Ct

sgn(σ)σ{t}.

Example 1.3.8. Using the tableau t in Example 1.3.4, then the column stabi-

lizer is Ct = {1, (12), (34), (12)(34)} and

et =
1 3

2 4
−

2 3

1 4
−

1 4

2 3
+

2 4

1 3
.

The symmetric group Sn acts on a Young tableau and its associated poly-

tabloid by permuting entries of the tableau.

Lemma 1.3.9 ([22, Lemma 2.3.3]). Let t be a tableau and σ be a permutation,

then eσt = σet.

Definition 1.3.10 ([22, Definition 2.3.4]). For any partition λ, the correspond-

ing Specht module, Sλ, is the submodule of Mλ. spanned by the polytabloids

et where t is of shape λ.

12



CHAPTER 1. BACKGROUND

Theorem 1.3.11 ([22, Theorem 2.4.6]). The Sλ for λ ⊢ n form a complete

list of irreducible Sn-modules over C generated by any given polytabloid.

1.4 The Hecke Algebra of Type An

The Hecke algebra was introduced by Erich Hecke [12]. It is a deformation of

the group algebra of a Coxeter group. These algebras are defined by generators

and relations and depend on a deformation parameter q. Taking q = 1 gives

us group algebra of a symmetric group corresponding Coxeter group.

For q ∈ C∗ and an integer k the Gaussian coefficient is defined as

[k] =
qk − q−k

q − q−1
= qk−1 + qk−3 + · · ·+ q−(k−3) + q−(k−1).

Definition 1.4.1 ([17]). The Hecke algebra with parameter q ∈ C∗, denoted

by Hn(q) is defined to be associative algebra over C generated by T1, . . . , Tn−1

satisfying the relations:

TiTi+1Ti =Ti+1TiTi+1, for i = 1, 2, . . . , n− 2,

TiTj =TjTi, for |i− j| ≥ 2,

T 2
i =(q − 1)Ti + q, for i = 1, 2, . . . , n− 1.

The Hecke algebra of the symmetric group Sn can be described as a defor-

mation of the group algebra CSn. Moreover, in the case q = 1, Hn(q) becomes

CSn.

13
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1.5 Representations of the Hecke Algebra

We recall some facts bout the representations of Hecke algebra from [17] and

[4].

Theorem 1.5.1 ([17, Theorem 1.13]). The Hecke algebra is a free as an C-

module with basis {Tw | w ∈ Sn}.

Following to lemma 1.12 in [17] the multiplication rules in this basis is given

by

TsiTw =

Tsiw if l(siw) > l(w),

qTsiw + (q − 1)Tw if l(siw) < l(w).

For a composition λ of n, let tλ be a row standard tableau. The symmetric

group Sn acts on λ-tableaux by permuting the entries of the tableau. We

denote the permutation σ ∈ Sn such that tλσ is a row standard by d(t). Let

Rt The row stabilizer of a tableau tλ, it is a subgroup of Sn (Young subgroup),

Rt = Rλ1 ×Rλ2 × · · ·×Rλl
(see definition 1.3.3) . Let H(Rt) is a subalgebra of

Hn. It is a free as an C-module with basis {Tw | w ∈ Rt}, then consequently

H(Rt) = H(Rλ1)×H(Rλ2)×· · ·×H(Rλl
). For given λ we define two elements

in Hn play important role in its representation

xλ =
∑
w∈Rt

Tw

and

yλ =
∑
w∈Rt

−q−l(w)Tw.

Definition 1.5.2 ([17, Chapter 3]). A q-permutation module Mλ is the

right Hn-module xλHn, with basis {xλTd(t) | t is a row stander λ − tableau}

14
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and the action of Hn on this basis is

xλTd(t)Tsi =


xλTd(s) if s is a row standard and l(d(s)) > l(d(t)),

qxλTd(t) if s is not a row standard,

qxλTd(s) + (q − 1)xλTd(t) if s is a row standard and l(d(s)) < l(d(t)).

Where s = tsi for some 1 ≤ i < n. Note that Mλ above is the q-analog of the

permutation module of the symmetric group.

Now, let wλ be the permutation in Sn such that tλwλ is standard columns.

Dipper and Jams in [4] defined an element zλ in Hn by

zλ = xλTwλ
yλ′ =

∑
u∈Rλ′

(−q)−l(u)xλTwλu.

In the next definition, we define certain Hn-submodules Sλ of Mλ.

Definition 1.5.3 ([4, Chapter 4]). The q-Specht module Sλ is the Hn-

module zλHn.

Generically, the Hecke algebra Hn(q) is semisimple over the field of char-

acteristic zero. next theorem conclusion the most important facts about the

irreducible representation of Hn(q) over C.

Theorem 1.5.4 ([4, Theorem 5.2.]). Let λ ⊢ n, Then Hn(q) is semisimple

algebra over C and {Sλ | λ ⊢ n} is a complete set of non-isomorphic irreducible

Hn-modules, with

{zλTd | d ≥ wλ′} = {zλTd | tλwλd is standard}

as a basis. Where q ̸= 1 and not a root of unity.
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Hecke algebra is One of the motivating examples for cellular algebra. Gra-

ham and Lehrer introduced cellular algebras as a general framework for inves-

tigating modular representation theory [7].

1.6 Cellular Algebras

In this section, we review the definition of cellular algebra and the related

results of its representation theory. These algebras have been introduced in

1996 by Graham and Lehrer [7] in terms of a cellular basis.

Definition 1.6.1 ([7, Definition 1.1 ]). Let R be a commutative ring with 1,

the cellular algebra A is an R-algebra with cell datum (Λ,M,C, i) where

1. Λ is a partially ordered set (poset) and for any λ ∈ Λ, M(λ) is a finite

set. The algebra A has a R-basis {Cλ
S,T} where (S, T ) ∈ M(λ) ×M(λ)

for all λ ∈ Λ.

2. The map i is an R-linear anti-automorphism of A with i2 = id which

sends CS,T to CT,S.

3. If λ ∈ Λ and S, T ∈ M(λ), then for any a ∈ A the product aCS,T can be

written as

aCS,T ≡
∑

U∈M(λ)

ra(U, S)C
λ
U,T mod A<λ, (1.1)

where a ∈ A and ra(U, S) ∈ R do not depend on T, and A<λ is the R-

submodule of A generated by {Cλ′
VW : λ′ < λ, V,W ∈ M(λ′)}. Note that

for S, T ∈M(λ) we write C(S, T ) = Cλ
S,T ∈ A.

The basis is called a cellular basis.
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Definition 1.6.2 ([7, Definition 3.1]). For λ ∈ Λ the radical of the bilinear

form θλ is defined to be

rad(λ) := {x ∈ W (λ) | θλ(x, y) = 0 for all y ∈ W (λ)} (1.2)

Definition 1.6.3 ([7, Definition 2.1 ]). Let A be a cellular algebra with cellular

datum (Λ,M,C, i). For each λ ∈ Λ define the cell module W (λ) as the left

A-module which is R-module, with basis {Cλ
S | S ∈ M(λ)} and A-left action

given by

aCS =
∑
S′

ra(S
′, S)CS′ (a ∈ A, S ∈M(λ)). (1.3)

where ra is the element in R appeared in Definition1.6.1(3).

For S, T, U and V ∈M(λ). The cell module W (λ) has a bilinear form:

θλ : W (λ)×W (λ)→ R,

(CT , CU) 7→ r(T, U) by

CS,TCU,V ≡ θ(CT , CU)C
λ
S,V mod Aλ.

Proposition 2.9 in [17] stated that the bilinear form is symmetric and associa-

tive.

Proposition 1.6.4 ([7, Proposition 3.2]). For λ ∈ Λ we have

1. rad(λ) is an A-submodule of W (λ).

2. If θλ ̸= 0, the quotient W (λ)/ rad(λ) is irreducible.

3. If θλ ̸= 0, rad(λ) is the radical of W (λ).

Definition 1.6.5 ([7, Definition 3.3]). For λ ∈ Λ, θλ ̸= 0, denote the irreducible

A-module W (λ)/ rad(λ) by L(λ).
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The following theorem is one of the main conclusions Graham and Lehrer

[7] made in order to categorise the irreducible cell modules for a cellular algebra

A.

Theorem 1.6.6 ([7, Theorem 3.4]). Let Λ0 = {λ ∈ Λ : θλ ̸= 0}. Then the

set {L(λ) := W (λ)/ rad(λ) : λ ∈ Λ0} is a complete set of pairwise inequivalent

irreducible A-modules.

1.7 The Temperley-Lieb Algebra

In this section, we will review the two definitions of Temperley-Lieb algebra,

one defined by presentations and the other by diagrams, which will be the

special case of blob algebra in the following section.

Definition 1.7.1 ([21, p. 964]). The Temperley-Lieb algebra TLn(β) is

the associative unital algebra over C with generates elements 1, e1, . . . , en−1

satisfying the following relations

e2i = βei;

eiei±1ei = ei;

eiej = ejei if |i− j| > 1.

We can represent this algebra using a basis of diagrams to get a clearer

understanding of how the elements of TLn(β) interact. We will describe how

this is done briefly here; a more detailed description can be found in [21].

Definition 1.7.2 ([14, Section 2.1]). A Temperley-Lieb diagram of length n is

a rectangular frame with n points on the top and n on the bottom edge. Con-

necting these points (sometimes referred to as nodes) by non-crossing strings
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that connect one node to exactly one other node. It is convenient to refer to

lines that travel from top to bottom as propagating lines and those that double

back to the same edge as loop lines or arcs. The multiplication of two diagrams

is given by identification of the bottom of one diagram with the top of the other,

the exterior rectangles are construction lines only and can be ignored in com-

position and replacing every closed loop that may arise by a factor β (where

β = q + q−1).

1 = . . . Ui = . .
i. .i+ 1

. . . . . .

Figure 1.2: The generators 1 and Ui of TLn(β).

. . . . .
. .

. . .

. . .
. .
. . . . .

. .

. .= β

Figure 1.3: Multiplication of two diagrams in TLn.

Example 1.7.3. Let n = 4, The Temperley-Lieb algebra TL4(β) is generated

by {1, e1, e2, e3} which corresponding to the following diagrams

1

. .

. .
U1

. .

. .
U2

. .

. .
U3

The multiplication U3U2 is given by

. .

. .
. .
. .

=
. .
. .
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Theorem 1.7.4 ([21, Theorem 2.4]). the Temperley-Lieb algebra TLn has di-

mension

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
(1.4)

where Cn is the nth Catalan number.

1.8 The Blob Algebra

Blob algebras are first defined by Martin and Saleur [14] which are generaliza-

tions of the Temperley Lieb algebras. These algebras are defined in two ways,

as abstract algebras defined by presentations, and as diagram algebras defined

by diagrams. In this subsection, we review both definitions.

For q ∈ C∗ and for an integer k, let [k] be the Gaussian coefficient defined

as in Section 1.4.

Definition 1.8.1 ([2, Section 2]). Let m ∈ Z and [m] ̸= 0. The blob algebra

bn(m, q) is the C-algebra generated by elements 1, e0, e1, . . . , en−1 satisfying the

relations

e2i = −[2]ei;

eiej = ejei, if |i− j| > 1;

eiejei = ejeiej, if |i− j| = 1;

e1e0e1 = [m+ 1]e1;

e20 = −[m]e0.

(1.5)

Throughout this thesis, we will simply refer to bn(m, q) as bn.

We shall consider the corresponding diagrammatic definition given in [2].
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Definition 1.8.2 ([2, Section 2]). A blob algebra bn is a C-algebra generated

by the Temperley–Lieb diagrams Ui and the additional decoration diagram e

of “blobs” on certain lines. See figure 1.4. The multiplication blob diagrams

are given as the multiplication on TLn diagrams with additional rules that we

identify any diagram with a double-dots line with −[m] times the same diagram

with a single dot, and identify any diagram containing a closed internal loop

with no decoration (respectively decorated by a dot) with the same diagram

without the loop, multiplied by −[2] (respectively multiplied by [m + 1]). We

call the diagrams that arise generalized Temperley Lieb diagrams.

•
1 . . .

e =

n. . .

Figure 1.4: The blob generator e

Lemma 1.8.3 ([9, Lemma 5.7]). The dimension of the blob algebra is given by

dim bn =

(
2n

n

)
=

(2n)!

(n!)2
.

1.9 Representations of the Blob Algebra

Definition 1.9.1. Let Bn be the blob algebra’s basis set consisting of the gen-

eralized Temperley Lieb diagrams, with the condition that no line to the right

of the leftmost propagating line is decorated, and only the outermost arcs to the

left of it are decorated and each such line has at most one dot.

Definition 1.9.2. For t ∈ {n, n− 2, n− 4, . . . , 2− n, 4− n, . . . ,−n}, let Bn(t)

be a subset of Bn consists of blob diagrams with t propagating lines and let

Bn(−t) be a subset of Bn consists of blob diagrams with t propagating lines with

condition that the leftmost propagating line is decorated by the blob.
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Definition 1.9.3. For any diagram D in Bn, a half diagram is generated by

cutting diagram D horizontally from east to west such that only propagating

lines are cut. A decorated propagating line with a blob is replaced with a prop-

agating line decorated with two blobs and cut between the blobs.

By this we get a pair of half diagrams which are the top half diagram and bot-

tom half diagram, as in figure 1.5. We denote the set of all top halves diagrams

(bottom halves diagrams) by Btop
n (Bbot

n ) respectively.

• . .
. .

••→ . .
. .

→ • . .

•
. .

Figure 1.5: Cutting a decorated diagram into two halves

For any t ∈ Λ and d ∈ Btop
n (Bbot

n ) the blob algebra acts via multiplication

defined in Definition 1.8.2; explicitly, for half diagram d and a diagram D ∈ bn,

the multiplication D.d given by identification of the bottom diagram D with

the top of half diagram d. If the final diagram in this multiplication contains

lines not connected to the top edge it is sent to zero. The result will therefore

either be zero or another top-half n-diagram multiplied by some factor. In other

words, the half-top (bottom) diagram gives a basis for left (right) modules over

blob algebra bn which are called standard modules for bn and are usually dented

by ∆n(t). see for example [15, Section 4.1] and [14, Section 2.2]. In general the

set

{∆n(t) | t ∈ {−n,−n+ 2, . . . , n}}

is a complete set of standard modules for bn with Bn(t) as a set of basis, which

are in fact the irreducible representations in generic case [14].

One of the easiest examples of cellular algebra is blob Algebra. We will

provide a simple example showing how bn is cellular.

22



CHAPTER 1. BACKGROUND

Proposition 1.9.4 ([8, Section 2]). The blob algebra bn is a cellular algebra.

We now outline the various elements of a cellular structure in sense of

definition 1.6.1:

• Index set Λ is given by {n, n−2, n−4, . . . , 2−n, 4−n, . . . ,−n}, partially

ordered as follows: t ≥ s if |t| < |s| or t = s. The finite indexing set

M(t) is given M(t) = { half diagrams with t propagating lines |t ∈ Λ}.

For T, S ∈ M(t) define the basis element Ct
S,T = ST ∗, where ∗ denotes

reflection in a horizontal axis (which will be explained shortly in the

example). If ST ∗ produces a propagating line with double blobs it is

replaced with a propagating line with a single blob.

• Define the map i as follows

i : bn → bn

Ct
S,T 7→ Ct

T,S

• For any t ∈ Λ and S, T ∈ M(t), the blob algebra acts via multiplication

defined in definition 1.8.2; explicitly, for half diagram S in M(T ) and a

diagram D in bn, the multiplication S.D = SD given by identification of

half diagram S with the top diagram D if S.D ∈ M(T ), and S.D = 0

otherwise.

Now, for any t ∈ {n, n − 2, n − 4, . . . , 2 − n, 4 − n, . . . ,−n} the blob algebra

cell module ∆n(t) has halves diagrams as a cell basis and the action of bn as

we define above.

Example 1.9.5. The cellular structure for b3(m, q) is given as by following:

the index set Λ = {−3,−1, 3, 1}, the order of Λ is
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−3

−1

3

1

A cell basis elements set M(t) is given by Figure 1.6, Figure 1.7, and Figure

1.8.

•

S S

Figure 1.6: The cell basis M(−3) (at left) and M(3) (at right).

. .
S

• . .
T

• • . . •

U

Figure 1.7: The set of cell basis M(−1).

. .
S

. .
T

•
. .

U

Figure 1.8: The set of cell basis M(1).

The basis elements of b3(m, q) with one decorated propagating line are given

in the figure 1.9 have been constructed from the halves diagrams in the set

M(−1) in figure 1.7. For instance, the C−1
S,U has been produced by drawing the

half diagram S at the south edge and the half diagram U∗ at the north edge.

. .

. .
•

C−1
S,S

. .
. .
••

C−1
S,T

. .
. .
•

C−1
S,U
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. .

. .•
• •

C−1
T,T

. .
. .
••

C−1
T,S

. .

. .

C−1
T,U

••

. .

. . •
C−1

U,U

. .
. .
•

C−1
U,S

. .

. .

C−1
U,T

••

Figure 1.9: The basis elements of b3(m, q) with one decorated propagating line.

The basis elements of b3(m, q) with one propagating line (not decorated)

have construed from the halves diagram in set M(1) are given in figure 1.10

. .

. .

C1
S,S

. .
. .
•

C1
S,T

. .
. .

C1
S,U

. .

. .•
•

C1
T,T

. .
. .
•
C1

T,S

. .

. .

C1
T,U

•

. .

. .
C1

U,U

. .
. .

C1
U,S

. .

. .

C1
U,T

•

Figure 1.10: The basis elements of b3(m, q) with one decorated propagating
line.

The basis element e of b3(m, q) has construed from the half diagram in set

M(−3), and the identity element I has construed from the set M(3) both are

given in figure 1.11.
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•

C−3
S,S = e C3

S,S = I

Figure 1.11: Basis elements of b3(m, q) with 3 lines

Therefore, set of all basis elements of b3(m, q) can be written as

C = {C−1
S,S, C

−1
S,T , C

−1
S,U , C

−1
T,T , C

−1
T,S, C

−1
T,U ,

C−1
U,U , C

−1
U,S, C

−1
U,T , C

1
S,S, C

1
S,T , C

1
S,U , C

1
T,T ,

C1
T,S, C

1
T,U , C

1
U,U , C

1
U,S, C

1
U,T , C

−3
S,S, C

3
S,S}.

Now by considering the order in Λ, let us find the basis of submodules A<1,

A<3,

basis of A<1 = {Cµ
ST : S, T ∈M(µ)|µ < λ}

= {Cµ
ST : S, T ∈M(−3)} ∪ {Cµ

ST : S, T ∈M(3)}

= {C−3
S,S, C

3
S,S}

basis of A<3 = ϕ.
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Chapter 2

Deguchi-Martin Quotient

2.1 Introduction

This chapter is taken from the work of Deguchi and Martin in [3, Chapter 3]

and their references. It is the main source of inspiration for the present work.

We will provide our own examples to help the reader understand the concepts.

The proofs of theorems and propositions can be found in [3, Chapter 3].

We recall the representation RPM of the Hecke algebra Hn(q) which will be

a representation of Deguchi-Martin quotient HPM
n . To define this, we should

first define certain elements in Hn(q) which will generate the kernel of this

quotient.

In addition to Hecke algebras generators Ti’s which are defined in Chapter

1, in this chapter we use alternative generators constructing by Ui = q−1(1−Ti)
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[3, Section 2.5]. The corresponding relations for Ui are given as follows

UiUi±1Ui − Ui = Ui±iUiUi±1 − Ui±1,

U2
i = (q + q−1)Ui, (2.1)

UiUj = UjUi for |i− j| ≠ 1.

2.2 Representations of the Hecke Algebra Hn(q)

In this part, we recall section 3.1 from [3].

For q ∈ C, x = q + q−1. Let P , M be non-negative integers such that

N = P +M is positive. Let VN = {e1, e2, . . . , eN} be shorthand notation for

the standard ordered basis for CN , and IN be the N ×N identity matrix, and

R be the N2 ×N2 matrix with action on u⊗ v ∈ VN ⊗ VN given by

R(eu ⊗ ev) = 0 if u = v ≤ P

R(eu ⊗ ev) = x(eu ⊗ ev) if u = v > P

and otherwise, with p = sign(v − u),

R(eu ⊗ ev) = qp(eu ⊗ ev) + (ev ⊗ eu).

Then for N < n and V the space spanned by V n
N we can check by direct

computation that there is a representation RPM : Hn(q)→ EndC(V ) given by

RPM(Ui) = IN ⊗ IN ⊗ · · · ⊗ R⊗ · · · ⊗ IN (2.2)

where R appears in the ith position in the product.

Example 2.2.1. Let N = 2, P = M = 1, λ = (2, 2) and let V2 = {e1, e2} be

a standard basis for C2. Let R be 4 × 4 matrix with action on V2 ⊗ V2 is the
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following

R(e1 ⊗ e1) = 0;

R(e1 ⊗ e2) = q(e1 ⊗ e2) + (e2 ⊗ e1);

R(e2 ⊗ e1) = q−1(e2 ⊗ e1) + (e1 ⊗ e2);

R(e2 ⊗ e2) = x(e2 ⊗ e2).

Now we can write the matrix R as follows

R =


0 0 0 0

0 q 1 0

0 1 q−1 0

0 0 0 x

 .

2.3 Some Notations of the Hecke Algebra Hn(q)

Let us review section 3.2 of [3]

Definition 2.3.1 ([3, Section 3.2, Definition 1]). For n,m, t natural numbers

and n ≥ m+ t, the subalgebra H
(t)
m (q) is obtained from Hn(q) under the trans-

lation map

T (t) : Hn(q)→ H(t)
m (q)

Ui 7→ Ui+t.

We denote by X(t) the image of X ∈ Hn(q) under this map.

Definition 2.3.2 ([3, Section 3.2, Definition 2]). For each Ui ∈ Hn(q), we

define the ’reflection’ involution map

T (−) : Hn(q)→ Hn(q) by Ui 7→ Un−i
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Definition 2.3.3 ([3, Section 3.2, Definition 3]). For A ∈ Hn(q) define the

width l(A) as the minimum number j such that A(t) ∈ H
(t)
j (q) for some t.

For instance, let A = U3U2 = (U2U1)
(1), that means U2U1 ∈ H

(1)
3 , so the

width l(U3U2) = 3. This is the minimum number of strings, in the braid

sense, required to carry the braids involved when A is written out as a linear

combination of words in the generators. We may think of it as two plus the

minimum distance between the largest indexed generator occurring in A and

the smallest indexed generator. For example l(U4 − U1U3) = 2 + (4− 1) = 5.

Definition 2.3.4 ([3, Definition 4]). For A ∈ Ha(q) with width l(A) = a and

B ∈ Hb(q) with width l(B) = b, we define a product

A⊗B ∈ Ha+b(q)

as the algebra product of A with translation B(a).

Note that A,B(a) commute, but A⊗B ̸= B ⊗ A in general.

Example 2.3.5. Let A = U1U2, B = U5, l(U1U2) = 2 + 2 − 1 = 3 and

l(U2) = 2 + 2− 0 = 4. We have that A ∈ H3 and B ∈ H4,

(U1U2)⊗ U2 = (U1U2)(U2)
(3) = (U1U2)(U5) ∈ H7.

Definition 2.3.6 ([3, Section 3.2, Definition 5]). We define an equivalence ∼

on Hn(q) by X ∼ Y if and only if there exists invertible G ∈ Hn such that

GXG−1 = Y .

Proposition 2.3.7. With A,B as in Definition 2.3.4 we have

A⊗B ∼ B ⊗ A.
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2.4 On q-Permutation Representations

We review some definitions and results from section 3.3 of [3].

Note from the definition that our representationRPM is block diagonal with

blocks labelled by partitions of n, corresponding to fixed numbers of 1’s, 2’s,

3’s,. . .,N ’s in the basis vectors. Each one of these partitions (or compositions)

corresponding to Young tableau λ = (λ1, λ2, . . .) with ith row length λi giving

the number of i’s. For example, let λ = (λ1, λ2, λ3) = (4, 2, 1) that means we

have four copy of number 1, two copy of number 2 and one copy of number 3.

We can now break our representation into manageable blocks. For given

(P |M) we write these direct summands of RPM as Rλ.

Theorem 2.4.1 ([3, Section 3.3, Theorem 1]). For a partition λ, the restriction

of the module Rλ to Hn−1 decomposes into the sum of modules Rµ, where µ is

a partition correspondence to the diagram obtained from the diagram for λ by

removing one box.

Definition 2.4.2 ([3, Section3.3]). For a given λ, the basis state of Rλ are the

set Yλ of all words v in the multiset {1λ1 , 2λ2 , . . . , NλN}.

For the partition λ these are the Yamanouchi versions [18] of λ-tableaux.

Example 2.4.3. Let λ = (2, 2), then the basis states of R(2,2) are all words in

the {12, 22}

R(2,2) = {1122, 1212, 1221, 2112, 2121, 2211}.

Let vi denote the ith entry in v. If vi > vi+1 then we write vi for the word

obtained by interchanging vi, vi+1. If w = vi1i2...im for some list of interchanges

i1i2 . . . im (not unique in general) we write w ⪰ v. This defines a partial order
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on Yλ. There is a unique lowest element, called o, such that oi ≥ oi+1 for all i,

for instance in Example 2.4.3 the lowest element in Y(2,2) is o = 2211.

Let v = oi1i2...im then we write v ≥ w if a subset of the list i1i2 . . . im in

the natural order of subscripts takes o to w. For example oi1i2i3 ≥ oi1i2 . This

defines the ‘Bruhat’ partial order on Yλ. Note that v ⪰ w implies v ≥ w.

Proposition 2.4.4 ([3, Section 3.3, Proposition 2]). If λ, µ are related by a

permutation of rows within the first P and within the last M rows then Rλ and

Rµ are isomorphic.

As a result of this proposition equivalence classes of these representations

may be characterized by ordered pairs of partitions, the first of at most P parts

and the second of at most M parts:

λ 7→ (µ, ν) ⊢ (nP , nM) (nP + nM = n)

In order to find the irreducible content of these representations Rλ we pro-

ceed as follows.

Definition 2.4.5 ([3, Definition 6]). For each positive integer n define kn, a

function of x, by k1 = 0 and

kn+1 =
1

(x− kn)
.

Definition 2.4.6 ([3, Definition 7]). For s an integer and q given

[s] =
qs − q−s

q − q−1
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and for N a positive integer

[N ]! =
N∏
s=1

[s].

For example, with x = q + q−1:

[0] = 0 [1] = 1 [2] = x [3] = x2 − 1

and from Definition 2.4.5

kn =
[n− 1]

[n]
.

Note that [−s] = −s.

Definition 2.4.7 ([3, Definition 8]). For n a positive integer and with F1 = 1

Fn+1 = −[n− 1]Fn − Fn

( n∑
l=1

[l − 2](UnUn−1 · · ·Ul)
)

where Ui is the alternative generator defined at the beginning of this chapter.

Definition 2.4.8 ([3, Definition 8]). Define the automorphism via

D : Hn(q)→ Hn(q)

Ui 7→ x− Ui

under this automorphism we have another element

El = D(Fl) (1 ≤ l ≤ n).

Note that Fn+1 may also constructed by

Fn+1 = −[n− 1]Fn +
[n]FnUnFn

[n]!
(2.3)
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Example 2.4.9 ([3, Section 3.3]).

F1 = E1 = 1 F2 = U1 E2 = x− U1 F3 = U1U2U1 − U1.

Proposition 2.4.10 ([3, Section 3.3]). The elements Fn, En in Hn satisfy

(i) F 2
n = [n]!Fn

(ii) E2
n = [n]!En

(iii) UiFn = FnUi = xFn for 1 ≤ i ≤ n− 1

(iv) UiEn = EnUi = 0 for 1 ≤ i ≤ n− 1

(v) Fn/[n]! is a primitive and central idempotent

Definition 2.4.11 ([3, Definition 9]). For a non-negative integer P and M .

Let λ be a partition of n and (µ, ν) be an ordered pairs of standard partitions of

nP +nM = n such that µ of at most P parts and ν of at most M parts. Define

the elements Λλ(P,M), Λλ of Hn by

Λλ(P,M) =
[
(⊗P

i=1Eλi
)⊗ (⊗P+M

i=P+1Fλi
)
](−)

Λλ =
[
(⊗P

i=1Eµi
)⊗ (⊗P+M

i=P+1Fνi)
](−)

.

Note from Proposition 2.3.7 that Λλ ∼ Λλ(P,M). It is convenient henceforward

to ignore all but the ordered paired partitions λ = (µ, ν) which are representa-

tives of each equivalence class of λ’s.

Proposition 2.4.12 ([3, Proposition 3]). Defining the opposite Xop of X ∈ Hn

as the element of the generators written in reverse order, we have

Λλ = Λop
λ .
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Definition 2.4.13 ([3, Section 3.3]). Define a subset {|v >: v ∈ Yλ} of the left

ideal subalgebra HnΛλ which is in one-to-one correspondence with the basis of

Rλ as follows:

• Define an initial element |o >= Λλ,

• then generate an element for each v by introducing Ti = (1− qUi),

• repeated application of the rule

|vi >=
Ti

q
|v > . (2.4)

Example 2.4.14. Let n = 3 and λ = (2, 1), we have

Y(2,1) = {|112 >, |121 >, |211 >} and Λ(2,1)(1|1) given by

Λ(2,1)(1|1) =
[
(⊗1

i=1Eλi
)⊗ (⊗2

i=2Fλi
)
](−)

=
[
Eλ1 ⊗ Fλ2

](−)

=
[
E2 ⊗ F1

](−)

=
[
(x− U1)⊗ 1

](−)

=
[
x− U1

](−)
(for (−) see definition 2.3.2)

= x− U2.

Now we can construct elements in H3 corresponding to Y(2,1)

|211 > = |o >= Λ(2,1)(1|1) = x− U2,

|121 > = |o1 >= (q−1 − U1)|o >= (q−1 − U1)(x− U2),

|112 > = |o12 >= (q−1 − U2)|o1 >= (q−1 − U2)(q
−1 − U1)(x− U2).

Proposition 2.4.15 ([3, Proposition 4]). The elements Ui ∈ Hn act on {|v >}

as

Ui|v >= 0 if vi = vi+1 ≤ P
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and

Ui|v >= (q + q−1)|v > if vi = vi+1 > P.

Proposition 2.4.16 ([3, Proposition 5]). These elements {|v >} span HnΛλ.

Note that this spanning argument holds for all q.

Proposition 2.4.17 ([3, Proposition 6]). For q indeterminate the set {|v >}

is linearly independent in Hn(q).

Proposition 2.4.18 ([3, Proposition 7]). The blocks Rλ are isomorphic to the

left modules Hn generated by Λλ.

By analogy with the q = 1 case these representations are induced from the

q-Young symmetrizes/antisymmetrizers for a smaller algebra. So, we call them

q-permutation representations.

2.5 q-Specht Modules

This section follows the notations and results of [3, section 3.4]. It introduces

Specht modules. These are Hn-modules which are well defined as submodules

of Rλ and they are simple for generic q.

Definition 2.5.1 ([3, Section 3.4]). For (P | M) and λ ⊢ n a standard parti-

tion, define Eλ = Λλ and Fλ = D(E
(−)
λ′ ).

Example 2.5.2. Suppose n = 3, then for λ = (13) we have

E(13) = Λ(13,0) = [E1 ⊗ E1 ⊗ E1]
(−) = [1⊗ 1⊗ 1](−) = 1.
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For λ = (3)

E(3) = Λ((3),0) = [E3]
(−) = [(x− U1)(x− U2)(x− U1)− (x− U1)]

(−)

= (x− U2)(x− U1)(x− U2)− (x− U2).

Finlay, for λ = (2, 1)

E(2,1) = Λ((2,1),0) = [E2 ⊗ F1]
(−) = [(x− U1)⊗ 1](−)

= x− U2.

Now we can find Fλ, respectively

F(13) = D(E
(−)

(13)′) = D
(
E

(−)
(3)

)
= D

(
[(x− U2)(x− U1)(x− U2)− (x− U2)]

(−)
)

= D
(
(x− U1)(x− u2)(x− U1)− (x− U1)

)
= U1U2U1 − U1

= F3.

F(3) = D
(
E

(−)
(3)′

)
= D

(
E

(−)

(13)

)
= D(1) = 1.

F(2,1) = D
(
E

(−)
(2,1)

)
= D

(
[(x− U2)]

(−)
)
= U1 = F2.

Proposition 2.5.3 ([3, Proposition 8]). The subspace FλHnEλ is one dimen-

sional. A spanning vector for this subspace is

Fλ|λ′
1 · · · 321 λ′

2 · · · 321 · · · 1 > .

This defines through Equation 2.4 (and up to the relations) a minimal
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product of generators Wλ such that

FλHnEλ = CFλWλEλ.

Definition 2.5.4 ([3, Definition 10]). The left module HnFλHnEλ = HnFλWλEλ

is a left Specht module.

Corollary 2.5.5 ([3, Corollary 8.1]). The operator FλWλEλ is an elementary

operator, i.e.

(FWE)H(FWE) = FHEHFHE = F (HEHFH)E ⊆ FHE = CFWE.

Corollary 2.5.6 ([3, Corollary 8.2]). The Specht module HnFλHnEλ is a gener-

ically simple left module (and well-defined for all q). Running over all λ we

generate each generically simple left module of Hn(q).

We will denote the left module HnFλHnEλ simply by λ. The equivalence

class of generically irreducible representations induced from this left ideal will

be called Rλ. It is sufficient to specify a representation up to the equivalence

class here as the decomposition of a reducible representation does not depend

on basis.

Definition 2.5.7 ([3, Section 3.4]). For e ∈ Yλ defined by

e = 123 · · ·λ′
1 123 · · ·λ′

2 · · · 123 · · ·λ′
N

the set {|v >e : v ≥ e}, defined as for |v > but starting from |e >e= FλHnEλ

is a basis for Rλ.

Example 2.5.8. Suppose n = 3, λ = (2, 1), then Y(2,1) = {112, 121, 211} (by

Definition 2.4.2) and for λ′ = (2, 1), e = 121. By the order define on Yλ in
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Section 2.4 we have one element in Y(2,1) greater then e = 121 which is v = 112.

So, the basis of R(2,1) is {|112 >e, |121 >e}.

Corollary 2.5.9 ([3, Corollary 8.3]). The generically simple module associated

to λ occurs exactly once in HnEλ, i.e. the generically irreducible representation

Rλ obtained from it occurs exactly once in Rλ.

Theorem 2.5.10 ([3, Theorem 2]). (q-Branching theorem) The restriction of

Rλ to Hn−1 is generically a direct sum of the irreducible representations ob-

tained by all deletions of one box from the Young diagram λ consistent with a

Young diagram as output. The result of the corresponding induction is deter-

mined by Frobenius reciprocity.

For example let λ = (3, 1) ⊢ n = 4, then the restriction of R(3,1) to H3 is

R(3,1) |H3= R(3) ⊕R(2,1).

2.6 The Simple Content of q-Permutation Mod-

ules

In this part of this thesis, we recall Section 3.5 of [3]

For given (P | M) the generic simple content of left module HnΛλ may be

determined by a special case of the q-Littlewood rule as follows (a trusty old

reference of Hamermesh [10]):

Write out λ1 copies of the letters 1, λ2 copies of the letters 2, and so on in

every possible way consistent with the following rules.

1. write all the 1’s in a row (assuming P ̸= 0);
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2. for each number i = 1, 2, · · · , P take the λi copies and add them one at a

time to the existing diagram in such a way that each stage is a standard

shape Young diagram with non-decreasing rows and columns, and such

that no two i’s appear in the same column;

3. for each subsequent number i = P +1, · · · , N take the λi copies and add

them to the diagram produced in step 2, such that no two i’s appear in

the same row.

Each diagram constructed in this way gives the tableau shape for an irreducible

component of the block Rλ.

Example 2.6.1 ([3, Section 3.5]).

1. Consider the case P = M = 1 and λ = (2, 2), we have the letters 1122.

By step 1. we have

1 1

we have, after step 3.:

1 1 2
2

1 1
2
2

so that R(2,2) = R(3,1) ⊕R(2,12)

2. Consider the case the same case in 1 but λ = (32), we have the letters

111222, which become

1 1 1 2
2
2

1 1 1
2
2
2
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so that R(32) = R(4,12) ⊕R(3,13).

Proposition 2.6.2 ([3, Proposition 9]). The representation RPM (equation

2.2), contains every irreducible representation of Hn(q) with multiplicity at least

one, except those associated to partition shapes containing as a subdiagram the

rectangular diagram of height P + 1 and width M + 1.

Example 2.6.3 ([3, Section 3.5]). Suppose P = 2 and M = 1, the irreducible

representation with the following diagram is excluded unless the black box is

omitted:

Proposition 2.6.4 ([3, Proposition 10]). For P = M = 1 and q indeterminate

R(a,b) = R(a,1b) ⊕R(a+1,1b−1)

For example R(2,1) = R(2,1) ⊕R(3).

Now Theorem 2.4.1 determines the dimension of all Rλ in all (P | M),

for the (1 | 1) case that is given via the Pascal triangle. It then follows from

Theorem 2.4.1 and the well-known dimensions and characters of irreducibles

that

R(n−1,1) = R(n−1,1) ⊕R(n).

Note that the statement of Proposition 2.6.4 will be a bit different from the
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original one in the reference [3, Proposition 10] because there is a minor error

in the proof of this proposition, then when we fix that error we get the version

we stated.

Example 2.6.5. In case n = 3 there are 3 irreducible representations corre-

sponding to the partitions

(3), (2, 1), (13).

These have dimensions 1, 2 and 1 respectively. For λ = (3), the corresponding

basis states for R(3) is B(3) = {|111 >e} where

|111 >e= |e >e= F(3)1E(3) = (1) 1 ((x−U1)(x−U2)(x−U1)− (x−U1)) = E3.

gi |111 >e= gi E(3) = (1− qUi) E3 = E3 − 0. (i=1,2)

And for λ = (13), the corresponding basis states for R(13) is B(13) = {|123 >e}

where

|123 >e= |e >e= F(13)1E(12) = ((U1)(U2)(U1)− (U1)) 1 (1) = F3.

gi |123 >e= gi F(13) = (1− qUi) F3 = F3 − qxF3.

Finally, for λ = (2, 1), the corresponding basis states for R(2,1) is B(2,1) =

{|121 >e, g2|121 >e} where

|121 >e= |e >e= F(2,1)1E(2,1) = U1 1 (x− U2) = F2E(2,1).

g1

 |121 >e

g2|121 >e

 =

 g1|121 >e

g1g2|121 >e

 =

−q2 0

−1 1

 |121 >e

g2|121 >e


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g2

 |121 >e

g2|121 >e

 =

0 1

q (q − 1)

 |121 >e

g2|121 >e



2.7 The Quotient Algebra HP,M
n

This section defines a sequence of quotient algebras of Hn(q).

Definition 2.7.1 ([3, Definition 11]). For χ = ((M +1), (M +1), . . . , (M +1))

a partition of (M + 1)(P + 1), define the algebra quotient

HP,M
n = Hn/FχH(P+1)(M+1)Eχ.

In case P = M = 1 it will be clear that, among the complete list of generic

irreducible representations of H4 given in Section 2.6 for example, (2, 2) never

appears as a subdiagram in any irreducible summand (i.e. and so can not be a

representation of the H1,1
4 quotient), and hence, by Theorem 2.5.10, for any n.

Example 2.7.2. Let n = 4 and P = M = 1, then χ = (2, 2) ⊢ n.

Eχ = E(2,2) = Λ(2,2) = [E2 ⊗ E2]
(−) (see Definition 2.5.1)

= [(x− U1)⊗ (x− U1)]
(−) (see Definitions 2.3.2 and 2.3.4)

= (x− U3)(x− U1).

Fχ = D
(
E

(−)
χ′

)
= D

(
((x− U3)(x− U1))

(−)
)

(χ = χ′ = (2, 2))

= D
(
(x− U1)(x− U3)

)
= U3U1.
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Then in this case the quotient is

H1,1
4 = H4/U3U1H4(x− U3)(x− U1).

Corollary 2.7.3 ([3, Corollary 8.4]). For µ, λ ⊢ n

Rµ(FλHnEλ) = 0

unless µ = λ.
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Chapter 3

A Bijection on Cell Module

Bases

In this chapter, we introduce the main theorem of the thesis, a bijection between

the cell module bases of the blob algebra bn−1 and the Deguchi-Martin quotient

H1,1
n . A main input to our result comes from the work of Plaza and Hansen that

establishes a bijection between blob diagrams and the set of pairs of one-line

standard bitableaux of the same shape, see [20].

3.1 A Bijection Between the Set of Blob Di-

agrams and the Set of Pairs of One-Line

Standard Bitableaux

In this section, we will briefly recall the result from [20, section 4.1], where it

was proven that there is a bijection between blob diagrams and the set of pairs

of one-line standard bitableaux Std(λ).
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Let Λn be the set {−n,−n+2, . . . , n− 2, n}. Then the following definition

makes Λn into a totally ordered set with order relation ≻.

Definition 3.1.1 ([20, Definition 4.2]). Suppose λ, µ ∈ Λn. We then define

µ ⪰ λ if either |µ| < |λ|, or if |µ| = |λ| and µ ≤ λ. On the other hand, the

map f given by

f : Bip1(n)→ Λn, ((a), (b))→ a− b

is a bijection and so we can define a total order ⪰ on Bip1(n) as follows

Definition 3.1.2 ([20, Definition 4.3]). Suppose λ, µ ∈ Bip1(n). Then we

define λ ⪰ µ if and only if f(λ) ⪰ f(µ).

For t ∈ Std(λ) let t|k be the tableau obtained from t by removing the entries

greater than k. We extend the order ⪰ to the set of all λ-standard bitableaux

as follows.

Definition 3.1.3 ([20, Definition 4.4]). Suppose that λ ∈ Bip1(n) and s, t ∈

Std(λ). We define s ⪰ t if Shape(s|k) ⪰ Shape(t|k) for all k = 1, . . . , n.

Example 3.1.4. Let n = 7 and λ = ((5), (2)) ∈ Bip1(n). Assume s, t as

following

s =
(

1 4 5 6 7 , 2 3
)
, t =

(
2 3 4 5 6 , 1 7

)
.

Then s ⪰ t.

Note that ⪰ is a partial order on Std(λ), but not total. Let tλ be the unique

standard λ-bitableau such that tλ ⪰ t for all t ∈ Std(λ). For λ = (a, b), set

m = min{a, b}. Then in tλ the numbers 1, 2, . . . , n are located increasingly

along the rows according to the following rules:

1. Even numbers less than or equal to 2m are placed in the first component.
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2. Odd numbers less than 2m are placed in the second component.

3. Numbers greater than 2m are placed in the remaining boxes.

Definition 3.1.5 ([20, Definition 4.6]). Suppose that λ ∈ Bip1(n) and let t ∈

Std(λ). Define a sequence of integers inductively by the rules t(0) = 0 and for

1 ≤ j ≤ n

t(j) = t(j − 1)± 1

where the +(−) sign is used if j is in the first (second) component of t.

Using this sequence, we can now describe the order ⪰.

Lemma 3.1.6 ([20, Lemma 4.7]). If s, t ∈ Std(λ), then s ⪰ t if and only if

|s(j)| ≤ |t(j)|, for all 1 ≤ j ≤ n, and if |s(j)| = |t(j)| then s(j) ≤ t(j).

Let m be a blob diagram. Given a horizontal line l, in either edge, we

put l = (a, b) where a is the left endpoint and b is the right endpoint. Let

l1 = (a1, b1) and l2 = (a2, b2) be horizontal lines on the same edge. We say that

l1 covers l2 if a1 < a2 < b2 < b1. We also say that the leftmost vertical line (if

any) covers all lines to the right of it. Now, we say that a node is covered if the

line to which it belongs is decorated or the line to which it belongs is covered

by a decorated line. If a node is not covered, we call it uncovered [20]. For

example in Figure 3.1 the horizontal line l1 covers the horizontal line l2 in the

diagram d.

d =

. .

. . . .
l1 l2

Figure 3.1: Example of lines covering

Definition 3.1.7 ([20, Definition 4.8]). Let m be a blob diagram. Suppose that

m has exactly v vertical lines and h = n−v
2

horizontal lines on each edge.
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• If v ≥ 0 and the leftmost vertical line is not decorated or there is no

vertical lines then we associate to m a pair of λ-bitableaux, ttop(m) and

tbot(m), with λ = ((h+ v), (h)) by the following rules:

1. k is in the second component of ttop(m)(tbot(m)) if and only if either

k is uncovered and it is the right endpoint of a horizontal line on

the top (bottom) edge or it is covered and it is the left endpoint of a

horizontal line on the top (bottom) edge;

2. The numbers increase along rows.

• If v > 0 and the leftmost vertical line is decorated then we associate to m

a pair of λ-bitableaux, ttop(m) and tbot(m), with λ = ((h), (h+ v)) by the

following rules:

1. k is in the first component of ttop(m)(tbot(m)) if and only if either

it is uncovered and it is the left endpoint of a horizontal line on the

top (bottom) edge, or it is covered and it is the right endpoint of a

horizontal line on the top (bottom) edge;

2. The numbers increase along rows.

For λ ∈ Bip1(n) and s, t ∈ Std(λ), we let mst denote the unique blob

diagram such that ttop(mst) = s and tbot(mst) = t.

Proposition 3.1.8 ([20, section 4.1]). There is a bijection between blob dia-

grams and the set of pairs of one-line standard bitableaux.

Proof. To prove the bijection it is sufficient to prove a bijection between half-

diagrams and one-line standard bitableaux.

(⇒) Let mtop be the top half diagram of blob diagram m. We show that ttop(m)

is standard. This is obvious from the way the bijection is defined.
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(⇐) Let s, t be bitableaux. We show that there is unique diagram mst such

that ttop(mst) = s and tpot(mst) = t. Given the bitableau s, we have two cases:

Case 1 If λ(1) ≥ λ(2), that means the leftmost vertical line is not decorated or

there are no vertical lines and all the k nodes in the second component

of s is either the left or right endpoint of horizontal line depending on

whether the line is covered or not. To avoid crossing the lines, we are

forced to connect each of these points, going from left to right, to the

node at the left of it (unless the node is the leftmost one it is connected

to the next node right it), that is not connected to other nodes yet. Then

we see if the k node is the right end of the horizontal line, the line is

not decorated, or if k is the left end of the horizontal line, the line will

be decorated. So the top horizontal lines are determined by s as are the

bottom lines by t. But then there is no choice for vertical lines anymore.

Case 2 If λ(1) < λ(2), that means the leftmost vertical line is decorated and all

the k nodes in the first component of s are either the left or the right

endpoint of horizontal line depending on whether the line is covered or

not. We connect these nodes as we do in case 1, then we see if the k node

is the right end of a horizontal line that is before the decorated vertical

line which means the horizontal line is decorated. Note that all the end

points of horizontal lines after the decorated vertical line will be a right

end node. Then there is no choice for the vertical line anymore. This

completes the proof.

Example 3.1.9. Let n = 4 and let m ∈ b4 to be

m =

. .

.
.

. .

Then
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ttop(m) =
(

2 3 4 , 1
)
, tbot(m) =

(
1 2 4 , 3

)
.

Remark 3.1.10 ([20, Remark 4.9]). For all t ∈ Std(λ) and 1 ≤ j ≤ n, we

have

1. If t(j) < 0 then the node j is covered in the top edge of mttλ.

2. If the node j is covered in the top edge of mttλ then t(j) ≤ 0.

3.2 From the Blob Algebra to the Deguchi-

Martin Quotient

Our goal in this section is to show that there is a map between the set of the

half diagram bases of the cell modules for the blob algebra bn−1 and the set of

words which give the bases of the cell module for the Deguchi-Martin quotient

H1,1
n .

Definition 3.2.1. ([6, Section 1.1]) Let x be a positive integer and t be a

tableau. The number of boxes in t is denoted by |t|. The row insertion of x

into t is the tableau with |t|+ 1 boxes defined as follows:

1. Starting with i = 1, if x is greater than or equal to all entries of the i-th

row of t (this includes the case where the i-th row has no entries), then

add x to the end of the row;

2. otherwise find the leftmost entry of the i-th row that is greater than x (call

it x̄), replace it with x, and insert the x̄ into the row i + 1 by repeating

step (1) with x = x̄ and i replaced by i+ 1.

The tableau obtained by these procedures is denoted by t← x.
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Example 3.2.2. Let λ = (3, 2, 1) and λ-tableau t as follows

1 2 4
3 6
5 .

We insert 2 in the tableau t. The 2 bumps the 4 from the first row and then

the 4 bumps the 6 from the second row, which can be added to the end of the

third row:

1 2 4
3 6
5

← 2 1 2 2
3 6
5

← 4
1 2 2
3 4
5 ← 6

1 2 2
3 4
5 6

Definition 3.2.3 ([6, Section 1.1]). Given two tableaux t and u we define the

product t.u to be the result of progressively row-inserting the entries of u into

t, starting with the left-most entry in the bottom row of u and going from left

to right, bottom to top, so that the bottom row is the first to be emptied until u

is empty. Because each row insertion produces a tableau, the final product t.u

is also a tableau.

Example 3.2.4. Let u and t be two tableaux as following

u = 1 3
2 4

t = 1 2

then the product t.u is given as:

u.t =
1 3
2 4

. 1 2 =
1 1
2 3
4

. 2 =
1 1 2
2 3
4

Definition 3.2.5 ([1, Section 3.4.3]). A hook shaped tableau is a tableau

with shape λ = (n−k, 1k) for some 0 ≤ k ≤ n−1. See Figure 3.2. The integer

k is called the height of the hook. We shall also call the partition λ a hook.
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1 3 4 5 7
2
6
8

Figure 3.2: The hook tableau with λ = (5, 13).

Note that in the hook standard tableau, 1 must be in the corner cell and n

must be in the end cell of either the first row or the first column.

Definition 3.2.6 ([5, Section 2]). Let λ = (λ1, λ2, . . . , λk) be a partition of n

and t be a standard tableau of shape λ. Yamanouchi word for t is a word

w = w1, w2, . . . , wn on the set {1λ1 , 2λ2 , . . . , kλk}, such that the letter wi be

the row index of the box of t containing the number i.

Notice that once reading Yamanouchi’s word from left to right there are never

fewer letters i than letters (i+1). Also, according to Sen-Peng in [5] there is a

bijection between the set of standard Young tableaux of shape µ and the set of

Yamanouchi words of type µ. Given a Yamanouchi word w, it is straightforward

to recover the corresponding tableau, i.e., the ith row of which contains the

indices of the letters of w that are equal to i.

Let Btop
n (resp., Bbot

n ) denote the set of upper (lower) halves of blob di-

agrams which are the bases of cell module for the blob algebra bn and for

t ∈ {−n, 2 − n, 4 − n, . . . , 0, n − 2, n − 4, . . . , n}. For λ ⊢ n we let Rλ be the

cell module for the Deguchi-Martin quotient HP,M
n . Let Q(n) be the set of all

words which are the bases of the cell module of H1,1
n . Note that Btop

n (resp.,

Bbot
n ) is in bijection with Std(n) via m → ttop(m) (resp.,m → tbot(m)). Since

Btop
n and Bbot

n are in bijection via the mirror map. We will construct a map

from the set Btop
n to the set Qn.
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Definition 3.2.7. For any half blob diagram d ∈ Btop
n . We define a map

α : Btop
n−1 → Qn

d→ |w >e

as the following:

1. Use the Plaza-Hansen bijection in Definition 3.1.7 to get the correspond-

ing one line bitableau (tλ1 , tλ2) of a the blob diagram d, where tλ1 is a

standard tableau t of shape λ1 and tλ2 is a standard tableau t of shape λ2;

2. insert n+ 1 to the component that contains the number 1;

3. takes the product of the transpose of the first component by the second

component(i.e. ((tλ1)T .tλ2) to produce a standard tableau, t;

4. use Definition 3.2.6 to construct the Yamanouchi word w from the stan-

dard tableau.

5. finally, set α(d) = |w >e.

Each word constructed in this way gives the basis element for an irreducible

component of the block representation of Deguchi-Martin quotient H1,1
n .

In the following, we will construct a bijection between some sets which will

help us to prove our main theorem. Let Std+(λ) be the set of all one line

standard λ-bitableau obtained from the set Std(λ) by inserting n+ 1 into the

component of λ-bitableau that contains 1, (i.e., Std+(λ) = {t ← n + 1 | t ∈

Std(λ)}). The elements of the set Std(λ) have the form (tλ1 , tλ2) where tλ1 ,

(tλ2) is a standard tableau of shape λ1, (λ2).

Example 3.2.8. Let P =
(
1 2 4 6 , 3 5

)
∈ Std(((4), (2))).
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Then the tableau T obtain by inserting 7 into P is

T =
(
1 2 4 6 7 , 3 5

)
∈ Std+(((4), (2))).

Lemma 3.2.9. For each λ ∈ Bip1(n) and n ≥ 1, there is one-to-one corre-

spondence between the set Std(λ) and Std+(λ).

Proof. Since both components for each λ-bitableau P ∈ Std(λ) are single row

standard tableau, then the bitableau obtained by inserting n + 1 into P will

be also a standard bitableau. Moreover, the entry n + 1 must be at the end

of either the first component or the second component. On other hand, let

P ∈ Std(λ) and T = (P ← (n+1)) ∈ Std+(λ). Since the entry (n+1) must be

at the end of the component which contains 1, then deleting the box containing

n+ 1 from bitableau T will give us exactly the bitableau P .

Now let Pro+(λ) be the set of all standard tableaux obtained from Std+(λ)

by multiplying the transpose of the first component by the second component,

( i.e, Pro+(λ) = {t = (tλ1)T · tλ2 | L = (tλ1 , tλ2) ∈ Std+(λ)} ) (For tableau

product see Definition 3.2.3 ).

Example 3.2.10. Let λ = ((3), (3)) ∈ Bip1(6) and

u =
(

2 5 6 , 1 3 4
)
∈ Std(λ)

then we get

u′ =
(

2 5 6 , 1 3 4 7
)
∈ Std+(λ)

by inserting 7 to the second component of u. Multiplying the transpose of the
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first component of u′ by the second component, we get

u′′ =

1 3 4 7
2
5
6

∈ Pro+(λ)

As shown in the example u′′ has hook shape. Moreover, every tableau

belonging to Pro+(λ) will be a hook tableau.

Lemma 3.2.11. For each λ ∈ Bip1(n) and n ≥ 1, if t ∈ Pro+(λ), then t is a

hook tableau.

Proof. Assume L ∈ Std+(λ), there are 2 cases to consider:

Case 1 The entry n + 1 is in the first component tλ1 of L. This means the

transpose of this component is a standard single-column tableau with

the first entry 1 and the last one n + 1. Since both components are

standard tableau, all entries of the second component are greater than 1,

which means all these entries will insert in the first row beside 1 in the

standard tableau t = (tλ1)T · tλ2 . So, t is a standard hook tableau with

the following form

1 k

n+ 1

. . .

...(t λ1)T

tλ2

where 1 < k < n+1, and the entries of the first row is subset of {1, . . . , n}

that are strictly increasing.
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(Note that this case includes when the second component is ϕ, then t will

be a single column standard tableau.)

Case 2 The entry n+1 is in the second component tλ2 of L. Then the transpose

of first component (tλ1)T is a one column tableau containing a subset of

{2, . . . , n}. Multiplying (tλ1)T by tλ2 , the number 1 in tλ2 will bump the

first entry in (tλ1)T which will also bump the second entry and so on until

the last entry. So, the second component will be the first row in the final

standard hook tableau. Therefore, t = (tλ1)T · tλ2 has the form

1 n+ 1

k

. . .

...(tλ1)T

tλ2

where 1 < k < n + 1, and the entries of the first column are a subset of

{1, . . . , n} that are strictly increasing down the column.

(Note that this case includes when the first component is ϕ, then t will

be a single row standard tableau).

Lemma 3.2.12. For each λ ∈ Bip1(n) and n ≥ 1, there is a one-to-one

correspondence between the set Std+(λ) and the set Pro+(λ).

Proof. By Lemma 3.2.11, we can define a function

f : Std+(λ)→ Pro+(λ)

L = (tλ1 , tλ2) 7→ t = (tλ1)T · tλ2 .
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Conversely, let

g : Pro+(λ)→ Std+(λ)

t 7→ L = (tλ1 , tλ2)

since each t ∈ Pro+ is obtained from the components product of some L ∈ Std+.

So, to define g we have to consider the previous cases of (tµ1)T · tµ2 :

Case i n + 1 is in the first column of t. Then tλ1 is the transpose of the first

column and tλ2 is t with first column deleted.

Case ii n+ 1 is in the first row of t. Then tλ1 is the transpose of t with first row

deleted and tλ2 is the first row of t.

Now we prove that g ◦ f = IdStd+ :

let L ∈ Std+, applying f on L to get f(L) which is must be one of two

cases of f above. Next by applying g on f(L), we will do the following:

• Assume L has the following form(
1 n+ 1. . . , b1 . . .b2 bk

)

where the entries of the first component are a subset of the set

{1, 2, . . . , n+1} and the entries of the second component are a subset

of {2, 3, . . . , n} that are strictly increasing from left to right on both

components. Applying f on L we get

1 bkb1

n+ 1

. . .

...
f(L) =
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since n+ 1 in the first component of L we applied case 1 of Lemma

3.2.11, Then apply g on f(L). Since n + 1 contained in the first

column of standard tableau f(L), we apply case i of function g to

get

tλ1 = 1 n+ 1. . . , . . .b2 b1 bktλ2 =

that are the same components of L. Therefore g(f(L)) = L;

• Assume L has the following form(
a1 a2 ak. . . , 1 . . . n+ 1

)

where the entries of the first component are a subset of {2, . . . , n}

and the entries of the second component are a subset of the set

{1, 2, . . . , n + 1} that are strictly increasing from left to right on

both components. Once apply f on L ( since n + 1 in the second

component of L we apply case 2 of Lemma 3.2.11 ) we get

f(L) = ∈ Pro+(λ)
1 n+ 1

a1

ak

. . .

...

Now as we define g above, we apply case 2 of g to get g(f(L))

g(f(L)) = g
( )1 n+ 1

a1

ak

. . .

...

= ( a1 . . . ak , 1 n+ 1. . . ) = L

Observe that, we have g(f(L)) = L for all L ∈ Std+ which means that g

is reverse of f . Similarly, we can prove that f(g(t)) = t.
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3.3 From the Deguchi-Martin Quotient to the

Blob Algebra

In this section, we define the inverse map γ to the previous map α in Definition

3.2.7, which sends every cell module basis of Deguchi-Martin quotient H1,1
n . to

cell module basis of blob algebra bn−1

Remark 3.3.1. Note that we study the Deguchi-Martin quotient H1,1
n , any

diagram of an irreducible representation has to be a hook diagram.

Figure 3.3: The diagram of shape λ = (3, 2, 1).

Let Btop
n the sets of upper halves of blob diagrams which are bases of cell

module for the blob algebra bn and Qn be the set of words which are bases

of cell module for the Deguchi and Martin quotient H1,1
n . We construct the

following map.

Definition 3.3.2. For each word |w >e∈ Qn, n ≥ 2, We define a map

γ : Qn → Btop
n−1

|w >e 7→ d

as the following:

1. Use Definition 3.2.6 to construct a standard tableau from a word (note

this will always be a hook tableau);
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2. construct a one line bitableau L = (tλ1 , tλ2) from the standard tableau t

as following

(a) if n in the first row of t, then tλ1 is the transpose of t with first row

deleted and tλ2 is the first row of t;

(b) if n in the first column of t, then tλ1 is the transpose of first column

and tλ2 is t with the first column deleted;

By construction tλ1 , tλ2 are single line standard tableaux of shape λ1, (λ2),

respectively. Then L = (tλ1 , tλ2) is a one line standard bitableau.

3. Delete the box from L that contains number n, then we will have a

bitableau;

4. use the Plaza-Hansen bijection in Definition 3.1.7 to get the corresponding

blob diagram d.

3.4 The Bijection

We get our main theorem by combining the findings of the previous two sec-

tions. We aim to prove that the map α is a bijection by showing that the maps

α and γ are inverses of each other.

For given n and t ∈ {n, n − 2, n − 4, . . . , 0, . . . 2 − n, 4 − n} we let ∆n(t)

be the bn cell module. Let Btop
n (t) be the set of upper halves of blob diagrams

which is the bases for the cell module ∆n(t), let B(t) ⊆ Btop(n) be the basis of

the single cell module ∆n(t).

For λ ⊢ n we let Rλ to be the cell modules for the Deguchi-Martin’s quotient

HP,M
n . Let Qn(λ) be the set of words that are the bases of cell modules Rλ,

and let Q(λ) ⊆ Q(n) be the basis of the single cell module Rλ.
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Theorem 3.4.1. There is a bijection between the canonical basis of the cell

modules of the blob algebra bn−1 and the Deguchi-Martin quotient of the Hecke

Algebra H1,1
n . In particular the map

α : Btop
n−1(t)→ Qn(λ)

d 7→ |w >e

is a bijection. Furthermore, when we restrict α to B the image is Q, where

λ depends on t.

Note that λ is a hook tableau of shape (λ1, 1
n−λ1), by saying that λ depends

on t we mean that t = n+ 1− 2λ1 and λ1 =
n+1−t

2
.

Proof. It is sufficient to show that the map α has an inverse map. Let d ∈ Btop
n ,

we do the following to get α(d) (see Definition 3.2.7). Firstly, using the Plaza

Hansen bijection (Definition 3.1.7) we get the corresponding one line bitableau

L = (tλ1 , tλ2) ∈ Std(λ) of d. Secondly, insert n + 1 to the component of L

that contains 1, by this step, we will get an element in Std+(λ). By Lemma

3.2.9 we ensure that there is bijection between Std(λ) and Std+(λ). Thirdly,

take the product ((tλ1)T · tλ2) to produce a hook tableau t ∈ Pro+ and also,

Lemma 3.2.12 guarantees that the bijection between the set Std+(λ) and the

set Pro+(λ). Fourthly, use Definition 3.2.6 to construct the Yamanouchi word

w from t. Finally, set α(a) = |w >e.

Now we prove γ in Definition 3.3.2 is the inverse map of α, i.e. γ(α(d)) =

IdBn−1 . Take d ∈ Btop
n−1, apply α (Definition 3.2.7) on d to produce α(d):

1. By the Plaza-Hansen bijection d corresponding to a one line bitableau

L =
(

a1 a2 . . . ak , b1 b2 . . . bj

)
.
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There are two possibilities for the location of the entry 1 in L: either

a1 = 1 or b1 = 1.

2. By step 2 of the Definition 3.2.7 of α we insert n + 1 into L ∈ Std(λ)

to produce a bitableau L′ ∈ Std+(λ). We have two cases depending on

what we had in the previous step:

Case 1 If b1 = 1, then

L′ =
(

a1 a2 . . . ak , 1 b2 . . . bj n+ 1
)
.

Case 2 If a1 = 1, then

L′ =
(

1 a2 . . . ak n+ 1 , b1 b2 . . . bj

)
.

3. Apply step 3 of the map α to obtain a standard tableau t of shape (n−

k, 1k), then construct the Yamanouchi word w from t:

Case 1 If b1 = 1 in L′, then

t =

1 b2 . . . bj n+ 1

a1

a2

. . .

ak

⇐⇒ w = 1i2i3 · · · 1.

Where w has n+1 letters. The first letter is 1, the last one is 1 and

ij is the row label of the box in t containing j.
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Case 2 If a1 = 1 in L′, then

t =

1 b1 b2 . . . bj

a1

a2

. . .

ak

n+ 1

⇐⇒ w2 = 1i2i3 · · · k + 1.

Where w has n+ 1 letters. The first letter is 1, the last one is k + 1 and

ij is the row label of the box in t containing j.

4. Finally, set α(d) = |w >e.

Now take |w >e∈ Qn. To apply γ on |w >e we consider the two cases of

|w >e based on the value of the last letter in |w >e:

Case 1 Last letter is 1.

Case 2 Last letter is k + 1 ≥ 2.

1. Use the Definition 3.2.6 to construct a standard tableau T from the word

|w >e. By Remark 3.3.1 the tableau T has hook shape (n− k, 1k):

Case 1 If the last letter in |w >e is 1, then
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|w⟩ = |1i2i3 · · · 1⟩ ⇐⇒ T =

1 b1 b2 . . . bj n

a1

a2

...

ak

Case 2 If the last letter in |w >e is k + 1, then

|w⟩ = |1i2i3 · · · k + 1⟩ ⇐⇒ T =

1 b1 b2 . . . bj

a1

a2

...

ak

n

one has n at the end of the row and the other has n at the end of the

column.

2. Construct a one line bitableau h = (Tλ1 , Tλ2) from the standard tableau

T by applying step 2 of γ’s definition

Case 1 If n in the first row of T , then

h =
(

a1 a2 . . . ak , 1 b1 b2 . . . bj n
)
.

Case 2 If n in the first column of T , then
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h =
(

1 a1 a2 . . . ak n , b1 b2 . . . bj

)
.

3. Delete the box that contains number n, we obtain:

Case 1 :

h⇔ h′ =
(

a1 a2 . . . ak , 1 b1 b2 . . . bj

)
.

Case 2 :

h⇔ h′ =
(

1 a1 a2 . . . ak , b1 b2 . . . bj

)
.

4. Using the Plaza-Hansen bijection to get the correspondence half diagram:

h′ = L⇔ d.

Observe that, we have γ(α(d)) = γ(|w >e) = d which means that γ is

reverse of α.

Now we prove that α(γ(|w >e)) = |w > e. Take |w >e= |1i2i3 · · · in >e∈

Qn. To apply γ on |w >e we consider the two cases of |w >e based on the value

of the last letter in |w >e:

Case 1 Last letter is 1.

Case 2 Last letter is k + 1 ≥ 2.

Using definition of γ :

1. Use Definition 3.2.6 to construct a standard tableau r from |w >e. By

Remark 3.3.1 the tableau r is hook tableau of shape (n− k, 1k)

65



CHAPTER 3. A BIJECTION ON CELL MODULE BASES

Case 1 If the last letter in |w >e is 1, then

r =

1 b1 b2 . . . bj n

a1

a2

...

ak

Case 2 If the last letter in |w >e is k + 1, then

r =

1 b1 b2 . . . bj

a1

a2

...

ak

n

2. Applying step 2 of Definition 3.3.2 to obtain a bitableau u:

Case 1 If n in the first row of r

r ⇔ u =
(

a1 a2 . . . ak , 1 b1 b2 . . . bj

)
.

Case 2 If n in the first row of r

r ⇔ u =
(

1 a1 a2 . . . ak , b1 b2 . . . bj

)
.
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3. Then by the Plaza-Hansen bijection we get the corresponding half dia-

gram: u⇔ d.

Therefor, We have that γ(|w >e) = d.

Now take d ∈ Btop
n−1, we apply α (definition 3.2.7) on d:

1. Use the Plaza-Hansen bijection we get the corresponding one-line bitableau

u:

u =
(

a1 a2 . . . ak , b1 b2 . . . bj

)
.

There are two possibilities for the location of the entry 1 in u: either

a1 = 1 or b1 = 1.

2. Applying step 2 of Definition 3.2.7 by insert n+ 1 to u to obtain u′:

Case 1 If b1 = 1 in u:

u⇔ u′ =
(

a1 a2 . . . ak , 1 b2 . . . bj n+ 1
)
.

Case 2 If a1 = 1 in u:

u⇔ u′ =
(

1 a2 . . . ak n+ 1 , b1 b2 . . . bj

)
.

3. Applying step 3 of Definition 3.2.7 to produce a standard tableau r of

shape (n− k, 1k) from u′:

Case 1 If b1 = 1 in u′, then
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r =

1 b1 b2 . . . bj n+ 1

a1

a2

...

ak

Case 2 If a1 = 1 in u′, then

r =

1 b1 b2 . . . bj

a1

a2

...

ak

n+ 1

4. Applying step 4 of Definition 3.2.7 to construct the Yamanouchi word

from the standard tableau r:

Case 1 If n+ 1 in the first row of r we get w = 1i2i2 · · · 1.

Case 2 If n+ 1 in the first row of r we get w = 1i2i2 · · · k + 1.

5. Applying step 5 of Definition 3.2.7 we have: α(d) = |w >e.

Observe that, we have α(γ(|w >e)) = |w >e which means that α is the inverse

map of γ.

Therefore from the definitions of the maps α and γ we have the following:
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• if d ∈ Btop
n−1, then (γ ◦ α)(d) = d = IdBtop

n−1
(d), so γ ◦ α is the identity map

on Btop
n−1 and

• if |w >e∈ Qn, then (α ◦ γ)(|w >e) = |w >e= IdQn(|w >e), so α ◦ γ is the

identity map on Qn.

This means that α and γ are inverses of each other. Therefore these two maps

produce a bijection between Btop
n−1 and Qn.

Example 3.4.2. let d ∈ Btop(5) be as below, applying Theorem 3.4.1 we end

with an element in Q6

d =

. .
←→

(
2 3 4 5 , 1

)
←→

(
2 3 4 5 , 1 6

)

←→
2
3
4
5

1 6 ←→
1 6
2
3
4
5

←→ |w >e = |123451 >e ∈ Q6.
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Chapter 4

Towards an Algebra

Isomorphism

The existence of the bijection in the basis elements of the cell module of blob

algebra bn and the Deguchi-Martin quotient H1,1
n as a result of the previous

chapter encouraged us to look for an isomorphism between these algebras’

elements. This chapter investigates whether making this bijection an algebra

isomorphism is possible.

4.1 In Two Dimensional Algebras

Proposition 4.1.1. For n = 2 we have the following isomorphism

ρ : b1 → H1,1
2

e0 7→ x− U1;

with x in H1,1
2 equal to −[m] in b1.
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Proof. This map sends e0 to x−U1 which differs from the identity. So, to prove

it is an isomorphism we need to check that ρ is a homomorphism. Since these

two-dimensional algebras b1 and HPM
2 contain one element that differs from

the identity element, there is one blob relation to be satisfied:

(x− U1)
2 = E2

2 = [2]!E2 (see Proposition 2.4.10)

= xE2

= x(x− U1).

This shows ρ is an isomorphism.

4.2 In Six Dimensional Algebras

Now we continue our investigations and look at n = 3. Let us begin with the

Deguchi-Martin quotient H1,1
3 and search for the elements that are isomorphic

to the elements of blob algebra b2. This means we first look for at least two

elements in H1,1
n that satisfy the idempotency relation in H1,1

n . To find this we

set a general element h in H1,1
n

h = aT1 + bT2 + cT1T2 + dT2T1 + fT1T2T1 + g.

Where a, b, c, d, f , g are complex coefficients. Then we solve the equations

generated by the relation

h2 = h. (4.1)

By setting the relation 4.1 we have a non-linear system of 6 equations in 6

variables:
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2cdq2 + g2 + a2q + b2q + f 2q3 − g = 0

2ag + bcq + bdq − cdq + cdq2 + cfq2 + dfq2 − a2 + a2q − f 2q3 − a = 0

2bg + acq + adq − cdq + cdq2 + cfq2 + dfq2 − b2 + b2q − f 2q3 − b = 0

ab− ac− bc+ 2cg + acq + afq + bcq + bfq − 2cfq − 2dfq

+ 2cfq2 + 2dfq2 + d2q + f 2q − 2f 2q2 + f 2q3 − c = 0

ab− ad− bd+ 2dg + adq + afq + bdq + bfq − 2cfq − 2dfq

+ 2cfq2 + 2dfq2 + c2q + f 2q − 2f 2q2 + f 2q3 − d = 0

ac+ ad− 2af + bc+ bd− 2bf − 2cd+ 2cf + 2df + 2fg

+ 2afq + 2bfq + 2cdq − 4cfq − 4dfq + 2cfq2 + 2dfq2

− c2 − d2 − f 2 + c2q + d2q + 2f 2q − 2f 2q2 + f 2q3 − f = 0

To solve this system, using Matlab we set q = 3 (we can choose any number

in C as long as it is generic), and we get 16 solutions for this system. These

solutions produce 16 idempotent elements in H1,1
3 :

1. h1 =
1
4
(Id+T1)
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2. h2 =
1
4
(Id+T2)

3. h3 =
3
4
Id−1

4
T2

4. h4 =
3
4
Id−1

4
T1

5. h5 = 0

6. h6 = 1

7. h7 =
6
13
Id+ 2

13
(T1 + T2)− 1

13
(T1T2 + T2T1)

8. h8 =
7
13
Id− 2

13
(T1 + T2) +

1
13
(T1T2 + T2T1)

9. h9 =
1
52
(Id+T1 + T2 + T1T2 + T2T1 + T1T2T1)

10. h10 =
25
52
Id+ 9

52
(T1 + T2)− 3

52
(T1T2 + T2T1) +

1
52
T1T2T1

11. h11 =
27
52
Id− 9

52
(T1 + T2) +

3
52
(T1T2 + T2T1)− 1

52
T1T2T1

12. h12 =
51
52
Id− 1

52
(T1 + T2 + T1T2 + T2T1 + T1T2T1)

13. h13 =
3
13
(Id+T1)− 1

13
(T2 + T1T2)

14. h14 =
3
13
(Id+T2)− 1

13
(T1 + T1T2)

15. h15 =
10
13
Id+ 1

13
(T1 + T1T2)− 3

13
T2

16. h16 =
10
13
Id− 3

13
T1 +

1
13
(T2 + T1T2)

In addition to these elements we noticed that there are more elements at last

4 elements which also satisfy the relation 4.1, so we are not confident we got

all elements to satisfy relation 4.1. These additional elements are obtained by

swapping 1 and 2 in h13, h14, h15 and h16 as follows:

1. h17 =
3
13
(Id+T1)− 1

13
(T2 + T2T1)
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2. h18 =
3
13
(Id+T2)− 1

13
(T1 + T2T1)

3. h19 =
10
13
Id+ 1

13
(T1 + T2T1)− 3

13
T2

4. h20 =
10
13
Id− 3

13
T1 +

1
13
(T2 + T2T1)

Note that:

h1 + h4 = 1 h9 + h12 = 1

h2 + h3 = 1 h10 + h11 = 1

h1 + h4 = 1 h13 + h16 = 1

h7 + h8 = 1 h14 + h15 = 1

h17 + h20 = 1 h18 + h19 = 1

Now, we are going to guess what these elements are for general q:

1. h1 =
1

q+1
(Id+T1)

2. h2 =
1

q+1
(Id+T2)

3. h3 =
q

q+1
Id− 1

q+1
T2

4. h4 =
q

q+1
Id− 1

q+1
T1

5. h5 = 0

6. h6 = 1

7. h7 =
1

q2+q+1
((2q) Id+(q − 1)(T1 + T2)− (T1T2 + T2T1))

8. h8 =
1

1+q+q2
((1− q + q2) Id+(1− q)(T1 + T2) + (T1T2 + T2T1))

9. h9 =
1

1+2q+2q2+q3
(Id+T1 + T2 + T1T2 + T2T1 + T1T2T1)

10. h10 =
1

1+2q+2q2+q3
((1 + 2q + 2q2) Id+(q2)(T1 + T2)− (q)(T1T2 + T2T1) + T1T2T1)
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11. h11 =
1

1+2q+2q2+q3
(q3 Id−q2(T1 + T2) + q(T1T2 + T2T1)− T1T2T1)

12. h12 =
2q+2q2+q3

1+2q+2q2+q3
Id− 1

1+2q+2q2+q3
(+T1 + T2 + T1T2 + T2T1 + T1T2T1)

13. h13 =
1

1+q+q2
(q Id+qT1 − T2 − T1T2)

14. h14 =
1

1+q+q2
(q Id+qT2 − T1 − T1T2)

15. h15 =
1

1+q+q2
((1 + q2) Id+T1 − qT2 = T1T2)

16. h16 =
1

1+q+q2
((1 + q2) Id−qT1 + T2 = T1T2)

17. h17 =
1

1+q+q2
(q Id+qT1 − T2 − T2T1)

18. h18 =
1

1+q+q2
(q Id+qT2 − T1 − T2T1)

19. h19 =
1

1+q+q2
((1 + q2) Id+T1 − qT2 − T2T1)

20. h20 =
1

1+q+q2
((1 + q2) Id−qT1 + T2 − T2T1)

We prove these generalizations work correctly by using gap3. The Appendix

A.1 has details of these calculations.

We substituted these elements into the blob algebra relations when q = 3.

The result indicates that the only elements that satisfy the blob relations are

e1 = h13 with e0 = h15, e1 = h13 with e0 = h18, e1 = h14 with e0 = h16, e1 = h14

with e0 = h17, e1 = h13 with e0 = h20, and e1 = h14 with e0 = h19.

Example 4.2.1. Multiplying h13 by −[2] and h20 by −[m] gives two elements

in H1,1
3 which satisfy the blob relation. Let e1 = −[2]h13 and e0 = −[m]h20:

• e21 = −[2]e1.

• e20 = −[m]e0.

• e1e0e1 =
−3[2][m]

13
e1.
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The following lemma gives a formal result.

Lemma 4.2.2. For n = 3 and q = 3, define two elements in H1,1
3

w1 = −[2]
(

3

13
(Id+T1)−

1

13
(T2 + T1T2)

)
;

w2 = −[m]

(
10

13
Id+

1

13
(T1 + T1T2)−

3

13
T2

)
.

Then for m satisfying the relation
[m+ 1]

[m]
=

[2]([2] + 2)

[2] + 1
the map

Ψ : b2 → H1,1
3

e1 7→ w1

e0 7→ w2

is an isomorphism.

Proof. Using gap3 we do the following calculations (see Appendix A.1), we

verify that:

• w2
1 = −[2]w1.

• w2
2 = −[m]w2.

• w1w2 = [2][m]
(

48
169

(Id+T1)− 4
169

(T2 + T1T2 + T2T1 + T1T2T1)
)
.

• w2w1 = [2][m]
(

48
169

Id+ 39
169

T1 − 16
169

T2 − 12
169

(T1T2 + T2T1) +
4

169
(T1T2T1)

)
.

• w1w2w1 = [m+ 1]w1. Where [m+ 1] = 16[2][m]
13

.

• w2w1w2 = −[2][m]2
(

48
169

(Id+T1)− 168
169

(T2 + T2T1)
)
.

The direct calculation shows that all images satisfy blob relations, and we have

six distinct images, proving that the map Ψ is an isomorphism.
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Also for m as in Lemma 4.2.2 we have the next results.

Lemma 4.2.3. For n = 3 and q = 3, let w4 and w5 be two elements in H1,1
3

as following:

w4 = −[2]
(

3

13
(Id+T2)−

1

13
(T1 + T1T2)

)
;

w5 = −[m]

(
10

13
Id− 3

13
T1 +

1

13
(T2 + T1T2)

)
.

Then for m satisfying the relation
[m+ 1]

[m]
=

[2]([2] + 2)

[2] + 1
the map

Φ : b2 → H1,1
3

e1 7→ w4

e0 7→ w5

is an isomorphism.

Next, we get other isomorphisms for different values of m.

Lemma 4.2.4. For n = 3 and q = 3, define two elements in H1,1
3

z1 = −[2]
(

3

13
(Id+T1)−

1

13
(T2 + T1T2)

)
;

z2 = −[m]

(
10

13
Id+

1

13
(T2 + T2T1)−

3

13
T1

)
.

Then for m satisfying the relation
[m+ 1]

[m]
= − [2]

[2] + 1
the map

ϑ : b2 → H1,1
3

e1 7→ z1

e0 7→ z2
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is an isomorphism.

Proof. Also using gap3 we verify that (see Appendix A.1):

1. z21 = −[2]z1.

2. z22 = −[m]z2.

3. z1z2 =
[m][2]
169

(−9(Id+T1 + T2 + T1T2) + 4(T2T1 + T1T2T1)).

4. z2z1 =
[m][2]
169

(−9 Id+3(T1 + T2)− T1T2 + 12T2T1 − 4T1T2T1).

5. z1z2z1 = [m+1]( 3
13
Id+ 3

13
T1− 1

13
T2− 1

13
T1T2) = [m+1]z1. Where [m+1] =

−3[m][2]
13

.

6. z2z1z2 =
−3[2][m]2

13
( 3
13
Id− 1

13
T1 +

3
13
T2 − 1

13
T1T2).

For the same value of m as in Lemma 4.2.4 we have the following result:

Lemma 4.2.5. For n = 3 and q = 3, let z3 and z4 be two elements in H1,1
3 as

following:

z3 = −[2]
(

3

13
(Id+T2)−

1

13
(T1 + T1T2)

)
;

z4 = −[m]

(
10

13
Id+

1

13
(T1 + T2T1)−

3

13
T2

)
.

For the same value of m as in lemma 4.2.4 the map

Θ : b2 → H1,1
3

e1 7→ z3;

e0 7→ z4.

is an isomorphism.
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Proof. The proof is similar to the proof for lemma 4.2.4 and also the calculation

can be seen in appendix A.1.

Since we have these nice isomorphisms Ψ and ϑ for q = 3, we work to

generalize these maps for all q and come to produce the following isomorphisms

Proposition 4.2.6. Let n = 3 for general q we have y1, y2 two elements in

H1,1
3 defined as

y1 = −κ[2] (q(Id+T1)− (T2 + T1T2))

y2 = −κ[m]
(
(1 + q2) Id+(T1 + T1T2)− qT2

)
,

where κ = 1
1+q+q2

. For m satisfying
[m+ 1]

[m]
=

[2]([2] + 2)

[2] + 1
, we have the follow-

ing isomorphism :

φ : b2 → H1,1
3

e1 7→ y1;

e0 7→ y2.

Proof. To prove this is an isomorphism it is sufficient to prove the images

satisfy the blob relations and produce 6 linearly independent elements. By

direct calculations (we use gap3 to do these calculations, see Appendix A.2)

we have:

y21 = −[2]y1;

y22 = −[m]y2;

y1y2y1 =
[m][2]([2] + 2)

[2] + 1
y1.

That shows the images satisfy the blob relations. Now let us see the re-
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maining three elements:

y1y2 = ξ[2][m]
(
(q + 2q2 + q3)(Id+T1)− (1 + q)(T2 + T1T2 + T2T1 + T1T2T1)

)
.

y2y1 = ξ[2][m]
(
(q + 2q2 + q3) Id+(q2 + q3)T1 − (1 + 2q + q2)T2

)
+ ξ[2][m]

(
−(q + q2)(T1T2 + T2T1) + (1 + q)(T1T2T1)

)
.

y2y1y2 = −ξ[2][m]2
(
(q + 2q2 + q3)(Id+T1)− (1 + 2q + q2)(T2 + T2T1)

)
.

Where ξ = 1
1+2q+3q2+2q3+q4

. As a result, we get six different images under the

map φ that prove φ is an isomorphism.

Similarity as a generalization of map ϑ for all q we get the following propo-

sition.

Proposition 4.2.7. For general q and n = 3 let s1, s2 be elements in H1,1
3

defined as

s1 = −κ[2] (q(Id+T1)− (T2 + T1T2))

s2 = −κ[m]
(
(1 + q2) Id+(T2 + T2T1)− qT1

)
,

where κ = 1
1+q+q2

. For m satisfying
[m+ 1]

[m]
=
−[2]
[2] + 1

, we have the following
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isomorphism :

ϱ : b2 → H1,1
3

e1 7→ s1;

e0 7→ s2.

Proof. First, we show these two elements satisfy the blob relations (see ap-

pendix A.3):

• s21 = −[2]s1.

• s22 = −[m]s2.

• s1s2s1 =
−[m][2]
[2]+1

s1.

Then we check that the remaining elements are different:

• s1s2 = −κ2[m](q2 + 1) (q(Id+T1 + T2 + T1T2)− (q + 1)(T2T1 + T1T2T1)).

• s2s1 = −κ2[m](q2+1) (q Id−(T1 + T2) + T1T2 − (q + 1)T2T1 + (q + 1)T1T2T1).

• s2s1s2 = qκ2[m]2[2] (q(Id+T2)− (T1 + T1T2))

4.3 Conclusion

In this thesis, we provide some results on the representation theory of the blob

algebras and Deguchi-Martin quotient over C. However, we believe there are

areas for future research. We construct a bijection map between the cell bases

of blob algebras bn−1 and Deguchi-Martin quotient H1,1
n . Also, we construct

an isomorphism map between the elements of these two algebras for n = 2
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and n = 3 at a certain value of the parameter m. These results may give the

possibility to achieve new results in the study of these algebras. The problem

of finding a general isomorphism between the blob algebras and the Deguchi-

Martin quotient is still open. Future work can be lies in using another technique

to generalize the isomorphism that we found between blob algebras and the

Deguchi-Martin quotient.
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Gap3 Code

In this chapter, we illustrate all of gap3’s codes which we use to examine h’s

in chapter 4 and to verify our results.

A.1 For Lemmas of Chapter 4

First we construct the general element h in HPM
3 and then we produce h2.

gap> W := CoxeterGroup ( ”A” , 3 ) ;

CoxeterGroup (”A” ,3)

gap> q:=Mvp(”q ” ) ; ;

gap> a :=Mvp(” a ” ) ; ; b :=Mvp(”b ” ) ; ; c :=Mvp(” c ” ) ; ;

d :=Mvp(”d ” ) ; ; f :=Mvp(” f ” ) ; ;

gap> g:=Mvp(” g ” ) ; ;

gap> H := Hecke ( W, q ) ; ;

gap> T := Bas i s ( H, ”T” ) ; ;

gap> h := g∗T( )+a∗T(1)+ b∗T(2)+ c∗T(1 ,2)+ d∗T(2 ,1)+ f ∗T( 1 , 2 , 1 ) ; ;
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gap> hˆ2 ;

(2 cdqˆ2+gˆ2+aˆ2q+bˆ2q+f ˆ2qˆ3)T()+(2 ag+bcq+bdq−cdq+cdqˆ2\

+cfqˆ2+dfqˆ2−aˆ2+aˆ2q−f ˆ2qˆ2+ f ˆ2qˆ3)T(1)+(2bg+acq+adq\

−cdq+cdqˆ2+c fqˆ2+dfqˆ2−bˆ2+bˆ2q−f ˆ2qˆ2+ f ˆ2qˆ3)T(2)+(ab−ac\

−bc+2cg+acq+afq+bcq+bfq−2cfq−2dfq+2c fq ˆ2+2dfqˆ2+dˆ2q+f ˆ2q\

−2 f ˆ2qˆ2+ f ˆ2qˆ3)T(1 ,2)+(ab−ad−bd+2dg+adq+afq+bdq+bfq−2cfq−2dfq\

+2c fq ˆ2+2dfqˆ2+cˆ2q+f ˆ2q−2 f ˆ2qˆ2+ f ˆ2qˆ3)T(2 ,1)+( ac+ad−2a f \

+bc+bd−2bf−2cd+2c f+2df+2fg+2afq+2bfq+2cdq−4cfq−4dfq+2c fq ˆ2\

+2dfqˆ2−cˆ2−dˆ2− f ˆ2+cˆ2q+dˆ2q+2f ˆ2q−2 f ˆ2qˆ2+ f ˆ2qˆ3)T(1 , 2 , 1 )

Setting the relation h2 = h (as in chapter 4 p.62) we get 20 solutions. These

solutions produce 20 idempotent elements. On the following we test each of hi

on the relation h2
i = hi.

gap> h1:= 1/(q+1)∗(T()+T( 1 ) ) ; ;

gap> h1∗h1−h1 ;

0

gap> h2:= 1/(q+1)∗(T()+T( 2 ) ) ; ;

gap> h2∗h2−h2 ;

0

gap> h3 :=1/(q+1)∗(q∗T()−T( 2 ) ) ; ;

gap> h3∗h3−h3 ;

0

gap> h4:= 1/(q+1)∗(q∗T()−T( 1 ) ) ; ;

gap> h4∗h4−h4 ;

0

gap> k:= 1/(1+q+q ˆ 2 ) ; ;

gap> h7:=k ∗ ( (2∗q )∗T()+(q−1)∗T(1)+(q−1)∗T(2)−T(1 ,2)−T( 2 , 1 ) ) ; ;

gap> h7∗h7−h7 ;
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0

gap> h8:=T()−h7 ; ;

gap> h8∗h8−h8 ;

0

gap> p:= (1+q)∗(1+q+q ˆ 2 ) ; ;

gap> h9:= (1/p )∗ (T()+T(1)+T(2)+T(1 ,2)+T(2 ,1)+T( 1 , 2 , 1 ) ) ; ;

gap> h9∗h9−h9 ; ;

0

gap> h11:= (1/p )∗ ( qˆ3∗T()−qˆ2∗T(1)−qˆ2∗T(2)+q∗T(1 ,2 )\

+q∗T(2 ,1)−T( 1 , 2 , 1 ) ) ; ;

gap> h11∗h11−h11 ;

0

gap> h10:= T()−h11 ; ;

gap> h10∗h10−h10 ;

0

gap> h12:= (1/p )∗ ( ( p−1)∗T()−(T(1)+T(2)+T(1 ,2)+T(2 ,1)+T( 1 , 2 , 1 ) ) ) ; ;

gap> h12∗h12−h12 ;

0

gap> h13:=k∗( q∗T()+q∗T(1)−T(2)−T( 1 , 2 ) ) ; ;

gap> h13∗h13−h13 ;

gap> h14:= k∗( q∗T()+q∗T(2)−T(1)−T( 1 , 2 ) ) ; ;

gap> h14∗h14−h14 ;

0

gap> h15:= k ∗ ( ( qˆ2+1)∗T()+T(1)−q∗T(2)+T( 1 , 2 ) ) ; ;

gap> h15∗h15−h15 ;

0

gap> h16:= k ∗ ( ( qˆ2+1)∗T()−q∗T(1)+T(2)+T( 1 , 2 ) ) ; ;

gap> h16∗h16−h16 ;
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0

gap> h17:=k∗( q∗T()+q∗T(1)−T(2)−T( 2 , 1 ) ) ; ;

gap> h17∗h17−h17 ;

0

gap> h18:= k∗( q∗T()+q∗T(2)−T(1)−T( 2 , 1 ) ) ; ;

gap> h18∗h18−h18 ;

0

gap> h19:= k ∗ ( ( qˆ2+1)∗T()+T(1)−q∗T(2)+T( 2 , 1 ) ) ; ;

gap> h19∗h19−h19 ;

0

gap> h20:= k ∗ ( ( qˆ2+1)∗T()−q∗T(1)+T(2)+T( 2 , 1 ) ) ; ;

gap> h20∗h20−h20 ;

0

This shows that h2
i = hi for 1 ≤ i ≤ 20. That means we can scale the hi to

get the first two relations of blob algebra (the idempotency relation). Next, we

examine each hi with every others hj, where i ̸= j for 1 ≤ i, j ≤ 20. First, if

hihjhi = chi for some scalar c ∈ C. If the candidates satisfy this relation, then

we move to check whether hihj, hjhi and hjhihj are linearly independent.

In this part, we examine h13 with h15, h18 and h20 for q = 3. Note that for

q = 3 a check was carried out for all hi but we do not need the result when

they dose not work.

gap> h13∗h15 ;

(30/169+6/169q )T()+(30/169+6/169q )T(1)+(−22/169+6/169q )T(2)

+(−22/169+6/169q )T(1 ,2)+(−1/169−1/169q )T(2 ,1)+(−1/169−1/169q )T(1 , 2 , 1 )

gap> h15∗h13 ;

(30/169+6/169q )T()+(30/169+2/169q )T(1)+(−22/169+2/169q )T(2)

+(−6/169−2/169q )T(1 ,2)+(−9/169−1/169q )T(2 ,1)+(7/169−1/169q )T(1 , 2 , 1 )
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gap> h13∗h15∗h13 ;

(90/2197+10/169q+1/169qˆ2+1/2197qˆ3)T()+(90/2197+10/169q\

+1/169qˆ2+1/2197qˆ3)T(1)+(−118/2197+6/2197q−15/2197qˆ2\

+1/2197qˆ3)T(2)+(−118/2197+6/2197q−15/2197qˆ2+1/2197qˆ3)T(1 , 2 )

+(−66/2197+37/2197q−8/2197qˆ2+1/2197qˆ3)T(2 ,1)+(−66/2197\

+37/2197q−8/2197qˆ2+1/2197qˆ3)T(1 , 2 , 1 )

gap> h15∗h13∗h15 ;

(300/2197+12/169q−1/169qˆ2−1/2197qˆ3)T()+(300/2197+72/2197q\

+15/2197qˆ2−1/2197qˆ3)T(1)+(−376/2197+8/169q−1/169qˆ2\

−1/2197qˆ3)T(2)+(−168/2197+20/2197q+15/2197qˆ2−1/2197qˆ3)T(1 , 2 )

+(−103/2197−50/2197q+8/2197qˆ2−1/2197qˆ3)T(2 ,1)+(105/2197\

−50/2197q+8/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h13 ∗ h15,h15 ∗ h13 and h15 ∗ h13 ∗ h15 are linearly independent

and h13 ∗ h15 ∗ h13 = 16/13 ∗ h13, thus h13 and h15 are candidates for an

isomorphism.

gap> h13∗h18 ;

(9/169+10/169q+1/169qˆ2)T()+(9/169+10/169q+1/169qˆ2)T(1)\

+(−7/169+1/169q )T(2)+(−7/169+1/169q )T(1 ,2)+(−7/169+1/169q )T(2 ,1 )\

+(−7/169+1/169q )T(1 , 2 , 1 )

gap> h18∗h13 ;

(9/169+10/169q+1/169qˆ2)T()+(9/169+9/169q )T(1)+(−7/169\

−6/169q+1/169qˆ2)T(2)+(−3/169−3/169q )T(1 ,2)+(−3/169−3/169q )T(2 ,1 )\

+(1/169+1/169q )T(1 , 2 , 1 )

gap> h13∗h18∗h13 ;

(27/2197+64/2197q+3/169qˆ2+2/2197qˆ3)T()+(27/2197+64/2197q\

+3/169qˆ2+2/2197qˆ3)T(1)+(−37/2197−36/2197q−1/2197qˆ2\

−2/2197qˆ3)T(2)+(−37/2197−36/2197q−1/2197qˆ2−2/2197qˆ3)T(1 ,2 )\

+(−21/2197−11/2197q+9/2197qˆ2−1/2197qˆ3)T(2 ,1)+(−21/2197\
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−11/2197q+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

gap> h18∗h13∗h18 ;

(27/2197+64/2197q+3/169qˆ2+2/2197qˆ3)T()+(27/2197+64/2197q\

+3/169qˆ2+2/2197qˆ3)T(1)+(−37/2197−36/2197q−1/2197qˆ2\

−2/2197qˆ3)T(2)+(−21/2197−11/2197q+9/2197qˆ2−1/2197qˆ3)T(1 ,2 )\

+(−37/2197−36/2197q−1/2197qˆ2−2/2197qˆ3)T(2 ,1)+(−21/2197\

−11/2197q+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h13 ∗ h18, h18 ∗ h13 and h18 ∗ h13 ∗ h18 are linearly independent

and h13 ∗ h18 ∗ h13 = 16/13 ∗ h13, thus h13 and h18 are candidates for an

isomorphism.

gap> h13∗h20 ;

(30/169−10/169q−1/169qˆ2)T()+(30/169−10/169q−1/169qˆ2)T(1)\

+(−6/169−1/169q )T(2)+(−6/169−1/169q )T(1 ,2)+(7/169−1/169q )T(2 ,1 )\

+(7/169−1/169q )T(1 , 2 , 1 )

gap> h20∗h13 ;

(30/169−10/169q−1/169qˆ2)T()+(30/169−9/169q )T(1)+(−6/169\

+6/169q−1/169qˆ2)T(2)+(−10/169+3/169q )T(1 ,2)+(3/169+3/169q )T(2 ,1 )\

+(−1/169−1/169q )T(1 , 2 , 1 )

gap> h13∗h20∗h13 ;

(90/2197+66/2197q−3/169qˆ2−2/2197qˆ3)T()+(90/2197\

+66/2197q−3/169qˆ2−2/2197qˆ3)T(1)+(−54/2197+10/2197q\

+1/2197qˆ2+2/2197qˆ3)T(2)+(−54/2197+10/2197q+1/2197qˆ2\

+2/2197qˆ3)T(1 ,2)+(−18/2197+24/2197q−9/2197qˆ2+1/2197qˆ3)T(2 ,1 )\

+(−18/2197+24/2197q−9/2197qˆ2+1/2197qˆ3)T(1 , 2 , 1 )

gap> h20∗h13∗h20 ;

(300/2197−196/2197q+1/169qˆ2+2/2197qˆ3)T()+(300/2197−183/2197q\

+2/169qˆ2+2/2197qˆ3)T(1)+(−24/2197+29/2197q−14/2197qˆ2\

−2/2197qˆ3)T(2)+(−60/2197+15/2197q+9/2197qˆ2−1/2197qˆ3)T(1 ,2 )\
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+(93/2197−10/2197q−1/2197qˆ2−2/2197qˆ3)T(2 ,1)+(57/2197−37/2197q\

+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h13 ∗ h20, h20 ∗ h13 and h20 ∗ h13 ∗ h20 are linearly independent

and h13 ∗ h20 ∗ h13 = −3/13 ∗ h13, thus h13 and h20 are candidates for an

isomorphism.

Similarly, we examine h14 and also we will see that h14 with h16, h17 and

h19 will satisfy the blob relations.

gap> h14∗h16 ;

(30/169+6/169q )T()+(−22/169+2/169q )T(1)+(30/169+2/169q )T(2)

+(−6/169−2/169q )T(1 ,2)+(−9/169−1/169q )T(2 ,1)+(7/169−1/169q )T(1 , 2 , 1 )

gap> h16∗h14 ;

(30/169+6/169q )T()+(−22/169+6/169q )T(1)+(30/169+6/169q )T(2)

+(−22/169+6/169q )T(1 ,2)+(−1/169−1/169q )T(2 ,1)+(−1/169−1/169q )T(1 , 2 , 1 )

gap> h14∗h16∗h14 ;

(90/2197+10/169q+1/169qˆ2+1/2197qˆ3)T()+(−118/2197\

+6/2197q−15/2197qˆ2+1/2197qˆ3)T(1)+(90/2197+10/169q+1/169qˆ2\

+1/2197qˆ3)T(2)+(−118/2197+6/2197q−15/2197qˆ2+1/2197qˆ3)T(1 , 2 )

+(−66/2197+37/2197q−8/2197qˆ2+1/2197qˆ3)T(2 ,1)+(−66/2197\

+37/2197q−8/2197qˆ2+1/2197qˆ3)T(1 , 2 , 1 )

gap> h16∗h14∗h16 ;

(300/2197+12/169q−1/169qˆ2−1/2197qˆ3)T()+(−376/2197+8/169q\

−1/169qˆ2−1/2197qˆ3)T(1)+(300/2197+72/2197q+15/2197qˆ2\

−1/2197qˆ3)T(2)+(−168/2197+20/2197q+15/2197qˆ2−1/2197qˆ3)T(1 , 2 )

+(−103/2197−50/2197q+8/2197qˆ2−1/2197qˆ3)T(2 ,1)+(105/2197\

−50/2197q+8/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h14 ∗ h16,h16 ∗ h14 and h16 ∗ h14 ∗ h16 are linearly independent
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and h14 ∗ h16 ∗ h14 = 16/13 ∗ h14, thus h14 and h16 are candidates for an

isomorphism.

gap> h14∗h17 ;

(9/169+10/169q+1/169qˆ2)T()+(−7/169−6/169q+1/169qˆ2)T(1)\

+(9/169+9/169q )T(2)+(−3/169−3/169q )T(1 ,2)+(−3/169−3/169q )T(2 ,1 )\

+(1/169+1/169q )T(1 , 2 , 1 )

gap> h17∗h14 ;

(9/169+10/169q+1/169qˆ2)T()+(−7/169+1/169q )T(1)+(9/169\

+10/169q+1/169qˆ2)T(2)+(−7/169+1/169q )T(1 ,2)+(−7/169\

+1/169q )T(2 ,1)+(−7/169+1/169q )T(1 , 2 , 1 )

gap> h14∗h17∗h14 ;

(27/2197+64/2197q+3/169qˆ2+2/2197qˆ3)T()+(−37/2197\

−36/2197q−1/2197qˆ2−2/2197qˆ3)T(1)+(27/2197+64/2197q\

+3/169qˆ2+2/2197qˆ3)T(2)+(−37/2197−36/2197q−1/2197qˆ2\

−2/2197qˆ3)T(1 ,2)+(−21/2197−11/2197q+9/2197qˆ2−1/2197qˆ3)T(2 ,1 )\

+(−21/2197−11/2197q+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

gap> h17∗h14∗h17 ;

(27/2197+64/2197q+3/169qˆ2+2/2197qˆ3)T()+(−37/2197\

−36/2197q−1/2197qˆ2−2/2197qˆ3)T(1)+(27/2197+64/2197q\

+3/169qˆ2+2/2197qˆ3)T(2)+(−21/2197−11/2197q+9/2197qˆ2\

−1/2197qˆ3)T(1 ,2)+(−37/2197−36/2197q−1/2197qˆ2−2/2197qˆ3)T(2 ,1 )\

+(−21/2197−11/2197q+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h14 ∗ h17, h17 ∗ h14 and h17 ∗ h14 ∗ h17 are linearly independent

and h14 ∗ h17 ∗ h14 = 16/13 ∗ h14, thus h14 and h17 are candidates for an

isomorphism.

gap> h14∗h19 ;

(30/169−10/169q−1/169qˆ2)T()+(−6/169+6/169q−1/169qˆ2)T(1)\

+(30/169−9/169q )T(2)+(−10/169+3/169q )T(1 ,2)+(3/169+3/169q )T(2 ,1 )\
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+(−1/169−1/169q )T(1 , 2 , 1 )

gap> h19∗h14 ;

(30/169−10/169q−1/169qˆ2)T()+(−6/169−1/169q )T(1)\

+(30/169−10/169q−1/169qˆ2)T(2)+(−6/169−1/169q )T(1 ,2 )\

+(7/169−1/169q )T(2 ,1)+(7/169−1/169q )T(1 , 2 , 1 )

gap> h14∗h19∗h14 ;

(90/2197+66/2197q−3/169qˆ2−2/2197qˆ3)T()+(−54/2197+10/2197q\

+1/2197qˆ2+2/2197qˆ3)T(1)+(90/2197+66/2197q−3/169qˆ2\

−2/2197qˆ3)T(2)+(−54/2197+10/2197q+1/2197qˆ2+2/2197qˆ3)T(1 ,2 )\

+(−18/2197+24/2197q−9/2197qˆ2+1/2197qˆ3)T(2 ,1)+(−18/2197\

+24/2197q−9/2197qˆ2+1/2197qˆ3)T(1 , 2 , 1 )

gap> h19∗h14∗h19 ;

(300/2197−196/2197q+1/169qˆ2+2/2197qˆ3)T()+(−24/2197\

+29/2197q−14/2197qˆ2−2/2197qˆ3)T(1)+(300/2197−183/2197q+2/169qˆ2\

+2/2197qˆ3)T(2)+(−60/2197+15/2197q+9/2197qˆ2−1/2197qˆ3)T(1 ,2 )\

+(93/2197−10/2197q−1/2197qˆ2−2/2197qˆ3)T(2 ,1)+(57/2197\

−37/2197q+9/2197qˆ2−1/2197qˆ3)T(1 , 2 , 1 )

Note that h14 ∗ h19, h19 ∗ h14 and h19 ∗ h14 ∗ h19 are linearly independent

and h14 ∗ h19 ∗ h14 = −3/13 ∗ h14, thus h14 and h19 are candidates for an

isomorphism.

A.2 For proposition 4.2.6

In the following, we use gap3 to do the calculations of the proposition 4.2.6.

Where x = q + q−1 = [2].

gap> e1 :=q/(qˆ2+q+1)∗T()+q/(qˆ2+q+1)∗T(1) \
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−1/(qˆ2+q+1)∗T(2)−1/(qˆ2+q+1)∗T( 1 , 2 ) ; ;

gap> e2 := (qˆ2+1)/(qˆ2+q+1)∗T()+1/(qˆ2+q+1)∗T(1) \

+ 1/(qˆ2+q+1)∗T(1 ,2 ) − q/(qˆ2+q+1) ∗ T( 2 ) ; ;

gap> y1:=−(q+qˆ−1)∗e1 ; ;

gap> y1ˆ2+(q+qˆ−1)∗y1 ;

0

We use m in p lace o f [m] .

gap> y2:= −m∗ e2 ; :

gap> y2ˆ2+m∗y2 ;

0

gap> y1∗y2∗y1 ;

(−m−2mq−3mqˆ2−4mqˆ3−3mqˆ4−2mqˆ5−mqˆ6)/( q+2qˆ2+3qˆ3\

+2qˆ4+qˆ5)T()+(−m−2mq−3mqˆ2−4mqˆ3−3mqˆ4−2mqˆ5\

−mqˆ6)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1)+(m+2mq+3mqˆ2+4mqˆ3\

+3mqˆ4+2mqˆ5+mqˆ6)/( qˆ2+2qˆ3+3qˆ4+2qˆ5+qˆ6)T(2)\

+(m+2mq+3mqˆ2+4mqˆ3+3mqˆ4+2mqˆ5+mqˆ6)/( qˆ2+2qˆ3+3qˆ4+2qˆ5\

+qˆ6)T(1 , 2 )

gap> ( qˆ2+2∗qˆ3+3∗qˆ4+2∗qˆ5+qˆ6)/(m+2∗m∗q+3∗m∗qˆ2+4∗m∗qˆ3\

+3∗m∗qˆ4+2∗m∗qˆ5+m∗q ˆ6)∗ ( y1∗y2∗y1 ) ;

−qT()−qT(1)+T(2)+T(1 , 2 )

gap> 1/(1+qˆ2) ∗ q∗(1+q+qˆ2)∗ y1 ;

−qT()−qT(1)+T(2)+T(1 , 2 )

We see

gap> y1∗y2∗y1−(q+qˆ2+qˆ3)/(1+qˆ2)∗ (m+2∗m∗q+3∗m∗qˆ2+4∗m∗qˆ3\

+3∗m∗qˆ4+2∗m∗qˆ5+m∗q ˆ6)/( qˆ2 +2∗qˆ3+3∗qˆ4+2∗qˆ5+qˆ6)∗ ( y1 ) ;

0
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So we need

[m+1] =
(q + q2 + q3)([m] + 2[m]q + 3[m]q2 + 4[m]q3 + 3[m]q4 + 2[m]q5 + [m]q6)

(q2 + 2q3 + 3q4 + 2q5 + q6)(1 + q2)
.

I.e.

[m+ 1]

[m]
=

q(1 + q + q2)(1 + 2q + 3q2 + 4q3 + 3q4 + 2q5 + q6)

q2(1 + 2q + 3q2 + 2q3 + q4)(1 + q2)

=
q([2] + 1)q3([4] + 2[3] + 2[2] + 2)

q.q2([3] + 2[2] + 2).q[2]

=
([2] + 1)[2]([3] + 2[2] + 1)

([3] + 2[2] + 2).[2]
=

([2] + 1)([2] + 2)[2]

([2]2 + 2[2] + 1)
=

[2]([2] + 2)

[2] + 1
.

The above calculations verify that y1 and y2 satisfy the blob relations for

m satisfying the above equation. Next, we check that y1y2, y2y1 and y2y1y2 are

linear independent elements.

gap> y1∗y2 ;

(m+2mq+2mqˆ2+2mqˆ3+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()\

+(m+2mq+2mqˆ2+2mqˆ3+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1)\

+(−m−mq−mqˆ2−mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2)+(−m−mq−mqˆ2−\

mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1 ,2)+(−m−mq−mqˆ2−mqˆ3)/( q+2qˆ2\

+3qˆ3+2qˆ4+qˆ5)T(2 ,1)+(−m−mq−mqˆ2−mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4\

+qˆ5)T(1 , 2 , 1 )

gap> y2∗y1 ;

(m+2mq+2mqˆ2+2mqˆ3+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()\

+(mq+mqˆ2+mqˆ3+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1)+(−m−2mq\

−2mqˆ2−2mqˆ3−mqˆ4)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2)+(−m−mq\

−mqˆ2−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1 ,2)+(−m−mq−mqˆ2\

−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(2 ,1)+(m+mq+mqˆ2+mqˆ3)/( q+2qˆ2\

+3qˆ3+2qˆ4+qˆ5)T(1 , 2 , 1 )

gap> y2∗y1∗y2 ;
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(−mˆ2−2mˆ2q−2mˆ2qˆ2−2mˆ2qˆ3−mˆ2qˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()\

+(−mˆ2−2mˆ2q−2mˆ2qˆ2−2mˆ2qˆ3−mˆ2qˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1)\

+(mˆ2+2mˆ2q+2mˆ2qˆ2+2mˆ2qˆ3+mˆ2qˆ4)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2)\

+(mˆ2+2mˆ2q+2mˆ2qˆ2+2mˆ2qˆ3+mˆ2qˆ4)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2 , 1 )

A.3 For proposition 4.2.7

gap> e1 := q/(qˆ2+q+1)∗T()+q/(qˆ2+q+1)∗T(1)−1/(qˆ2+q+1)∗T(2)\

−1/(qˆ2+q+1) ∗ T( 1 , 2 ) ; ;

gap> e2 := (qˆ2+1)/(qˆ2+q+1)∗T() + 1/(qˆ2+q+1)∗T(2)\

+1/(qˆ2+q+1)∗T(2 ,1)−q/(qˆ2+q+1) ∗ T( 1 ) ; ;

gap> s1:=− ( q+1/q )∗ e1 ; ;

gap> s2:=−m∗ e2 ; ;

gap> s1 ∗ s1+(q+qˆ−1)∗ s1 ;

0

gap> s2 ∗ s2+m∗ s2 ;

0

gap> s1 ∗ s2 ∗ s1 ;

(m+2mqˆ2+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()\

+(m+2mqˆ2+mqˆ4)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1)\

+(−m−2mqˆ2−mqˆ4)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2)+(−m−2mqˆ2\

−mqˆ4)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1 , 2 )

gap> ( q+2∗qˆ2+3∗qˆ3+2∗qˆ4+qˆ5)/(−m−2∗m∗qˆ2−m∗q ˆ4)∗ ( s1 ∗ s2 ∗ s1 ) ;

−qT()−qT(1)+T(2)+T(1 , 2 )

gap> 1/(1+qˆ2) ∗ q∗(1+q+qˆ2)∗ s1 ;

−qT()−qT(1)+T(2)+T(1 , 2 )

So :

s1 ∗ s2 ∗ s1−(q+qˆ2+qˆ3)/(1+qˆ2)∗(−m−2∗m∗qˆ2−m∗q ˆ4)/( q+2∗qˆ2\
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+3∗qˆ3+2∗qˆ4+qˆ5)∗ s1 ;

0

So we need

[m+ 1] =
(q + q2 + q3)(−[m]− 2 ∗ [m] ∗ q2 − [m] ∗ q4)
(1 + q2)(q + 2 ∗ q2 + 3 ∗ q3 + 2 ∗ q4 + q5)

=
−[m]q(1 + q + q2)(1 + 2q2 + q4)

(1 + q2)q(1 + 2q + 3q2 + 2q3 + q4)

=
−[m](1 + q + q2)q2[2][2]

q[2](1 + q + q2)(1 + q + q2)
=
−[m]q[2]

q([2] + 1)
=
−[m][2]

[2] + 1
.

The above shows that s1 and s2 satisfy the blob relations, next we check the

images are linearly independent.

gap> s1 ∗ s2 ;

(−mq−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()+(−mq−mqˆ3)/(1+2q+3qˆ2\

+2qˆ3+qˆ4)T(1)+(−mq−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(2)\

+(−mq−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1 ,2)+(m+mq+mqˆ2\

+mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(2 ,1)+(m+mq+mqˆ2\

+mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1 , 2 , 1 )

gap> s2 ∗ s1 ;

(−mq−mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()+(m+mqˆ2)/(1+2q+3qˆ2\

+2qˆ3+qˆ4)T(1)+(m+mqˆ2)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(2)\

+(−m−mqˆ2)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1 ,2)+(m+mq+mqˆ2\

+mqˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(2 ,1)+(−m−mq−mqˆ2\

−mqˆ3)/( q+2qˆ2+3qˆ3+2qˆ4+qˆ5)T(1 , 2 , 1 )

gap> s2 ∗ s1 ∗ s2 ;

(mˆ2q+mˆ2qˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T()\

+(−mˆ2−mˆ2qˆ2)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1)\

+(mˆ2q+mˆ2qˆ3)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(2)\

+(−mˆ2−mˆ2qˆ2)/(1+2q+3qˆ2+2qˆ3+qˆ4)T(1 , 2 )
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